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Abstract. We recently introduced the idea of solving cluster ensembles
using a Weighted Shared nearest neighbors Graph (WSnnG). Prelimi-
nary experiments have shown promising results in terms of integrating
different clusterings into a combined one, such that the natural cluster
structure of the data can be revealed. In this paper, we further study and
extend the basic WSnnG. First, we introduce the use of fixed number of
nearest neighbors in order to reduce the size of the graph. Second, we
use refined weights on the edges and vertices of the graph. Experiments
show that it is possible to capture the similarity relationships between
the data patterns on a compact refined graph. Furthermore, the qual-
ity of the combined clustering based on the proposed WSnnG surpasses
the average quality of the ensemble and that of an alternative clustering
combining method based on partitioning of the patterns’ co-association
matrix.

1 Introduction

Cluster analysis is an unsupervised learning method that constitutes a corner-
stone of an intelligent data analysis process. It is used for the exploration of
inter-relationships among a collection of patterns, by organizing them into ho-
mogeneous clusters. It is called unsupervised learning because unlike classifica-
tion (known as supervised learning), no a priori labelling of some patterns is
available to use in categorizing others and inferring the cluster structure of the
whole data.

Cluster analysis is a difficult problem because many factors (such as effective
similarity measures, criterion functions, algorithms and initial conditions) come
into play in devising a well tuned clustering technique for a given clustering
problem. Moreover, it is well known that no clustering method can adequately
handle all sorts of cluster structures (shape, size and density). In fact, the cluster
structure produced by a clustering method is sometimes an artifact of the method
itself that is actually imposed on the data rather than discovered about its true
structure.

Combining of multiple classifiers has been successful in improving the quality
of data classifications. Significant theoretical advances and successful practical
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applications have been achieved in this area [1]. An experimental comparison
of various combining schemes can be found in [2]. In a recent review of multi-
classifier systems [1], the integration of multiple clustering is considered as an
example to further broaden and stimulate new progress in the area. However,
the theoretical foundation of combining multiple clusterers, is still in its early
stages. Some of the important related contributions can be found in [3] and [4].

In fact, combining multiple clusterings is a more challenging problem than
combining multiple classifiers. In [5], the reasons that impede the study of clus-
tering combination have been identified as: (1) It is believed that the quality
of clustering combination algorithms can not be evaluated as precisely as com-
bining classifiers. A priori knowledge or user’s judgement plays a critical role
in estimation of clustering performance. This problem represents an obstacle to
proposing a mathematical theory to design clustering combination algorithms.
(2) As various clustering algorithms produce largely different results due to differ-
ent clustering criteria, combining the clustering results directly with integration
rules, such as sum, product, median and majority vote can not generate a good
meaningful result. In [I], combining multiple clusterings has been stated to be
a more difficult problem, since cluster labels are symbolic and a correspondence
problem must also be solved. Other difficulties include variability of the number
and shape of clusters provided by individual solutions, and the desired or the
unknown “right” number and shape.

However, as noted in [13], cluster ensembles can lead to improved quality
and robustness of clustering solutions across a wider variety of data sets, en-
able “knowledge reuse”, and “distributed clustering” both in terms of objects
or features. Moreover, we believe that one of the potential benefits of cluster
ensembles lies in leveraging the ability of cluster analysis to reveal the natural
cluster structure through careful analysis and consolidation of multiple different
clustering of the input data. Therefore, cluster ensembles have a potential to
play a critical role in the field of knowledge extraction from data, distributed
learning and decision fusion of multiple unsupervised learners.

Cluster ensembles can be formed in a number of different ways, such as (1)
the use of a number of different clustering techniques (either deliberately or
arbitrarily selected). (2) The use of a single technique many times with different
initial conditions. (3) The use of different partial subsets of features or patterns.
In this paper, we use the first approach. As to the selection of the techniques, we
use a set of techniques from those proposed in [3] for creating a diverse collection
of clustering methods.

