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Preface

The precise origins of experimental psychol-
ogy can be debated, but by any count the field
is more than a hundred years old. The past
10 years have been marked by tremendous
progress: a honing of experimental strategies
and clearer theoretical conceptualizations in
many areas combined with a more vigorous
cross-fertilization across neighboring fields.

Despite the undeniable progress, vigorous
debate continues on many of the most funda-
mental questions. From the nature of learning
to the psychophysical functions relating sen-
sory stimuli to sensory experiences and from
the underpinnings of emotion to the nature of
attention, a good many of the questions posed
in the late 19th century remain alive and in
some cases highly controversial.

Although some have viewed this fact as
discouraging, it should scarcely be surpris-
ing. As in the biological sciences generally,
early hopes that a few simple laws and prin-
ciples would explain everything that needed
to be explained have gradually given way to a
recognition of the vast complexity of human
(and nonhuman) organisms in general, and of
their mental faculties in particular. There is no
contradiction between recognizing the magni-
tude of the progress that has been made and
appreciating the gap between current under-
standing and the fuller understanding that we
hope to achieve in the future.

Stanley Smith (“Smitty”) Stevens’ Hand-
book of Experimental Psychology, of which
this is the third edition, has made notable
contributions to the progress of the field. At
the same time, from one edition to the next,
the Handbook has changed in ways that re-
flect growing recognition of the complexity
of its subject matter. The first edition was
published in 1951 under the editorship of the
great psychophysical pioneer himself. This
single volume (described by some review-
ers as the last successful single-volume hand-
book of psychology) contained a number of
very influential contributions in the theory
of learning, as well as important contribu-
tions to psychophysics for which Stevens was
justly famous. The volume had a remarkably
wide influence in the heyday of a period in
which many researchers believed that princi-
ples of learning theory would provide the ba-
sic theoretical underpinning for psychology
as a whole.

Published in 1988, the second edition
was edited by a team comprised of Richard
Atkinson, Richard J. Herrnstein, Gardner
Lindzey, and Duncan Luce. The editors of the
second edition adopted a narrower definition
of the field, paring down material that over-
lapped with physics or physiology and reduc-
ing the role of applied psychology. The result
was a set of two volumes, each of which was
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substantially smaller than the single volume
in the first edition.

Discussions of a third edition of the
Stevens’ Handbook began in 1998. My fel-
low editors and I agreed that experimental
psychology had broadened and deepened to
such a point that two volumes could no longer
reasonably encompass the major accomplish-
ments that have occurred in the field since
1988. We also felt that a greatly enlarged treat-
ment of methodology would make the Hand-
book particularly valuable to those seeking
to undertake research in new areas, whether
graduate students in training or researchers
venturing into subfields that are new to them.

The past 10 years have seen a marked in-
crease in efforts to link psychological phe-
nomena to neurophysiological foundations.
Rather than eschewing this approach, we have
embraced it without whittling down the core
content of traditional experimental psychol-
ogy, which has been the primary focus of the
Handbook since its inception.

The most notable change from the previ-
ous edition to this one is the addition of a
new volume on methodology. This volume
provides rigorous but comprehensible tuto-

rials on the key methodological concepts of
experimental psychology, and it should serve
as a useful adjunct to graduate education in
psychology.

I am most grateful to Wiley for its strong
support of the project from the beginning.
The development of the new Handbook was
initially guided by Kelly Franklin, now Vice
President and Director of Business Develop-
ment at Wiley. Jennifer Simon, Associate Pub-
lisher, took over the project for Wiley in 1999.
Jennifer combined a great measure of good
sense, good humor, and the firmness essen-
tial for bringing the project to a timely com-
pletion. Although the project took somewhat
longer than we initially envisioned, progress
has been much faster than it was in the sec-
ond edition, making for an up-to-date pre-
sentation of fast-moving fields. Both Isabel
Pratt at Wiley and Noriko Coburn at Univer-
sity of California at San Diego made essential
contributions to the smooth operation of the
project. Finally, I am very grateful to the
four distinguished volume editors, Randy
Gallistel, Doug Medin, John Wixted, and
Steve Yantis, for their enormous contributions
to this project.

Hal Pashler



CHAPTER 1

Representational Measurement Theory

R. DUNCAN LUCE AND PATRICK SUPPES

CONCEPT OF REPRESENTATIONAL
MEASUREMENT

Representational measurement is, on the one
hand, an attempt to understand the nature of
empirical observations that can be usefully
recoded, in some reasonably unique fashion,
in terms of familiar mathematical structures.
The most common of these representing struc-
tures are the ordinary real numbers ordered in
the usual way and with the operations of ad-
dition, 4, and/or multiplication, -. Intuitively,
such representations seems a possibility when
dealing with variables for which people have
a clear sense of “greater than.” When data can
be summarized numerically, our knowledge
of how to calculate and to relate numbers can
usefully come into play. However, as we will
see, caution must be exerted not to go beyond
the information actually coded numerically. In
addition, more complex mathematical struc-
tures such as geometries are often used, for
example, in multidimensional scaling.

On the other hand, representational mea-
surement goes well beyond the mere construc-
tion of numerical representations to a careful
examination of how such representations re-
late to one another in substantive scientific

The authors thank Janos Aczél, Ehtibar Dzhafarov, Jean-
Claude Falmagne, and A.A.J. Marley for helpful com-
ments and criticisms of an earlier draft.

theories, such as in physics, psychophysics,
and utility theory. These may be thought of
as applications of measurement concepts for
representing various kinds of empirical rela-
tions among variables.

In the 75 or so years beginning in 1870,
some psychologists (often physicists or phy-
sicians turned psychologists) attempted to
import measurement ideas from physics, but
gradually it became clear that doing this suc-
cessfully was a good deal trickier than was
initially thought. Indeed, by the 1940s a num-
ber of physicists and philosophers of physics
concluded that psychologists really did not
and could not have an adequate basis for mea-
surement. They concluded, correctly, that the
classical measurement models were for the
most part unsuited to psychological phenom-
ena. But they also concluded, incorrectly, that
no scientifically sound psychological mea-
surement is possible at all. In part, the theory
of representational measurement was the re-
sponse of some psychologists and other social
scientists who were fairly well trained in the
necessary physics and mathematics to under-
stand how to modify in substantial ways the
classical models of physical measurement to
be better suited to psychological issues. The
purpose of this chapter is to outline the high
points of the 50-year effort from 1950 to the
present to develop a deeper understanding of
such measurement.
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Empirical Structures

Performing any experiment, in particular a
psychological one, is a complex activity that
we never analyze or report completely. The
part that we analyze systematically and re-
port on is sometimes called a model of the
data or, in terms that are useful in the the-
ory of measurement, an empirical structure.
Such an empirical structure of an experiment
is a drastic reduction of the entire experi-
mental activity. In the simplest, purely psy-
chological cases, we represent the empirical
model as a set of stimuli, a set of responses,
and some relations observed to hold between
the stimuli and responses. (Such an empirical
restriction to stimuli and responses does not
mean that the theoretical considerations are
so restricted; unobservable concepts may well
play a role in theory.) In many psychological
measurement experiments such an empirical
structure consists of a set of stimuli that vary
along a single dimension, for example, a set
of sounds varying only in intensity. We might
then record the pairwise judgments of loud-
ness by a binary relation on the set of stimuli,
where the first member of a pair represents
the subject’s judgment of which of two sounds
was louder.

The use of such empirical structures in
psychology is widespread because they come
close to the way data are organized for subse-
quent statistical analysis or for testing a theory
or hypothesis.

An important cluster of objections to the
concept of empirical structures or models of
data exists. One is that the formal analysis
of empirical structures includes only a small
portion of the many problems of experimen-
tal design. Among these are issues such as
the randomization of responses between left
and right hands and symmetry conditions in
the lighting of visual stimuli. For example, in
most experiments that study aspects of vision,
having considerably more intense light on the

left side of the subject than on the right would
be considered a mistake. Such considerations
do not ordinarily enter into any formal de-
scription of the experiment. This is just the
beginning. There are understood conditions
that are assumed to hold but are not enumer-
ated: Sudden loud noises did not interfere with
the concentration of the subjects, and neither
the experimenter talked to the subject nor the
subject to the experimenter during the collec-
tion of the data—although exceptions to this
rule can certainly be found, especially in lin-
guistically oriented experiments.

The concept of empirical structures is just
meant to isolate the part of the experimental
activity and the form of the data relevant to
the hypothesis or theory being tested or to the
measurements being made.

Isomorphic Structures

The prehistory of mathematics, before
Babylonian, Chinese, or Egyptian civiliza-
tions began, left no written record but none-
theless had as a major development the con-
cept of number. In particular, counting of
small collections of objects was present. Oral
terms for some sort of counting seem to exist
in every language. The next big step was the
introduction, no doubt independently in sev-
eral places, of a written notation for numbers.
It was a feat of great abstraction to develop
the general theory of the constructive opera-
tions of counting, adding, subtracting, multi-
plying, and dividing numbers. The first prob-
lem for a theory of measurement was to show
how this arithmetic of numbers could be con-
structed and applied to a variety of empirical
structures.

To investigate this problem, as we do in
the next section, we need the general no-
tion of isomorphism between two structures.
The intuitive idea is straightforward: Two
structures are isomorphic when they exhibit
the same structure from the standpoint of



their basic concepts. The point of the formal
definition of isomorphism is to make this no-
tion of same structure precise.

As an elementary example, consider a
binary relational structure consisting of a
nonempty set A and a binary relation R de-
fined on this set. We will be considering pairs
of such structures in which both may be empir-
ical structures, both may be numerical struc-
tures, or one may be empirical and the other
numerical. The definition of isomorphism is
unaffected by which combination is being
considered.

The way we make the concept of having
the same structure precise is to require the ex-
istence of a function mapping the one struc-
ture onto the other that preserves the binary
relation. Formally, a binary relation structure
(A, R)isisomorphicto abinary relation struc-
ture (A’, R’) if and only if there is a function
fsuch that

(i) the domain of fis A and the codomain
of fis A’, i.e., A’ is the image of A
under f,

(ii) fis a one-one function,' and

(iii) for @ and b in A, aRb iff> f(a)R' f(b).

To illustrate this definition of isomorph-
ism, consider the question: Are any two finite
binary relation structures with the same num-
ber of elements isomorphic? Intuitively, it
seems clear that the answer should be neg-
ative, because in one of the structures all the
objects could stand in the relation R to each
other and not so in the other. This is indeed
the case and shows at once, as intended, that
isomorphism depends not just on a one-one
function from one set to another, but also
on the structure as represented in the binary
relation.

Tn recent years, conditions (i) and (ii) together have
come to be called bijective.
2This is a standard abbreviation for “if and only if.”

Concept of Representational Measurement 3

Ordered Relational Structures

Weak Order

An idea basic to measurement is that the ob-
jects being measured exhibit a qualitative at-
tribute for which it makes sense to ask the
question: Which of two objects exhibits more
of the attribute, or do they exhibit it to the same
degree? For example, the attribute of having
greater mass is reflected by placing the two
objects on the pans of an equal-arm pan bal-
ance and observing which deflects downward.
The attribute of loudness is reflected by which
of two sounds a subject deems as louder or
equally loud. Thus, the focus of measurement
is not just on the numerical representation of
any relational structures, but of ordered ones,
that is, ones for which one of the relations is a
weak order, denoted Z, which has two defin-
ing properties for all elements a, b, ¢ in the
domain A:

(i) Transitive:ifaz band b Z ¢, thena Z c.

(ii) Connected: either a Z b or b Z a or both.

The intuitive idea is that 2 captures the order-
ing of the attribute that we are attempting to
measure.

Two distinct relations can be defined in
terms of =:

a > biff az b and not (b Z a);
a~ biffbothazband bz a.

It is an easy exercise to show that > is transi-
tive and irreflexive (i.e., a > a cannot hold),
and that ~ is an equivalence relation (i.e.,
transitive, symmetric in the sense that a ~ b
iff b~a, and reflexive in the sense that
a ~a). The latter means that ~ partitions A
into equivalence classes.

Homomorphism

For most measurement situations one really
is working with weak orders—after all, two
entities having the same weight are not in gen-
eral identical. But often it is mathematically
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easier to work with isomorphisms to the or-
dered real numbers, in which case one must
deal with the following concept of simple or-
ders. We do this by inducing the preference
order over the equivalence classes defined by
~. When ~ is =, each element is an equiva-
lence class, and the weak order > is called a
simple order. The mapping from the weakly
ordered structure via the isomorphisms of
the (mutually disjoint) equivalences classes
to the ordered real numbers is called a ho-
momorphism. Unlike an isomorphism, which
is one to one, an homomorphism is many to
one. In some cases, such as additive conjoint
measurement, discussed later, it is somewhat
difficult, although possible, to formulate the
theory using the equivalence classes.

Two Fundamental Problems
of Representational Measurement

Existence

The most fundamental problem for a theory of
representational measurement is to construct
the following representation: Given an empir-
ical structure satisfying certain properties, to
which numerical structures, if any, is it iso-
morphic? These numerical structures, thus,
represent the empirical one. It is the existence
of such isomorphisms that constitutes the
representational claim that measurement of
a fundamental kind has taken place.
Quantification or measurement, in the
sense just characterized, is important in some
way in all empirical sciences. The primary
significance of this fact is that given the iso-
morphism of structures, we may pass from the
particular empirical structure to the numerical
one and then use all our familiar computa-
tional methods, as applied to the isomorphic
arithmetical structure, to infer facts about the
isomorphic empirical structure. Such passage
from simple qualitative observations to quan-
titative ones—the isomorphism of structures

passing from the empirical to the numerical—
is necessary for precise prediction or control
of phenomena. Of course, such a representa-
tion is useful only to the extent of the precision
of the observations on which it is based. A va-
riety of numerical representations for various
empirical psychological phenomena is given
in the sections that follow.

Uniqueness

The second fundamental problem of repre-
sentational measurement is to discover the
uniqueness of the representations. Solving the
representation problem for a theory of mea-
surement is not enough. There is usually a
formal difference between the kind of assign-
ment of numbers arising from different pro-
cedures of measurement, as may be seen in
three intuitive examples:

1. The population of California is greater than
that of New York.

2. Mary is 10 years older than John.

3. The temperature in New York City this
afternoon will be 92 °F.

Here we may easily distinguish three kinds
of measurements. The first is an example of
counting, which is an absolute scale. The
number of members of a given collection that
is counted is determined uniquely in the ideal
case, although that can be difficult in prac-
tice (witness the 2000 presidential election
in Florida). In contrast, the second example,
the measurement of difference in age, is a
ratio scale. Empirical procedures for mea-
suring age do not determine the unit of age—
chosen in the example to be the year rather
than, for example, the month or the week.
Although the choice of the unit of a per-
son’s age is arbitrary—that is, not empiri-
cally prescribed—that of the zero, birth, is
not. Thus, the ratio of the ages of any two peo-
ple is independent of its choice, and the age
of people is an example of a ratio scale. The



measurement of distance is another example
of such a ratio scale. The third example, that
of temperature, is an example of an interval
scale. The empirical procedure of measuring
temperature by use of a standard thermometer
or other device determines neither a unit nor
an origin.

We may thus also describe the second fun-
damental problem for representational mea-
surement as that of determining the scale type
of the measurements resulting from a given
procedure.

A BRIEF HISTORY
OF MEASUREMENT

Pre-19th-Century Measurement

Already by the fifth century B.C., if not before,
Greek geometers were investigating problems
central to the nature of measurement. The
Greek achievements in mathematics are all of
relevance to measurement. First, the theory of
number, meaning for them the theory of the
positive integers, was closely connected with
counting; second, the geometric theory of pro-
portion was central to magnitudes that we now
represent by rational numbers (= ratios of in-
tegers); and, finally, the theory of incommen-
surable geometric magnitudes for those mag-
nitudes that could not be represented by ratios.
The famous proof of the irrationality of the
square root of two seems arithmetic in spirit
to us, but almost certainly the Greek discov-
ery of incommensurability was geometric in
character, namely, that the length of the di-
agonal of a square, or the hypotenuse of an
isosceles right-angled triangle, was not com-
mensurable with the sides. The Greeks well
understood that the various kinds of results
just described applied in general to magni-
tudes and not in any sense only to numbers
or even only to the length of line segments.
The spirit of this may be seen in the first def-
inition of Book 10 of Euclid, the one dealing
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with incommensurables: “Those magnitudes
are said to be commensurable which are mea-
sured by the same measure, and those incom-
mensurable which cannot have any common
measure” (trans. 1956, p. 10).

It does not take much investigation to de-
termine that theories and practices relevant to
measurement occur throughout the centuries
in many different contexts. It is impossible
to give details here, but we mention a few
salient examples. The first is the discussion
of the measurement of pleasure and pain in
Plato’s dialogue Protagoras. The second is
the set of partial qualitative axioms, character-
izing in our terms empirical structures, given
by Archimedes for measuring on unequal bal-
ances (Suppes, 1980). Here the two qualitative
concepts are the distance from the focal point
of the balance and the weights of the objects
placed in the two pans of the balance. This
is perhaps the first partial qualitative axiom-
atization of conjoint measurement, which is
discussed in more detail later. The third ex-
ample is the large medieval literature giving a
variety of qualitative axioms for the measure-
ment of weight (Moody and Claggett, 1952).
(Psychologists concerned about the difficulty
of clarifying the measurement of fundamen-
tal psychological quantities should be encour-
aged by reading O’Brien’s 1981 detailed ex-
position of the confused theories of weight in
the ancient world.) The fourth example is the
detailed discussion of intensive quantities by
Nicole Oresme in the 14th century A.D. The
fifth is Galileo’s successful geometrization in
the 17th century of the motion of heavenly
bodies, done in the context of stating essen-
tially qualitative axioms for what, in the ear-
lier tradition, would be called the quantity of
motion. The final example is also perhaps the
last great, magnificent, original treatise of nat-
ural science written wholly in the geometrical
tradition—Newton’s Principia of 1687. Even
in his famous three laws of motion, concepts
were formulated in a qualitative, geometrical
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way, characteristic of the later formulation of
qualitative axioms of measurement.

19th- and Early 20th-Century
Physical Measurement

The most important early 19th-century work
on measurement was the abstract theory of
extensive quantities published in 1844 by
H. Grassmann, Die Wissenschaft der Exten-
siven Grosse oder die Ausdehnungslehre. This
abstract and forbidding treatise, not properly
appreciated by mathematicians at the time
of its appearance, contained at this early
date the important generalization of the con-
cept of geometric extensive quantities to
n-dimensional vector spaces and, thus, to the
addition, for example, of n-dimensional vec-
tors. Grassmann also developed for the first
time a theory of barycentric coordinates in n
dimensions. It is now recognized that this was
the first general and abstract theory of exten-
sive quantities to be treated in a comprehen-
sive manner.

Extensive Measurement

Despite the precedent of the massive work
of Grassmann, it is fair to say that the mod-
ern theory of one-dimensional, extensive mea-
surement originated much later in the cen-
tury with the fundamental work of Helmholtz
(1887) and Holder (1901). The two funda-
mental concepts of these first modern at-
tempts, and later ones as well, is a binary
operation o of combination and an ordering
relation =, each of which has different inter-
pretations in different empirical structures.
For example, mass ordering % is determined
by an equal-arm pan balance (in a vacuum)
with a ob denoting objects a and b both placed
on one pan. Lengths of rods are ordered by
placing them side-by-side, adjusting one end
to agree, and determining which rod extends
beyond the other at the opposite end, and o
means abutting two rods along a straight line.

The ways in which the basic axioms can be
stated to describe the intertwining of these two
concepts has a long history of later develop-
ment. In every case, however, the fundamental
isomorphism condition is the following: For
a, b in the empirical domain,

fla) = f(b) & aZb, ey
flaob) = fla)+ f(b), (2)

where f is the mapping function from the
empirical structure to the numerical structure
of the additive, positive real numbers, that is,
for all entities a, f(a) > 0.

Certain necessary empirical (testable)
properties must be satisfied for such a rep-
resentation to hold. Among them are for all
entities a, b, and c,

Commutativity: aob ~boa.
Associativity: (@aob)oc~ao (boc).
Monotonicity: aZb < aocZboc.
Positivity: aoa > a.

Let a be any element. Define a standard
sequence based on a to be a sequence a(n),
where n is an integer, such that a(l) =a,
and fori > 1,a(i) ~a(i—1) oa. An example
of such a standard sequence is the centimeter
marks on a meter ruler. The idea is that the
elements of a standard sequence are equally
spaced. The following (not directly testable)
condition ensures that the stimuli are com-
mensurable:

Archimedean: For any entities a, b,
there is an integer n such that a(n) > b.

These, together with the following struc-
tural condition that ensures very small ele-
ments,

Solvability: ifa>b,
then for some c,a > boc,

were shown to imply the existence of the rep-
resentation given by Equations (1) and (2).
By formulating the Archimedean axiom dif-
ferently, Roberts and Luce (1968) showed that
the solvability axiom could be eliminated.



Such empirical structures are called exten-
sive. The uniqueness of their representations
is discussed shortly.

Probability and Partial Operations

It is well known that probability P is an addi-
tive measure in the sense that it maps events
into [0, 1] such that, for events A and B that
are disjoint,

P(AUB) =P(A)+ P(B).

Thus, probability is close to extensive mea-
surement—but not quite, because the opera-
tion is limited to only disjoint events. How-
ever, the theory of extensive measurement can
be generalized to partial operations having the
property that if @ and b are such that @ o b is
defined and if a Zc and b= d, then c o d is
also defined. With some adaptation, this can
be applied to probability; the details can be
found in Chapter 3 of Krantz, Luce, Suppes,
and Tversky (1971). (This reference is subse-
quently cited as FM I for Volume I of Foun-
dations of Measurement. The other volumes
are Suppes, Krantz, Luce, & Tversky, 1990,
cited as FM II, and Luce, Krantz, Suppes, &
Tversky, 1990, cited as FM 111.)

Finite Partial Extensive Structures

Continuing with the theme of partial opera-
tion, we describe a recent treatment of a finite
extensive structure that also has ratio scale
representation and that is fully in the spirit of
the earlier work involving continuous models.
Suppose X is a finite set of physical objects,
any two of which balance on an equal-arm
balance; that is, if ay, . .., a, are the objects,
foranyiandj,i # j, then a; ~a;. Thus, they
weigh the same. Moreover, if A and B are two
sets of these objects, then on the balance we
have A ~ B if and only if A and B have the
same number of objects. We also have a con-
catenation operation, union of disjoint sets. If
ANB =@, then AU B ~ C if and only if
the objects in C balance the objects in A
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together with the objects in B. The qualitative
strict ordering A > B has an obvious opera-
tional meaning, which is that the objects in
A, taken together, weigh more on the balance
than the objects in B, taken together.

This simple setup is adequate to establish,
by fundamental measurement, a scheme for
numerically weighing other objects not in X.
First, our homomorphism f on X is really
simple. Since for all ¢; and a; and X, a;~ a;,
we have

fla) = f(ay),

with the restriction that f (a;) > 0. We extend
fto A, asubset of X, by setting f(A) = |A] =
the cardinality of (number of objects in) A.
The extensive structure is thus transparent:
For A and B subsets of X, if AN B = (J then

f(AUB) =[AUB| = |A| +|B|
= f(A) + f(B).

If we multiply f by any « > 0 the equation
still holds, as does the ordering. Moreover,
in simple finite cases of extensive measure-
ment such as the present, it is easy to prove di-
rectly that no transformations other than ratio
transformations are possible. Let f* denote
another representation. For some object a, set
o= f(a)/f*(a).Observe thatif | A| = n, then
by a finite induction

fA) _nf@
f @A) " nf@

so the representation forms a ratio scale.

’

Finite Probability

The “objects” ay, . .
as possible outcomes of a probabilistic mea-
surement experiment, so the a;s are the possi-
ble atomic events whose qualitative probabil-
ity is to be judged.

The ordering A Z B is interpreted as mean-
ing that event A is at least as probable as event
B; A~ B as A and B are equally probable;
A > B as A is strictly more probable than B.

., a, are now interpreted
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Then we would like to interpret f(A) as the
numerical probability of event A, but if f is
unique up to only a ratio scale, this will not
work since f(A) could be 50.1, not exactly a
probability.

By adding another concept, that of the
probabilistic independence of two events, we
can strengthen the uniqueness result to that
of an absolute scale. This is written A L B.
Given a probability measure, the definition of
independence is familiar: A L B if and only if
P(ANB)= P(A)P(B). Independence can-
not be defined in terms of the qualitative con-
cepts introduced for arbitrary finite qualitative
probability structures, but can be defined by
extending the structure to elementary random
variables (Suppes and Alechina, 1994). How-
ever, a definition can be given for the spe-
cial case in which all atoms are equiproba-
ble; it again uses the cardinality of the sets:
Al Bifandonlyif |X|-|[ANB|=]A|-|B].
It immediately follows from this definition
that X 1 X, whence in the interpretation of
1 we must have

P(X)=P(XNX)= P(X)P(X),

but this equation is satisfied only if P(X) =0,
which is impossible since P(@)=0 and
X > @, or P(X)=1, which means that the
scale type is an absolute—not a ratio—scale,
as it should be for probability.

Units and Dimensions

An important aspect of 19th century physics
was the development, starting with Fourier’s
work (1822/1955), of an explicit theory of
units and dimensions. This is so common-
place now in physics that it is hard to be-
lieve that it only really began at such a late
date. In Fourier’s famous work, devoted to
the theory of heat, he announced that in or-
der to measure physical quantities and express
them numerically, five different kinds of units
of measurement were needed, namely, those
of length, time, mass, temperature, and heat.

Of even greater importance is the specific
table he gave, for perhaps the first time in the
history of physics, of the dimensions of vari-
ous physical quantities. A modern version of
such a table appears at the end of FM 1.

The importance of this tradition of units
and dimensions in the 19th century is to be
seen in Maxwell’s famous treatise on electric-
ity and magnetism (1873). As a preliminary,
he began with 26 numbered paragraphs on
the measurement of quantities because of the
importance he attached to problems of mea-
surement in electricity and magnetism, a topic
that was virtually unknown before the 19th
century. Maxwell emphasized the fundamen-
tal character of the three fundamental units
of length, time, and mass. He then went on
to derive units, and by this he meant quanti-
ties whose dimensions may be expressed in
terms of fundamental units (e.g., kinetic en-
ergy, whose dimension in the usual notation is
ML?>T~?). Dimensional analysis, first put in
systematic form by Fourier, is very useful in
analyzing the consistency of the use of quan-
tities in equations and can also be used for
wider purposes, which are discussed in some
detail in FM L.

Derived Measurement

In the Fourier and Maxwell analyses, the ques-
tion of how a derived quantity is actually to be
measured does not enter into the discussion.
What is important is its dimensions in terms of
fundamental units. Early in the 20th century
the physicist Norman Campbell (1920/1957)
used the distinction between fundamental and
derived measurement in a sense more intrinsic
to the theory of measurement itself. The dis-
tinction is the following: Fundamental mea-
surement starts with qualitative statements
(axioms) about empirical structures, such as
those given earlier for an extensive structure,
and then proves the existence of a representa-
tional theorem in terms of numbers, whence
the phrase “representational measurement.”



In contrast, a derived quantity is measured in
terms of other fundamental measurements. A
classical example is density, measured as the
ratio of separate measurements of mass and
volume. It is to be emphasized, of course, that
calling density a derived measure with respect
to mass and volume does not make a funda-
mental scientific claim. For example, it does
not allege that fundamental measurement of
density is impossible. Nevertheless, in under-
standing the foundations of measurement, it
is always important to distinguish whether
fundamental or derived measurement, in
Campbell’s sense, is being analyzed or used.

Axiomatic Geometry

From the standpoint of representational mea-
surement theory, another development of
great importance in the 19th century was the
perfection of the axiomatic method in geom-
etry, which grew out of the intense scrutiny
of the foundations of geometry at the be-
ginning of that century. The driving force
behind this effort was undoubtedly the dis-
covery and development of non-Euclidean ge-
ometries at the beginning of the century by
Bolyai, Lobachevski, and Gauss. An impor-
tant and intuitive example, later in the cen-
tury, was Pasch’s (1882) discovery of the ax-
iom named in his honor. He found a gap in
Euclid that required a new axiom, namely, the
assertion that if a line intersects one side of a
triangle, it must intersect also a second side.
More generally, it was the high level of rigor
and abstraction of Pasch’s 1882 book that was
the most important step leading to the mod-
ern formal axiomatic conception of geometry,
which has been so much a model for repre-
sentational measurement theory in the 20th
century. The most influential work in this line
of development was Hilbert’s Grundlagen der
Geometrie, first edition in 1899, much of its
prominence resulting from Hilbert’s position
as one of the outstanding mathematicians of
this period.
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It should be added that even in one-
dimensional geometry numerical representa-
tions arise even though there is no order
relation. Indeed, for dimensions >2, no stan-
dard geometry has a weak order. Moreover, in
geometry the continuum is not important for
the fundamental Galilean and Lorentz groups.
An underlying denumerable field of algebraic
numbers is quite adequate.

Invariance

Another important development at the end
of the 19th century was the creation of the
explicit theory of invariance for spatial prop-
erties. The intuitive idea is that the spatial
properties in analytical representations are in-
variant under the transformations that carry
one model of the axioms into another model
of the axioms. Thus, for example, the ordi-
nary Cartesian representation of Euclidean
geometry is such that the geometrical prop-
erties of the Euclidean space are invariant un-
der the Euclidean group of transformations
of the Cartesian representation. These are the
transformations that are composed from trans-
lations (in any direction), rotations, and re-
flections. These ideas were made particularly
prominent by the mathematician Felix Klein
in his Erlangen address of 1872 (see Klein,
1893). These important concepts of invariance
had a major impact in the development of the
theory of special relativity by Einstein at the
beginning of the 20th century. Here the invari-
ance is that under the Lorentz transformations,
which are those that leave invariant geomet-
rical and kinematic properties of the space-
time of special relativity. Without giving the
full details of the Lorentz transformations, it is
still possible to give a clear physical sense of
the change from classical Newtonian physics
to that of special relativity.

In the case of classical Newtonian me-
chanics, the invariance that characterizes the
Galilean transformations is just the invariance
of the distance between any two simultaneous
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points together with the invariance of any tem-
poral interval, under any permissible change
of coordinates. Note that this characterization
requires that the units of measurement for both
spatial distance and time be held constant. In
the case of special relativity, the single in-
variant is what is called the proper time 11,
between two space-time points (xy, yi, 21, 1)
and (x2, ¥, 22, 12), which is defined as

T2 =

1
\/(tl —1n)?— ) [(Xl —x2)2+ (1 —y2)* + (21 — 22)2],

where c is the velocity of light in the given
units of measurement. It is easy to see the
conceptual nature of the change. In the case
of classical mechanics, the invariance of spa-
tial distance between simultaneous points is
separate from the invariance of temporal in-
tervals. In the case of special relativity, they
are intertwined. Thus, we properly speak of
space-time invariance in the case of special
relativity. As will be seen in what follows,
the concepts of invariance developed so thor-
oughly in the 19th and early 20th century in
geometry and physics have carried over and
are an important part of the representational
theory of measurement.

Quantum Theory and the Problem
of Measurement

Still another important development in the
first half of the 20th century, of special rel-
evance to the topic of this chapter, was the
creation of quantum mechanics and, in par-
ticular, the extended analysis of the problem
of measurement in that theory. In contrast with
the long tradition of measurement in classical
physics, at least three new problems arose that
generated what in the literature is termed the
problem of measurement in quantum mechan-
ics. The first difficulty arises in measuring mi-
croscopic objects, that is, objects as small as
atoms or electrons or other particles of a
similar nature. The very attempt to measure a

property of these particles creates a distur-
bance in the state of the particle, a disturbance
that is not small relative to the particle itself.
Classical physics assumed that, in principle,
such minor disturbances of a measured ob-
ject as did occur could either be eliminated or
taken into account in a relatively simple way.

The second aspect is the precise limitation
on such measurement, which was formulated
by Heisenberg’s uncertainty principle. For ex-
ample, it is not possible to measure both posi-
tion and momentum exactly. Indeed, it is not
possible, in general, to have a joint probability
distribution of the measurements of the two.
This applies not just to position and momen-
tum, but also to other pairs of properties of a
particle. The best that can be hoped for is the
Heisenberg uncertainty relation. It expresses
an inequality that bounds away from zero the
product of the variances of the two proper-
ties measured, for example, the product of the
variance of the measurement of position and
the variance of the measurement of velocity
or momentum. This inequality appeared really
for the first time in quantum mechanics and is
one of the principles that separates quantum
mechanics drastically from classical physics.
An accessible and clear exposition of these
ideas is Heisenberg (1930), a work that few
others have excelled for the quality of its
exposition.

The third aspect of measurement in quan-
tum mechanics is the disparity between the
object being measured and the relatively large,
macroscopic object used for the measure-
ment. Here, a long and elaborate story can be
told, as it is, for example, in von Neumann’s
classical book on the foundations of quan-
tum mechanics, which includes a detailed
treatment of the measurement problem
(von Neumann, 1932/1955). The critical as-
pect of this problem is deciding when a mea-
surement has taken place. Von Neumann was
inclined to the view that a measurement had
taken place only when a relevant event had



occurred in the consciousness of some ob-
server. More moderate subsequent views are
satisfied with the position that an observation
takes place when a suitable recording has been
made by a calibrated instrument.

Although we shall not discuss further the
problem of measurement in quantum mechan-
ics, nor even the application of the ideas to
measurement in psychology, it is apparent that
there is some resonance between the difficul-
ties mentioned and the difficulties of measur-
ing many psychological properties.

19th- and Early 20th-Century Psychology

Fechner’s Psychophysics

Psychology was not a separate discipline until
the late 19th century. Its roots were largely in
philosophy with significant additions by med-
ical and physical scientists. The latter brought
abackground of successful physical measure-
ment, which they sought to re-create in sen-
sory psychology at the least. The most promi-
nent of these were H. Helmholtz, whose work
among other things set the stage for extensive
measurement, and G. T. Fechner, whose
Elemente der Psychophysik (Elements of
Psychophysics; 1860/1966) set the stage for
subsequent developments in psychological
measurement. We outline the problem faced
in trying to transplant physical measurement
and the nature of the proposed solution.
Recall that the main measurement device
used in 19th-century physics was concatena-
tion: Given two entities that exhibit the at-
tribute to be measured, it was essential to find
amethod of concatenating them to form a third
entity also exhibiting the attribute. Then one
showed empirically that the structure satisfies
the axioms of extensive measurement, as dis-
cussed earlier. When no empirical concatena-
tion operation can be found, as for example
with density, one could not do fundamental
measurement. Rather, one sought an invari-
ant property stated in terms of fundamentally
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measured quantities called derived measure-
ment. Density is an example.

When dealing with sensory intensity, phys-
ical concatenation is available but just recov-
ers the physical measure, which does not at
all well correspond with subjective judgments
such as the half loudness of a tone. A new
approach was required. Fechner continued to
accept the idea of building up a measure-
ment scale by adding small increments, as
in the standard sequences of extensive mea-
surement, and then counting the number of
such increments needed to fill a sensory in-
terval. The question was: What are the small
equal increments to be added? His idea was
that they correspond to “just noticeable dif-
ferences” (JND); when one first encounters
the idea of a JND it seems to suggest a fixed
threshold, but it gradually was interpreted to
be defined statistically. To be specific, sup-
pose xo and x; = xo + &(xo, A) are stimulus
intensities such that the probability of identi-
fying x; as larger than x is a constant A, that
is, Pr(xp, x;) = A. His idea was to fix A and to
measure the distance from x to y, x < y, in
terms of the number of successive JNDs be-
tween them. Defining xo = x and assuming
that x; has been defined, then define x;,; as

Xip1 =X +E(x;, A).

The sequence ends with x, <y <Xx,4i.
Fechner postulated the number of JNDs from
x to y as his definition of distance without,
however, establishing any empirical proper-
ties of justify that definition. Put another way,
he treated without proof that a sequence of
JNDs forms a standard sequence.

His next step was to draw on an empirical
result of E. H. Weber to the effect that

E(x, M) =8M)x, §() >0,

which is called Weber’s law. This is some-
times approximately true (e.g., for loudness
of white noise well above absolute threshold),
but more often it is not (e.g., for pure tones).
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His final step was to introduce, much as
in extensive measurement, a limiting process
as A approaches % and § approaches 0. He
called this an auxiliary mathematical prin-
ciple, which amounts to supposing without
proof that a limit below exists. If we denote
by ¥ the counting function, then his assump-
tion that, for fixed X, the INDs are equally dis-
tant can be interpreted to mean that for some

function 1 of A

n) = vlx + &80, M| — ¥ (x)
=y (8 + 11x) — ¥ (x).

Therefore, dividing by §(A)x

Y5 +11x) —¢(x)  n()  a(d)
S(M)x T sWx - x ]

where @ (1) = w

S(L)

Assuming that the limit of «()\) exists, one
has the simple ordinary differential equation
dy(x) k

—, k= 1lima()),
dx X >t

whose solution is well known to be

Yx)=rlnx+s, r>0.

This conclusion, known as Fechner’s law,
was soon questioned by J. A. F. Plateau
(1872), among others, although the emprical
evidence was not conclusive. Later, Wiener
(1915, 1921) was highly critical, and much
later Luce and Edwards (1958) pointed out
that, in fact, Fechner’s mathematical auxil-
iary principle, although leading to the correct
solution of the functional equation n(1) =
Ylx + &(x, A)] — ¥ (x) when Weber’s law
holds, fails to discover the correct solution
in any other case—which empirically really
is the norm. The mathematics is simply more
subtle than he assumed.

In any event, note that Fechner’s approach
is not an example of representational mea-
surement, because no empirical justification
was provided for the definition of standard
sequence used.

Reinterpreting Fechner Geometrically

Because Fechner’s JND approach using in-
finitesimals seemed to be flawed, little was
done for nearly half a century to construct
psychophysical functions based on JNDs—
that is, until Dzhafarov and Colonius (1999,
2001) reexamined what Fechner might have
meant. They did this from a viewpoint of
distances in a possible representation called
a Finsler geometry, of which ordinary Rie-
mannian geometry is a special case. Thus,
their theory concerns stimuli of any finite di-
mension, not just one. The stimuli are vec-
tors, for which we use bold-faced notation.
The key idea, in our notation, is that for each
person there is a universal function ® such
that, for A sufficiently close to L O(Y[x +
£(x,A)] — ¥(x)) is comeasurable’ with x.
This assumption means that this transformed
differential can be integrated along any suffi-
ciently smooth path between any two points.
The minimum path length is defined to be
the Fechnerian distance between them. This
theory, which is mathematically quite elab-
orate, is testable in principle. But doing so
certainly will not be easy because its assump-
tions, which are about the behavior of in-
finitesimals, are inherently difficult to check
with fallible data. It remains to be seen how
far this can be taken.

Ability and Achievement Testing

The vast majority of what is commonly called
“psychological measurement” consists of var-
ious elaborations of ability and achievement
testing that are usually grouped under the la-
bel “psychometrics.” We do not cover any of
this material because it definitely is neither
a branch of nor a precursor to the representa-
tional measurement of an attribute. To be sure,
a form of counting is employed, namely, the

3For the precise definition, see the reference.



items on a test that are correctly answered, and
this number is statistically normed over a par-
ticular age or other feature so that the count is
transformed into a normal distribution. Again,
no axioms were or are provided. Of the psy-
chometric approaches, we speak only of a por-
tion of Thurstone’s work that is closely related
to sensory measurement. Recently, Doignon
and Falmagne (1999) have developed an ap-
proach to ability measurement, called knowl-
edge spaces, that is influenced by representa-
tional measurement considerations.

Thurstone’s Discriminal Dispersions

In a series of three 1927 papers, L. L.
Thurstone began a reinterpretation of
Fechner’s approach in terms of the then newly
developed statistical concept of arandom vari-
able (see also Thurstone, 1959). In particu-
lar, he assumed that there was an underlying
psychological continuum on which signal pre-
sentations are represented, but with variabil-
ity. Thus, he interpreted the representation of
stimulus x as a random variable W (x) with
some distribution that he cautiously assumed
(see Thurstone, 1927b, p. 373) to be normal
with mean ¥, and standard deviation (which
he called a “discriminal dispersion”) o, and
possibly covariances with other stimulus rep-
resentations. Later work gave reasons to con-
sider extreme value distributions rather than
the normal. His basic model for the probabil-
ity of stimulus y being judged larger than x
was

P(x,y) =Pr[W(y) —¥(x) > 0], x=<y.
3)

The relation to Fechner’s ideas is really quite
close in that the mean subjective differences
are equal for fixed A = P(x, ).

Given that the representations are assumed
to be normal, the difference is also normal
with mean v, — v, and standard deviation

2 2 172
O,y = (O’X +o; — prqyaxay)
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so if zy , is the normal deviate correspond-
ing to P(x, y), Equation (3) can be expressed
as

vfy - wx = Zx,y0x,y-

Thurstone dubbed this “a law of comparative
judgment.” Many papers before circa 1975
considered various modifications of the as-
sumptions or focused on solving this equation
for various special cases. We do not go into
this here in part because the power of mod-
ern computers reduces the need for specia-
lization.

Thurstone’s approach had a natural one-
dimensional generalization to the absolute
identification of one of n > 2 possible stimuli.
The theory assumes that each stimulus has a
distribution on the sensory continuum and that
the subject establishes n — 1 cut points to de-
fine the intervals of the range of the random
variable that are identified with the stimuli.
The basic data are conditional probabilities
P(xj|x;, n) of responding x; when x;, i, j =
1,2,...,n, is presented. Perhaps the most
striking feature of such data is the follow-
ing: Suppose a series of signals are selected
such that adjacent pairs are equally detectable.
Using a sequence of n adjacent ones, abso-
lute identification data are processed through
a Thurstone model in which . , and o, , are
both estimated. Accepting that , , are in-
dependent of n, then the oy , definitely are
not independent of ». In fact, once n reaches
about 7, the value is independent of size, but
0.7 % 30y 2. This is a challenging finding and
certainly casts doubt on any simple invari-
ant meaning of the random variable W (x)—
apparently its distribution depends not only
on x but on what might have been presented
as well. Various authors have proposed alter-
native solutions (for a summary, see Iverson
& Luce, 1998).

A sophisticated treatment of Fechner,
Thurstone, and the subsequent literature is
provided by Falmagne (1985).
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Theory of Signal Detectability

Perhaps the most important generalization of
Thurstone’s idea is that of the theory of sig-
nal detectability, in which the basic change is
to assume that the experimental subject can
establish a response criterion §, in general
different from O, so that

P(x,y) =Pr[W(y) —W(x) > B], x=<y.
Engineers first developed this model. It was
adoped and elaborated in various psycho-
logical sources, including Green and Swets
(1974) and Macmillan and Creelman (1991),
and it has been widely applied throughout

psychology.

Mid-20th-Century Psychological
Measurement

Campbell’s Objection
to Psychological Measurement

N. R. Campbell, a physicist turned philoso-
pher of physics who was especially concerned
with physical measurement, took the very
strong position that psychologists, in partic-
ular, and social scientists, in general, had not
come up with anything deserving the name of
measurement and probably never could. He
was supported by a number of other British
physicists. His argument, though somewhat
elaborate, actually boiled down to asserting
the truth of three simple propositions:

(i) A prerequisite of measurement is some
form of empirical quantification that can
be accepted or rejected experimentally.

(ii) The only known form of such quantifi-
cation arises from binary operations of
concatenation that can be shown empir-
ically to satisfy the axioms of extensive
measurement.

(iii) And psychology has no such extensive
operations of its own.

Some appropriate references are Campbell
(1920/1957, 1928) and Ferguson et al. (1940).

Stevens’s Response

In a prolonged debate conducted before a
subcommittee of the British Association for
the Advancement of Sciences, the physicists
agreed on these propositions and the psychol-
ogists did not, at least not fully. They accepted
(iii) but in some measure denied (i) and (ii),
although, of course, they admitted that both
held for physics. The psychophysicist S. S.
Stevens became the primary spokesperson for
the psychological community. He first formu-
lated his views in 1946, but his 1951 chapter
in the first version of the Handbook of Exper-
imental Psychology, of which he was editor,
made his views widely known to the psycho-
logical community. They were complex, and
at the moment we focus only on the part rele-
vant to the issue of whether measurement can
be justified outside physics.

Stevens’ contention was that Proposition
(1) is too narrow a concept of measurement,
so (i1) and therefore (iii) are irrelevant. Rather,
he argued for the claim that “Measurement is
the assignment of numbers to objects or events
according to rule. . .. The rule of assignment
can be any consistent rule” (Stevens, 1975,
pp- 46—47). The issue was whether the rule
was sufficient to lead to one of several scale
types that he dubbed nominal, ordinal, inter-
val, ratio, and absolute. These are sufficiently
well known to psychologists that we need not
describe them in much detail. They concern
the uniqueness of numerical representations.
In the nominal case, of which the assignment
of numbers to football players was his exam-
ple, any permutation is permitted. This is not
generally treated as measurement because no
ordering by an attribute is involved. An or-
dinal scale is an assignment that can be sub-
jected to any strictly increasing transforma-
tion, which of course preserves the order and
nothing else. Itis a representation with infinite



degrees of freedom. An inferval scale is one in
which there is an arbitrary zero and unit; but
once picked, no degrees of freedom are left.
Therefore, the admissible transformation is
Y +— r¥r+s, (r > 0). As stated, such arep-
resentation has to be on all of the real numbers.
If, as is often the case, especially in physics,
one wants to place the representation on the
positive real numbers, then the transforma-
tion becomes ¥ —> s'Yl, (r > 0,5" > 0).
Stevens (1959, pp. 31-34) called a represen-
tation unique up to power transformations a
log-interval scale but did not seem to recog-
nize that it is merely a different way of writ-
ing an interval scale representation i in which
¥ = Iny, ands = Ins’. Whichever one uses,
it has two degrees of freedom. The ratio case
is the interval one with r =1. Again, this
has two forms depending on the range of .
For the case of a representation on the
reals, the admissible transformations are the
translations W — v +s. There is a differ-
ent version of ratio measurement that is inher-
ently on the reals in the sense that it cannot
be placed on the positive reals. In this case,
0 is a true zero that divides the representa-
tion into inherently positive and negative por-
tions, and the admissible transformations are
Y —ry,r > 0.

Stevens took the stance that what was im-
portant in measurement was its uniqueness
properties and that they could come about
in ways different from that of physics. The
remaining part of his career, which is sum-
marized in Stevens (1975), entailed the de-
velopment of new methods of measurement
that can all be encompassed as a form of sen-
sory matching. The basic instruction to sub-
jects was to require the match of a stimu-
lus in one modality to that in another so that
the subjective ratio between a pair of stim-
uli in the one dimension is maintained in the
subjective ratio of the matched signals. This
is called cross-modal matching. When one
of the modalities is the real numbers, it is
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one of two forms of magnitude matching—
magnitude estimation when numbers are to be
matched to a sensory stimuli and magnitude
production when numbers are the stimuli to be
matched by some physical stimuli. Using geo-
metric means over subjects, he found the data
to be quite orderly—power functions of the
usual physical measures of intensity. Much of
this work is covered in Stevens (1975).

His argument that this constituted a form
of ratio scale measurement can be viewed in
two distinct ways. The least charitable is that
of Michell (1999), who treats it as little more
than a play on the word “ratio” in the scale
type and in the instructions to the subjects. He
feels that Stevens failed to understand the need
for empirical conditions to justify numerical
representations. Narens (1996) took the view
that Stevens’ idea is worth trying to formal-
ize and in the process making it empirically
testable. Work along these lines continues, as
discussed later.

REPRESENTATIONAL APPROACH
AFTER 1950

Aside from extensive measurement, the repre-
sentational theory of measurement is largely
a creation by behavioral scientists and math-
ematicians during the second half of the
20th century. The basic thrust of this school
of thought can be summarized as accept-
ing Campbell’s conditions (i), quantification
based on empirical properties, and (iii), the
social sciences do not have concatenation op-
erations (although even that was never strictly
correct, as is shown later, because of probabil-
ity based on a partial operation), and rejecting
the claim (ii) that the only form of quantifica-
tion is an empirical concatenation operation.
This school disagreed with Stevens’ broaden-
ing of (i) to any rule, holding with the physi-
cists that the rules had to be established on
firm empirical grounds.
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To do this, one had to establish the exis-
tence of schemes of empirically based mea-
surement that were different from extensive
measurement. Examples are provided here.
For greater detail, see FM I, II, III, Narens
(1985), or for an earlier perspective Pfanzagl
(1968).

Several Alternatives
to Extensive Measurement

Utility Theory

The first evidence of something different from
extensive measurement was the construction
by von Neumann and Morgenstern (1947) of
an axiomatization of expected utility theory.
Here, the stimuli were gambles of the form
(x, p; y) where consequence x occurs with
probability p and y with probability 1 — p. The
basic primitive of the system was a weak pref-
erence order Z over the binary gambles. They
stated properties that seemed to be at least
rational, if not necessarily descriptive; from
them one was able to show the existence of a
numerical utility function U over the conse-
quences and gambles such that for two binary
gambles g, h

Zhe U =UM),
U(g.pih) = U(@p+ UM - p).

Note that this is an averaging representation,
called expected utility, which is quite distinct
from the adding of extensive measurement
(see the subsection on averaging).

Actually, their theory has to be viewed as a
form of derived measurement in Campbell’s
sense because the construction of the U func-
tion was in terms of the numerical probabil-
ities built into the stimuli themselves. That
limitation was overcome by Savage (1954),
who modeled decision making under uncer-
tainty as acts that are treated as an assignment

of consequences to chance states of nature.*
Savage assumed that each act had a finite num-
ber of consequences, but subsequent gener-
alizations permitted infinitely many. Without
building any numbers into the domain and us-
ing assumptions defended by arguments of
rationality, he showed that one can construct
both a utility function U and a subjective prob-
ability function S such that acts are evaluated
by calculating the expectation of U with re-
spect to the measure S. This representation
is called subjective expected utility (SEU).
It is a case of fundamental measurement in
Campbell’s sense. Indirectly, it involved a
partial concatenation operation of disjoint
unions, which was used to construct a sub-
jective probability function.

These developments led to a very ac-
tive research program involving psycholo-
gists, economists, and statisticians. The basic
thrust has been of psychologists devising
experiments that cast doubt on either a repre-
sentation or some of its axioms, and of
theorists of all stripes modifying the theory
of accommodate the data. Among the key
summary references are Edwards (1992),
Fishburn (1970, 1988), Luce (2000), Quiggin
(1993), and Wakker (1989).

Difference Measurement

The simplest example of difference measure-
ment is location along a line. Here, some point
is arbitrarily set to be 0, and other points are
defined in terms of distance (length) from it,
with those on one side defined to be positive
and those on the other side negative. It is clear
in this case that location measurement forms
an example of interval scale measurement

4Some aspects of Savage’s approach were anticipated by
Ramsey (1931), but that paper was not widely known
to psychologists and economists. Almost simultane-
ously with the appearance of Savage’s work, Davidson,
McKinsey, and Suppes (1955) drew on Ramsey’s ap-
proach, and Davidson, Suppes, and Segal (1957) tested it
experimentally.



that is readily reduced to length measurement.
Indeed, all forms of difference measurement
are very closely related to extensive measure-
ment, but with the stimuli being pairs of ele-
ments (x, y) that define “intervals.” Axioms
can be given for this form of measurement
where the stimuli are pairs (x, y) with both
x, y in the same set X. The goal is a numerical
representation ¢ of the form

(x,y) = (u,v)
& ox) —o(y) = o) —e).

One key axiom that makes clear how a con-
catenation operation arises is that if (x, y) 2
(', y") and (y,2) £ (v, 2), then (x,2) =
', 7).

An important modification is called abso-
lute difference measurement, in which the goal
is changed to

(x,y) = (u,v)
& lox) — e = le) — ).

This form of measurement is a precursor
to various ideas of similarity measurement
important in multidimensional scaling. Here
the behavioral axioms become considerably
more complex. Both systems can be found in
FM I, Chap. 4.

An important generalization of absolute
difference measurement is to stimuli with n
factors; it underlies developments of geomet-
ric measurement based on stimulus proximity.
This can be found in FM II, Chap. 14.

Additive Conjoint Measurement

Perhaps the single development that most
persuaded psychologists that fundamental
measurement really could be different from
extensive measurement consisted of two ver-
sions of what is called additive conjoint mea-
surement. The first, by Debreu (1960), was
aimed at showing economists how indiffer-
ence curves could be used to construct car-
dinal (interval scale) utility functions. It was,
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therefore, naturally cast in topological terms.
The second (and independent) one by Luce
and Tukey (1964) was cast in algebraic terms,
which seems more natural to psychologists
and has been shown to include the topologi-
cal approach as a special case. Again, it was
an explanation of the conditions under which
equal-attribute curves can give rise to mea-
surement. Michell (1990) provides a careful
treatment aimed at psychologists.

The basic idea is this: Suppose that an at-
tribute is affected by two independent stim-
ulus variables. For example, preference for a
reward is affected by its size and the delay
in receiving it; mass of an object is affected
by both its volume and the (homogeneous)
material of which it is composed; loudness
of pure tones is affected by intensity and fre-
quency; and so on. Formally, one can think
of the two factors as distinct sets A and X,
so an entity is of the form (a, x) where
ac€ A and x € X. The ordering attribute is
Z over such entities, that is, over the Cartesian
product A x X. Thus, (a, x) Z (b, y) means
that (a, x) exhibits more of the attribute in
question than does (b, y). Again, the order-
ing is assumed to be a weak order: transitive
and connected. Monotonicity (called indepen-
dence in this literature) is also assumed: For
a,be A,x,yeX

(a,x)Z (b, x) & (a,y)Z(b,y).
(a,x)z(a,y) & (b,x)Z(b,y).

This familiar property is often examined in
psychological research in which a dependent
variable is plotted against, say, a measure of
the first component with the second compo-
nent shown as a parameter of the curves. The
property holds if and only if the curves do not
Cross.

It is easy to show that this condition is
not sufficient to get an additive representa-
tion of the two factors. If it were, then any set
of nonintersecting curves in the plane could
be rendered parallel straight lines by suitable

“4)
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nonlinear transformations of the axes. More
is required, namely, the Thomsen condition,
which arose in a mathematically closely
related area called the theory of webs. Let-
ting ~ denote the indifference relation of Z,
the Thomsen condition states

(a,z) ~(c,y)

(e.x) ~ (b, z)} = (a,x) ~ (b, y).

Note that it is a form of cancellation—of ¢ in
the first factor and z in the second.

These, together with an Archimedean
property establishing commensurability and
some form of density of the factors, are
enough to establish the following additive
representation: There exist numerical func-
tions ¥4 on A and ¥ x on X such that

(a,x)Z (b, y)
< Ya@) + Yx(x) = yad) + ¥x(y).

This representation is on all of the real num-
bers. A multiplicative version on the positive
real numbers exists by setting & = exp ¥;.
The additive representation forms an inter-
val scale in the sense that v, y% forms
another equally good representation if and
only if there are constants r > 0, 54, sx such
that

Uy =r¥a+sa,
Uy =r¥x +sx & £y =s,4&),
si=exps; > 0.

§x =sxéx

Additive conjoint measurement can be
generalized to finitely many factors, and it is
simpler in the sense that if monotonicity is
generalized suitably and if there are at least
three factors, then the Thomsen condition can
be derived rather than assumed.

Although no concatenation operation is in
sight, a family of them can be defined in terms
of ~, and they can be shown to satisfy the
axioms of extensive measurement. This is the
nature of the mathematical proof of the repre-
sentation usually given.

Averaging

Some structures with a concatenation opera-
tion do not have an additive representation, but
rather a weighted averaging representation of
the form

p(xoy)=e@w+e@d—-w), (5)

where the weight w is fixed. We have already
encountered this form in the utility system if
we think of the gamble (x, p; y) as defining
operations o, withxo,y = (x, p; y),in which
case w =w(p). A general theory of such op-
erations was first given by Pfanzagl (1959). It
is much like extensive measurement but with
associativity replaced by bisymmetry: For all
stimuli x, y, u, v,

(xoy)o@ov)~ (xou)o(yov). (6)

It is easy to verify that the weighted-average
representation of Equation (5) implies bisym-
metry, Equation (6), and x o x ~ x. The eas-
iest way to show the converse is to show that
defining Z’ over X x X by

(a,x)Z (b,y) & aoxZzboy

yields an additive conjoint structure, from
which the result follows rather easily.

Nonadditive Representations

A natural question is: When does a concatena-
tion operation have a numerical representation
that is inherently nonadditive? By this, one
means a representation for which no strictly
increasing transformation renders it additive.
Before exploring that, we cite an example of
nonadditive representations that can in fact be
transformed into additive ones. This is helpful
in understanding the subtlety of the question.

One example that has arisen in utility the-
ory is the representation

Ux@y)=Ux)+U(y)=sUX)U(y), (1)

where § is a real constant and U is the SEU
or rank-dependent utility generalization (see



Luce, 2000, Chap. 4) with an intrinsic zero—
no change from the status quo. Because Equa-
tion (7) can be rewritten

1-8UGx@y) =[1-8UMmI[—-3sUW]I,

the transformation V =—«In(1—-6U),
ok >0, is additive, that is, V(x @& y)=
V(x) + V(y), and order-preserving. The mea-
sure V is called a value function. The form in
Equation (7) is called p-additive because it is
the only polynomial with a fixed zero that can
be put in additive form. The source of this
representation is examined in the next major
section. It is easy to verify that both the ad-
ditive and the nonadditive representations are
ratio scales in Stevens’ sense. We know from
extensive measurement that the change of
unit in the additive representation is some-
how reflecting something important about the
underlying structure. Is that also true of the
changes of units in the nonadditive represen-
tation? We will return to this point, which can
be a source of confusion.

It should be noted that in probability theory
for independent events, the p-additive form
with § = 1 arises since

P(AUB) = P(A)+ P(B) — P(A)P(B).

An earlier, similar example concerning
velocity concatenation arose in Einstein’s
theory of special relativity. Like the psycho-
logical one, it entails a representation in the
standard measure of velocity that forms a
ratio scale and a nonlinear transformation to
an additive one that also forms a ratio scale.
We do not detail it here.

Nonadditive Concatenation

What characterizes an inherently nonadditive
structure is the failure of the empirical prop-
erty of associativity; that is, for some elements
X, ¥, z in the domain,

xo(yoz)f(xoy)oz.
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Cohen and Narens (1979) made the then-
unexpected discovery that if one simply drops
associativity from any standard axiomatiza-
tion of extensive measurement, not only can
one still continue to construct numerical rep-
resentations that are onto the positive reals
but, quite surprisingly, they continue to form
a ratio scale as well; that is, the representa-
tion is unique up to similarity transformations.
They called this important class of nonaddi-
tive representations unit structures. For a full
discussion, see Chaps. 19 and 20 of FM III.

A Fundamental Account
of Some Derived Measurement

Distribution Laws

The development of additive conjoint mea-
surement allows one to give a systematic and
fundamental account of what to that point
had been treated as derived measurement. For
classical physics, a typical situation in which
derived measurement arises takes the form
(A x X, Z, 04). For example, let A denote a
set of volumes and X a set of homogeneous
substances; the ordering is that of mass as
established by an equal-arm pan balance in
a vacuum. The operation o, is the simple
union of volumes. For this case we know that
m = Vp, where m is the usual mass measure,
V is the usual volume measure, and p is an
inferred measure of density.

Observe that (A x X, z) forms an addi-
tive conjoint structure. By the monotonicity
assumption of conjoint measurement, Equa-
tion (4), z induces the weak order ZZ4 on A.
It is assumed that (A, Z 4, 04) forms an ex-
tensive structure. Thus we have the extensive
representation ¢4 of (A, Za,04) onto the
positive real numbers and a multiplicative
conjoint one £4&x of (A x X, Z) onto the pos-
itive real numbers.

The question is how ¢4 and &4 relate.
Because both preserve the order 24, there
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must be a strictly increasing function F' such
that £4 = F(¢4). Beyond that, we can say
nothing without some assumption describing
how the two structures interlock. One that
holds for many physical cases, including the
motivating mass example, is a qualitative dis-
tribution law of the form: For all a, b, ¢, d in
Aand x, yin X,

(a,x)~(c,y)
(b, x)~(d,y)

Using this, one is able to prove that, for
some r>0,s >0, F(z) =rz*. Because the
conjoint representation is unique up to power
transformations, we may select s = 1, that is,
choose &4 = @a.

Note that distribution is a substantive, em-
pirical property that in each specific case re-
quires verification. In fact, it holds for many
of the classical physical attributes. From that
fact one is able to construct the basic structure
of (classical) physical quantities that under-
lies the technique called dimensional analysis,
which is widely used in physical applications
in engineering. It also accounts for the fact
that physical units are all expressed as prod-
ucts of powers of arelatively small set of units.
This is discussed in some detail in Chap. 10
of FM I and in a more satisfactory way in
Section 22.7 of FM II1.

}:>(aoAb,x)~ (coad, V).

Segregation Law

Within the behavioral sciences we have a
situation that is somewhat similar to distri-
bution. Suppose we return to the gambling
structure, where some chance “experiment”
is performed, such as drawing a ball from an
urn with 100 red and yellow balls of which
the respondent knows that the number of red
is between 50 and 80. A typical binary gam-
ble is of the form (x, C; y), where C denotes
a chance event such as drawing a red ball, and
the consequence x is received if C occurs and
y otherwise, that is, x if a red ball and y if a
yellow ball. A weak preference order Z over

gambles is postulated. Let us distinguish gains
from losses by supposing that there is a spe-
cial consequence, denoted e, that means no
change from the status quo. Things preferred
to e are called gains, and those not preferred
to it are called losses. Assume that for gains
(and separately for losses) the axioms leading
to a subjective expected utility representation
are satisfied. Thus, there is a utility function U
over gains and subjective probability function
S such that

Ux,Ciy) =U®SCO)+ UM = S(O)]
®)
Ue) = 0. ©))

Let & denote the operation of receiving two
things, called joint receipt. Therefore, g @ h
denotes receiving both of the gambles g and /.
Assume that @ is a commutative® and mono-
tonic operation with e the identity element;
that is, for all gambles g perceived as a gain,
g ® e ~ g. Again, some law must link & to
the gambles. The one proposed by Luce and
Fishburn (1991) is segregation: For all gains

X, Y,

x,Cie)@y~(xdy, C;y). (10)

Observe that this is highly rational in the sense
that both sides yield x @ y when C occurs and
y otherwise, so they should be seen as rep-
resenting the same gamble. Moreover, there
is some empirical evidence in support of it
(Luce, 2000, Chap. 4). Despite its apparent
innocence, it is powerful enough to show that
U(x @ y) is given by Equation (7). Thus,
in fact, the operation @ forms an extensive
structure with additive representation V =
—k In(1 —48U), 6k > 0. Clearly, the sign of §
greatly affects the relation between U and V:
it is a negative exponential for § > 0, propor-
tional for § = 0, and an exponential for § < 0.

SLater we examine what happens when we drop this
assumption.



Applications of these ideas are given in
Luce (2000). Perhaps the most interesting
occurs when dealing with x @ y where x is
a gain and y a loss. If we assume that V is
additive throughout the entire domain, then
withx Z ez y, U(x @ y) is not additive. This
carries through to mixed gambles that no
longer have the simple bilinear form of binary
SEU, Equation (8).

Invariance and Meaningfulness

Meaningful Statistics

Stevens (1951) raised the following issues in
connection with the use of statistics on mea-
surements. Some statistical assertions do not
seem to make sense in some measurement
schemes. Consider a case of ordinal measure-
ment in which one set of three observations
has ordinal measures 1, 4, and 5, with a mean
of 10/3, and another set has measures 2, 3,
and 6, with a mean of 11/3. One would say
the former set is, on average, smaller than the
second one. But since these are ordinal data,
an equally satisfactory representation is 1, 5,
and 6 for the first set and 2, 2.1, and 6.1 for
the latter, with means respectively 12/3 and
10.2/3, reversing the conclusion. Thus, there
is no invariant conclusion about means. Put
another way, comparing means is meaning-
less in this context. By contrast, the median is
invariant under monotonic transformations. It
is easy to verify that the mean exhibits suitable
invariance in the case of ratio scales.

These observations were immediately chal-
lenged and led to what can best be described as
a tortured discussion that lasted many years.
It was only clarified when the problem was
recognized to be a special case of invariance
principles that were well developed in both
geometry and dimensional analysis.

The main reason why the discussion was
confused is that it was conducted at the level
of numerical representations, where two kinds
of transformations are readily confused, rather
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than in terms of the underlying structure itself.
Consider a cubical volume that is 4 yards on
a side. An appropriate change of units is from
yards to feet, so it is also 12 feet on a side.
This is obviously different from the transfor-
mation that enlarges each side by a factor of 3,
producing a cube that is 12 yards on a side. At
the level of numerical representations, how-
ever, these two factor-of-3 changes are all too
easily confused. This fact was not recognized
when Stevens wrote, but it clearly makes very
uncertain just what is meant by saying that
a structure has a ratio or other type of repre-
sentation and that certain invariances should
hold.

Automorphisms

These observations lead one to take a deeper
look into questions of uniqueness and invari-
ance. Mapping empirical structures onto nu-
merical ones is not the most general or funda-
mental way to approach invariance. The key
to avoiding confusion is to understand what it
is about a structure that corresponds to correct
admissible transformations of the representa-
tion. This turns out to be isomorphisms that
map an empirical structure onto itself. Such
isomorphisms are called automorphisms by
mathematicians and symmetries by physicists.
Their importance is easily seen, as follows.
Suppose « is an automorphism and f is a ho-
momorphism of the structure into a numerical
one, then it is not difficult to show that f * «,
where * denotes function composition, is an-
other equally good homomorphism into the
same numerical structure. In the case of a ra-
tio scale, this means that there is a positive nu-
merical constant r,, suchthat fxa =r, f. The
automorphism captures something about the
structure itself, and that is just what is needed.

Consider the utility example, Equation (7),
where there are two nonlinearly related rep-
resentations, both of which are ratio scales in
Stevens’ sense. Thus, calculations of the mean
utility are invariant in any one representation,
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but they certainly are not across representa-
tions. Which should be used, if either? It turns
out on careful examination that the one set
of transformations corresponds to the auto-
morphisms of the underlying extensive struc-
ture. The second set of transformations cor-
responds to the automorphisms of the SEU
structure, not @. Both changes are important,
but different. Which one should be used de-
pends on the question being asked.

Invariance

An important use of automorphisms, first em-
phasized for geometry by Klein (1872/1893)
and heavily used by physicists and engineers
in the method of dimensional analysis, is the
idea that meaningful statements should be
invariant under automorphisms. Consider a
structure with various primitive relations. It
is clear that these are invariant under the au-
tomorphisms of the structure, and it is natural
to suppose that anything that can be mean-
ingfully defined in terms of these primitives
should also be invariant. Therefore, in partic-
ular, given the structure of physical attributes,
any physical law is defined in terms of the at-
tributes and thus must be invariant. This def-
initely does not mean that something that is
invariant is necessarily a physical law. In the
case of statistical analyses of measurements,
we want the result to exhibit invariance
appropriate to the structure underlying the
measurements.

To answer Stevens’ original question about
statistics then entails asking whether the hy-
pothesis being tested is meaningful (invariant)
when translated back into assertions about the
underlying structure. Doing this correctly is
sometimes subtle, as is discussed in Chap. 22
of FM III and much more fully by Narens
(2001).

Trivial Automorphisms and Invariance

Sometimes structures have but one automor-
phism, namely the function that maps each

element of the structure into itself—the iden-
tity function. For example, in the additive
structure of the natural numbers with the stan-
dard ordering, the only automorphism is the
one that simply matches each number to itself:
0to 0, 1to 1, and so on.

Within the weak ordering Z of a structure,
there are trivial automorphisms beyond the
identity mapping, namely, those that just map
an element a to an equivalent element b; that
is, the relation a ~ b holds.

Consider invariance in such structures. We
quickly see that the approach cannot yield any
significant results because everything is in-
variant. This remark applies to all finite struc-
tures that are provided with a weak ordering.
Thus, the only possibility is to examine the
invariant properties of the structure of the set
of numerical representations.

Let a finite empirical structure be given
with a homomorphism f mapping the struc-
ture into a numerical structure. We have al-
ready introduced the concept of an admissi-
ble numerical transformation ¢ of f, namely,
a one-one transformation of the range of f
onto a possibly different set of real numbers,
such that ¢ * f is a homomorphism of the em-
pirical structure. In order to fix the scale type
and thus the nature of the invariance of the
empirical structure, we investigate the set of
all such homomorphisms for a given empirical
structure. In the case of weight, any two homo-
morphisms f; and f; are related by a positive
similarity transformation; that is, there is a
positive real number r > 0 such that 7 f| = f5.
In the qualitative probability case with inde-
pendence, r =1, so the set of all homomor-
phisms has only one element. With r £ 1 in
the general similarity case, invariance is then
characterized with respect to the multiplica-
tive group of positive real numbers, each num-
ber in the group constituting a change of unit.
A numerical statement about a set of numer-
ical quantities is then invariant if and only if
its truth value is constant under any changes of



unit of any of the quantities. This definition is
easily generalized to other groups of numeri-
cal transformations such as linear transforma-
tions for interval scales.

In contrast, consider a finite difference
structure with a numerical representation as
characterized earlier. In general, the set of all
homomorphisms from the given finite struc-
ture to numerical representations has no natu-
ral and simple mathematical characterization.
For this reason, much of the general theory
of representational measurement is concerned
with empirical structures that map onto the
full domain of real numbers. It remains true,
however, that special finite empirical struc-
tures remain important in practice in setting
up standard measurement procedures using
well-defined units.

Covariants

In practice, physicists hold on to invariance
by introducing and using the concept of co-
variants. Typical examples of such covari-
ants are velocity and acceleration, neither of
which is invariant from one coordinate frame
to another under either Galilean or Lorentzian
transformations, because, among other things,
the direction of the velocity or acceleration
vector of a particle will in general change from
one frame to another. (The scalar magnitude
of acceleration is invariant.)

The laws of physics are written in terms
of such covariants. The fundamental idea is
conveyed by the following. Let Q, ..., O,
be quantities that are functions of the space-
time coordinates, with some Q;s possibly be-
ing derivatives of others, for example. Then, in
general, as we go from one coordinate system
to another (note that * does not mean deriva-
tive) Q}, ..., Q) willbe covariant, rather than
invariant, so their mathematical form is dif-
ferent in the new coordinate system. But any
physical law involving them, say,

F(Qy, ..

- Q) =0, (1)
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must have the same form

F(Qy,...,0,)=0

in the new coordinate frame. This same form
is the important invariant requirement.

A simple example from classical mechan-
ics is the conservation of momentum of two
particles before and after a collision. Let v;
denote the velocity before and w; the velocity
after the collision, and m; the mass, i =1, 2,
of each particle. Then the law, in the form of
Equation (11), looks like this:

vimy + vomy — (Wimy + woms) =0,
and its transformed form will be, of course,
vimy + vimy — (Wimy + whmy) =0,

but the forms of v; and w; will be, in general,
covariant rather than invariant.

An Account of Stevens’ Scale-Type
Classification

Narens (1981a, 1981b) raised and partially
answered the question of why the Stevens’
classification into ratio, interval, and ordinal
scales makes as much sense as it seems to.
His result was generalized by Alper (1987),
as described later. The question may be cast
as follows: These familiar scale types have,
respectively, one, two, and infinitely many de-
grees of freedom in the representation; are
there not any others, such as ones having
three or 10 degrees of freedom? To a first ap-
proximation, the answer is “no,” but the pre-
cise answer is somewhat more complex than
that.

To arrive at a suitable formulation, a spe-
cial case may be suggestive. Consider a struc-
ture that has representations onto the reals—
continuous representations—that form an in-
terval scale. Then the representation has the
following two properties. First, given num-
bers x <y and u < v, there is a positive affine
transformation that takes the pair (x, y) into
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(u, v). It is found by settingu = rx +s,v =
ry +s, whence r = ;%)“( and s = y';_;x” Thus,
in terms of automorphisms we have the
property that there exists one that maps any
ordered pair of the structure into any other or-
dered pair. This is called two-point homogene-
ity. Equally well, if two affine transforma-
tions map a pair into the same pair, then they
are identical. This follows from the fact that
two equations uniquely determine r and s. In
terms of automorphisms, this is called 2-point
uniqueness. The latter can be recast by say-
ing that any automorphism having two fixed
points must be the identity automorphism.