2 Shared Nearest-Neighbors Based Combiner

In a recent contribution [6], we introduced the idea of combining multiple dif-
ferent clusterings of a set of data patterns based on a Weighted Shared nearest
neighbors Graph W SnnG. We compared the performance of the Shared nearest
neighbors-based (Snn-based) combiner with the supra-consensus function intro-
duced in [3]. Results were promising and showed the ability of the Snn-based
combiner to reveal cluster structures that may be unbalanced.
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2.1 Similarity Based on Sharing of Neighbors

Based on the principle of evidence accumulation introduced in [4] and which
was inspired by the work in sensor fusion and classifier combination techniques
in [2], a voting mechanism can be adopted to determine the similarity between
patterns based on their co-occurrence in the given set of clusterings.

An alternative, or rather a complement to direct similarity between patterns
is their shared nearest neighbors, an approach to similarity proposed in 1973
by Jarvis and Patrick [7] and recently extended in [8f9]. The philosophy of the
approach is that one can confirm the similarity between two patterns by their
common (i.e shared) nearest neighbors. For instance, if patterns ¢ and j are
similar, and if they are both similar to a set of shared patterns .S, then one can
have greater confidence in the similarity between ¢ and j, since their similarity
is confirmed by the set of their shared neighbors S.

In the proposed combiner, we emphasize the shared neighborhood relation-
ships between patterns. The extracted relationships are used to construct the
W SnnG whose vertices correspond to the patterns and the edges represent the
links between the patterns based on their neighborhood sharing. Weights are
assigned on both edges and vertices, as will be further explained later.

The advantages of W.SnnG are: first, we find that the shared nearest neigh-
bors approach to similarity (co-association) can be particularly useful in com-
bining different data clusterings. In combining different clusterings based on
co-associations, one faces the issue of transitivity of co-associations in merging
patterns. We believe that re-defining co-associations in terms of neighborhood
sharing provides a means to carefully analyze the co-associations among pat-
terns, as revealed by the consensus and conflicts among the different clusterings.
Therefore, ideas based on this concept, such as those used in this paper, can help
in integrating different cluster structures of the data, beyond applying strict con-
sensus or transitivity on co-associations.

Second, we derive from this approach, the definition of the shared nearest
neighbors population associated with each pattern ¢ as the sum or weighted
sum of shared neighbors with pattern ¢. We use this number in determining
the relative weights of patterns. This is analogous to the notion of probability
density of a point defined in []]. The idea is that we assume that if a point has
a lot of highly associated shared nearest neighbors, then it is more likely to be
a member of a large and/or dense cluster. On the other hand, a point that has
fewer weakly associated shared nearest neighbors, then it is more likely to be a
member of a small and/or dispersed cluster.

2.2 Problem Formulation

Let X = {x1, 9, -, x,} denote a set of n data patterns, and C = {C,Cy, - - -,
C,} is a set of r clusterings (cluster ensemble) of the n data patterns. From the
given set of clusterings C of the n patterns, we construct a WSnnG(V, E), where
V = {v1,v2, - v, } is the set of weighted vertices corresponding to the set of
patterns. E = {ej,ea, -+, e} represents the set of weighted edges connecting
the patterns, where m is the number of edges. An edge between any pair of
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vertices is counted only once, i.e. edge connecting vertex v; to vertex v; is not
counted separately from edge connecting v; to v;.

Since we combine the different clusterings of the ensemble without accessing
the data patterns X in their feature space, we will refer, from now on, to a pattern
by its index, that is, we use ¢ rather than x;. Before building the W.SnnG, the
following preprocessing steps are performed.

A. Computation of co-associations (direct-similarities):
Similar to the voting mechanism described in [4], a similarity measure be-
tween patterns co-occurring in the same cluster is computed as

co — assoc(i,j) = voiﬂ

where votes;; is the number of times patterns ¢ and j are assigned to the
same cluster among the r clusterings. That is 0 < co — assoc(i, j) < 1.0.

B. Sparsification of the nearest neighbors:
Based on the co-associations between patterns, a list of nearest neighbors
P? to each pattern i is defined as the list of patterns whose co-associations
with i satisfy a selected voterpresn, where 0 < voterpresn < 1.0. That is,
V(i,j),i € P and j € P! <= co — assoc(i,j) > voterhresh-

A number of factors can play a role in choosing the value of the votery esh,
such as the size of the ensemble, knowledge about the relative performance of
the individual clustering techniques. Other issue such as the number of clusters
relative to the size of the data. Increasing the value of voterp,esp, corresponds
to imposing stricter consensus among the clusterings, while decreasing it, corre-
sponds to relaxes this condition and leads to revealing of more nearest neighbors.
A majority vote corresponds to voterpresr, = 0.5. In the experiments described,
we maintain a majority vote threshold, as we find it suitable for the diverse
ensemble that we use. The ensemble consist of most of the techniques originally
proposed in [3].

The construction of the W.SnnG, is described in the next two subsections.
After its construction, the graph is then partitioned using the graph partitioning
package METIS [10], in which the underlying algorithms described in [10J11]
12] are based on the state-of-the-art multilevel paradigm that has been shown
to produce high quality results and scale to very large problems. METIS can
partition a graph in the presence a balancing constraint. The idea is that each
vertex has a weight associated with it, and the objective of the partitioning
algorithm is to minimize the edge-cut subject to the constraint that the weight
of the vertices is equally distributed among the clusters.

2.3 Basic WSnnG

The computation of the weights in the basic WSnnG [6] are described as follows.

i. Evaluation of neighborhood sharing: For each pair of patterns ¢ and 7,
determine the size (count) of their shared nearest neighbors, i.e., the size of
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the intersection |PY N P7] of their respective nearest neighbors lists P and
P7. Using the Jaccard measure of similarity, we compute the strength o;; of
the neighborhood sharing between the two objects ¢ and j as

|PiN P

B+ ] 1)

Oij = 2 X
If 0;; satisfies a strength threshold o;j7hresh, Where this threshold is evalu-
ated dynamically for each pair of objects ¢ and j, and is given as, 0jjrhresh =
p x max(| P, |P?|). The parameter o determines the required ratio of over-
lap. In the reported experiments p = 0.5, indicating that objects must share
at least 50% of their nearest neighbors in order to satisfy the strength thresh-
old.
Then
— Create an edge between ¢ and j with weight o;;
— Increment shared nearest neighbors populations 6;, 6; for objects ¢ and j
ii. Assignment of weights to the vertices of the graph: The weight w; of
each object 7 is computed as the ratio of a balancing factor [ to the shared
nearest neighbors population 6; associated with object ¢. That is, w; = 9%_
The idea of the relative weights w; is to in reflect in the graph the varying
cluster sizes.

This graph is characterized by the variability of the size of each pattern’s
nearest neighbors. This type of graph, however, can grow into a significantly
large one reaching an O(n?). For instance, in such cases where n is large and the
number of clusters is small, this leads to large lists of nearest neighbors P? to
each pattern i. Furthermore, the weighting scheme used is binary, it is sensitive
to the number of shared nearest neighbors as shown in Equation [[] rather than
their corresponding co-associations (values of votes ratios).

2.4 Refined WSnnG

In the refined graph, we want to use only the k-nearest neighbors of each pattern,
thus ensuring a compact graph of size O(kn) and consequently reducing the
computational cost. In addition, we use a refined weighting of the edges and
vertices that is sensitive to the corresponding vote ratios instead of the binary
scheme used in the basic graph.

We refer to the list of k-nearest neighbors of pattern ¢ as L?. A characteristic
of the lists P? (defined in step B. of Section [Z2)) that is not found in L is their
of mutuality. We have, V¥(i,j),i € P/ <= j € P!, whereas this does not hold
for the lists L*.