In like manner, the ratio scale case is
1-pointhomogeneous and 1-point unique. The
generalizations of these concepts to M—point
homogeneity and N—point uniqueness are
obvious. Moreover, in the continuous case it
is easy to show that M < N. The question ad-
dressed by Narens was: Given that the struc-
ture is at least 1-point homogeneous and N—
point unique for some finite N, what are the
possibilities for (M, N)? Assuming M = N
and a continuous structure, he showed that
the only possibilities are (1, 1) and (2, 2),
that is, the ratio and interval scales. Alper
(1987) dropped the condition that M = N
and showed that (1, 2) can also occur, but that
is the only added possibility. In terms of
numerical representations on all of the real
numbers, the (1, 2) transformations are of
the form x +—— rx + s where s is any real
and r is in some proper, nontrivial subgroup
of the multiplicative, positive real group.
One example is when r is of the form k",
where k > 0 is fixed and n ranges over the
positive and negative integers.

This result makes clear two things. First,
we see that there can be no continuous scales
between interval and ordinal, which of course
is not finitely unique. Second, there are scales
between ratio and interval. None of these
has yet played a role in actual scientific
measurement. Thus, for continuous structures

Stevens’ classification was almost complete,
but not quite.

The result also raises some questions. First,
how critical is the continuum assumption?
The answer is “very”: Cameron (1989)
showed that nothing remotely like the Alper-
Narens result holds for representations on the
rational numbers. Second, what can be said
about nonhomogeneous structures? Alper
(1987) classified the M =0 case, but the re-
sults are quite complex and apparently not
terribly useful. Luce (1992) explored empir-
ically important cases in which homogeneity
fails very selectively. It does whenever there
are singular points, which are defined to be
points of the structure that remain fixed under
all automorphisms. Familiar examples are 0
in the nonnegative, multiplicative real num-
bers and infinity if, as in relativistic velocity,
it is adjoined to the system. For a broad class
of systems, he showed that if a system has
finitely many singular points and is homoge-
neous between adjacent ones, then there are
at most three singular points—a minimum,
an interior, and a maximum one. The detailed
nature of these fixed points is somewhat com-
plicated and is not discussed here. One spe-
cific utility structure with an interior singular
point—an inherent zero—is explored in depth
in Luce (2000).

Models of Stevens’ Magnitude Methods

Stevens’ (1975) empirical findings, which
were known in the 1950s, were a challenge
to measurement theorists. What underlies the
network of (approximate) power function
relations among subjective measures? Luce
(1959) attempted to argue in terms of repre-
sentations that if, for example, two attributes
are each continuous ratio scales,® with typi-
cal physical representations ¢; and ¢,, then

6Scale types other than ratio were also studied by Luce
and subsequent authors.



a matching relation M between them should
exhibit an invariance involving an admissi-
ble ratio-scale change of the one attribute
corresponding under the match to a ratio-
scale change of the other attribute, that is,
Mre;(x)] = a(r)@,(x). From this it is not
difficult to prove that M is a power func-
tion of its argument. A major problem with
this argument is its failure to distinguish two
types of ratio scale transformations—changes
of unit, such as centimeters to meters—and
changes of scale, such as increasing the linear
dimensions of a volume by a factor of three.
Rozeboom (1962) was very critical of this fail-
ure. Luce (1990) reexamined the issue from
the perspective of automorphisms. Suppose M
is an empirical matching relation between two
measurement structures, and suppose that for
each translation (i.e., an automorphism with
no fixed point) t of the first structure there
corresponds to a translation o, of the sec-
ond structure such that for any stimulus x of
the first structure and any s of the second,
then x M's holds if and only if for each auto-
morphism 7 of the first structure t (x) Mo (s)
also holds. This assumption, called transla-
tion consistency, is an empirically testable
property, not a mere change of units. Assum-
ing that the two structures have ratio scale
representations, this property is equivalent to
a power function relation between the repre-
sentations.

Based on some ideas of R. N. Shep-
ard, circulated privately and later modified
and published in 1981, Krantz (1972) devel-
oped a theory that is based on three prim-
itives: magnitude estimates, ratio estimates,
and cross-modal matches. Various fairly sim-
ple, testable axioms were assumed that one
would expect to hold if the psychophysical
functions were power functions of the cor-
responding physical intensity and the ratios
of the instructions were treated as mathe-
matical ratios. These postulates were shown
to yield the expected power function repre-
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sentations except for an arbitrary increasing
function. This unknown function was elimi-
nated by assuming, without a strong rationale,
that the judgments for one continuum, such
as length judgments, are veridical, thereby
forcing the function to be a simple multi-
plicative factor. This model is summarized in
Falmagne (1985, pp. 309-313). A somewhat
related approach was offered by Falmagne and
Narens (1983), also summarized in Falmagne
(1985, pp. 329-339). It is based not on beha-
vioral axioms, but on two invariance princi-
ples that they call meaningfulness and dimen-
sional invariance. Like the Krantz theory, it
too leads to the form G (gp;’ (p;f ), where G is
unspecified beyond being strictly increasing.

Perhaps the deepest published analysis of
the problem so far is Narens (1996). Unlike
Stevens, he carefully distinguished numbers
from numerals, noting that the experimen-
tal structure involved numerals whereas the
scientists’ representations of the phenomena
involved numbers. He took seriously the idea
that internally people are carrying out the
ratio-preservation calculations embodied in
Stevens’ instructions. The upshot of Narens’
axioms, which he carefully partitioned into
those that are physical, those that are behav-
ioral, and those that link the physical and the
behavioral, was to derive two empirical pre-
dictions from the theory. Let (x, p, y) mean
that the experimenter presents stimulus x and
the numeral p to which the subject produces
stimulus y as holding the p relation to x. So if
2 is given, then y is whatever the subject feels
is twice x. The results are, first, a commutativ-
ity property: Suppose that the subject yields
(x, p, ¥) and (y, q, z) when done in that order
and (x, q, ) and (u, p, v) when the numerals
are given in the opposite order. The prediction
is z=wv. A second result is a multiplicative
one: Suppose (x, pq, w), then the prediction
is w = z. It is clear that the latter property im-
plies the former, but not conversely. Empirical
data reported by Ellemeirer and Faulhammer
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(2000) sustain the former prediction and un-
ambiguously reject the latter.

Luce (2001) provides a variant axiomatic
theory, based on a modification of some math-
ematical results summarized in Luce (2000)
for utility theory. The axioms are formulated
in terms of three primitives: a sensory order-
ing Z over physical stimuli varying in inten-
sity, the joint presentation x @ y of signals x
and y (e.g., the presentation of pure tones of
the same frequency and phase to the two ears),
and for signals x > y and positive number p
denoteby z = (x, p, y) the signal that the sub-
ject judges makes interval [y, z] stand in pro-
portion p to interval [y, x]. The axioms, such
as segregation, Equation (10), are behavioral
and structural, and they are sufficient to ensure
the existence of a continuous psychophysical
measure ¥ from stimuli to the positive real
numbers and a continuous function W from
the positive reals onto the positive reals and a
constant § > 0 such that for & commutative

xZy &y =y, 12)
Y@y =9x) + ¥ Q)+ )Py

(6 >0), (13)
Yx, p,y) =¥ () =Wplvx) -l
(14)

We have written Equation (14) in this fashion
rather than in a form comparable to the SEU
equation for two reasons: It corresponds to
the instructions given the respondents, and
W (p) is not restricted to [0, 1]. Recent, cur-
rently unpublished, psychophysical data of R.
Steingrimsson showed an important case of @
(two-ear loudness summation) that is rarely,
if ever, commutative. This finding motivated
Acz€l, Luce, and Ng (2001) to explore the
noncommutative, nonassociative cases on the
assumption @ has a unit representation (men-
tioned earlier) and assuming Equations (12)
and (14) and that certain unknown functions
are differentiable. To everyone’s surprise, the
only new representations replacing (13) are

either

vax @y =ayx)+v¥(y), (@>1)
whenx @0 > 0@ x, or

Yx@y) =yx) +dY(), (@ >1)

when x @ 0 < 0 @ x. These are called left- and
right-weighted additive forms, respectively.
These representations imply that some fixed
dB correction can compensate the noncom-
mutativity. Empirical studies evaluating this
are underway.

One invariance condition limits the form of
Y to the exponential of a power function of de-
viations from absolute threshold, and another
one limits the form of W to two parameters
for p > 1 and two more for p < 1.

The theory not only is able to accommo-
date the Ellemeirer and Faulhammer data but
also predicts that the psychophysical function
is a power function when @ is not commuta-
tive and only approximately a power function
for & commutative. Over eight or more or-
ders of magnitude, it is extremely close to a
power function except near threshold and for
very intense signals. Despite its not being a
pure power function, the predictions for cross-
modal matches are pure power functions.

Errors and Thresholds

To describe the general sources of errors and
why they are inevitable in scientific work, we
can do no better than quote the opening pas-
sage in Gauss’s famous work on the theory
of least squares, which is from the first part
presented to the Royal Society of Gottingen
in 1821:

However much care is taken with observations
of the magnitude of physical quantities, they are
necessarily subject to more or less considerable
errors. These errors, in the majority of cases,
are not simple, but arise simultaneously from
several distinct sources which it is convenient
to distinguish into two classes.



Certain causes of errors depend, for each ob-
servation, on circumstances which are variable
and independent of the result which one obtains:
the errors arising from such sources are called
irregular or random, and like the circumstances
which produce them, their value is not suscep-
tible of calculation. Such are the errors which
arise from the imperfection of our senses and all
those which are due to irregular exterior causes,
such as, for example, the vibrations of the air
which make vision less clear; some of the errors
due to the inevitable imperfection of the best in-
struments belong to the same category. We may
mention, for example, the roughness of the in-
side of a level, the lack of absolute rigidity, etc.

On the other hand, there exist causes which
in all observations of the same nature produce
an identical error, or depend on circumstances
essentially connected with the result of the ob-
servation. We shall call the errors of this cate-
gory constant or regular.

It is evident that this distinction is relative up
to a certain point and depends on how broad a
sense one wishes to attach to the idea of obser-
vations of the same nature. For instance, if one
repeats indefinitely the measurement of a sin-
gle angle, the errors arising from an imperfect
division of the circular scale will belong to the
class of constant errors. If, on the other hand,
one measures successively several different an-
gles, the errors due to the imperfection of the
division will be regarded as random as long as
one has not formed the table of errors pertaining
to each division. (Gauss, 1821/1957, pp. 1-2)

Although Gauss had in mind problems of
errors in physical measurement, it is quite
obvious that his conceptual remarks apply as
well to psychological measurement and, in
fact, in the second paragraph refer directly
to the “imperfection of our senses.” It was
really only in the 19th century that, even in
physics, systematic and sustained attention
was paid to quantitative problems of errors.
For a historical overview of the work pre-
ceding Gauss, see Todhunter (1865/1949). As
can be seen from the references in the section
on 19th- and early 20th-century psychology,
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quantitative attention to errors in psycholog-
ical measurement began at least with Fech-
ner in the second half of the 19th century.
Also, as already noted, the analysis of thresh-
olds in probabilistic terms really began in psy-
chology with the cited work of Thurstone.
However, the quantitative and mathematical
theory of thresholds was discussed earlier
by Norbert Wiener (1915, 1921). Wiener’s
treatment was, however, purely algebraic,
whereas in terms of providing relatively di-
rect methods of application, Thurstone’s
approach was entirely probabilistic in char-
acter. Already, Wiener (1915) stated very
clearly and explicitly how to deal with the
fact that with thresholds in perception, the
relation of indistinguishability—whether we
are talking about brightness of light, loud-
ness of sound, or something similar—is not
transitive.

The detailed theory was then given in the
1921 paper for constructing a measure up to an
interval scale for such sensation-intensities.
This is, without doubt, the first time that these
important psychological matters were dealt
with in rigorous detail from the standpoint of
passing from qualitative judgments to a mea-
surement representation. Here is the passage
with which Wiener ends the 1921 paper:

In conclusion, let us consider what bearing all
this work of ours can have on experimental psy-
chology. One of the great defects under which
the latter science at present labours is its propen-
sity to try to answer questions without first try-
ing to find out just what they ask. The experi-
mental investigation of Weber’s law’ is a case
in point: what most experimenters do take for
granted before they begin their experiments is
infinitely more important and interesting than
any results to which their experiments lead. One
of these unconscious assumptions is that sensa-
tions or sensation-intervals can be measured,

"Wiener means what is now called Fechner’s logarithmic
law.
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and that this process of measurement can be
carried out in one way only. As a result, each
new experimenter would seem to have devoted
his whole energies to the invention of a method
of procedure logically irrelevant to everything
that had gone before: one man asks his sub-
ject to state when two intervals between sensa-
tions of a given kind appear different; another
bases his whole work on an experiment where
the observer’s only problem is to divide a given
colour-interval into two equal parts, and so on
indefinitely, while even where the experiments
are exactly alike, no two people choose quite
the same method for working up their results.
Now, if we make a large number of comparisons
of sensation-intervals of a given sort with refer-
ence merely to whether one seems larger than
another, the methods of measurement given in
this paper indicate perfectly unambiguous ways
of working up the results so as to obtain some
quantitative law such as that of Weber without
introducing such bits of mathematical stupid-
ity as treating a “just noticeable difference” as
an “infinitesimal,” and have the further merit of
always indicating some tangible mathematical
conclusion, no matter what the outcome of the
comparisons may be. (pp. 204-205)

The later and much more empirical work of
Thurstone, already referred to, did not, how-
ever, give a representational theory of mea-
surement as Wiener, in fact, in his own way
did.

The work over the last few decades on er-
rors and thresholds from the standpoint of rep-
resentation theory of measurement naturally
falls into two parts. The first part is the al-
gebraic theory, and the second is the proba-
bilistic theory. We first survey the algebraic
results.

Algebraic Theory of Thresholds

The work following Wiener on algebraic
thresholds was only revived in the 1950s and
may be found in Goodman (1951), Halphen
(1955), Luce (1956), and Scott and Suppes
(1958). The subsequent literature is reviewed

in some detail in FM II, Chap. 16. We fol-
low the exposition of the algebraic ordinal
theory there. We restrict ourselves here to fi-
nite semiorders, the concept first introduced
axiomatically by Luce and in a modified
axiomatization by Scott and Suppes.

Let A be a nonempty set, and let > be a
binary irreflexive relation on A. Then, (A >)
is a semiorder if for every a, b, ¢, and d in A

(i) Ifa > c and b > d, then either a > d or
b >c.

(ii) If a = b and b > c, then either a > d or
d > c.

For finite semiorders (A, >) we can prove the
following numerical representational theorem
with constant threshold, which in the present
case we will fix at 1, so the theorem asserts
that there is a mapping f of A into the positive
real numbers such that for any a and b in A,

iff fla) > fb)+ 1.

A wealth of more detailed and more delicate
results on semiorders is to be found in Sec-
tion 2 of Chap. 16 of FM II, and research
continues on semiorders and various gener-
alizations of them, such as interval orders.

Axioms extending the ordinal theory of
semiorders to the kind of thing analyzed by
Wiener (1921) are in Gerlach (1957); unfor-
tunately, to obtain a full interval-scale repre-
sentation with thresholds involves very com-
plicated axioms. This is true to a lesser extent
of the axioms for semiordered qualitative
probability structures given in Section 16.6.3
of FM II. The axioms are complicated when
stated strictly in terms of the relation > of
semiorders.

a>b

Probabilistic Theory of Thresholds

For applications in experimental work, it is
certainly the case that the probabilistic the-
ory of thresholds is more natural and easier to
apply. From various directions, there are ex-
tensive developments in this area, many but



not all of which are presented in FM II and
III. We discuss here results that are simple to
formulate and relevant to various kinds of ex-
perimental work. We begin with the ordinal
theory.

A real-valued function P on A x A is called
abinary probability function if it satisfies both

P(a,b) >0,
P(a,b)+ P(b,a) = 1.

The intended interpretation of P(a, b) is as
the probability of a being chosen over b. We
use the probability measure P to define two
natural binary relations.

1
aWb iff P(a,b) > 5

aSb iff P(a,c) > P(b,c), forallc.

In the spirit of semiorders we now define
how the relations W and § are related to vari-
ous versions of what is called stochastic tran-
sitivity, where stochastic means that the in-
dividual instances may not be transitive, but
the probabilities are in some sense transitive.
Here are the definitions. Let P be a binary
probability function on A x A. We define the
following for all a, b, ¢, d in A:

Weak stochastic transitivity: If P(a, b) >
% and P(b, c) > % then P(a, c) > %

Weak independence: If P(a, c) > P (b, c),
then P(a,d) > P(b,d).

Strong stochastic transitivity: If P(a, b) >
1 and P(b,c)>3, then Pa,c)>
max[P(a, b), P(b, c)].

The basic results for these concepts are
taken from Block and Marschak (1960) and
Fishburn (1973). Let P be a binary probabil-
ity function on A x A, and let W and S be

defined as in the previous equations. Then

1. Weak stochastic transitivity holds if W is
transitive.

2. Weak independence holds if S is con-
nected.
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3. Strong stochastic transitivity holds if
W = §. Therefore strong stochastic transi-
tivity implies weak independence; the two
are equivalent if P(a, b) # % for a # b.

Random Variable Representations

We turn next to random variable representa-
tions for measurement. In the first type, an
essentially deterministic theory of measure-
ment (e.g., additive conjoint measurement) is
assumed in the background. But it is recog-
nized that, for various reasons, variability in
response occurs even in what are apparently
constant circumstances. We describe here the
approach developed and used by Falmagne
(1976, 1985). Consider the conjoint indiffer-
ence (a, p) ~ (b, q) with a, p, and g given
and b to be determined so that the indiffer-
ence holds. Suppose that, in fact, b is arandom
variable which we may denote B(a, p; q). We
suppose that such random variables are in-
dependently distributed. Since realizations of
the random variables occur in repeated tri-
als of a given experiment, we can define the
equivalents we started with as holding when
the value b is the Pth percentile of the dis-
tribution of the random variable B(a, p; q).
Falmagne’s proposal was to use the median,
P = %, and he proceeded as follows. Let ¢,
and ¢, be two numerical representations for
the conjoint measurement in the usual deter-
ministic sense. If we suppose that such an ad-
ditive representation is approximately correct
but has an additive error, then we have the
following representation:

o1B(a, p; )] = ¢1(a) + ¢2(q)
—p2(p) +€(a, p; q),

where the €s are random variables. It is ob-
vious enough how this equation provides a
natural approximation of standard conjoint
measurement. If we strengthen the assump-
tions a bit, we get an even more natural the-
ory by assuming that the random variable
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€(a, p; g) has its median equal to zero.
Using this stronger assumption about all the
errors being distributed with a median of zero,
Falmagne summarizes assumptions that must
be made to have a measurement structure.
Let A and P be two intervals of real num-
bers, and letUf = (U, (a) | p,q € P,a € A}
be a collection of random variables, each with
a uniquely defined median. Then I/ is a struc-
ture for random additive conjoint measure-
ment if for all p,q,r in P and a in A, the
medians m ,, (a) satisfy the following axioms:

(i) They are continuous in all variables p, ¢,
and a.

(ii) They are strictly increasing in a and p,
and strictly decreasing in q.

(iii) They map A into A.

(iv) They satisfy the cancellation rule with
respect to function composition #, i.e.,

(mpq * mqr)(a) = mpr(a)v
whenever both sides are defined.

For such random additive conjoint mea-
surement structures, Falmagne (1985, p. 273)
proved that there exist real-valued continuous
strictly increasing functions ¢; and ¢,, de-
fined on A and P respectively, such that for
any Up,(a) inl,

®1 [qu (a)]
= @(p) + 92(q) — ¢1(a) + €p4(a),

where €,,(a) is a random variable with a
unique median equal to zero. Moreover, if ¢}
and ¢}, are two other such functions, then

¢i(a) = agi(a) + B

and

@5(p) = apa(p) + v,

where o > 0.

Statistical tests of these ideas are not a
simple matter but have been studied in or-
der to make the applications practical. Major

references are Falmagne (1978); Falmagne
and Iverson (1979); Falmagne, Iverson, and
Marcovici (1979); and Iverson and Falmagne
(1985). Recent important work on probabil-
ity models includes Doignon and Regenwetter
(1997); Falmagne and Regenwetter (1996);
Falmagne, Regenwetter, and Grofman (1997);
Marley (1993); Niederée and Heyer (1997);
Regenwetter (1997); and Regenwetter and
Marley (in press).

Qualitative Moments

Another approach to measuring, in a repre-
sentational sense, the distribution of a random
variable for given psychological phenomena
is to assume that we have a qualitative method
for measuring the moments of the distribution
of the random variable. The experimental pro-
cedures for measuring such raw moments will
vary drastically from one domain of experi-
mentation to another. Theoretically, we need
only to assume that we can judge qualita-
tive relations of one moment relative to an-
other and that we have a standard weak order-
ing of these qualitatively measured moments.
The full formal discussion of these matters is
rather intricate. The details can be found in
Section 16.8 of FM 11

Qualitative Density Functions

As is familiar in all sorts of elementary prob-
ability examples, when a distribution has a
given form, it is often much easier to char-
acterize it by a density distribution of a ran-
dom variable than by a probability measure
on events or by the method of moments as
just mentioned. In the discrete case, the
situation is formally quite simple. Each atom
(i.e., each atomic event) in the discrete den-
sity has a qualitative probability, and we need
judge only relations between these qualitative
probabilities. We require of arepresenting dis-
crete density function p on {ay, ..., a,} the



following three properties:

(@ pla;) = 0.
(ii) 2?21 pla;) = 1.
(iii) p(a;) = p(aj)iffa; Za;.

Note that the a; are not objects or stimuli in
an experiment, but qualitative atomic events,
exhaustive and mutually exclusive. Also note
that in this discrete case it follows that
p(a;) <1, whereas in the continuous case
this is not true of densities.

We also need conditional discrete densi-
ties. For this purpose we assume that the
underlying probability space X is finite or de-
numerable, with probability measures P on
the given family F of events. The relation of
the density p to the measure P is, for ¢; an
atom of X,

pa;) = P({a;})
Then if A is any event such that P(A) > O,
pla; | A) = P({a;} | A),

and, of course, p(a; | A) is now a discrete den-
sity itself, satisfying (i) through (iii).

Here are two simple, but useful, examples
of this approach. Let X be a finite set. Then
the uniform density on X is characterized by
all atoms being equivalent in the qualitative
ordering %, that is,

a ~ aj.
We may then easily show that the unique den-
sity satisfying the equivalence and (i), (ii), and
(iii) is
1
pla;) = —,
n
where n is the number of atoms in X.

Among the many possible discrete distri-
butions, we consider just one further exam-
ple, which has application in experiments in
which the model being tested assumes a prob-
ability of change of state independent of the
time spent in the current state. In the case of
discrete trials, such a memoryless process has
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a geometric distribution that can be tested or
derived from some simple properties of the
discrete but denumerable set of atomic events
{ai,...,ay, ...}, on each of which is a posi-
tive qualitative probability of the occurrence
of the change of state. The numbering of the
atoms intuitively corresponds to the trials of
an experiment. The atoms are ordered in qual-
itative probability by the relation Z. We also
introduce a restricted conditional probability.
If i > j thena; | A; is the conditional event
that the change of state will occur on trial i
given that it has not occurred on or before
trial j. (Note that here A; means no change
of state from trial 1 through j.) The qualita-
tive probability ordering relation is extended
to include these special conditional events as
well.

The two postulated properties, in addition
to (i), (ii), and (iii) given above, are these:

(iv) Order property: a; Z a; iff j > i;
(v) Memoryless property: a; 1 | A; ~ aj.

It is easy to prove that (iv) implies a weak
ordering of . We can then prove that p(a,)
has the form

play) =cl—c)"' (0<ec<l).

Properties (i) through (v) are satisfied, but they
are also satisfied by any other ¢/, 0 < ¢’ < 1.
For experiments testing only the memoryless
property, no estimation of c is required. If it
is desired to estimate ¢, the standard estimate
is the sample mean m of the trial numbers on
which the change of state was observed, since
the mean 1 of the density p(a,) = c(1—c)"~!
satisfies the following equation:

1—c¢

l,[/:
Cc

For a formal characterization of the full
qualitative probability for the algebra of
events—not just atomic events—in the case of
the geometric distribution, see Suppes (1987).
For the closely related but mathematically
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more complicated continuous analogue (i.e.,
the exponential distribution), see Suck (1998).

GENERAL FEATURES
OF THE AXIOMATIC APPROACH

Background

History

The story of the axiomatic method begins with
the ancient Greeks, probably in the fifth cen-
tury B.C. The evidence seems pretty convinc-
ing that it developed in response to the early
crisis in the foundations of geometry men-
tioned earlier, namely, the problem of incom-
mensurable magnitudes. It is surprising and
important that the axiomatic method as we
think of it was largely crystallized in Euclid’s
Elements, whose author flourished and taught
in Alexandria around 300 B.C. From a mod-
ern standpoint, Euclid’s schematic approach
is flawed, but compared to any other standard
to be found anywhere else for over two mil-
lennia, it is a remarkable achievement. The
next great phase of axiomatic development
occurred, as already mentioned, in the 19th
century in connection with the crisis gener-
ated in the foundations of geometry itself. The
third phase was the formalization within logic
of the entire language used and the realization
that results that could not be proved otherwise
can be achieved by such complete logical for-
malization. In view of the historical review
presented earlier in this article, we will con-
centrate on only this third phase in this section.

What Comes before the Axioms

Three main ingredients need to be fixed in
an axiomatization before the axioms are for-
mulated. First, there must be agreement on
the general framework used. Is it going to
be an informal, set-theoretical framework or
one formalized within logic? These two al-
ternatives are analyzed in more detail later.

The second ingredient is to fix the primi-
tive concepts of the theory being axioma-
tized. For example, in almost all theories of
choice we need an ordering relation as a prim-
itive concept, which means, formally, a binary
relation. We also often need, as mentioned
earlier, a binary operation as, for example,
in the cases of extensive measurement and
averaging. In any case, whatever the prim-
itives may be, they should be stated at the
beginning. The third ingredient, at least as
important, is clarity and explicitness about
what other theories are being assumed. It is a
characteristic feature of empirical axiomatiza-
tions that some additional mathematics is usu-
ally assumed, often without explicit notice.
This is not true, however, of many qualita-
tive axiomatizations of representational mea-
surement and often is not true in the founda-
tions of geometry. In contrast, many varieties
of probabilistic modeling in psychology do
assume some prior mathematics in formulat-
ing the axioms. A simple example of this
was Falmagne’s axioms for random addi-
tive conjoint measurement, presented earlier.
There, such statistical notions as the median
and such elementary mathematical notions
as that of continuity were assumed without
further explanation or definition.

Another ingredient, less important from a
formal standpoint but of considerable impor-
tance in practice, are the questions of whether
notions defined in terms of the primitive con-
cepts should be introduced when formulating
the axioms and whether auxiliary mathemati-
cal notions are assumed in stating the axioms.
The contrasting alternative is to state the ax-
ioms strictly in terms of the primitive notions.
From the standpoint of logical purity, the lat-
ter course seems desirable, but in actual fact it
is often awkward and intuitively unappealing
to state all of the axioms in terms of the prim-
itive concepts only. A completely elementary
but good example of this is the introduction of
a strict ordering and an equivalence relation



defined in terms of a weak ordering, a move
that is often used as a way of simplifying and
making more perspicuous the formulation of
axioms in choice or preference theory within
psychology.

Theories with Standard Logical
Formalization

Explicit and formally precise axiomatic ver-
sions of theories are those that are formalized
within first-order logic. Such a logic can be
easily characterized in an informal way. This
logic assumes

(i) one kind of variable;
(ii) logical constants, mainly the sentential
connectives such as and;
(iii) a notation for the universal and existen-
tial quantifiers; and

(iv) the identity symbol =.

A theory formulated within such a logi-
cal framework is called a theory with stan-
dard formalization. Ordinarily, three kinds of
nonlogical constants occur in axiomatizing a
theory within such a framework: the relation
symbols (also called predicates), the opera-
tion symbols, and the individual constants.

The grammatical expressions of the the-
ory are divided into terms and formulas, and
recursive definitions of each are given. The
simplest terms are variables or individual con-
stants. New terms are built up by combining
simpler terms with operation symbols in the
manner spelled out recursively in the formu-
lation of the language of the theory. Atomic
formulas consist of a single predicate and the
appropriate number of terms. Compound
formulas are built up from atomic formu-
las by means of sentential connectives and
quantifiers.

Theories with standard formalization are
not often used in any of the empirical sciences,
including psychology. On the other hand, they
can play a useful conceptual role in answering

General Features of the Axiomatic Approach 33

some empirically important questions, as we
illustrate later.

There are practical difficulties in casting
ordinary scientific theories into the framework
of first-order logic. The main source of the
difficulty, which has already been mentioned,
is that almost all systematic scientific theo-
ries assume a certain amount of mathematics
a priori. Inclusion of such mathematics is not
possible in any elegant and reasonable way in
atheory beginning only with logic and with no
other mathematical assumptions or apparatus.
Moreover, a theory that requires for its for-
mulation an Archimedean-type axiom, much
needed in representational theories of mea-
surement when the domain of objects consid-
ered is infinite, cannot even in principle be for-
mulated within first-order logic. We say more
about this well-known result later. For these
and other reasons, standard axiomatic formu-
lations of most mathematical theories, as well
as scientific theories, follows the methodol-
ogy to which we now turn.

Theories Defined
as Set-Theoretical Predicates

A widely used alternative approach to formu-
lating representational theories of measure-
ment and other scientific theories is to axiom-
atize them within a set-theoretical framework.
Moreover, this is close to the practice of much
mathematics. In such an approach, axioma-
tizing a theory simply amounts to defining a
certain set-theoretical predicate. The axioms,
as we ordinarily think of them, are a part of
the definition—its most important part from
a scientific standpoint. Such definitions were
(partially) presented earlier in a more or less
formal way (e.g., weak orderings, extensive
structures, and other examples of qualitative
characterizations of empirical measurement
structures). Note that the concept of isomor-
phism, or the closely related notion of homo-
morphism, is defined for structures satisfying



34 Representational Measurement Theory

some set-theoretical predicate. The language
of set-theoretical predicates is not ordinarily
used except in foundational talk; it is just a
way of clarifying the status of the axioms.
It means that the axioms are given within a
framework that assumes set theory as the gen-
eral framework for all, or almost all, mathe-
matical concepts. It provides a seamless way
of linking systematic scientific theories that
use various kinds of mathematics with math-
ematics itself. An elementary but explicit dis-
cussion of the set-theoretical approach to ax-
iomatization is found in Suppes (1957/1999,
chap. 12).

Formal Results about Axiomatization

We sketch here some of the results that we
think are of significance for quantitative work
in experimental psychology. A detailed treat-
ment is given in FM III, Chap. 21. We should
emphasize that all the systematic results we
state here hold only for theories formalized in
first-order logic.

Elementary Languages

First, we need to introduce, informally, some
general notions to be used in stating the re-
sults. We say that a language £ of a theory
is elementary if it is formulated in first-order
logic. This means that, in addition to the ap-
paratus of first-order logic, the theory only
contains nonlogical relation symbols, opera-
tion symbols, and individual constants. Intu-
itively, a model of such a language L is sim-
ply an empirical structure, in the sense already
discussed; in particular, it has a nonempty do-
main, a relation corresponding to each primi-
tive relation symbol, an operation correspond-
ing to each primitive operation symbol, and
individuals in the domain corresponding to
each individual constant.

Using such logical concepts, one major re-
sult is that there are infinite weak orders that
cannot be represented by numerical order. A

specific example is the lexicographic order of
points in the plane, that is (x, y) Z (x', ¥') if
and only ifeitherx > x’orx = x’andy > y'.

In examining the kinds of axioms given
earlier (e.g., those for extensive measure-
ment), it is clear that some form of an
Archimedean axiom is needed to get a numer-
ical representation, and such an axiom cannot
be formulated in an elementary language £, a
point to which we return a little later.

A second, but positive, result arises when
the domains of the measurement structures are
finite. A class of such structures closed un-
der isomorphism is called a finitary class of
measurement structures. To that end, we need
the concept of a language being recursively
axiomatizable; namely, there is an algorithm
for deciding whether a formula of £ is an ax-
iom of the given theory. It can be shown that
any finitary class of measurement structures
with respect to an elementary language L is
axiomatizable but not necessarily recursively
axiomatizable in L.

The importance of this result is in show-
ing that the expressive power of elementary
languages is adequate for finitary classes but
not necessarily for the stating of a set of recur-
sive axioms. We come now to another positive
result guaranteeing that recursive axioms are
possible for a theory. When the relations, op-
erations, and constants of an empirical struc-
ture are definable in elementary form when
interpreted as numerical relations, functions,
and constants, then the theory is recursively
axiomatizable.

Nonaxiomatizability Results

Now we turn to a class of results of direct psy-
chological interest. As early as the work of
Wiener (1921), the nontransitive equivalence
relation generated by semiorders was defined
(see the earlier quotation); namely, if we think
of a semiorder, then the indistinguishability or
indifference relation that complements it will
have the following numerical representation.



For two elements a and b that are indistin-
guishable or indifferent with respect to the
semiorder, the following equivalence holds:

[f(a)— f(B)] <1 iff

Now we have already seen that finite
semiorders have a very simple axiomatiza-
tion. Given how close the indistinguishabil-
ity relation is to the semiorder itself, it seems
plausible that this relation, too, should have a
simple axiomatization. Surprisingly, Roberts
(1968, 1969) proved that this is not the case.
More precisely, let £ be the elementary lan-
guage whose only nonlogical symbol is the
binary relational symbol ~. Then the finitary
class J of measurement structures for the
binary relation of indistinguishability is not
axiomatizable in £ by a universal sentence.
Note that there is a restriction in the result.
It states that ~ is not axiomatizable by a uni-
versal sentence. This means that existential
statements are excluded. The simple axiom-
atization of semiorders, given earlier, is such
a universal axiomatization because no quan-
tifiers were required. But that is not true of
indistinguishability. A little later, we discuss
the more general question of axioms with ex-
istential quantifiers for elementary languages.
This result about ~ is typical of a group
of theorems concerning familiar representa-
tions for which it is impossible to axiomatize
the class of finite structures by adjoining a
universal sentence to an elementary language
L. Scott and Suppes (1958) first proved this
to be true for a quaternary relation symbol
corresponding to a difference representation.
Titiev (1972) obtained the result for additive
conjoint measurement; he also showed that it
holds for the n-dimensional metric structure
using the Euclidean metric; and in 1980 he
showed that it is true for the city-block met-
ric when the number of dimensions n < 3. It
is worth mentioning that the proof for n = 3
given by Titiev required computer assistance
to examine 21,780 cases, each of which

a~b.
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involved 10 equations and 12 unknowns in a
related set of inequalities. To our knowledge,
nothing is known about n > 3.

This last remark is worth emphasizing to
bring out a certain point about the results men-
tioned here. For any particular case (e.g., an
experiment using a set of 10 stimuli), a con-
structive approach, rather than the negative
results given here, can be found for each par-
ticular case. One can simply write down the
set of elementary linear inequalities that must
be satisfied and ask a computer program to
decide whether this finite set of inequalities
in a fixed number of variables has a solu-
tion. If the answer is positive, then a numerical
representation can be found, and the very re-
stricted class of measurement structures built
up around this fixed number of variables and
fixed set of inequalities is indeed a measure-
ment structure. What the theorems show is
that the general elementary theory of such
inequalities cannot be given in any reason-
able axiomatic form. We cannot state for the
various kinds of cases that are considered an
elementary set of axioms that will guarantee
a numerical solution for any finite model
(i.e., a model with a finite domain) satisfying
the axioms.

Finally, in this line of development, we
mention a theorem requiring more sophisti-
cated logical apparatus that was proved by Per
Lindstrom (stated as Theorem 17, p. 243, FM
), namely, that even if existential quanti-
fiers are permitted, the usual class of finite
measurement structures for algebraic differ-
ence cannot be characterized by a finite set of
elementary axioms.

Archimedean and
Least-Upper-Bound Axioms

We have mentioned more than once that
Archimedean axioms play a special role in
formulating representational theories of mea-
surement when the domain of the empirical
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Recall that the
Archimedean axiom for extensive measure-
ment of weight or mass asserts that for any
objects a and b, there exists some integer n
such that n replicas of object a, written as
a(n), exceeds b, that is, a(n) Z b. This ax-
iom, as well as other versions of it, cannot
be directly formulated in an elementary lan-
guage because of the existential quantification
in terms of the natural numbers. In that sense,
the fact that an elementary theory cannot in-
clude an Archimedean axiom has an immedi-
ate proof. Fortunately, however, a good deal
more can be proved: For such elementary the-
ories, of the kind we have considered in this
chapter, there can be no elementary formulas
of the elementary language £ that are equiv-
alent to an Archimedean axiom. After all, we
might hope that one could simply replace the
Archimedean axiom by a conjunction of ele-
mentary formulas, but this is not the case. For
a proof, and references to the literature, see
FM 111, Section 21.7.

It might still be thought that by avoiding the
explicit introduction of the natural numbers,
we might be able to give an elementary formu-
lation using one of the other axioms invoked
in real analysis. Among these are Dedekind’s
(1872/1902) axiom of completeness, Cantor’s
(1895) formulation of completeness in terms
of Cauchy sequences, and the more standard
modern approach of assuming that a bounded
nonempty set has aleast-upper-bound in terms
of the given ordering. We consider only the
last example because its elementary form al-
lows us to see easily what the problem is. To
invoke this concept, we need to be able to talk
in our elementary language not only about in-
dividuals in the given domain of an empiri-
cal structure, but also about sets of these in-
dividuals. But the move from individuals to
sets of individuals is a mathematically pow-
erful one, and it is not permitted in standard
formulations of elementary languages. As in
the case of the Archimedean axiom, then,

structures is infinite.

we have an immediate argument for reject-
ing such an axiom. Moreover, as in the case of
the Archimedean axiom, we can prove that no
set of elementary formulas of an elementary
language L is equivalent to the least-upper-
bound axiom. The proof of this follows nat-
urally from the Archimedean axiom, since in
a general setting the least-upper-bound axiom
implies an Archimedean axiom.

Proofs of Independence of Axioms
and Primitive Concepts

All the theorems just discussed can be formu-
lated only within the framework of elemen-
tary languages. Fortunately, important ques-
tions that often arise in discussions of axioms
in various scientific domains can be answered
within the purely set-theoretic framework and
do not require logical formalization. The first
of these is proving that the axioms are inde-
pendent in the sense that none can be deduced
from the others. The standard method for do-
ing this is as follows. For each axiom, a model
is given in which the remaining axioms are
satisfied and the one in question is not sat-
isfied. Doing this establishes that the axiom
is independent of the others. The argument is
simple. If the axiom in question could be de-
rived from the remaining axioms, we would
then have a violation of the intuitive concept
of logical consequence. An example of lack
of independence among axioms given for
extensive measurement is the commutativity
axiom, aob ~ boc. It follows from the
other axioms with the Archimedean axiom
playing a very important role.

The case of the independence of primitive
symbols requires a method that is a little more
subtle. What we want is an argument that will
prove that it is not possible to define one of
the primitive symbols in terms of the others.
Padoa (1902) formulated a principle that can
be applied to such situations. To prove that
a given primitive concept is independent of



the other primitive concepts of a theory, find
two models of the axioms of the theory such
that the primitive concept in question is es-
sentially different in the two models and the
remaining primitive symbols are the same in
the two models.

As a very informal description of a triv-
ial example, consider the theory of preference
based on two primitive relations, one a strict
preference and the other an indifference rela-
tion. Assume both are transitive. We want to
show what is obvious—that strict preference
cannot be defined in terms of indifference. We
need only take a domain of two objects, for
example, the numbers 1 and 2. Then for the in-
difference relation we just take identity: 1 = 1
and 2 = 2. But in one model the strict prefer-
ence relation has 1 preferred to 2, and in the
second preference model the preference rela-
tion has 2 preferred to 1. This shows that strict
preference cannot be defined in terms of in-
difference because indifference is the same in
both models whereas preference is different.

CONCLUSIONS

The second half of the 20th century saw a
number of developments in our understanding
of numerical measurement. Among these are
the following: (a) examples of fundamental
measurement different from extensive struc-
tures; (b) an increased understanding of how
measurement structures interlock to yield sub-
stantive theories; (c) a classification of scale
types for continuous measurement in terms
of properties of automorphism groups; (d) an
analysis of invariance principles in limiting
the mathematical forms of various measures;
(e) a logical analysis of what sorts of the-
ories can and cannot be formulated using
purely first-order logic without existential or
Archimedean statements; and (f) a number of
psychological applications especially in psy-
chophysics and utility theory.
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A major incompleteness remains in the so-
cially important area of ability and achieve-
ment testing. Except for the work of Doignon
and Falmange (1999), no representational re-
sults of significance exist for understanding
how individuals differ in their grasp of certain
concepts. This is not to deny the extensive de-
velopment of statistical models, but only to
remark that fundamental axiomatizations are
rarely found. This is changing gradually, but
asyetitis asmall part of representational mea-
surement theory.
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CHAPTER 2
Signal Detection Theory

NEIL A. MACMILLAN

To err is human, and psychologists routinely
take advantage of this inconsistency: Accu-
racy is one of the two primary dependent vari-
ables in behavioral research (response time
being the other). If errors cannot be elimi-
nated, an understanding of how they arise is
valuable for interpreting psychological phe-
nomena and their application to fields such as
medicine and law, where the consequences of
errors can be grave.

Many situations allow a choice between
kinds of errors. In diagnosing cancer with
imperfect methods, is it better to fail to de-
tect a tumor or to detect one that is not
present? Which way should an eyewitness
lean—toward failing to report recognizing
someone who has perpetrated a crime, or to-
ward accusing someone who was not the crim-
inal? Error tradeoffs are also evident in the
laboratory; in cases of doubt, should an ex-
perimental participant report seeing an am-
biguously dim light flash or remembering a
vaguely familiar face? That such choices are
possible makes clear the importance of deci-
sion processes in perception.

Signal detection theory (SDT) is a frame-
work for understanding accuracy that makes
the role of decision processes explicit. To do
s0, the theory also takes a stand on the way in
which the relevant information is represented
by the observer, identifying some aspects of
the representation with sensitivity, or inher-
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ent accuracy, and others with response fac-
tors. The key assumption is that the strength of
sensory and cognitive events is continuously
variable. An observer who is trying to distin-
guish two stimulus types, for example Signal
and Noise', is faced over trials with distribu-
tions of values for each possibility, as sketched
in Figure 2.1. Errors arise because the Signal
and Noise distributions overlap, and the de-
gree of overlap is an inverse measure of accu-
racy, or sensitivity. Improvements in sensitiv-
ity can only occur if this overlap is reduced,
and such reductions are often not under the
immediate control of the observer.

The overlap of the distributions shown in
Figure 2.1 presents the observer with a prob-
lem in choosing a response. The solution—
the decision component of SDT—is to divide
the strength axis into two regions with a cri-
terion, so that high values lead to “yes” re-
sponses (e.g., there was a signal; I have seen
this word before; there is a tumor), and low
values lead to “no” responses. The observer
can change the location of the criterion and
thus the way in which values of the internal di-
mension are mapped onto responses. The the-
ory therefore provides a conceptual distinc-
tion between sensitivity and response bias.

'Names of stimuli or stimulus sets used in experiments
are capitalized.
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N (noise)
distribution

Correct
rejections

S (signal)
distribution

Misses

Y

c Mg

Strength

Figure 2.1 Distributions of strength for Noise
and Signal.

NOTE: The upper curve is the distribution due to
Noise trials; values above the criterion ¢ lead to
false alarms, and those below to correct rejections.
The lower curve is the distribution due to Signal
trials; values above the criterion lead to hits, those
below to misses. The means of the distributions are
My and Mg, and the variances are equal.

A central strategy in SDT research is to
manipulate the presumed decision criterion
through instructions or other aspects of exper-
imental procedure in order to expose the sensi-
tivity factors that remain unchanged. The suc-
cess of this technique implies that decisional
aspects can be available to conscious manipu-
lation, but the theory itself is more general, as-
suming that decisions are being made whether
observers know it or not.

Table 2.1 Terminology for One-Interval Experiments

SCOPE OF THE THEORY AND
ORGANIZATION OF THE CHAPTER

This material in this chapter falls roughly into
two parts, and the distinction between the
parts can be viewed as one of history, method-
ology, or theory. The first half covers material
that, for the most part, was developed earliest.
Methodologically, the experimental situation
is the one-interval design: On each of a suc-
cession of trials, a single stimulus is presented.
In variants of this procedure, the stimulus can
be one of two or drawn from a larger set, and
the response can be binary or drawn from a
larger set. Table 2.1 summarizes some useful
terminology.

If the stimulus is one of two, the design
is called discrimination; for example, pattern
discrimination may be assessed by displaying
a vertical grating on some trials and a hori-
zontal one on others. If one of the stimulus
possibilities is a “null” stimulus, the experi-
ment is detection, as when the vertical grating
is discriminated from an unvarying gray stim-
ulus. Discrimination experiments are some-
times called recognition: in recognition mem-
ory experiments participants study a list of
items and are then tested with items that may
be Old (from the study list) or New (distrac-
tors, or lures). In all of these cases, the ob-
server may be allowed just two responses,
with the goal of assigning one to each stim-
ulus, but may also be asked to express con-
fidence that one or the other stimulus was
presented using a rating scale.

Number of responses (M)

Number of

stimuli (N) Task M=2 M >?2

N=2 Discrimination, Yes-No Rating,
Recognition, Confidence
Detection

N>2 Classification, Classification Classification (M < N),
Identification Identification (M = N)
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Discrimination experiments, with and
without ratings, were the grist for the early
SDT program of doing away with older meth-
ods and advancing a new solution to the ques-
tion of sensitivity versus bias. At the time
SDT was introduced, two measures of ac-
curacy were used commonly in attempts to
take account of such contamination. In one,
observed success was corrected for the de-
gree to which it might have been inflated
by guessing, which was estimated from per-
formance on catch trials that contained no
signals. The second measure, proportion cor-
rect [ p(c)], incorporates a similar adjustment.
The latter index is of course still very pop-
ular, and most users believe it to be inno-
cent of theory. This chapter shows that it,
like the correction for guessing, implies a dis-
crete representation in which stimuli are seen
or not, remembered or not—with no possible
gradations.

Many one-interval tasks employ a larger
number of stimuli, to be sorted into a num-
ber of categories, M, that ranges from 2 up
to N, the number of stimuli. When M < N,
the design is called classification, and the
M =N case is called identification, or ab-
solute identification. An important example
of two-response classification is the method
of constant stimuli: On each trial of an au-
ditory experiment, the observer is presented
with a sound having one of N intensities, and
the weakest stimulus is Noise. The task is
to assign one response to the Noise stimu-
lus, the other to all the rest. In another ex-
ample a continuum of speech sounds is con-
structed to range from /ga/ to /ka/, and the
listener decides for each presentation which
syllable is more likely. Either experiment
can be transformed into identification (as has
often been done for the auditory example and
rarely for this speech example) by asking the
observer to assign a distinct response to each
stimulus. I consider several experiments of
this type, in which all stimuli are apparently

represented as differing on a single subjective
characteristic, such as loudness or memory
strength.

The second half of the chapter examines
problems for which the representation can
be thought of as multidimensional. Such rep-
resentations allow for the analysis of ex-
periments that use more than one stimulus
per trial, namely, two-alternative forced-
choice (2AFC), the same-different task, and
the multiple-look design.

Consideration of different experimental
designs raises the question of how they should
be related to each other. That paradigms vary
in inherent difficulty has long been recog-
nized, and until the development of SDT
this led to the conclusion that some tasks
were therefore to be preferred over others.
Detection theory allows the estimation of a
single sensitivity index from any discrimina-
tion paradigm, and one of its most impor-
tant contributions is to permit comparison of
data across tasks. More broadly, discrimina-
tion tasks can be compared with classification
and absolute identification. Again, SDT pro-
vides comparable sensitivity measures across
tasks, but here the conclusions are discrepant:
Discrimination is easier for the observer than
are other resolution problems. Theories that
attempt to account for this important discrep-
ancy typically use SDT as a framework and
postulate changes in representation for differ-
ent tasks.

Multidimensional representations are also
useful in two complementary content areas:
attention and perceptual interaction. In atten-
tion, the multiple sources among which the
observer must allocate resources are naturally
considered as dimensions in a psychologi-
cal space. The question in studies of interac-
tion is how multiple dimensions combine. In
both domains, concepts of independence are
crucial.

The chapter ends with a brief discussion of
statistical methods.
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THE BASIC EXPERIMENT: ONE
STIMULUS INTERVAL PER TRIAL

The Yes-No Design

In the simplest task that can be posed, and
the one with historical precedence (Tanner &
Swets, 1954), a series of trials is presented in
which the Signal sometimes, but not always,
appears in the Noise. The observer tries to
say “yes” when a signal is present and “no”
when it is not, leading to the four possible out-
comes on any trial shown in Table 2.2. The
total number of presentations of each stimu-
lus type is not of interest, so the data can be
reduced to proportions. As there are only two
choices for the observer, the proportions of
“yes” and “no” responses must add to 1, and
the matrix can be summarized by two values:

H = hitrate = P(“yes”|S) )
F = false-alarm rate = P (“yes” | N).

Normal-Distribution, Equal-Variance
Representation

The most common detection-theory model as-
sumes that repeated presentations of either
stimulus give rise to equal-variance Gaussian
distributions along a dimension. The addition
of a Signal to the Noise increases the mean of
the S distribution (M) compared to that of the
N distribution (M), as shown in Figure 2.1,
but in general not so much as to eliminate the
region of uncertainty in which events could
arise from either distribution. The observer
does best (Green & Swets, 1966, chap. 2) by

Table 2.2 Possible Outcomes on a Trial of a Yes-No
Experiment

Response
Stimulus “yes” “no”
S (Signal) hit miss
N (Noise) false alarm correct rejection

setting a criterion value ¢ on the strength axis
and responding “yes” for events above it and
“no” for events below.

Figure 2.1 shows that the observed hit rate
and false-alarm rate correspond to areas un-
der the S and N distributions, respectively.
Choosing a low, liberal location for the crite-
rion (as in Figure 2.1) leads to high values of
H and F, whereas choosing a high, conserva-
tive value leads to low ones. To express these
proportions in terms of the representation, the
variances of the distributions can be set equal
to 1, so that the distributions are unit-normal.
Letting z(p) represent the z-score correspond-
ing to a proportion p,

Z(H):MS—C

2
2(F) =My —c. @

The theory thus expresses the two observable
pieces of data in terms of the parameters of the
underlying distributions. But what aspects of
the representation provide the best summary
of the observer’s performance?

Measures of Sensitivity and Response Bias

The true sensitivity of the observer is unaf-
fected by criterion location and is reflected
instead by the difference between the means
of the two distributions, which is denoted by d’
and can be derived easily from Equation (2):

d'=Ms— My =z(H)—z(F). (3

An important characteristic of this definition
is that it expresses accuracy as the difference
between the hit rate and false-alarm rate, each
subjected to a transformation. In this case,
the transformation, z, is the same for both
proportions.

The location of the criterion is an obvi-
ous measure of response bias, the tendency
to say “yes” (or “no”). To define this mea-
sure, it is necessary to decide what point on
the decision axis represents 0, or no bias; a
natural choice is the halfway point between
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the distribution means. Negative values of ¢
thus correspond to liberal biases (as in Fig-
ure 2.1) with many “yes” responses, whereas
positive values correspond to conservative bi-
ases with many “no” responses. A midpoint
of 0 implies that Mg = —My, and ¢ can be
found from Equation (2) to equal

1
c= —E[Z(H)+Z(F)]. “4)

Early SDT theorists focused on an appar-
ently separate aspect of the representation:
The likelihood ratio is the ratio of the heights
of the § and N distribution functions. As
shown in Figure 2.1, this ratio increases to-
ward the upper end of the strength axis and
decreases toward the lower end. In fact, one
could say that the axis that I have been calling
“strength” is the likelihood ratio, which sug-
gests that ¢ and the likelihood ratio, 8, should
be monotonically related. The exact relation
(Macmillan & Creelman, 1991, p. 40) is

In(B) = cd’, (5)

where In is the natural logarithm. Criterion lo-
cation and likelihood ratio are indeed mono-
tonic as long as d’ is constant (though far from
it otherwise).

How to Calculate d’, ¢, and B

Equations (3), (4), and (5) prescribe more
complex operations than those needed to com-
pute such performance measures as propor-
tion correct; in particular, they cannot be eval-
uated on most hand calculators. Tables of the
normal distribution suffice, but there is an-
other problem: If H = 1 or F = 0, as can
certainly happen in experiments with small
numbers of trials, z cannot be calculated. The
difficulty of perfect proportions (0 or 1) dis-
courages some potential users of SDT but
need not: Some recent calculations (Kadlec,
1999b) show that a good approximation can
be obtained by adding and subtracting 0.5 to

the frequency matrix when necessary. (An al-
ternative correction is to add 0.5 to all cells,
as is done in log-linear statistical analysis [see
also Snodgrass and Corwin, 1988].) Examples
of this adjustment for two sample data matri-
ces follow:

“yes” “no” “yes” “no”
S 10 0 9.5 0.5
—
N 2 8 2 8
“yes” “no” “yes” “no”
S 9 1 9
—
N 0 10 0.5 9.5

A simple way to compute SDT statistics is
with a spreadsheet; this is especially appeal-
ing for the many laboratories in which the data
themselves are collected or stored in spread-
sheets. Basic calculations are illustrated in
Table 2.3 for QuattroPro, but are very simi-
lar in Excel and other programs. The function
z is written @NORMSINYV, and the height
of the distribution is @NORMSDIST. The
indexes to be entered or computed are listed
in column A, and formulas are given that can
be inserted in rows 5 through 11 of column
B, then copied to subsequent columns. Sorkin
(1999) has explored the use of spreadsheets
for SDT calculations in greater detail.

Evaluating Sensitivity Measures: Receiver
Operating Characteristic Curves

What justifies the use of d’ as a measure of
accuracy? As the criterion moves from right
to left along the decision axis of Figure 2.2,
both H and F increase. The relation between
them is called a receiver operating character-
istic (ROC), examples of which are shown in
Figure 2.2a. The form of this curve that is pre-
dicted by SDT can be found from Equation (2)
and is easier to evaluate if the coordinates are
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Table 2.3 Formulas for Spreadsheet Calculation of SDT Statistics, with Examples

Formula (for column B; then copy to C

A (labels only) and other columns) B (Set 1) C (Set 2)
1 #hits 10 9
2 #misses 0 1
3 # false alarms 2 0
4 #correct rejections 8 10
5 H (hit rate) @IF(B2 > 0, B1/(B1 + B2),
(B1 —0.5)/(B1 + B2)) 0.950 900
6 F (false-alarm rate) @IF(B3 > 0, B3/(B3 + B4), 0.5/(B3 + B4)) 0.200 .050
7 Z(H) @NORMSINV(BS) 1.645 1.282
8 Z(F) @NORMSINV(B6) —0.842 —1.645
9 d’ (B7 — BSY) 2.486 2.926
10 c (—0.5)*(B7 + B8) —0.220 0.182
11 B @EXP(B9*B10) 0.579 1.703

transformed to z scores. Equation (3) can be
rewritten as

Z(H) = d' + z(F), (6)

which is a straight line with unit slope and
intercept d’ (Figure 2.2b). Early ROC data in
auditory and visual detection experiments of-
ten conformed to this shape, or at least were
far better described in this way than by the
predictions of competing theories.

1.0

0.6 -

Hit rate

04

0.2

! ! ! !
0 0.2 0.4 0.6 0.8 1.0

False-alarm rate

(a)

Predicting Sensitivity and Bias Measures
Jrom Experimental Variables

Having decided on appropriate statistics for
sensitivity and response bias, can one pre-
dict their values from aspects of the ex-
periment? Predicting sensitivity requires de-
velopment of an ideal-observer model that
calculates optimal d’ from stimulus character-
istics. This approach has been most successful
in sensory experiments, with either stimulus

4
3k
2L

ST

=

z2(F)
(b)

Figure 2.2 Receiver operating characteristics (ROCs) for two normal distributions with the same vari-

ance. (a) Probability coordinates. (b) z coordinates.

NOTE: In both panels, the two curves are for d’ = 0.9 (lower curve) and 1.4 (higher curve).
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characteristics or neural modeling as the pre-
sumed basis for the observer’s decision. De-
tection of a tone signal in a noise background
is well predicted by an energy-detector model,
according to which the energy in the obser-
vation interval is the only information used
in a decision (Green, McKey, & Licklider,
1959). The approach can be extended beyond
the stimulus to multiple levels of processing:
Geisler and Chou (1995) were able to pre-
dict performance in complex visual search
tasks involving stimuli that differed in color
and orientation from discrimination accuracy
for these attributes. Thus, “low-level” tasks
were enough to construct an ideal observer
for “high-level” ones.

To predict response bias, one must know
the goal of the observer, whose strategies
will depend on how the possible experimen-
tal outcomes are understood. For example,
minimizing false alarms requires a high cri-
terion, whereas minimizing misses requires
a low one. A quantitative prediction can be
derived by assigning numerical values to the
outcomes; concretely, the observer can be
rewarded with “payoffs,” financial incentives
and disincentives. A payoff matrix designed
to inhibit false alarms is shown in Table 2.4.

The optimal value of likelihood ratio de-
pends on these payoffs, and also on the relative
probability with which the signal is presented:
It is reasonable to respond “yes” more often
if there are a lot of signals. Green and Swets
(1966) showed that the optimal value is

B ={[V(correct rejection) — V (false alarm)]
x P(N)}/ALV (hit) — V(miss)] P(S)},
(7

Table 2.4 Possible Outcomes on a Trial of a Yes-No
Experiment

Response
Stimulus “yes” “no”
N $0.05 —$0.01
N —$0.10 $0.05

where V is the financial value associated with
an outcome. For example, if three quarters of
the trials contain a signal and the payoff matrix
in Table 2.4 is in effect, the optimal value of
B is (0.15)(.25)/[(0.06)(.75)] = 0.833. This
is slightly liberal (below the equal-bias point,
where 8 = 1), indicating that the asymmetric
presentation probabilities favoring “yes” out-
weigh the asymmetric payoffs favoring “no.”
For a given d’, the exact hit rate and false-
alarm rate can be predicted: For example, if
d’ = 1, then ¢ is found from Equation (5) to
be —.182, and Equation (2) leads to H = .75
and F = .38.

Most subjects are conservative in respond-
ing to payoffs; that is, they do not adopt
criteria that are as extreme as would be op-
timal (Green & Swets, 1966). Altering pre-
sentation probabilities can also help to control
response bias; criteria are lower when Signals
are more likely. However, this manipulation
appears to have multiple effects, affecting sen-
sitivity as well as response bias (Dusoir, 1983;
Markowitz & Swets, 1967; Van Zandt, 2000).

The Rating Design

Being able to examine complete ROC curves
is advantageous for many reasons. First, the
results are not restricted to a single, possibly
unusual, hit, false-alarm pair. Second, a full
ROC allows calculation of what is in many
applications the best single measure of accu-
racy, the area under the curve (Swets, 1986;
Swets, Dawes, & Monahan, 2000). Third, in
some content areas the exact shape of the
ROC is predicted from one or more theories,
as in recognition memory (Ratcliff, Sheu, &
Gronlund, 1992; Yonelinas, 1994). To gener-
ate an ROC, itis necessary for response bias to
be manipulated, and a straightforward but ex-
pensive way to accomplish this is to conduct
separate experimental conditions for several
different payoffs or instructions. But if ob-
servers can adopt multiple criteria in separate
conditions, they may be able to use several
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criteria simultaneously, a possibility that mo-
tivates the rating experiment.

Experimental Design

In the one-interval rating experiment, the ob-
server is still presented with a sample of Noise
or Signal, but the response set varies from
great confidence in one alternative to great
confidence in the other. A set of numerals (“1”
to “6” is common) or phrases (“sure it was
signal,” “might have been Signal,”..., “sure
it was Noise”’) may be used. Alternatively, the
observer may make two responses on each
trial, first “yes” or “no”, and then a level of
confidence in that response, for example “1”
for high, “2” for medium, and “3” for low
confidence. No matter what the experimen-
tal realization, the data can be represented as
a stimulus-response matrix, with successive
responses corresponding to decreasing lev-
els of confidence that a signal was presented,
as shown in Table 2.5. The entries f(S, 1)
and f(N, i) are the frequencies of response
i when § and N are presented, and 7 (S) and
T (N) are the total numbers of S and N trials.

To generate an ROC curve, these data are
treated as though they arose from a series of
yes-no experiments. The lowest point arises
if response “1” is treated as a “yes” and the
other responses as “no.” To obtain the next
point, responses “1” and “2” correspond to
“yes,” and so forth. In general, for the kth
point,

k
H=Y f(S.0/T()
i=1

. ®)
F = f(N,i)/T(N)

i=1

For computational examples of rating exper-
iments, see Macmillan and Creelman (1991,
in press).

It is, of course, an empirical question
whether an ROC generated in this way is the
same as one generated from a series of yes-
no experiments. Early experiments (Egan,
Schulman, & Greenberg, 1959) showed good
equivalence of rating data to yes-no data ob-
tained with different instructions or payoffs.
The rating experiment is far more efficient
than the other methods, in that a single exper-
imental run can produce an entire ROC curve,
and is the favorite in practice.

Normal-Distribution Unequal-Variance
Representation

The ROC shape found with almost all meth-
ods and in almost all areas of application is a
straight line on z-coordinates, as is expected if
the underlying distributions are normal. The
equal-variance model (Equation [6]) also im-
plies that the slope of the zZROC should equal
1, however, and this prediction is often not
confirmed. If the slope of the line is s, then
a change of one z-unit on the F axis leads to
a change of s units on the H axis. Moving
along the zROC corresponds to moving the
criterion along the decision axis, so a change
of one unit on this axis relative to the N dis-
tribution equals a change of s units relative
to the S distribution. The inferred representa-
tion still has two normal distributions, but with
unequal variances [o2(S) o2(N)], and the
slope of the ROC, s, is the ratio of the standard
deviations, o (N)/o (S). Figure 2.3 shows an
unequal-variance representation and its ROC.

How can the accuracy of the observer
in Figure 2.3 be summarized? In the

Table 2.5 A Stimulus-Response Matrix for Two Versions of the Rating Experiment

Response  Numerals — “1” “2 “3”7
Dual “yes, 17 “yes,2”  “yes, 3”

Stimulus ~ § 8D f82  f(8.3)
N SN, f(N.2)  f(N,3)

oy . «g” Total
“10,3"  “n0,2”  “no, 17
f8.4)  f(8.5)  f(S.6) T®=ZXf(S0)

SN, 4 f(N,5) f(N.6) T(N)=Xf(N,i)
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Figure 2.3 (a) Two normal distributions with unequal variance. (b) The corresponding ROC on prob-

ability coordinates. (c) The ROC on z coordinates.

NOTE: The ratio of the standard deviations s = .5, and sensitivity d, = 1.26.

equal-variance case, sensitivity is the differ-
ence between the zROC [z(H) = z(F) +d’]
and the chance line [z(H) = z(F)], and it
always equals d’ (see Figure 2.2b). In the
unequal-variance case, however, this differ-
ence is a function of location on the curve
(Figure 2.3c) and thus is not bias-free. In terms
of the representation, the difference between
the means of the S and N distributions, AM,
is still appropriate as a sensitivity parameter
because it is not affected by criterion location.
This difference must be divided by a stan-
dard deviation; a common statistic, d,;, uses
the root-mean-square average of the standard
deviations of S and N:

d, = AM/(1 +sH'? )

Computationally, d, can be estimated using
a maximum-likelihood procedure first devel-
oped by Dorfman and Alf (1969). Current pro-
grams are available at http://www.radiology.
arizona.edu/~eye-mo/rocprog.htm.

The rationale for d, is not just heuristic.
Green (1964) showed that the area under the
yes-no (or rating) ROC equals the proportion
correct in a two-interval forced-choice exper-
iment (discussed later in this chapter) by an
unbiased observer, a plausible nonparametric
measure of sensitivity. If the representation
is as shown in Figure 2.3a, this area A, is
monotonically related to d, (Swets & Pickett,
1982):

d, =2 z(A.). (10)
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The area A, is, like the other accuracy in-
dexes discussed so far, based on the assump-
tion of normal distributions; I consider some
area measures that either are or claim to be
nonparametric shortly. The monotonic rela-
tion between the statistics A, and d,;, one an
area and the other a distance, means that (for
a given value of s) they have the same im-
plied ROC. Measures with this characteristic
are said to be equivalent: If one is a bias-free
measure of accuracy, so is the other.

In general, three aspects of sensitivity mea-
sures are interrelated: the statistic itself, the
ROC that it implies, and the representation
that it assumes. In the present example, the
statistic d, implies normal distributions and a
linear zZROC, and the use of d’ is a further
commitment to equal-variance distributions
and unit-slope ROCs. To decide between these
measures requires collecting an ROC curve;
without information about how performance
changes with bias, an appropriate measure of
accuracy cannot be determined.

The rating experiment does allow, how-
ever, for accuracy statistics that are not model-
dependent. We have seen that the true area
under the ROC is a nonparametric index of
accuracy, and if there are enough data points,
this can be estimated without fitting a theoret-
ical model. Balakrishnan (1998) developed a
related measure for the dual-response version
of the rating paradigm. The separate distri-
butions of confidence ratings for Signal and
Noise take over the role of the hypothetical
distributions in SDT. The difference between
the cumulative distributions of these ratings
measures the discrepancy between the hit rate
and false-alarm rate at each level of confi-
dence. The sum of these differences is S’, an
estimate of the difference between the two
confidence distributions under the assump-
tion that the criteria used by the observer are
equally spaced. In simulations, Balakrishnan
showed that S’ did a better job than d’ of rank
ordering conditions that differed slightly in

sensitivity. A similar strategy, applied to the
two-response rating design (“yes” or “no” fol-
lowed by a confidence judgment), leads to a
nonparametric measure of response bias.

MODELS WITH SIMPLER
ASSUMPTIONS (OR NONE AT ALL?)

Although this chapter is largely restricted to
SDT itself, two alternative approaches are
treated briefly here. The first is threshold the-
ory, in which the continuous representation
of SDT is replaced by a small set of discrete
states. The theory is important both because
it is usually wrong (most ROC data contradict
this representation) and because it is some-
times right (some ROC data are consistent
with it). The second approach is not a theory,
but an attempt to find measures of accuracy
that are not at all dependent on theory. “Non-
parametric” measures for the yes-no design
have turned out, on examination, to be equiv-
alent to threshold theory, SDT variants, or a
combination of the two.

Thresholds, High and Low

High-Threshold Theory

The idea of a threshold, a fixed level dividing
sensation from its absence, received its most
explicit treatment from Blackwell (1963).
In Blackwell’s version, a signal presentation
sometimes leads to an above-threshold event,
but noise alone never does; in this sense, the
threshold is high. False alarms occur because
of guessing, a strategy that also inflates the
hit rate. This theory captured the contempo-
rary intuitions about detection experiments
and was easy to test.

Because threshold-theory representations
have only a small number of internal events, it
is convenient to express them as flow charts,
or state diagrams, as in Table 2.6. In high-
threshold theory, there are two internal states,
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Table 2.6 State Diagram for High-Threshold Theory

Stimulus Internal event P(event) P(“yes” | event) P(“yes”)

S Detect qs 1 qs
Nondetect 1—gs u u(l —gs)

N Detect 0 1 0
Nondetect 1 u u

Detect and Nondetect. Signals are detected
with probability g,; noise is never detected.
Detections always lead to the “yes” response,
but the observer also responds “yes” to a
proportion u of nondetections, whether these
events arise from Signal or Noise. The hit rate
and false-alarm rate are

H =g +u(l—gqy)

F=u. (in

Equation (11)is easily transformed into the
predicted ROC:

H=gq,+(—gqgyF,

which is a straight line from the point (0, g)
to (1, 1) in ROC space (Figure 2.4). One of
SDT’s early successes was the demonstration
that empirical ROCs did not have this form,
but were well described instead by the normal-
normal shape of Figures 2.2 and 2.3.

12)

1.0
0.8
. 064 q(s) = .6
S
2
0.4 7(s) =3
q
0.2
q(s) =0
0 0.2 04 0.6 0.8 1.0

False-alarm rate

Figure 2.4 Predicted ROCs for high-threshold
theory, for three values of the sensitivity para-
meter ¢;.

Equation (12), solved for ¢;, is sometimes
used to correct observed hit rates for guess-
ing. The method can be extended to multiple-
choice examinations, in which the guess rate
is 1 over the number of alternative answers.
Many who use this correction for guessing
view it as atheoretical, but it makes a strong
assumption that is rarely honored in prac-
tice: that the test taker is truly guessing (i.e.,
has no partial information) when a Nonde-
tection occurs. In an early auditory detec-
tion experiment, Swets, Tanner, and Birdsall
(1961) showed that, contrary to this assump-
tion, listeners’ second-choice responses in a
four-alternative paradigm were more accurate
than chance. Together with the failure of ROC
experiments to follow the form of Equation
(12), this result is strong evidence that the cor-
rection for guessing should not be used.

A Three-State, Double-Threshold Model

The idea of a small number of internal states
can be used to generate theories that are not
so easily rejected. Luce (1963b) introduced
the idea of a low threshold that allowed Noise
trials to lead sometimes to the Detect state.
One way in which a low threshold can be
added to the high-threshold model is to sup-
pose that the observer has three states: Detect,
Uncertain, and Nondetect. Signals never fall
below threshold into the Nondetect state (a
high-threshold assumption), but may lead to
either a Detect or an Uncertain state (low-
threshold). Noise never exceeds threshold
(high) but may lead to either Nondetect or
Uncertain (low). Table 2.7 gives the state
diagram, which leads to the hit rate and
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Table 2.7 State Diagram for Double-Threshold Theory

Stimulus Internal Event P(event) P(“yes” | event) P(“yes”)

S Detect qs 1 qs
Uncertain 1—gs u u(l —gs)
Nondetect 0 0 0

N Detect 0 1 0
Uncertain qn u uqn
Nondetect 1—qn 0 0

false-alarm rate:

H =g, +u(l —gqy) (13)
F =uq,.

The most conservative response strategy,
setting u to 0, leads to the point (0, g;); the
most liberal, u =1, leads to the point (g,
1); and other values of u track a line seg-
ment between these two points. ROCs of this
form have (to my knowledge) never been
reported in perception experiments but are
found in certain studies of recognition mem-
ory. Figure 2.5 displays both curvilinear (left
panel) and linear (right panel) ROCs reported
for different recognition tasks by Yonelinas
(1997). In a conventional task in which sin-
gle words were presented, the data are well-
described by a normal-distribution model, but

in associative recognition, in which pairs of
words were to be remembered, a double-
threshold model provides a better fit. This
finding means that when word pairs are rec-
ollected with highest confidence as having
been in the study list, or when they are recol-
lected with highest confidence as not having
been in the list, no errors are made. Thus,
there must be very high-fidelity Detect and
Nondetect states, as in the double-threshold
model. Single words, on the other hand,
display a continuous ROC, consistent with
a graded strength axis. Other recognition-
memory ROCs with threshold features have
been reported by Yonelinas (1994) and
Rotello, Macmillan, and Van Tassel (2000).
The double-threshold model is most of-
ten employed implicitly, without collecting
ROC:s. Suppose sensitivity is the same for both

[Image not available in this electronic edition.]

Figure 2.5 ROCs obtained by Yonelinas (1997) for recognition memory of single words (left panel)
and word pairs (right panel). Reprinted by permission.
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stimulus alternatives, so thatg, =1 —¢g, =q.
Assuming equal presentation probabilities,
the proportion correct equals the average of
the hit rate and correct-rejection rate; using
Equation (13), this equals

1 1
plc) = 5[H + 1 -F)]= E[q +1]. (14

Equation (14) shows p(c) and g to be equiva-
lent, so the use of p(c) as a measure of accu-
racy implies an ROC like that in Figure 2.5b,
but parallel to the chance line. Except in rare
cases, such ROCs are not found, and p(c) is
thus not a pure measure of accuracy. It is least
problematic when the observer is unbiased, so
that performance is near the minor diagonal in
ROC space. Note that p(c), like d’, equals the
difference between the transformed hit rate
and false-alarm rate; in this case, however,
the transformation is the identity function, and
p(c) depends simply on H — F.

Measures Based on ROC-Space Areas
for Single ROC Points

The area under the ROC is an appealing mea-
sure of sensitivity in the rating experiment and
can be assumption-free with a large number
of ROC points. This section considers ROC
area measures of sensitivity and bias for single
hit/false-alarm pairs that were developed
without recourse to psychophysical theory.
For the most part, these “nonparametric”
indexes turn out to be equivalent to param-
eters of a standard SDT model with underly-
ing distributions that are close to normal in
shape.

If only one point in ROC space is ob-
tained in an experiment, there are many pos-
sible ROCs on which it could lie, and some
assumptions must be made to estimate the
area under the ROC. One possibility is to find
the smallest possible area consistent with that
point. As shown in Figure 2.6, this is equiva-
lent to finding the area under the two-limbed
ROC for which the obtained point forms the

1.0

(F, H) 4,
0.8

0.6

Hit rate
>

Minimum area
0.4

0.2

0 0.2 0.4 0.6 0.8 1.0
False-alarm rate

Figure2.6 Calculation of the area under the ROC
containing the single point (F, H).

NOTE: The minimum is the area under the quadri-
lateral below and to the right of (F, H); the statistic
A’ is the minimum area plus one-half the sum of
areas A; and A,.

corner. When presentation probabilities are
equal, this area turns out to equal proportion
correct, a measure already shown to imply a
threshold model.

A better estimate, proposed by Pollack and
Norman (1964), is also diagrammed in Fig-
ure 2.6. Their measure A’ is a kind of av-
erage between minimum and maximum per-
formance. Macmillan and Creelman (1996)
have shown that A" (for above-chance perfor-
mance) can be written as a function of two
other sensitivity measures. One is p(c), and
the other is the parameter o of choice the-
ory (Luce, 1959, 1963a), which is the analog
of d’ if the underlying distributions are logis-
tic in form rather than normal. The relation
is

A=l

2

At low sensitivity, this expression is domi-
nated by «, whereas at high sensitivities p(c)
is more important. The shift is illustrated in
Figure 2.7, which shows the implied ROCs for
A’ on the same plot as those for o (panel a)

1
+3p01 = a ). (15)
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Figure 2.7 Families of ROC curves implied by A’.
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NOTE: In panel (a), ROCs for two values of « (logistic sensitivity) are also shown; in panel (b), ROCs for
two levels of p(c) are shown. The comparison shows that A’ is approximately consistent with an SDT
model at low levels, and with a threshold model at high levels.

and p(c) (panel b). At low levels, a constant-
A" ROC is very similar to a constant-« curve,
which is in turn very similar to a constant-d’
curve. At high levels, it is quite similar to a
constant-p(c) curve.

One appeal of the area measure is that, un-
like d’, it can be calculated directly even when
the observed hit or correct-rejectionrate is 1.0.
Unfortunately, perfect performance on one of
the two stimulus classes tends to mean high
performance overall, and it is for high values
that A’ has undesirable, threshold-like char-
acteristics. At low performance levels, A’ is
much like « (and thus much like d’). In nei-
ther case is it assumption-free.

Several bias measures have been proposed
as companion statistics to A’. The most pop-
ular is B” (Grier, 1971), which is equiva-
lent to B}, suggested by Hodos (1970). In
fact, B” is only superficially related to A’, but
is equivalent to the logistic likelihood ratio
(Macmillan & Creelman, 1990, 1996). A dif-
ferent measure based on ROC geometry, pro-
posed by Donaldson (1992), is equivalent to
the logistic criterion b.

Two conclusions appear justified: First,
there are no “nonparametric” measures of

sensitivity or bias in the yes-no experiment,
because any candidate index is consistent
with some representations and not others.
Second, there is such a measure in the rat-
ing experiment—area under the multipoint
ROC—and the collection of rating data in
discrimination experiments is therefore well
worth the slight additional effort.

One-Dimensional Identification
and Classification

In a classification experiment, observers use
M responses to sort N stimuli into categories,
and in an identification experiment, M = N.
We first consider classification experiments
with one-dimensional stimulus sets, that is,
stimuli that differ for the participant in only
one characteristic. Detection theory allows a
theoretical meaning to be assigned to the term
“one-dimensional,” as Figure 2.8 illustrates.
The sensitivity statistic d’ is a distance mea-
sure, and distances along a single dimension
add up. Thus if S, $», and S3 give rise to
distributions along a continuum, with their
means in the order ;; < ©r < w3, then

d'(1,3)=d'(1,2) +d'(2,3). (16)
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Figure2.8 Three normal distributions on a single
dimension display additivity: d'(1, 3) = d'(1, 2)+
d2,3).

Equation (16) can be viewed as a predic-
tion about the result of three different two-
stimulus experiments, or an assumption about
a single classification experiment in which
all three stimuli occur. The sensitivity dis-
tance between any stimulus and the endpoint
stimulus is a useful measure, cumulative d’,
that can be computed by adding up adjacent
d’ values. The value of cumulative d’ ob-
tained between both endpoint stimuli repre-
sents the total sensitivity of the observer to
the stimulus set and is called total d’. To-
tal d’ is the basic measure of observer per-
formance on the entire stimulus ensemble. If
there is reason to believe that a stimulus set
will lead to a one-dimensional representation,
Equation (16) can be used to infer sensitivity
between remote stimulus pairs (like S; and
S3) from sensitivities to adjacent pairs (S
versus S, and S, versus S3). This is espe-
cially useful if the extreme stimuli are per-
fectly discriminable and cannot be directly
compared.

Bias and Sensitivity in Two-Response
Classification

Distinguishing bias and sensitivity is as valu-
able in classification and identification as it
is in discrimination, but the presence of more
stimuli complicates the analysis. We first con-

sider the important special case in which the
observer must partition the N stimuli into
only two categories; according to SDT, this
is accomplished by using a single criterion
to divide the decision axis. Whereas the two-
stimulus experiment can be summarized by
just two independent proportions, the hit rate
and the false-alarm rate, classification yields
N values, P(“yes”|S;) for Si, S, ..., Swn.
Multiple bias and sensitivity measures can be
defined.

A single proportion is enough to locate the
criterion relative to the mean of a single distri-
bution. Consider Figure 2.9a, in which the cri-
terion is located so that P(“yes”|S;) = .31.
Because the distribution is normal, the crite-
rion is 0.5 standard deviations above the S
mean. Criterion location is clearly a bias mea-
sure, and it can be calculated relative to any
of the three distributions.

Sensitivity indexes require two propor-
tions: the d’ distance between stimuli S; and
S; is the difference in the corresponding
z scores, z[ P(*yes” | S;)] — z[P(“yes” | S))].
There are N(N — 1)/2 such values, although
only N — 1 of them are independent. In Fig-
ure 2.9a, any of the three d’ values can be
found using the same criterion location; for
example, d’'(2, 3) = z(.84) —z(.69) = 0.99—
0.50 = 0.49. This computation does not re-
quire that S, and S3 be associated with dif-
ferent correct responses, or even that correct
responses be defined. Dosher (1984) proposed
the term pseudo-d’ for a sensory distance esti-
mated from two response rates identified with
the same correct response.

As in discrimination, the important ques-
tion in classification often concerns changes
in bias and sensitivity across conditions. A
change in bias requires only two proportions:
the corresponding “yes” rates to the same
stimulus in each of two conditions. In Fig-
ure 2.9b all “yes” rates, and thus all crite-
rion locations, are different from those in Fig-
ure 2.9a, but the d’ values are the same.
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Figure 2.9 Distributions corresponding to three stimuli on one dimension,

defining the regions leading to the two responses.

with a single criterion

NoOTE: Compared to panel (a), panel (b) shows a criterion shift, panel (c) a shift in all the distributions,
and panel (d) a change in the spacing of the distributions.

In Figure 2.9c all distributions have shifted
upward compared to Figure 2.9a by the same
amount, but the criterion has remained the
same. The data are exactly the same as if the
reverse had occurred (i.e., the criterion shifted
downward and the distributions remained the
same). Which situation has occurred cannot
be diagnosed with SDT tools.

Finally, to infer a change in sensitivity re-
quires two d’ values and thus two z-score dif-
ferences. In Figure 2.9d, the S5 distribution
has moved relative to the others, and a com-
parison of z[ P(“yes” | §3)] —z[ P(“yes” | S»)]
for Figures 2.9d and 2.9a reveals the dis-
crepancy.

Next I consider four examples of two-
response classification and evaluate them

according to whether they measure bias, sen-
sitivity, or changes therein. Table 2.8 gives
a prospective summary of the conclusions,
which do not always agree with claims made
by experimenters about such data. Through-
out, the analyses use the simplest one-
dimensional representation that is consistent
with the results.

Psychometric Functions

Detection experiments often use N stimuli,
the “weakest” of which is noise alone. The
possible responses are “yes” and “no,” and
the data can be plotted as P(“yes”) against
stimulus level. An example is shown in Fig-
ure 2.10a. Historically, the importance of
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Table 2.8 Evaluation of Sensitivity and Bias in Two-Response Classification

Number of
Task Measure Proportions Conclusion
Psychometric function—detection Absolute threshold 1 Bias
Psychometric function—discrimination PSE 1 Bias
IND 2 Sensitivity
Speech classification Boundary location 1 Bias
Trading relation 2 Change in bias?
Sensitivity?
False memory Difference between 2 Sensitivity
“yes” rates for two
types of lures
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Figure 2.10 A psychometric function for detection.
NOTE: Stimulus 1 is Noise, and the other stimuli are increasing nonzero levels of intensity. In panel (a),
P(“yes”) is plotted, in panel (b), the z score of this value is plotted. The plot in panel (b) can also be

interpreted as portraying values of cumulative d’.

the noise-alone stimulus was not immedi-
ately appreciated, but from an SDT perspec-
tive it is obviously necessary to distinguish
sensitivity from response bias. The observer
sets a criterion along the decision axis, re-
sponding “yes” to points above and “no”
to points below it. Traditionally, the datum
most often abstracted from a psychometric
function (frequency-of-seeing curve, in vi-
sion) is the (absolute) threshold, the stimu-
lus value corresponding to some fixed per-
formance level such as 50% “yes.” This is
just a bias measure, as it depends on a single
proportion.

In a discrimination context, a null stimu-
lus is not used, and it is the difference thresh-
old whose value is sought.? Historical prece-
dence (Fechner is responsible, according to
Jones, 1974) and lasting influence belong
to the method of constant stimuli: A stan-
dard stimulus (usually drawn from the middle
of the stimulus range) is presented on each
trial, and the observer labels each comparison

2Two meanings of threshold must be distinguished. Ear-
lier I presented examples of threshold theories that as-
sumed discrete representations, but here the term is used
to refer to the weakest stimulus that can be detected, or
discriminated, and has no theoretical implications.
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stimulus as “larger” or “smaller” than the stan-
dard. The presence of standards makes no
difference to SDT analysis because it gives no
information regarding which response is ap-
propriate. The 50% point is now interpreted
as the point of subjective equality (PSE), the
stimulus value that appears equal to the stan-
dard, another measure of bias. The difference
threshold itself, the just noticeable difference
(JND), is a measure of how rapidly the psy-
chometric function increases; traditionally, it
is half the difference between the 75% and
25% points. Because two proportions are in-
volved, the JND indexes sensitivity.

A useful modification to both experiments
is to change the dependent variable from a
“yes” rate to d’. In the case of absolute thresh-
old, response rates for each stimulus are com-
pared with the false-alarm rate (that is, the
“yes” rate for S;); in the difference threshold
situation, the rate corresponding to the stan-
dard stimulus is used. The resulting plot gives
information about sensitivity and is also often
astraight line, as in Figure 2.10b. In detection,
the threshold is defined by a value of d’, often
1.0. In discrimination, the PSE can also be de-
fined this way; the JND, which is usually of
more interest, is replaced by the slope of the
function.

The threshold estimation methods just de-
scribed are classical and are included here be-
cause they serve to illustrate one-dimensional
classification. Current techniques for analyz-
ing psychometric functions, and for finding
thresholds, are more sophisticated in two
ways: first, “adaptive” procedures are often
used so that stimulus presentations can clus-
ter in the region of interest, rather than being
spread across a range of predetermined val-
ues. Second, psychometric functions can be
fit with a curve from a known family (normal
or logistic, for example), and the parameters
of the best-fitting curve are used to summarize
the outcome. For a sampler of current meth-
ods, see Klein and Macmillan (2001).

Two-Response Classification in
Nonsensory Contexts

Two-response  experiments with  one-
dimensional stimulus sets are common in
more cognitive areas as well. This section
briefly considers two examples, one from
speech perception and one from recognition

memory.

Trading Relations in Speech

In a common type of speech perception exper-
iment, a set of synthetic stimuli is constructed
along a continuum between two waveforms
that correspond to different speech sounds.
For example, a stimulus waveform perceived
as /ga/ can be gradually converted into one
perceived as /ka/ by lengthening voice-onset
time (VOT), the amount of time between the
beginning of the consonant and the onset of
voicing. An apparently straightforward way
to find out what a listener hears is to present
a series of randomly chosen stimuli from this
set and to ask whether each sounds more like
/ka/ or /ga/. The result is that the proportion of
trials on which “ka” is the response increases
as VOT increases (Lisker, 1975).

Two features distinguish this experiment
from the sensory detection example given ear-
lier. First, there are no correct answers; the
point of the experiment is to find out how each
sound is perceived. Second, the psychologi-
cal interest is largely in the criterion location,
whereas the detection experiment measures
a sensory distance (if the dependent measure
is d"). The most popular dependent measure
in speech classification studies of this type,
sometimes called the category boundary, is
the point at which each response is used on
50% of trials.

The perception of voicing is influenced
not only by VOT but also by the frequency
at which Fj, the first formant (or frequency
band) begins. When Lisker (1975) redid the
experiment with a higher value of F; onset, the
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percentage of “ka” responses increased across
the board. Results like these are called frad-
ing relations (Repp, 1982) and reflect a kind
of perceptual interaction between cues. If the
rate of responding “yes” is increasing by the
same amount (in z-score units) for all stim-
uli on the new continuum, then the inferred
representation will be the same except for the
location of the criterion (as in the compari-
son between Figures 2.9a and 2.9c). Whether
this should be considered a criterion or sen-
sitivity effect is unclear: It is not possible to
tell whether the criterion or the distributions
has moved, because only their relative loca-
tion can be inferred from the data. A later sec-
tion introduces approaches to measuring such
interactions that are clearly sensitivity-based.

“False-Memory”’ Experiments

Roediger and McDermott (1995) conducted a
recognition memory experiment in which the
study items on each list were thematically re-
lated, for example, bed, night, dream, blanket.
Attest, one of the lures (New items) was sleep,
the core concept to which the study items
were related. (Of course, there were many
such sets of critical lures and related study
items.) Participants tended to recognize (in-
correctly) the critical lures, such as sleep, at a
higher rate than other lures, and sometimes at
a higher rate than Old items. The experiment
is of interest because it demonstrates, in a
controlled situation, the phenomenon of false
memory.

A natural question about false memory is
whether it is a sensitivity or a response-bias
effect: Do participants really remember the
critical lures as having been presented, or is
the finding somehow due to a bias (that could,
in principle, be manipulated)? To answer this
question, M. B. Miller and Wolford (1999)
conducted a variant of the Roediger and
McDermott (1995) experiment in which par-
ticipants were presented at test with six kinds
of items: Unrelated, Related, and Critical

words, each category including some words
that were Old and some that were New. They
then measured statistics closely related to d’
and c for each type of word and found that cri-
terion changed while sensitivity did not. Thus,
the false-memory finding was attributed to re-
sponse bias.

Considering the implications of assuming
that a single underlying dimension is judged
will help in understanding these data. In mem-
ory models, familiarity is often considered to
be the relevant decision axis, and the famil-
iarity of a word can be influenced by two
factors: how frequently the item has occurred
and the number of associated words that have
recently been presented (Wixted & Stretch,
2000). Thus, New words that are Unrelated,
Related, or Critical might lead to distributions
like those in Figure 2.9a, whereas Old words
would be shifted upwards, as in Figure 2.9c. A
single criterion is of course used at test, lead-
ing to a pattern of “yes” rates that is similar
to that observed by M. B. Miller and Wolford
(1999).

How then did M. B. Miller and Wolford
(1999) conclude that response bias was re-
sponsible? In calculating ¢, they found the
locations of the criterion relative to the mid-
point of two distributions (see Equation [4])
for each of the three distribution pairs. In Fig-
ure 2.9, this statistic decreases from .25 for S
to —0.75 for S, to —1.25 for S3. The pattern
reflects the different average locations of the
Unrelated, Related, and Critical distributions
on a common axis, not a change in response
strategy.

The methodological importance of the ex-
ample is this: Estimates of sensitivity and bias
for designs using multiple stimuli must be
made with reference to a representation. A
representation like that in Figure 2.9, which
is consistent with past work on memory for
words, leads to an analysis and conclusion
that are different from those of a represen-
tation that treats each of several pairs of
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distributions in isolation. Wixted and Stretch
(2000) provide more detailed discussion.

Experiments with More than
Two Responses

The assignment of many stimuli to just two
responses in the examples so far seems natu-
ral; all waveforms in the speech experiment,
for example, resemble either /ga/ or /ka/, not
a third utterance. However, there are at least
two reasons why an experimenter might pre-
fer a number of responses closer to the size
of stimulus set. First, as in two-stimulus ex-
periment, a graded response provides more
information—specifically, information from
which the variances of the underlying distri-
butions can be estimated. Second, the range of
stimulus values in one-dimensional classifica-
tion experiments is often large. In such cases,
sensitivity to differences between stimuli that
are close together in the set may be found,
but not for far-apart stimuli that are never
confused.

For example, Braida and Durlach (1972)
conducted a series of auditory identification
experiments. The largest range was 54 dB.
On each trial, one stimulus was presented,
and listeners tried to select the correspond-
ing response. The number of responses varied
across conditions; if it was 10, for example,
then the data filled a 10 x 10 matrix, and al-
though many cells contained frequencies of
0, adjacent stimuli were always confusable.
ROCs generated from those pairs were de-
scribed well by an equal-variance representa-
tion. Experiments of this sort permit calcula-
tion of the global sensitivity parameter, total
d’, the sum of values for adjacent stimuli, by
repeated application of Equation (16). Braida
and Durlach estimated total d’ for their audi-
tory intensity continuum to be about 13.

Note that this method of analyzing the data
does not require that the number of responses
M equal the number of stimuli N, only that
there be enough responses so that confusions

exist between each adjacent pair. Advantages
ofthe M = N case are that there are correct an-
swers, that the proportion correct can be calcu-
lated, and that it is possible to attempt to train
observers by using trial-by-trial feedback. On
the other hand, detection-theory analysis puts
no great stake in proportion correct, which in
identification, as in discrimination, is not a
true measure of accuracy.

Relation of Classification
to Discrimination

Although classification and discrimination
data both lead to estimates of sensitivity, they
need not converge on the same truth. In de-
tection theory, comparing classification and
discrimination in detection-theoretic terms is
uncomplicated: One measures d’ in one ex-
periment of each type and examines the result
to see if sensitivity is constant.

In a few special cases, classification and
discrimination d’ are (theoretically or empir-
ically) very nearly equivalent. Empirically,
Pynn, Braida, and Durlach (1972) compared
identification and discrimination of pure-tone
intensity on a very small range (2.25 dB)
and found close agreement. Theoretically, an
influential proposal about speech perception
experiments, the categorical perception hy-
pothesis, says, in part, that discrimination is
exactly as good as classification for some
speech continua. This hypothesis has been
presented in SDT language by Macmillan,
Kaplan, and Creelman (1977); its original
statement (Liberman, Harris, Hoffman, &
Griffith, 1957) was in threshold terms.

Almost always, though, there is a large dis-
crepancy between classification and discrimi-
nation accuracy. G. A. Miller (1956) summa-
rized experiments showing that increases in
the number of stimuli to classify led to cor-
responding increases in total sensitivity only
up to a total of about seven stimuli. When
the range of stimuli was increased beyond
that point, there were no further increases in



classification performance, but discrimination
performance continued to improve.

Durlach and Braida (1969) offered a model
that relates classification and discrimination.
Although originally presented as a theory of
intensity perception, the model also applies to
domains as disparate as localization (Searle,
Colburn, Davis, & Braida, 1976) and speech
perception (Macmillan, Goldberg, & Braida,
1988). According to Durlach and Braida, fixed
discrimination tasks (those using only two
stimuli) measure sensory resolution, whereas
classification depends on both sensory and
context-coding, or labeling processes. Both
sensory and context-coding processes con-
tribute to the variance of the internal distri-
butions, so if AM is the distance between the
two means, B? is the sensory variance and C?
is the context-coding variance, then

dalliscriminate = AM/B (17)

sy = AM/(B* +CH'? - (18)

Clearly, the discrepancy between fixed dis-
crimination and identification depends on the
relative magnitude of the sensory and con-
text variance components. The relative con-
text variance—the size of the context vari-
ance in units of the sensory variance—can be
estimated as follows:

C2/32 = (déiscriminate/dc/‘/ax.vif\')2 - L (19)
Equation (19) can be applied to total d’ val-
ues as well as d’ for particular stimulus pairs,
and relative context variance provides a mea-
sure of the importance of context memory
for a stimulus pair or continuum. As stimu-
lus range increases, the precision of context
coding drops: Berliner and Durlach (1973)
estimated relative context variance to be 47.6
when the range was 54 dB, but only 1.62 when
it was 10 dB.

This descriptive approach to identifica-
tion leaves open the question of mechanism.
In a later version of their theory, Braida
and Durlach (1988) proposed that the mem-
ory limitation arises because observers use a
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“noisy ruler” to locate stimuli with respect
to perceptual anchors near the edges of the
range. The unreliability of the measuring in-
strument accounts for the increase in context
variance with range, and the use of anchors
explains the edge effect, the common find-
ing of better performance for extreme stim-
uli. An alternative theory (Luce, Green, &
Weber, 1976) postulates an adjustable “atten-
tion band” that allows for high performance
within a narrow range (about 10-20 dB in
auditory intensity) and degraded performance
elsewhere. As the range increases, the propor-
tion that can be included in the band decreases,
and so does performance. The attention-band
model does not account directly for the edge
advantage, but the assumption of gradual
shifts in the location of the band does ex-
plain the presence of sequential effects, which
are substantial in identification data. One way
in which such dependencies might arise is
through criterion shifts—it is plausible that
more variance is associated with the many
criteria in classification than with the single
criterion in discrimination. Criterion variance
adds to sensory variance and provides another
possible mechanism for context memory ef-
fects. Treisman and Williams (1984) have pro-
posed a criterion-setting theory that accounts
directly for sequential effects and indirectly
for other aspects of identification findings.
The shape of a fully-integrated account of
identification experiments is dimly visible in
these related proposals but is not yet com-
pletely defined.

OTHER DISCRIMINATION DESIGNS

The one-interval experiment, with or without
ratings, is a natural way to measure discrimi-
nation in detection, recognition memory, and
some other applications. In other situations,
experimenters have preferred paradigms in
which each trial contains two or more stim-
uli separated in time or location. The three
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paradigms discussed here, two alternative
forced choice (2AFC) same-different, and
multiple-look, have played different roles in
the development of SDT. The ability to pre-
dict 2AFC performance from yes-no was one
of detection theory’s first accomplishments,
whereas a thorough understanding of same-
different arose later. The multiple-look exper-
iment provided an early test of SDT but has
more recently been important in describing
the performance of groups of observers.

The common approach is to interpret each
interval’s output as a separate dimension in
a multidimensional space. The multidimen-
sional analysis generalizes conveniently to the
problems treated in the final sections of this
chapter.

Two-Alternative Forced-Choice

In 2AFC a sample of both S and N is pre-
sented on each trial and the observer must
choose the interval that contains the signal.
The two possible sequences are <S, N> and
<N, S>, the corresponding correct responses
“1” and “2.” In auditory work, the intervals

Interval 1

(a)

Figure 2.11 Representations for the 2AFC task.

are almost always presented sequentially, but
in other senses and especially in cognitive ap-
plications, simultaneous presentation is more
common.

Representation and Analysis

Figure 2.11 displays a representation of the
2AFC problem in which each of the axes
measures the effect of one of the intervals.
On <S, N> trials the mean value is (d’, 0),
whereas on <N, S> trials it is (0, d"), and the
variability in both intervals is assumed equal.
Figure 2.11a shows bivariate normal distribu-
tions whose height at each point is the like-
lihood of the corresponding pair of values;
in Figure 2.11b, the same distributions are
schematically represented by circles 1 stan-
dard deviation from the mean.

The best strategy for the observer is to
base a decision on the difference between
the effects of the two intervals. The decision
axis is the diagonal line connecting the means
of the two distributions, and it follows from
the Pythagorean theorem that the distance
between these means is +/2d’. As with

respond ‘27
d
S
=
>
3
E
0 -
respond “1”
I I
0 d'
Interval 1
(®)

NOTE: Panel (a): In three dimensions. On the x-axis are values of strength for interval 1, and on the
y-axis are values for interval 2. The heights of the bivariate distributions give the likelihoods of <x, y>
points for the two possible stimulus sequences. Panel (b): In two dimensions. The decision axes are still
x and y, but the distributions are represented by the means and circles at a fixed distance from them.
The criterion line separates the space into regions for which the response is “1” (below the line) and “2”

(above it). The distance between the means is +/2d’.



yes-no, this sensitivity statistic can be esti-
mated as the difference between the hit rate
H = P(“1”|<S, N>)and the false-alarmrate
F = P(1”|<N, §>), so

Z(H) — z(F) = 2d'. (20)

Thus, having two samples instead of one leads
to a +/2 improvement in performance; this
is an example of the general \/n effect that
is well known in statistics.

Response bias is, empirically, less likely
to be extreme in 2AFC than in yes-no, but
can occur. Performance as measured by p(c)
is greatest when there is no bias, and unbi-
ased p(c) is therefore often denoted p(c)max-
In Green’s (1964) area theorem, already men-
tioned, it is p(c)max that equals the area under
the yes-no ROC.

Effects of Interstimulus Interval and
Stimulus Range in 2AFC

Having two intervals allows for the manipu-
lation of two basic experimental parameters
that cannot be varied in yes-no discrimi-
nation: the time between the two intervals
and the stimulus range. An increase in either
of these variables leads to a decline in perfor-
mance.

In 2AFC experiments with stimuli differ-
ing in intensity, the second interval is com-
monly called “larger”” more often than the first,
an effect called time order error. The sequence
<Small, Large> is, accordingly, correctly re-
ported more often than <Large, Small>, a
response-bias effect that increases with inter-
stimulus interval (ISI). These data have been
interpreted to show decay of a central repre-
sentation of the stimulus over time (Kohler,
1923). This explanation suggests that there
should also be an overall sensitivity drop,
and there is: Berliner and Durlach (1973),
Kinchlaand Smyzer (1967, in a same-different
task), and Tanner (1961) systematically varied
IS, and all found sensitivity to be a decreasing
function of time. In Tanner’s auditory exper-
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iment, a very short ISI (less than 0.8 s) also
led to decreased discrimination, a result that
Tanner interpreted as evidence for short-term
auditory interference.

Berliner and Durlach (1973) noted that the
one-interval task has, in effect, a very long
ISI, so that d’ values obtained from that task
should be lower than those from 2AFC. This
is in fact a typical result for discrimination
data (Jesteadt & Bilger, 1974; Creelman &
Macmillan, 1979), though not for detection
(for summaries, see Green and Swets, 1966,
chap. 4; Luce, 1963a).

The 2AFC design also permits manipu-
lation of the range of stimulus values, with
stimulus pairs from different parts of a wide
range being presented on successive trials. Al-
though this roving discrimination task is more
difficult than the corresponding fixed discrim-
ination experiment, the decision strategy of
subtracting the effects of the two intervals is
optimal for both.

Roving and fixed 2AFC discrimination
have been compared for auditory amplitude
and frequency by Jesteadt and Bilger (1974).
The fixed task used one pair of tones, differ-
ing in (say) amplitude; the roving design used
a constant amplitude difference, but the two
stimuli ranged together over many amplitudes
from trial to trial. A 40-dB range of ampli-
tudes yielded a 27% drop in intensity discrim-
ination d’, and a 465-Hz range in frequency
led to a 37% drop in frequency discrimina-
tion. Berliner and Durlach (1973) found that
the decline in intensity discrimination perfor-
mance depended systematically on the inten-
sity range, reaching 58% for the largest range
(60 dB).

The range and ISI effects have both been
interpreted as reflecting a limitation of per-
ceptual memory and need to be incorpo-
rated into the model for 2AFC: After all, the
same +/2 relation between 2AFC and yes-
no clearly cannot hold for all ISIs, or for
both roving and fixed discrimination. Durlach
and Braida’s (1969) trace-context theory
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addresses this problem and unifies the percep-
tual phenomena discussed so far. As in their
model for one-dimensional classification, dis-
cussed earlier, both sensory variance (B?) and
range-dependent context variance (C?) limit
performance in roving 2AFC. In identifica-
tion, context coding allows the observer to lo-
cate the stimulus within the stimulus set, and
an observer who uses context coding for each
of the two stimuli on a 2AFC trial is said to be
in context mode. Alternatively, the trace mode
allows direct comparison of the two intervals.
Context coding is best when the range is small,
and trace coding is best when the ISI is short.
Durlach and Braida suggested that these lim-
itations combine optimally, so that whichever
memory process has smaller variance dom-
inates. Trace-context theory has been tested
extensively for sets of tones differing in in-
tensity, and it describes many regularities of
the data (Berliner & Durlach, 1973).

The Same-Different Design

In 2AFC the observer chooses the interval that
has a particular characteristic, and for some

kinds of stimuli it can be difficult to explain
what that characteristic is. The same-different
design has the appeal of simplicity from the
point of view of the experimental participant:
On each trial the decision is merely whether
the two stimuli are the same or different. Any
one of the four pairs constructed from {S, N}
may be presented: <S, S> and <N, N> are to
be called “same,” <S, N> and <N, §> “dif-
ferent.” Figure 2.12 shows a representation for
this task, following the same approach as with
2AFC. There are four distributions arranged
in the space, and d’ is the distance between
the means of any two distributions that differ
on only one axis.

Two decision strategies based on this
representation have been developed, an
independent-observation and a differencing
rule. The independent-observation rule is op-
timal, but differencing is the best available in
some experimental designs.

Independent-Observation Decision Rule

The optimal decision rule (Noreen, 1981) is
to decide separately whether each interval is

“different” “different”
o d <N, S> <S, S> “same” ~ d
= =
2 Z
Q Q
| =
0 <N, N> <S, N> “different” 0 “different”
I/\I
0 d 0, d'
Interval 1 Interval 1
(@) (b)
Figure 2.12 Decision spaces for the same-different task.

NoTE: Either S or N can occur in either interval, leading to four bivariate distributions, displayed as in the
lower panel of Figure 2.11. In panel (a), the effects of the two observations are combined independently;

in (b), the effects of the two intervals are subtracted.



S or N, then report whether these subdeci-
sions are the same or different. In the decision
space, the observer establishes a pair of cri-
terion lines that divides the space into four
quadrants. To start, consider the symmetric
case, in which these lines bisect the distribu-
tion means, as in Figure 2.12a. When <S, N>
is presented, a “different” response (a hit) oc-
curs if the observation falls either to the right
of the vertical criterion line and below the hor-
izontal one, or to the left and above. The like-
lihood of this happening (the hit rate) can be
expressed using the normal distribution func-
tion @ (z), which gives the area up to the point
z. The area to the right of the vertical bound-
ary is ®(d’/2), and the proportion below the
horizontal criterion is the same value, so the
probability of falling in the lower right corner
is the product of these, [ (d'/ D> Similarly,
the probability of being in the upper left corner
is [q)(—d’/2)]2. The sum of these is the hit rate
for <§, N> trials; because the decision rule is
symmetric, this is also the proportion correct
for all other trials, and for the task as a whole.
Therefore,

p(c) = [®d'/) +[®(=d' /). (21)

The same-different task is more difficult
than the corresponding yes-no task. An unbi-
ased participant in yes-no obtains a proportion
correct of ®(d’/2), so the relation between the
two paradigms is

p (C)SDindependent—observation

o 3 , @)
p©yn + [1 — p(c)yn]~.

Ifd’ =1, p(c) will be .69 in yes-no but only
.57 in same-different; for d’' =2, the values
are .84 and .73.

Equation (22) contains no explicit refer-
ence to d’, and the relation does not in fact
depend on any assumption about the shape of
the distributions. The requirement is that the
distributions display no correlation between
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the two intervals, and that the mean on one
axis does not depend on the stimulus value
on the other axis (e.g., that the <S, N> and
<N, N> distributions have the same projec-
tions on the interval-2 axis). These assump-
tions seem quite plausible when the two axes
are intervals in an experiment.

ROCs for the independent-observation
model can be constructed by assuming that
the observer divides the space into regions in
which the likelihood ratio of same versus dif-
ferent is greater than or less than some fixed
value (this value is 1 in the symmetric case).
Systematically varying this critical value of
likelihood ratio and calculating H and F for
each value traces out the same-different ROC.
Such curves are approximately straight lines,
with slope 1.0 on normal coordinates.

Differencing Rule

An alternative to the independent-observation
rule is a differencing strategy like that used
in 2AFC: The two observations on a trial
are subtracted, and the result is compared to
a criterion. This strategy, first described by
Sorkin (1962), is illustrated in Figure 2.12b.
The criterion lines for a constant difference
resemble the line for 2AFC, but the decision
space is more complicated. The differencing
rule is greatly at odds with the independent-
observation rule in certain regions of the
space.

Because the differencing rule depends on
a single variable (the difference between two
observations) the decision space can be rep-
resented in one dimension. When both trials
contain the same stimulus, either <S, S> or
<N, N>, the mean difference is zero. There
are, however, two types of different pairs:
those that, when subtracted, yield a mean dif-
ference of d’, and those yielding a mean of
—d'. The decision problem in one dimension
thus involves three difference distributions on



68 Signal Detection Theory

one axis. The hit rate and false-alarm rate re-
sult from combining areas under these distri-
butions:

H = P (“different” | Different)
= ®[(—k +d")/V2] + ®[(—k — d')//2]
F = P(“different” | Same) = 2 (—k/~/2).
(23)

If k is varied, Equations (23) can be used to
trace out an ROC. Unlike the ROCs for the
independent-observation rule, these have less
than unit slope, so two points with equal val-
ues of z(H) — z(F) do not necessarily have
the same d’'.

Although not optimal, the differencing
model may be the only one practical in rov-
ing designs: Calculation of likelihood ratios
for large stimulus sets requires more knowl-
edge of the situation than observers typically
have, whereas subtraction has minimal re-
quirements. Roving and fixed discrimination
thus differ in the appropriate decision strategy,
as well as the memory limitations discussed
earlier. The only paradigm in which the ap-
propriate decision rule is the same for both,
apparently, is 2AFC.

Because it is nonoptimal, the differencing
strategy leads to performance levels that are
poorer than those with independent observa-
tions. The declinein p(c) is small at low levels

(a)

(.02 when d’ = 1) but equals .08 for d’ = 3.
Turning the comparison around, a value of
p(c) = .90 implies a d’ of 4.14 with the dif-
ferencing model, 3.24 for independent obser-
vations, and just 2.56 in yes-no. Perversely,
the inherent difficulty of the same-different
task recommends its use when d’ is high: An
experimenter who wishes to avoid ceiling ef-
fects of, say, p(c) > .95, can estimate a d’ of
5.10 with same-different, assuming the differ-
encing model, but is limited (for unbiased ob-
servers) to d’ = 3.29 in yes-no and d’ = 2.33
in 2AFC.

Relation between the Two Strategies

The independent-observation and differenc-
ing strategies are special cases of a general
situation (Dai, Versfeld, & Green, 1996). Con-
sider what would happen if the correlation p
between the intervals (which is zero in the di-
agrams so far) were substantial, and the same
for all four stimulus sequences. The left panel
of Figure 2.13 shows ellipses with correla-
tion p > 0. Because the correlations (and vari-
ances) are the same in all distributions, this
representation is equivalent to one in which
the distributions are uncorrelated but the axes
intersect at an angle of cos™!(—p) (Ashby &
Townsend, 1986). The right panel shows that
when p is not 0 (and the angle between the

(b)

Figure 2.13 Two equivalent forms of the representation for the same-different paradigm in which there

is a correlation between the two intervals.

NOTE: In panel (a) the bivariate distributions themselves include the correlation parameter p, whereas in
(b) the distributions are uncorrelated but the two axes intersect at an angle 8 = cos™!(—p).



axes is not 90°), spacing between the distri-
butions is wider along the negative diagonal
than along the positive one, an effect that re-
sults from the smaller standard deviation in
that direction. The optimal rule for this case
is not straight lines intersecting at a right an-
gle; in fact, the larger p is, the closer the rule is
to two parallel lines perpendicular to the neg-
ative diagonal, as in the differencing model.

Some Experimental Results

Irwin and Francis (1995a) explored the per-
ception of line drawings of objects that were
either natural (e.g., alligator, leaf) or manu-
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factured (e.g., various tools). Pairs of such ob-
jects were briefly presented, and the observers
had to say whether they belonged to the same
or different categories. Thus, the correct re-
sponse for the pair (hammer, leaf) was “dif-
ferent,” whereas it was “same” for the pair
(leaf, alligator).

The observers in this experiment pro-
duced ROCs supporting the independent-
observation model, as shown in Figure 2.14
(first row). Irwin and Francis (1995a, 1995b;
Francis & Irwin, 1995) have shown, however,
that participants may adopt either strategy
spontaneously, depending on the stimulus set.

[Image not available in this electronic edition.]

Figure 2.14 ROC curves for same-different experiments.

NOTE: In all panels, the solid lines are for the independent-observation model, and the dashed lines are
for the differencing model. The first row shows data from an experiment in which pictures in natural and
manufactured categories were discriminated, and the three panels are for presentation to the left visual
field, right visual field, and both visual fields. The independent-observation model provides a better fit.
The second row shows data from an experiment in which colored patches were discriminated, and the
three panels are for three observers. The differencing model provides a better fit.

SOURCE: Irwin and Francis (1995a, Figures 1 and 3). Reprinted with permission.
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The independent-observation model applied
when observers compared letters varying in
orientation (correct vs. reversed); whereas the
differencing model was supported by data us-
ing color patches that could vary in any direc-
tion in color space (a type of roving design),
as can be seen in Figure 2.14 (second row).

Multiple-Look Experiments

In the multiple-look experiment, either S or N
is presented in each of n intervals, so the ob-
server has n pieces of information to make a
decision. Whenn = 2, the representation is as
shown in Figure 2.15. It is immediately clear
that having two chances to detect the stimulus
produces a /2 increase in the mean separation
of the distributions. The situation is parallel to
2AFC, as is evident when the figure is com-
pared with Figure 2.11, and predicted perfor-
mance is exactly the same as for that paradigm
(Equation [20]). The design can easily be ex-
tended to larger values of n, the predicted im-
provement being +/n. Early studies (Swets,
Shipley, McKee, & Green, 1959) showed that
the rate of improvement was slightly less, pre-
sumably because of inefficiency in integrating
the observations.

This same relation can be derived in a
different way, with reference to a single de-
cision axis. Assume that the decision vari-
able is the sum of observations (on a sin-
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Figure 2.15 Decision space for the two-interval

multiple-look experiment.

gle dimension). The n stimuli will produce
a mean difference of nd’ and a variance of
n (because the variance for one observa-
tion is 1), so the effective normalized mean
difference is nd’/\/n = /nd’. This one-
dimensional perspective has the advantage
that it allows one to go easily beyond two
samples, whereas visualizing six-dimensional
spaces is hard.

Sorkin and colleagues (Sorkin & Dai, 1994;
Sorkin, Hays, & West, 2001) have studied
analogous designs in which different indi-
viduals, rather than different observations by
the same individual, contribute to a single
decision. Each member of a team of ob-
servers makes yes-no decisions in a visual
discrimination task, and their votes are com-
bined into a group response using rules rang-
ing from simple majority to unanimity. The
group performs better than the individuals,
and better for a simple majority rule than for
stricter rules. Group accuracy is poorer than
would be predicted by analogy to multiple-
look experiments, but this is not surprising
because subdecisions, rather than d’ values,
are being combined: In fact, group data are
well-predicted from the individual sensitivi-
ties when this is taken into account.

Other Tasks

Other tasks have been subjected to detection-
theory analysis: (a) matching-to-sample
(ABX), in which the first two intervals or each
trial contain S and N, in either order, and the
observer must decide which of them matches
the stimulus in the third interval (Pierce &
Gilbert, 1958; Macmillan et al., 1977); (b)
mAFC, an extension of 2AFC in which one
m interval contains S, the others N (to be
discussed later); and (c) oddity, in which all
the possibilities in mAFC are included, as
well as sequences in which one interval con-
tains N, the others S (Versfeld, Dai, & Green,
1996). By considering only cases of unbiased
responding, it is possible to compare p(c)
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Figure 2.16 Proportion correct as a function of d’ for several discrimination paradigms (unbiased

responding).

NOTE: (a) Fixed designs, assuming independent-observation models for all paradigms except oddity,
which has only a differencing model. (b) Roving designs, assuming differencing models for all paradigms.

SOURCE: Macmillan and Creelman (1991).

for these paradigms, as a function of d’, as
shown in Figure 2.16. Most designs offer both
an independent-observation and a differenc-
ing strategy, and the two panels correspond to
these two cases.

The figure permits several interesting con-
clusions. There are large differences in per-
formance across paradigms, and the magni-
tudes (and in some cases even the direction) of
the discrepancies depend on d’. Clearly, the
shape of the psychometric function depends
on the paradigm if p(c) is the dependent vari-
able, supporting the recommendation made
in discussing psychometric functions to plot
such functions in terms of d’ instead.

MULTIDIMENSIONAL
CLASSIFICATION: INDEPENDENCE
AND ATTENTION

The multidimensional representations with
which same-different and other discrimina-

tion designs are analyzed can be general-
ized to handle more substantive issues. Mul-
tidimensional representations provide good
descriptions of many cognitive and percep-
tual problems. For stimulus sets whose mem-
bers are completely discriminable, multidi-
mensional scaling has proved an invaluable
tool (see Chap. 3). An extended version of
detection theory is called for when discrim-
inabilities are imperfect.

The representation of multiple stimuli can
be estimated from the pattern of discriminabil-
ities in a number of ways. The simplest, con-
ceptually, is to find d’ or another distance mea-
sure for each pair and then to infer a geomet-
rical pattern of the means of the distributions
in euclidean space. One interesting result of
such calculations is that distinct physical di-
mensions may interact, that is, may not be in-
dependent in the perceptual space. The inde-
pendence question was the first, historically,
to which multidimensional detection theory
models were applied (by Tanner, in 1956);
this section considers both Tanner’s findings
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and more recent applications of the same
strategy.

Classification experiments (N stimuli) are
commonly used, sometimes in combination
with discrimination (N =2) tests, to infer
multidimensional representations. Because
classification experiments require grouping
multiple stimuli together (i.e., assigning them
the same response), they are the natural tools
for the study of attention. If several distinct
stimuli may occur that require the same re-
sponse, it is natural to refer to the design as
one of uncertainty about which of these stim-
uli will occur. If the response partition is such
that some aspects of the stimulus set must be
appreciated and other ignored, attention is se-
lective; if all aspects are relevant, attention
must be divided.

Attention is often studied with response
time and other measures not strictly within the
bounds of detection theory; see Pashler (1998)
for an integrative survey. The SDT approach
is particularly valuable in providing baselines
for attention “deficits.” The critical distinc-
tion is between extrinsic and intrinsic results
(Graham, 1989): Extrinsic uncertainty is in-
herent in the situation, whereas intrinsic
uncertainty is internal to the observer. It is
essential to find the extrinsic difficulty of a
classification design so that poor performance
that is in fact inevitable is not blamed on the
experimental participant’s inefficiency.

Introduction to Multidimensional
Decision Spaces

In a 1956 article, Tanner measured the dis-
criminability of each pair in a set of three stim-
uli: Noise alone and tones of two different fre-
quencies (S} and S;). From the three possible
two-stimulus discrimination experiments, he
could determine whether the S; and S, dimen-
sions were orthogonal. Nonorthogonality im-
plies (for normal distributions) a correlation
between the dimensions, as in Figure 2.17,;
if the dimensions intersect at an angle 6, the

Identification
criterion

Dimension 1

Figure 2.17 Decision space showing distribu-
tions due to Noise and two Signals that differ from
it, each along a different dimension.

NOTE: The angle between the axes measures the
dependence between the two dimensions.

correlation equals cos(6). The results of the
three experiments can be used to estimate 6
from the geometry of Figure 2.17:

(d; ) = d}* + dy* —2d;d5 cos(6)  (24)

Equation (24) covers all possible rela-
tions between pairs of imperfectly detectable
stimuli. In one important special case, the
alternative stimuli produce independent ef-
fects, which are said to require independent
sensory channels, a metaphor introduced by
Broadbent (1958). In that case the axes are
orthogonal, so that & = 90°, cos(f) = 0, and

d; ) =di* +dy’. (25)
This same equation will be useful in describ-
ing capacity models of attention later in this
chapter. It also characterizes the euclidean
metric used in similarity scaling.

Values of 6 less than 90° arise from over-
lap between the channels’ regions of sen-
sitivity: A Signal that activates one maxi-
mally also activates the other to some ex-
tent. Angles of 6 greater than 90° might arise
from inhibition between the separate percep-
tual or sensory channels (Graham, Kramer, &
Haber, 1985; Klein, 1985). When 6 =0°, the
representation is one-dimensional, and pair-
wise d’ values are subtracted: cos(9) = 1.0, so



Multidimensional Classification: Independence and Attention 73

di , =d; —d;. When 6 = 180°, another one-
dimensional case, the distance between the
two Signals in the recognition task is the sum
of the individual detectability values. This is
the well-known city-block metric, first de-
scribed by Shepard (1964) for the scaling of
similarity judgments.

In his experiments, Tanner found that di-
mensional orthogonality held when tones
were sufficiently different in frequency, but
that 8 was less than 90° when they were sim-
ilar. The result is consistent with the critical-
band hypothesis, according to which auditory
inputs are divided into channels according to
frequency. Tanner’s approach offers a conve-
nient summary of the data in geometric terms,
but it has a shortcoming: The three experi-
ments result in three values of d’. These data
are just enough to determine the internal an-
gles of the triangle in Figure 2.17, but they do
not provide any internal test of validity (Ashby
& Townsend, 1986). The addition of even one
more stimulus can give more confidence in the
representations inferred from data like these.

Concepts of Independence

The idea of perceptual independence is a cru-
cial one in many psychological applications,
but there are many varieties of this construct.
Ashby and Townsend (1986) distinguished
these in the context of a generalized version
of detection theory they called generalized
recognition theory (GRT). The three most im-
portant are perceptual independence, percep-
tual separability, and decisional separability.
Perceptual independence is a characteristic
of a single distribution in which the compo-
nent dimensions are statistically independent.
For normal distributions, this is equivalent to
the lack of correlation between them, as in the
left-hand distribution in Figure 2.18. The op-
posite, perceptual dependence, is illustrated
by the right-hand distribution, for which in-
creasing values of X tend to go with increasing
values of Y. The figure displays the marginal

Perceptual
independence

Perceptual
dependence

VA4

H_J

— Marginal distributions

Figure 2.18 Perceptual independence and de-
pendence in bivariate distributions.

NOTE: Perceptually independent distributions can
be obtained by multiplying marginal distributions
together; perceptually dependent distributions
cannot.

as well as the joint distributions, and one way
to see that the elliptical distribution is not per-
ceptually independent is to compare it with
the circular (and therefore perceptually inde-
pendent) distribution to its left. This circular
distribution is the product of the marginals,
and therefore the elliptical one is not.

Perceptual separability, the characteristic
in which Tanner (1956) was interested, is de-
fined by a rectangular arrangement of distri-
bution means, as in Figure 2.19a: A change
on one dimension has no effect on the value
of the other. In perceptually integral cases
(Figure 2.19b), the two dimensions are per-
ceptually correlated, so a change on one
is at least partly confusable with a change
on the other. Such representations display
mean-shift integrality (or just mean integral-
ity; Kingston & Macmillan, 1995; Maddox,
1992) because the means of the distributions
are shifted compared to the perceptually sep-
arable case. In Figure 2.19b, lines connect-
ing the means are drawn, and the angle 6 is
a measure of integrality. The presence of a
fourth stimulus—rather than the three used by
Tanner—allows the experimenter to test the fit
of the representation.
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Decisionally
separable
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(a) Perceptually separable

(b) Mean integral

Figure 2.19 Perceptual separability and mean-integrality.

NOTE: (a) In perceptually separable sets, the marginal distribution for one value of X is the same for all
values of Y, and vice versa. (b) In mean-integral sets, the means are shifted so that this is not true. The
two decision bounds in (a) illustrate decisional separability and nonseparability.

The third important variety of indepen-
dence concerns the decision rule rather than
the distributions. Figure 2.19a shows two
ways in which an observer might divide the
space for a classification task in which stimuli
A and C are to be assigned to one response, B
and D to the other. The solid line describes a
decisionally separable rule in which the deci-
sion depends only on X, whereas the dashed
line indicates a rule in which both variables
contribute to a decision.

Extrinsic Attention: Classification of
Multidimensional Stimuli

Performance is typically poorer in classifica-
tion designs than in a simple two-stimulus dis-
crimination experiment, and it is important to
determine the locus of this effect. This sec-
tion describes several experiments that can be
used to distinguish extrinsic (ideal observer)
explanations from intrinsic (limited attention)
ones.

Detection under Conditions of Uncertainty

In an uncertain detection experiment, each
trial may or may not contain a signal; if
present, the signal may be one of several pos-
sibilities. The observer reports only whether
a signal is present, not its identity. In many
applications, it is reasonable to suppose that

the signals are carried by independent chan-
nels: They may arise in vision from far-apart
spatial regions or different spatial frequencies
(Graham & Nachmias, 1971), or in audition
from frequencies falling into different critical
bands (Creelman, 1960; Green, 1961).

The decision space for an uncertain detec-
tion experiment with two possible signals is
shown in Figure 2.20a. Presentation of the null
signal N leads to a bivariate distribution cen-
tered at (0, 0); the S; distribution produces
an increase on dimension 1 and the S, dis-
tribution produces an increase on dimension
2. The uncertainty task requires observers to
establish a decision boundary in the space of
Figure 2.20a that accurately assigns stimuli S;
and S, to one response and N to the other. The
optimal decision boundaries follow lines of
constant likelihood ratio, and varying the criti-
cal value of this statistic allows the calculation
of ROC curves for the uncertain detection ex-
periment. Nolte and Jaarsma (1967) showed
that these curves have two interesting charac-
teristics, as shown in Figure 2.20b. First, per-
formance levels are lower under uncertainty
and are increasingly poor as the number of
possible signals increases; this is true even
though the various signals are carried by in-
dependent channels. Second, the slope of the
ROC decreases with the number of channels.



Multidimensional Classification: Independence and Attention 75

[Image not available in this electronic edition.]

Figure 2.20 Optimal model for uncertain detection.

NOTE: (a) Decision space showing likelihood-ratio criterion curves for the two-signal case. The noise
distribution is centered at (0, 0), the signal distributions at (d’, 0) and (0, d"). (b) ROCs for uncertain
detection of M orthogonal signals, on z coordinates. Values of d’ are given along the minor diagonal.
SOURCE: (a) Adapted from Figure 4 of Green and Birdsall (1978), by permission of the publisher.
Copyright 1978 by the American Psychological Association. (b) Adapted from Nolte and Jaarsma (1967),

by permission of the Acoustical Society of America.

Consider, as an example, an experiment
by Bonnel and Miller (1994), who asked ob-
servers to detect a change in background that,
on different trials, was unpredictably an in-
crement in either the luminance of a spot or
the intensity of a tone. The research ques-
tion was whether uncertainty would lower

Dimension 2

performance compared to control conditions
in which the modality to be attended to
was known in advance. Bonnel and Miller
assumed that there was no interaction be-
tween their visual and auditory stimuli, and
that the representation was thus perceptually
separable, as illustrated in Figure 2.21. The

Dimension 2

Dimension 1

()

Dimension 1

(b)

Figure 2.21 Decision spaces for uncertain detection, in which the observer must say whether either of

two signals was presented.

NOTE: (a) Channel integration rule. (b) Independent-observation rule.
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locations of the distribution means for visual
(S1) and auditory (S,) distributions are the
d’ values found in the control conditions in
which each increment was discriminated from
no change (N).

A simple nonoptimal rule is available in
this experiment. If the observer bases a de-
cision on total subjective intensity, the effec-
tive decision axis is the line y = x. A possible
decision boundary consistent with this rule
is shown in Figure 2.21a. When the §; and
S, distributions are projected onto the deci-
sion axis, the means are closer together than
along the x-axis or y-axis, and the model pre-
dicts a drop in accuracy due to uncertainty.
This summation rule is natural and is the
best available strategy that uses a straight-line
decision boundary; it resembles the optimal
strategy for detecting compound “multiple
looks” (Figure 2.15). It is clear, however, that
Bonnel and Miller’s (1994) observers did not
use this rule, because their performance was
better than the rule predicts.

Bonnel and Miller’s (1994) data are bet-
ter described assuming a different rule:
Compare the observation to criteria on each
dimension independently, and say “yes”
if either criterion is exceeded. This “mini-
mum” rule leads to the two-segment rectilin-
ear decision boundary shown in Figure 2.21b
and predicts a smaller deficit due to uncer-
tainty than does the summation rule. It is al-
mostidentical to the optimal boundary, and for
more than two dimensions the discrepancy be-
tween the minimum and optimal rules is even
smaller.

Shaw (1982) explored an interesting ex-
tension of uncertain bisensory detection. In
her task, an auditory signal, a visual one, or
both together could occur, and the observer
still had only to respond “yes” to these stim-
uli and “no” to the null stimulus. The pres-
ence of the compound stimulus allowed her to
derive nonparametric constraints on the data
for both the summation and the independent-

observation rule, and the data supported inde-
pendent decisions.

Selective and Divided Attention

It is useful to distinguish between selective
attention, in which the observer’s goal is to
attend to one dimension and ignore others,
and divided attention, in which attention to
both dimensions is necessary. The uncertain-
detection task can be viewed either way, de-
pending on the model assumed: The summa-
tion model treats attention as selective, in that
the observer must attend to subjective inten-
sity and ignore characteristics, such as modal-
ity, that distinguish stimuli S; and S,. The
minimum and optimal models, however, ap-
pear to be strategies for dividing attention.

Selective and divided attention are easier to
distinguish operationally with four-stimulus
sets. There are three ways in which four ele-
ments can be partitioned into two equal parts,
two of these being examples of selective atten-
tion and one of divided. These are considered
here in turn.

Figure 2.22a displays a perceptually sepa-
rable representation. In one selective-attention
task, observers are instructed to respond
strictly on the basis of the x variable, assigning
one response to A and C, the other to B and
D. A decisionally separable boundary—the
vertical line in the figure—is optimal. Perfor-
mance is just as good as if only the two dis-
tributions A and B were being discriminated,
so the model predicts that for separable di-
mensions there is no performance deficit due
to filtering, as the selective task is sometimes
called. An analogous task for selective atten-
tion to the vertical dimension is analyzed in
the same way.

A mean-integral arrangement requires a
different boundary. Figure 2.22b shows the
optimal curve, for which the likelihood of ei-
ther A or C is the same as the likelihood of
either B or D, that is, for which the likelihood
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Figure 2.22 Decision spaces, with optimal decision bounds, for a selective attention task in which A
and C are assigned to one response and B and D to another.
NOTE: (a) Perceptually separable stimulus set. (b) Mean-integral set.

ratio is 1. The attention question is how per-
formance in the task sketched in Figure 2.22b
compares to performance with only stimuli A
and B. Performance is lower than for the base-
line task, and by an amount that increases as 6
(defined as in Figure 2.19b) nears 0° or 180°.
The predicted (extrinsic) drop in proportion
correct when d’ = 2 can be as large as .11.

To force attention to both dimensions, the
observer is required to assign stimuli A and D
to one response, B and C to the other. An op-
timal strategy for doing this in a perceptually
separable representation resembles that for
the same-different task shown in Figure 2.12a:
The observer divides the decision space into
four quadrants and gives one response for the
upper right and lower left regions, the other for
upper left and lower right. The problem is a
generalization of the independent-observation
model for the same-different paradigm dis-
cussed earlier. The proportion correct is the
same for all four stimuli, so one needs to con-
sider only one of them, say stimulus A. De-
noting the discriminability of A and B by d,
and that of A and C by d ; the observer makes
a correct response to this stimulus if the obser-
vation falls in either the upper-left or lower-
right quadrant, and the total p(c) is the sum
of these components:

plc) = ®(d,/2)®(d, /2)]
+®(=d,/2)®(~d}/2)]. (26)

It was shown in considering the same-different
task that this is a low level of performance
compared to two-stimulus discrimination. If
d’' =2 on both dimensions, so that baseline
p(c) =0.84, these terms are (0.84)*> =0.706
and (0.16)?> = 0.026, for a sum of 0.732. For
d'=1, the decline is from 0.69 to 0.572.
Clearly, the divided attention task is, extrinsi-
cally, quite difficult.

This section does not discuss the mean-
integral case in detail. The optimal decision
boundary is constructed by combining two
curves like the one in Figure 2.22b, and the
interesting result is that performance is rela-
tively unaffected by 6 over its entire range.

Kingston and Macmillan (1995) have mea-
sured baseline discrimination, selective atten-
tion, and divided attention for vowel sounds
varying in two dimensions, vowel height and
nasalization. They used the baseline d’ val-
ues to construct mean-integral representations
like those in Figure 2.22b and predicted opti-
mal selective and divided performance. Selec-
tive and divided attention were always lower
than baseline, but the extrinsic model pre-
dicted most of the drop (e.g., for vowels
in consonantal context, the model accounted
for 75% of the decline in selective attention
and 66% of the decline in divided attention).
Kingston and Macmillan concluded that lis-
teners suffered little loss due to allocating at-
tention to the two dimensions; rather, these
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dimensions were to a large degree integrated
into a single perceptual property.

The Garner Paradigm

Many stimulus sets can be constructed by
varying two or more dimensions: height and
width to make rectangles, the first and second
formants to make vowels, contrast and spatial
frequency to make gratings, and so on. Such
sets have been studied extensively by Garner
(1974) and his colleagues, with the intent
of distinguishing “integral” pairs of dimen-
sions (which interact) from “separable” ones
(which do not), and it is from this line of re-
search that GRT takes its terminology. Garner
proposed a series of classification tests to dis-
tinguish these possibilities operationally, and
his terms, applied mostly in speeded tasks
with completely discriminable stimuli, do not
exactly map onto the GRT concepts.

Garner (1974) argued that determining
whether two dimensions interact should not
rely on a single test, but on converging oper-
ations. Separability is defined by no filtering
loss (i.e., selective attention equal to baseline
performance) and no redundancy gain (e.g.,
ability to distinguish A and D being the same
as the ability to distinguish A and B in Fig-
ure 2.22). Integrality is the opposite pattern,
both a filtering loss and a redundancy gain.
Divided attention is not always included and
is not considered diagnostic in distinguishing
integrality and separability.

Does the perceptual-space model agree
with Garner’s (1974) definitions? Both ap-
proaches agree that integrality is associated
with filtering loss and that separability is as-
sociated with no loss. As for redundancy gain,
the parallelogram model predicts this effect
for all arrangements if optimal decision rules
are used, but can predict no gain in the sep-
arable case if decisional separability is as-
sumed. In many experiments using the Garner
paradigm, participants are instructed to attend
to one dimension even in the redundant case,

so it is perhaps not surprising that redundancy
gains are not found.

A multidimensional detection-theory anal-
ysis provides a theoretical convergence of op-
erations that allows for quantitative predic-
tions of the relations among these tasks, but
there are two important limitations: Predicted
performance depends on the particular deci-
sion strategy used by the observer, and de-
tection theory applies to imperfectly discrim-
inable stimulus sets and the measurement of
accuracy. Most Garner-paradigm (1974) stud-
ies have used response time, which requires
explicit modeling if quantitative predictions
are to be made.

Intrinsic Attention: Capacity Models and
Attention Operating Characteristics

The models thus far are not very explicit about
“paying attention,” or about the connection
between attentional instructions and perfor-
mance. To model these important constructs,
it helps to return to the multiple-look discrim-
ination designs discussed earlier. The optimal
model led to the prediction that an observer
who had n “looks” at the same stimulus would
improve detectability by /7.

The application to attention is this: Sup-
pose that a person has a fixed “capacity” T'to
allocate among whatever (controlled) tasks
are at hand. As in the previous discussion of
multiple looks, assume that as each unit is al-
located, it adds a fixed amount to both the
mean and variance. Consider now the uncer-
tain detection experiment. If all attention is
allocated to dimension x, performance will
be «/Td’on that dimension, but 0 on dimen-
sion y. The reverse is true if all attention is
allocated to y. In general, if P of the T units
are allocated to x and T — P to y, then per-
formance on x, d;, will be /Pd' and d;, will
be /(T — P)d'. ‘

The model says that capacity can be allo-
cated to one dimension only at the cost of the



other and thus describes a tradeoff between
accuracy on the two tasks. When P is large,
the observer will do well on dimension x and
poorly on dimension y, and when P is small
(so that T — P is large) the opposite will be
true. The relation between x and y perfor-
mance is an attention operating characteris-
tic (AOC), analogous to the receiver operat-
ing characteristic (ROC), which describes a
tradeoff between hits and correct rejections.
The form of the AOC between d; and dj
can be derived from these assumptions. In
terms of the squares of the sensitivities,

d? = (T - P)d*=Td"” - Pd"

2 72
=Td”—d’. 7)

This is a circle—the usual equation is y? =

r? — x2>—as shown in Figure 2.23. Rearrang-

ing the terms provides another perspective:
’2 ’2 )
d. + dy = Td'" = constant. (28)

The idea that squared sensitivities are added

80%, 20%

50%, 50%

20%, 80%

'
d)

Figure 2.23 An attention operating character-
istic showing joint performance in the dual-task
paradigm.

NOTE: Solid points are single-task performance;
the circle segment is the prediction of a fixed-
capacity model (Equation [28]); and the dashed line
is the prediction of an independent-channel model.
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to estimate overall capacity was first proposed
by Lindsay, Taylor, and Forbes (1968).

What would happen if participants were
instructed to give, say, 80% attention to x
and 20% to y? They should allocate 80% of
their capacity to x and operate at the point la-
beled (80, 20) on the diagram. Experiments
of this type have often shown that partici-
pants not only follow a circular tradeoff func-
tion but also are accurate at assigning the
requested percentage of capacity (Bonnel &
Hafter, 1998). For some pairs of stimuli, how-
ever, no tradeoff is found, and the AOC con-
sists of two straight line segments, as shown
by the dashed lines in Figure 2.23. For ex-
ample, Graham and Nachmias (1971) found
that attention could be paid simultaneously to
superimposed gratings of two different fre-
quencies, thus providing strong quantitative
evidence that separate perceptual channels are
used in processing the two gratings.

MULTIDIMENSIONAL
IDENTIFICATION

This chapter has already presented one ver-
sion of the identification experiment: A sin-
gle stimulus from a known set is presented on
each trial, and it is the observer’s job to say
which it was, that is, to identify it. The pur-
poses of such experiments vary but usually
include obtaining an overall index of perfor-
mance, as well as a measure of sensitivity for
each stimulus pair and bias for each response.

If there are only two stimuli, identifica-
tion is simply the yes-no task, and perfor-
mance can be summarized by one sensitivity
parameter and one bias parameter. The na-
ture of the stimuli is unimportant; it does not
even matter if they differ along one physical
dimension (lights of different luminance) or
many (X-rays of normal and diseased tissue).
With more than two stimuli, the task is easily
described: One stimulus from a set of M is
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[Image not available in this electronic edition.]

Figure 2.24

Analysis of simultaneous detection and identification.

NOTE: (a) ROC [P(R | S)] and IOC [P(R&C | S)] for an X-ray detection and spatial identification task.
The IOC plots the proportion of trials on which identification and detection responses were both correct.
(b) Decision space with possible criteria. The observer gives both a detection response (“yes” or “no”)
and an identification response (“1” or “2” was presented). The space is therefore divided into four regions,

one for each compound response.

SOURCE: (a) Adapted from Figure 2 of Starr et al. (1975). Reprinted by permission of the Radiological

Society of North America.

presented on each trial, and the observer must
say which it was. From the participant’s point
of view there is nothing more to say, but in
order to extend the analysis to M (more than
two) stimuli, the dimensionality of the repre-
sentation must be known. If all stimuli dif-
fer perceptually on a single dimension, then
M — 1 sensitivity distances between adjacent
stimuli and M — 1 criterion locations can be
found along it, as we saw earlier. Perceptual
distances for all other pairs of stimuli are eas-
ily calculated as the sum of the stepwise dis-
tances between them. To characterize overall
performance, it is natural to add sensitivity
distances across the range.

The assumption of unidimensionality is
a restrictive one, and this section considers
some other cases, beginning with stimulus
sets in which all members are independent of
each other. Such stimuli may be thought of
as being processed by different channels. In

perceptual-space models, each stimulus pro-
duces a mean shift along a different dimen-
sion, and the discriminability of each pair of
stimuli yields M (M — 1)/2 independent dis-
tances in a multidimensional space. This sec-
tion describes two models that use simplify-
ing assumptions to reduce the complexity of
this problem, and one that provides a more
complete analysis. Analysis of arbitrary situ-
ations with perceptual or cognitive objects is
discussed first and then is applied to the spe-
cial case in which identification is of intervals
in discrimination experiments.

Models for Identification

Pollack and Ficks (1954) systematically stud-
ied how performance in absolute identifica-
tion depends on the number of stimuli and the
number of dimensions on which they varied.
They analyzed their data using information



theory (G. A. Miller, 1956; Shannon &
Weaver, 1949) and found that although infor-
mation transmitted along one dimension was
limited to 2 or 3 bits (equivalent to perfectly
distinguishing 4 to 8 stimuli), performance
reached 7 or 8 bits (128 to 256 stimuli) when
stimuli differed on 7 or 8 dimensions.

Information theory does not allow for in-
dependent assessment of sensitivity and bias,
but a variety of SDT models can be applied.
First, assume that all stimuli are processed
by independent channels. The decision space
contains M distributions, each removed from
a common origin in a different dimension.
The simplest (and most optimistic) calcula-
tions assume that there is no bias, so p(c) can
be used to summarize accuracy. An SDT anal-
ysis that relates the proportion correct to d’ for
equally detectable stimuli was developed by
Elliott (1964) and improved by Hacker and
Ratcliff (1979). The decision rule is simply to
choose the dimension on which the maximum
value is produced.

Animplication of Luce’s (1959) choice ax-
iom s that the ratios of response frequencies in
a confusion matrix do not depend on the num-
ber stimuli in the experiment. This constant
ratio rule (Clarke, 1957) can be used to ex-
tract a 2 x 2 matrix from a larger one, and thus
to calculate sensitivity to any stimulus pair.
Hodge (1967; Hodge & Pollack, 1962) con-
cluded that the constant ratio rule was more
successful when applied to multidimensional
than to one-dimensional stimulus domains.

Multi-Interval Forced-Choice

It is easy to translate to the identification of
one interval in which a stimulus might be pre-
sented. The analogous task is one in which
there are m spatial or temporal intervals, one
containing S, and the others S;. The analytic
problem is formally the same as for identi-
fication of objects, just as the same-different
discrimination task was formally the same as
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divided attention. In the initial statement of
the 2AFC problem (Figure 2.11), each interval
corresponded to a separate dimension in the
decision space, and this representation is also
appropriate for m > 2 intervals. As in object
identification, there are as many dimensions
in the representation as there are intervals in
the task. The optimal unbiased strategy is to
choose the interval with largest observation.

The general models for multidimensional
identification apply directly to the multi-
interval forced-choice (m AFC) problem, and
the assumptions of equal sensitivity and of
independent effects for all alternatives are ap-
parently quite reasonable. If one is still willing
to assume unbiased responding, the Hacker
and Ratcliff (1979) tables can be used to find
d’ values.

Simultaneous Detection and Identification

In some situations, detection and identifica-
tion are both interesting. (Obviously, the de-
tection must be under uncertainty; otherwise
there is nothing to identify.) In the laboratory,
participants may try to detect a grating that
has one of several frequencies, and also to
identify which grating was seen. In eyewit-
ness testimony, the witness must both “de-
tect” whether a perpetrator is present (in the
lineup, or in court) and also identify which
person that is. In recognition memory, the par-
ticipant must decide whether the stimulus was
presented earlier in the experiment and, if so,
from which of two sources.

When a rating response is included in the
simultaneous detection-identification experi-
ment, two types of ROCs can be constructed.
The first is the usual detection curve, plotting
the cumulative probability of a hit versus that
of a false alarm at each confidence level. The
second is the probability of both detecting and
correctly identifying a stimulus, again at each
level of confidence. There is only one set of
false-alarm probabilities; it makes no sense to
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ask the likelihood of being right in identifica-
tion when no signal is present. Figure 2.24a
shows the two performance curves: the famil-
iar ROC and (below it) the new identification
operating characteristic (I0C).

The independent-observation model can
be used to predict the identification operat-
ing curve of Figure 2.24 from the uncertain-
detection ROC (Green, Weber, & Duncan,
1977; Starr, Metz, Lusted, & Goodenough,
1975). Within this model there is a natural de-
cision rule: The channel with the maximum
output determines the identification response
and is compared to a criterion to determine the
detection response. Integration models are not
so easily adapted to identification.

To understand the relation between the two
operating characteristics, consider the deci-
sion space. Figure 2.24b shows a single detec-
tion boundary of the independent-observation
type used in uncertain detection (as in Fig-
ure 2.21b). The identification criterion line
is symmetric, because the observer is sim-
ply choosing the dimension (channel) with the
larger output. The two criteria divide the space
into four regions, those in which the observer
responds “yes-1” (there was a signal, and it
was S1), “yes-2,” “no-1,” and “no-2.”

The probability of both detecting and cor-
rectly identifying S;—the height of the IOC—
is that part of the S| distribution in the “yes-1"
area. The probability of just detecting it—the
height of the ROC—includes both the “yes-
17 and the “yes-2” areas and must therefore
be larger. To trace out the IOC and ROC by
increasing the false-alarm rate, the detection
criterion curve is moved down and to the left.
When the curve has been moved as far as pos-
sible in this direction, both the false-alarm rate
and the detection (ROC) hit rate equal 1. The
identification (IOC) success rate equals the
proportion correct by an unbiased observer
in mAFC, as can be seen by comparing Fig-
ure 2.24b with Figure 2.11. For m = 2, the
area theorem implies that the asymptote of the

10C equals the area under the ROC. Green
et al. (1977) have generalized the area theo-
rem to the case of m signals.

An interesting extension of the simul-
taneous detection-identification experiment
requires the observer to make an identifica-
tion response even if the detection response
is “no.” Traditionally, the ability to identify
stimuli without detecting them has been con-
sidered a hallmark of ‘“subliminal percep-
tion,” so it is interesting to ask whether a
detection-theory analysis predicts this result.
Clearly the answer is yes: In Figure 2.24b,
points in the “no” region are likely to be on
the correct side of the identification criterion.
The surprise would be not to get subliminal
perception.

Testing Independence with
Identification Data

Identification experiments are a valuable tool
for testing whether perceptual dimensions in-
teract, or are perceived independently. The ad-
vent of GRT has clarified various type of inde-
pendence (Ashby & Townsend, 1986) and has
provided two general approaches to testing it
with identification designs. One such method
is considered next.?

The basic stimulus set for testing indepen-
dence is the feature-complete identification
design, in which each value of one dimen-
sion is factorially combined with each value
of the others. In two dimensions, choosing two
values on each dimension leads to four stim-
uli, two on one and three on the other leads
to six, and so forth. As in all identification

3The method not discussed, hierarchical model-fitting
(Ashby & Lee, 1991), is more computationally intensive.
A set of models is constructed in which more complex
models are “nested” within and tested against simpler
ones. For example, a model that includes decisional sep-
arability might be compared with one that does not; fail-
ure to find a statistically-significant improvement in fit
for the latter model is considered evidence for decisional
separability.



experiments, the task is to assign a unique
label to each stimulus.