Therefore, two algorithmic options present themselves in dealing with the
issue of mutuality, while building the W SnnG based on k-nearest neighbors. It
is possible that one chooses to connect two patterns ¢ and j only when they
are mutual neighbors. Alternatively, one can choose to connect them whenever
either i € L7 or j € L. In this paper, we choose the second option because it
reveals more relationships at smaller values of k£ and leads to faster convergence.
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The weights assigned to the vertices are meant to reflect an estimate of the
probability density of the patterns, thus estimating the probability distribution
of the clusters to which the patterns belong. In fact, this is an important aspect
of the solution that we propose for accommodating natural cluster structures
that may be unbalanced. In the refined W.SnnG, we use the weighted sum of
the shared nearest neighbors as the density estimates of the patterns. Again, at
this stage, two options present themselves. One option is to compute the weight
of pattern i based only neighborhood sharing with the elements of its pruned
k-nearest neighbors list L*. The second option is to use all the elements of the P?
list. In this paper, we choose the second option in order to maintain a stability
to the partitioning solutions at different values of k. This is achieved due to the
global computation of the weights assigned to the vertices. Therefore, choosing
k becomes less of an issue. The computations of the weights are described below
followed by a description of the algorithm WSnnG-Builder in Algorithm [11

i. Evaluation of neighborhood sharing: Let S¥ = {s1 ,82 st .} =Pin
PJ | be the set of shared nearest neighbors between pattern ¢ and 7, and
W” = {w1 ,wy .., w,; J} is a corresponding list of weights. n%/ is the num-
ber of shared patterns between patterns i and j. The weight w“ € W is
computed as the product of 19l and 193 where 191 is the co— assoc(z7 s]’j ), and
99 is the co—assoc(j, s%). That is, the correspondmg actual vote ratios. The
formulas for computing w;’ and the total weight w" are as follows.

ij _ i j
wy; fﬁpxﬂp.

n*
w = Z w;j. (2)
p=1

Let W? and W7 be the lists of corresponding weights to P* and P7, as
determined from the vote ratios (in the preprocessing steps of Section [2:2)).
Using on the extended Jaccard measure [I3], we compute the strength of
neighborhood sharing o;; as

WA+ IR = i )

ii. Assignment of weights to the vertices of the graph: The weight w; of
each pattern ¢ is computed as the ratio of a balancing factor I to the weighted

Uij =

sum of the shared nearest neighbors population 8;, where 6; = Z?;l w*, and
n; is size of the list P'. Finally, w; is given by w; = £.

Notice that we use only the k-nearest neighbors L* of each pattern 3, to con-
nect edges between the vertices of the graph, but we use the nearest neighbors P?
to evaluate the strength of neighborhood sharing, and to evaluate the patterns’
weights (density estimates). Consequently, the size of the graph is reduced from
a worst case complexity of O(n?) (Basic Graph) to O(kn).
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Algorithm 1 WSnnG-Builder

for all pattern i in the dataset do
for all pattern j € P?, such that the symmetric pair (j,i) was not processed do
compute w* as given by Equation ]
0; < 0; + wij
0; + 0; +w"
if je L* ORic L’ then
connect patterns ¢ and j with an edge of strength o;; as given by Equation [3]
end if
end for
Wi < 9%
assign the weight w; to pattern 1.
end for

Also, notice that we eliminated the p parameter that was used in the basic
graph. This is done to avoid filtering of relationships, since we only consider a
limited number of neighbors. We rely instead on the added sensitivity to the
weighting scheme in determining the strength of the links, and weights of pat-
terns. However, one may still choose to use a threshold and eliminate weak
relationships.

Basically, the idea is to extract from the relationships revealed by the en-
semble, representative interconnections, and corresponding weights, in a con-
cise graph. An important characteristic of the graph is to be flexible enough to
capture different clusters distributions, which may naturally occur in the data,
making it more difficult to clustering techniques to reveal them, and also causing
variability in the clustering generated using different techniques.