Earlier, three meanings of independence
were distinguished (see Figures 2.18 and
2.19). Perceptual independence is the inde-
pendence of two variables and can be ob-
served for a single stimulus. If X and Y
are perceptually independent, then their joint
distribution is the product of the marginal
distributions,

flx,y) =gx)g®), (29)

and has circular equal-likelihood contours,
that is, no correlation. Perceptual separabil-
ity refers to sets of stimuli and is present if
the marginal distributions on one dimension,
say X, are the same for different values of Y,
that is,

g)y=1 = g(x)y=> (30)

and so forth for other values of Y. Decisional
separability also refers to sets of stimuli and
means that the decision criterion on one vari-
able does not depend on the value of the other.
When decisional separability occurs, decision
bounds are straight lines perpendicular to a
perceptual axis.

These independence qualities, or their op-
posites, are theoretical characteristics of the
perceptual representation, and certain statis-
tics calculated from the data provide infor-
mation about each type of independence. An
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approach called multidimensional signal de-
tection analysis (MSDA), devised by Kadlec
and Townsend (1992a, 1992b), can be imple-
mented using a straightforward computer pro-
gram (Kadlec, 1995, 1999a). The MSDA tech-
nique includes several distinct analyses.

Consider an experiment reported by Kadlec
(1995), in which observers made judgments
of both the curvature and orientation of vi-
sual stimuli. In a macroanalysis of percep-
tual and decisional separability, the question
to be asked is whether judgments of curvature
are perceptually or decisionally independent
of orientation. Three aspects of the data are
important:

1. Marginal response rates. Does the prob-
ability of reporting a particular curvature
response depend on the orientation?

2. Marginal d’ values. The hit rate and false-
alarm rate can be used to find curvature d’
for both values of orientation.

3. Marginal criterion values. The hit rate and
false-alarm rate can be used to find cur-
vature criterion values for both values of
orientation.

In MSDA, differences of these three kinds
are tested for statistical significance. Conclu-
sions and perceptual and decisional separabil-
ity can then be made by consulting Table 2.9
(from Kadlec, 1995; Kadlec & Townsend,

Table 2.9 Inferences about Perceptual and Decisional Separability from Identification Data

Observed results Conclusions
Marginal response Marginal d’ Marginal criteria Perceptual Decisional
invariance? equal? equal? separability separability
T T T yes yes
T T F yes no
T F T no yes
T F F no no
F T T yes possibly no
F T F yes no
F F T no unknown
F F F no unknown
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1992b). The left-hand columns give possi-
ble outcomes of the three statistical compar-
isons, in which the marginal statistics can
be equal (T, or true, in the table) or not (F,
or false). Conclusions about separability are
in the right-hand columns. Notice that if the
marginal responses are invariant, then per-
ceptual separability is associated with equal
marginal d’ and decisional separability is as-
sociated with equal criteria. In the absence of
marginal response invariance, as in the exam-
ple, conclusions are less firm.

A different MSDA analysis can be used
to evaluate perceptual independence. Identi-
fication tasks build on a detailed theoretical
analysis (Ashby & Townsend, 1986; Kadlec
& Townsend, 1992b) and are a powerful tool
for analyzing interaction and independence.

STATISTICAL ISSUES

Signal detection analysis of data leads to es-
timates of sensitivity and bias, and standard
statistical questions can be asked about these
estimates. This section first considers single-
subject designs (or those in which a small
number of observers are each analyzed sep-
arately), in which the special characteristics
of SDT measures are most salient; then situ-
ations in which the performance of groups of
participants is evaluated. The focus will be on
sensitivity, with pointers to treatments of bias.

The first question is the distribution of
d'. For single participants, Gourevitch and
Galanter (1967) showed that this distribution
is approximately normal and provided a for-
mula for estimating the variance of d’. In
recent studies (Kadlec, 1999b; J. O. Miller,
1996) the accuracy of the approximation has
been tested and largely confirmed for a range
of sensitivity and bias values (using the ad-
justments for false-alarm rates of 0, discussed
earlier). Variance estimates can be used to
construct confidence intervals and to test hy-

potheses about differences between two ex-
perimental conditions; Marascuilo (1970) has
extended the analysis to multiple conditions.

The accuracy or precision of the estimates
improves, of course, as the number of trials
on which they are based increases. In some
applications (e.g., in studies of infants or of
people with impairments of some kind) a
large number of trials is not practical, and
it is necessary to pool data across observers
to avoid overuse of the correction for per-
fect scores. Two questions are raised by this
procedure. First, what is the effect on the ac-
curacy and precision of SDT parameter esti-
mates, and second, how can hypothesis testing
be done? Macmillan and Kaplan (1985) pro-
vide reassurance on the first matter, showing
that only in cases of widely varying individ-
ual response biases do estimates suffer. The
hypothesis-testing problem is that if all ob-
servers in a group are combined to estimate
d’, then variability across participants is no
longer available to provide an error term for
ANOVAs and related procedures. One possi-
bility is to apply the Gourevitch and Galanter
(1967) and Marascuilo (1970) single-observer
methods to the pooled data. Another approach
(adopted, e.g., by Maddox and Estes, 1997) is
to estimate d'from pooled data but conduct hy-
pothesis tests on the simpler (albeit threshold-
theoretic) statistic H — F'.

If the number of trials is sufficient to
estimate a value of d’ for each participant
in each condition, then standard parametric
hypothesis testing procedures can be used
(and the knowledge that d’ is normally dis-
tributed is reassuring). An approach that uni-
fies hypothesis-testing and detection theory
has recently been set forth by DeCarlo (1998).
If an SDT model with underlying logistic
rather than normal distributions is assumed,
then hypotheses about signal detection pa-
rameters (e.g., ROC slope) correspond to
tests conducted by standard logistic regres-
sion software. This approach can be extended



to other distributions (including the normal)
by the use of generalized linear models, in
which a “link function” scales the data in ac-
cordance with the assumed underlying distri-
butions.

DETECTION THEORY AND
ALTERNATIVE APPROACHES

In this chapter, I have presented SDT as a
framework in which to analyze discrimina-
tion and classification data. The theory allows
sensitivity to be separated from bias, accuracy
to be compared across paradigms, and the ex-
trinsic limitations of an experimental design
to be distinguished from intrinsic ones. With-
out pretending to offer equal time, let me ac-
knowledge two lines of dissent.

One reason for hesitation in using SDT
is a reluctance to adopt its assumptions, but
the alternative of truly assumption-free
methods is rarely available and measures in
common use such as proportion correct en-
tail alternative assumptions about underly-
ing distributions that are almost always found
wanting when tested. Explicit threshold
(“multinomial”) models have been proposed
for complex experimental problems such as
source memory (Batchelder & Riefer, 1990).
Like all models, they are useful to the degree
that they capture the phenomena of interest,
but they also bear the burden of proving that
the threshold assumptions do not distort the
picture that they draw. For an instructive ex-
change on the multinomial source monitor-
ing model, see Kinchla (1994) and Batchelder,
Riefer, and Hu (1994).

Detection theory’s power derives from its
explicitness about the representation on which
observer performance is based. The essential
claim of SDT is that aspects of this represen-
tation reflecting sensitivity remain the same
across experimental paradigms or when re-
sponse bias changes, and a substantial body
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of data supports this assertion. All of it can
be reinterpreted, however, and Balakrishnan
(1999) has offered just such a tour de force,
arguing that response biases affect the repre-
sentation itself rather than decision processes.
So far, supporting data come from the dual-
response rating paradigm, and it will take time
to establish the broad usefulness of this revi-
sionist perspective. Arising just after the first
edition of this handbook was published, SDT
has needed a half-century to reach its present
standing. As a data-analysis framework and
rather general psychological model, it is not
the kind of intellectual structure that is eas-
ily defeated by isolated experiments, but its
virtues and failings are sure to look differ-
ent in another 50 years—or even in the fourth
edition.
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CHAPTER 3

Psychophysical Scaling

LAWRENCE E. MARKS AND GEORGE A. GESCHEIDER

INTRODUCTION: DEFINITIONS
AND GOALS

The term psychophysics was coined nearly
a century and a half ago by Gustav Fechner
(1860), who defined it as “an exact theory of
the functionally dependent relations of body
and [mind] or, more generally, of the material
and the mental, of the physical and the psycho-
logical worlds” (p. 7). Although he was inter-
ested in a wide range of mental phenomena,
including dreams and imagination, Fechner is
best known for his research and writings on
sensory psychophysics. In Fechner’s scheme,
physical stimuli impinge on the sense organs,
thereby evoking responses that ultimately lead
to patterns of neural activity in the brain that
are themselves, of course, physical in nature.
For the neural-physical activity in the brain,
there is corresponding sensory, or mental, ac-
tivity. It follows, Fechner argued, that there
are actually two domains of psychophysics:
an inner psychophysics, which treats the rela-
tion between neural events and mental events,
and an outer psychophysics, which treats the
relation between external stimuli and mental
events.

In modern parlance the domain of psy-
chophysics corresponds to Fechner’s (1860)

Preparation of this chapter was supported in part by grants
DC02752 to Lawrence E. Marks and DC00380 to George
A. Gescheider from the National Institutes of Health.
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outer psychophysics; in particular, psycho-
physics refers to the relation between exter-
nal physical stimuli and the resulting sensa-
tions and perceptions. Psychophysical scaling
refers to the process of quantifying mental
events, especially sensations and perceptions,
after which it is possible to determine how
these quantitative measures of mental life are
related to quantitative measures of the physi-
cal stimuli. Finally, psychophysical functions
refer, in turn, to mathematical relations be-
tween scales of sensation, perception, or any
other mental event and the corresponding
physical stimuli.

Consider as an example the perception of
loudness. As the physical intensity of a tone
increases, its loudness increases. Further, the
tone will appear louder when presented si-
multaneously to both ears (binaurally) rather
than to just one ear (monaurally). How much
does loudness increase when sound intensity
increases? And how much louder is a tone
heard binaurally compared to the same tone
heard monaurally? These are psychophysi-
cal questions, and the answers to them re-
quire psychophysical scaling, that is, a way
to quantify the perception of loudness. Deter-
mining psychophysical functions for loudness
provides a means to measure the degree to
which loudness increases when, for instance,
a tone increases in intensity by 10 dB. Fur-
thermore, determining loudness functions for
both binaural and monaural listening, under
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conditions that measure binaural and monau-
ral loudness on a unitary scale, makes it pos-
sible to say whether a tone heard with two
ears is twice as loud as the same tone heard
with just one, and whether the ratio of binau-
ral loudness to monaural loudness is constant
across all levels of sound intensity.

What makes psychophysical functions im-
portant, and interesting, is the fact that they
are rarely linear. It was clear to Fechner, as
to others, that our sensory experiences do not
simply mirror the physical world in a quantita-
tive manner. To paraphrase Fechner, a chorus
of 100 male voices does not sound 10 times
as loud as an ensemble of 10, although the
acoustic energy presumably is about 10 times
as great. Awakening one morning with what
he believed to be a great insight, Fechner pro-
posed that the magnitudes of our sensations
are not proportional to the intensities of the
stimuli that arouse them, but instead grow
with the logarithm of intensity, a rule that has
come to be called Fechner’s law. This rule is
one of diminishing returns. It implies that uni-
form increases in the physical intensity of a
stimulus will lead to successively smaller and
smaller increments in the resulting sensation
magnitude.

Why is psychophysical scaling necessary,
and why is it important? Modern psychology
arose from the framework and traditions of
Western culture in general, and from Western
philosophy and science in particular. Within
these broad traditions, psychophysical scaling
can be traced to two crucial developments:
the dichotomy between physical and mental
quantities and qualities, and the rise of quan-
tification. The emphasis on quantification was
a crucial factor not only in the rise of mod-
ern science but also in the rise of Western
economies (see Crosby, 1997). Little wonder
that when scientific psychology emerged in
the second half of the 19th century, under the
aegis of Gustav Fechner, Wilhelm Wundt, and
others, it put such great stock in quantifica-

tion. And little wonder that modern scientific
psychology is rooted to a large extent in psy-
chophysics, which for decades was the most
estimably quantifiable branch of experimen-
tal psychology. In psychophysical scaling,
quantification came to be applied to inter-
nal psychological events, to sensations in par-
ticular but in principle also to feelings and
thoughts—at least to the extent that these
vary in some kind of magnitude. Perhaps
it is not surprising that Ebbinghaus (1885),
for instance, was inspired by Fechner’s psy-
chophysics to apply quantitative methods to
the study of human memory.

To conceive of scaling sensory or other
mental magnitudes, or to consider what data
to use and what theoretical frameworks to de-
ploy in using those data in order to quantify
sensory states, is ipso facto to acknowledge
that the quantification of mental events may
differ in important ways from the quantifica-
tion of overt physical stimuli. This is to say
that psychophysical scaling requires a broad
conception of what it is that can be measured
or quantified. Measurements can be made not
only of denumerable items that can be counted
such as the fingers on a hand, of extensive
quantities such as the area of a football field,
and of intensive quantities such as the radiant
intensity of a fire, but also of our perception of
number, of our perception of size, and of our
perception of heat intensity. When a person
stands by a fire, a physicist might measure
the thermal energy, or irradiance, that is in-
cident on the person’s face, in physical units
such as watts per square meter, whereas a psy-
chophysicist might endeavor to measure how
warm the radiation feels.

A primitive psychophysics can be found in
Locke’s (1690) account of primary and sec-
ondary ideas, and in Galileo’s (1623/1960)
anticipation of this account: “I do not be-
lieve that for exciting in us tastes, odors, and
sounds there are required in external bodies
anything but sizes, shapes, numbers, and slow



or rapid movements; and I think that if ears,
tongues, and noses were taken away, shapes,
numbers, and motions would remain, but not
odors or tastes or sounds” (p. 311). One might
construe Galileo’s statement as an answer to
the question, “If a tree falls in the forest and
no one hears it, is there a sound?” To dis-
tinguish the physical world from the percep-
tual world is also to distinguish the domain
of physical science from the domain of men-
tal science, or what would eventually become
psychology.

Locke (1690) distinguished between two
kinds of physical properties or qualities, be-
tween what we might call macroscopic and
microscopic properties, or, in his terms, be-
tween primary and secondary qualities.
Primary qualities, such as the number of items
and their sizes and shapes, are macroscopic
features of objects in the physical world,
and these qualities pertain mainly to the ob-
jects’ extension in space and in time. Further,
Locke claimed that we perceive these primary
qualities much as they really are. When, in
modern terms, two acoustic events occur in
succession, then as long as the time inter-
val between them is not too brief, we expe-
rience their temporal succession, hearing two
sounds as distinct. When we see a sphere, we
perceive its roundness. Primary qualities, ac-
cording to Locke, are experienced more or
less veridically, pretty much as they are. In
the case of extensive qualities such as lin-
ear extent, it seems fair to infer that Locke
believed in what would now be called lin-
ear psychophysical functions, for example,
that the perception of the length of an ob-
jectis more or less proportional to its physical
length.

Secondary qualities, by way of contrast,
are those microscopic features of objects that,
according to Locke (1690), we do not expe-
rience as they are. Light waves differ in their
refractiveness, as Locke’s contemporary Sir
Isaac Newton showed, but we perceive this
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physical property of light not in terms of vari-
ations in wavelengths but in terms of vari-
ations in colors. Whereas some psychologi-
cal attributes of experience may resemble the
physical qualities that produce them—by and
large the primary qualities of shape, size, and
number of objects look and feel as they really
are—other psychological attributes do not re-
semble their qualities or causes and must be
distinguished from them. We would say that
an object that is 20 cm long looks longer—in
fact, probably about once again longer—
than an object that is 10 cm long, and we
believe that our perceptions of the sizes of
objects more or less resemble or match the
objects themselves. But light of 440 nm
(billionths of 1 m) does not look shorter than
light of 540 nm. The one looks blue and the
other green. Color does not resemble wave-
length.

If perception does not faithfully reflect
the qualitative and quantitative properties of
the physical world around us, then the sci-
entific analysis of the world is not com-
plete if one treats the world of physics alone.
There is also a world of sensation, perception,
cognition, and emotion—a world of mental
events. The qualitative and quantitative psy-
chophysics implicit in Locke’s doctrine of
primary and secondary qualities helped set
the stage for philosophical discourse over the
next two centuries on the sources and va-
lidity of knowledge—the domain known as
epistemology—in which a psychology of per-
ception would implicitly play a major role.
This line of inquiry culminated in the 19th
century psychophysics of Fechner and those
who followed, a psychophysics that asks how
sensory and other psychological magnitudes
might be quantified (the problem of psy-
chophysical scaling proper) and how these
psychological magnitudes relate to the corre-
sponding physical events in the world that pro-
duce them (the problem of the psychophysical
function).
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BRIEF HISTORY OF SCALING

In proposing his psychophysical rule,
Fechner (1860) was anticipated by the math-
ematician Daniel Bernoulli, who a century
earlier had suggested that a similar psycho-
physical formula characterizes the psycho-
logical value of economic goods, or what is
called utility (see S. S. Stevens, 1975). As
in Fechner’s law, Bernoulli’s equation is one
of decreasing marginal gain: Each additional
$1,000 provides much greater marginal happi-
ness to a poor person than to arich one. But for
a law to show diminishing returns, it need not
be logarithmic. Many mathematical formulas
show decreasing marginal gains, one example
being a square-root formula. In fact, just such
a formula was proposed by Bernoulli’s con-
temporary, Gabriel Cramer, as an alternative
to the logarithmic rule (S. S. Stevens, 1975).
Unfortunately, in the 18th century there was
little in the way of evidence with which one
could critically test the two proposals.
Fechner’s postulate would lead generations
of researchers to seek evidence supporting
or disconfirming the logarithmic rule.

As discussed later in this chapter, Fechner
sought to bolster his logarithmic law through
measures of sensory discrimination. Soon af-
ter conceiving his law, Fechner became aware
of Weber’s work, which showed the relativity
of intensity discrimination. Weber found that
the difference in stimulus intensity needed to
be just noticeable was proportional to stimulus
intensity. Once aware of this work, Fechner
saw how Weber’s findings could be enlisted
to support Fechner’s own logarithmic psy-
chophysical equation. Fechner simply made
the assumption that every just noticeable dif-
ference (JND) in stimulation constitutes a
constant increment in sensation magnitude.
By doing so, the magnitude of a sensation
elicited by a particular stimulus could then
be specified as the number of JNDs that the
stimulus stood above the absolute threshold of
detection. The logarithmic law follows from

Weber’s finding that the physical size of the
JND (A¢) increases with stimulus intensity
(¢), whereas, according to Fechner, its psy-
chological size (Avr) does not.

This approach to psychophysical scaling
came to be characterized as indirect in that the
measures of sensation must be derived from
the data through the application of a partic-
ular theoretical model. To note that a pair of
stimuli is just barely discriminable is by it-
self to say nothing about the magnitudes of
the evoked sensations, until a theory speci-
fies how discrimination depends on sensory
magnitudes. On the other hand, certain kinds
of psychophysical judgment seem prima fa-
cie to quantify sensations, to yield scales in
a fashion that is more direct. Indeed, by the
second half of the 19th century sensory scien-
tists were already developing such methods.
Plateau (1872) and Delboeuf (1873), for ex-
ample, used what came later to be called par-
tition methods to assess sensation, asking ob-
servers to judge when two sensory intervals or
differences appeared equal. If three stimuli are
ordered in increasing physical intensity as A,
B, and C, such that the ratio B/A of physical in-
tensities equals the ratio C/B, then, according
to Fechner’s law, it follows that the perceived
difference between B and A should equal the
perceived difference between C and B. This
can be put to an empirical test by asking ob-
servers to set a stimulus B to appear midway
between A and C, a method known as bisec-
tion. Fechner’s law predicts that B = +/A x C.

The 19th century also saw the first sug-
gestions that observers may be able to judge
directly, even quantitatively, the ratios as well
as the differences between sensations. Merkel
(1888) proposed a method that he called “dou-
bled stimuli,” actually a method of doubled
sensations, in that an observer had to set one
stimulus so that its magnitude appeared to be
twice that of another. Fechner doubted such
an approach, questioning whether sensations
can even be said to have magnitudes per se.
Although it may be possible to speak of the



size of a difference between two sensations, it
was far from evident that one could speak of
the magnitude of a sensation. This doubt was
expressed by James (1892) when he wrote,
with his usual rhetorical flourish, “Surely, our
feeling of scarlet is not a feeling of pink with
a lot more pink added; it is something quite
other than pink. Similarly with our sensa-
tions of an electric arc-light: it does not con-
tain that many smoky tallow candles in itself”
(pp. 23-24).

James’s quantity objection may have per-
suaded many of his contemporaries, but it
eventually gave way to the view that sensa-
tions can indeed be considered to have magni-
tudes: Surely we can match lights with regard
to their brightness or decide whether one light
is brighter than another, and surely we can
match sounds with regard to their loudness or
decide whether one sound is louder than an-
other. The quantification of sensation requires
more than this, to be sure, and even if one ob-
tains direct estimates of sensation magnitudes,
the assignment of numerical representations
to sensations requires an appropriate under-
lying theory, making the scaling ultimately
indirect. It is probably fair to say that most
contemporary psychophysicists view sensa-
tion magnitude as a psychological variable
that is never measured directly but that is in-
ferred from some kind of empirically based
operation or judgment, given an explicit or im-
plicit model or theory. Thus, the terms direct
scaling and indirect scaling ultimately turn
out to be convenient labels that distinguish
psychophysical methods that do or do not ask
subjects to assess sensory differences or mag-
nitudes per se. This should not be taken, how-
ever, to mean that the use of a direct scaling
method automatically gives rise to a particular
numerical scale of sensation.

Psychophysical scaling requires both a
set of empirical operations and a theoret-
ical framework through which one derives
and characterizes the numerical values or
representations. The latter is the domain of
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measurement theory. For example, conjoint
measurement theory (Luce & Tukey, 1964)
provides an axiomatic framework from which
it is possible to determine numerical repre-
sentations for stimuli in ordered pairs if these
meet certain criteria. That is, in certain in-
stances, one can derive scales that define sen-
sory intervals from rank-order information.
On the other hand, the rank-order information
might arise from so-called direct judgments,
and the representations derived through con-
joint scaling need not be identical to the overt
judgments themselves (for a discussion of
measurement theory and scaling, see Luce &
Krumhansl, 1988).

Most attempts at psychophysical scaling
aim at either interval scale or ratio scale
measurement, although it is not always clear
which (if either) has been achieved in any par-
ticular study. Interval scales and ratio scales
are characterized by the uniqueness of the nu-
merical representations (see Suppes & Zinnes,
1963). Ratio scales permit multiplication by a
positive integer, whereas interval scales per-
mit multiplication by a positive integer and
addition of a constant (see Stevens, 1946,
1951). Ratio-scale measurement of length al-
lows transformation between metric scales
and English scales, between feet or yards and
centimeters or meters. Ratio scales are limited
by a fixed lower bound of zero. Interval scales,
by way of contrast, do not have a fixed zero,
as witnessed by the measurement of temper-
ature in degrees Fahrenheit and Celsius, both
of which have arbitrary zero points. It may be
tempting to classify the scale characterizing
a particular set of results solely on the basis
of the empirical operations that produce those
measurements—tempting to assume, for ex-
ample, that when an observer adjusts the light-
ness of a color to fall midway between two
others, the resulting stimuli mark off equal
steps of sensation, and thus provide measures
on an interval scale of lightness, or that when
an observer judges the loudness of one sound
to be twice another, the outcome is a ratio
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scale of loudness. This temptation should be
resisted, however, for the determination of the
type of scale requires, in addition to the basic
empirical measurements, a theoretical basis
for representing the scale values numerically.

Implicit in this discussion is a distinction
between metric and nonmetric scaling meth-
ods. Metric methods are typically direct in
that they rely on judgments that have some
prima facie metric properties. Observers may
be asked, for example, to estimate numeri-
cally the differences in loudness between var-
ious pairs of sounds that vary in intensity. One
form of metric analysis takes the numerical
estimates at face value, defining each differ-
ence in loudness as proportional to the average
numerical estimate. It is possible, however, if
not likely, that such an approach would turn up
inconsistencies within the data. An observer
might judge the difference between stimulus i
and stimulus j as 10 units, and the difference
between j and k as 12.6 units, but the dif-
ference between i and k as 45 units. But the
predicted difference between i and k would be
22.6 units, assuming a unidimensional repre-
sentation of loudness. Given such a result, it
would not be possible to assign a single nu-
merical scale value to each stimulus and still
predict the estimates accurately, as the judged
difference between i and k is much too great.
Although it is possible that loudness simply
does not have the requisite properties to de-
rive a scale, it is more likely that the incon-
sistency reflects the operation of some kind
of nonlinear numerical response process. That
is, anonlinear rule might relate the underlying
loudness differences to the overt judgments.
If so, then it should be possible to derive a set
of scale values for the stimuli that would ac-
curately reflect the underlying sensation mag-
nitude if it were possible to uncover and undo
the nonlinear response transformation.

Such rescaling may be accomplished in
two ways. The first is to find an appropriate
equation to transform the estimates in order

to make them consistent with a uniform nu-
merical representation. In the example just
given, one might simply take the square root
of the observer’s estimates, in which case the
rescaled difference between A and B becomes
3.16, the rescaled difference between B and C
becomes 3.55, and the rescaled difference be-
tween A and C becomes 6.71, this last value
being equal to the sum of the first two. This ap-
proach is also metric in that one starts with the
numerical responses, then transforms them
according to a rule that seeks to maximize
the consistency of the rescaled values with a
single representation for each stimulus.
Another approach is to jettison the numer-
ical values altogether and simply rank the
judged differences from the smallest to the
greatest. As it turns out, if certain condi-
tions are met—if the underlying sensations
have a unidimensional representation and if
there is a sufficient number of appropriately
spaced stimuli—then the rank-order informa-
tion alone is sufficient to constrain the possi-
ble numerical representations to values on an
interval scale (Shepard, 1966). A procedure
to define such a set of scale values would be
nonmetric in that it relies on only nonmetric
(ordinal) properties of the data (it could, of
course, be applied to data that had no overt
metric properties, for instance, to ordinal com-
parisons of sensory differences). The non-
metric approach has been used successfully on
many occasions to scale sensory magnitudes
(e.g., Birnbaum & Elmasian, 1977; Parker &
Schneider, 1974; Schneider, 1980; Schneider,
Parker, Valenti, Farrell, & Kanow, 1978).

VALIDATION OF PSYCHOPHYSICAL
SCALES

As the last section implies, and as will be
evident in the sections that follow, different
scaling methods frequently produce differ-
ent psychophysical scales. Assuming that the



underlying perceptual scales themselves re-
main unchanged when methods vary, the
question arises, if different methods produce
different scales, then which method (if any)
gives the right answer? One approach to vali-
dation is to require methods to give consistent
and coherent results—for example, to require
internal consistency in ratings of perceptual
intervals, as described in the last section. In
a similar vein, as described later, Fechner’s
assumptions have been challenged by evi-
dence that augmenting two stimuli matched
for perceived intensity by adding equal num-
bers of INDs to both can produce new stimuli
that no longer match. Further, variants of the
very same scaling method can produce differ-
ent scales—for example, both category-rating
scales and magnitude-estimation scales de-
pend on a variety of methodological and con-
textual factors—making it necessary to deter-
mine which variant produces a valid result.

Beyond measures of consistency, one can
try to embed the process of scaling within a
theoretical framework that makes empirically
testable predictions. In Anderson’s (1970,
1982) model, scaling data are analyzed in
terms of compatibility with simple cogni-
tive rules such as addition and subtraction,
which provide a functional theoretical frame-
work, much like that of conjoint measurement
theory (Luce & Tukey, 1964). Marks and
Algom (1998) have set forth a challenge:
that psychophysical scales both inform and
be informed by substantive theories of sen-
sory, perceptual, and cognitive processes. As
the remainder of the chapter shows, at least
some tentative steps have been taken in this
direction.

SCALING BY DISCRIMINATION
METHODS

The approach established by Fechner and later
elaborated by others such as Thurstone (1927)
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“reflects the belief that differences between
sensations can be detected, but that their ab-
solute magnitudes are less well apprehended”
(Luce & Krumhansl, 1988, p. 39). If mag-
nitudes are poorly apprehended, then it will
be necessary to infer sensation magnitudes
not from judgments of magnitude per se but
from the proportion of times that one stim-
ulus is reported to be greater than another,
coupling these measures of discrimination
with assumptions about the relation between
sensation magnitudes or differences and the
measures of discriminability. Generally, re-
sults using this approach are consistent with
Fechner’s logarithmic law when a fixed range
of stimuli is used and it is assumed that sensa-
tion changes by a constant unit whenever two
stimuli are equally discriminable. Given a dif-
ferent set of assumptions, however, the very
same measures of stimulus discrimination can
lead to different numerical representations of
sensation and, consequently, to different psy-
chophysical relations.

Fechnerian Discrimination Scales

Discrimination-scaling methods are designed
to construct scales of psychological attributes
from the discriminative or comparative re-
sponses of observers. These methods are
based on the Fechnerian principle that an ob-
server’s ability to discriminate two stimuli
grows as the difference between their psy-
chological magnitudes grows. Fechner (1860)
applied this principle in the use of the differ-
ence limen (DL) or JND to construct scales
of sensation magnitude. Because the DL or
JND is the physical difference between two
stimuli that can be discriminated on a spe-
cific proportion of trials (e.g., a proportion of
0.75), all JNDs define pairs of stimuli that are
equally discriminable. Recognizing this fact,
Fechner went on to derive a psychological
scale, i, by then assuming that every (equally
noticed) difference between stimuli separated
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[Image not available in this electronic edition.]

Figure 3.1 The dol scale of pain. One dol of pain intensity is equal to two successive JNDs.
SOURCE: From Hardy, Wolff, & Goodell, 1947. Copyright © 1947 by the Journal of Clinical Investigation.
Reproduced by permission of the Copyright Clearance Center, Inc.

by a JND, A¢, corresponds to an equal psy-
chological difference. By making this as-
sumption that JNDs represent equal incre-
ments in sensation magnitude (Avyr), Fechner
established a unit of measurement for sensa-
tion. Subsequently, using Weber’s law, which
says that the physical size of the IND (A¢)
is proportional to stimulus intensity, ¢, he de-
rived his eponymous law, which states that
sensation magnitude is proportional to the log-
arithm of stimulus intensity:

Y =klog¢.

It is well established that the Weber frac-
tion (A¢/¢) is never constant over the entire
range of stimulus intensities as dictated by
Weber’s law. The possibility remains, how-
ever, that a valid psychophysical scale may
nevertheless be established from JNDs; one
can accomplish this by measuring JNDs as a
function of stimulus intensity instead of calcu-
lating them from Weber’s law. If one assumes
that every JND corresponds to an equal in-
crement in sensation magnitude, then one can
derive a scale by adding the subjective JNDs
and plotting them as a function of their stim-

ulus values (see Falmagne, 1971, 1974, 1985;
Luce & Galanter, 1963).

An example is the dol scale for the per-
ception of pain derived by Hardy, Wolff, and
Goodell (1947). Hardy et al. focused radiant
heat onto the forehead of an observer for a pe-
riod of 3 s at various levels from the absolute
threshold for pain to the most intense stimulus
that could be tolerated without tissue damage.
Between these limits, Hardy et al. measured
21 JNDs of pain. The dol scale, illustrated in
Figure 3.1, is based on the cumulative num-
ber of subjective (pain) JNDs as a function of
stimulus intensity. The dol, a Fechnerian unit
of measurement of pain, is equal to two JNDs.

JNDs and the Form of the
Psychophysical Function

If one makes the Fechnerian assumption that
all JNDs represent equal changes in sensa-
tion magnitude, then it follows that the physi-
cal size of the IND (A¢) must be inversely
related to the slope of the psychophysical
function relating sensation magnitude to stim-
ulus intensity. Unfortunately, the empirical



evidence suggests otherwise. When psycho-
physical functions are measured by techni-
ques other than the integration of JNDs, ex-
perimental results fail to demonstrate that A¢
isinversely related to the rate of growth of sen-
sation magnitude (Gescheider, Bolanowski,
Zwislocki, Hall, & Mascia, 1994; Hellman,
Scharf, Teghtsoonian, & Teghtsoonian, 1987
Stillman, Zwislocki, Zhang, & Cefaratti,
1993; Zwislocki & Jordan, 1986).

Take the study of Hellman et al. (1987)
as an example. These investigators measured
loudness functions by asking observers to ad-
just the intensity of a 1000-Hz tone presented
in quiet to be as loud as the same tone pre-
sented with a background of either narrow-
band or wide-band noise. When this was done
at various intensity levels of the tone, the rate
of growth of the tone’s loudness was found
to be greater when heard in a background
of narrow-band noise. As seen in Figure 3.2,
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Figure3.2 Growth ofloudnessofa 1000-Hz tone
presented against a background of narrow-band
noise (NBN) or wide-band noise (WBN). At the
point where the curves cross, the difference limens
(DLs) do not differ significantly.

SOURCE: From Hellman, Scharf, Teghtsoonian, &
Teghtsoonian, 1987. Copyright © 1987 by the
Journal of the Acoustical Society of America.
Reproduced by permission.

Scaling by Discrimination Methods 99

there is a point where the two functions
cross, that is, a point at which the loudness
of the tones is the same but the slopes of
the functions differ. The insert of the figure
shows that at the crossing point, the Weber
fraction (A¢/¢) for discriminating a change
in the tone’s intensity was essentially the same
when the tone was presented in narrow-band
and wide-band noise. Because the values of
¢ are, by definition, constant at the crossing
point, a constant Weber fraction at the cross-
ing point entails a constant JND (A¢). Con-
trary to Fechner’s hypothesis, this was true
even though the slopes of the loudness func-
tions differed substantially.

These findings support an alternate hypoth-
esis, set forth by Zwislocki and Jordan (1986),
that the physical size of the JND is inde-
pendent of the slope of the psychophysical
function. Zwislocki and Jordan’s hypothesis
contradicts Fechner’s assumption that JNDs
are subjectively equal. The alternate hypothe-
sis arose from the observation in patients with
unilateral hearing impairment that JNDs for
intensity are the same when sounds are pre-
sented to the normal ear and to the ear with
cochlear impairment, even though the growth
of loudness with increasing intensity is abnor-
mally rapid in the impaired ear. Evidence that
the physical size of the JND is independent of
the slope of the psychophysical function has
been reported in other sensory modalities as
well. For example, although the slopes of vi-
brotactile functions are affected greatly by the
presence of a background masking stimulus,
the JND at a fixed level of sensation magni-
tude is not (Gescheider et al., 1994).

The finding that the physical size of the
JND is independent of the slope of the psy-
chophysical function is compatible with find-
ings of earlier studies demonstrating that
JNDs are not subjectively equal; these find-
ings suggest that JNDs do not always provide
an internally consistent set of psychophysical
scales. For example, Durup and Piéron (1933)
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had observers adjust the intensities of blue and
red lights to appear equal in brightness and
found that the two stimuli no longer had the
same brightness when their intensities were
increased by the same number of JNDs. It
follows that JNDs did not provide equal in-
crements in sensation and, as a result, cannot
be used universally as a basic unit for measur-
ing sensation magnitude (for overviews, see
Krueger, 1989; Marks, 1974b; Piéron, 1952).

Ekman’s Law

Ekman (1956, 1959) proposed that the subjec-
tive size of the JND, rather than being constant
as Fechner presumed, increases in proportion
to sensation magnitude. This principle, which
became known as Ekman’s law, states that

AY = by

where A is the subjective size of the JND at
sensation magnitude . This equation, which
applies to the psychological continuum, is ex-
actly analogous to Weber’s law, A¢ = c¢,
in the physical continuum. The value of ¢ in
Weber’s law refers to the constant fraction by
which the stimulus, ¢, must change in order
for the change to be just noticeable. The value
of b in Ekman’s law refers to the constant frac-
tion by which all values of sensation magni-
tude, ¢, change when the stimulus changes
by one JND.

It is interesting that Stevens’s power law,
which was derived mainly from the results
of magnitude-scaling procedures, implies that
Ekman’s law must also be valid if Weber’s
law is valid. Given that sensation magnitude
Y increases as stimulus intensity ¢ increases,
Weber’s law means that the physical size
of the JND increases, whereas Ekman’s law
means that the corresponding subjective size
of the JND increases. It follows mathemati-
cally that sensation magnitude will grow as a
power function of stimulus intensity, with the
exponent of the power function determined by

the values of ¢ and b. Had Fechner assumed, as
did Brentano (1874), that Weber’s law applies
to the sensation continuum as well as to the
stimulus continuum, he might have derived a
psychophysical power law instead of a loga-
rithmic law (see Gescheider, 1997). In mathe-
matical terms, Fechner assumed that Weber’s
law held at the differential level, 6¢p/¢p = c.
Given Fechner’s assumption that JNDs are
subjectively equal, 8y = b, integrating the
equation

8y /b=35¢/ce
yields Fechner’s logarithmic law
Y = klog ¢ + constant.

On the other hand, given Brentano’s assump-
tion that JNDs are proportional to sensa-
tion magnitude, §v/ /4 = b, integration of the
equation

SY /by =d¢/ce
yields the equation
log ¥ = (¢/b) log ¢ + constant

which is the logarithmic form of a power law.

According to R. Teghtsoonian (1971), the
ratio of the weakest to the most intense sensa-
tion magnitude that can be experienced is the
same in all sensory modalities, even though
the stimulus ranges are very different. Thus,
a single value of b may apply to all modal-
ities. Using power functions and values of ¢
gleaned from discrimination data in nine dif-
ferent modalities, Teghtsoonian found b to be
nearly constant at about .03. To the extent that
this is correct, Ekman’s law can be stated more
precisely as

Ay = .03y

Note, that Ekman’s and
Teghtsoonian’s hypothesis that JNDs reflect
constant sensory ratios, like Fechner’s hy-
pothesis that JNDs are subjectively equal, is

however,



challenged by empirical evidence at the end
of the last section (see Marks, 1974b).

Thurstonian Scaling

Law of Comparative Judgment

In 1927 Thurstone published a paper on the
law of comparative judgment as applied to
paired comparison judgments. The law of
comparative judgment consists of a theoret-
ical model describing internal processes that
enable the observer to make paired compari-
son judgments of two stimuli with regard to
some psychological attribute. From the pro-
portion of times that one stimulus is judged to
be greater on the attribute than another stim-
ulus, it is possible to use the law of compar-
ative judgment to calculate the average psy-
chophysical scale values for each of the two
stimuli (see Dawes, 1994; Luce, 1994).
Consider a hypothetical situation in which
an observer compares the loudness of two
sounds. If one sound is very much louder than
the other, then it should be judged louder on
most or all trials. As the intensity of the louder
sound decreases, the proportion of times it is
judged louder will decrease, until the propor-
tion reaches 0.50, indicating equal loudness.
If stimulus B is judged to be louder than stim-
ulus A on only 0.55 of the trials, then the
average loudness of B must be only slightly
greater than that of A. But if stimulus C is
judged louder than stimulus A on 0.95 of the
trials, then the average loudness of C pre-
sumably is considerably greater than that of
A. That is, if the average sensation magni-
tudes produced by two stimuli differ by only
a small amount, then the stimuli will be con-
fused often and the probability that one will
be judged greater than the other will be close
to 0.50. But if the average sensation mag-
nitudes are very different, then they will be
confused much less often, and the probability
that the stronger will be judged greater than
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the weaker will approach 1.0. Working on the
relative excellence of handwriting samples,
Thorndike (1910) recognized that such a prin-
ciple might serve as a basis for psychophysi-
cal scaling. He determined the proportion of
times one sample of handwriting was judged
better than another, then took the z score as-
sociated with this proportion to represent the
number of units on a psychological scale sep-
arating the perception of excellence elicited
by the two samples.

In his law of comparative judgment,
Thurstone (1927) clarified the reason for us-
ing z scores rather than proportions as units of
the psychological scale. In Thurstone’s terms,
presenting a stimulus to the observer results
in adiscriminal process (sensory process) that
has some value on a psychological continuum.
Because of random fluctuations in the nervous
system, repeated presentations of the same
stimulus do not produce exactly the same per-
ceptual effect every time but instead result in
a variable discriminal process. This variabil-
ity can be described by a Gaussian distribu-
tion, the standard deviation of which is called
the discriminal dispersion. The psychologi-
cal scale value of the stimulus is designated
as the mean of the distribution of discriminal
processes.

But how can one measure this distribu-
tion on the psychological continuum in or-
der to find the average discriminal process
for a particular stimulus? Thurstone decided
that the characteristics of the distribution of
discriminal processes can be obtained only
indirectly, by considering the proportions as-
sociated with the observer’s comparative
judgments of pairs of stimuli. When stimulus
i and stimulus j are presented for compar-
ative judgment, each generates a discriminal
process. The difference between the two dis-
criminal processes on a single presentation of
the stimuli is called a discriminal difference.
Because the discriminal processes resulting
from repeated presentations of stimuli i and j
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are variable, the size of the discriminal differ-
ence also varies randomly from trial to trial.
The distribution of discriminal differences is
also Gaussian, with a mean equal to the dif-
ference between the means of the distributions
of discriminal processes for stimuli i and j.
The standard deviation of the distributions of
discriminal differences is given by

Si—j = (512 + sjz- — 2r,-js,-sj)]/2

where s; and s; represent the discriminal dis-
persions resulting from repeated presentation
of stimuli i and j, and r is the correlation be-
tween momentary values of the discriminal
processes.

On each presentation of the stimulus pair,
the observer chooses the discriminal process
that is stronger. As seen in Figure 3.3, the
shaded area of the distribution of discrimi-
nal differences corresponds to the proportion
of times that experience i is greater than j,
whereas the unshaded area corresponds to the
reverse. These areas can be expressed as z
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Figure 3.3 Two overlapping distributions of dis-
criminal processes on the psychological continuum
resulting from the repeated presentation of stimulus
i and stimulus j and the distribution of discriminal
differences.

scores that designate distance in standard de-
viation units. Therefore, Thurstone’s law of
comparative judgment is

U,' — Uj = Zij (Sl2 + SJ2- — 2r,»js,<sj)l/2
where U; and U; are the means of the distri-
butions of discriminal processes correspond-
ing to the presentation of stimuli i and j, re-
spectively. Thurstone outlined five versions
or cases for applying the law of comparative
judgment, with Case V being the easiest to
solve because of its simplifying assumptions
(for ways to evaluate simplifying assump-
tions, see Guilford, 1954; Torgerson, 1958).
In Case V the discriminal dispersions of the
two distributions are assumed to be equal, and
the discriminal processes sampled from them
during comparative judgments are assumed to
be uncorrelated. With a common discriminal
dispersion serving as a unit of measurement,
the law of comparative judgment becomes

U,' — Uj = (Zij S)\/E

Because s; and s; have the same value, the
value assigned to s is arbitrary and affects only
the size of the unit of measurement. Thus, if
wesets = 1/ /2, Case V implies that the dif-
ference between two scale values, U; — U, is
equal to the proportion of times that stimulus
Jj is judged greater than stimulus i, expressed
as a normal deviate; for example, a propor-
tion of 0.84 would correspond to a difference
of one scale unit.

When the law of comparative judgment is
applied to an actual scaling problem, scale val-
ues are determined for several, not just two,
stimulus values. For example, one might be in-
terested in finding the psychological scale val-
ues of stimuli S;, S}, Sk, and S;. The simplest
procedure is to use one of the stimuli, such as
S;, as a standard stimulus to compare to the
other three. The proportions of times that the
psychological attribute is judged greater for
S;, Sk, and §; than for S; is determined. These
proportions are then converted to z scores by



referring to a table of the cumulate Gaussian
distribution. The differences in the psycholog-
ical scale values of S; and each of the other
three stimuli can then be computed.

A similar logic appears in the theory of
signal detection (TSD), as developed by
Tanner and Swets (1954) to apply to prob-
lems of stimulus detection and discrimina-
tion. The theory assumes that the observer’s
task in a discrimination experiment is to de-
cide which of two signals is more intense, and
that, over repeated trials, the effects in the ner-
vous system of these signals are noisy and
therefore produce overlapping distributions.
The observer acts like a statistical hypothesis
tester (Gigerenzer & Murray, 1987), deciding
on each trial the likelihood that one stimulus is
stronger than the other, or that a given stimu-
lus was the stronger or the weaker of the two.
Various measures of discriminability can be
determined from the results. One of these is
d’, which is interpreted to represent the dis-
tance between the means of the two distri-
butions along the psychological continuum.
Formally, d’ is equivalent to the difference
in scale values derived from Thurstone’s law
of comparative judgment, so the principles
underlying TSD are inherent in Thurstonian
scaling (Gigerenzer & Murray, 1987; Luce,
1977), making it possible to use TSD meth-
ods to derive psychophysical scales (for ex-
amples, see Braida & Durlach, 1972; Durlach
& Braida, 1969; Luce, Green, & Weber, 1976;
see also Macmillan & Creelman, 1991). For
a thorough account of TSD, see Chapter 2 in
this volume.

Method of Paired Comparison

The method of paired comparison is most of-
ten used to collect data for constructing scales
based on comparative judgments. It is an elab-
oration of the method just described, but in
this case the observer is required to com-
pare all possible pairs of stimuli. Given stim-
uli S;, S;,S;, and S,,, an observer compares
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Table 3.1 Scale Value Differences and Mean Scale
Values Obtained Using the Method of Paired
Comparison

S,' Sj Sk S[ Mean
Si — Uu,-U; U -U U-U U
S; Uj-U — Ui—Uc Uj=U U
S Ur—=U Upg—-U; — Uy —-Uy, U
S U-U U-U U-U — U

stimulus pairs S; — §;, 8 — 8.8 — S,
Sj — Sk, Sj — S], and Sk — S[. The number
of comparative judgments for each pair must
be sufficiently great—at least 100 if the scale
is to be constructed for a single observer. The
number may be reduced proportionally when
the final scale is to be constructed from the
judgments of several observers. Because ev-
ery stimulus is compared to every other stimu-
lus in paired comparison, a matrix can be con-
structed like that in Table 3.1, which gives the
differences between scale values for all pos-
sible nonidentical pairs of stimuli. The final
scale value assigned to each stimulus is the
average of the scale distances between that
stimulus and other stimuli.

Because the law of comparative judgment
provides a model for converting observed pro-
portions of paired comparisons into scale val-
ues, it is possible to reverse the procedure and
calculate proportions from scale values. In the
example of Case V given in the last section,
a difference in scale value of one unit would
correspond to a proportion of 0.84. The pro-
portions calculated from the final scale values
obtained by paired comparison can be com-
pared with those obtained in the experiment.
If the proportions predicted from the model
agree closely with those obtained experimen-
tally, then the results support the application
of the model with its particular assumptions
(see Torgerson, 1958).

When measurable physical stimuli such
as sounds and weights are judged by paired
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comparison and Thurstone’s Case V is ap-
plied, the results are consistent with Fechner’s
law provided that Weber’s law holds. This re-
sult is expected because the assumption that
the variability of discriminal processes is con-
stant for different stimuli in Case V amounts to
the Fechnerian assumption that the subjective
size of the IND is constant. If Thurstone had
proposed a Case VI in which the discriminal
dispersions increase in proportion to sensa-
tion magnitude, then a power function relat-
ing sensation magnitude to stimulus intensity
might have resulted (Stevens, 1959b, 1975).

Thurstone’s model requires that paired
comparisons be transitive. If stimulus A is
preferred over stimulus B and stimulus B
is preferred over C, then stimulus A should
be preferred over stimulus C. Some results,
however, fail to exhibit transitivity. Coombs
(1950, 1964) developed a model to explain
intransitivity as resulting from the observer’s
having a preferred value at an intermediate
point on the psychological dimension, a point
that does not correspond to one of the ex-
tremes. In paired comparison, the observer
may tend to choose the stimulus that is closer
to the preferred value; as a consequence,
the scale is folded around this value. Using
Coombs’s unfolding model, scale values on
the psychological continuum are recovered by
unfolding the continuum using the observer’s
preference data.

There is another possible explanation for
lack of transitivity. Transitivity may fail if the
psychological experiences vary in several di-
mensions rather than just one. This leads to
the topic of multidimensional scaling.

Multidimensional Scaling

Much of psychophysical scaling consists of
attempts to measure an observer’s experi-
ence on a single psychological dimension. For
example, magnitude-estimation, category-
scaling, and discrimination-scaling proce-

dures have often been used to measure the
loudness of sounds, the brightness of lights,
and the intensity of pain. The success of these
procedures depends on the ability of the ob-
server to make appropriate judgments of mag-
nitudes or differences on a single psycholog-
ical dimension while ignoring concomitant
changes along other dimensions. For exam-
ple, in judging loudness an observer must
ignore any change in the pitch of tones that
may occur as the intensity of the stimulus
changes (S. S. Stevens, 1935; see also Gulick,
Gescheider, & Frisina, 1989). The problem is
compounded if the dimension of interest can-
not be clearly defined, especially if the sensa-
tions vary substantially along more than one
dimension. Fortunately, methods of multidi-
mensional scaling (Schiffman, Reynolds, &
Young, 1981) make it possible both to iden-
tify the underlying subjective dimensions as-
sociated with the perception of differences
among stimuli and to assign to each stimulus
a psychological scale value on each of these
dimensions.

Multidimensional scaling provides meth-
ods to derive a unit of measurement that is
common to all of the underlying psycho-
logical dimensions. Measuring the overall
psychological distance between two colored
stimuli that differ in hue (which color), satu-
ration (how much color), and brightness (how
intense) is meaningful only if hue, saturation,
and brightness are measured with a common
unit. In multidimensional scaling, observers
typically judge the overall similarity or dis-
similarity of all possible stimulus pairs in an
ensemble, and itis assumed that the judgments
depend on some kind of integration of com-
mensurable differences along all of the con-
stituent dimensions. From these measures it is
then possible to derive the underlying psycho-
logical dimensions mathematically and, for
each stimulus, to determine scale values on
each dimension. To do this, one often needs to
know nothing more than the rank orders of the



overall similarities, that is, which two stimuli
are most similar, which are next, and so forth.
Given a sufficiently large set of stimuli, the
rank-order information suffices to determine
a metric structure (Shepard, 1966).

The dimensions revealed by multidimen-
sional scaling can often be represented in a
multidimensional space. A common assump-
tion is that the multidimensional space is
euclidean. Euclidean space is the space of
everyday experience, where any pointin space
can be defined in terms of a set of coordinates
and the shortest distance between two points
is a straight line. For example, in the two-
dimensional space of Figure 3.4, each point
is specified in terms of values of X and Y. If
one knows the coordinate values for any two
points within the euclidean space, it is pos-
sible to compute the distance between points
from the Pythagorean theorem. The principle
isillustrated for points A and B, where the dis-
tance between i and j (D;;) is determined by

Dy =[(X; — X)*+ (Y; — Y1/~

In traditional nonmetric multidimensional
scaling, the distances between stimuli are es-
timated from experimental observations, and
a quantitative model is used to compute the
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Figure 3.4 Two-dimensional space illustrating
euclidean distance and city-block distance.
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coordinate values for each stimulus. On suc-
cessive iterations, the distances between the
stimuli are adjusted and then compared to the
rank order of the data. Iterations end when
any improvement in goodness of fit falls be-
low a predetermined threshold. The number of
dimensions is fixed for a given computation,
but it is possible to iterate the computation as-
suming different numbers of dimensions. A
solution is accepted when adding dimensions
no longer substantially improves the fit to
the data, or the additional dimensions are not
readily interpretable. An example appears in
Figure 3.5, in which a model called ALSCAL
was used to recreate a map of the positions of
cities in the United States from arank ordering
of their distances (Schiffman et al., 1981).
Euclidean space is easily understood when
depicted graphically. Another type of space,
also easy to understand graphically, is a city
block, in which the distance between stimuli is
given as the sum of the individual component
distances along the individual dimensions,

Dij = (Xi — X))+ (Yi = Y)).

In New York City, to go from 41st Street and
1st Avenue to 42nd and 2nd Avenue, one must
either walk from 41st to 42nd, then from 1st
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Figure 3.5 ALSCAL analysis of intensity of
flying distances.

SOURCE: From Schiffman, Reynolds, & Young,
1981. Copyright © 1981 by Academic Press, Inc.
Reproduced by permission.
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to 2nd, or vice versa—a city-block path. In
euclidean space, one traverses the diagonal
(presumably by passing through the interme-
diate buildings). Torgerson (1958) pointed out
that city-block representations of distances
seem to fit the data better when the psycho-
logical dimensions are obvious to the ob-
server. This conjecture is supported by re-
sults of Attneave (1950), in which a city-block
space provided the best representation of sim-
ilarity judgments of visual stimuli that var-
ied along such clearly distinguishable dimen-
sions as form, size, and hue. Euclidean space
may represent the data better when the ob-
server does not easily separate the dimensions
such as pitch and loudness or hue and sat-
uration. Note, however, that it is not always
easy to distinguish the fit of city-block and
euclidean models (see Schneider & Bissett,
1981).

The generalized formula that describes the
distance, D, between two points in euclidean
or city-block space is

o-(ze)’

where d is the distance along one of the com-
ponent dimensions and n is equal to or greater
than 1. In city-block space, n=1, and in
Euclidean space, n = 2. Both of these multidi-
mensional spaces are examples of Minkowski
n metrics. Minkowski metrics with values of
n other than 1 or 2 are more difficult to con-
ceptualize but sometimes provide superior fits
(e.g., Gregson, 1965, 1966).

The attractiveness of multidimensional
scaling derives from the presumed properties
of the space formed by the dimensions ex-
tracted. According to Melara (1992), there
are two fundamental characteristics associ-
ated with this space: First, it serves as a
psychological model, and second, it provides
a metric. As a model, the spatial relations
among stimuli, defined by the values of the
coordinates of the space, provide a represen-

tation of the psychological similarities among
stimuli.

Psychologically similar stimuli fall close
to one another in multidimensional space,
and psychologically dissimilar stimuli fall
far apart. For the distances between pairs of
points to satisfy the requirements of a met-
ric, three conditions must be satisfied (Beals,
Krantz, & Tversky, 1968). First, symmetry is
demonstrated when the distance from X to Y
equals that from Y to X. Second, positivity
dictates that distances can never be negative.
And third, the triangle inequality requires that
the sum of distances X to Y plus Y to Z can
never be smaller than the distance between
any two of them (e.g., X to Z). These three
conditions, called metric axioms, must be sat-
isfied in order to measure the observers’ expe-
riences as they vary along multiple psycholog-
ical dimensions (see also Luce & Krumhansl,
1988).

Several analytic strategies are available
for multidimensional scaling (see Schiffman
et al., 1981). Typically, one seeks to es-
tablish the minimal number of dimensions
needed to represent the data adequately and,
for each stimulus, to establish scale values on
each dimension. Because measures of good-
ness of fit improve as the number of dimen-
sions increases, one must decide when the
fit of the model to the proximities (similari-
ties or differences) no longer substantially im-
proves with additional dimensions. Detailed
information regarding empirical methods and
analytic strategies can be found in sources
specifically devoted to the topic (e.g.,
Davison, 1983; Schiffman et al., 1981).

SCALING BY PARTITION AND
MAGNITUDE METHODS

Partition methods and magnitude methods of
psychophysical scaling require observers to
estimate or compare directly the subjective



magnitudes of stimuli or the differences be-
tween stimuli. These methods developed
largely as doubts grew about the validity of
scales derived indirectly by applying the logic
of Fechner and Thurstone to measures of sen-
sory discrimination. Whereas scaling meth-
ods grounded in discrimination data call on
observers to make ordinal judgments about
sensations, partition-scaling and magnitude-
scaling methods call on observers to make
more sophisticated judgments of the relation-
ships among the subjective magnitudes, such
as their subjective difference or ratio.

Partition Scaling

Methods of partition scaling are designed to
construct interval scales of psychological at-
tributes directly from the judgments of ob-
servers. In these methods, observers try to par-
tition the psychological continuum into equal
perceptual intervals. Two main methods, eq-
uisection scaling and category scaling, have
been developed to accomplish this objective.
In equisection scaling, observers adjust the
values of stimuli to set off equal-appearing in-
tervals of sensations, and in category scaling,
observers label various stimuli so that succes-
sive labels represent uniform subjective steps.

Equisection Scaling

As the name implies, equisection scaling re-
quires observers to section the psychologi-
cal continuum into distances that are judged
equal. For instance, an observer may be told
that stimulus A represents the lowest value
and stimulus D the highest value of the range,
and then may be asked to set the levels of stim-
uli B and C so that the distances between A
and B, B and C, and C and D are all equal. Be-
cause observers are instructed to adjust stim-
uli so that successive intervals or differences
are equal, it is commonly assumed that the
results provide interval-scale measurement of
the psychological attribute. But the interval
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properties of the scale need to be validated
independently. Unfortunately, validation pro-
cedures are often not used even when the
psychological attribute has never before been
scaled by the method.

The bisection method, originally used by
Plateau (1872), was the earliest version of eq-
uisection. In bisection, two stimuli, A and
C, are presented for inspection, and the ob-
server is asked to choose a third stimulus,
B, that falls exactly between, so that the dis-
tance from A to B equals that from B to C.
Thus, Plateau had artists paint a gray that
was midway between black and white. Gen-
erally, in equisection scaling experiments, the
observer sections more than two intervals
on the psychological continuum. Munsell,
Sloan, and Godlove (1933) used equisection
to construct a psychophysical scale of the
lightness of grays. Beginning with black and
ending with white, observers chose a series
of gray surfaces to divide the psychological
continuum into eight psychologically equal
steps.

There are two techniques for determining
a series of equal sense distances from equi-
section. In the simultaneous solution, the ob-
server is presented with two stimuli and asked
to choose n — 1 intermediate stimuli to create
n equal psychological distances. In construct-
ing the psychophysical scale, subjective mag-
nitudes on the psychological continuum are
represented by any arbitrary series of num-
bers separated by equal numerical intervals
(e.g., 1, 2, 3,4, 5), and the relevant physi-
cal characteristic of the stimuli correspond-
ing to these equally spaced subjective
magnitudes are determined by physical mea-
surement. The results of the experiment are
generally presented as a psychophysical func-
tion, which shows the scale values of sub-
jective magnitude as a function of the rele-
vant physical dimension of the stimulus. In
this way, for example, one can determine
how the brightness of lights or the pain of
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noxious stimuli depends on the intensities of
the stimuli that elicit the experiences.

An alternative approach is the progressive
solution, in which the observer on a given trial
chooses only a single stimulus to bisect a sin-
gle sensory distance. Each of the two smaller
intervals may then be subsequently bisected,
and the procedure continued until one obtains
the desired number of equal psychological in-
tervals. If four equal intervals are desired, for
example, then the interval between the two
end stimuli would be bisected first, and the
two resulting equal intervals would be subse-
quently bisected, first one and then the other.
The simultaneous solution and the progres-
sive solution are illustrated schematically in
Figure 3.6.

A good example of the simultaneous so-
lution is provided by Stevens and Volkmann
(1940), who used the method of equisec-
tion to scale the pitch of pure tones over a
wide range of stimulus frequencies. On dif-
ferent occasions, observers sectioned into four
psychologically equal intervals each of three
overlapping frequency ranges (40-1000 Hz,
200-6500 Hz, and 3000-12000 Hz). For each
of these frequency ranges, the end tones were

Simultaneous equisections
A B C D E
Progessive
bisections
| A C E
2 A B C
3 C D E
Sensation magnitude

Figure 3.6 Sensations that are separated by equal
sense differences as determined by simultaneous
and progressive solutions.

SOURCE: From Gescheider, 1997. Copyright ©
1997 by Lawrence Erlbaum, Inc. Reproduced by
permission.

Pitch

0 | | | | | | | J
40 100 200 400 1000 2000 4000 10000 20000

Frequency in Hz

Figure 3.7 Three equisection scales of the pitch
of pure tones for three overlapping frequency
ranges.

NOTE: Data of S. S. Stevens and Volkmann (1940).
SOURCE: From Gescheider, 1997. Copyright ©
1997 by Lawrence Erlbaum, Inc. Reproduced by
permission.

fixed in frequency, and the observer adjusted
the frequency of three variable tones to cre-
ate four psychologically equal steps in pitch.
Stevens and Volkmann then assigned numer-
als increasing by unit steps to the five succes-
sive frequencies in each of three frequency
ranges. This procedure resulted in the three
psychophysical functions seen in Figure 3.7.

Because the objective of the experiment
was to construct a single psychophysical func-
tion for pitch, the three component functions
had to be combined into one function ex-
tending over the entire frequency range from
40 to 12000 Hz. To accomplish this, S. S.
Stevens and Volkmann (1940) used a graphic
procedure to construct a single function that
maximized overlap of the three component
functions while at the same time accurately
representing the steps measured within each.
Torgerson (1958) suggested a more system-
atic procedure. For the overlapping portions
of the frequency ranges, he simply plotted the
values in the midrange as a function of the
values in both the lower range and the up-
per range. From the linear functions fitted to
the points, he was able to convert the units of
the lower and upper ranges into the units of the
middle scale, thereby creating a single pitch
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Figure 3.8 Pitch scale for frequencies from 40 to
12000 Hz.

NOTE: The squares, circles, and triangles represent
data obtained from the lower, middle, and upper
frequency ranges, respectively. Data of Stevens and
Volkmann (1940).

SOURCE: From Torgerson, 1958. Copyright ©
1958 by John Wiley & Sons, Inc. Reproduced by
permission of the Social Science Research Council.

scale covering the entire frequency range. The
resulting pitch scale appears in Figure 3.8.

Torgerson (1958) made the important point
that although a scale can always be con-
structed using equisection procedures, the
procedures themselves usually have no built-
in criterion for accepting or rejecting the hy-
pothesis that the observer is in fact capable of
making equal-interval judgments. To demon-
strate that the intervals are indeed mathemat-
ically equal, validating procedures should be
built into the experiment, or additional exper-
iments should be conducted. If, for example,
stimulus B is found in a bisection experiment
to lie halfway between A and C, then B should
also lie halfway between A and C in an eq-
uisection experiment in which the observers
create four intervals by setting three stimuli
between A and C. The equality of sensory in-
tervals means that the intervals or differences
themselves have ratio properties. In this ex-
ample, the psychological distance between A
and C is twice that between A and B or that
between B and C.

The pitch scale of S. S. Stevens and
Volkmann (1940) satisfied one criterion for
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validity, namely internal consistency, in that
the scale values obtained for the lower and
upper ranges of stimulus frequency were lin-
early related to the scale values obtained for
the overlapping portion of the middle range.
Indeed, it was this finding that made it pos-
sible to combine scale values from the three
frequency ranges into a single psychophysical
function for pitch.

Category Scaling

Methods of category scaling, like those of
equisection scaling, are designed to measure
psychological attributes on an interval scale.
Category techniques and equisection tech-
niques, however, require the observer to per-
form somewhat different tasks. In equisection
scaling observers must adjust or choose from
a large set those stimuli that serve to mark
off equal distances on the psychological con-
tinuum. In category scaling observers assign
a category label to each of several stimuli in
such a way that the categories are equidis-
tant on the psychological continuum. For ex-
ample, with a five-point category scale, ob-
servers should assign categories to stimuli so
that the distances on the psychological con-
tinuum between categories 1 and 2, between
categories 2 and 3, between categories 3 and 4,
and between categories 4 and 5 are all equal.
The method of equal-appearing intervals is the
simplest version of category scaling, in which
itis assumed that observers are able to keep the
intervals between category boundaries psy-
chologically equal as they assign stimuli to the
various categories. Under this assumption, the
category values assigned to stimuli are treated
as interval scale measures on the psychologi-
cal continuum.

Accurate estimation of scale values re-
quires that a fairly large number of judg-
ments be given to each stimulus. This can
be achieved by having many observers judge
each stimulus once, or by having one observer,
or a few observers, judge each stimulus many
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times. For a particular stimulus, the psycho-
logical scale value of the psychological at-
tribute under investigation is taken as the av-
erage (mean or median) value assigned. A plot
of the average category against the value of the
stimulus reveals the form of the psychophys-
ical function.

Several kinds of response bias can affect
category scales constructed by the method of
equal-appearing intervals. The judgments of
an observer, if determined solely by the per-
ceived magnitude on the psychological con-
tinuum of the stimulus, should be indepen-
dent of the values of other stimuli presented
on other trials. The scale values for a particu-
lar stimulus, however, are often found to de-
pend on the values of other stimuli used in the
experiment. This contaminating effect results
from a strong tendency for observers to use
the categories about equally often. When an
observer is biased to respond in this way, the
particular spacing of the stimuli on the physi-
cal continuum can greatly influence the form
of the psychophysical function. If, for exam-
ple, the function relating the mean ratings to
stimulus intensity is negatively accelerated,
then the curvature will tend to be exagger-
ated if the observers are presented a cluster
of low-intensity stimuli and only a few high-
intensity stimuli. In this case, observers tend
to assign all but a few of the highest cate-
gories to the weak stimuli, leaving the re-
maining one or two categories for the strong
ones. The result is an exaggeration of the dis-
tances among the low-intensity stimuli. The
same tendency can reduce the curvature if
the observers are presented many stimuli near
the high end of the stimulus continuum and
only a few at the low end. The effects of stimu-
lus spacing are illustrated in Figure 3.9. In this
hypothetical example, when the stimuli clus-
ter near the low end of the stimulus range, the
curvature of the function is very negatively ac-
celerated, whereas the function is almost lin-
ear when the stimuli cluster near the high end.

LI SR S R B B B SN BN BS S (A AN Sh R SN S M |

Mean category rating
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Figure 3.9 Hypothetical example of the effects
of stimulus spacing on the form of the category
scale.

SOURCE: From Gescheider, 1997. Copyright ©
1997 by Lawrence Erlbaum, Inc. Reproduced by
permission.

Parducci (1965, 1974) developed a range-
frequency model for category scaling. Ac-
cording to this model, the observer’s distribu-
tion of categorical responses depends on both
the range of the stimuli and the frequency with
which various stimuli are presented. Specifi-
cally, Parducci proposes that observers tend to
divide the stimulus range into equal intervals
over which they distribute their response cate-
gories. According to the first part of the model,
observers use all of the categories regardless
of whether the stimulus range is narrow or
wide, so the slope of the resulting function is
inversely related to the range of the stimuli.
According to the second part of the model,
observers assign categories equally often in-
dependent of the frequency with which vari-
ous stimuli are presented, so the curvature of
the resulting function depends on the stimulus
distribution.

Skewing the frequency distribution of
stimulus presentations positively, so that weak
stimuli are presented more often than strong
ones, causes observers to distribute their re-
sponses widely over the range of weak stim-
uli, leaving only a few high categories for the
strong stimulus levels. The resulting category



scale, when plotted against stimulus intensity,
becomes more negatively accelerated than it
is when the distribution is uniform. On the
other hand, skewing the frequency distribu-
tion of stimulus presentations negatively, so
that the strong stimuli are presented most of-
ten, causes observers to distribute their re-
sponses widely over the strong stimuli, leav-
ing relatively few categories for the weak
stimulus levels. In this case, the resulting psy-
chophysical function is less negatively ac-
celerated than one obtained with a uniform
stimulus distribution, and may even become
positively accelerated.

The problems that arise in category scaling
as a result of the tendency to use categories
equally often can be minimized, according to
S. S. Stevens and Galanter (1957), through
the use of an iterative procedure requiring ob-
servers to scale the stimuli successively sev-
eral times. In the first scaling, the spacing of
the stimuli is arbitrary, and a scale is con-
structed from the category judgments. This
scale gives a first approximation to the uncon-
taminated scale. A new series of stimuli is then
chosen with these stimuli separated by equal
distances as defined by the first scale. Using
a new group of observers, a second scale is
determined. The second scale is then used to
define yet another set of stimuli, spaced to give
equal distances on that scale, and a third set of
ratings is obtained. The procedure continues
until successive scales no longer differ, indi-
cating that an uncontaminated scale has been
achieved by neutralizing the effects of the ob-
servers’ expectation that the stimulus series
is arranged so that categories appear equally
often (see also Pollack, 1965a, 1965b).

Another approach to minimizing these re-
sponse tendencies is to provide the observers
with a verbal label for each category. Un-
der appropriate conditions, the verbal labels
may provide landmarks or anchors that help
the observers to resist tendencies to assign
categories equally often (e.g., Borg & Borg,
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1994). An example is Borg’s (1972) rating of
perceived effort (RPE) scale, in which ver-
bal labels are applied to perceived exertion
experienced in exercise, such as riding a sta-
tionary bicycle under various work loads. In
its earliest version, the highest number on the
RPE scale is 20 and has the verbal label of
“maximal exertion,” and the lowest number
on the scale is 6 and has a label of “no ex-
ertion at all’—these values being chosen to
equal about 10% of the corresponding heart
rate (200 to 60 beats/min) induced in young
observers. Between the values of 6 and 20 are
seven descriptive labels, uniformly distributed
along with the numerical scale values; experi-
mental results showed that RPE judgments are
linearly related to the work loads during exer-
cise as measured by the bicycle ergometer. A
major advantage of the RPE scale compared
to unlabeled category scales lies in the use of
the label “maximal exertion,” which presum-
ably represents an experience common to all
observers. Men and women, for example, pre-
sumably experience a similar level of exertion
at maximum, even though the levels of phys-
ical work differ, as in Figure 3.10. Borg has

Maximal exertion
Extremely hard

Very hard

Hard (heavy)

Somewhat hard

Light

Very light

Extremely light
No exertion atall 6

L L 1 L 1
0 50 100 150 200 250

Work load in watts

300

Figure 3.10 Borg’s (1972) scale of perceived
exertion.

SOURCE: From Gescheider, 1997. Copyright ©
1997 by Lawrence Erlbaum, Inc. Reproduced by
permission.
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argued that this method makes it possible to
compare individuals and groups directly.

In addition to producing consistent results,
the use of verbally labeled category scales
seems to reduce the susceptibility of cate-
gory scales to some of the potentially bias-
ing effects of stimulus spacing. Ellermeier,
Westphal, and Heidenfelder (1991) had ob-
servers rate the pain produced by pressure ap-
plied to the finger. Observers were instructed
to rate pain by first determining into which
of the following categories each stimulus fell:
very slight pain, slight pain, medium pain, se-
vere pain, or very severe pain. After choos-
ing a verbal category, the observers then had
to fine-tune the rating by giving a numerical
rating on a 10-point scale within each cat-
egory. Thus, the number ranges within cat-
egories were very slight pain (1-10), slight
pain (11-20), medium pain (21-30), severe
pain (31-40), and very severe pain (41-50).
As seen in Figure 3.11, when observers rated
pain produced by stimulus sets containing rel-
atively low or high intensities, they showed
only a small tendency to give the same range
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Category rating

0 —_
600 800 1000 1200

Pressure [kPa]

1400 1600

Figure 3.11 Category ratings of pain as a
function of pressure applied to the fingertip for
stimuli in a low range and stimuli in an overlapping
higher range of intensities.

SOURCE: From Ellermeier, Westphal, &
Heidenfelder, 1991. Reproduced by permission.

of category judgments to both stimulus sets.
Instead, the category judgments tended to re-
flect more closely the absolute levels of the
stimuli presented. Ellermeier et al. concluded
that the verbal labels provided a Bezugssys-
tem (reference frame), derived from an accu-
mulation of everyday experiences, for mak-
ing category ratings that are independent of
the context of the particular stimuli presented
in the testing session (Heller, 1985). When
the observers are given only numerical la-
bels as categories, with no verbal descriptors,
then the observers tend to use the numbers
to categorize any given set of stimuli relative
to one another instead of categorizing them
within the broader frame of reference of expe-
riences obtained outside, as well as inside, the
laboratory.

Although verbally labeled category-
scaling procedures may encourage observers
to categorize stimuli according to an exter-
nal frame of reference and thus may help
minimize certain response biases, they may
introduce others. For example, the form of
the psychophysical function may be influ-
enced by the experimenter’s arbitrary choice
of the numbers assigned to the various labels
(Gescheider, 1997). Therefore, when using
verbally labeled category scales, it is impor-
tant that the assignment of numbers to verbal
categories not be arbitrary but have a well-
developed rationale.

Category scaling, like equisection, pur-
ports to provide measurements on an interval
scale; as mentioned earlier, however, deciding
whether it does depends on deeper theoretical
considerations. If we assume that the psycho-
logical representation of a set of stimuli, the
values of sensation magnitude, are indepen-
dent of the particular psychophysical task or
method used to measure them, then what does
it mean when two different versions of cate-
gory scaling produce ratings that are nonlin-
early related to each other, or when category
ratings are nonlinearly related to magnitude



estimations? How is it possible to decide
which scale, if either, is valid?

Functional Measurement

One approach to validation has emerged from
the work of Anderson (1970, 1974, 1976,
1982, 1992) on integration psychophysics,
which focuses on measuring how separate
perceptual components combine, as when the
taste and smell of a fine wine merge to pro-
duce the perceptual experience that we might
describe as its exquisite flavor. To see how
psychological values combine, Anderson has
developed an approach called functional mea-
surement. In functional measurement, two or
more stimuli produce separate subjective im-
pressions. When the stimuli are combined,
these impressions are integrated by some rule,
often referred to as cognitive algebra, and the
observer is asked to rate the overall impres-
sions. The cognitive algebra is revealed by
examining how the observer’s ratings change
when the combination of stimuli changes.
Typically, an experimenter presents stimuli in
all possible combinations to an observer, who
rates the combinations on some psychological
dimension. If the effects of the stimulus com-
ponents combine according to a simple rule,
such as linear addition, and if responses are
linearly related to the underlying psycholog-
ical values, then the scale values will reveal
the algebraic rule directly.

Within this framework, Anderson (e.g.,
1974) has advocated the use of category scales
that have at least 20 values, or continuous
rating lines (sometimes called visual-analog
scales), because results obtained with these
scales, but often not with other scales, reveal
that the integration of perceptions obeys sim-
ple, theoretically interesting algebraic rules of
combination. If the scale is not linearly related
to the underlying psychological values but a
simple rule such as linear addition does under-
lie them, then it may nevertheless be possible
to retrieve the underlying algebraic structure,
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and thus the underlying scale values, by ap-
propriately rescaling the results (see the sec-
tion titled “Examples of Partition Scaling and
Magnitude Scaling”).

Closely related to functional measurement
is the axiomatic approach called conjoint mea-
surement (Luce & Tukey, 1964). If the rank-
order properties of the data are consistent with
axioms of transitivity and cancellation, then
there is an underlying additive structure, and
analytic methods of conjoint scaling make it
possible to retrieve scale values that are con-
sistent with additivity. Conjoint scaling may
be applied to rating-scale data, but it may be
applied just as readily to paired comparisons,
as the method is nonmetric.

Anderson (1982) reported, for example,
that children as young as three years of age
are able to integrate cognitive information by
adding effects together. It has been found, for
example, that the judged naughtiness of an act
depends on the linear sum of the perceived
harm or damage of the act and the perceived
intention of the offender (Leon, 1980). The re-
sults seem to validate simultaneously the psy-
chological principle of additivity of psycho-
logical impressions and the category-scaling
procedure. Because categorical judgments of-
ten indicate simple algebraic rules for the in-
teraction of impressions, Anderson and his
associates have taken the results to support
the validity of the category scales themselves.
Note, however, that this approach presumes
that when category scaling reveals simple al-
gebraic rules but other methods reveal more
complex ones, the latter are invalid. Though
perhaps parsimonious, the conclusions need
not be correct.

Consider the example of loudness summa-
tion. It has long been known that the loudness
of two acoustic signals that lie very close in
frequency (within a critical band) depends on
the total sound energy; that is, sound ener-
gies sum linearly within a critical band (e.g.,
Scharf, 1959). In a functional measurement
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paradigm using tones falling within a critical
band, if judgments of loudness were linearly
related to sound energy, then the judgments
would reveal an additive structure. This out-
come might lead one to infer that the judg-
ments are necessarily valid and that loud-
ness is a linear function of sound energy. But
other considerations indicate that loudness is
nonlinearly related to sound energy, and that
the rule describing the combination of loud-
nesses within a critical band is not additive,
in that the components mask each other (see
Marks, 1979). As Gescheider (1997) noted,
functional measurement may be verified if
there is an independent way to test the as-
sumed cognitive algebra. If not, then the claim
that category scales are valid because the re-
sults suggest simple a cognitive algebra is
insufficient.

Estimating Perceptual Differences

Another approach to partition scaling is to
have observers judge sensory differences be-
tween stimuli. In one version of the method,
observers are asked to give numerical rat-
ings to perceptual intervals defined by pairs
of stimuli. For example, an observer could use
a category scale (or magnitude estimation) to
judge the perceived differences between stim-
ulus i and stimulus j, between stimulus j and
stimulus k, between stimulus i and stimulus &,
and so forth. If the sensations corresponding
to stimuli Z, j, and k lie on a single psycho-
logical dimension and if the judgments are
linearly related to the underlying psychologi-
cal differences, then the results should be nu-
merically consistent; that is, the judged differ-
ence between i and k should equal the sum of
the judged difference between i and j and the
judged difference between j and k.

A simpler version of the method asks ob-
servers to make only ordinal judgments of the
intervals, for example, to decide whether the
perceptual interval defined by stimuli i and j
is greater or smaller than the interval defined

by stimuli k and /. Here, the objective is to rank
the perceptual differences from the smallest
to the greatest. Because the set of rank or-
ders constrains the metric properties of the
scale (given a sufficient number of stimulus
values), from the ranking of perceptual differ-
ences it is possible, by using a mathematical
procedure of nonmetric scaling (akin to the
methods used in multidimensional scaling),
to construct an interval scale of perceptual
magnitude. That is, simply by knowing the
rank order of perceptual differences and the
corresponding stimulus pairs, it is possible to
establish a psychophysical function describ-
ing the relationship between the magnitude
of a perceptual attribute and the correspond-
ing physical values of the stimulus (Shepard,
1966). Even if the data are collected with a nu-
merical procedure, such as category rating or
magnitude estimation, there may be reasons to
use only the rank order information. To per-
form the nonmetric scaling, the rank ordering
of the intervals must exhibit two properties.
One is weak transitivity

if S,'Sj > SjSk and SjSk > SkSI,
then SiSj > S5

and the other is monotonicity

if S,-Sj > S5, and SjSk > SnSns
then S; Sk > S5,

(for review, see Marks & Algom, 1998).

The results obtained with this method, as
with some category-rating methods and many
magnitude-scaling methods, commonly indi-
cate that sensation magnitude increases as
a power function of stimulus intensity, al-
though the exponents are consistently smaller
than those obtained with methods such as
magnitude estimation. Much of the work us-
ing this method has focused on the problem
of constructing scales of loudness (Algom
& Marks, 1984; Parker & Schneider, 1974;
Popper, Parker, & Galanter, 1986; Schneider,
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Figure 3.12 Loudness scale constructed from a
nonmetric scaling procedure.

SOURCE: From Schneider, Parker, & Stein, 1971.
Copyright © 1974 by Academic Press, Inc. Repro-
duced by permission.

Parker, & Stein, 1974). The results plotted in
Figure 3.12, from a study by Schneider et al.
(1974), illustrate a typical loudness scale ob-
tained with the method of nonmetric scaling
of perceptual differences.

Magnitude Scaling

Measurement of physical properties on ra-
tio scales is highly desirable because ratio
scales contain characteristics of order, dis-
tance, and origin while retaining maximal cor-
respondence with the number system. That the
virtues of ratio scales are equally applicable
to psychophysical measurement was recog-
nized as far back as 1888, when Merkel con-
ducted experiments to determine the change
in a stimulus that doubled the magnitude of
a sensation. A similar procedure was used by
Fullerton and Cattell (1892), who asked ob-
servers to adjust a stimulus to produce a sen-
sation that was some fraction or multiple of
the sensations produced by a standard stim-
ulus of fixed intensity. The procedure, called
ratio production, results in ratio scales of sen-
sation if the stimuli do in fact define a sensory
ratio and if it is possible to specify the ratio’s
numerical value. It was not until the 1930s,
however, when acoustical engineers became
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concerned with the problem of numerically
specifying psychological values of loudness,
that techniques for ratio scaling of sensations
began to be used widely.

The practical problem of constructing
scales for loudness arose out of an obvious
failure of Fechner’s law. The law had been
accepted by those acoustical engineers who,
when they converted sound intensity to the
logarithmic decibel scale, thought they had
thereby also quantified the loudness of sound.
It soon became apparent, however, that the
decibel scale conflicted with direct experi-
ence of loudness; an 80-dB sound appears
to most people to be much more than twice
as loud as a 40-dB sound. Consequently, nu-
merous studies were conducted in the 1930s
in an attempt to construct ratio scales of
loudness (e.g., Fletcher & Munson, 1933,
Geiger & Firestone, 1933; Ham & Parkinson,
1932; Richardson & Ross, 1930; Rschevkin &
Rabinovich, 1936).

This endeavor started with the work of
Richardson and Ross (1930), who were the
first to use the method that S. S. Stevens
(1953) later called magnitude estimation. In
Richardson and Ross’s study, observers lis-
tened to a standard tone and were told that
its loudness should be represented by the nu-
meric response “1.” The observers were then
asked to give other numbers to test tones that
varied in intensity in proportion to the num-
ber “1” associated with the standard. When
the numerical judgments were plotted against
sound intensity, the result was a power func-
tion, rather than the Fechnerian logarithmic
function. The observers’ loudness judgments
were proportional to the sound pressure raised
to the power of 0.44 or, equivalently, propor-
tional to sound energy raised to the power
of 0.22.

A procedure for measuring loudness on a
ratio scale that did not require the observers
to assign numbers was developed by Fletcher
and Munson (1933). They began with the
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assumption that listening to a tone with two
ears instead of only one doubles the tone’s
loudness. By determining the intensity of a
sound presented to two ears (¢*) that sounds
as loud as a given sound presented to one
ear (¢), Fletcher and Munson could calculate
the sound intensities that corresponded to a
2:1 ratio of loudness—in this case ¢ should
have twice the loudness of ¢* when both are
heard with just one ear. Fletcher and Munson
obtained confirming evidence first by mak-
ing the parallel assumption that the loudness
of tones widely separated in sound frequency
(falling in separate and non-overlapping crit-
ical bands) sums linearly and then by collect-
ing comparable loudness matches.

From monaural and binaural loudness
matches and from matches of single tones to
complex tones, Fletcher and Munson (1933)
constructed the loudness scale seen in Fig-
ure 3.13. When loudness is plotted on a log-
arithmic axis as a function of the logarithmic
decibel scale, the linear function reveals that
between 40 and 100 dB SPL loudness is a
power function of sound intensity (exponent
of 0.30 in terms of sound energy or 0.60 in
terms of sound pressure). The log-log slope
of the loudness function becomes steeper at
lower sound intensities and is approximately
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Figure 3.13 The loudness scale derived by
Fletcher and Munson (1933), plotted against sound
intensity in decibels.

proportional to sound energy (the square of
pressure) near threshold.

Magnitude Estimation

One of the most popular scaling methods used
in current investigations is magnitude esti-
mation, the method first used by Richardson
and Ross (1930) and then elaborated by S. S.
Stevens (1953, 1955, 1975). In magnitude es-
timation, observers are asked to make direct
numerical estimates of the perceptual magni-
tudes produced by various stimuli. Stevens,
whose name is most closely associated with
the early use of this method, conducted nu-
merous experiments using magnitude estima-
tion to study brightness, loudness, and other
sensory continua. Experiments on loudness
typically produced a power function with an
exponent of 0.3, in excellent agreement with
the scale derived by Fletcher and Munson
(1933) from the loudness-matching proce-
dure just described. Since the publication of
Stevens’s original papers on the topic, the re-
sults of hundreds of experiments, conducted
on many perceptual dimensions and under
many stimulus conditions, have revealed that
the numeric responses R of observers in mag-
nitude estimation as stimulus intensity ¢ is
varied can be described by a power func-
tion with exponent 8 and constant k in the
equation

R = k¢”.

Based on such findings, Stevens (1957, 1975)
proposed a power function as the psychophys-
ical law to replace Fechner’s logarithmic for-
mulation. This hypothesis, which has become
widely known as Stevens’s power law, is

v =ke

where ¥ is sensation magnitude. Implicit in
Stevens’s hypothesis was his assumption that
the average observer’s responses are propor-
tional to the magnitude of the sensory experi-
ence (R o« ¥).



S. S. Stevens (1957, 1958) described two
main versions of magnitude estimation. In
one, the observer is presented with a stan-
dard stimulus and is told that the sensation it
produces has a certain numerical value called
the modulus. On subsequent trials, the ob-
server tries to assign numbers to the sensa-
tions produced by other stimuli relative to
the assigned value of the modulus. The ob-
server is instructed to make judgments, on
a particular sensory dimension, that reflect
how many times one sensation is greater than
another sensation (the ratio between the
sensation of the modulus and that of the test
stimulus). Generally, approximately 8 to 12
stimulus values are used, and each is presented
two or three times in random order to several
observers. The data are combined by calculat-
ing the median or geometric mean response
given to each stimulus by each observer, then
by calculating overall averages (median or ge-
ometric mean) across all observers. Geomet-
ric means are commonly used because the log-
arithms of magnitude estimates tend to be nor-
mally distributed, and because the standard
deviation tends to increase linearly with the
mean. Arithmetic means are seldom used be-
cause their values may be greatly affected by
a few unrepresentative high judgments. Fur-
ther, geometric averaging can preserve char-
acteristics of psychophysical functions that
are lost in arithmetic averaging. If different
observers give power functions with different
exponents, then geometric averaging yields a
power function whose exponent is the arith-
metic average of the individual exponents,
whereas arithmetic averaging may yield a re-
sult that is inconsistent with a power function.

In the other version of magnitude esti-
mation, the standard stimulus with its
experimenter-defined modulus is omitted. In-
stead, the various stimuli are randomly pre-
sented to the observer, who assigns numbers to
sensations in proportion to their magnitudes.
Instructions to the observer may be modeled

Scaling by Partition and Magnitude Methods 117

after the following example, provided by S. S.
Stevens (1975, p. 30):

You will be presented with a series of stimuli in
irregular order. Your task is to tell how intense
they seem by assigning numbers to them. Call
the first stimulus any number that seems appro-
priate to you. Then assign successive numbers
in such a way that they reflect your subjective
impression. There is no limit to the range of
numbers that you may use. You may use whole
numbers, decimals, or fractions. Try to make
each number match the intensity, as you per-
ceive it.

Because observers have a strong tendency
to use numbers that appear to match naturally
the magnitudes of perceived stimuli, biases
may arise when observers are given a standard
stimulus and modulus chosen by the experi-
menter (Hellman & Zwislocki, 1961). There-
fore, it is generally considered better to allow
the observer to choose the modulus rather than
to designate one. In either method, the average
of the numbers assigned to a particular stim-
ulus defines the psychological scale value for
that stimulus, and a plot of the scale values as
a function of some property of the stimulus
constitutes the psychophysical function. Be-
cause extensive practice is not necessary and
because it often suffices to present each stim-
ulus only a few times to each observer, mag-
nitude estimation can be used in experiments
that vary several parameters of the stimulus.

An experiment by J. C. Stevens and Marks
(1971) illustrates how the method of magni-
tude estimation has been used to investigate
sensory information processing. The prob-
lem under investigation was spatial summa-
tion in the perception of warmth. At the detec-
tion threshold, spatial summation is expressed
as the inverse relationship between the inten-
sity of a stimulus required to detect a stimu-
lus and the size (areal extent) of the stimulus
(Kenshalo, Decker, & Hamilton, 1967). As
the area of the stimulus applied to the skin
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is made larger, the increase in temperature
needed to detect a sensation of warmth de-
creases. Indeed, to elicit a threshold sensa-
tion, it is roughly the total heat applied to the
skin—the product of the intensity (energy per
unit area) and area—that is critical.

J. C. Stevens and Marks (1971) were in-
terested in how the intensity and area of a
stimulus combine to produce warmth sensa-
tions above the detection threshold. In their
experiment, observers gave magnitude esti-
mates of the warmth produced by radiant heat
emitted from a lamp positioned near the back
or the forehead. The data in Figure 3.14 are
geometric means of the magnitude estimates,
plotted as a function of stimulus intensity for
stimuli of different sizes applied to the fore-
head. Spatial summation is indicated by the
greater estimates given to larger areas of stim-
ulation for any particular stimulus intensity. It
is clear, however, that the area of the stimu-
lus has a diminishing effect on the judgments
of warmth as stimulus intensity increases. In
fact, extrapolating the functions for different
areas of stimulation indicates that spatial sum-
mation should disappear at an intensity of
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Figure 3.14 Magnitude estimation of warmth as
a function of stimulus intensity on the forehead for
several different areas of stimulation.

SOURCE: From J. C. Stevens & Marks, 1971.
Reprinted by permission.

about 800 mW/cm?, a level corresponding to
the threshold for pain. Because body heating
(thermal load) is determined by the total en-
ergy integrated over large body areas, it is ad-
vantageous to sense warmth in this way. On
the other hand, because tissue damage due to
burning depends more on the absolute tem-
perature of the skin than on total energy ab-
sorbed, it is biologically advantageous to feel
pain once the temperature of any portion of the
skin reaches a critical level (Marks, 1974a).

The description of this experiment on
warmth perception illustrates how magni-
tude estimation has been used to investigate
the complex problem of sensory function. The
method has become a valuable tool for the
study of sensory processes, but it has not been
restricted to the research on the senses. The
simplicity of magnitude estimation makes it
easily applicable to the scaling of any psy-
chological attribute. For example, attributes
as different as the brightness of lights (J. C.
Stevens & Stevens, 1963), the psychological
worth of money (Galanter, 1962), the judged
severity of crimes (Sellin & Wolfgang, 1964),
the perception of emotional stress (Holmes &
Rahe, 1967), and the pain of labor contrac-
tions (Algom & Lubel, 1994) have all yielded
to magnitude estimation.

Magnitude Production

Magnitude production, often used in conjunc-
tion with magnitude estimation, is the inverse
procedure. In magnitude production, an ob-
server is given numerical values of sensa-
tion and is asked to adjust stimuli to produce
the corresponding sensory magnitudes. The
psychophysical function is constructed by
plotting the prescribed values of sensation
magnitude against the average settings of the
stimulus.

The use of magnitude-production and
magnitude-estimation procedures in the same
scaling experiment has been proposed as a
way to offset systematic errors inherent in



either method (S. S. Stevens, 1958). For exam-
ple, many observers tend to exhibit what has
been termed a regression effect, where they
appear reluctant to make extremely low or ex-
tremely high responses. Thus, magnitude esti-
mates given to very weak stimuli may be “too
large,” and those given to strong stimuli may
be “too small.” Analogously, stimuli in mag-
nitude production may be set too high when
observers are given small numbers and too
low when given high numbers. The so-called
regression effect is typically seen as a reduc-
tion in the log-log slope of a psychophysical
function obtained with magnitude estimation
but as an increase in the slope of a function
obtained with magnitude production.

The regression effect is illustrated in Fig-
ure 3.15, which shows the results of experi-
ments on loudness reported by Stevens and
Guirao (1962). Each data point is the geo-
metric mean of two magnitude estimations or
two magnitude productions given by each of
10 observers. Because of the regression ef-
fect, the sensation-magnitude functions are
steeper in magnitude production than in mag-
nitude estimation (although the direction may
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Figure 3.15 Loudness of a 1000-Hz tone as de-
termined by magnitude estimation (open circles)
and magnitude production (filled circles). Data of
S. S. Stevens and Guirao (1962).
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reverse when the range of stimuli or num-
bers is very small; see R. Teghtsoonian &
Teghtsoonian, 1978). When the functions dif-
fer in this way, it is generally assumed (al-
beit not proven) that the unbiased function
lies somewhere between the two, and thus it is
advisable to combine the results by some pro-
cedure. Hellman and Zwislocki (1963) have
recommended using a method of numerical
magnitude balance, in which the functions ob-
tained by magnitude estimation and magni-
tude production are geometrically averaged.

Absolute Magnitude Estimation

The method of absolute magnitude estimation
derives from the notion that for an individual
observer, at any moment in time, there is an
absolute connection between the observer’s
conception of the magnitude of a number and
the observer’s perception of sensory magni-
tudes. If so, then observers behave as though
scale values defined by these numbers are ab-
solute and, unlike ratio scales, cannot be trans-
formed even by multiplication by a positive
constant. Operationally, the implication is that
the assignment of a “deviant” numerical mod-
ulus to a stimulus will distort the resulting
magnitude estimation scale.

Hellman and Zwislocki (1961) argued that
observers tend to use absolute values rather
than ratio relations when giving magnitude
estimates of sensation. In their experiment,
they found that the ratio of magnitude estima-
tions given to a fixed pair of stimuli depended
strongly on the value of the modulus assigned
to the standard stimulus. By this time, S. S.
Stevens (1956) had already recognized the
distortions that may arise from the use of a
standard stimulus and an arbitrary modulus.
Consequently, he recommended dropping the
use of the standard stimulus so that observers
could choose their own modulus when assign-
ing a number to the stimulus presented on the
firsttrial. As evidence that the modulus chosen
by observers on the first trial is not arbitrary,
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there is a fairly high correlation between the
numbers chosen on the first trial by differ-
ent observers and the intensity of the stimulus
presented.

These findings and others eventually led
to the development of a method called abso-
lute magnitude estimation (AME; Zwislocki,
1983; Zwislocki & Goodman, 1980), in which
the observers are instructed to assign a num-
ber to each stimulus so that the subjective
magnitude of the number matches that of the
stimulus and to ignore numbers assigned to
preceding stimuli. The following instructions
are a generalized version of those used by
Zwislocki and Goodman (1980).

In this experiment, we would like to find out
how intense various stimuli appear to you. For
this purpose, I am going to present a series of
stimuli to you one at a time. Your task will be
to assign a number to every stimulus in such
a way that your impression of how large the
number is matches your impression of how in-
tense the stimulus is. You may use any positive
numbers that appear appropriate to you—whole
numbers, decimals, or fractions. Do not worry
about running out of numbers—there will al-
ways be a smaller number than the smallest you
use and a larger one than the largest you use. Do
not worry about numbers you assigned to pre-
ceding stimuli. Do you have any questions?

These instructions contrast most directly
with those of ratio magnitude estimation
(RME), in which observers are instructed to
make the ratio of successive numbers equal to
the ratio of successive sensations (e.g., Luce
& Green, 1974). In many instances, as in the
experiment of J. C. Stevens and Marks (1971)
described earlier, magnitude-estimation in-
structions fall somewhere between AME and
RME in that observers are asked to make their
judgments proportional to sensation magni-
tudes but are not explicitly asked to estimate
each sensation relative to the previous one.

Proponents of AME have argued that ob-
servers are capable of judging sensation mag-

nitudes not on the basis of the ratios of
their sensations but by a matching opera-
tion (Gescheider, 1993; Zwislocki, 1991),
whereby numbers are assigned according
to perceived magnitudes—according to the
magnitudes of their sensations. This opera-
tion of matching, which occurs on an ordinal
scale, is claimed to be the basis of all physical
and psychophysical measurement.

The method of AME has been used suc-
cessfully with young children as well as adults
(Collins & Gescheider, 1989; Zwislocki &
Goodman, 1980). This finding supports the
hypothesis that matching the perceived mag-
nitudes of numbers and stimuli is a natural
and relatively simple process, which may de-
velop at an early age when children begin to
learn cardinal properties of numbers. Indeed,
Collins and Gescheider (1989) found that
lines and tones assigned the same number in
AME were also judged to be equal in a cross-
modality matching task. The AME method
may even reduce contextual effects associ-
ated with response bias found in RME (e.g.,
Gescheider, 1993; Gescheider & Hughson,
1991), although AME probably does not
completely eliminate contextual effects
(Gescheider & Hughson, 1991; Ward, 1987).

Individual Differences

Magnitude-estimation functions of individ-
ual observers vary substantially. When power
functions are fitted to individual results, the
largest exponent is commonly two or even
three times as great as the smallest (e.g.,
Algom & Marks, 1984; Hellman, 1981;
Logue, 1976, Ramsay, 1979; J. C. Stevens
& Guirao, 1964), and sometimes even
greater (Collins & Gescheider, 1989; M.
Teghtsoonian & Teghtsoonian, 1983). An im-
portant problem in psychophysical scaling has
been to determine how much of this vari-
ability reflects real interindividual variation in
the relation between stimulus and sensation.



It is generally agreed that the variabil-
ity seen in individual magnitude judgments
far exceeds the variability of the under-
lying sensory processes (Gescheider, 1988;
Gescheider & Bolanowski, 1991). For exam-
ple, interobserver variability in magnitude-
estimation scales of loudness is thought to be
much greater than the variability in the under-
lying loudness functions (Algom & Marks,
1984; Collins & Gescheider, 1989; Zwislocki,
1983). If two observers gave loudness expo-
nents of 0.4 and 0.8, and if these exponents
accurately reflected differences in their un-
derlying loudness perceptions, then the ratio
of loudnesses of a near-threshold tone (say,
10 dB SPL) and an extremely loud tone (say,
100 dB) would be more than 60 times greater
in the observer with the larger exponent. Peo-
ple undoubtedly differ far more in their overt
judgments than they do in their actual per-
ceptions. Judgments of sensory magnitude re-
flect both sensory and judgmental processes,
and both kinds of processes contribute to the
total variability across individual observers.
This contention has been supported by the
finding that correcting magnitude estimation
functions of individual observers for the id-
iosyncratic ways that they assign numbers to
sensations can substantially reduce the vari-
ability seen in individual results (Algom &
Marks, 1984; Collins & Gescheider, 1989;
Zwislocki, 1983).

Itis clear that judgmental processes, which
govern how numeric responses are mapped
onto sensations, account for much of the vari-
ability found in the results of individual ob-
servers (see Baird, 1997; Gescheider, 1997,
Marks & Algom, 1998; Poulton, 1989). One
component of the processes of judgment has
been characterized by Baird (1975) and his
colleagues (Baird & Noma, 1975; Noma &
Baird, 1975; Weissmann, Hollingsworth, &
Baird, 1975) as numeric response preference
(e.g., preference for particular numbers, for
multiples of “5” and “10,” etc.). Individual
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differences in numeric response preference
likely account for some of the interindividual
variability seen in magnitude estimation. For
example, numeric response preferences could
influence the absolute size of numbers chosen,
the range of numbers, and whether the num-
bers are linearly applied to sensation magni-
tudes. Although the nature of such judgmental
processes is not yet entirely understood, it is
clear that in order for numerical estimates to
be of value in measuring psychological mag-
nitude, one should use experimental controls
to minimize potential biases. The use of ex-
perimental controls can be understood best in
the context of stimulus transformations and
response transformations.

Stimulus Transformations and
Response Transformations

Of fundamental importance in psychophysics
is the stimulus-transformation function (also
known as the psychophysical law), repre-
sented as the quantitative relation between
stimulus and sensation. Although measure-
ment of physical stimuli has improved
markedly in the last century as physics and
engineering have provided increasingly better
methods for measuring environmental ener-
gies, measurement of sensation has remained
problematic. Because they are subjective
events, sensations cannot be directly observed
in others. Instead, we must infer their
existence and magnitude from observable
behavior such as magnitude estimations.
Consequently, to produce a valid stimulus-
transformation function, it is necessary to de-
rive a valid measurement of sensation mag-
nitude from observable sensory responses.
When the responses of observers accurately
reflect the underlying sensation magnitudes,
formulating a valid stimulus-transformation
function consists of describing mathemati-
cally how the responses are related to the
stimuli that evoke them. Unfortunately, it is
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Figure 3.16 Relations among the stimulus trans-
formations function, the response transformations
function, and the empirically determined stimulus-
response function.

SOURCE: From Gescheider, 1997. Copyright ©
1997 by Lawrence Erlbaum, Inc. Reproduced by
permission.

often unknown whether observers’ sensory
responses accurately reflect the underlying
sensations.

For this reason the assumption that mag-
nitude estimates are proportional to sensa-
tion magnitudes has been challenged (e.g.,
Anderson, 1970; Birnbaum, 1982; Shepard,
1981). The problem is illustrated in Fig-
ure 3.16. The limitations of the method of
magnitude estimation, or other “direct” mea-
sures, become apparent when an investigator
treats the experimentally determined function
(f3) relating stimulus (¢) and numeric re-
sponse (R)

R = f3(¢)

as equivalent to the (unknown) stimulus-
transformation function (f;) that describes
the relation between the intervening variable,
sensation (), and the stimulus (¢)

v = fi(9).

Shepard (1981) pointed out that one must
consider the characteristics of a second trans-
formation, a response transformation, which
mediates between sensation and response.
This second transformation ( f;) defines the
relation between the numeric response and
the intervening variable of sensation magni-

tude ()
R = fo(¥).

The experimentally observed relationship,
R = f3(¢), between stimulus and response
results from a concatenation of the stimu-
lus transformation and the response transfor-
mation.

Shepard noted that v is not observable and,
consequently, the equation for R must be writ-
ten as

R = f3(¢) = f2l f1(P)].

Knowing f3 does not make it possible to de-
termine either of the component functions
(i.e., f1 or f,) unless one of these is also
known. Therefore, the conclusion drawn by
S. S. Stevens (1957) from magnitude esti-
mation that f is a power function relies on
the implicit assumption that instructions to
the observer have ensured that f, is a sim-
ple power function. Further, for the exponent
of the underlying function f; to be identical to
the exponent of the overt function f3, f> must
be linear, that is, must have an exponent equal
to 1. Shepard argued that Stevens never ade-
quately grounded his assumption that instruc-
tions would have exactly this effect, and there-
fore questioned the validity of the power law
as an account of the stimulus-transformation
function.

These considerations lead to a two-stage
theory of magnitude estimation. In the two-
stage theory, the first stage is sensory, involv-
ing the neural transformation of stimuli to
sensations, whereas the second stage is more
cognitive, involving processes of judgment.
The theory originated in the early work of
Attneave (1962) and Curtis, Attneave, and
Harrington (1968), according to which an ob-
server’s responses result from two processes:
First, the stimulus produces a sensation, and
second, the sensation leads to an overt re-
sponse. To the extent that the first of these two
stages is of primary interest, the second stage



must be taken into account when making in-
ferences from observed relations between the
stimulus and response.

Category-Ratio Scales

Both RME and AME leave unresolved the
matter of how to measure individual differ-
ences in underlying sensory magnitudes. As
Borg (1982) wrote, “if one subject calls the
loudness of a certain sound ‘8’ and another
20, this does not necessarily mean that the
person who says ‘20’ perceives the sound to
be louder than the one who says ‘8. If, on
the other hand, one says ‘weak’ and the other
says ‘loud’ or ‘strong,” we can be fairly sure
that the first person perceived the sound to be
weaker than the second one” (p. 28). Accord-
ing to Borg, numeric procedures such as mag-
nitude estimation yield information about the
relative differences in the subjective impres-
sions of stimuli but provide little information
about the absolute levels of these impressions.
Consequently, magnitude estimates given by
individual observers cannot be meaningfully
compared in any simple or direct manner. This
is true in AME as well as in RME because the
natural number systems used in AME can dif-
fer among observers by as much as two orders
of magnitude (Collins & Gescheider, 1989).
Borg’s (1982) solution was to create a
scaling procedure with properties of both
verbally labeled category scales and magni-
tude scales—which he calls a category-ratio
scale. Borg initially designed the category-
ratio scale to measure perceived exertion dur-
ing exercise, such as pedaling a stationary
bicycle. A critical assumption is that dif-
ferent individuals experience the same sub-
jective value at maximal perceived exertion,
even though they vary in their physical ca-
pacity. Borg also assumes that the psycho-
logical range from “minimal” to “maximal”
perceived exertion is roughly the same in dif-
ferent individuals. Given these assumptions,
all observers should have a common scale
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of perceived exertion, with a common anchor
at the point of maximal exertion. The theory
also assumes that through association of de-
scriptive adjectives (e.g., “extremely strong,”
“strong,” “moderate,
with various everyday experiences of exer-
tion, different observers learn to associate
verbal descriptors with comparable levels of
perceived exertion. So, for example, if one
person is able to exercise at a maximal level
of 250 W, another at only 150 W, the first per-
son may report “moderate exertion” at 75 W,
the second at 50 W; and when they do, they
have comparable perceptual experiences. In
constructing his category-ratio scale, Borg as-
signed numbers to the descriptive adjectives
in such a way as to make the results ob-
tained with his scale agree well with those
obtained with magnitude scaling (see Marks,
Borg, & Ljunggren, 1983). A related method,
called labeled-magnitude scaling, developed
by Green, Shaffer, and Gilmore (1993), has
seen increasing use in recent years, especially
in studies of oral sensations, such as taste and

LEINT3

weak,” “very weak”)

oral irritation.

Line-Length Calibration

Zwislocki (1983) developed a technique to
estimate the response transformations of in-
dividual observers from magnitude estimates
of the perceived length of lines. Perceived
length is assumed to be linearly related to
physical length. If this assumption is correct,
then the function relating magnitude estimates
to physical length reveals the response trans-
formation for perceived length. By assuming
further that a given observer uses the same
response transformation when judging loud-
ness as well as line length, Zwislocki was able
to correct the loudness judgments of individ-
ual observers. When he did this, the results
showed that all observers exhibited perfect
linear summation of the loudness of tones of
widely different frequencies (i.e., tones pre-
sented in different critical bands).
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Figure 3.17 Magnitude estimates of loudness corrected by the response transformations functions
estimated from magnitude estimates of apparent length of lines.

NOTE: Data of Collins and Gescheider (1989).

The technique of line-length calibration is
illustrated in Figure 3.17 for one observer
who gave magnitude estimates of the loud-
ness of tones and the perceived lengths of lines
(Collins & Gescheider, 1989). At each tone
intensity, the magnitude estimate of loudness
is converted to a line length that was given
the same magnitude estimate as the tone. As-
suming that the sensation magnitude of line
length is proportional to actual line length, line
length becomes the measure of sensation mag-
nitude (in this case, loudness). The function
in the lower right quadrant of the figure is the
corrected loudness function. The procedure is
simplified when magnitude estimates of both
the continuum of interest and line length are
power functions. For example, the corrected

power function exponent (6) for loudness is

0 =a/p

where « is the exponent for magnitude es-
timation of loudness and § is the exponent
for magnitude estimation of perceived length
(see Collins & Gescheider, 1989; Zwislocki,
1983).

A related method, cross-modality match-
ing, avoids the necessity of having observers
use numbers at all. In cross-modality match-
ing, observers adjust the intensities of stim-
uli in different modalities to make them ap-
pear equally intense (J. C. Stevens, Mack,
& Stevens, 1960; J. C. Stevens & Marks,
1965; S. S. Stevens, 1959a). When Collins
and Gescheider (1989) had observers match



line length to loudness, the resulting loud-
ness scales were essentially the same as those
measured by the line-length calibration pro-
cedure just described. The calibrated loud-
ness function in Figure 3.17, for example,
agrees closely with the results obtained by di-
rectly matching perceived length to loudness.
Because scales obtained by length matching
are essentially the same as those determined
from the calibration method, both methods
may be used with confidence, so practical con-
siderations govern which approach to take in
a given situation. The variability across ob-
servers, presumably due largely to variation
in response transformations, is much smaller
than that in magnitude estimation when one of
these cross-modality methods is used (Collins
& Gescheider, 1989).

Magnitude Matching

A closely related way to deal with individual
differences in the use of numbers in magnitude
estimation is through a method called mag-
nitude matching that was developed by J. C.
Stevens and Marks (1980). Here, the objective
is to have observers judge the sensory mag-
nitudes of stimuli from two different modali-
ties, A and B, on a single common scale. To
this end, stimuli from the two modalities are
presented within the same session, sometimes
alternating between modalities from trial to
trial. One of the two modalities serves as the
standard and the other as the test modality.
If the individuals or groups can be assumed
alike in their perception of stimuli presented
to the standard modality, then judgments in the
standard modality can serve as a basis for cor-
recting judgments made of stimuli presented
to the test modality.

To illustrate the method, we turn to an ex-
periment by Marks, Stevens, Bartoshuk, Gent,
Rifkin, and Stone (1988) on the perception of
taste in two groups of observers: “nontasters”
and “tasters.” Nontasters, about 30% of the
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population, have genetically determined high
thresholds, relative to tasters, for detecting
a particular class of bitter compounds such
as PTC (phenylthiourea) and PROP (6-n-
propylthiouracil). The standard continuum,
within which the sensory experiences of
tasters and nontasters were assumed to be the
same, was the loudness of 1000-Hz tones, and
the test continua were the taste intensities of
PROP and NaCl (salt).

Converting the judgments of each observer
to a common scale involved the following
steps: (a) for each observer, computing the
average of all loudness judgments (pooled
over trials and intensities); (b) determining the
multiplicative factor F; needed to bring the av-
erage loudness judgment of each observer i to
acommon value, such as 10 (F; = 10/average
judgment for observer i); and (c) then mul-
tiplying all of the taste judgments of each
observer by the value of F;. After this com-
putation, the corrected results were averaged
and plotted as shown in Figure 3.18. It is
clear that PROP but not NaCl was less in-
tense to the nontasters than to the tasters. In
addition to determining whether groups of ob-
servers differ, the method may be useful in
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Figure 3.18 Magnitude estimates of PROP and
NaCl by tasters and nontasters after correction by
magnitude matching.

SOURCE: From Marks et al., 1988. Copyright ©
1998 by Oxford University Press. Reproduced by
permission.
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determining whether the sensory magnitudes
experienced by an individual differ from the
norm or from those of another individual.
Furthermore, magnitude matching is reliable
in that results obtained from individual ob-
servers are consistent over repeated testing
(Marks, 1991).

Master Scaling

Another procedure for dealing with individ-
ual differences was developed by Berglund
(1991) and is called master scaling. In this
case, the main goal has been primarily to com-
pare perceptions of different sets of environ-
mental stimuli. Because practical considera-
tions may require these stimuli to be judged
by different groups of subjects (for instance,
one might want to compare traffic noises in
large cities of different countries), the prob-
lem ipso facto requires calibrating the scaling
behavior of different groups of subjects. In a
study of traffic noise, for example, a master
scale would first be constructed by having a
group of observers make magnitude estima-
tions of the loudness of a fixed set of noises
of varied intensity. Once the master scale is
established, it becomes possible to examine
the perception of traffic noises by having ob-
servers judge sample stimuli from the master
set as well as the traffic noises. In this way, it is
possible to rescale the judgments of the stim-
uli of interest into values on the master scale.

EXAMPLES OF PARTITION SCALING
AND MAGNITUDE SCALING

This section provides more detailed examples
of partition-scaling and magnitude-scaling
experiments. As is typical in experimental sci-
ence, the starting point was a substantive ques-
tion about perception: in this case, how the two
ears sum loudness when sounds are presented
binaurally. Various decisions of experimental
design and analysis followed both from the

question being asked and from research on
psychophysical methodology.

Choosing a Psychophysical Question

As discussed earlier, Fletcher and Munson
(1933) were able to construct a scale for loud-
ness by assuming that a tone presented to
two ears is exactly twice as loud as the same
tone presented to one ear. But is this assump-
tion correct? Two studies by Marks (1978,
1979) sought to shed some light on the ques-
tion by testing the additivity of loudnesses
more directly. Not only did Fletcher and
Munson assume simple linear summation of
loudness, but their experimental measure-
ments were taken on only a limited class
of stimuli, namely, tones presented to one
ear (monaural tones) and tones presented at
equal intensity levels to the two ears (binau-
ral tones). A more thorough test of the ad-
ditivity of loudness is possible if both un-
equal and equal sound levels are presented
to the two ears (dichotic tones). In particular,
Marks based his experiments on the logic of
Anderson’s (1970, 1974) functional measure-
ment theory. Functional measurement pro-
poses that perceptual (or cognitive) systems
may combine stimulus inputs linearly. In the
present case, Marks proposed that individual
loudnesses at the two ears add linearly. If this
is true, then a sound presented to either ear
will contribute to the overall impression of
loudness an amount that is independent of any
sound presented to the other ear.

Assume for simplicity that the two ears are
equally sensitive, and arbitrarily say that a
40-dB tone presented to either ear produces
one unit of loudness. If loudnesses sum lin-
early in the two ears, then a 40-dB tone pre-
sented to an ear will always contribute one
unit of loudness, regardless of the sound level
presented to the other ear; if both ears receive
40 dB, the total loudness will equal two units.
Assume that one ear receives 40 dB and the
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Figure 3.19 Theoretical family of functions
showing linear binaural loudness summation.
NOTE: Regardless of the SPL presented to the right
ear, a fixed SPL presented to the left ear adds a
constant amount of loudness, so each successive
loudness function is displaced up from the previ-
ous function by a constant distance.

other ear receives 60 dB, and assume further
that the 60-dB sound produces four loudness
units at that ear. Given additivity, it follows
that the total loudness would be five units. Fi-
nally, if both ears receive 60-dB sounds, the
total loudness will be eight units.

A graphical display of the additive func-
tional measurement model appears in Fig-
ure 3.19. The stimuli used in the experiment
are chosen according to a factorial design in
which each of a fixed number of stimulus in-
tensities presented to the left ear is presented
in combination with each of a fixed number
of stimulus intensities presented to the right
ear. If the loudnesses produced at the two ears
combine linearly, and if the response measure
is linearly related to loudness, then the result-
ing factorial plot will look like Figure 3.19.
In this figure, it is assumed that there are five
stimulus levels presented to each ear, making
25 different stimulus combinations in all. The
abscissa represents the intensity level in dB

SPL of the component presented to the right
ear, and each curve gives the overall loudness
(shown on the ordinate) for a particular SPL
of the component presented to the left ear.
Given linear addition of loudness, the amount
of loudness evoked by a fixed SPL at the left
ear will be the same regardless of the SPL at
the right ear, and curves will all be parallel,
displaced uniformly up and down.

Choosing a Method

Many factors enter into the choice of a psy-
chophysical method, as every method has its
virtues and its limitations. Under ideal cir-
cumstances, magnitude methods may produce
ratio scales of sensory or perceptual magni-
tudes, making it possible to say that a given
stimulus produces a psychological magnitude
that is two or three or seven times that of
another stimulus. Under ideal circumstances,
categorical methods with verbal labels may
make it possible to know that a particular
stimulus level is perceived as very weak, or
as moderately strong, a kind of information
not provided by magnitude methods. But all
methods are susceptible to various contex-
tual effects and response biases. For example,
ratings and magnitude estimates alike gen-
erally show sequential effects. The response
to a given stimulus depends not only on the
physical characteristics of that stimulus such
as its intensity, but also on the stimulus pre-
sented on previous trials and on the responses
made to those stimuli (e.g., DeCarlo, 1992;
Jesteadt, Luce, & Green, 1977; Luce & Green,
1974; Staddon, King, & Lockhead, 1980;
Ward, 1973; see Marks & Algom, 1998, for a
review).

Categorical methods are especially sensi-
tive to the range and distribution of the stimuli
(e.g., Marks, 1978; Parducci & Perrett,
1971), reflecting a tendency for observers
to use categories equally often (Parducci,
1965, 1974). But magnitude estimation is
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also sensitive to the range of stimulation.
Thus, it has often been reported that expo-
nents of power functions fitted to magni-
tude estimates decrease when the range of
stimulation increases (R. Teghtsoonian, 1973;
R. Teghtsoonian & Teghtsoonian, 1978). Cat-
egorical methods generally have fixed upper
and lower response boundaries; consequently,
these methods may also show end effects.
What should observers do if, for example, they
have already assigned the highest category to
a previous stimulus and now encounter one
that is even stronger?

Categorical methods are also sensitive to
the number of response categories made avail-
able to the observer (Marks, 1968; Parducci &
Wedell, 1986), an issue that does not arise with
methods that use continuous scales, such as
visual-analog scaling and magnitude estima-
tion. On the other hand, magnitude estimates
are sensitive to the level of the stimulus used
as a standard and to the number assigned to
the standard—the numerical modulus—when
a standard and modulus are used (Hellman &
Zwislocki, 1961). Given all of these consider-
ations, Marks (1978, 1979) attacked the ques-
tion of binaural loudness summation by using
both arating method and a magnitude method.

Graphic Rating

For this study, Marks (1979) chose a graphic
(visual-analog) scale, a device that has seen
increasing use in many domains, notably
in studies of pain perception (see Collins,
Moore, & McQuay, 1997; Huskisson, 1983).
A virtue of the graphic-rating method is that it
avoids potential problems that are associated
with categorical methods, such as deciding on
the number of response categories to make
available to the observers. With the graphic-
rating method, on each trial the observer is
presented a line, about 150 mm long, and is
instructed to denote the perceived magnitude
of the stimulus by marking the appropriate lo-
cation on the line.

Graphic-rating scales behave much like
categorical scales in cases in which the num-
ber of categories is very large (e.g., around
100), which makes graphic rating an espe-
cially good option given the evidence sug-
gesting that categorical scales should provide
at least 15 to 20 response categories (e.g.,
Anderson, 1981). To minimize the potential
problems associated with end effects, Marks
(1979) took two precautions. First, the ob-
servers had available throughout the test ses-
sion a sample line on which two marks ap-
peared, 10 mm from each end of the line. At
the beginning of the test session, the observers
were presented two sample stimuli represent-
ing the softest and loudest sounds they would
hear. The softest sound was a 15-dB tone pre-
sented to just one ear, and the observers were
informed that the left-hand mark on the sam-
ple indicated its loudness. The loudest sound
was a 50-dB tone presented to both ears, and
the observers were informed that the right-
hand mark on the sample indicated its loud-
ness. By anchoring the weakest and softest
sounds to points medial to the ends of the
line, the observers were provided extra room
on the scale to help minimize end effects. As
a second precaution, the observers were told
that, if necessary, they could extend the line in
either direction, where an additional 30 mm
were available (6 of the 15 observers did this).
These precautions provide the graphic-rating
scale with positive features of magnitude
estimation.

Magnitude Estimation

For magnitude scaling, Marks (1978) used a
common form of the method of magnitude
estimation described earlier, one that has no
designated standard stimulus or modulus. The
particular version of magnitude estimation
used in the experiment may be thought of as a
hybrid of ratio magnitude estimation and ab-
solute magnitude estimation: Observers were
instructed to assign to the first sound whatever
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number seemed to them most appropriate
to represent its loudness. This aspect of the
instructions is much like the instruction in
absolute magnitude estimation. To each sub-
sequent sound, observers were instructed to
assign other numbers in proportion to their
relative loudness. In this respect, the instruc-
tions more closely resembled the instructions
of RME. In RME, however, observers are ex-
plicitly told to judge each stimulus relative
to the previous stimulus, an instruction that
Marks did not use. Although there is proba-
bly no formal way to decide whether the in-
structions used in this experiment were more
similar to AME or RME, it is our view that
these instructions fall closer to AME than to
RME.

Designing the Graphic-Rating and
Magnitude-Estimation Experiments

Aside from the scaling methods themselves
and the associated instructions to the ob-
servers, the graphic-rating experiment (Marks,
1979) and the magnitude-estimation experi-
ment (Marks, 1978) were virtually identical in
their design. It should be noted that both stud-
ies reported results from several experiments,
but the present exposition focuses on two ex-
periments that used different scaling methods
but comparable experimental designs to study
binaural summation. For example, the exper-
iments used the same set of stimuli. In any
given experiment, the choice of stimuli is dic-
tated primarily by the goals of the study and
by constraints that may be imposed by the
sensory or perceptual system.

Inthe present case, the stimulus levels were
relatively low, a decision based on the desire
to avoid any potentially confounding effects
that might arise from conduction of sound
through bone from one ear to the other. Bone
conduction might become significant at high
sound levels, especially if the sound level at
one ear were high and the level at the other
ear were low. For this reason, the maximal

SPL of the 1000-Hz tone was held to 50 dB.
At the lower end, younger observers’ absolute
thresholds for detecting these tones typically
lie in the vicinity of 5 dB SPL; consequently,
to preclude the possibility that some observers
might fail to hear the weakest tones, the lowest
SPL in the two experiments was set to a value
of 15 dB. Within the range of 15 to 50 dB SPL,
the sound levels were spaced, as a matter of
convenience, in steps of 5 dB. This entailed a
stimulus ensemble in which each of 8 SPLs
at the left ear was combined with each of the
same 8 SPLs at the right ear, making 64 dif-
ferent stimulus combinations in all. Further-
more, to provide additional comparisons, each
of the 8 SPLs was also presented monaurally
to each ear, that is, with no stimulation to the
contralateral ear. Thus the stimulus set con-
tained 80 different stimuli in all. This set of
80 stimuli was used in both the graphic-rating
experiment and the magnitude-estimation ex-
periment, but the latter also included a null
stimulus, that is, a stimulus of zero intensity
to both ears, making a total set of 81.

In both experiments, the entire stimulus
ensemble (80 stimuli for graphic rating, 81
for magnitude estimation) was presented in
two replicates to each observer, with 15 ob-
servers tested in graphic rating and 14 ob-
servers tested in magnitude estimation. This
meant that each stimulus received a total of 28
or 30 ratings in all, probably about the small-
est number necessary to provide stable results.
With only two judgments made of each stim-
ulus by each observer, it was not feasible to
examine results of individual subjects; to ob-
tain reasonably reliable data from individual
observers it would have been necessary to
present each stimulus at least 8 to 10 times
to each observer.

Analyzing the Data

As just mentioned, the experiments under
consideration did not lend themselves to
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analysis of data on individual observers. In-
stead, data were pooled over observers to as-
sess the characteristics of the resulting psy-
chophysical relations. It should be noted that
ratings and magnitude estimates typically
have rather different statistical characteris-
tics. With various kinds of ratings, including
graphic rating, the distributions of responses
made to a given stimulus tend to be reason-
ably symmetrical, and measures of variabil-
ity tend to be more or less uniform across
the range of stimulus values. By contrast, dis-
tributions of magnitude estimates tend to be
highly skewed, and the variability tends to in-
crease as the level of the stimulus increases.
These properties have led to the use of dif-
ferent measures of central tendency, with rat-
ings typically being averaged arithmetically
and magnitude estimates typically being av-
eraged geometrically.

The use of geometric averaging with mag-
nitude estimates serves to preserve the ratio re-
lations among the numbers given by each ob-
server to the various stimuli, while at the same
time weighting each observer’s ratios equiv-
alently. Were one simply to pool magnitude
estimates linearly across observers, the result-
ing means would be dominated by the data of
any observers who used very large numbers.
Arithmetic averaging may be necessary, how-
ever, if there are many estimates of zero. In
such cases, before the data are averaged, it is
necessary to normalize them in order to bring
observers to a common scale. One way to ac-
complish this is to calculate, for each observer,
the geometric or arithmetic average of the es-
timates given by that observer to all stimuli,
and then divide this average into all of the
observer’s magnitude estimates. This proce-
dure serves to make the overall geometric or
arithmetic mean of the transformed judgments
of every observer identical, thereby eliminat-
ing differences in absolute size of numbers,
and making subsequent arithmetic averaging
more appropriate.
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Figure 3.20 Graphic ratings of loudness of 1000-
Hz tone in a binaural-summation paradigm, like
that of Figure 3.19.

SOURCE: From Marks, 1979. Copyright © 1979
by the American Psychological Association.
Reproduced by permission.

Figure 3.20 shows the results obtained
by averaging arithmetically the graphic rat-
ings of loudness, and Figure 3.21 shows the
comparable results obtained by averaging
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Magnitude estimate of loudness

Decibels SPL (right ear)

Figure 3.21 Magnitude estimates of loudness of
1000-Hz tone in a binaural-summation paradigm,
like that of Figure 3.19.

SOURCE: From Marks, 1978. Copyright © 1978
by the Journal the Acoustical Society of America.
Reproduced by permission.
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geometrically the magnitude estimates of
loudness. Following the paradigm of Fig-
ure 3.19, each figure shows the judgment of
loudness plotted against the SPL of the com-
ponent presented to the right ear, with each
curve representing a different but constant
SPL of the component presented to the left ear.
In both Figures 3.20 and 3.21, the lowermost
curve shows the results obtained with monau-
ral presentation to the right ear (zero intensity
to the left ear); each successively higher-lying
curve represents constant SPLs of 15, 20, 25,
30, 35, 40, 45, and 50 dB.

At first glance, the two sets of curves ap-
pear strikingly different. Graphic rating pro-
duced a family of psychophysical functions
that tend to converge at the upper right,
whereas magnitude estimation produced a
family of functions that appear to be spaced
more or less uniformly in the vertical plane—
as they should be if (a) component loudnesses
evoked by stimulating the left and right ears
add linearly, and (b) the magnitude-estimation
scale is linearly related to loudness. It is no-
table, however, that the two sets of data are
closely related ordinally. That is, for any given
pair of stimuli, whichever was judged louder
by graphic rating was also judged louder by
magnitude estimation. This is shown in Fig-
ure 3.22, in which the graphic ratings are plot-
ted against the corresponding magnitude esti-
mates. That most of the data points collapse
onto a single function implies that the ordinal
relation between the two scales is very close,
and the nonlinear form of the function—its
downward concavity—is typical of compar-
isons between ratings and magnitude esti-
mates (e.g., S. S. Stevens & Galanter, 1957).
Given the reasonable assumption that dif-
ferent scaling methods tap the same under-
lying perceptions, this outcome should not
be surprising; the only important difference
between scaling methods is the way that
observers map their response scale onto these
perceptions. That s, different scaling methods
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Figure 3.22 Magnitude estimates of Fig-
ure 3.21 plotted against magnitude estimates of
Figure 3.20.

SOURCE: From Marks, 1979. Copyright © 1979
by the American Psychological Association.
Reproduced by permission.

induce observers to apply different response
transformations, as discussed earlier (see
Figure 3.17). If different scaling methods do
nothing more than induce different response
transformations, however, then there will be
for every method a single function relating
loudness to the overt response. If this is so,
then if any two stimuli are equal in loud-
ness, it should not matter whether observers
judge loudness by graphic rating or by magni-
tude estimation. Certain invariant characteris-
tics of perception are revealed by all scaling
methods.

It follows from these considerations that
it should be possible to apply a nonlinear
but monotonic response transformation to ei-
ther set of data in order to make them resem-
ble the other set. Thus, if a function that fits
the data of Figure 3.22 is used to transform
the graphic ratings, the outcome is a new
family of loudness functions that resembles
the magnitude estimates, showing a rough
parallelism consistent with linear additivity
(Figure 3.23). One simple interpretation of
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Rescaled rating of loudness

Decibels SPL (right ear)

Figure 3.23 Graphic ratings of Figure 3.20,
rescaled through the function in Figure 3.22 re-
lating magnitude estimates to graphic ratings.
SOURCE: From Marks, 1979. Copyright © 1979
by the American Psychological Association.
Reproduced by permission.

these results is that loudness is binaurally ad-
ditive, atleast to a first approximation, and that
magnitude estimates are linearly related to
loudness. As discussed earlier, however, there
remains nonetheless a degree of theoretical in-
determinacy. It is conceivable that the paral-
lelism obtained through magnitude estimation
is fortuitous, that loudness is not binaurally
additive (see Gigerenzer & Strube, 1983), and
that some other, still unknown transformation
of the data would be necessary to reveal the
“true” underlying values of loudness.

CONCLUSION

As Marks and Algom (1998) pointed out, psy-
chophysical scaling can serve two broad pur-
poses. The traditional purpose, which orig-
inated with Fechner (1860), is to elucidate
the relation between the mental realm and
the physical, as characterized by the psy-
chophysical law. Now, nearly a century and
a half later, psychophysicists have a ware-
house of methods, yet questions remain as

to what method produces valid measures
of sensory and perceptual experiences. In
this epistemic role, as Marks and Algom
called it, psychophysical scaling still lacks
a widely accepted theoretical framework, al-
though there have been several notable at-
tempts along these lines (see, for example,
Baird, 1997).

On the other hand, psychophysical scaling
methods have continued to play a major role,
a more pragmatic role, in the study of sensory
and perceptual processes. This is especially
true when scaling methods are used to ex-
amine how sensory or perceptual experiences
vary under multivariate stimulation. Category
scaling and magnitude scaling alike can reveal
how the perception of loudness or brightness
or taste or smell intensity depends not only
on the intensity of a stimulus but on its du-
ration, its spatial distribution over the recep-
tor surface, the presence of other stimuli that
may serve as maskers, the age of the observer,
the state of adaptation of the sensory system,
and countless other variables. For thorough
accounts, see Marks (1974b) and Marks and
Algom (1998).
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CHAPTER 4

Cognitive Neuropsychology

MAX COLTHEART

The aim of cognitive psychology is to learn
more about the mental information-processing
systems that people use when engaged in such
cognitive activities as producing or under-
standing language, recognizing objects or
faces, acting skillfully, retrieving information
from memory, doing mental calculations, and
so on. There are two ways of carrying out
such research. One is to study people who
have acquired skill in these cognitive activities
and who perform them well. The other is
to study people who perform such activities
abnormally.

Such abnormality has two possible forms.
An investigator might be studying an indi-
vidual who had attained a normal degree of
skill in some cognitive activity but who then
suffered some form of brain damage that
impaired performance of that activity; here
the investigator is studying an acquired dis-
order of cognition. Alternatively, an investi-
gator might be studying an individual who
had never attained a normal degree of skill
with respect to the cognitive activity in ques-
tion; here such an investigator is studying a
developmental disorder of cognition.

Cognitive neuropsychology is the investi-
gation of disordered cognition with the aim of

The author thanks Colin Davis, Phil Gold, Elaine and
Graham Funnell, John Marshall, Genevieve McArthur,
Niels Schiller, and John Wixted for helpful comments
and criticisms.

learning more about normal cognition. There-
fore, it is a branch of cognitive psychology.
When an acquired disorder of cognition is
studied, the aim is to learn about the normal
processes of cognition by studying how they
can break down after brain damage. When a
developmental disorder of cognition is studied
(the area of investigation known as develop-
mental cognitive neuropsychology), the aim is
to learn how cognitive abilities are normally
acquired by studying ways in which such
acquisition fails or proceeds abnormally.

Even though most cognitive neuropsychol-
ogists study people with brain damage, and
despite the impression that might be given by
the prefix “neuro” in the term “cognitive neu-
ropsychology,” cognitive neuropsychology is
not about the brain; it is about the mind. Many
scientists, of course, are interested in the
neural structures subserving cognition, and
investigation of the brain in people with ac-
quired disorders of cognition is one obvious
way to pursue such an interest. But this is
not cognitive neuropsychology; it is cogni-
tive neuroscience. Just as cognitive neuropsy-
chology is a branch of cognitive psychology,
cognitive neuroscience is a branch of neuro-
science. One is about the mind; the other is
about the brain (and the rest of the nervous
system).

Contemporary cognitive psychology treats
cognition as mental information processing,
that is, as involving the formation and
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transformation of mental representations.
Therefore, any theory about how a particu-
lar cognitive activity is achieved will take the
general form of a description of information
flow. Such descriptions require statements
about what specific information-processing
mechanisms are the components of the hy-
pothesized mental information-processing
system as well as statements about the flow
of information between these components.

Quite often, these descriptions are ex-
pressed as box-and-arrow flow charts, such as
the diagram shown in Figure 4.1. This way of
notating theories has the advantage of making
them explicit and complete. Each box repre-
sents a particular component of the postulated
information-processing system; each of the
pathways of information flow between these
components is represented by an arrow.

This, by the way, is not a novel notation
for expressing theories about cognition; on the

—

‘ { f
| | | |
! f

Figure 4.1 An information-processing system.

contrary, it was widely used by the cognitive
neuropsychologists of the 19th century (see
Coltheart, Rastle, Perry, Langdon, & Ziegler,
2001, for some examples).

MODULARITY

We need some term to refer to the components
of a system such as that shown in Figure 4.1,
and the term I use here is module; thus the
system in Figure 4.1 has eleven modules, and
the system itself is said to have the property
of modularity.

Fodor (1983) provided a valuable explica-
tion of the concept of modularity, and I use
the term essentially as he did. Although it is
quite often suggested that Fodor’s book pro-
posed a definition of modularity, and that the
book contains proposals about necessary con-
ditions for the application of this term, neither
of these suggestions is correct. Fodor empha-
sized that he was not intending to provide a
definition of the term, nor any necessary char-
acteristics; instead, he was suggesting a list of
features that were characteristic of modules.
The features he listed included (a) domain
specificity, (b) innateness, (c) informational
encapsulation, (d) fast operation, (e) neural
specificity, and (f) automaticity. According
to Fodor, each of these features is typical of
modules, although none is necessary. [ use the
term module in essentially this sense, except
that I follow Coltheart (1999) in believing that
one feature of modules is necessary for the
term to be applicable. This necessary feature
is domain specificity: “A cognitive system is
domain-specific if it only responds to stimuli
of a particular class: thus, to say that there
is a domain-specific face-recognition module
is to say that there is a cognitive system that
responds when its input is a face, but does not
respond when its input is, say, a written word,
or a visually-presented object, or someone’s



voice” (Coltheart, 1999, p. 118). I take the
other five Fodorian features as commonly, but
not invariably, true of modules; thus, for ex-
ample, some modules may not be innate, even
if many modules are innate.

To be more specific, the focus here is on
functional modularity because modules are
being described in terms of their particu-
lar mental information-processing functions.
One can distinguish functional modularity
from anatomical modularity (an anatomical
module is a specific delimited region of the
brain that carries out some specific form of
information-processing; for example, area V5
is a specific brain region responsible for the
processing of motion and thus can be re-
ferred to as an anatomical module for motion-
detection). Perhaps one can also distinguish
functional modularity from neurochemical
modularity (a neurochemical module is a sys-
tem in the brain that uses a particular spe-
cific neurotransmitter). These are logically
independent concepts; for example, the mind
could be functionally modular even if the
brain were neither anatomically nor neuro-
chemically modular. If that were so, cogni-
tive neuropsychology would be impossible
because anatomical or neurochemical brain
damage could never impair some functional
modules while sparing others, and it is such
selective patterns of cognitive impairment
and sparing that are the basic data of cogni-
tive neuropsychology. Because cognitive neu-
ropsychology is possible, it would seem that
both the mind and the brain are modular
in structure. That is presumably what Fodor
(1983) had in mind with the term neurally
specific: to say that a functional module is
neurally specific is to say that it is also an
anatomical module.

It needs to be emphasized here that if
what we mean by “module” is “a domain-
specific information-processing system,” then
we have to be willing to call the entire system
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depicted later in Figure 4.3 a module because
that system is an information-processing sys-
tem and because it is domain-specific (it does
not respond to auditory input or olfactory in-
put, just to visual input). But we also have
to be willing to call the individual compo-
nents of the system in Figure 4.3 modules too,
because those components are also domain-
specific information-processing systems: for
example, the component labeled “visual word
recognition” responds only to input that is let-
ters. Even an individual component in Fig-
ure 4.3 may have an internal modular struc-
ture. For example, in patients with semantic
impairments, some patients have impairment
in the understanding only of words referring
to animate objects, and others only of words
referring to inanimate objects (for a review
of this literature, see Caramazza & Shelton,
1998). This suggests that within the seman-
tic system there are at least two modules, one
whose domain is inanimate objects and an-
other whose domain is animate objects. In
general, then, the conception of modularity
used here commits one to the view that mod-
ules can be within modules that are within
modules, and hence to an abandonment of
the view, proposed in Fodor (1983) but not
in Fodor (2000), that an important property of
modules is that they are “not assembled”—not
composed of smaller processing components.
Block (1995) discusses where the nesting of
modules within modules might stop, and this
issue is considered later in this chapter.

One can distinguish two types of functional
modules: knowledge modules and processing
modules. A knowledge module is a body of
knowledge that is autonomous (i.e., indepen-
dent) of other bodies of knowledge (e.g., the
on-line catalog of a library, which is indepen-
dent of other bodies of knowledge about the li-
brary, such as its floor plan, its wiring diagram,
or the layout of its sewage disposal system). A
processing module is an autonomous system
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for processing information (e.g., the search
engine used to retrieve information from the
library’s on-line catalog, or the library’s fire-
protection mechanism that detects smoke and
dispenses water). One way to make diagrams
such as that of Figure 4.1 even more pre-
cise is to replace the rectangular boxes with
symbols that distinguish the two types of
functional module: ellipses for knowledge
modules, say, and rectangles for process-
ing modules (Funnell, 1983; Gane & Sarsen,
1977). This is probably a useful notational
discipline, although it will not be adopted
here: Both types of functional modules will
be represented just by rectangles.

Although the diagram in Figure 4.1 is ex-
plicitabout how many modules and how many
pathways of communication the depicted pro-
cessing system has, it is nevertheless utterly
opaque: What is it supposed to do? What sort
of input does it accept, what sort of output
does it produce, and what processing proce-
dures does it apply to the input in order to
create the output? This opacity can only be
eliminated if the nature of the input and out-
put is stated and if each module in the system
is labeled according to what processing proce-
dure it carries out. That is done in Figure 4.2,
which makes clear the fact that Figure 4.1 is
a diagram of a system that makes chocolate
and cocoa.

As shown in Figure 4.3, however, there is
a very different way of labeling the modules
and the inputs and outputs of (a minor variant
of) Figure 4.1. This second way of labeling
makes clear the fact that Figure 4.1 is a dia-
gram of a system for naming pictures, printed
words, and printed nonwords, as well as a di-
agram of a system that makes chocolate and
cocoa.

The example represented by Figures 4.1
through 4.3 is meant to illustrate several
points. First, although Figure 4.1 is an ex-
plicit description of the structure of a mod-
ular processing system, this description is

Dry whole cocoa beans

|

Y {

Extract cocoa
cake

Extract cocoa
butter

"

Add chocolate
liquor, sugar
and milk solids

‘ { !

| Pulverise || Conch | | Conch ‘

{ { }

Cocoa powder  Sweet chocolate ~ Milk chocolate

Add chocolate
liquor and sugar

Figure 4.2 A system for manufacturing choco-
late.
SOURCE: Adapted from McGee (1984, p. 405).

at such an abstract level that it can apply
equally well to a chocolate factory as to a
mind; its input can be cocoa beans or reflected
light, and its output can be chocolate, cocoa,
or speech.

Labeling the modules eliminates this level
of abstraction: Figure 4.2 cannot be about
the mind, and Figure 4.3 cannot be about a
chocolate factory. However, a crucial level
of abstraction remains: Neither of these two
diagrams specifies anything at all about hard-
ware. Figure 4.2 says nothing about any phys-
ical properties of the machinery within the
factory, and Figure 4.3 says nothing about
any neural systems in the brain. For exam-
ple, conching is the process by which choco-
late is heated to between 130 and 200 de-
grees Fahrenheit and then slowly kneaded and
folded for hours or days; this reduces bitter
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Figure 4.3 A system for naming pictures, words,
and nonwords.

flavors and makes the chocolate smoother
in texture. This functional description of the
conching process says nothing about the ac-
tual machine that does the conching. Further-
more, even if people were allowed full access
to the factory and could thoroughly inspect
all the machines in it, they would not be able
to work out what the conching machine does
just from scrutinizing it unless they were al-
ready armed with the functional description of
the conching process. Close inspection of the
machine shown in Figure 4.4 would not tell
anyone that what it does is conching. In just
the same way, if people were able to obtain
a complete description of the neural structure
of the part of the brain that does letter recogni-
tion during reading, they would not be able to
work out what function that part of the brain
actually serves.
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Figure 4.4 A conching machine.

Similarly, imagine someone who was in-
terested in determining whether a particular
desktop computer could do word processing.
Taking the lid off and looking at the hard-
ware inside could not provide an answer to
this question. In contrast, imagine that some-
one who is a programmer were given the code
for a program and asked whether this pro-
gram could do word processing. That ques-
tion could be answered by scrutiny of the
program. Considerations like this led Block
(1995, p. 376) to the doctrine that “the mind
is the software of the brain,” a corollary of
which is that cognitive psychology is the study
of that software.

This same perspective on cognitive science
was also offered by Marr (1982, p. 24). He
distinguished “three levels at which any ma-
chine carrying out an information-processing
task must be understood’’; these were the lev-
els of computational theory, representation
and algorithm, and hardware implementation
and emphasized the independence of under-
standing at the representation-and-algorithm
level from understanding at the hardware-
implementation level: “Trying to understand
perception by studying only neurons is like
trying to understand bird flight by study-
ing only feathers. It just cannot be done”
(p. 27).
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COGNITIVE-
NEUROPSYCHOLOGICAL
INFERENCE AND

THE CHOCOLATE FACTORY

Imagine now that a person were interested
in discovering exactly how the chocolate
factory functions—in learning exactly what
procedures the factory uses to turn cocoa
beans into milk chocolate, sweet chocolate, or
cocoa powder—but the only data available
from which one might infer anything about
this are data about what goes into the factory
and what comes out. Looking inside the fac-
tory is not allowed.

Careful chronometry might reveal that
after a consignment of cocoa beans is de-
livered, packages of cocoa powder begin to
emerge from the factory sooner than pack-
ages of sweet chocolate or milk chocolate,
whereas the latter two products begin emerg-
ing at about the same time. From that differ-
ence in latency of response one might deduce
that the production of cocoa powder requires
fewer processing stages than the production of
sweet chocolate or milk chocolate, with these
two requiring the same number of processing
stages. One might even begin to sketch out
a theory of the factory’s operations accord-
ing to which all the stages needed to make
cocoa powder are also needed to make sweet
chocolate or milk chocolate, and on top of this
there is one extra stage, or several extra stages,
required for making sweet chocolate or milk
chocolate but not for making cocoa powder.
That would be a wild extrapolation, however.
It could be that the three products depend on
three completely different processing proce-
dures that have nothing at all in common; it
just so happens that one of these procedures
works quickly, and the other two relatively
slowly.

Then one day it appears that there is some-
thing wrong with both the cocoa powder and

the chocolate that are produced; their forms
and textures are appropriate, but they taste raw
rather than roasted, though they have the right
sweetness. What might be deduced from these
data concerning the processing system inside
the factory? It seems reasonable to conclude
that the control of the form, texture, and sweet-
ness of the product must depend on a system
or systems that are separate from the system
that roasts the beans; in other words, there is
a single Roasting Module that is used for pro-
ducing all three products. If so, that provides a
simple explanation for why all three products
show the same defect: the Roasting Module is
down, so unroasted beans are being passed on
to the rest of the system. The rest of the system
is still functioning normally, so the products
still have normal form, texture, and sweetness.

An alternative possibility, though—an al-
ternative possible functional architecture for
the factory—is that there are three separate
Roasting Modules, one for each of the three
products, and all three of these happen to
have gone down simultaneously. Would that
be rather a coincidence? Not necessarily. If
there were three separate Roasting Modules,
it would make sense for them to be physically
located very close together, because the co-
coa beans they need could then be delivered
to only one location in the factory rather than
three. If these three modules were physically
adjacent, then any trauma to the factory that
affected one of them (e.g., a fire in one part of
the factory, or the collapse of part of the fac-
tory roof) would be likely to affect all three.
Thus, the association seen here among three
deficits (unroasted cocoa powder, unroasted
sweet chocolate, and unroasted milk choco-
late) might be an uninteresting consequence
of some physical fact about the factory, rather
than an interesting consequence of some func-
tional fact.

Suppose that on another day one notices
that something is wrong with the cocoa
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powder that is produced. It tastes as it should,
but it isn’t powdered; instead, it is emerging
from the factory in the form of solid cakes.
Yet the sweet chocolate and milk chocolate
are absolutely normal. This immediately sug-
gests that there is a processor in the fac-
tory whose job is specifically to turn solid
cakes into powder—called, for example, the
Pulverizer—and that this processor does not
play any part in the production of sweet choco-
late or milk chocolate. If there is such a Pul-
verizer, and if it is not working just now, the
outcome would be that sweet chocolate and
milk chocolate would still be produced nor-
mally, but cocoa powder would not. Specifi-
cally, the cocoa would still be coming out, but
abnormally—as cakes rather than as powder.

This inference seems entirely reasonable,
but again an alternative explanation comes
fairly readily to mind. Perhaps there is no
Pulverizer Module; perhaps instead there’s a
single machine that both presses and (when
required) pulverizes, and so is needed in the
making of all three products. Suppose, as
might seem natural, that this machine needs
more electrical power to pulverize than to
press, and the electricity supply to the fac-
tory has weakened. In that case, pressing will
still happen but pulverizing will not—but not
because the two functions are functionally dis-
tinct. Here the dissociation (cocoa powder de-
fective yet chocolate intact) can be plausibly
explained without postulating the existence of
a distinct Pulverizer Module.