2.5 Partitioning of the WSnnG

The W SnnG is partitioned into ¢ clusters, so as to minimize the edge-cut subject
to the constraint that the weights on the vertices are equally distributed among
the ¢ clusters. The issue of how to determine ¢ is not addressed in this work. An
estimate of ¢ is rather assumed to be available for the combiner and the individual
clustering techniques forming the ensemble. By assigning relative weights w; to
the vertices based on their corresponding weighted sum of neighborhood sharing,
we embed in the graph information about the sizes of neighborhood associated
with each pattern, thus accommodating for varying cluster sizes and structure
imbalances. The weights o;; on the edges, are based on the strength of the link
connecting patterns ¢ and j. Stronger links are less likely to be cut, again subject
to the balance constraint.

3 Experimental Analysis

In [3], an ensemble of diverse techniques was proposed to be used as a portfolio of
methods across a wide variety of data from different domains and dimensionality.
We use most of the techniques of this portfolio, totalling to 9 different techniques.
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They are the graph partitioning and k-means, each using 4 different similarity
measures (Euclidean, cosine, extended Jaccard and correlation), in addition to
hypergraph partitioning. We used ClusterPack, a cluster analysis package by
Alexander Strehl available at http://strehl.com/ to generate the ensemble.

3.1 Quality Evaluation

We use the ensemble of clusterings to build a refined W.SnnG, at variable values
of K in the range [10-100], in order to study the behavior of the method. For
each K, we generate the combined clustering based on the graph partitioning. In
order to study the merit of our approach, we compare it to solution generated
by the partitioning of the original co-association matrix, which is the cluster
ensemble method called CSPA (Cluster-based Similarity Partitioning Algorithm)
in [3]. The partitioning is generated using METIS on the original co-association
matrix (direct similarities based on votes of co-associations). We also compare
the quality of the combined clustering to the average quality of the individual
clustering techniques forming the ensemble.

We use the F-measure [I4], which combines both precision and recall to
evaluate the quality of the different clustering solutions. The F-measure is an
external criteria based on additional information not given to the clusterers,
which is the labelled categorization assigned externally by humans.

3.2 Artificial Data

We artificially generated 3 datasets of 2 dimensional points. The datasets are
shown in Figure [[l Dataset 2D-2C consists of two clusters of points of sizes
(50, 150) sampled from two Gaussian distributions with different means and co-
variance matrices. Dataset 2D-3C consists of three clusters of points of sizes (50,
75, 150) also sampled from three Gaussian distributions using different means,
and co-variance matrices. Dataset 2C-NonConvex consists of points forming two
non-convex clusters of sizes (120, 300). The clusters were generated by concate-
nating several smaller Gaussian clusters with means moving along half circles.

From the results shown in Figure Bl we notice the superiority of the combined
clustering based on the refined W.SnnG over the ensemble’s mean and the CSPA
clustering. In addition, we find an improvement in terms of the discovered cluster
distribution relative to the natural clusters inherent in the data. In contrast
to the combined clustering based on the CSPA method which always generate
equal size clusters, thus imposing well balanced clusters, our approach thrives
to discover the true probability distributions of the clusters.

The clustering of the datasets 2D-2C, 2D-3C and 2C-NonConvex based on
the CSPA, discovered clusters of sizes as follows (100, 100), (91, 91, 93) and (210,
210), respectively. The WSnnG solutions for different K discovered clusters of
sizes around (44, 156), (27, 78, 170) and (108, 312) respectively. By comparing
these values to the original cluster sizes, we find that the WSnnG solutions
represent better estimates of the cluster sizes.
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Fig. 1. Artificial datasets
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Fig. 2. Artificial data results. The ensemble’s mean (Ens-Mean) and the CSPA are not
function of K, they have constant values. We plot them on the same plot of WSnnG
vs K to facilitate the comparison. With the 2D-3C and the 2C-NonConvex datasets,
the Ens-Mean and the CSPA overlap.

3.3 Real Data

We experimented with datasets from the UCI machine learning repository avail-
able at http://www.ics.uci.edu/ mlearn/MLRepository.html. The datasets se-
lected are generally used in classification and pattern recognition problems. The
results are shown in Figure[3], and further discussed below.