Finally, suppose that on yet another day
a different defect emerges: Both the sweet
chocolate and the milk chocolate begin to taste
bitter and to be coarse in texture. The cocoa
powder is just fine, however. One possible
explanation for these data is that there is a
processor in the factory whose job is specif-
ically to reduce the bitterness and smooth
the texture of the two types of chocolate—
called the Concher—and that this does not
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play any part in the production of cocoa
powder.

Data suggesting that the factory contains
a Pulverizer Module and a Concher Module
cannot instead be explained in terms of pos-
sible effects of a weakened electricity supply,
because on that hypothesis one could never
see bad pulverizing and good conching on one
occasion, and good pulverizing but bad conch-
ing on another. A single dissociation could be
explained on the electricity-supply hypothe-
sis; but a double dissociation between the two
defects cannot. Thus, the hypothesis that the
system in the factory contains a Pulverizer
Module and a Concher Module looks strong,
and until someone devises an alternative hy-
pothesis that is also compatible with the data
on the two different patterns of breakdown
that have been observed, it is reasonable to
conclude that the functional architecture of
the factory includes a Pulverizer Module and
a Concher Module.

ASSOCIATIONS, DISSOCIATIONS,
AND DOUBLE DISSOCIATIONS

The discussion of these studies of breakdowns
of the chocolate factory introduced three con-
cepts that loom large in discussions of the
methodology of cognitive neuropsychology:
associated deficits, dissociated deficits, and
doubly dissociated deficits.

Association

Two deficits X and Y are referred to as associ-
ated when both are present (for the chocolate
factory example, cocoa powder not roasted
and chocolate not roasted; or, with a brain-
damaged patient, faces not recognized and
printed words not recognized). The cause of
these associations might be damage to a sin-
gle module on which two tasks depend: There
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might be a single roasting module used both
in the production of cocoa powder and in the
production of chocolate, and there might be a
single visual recognition system used both in
the recognition of faces and in the recognition
of printed words.

The one-module conclusions could in fact
be correct, but cognitive neuropsychologists
are wary of drawing such conclusions from
associations because there is always a plausi-
ble alternative explanation of an association
of deficits, an alternative according to which
there are two modules in the relevant system,
rather than one. On this alternative, whatever
causes damage to a particular physical part of
the system might be likely to cause damage
to physically adjacent parts of the system as
well. That point was illustrated earlier in re-
lation to the chocolate factory; in relation to
humans, there could be two visual recognition
modules, one for faces and another for words,
located in adjacent regions of the brain. Brain
injury due to a blow to the head or to a bullet
wound that damaged one module would of-
ten damage physically adjacent modules; or if
two modules shared a common blood supply,
a stroke that interfered with that supply would
generate two deficits. Nevertheless, there are
two modules here, not one. Arguments like
these weaken conclusions about modular or-
ganization that are based upon the observation
of associated deficits.

Dissociation

Two deficits X and Y are referred to as dis-
sociated when one is present and the other is
absent (for the chocolate factory example, the
cocoa powder is abnormal but the chocolate
is normal; or, with a brain-damaged patient,
faces are not recognized but printed words
are). These dissociations might arise because
there is a module in each system that is used
for one task but not for the other (a Pulverizer

Module used in the production of cocoa pow-
der but not in the production of chocolate;
a Face Recognition Module used for recog-
nizing faces but not for recognizing printed
words).

Such conclusions about the existence of
modules dedicated to one task but not an-
other, reached because of observations of dis-
sociated deficits, could in fact be correct; but
once again cognitive neuropsychologists are
wary of drawing such conclusions from dis-
sociations because there is always a plausi-
ble alternative explanation of a dissociation
of deficits, an alternative according to which
the system does not in fact contain these in-
ferred modules. In the case of the chocolate
factory, that point has already been made:
Perhaps the factory just needs more electri-
cal power to carry out pulverization than to
carry out other functions. In the case of hu-
mans, there could be a single Visual Recogni-
tion Module used for recognizing both faces
and printed words, and partial damage to this
single system could impair face recognition
without impairing visual word recognition
because faces are visually more complex, so
stress this system more, so are more affected
than are printed words when the module is
partially damaged. Arguments like these
weaken conclusions about modular organi-
zation that are based on the observation of
dissociated deficits.

Double Dissociation

Two deficits X and Y are referred to as “doubly
dissociated” when there is a case where deficit
X is present and deficit Y is absent, and an-
other case where the reverse is true, i.e., deficit
X is absent and deficit Y is present (for the
chocolate factory example, on one occasion
the cocoa powder is abnormal but the choco-
late is normal, whereas on another occasion
the cocoa powder is normal but the chocolate
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is abnormal; or, with brain-damaged patients,
in one patient faces are not recognized but
printed words are, whereas in another patient
face recognition is intact but word recognition
is impaired).

One way in which double dissociations can
be interpreted is in terms of the existence of a
module that is used for task A but not for task
B, and the existence of another module that
is used for task B but not for task A. For the
chocolate factory, these two modules are the
Pulverizer and the Concher. For the human,
they are the face recognition system and the
visual word recognition system.

As indicated earlier, the problem with as-
sociations and with single dissociations is that
they are inherently ambiguous; in both cases,
both a one-module interpretation and a two-
module interpretation are plausibly available.
Double dissociations are different: A plausi-
ble alternative interpretation is not inevitably
present. An interpretation in terms of differen-
tial difficulty is untenable if in one case per-
formance of task A is worse and in another
case performance of Task B is worse, and
an interpretation in terms of neuroanatomi-
cal proximity is irrelevant because that only
applies to associations. For this reason, cog-
nitive neuropsychologists regard double dis-
sociation evidence as, on the whole, superior
to evidence based on associations or single
dissociations.

That is not to say that an alternative (one-
module) interpretation can never be offered
when a double dissociation has been used to
draw a two-module conclusion. The point is
that alternatives are not automatically present,
as they are in the case of associations and
single dissociations. Thus, in any situation
in which a double dissociation has been ob-
served, itis incumbent upon any theorist wish-
ing to dispute the two-module theory (for
which the double dissociation has been used
as evidence) to demonstrate that there is a dif-
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ferent plausible theory that is also consistent
with the double dissociation data. Whenever
this has not been demonstrated it is reasonable
for one to propose, at least for the time being,
that the two-module theory is correct.!

Challenging a two-module theory by de-
monstrating that there is an alternative theory
that is also consistent with the double dissoci-
ation data is quite different from challenging
the two-module theory by arguing that there
could be adifferent theory also consistent with
the data. It is true for every theory in every sci-
ence that there could be an alternative theory
also consistent with the relevant data, so this
kind of challenge is a feeble one that requires
no answer. To put this point another way: No
cognitive neuropsychologist ever argues that
because there is a double dissociation there
must be two modules. To argue like that is to
claim that a theory can be logically required
by data; and surely no scientists, including
cognitive neuropsychologists, believe that.

It was explained earlier why in cognitive
neuropsychology double dissociation data

'Plaut (1995) provided some simulation data in which
various forms of lesioning of a small-scale neural net-
work model of reading via meaning produced a double
dissociation between the network’s ability to read abstract
words and its ability to read concrete words, even though
the network contained nothing that could be construed
as a module for concrete words and a separate module
for abstract words; he therefore challenged the utility of
double dissociations as evidence of modularity. Bullinaria
and Chater (1995, p. 227) argued that Plaut’s results were
an artifact of using only a very small network, and their
studies of lesioning of larger neural networks led them to
this conclusion: “Investigation on the effects of damage
on a range of small artificial neural networks that have
been trained to perform two distinct mappings suggest
that a double dissociation is possible without modularity.
When these studies are repeated using sufficiently larger
and more distributed networks, double dissociations are
not observed. Further analysis suggests that double dis-
sociation between performance on rule-governed and
exceptional items is only found when the contribution
of individual units to the overall network performance is
significant, suggesting that such double dissociations are
artifacts of scale.”
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tend to be accorded stronger weight than
association or single dissociation data. But it
would be quite wrong to conclude from this
that association data and single dissociation
data are worthless for theoretical purposes.
The reason this would be wrong is as follows:
When two alternative plausible hypotheses
are consistent with the data (one arguing for
the existence of a particular module, the other
not), the theorist is not compelled to stop there.
Instead, what can be done is to acknowledge
that there are two alternative theories both
consistent with the existing empirical data,
and then to seek to adjudicate between them
on the basis of new empirical data.

To illustrate this point, let us return to the
example of associated deficits in the choco-
late factory: the case where the cocoa pow-
der, sweet chocolate, and milk chocolate do
not taste roasted. That association of deficits
might have occurred because there is a single
Roasting Module that is needed for roasting
all three products; but there is an alternative
theory, which is that there are three Roast-
ing Modules, that they are located close to-
gether in the factory (to allow beans to be
delivered to one location), and that a collapse
of the roof above them has damaged all three
of them.

Now suppose that we measure just how
underroasted the cocoa powder is, how un-
derroasted the sweet chocolate is, and how
underroasted the milk chocolate is, and we
obtain exactly the same answer for each: All
three products are roasted to exactly 19% of
the correct level.

How is that to be explained by the theory
of three Roasting Modules? Why should the
three Roasting Modules have been damaged
to exactly the same degree by the physical
insult from the roof? That would be sheer
coincidence. In contrast, the theory of one
Roasting Module predicts that the degree of
underroasting must be the same for all three
products; if this degree were different for the

different products, that would be evidence
directly falsifying this theory.

Here, then, is an example of how, with
adequate further investigation, soundly based
theoretical conclusions can be drawn starting
off from an observation of an association of
deficits. The same is true in human cognitive
neuropsychology, as the following example
shows.

Suppose that after brain damage a pa-
tient shows both a reading impairment and
a spelling impairment. The patient misreads
many irregular words by giving rule-based
responses to them (regularization errors such
as reading have to thyme with “cave”). The
patient also misspells many irregular words,
again by giving rule-based responses to them
(such as spelling “tomb” as toom). One might
reach an exciting theoretical conclusion here.
This conclusion says that there is a body
of whole-word orthographic knowledge that
must be accessed from print if irregular words
are to be read correctly; that there is a body
of whole-word orthographic knowledge from
which information must be retrieved if irreg-
ular words are to be spelled correctly; and
that the reason this patient both misreads and
misspells irregular words is that the same
body of orthographic knowledge is used both
for recognizing and for spelling words. Thus
Patterson and Shewell (1987) were wrong in
proposing that there is an orthographic input
lexicon and a separate orthographic output
lexicon, whereas Allport and Funnell (1981)
were right in proposing that there is only a
single orthographic lexicon used both for
reading and for spelling.

This view is a major claim about functional
architecture; but it derives from the observa-
tion of an association of deficits, so the alter-
native two-lexicon view can be defended in
the standard way. It could be that an ortho-
graphic input lexicon is used for reading and
a separate orthographic output lexicon is used
for spelling, that these are located very close
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lesion is extensive enough that both of these
adjacent brain regions are affected. Thus,
there are two alternative explanations of the
association: a one-module explanation and a
two-module explanation.

Instead of giving up in the face of this am-
biguity, the investigator can do further work
to try to resolve it. Suppose that the patient
were given exactly the same irregular words
to read and to spell, and it was found that the
patient could spell all the irregular words that
he or she could read, and that the patient could
not spell all the irregular words that he or she
could not read. For example, the patient reads
tomb as “tom” and spells it as toom, and the
patient reads have to rhyme with “cave” and
spells it as hav. The patient both reads and
spells correctly “yacht” and “aunt.”

Why is it exactly the same words that
the patient misreads and misspells? The two-
module theory can only ascribe this to sheer
coincidence. In contrast, the one-module
theory can offer an explanation: that a single
orthographic lexicon is used for both read-
ing and spelling, that the brain damage has
caused some of its entries to be deleted or
to have become inaccessible while others can
still be used, and that accordingly some words
will be both read and spelled correctly and
all other words will be both misread and
misspelled.

Thus, as argued also by McCloskey (2001),
the difference between double dissociation
data on the one hand and association or sin-
gle dissociation data on the other is not that
the former are worthy and the latter worthless;
association or single dissociation data can be
just as compelling theoretically, provided one
has the patience to acknowledge the alter-
native interpretations and to seek to adjudi-
cate between them by carrying out the right
kinds of further studies. Hence, all three types
of data can be of value in cognitive neuro-
psychology.
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A WORKED COGNITIVE-
NEUROPSYCHOLOGICAL
EXAMPLE: HOW ARE VISUAL
STIMULI RECOGNIZED?

Three important classes of visual stimuli for
the human being are faces, objects, and printed
words. The literate person can recognize stim-
uli from all three classes. By recognize I mean
that such people can correctly say, “I have
seen this face before but never that one; I have
seen this object before but never that one; |
have seen this printed letter string before but
never that one.” When people can perform
these tasks, they must possess knowledge
representing those visual stimuli that they can
recognize and also a means of accessing this
knowledge.

A typical cognitive-neuropsychological
question here is: How many distinct bodies
of knowledge and access procedures are in-
volved here? Is a single visual recognition
module used for all three types of input, or
are there two modules (one for linguistic
input, the other for nonlinguistic input, say),
or are there three (one for each of the three
categories of stimuli)?

If there is just one module, then faces,
objects, and printed words are recognized
by the same procedures and with reference
to the same single body of stored knowl-
edge. In that case, a difficulty in recognizing
seen objects (visual agnosia) should always
be accompanied by a difficulty in recogniz-
ing faces (prosopagnosia) and in recognizing
printed words (alexia without agraphia, also
known as pure alexia); dissociations between
any of these three deficits should never be
observed.

However, such dissociations have been re-
ported. Profoundly impaired face recognition
accompanied by no detectable defect of object
recognition has been reported by De Renzi
(1986); patient 4 in this paper could no longer
recognize the faces of his own relatives and
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close friends but performed flawlessly on tests
of recognition of household objects, samples
of writing (his own versus those of others),
cats, coins, and his car among many other cars
in a parking lot. This is consistent with the
view that there are separate modules for face,
object, and word recognition, with only the
first of these three modules damaged in this
patient.

Of course, because this result is a sin-
gle dissociation, the standard alternative in-
terpretation of single dissociations could be
offered: Perhaps faces, objects, and printed
words are recognized by a common visual-
recognition module, but faces might be more
difficult stimuli than objects or printed words,
so partial impairment of that module might
affect faces without affecting objects or
printed words.

The standard reply to this standard alter-
native explanation is to consider whether
there is a relevant double dissociation: Are
there reports of impaired object recognition
with intact face recognition, for example?
The answer is yes, as reported by Feinberg,
Gonzalez-Rothi, and Heilman (1986); Hecaen
and Ajuriaguerra (1956); McCarthy and
Warrington (1986); Pillon, Signoret, and
Lhermitte (1981); and others. Hence, one
cannot propose that there is a single mod-
ule for recognizing faces and objects where
mild damage will result only in prosopagnosia
while more extensive damage will result in
prosopagnosia plus visual agnosia, because
on that hypothesis one will never see cases
of visual agnosia without prosopagnosia.

It is therefore reasonable to conclude from
these neuropsychological data that faces and
objects are recognized by different modules.
Note, however, what “different modules”
means here. The face recognition module is
itself likely to have an internal modular struc-
ture: One of its modules might be, for exam-
ple, a visual feature processing system. Sim-
ilarly, the object recognition module is also
likely to have an internal modular structure:

One of its modules might be, for example, a vi-
sual feature processing system. Thus the two
recognition modules might share common,
smaller, modular subcomponents; it would
not seem reasonable to suggest that there is
both a visual feature processing system that
is dedicated to face recognition and a second
and separate visual feature processing system
that is dedicated to object recognition. The
claim that faces and objects are recognized by
different modules simply says that there is at
least one such smaller modular subcomponent
that is part of the face recognition module but
not part of the object recognition module, and
at least one other such smaller modular sub-
component that is part of the object recogni-
tion module but not part of the face recogni-
tion module.

This is an important point, so I will offer
another example. In the form of acquired read-
ing impairment known as surface dyslexia
(Patterson, Marshall, & Coltheart, 1985),
patients can read aloud nonwords much
better than they can exception words; in the
form of reading impairment known as phono-
logical dyslexia (Coltheart, 1996), patients
can read aloud exception words much better
than they can nonwords. This is often taken
(e.g., by Coltheart et al., 2001) as evidence
for the existence of separate lexical-reading
and nonlexical-reading modules. But few
people would deny that letter recognition
is needed both for the reading of excep-
tion words and for the reading of nonwords.
Therefore, the lexical-reading module con-
tains a letter recognition submodule, and the
nonlexical-reading module contains the same
submodule. Figure 4.3 makes the same point:
It contains an Object Recognition Module and
a Word Recognition Module, and these two
modules share their first four submodules.

If the two recognition modules, one for
faces and one for objects, share many modular
subcomponents, damage to any one of those
components will affect both face and object
recognition; this offers an account of why



the two abilities so rarely dissociate. Most
patients with prosopagnosia have visual ag-
nosia, and vice versa. Association is common
here, but as documented earlier, dissociations
in both directions have been found.

Note also that although there are numerous
reports of visual agnosia without prosopag-
nosia, case 4 of De Renzi (1986) is, as far
as I know, the only really clear report of pro-
sopagnosia without visual agnosia. One might
therefore ask whether we should be drawing
major theoretical conclusions about how faces
and objects are normally recognized by ev-
erybody on the basis of data from only a sin-
gle brain-damaged individual. Later I discuss
the assumption of uniformity of cognitive ar-
chitecture, which licenses such use of single-
patient data.

If we conclude that there are separate
recognition modules for faces and objects (us-
ing “separate” in the sense described earlier),
what about printed words? Do they have their
own separate recognition module? The way
to investigate that is to look for dissociations
between word and face recognition impair-
ments and between word and object recogni-
tion impairments. The form of acquired im-
pairment of reading in which it is specifically
the rapid visual recognition of the printed
word that is impaired is, as mentioned ear-
lier, known as pure alexia. Thus the topic
of study here is the pattern of associations
and dissociations one sees among prosopag-
nosia, visual agnosia, and pure alexia. This
has been comprehensively discussed by Farah
(1990, 1991).

Consider first visual word recognition and
face recognition. These doubly dissociate.
Pure alexia can occur when face recogni-
tion is normal (Larrabee, Levin, Huff, Kay,
& Guinto, 1985), and prosopagnosia can oc-
cur when visual word recognition is normal
(Gomori & Hawyrluk, 1984).

Next consider visual word recognition and
object recognition. These also doubly dis-
sociate. Pure alexia can occur when object
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recognition is normal (Chialant & Caramazza,
1998), and visual agnosia can occur when
visual word recognition is normal (Albert,
Reches, & Silverberg, 1975).

Because each of the three abilities doubly
dissociate from the other two, one might be
led to the conclusion that there are three sep-
arate visual recognition modules. However,
Farah (1990, 1991) has proposed an alterna-
tive theory: that there are not three distinct
visual recognition modules, but only two.

Farah (1990, 1991) developed this pro-
posal from the argument that the recognition
of certain kinds of visual stimuli (e.g., tools)
is based on a decomposition of the stimulus
into many parts and on recognition via these
parts; other kinds of visual stimuli (e.g., faces)
are recognized much more holistically. Imag-
ine, therefore, that there is one module that is
responsible for the ability to represent parts
themselves, including parts for objects that
undergo little or no decomposition (and faces
might be “parts” that are not decomposed at
all); call this module P (for Parts). Further
imagine that there is a second module whose
task is the rapid encoding of multiple parts,
and call this module E (for Encoding). Given
this hypothesis about the cognitive architec-
ture for visual recognition, Farah was able to
develop a plausible account of the patterns of
associations and dissociations evident in her
literature review. This account was based on
two premises:

(a) that decomposition into multiple parts is
most crucial for visual word recognition
(the parts being letters in this case), less
crucial for object recognition, and least
crucial for face recognition (because it is
done so holistically); and

(b) that the parts themselves are least com-
plex in the case of words (the parts
being letters), more complex in the case
of objects, and most complex in the case
of faces (a face being represented as just
one very complex part, the whole face).
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Suppose now that module P is impaired.
Objects whose parts are especially complex
will suffer most here because the more com-
plex a partis the more difficult it will be to rep-
resent, so the more stress it will put on module
P. A mild impairment of module P will only
harm faces; here we will have prosopagnosia
without object agnosia. In another patient
where module P is somewhat more severely
impaired, only those stimuli with the simplest
parts will survive; these are printed words, so
this patient will exhibit prosopagnosia and
visual agnosia without pure alexia. All three
disorders will be present in a patient with a
very severe impairment of module P (or suffi-
ciently severe impairments of both modules).
But there is no kind of impairment of mod-
ule P that could result in pure alexia without
prosopagnosia, nor any that could result in
pure alexia without visual agnosia.

Next consider the consequences of impair-
ment of module E. This will have the most
serious consequence for stimuli with many
different parts, all or most of which must be
recognized for the stimulus to be recognized
(i.e., printed words). Here, then, if there is a
mild impairment of module E, one would see
pure alexia in the absence of visual agnosia
and prosopagnosia. A more severe impair-
ment of module E would impair object recog-
nition as well, producing pure alexia and vi-
sual agnosia in the absence of prosopagnosia.
All three disorders will be present in a patient
with a very severe impairment of module E.
But there is no kind of impairment of mod-
ule P that could result in prosopagnosia with-
out pure alexia, nor any that could result in
prosopagnosia without visual object agnosia.

These ideas about the cognitive architec-
ture of the visual recognition system are
important for at least two reasons. The first
is that a major theoretical claim is being made
about how people recognize visual stimuli.
The second is that implicit here is a second
claim (which Farah makes explicitly else-

where): that only abilities that are old in evo-
lutionary terms can be cognitively modular
(Farah & Wallace, 1991). Reading is an abil-
ity that has been attained by humankind so
recently that it cannot have evolved; and on
Farah’s view about the cognitive architecture
of visual recognition, there is no reading mod-
ule. Instead, reading is accomplished by pig-
gybacking on two modules that are arguably
evolutionarily old (module P and module E).

Farah has applied this view more gener-
ally to other kinds of acquired impairment
of reading. For example, in phonological
dyslexia (see Coltheart, 1996, for review) pa-
tients are specifically impaired at reading non-
words aloud. If there is a reading module,
one might expect it to contain a submodule
that uses knowledge about correspondences
between graphemes and phonemes to read
aloud, and one could then interpret phono-
logical dyslexia as a specific impairment of
this submodule. But if one denies that there
is a reading module, then some other inter-
pretation of phonological dyslexia is needed.
Hence Farah, Stowe, and Levinson (1996)
raised the possibility that this form of reading
disorder is caused not by an orthographic im-
pairment but by an impairment of phonolog-
ical abilities (which are evolutionarily old).
Patterson and Lambon Ralph (1999) have
discussed whether it might in general be the
case that all acquired impairments of read-
ing might be explicable as arising from im-
pairments of some nonorthographic cognitive
system, thus envisaging the possibility that
there is no reading module (and, of course,
no spelling module).

It remains to be seen whether this fas-
cinating view that the only cognitive mod-
ules that can exist are those that reflect
evolutionarily old abilities could turn out to
be true in general. As far as the specific claim
made by Farah about pure alexia is concerned,
however, empirical evaluation of this claim
is possible, because the claim is falsifiable
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because there is one pattern of impairment
of visual recognition that, according to this
claim, cannot ever be observed (Farah, 1991,
p- 8), namely, visual object agnosia without
prosopagnosia or pure alexia. This pattern
cannot occur on her theory, because if the
object agnosia is due to a sufficiently severe
impairment of module E, then visual word
recognition, for which module E is particu-
larly vital, must be affected too, so pure alexia
must be present. If, on the other hand, the
object agnosia is due to a sufficiently severe
impairment of module P, then face recogni-
tion, for which module P is particularly vital,
must be affected too, so prosopagnosia must
be present. Hence the prediction is that visual
agnosia will never be seen in isolation from
the other two visual disorders.

Two Competing Theories
of Visual Recognition

This chapter has presented two different
theories about how visually presented stim-
uli are recognized: the three-module theory
(a Faces module, an Objects module, and
a Words module) and Farah’s two-module
theory (a P module and an E module).

The three-module theory predicts the oc-
currence of all possible patterns of preserva-
tion and impairment of the three abilities. The
two-module theory predicts that one of these
patterns will never be seen: isolated visual
object agnosia with neither prosopagnosia nor
pure alexia.

Humphreys and Rumiati (1998) described
apatient MH who had a profound visual object
agnosia: She could name fewer than 50% of
line drawings of objects; she performed sim-
ilarly when asked to name visually presented
miniature models of animals; and she was
very poor at tests of picture comprehension.
This was not due to some low-level visual im-
pairment, as she was good at copying pictures.
In contrast, she was within the normal range

in a test of naming familiar faces and in
a test of reading aloud single words. Thus,
MH exhibited object agnosia without prosop-
agnosia and pure alexia—the pattern that, ac-
cording to the two-module theory of visual
recognition, will never be observed, but that
is expected on the three-module theory. This
result therefore supports the three-module
theory and is inconsistent with the two-module
theory.

THE ASSUMPTION OF UNIFORMITY
OF COGNITIVE ARCHITECTURE

The literature review by Farah (1990) cov-
ered 99 cases; 97 of these were consistent with
the two-module account of visual recognition,
and the two that were not were sufficiently
unclear as to be plausibly discounted. Thus,
if one adds patient MH (just described) to
these 99 cases, there are 100 relevant patients,
and only a single one of these is inconsistent
with the two-module account. Might the enor-
mous preponderance of cases consistent with
the two-module account be taken as strong
evidence for this account?

Not on the cognitive-neuropsychological
approach, according to which a single in-
consistent case is enough to falsify a model,
no matter how many consistent cases have
been observed. This methodological tenet
of cognitive neuropsychology is justified by
the assumption of uniformity of cognitive
architecture.

According to this assumption, in all peo-
ple who do not have acquired or develop-
mental disorders of cognition, the architec-
tures of cognitive systems are identical. A
particular module might vary quantitatively
from person to person—some people may
have larger auditory vocabularies than others,
for example—but what modules there are and
what modules there are not are the same
from person to person. It follows that if one
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concludes from just one case study that the
person studied had three different visual recog-
nition modules prior to brain injury, one may
then conclude that this is true for everyone.
That is why just one case can be sufficient
to falsify a theory, no matter how many other
cases are consistent with that theory.

This is, of course, a strong assumption,
but it is not an assumption peculiar to cog-
nitive neuropsychology. It is an assumption
generally made in cognitive psychology, be-
cause cognitive-psychological theorists want
to make statements about the cognitive
architectures of everyone on the basis of data
about the cognitive architectures of a relative
few. If the assumption of uniformity of cog-
nitive architecture is completely false, then
cognitive neuropsychology cannot be done;
but nor can the rest of cognitive psychology.

It is sometimes argued that sampling er-
ror is a problem here. If only one patient in a
hundred shows a particular effect, might not
that just be a statistical artifact? This objection
is misguided. If just one task is administered
to a hundred patients, and just one patient
shows a statistically significant difference be-
tween two conditions with that task, taking
that result seriously could indeed be capital-
izing on sampling error. But that is not how
cognitive neuropsychologists do their work.
To show, for example, that a certain patient
has visual object agnosia but no prosopag-
nosia or pure alexia, cognitive neuropsycholo-
gists would typically administer many tests of
object recognition, many tests of face recogni-
tion, and many tests of reading. If the patient is
impaired on all of the object recognition tests
and normal on all the tests of face processing
and all the tests of reading, it is reasonable to
claim that this is a case of an isolated visual
object agnosia, even if all other patients in the
literature who had visual object agnosia have
also had either prosopagnosia or pure alexia.
Here the multiple testing and its consistent
results render untenable an objection based
on sampling error.

WHY THE EMPHASIS
ON SINGLE-CASE STUDIES IN
COGNITIVE NEUROPSYCHOLOGY?

Research in cognitive neuropsychology char-
acteristically takes the form of extremely de-
tailed case studies of individual people with
disorders of cognition. Whole doctoral theses
(e.g., Haywood, 1996)—even whole books
(e.g., Howard & Franklin, 1988)—have been
written about single patients. One reason for
this has already been mentioned: If the as-
sumption of uniformity of cognitive archi-
tecture is made, data from just one case are
sufficient to falsify a theory.

There is a more general reason, however,
for this emphasis on single-case studies (see
Coltheart, 1984; Howard & Franklin, 1988;
Marshall, 1984). Any modular model of any
system used for carrying out any interesting
cognitive activity will consist of a substan-
tial number of submodules and pathways of
communication between them. For example,
the model depicted in Figure 4.3 has 11 boxes
and 14 arrows for a total of 25 components.
If there is anatomical modularity as well as
functional modularity, then there are 25 dif-
ferent loci that are independently damageable
by brain injury. This means that the number of
different possible patterns of impairments and
preservations to the functional components of
that model is 223. All but one of those patterns
corresponds to a different brain-damaged pa-
tient (the one pattern that does not is where all
boxes and arrows are intact). Because 22 —1 is
an unimaginably large number, the probabil-
ity of coming across two patients with exactly
the same cognitive impairment is unimagin-
ably small. Therefore, every patient the cogni-
tive neuropsychologist sees will be effectively
unique, so averaging across groups of patients
cannot be justified. Instead, every patient must
be investigated, and his or her data reported,
individually.

Take surface dyslexia, for example. The
defining symptom of this syndrome is the



regularization error in reading aloud: An
exception word is read as if it conformed to
English spelling-sound rules, so that broad is
read as if it rhymed with “road,” and have
as if it rhymed with “cave.” Coltheart and
Funnell (1987) demonstrated that on any plau-
sible model of the reading system, there are
numerous different loci in the system at which
damage would lead to the occurrence of regu-
larization errors; given the particular model of
the reading system they proposed, there were
seven such different loci. Some of these are
quite remote from each other; for example,
the orthographic input lexicon and the phono-
logical output lexicon are both loci at which
damage would lead to the reading of broad to
rhyme with “road.”

If each member of a group of patients
classified as exhibiting the same syndrome
(all classified as surface dyslexics, for exam-
ple, or all classified as Broca’s aphasics) can
have a unique pattern of impairment of the rel-
evant cognitive system, then the syndrome is
not an appropriate object of scientific study. If,
as is the case, there is no specific impairment
of the language-processing system that all
Broca’s aphasics have in common, then there
is no coherent scientific entity to be called
Broca’s aphasia, so there’s nothing to study
here.

This does not mean that there is no place
at all in cognitive neuropsychology for
syndrome-oriented research. The history of
the subject shows that when one is begin-
ning cognitive-neuropsychological investiga-
tion of a cognitive domain that has not been
investigated at all from that approach, identi-
fying subgroups of patients with similar im-
pairments is a good way to start off—a valu-
able ground-clearing exercise. For example,
the cognitive neuropsychological investiga-
tion of reading was launched by Marshall and
Newcombe (1973), who distinguished be-
tween three different syndromes of acquired
reading disorder (surface dyslexia, deep
dyslexia, and visual dyslexia), and described
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for each syndrome two characteristic patients.
This seminal paper has been the stimulus for
an enormous amount of work on acquired
dyslexia over the past quarter of a century; but
in subsequent work the syndrome approach
was soon abandoned by cognitive neuropsy-
chologists as it became clear that within any
one of these syndromes of acquired dyslexia
patients differed in important ways from each
other.

GENERALIZATION IN COGNITIVE
NEUROPSYCHOLOGY

If, from the cognitive-neuropsychological
point of view, one does not study patients in
order to learn more about the characteristics
of some neuropsychological syndrome, and if
every patient is unique, how can one seek to
generalize one’s research findings here? The
answer is that one studies particular patients
with the aim of learning something about
some general theory of the cognitive archi-
tecture of the relevant cognitive system; data
from the patient are used to develop or extend
or test such a general theory. It is no prob-
lem that each patient in such a study has a
unique pattern of impairments of that cogni-
tive system; indeed, it may be a benefit. What
matters is that all the patients had the same
architecture of the system prior to damage—
the assumption of uniformity of cognitive
architecture.

DEVELOPMENTAL COGNITIVE
NEUROPSYCHOLOGY

Figure 4.3 could be a correct account of the
system that adults use for naming pictures
and reading aloud words and nonwords; that
is, it could be a correct description of the
cognitive architecture of people aged, say, 40.
But it could not be a correct description of
the cognitive architecture of people aged 4.
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As a rule, people of that age know nothing
about reading, so their cognitive architectures
will not contain modules that carry out ortho-
graphic tasks such as letter or word recogni-
tion (though they will contain modules for
visual object recognition, semantic process-
ing, and speech production, all of which
4-year-olds can do).

But what about people aged 8?7 Most of
them have learned something about reading
but have not attained maximum skill at that
task. What can cognitive neuropsychology
say about the cognitive architecture of these
people’s juvenile reading systems, and about
how this relates to the cognitive architecture
of the skilled reading system? Some devel-
opmental psychologists have been extremely
dubious about whether cognitive neuropsy-
chology can contribute anything useful to the
study of cognitive development.

Initially this concern was expressed specif-
ically in relation to reading: “The already ex-
isting structural model, useful as it is in de-
scribing the skilled reading process, needs to
be complemented by a developmental model
in order to make sense of the varieties of devel-
opmental dyslexia” (Frith, 1985, p. 326); “A
far greater problem arises when researchers
[on children’s reading] fail to adopt a develop-
mental perspective when analyzing their data”
(Snowling, 1987, p. 83); “A static model of
adult performance, such as dual route theory,
is inadequate for understanding how children
learn to read and why some children learn
to read easily while others have difficulties”
(Snowling, Bryant, & Hulme, 1996, p. 444).

It was difficult to evaluate such concerns
because the people expressing them had not
explained what errors might ensue when static
models of adult performance were applied.
Fortunately, Bishop (1997) has recently not
only spelled out these concerns but also dis-
cussed them in relation to other forms of
developmental cognitive impairment. This is
clearest in her discussion of specific language

impairment (SLI), a developmental disorder
in which a child’s language acquisition lags
far behind other aspects of the child’s cog-
nitive development for no apparent reason.
Bishop (1997) mentions three competing ex-
planations of the occurrence of SLI:

1. Language difficulties are caused by im-
pairment in discriminating rapid brief
auditory stimuli (Tallal & Katz, 1989).

2. Language difficulties are caused by limita-
tions in phonological short-term memory
(Gathercole & Baddeley, 1990).

3. Specialized mechanisms for grammar ac-
quisition are impaired (Crago & Gopnik,
1994).

She then says: “The traditional logic of cog-
nitive neuropsychology is inadequate to dis-
criminate these possibilities” (p. 903).

This is a valuable challenge. The way to
meet it is by invoking a distinction between
the proximal and distal causes of cognitive
impairments, a distinction that is central in
developmental cognitive neuropsychology.

Proximal versus Distal Cause

Returning just for a moment to the example
of the chocolate factory, one can imagine the
following conversation between a chocolate
consumer and a person familiar with the func-
tional architecture of the factory:

“Why does the chocolate taste bitter and have a
coarse texture today?”

“Because the Concher isn’t working properly.”
“Why not?”

“Beats me. You’ll have to ask a hardware guy
about that.”

[Asks “It’s
Concher’s splinges are worn out and need to
be replaced.”

hardware guy] because the

What is the cause of the chocolate defect
here? Is it that the Concher is not working
properly, or is it that the splinges are worn



out? Obviously, both are causes: The choco-
late is poor because the Concher is not work-
ing properly, and the Concher is not working
properly because of its defective splinges.
Notice that these are not the same cause, be-
cause “The Concher is not working properly”
could be true even if “The splinges are worn
out” is not true (because the Concher problem
could have been due to its cron being clogged
up, rather than to its splinges being worn out).
In the chocolate factory as in the mind, the
same functional defect can be caused by var-
ious different physical defects.

When a system’s operation is defective,
there is not just one cause, but a chain of
causes. The cause that is closest to the de-
fective behavior is the proximal cause; the
other (more remote) causes are distal causes
(Jackson & Coltheart, 2001).

This distinction applies to Bishop’s (1997)
SLI example as follows. Part of the human
language-processing system is a system that
handles grammatical inflections—a system
that people use for creating past tenses when
we need to, for example. In some cases of
SLI, there is a specific difficulty in dealing
with inflections, even if some other aspects of
the language system (e.g., phonology) have
been acquired appropriately. In such children
there is presumably a defect of a syntactic part
of the language-processing system that is re-
sponsible for processing grammatical inflec-
tions.> What might cause such a defect? There
are many possibilities; one is that specialized
innate mechanisms for acquiring this part

2This seems circular but is not. If a child responds when
asked “What’s your mother doing with the peas?” by
saying “shell” rather than “shelling,” that could be due
to some problem with syntactic processing, but that is
not the only possibility. Another possibility is that the
defect is phonological (specifically, a difficulty in pro-
ducing unstressed syllables). These alternatives could be
distinguished by asking the child, at least in predecimal
times, “What’s the name of the coin that twelve pennies
make?” Can the child respond “shilling”?
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of grammar are genetically impaired in this
particular child.

Here the proximal cause of the child’s
abnormal speech is a particular defect of
the language system, and the distal cause
of the child’s abnormal speech is a genetic
deficit in mechanisms for acquisition of
grammar.

Or instead the distal cause could be a lim-
itation of phonological working memory that
affected the child’s ability to acquire grammar
from exposure to spoken language; or it could
be that the child has a difficulty in speech
discrimination for brief and rapidly changing
auditory stimuli that affects the perception of
very brief and unstressed segments of speech
(such as inflections).

Here there are three different possible dis-
tal causes of the proximal cause of the child’s
abnormal spoken language.

Bishop’s claim was that the methods of
cognitive neuropsychology are not suitable
for discriminating between these alternative
possible distal causes. Whether this is true
is not important because the central aim of
cognitive neuropsychology is to discover the
proximal cause of abnormal behavior in any
cognitive domain.

This is easily demonstrated by considering
any acquired disorder of cognition, for exam-
ple, prosopagnosia. The proximal cause of this
disorder is an abnormality of one or more of
the components of the cognitive system used
for recognizing faces; itis cognitive neuropsy-
chology’s job to propose theories about what
these components might be, and then to see
whether any such theory can explain details
of the patient’s face-processing performance.
The distal cause of this disorder is damage
to mechanisms of the brain that are involved
in face processing, and that is the province
of cognitive neuroscience, not of cognitive
neuropsychology.

Although this point is most easily demon-
strated with respect to acquired disorders of
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cognition, it applies equally to developmen-
tal disorders. The job of developmental cog-
nitive neuropsychology is to propose theories
about the functional architecture of the mental
information-processing system that children
of a certain age use to perform some partic-
ular cognitive activity (e.g., sentence produc-
tion) and to investigate whether the perfor-
mance of children of that age who have an
abnormality in this cognitive domain can be
understood with reference to that theory. The
system abnormality is the hypothesized prox-
imal cause of the performance abnormality.
The system abnormality itself will have some
cause or causes, and these are distal causes
of the performance abnormality. These distal
causes might, like the proximal cause, be at
the cognitive level (e.g., the proximal cause
of inflectional errors in sentence production
might be an impairment of syntactic knowl-
edge, and the cause of that impairment, a distal
cause of the performance abnormality, might
be impaired phonological short-term memory,
which is also at the cognitive level). However,
distal cause can also be at the biological level
(such as genetic causes, or anoxic brain dam-
age that occurred perinatally), or at the envi-
ronmental level (such as high concentrations
of lead in the environment).

Suppose, then, that one is studying an
8-year-old boy whose reading ability is much
worse than that of the other 8-year-olds in his
class. It is conceivable that his reading system
is no worse than theirs, and that his poor per-
formance when his reading is being assessed
is due to inattentiveness or contrariness rather
than to an abnormality of his reading sys-
tem. That possibility can be discounted if the
boy is performing normally in assessments of
all other school subjects except for reading.
If that can be demonstrated, then there must
be some difference between this boy’s read-
ing system and the reading systems of all
the other children in the class; that will be
the proximal cause of his reading disorder.

Furthermore, there must be some reason
why his reading system is different from the
others; that will be the distal cause of his
reading disorder.

The cognitive neuropsychologist’s job is to
discover what this proximal cause is. Because
this proximal cause is an abnormality of the
reading system, this job can only be accom-
plished if it is known what the reading system
is normally like in 8-year-old children. How
big is the sight vocabulary of a typical 8-year-
old normal reader? What kinds of nonwords
can 8-year-old normal readers read aloud
correctly, and what kinds typically cause them
problems?

In general, then, the way developmental
cognitive neuropsychology works is as fol-
lows. A child is found who is strikingly
less capable of performing some cognitive
task than are other children of the same age.
A developmental cognitive neuropsycholo-
gist would be interested in studying such a
child because such an investigation might re-
veal more about how the relevant cognitive
system is normally acquired, and about what
that cognitive system is typically like for chil-
dren of that age. A functional architecture for
that cognitive system at that age might then
be hypothesized, followed by an investiga-
tion of whether the pattern of normal and ab-
normal performance of that child on a bat-
tery of relevant tests could be understood as
being due to a pattern of normally and ab-
normally acquired components of that func-
tional architecture. If such an understanding
is achieved, then a hypothesis about the prox-
imal cause of the child’s relative incapabil-
ity in this cognitive domain will have been
generated.

After that, an investigation of possible dis-
tal causes of this proximal cause can be pur-
sued. But analysis of proximal cause—the
developmental cognitive neuropsychological
work—must come first. Consider, for exam-
ple, the question of whether SLI has a genetic



cause. That is asking about a distal cause
of a particular developmental performance
pattern without first considering proximal
cause, and it lays such an investigation open
to a problem. Children can earn the diagno-
sis of SLI because they perform poorly on
tests of language comprehension or because
the sentences that they produce are abnor-
mally syntactically simple for their age. Here
there are two different proximal causes of the
child’s language impairment. It could be that
one of these has a genetic basis and that the
other does not. A genetic investigation that
did not treat these two groups of children sep-
arately would be unlikely to yield anything
useful. This specific example illustrates a gen-
eral point: Hypotheses about distal causes of
developmental disorders of cognition need to
be hypotheses about the distal cause of a prox-
imal cause. Hence, to pursue any research on
distal (e.g., genetic) causes of developmental
disorders, one needs first to identify the prox-
imal cause—the particular abnormality of the
relevant cognitive system. Identifying prox-
imal causes of developmental cognitive dis-
orders is what developmental cognitive neu-
ropsychology does.

Yet another way in which the perspective
of developmental cognitive neuropsychology
can assist attempts to understand developmen-
tal disorders of cognition is to make the point
that it is likely to be a mistake to think of
the three explanations of SLI just listed as
competing theories among which there must
be adjudication. SLI is a syndrome and, as
such, is an ultimately inappropriate object of
study even though the syndrome approach
may be a useful way to begin investigation
of some cognitive disorder. Children classi-
fied as SLI are not a homogenous group all
having a single, identical impairment of the
language system. Because this is a hetero-
geneous group of children with a variety of
forms of impaired language, it is perfectly
possible that each of these three accounts of
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SLI apply to some of the children in any such
group. Some of the children may have im-
paired abilities to discriminate rapid brief au-
ditory stimuli, and this may have impaired
some other aspects of their language learning;
others may have deficient phonological short-
term memory, and this may have impaired
some other aspects of their language learn-
ing. Still others may have a genetic impair-
ment of innate mechanisms, and this may have
impaired yet other aspects of their language
learning.

Finally, in any case, the claim that “the tra-
ditional logic of cognitive neuropsychology
is inadequate to discriminate between these
possibilities” (Bishop, 1997, p. 903) is not
even true. It was once argued that the distal
cause of visual agnosia was some combination
of a low-level visual impairment plus some
impairment of frontal lobe function. The tra-
ditional logic of cognitive neuropsychology
in this circumstance is to investigate whether
there are any people who possess low-level vi-
sual impairments and frontal lobe damage but
donot possess visual agnosia. Such cases were
found, so this particular theory about the dis-
tal cause of visual agnosia was refuted. Apply-
ing this logic to SLI would involve identifying
children with impaired ability to discriminate
rapid brief auditory stimuli and determining
whether any of them showed no evidence of
SLI; the discovery of one such child would
refute this theory of the distal cause of SLI.
Similarly, one could investigate children with
deficient phonological short-term memory to
see whether any such child shows no evidence
of SLI. Investigations like these represent the
application of the traditional logic of cogni-
tive neuropsychology for the purpose of dis-
criminating between these possible accounts
of SLIL.3

31 thank John Marshall for providing me with this
example.
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SOME PRACTICALITIES
PECULIAR TO COGNITIVE
NEUROPSYCHOLOGY

Suppose there is a researcher in cognitive
psychology who has so far carried out lab-
oratory research exclusively involving cogni-
tively normal college students. The researcher
can see, however, that a particular question of
interest could be addressed by appropriate in-
vestigations of a person suffering from a cog-
nitive impairment caused by brain damage.

For example, the question of interest might
be the following. People know various facts
about inanimate objects, including facts about
the correct way in which to interact physically
with the object (for those objects that actually
have a correct way) and facts about the func-
tions that these objects serve (for those objects
that actually have a function). Is there a single
body of knowledge about objects that contains
both types of information? Or is information
about how to interact physically with a key
stored quite separately from the fact that keys
are for opening locked things and for locking
open things?

The researcher has read this chapter at-
tentively up to this point, so he or she can
already see how an investigation of people
whose brain damage has affected their knowl-
edge of objects in some way might provide an
answer to this question. Suppose, for exam-
ple, that when such a person was shown a key
and asked what it was for, the person could
say, “It’s for locking and unlocking things”;
but that when given the instruction “Show me
how you would use it,” the person was quite
unable to do so. This person can accurately
imitate key-turning behavior when the investi-
gator performs this action (so there’s no ques-
tion of paralysis), but nevertheless cannot pro-
duce this behavior in response to the stimulus
of a key.

The researcher has read this chapter very
attentively, however, so he or she knows that a

dissociation is not really what is needed. The
data that the researcher has observed might be
evidence for distinct knowledge systems for
object function and object use; but there is an
alternative explanation, which is that there is a
single object knowledge system, but for some
reason information about object use in that
system is more vulnerable to brain damage
than is information about object function. The
researcher knows, of course, the answer to this
problem: a double dissociation is necessary.
The researcher needs to find a second brain-
damaged person who can pick up a key and
putitin alock and turn it, and mime the use of
a key when shown one, but who when shown
akey and asked what it is for will say, “Idon’t
know. What is that thing?”

As it happens, both kinds of patients
have been reported in the cognitive-
neuropsychological literature. The condition
in which patients can normally use objects and
mime their use but are poor at providing ver-
bal information about what an object is used
for when shown it is known as optic apha-
sia (Beauvois, 1982). The opposite pattern—
impaired object use and miming with intact
verbal knowledge—also occurs (Leiguarda &
Marsden, 2000).

I believe that anyone interested in how ob-
ject knowledge is represented, even some-
one who has so far only studied this via
experiments with cognitively normal college
students, would be fascinated by such obser-
vations and would consider them directly rel-
evant to the development of a theory about
how object knowledge is represented in peo-
ple’s cognitive systems. So the researcher in
this example decides to do research with peo-
ple in whom brain damage has affected such
knowledge in various different ways. What is
the researcher’s next step?

The researcher will need to develop a re-
lationship with a neuropsychology clinic or a
neurology ward, a relationship in which it is
clear to all parties, and accepted by them, that
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the researcher’s interest is in research and not
in treatment. After this, the researcher is ready
to study patients with interesting disorders of
object knowledge.

Unfortunately, experiments in cognitive
neuropsychology are experiments of nature.
The researcher has no control at all over
the neuroanatomical location and the func-
tional consequences of the brain injuries suf-
fered by the patients admitted to the ward
or clinic with which the researcher has es-
tablished a relationship. Hence, it is quite
possible that the researcher will never have
access to a patient who has an interesting dis-
order of object knowledge, because it could
happen that none of the admitted patients
have suffered the appropriate kind of brain
injury.

There are at least three ways for the
fledgling cognitive neuropsychologist to ma-
neuver a solution to this problem. The first is
to establish relationships with a large num-
ber of neuropsychology clinics and neurol-
ogy wards, and to ensure that the clinicians
in those centers not only are willing to draw
attention to any relevant patients who come
along but also are sufficiently well briefed that
they are able to identify which patients might
be of interest because they have disorders
of object knowledge and which patients—no
matter how fascinating their cognitive deficits
might be—are not relevant. Then the re-
searcher must simply be patient.

The second is to find some way of develop-
ing a collaboration with a cognitive neuropsy-
chology laboratory where such connections
are already well established and where work
on patients with disorders of object knowl-
edge is already under way. Examples of rele-
vant laboratories include the Cognitive Sci-
ence Research Centre at the University of
Birmingham, the Center for Cognitive Neu-
roscience at the University of Pennsylvania,
and the Moss Rehabilitation Research Insti-
tute in Philadelphia.

The third, and much more common, ma-
neuver is to recognize that very many brain-
injured patients are capable of informing cog-
nitive neuropsychologists about some domain
of cognition. Thus, even if a cognitive neu-
ropsychologist has access only to patients ad-
mitted to one clinical center, that will guaran-
tee access to a variety of patients who would
richly repay cognitive-neuropsychological in-
vestigation. The problem here is that the in-
vestigator has no control over which domain
of cognition could profitably be studied with
each patient. Thus, an investigator whose field
of expertise is, say, high-level vision in par-
ticular and object knowledge in general might
be confronted first with a patient with an inter-
esting acquired disorder of speech production,
and next with a patient with an interesting ac-
quired disorder of calculation, and then with
a patient with an interesting acquired disor-
der of auditory recognition of environmental
sounds. All three patients might have unin-
terestingly intact high-level vision and object
knowledge. The only recourse that cognitive
neuropsychologists have here is to be willing
to become jacks-of-all-trades: to be prepared
to educate themselves in new areas of cog-
nitive psychology as a function of the kinds
of patients who turn up in the clinical center.
That is what most cognitive neuropsycholo-
gists do.

John Marshall, for example, began his
cognitive-neuropsychological career by work-
ing on impairments of word retrieval and of
reading but subsequently has studied spelling,
spoken language comprehension, global and
local processing, visual attention, and hallu-
cinations, all from a cognitive-neuropsycho-
logical perspective. Tim Shallice’s first
cognitive-neuropsychological work was on
impairments of short-term memory, but he
has subsequently studied reading, spelling, se-
mantic memory, executive function, and con-
sciousness, all from a cognitive-neuropsycho-
logical perspective. Alfonso Caramazza’s first
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cognitive-neuropsychological work was on
impairments in the production and compre-
hension of spoken language, but he has sub-
sequently investigated reading, spelling, mor-
phology, semantic memory, visual attention,
and bilingualism, all from a cognitive-neuro-
psychological perspective. Such extreme di-
versity of interests is rarely seen in cognitive
psychologists who work solely with cog-
nitively normal individuals. It is common
amongst cognitive neuropsychologists, how-
ever, because they need to work with whatever
kinds of cognitive disorders nature provides to
them.

How one can develop access to appropriate
brain-damaged patients is one purely practical
consideration for the cognitive neuropsychol-
ogist; there are others. A patient being stud-
ied may not be in a stable condition: Cogni-
tive abilities can worsen as a study progresses
(the patient may suffer a second stroke, or
may be suffering from a progressive disorder
such as Alzheimer’s disease) or can improve
as a study progresses (e.g., because the patient
is receiving rehabilitation, or because in the
weeks or months after insult to the brain the
condition of the brain itself can improve be-
cause of such factors as reduction in swelling
and intracranial pressure as fluid produced by
the insult drains away). Whenever such wors-
ening or improvement over time might be hap-
pening, the investigator has to be particularly
careful in drawing conclusions from compar-
isons between tests administered at different
points in time.

Finally, there is the issue of statistical
methods appropriate to data from single case
studies. It might be thought that when N = 1,
many forms of statistical analysis common in
areas of cognitive psychology that use group
data cannot be applied. However, this is not
really so. Imagine, for example, that you were
investigating the effects of word frequency
and word imageability on a patient’s ability to
repeat words. This would be done by select-

ing a sufficiently large set of words in which
these two variables were orthogonally varied,
administering these in random order to the
patient, and for each word measuring, say,
latency of repetition. This would result in a
2 x 2 table of data, each cell of the table con-
taining a set of latencies for one combination
of the word frequency and word imageability
categories. A two-factor independent-groups
analysis of variance is entirely appropriate
here. Why is it an independent-groups analy-
sis? Because the set of words in any one cell
is independent of the set in each other cell; no
word belongs to more than one cell (just as, in
an independent-groups analysis of group data,
the set of subjects in any one cell is indepen-
dent of the set in each other cell; no subject be-
longs to more than one cell). In general, then,
the emphasis on single case studies in cog-
nitive neuropsychology does not lead to any
particular statistical difficulties in selecting
appropriate statistical techniques for analysis
of cognitive-neuropsychological data. There
might be occasions when the fact that data are
drawn from only one subject leads to viola-
tion of some assumption of a parametric test
(e.g., the data might be highly skewed), but
that is easily dealt with by using randomiza-
tion tests (Edgington, 1995) that do not rely
on these assumptions and yet are of equal
power to parametric tests.

FUTURE DIRECTIONS IN
COGNITIVE NEUROPSYCHOLOGY

Cognitive Neuroimaging
and Cognitive Neuropsychology

A great deal of recent work in cognitive neuro-
science has been devoted to imaging the brains
of people as they perform cognitive tasks on-
line. One can imagine two kinds of motivation
for such work. The first is the hope that in-
vestigations of this kind could tell us more
about the nature of cognition itself—about
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the functional architecture of some cognitive
system. The second and different motivation
is to seek to localize in the brain the individ-
ual components, the modules, of the proposed
functional architecture of some cognitive
system.

I know of no neuroimaging work so far re-
ported that has clearly achieved the first of
these aims—that is, to reveal something new
about the organization of the functional ar-
chitecture of any cognitive system. Indeed,
it is not absolutely clear how this aim might
ever be achieved. Suppose one were serious
in proposing Figure 4.3 as a correct descrip-
tion of the functional architecture of the cog-
nitive system that people use to understand
and name pictures and to read aloud words
and nonwords. What is an example of a pos-
sible outcome of a cognitive neuroimaging
experiment that would be regarded as falsi-
fying this claim about cognitive architecture?
Suppose, for example, one has in mind the
double dissociation between surface dyslexia
(interpreted as selective impairment of the
reading route that proceeds via visual word
recognition) and phonological dyslexia (in-
terpreted as selective impairment of the read-
ing route that proceeds via the application of
grapheme-phoneme rules). This might moti-
vate one to carry out a neuroimaging study in
which brain activation occurring while people
were reading aloud exception words was com-
pared with brain activation occurring while
people were reading aloud nonwords. Sup-
pose one could detect absolutely no difference
between these two conditions. Would that
be evidence falsifying the Figure 4.3 model?
No, because the Figure 4.3 model makes
no claims about anatomical modularity; it is
a claim about the mind and not about the
brain. Figure 4.3 could be a correct descrip-
tion of a human functional architecture even
if the system it describes is represented in the
brain in a completely nonmodular way (which
would prevent activation patterns from differ-

ing as a function of which reading routes were
being used).

Perhaps I am revealing a failure of imagi-
nation here; perhaps there are ways of show-
ing that, at least in principle, data from cog-
nitive neuroimaging studies are capable of
constraining theories about functional archi-
tectures of cognition. However, [ am not alone
in being dubious about this: see Van Orden &
Paap (1997) for an even more skeptical view
concerning whether cognitive neuroimaging
could ever inform theorizing about the func-
tional architecture of cognition. Only the fu-
ture will tell; but it does seem that at least up
to the present time no cognitive neuroimaging
work has made any serious difference to ideas
about the functional architecture of cognition.

In response to the above, Marshall (per-
sonal communication, March 2001) said,
“You claim that imaging cannot tell you any-
thing much about the functional architecture.
I kind of agree, but consider this example: A
woman cannot move (or at best doesn’t move)
the left side of her body, although there is no
discoverable structural lesion. You think up
a few “functional” (?) explanations. (i) Her
relevant motor centers have nonetheless been
put out of action; (ii) Her relevant motor cen-
ters have been disconnected from her “voli-
tion” centers; (iii) Her relevant motor centers
are OK, but get inhibited by some other cen-
ter, etc., etc., etc. Marshall, Halligan, Fink,
Wade, and Frackowiack (1997) in Cognition
is an attempt (not too unsuccessful I would
argue) to distinguish between these hypothe-
ses using PET. Note that this is not quite
the same as using functional neuroimaging
to test the right hemisphere hypothesis for
deep dyslexia. I was, I think, testing a func-
tional, not anatomical, hypothesis.” The imag-
ing data in this study of a hysterical paral-
ysis revealed that when the patient tried to
move her left leg, motor and/or premotor ar-
eas of the right hemisphere associated with
movement preparation and execution were
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activated, but the right motor primary cortex
was not; the right orbitofrontal and right ante-
rior cingulated cortex were also activated. The
authors concluded that the latter two areas “in-
hibit prefrontal (willed) effects on the right
primary motor cortex when the patient tries
to move her left leg” (Marshall et al., 1997,
p- B1). These are fascinating results, but they
still do not, pace Marshall, constitute an ex-
ample in which functional neuroimaging has
told us something new about the functional ar-
chitecture of cognition. The functional archi-
tecture described by Marshall earlier in this
paragraph (a motor center system; a “voli-
tion” center; a center for inhibiting motor ac-
tivity) was not proposed as a consequence of
the imaging data. Quite the contrary: It was
proposed as a framework that then allowed
the design of the imaging study.

Perhaps one can be a little more sanguine
about the second of the two possible aims
of cognitive neuroscience, the aim of local-
izing cognitive modules. But this is very dif-
ferent from the first aim because this kind of
work presupposes, rather than attempts to dis-
cover, what the functional architecture of a
particular cognitive system is like; the ques-
tion “Where is module X located in the brain?”
presupposes that there is a module X. Because
one of the most fertile sources of informa-
tion about what the modules of some cogni-
tive system might be is cognitive neuropsy-
chology, the assertion here is a dependence of
cognitive neuroscience upon cognitive neuro-
psychology.

To illustrate this with an example, imag-
ine that someone with an interest in the brain
mechanisms used for reading decides to in-
vestigate this by imaging the brains of peo-
ple who had suffered brain damage that had
impaired their reading, in order to discover
which particular part of the brain was dam-
aged in such people. That part of the brain
could then be claimed to be the brain site for
reading. One reason why this would be point-
less is that the cognitive system we use for

reading is functionally modular in nature, and
damage to any one of these modules would
impair reading in some way; if the reading
system is also anatomically modular, then a
group of people selected just because brain
damage had affected their reading in some
way or other will have various different loci
of brain damage. There will be no single brain
site for reading. Obviously the problem here is
that reading is a process with many modules,
and questions about localization can only be
posed with respect to single modules; thus,
that question needs to be posed separately in
relation to each of the modules of the reading
system.

Instead of imaging the brains of patients
with various different kinds of reading diffi-
culties, then, it is necessary to focus on only
one kind of reading difficulty, for example,
a difficulty in reading aloud nonwords ac-
companied by good reading of words (i.e.,
phonological dyslexia). Imaging the brains of
a group of people with this highly specific
reading difficulty should provide us with in-
formation about where in the brain the non-
word reading module is.

One problem that would need to be faced
here is that typical causes of brain damage
such as stroke or head injury produce damage
to various parts of the brain. There might be
various separate small lesions, or there might
be one lesion that is large and covers sev-
eral brain regions, only one of which has to
do with nonword reading. Therefore, imag-
ing the brain of one person with phonologi-
cal dyslexia might reveal several small lesion
sites, in which case one would not know which
of these should be blamed for the phonolog-
ical dyslexia; or it might reveal one large le-
sion, in which case one would not know which
particular region within this large lesioned
area should be blamed for the phonological
dyslexia.

A typical solution to this problem is to
image the brains of a series of patients with
phonological dyslexia and to superimpose the
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successively determined lesion sites on a di-
agram of the brain, the idea being that only
overlapping areas—sites lesioned in every
brain—could possibly be related to phono-
logical dyslexia. If, as brains are added in,
the regions of complete overlap get fewer and
fewer until there is only one very small region
left that is abnormal, that region could be the
anatomical module for nonword reading (or
at least could contain that module).

In practice, however, what is very likely to
happen in such an investigation is either

(a) that as brains are added in, the regions
of complete overlap get fewer and fewer
until there are none left, or

(b) that as brains are added in, an originally
large single region of complete overlap
shrinks and shrinks until it vanishes com-
pletely.

Either result would suggest that there is no
brain region that is damaged in all cases of
phonological dyslexia. Yet brain damage can
selectively impair nonword reading. What is
going on here?

These hypothetical researchers arrived at
this puzzling state of affairs by initially rec-
ognizing that because the reading system has
a modular organization, it makes no sense to
seek the location of the reading center in the
brain by imaging the brains of patients with
some or other form of impaired reading. What
the researchers did instead was to specify just
one particular module of the reading system—
the nonword reading module—and to image
the brains of patients all of whom had se-
lectively impaired nonword reading. Why did
they still end up with a result that makes no
sense? It is because they failed to solve the
original problem. They saw that it makes no
sense to use imaging to search for the reading
center in the brain because the reading system
is modular in structure—but for the same rea-
son it makes no sense to use imaging to search

for the nonword reading center in the brain,
because the nonword reading system is itself
modular in structure.

It is known that this is so because re-
search on patients with a specific impair-
ment in the ability to read nonwords has
shown that such patients are heterogeneous;
that is, the same symptom (many nonwords
read wrongly, or not at all) can arise from im-
pairments at different loci in the functional
architecture of the nonword reading system.
For example, in the first study of phonological
dyslexia, by Beauvois and Derouesné (1979),
four such patients were studied. Two showed
better reading for pseudomophonic nonwords
(English examples would be brane or yot) than
for nonpseudomophonic nonwords (brone or
yut), but were unaffected by whether in non-
words there were many-to-one mappings of
letters to phonemes (choof, thish) or only one-
to-one mappings (clisk, trinf). The other two
patients showed the reverse result. Thus, al-
though all four patients had the same read-
ing symptom (all four read nonwords far less
well than they read words), they did not have
the same impairment in the reading system;
two different loci of impairment of the non-
word reading component of the reading sys-
tem were present here. One could propose
that two of these patients had an impairment
of a graphemic parsing module of the non-
word reading component of the reading sys-
tem (and thus could not cope when graphemes
consisted of more than one letter) and that
the other two had a difficulty in activating
the level of phonemic representation in the
nonword reading module (a difficulty that
could be partly ameliorated by feedback to
that level from a phonological lexicon, feed-
back which would only be available if the
set of phonemes being activated was a word,
as is the case when the printed stimulus is a
pseudohomophone).

Hence, the move from imaging any kind
of patient with a reading disorder to imag-
ing only patients with a specific reading



166 Cognitive Neuropsychology

disorder—phonological dyslexia—was insuf-
ficient: The original problem, heterogeneity
of damage to functional architecture, is still
there. How is that problem to be solved?

This is not easy, but a plausible answer is
offered by Block (1995). In his terms, what
has been going on in the preceding paragraphs
is “functional decomposition.” The reading
system has been decomposed into smaller
components, such as the nonword reading sys-
tem, and the nonword reading system has been
decomposed into still smaller components,
such as the grapheme parsing system. De-
composition stops when all the components
are primitive processors—because the opera-
tion of a primitive processor cannot be further
decomposed into suboperations. For example
an AND-gate: it is just defined in terms of
its input-output function, and that function is
not decomposable. “Primitive processors are
the only computational devices for which be-
haviorism is true ... the largest components
of the system whose operation must be ex-
plained, not in terms of cognitive science, but
rather in terms of electronics or mechanics
or some other realization science. ... If the
mind is the software of the brain, then we
must take seriously the idea that the func-
tional analysis of human intelligence will bot-
tom out in primitive processors in the brain”
(Block, 1995, p. 389).

Thus, perhaps the solution to the prob-
lem for cognitive neuroimaging here is that it
makes sense to use that technique to localize
cognitive modules only when these modules
are Blockian primitive processors—cognitive
subsystems that are, in the term used by Fodor
(1983), “not assembled.”

Be that as it may, my aim in this section of
the chapter is to make the case that cognitive
neuroimaging studies whose aims are to de-
termine the neuroanatomical localization of
cognitive modules have to be predicated on
some prior and explicit conception of what
the constituent modules of the relevant cogni-

tive system are. Because the richest source of
such conceptions is cognitive neuropsychol-
ogy, then cognitive neuroscience, if it is to
progress, needs to develop a much closer de-
pendence on cognitive neuropsychology.

Computational Cognitive
Neuropsychology

An important recent advance in cognitive psy-
chology is the development of computational
modeling as an aid to theory evaluation. A
computational model of some theory in cog-
nitive psychology is achieved by representing
that theory in the form of a computer program
that is capable of carrying out the cognitive
task in question, and which does so using ex-
actly the procedures that, according to the cog-
nitive theory, are used by human beings when
they are carrying out that cognitive task. Mak-
ing a theory into a computational model helps
theorizing in a variety of ways. For example,
it reveals hitherto unsuspected ways in which
the theory is underspecified or implicit: One
cannot make a running program from a theory
unless that theory is fully specified and ex-
plicit. Furthermore, if the program does run
and is able to perform the cognitive task in
question, and if the speed or accuracy of its
performance is affected by the same stimulus
variables that affect the speed or accuracy of
human performance, that shows that the the-
ory is a sufficient one.

This way of doing cognitive psychology
is called computational cognitive psychology,
and its virtues are sufficiently extensive that
one might argue that all theorizing in cognitive
psychology should be accompanied by com-
putational modeling—that is, that it should
be standard practice for theorists in cogni-
tive psychology to express their theories in
the form of executable computer programs.

Here it is important to distinguish between
the terms computational model, connection-
ist model, and neural-net model. Figure 4.3
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is helpful here. An ambitious project in theo-
retical cognitive psychology would be to seek
to make the cognitive theory represented by
Figure 4.3 into a computer program that ac-
tually performed the tasks of naming pictures
and reading aloud words and nonwords; this
would provide a way of rigorously testing
the theory depicted by Figure 4.3. This pro-
gram’s structure would have to be isomor-
phic to the structure of Figure 4.3 if the pro-
gram were to be a computational realization
of the theory. Thus, for example, the program
would have to contain program modules for
each of the processing models of Figure 4.3.
Such a program would be a computational
model in the sense in which I am using that
term.

Would it be a connectionist model as well?
Not necessarily. For a model to be prop-
erly termed connectionist, communication be-
tween adjacent modules of the model would
need to be conceptualized in terms of connec-
tions between elements of one module and
elements of the other. For example, commu-
nication between the letter recognition and vi-
sual word recognition components would be
effected via actual connections between letter
units and word units: The letter unit for P-in-
the-first-position would be literally connected
to all the word units for words that begin with
P. Because this connectionist conception of
the nature of intermodule communication is
only one of various possible ways in which
such communication could be conceptualized
in computational models, not all computa-
tional models are connectionist models. For
example, the models of reading aloud offered
by Coltheart et al. (2001); Plaut, McClelland,
Seidenberg, and Patterson (1996); Seidenberg
and McClelland (1989); and Zorzi, Houghton,
and Butterworth (1998) are all computational
models (because all are expressed as work-
ing computer programs), but only three are
connectionist models; the model of Coltheart
et al. (2001) is not a connectionist model.

A major motivation for connectionist
computational modeling is the hope that the
connections by which adjacent modules com-
municate could be given an actual physi-
cal interpretation—as neurons or neuronal
tracts. Connectionist modelers with particu-
larly strong hopes of this kind refer to their
connectionist models as neural-net models.
In Chapter 6 of this volume, Levine con-
siders just how justified such modelers are
in asserting that their connectionist models
are “neurally plausible.” Here I merely note
that the arrows in a diagram like that of Fig-
ure 4.3 denote pathways of communication
between modules, that Figure 4.3 does not as-
sert anything at all about how such pathways
are physically realized in the brain, and that
a computational realization of Figure 4.3—a
computational model of the relevant cogni-
tive processes—may be neither a connection-
ist model nor a neural-net model.

Computational models can be used to sim-
ulate not only normal behavior but abnormal
behavior as well. Researchers can interfere
with the programs in various ways in order to
see whether they then produce patterns of im-
paired cognitive performance that correspond
in detail to the patterns of impaired perfor-
mance seen in people with acquired or devel-
opmental disorders of cognition. This is com-
putational cognitive neuropsychology.

Computational cognitive psychology is
only now beginning to develop, so compu-
tational cognitive neuropsychology is still
very underdeveloped. Nevertheless, a certain
amount has already been done on the com-
putational cognitive neuropsychology of ac-
quired dyslexia. This work has focused largely
on the simulation of the two types of acquired
dyslexia discussed at several points in this
chapter—surface dyslexia and phonological
dyslexia. The work on computational model-
ing of reading by Seidenberg and McClelland
(1989), Plaut et al. (1996), and Zorzi et al.
(1998) has included some attempts to simulate
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acquired dyslexia, but not one of these imple-
mented models was able to simulate success-
fully both phonological dyslexia and surface
dyslexia. In contrast, the dual-route cascaded
(DRC) model of visual word recognition
and reading aloud (Coltheart et al., 2001)—
a computational realization of the dual-route
theory of reading—has been successful in
simulating both of these acquired dyslex-
ias (Coltheart, Langdon & Haller, 1996;
Coltheart et al., 2001).

Figure 4.3 includes, in somewhat simpli-
fied form, the two routes of the DRC model
and is therefore convenient for illustrating the
DRC work on simulating acquired dyslexia.
Suppose Figure 4.3 were turned into a com-
putational model. It would have a computa-
tional route that can read all words aloud cor-
rectly (the route via visual word recognition)
but cannot read nonwords, and another com-
putational route that can read all nonwords
and regular words aloud correctly (the route
via application of grapheme-phoneme rules)
but misreads exception words.

Now, it would be merely trivial to interfere
with such a model so as to make it able to read
all words aloud correctly but no nonwords—
to make it severely phonologically dyslexic.
One would only have to delete the grapheme-
phoneme rule application subroutine from the
program. It would be equally trivial to inter-
fere with the model so as to make it able to
read all nonwords and regular words aloud
correctly, but misread all exception words.
One would only have to delete all the units
in the visual word recognition database of the
program. Thus, the computational cognitive
neuropsychologist must be more ambitious
here and seek to simulate much more detailed
aspects of the reading performances seen in
phonological and surface dyslexia.

No person with surface dyslexia has ever
been reported who could read no exception
words at all. These patients can correctly
read some exception words, and there is a

frequency effect here: The more frequent an
exception word is, the more likely the sur-
face dyslexic will be able to read it correctly.
That is a more subtle effect that one might
seek to simulate. Coltheart et al. (2001) suc-
ceeded in making the DRC model misread
some exception words while correctly read-
ing others by altering the sensitivity to fre-
quency of the visual word recognition com-
ponent of the model in such a way that this
component no longer responded adequately
to low-frequency words. The model now read
some exception words correctly, reading all
the others by regularizing them (reading them
as if they obeyed the rules); the more frequent
an exception word was, the more likely the
model was to read it correctly. Thus, this sim-
ulation produced quite a detailed match be-
tween the behavior of the lesioned model and
the behavior of patients with surface dyslexia.

As discussed, some phonological dyslex-
ics read pseudohomophonic nonwords with
a higher accuracy rate than they read non-
pseudohomophonic nonwords (Beauvois and
Derouesné, 1979); furthermore, these authors
reported that this pseudohomophone advan-
tage was found to be greater when the pseudo-
homophone was orthographically very close
to its parent word (an English example
would be “koat”) than when it was not (an
English example would be “kote”). When the
nonlexical route of the DRC model is inter-
fered with by slowing down the rate at which
the grapheme-phoneme rules are applied, the
model now begins to misread some nonwords.
Also, its performance shows a pseudohomo-
phone advantage as well as an interaction of
this advantage with visual similarity to par-
ent word (Coltheart et al., 2001), just as re-
ported for human phonological dyslexics by
Beauvois and Derouesné. Thus, again this
simulation produced quite a detailed match
between the behavior of the lesioned model
and the behavior of phonological dyslexic
patients.
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As mentioned, this kind of work is still
in its infancy. Prospects do seem good, how-
ever, that as computational modeling becomes
more widespread in cognitive psychology,
one of the important ways of using a compu-
tational model to test the theory from which it
was derived will be to lesion the model in var-
ious ways and then to investigate the success
with which the lesioned model’s behavior re-
produces detailed aspects of the performance
of people with impairments of the relevant
cognitive system. That is computational cog-
nitive neuropsychology.