Ecoli Dataset. The Ecoli Dataset is used in classification problems for pre-
dicting the cellular localization sites of proteins [I5]. The dataset consists of
336 instances represented by 7 numeric predictive attributes. There are 8 classes
of unbalanced distribution, with class sizes ranging from 2 to 143 patterns per
cluster (ppc). From the results shown in Figure [3, we find that the quality of
the combined clustering based on the W SnnG surpasses both the ensemble’s av-
erage and combined clustering based on CSPA. In addition, the CSPA method
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Ecoli Dataset PenDigits—Sample Iris Plant Dataset
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Fig. 3. Results on real datasets

generated equal size clusters ranging from 41 to 43 ppc, while the solutions based
on WSnnG generated cluster sizes approximately ranging from 1 to 105 ppc.

Pen-Based Recognition of Handwritten Digits. The Pen Digits dataset
is used as a benchmark problem for the classification of pen-based recognition
of handwritten digits 0 to 9 from 16 spatial features [16]. Samples from this
datasets have also been used in experiments with cluster ensembles [3]. The
whole dataset consists of ten classes of of roughly equal sizes. We generated
a sample from the dataset with unequal class distribution. PenDigits-Sample
consists of 490 instances with varying class sizes ranging from 10 to 150 ppc.
From the results shown in Figure Bl the F-measure of the clusterings based on the
W SnnG surpasses both the ensemble’s mean and the CSPA-based clustering.
We also find that while the combined clustering based on CSPA consists of equal
size clusters ranging from 48 to 50 ppc, the W SnnG clusters were approximately
ranging from 1 to 114 ppc.

Iris Plant Dataset. The Iris plant dataset is one of the best known datasets
in the pattern recognition literature. The dataset contains 3 classes of 50 in-
stances each, where each class refers to a type of Iris plant, and the data is
represented by 4 attributes. One class is linearly separable from the other 2;
the latter are not linearly separable from each other. As opposed to the other
datasets used in this paper, this is an example of a well balanced dataset with
patterns equally distributed among the clusters. The challenge for the individ-
ual clustering methods of the ensemble is rather due to the interleaving of two
classes. In this particular example, the CSPA performed well, since the natural
clusters are well balanced. The W SnnG solutions also generated balanced clus-
ters of comparable performance to CSPA while achieving an improvement over
the ensemble’s mean.
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4 Conclusions

We introduced in this paper a compact and refined version of the W.SnnG. The
shared nearest neighbors approach to similarity provides a complement to di-
rect similarities and is a more reliable approach to analyze and extract complex
similarity relationships among patterns. We believe that this approach can be
particularly useful in combining clusterings. As shown in the experiments, the
quality of combined clustering based on the refined W SnnG surpasses the en-
semble’s mean, and enhances the combined clustering based the CSPA method,
in terms of the F-measures and the cluster distributions revealed.

The WSnnG-based approach thrives to discover the natural cluster struc-
ture, using the relationships revealed by the ensemble of individual clustering
techniques. We argue that this approach can successfully capture and flexibly
adapts to natural cluster distributions that may be unbalanced. We believe that
it can provide a new tool to solve cluster ensembles for the purpose of enhancing
the clustering quality while preserving fidelity to the true clusters inherent in
the data. In this paper, experiments have shown promising results in terms of
capturing the significant inter-relationships among patterns on a compact and
refined graph.

In Future work, we want to further analyze and extend the W SnnG. More-
over, we want to explore its applicability in the domain of very high dimensional
data, overlapping clusters, and multi-class patterns. Finally, it is worth noting
that in this work, we emphasized the underlying model for combining a given
number of clusterings, while the issue of which clustering techniques to use, as
an ensemble, is not emphasized. Nonetheless, the study of different ensembles
and which combination of clustering techniques would produce the best results
with the proposed combiner, will be addressed in future work.
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