Cognitive Neuropsychiatry

When cognitive neuropsychology was reborn
45 or 50 years ago,* it initially focused largely
on just one cognitive ability, namely, reading
aloud. Its scope, however, widened rapidly,
and the cognitive abilities mentioned so far in
this chapter that have been thoroughly investi-
gated from the cognitive-neuropsychological
perspective include, in addition to reading
aloud, visual word recognition, spelling, face
recognition, object recognition, object knowl-
edge, language comprehension, spoken lan-
guage production, attention, skilled action,
and short-term memory.

Visual scientists would regard visual ob-
ject recognition as an example of high-level
vision, but for cognitive scientists it is an
example of low-level cognition, as is every
other cognitive ability listed in the previ-
ous paragraph. All of these are classified as
low-level cognitive abilities so as to contrast
them with such high-level cognitive abili-
ties as belief formation, belief evaluation, and
reasoning.

4Cognitive neuropsychology had flourished in the last
40 years of the 19th century but disappeared in the first
part of the 20th century as behaviorism came to the fore
in psychology and antilocalizationist tendencies came to
the fore in neurology.

It is therefore interesting to note that so far
cognitive neuropsychology has confined itself
almost entirely to the study of low-level cog-
nitive abilities. Why might that be? Could it
be because Fodor’s “first law of the nonexis-
tence of cognitive science” (Fodor, 1983) is
true? This law avers that the scientific study
of such high-level cognitive abilities as belief
formation, belief evaluation, and reasoning
will never be possible. According to this law,
then, cognitive science can only make discov-
eries about relatively low-level (i.e., modular)
cognitive abilities, a view reiterated by Fodor
(2000).

It is even more interesting to note, there-
fore, that the cognitive-neuropsychological
approach, in the past few years, has begun
to be applied to the investigation of be-
lief formation and belief evaluation. Let me
remind the reader of the definition of cogni-
tive neuropsychology with which this chap-
ter began: it is the investigation of disor-
dered cognition with the aim of learning more
about normal cognition. Thus, the investiga-
tion of belief formation and belief evalua-
tion from the cognitive-neuropsychological
perspective necessarily involves the study
of people with disorders of belief forma-
tion and belief evaluation (e.g., people with
delusions).

This domain of cognitive neuropsychol-
ogy is known as cognitive neuropsychiatry
(David & Halligan, 1996) because it typically
involves the investigation of people with dis-
orders that might be seen as the province of
the psychiatrist. Just as cognitive neuropsy-
chology began by focusing on just one dis-
order of low-level cognition (impaired read-
ing), so cognitive neuropsychiatry has begun
by focusing on just one disorder of high-level
cognition (delusion), though it is already
beginning to branch out to other high-level
disorders, such as hallucination.

I will conclude this chapter, then, with
an illustration of the nature of cognitive
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neuropsychiatry that uses current work on
delusional belief as an example.

Many delusions are monothematic or
encapsulated: The deluded person has only
a single delusory belief, or at most a small
collection of closely related delusory beliefs.
Outside the domain of the delusory belief, the
person is, or at least appears to be, entirely
rational; for example, the person accepts that
the belief he or she holds is an improbable one
and is not surprised when others challenge it,
though the person nevertheless clings to it.
Table 4.1 lists some examples of monothe-
matic delusional beliefs that are currently be-
ing studied by cognitive neuropsychiatrists.

A key discovery in the cognitive neuropsy-
chiatry of delusion was that of Ellis, Young,
Quayle, and de Pauw (1997). When normal
subjects are shown pictures of faces, they
exhibit an arousal response indexed by, for
example, substantially increased skin con-
ductance; and the skin conductance response
(SCR) is larger when the face is familiar than
when it is unfamiliar. Ellis et al. found that
this was not so for patients with Capgras delu-
sion: Only very weak SCRs were observed in
response to faces, and familiarity of the face
did not increase the SCR. These authors sug-
gested that this was a key factor in the delu-

Table 4.1 Eight Monothematic Delusions

e Capgras delusion: My closest relatives have been
replaced by impostors.

e Cotard delusion: I am dead.

e Fregoli delusion: I am being followed around by
people who are known to me but who are
unrecognizable because they are in disguise.

e Mirrored-self misdentification: The person I see in the
mirror is not really me.

e Reduplicative paramnesia: A person I knew who died
is nevertheless in the hospital ward today.

e Thisarm [the speaker’s left arm] is not mine, it is yours;
you have three arms.

e Alien control: Someone else is able to control my
actions.

e Thought insertion: Someone else’s thoughts are being
inserted into my mind.

sion: Capgras sufferers are confronted with
the curious situation that they do not experi-
ence any emotional response when they en-
counter a person who should evoke such a
response, such as a spouse. How could the
person account for this? Perhaps it is because
the encountered person is not the spouse, de-
spite his or her claims to be; in that case, the
encountered person is an impostor.

However, although this impairment in
emotional responsiveness may be necessary
for the occurrence of the Capgras delusion,
Davies and Coltheart (2000) have argued that
it is not sufficient because of the work of
Tranel, Damasio, and Damasio (1995), who
described cases of patients in whom brain
damage had also eliminated the SCR to faces,
but who were not delusional. This led Davies
and Coltheart (see also Langdon & Coltheart,
2000) to the view that in patients with
Capgras syndrome a second deficit must also
be present. One deficit (affecting emotional
responsiveness to faces) is responsible for the
initial entertainment of the false, bizarre, and
implausible belief; the second deficit (an im-
pairment of the belief formation system) pre-
vents the patient from being able to evaluate
and so reject this belief. Davies and Coltheart
then went on to explore the possibility that
this two-deficit theory might offer an account
of all forms of monothematic delusion—all
the forms of delusion listed in Table 4.1, for
example.

The general idea here is that in all cases of
monothematic delusion, there is

(a) a neuropsychological impairment that
produces an abnormality of a perceptual
or affective response to the environment
that leads the patient to some false belief
about the environment (this impairment
will vary from patient to patient), and

(b) asecondimpairment affecting belief. This

is an impairment of the system we use to

evaluate beliefs that occur to us and to
decide whether to accept or reject these
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beliefs (this impairment is of the same
nature for all people with delusions, and
there is evidence that it is associated with
damage to the right hemisphere of the
brain, which is commonly present in
patients with monothematic delusions).

To illustrate this theory, consider two pa-
tients described by Breen, Caine, Coltheart,
Hendy, and Roberts (2000), both of whom
had the condition known as mirrored-self
misidentification—each man expressed the
belief that the person he saw whenever he
looked in a mirror was not himself, but some
stranger who happened to look like him. For
both men, this was the only abnormal belief
they expressed; they knew that it was im-
plausible; and they were not surprised at the
attempts of their families to dissuade them.
Nevertheless, they retained the belief stead-
fastly.

Breen et al. (2000) sought to establish
whether in both men there were two deficits
of the kind proposed in the theory of delu-
sion just outlined. They were able to show that
one man was suffering from an impairment
of face-processing, so his face in the mirror
might well look rather different now from the
face he had been used to seeing in the mirror.
The other man had intact face processing but
was suffering from mirror agnosia, which is a
loss of the ability to understand how mirrors
work. When he was looking into a mirror and
an investigator held an object above his shoul-
der (so that he could only see it in the mirror)
and asked him to touch the object, the patient
invariably reached for or behind the mirror,
just as if the mirror were an open window and
the object was on the other side of it. If this
were the true nature of mirrors, then anyone
seen in a mirror must be in a different posi-
tion in space from the viewer—from which it
follows that anyone seen in a mirror cannot
be oneself. Hence, both patients had percep-
tual deficits of a kind that could suggest the
implausible belief that they held.

Did they also have the second deficit? This
belief formation deficit is currently so poorly
characterized that it is quite unclear how one
would go about investigating such a question.
However, on neuropsychological testing both
men showed normal left-hemisphere func-
tioning and impaired right-hemisphere func-
tioning, which is at least consistent with the
presence of this second deficit.

It seems, then, that this cognitive-neuro-
psychological account of monothematic delu-
sion has some promise. Its major problem at
present is that far too little is said about the
nature of the second deficit, and many im-
portant questions regarding this deficit are
left unanswered—for example, if these pa-
tients have a defective belief evaluation sys-
tem, why are they not deluded about many
different things, rather than just about the one
thing?

This kind of attempt to explain delusions
in cognitive-neuropsychological terms is par-
ticularly challenging precisely because cog-
nitive psychology does not currently offer
an adequate theory of the normal processes
of belief formation and evaluation; perhaps
Fodor’s first law is correct, which means
that such a theory will never be found, in
which case cognitive neuropsychiatry will
never flourish.

But let us not despair. When Marshall
and Newcombe (1973) published their sem-
inal paper on acquired dyslexia almost 30
years ago, theorizing about the nature of the
normal reading system was quite primitive;
now it is so sophisticated (thanks in consid-
erable part to cognitive-neuropsychological
work on acquired dyslexia) that interpret-
ing acquired reading disorders in the con-
text of a theory of the normal reading sys-
tem is often comfortably achieved. Perhaps
after 30 more years theorizing about the
nature of the normal system responsible for
belief formation and evaluation will be so
sophisticated (thanks in considerable part to
cognitive-neuropsychiatric work on delusion)
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that interpreting cognitive-neuropsychiatric
disorders in the context of a theory of the nor-
mal processes of belief formation and evalua-
tion will also often be comfortably achieved.
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CHAPTER 5

Functional Brain Imaging

LUIS HERNANDEZ-GARCIA, TOR WAGER, AND JOHN JONIDES

In recent years there has been explosive in-
terest in the use of brain imaging to study
cognitive and affective processes. For exam-
ple, Figure 5.1 shows the dramatic rise in the
number of publications from 1992 to 1999 in
which the term functional magnetic resonance
imaging (fMRI) appears in the title. Because
of the surge of empirical work that now re-
lies on a combination of behavioral and neu-
roimaging data, it is critical that students of
the mind be students of the brain as well be-
cause data about each inform the other. Our
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Figure 5.1 A graph showing the results of a
search of the Medline database for articles with
the words “functional magnetic resonance imag-
ing (fMRI)” in the title.

goal in this chapter is to provide an introduc-
tion to the growing field of neuroimaging re-
search for those not expert in it. The chapter
provides general coverage of the various steps
involved in conducting a neuroimaging exper-
iment, from the design of tasks to the interpre-
tation of results. We begin by detailing several
reasons that one might want to use neuroimag-
ing data to understand cognitive and other pro-
cesses. Having provided this motivation, we
then trace out several techniques that are used
in the design and execution of imaging experi-
ments. Finally, in the last section of the chapter
we provide a detailed overview of positron-
emission tomography (PET) and functional
magnetic resonance imaging (fMRI): a re-
view of the physics underlying each technique
and of the analytical tools that can be used to
work with the resulting data. With these three
sections we hope to illustrate to the reader
the why, the what, and the how of functional
neuroimaging.

THE WHY: USES OF DATA FROM
FUNCTIONAL NEUROIMAGING

Brain Mapping

Perhaps the most obvious rationale for con-
ducting functional neuroimaging experiments
is to correlate structure with function. Al-
though some psychologists in the last century
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argued that the brain operated by the prin-
ciple of mass action (Lashley, 1950), we
now know that many functions are substan-
tially localized in the neural tissue of the
brain. Knowing this, many investigators have
sought to map out the primitive processes
that are engaged when various brain struc-
tures are active. In a certain gross sense,
modern neuroimaging is similar to the 18th-
century practice of phrenology, whose prac-
titioners read patients’ personality traits from
bumps on their skulls. To be sure, both mod-
ern functional imaging and phrenology are at-
tempts to map out the localization of func-
tions in the brain. But the similarity ends
there. Modern neuroimaging measures pro-
cesses within the brain that are replicable and
have been extensively cross-validated with
other neuroscientific methodologies. Phre-
nology, of course, turned out to be wrong.
However, it is instructive to compare the as-
sumptions of phrenology with those of mod-
ern neuroimaging. Phrenologists believed that
a lump at a certain place on the head cor-
responded with a particular personality trait;
the larger the lump, the larger that trait.
So, for example, a larger bump might indi-
cate more agreeableness, or a better mem-
ory. In neuroimaging, by contrast, it is as-
sumed that complex psychological processes
are best described in terms of combinations
of constituent elementary operations. The el-
ementary processes may not be localized in
single locations in the brain. Rather, they
are often the result of networks of neurons
(often spatially distributed) acting together.
Unlike phrenologists, moreover, most mod-
ern researchers do not assume that skill at
one mental operation is a function of the
sheer size of the underlying neural tissue
involved. The assumptions of neuroimaging
lead naturally to a search for the brain activa-
tions that accompany elementary psychologi-
cal processes. Mapping these elementary pro-
cesses onto regions and functional networks

in the brain is a major goal of modern research
on brain imaging.

We should note that once certain regions
of the brain have been identified with cer-
tain psychological processes, researchers may
go beyond simple assignment of structure to
function. Instead, they can examine circuits of
activation that might be involved in a complex
psychological task by using statistical tech-
niques such as interregional correlations, fac-
tor analysis, and structural equation modeling,
which we review below. These techniques add
value because they permit us to go beyond the
functions of any single region or small set of
regions involved in an elementary cognitive
operation. These tools can be used to help an-
alyze what combinations of elementary pro-
cesses are involved in a psychological task.
Thus, we can go from the elementary to the
complex by examining patterns of activation
and knowing the functions of the structures
that are activated in a pattern.

Overall, the sort of behavioral neurology
that is provided by studies of functional neu-
roimaging is quite helpful on several fronts. A
detailed mapping of the functions of various
brain structures will give us solid evidence
about the primitive psychological processes
of the brain. It will also provide detailed in-
formation for neurosurgical planning and al-
low us to predict which functions will be lost
on the occasion of brain injury, whether fo-
cal or diffuse. Thus, if there were no other
reason to conduct studies that use functional
neuroimaging, mapping the brain would be
sufficient. However, there are additional
reasons.

Dissociating Psychological Processes

One of the great benefits of having data on the
patterns of activation caused by two different
psychological tasks is that it permits one to
examine whether the two tasks doubly disso-
ciate (Smith and Jonides, 1995). The logic is
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this: Suppose there is some brain region A
that mediates some cognitive process a. Sup-
pose, similarly, that there is some other brain
region B that mediates some other cognitive
process b. Now imagine that we can devise
two psychological tasks, 1 and 2, such that
Task 1 requires cognitive process a but not b
and Task 2 requires cognitive process b but not
a. If we have subjects perform these two tasks
while we image the activations in their brains,
we should find activation of region A during
performance of Task 1 but not during perfor-
mance of Task 2, and vice versa for region B.
This pattern of evidence would permit one to
argue that there are two separable psychologi-
cal processes involved in the tasks, as there are
two brain regions that are activated (within the
spatial limitations of the neuroimaging tech-
nique, of course). This logic applies, by the
way, whether regions A and B are single sites
in the brain or networks of sites, thus gen-
eralizing the method to a wide variety of
circumstances.

Now consider a similar but more complex
case. Suppose that both Task 1 and Task 2
require several psychological processes. By
the assumptions outlined above, we should
find activations in various regions of the brain
when subjects engage in Task 1 and Task 2.
If Task 1 activates some group of sites that
is wholly different from that activated while
subjects engage in Task 2, we would have ev-
idence of differing processes in the two tasks.
However, the two tasks may activate some
quite different sites as well as some simi-
lar sites. In this case, we get leverage in ac-
counting for the processes involved in the two
tasks by noting the sites whose activations
are shared by or unique to each task. If we
knew the functions of each site from other
research, we would then have a more com-
plete understanding of the processes involved
in these tasks, both those that they share in
common and those that differ between the
tasks.

The use of imaging data to evaluate double
dissociations has become quite widespread.
These data go beyond previous demonstra-
tions of double dissociations that have in-
volved behavioral data on subjects with and
without brain injury. In the case of behav-
ioral data on normal subjects, double disso-
ciations can be established by finding two
experimental variables, one of which affects
performance on Task 1 but not on Task 2, and
another of which affects performance on Task
2 but not on Task 1. This pattern permits one
to argue that the two tasks differ in their en-
gagement of some set of psychological pro-
cesses, although it is not very specific about
the particular processes that are engaged. In
the case of behavioral data on brain-injured
subjects, a researcher seeks two patients: one
who can perform Task 1 but not Task 2, and
one who can perform Task 2 but not Task 1.
This pattern again allows one to argue that the
tasks differ in the underlying processes that
they recruit, but there are weaknesses to this
approach: Often, damage in patients is not
tightly localized; sometimes patients develop
compensatory mechanisms for their deficits;
and studies of this sort require one to make
conclusions about normal performance from
patients who have selective deficits, perhaps
compromising the generality of the conclu-
sions one can reach. Because double dis-
sociations in neuroimaging have a different
set of weaknesses (most prominently, they
are limited by the spatial resolution of the
techniques), they complement neuropsycho-
logical dissociations, making neuroimaging
another important point of leverage in distin-
guishing psychological processes.

To see how successful this double-
dissociation technique can be, consider an ex-
ample. For some time, researchers have sus-
pected that working memory may consist of at
least two subsystems, one concerned with spa-
tial information and one concerned with ver-
bal information. This was originally proposed
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by Baddeley (e.g., 1986, 1992), and the pro-
posal has received support from behavioral
studies of normal and brain-injured adults (see
Jonides et al., 1996, for a review). A critical
finding that helps seal the case for two sub-
systems of working memory comes from a
pair of experiments that compared the brain
regions activated by parallel spatial and ver-
bal working memory tasks (for details, see
Awh et al., 1996; Jonides et al., 1993; Smith,
Jonides, & Koeppe, 1996). A schematic that
illustrates the two tasks is shown in Figure 5.2.
In the spatial case, subjects had to encode
three locations marked by dots on a screen
and to retain these in memory for 3 s. Fol-
lowing the retention interval, a single loca-
tion was marked, and subjects had to indicate
whether this location matched one of the three
in memory. The verbal task was similar in that
subjects had to encode 4 letters and to retain
these in memory for 3 s, after which a single
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Figure 5.2 A spatial and a verbal task used to
study item-recognition performance in working
memory.

NOTE: The two tasks are similar in structure except
for the material that must be retained and retrieved.

Verbal Memory

Left Lateral Superior Right Lateral

Figure 5.3 Lateral and superior images revealing
activations in spatial and verbal working memory
tasks.

NOTE: In each row, three views of the brain in grey-
scale renderings of a composite MRI have superim-
posed on them activations from a PET experiment,
where the activations are shown in a color scale
with blue the least active and red the most active.

letter was presented and subjects had to de-
cide whether it matched one of the three in
memory.

As shown in Figure 5.3 (see insert), PET
scans of subjects engaged in these two tasks
revealed a striking dissociation in the circuitry
that underlies them. The figure includes left
and right lateral as well as superior views
of the brain; the activations for each of the
memory tasks are superimposed on these. The
spatial task recruited mechanisms of neocor-
tex predominantly of the right hemisphere,
whereas the verbal task recruited mechanisms
predominantly of the left hemisphere. The
details of which regions were activated and
what these activations might signal for the
processes in each task are reported elsewhere
(Smith et al., 1996). For the present, it is
sufficient to note that this pattern of results
provides sufficient support for the claim that
working memory is composed of separable
systems for different sorts of information, a
claim that relies on the sort of double dissoci-
ation shown in the figure.
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Convergence of Neuroimaging and
Behavioral Data in Normal Adults

One of the great strides forward that the advent
of neuroimaging will make possible arises
because of the opportunity for convergence
between behavioral data and neuroimaging
data drawn from normal experimental par-
ticipants. The leverage that is gained from
this convergence is large. If we have data
from behavioral studies that suggest a dis-
sociation between two different psycholog-
ical processes, we have the opportunity to
study whether these processes are represented
in separable neural tissue. If so, this greatly
strengthens the case for separable processing
systems.

Consider the following example from work
in our laboratory (Badre et al., 2000). This
work has been concerned with identifying ex-
ecutive processes and their neural implemen-
tations. One such executive process is task
management, the ability to manage multiple
tasks simultaneously. We have constructed a
situation that requires task management of
two sorts, illustrated in Figure 5.4. Subjects
see a series of computer displays that have
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two panels, one on the left and one on the
right. Each display contains a single arrow
that points up or down. Subjects begin each
series of trials with two counters set at “20”
each, and each time an arrow appears on one
side or the other, they are to change that count
up or down, depending on whether the arrow
points up or down. At the end of a run of trials,
subjects are queried about each of the counter
values to be sure that they have kept the counts
accurately. Notice that in this task there are
two counters that must be managed. On suc-
cessive trials, subjects may have to access the
same counter, or they may have to switch
counters from one to the other. Notice also
that the task requires two types of counting
operations: incrementing and decrementing.
Again, on successive trials, subjects may use
the same operation or may have to switch from
one operation to the other. Behavioral data
about the time it takes subjects to complete
each trial (measured by subjects’ depressing a
response button when they are ready to accept
the next stimulus display) show a clear effect:
There is a cost in switching between coun-
ters, and there is a cost in switching between

Counter &
Switch Switch  operation ~ Switch
counter  operation switch neither
Count i i l l
20 20 Count Count Count
21 20 54 21 Count Count
21 202> 20
23 20
20 [|20 ﬁ ﬁ U
cos )
A
Press Press Press Press Press T
spacebar  spacebar  spacebar  spacebar  spacebar Respond
to proceed to proceed to proceed to proceed to proceed “Yes” or “No”

Figure 5.4 A schematic of a task used to study processes required to switch between two tasks.
NoTE: The figure shows that the task entails two types of switches: between different internal counters

or between different operations on the contents of th

ose counters.
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Figure 5.5 Behavioral data from the dual-
switching task.

NOTE: There are main effects of both types of
switch, and there is no interaction between these
two separate effects.

operations. Importantly, these two costs are
independent of one another, as shown in Fig-
ure 5.5. The time cost of each type of switch
does not reliably influence the time cost of
the other. This result leads to the implica-
tion that there may be two mechanisms in-
volved in the two types of switches (two dis-
sociable executive processes); if so, we may
be able to find neural evidence of the two
mechanisms.

In fact, a follow-up experiment that stud-
ied subjects performing this task in an fMRI
environment found just this evidence. Some
data from this experiment are shown in Fig-
ure 5.6. The figure shows that there is a region
of lateral frontal cortex that is activated by the
switch in counters but not by the switch in
operations; similarly, there is another region
of medial frontal cortex, anterior to the first,
that is activated by a switch in operations but
not by a switch in counters. This sort of dou-
ble dissociation follows the behavioral data
well in suggesting two (at least partially) in-
dependent mechanisms for the two executive
processes. So, here is a case in which the be-
havioral data about a task led to an imaging
experiment whose data converged with the be-
havior in normal adults.

Convergence of Neuroimaging and
Behavioral Data in Patients

It is possible to extend this hunt for conver-
gence beyond the study of normal adults as
well. An excellent example comes from the
study of memory processes. It is by now well

Figure 5.6 One contrast in brain activations between the two types of switches in the dual-switching

task.

NOTE: The top panel shows activation in a ventromedial prefrontal site, and the bottom panel shows
activation in a lateral prefrontal site for each type of switch. Note the double dissociation in patterns of
activations in these two sites for the two types of switch.
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documented that two memory systems sub-
serve long-term memory in adults. The dis-
tinction between the two types is often called
a distinction between explicit and implicit
memory. Take the concept of a bicycle, for ex-
ample. You may be able to remember where
you parked your bicycle this morning or yes-
terday, or where you bought that bike. These
would be examples of explicit memory be-
cause you are explicitly retrieving a piece of
information that you have previously stored.
By contrast, most adults can ride a bicycle
with little trouble, but any young child will tell
you that it is quite difficult. The skill to ride
a bicycle reflects that adults have stored some
information that translates into motor move-
ments that make possible balancing, pedaling,
turning, and so forth. This is a kind of implicit
memory because while riding a bike, a person
has no sense of explicitly retrieving informa-
tion from memory; rather, information is re-
trieved in the course of executing the required
behavior.

As it happens, the distinction between
explicit and implicit memory is well sup-
ported by studies that reveal a double disso-
ciation between these two types of memory
in patients with brain lesions. Some patients
with medial temporal lobe lesions, includ-
ing extensively studied patients such as H.M.
(Milner, Corkin, & Teuber, 1968), have an
inability to acquire new information and re-
trieve that information explicitly, but they
have intact implicit memory for motor skills
and other procedural knowledge. By contrast,
Gabrieli, Fleishman, Keane, Reminger, and
Morell (1995) reported the result of a pa-
tient with damage to the right occipital lobe,
M.S., who has an intact and functioning ex-
plicit memory system but impaired implicit
memory (although probably not of bicycle rid-
ing, as in the earlier example). Taken together,
pairs of patients such as these suggest the ex-
istence of two memory systems that dissociate
in their functions and in the neural tissue that

subserves them. This claim leads naturally
to the prediction that testing normal adults
on explicit and implicit memory tasks ought
to find different patterns of brain activation
as the signatures of these two memory sys-
tems. By now, various reports that support this
contention have surfaced (see, e.g., Schacter
and Buckner, 1998). In general, explicit mem-
ory tasks (compared to a control condition)
cause increased activation of medial tempo-
ral lobe structures, and implicit memory tasks
cause decreased activation in association cor-
tex of posterior regions of the brain. Why these
two particular patterns of increase and de-
crease of activation should occur in response
to explicit and implicit tasks respectively is a
question beyond our scope here; but the re-
sult illustrates how imaging evidence and ev-
idence from patient populations can be used
in tandem to converge on a view of cognitive
processing.

Convergence of Neuroimaging Data in
Humans with Behavioral Data in Animals

Invasive and recording studies on animals
other than humans have raised important hy-
potheses about the layout of various cogni-
tive systems residing in sensory, motor, or as-
sociation cortex. Neuroimaging studies with
humans now permit tests of these hypothe-
ses. One caveat regarding this convergence
between animal and human studies that re-
searchers must heed has to do with homol-
ogy. It is often difficult to determine just what
structure in the brain of some animal (e.g., a
monkey) is homologous to a structure in a hu-
man brain. Sometimes this homology can be
approached cytoarchitectonically by examin-
ing the morphology of cells in brain regions of
the two species in question; sometimes func-
tional data from other studies give good leads
about which areas in the brains of two species
are performing related functions. Regardless
of the approach one takes to the problem of
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homology, one must carefully ensure that a
case can be made for a structural or functional
similarity.

However, sometimes the homology is rea-
sonably straightforward, as it appears to be
for a leading case that has exploited the op-
portunity to relate data from monkeys and hu-
mans concerning visual function. Since the
pioneering work of Ungerleider and Mishkin
(1982), it has become increasingly clear that
early visual processing proceeds along two
streams. A ventral stream of information flows
from primary visual cortex to temporal cor-
tex; this stream contains increasingly complex
computations performed on the information
in the service of revealing the forms, colors,
and identities of objects in the environment.
A dorsal stream also flows from primary vi-
sual cortex to structures of the parietal lobe
and is responsible for processing information
about the spatial locations and movements of
objects. The data from which this view of the
visual system derives come from studies of
lesioned monkeys performing tasks of object
recognition or spatial localization as well as
from single-cell recording studies of the func-
tions of temporal and parietal systems. Both
sorts of studies have provided quite strong
support for the duality of the visual processing
stream.

Much more recently, evidence from human
neuroimaging studies has provided conver-
gence with the data from monkeys. Perhaps
the seminal study was that by Haxby et al.
(1994), in which human volunteers performed
a matching-to-sample task under two condi-
tions. In one, subjects compared a sample face
to two alternatives and picked the alternative
that matched the sample. In the other, subjects
compared the position of a dot in a frame to
the positions of two other dots in frames to
see which of the two was identical to the first.
The first task required the processing of in-
formation about shape and form, whereas the
second required the processing of information

about spatial position. As predicted by the data
from monkeys, the two tasks resulted in acti-
vation of separable regions in cortex: The task
involving form caused activation of occipital
and temporal cortex, whereas the task involv-
ing location caused activation of occipital and
parietal cortex. Here, then, is an illustration of
how data from cognitive studies with animals
can motivate researchers to use neuroimag-
ing techniques to examine cortical function in
humans.

Let us summarize. We have devoted sig-
nificant space at the opening of this chapter
to a detailed examination of why one would
want to conduct research using neuroimag-
ing techniques, especially PET and fMRI. The
motivations for these techniques are numer-
ous, as we have elaborated. Overall, there
is good reason to believe that neuroimaging
methods will become centerpieces in the ar-
ray of tools available to cognitive psychology
(and to other fields in psychology as well).
Therefore, it is well worth the effort for the
student of cognition to learn what techniques
are available and how they can be applied to
the study of psychological tasks. We turn now
to these issues.

THE WHAT: NEUROIMAGING
TECHNIQUES AND TASK DESIGN

Neuroimaging Techniques

Imaging methods for human studies include
a number of alternatives: fMRI, PET, sin-
gle positron emission computerized tomogra-
phy (SPECT), event-related potentials (ERP),
electroencephalography (EEG), magnetoen-
cephalography (MEG), and near-infrared
spectroscopy. A number of other brain imag-
ing techniques are available for use in ani-
mals using radiolabeling, histological, or op-
tical imaging techniques.

Although all these techniques are in fre-
quent use and provide important insights into
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Table 5.1 Summary of PET and fMRI Methods

What Is Imaged PET

fMRI

Brain structure

Regional brain activation Blood flow (150)

Glucose metabolism ('8FDG)
Oxygen consumption

Anatomical connectivity
Receptor binding and regional
chemical distribution many others

Kinetic modeling

Gene expression

Benzodiazapines, dopamine, acetylcholine,

Various radiolabeling compounds

Structural 77 and 7> scans
BOLD (T)

Arterial spin tagging (AST)
FAIR

Diffusion tensor imaging
MR spectroscopy

MR spectroscopy with
kinetic modeling

brain function, we focus on the two techniques
most commonly used in current human re-
search concerned with localization of func-
tion: PET and fMRI. The main advantages of
these techniques are that they can be used on
humans, that they offer a useful balance be-
tween spatial resolution and temporal resolu-
tion, and that they can be used to create im-
ages of the whole brain. This last feature offers
a great potential for synergy with animal re-
search. Single-cell recording in animals, for
example, offers not only spatial resolution
down to a single neuron but also millisec-
ond temporal resolution. Its main weakness
is that testing usually occurs within single,
isolated brain regions, and thus other regions
important to performance of some task may be
missed. Neuroimaging using PET and fMRI
is well suited to exploratory analyses of brain
processes and allows new hypotheses about
specific brain areas to be developed and tested
in animal models. In addition, neuroimaging
with PET and fMRI offers a broad view of
how remote brain regions interact in partic-
ular psychological functions, complementing
the detailed analysis of individual cell behav-
ior that is possible using animal models.

What PET and fMRI Can Measure

The number of techniques for imaging brain
processes with PET and fMRI is growing. Al-
though a thorough discussion of all of these

is far beyond the scope of this chapter, it is
important to realize what sorts of processes
can be imaged using these techniques. Some
of the alternatives are described here briefly;
our subsequent discussions of task design will
focus on measures of regional brain activa-
tion because these are the ones used most
often to study human cognition and affect.
Table 5.1 shows a summary of the various
methods available using PET and fMRI as
measurement tools. Following is a brief de-
scription of each method.

Structural Scans. Functional magnetic
resonance imaging can provide detailed
anatomical scans of gray and white mat-
ter with resolution well below 1 mm?>. This
can be useful if one expects either struc-
tural differences between two populations,
such as between individuals with and with-
out schizophrenia (Andreasen et al., 1994),
or changes in gross brain structure with prac-
tice or some other variable. An example is a
recent study that reported larger posterior hip-
pocampi in London taxi drivers who had ex-
tensive training in spatial navigation (Maguire
etal.,2000). Another structural scanning tech-
nique is diffusion tensor imaging, described
later. This technique allows one to identify
white matter tracts in the human brain, which
is useful for studying not only structures such
as the corpus callosum but also changes in
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these structures as a function of some vari-
able, such as age.

Regional Brain Activation. Perhaps the
most frequent use of both PET and fMRI,
and the one that is the focus of this chap-
ter, is the study of changes in some prop-
erty of metabolism or of the vasculature that
accompany changes in neural activity. With
PET, one may separately measure glucose
metabolism, oxygen consumption, and re-
gional cerebral blood flow (rCBF). Each of
these techniques allows one to make infer-
ences about the localization of neural activity
based on the assumption that neural activity is
accompanied by a change in metabolism, oxy-
gen consumption, or blood flow. Functional
MRI using the blood oxygen level dependent
method (BOLD) is sensitive to changes in
blood volume and in the concentration of de-
oxygenated hemoglobin in the blood across
regions of the brain. The rationale is that (a)
more deoxygenated blood in an area causes
a decrease in BOLD signal and (b) neural
activity is accompanied by increased blood
flow, which dilutes the concentration of de-
oxygenated hemoglobin and produces a rel-
ative increase in signal (Hoge et al., 1999).
Since both BOLD fMRI and PET measure-
ments of rCBF take advantage of changes in
blood flow with changed neural activation,
there should be good correspondence between
these two measures for the same tasks, and this
is generally the case (Joliot et al., 1999;
Kinahan & Noll, 1999; Ramsey et al., 1996).
One difference appears to be that fMRI activa-
tions are usually located several millimeters
dorsal to those of PET, consistent with the
idea that fMRI is sensitive to deoxygenated
hemoglobin in the capillaries and draining
venules surrounding synapses.

Anatomical Connectivity.  Diffusion
tensor imaging is the name of a new method-
ology being developed to map the white mat-

ter tracts that connect regions of the brain.
Several current methods use standard MRI
scanners configured to be sensitive to the dif-
fusion of water in order to estimate water dif-
fusion tensors in each area of the brain (Peled,
Gudbjartsson, Westin, Kikinis, & Jolesz,
1998). We explore this technique in greater
detail later, but for now thinking of a tensor
as a measure of motion in the x, y, and z di-
mensions (a vector is a special kind of tensor)
should suffice. Researchers are interested in
the shapes of the tensors in different brain lo-
cations. Water diffuses with equal ease in all
directions in the ventricles and other fluid
spaces, producing a spherical tensor. At the
edges of the brain and in other areas, water
may be restricted from diffusing in one direc-
tion, producing a planar tensor. Near a white
matter tract, however, water diffuses most eas-
ily along the tract, producing a diffusion ten-
sor that is large along the axis of the tract and
small in the other dimensions. These linear
tensors mark the existence and direction of a
white matter tract in the brain. Factors that
affect the shape of a tensor are the density of
axon fibers in the tract, the degree of myelina-
tion, the fiber diameter, and the similarity in
the directions of the fiber projections. Diffu-
sion tensors can be measured on a time scale
of a minute or less.

In the published literature, diffusion tensor
images are usually labeled with different col-
ors for the x, y, and z components of motion; a
solid block of one color indicates fiber tracts
running along the x-, y-, or z-axis of the im-
age. Although most studies of diffusion tensor
imaging have so far focused on the method-
ology itself, there are many potential applica-
tions to the study of brain function, including
combined studies of structure and brain acti-
vation to help define functional networks.

Receptor Binding. The affinity of par-
ticular chemicals for specific types of neuro-
transmitter receptors offers researchers a lever-
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age point for investigating the functional neu-
rochemistry of the human brain. Radioactive
labels are attached to carefully chosen com-
pounds, which are then injected into the ar-
teries of a subject either by a single injection
(called a bolus) or by a continuous infusion of
the substance until the brain concentrations
reach a steady state. This method can be used
to image the density of a specific type of re-
ceptor throughout the brain. It can also be used
to image the amount of binding to a particu-
lar type of receptor that accompanies perfor-
mance of a task, as it was used in one study of
dopamine binding during video game playing
(Koepp, 1998).

The most common radioligands and trans-
mitter systems studied are dopamine (partic-
ularly D2 receptors) using ['!C]raclopride or
['**I]iodobenzamide, muscarinic cholinergic
receptors using ['!C]scopolamine, and ben-
zodiazepines using [!'C]flumazenil. In addi-
tion, researchers have developed radioactive
compounds that bind to serotonin, opioids,
and a number of other receptors. Because the
dynamics of radioligands are complex, re-
searchers have developed a special class of
mathematical models, called kinetic models,
to describe their distribution. Kinetic model-
ing allows researchers to estimate how much
of the radiolabeled compound is in the vas-
culature, how much is freely circulating in
brain tissue, how much is bound to the spe-
cific receptor type under investigation, and
how much is bound at nonspecific sites in the
brain. Estimation of all these parameters re-
quires a detailed knowledge of the properties
of the specific substances used and of the way
in which they act in the brain over time.

Gene Expression. Very recently, new
methods of both PET and fMRI have allowed
researchers to investigate local gene expres-
sion within the living brain. Researchers can
use PET to image the distribution of an en-
zyme in the brain by radiolabeling one of its

substrate compounds. When the labeled sub-
strate is converted into the enzyme, the label
becomes trapped in tissue and emits a persis-
tent signal that can be detected by the PET
camera. One recent study used this method
to label a substrate of an adenoviral enzyme
that directs the expression of a particular gene
in mice, thereby indirectly indexing gene ex-
pression (Gambhir et al., 1999).

Magnetic resonance spectroscopy pro-
vides a different way to image enzymes and
biochemicals related to gene expression. The
arrangement of atoms in their constituent
molecules gives rise to very small inhomo-
geneities in the scanner’s magnetic field.
These magnetic variations alter the spectrum
of energy that the atoms will absorb, giv-
ing rise to a characteristic frequency signa-
ture for various types of atoms. One research
group used magnetic resonance spectroscopy
to quantify the amount of fluorine-containing
compounds related to expression of a partic-
ular gene (Stegman et al., 1999). A combi-
nation of creativity and specific knowledge of
the relevant physics and biochemistry can lead
to imaging solutions for a very large number
of experimental questions.

Having provided a brief summary of these
various techniques, we shall concentrate on
PET and fMRI as they are used to measure
changes in blood flow and oxygenation.

Limitations of PET and fMRI

Spatial Limitations. Certain limitations
restrict what both PET and fMRI can mea-
sure. Neither technique is good for imaging
small subcortical structures or for doing fine-
grained analysis of cortical activations. The
spatial resolution of PET, on the order of 1 cm?
to 1.5 cm?, precludes experiments testing for
neural activity in focused areas of the brain
(e.g., mapping receptive fields of cells in vi-
sual cortex). The spatial resolution of fMRI
is much greater: as low as 1 mm? but often
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on the order of 3 mm? for functional studies.
The impact of this limitation in spatial resolu-
tion is that activation in some structures may
be mislocated or missed entirely, although re-
cent fMRI studies have reported activity in
structures as small as the nucleus accumbens
(Breiter et al., 1997). Also, fMRI techniques
often cause distortions of the images in ar-
eas that are close to interfaces between tis-
sue and air (e.g., the basal ganglia or areas
of the frontal lobe that are adjacent to the
sinuses).

Artifacts. Artifactual activations (i.e.,
patterns that appear to be activations but arise
from nonneural sources) may come from a
number of sources, some unexpected. One
study, for example, found a prominent PET
activation related to anticipation of a painful
electric shock in the temporal pole (Reiman,
Fusselman, Fox, & Raichle, 1989). However,
itwas discovered some time later that this tem-
poral activation was actually located in the
jaw; the subjects were clenching their teeth in
anticipation of the shock!

As mentioned, fMRI signals are especially
susceptible to artifacts near air and fluid si-
nuses and at the edges of the brain. Test-
ing of hypotheses related to activity in brain
regions near these sinuses, particularly or-
bitofrontal cortex and inferior temporal cortex
among neocortical regions, is problematic us-
ing fMRI. Functional MRI also contains more
sources of signal variation due to noise than
does PET, including a substantial slow drift
of the signal in time and higher frequency
changes in the signal due to physiological pro-
cesses accompanying heart rate and respira-
tion (the high-frequency noise is especially
troublesome for imaging the brainstem). The
low-frequency noise component can obscure
results related to a psychological process of
interest and can produce false positive results,
so it is usually removed statistically prior to

analysis. The low-frequency source of noise
also makes it difficult to test hypotheses of
slow changes during a session (e.g., effects
of practice during scanning), although care-
ful design still allows such issues to be tested
(Frith & Friston, 1997).

Temporal Resolution and Trial Struc-
ture. Another important limitation of scan-
ning with PET and fMRI is the temporal res-
olution of data acquisition. The details of this
are discussed in later sections, but it is im-
portant to note here that PET and fMRI mea-
sure very different things over different time
scales. Because PET computes the amount
of radioactivity emitted from a brain region,
at least 30 s of scanning must pass before a
sufficient sample of radioactive counts is col-
lected. This limits the temporal resolution to
blocks of time of at least 30 s, well longer
than the temporal resolution of most cognitive
processes. Functional MRI has its own tem-
poral limitation due largely to the latency and
duration of the hemodynamic response to a
neural event. Typically, changes in blood flow
do not reach their peak until several seconds
after a neural event, so the locking of neu-
ral events to the vascular response is not very
tight.

Duty Cycle. A final limitation for both
PET and fMRI has to do with what is often
called the duty cycle of a task. To create a
measurable hemodynamic response, the neu-
ral event must take up a substantial proportion
of the time taken in any measurement period.
For example, if only a small number of nerve
cells fire for some process or if the duration
of firing is small with respect to the tempo-
ral resolution of the measurement technique,
then the signal-to-noise ratio for that event is
low and may be difficult to detect. Although
processes that elicit very brief neural activity,
such as brief flashes of light, can be detected
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using neuroimaging, experiments need to be
designed so that the process of interest occu-
pies a substantial proportion of the measure-
ment window of time.

As an example of how differences in duty
cycle may cause problems, consider a hy-
pothetical neuroimaging study of the Stroop
task. In the task participants see a series of
color words printed in colored ink, and they
must name the color of the ink in which each
word is printed. Words in a study may be con-
gruent, in which case the color and the word
match (e.g., “blue” printed in blue ink), or they
may be incongruent, in which case the color
and word are different (e.g., “blue” printed in
red ink). In the PET scanner, participants al-
ternate every 2 min between performing the
task on blocks of congruent words and blocks
of incongruent words. Suppose, for the sake
of this example, that we present each word
500 ms after the participant responds to the
previous word and allow participants to com-
plete as many words as they can in a 2-min
block.

By allowing the participants to perform at
their own pace, we have created a duty-cycle
problem. Participants are faster in the congru-
ent condition, and they perform more congru-
ent than incongruent trials during each 2-min
scan. Accordingly, visual, motor, and other
cognitive processes are becoming activated
more frequently during the congruent scans
than during the incongruent scans. As a re-
sult, participants spend more time planning
and making vocal responses in the congruent
conditions. Researchers comparing the incon-
gruent to the congruent control blocks in an
analysis of these data would likely find rela-
tive decreases in activation in Broca’s area,
motor cortex, and premotor cortex—all of
which are related to response planning and
execution. They might erroneously attribute
these deactivations (which are really activa-
tions in the congruent condition) to the at-

tentive processes required to resolve conflict
between mismatching ink colors and words.
Alternatively, areas that are more heavily re-
cruited in the incongruent than in the congru-
ent condition might be missed: Even though
the incongruent words produce higher peaks
of activation in such areas, the congruent trials
activate them more frequently, and the mean
level of activation during the scanning block
may be the same.

Duty cycle can be an insidious problem
because it is often hard to know if partici-
pants are really spending the same amount
of time on each task, which in turn makes
it difficult to compare the tasks in a mean-
ingful way. Consider a neuroimaging exper-
iment that aims to study affect-related brain
responses to viewing emotionally positive
versus negative pictures. This study might
show increases in extrastriate visual cortex
activity for positive pictures relative to neg-
ative ones. Rather than being a brain area that
participates in affect, however, the activation
might be due only to the fact that participants
fail to look at or attend as long to negative
pictures because of their unpleasant content.
The difference in the duty cycle of attention
is a hidden confound that might make inter-
pretation of this activation difficult without
converging evidence from other sources.

Summary of Advantages of PET and fMRI

We have commented on the limitations of PET
and fMRI, but we also need to point out their
advantages when used as tools to measure the
vascular response to neural events. Each has
some unique features that makes it apt for cer-
tain types of experiment. Table 5.2 summa-
rizes these advantages.

An inspection of the table shows that PET
and fMRI have different characteristics that
make each particularly suited to certain types
of imaging questions.
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Table 5.2 Relative Advantages of PET and fMRI

PET fMRI

e Mapping of receptors and other neuroactive agents e Repeated scanning

e Direct measurement of glucose metabolism e Single-subject analyses possible

o No magnetic susceptibility artifacts o Higher spatial resolution

e Quiet environment for auditory tasks e Higher temporal resolution

o Imaging near fluid spaces o Single trial designs

e Easily combined with ERP and other measurements e Estimation of hemodynamic response and separation

because there is no magnetic field

of stimulus and task set related variables
e Lower cost

A Road Map of a Neuroimaging
Experiment

Before starting a neuroimaging experiment,
several important decisions must be made.
First, a specific hypothesis must be chosen,
much as we described several hypotheses in
the introduction to this chapter and how these
led to imaging experiments. Second, appro-
priate methods must be selected; these choices
will be constrained by the nature of the task
chosen, the available imaging technology and
its limitations, and the types of inferences one
wishes to draw from the study. Third, an ex-
periment must be conducted, analyzed, and
interpreted. Here is an overview of some of
the highlights in each of these steps, with de-
tails to follow.

The design of a task limits the ultimate
interpretability of the data. Tasks must be
chosen that yield theoretical insight into the
neural and psychological processes under in-
vestigation, and they must avoid the influence
of nuisance variables. Nuisance variables may
be neural processes unrelated to the question
of interest (either prescribed by the task or
unrelated to it); they may be technological ar-
tifacts such as slow drift in the signal from
an fMRI scanner; or they may be artifacts
due to heart rate, respiration, eye movements,
or other physiological processes. To the ex-
tent that nuisance variables influence the brain
activations in a task, they will mitigate the
uniqueness of an interpretation that one may

place on the data. That is, one would like to
claim that neuroimaging activations are re-
lated to psychological process X, not that ac-
tivations are related to process X or process Y
or some physiological artifact such as irrele-
vant eye movements during a task. Construct-
ing adequate tasks can be quite challenging,
and it may not be possible in some situations.

Once a task is designed and data are col-
lected, analysis of those data is composed of
two important substages: preprocessing of the
images and statistical analysis of the resulting
activations. Preprocessing consists of several
steps. Before statistical tests are performed,
the various images in a set of data must be
aligned to correct for head motion that may
have occurred from one image acquisition to
the next. Following alignment, images are of-
ten normalized to a standard template brain so
that results from several subjects can be com-
bined into averages and plotted in standard co-
ordinates for comparison with other studies.
Many researchers also smooth images, aver-
aging activity levels among neighboring vox-
els to achieve smooth regions of activation.
Although smoothing decreases the spatial res-
olution of the images, it helps to estimate and
control for statistical noise.

Following these preprocessing stages, sta-
tistical tests are performed on the data. Most
analyses are essentially variants of the gen-
eral linear model. Studies are often ana-
lyzed using ¢ tests that compare one or more
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experimental conditions of interest with a con-
trol condition. Slightly more complicated de-
signs may use analysis of variance (ANOVA)
with one or more factors. Anincreasingly pop-
ular technique uses multiple regression both
to model the processes of interest and to take
into account the influence of nuisance covari-
ates. This kind of analysis constructs a co-
variate that contrasts periods when activity of
interest is supposed to occur (i.e., the experi-
mental condition in a blocked study or a neu-
ral response-evoking event in an event-related
study) with control periods. Nuisance covari-
ates are constructed in order to model the ac-
tivity related to processes of no interest, such
as heartbeat or processes included in the task
that are of no theoretical relevance. The effects
of the nuisance covariates are statistically re-
moved from the data during the analysis, de-
creasing the statistical error and increasing
the power of the analysis. With fMRI, signals
at low spatial frequencies—essentially slow,
random drift due to variations in the magnetic
field—may produce artifacts in the data, so
these are usually either modeled as nuisance
covariates as well or filtered out before begin-
ning the analysis.

With this brief summary, we are ready to
launch into a more thorough treatment of ex-
perimental design. We do this by reviewing
the various designs that have become popular
in experiments using PET and fMRI measure-
ment techniques. Following our description of
these designs, we review techniques that can
be used with these designs to contrast differ-
ent experimental conditions.

Types of Experimental Designs

Blocked Designs

Because PET experiments demand long inter-
vals of time (30 s or more) for collecting data
sufficient to yield a good image, the standard
experimental design used in PET activations
studies is the blocked design. A blocked de-

sign is one in which different conditions in the
experiment are presented as separate blocks of
trials, with each block representing one scan
during an experiment. Thus, the activations
of interest in a PET experiment are ones that
accumulate over the entire recording interval
of a scan. If one is interested in observing the
neural effect of some briefly occurring psy-
chological process (e.g., the activation due to
a briefly flashed light stimulus), in a PET ex-
periment one would have to iterate the event
repeatedly during a block of trials so that ac-
tivations due to it accumulate over the record-
ing interval of a scan. One could then compare
the activations in this scan to an appropriate
baseline control scan in which the event did
not occur. Given the temporal limitation of
this technique, PET is not well suited to ex-
amining the fine time course of brain activity
that may change within seconds or fractions
of a second.

The blocked structure of PET designs is
a major factor in the interpretability of re-
sults. Activations related to slowly changing
factors such as task set or general motiva-
tion are captured in the imaging study. This
is an advantage if one wishes to image such
effects. However, PET is not suited to imaging
neural responses to individual stimuli. Even if
such slowly changing processes are of inter-
est, one must take care to elevate their duty
cycle within a scan so that their neural signa-
tures form a significant portion of the entire
scan’s processes.

Some researchers have made good use of
differences in duty cycle as a way to circum-
vent some limitations of blocked designs (e.g.,
Garavan, Ross, Li, & Stein, 2000). These stud-
ies have used trial blocks with different per-
centages of certain trial types to capture a
process of interest. For example, one might
conduct a blocked study of a particular pro-
cess of interest but parametrically vary the
number of trials within the block that recruit
that process. Rather than comparing blocks
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of the active task with rest, one might com-
pare blocks in which the task of interest was
performed, for example, on 80% of the trials
with blocks in which the task of interest was
performed on 20% of the trials.

Many studies using fMRI have also made
good use of blocked designs. One advantage
of a blocked design is that it offers more sta-
tistical power to detect a change—one esti-
mate is that it offers four times the power of a
single-trial design (authors, unpublished ob-
servations). As with PET, the ability to exam-
ine brain activations due to single trials is lost.
Because the time to acquire a stable image is
substantially less with fMRI than with PET,
fMRI does allow one to conduct experiments
in which activations due to single trials can
be collected in a stable way. A sample of the
MRI signal in the whole brain can be obtained
in 2 to 3 s on average, depending on the way
in which data are acquired and depending on
the required spatial resolution of the voxels
that are imaged. For studies that do not sam-
ple the whole brain, acquisition can be much
more rapid: as low as 100 ms for single-slice
fMRI. In fact, the limiting factor in the tem-
poral resolution of fMRI is not the speed of
data acquisition, but the speed of the underly-
ing hemodynamic response to a neural event,
which peaks 5 to 8 s after that neural activity
has peaked.

Individual-Trial, Event-Related fMRI

To take advantage of the rapid data-acquisition
capabilities of fMRI, researchers developed
an event-related fMRI technique to create im-
ages of the neural activity related to specific
stimuli or to cognitive events within a trial.
The technique involves spacing stimuli far
enough apart in time that the hemodynamic
response to a stimulus or cognitive event is
permitted to return to baseline before the on-
set of the next stimulus or event. Most re-
searchers consider 14 to 16 s enough time for
this to occur (Aguirre, Zarahn, & D’Esposito,

1998; Dale & Buckner, 1997), although some
data have revealed that the hemodynamic
response can persist somewhat longer
(Boynton, Engel, Glover, & Heeger, 1996).
Using this technique, signals from individ-
ual trials of the same task can be averaged
together, and the time course of the hemo-
dynamic response within a trial can be deter-
mined. This technique permits the randomiza-
tion of trials from different conditions, which
is essential for certain tasks. It also allows re-
searchers to analyze only selected types of tri-
als in amixed trial block, enabling the study of
error monitoring (to name one example) and
a number of other processes that occur only
on some trials.

Selective averaging provides one way
around the temporal limitations imposed by
the hemodynamic response function. By av-
eraging across trials of the same type and
by comparing these averages across differ-
ent conditions, researchers can distinguish the
time course of fMRI signals differing by as
little as 100 ms. An example comes from
the work of Aguirre, Singh, and D’Esposito
(1999), who studied activation in the fusiform
gyrus in response to upright and inverted
faces. When they compared trials from the
two conditions, they found that the BOLD re-
sponse was shifted 100 ms later for inverted
faces, paralleling increased reaction times to
recognize inverted faces.

Another creative example of the added
hypothesis-testing power of event-related
fMRI comes from studies of episodic mem-
ory. Buckner et al. (Buckner et al., 1998)
studied people encoding lists of words, and
they subsequently tested the participants to
see which words they remembered correctly.
Functional MRI scanning during the learning
of each word allowed the researchers to com-
pare activity during the encoding of words that
were successfully retrieved with the encoding
of words that were later forgotten, revealing
important differences.
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Rapid Event-Related fMRI

More recent developments in event-related
fMRI designs have made experimental tri-
als more similar to those found in standard
behavioral experiments (Zarahn, Aguirre, &
D’Esposito, 1997). The main problem with
the event-related design discussed earlier is
that trials are very slow in pacing (12-16 s
required between successive trials). It is pos-
sible to accelerate this pace substantially by
making use of knowledge of the precise shape
of the hemodynamic response function to a
pulse of neural event. Various investigators
have measured the nature of this response,
and good models of it now are used rou-
tinely. Using prior knowledge of the typical
hemodynamic response function, or measur-
ing it individually for each subject, one can
now perform experiments in which succes-
sive stimuli or cognitive events can be pre-
sented with as little as 750 ms intervening
(Burock, Buckner, Woldorff, Rosen, & Dale,
1998; Dale & Buckner, 1997). Closely packed
trials of a number of experimental conditions
can then be presented in random order in a
scanning interval. One then creates a model
function that includes the timing of critical
stimuli or cognitive events convolved with a
model of the known or hypothesized hemo-
dynamic response function. This convolved
predictor function can then be used as a re-
gressor in a multiple regression analysis, and
the fit of the actual data to the expected pattern
of BOLD signal can be measured. Of course,
one would have several regressors to fit to the
data, each one designed to predict the effect
of one type of cognitive event (i.e., one con-
dition). In this way, one can compare differ-
ent regressors to examine which fit the data
best, thereby accounting for the pattern of ob-
tained activations. We describe this technique
in more detail later.

This method has led to several important
advances. One is the ability to space trials

closely in time, resulting in a pacing that is
more in line with the large body of literature in
experimental psychology. Another is that the
design minimizes the effects of fatigue, bore-
dom, and systematic patterns of thought un-
related to the task during long intertrial inter-
vals. In addition, the ability to obtain images
of more trials per unit time, compared with
individual event-related designs, counters the
loss of power that occurs when using a single-
trial design instead of a blocked design. This
makes designs with closely packed trials more
efficient than those with long intertrial inter-
vals. Of course, if trials are spaced too closely,
the ability to tell which part of the signal came
from which type of trial is decreased, so there
is a trade-off between the number of trials one
can include and how much resolving power is
lost. Some researchers have estimated that a
4-s intertrial interval is optimal for detecting
task-related activations (Postle & D’Esposito,
1999), although much more research needs to
be done on the specifications and limitations
of this new technique.

An important element of these rapid event-
related designs is that the intertrial interval
must be varied from trial to trial. The abil-
ity to separate signals coming from different
trial types when the hemodynamic responses
to each trial overlap in time depends on jit-
tering the time between trials and on either
randomly intermixing trials of different ex-
perimental conditions or carefully counterbal-
ancing their order. To get an intuition about
how rapid designs allow one to discriminate
the effects of different conditions, consider
that with a randomized and jittered design,
sometimes several trials of a single type will
follow one another and that because the hemo-
dynamic response to closely spaced events
sums in a roughly additive fashion (although
there are minor nonlinearities; e.g., Boynton
et al., 1996; Dale & Buckner, 1997), the ex-
pected response to that trial type will build
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to a high peak. Introducing longer delays
between some trials and shorter ones between
others allows for the development of peaks
and valleys in activation that are specific to
particular experimental conditions. A regres-
sion model will be more sensitive to a design
with such peaks and valleys than it will be to
a design that has a uniform spacing of trials
because one with peaks and valleys will create
a unique signature for that type of trial. The
effect of jittering is essentially to lower the
effective temporal frequency of the design, so
it is particularly appropriate for rapidly pre-
sented trials. Without jittering the intertrial
interval, the neural events would occur too
rapidly to be sampled effectively.

One problem with the hemodynamic
response-convolution technique used in rapid
event-related designs is that it is based on
a predicted shape of the hemodynamic re-
sponse. Therefore, if one misspecifies this
response function, one will lose significant
power in this experimental technique. This
problem is especially acute when compar-
ing different subject populations (e.g., older
versus younger adults, or patients and nor-
mal controls) because their hemodynamic re-
sponse functions may differ from one another
(D’Esposito, Zarahn, Aguirre, & Rypma,
1999). One approach that researchers have
used to avoid this problem is the measurement
of hemodynamic responses in each individ-
ual subject, often by presenting brief flashes
of light and measuring the BOLD response
over the seconds following the stimulation
in the primary visual cortex or by measuring
the hemodynamic response in motor cortex
to simple finger movements (Aguirre et al.,
1998). Of course, this technique is best used
when the region of interest in an experiment
corresponds to the region in which the hemo-
dynamic response is measured. If it does not,
one must assume that the measured hemody-
namic response in one region of the brain is
equivalent to that in another region.

Techniques for Contrasting
Experimental Conditions

For a psychologist, the main value of neu-
roimaging data is that they provide new tools
for understanding psychological processes.
For example, finding that premotor cortex
is activated during the identification of tool-
like objects opens up a new set of hypothe-
ses about the nature of object recognition
(Martin, Haxby, Lalonde, Wiggs, & Ungerlei-
der, 1995). Likewise, finding that visual cortex
is activated in blind individuals who perform
tactile tasks suggests a set of hypotheses about
the extent of plasticity in the sensory nervous
system (Sadato et al., 1996).

Of course, the value of neuroimaging data
to psychological inference depends on an ac-
curate assessment of which brain regions are
activated in any task. The problem with mak-
ing inferences about cognitive processes from
neuroimaging data is that nearly any task, per-
formed alone, produces changes in most of the
brain. To associate changes in brain activation
with a particular cognitive process requires
that we isolate changes related to that pro-
cess from changes related to other processes.
In short, it requires that we have contrasting
experimental conditions that isolate the pro-
cesses that interest us. One can understand
how these contrasts can be designed without
understanding details of data acquisition and
analysis, topics that we treat in the final sec-
tion of this chapter. However, one fact about
data acquisition is particularly useful: Data in
neuroimaging experiments are in the form of
a matrix of signal intensity values in each re-
gion of the brain. The brain is divided up into
voxels, typically 60,000 to 100,000 small vol-
umes of brain tissue, whose size and number
vary from study to study depending on the
acquisition methods used to gather the data.
These voxels are the elementary units of data;
we assume that the signal in a voxel repre-
sents the neural activation in that region of the



The What: Neuroimaging Techniques and Task Design 193

brain (more on the biophysics of that assump-
tion later). The behavior of these voxels is the
focus of an imaging experiment. Four tech-
niques are most frequently used to study the
behavior of brain voxels: subtraction, para-
metric variation, factorial designs, and corre-
lational studies.

Subtraction

The first method devised for making infer-
ences about psychological processes from
neuroimaging data involves statistically com-
paring activations derived from an experimen-
tal condition with activations from a control
condition that is putatively identical except
that it does not recruit the process of interest.
This is the subtraction method, the logic of
which dates back to Donders (1868). The tech-
nique was first used by Posner and colleagues
(Petersen, Fox, Posner, Mintun, & Raichle,
1988; Posner, Petersen, Fox, & Raichle, 1988)
in a study of reading processes. The logic of
subtraction is this: If one tests two experimen-
tal conditions that differ by only one process,
then a subtraction of the activations of one
condition from those of the other should re-
veal the brain regions associated with the tar-
get process. This subtraction is accomplished
one voxel at a time. Together, the results
of the voxel-wise subtractions yield a three-
dimensional matrix of the difference in acti-
vation between the two conditions through-
out the scanned regions of the brain. T tests
can be performed for each voxel to discover
which of the subtractionsis reliable (of course,
one needs to correct for the fact that multi-
ple comparisons are being conducted—more
about this later). The resulting parametric map
of the ¢ values for each voxel shows the relia-
bility of the difference between the two con-
ditions throughout the brain, and images of ¢
maps or comparable statistics (z or F maps)
are what generally appear in published reports
of neuroimaging studies.

As an example of the implementation of
subtraction logic, consider an experiment
from our laboratory (Reuter-Lorenz et al.,
2000) that was similar to the task shown
in Figure 5.2. In the experiment of Reuter-
Lorenz et al., subjects had to encode the loca-
tions of three target dots on a screen and store
these in memory for 3 s, following which a
single probe dot appeared and subjects had
to decide whether the probe dot was in the
same spatial position as one of the previous
three target dots. In order to isolate processes
of spatial storage, we constructed a control
condition that was identical to this experimen-
tal condition, but with one difference: In the
experimental condition, the retention interval
was 3 s, whereas in the control condition it was
200 ms. We reasoned that a subtraction of
the activations from the control condition
from those of the experimental condition
would then reveal the brain regions respon-
sible for the extra storage required in the ex-
perimental condition.

In our experiment the logic of the subtrac-
tion method was fairly safe. In general, how-
ever, subtraction logic rests on a critical as-
sumption that has been called the assumption
of pure insertion (Sternberg, 1969). Accord-
ing to this assumption, changing one process
does not change the way other processes are
performed. Thus, by this assumption the pro-
cess of interest may be purely inserted into
the sequence of operations without altering
any other processes. Although violations of
subtraction logic have been demonstrated ex-
perimentally (Zarahn et al., 1997), the logic is
still widely used because it greatly simplifies
the inference-making process. If this assump-
tion is violated, a difference in the observed
neuroimaging signal between an experimen-
tal and a control condition may be due to one
of these other altered processes rather than the
process of interest.

To appreciate the difficulty of implement-
ing subtraction logic in an experimental
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setting, consider a hypothetical study. In the
experimental condition subjects must press a
button every time they see a red stimulus;
in the control condition they passively view
the same stimulus sequence as in the experi-
mental condition. The experimenter might as-
sume that activity related to visual processing
is the same in both conditions and that the
two tasks differ only in that the first requires
the execution of a response. Thus, when acti-
vations from the control condition are sub-
tracted from those of the experimental condi-
tion, the experimenter may attribute the signif-
icantly activated areas to response-execution
processes.

This conclusion has a number of flaws, and
these provide some insight into the assump-
tions of subtraction logic. First, several pro-
cesses vary at once, because the experimental
condition includes an overt manual response
as well as a cognitive decision to execute a
response. We cannot know whether activated
areas are related to the decision, to response
preparation, to response execution, or to an
interaction between two or more of those pro-
cesses. In addition, the experiment may vio-
late the assumption of pure insertion. When
we assume pure insertion in this case, we as-
sume that adding decision and response pro-
cesses will not change the nature of the per-
ceptual processing of the stimuli. However,
making a stimulus relevant and causing at-
tention to be directed to the stimulus alter
perceptual processing in very early areas
of visual cortex (Hopfinger, Buonocore, &
Mangun, 2000; Hopfinger and Mangun, in
press). Our naive experimenter may assume
that activations in the occipital lobe revealed
by the subtraction are related to the response
process, when in fact those areas may be in-
volved in processing the color of the stimuli,
modulated by changes in attentional focus.

This example illustrates the difficulty in se-
lecting experimental and control conditions
appropriately. It also illustrates another point

about subtraction logic. Several researchers
have argued that pure insertion can be tested
within the experiment, and that violations of
pure insertion will appear as significant de-
creases in signal when the control task is sub-
tracted from the experimental task (Petersen,
van Mier, Fiez, & Raichle, 1998). Although
this may be true in many cases, there are two
problems with assuming that pure insertion
is only violated in cases in which deactiva-
tions occur. First, it is difficult to tell whether
decreases in signal are due to a violation of
pure insertion (i.e., the control task includes
a process that the experimental task does not)
or to an actual inhibition of a certain brain
arearelated to the process of interest. Second,
our hypothetical example illustrates a case in
which pure insertion may be violated, but the
violation would produce no decreases in ac-
tivity, just an increase unrelated to the process
under investigation. Clearly, inferences about
cognitive processes that rely on subtraction
of activation in two conditions must be inter-
preted with caution.

Parametric Variation

Several approaches have been used to improve
upon subtraction logic and to strengthen the
credibility of inferences drawn from differ-
ences between conditions. One of these is
parametric variation over several levels of a
particular process of interest. Examples of ex-
perimental parameters that can be varied in-
crementally include the number of words to
remember in a memory experiment, the per-
centage of a certain type of trial, or the time
on task.

An example of this is the studies of work-
ing memory by Jonides et al. (1997) using the
n-back task in a PET experiment. In the n-
back task, participants see a string of letters
appearing one at a time and must match each
letter to the one that appeared n items back
in the series. In separate conditions, the val-
ues of n varied from 1 to 2 to 3. A 0-back
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control condition required participants to in-
dicate a match each time a fixed letter (e.g.,
“G”) appeared. Encoding and response pro-
cesses are common to all tasks, but the work-
ing memory load and the requirement to up-
date information stored in working memory
differ. Jonides et al. found that several regions
varied in their activations systematically with
variations in working memory load, as com-
pared to other regions that showed no system-
atic variation. In a later experiment by Cohen
et al. (1997) using fMRI, a finer dissociation
was documented among the regions show-
ing variation with working memory load.
Some regions, such as posterior parietal cor-
tex, showed monotonic increases in activity
with increases in load, whereas dorsolateral
prefrontal cortex (DLPFC) showed a step-
function increase in activation from 1-back
to 2-back, with no other differences in acti-
vation. Thus, the parametric technique per-
mitted a fine discrimination of areas involved
in working memory from other brain regions,
and it permitted an examination of the details
of activation differences even among the re-
gions involved in working memory.

Another example of parametric variation
is a study of the Tower of London task by

Dorsolateral PFC

Anterior cingulate

Dagher, Owen, Boecker, and Brooks (1999).
This task requires participants to make a se-
quence of moves to transfer a stack of col-
ored balls from one post to another in the
correct order. Participants must plan out a
number of moves, devising them and stor-
ing them in memory in advance of completing
the task. The experimenters varied the num-
ber of moves incrementally from 1 to 6. As
shown in Figure 5.7, their results showed lin-
ear increases in activity in DLPFC across the
six levels of the variable, suggesting that this
area served the planning operations critical for
Tower of London performance.

The power of parametric variation lies in
two features. First, the reliance on pure in-
sertion is weakened. Rather than assuming
that insertion of a process does not change
other processes, the logic assumes that alter-
ing the load on one process does not change
other component processes in the task. Sec-
ond, the results are more highly constrained
because unlike a subtraction study, parametric
variation permits one to make multiple com-
parisons among multiple levels of a variable
(e.g., 1- vs. 2- vs. 3-back in the n-back task).
This feature permits researchers to search for
a pattern of change in activation across all
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Figure 5.7 Measured rCBF responses in three areas across six conditions (one rest condition and five
levels of increasing difficulty) in the Tower of London task.

NOTE: These areas showed linear increases in rCBF with increasing difficulty, whereas other areas (such
as visual cortex) showed a response to task vs. rest but no changes among the five difficulty levels.

SOURCE: Reproduced from Dagher et al. (1999).
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levels of a variable, such as a monotonic in-
crease. Such a pattern renders more unlikely
false positives and spurious activations due to
improperly controlled variables.

Factorial Designs

Factorial designs are an extension of subtrac-
tion logic. Whereas the foundation of sub-
traction studies is the ¢ test, factorial studies
rely on factorial analysis of variance. Con-
sider a simple factorial design from our stud-
ies of task switching presented in the intro-
duction of this chapter. Our studies contained
two types of switching, each varied indepen-
dently: switching which of two mental coun-
ters was to be updated, and switching which
of two operations (add or subtract) should be
applied. This design is a simple 2 x 2 facto-
rial, with two levels of counter switching and
two levels of operation switching. The neu-
roimaging data from this experiment can be
analyzed with a factorial ANOVA on a voxel-
by-voxel basis and subsequently corrected for
multiple comparisons. By testing for main ef-
fects, we would then be asking if each voxel
is sensitive to switching counters, to switch-
ing operations, or to both. By testing for the
interaction, we would be asking whether ac-
tivity in the voxel was affected by both kinds
of switch in a nonadditive fashion. For ex-
ample, a voxel might be activated only when
both counter-switch and operation-switch are
required, signaling that this brain area might
be involved in the coordination of two kinds
of executive processes.

In principle, factorial designs suffer from
the same problems as subtraction designs, but
pooling activity across different levels of a
factor may make the estimation of main ef-
fects more interpretable. Because main ef-
fects are estimated by collapsing across sev-
eral conditions that share a common cognitive
process of interest, activations due to cogni-
tive components that vary among the condi-

tions (e.g., idiosyncrasies of particular task
conditions) will tend to wash out.

Another advantage of factorial designs is
that they allow one to investigate the effects
of several variables on brain activations. They
also permit a more detailed characterization of
the range of processes that activate a partic-
ular brain region (e.g., counter-switch only,
operation-switch only, either, or both). Facto-
rial designs also permit one to discover dou-
ble dissociations of functions within a single
experiment. To restate, a double dissociation
occurs when one variable affects one brain re-
gion but not another, and when a second vari-
able affects a second region but not the first.
A factorial design is required in order to infer
that a manipulation (e.g., counter switching)
affected DLPFC but that a second manipula-
tion (e.g., operation switching) did not.

Factors whose measurements and statisti-
cal comparisons are made within subjects, as
are those just described, are within-subjects
factors. When researchers examine differ-
ences between older and younger subjects, be-
tween normal individuals and members of a
patient population, or between other groups,
the subject group becomes a between-subjects
factor because different levels of the factor
are represented by different subjects. Because
there are many reasons that two groups of
subjects might differ in brain activation, re-
searchers typically compare between-subjects
differences in activation related to a spe-
cific task. This comparison involves first sub-
tracting a control task from a task of in-
terest within subjects and then comparing
the different images between subjects. As
an example, consider the fact that older and
younger subjects differ in the amount of at-
rophy present in their brains, with older sub-
jects typically showing some 15% more at-
rophy than younger subjects. To mitigate this
difference in comparing activations between
old and young, Reuter-Lorenz et al. (2000)
tested older and younger subjects in a work-
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ing memory task and a control condition. They
then subtracted the activations of the control
from the memory task and compared older
and younger subjects on their differences in
these subtracted activations. This technique
allows one to remove statistically any effects
of the differences in brain atrophy between the
groups.

Correlational Studies

Correlational designs are often considered a
weaker type of design from the perspective of
making inferences because a correlation be-
tween two variables does not carry any infor-
mation about the causal relationship between
them. However, correlations have been used
effectively in neuroimaging studies in several
ways.

The most straightforward way is to exam-
ine the correlation of regional activation with
behavioral performance variables. For exam-
ple, Casey et al. (1997) found correlations be-
tween anterior cingulate activation and errors
in a go/no-go task in children, suggesting that
the anterior cingulate plays a role in response
selection or inhibition. As another example,
Lane et al. (1998) found that a region of an-
terior cingulate correlated with self-ratings of
emotional awareness in women.

Another important way that researchers
use correlations is by examining the inter-
regional correlations among brain areas. A
high correlation between two voxels is taken
to be a measure of functional or effective
connectivity—the tendency for two brain ar-
eas to be coactive (Frith & Friston, 1997).
One recent trend is to examine the effects
of different tasks on functional connectiv-
ity. For example, a study by Coull, Buchel,
Friston, and Frith (1999) found that con-
nectivity patterns were different between an
attention-demanding task and rest, suggesting
that attention changes the functional connec-
tivity of the brain.

Although functional connectivity is often
taken to mean the degree to which one brain
area activates another, caution must be taken
in the interpretation of such data, as with all
correlational data. The data do not indicate
which of two functionally connected areas
sends output to the other, or if both are in-
fluenced by a third area as the cause of the
correlations between the two.

Although functional neuroimaging data
are often analyzed in terms of separate re-
gions that are differentially active among con-
ditions, most psychological processes that re-
searchers may want to study do not map
one to one onto unique brain regions. They
are often served by processing in distributed
networks of interconnected areas, some of
which overlap and some of which do not.
The mapping of regional correlations in con-
junction with principal components analysis,
described later, can be used to identify sep-
arate distributed networks that are related to
different processes. Intuitively, voxels whose
signals are correlated are grouped together to
define a functional network in the brain, or
spatial mode, which then becomes the unit
of analysis for task-related effects. For exam-
ple, Frith and Friston (1997) described a study
in which they identified three distributed net-
works of brain areas that tended to be coac-
tivated. One area was related to task perfor-
mance; a second was related to the effects
of practice within a session; and a third was
related to magnetic artifact during the initial
scans. The inference about which mode corre-
sponds to which part of the task can be made
by examining the pattern of activation that
voxels in each spatial mode displayed. If the
activity of most voxels in a spatial mode varies
with the frequency of the task, one can infer
that the mode is related to task performance. If
the activity of the voxels varies in a linear fash-
ion across the entire session, the spatial mode
is likely to be related to practice or fatigue
effects.
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Another technique for examining networks
of connectivity using correlational data is
structural equation modeling. To use this tech-
nique, one creates an a priori model of ex-
pected patterns of connectivity and deter-
mines how well the data fit the prespecified
theoretical model. This approach can be very
useful for testing hypotheses about networks
of activations that may be involved in a task.
Marshuetz et al. (1999), for example, investi-
gated the ability of a tripartite model of work-
ing memory to account for imaging data in
working memory tasks, and they were able to
compare this model to several others to deter-
mine which provided the best fit.

Kanwisher, McDermott, and Chun (1997)
employed one particularly useful generaliza-
tion of factorial designs to study face recogni-
tion. They identified an area on the fusiform
gyrus that responded to pictures of faces and
drawings of faces, but not to houses, scram-
bled faces, partial faces, facial features, ani-
mal faces, and other control stimuli. By pre-
senting a large number of control stimuli of
various types, Kanwisher et al. were able to in-
fer that the brain area they studied was specific
to the perception of faces. In general terms,
they presented a number of different kinds of
stimuli (each one a sort of factor, but without
clearly defined levels) in an attempt to define
which stimuli do and do not elicit a response
from a region. In the case of face recognition,
it was very important to use a wide variety
of control stimuli, as it could be argued that
face-specific activations are really related to
the color, general shape, or spatial frequency
of the stimuli. This technique is particularly
powerful for ruling out alternative explana-
tions based on variables of no interest (e.g.,
spatial frequency of visual stimuli) that are
confounded with processes of interest (e.g.,
face perception).

We have now provided broad coverage of
the motivation for using neuroimaging data
and of the various techniques that can be used

with PET and fMRI as the imaging tools. Hav-
ing covered this ground, we are now prepared
to examine the details of these two imaging
modalities.

THE HOW: DATA ACQUISITION
AND ANALYSIS

The Physics of PET and fMRI

Currently, functional neuroimaging tech-
niques are based on the assumption that neu-
ronal activity will cause changes in regional
blood flow and metabolism that can be de-
tected by the imaging technique of choice. If
one discovers a regional change in blood flow
or metabolism, then one infers that the neu-
ral activity in that region has changed. These
changes in blood flow and metabolism are
usually elusive and require sophisticated sta-
tistical analyses to distinguish a real signal
from the surrounding statistical noise. Very
often, the statistical analysis of functional
imaging data requires corrections for different
effects that are specific to the acquisition tech-
nique, so it is quite important that the investi-
gator understand the physics and the details of
the experiment. An array of methods for func-
tional neuroimaging exists, each method con-
stituting an area of research in itself. Unfortu-
nately, an in-depth review of all the available
techniques is beyond the scope of this chap-
ter, so we focus on PET and fMRI. Our aim
is to provide the reader with the background
necessary for understanding the data acquisi-
tion process and the relationship between the
acquisition and the analysis of functional data.

A Brief Summary of the Physics of PET

Positron-emission tomography is based on
the detection of positrons emitted by a ra-
dioactive tracer that is injected into the sub-
ject. Some man-made isotopes decay by emit-
ting positrons (subatomic particles having



the same mass as an electron but the oppo-
site charge—they are “antimatter electrons”).
Some isotopes that emit positrons include
5By, 18F, 1, 150, BN, %8Ga, and #2Rb, and
they are usually made by bombarding the
atoms with accelerated particles. The decay
rate of such isotopes is quite fast, and their
half-lives are on the order of a few hours or
less. Oxygen-15, for example, is the isotope
used most frequently in studies of blood flow
using PET, and its half-life is approximately
2 min. This makes PET scans quite expensive
because a cyclotron must be nearby in order to
obtain a fresh supply of isotopes for the tracer.

When an emitted positron encounters an
electron (from either the same isotope or from
a neighboring atom), they collide. The result
of this collision is that the positron and the
electron are annihilated, and two photons get
ejected in opposite directions from one an-
other. Thus, the scanner does not directly de-
tect the positrons themselves; rather, it detects
the energy released by their annihilation. The
laws of conservation of energy and mass dic-
tate that the energy of the emitted photons
be equal to the added masses of the electron
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and the positron. The law of conservation of
momentum predicts that the momenta of the
emitted photons be equal, but in exactly op-
posite directions. The implications are that
each emitted photon can be detected at around
511 keV (the equivalent mass of an electron),
and that they must be detected simultaneously
and in pairs by two detectors situated oppo-
site one another. These two facts are important
because they allow us to differentiate photons
that arise from a positron annihilation from
other sources of radiation, and they allow us
to localize the annihilation.

Thus, in order to establish the location of
an annihilation event as well as to make sure
that the detected photons indeed came from
an annihilation event, one needs a set of de-
tector pairs placed around the source, the sub-
ject’s head. Additionally, each pair of detec-
tors must be wired to a coincidence detector
circuit, as illustrated in Figure 5.8. The coin-
cidence detector counts only the photons that
are detected pairwise within a few nanosec-
onds of each other, and it dismisses other pho-
tons as background radiation. Ideally, the only
photons detected are those that emerge from

Positron emitted O
by isotope decay
Neighboring
4/ electron
Scintillation Q/l% Scintillation
counter counter
Annihilation emits 180°
two photons in
opposite directions
Coincidence
detector
Computer Display

Figure 5.8 A schematic diagram of the main components of a PET scanner.
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the annihilation of positrons in the tissue di-
rectly between the detectors in the pair. Un-
fortunately, photons from other locations can
also be counted if they arrive simultaneously
at the pair of detectors by sheer chance. To
avoid detecting events that happen outside of
the column of tissue between a given pair of
detectors, small tubes (called septa or collima-
tors) are usually placed around the detectors
to shield them from radiation from the sides,
while letting in the radiation from the front.
Depending on the design, most PET scanners
are made up of an array of detectors that are
arranged in a circle around the subject’s head,
or in two separate flat arrays that are rotated
around the subject’s head by a gantry.

Using PET for Neuroimaging

When researchers inject a tracer into a subject,
the tracer distributes itself through the brain
and accumulates in some locations more than
others, depending on the tissue and the na-
ture of the tracer. Let’s use a two-dimensional
function D(r) to describe the density of the
tracer in a given slice of brain, where r is a
vector that indicates a location in space. The
coincidence detectors simply count the num-
ber of coincidences (and therefore the number
of emitted positrons) detected by a pair of de-
tectors during the scan time. Thus, the number
of positrons that are counted by each pair of
detectors around the subject is proportional
to the amount of tracer in a column of tissue
running between the two detectors, as shown
in Figure 5.9. In essence, the raw data from
a PET scanner are a set of projections of the
function D(r) onto the detector array at differ-
ent angles, and the objective is to reconstruct
the function D(r) from the projections.

An intuitive way to think about the image
formation process is to start with a blank im-
age in which all the pixels have a value of
0. Next, one takes the individual intensities
(number of counts) in one of the projections
along a given angle and adds these values to

Detector:
) = 3D(r)
>
49

Detector

Figure 5.9 The PET scanner.

NOTE: Each detector counts the number of an-
nihilation events that take place in a column of
tissue. The column can be subdivided into smaller
units that represent the image pixels. The detector
counts the sum of the events in each of the elements
in the column.

the image pixels along a line perpendicular to
the projection, as illustrated in Figure 5.10a.
We then move on to the next projection angle
and repeat the procedure, adding the counts
from the detectors along the new projection,
and so on. The result is that different areas of
the image will accumulate different numbers
of counts from the projections, depending on
the original distribution of the tracer in the
plane, as shown in Figures 5.10b and 5.10c.
This distribution of tracer density constitutes
the image. Now, because neither the number
of projections nor the number of pixels in the
image is infinite, some severe artifacts will
occur in the image, and one must compen-
sate for them by applying different filters to
the data. This method is referred to as filtered
backprojection.

In practice, this procedure is usually imple-
mented by using a Fourier transform. More
rigorously, the projections can be described
by

P@©) =) D(r)-Ar
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Figure 5.10 PET image reconstruction.

NOTE: The raw data are a set of projections (sums)
at different angles as shown in A. “Backproject-
ing” the raw data onto the image means adding the
numbers of counts in the projection to the pixels
that are aligned with each point in the projection,
as shown in B. An image can be obtained after the
data from all the projections has been added, as
shown in C.

where P(0) is the projection, or sum of the
counts through the columns at the angle 6.
Each Ar constitutes a portion of the object
along the projection, as shown in Figure 5.9.
The function D(r) can be reconstructed from
all the projections, P (6) by computing the in-
verse Fourier transform of the data. Thus, the
two-dimensional function describing the den-
sity of the tracers in a slice of tissue being
imaged is given by

D(r) = FT Y{r - P(6)).

The reader should be aware that there are a
number of other methods to reconstruct PET
images, as well as corrections for scattering
and other nuisances, that are beyond the scope
of this chapter. We refer the user to the texts
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by Macovski (1983), Sandler (1995), and
Bendriem and Townsend (1998) for greater
details.

Thus, PET allows the investigator to de-
termine a map of the density of a radioac-
tive tracer by reconstructing an image from
the projections of the different angles. The
tracers are usually physiologically relevant
molecules that are labeled radioactively. One
can label tracers that flow through the tis-
sue, such as water, or specific radioligands
that will bind to specific sites. This is where
the strength of PET resides: it allows the re-
searcher to measure a number of parame-
ters with spatial specificity depending on the
choice of tracer. There are three classes of
techniques in which PET is used, as summa-
rized earlier. One is tracking regional cere-
bral blood flow; a second is tracking regional
metabolism; and the third is tracking the bind-
ing of neurotransmitters to their receptors.

In most blood flow studies, radioactive wa-
ter (H,0") is injected intravenously, permit-
ting measurement of blood flow by monitor-
ing the passage of the labeled water through
the tissue and measuring the uptake rate of
the water into the tissue. Metabolism is mea-
sured using 18-fluorodeoxyglucose (FDG),
a deoxyglucose molecule labeled with a ra-
dioactive 18-Fluorine atom. Just like glucose,
it is taken up by tissue for energy produc-
tion; one can identify regions of activity by
monitoring its uptake rate. For studies of re-
ceptor binding, radioactive labels have been
developed for several hundred compounds re-
lated to specific neurochemical systems in the
brain. The major neurotransmitter systems are
most commonly studied, and this is accom-
plished by attaching radioactive labels such as
¢, 13C (carbon), or 171 (iodine) to a receptor
agonist or antagonist. The researcher must ex-
ercise great care in selecting and imaging ra-
diolabeled compounds because the observed
signal level depends on the concentration of
the radiolabeled substance in the blood, on the
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blood flow and volume, on the binding affinity
of the substance to receptors, on the presence
of other endogenous chemicals that compete
with the labeled substance, on the rate of dis-
sociation of the substance from receptors, and
on the rate at which the substance is broken
down by endogenous chemicals.

A Brief Summary of the Physics of fMRI

Functional MRI evolved from nuclear mag-
netic resonance (NMR), a technique em-
ployed by chemists and physicists since the
1940s to study quantum mechanics and to
identify or characterize the structure of
molecules (Bloch 1946; Hahn 1950; Purcell,
Torrey, & Pound 1946). The raw signals in
both NMR and fMRI are produced the same
way. As we explain in more detail later, a sam-
ple is placed in a strong magnetic field and
is radiated with a radiofrequency (RF) elec-
tromagnetic field pulse. The nuclei absorb the
energy only at a particular frequency, which is
dependent on their electromagnetic environ-
ment, and then return it at the same frequency.
The energy is in turn detected by the same
antenna that produced the RF field. In NMR
experiments, the types of nuclei present in a
molecule can then be identified and quantified
by analyzing the frequency characteristics of
the returned signal. In the 1970s researchers
discovered that one could obtain spatial infor-
mation about the nuclei emitting the radiation
by manipulating the magnetic fields around
the sample (Lauterbur, 1973; Mansfield &
Pykett, 1978).

Let us now examine more closely the pro-
duction of a signal in an NMR experiment
and then proceed to how one can obtain spa-
tial information from that signal to obtain an
image. As most people know, the human body
consists mostly of water, and the brain is no
exception. Let us then consider the hydrogen
atoms that are present in a water molecule.
A hydrogen atom consists of a single pro-

ton and a single electron. Every proton has its
own magnetic dipole moment represented by
a vector. A magnetic moment is the amount
of magnetization of an object, and it deter-
mines how strongly it interacts with magnetic
or electric fields (a bar magnet is a dipole,
and a very strong one would have a very large
dipole moment).

When they are placed in a magnetic field,
such as that of a magnetic resonance (MR)
scanner, a portion of the protons (or spins,
as they are often referred to in the literature)
will align with or against the magnetic field. A
couple of things should be kept in mind about
this alignment. First, the larger the magnetic
field, the greater the proportion of spins that
are aligned, which makes the alignment eas-
ier to detect. Second, whether the spins are
aligned with or against the field is determined
by their spin quantum number, which can
have values of +1/2 and —1/2. Being aligned
with the magnetic field takes less energy than
being aligned against it, so a greater number
of spins will be aligned in the direction of the
field.

Magnetic dipoles are represented by vec-
tors. The interaction between the main mag-
netic field (usually labeled By) with the proton
dipole produces a set of forces that resultin the
precession of the dipole. Precession of a vec-
tor is a movement that takes place such that the
origin of the vector stays fixed, whereas the tip
spins and describes a circle around a vertical
axis, as shown in Figure 5.11. The vectors rep-
resenting the magnetic moment of the +1/2
spins will precess about the magnetic field,
and the —1/2 spins will precess about the op-
posite direction of the magnetic field. The rate
of precession, wy (i.e., the angular velocity of
the spins’ precession) is proportional to the
magnetic field By, as described by

wo =y - By

where y is a constant called the gyromagnetic
ratio. This nicely linear relationship between
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The magnetic moment of the spins precesses around the
axis of the main magnetic field (By). Its orientation is
determined by their quantum state.

Figure 5.11 Representation of the proton’s
magnetization.

the precession frequency and the magnetic
field is akey factor that, as we will see, enables
us to obtain spatial information about the sam-
ple by simple manipulations of the magnetic
field. The gyromagnetic ratio is specific for
the nucleus in question (a hydrogen nucleus’s
y is 42.58 MHz/T), which can allow us to ob-
tain NMR signals from specific nuclei without
interference from other nuclei. The molecular
environment around the nuclei (the number of
electrons present, the proximity of other nu-
clei, etc.) can change the By field around the
nuclei and thus alter their precession rate, as
predicted by the previous equation (which is
how one can make inferences about the molec-
ular structure of a molecule that contains
protons).

Let us now consider the net magnetiza-
tion vector of a population of spins. Together,
the spins’ magnetization vectors add up to a
single magnetization vector that is aligned
with the magnetic field (see Figure 5.12). Be-
cause the x and y components of the mag-
netic moments are randomly oriented at any
given time, they cancel each other when all the
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Figure 5.12 The spin ensemble.

vectors in a large population are added to-
gether. Thus, all that remains is the component
that is parallel to the magnetic field along the
z-axis (remember that more spins align with
the field than against it).

Now that we have a picture of the behavior
of the magnetic moments of water protons in a
large magnetic field (By), let us consider what
happens when a second magnetic field (B;)
is applied in a direction perpendicular to the
main magnetic field. This B, field is generated
by the transmitter coil in magnetic resonance
experiments, and it rotates at a particular fre-
quency. If the B, field rotates at the precession
frequency of the spins, it looks to them like
a stationary magnetic field because they are
both rotating at the same rate. In fact, to sim-
plify things, one can look at the whole system
from a rotating frame of reference. Consider
how things look when one rides a carousel.
The other children do not seem to be mov-
ing, but their parents and anything outside the
carousel do. In this rotating frame of refer-
ence, we now have a magnetization vector, M,
which is aligned with the main magnetic field,
By, and a second magnetic field B, which is
rotating in the laboratory frame of reference
but is stationary in our new rotating frame of
reference. According to classical physics, the
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(Before the pulse)

B,: Magnetic
field induced by
transmitter coil

M y
(After the pulse)
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RF transmitter coil

Figure 5.13 Tipping the magnetization vector
from the z-axis onto the xy-plane.

NOTE: The duration and strength of the B, field de-
termine how far the vector is tipped (i.e., the “flip
angle”).

B, field will exert a torque on the magneti-
zation vector such that it is rotated onto the
x-y plane at an angular velocity determined
by the magnitude of B;. This is illustrated in
Figure 5.13.

In our rotating frame of reference, after we
turn the B field off, the magnetization vector
is stationary on the x-y plane, but relative to
the real world, the magnetization vector is ro-
tating about the z-axis on the x-y plane at an
angular velocity wg. A property of classical
electromagnetism is that changes in a mag-
netic field will induce electrical currents in a
wire coil. The antenna used for transmission
of the RF pulse is such a coil, and when the
magnetization vector rotates through it, it in-
duces a current. This current induced in the
coil is the NMR signal that we observe. The
induced current oscillates at the frequency of
the angular rotation of the magnetization vec-
tor (this is the same frequency that is used to
transmit the RF pulse, also called the reso-
nance frequency).

When the transmitter is turned off after
the application of a pulse, the magnetization
vector will relax back to its equilibrium posi-

tion. This relaxation happens through several
mechanisms: Spin-lattice relaxation occurs as
the spins give away their energy and return
to their original quantum state. This trans-
lates into the longitudinal (i.e., along the z-
axis) component returning to its equilibrium
value at a rate 7. Spin-spin relaxation hap-
pens along the transverse (i.e., on the x-y
plane) component of the magnetization vec-
tor and is due to the ensemble of spins falling
out of phase with each other and thus adding
destructively to the net magnetization vector,
as illustrated in Figure 5.14. These two mech-
anisms are often referred to as 77 and T, re-
laxation, respectively.

Another kind of relaxation is caused by in-
homogeneities in the magnetic field at the mi-
croscopic level. If there are variations in the
magnetic field, there will also be variations

Figure 5.14 The dephasing process.

NoOTE: This process occurs because all the spins
in the ensemble do not precess at the exact same
rate. Some of them get ahead, and some of them
lag behind. The net effect is that they start can-
celing each other out, shortening the length of the
magnetization vector.



in the individual protons’ precession frequen-
cies, which cause the ensemble to lose phase
coherence faster than expected due to sim-
ple 7. This change is referred to as T, (pro-
nounced “T-2-star”’). The relaxation rate con-
stants T, T, and T, are dependent on a num-
ber of properties of the nuclei themselves and
of their environment at the molecular level.
This is quite useful in several ways. The re-
laxation constants can be used to identify the
nuclei in an NMR spectroscopy experiment,
or they can provide a mechanism for im-
age contrast between different tissues, such
as white and gray mater, or lesions, when per-
forming an imaging experiment. For example,
T,-weighted images are acquired with param-
eters such that the image contrast between
tissues is mostly determined by their 7; re-
laxation rate. An example of the same slice of
tissue imaged with 7 and T, weighting can be
seen in Figure 5.15; as one can see, the images
look strikingly different. Changing the con-
trast mechanism can be very useful in differ-
entiating brain structures or lesions because
some structures will be apparent in some kind
of images but not in others. For example, mul-
tiple sclerosis lesions are virtually invisible in

The How: Data Acquisition and Analysis 205

T-weighted images but appear very bright in
T,-weighted ones.

From the NMR Signal to Neuroimaging

Now that we have an idea of how a signal is
produced, let us take a look at how we can
extract spatial information from it to form an
image. We mentioned earlier that the preces-
sion frequency of the spins (and thus their
resonance frequency) was proportional to the
strength of the magnetic field. Now, consider
what happens when we apply another mag-
netic field in the direction of By, but one that
varies linearly with location along the x-axis
(This is referred to as a magnetic field gra-
dient in the x direction). What we have now
is a magnetic field whose intensity changes
in direct proportion to the location in space
along the x-axis. Because the magnetic field
strength varies with the position in space, the
resonance frequencies of the spins also vary
with their position in space (recall the equa-
tion wy = y By).

Thus, if we tip the spins onto the x-y plane
with a B; pulse and then turn on a magnetic
field gradient, the signal that we get back from

Figure 5.15 The same slice of brain tissue can appear very different, depending on which relaxation
mechanism is emphasized as the source of the contrast in the pulse sequence.

NoOTE: Using long echo times emphasizes 7, differences between tissues, and shortening the repetition
time emphasizes 7 differences in tissue. Left: one slice of a 7} image. Right: the same slice acquired as

a T, image.
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the sample will not simply oscillate at the res-
onant frequency, as we described earlier. It
will be a more complex signal made up of the
sum of the signals generated by the tissue at
different locations along the x-axis, and thus
oscillating at different frequencies. This tech-
nique is usually called frequency encoding.

The contribution of each frequency com-
ponent of the signal is proportional to the
magnitude of the magnetization vector at the
corresponding location. Therefore, if we can
separate the different frequency components
of the signal, we will get the distribution
of magnetization across the x-axis in space.
Luckily, there is a mathematical technique de-
signed to do exactly that: The Fourier trans-
form separates a function into its frequency
components, providing a distribution of how
much each component contributes to the orig-
inal function.

In reality, things are a bit more complex.
Because the spins at different locations along
the x-axis are precessing at different rates in
the presence of the gradient, their magnetiza-
tion vectors get out of phase with each other,
causing the net x-y magnetization to decay
quickly. The spins can be brought back into
phase in two different ways. One could reverse
the gradient, making the spins gain phase in
the opposite direction, but at the same rate as
during the dephasing period. At some point,
the spins will regain their phase coherence,
inducing a signal on the receiver coil. This
signal is called a gradient-echo. Alternatively,
one could also apply another RF pulse to ro-
tate the magnetization 180 degrees, then reap-
ply the original gradient, such that the spins
regain their phase coherence, as shown in
Figure 5.16.

We have seen how we can obtain spatial
information along a single dimension, but to
form an image we need to extract the distri-
bution of proton densities along at least two
dimensions. We need to devise a method to
encode the spatial information along both the
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Gradient echo technique: A gradient in the magnetic field
causes the spins to lose phase coherence. Reversal of the
gradient causes them to regain it.
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Spin echo technique: Spins are dephased by the gradient. After
application of a 180° pulse, all the spins are rotated about the
y-axis, and the application of the same gradient causes the spins
to regain coherence along the negative x-axis.

Figure 5.16 Refocusing of the spins by gradient
echoes and spin echoes.

x- and y-axes. The way to do that is to per-
form frequency encoding along the x-axis, as
before, with an additional brief gradient field
applied in the y-direction. This second gradi-
ent causes the precession of the spins to get a
little bit ahead (or gain phase) depending on
where they are along the y-axis. Recall that
applying a gradient causes the spins to pre-
cess faster or slower depending on their loca-
tion, so a short gradient pulse causes them to
change their precession rate briefly, resulting
in a phase gain that depends on the location
of the spins along the y-axis and the duration
of the gradient pulse.

The sequence is repeated a number of
times, increasing the magnitude of the phase
encoding gradient, so that we can get a whole
distribution of phase gains along the y-axis.
The end result is a set of echoes acquired
with a distribution of phase gains along the
y-direction. This forms a two-dimensional
data set that contains the x-direction distribu-
tion of densities encoded in frequency along
the x-axis and the y-direction distribution of
densities encoded in phase along the y-axis.
The Fourier transform of this raw data image
along both the horizontal and vertical dimen-
sions produces an image of the magnetization



vector across the imaging plane. Before the
Fourier transform, the data are said to be in K
space, and the objective of most MR imaging
techniques is to sample this K space. Once
we have an image of K space, forming an im-
age of the brain is as simple as applying the
Fourier transform to the data.

Itis very useful to have such an image of the
magnetization vector across tissue because a
number of tissue-specific properties affect the
magnetization and thus provide a contrast be-
tween different kinds of tissues. These include
the water content as well as the T, T,, and
T relaxation rates. As mentioned, the pulse
sequence parameters can be manipulated to
emphasize the contrast due to any of those
properties individually.

There are many different ways to form an
image using MR, and we have discussed only
one of them in order to give the reader an
idea of the principles underlying the forma-
tion of an MR image. Acquiring individual
gradient or spin echoes in the traditional way,
with their many individual phase encoding
repetitions, simply takes too long for func-
tional imaging. Thus, we must resort to alter-
native techniques that will acquire the raw K
space data faster. Most commonly, one tries
to acquire each plane of K space with a single
excitation of the tissue. Such techniques are
referred to as echo planar, and the most com-
monly used ones are called echo planar imag-
ing (EP]) and spiral imaging. The specifics of
these are beyond the scope of this chapter; for
a more rigorous treatment of the subject of
MR imaging techniques, we refer the reader
to excellent texts such as Nishimura (1996) or
Elster (1994).

Functional MRI Using the BOLD Effect

Let us now explore how we can use MR imag-
ing to obtain functional images by taking ad-
vantage of the BOLD effect. Functional stud-
ies can be made because the intensity of the
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water signal depends on many parameters, as
mentioned earlier. Among those parameters
are the water density and the 7 relaxation
rate of the tissue. Hemoglobin in blood can
take two different conformations, depending
on whether it is oxygenated. In the deoxy-
genated state, iron atoms are more exposed
to the surrounding water, creating small dis-
tortions in the By field. The magnetic suscep-
tibility of a substance is its ability to distort
a magnetic field, and it affects the relaxation
constant 7. Thus, the magnetic susceptibil-
ity of hemoglobin is higher when it is in its
deoxygenated state, and this change in sus-
ceptibility translates into a shortening of the
T of the deoxygenated blood (Ogawa, Lee,
Kay, & Tank, 1990).

When brain tissue becomes active, it re-
quires more oxygen than when it is at rest.
In order to accommodate this need, a blood
flow increase raises the amount of oxygenated
blood to the tissue. During periods of activa-
tion, the increase in blood flow brings in more
oxygenated blood, decreasing the concentra-
tion of deoxyhemoglobin. Thus, the increases
in blood flow and blood volume contribute
to an increase in signal, and the increase in
magnetic susceptibility increases the ampli-
tude of the water signal. The net resultis an in-
crease in signal following activation. It is im-
portant to realize that the degree to which the
blood flow and the deoxyhemoglobin content
are coupled can vary, and modeling the exact
properties of the BOLD response is currently
a topic of intense research (Buxton, Wong,
& Frank, 1998; Frahm, Merboldt, Hanicke,
Kleinschmidt, & Boecker, 1994; Vazquez &
Noll, 1998).

An alternative technique is to measure
changes in blood flow alone using arterial
spin labeling (ASL) techniques (Detre, Leigh,
Williams, & Koretsky, 1992; Kim, 1995;
Williams, Detre, Leigh, & Koretsky, 1992),
which are based in magnetic resonance imag-
ing techniques and mimic PET blood flow
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techniques by tracking the passage of a tracer
through the tissue. In the case of PET, the
tracer is a radioactive substance that is in-
jected intravenously. In the case of ASL, the
tracer is simply the water in the arterial blood,
which is magnetically labeled by an RF pulse.
The label consists of tipping the arterial wa-
ter’s magnetization vector all the way to the
negative z-axis by a B; pulse that is applied
somewhere upstream from the tissue of in-
terest. As those inverted spins flow through
the tissue, they can be detected by changes in
the signal intensity of the image. A number
of limitations render the technique imprac-
tical for many applications, but overcoming
these limitations is a growing area of research
(Kim 1995; Gonzalez, Alsop, & Detre, 2000;
Wong, Buxton, & Frank, 1997), and the tech-
nique will likely soon become a powerful tool
for functional studies.

Diffusion Tensor Imaging

Diffusion tensor imaging can be used to ex-
plore questions about connectivity among
brain regions by identifying the orientation of
white matter tracts. The technique produces
images whose intensity is dependent on the
diffusion of the tissue water, and this can yield
information about the orientation of the tissue
fibers. For example, in the case of a pot of
water, the water molecules are equally likely
to diffuse in all directions, except near the
walls, which restrict the movement of the wa-
ter molecules. If we were to put some lasagna
noodles into the pot of water such that they
lay flat on top of each other, the water would
be more likely to move horizontally than ver-
tically because the water molecules would be
more likely to bump against the lasagna noo-
dles when they try to move vertically than
when they try to move horizontally. Simi-
larly, the geometry of the white matter tracts
in the brain running parallel between two dif-
ferent structures restricts the diffusion of wa-
ter molecules along all directions perpendic-

ular to the direction of the tracts. As we soon
discuss, the diffusion of the spins can affect
the MR signal. We can take advantage of this
phenomenon to obtain images that are sensi-
tive to the microscopic geometry of the tis-
sue, even though MR images do not afford
the resolution to see the actual microscopic
structures.

In an imaging experiment, when a spin
moves in the presence of a magnetic field
gradient, its precession frequency varies de-
pending on its location along that gradient, as
we saw earlier. That means that it acquires a
phase difference in its rotation relative to the
rest of the ensemble of stationary spins (recall
that acquiring phase means that the magneti-
zation vector for that spin gets ahead of the
rest). If all spins move together in the same
direction and at the same speed, then they all
acquire the same amount of phase coherently,
and the magnitude of the net magnetization
vector is altered. However, in the diffusion
process movement occurs randomly and in-
coherently among the spins in the ensemble,
so the net effect is a signal loss because some
of the moving spins will gain and some will
lose phase, depending on which direction they
move. The degree of attenuation seen in the
signal is related to the freedom of movement
of the water molecules in the direction of the
applied gradient, as well as to the duration and
magnitude of that gradient.

This has found a number of applications for
clinical imaging, such as providing informa-
tion about membrane integrity in brain tissue
cells. It can also give information about the
orientation of the tissue through acquiring dif-
fusion tensor images. Diffusion tensor images
are produced by applying diffusion gradients
during the imaging process in different combi-
nations of the x, y, and z gradients. The result
is a set of images that are weighted according
to the restriction of water movement along the
direction of the applied gradient combination.
(Le Bihan, 1995; Moseley et al., 1990).



Consider again the shape of white matter
tracts. If two areas are functionally connected,
then one can expect that there are a large num-
ber of tracts running between the two areas.
If in a region of tissue there is a large number
of tracts running parallel, then the diffusion
of water is less restricted along that direction
because the water molecules are more likely
to collide against fibers when they move in
directions other than those of the fibers. Thus,
by obtaining images whose intensity is pro-
portional to the diffusion coefficient of water
in a particular direction in space, one can ob-
tain information about how the tissue is struc-
turally laid out, giving information about what
regions of the brain are structurally intercon-
nected.

The Biophysics of PET and fMRI

We have described several ways that changes
in blood flow and oxygenation can be de-
tected by neuroimaging scanners. Critical to
the undertaking is the assumption that these
changes reliably result in a signal that can be
detected by a scanner. However, before this
signal change can be interpreted as neural ac-
tivation, another critical assumption must be
justified: the assumption that changes in blood
flow and oxygenation reflect changes in neu-
ral activity.

Roy and Sherrington (1890) were the first
to hypothesize a connection between blood
flow and neural activity. Since then, re-
searchers have investigated at length the
mechanism behind the relationship between
blood flow and neural activity. For example,
Shulman and Rothman (1998) have proposed
that increased glucose uptake is controlled
by astrocytes, whose end-feet contact the en-
dothelial cells lining the walls of blood ves-
sels. Glutamate, the primary excitatory neu-
rotransmitter in the brain, is released by some
60% to 90% of the brain’s neurons. When
glutamate is released into synapses, astro-
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cytes absorb it and transform it into glutamine.
When glutamate activates the uptake trans-
porters in an astrocyte, it may signal the astro-
cyte to increase glucose uptake from the blood
vessels. Vasodilation, resulting in increased
blood flow and increased oxygen consump-
tion, may be coupled to neural activity through
similar mechanisms. If it is only glutamate re-
lease that triggers the vascular, oxygen, and
glucose uptake effects, then activation is ex-
citatory. However, release of GABA (gamma
amino butiric acid) or other inhibitory neu-
rotransmitters could trigger these responses
as well. Further research is needed before
firm conclusions are reached about what spe-
cific changes produce the observed changes
in blood flow or BOLD signal.

Also, importantly, the relationship between
neural activity and glucose uptake indicates
that the neuroimaging signal reflects activity
in the neuropil, at the synapses where neu-
rotransmitters are released, and not in the
brain regions containing cell bodies. A neu-
roimaging signal may therefore be related to
increased input in an area, which may lead to
increased output from that area to other local
or remote brain regions. If a task activates
DLPFC, for example, it means that DLPFC is
receiving substantial input from other areas.
That input could be excitatory or inhibitory.

Although there is still uncertainty about
the exact mechanism by which a neuroimag-
ing signal is produced, sufficient evidence has
been collected that we may proceed forward
with reasonable confidence. In the end, all the
available indices of neural activation—rCBF,
oxygen uptake, or glucose utilization—may
be suitable for most studies of psychological
function.

Statistical Analysis of Neuroimaging Data

Armed with a general understanding of the
physical information contained in PET and
fMRI images, we are now in a position to
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extract information about brain function from
our imaging studies. In the case of PET, im-
ages will be acquired under different experi-
mental conditions, and their signal intensity
will be dependent on the amount of tracer
present in each voxel. In the case of fMRI,
the signal intensity will be dependent on the
BOLD response (based on oxygenation and
blood flow). The task at hand for analysis of
the signal is primarily to identify those voxels
whose activity matches a predicted model, be
it a model due to subtraction logic, paramet-
ric variation, factorial manipulation, or corre-
lation. Because fMRI has become the domi-
nant modality for the collection of data about
rCBF, we focus our discussion on the analy-
sis of data from an fMRI experiment. How-
ever, most of the principles apply to PET as
well.

The General Linear Model

Consider an ideal experiment in which a sub-
ject’s brain is inactive when there is no task
to perform and is activated only by an exper-
imental task of interest. Each time the task
is performed, a set of physiological events
takes place in a functional region resulting in a
BOLD response, as described earlier. To sim-
plify the statistical analysis, we approximate
the behavior of brain tissue as a linear, time-
invariant system, whose input is the task and
whose output is the BOLD response. Thus,
for our ideal experiment the input function
can be considered as a train of spikes corre-
sponding to the psychological events involved
in the task (e.g., encoding stimuli, making de-
cisions, executing responses). Each of these
events may cause neural tissue somewhere
in the brain to become activated, which in
turn causes hemodynamic changes. As with
any linear, time-invariant system, the output
(change in signal intensity in any voxel of the
brain) is described by the convolution of the
input (a function describing the train of

Response to a single stimulus

A set of stimuli at randomized times

Predicted response to the stimuli

YAV NI VANAN

Figure 5.17 The BOLD response to a single
event is shown in the top portion of the figure.
NOTE: This is commonly referred to as the hemody-
namic response function (HRF). A train of events,
like the one shown in the middle figure, would pro-
duce a BOLD response like the one shown in the
bottom part of the figure.

events) with the system’s transfer function
(a function that describes the hemodynamic
response to a single stimulus). Figure 5.17
shows the response to a single stimulus, as
well as the response to a train of stimuli oc-
curring at random times.

By design, psychological events from dif-
ferent conditions of an experiment may be
intermingled, as in an event-related design,
or they may be grouped into epochs, as in a
blocked design. Under the assumptions of a
general linear model, different tasks consti-
tute different input functions that give rise to
their own BOLD responses. So, if one con-
structed an experiment with different condi-
tions (i.e., different tasks) intermingled in an
event-related design, one could construct dif-
ferent input functions to model the output
function. In order to create a more realistic
model for the observed signal, one must also
include other input functions for such vari-
ables as drift in the scanner signal, effects due
to motion of the subject, effects of respiration
and heart rate, and other nuisance variables.
Thus, the observed signal from a voxel can be
thought of as a sum of weighted functions



corresponding to the different predicted ef-
fects. Some of these effects are of interest,
some are not, and the weights of those func-
tions are a set of scalar parameters that de-
termine the amplitude of those functions. For
example, if our model is made up of effects
that are represented by functions x; (¢), x2(?),
x3(t) ..., and each of these is weighted by a
coefficients B1, B2, B3 . .., then the predicted
signal is given by

(@) = Br-xi1(t) + B2 x2(t) + B3 - x3(1)
+---t+ert+erte3 -

where the ¢ germs represent the error. All of
this can be expressed in matrix form as

Y=BX+E

where Y is the observed signal in a given voxel
expressed as a vector whose elements are the
individual time observations, X is a matrix
whose columns contain the individual func-
tions that make up the model, 3 is a vector
containing the weights of the individual com-
ponent functions, and E is the residual noise
in the measurement. The matrix X is often re-
ferred to as the design matrix and displayed
as an image whose intensities correspond to
the values of the elements, as shown in Fig-
ure 5.18. Our tasks in the analysis are to obtain
an estimate for 3 and to identify the voxels
that fit the estimated model.

It can be shown that 3 can be estimated by

B=X"x)"'xTy.

Note that A is used to represent the estimated
value of 3. Now, what remains is to test each
individual voxel in the image to see which
ones fit the model described by Y and A. This
can be accomplished by computing the signif-
icance of the estimate of the coefficient. De-
pending on the statistical approach taken, one
can obtain a T or F score for the correlation.
In the simplest case, when there is only a sin-
gle coefficient and a baseline intensity, this
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Design matrix

Scan

Figure 5.18 The design matrix.

NOTE: The design matrix should include all the sig-
nificant effects that are present in the experiment.
Each effect is represented by a column of data con-
taining the expected time series that one would see
if that were the only effect present.

is identical to performing a linear regression
analysis of the data and the model.

One could ask many questions using the
same model; in fact, one can test for the pres-
ence of any given linear combination of the
covariates contained in the design matrix’s
columns by multiplying the parameter esti-
mates by a contrast vector c¢. This vector con-
tains additional weights to be multiplied by
the parameter estimates in the vector 3. In the
design matrix shown in Figure 5.18, for exam-
ple, we could test for the voxels in which the
activity in the first condition minus the activ-
ity in the second condition is significant, while
disregarding all other effects as nuisance co-
variates, by using a contrast[ 1 —1 0000 ].
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If the difference is significant, this would im-
ply that the first covariate’s intensity is greater
than the second’s.

Statistical Inference from the General
Linear Model

As usual with all statistical procedures, we
must calculate the significance of the correla-
tion between the model and the data in each
voxel (whether it is a correlation coefficient
oraT, F,or Z score). This is usually done by
calculating the probability of obtaining that
value by sheer chance, given the probability
distribution of the statistic. In neuroimaging,
however, we must be aware of the fact that
there are hundreds of thousands of voxels in
an image, so a number of them are bound by
chance to be correlated to the design matrix. If
the voxels’ signals were independent of each
other, we could compute a Bonferroni correc-
tion of the significance level, but that is not
usually the case because the voxels tend to
be correlated with their neighbors. Addition-
ally, the Bonferroni correction tends to be very
conservative. Instead, we must come up with
a method for examining the statistical image
(made up of T values or such) and calculat-
ing the likelihood of having a cluster of voxels
above a given threshold. Random fields theory
does exactly that. Based on the assumption of
Gaussian-distributed background noise in an
image, we can measure the spatial character-
istics of the distribution in three dimensions,
and from those measurements we can make
predictions about the number of clusters ex-
pected to appear significant in the statistical
image just by chance.

The Euler characteristic of a solid geomet-
ric figure is a measure of how many of its ele-
ments are connected together and how many
holes exist within it. As it turns out, the ex-
pected Euler characteristic of a thresholded
statistical image is a good approximation of
the likelihood that a cluster of voxels above a

certain threshold will occur by chance in aran-
dom image. The calculation of the expected
Euler characteristic is based on a calculation
of the smoothness of the image, and is beyond
our scope. The smoothness of an image is a
measure of how many independent measure-
ments exist within the image. These indepen-
dent measurements are referred to as resels
(short for resolution elements). This sort of
technique has great applications in the anal-
ysis of noisy imaging data, when the objec-
tive is to identify significant clusters (not just
in functional neuroimaging, but in astronomy
as well). For greater detail on the calculation
of the smoothness of the image and the
Euler characteristic, see Worsley and col-
leagues (Worsley, Evans, Marrett, & Neelin,
1992; Poline et al., 1995; Worsley et al.,
1996); Petersson, Nichols, Poline, and
Holmes (1999); and Friston, Holmes, Price,
Buchel, and Worsley (1999).

Assumptions

The main assumption underlying the general
linear model is that the BOLD response to a
set of neuronal processes is a time-invariant,
linear combination of those processes. A time-
invariant system is one whose response to a
given input is always the same, regardless of
the previous events. Linearity means that if
two separate inputs are applied to the system,
its response will equal the sum of the indi-
vidual responses to those inputs. It is becom-
ing increasingly clear that the BOLD response
is neither linear nor time-invariant (Boynton
et al., 1996; Buxton & Frank, 1998; Vazquez
& Noll, 1998), but these violations are not se-
vere within reasonable boundary conditions.
Because of the necessity of evaluating sig-
nificance for the computed statistics, the gen-
eral linear model is also heavily dependent on
the theory of Gaussian random fields, whose
main underlying assumption is that the resid-
ual variance in the images after applying a
model is distributed normally, and that each



voxel’s signal is independent of the signal in
other voxels. Unfortunately, for both PET and
fMRYI, the signal intensity in one voxel is al-
ways contaminated by the signal of other vox-
els. In the case of PET, the correlation is due
to scattering of the positrons and to smooth-
ing of images during data preprocessing. In
the case of fMRI, it is largely a function of
limitations in resolution and of any smooth-
ing that is done during preprocessing. Thus,
one must take care that these correlations are
not serious contaminants of the data, and the
data must be spatially smoothed, as described
later.

Pitfalls

A major concern in the analysis of fMRI data
is that the BOLD effect is a vascular one, not
an electrochemical one. It is a response to the
underlying neuronal activity, and it distorts
that neuronal activity to the extent that it does
not mimic it directly. The limitations here are
ones of time and space. In time, the hemo-
dynamic response lags behind the neuronal
response by as long as several seconds, and
it is stretched out longer than the neuronal
response as well. In space, the blood flow
changes that are measured may or may not
be in the immediate neighborhood of the un-
derlying neuronal response that caused them
because the vasculature is not tuned precisely
to the spatial location of the neural tissue to
which it is responding. Thus, to have a good
idea of when and where a neural response oc-
curred, one needs to have a good idea of the
nature of the hemodynamic response in that
part of the brain; this is currently a matter of
extensive study.

Using the general linear model also poses a
number of limitations on the analysis of neu-
roimaging data. The general linear model is
used to ask whether the data fit a set of pre-
dictions. Thus, one must have a set of predic-
tions. If these are wrong, then one might repeat
an analysis with a different model, looking
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for a better fit. There are other approaches to
data analysis (discussed briefly below), such
as principal components analysis and inde-
pendent components analysis. These extract
the underlying functions from the response
without an a priori guess. At the same time,
though, these approaches yield no informa-
tion about which component corresponds to
which process.

When building a design matrix for the gen-
eral linear model, one must be very careful
to include all the effects present in the data,
including confounds. At the same time, one
must also be careful not to include too many
effects in a single experiment. If one under-
parameterizes the analysis, the variance of the
confounds can overwhelm the signal, making
the effects of interest insignificant. If one over-
parameterizes, one expands the search space
for the B coefficients, making erroneous re-
sults more likely.

As discussed earlier, the BOLD response
is not always linear, and at the present time
experiments must be designed such that the
BOLD responses will be in the near-linear
range. Otherwise, the regressors in the model
will not fit the data well enough to yield ac-
curate results. To approximate linearity, one
must ensure that the intervals between trials
are within 1 to 15 s long. In addition, longer
stimulus durations tend to produce more lin-
ear responses (Vazquez, 1998).

Preprocessing Requirements

Several conditions about the fMRI images
must be met in order to carry out a successful
data analysis. Most analyses are based on the
assumption that all voxels in any given image
from the series of images taken over time were
acquired at the same time. They also assume
that each data point in the time series from
a given voxel was collected from that voxel
only. Another assumption is that the resid-
ual variance (i.e., variance remaining after re-
moving all the effects of interest) will have a
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Gaussian distribution. Additionally, when car-
rying out analyses across different subjects,
the researcher assumes that any given voxel
will correspond to the same brain structure in
all subjects in the study. Without any prepro-
cessing, not one of these assumptions holds
entirely true, and they will introduce errors
in the results. Therefore, the researcher must
carry out several steps before diving into an
analysis so that the data will meet (or at least
approximate) the assumptions.

Slice Timing. Because most image-
acquisition sequences acquire brain images
slice by slice, there can be a difference of 1
to 3 s between the acquisition of the first slice
and the acquisition of the last slice. The prob-
lem is that an analysis assumes that all voxels
in an image acquired at a given time point of
the time series are acquired at the same time.
In reality, the data from different slices are
shifted in time relative to each other. Thus, the
researcher must calculate the signal intensity
of all slices at the same moment in the ac-
quisition period. This is done by interpolating
the signal intensity at the chosen time point
from the same voxel in previous and subse-
quent acquisitions. A number of interpolation
techniques exist, from bilinear to sinc inter-
polations, with varying degrees of accuracy
and speed. Event-related experiments require
more precise control over the onset time of the
stimulus than do blocked-design experiments,
so the interpolation is often not necessary in
blocked designs, in which the epochs can last
many seconds (e.g., more than 30 s). Because
of the long length of epochs, not much sensi-
tivity will be lost if the slices are not collected
at the same time.

Realignment. A major problem in most
time-series experiments is movement of the
subject’s head during acquisition of the time
series. When this happens, the voxels’ sig-
nal intensity gets contaminated by the signals

from its neighbors. Thus, one must rotate and
translate each individual image to undo the
subject’s movements.

The coordinates of a point in three-
dimensional space (x, y, z) can be expressed
as a vector. It can be shown that the coordi-
nates of a given point in space after any given
translation, rotation, or combination of both
can be calculated by multiplying a matrix by
the original vector. Such a matrix is called an
affine transformation matrix. Thus, in order to
undo the rotation and translation of the head,
one must calculate the elements in this affine
transformation matrix and apply the matrix to
all voxels in the image. Usually, this is done by
a least squares approximation that will mini-
mize the difference between the image to be
corrected and the first image in the time series.

Smoothing. Random field theory as-
sumes that each voxel is independent of the
other voxels, and that the images have nor-
mally distributed noise. This is not the case
in most experiments, because the signal is
often correlated among different voxels, es-
pecially in fMRI experiments. To make the
noise in the images meet the assumption, the
images are convolved with a Gaussian ker-
nel, which gives the noise a more Gaussian
distribution. This smoothing of images also
effectively produces a weighted average of
the signal across neighboring voxels, which
gives the smoothed images a blurry appear-
ance. A side effect of smoothing is a reduction
of the amount of high-frequency spatial noise
present in the data. This can be an advantage
by increasing the overall signal-to-noise ra-
tio of the individual images in the time series,
making the tests more sensitive at the expense
of spatial resolution.

Normalization. In order to make quanti-
tative comparisons across subjects, the corre-
sponding brain structures must have the same
spatial coordinates. Of course, this is usually



not the case, because people’s brains are dif-
ferent. We can, however, stretch and compress
the images (not the actual brains, of course!)
in different directions so that the brain struc-
tures are in approximately the same locations.
Usually we normalize all the brain images so
that they will match a standard brain (e.g., the
Talairach or Montreal Neurological Institute
brain templates).

The normalization process includes an ini-
tial realignment of a set of images so that
they approximate the template in orientation.
Additionally, the images are transformed by
multiplying them by a series of cosine basis
functions, whose coefficients are estimated by
a least squares error-minimization approach.
This is analogous to searching for some func-
tion that will give the right transformation
of the image. Because we do not know what
the function is, we search for coefficients in
the lower-order terms that would make up the
unknown function. For more information on
techniques for estimating the parameters, see
Frackowiak (1997).

Random Effects

One approach to analyzing multisubject data
is to normalize all images from all subjects
and concatenate them into the design matrix,
while including additional regressors for each
subject. The result is a massive analysis in-
cluding all trials from all subjects, which is
quite expensive from a computational point
of view. This is referred to as a fixed-effects
analysis. Such an analysis would answer the
question: If we repeat this experiment many
times on the same subjects, what is the like-
lihood that we will get the same significant
voxels?

If, on the other hand, one is interested in
making a statistical inference about the popu-
lation from which those subjects were taken,
one would need first to analyze each subject
separately, then look for commonalities across
the statistical maps obtained in this first level
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of analysis. It has been shown that one can
make statistical inferences across subjects by
simple statistical tests performed on the sta-
tistical parameter maps (Friston et al., 1999;
Holmes and Friston, 1998). The tests (usu-
ally ¢ tests) can be carried out on the maps
of B estimates calculated in the general linear
model to search for those voxels that give the
same magnitude of response to the condition.
Those tests can also be carried out across the
T-statistic maps obtained from the analysis of
individual subjects, in order to search for vox-
els with the same level of significance.

Thus, one can perform a multisubject anal-
ysis in two stages: first, the estimation of pa-
rameters at the individual-subject level, and
then another test of the individuals’ statisti-
cal maps across subjects to see which voxels
show the same level of activation across sub-
jects. In doing this, one assumes that (a) the
images have been spatially normalized such
that the tests are conducted on correspond-
ing structures from subject to subject, (b) the
global intensity of the images has been scaled
to a common level, and (c) all brains have
similar BOLD responses to the same activity.
These assumptions are not always met per-
fectly, and they introduce some errors into
across-subjects analyses.

Other Approaches: Principal Components
and Independent Components Analysis

An analysis based on the general linear model
allows researchers to identify the voxels
whose brain activity matches their model, but
it does not reveal any additional informa-
tion about the activations. Additionally, in the
presence of unknown or nonlinear confounds,
analyses based on the general linear model are
not effective in removing the variance due to
those confounds. A few methods based on the
temporal signal have been designed to identify
the major task-related patterns of activation in
the brain without any a priori knowledge of the
stimulation paradigm. Principal components
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analysis and independent components analy-
sis are among these.

Principal components analysis calculates
spatial patterns that account for the greatest
amount of variability in a time series of im-
ages. This is done by obtaining the eigen-
vectors of a matrix containing the covariance
among all voxels of the time series images.
The eigenvectors, X, of a matrix, A, are those
that satisfy the condition

AX = Xx

where A is a scalar value called the eigenvalue.
Eigenvectors of a matrix are useful because
they provide a set of basis functions for the
original matrix.

There are a number of techniques for cal-
culating the eigenvectors of an image. In neu-
roimaging, the eigenvectors are usually cal-
culated through single value decomposition
(SVD) of a covariance matrix. The result of
SVD of a matrix is a set of three matrices
whose columns are orthogonal vectors, U, S,
and V. In the framework of neuroimaging, U
is interpreted as the temporal patterns present
in the time series, V as the spatial patterns of
covariant voxels, and S is a diagonal matrix
whose elements are a measure of how much
variance is accounted for by a particular spa-
tial pattern. The columns of the matrix V can
be shown to be the eigenvectors of the orig-
inal data matrix. For details on eigenvectors,
eigenvalues, and SVD, see a linear algebra
text such as Strang (1988).

Independent components analysis is akin
to principal components analysis in that the
independent components algorithm also pro-
duces a set of components of the signal. How-
ever, in independent components analysis,
there is an additional constraint that the com-
ponents be statistically independent, and not
necessarily orthogonal. Orthogonality, which
characterizes principal components analysis,
implies that the voxel values are uncorrelated
between all pairs of components. Statistical

independence, which characterizes indepen-
dent components analysis, implies that the
joint probability of all the components is the
same as the product of the individual proba-
bilities, and that higher-order correlations be-
tween the components are also zero. Thus,
independent components analysis involves a
different criterion (McKewon et al., 1998a).
The algorithm for extracting the independent
components is an iterative procedure based on
information theory and is beyond the scope of
this chapter; suffice it to say that the algorithm
searches for a solution that will maximize the
entropy (or minimize the mutual information)
between the components. For more details,
see McKewon et al. (1998a, 1998b), Bell and
Sejnowski (1995), and Petersson et al. (1999).

SUMMARY

We have completed our tour of the why, the
what, and the how of neuroimaging. There
are many reasons one might delve into neu-
roimaging, both for an understanding of brain
mechanisms and for an understanding of psy-
chological mechanisms. Having recognized
this, cognitive neuroscientists have developed
a number of techniques that allow one to im-
plement neuroimaging techniques in exper-
imental contexts of interest to psychology.
Understanding the physics of how these tech-
niques work is crucial to understanding what
they offer and what constrains them. Equally
important is understanding how experiments
are designed to maximize their inference-
making power as well as what analysis meth-
ods are available. Having surveyed these
issues, we have proffered a tour of the high-
lights. The interested student of cognitive
neuroscience will benefit from deeper anal-
yses of all the topics we have surveyed,
which are available from several sources.
Other excellent introductory papers include
those by Frith and Friston (1997), Aguirre



and D’Esposito (1999), and Buckner and
Braver (1999). Some useful texts include El-
ster (1994) for a clear explanation of mag-
netic resonance imaging principles, Strang’s
(1988) linear algebra text, and Frackowiak
et al.’s (1997) Human Brain Function. There
is also a vast amount of information on
functional imaging on the Internet, at sites
such as the Cambridge University’s
(http://www.mrc-cbu.cam.ac.uk/Imaging/) or
the FIL’s (Functional Imaging Laboratory)
(http://www.fil.ion.ucl.ac.uk/spm/)  among
many others.
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CHAPTER 6

Neural Network Modeling

DANIEL S. LEVINE

WHAT IS NEURAL NETWORK
MODELING?

The use of neural networks studied through
computer simulations or mathematical theo-
rems in modeling psychological data dates
back to the late 1960s and early 1970s. Yet
it took until the late 1980s for this method-
ology to become widely accepted by experi-
mental psychologists. The reasons for the ac-
ceptance were mainly the greater availability
of powerful personal computers and the wide
distribution of a few influential multidisci-
plinary publications in cognitive science, no-
tably the two-volume collection by Rumelhart
and McClelland (1986).

Of all the neural network methods, the
three-layer ~ back-propagation  technique
(Rumelhart, Hinton, & Williams, 1986;
Werbos, 1974, 1993; also sometimes called
the multilayer perceptron) has been the most
widely used—in psychological modeling as
well as in engineering applications—because
of the method’s relative simplicity and univer-
sality. In fact, I have often heard psychologists
and other researchers say the words “neural
network” when they mean a back-propagation
network. There are even commentaries with
titles such as “Are neural networks like the
brain?” which is absurd because the brain is
of course a network of neurons and neural
structures!

A better question is “What neural networks
are like the brain?” Back-propagation net-
works have a very specific structure: feedfor-
ward and reliance on an external “teacher”
to set their weights, with feedback in the
form of weight transport between synapses.
There is debate over whether structures of
this sort exist in the brain at all (see Levine,
2000, Section 6.2, for a partial discussion),
but it is certain that they are hardly repre-
sentative of actual brain networks. Feedback,
at the level of neurons and not of synapses,
is the norm for connections between differ-
ent brain regions.! Furthermore, the tight su-
pervision of back-propagation learning, the
constraints that move it in the direction of
specific input-output responses, are unchar-
acteristic of learning as it takes place in the
brain. Thus, the field of neural networks en-
compasses much more than that one type of
network structure.

If the neural networks used in models are
not necessarily back-propagation networks,
what do they have in common? They consist of

ISome neuroscientists follow Edelman (1987) in replac-
ing the term “feedback” by “reentry.” This is because his
definition of “feedback” is a narrow one based on engi-
neering control structures. I do not mean feedback in that
sense, but simply in the sense of reciprocal connections,
such as the cortex sending out axons that synapse on the
thalamus and the thalamus sending out axons that synapse
on the cortex.
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nodes, which may or may not be interpreted as
single neurons, but have activities that are ide-
alized action potential frequencies. The con-
nections between nodes have weights that are
idealized synaptic strengths. The ultimate aim
is to make these networks as biologically real-
istic as possible. Sometimes nodes correspond
to brain areas or specific cell types in those
brain areas. At other times, when not enough
is known about brain processes or when one
desires modeling at a functional level, nodes
correspond to cognitive entities such as the
memory of a specific word, the tendency to
approach a specific object, or the intensity of
a specific drive or emotion.

Neural networks are also, of course, used
by computer scientists and engineers for “in-
telligent” applications (pattern recognition,
signal processing, robotics, medical and fi-
nancial data analysis, etc.). The diverse range
of researchers who study them have not agreed
on one definition for the concept. The clos-
est to a widely recognized definition is proba-
bly the following from the 1988 Defense Ad-
vanced Research Projects Agency (DARPA)
study:

A neural network is a system composed of many
simple processing elements operating in paral-
lel whose function is determined by network
structure, connection strengths, and the pro-
cessing performed at computing elements or
nodes. . .. Neural network architectures are in-
spired by the architecture of biological nervous
systems. (p. 60)

More recently, the notion that biological neu-
rons are ‘“simple processing elements” has
been challenged as researchers have discov-
ered the complexity of subthreshold elec-
trical interactions among the thousands of
dendrites of a single neuron and of biochemi-
cal interactions among transmitters and recep-
tors involving various messenger compounds
(see, e.g., Aparicio & Levine, 1994; Pribram,
1993). Neural networks encompass neurons

with realistic dendritic interactions as well as
those with formal, simpler neurons.

As neural networks have evolved, two
trends have emerged. The first trend is that
more detail about simulated brain areas has
appeared in network models. This means that
as more behaviorally relevant biological data
has been available, due to such advances as
positron-emission tomography and magnetic
resonance imaging, different schools of neu-
ral network modeling (such as back propaga-
tion and adaptive resonance) have converged
somewhat. The modeling architectures of ma-
jor neural network research groups are in-
creasingly driven as much by the data as by
their own characteristic network structures.

The second trend is that models have cov-
ered an expanded range of psychological data.
In the 1970s network modeling was most
advanced in the area of visual perception,
and second most advanced in serial learning
and short-term memory. The early and mid-
dle 1980s saw the growth of models of ani-
mal learning and conditioning data. The late
1980s and early 1990s, buoyed by the inter-
disciplinary cognitive science revolution, saw
early models of high-level cognition, includ-
ing language acquisition, and its breakdown
in various mental disorders. All these areas
are still active, and now a few models have ap-
peared in social psychology. By now, although
there is little agreement on the “right” model
for any of these phenomena, the network tools
available, as well as the knowledge of cog-
nitive neuroscience, are sophisticated enough
that all areas of psychology—cognitive, be-
havioral, physiological, social, developmen-
tal, and clinical—are amenable to neural net-
work modeling.

The next section gives a historical overview
of major trends in psychologically relevant
neural network modeling over about 50 years.
It ends with a short description of the mathe-
matical processes of building one simple net-
work model. The succeeding sections discuss



current modeling trends, organized into spe-
cific (interacting yet partially dissociable) ar-
eas of application: sensory processes, motor
control, cognitive-emotional interactions, and
high-level cognition. The goal is to describe
the modeling process by communicating the
intuitive flavor of networks used to model
different phenomena. A concluding section
discusses possible future trends and provides
suggestions for experimental psychologists
interested in learning more about neural net-
works.

HISTORY OF NEURAL NETWORK
MODELING

The Cybernetic Revolution

The history herein is partly adapted from more
technical accounts in Levine (1983, Sections
1-4; 2000, chap. 2). It begins with the work
of McCulloch and Pitts (1943), which was
also connected with the early development of
digital computers. Perceived similarities be-
tween computers and brains spurred an inter-
disciplinary group to develop a new science
they called cybernetics, the science of con-
trol systems (Wiener, 1948). The computer-
brain analogy was based on the fact that neu-
rons are all-or-none, either firing or not firing,
just as binary switches in a digital computer
are either on or off. All-or-none neurons are
oversimplified because graded electrical po-
tentials in neurons are important, not just ac-
tion potentials. Also, functional units in cur-
rent neural network models tend to be neuron
populations rather than single neurons. Nev-
ertheless, current approaches still owe many
of their formulations to cybernetic pioneers
from the 1940s.

McCulloch and Pitts (1943) demonstrated
that a neuron can be embedded into a network
of all-or-none neurons so as to fire selectively
in response to any given pattern of network ac-
tivity representing a class of stimuli impinging
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on the network. McCulloch-Pitts networks in-
clude abstract neurons” connected by excita-
tion and inhibition with computations done in
discrete time intervals. Each neuron obeys a
simple linear threshold law: It fires whenever
at least a given (threshold) number of exci-
tatory pathways, and no inhibitory pathways,
impinging on it are active from the previous
time. The connections do not change with ex-
perience; thus the network deals with perfor-
mance but not with learning.

Despite its simplifications, the McCulloch-
Pitts (1943) model presages important is-
sues in current models. For example, many
McCulloch-Pitts networks have neurons anal-
ogous to the three types of nodes in back prop-
agation networks: input units, output units,
and hidden units. Input units react to data fea-
tures from the environment, whereas output
units generate organismic responses. Hidden
units, via network connections, influence out-
put units to respond to prescribed patterns of
input-unit activities. These three classes are
analogous to sensory neurons, motor neurons,
and all other neurons (interneurons) in the
brain. The output, however, may not be a mo-
tor output but an internal state (e.g., a catego-
rization or an emotion) that could influence a
present or future motor response.

Also, McCulloch and Pitts (1943) dealt
with how to create output-unit responses to
given inputs that depend on previous inputs.
For example, one of their networks modeled
a sensation of heat obtained from holding a
cold object to the skin and then removing
it. Hence, this network responds to the dif-
ference between a present input and a previ-
ous one. Response to change has been used
in neural network models of conditioning

2In most neural network models, network elements are
called “nodes” or “units” rather than “cells” or “neurons,”
because they might represent more or less than a single
neuron. In the McCulloch-Pitts (1943) network, however,
the term “neurons” is used because the network is inspired
by the all-or-none firing properties of neurons.
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data (Grossberg, 1972a, 1972b; Grossberg &
Schmajuk, 1987; Klopf, 1988). These data
include results showing that a motor act is re-
inforced when it turns off an unpleasant stim-
ulus (relief); that withholding an expected
reward is unpleasant (frustration); and that the
reward value of food is enhanced if the food
is unexpected (partial reinforcement).
McCulloch and Pitts (1943) encoded mem-
ory by reverberatory neural circuits. Other in-
vestigators, starting with Hebb (1949), added
the distinction between short-term memory
(STM), due to reverberation, and long-term
memory (LTM), due to changes at synapses.

Modeling Learning

Hull (1943) proposed that the two memory
processes involved the storage of two sets
of traces, as in classical conditioning exper-
iments. He distinguished between stimulus
traces subject to rapid decay and associa-
tive strengths (habit strengths) able to persist
longer. Although Hull’s model did not include
neural connections, his stimulus traces can be
considered as the amounts of activity of par-
ticular nodes in a neural network, and his asso-
ciative strengths are the strengths of connec-
tions between nodes. This suggests that such
connection strengths should change with ex-
perience.

Hebb (1949) declared that reverberatory
feedback loops, which McCulloch and Pitts
(1943) had suggested as a memory mecha-
nism, could be a useful mechanism for STM
but not for LTM, because they would be too
sensitive to external interruptions. He recog-
nized that a stable LTM depended on some
structural change. His hypothesis was, “When
the axon of cell A is near enough to excite a
cell B and repeatedly or persistently takes part
in firing it, some growth process or metabolic
change takes place in one or both cells such
that A’s efficiency, as one of the cells firing B,
isincreased” (p. 62). Later investigators inter-

preted Hebb’s rule mathematically in various
ways, most often that the strength of a connec-
tion between two nodes changed by an amount
proportional to the product of the activities of
those two nodes.

Hebb’s (1949) rule for learning was
incorporated into networks of all-or-none
McCulloch-Pitts (1943) neurons by many
early modelers, particularly Rosenblatt
(1962) in the perceptron. In this network, the
McCulloch-Pitts linear threshold law was
generalized to laws whereby activities of all
pathways impinging on a neuron are com-
puted, and the neuron fires whenever some
weighted sum of those activities is above a
given threshold.

Rosenblatt’s (1962) work anticipated many
themes of modern adaptive networks such
as those of the parallel distributed process-
ing (PDP) research group (cf. Rumelhart &
McClelland, 1986); in fact, the latter type of
network is often called multilayer percep-
trons. The main function he proposed for his
perceptrons was to make and learn choices
between different patterns of sensory stim-
uli. Rosenblatt set out to study the pattern-
classification capabilities of networks of
sensory (S), associative (A), and response
units (R) with various connection structures—
mostly feedforward but some including feed-
back from R to A units—and various learn-
ing rules, which he called the reinforcement
system.

Rosenblatt (1962) found that the percep-
trons that learned fastest were those using
an error-correcting reinforcement system,
whereby the connection strength changes up-
ward or downward if the response is de-
termined elsewhere to be incorrect. Rein-
forcement rules of the error-correcting type
were concurrently developed by Widrow and
Hoff (1960) and are still used widely (e.g.,
Abdi, Valentin, & O’Toole, 1997; Anderson
& Murphy, 1986; J. D. Cohen & Servan-
Schreiber, 1992).



In one of Rosenblatt’s (1962) experiments,
the S units are arranged in a rectangular grid.
Connections from S units to A units are ran-
dom, whereas all A units connect to the single
R unit. The perceptron was taught to discrimi-
nate vertical from horizontal bars. Rosenblatt
found that if all possible vertical and horizon-
tal bars are presented to the perceptron, and
the perceptron is reinforced positively for re-
sponding to the vertical bars and negatively
for responding to the horizontal,? eventually
the network gives the desired response reli-
ably to each one. However, if only some ver-
tical and horizontal bars are presented and re-
inforced, the perceptron cannot generalize its
behavior to other bars that have not been pre-
sented. In models of visual pattern discrim-
ination, issues such as translation invariance
(ability to recognize a given pattern regard-
less of where it is in the visual field) remain
difficult. This property is exhibited by the
Neocognitron of Fukushima (1980) and the
What-and-Where filter inspired by visual cor-
tex architecture (Carpenter, Grossberg, &
Lesher, 1998).

Because these were computational experi-
ments that did not include much brain struc-
ture, they attracted researchers (the term
“computer scientist” was not yet widely
used) who were interested in building ma-
chines with “intelligent” functions, regardless
of whether the mechanisms for those func-
tions were similar to brain mechanisms. This
was the birth of the field now known as arti-
ficial intelligence. In particular, Minsky and
Papert (1969) studied mathematically a class
of abstract perceptrons that were inspired by
Rosenblatt’s previous work, with parts that
corresponded loosely to sensory, associative,
and response areas. Minsky and Papert proved
that their abstract perceptrons can learn any

3Rosenblatt (1962) used the term “negative reinforce-
ment” to mean what psychologists now call “punish-
ment.”
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classification of patterns, but that the percep-
trons needed to make some geometrically im-
portant classifications had to get arbitrarily
large as the pattern size increased. Theorems
of this sort were widely interpreted as dis-
crediting perceptron-like devices as learning
machines, even though some of the visual dis-
criminations that are difficult for perceptrons
are also difficult for humans.

The discrediting of perceptrons was re-
lated to the growth of mainstream artificial
intelligence and its emphasis on design of de-
vices based on heuristic computer programs
and not involving networks and connections
at all. This type of work is still very active,
but around the mid-1980s heuristic programs
were found inadequate for many program-
ming problems involving imprecise data (e.g.,
signal processing and face recognition). This
led to arebirth of interest among computer sci-
entists in brain-like networks, a development
known as connectionism.

As part of the connectionist revival, the
PDP research group’s models, which orig-
inated about 1981 and are summarized in
Rumelhart and McClelland (1986), recap-
tured some threads from Rosenblatt’s work.
They showed that some distinctions difficult
for Minsky and Papert’s perceptrons can be
made by perceptrons with additional hidden
unit layers and nonlinear functions represent-
ing intelayer transmission. I return to the PDP
models later, after reviewing the controversy
over discrete (digital) versus continuous (ana-
log) models.

Continuous and Nonlinear Dynamics

While the cybernetic revolution was stimu-
lating discrete (digital) models of intelligent
behavior, a concurrent proliferation of re-
sults from both neurophysiology and psychol-
ogy stimulated the development of continuous
(analog) neural models. In most applications
of mathematics to physical phenomena,
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including the biophysics of current flow in
single neurons, there are variables that are not
all-or-none but may take on any of a range
of values. Hence, such processes are typically
modeled using differential equations, which
are equations describing continuous changes
over time in an interacting collection of vari-
ables (cf. Levine, 2000, Appendix 2). For this
reason, Rashevsky (1960) used differential
equations to model perceptual data such as
relations of reaction times to stimulus inten-
sities and just noticeable differences among
intensities. It was difficult to reconcile this
approach with the all-or-none McCulloch-
Pitts (1943) framework. This paradox was re-
solved with the observation that behavioral
data reflect the combined activity of large
numbers of neurons. Hence “the discontin-
uous laws of interaction of individual neu-
rons lead to a sort of average continuous
effect which is described by ... differential
equations” (Rashevsky, 1960, p. 3).
Rashevsky’s reconciliation between con-
tinuous and discrete models is still in common
use. The description in terms of average activ-
ity is in line with modeling based on nodes that
may represent large numbers of neurons. This
idea dates back to Hebb (1949), who proposed
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that percepts or concepts are coded by groups
of neurons called cell assemblies. Researchers
have yet to define precisely the boundaries of
cell assemblies in actual mammalian brains.
Edelman (1987) speculated that groups on the
order of several thousand neurons in size en-
code significant stimulus categories. Burnod
(1988) stressed the functional importance of
cell columns in the cerebral cortex. Other
theorists speculated that concepts or percepts
could be coded by synchronized electrical ac-
tivity of large distributed groups of neurons
(see, e.g., Gray & Singer, 1989).

Neural models often average random
single-neuron effects across the functional
groups of neurons that constitute network
nodes, making the interactions between nodes
deterministic. In addition, many models aver-
age random effects over short time intervals
so that the node activity variable is interpreted
as representing a firing frequency rather than a
voltage. Rashevsky assumed that the average
frequency of impulses transmitted by a neuron
is a linear function of the cell’s suprathreshold
activity (see Figure 6.1a), a useful assump-
tion for some neural models of sensory trans-
duction (e.g., Hartline & Ratliff, 1957). Yet
averaging can also lead to nonlinear, notably
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Figure 6.1 Schematic of linear (a) and sigmoid (b) functions of suprathreshold activity.



sigmoid, functions (Figure 6.1b). If the firing
threshold of an all-or-none neuron is a random
variable with a normal distribution, the mean
value of its output signal is a sigmoid function
of activity. For this reason, and because they
have been observed in real neurons (Kernell,
1965), sigmoids are popular in neural mod-
els (e.g., Grossberg, 1973; Rumelhart et al.,
1986).

Some data have indicated that brain con-
nections may be random within certain neural
populations and specific between these popu-
lations. Lashley (1929) showed that memories
for specific events are retained after extensive
brain lesions, inspiring the idea that represen-
tations of events are distributed throughout the
brain rather than localized. Other experiments
showed, however, that specific connections
are important for other functions. Mountcastle
(1957) found that the somatosensory cortex
includes a well-organized topographic encod-
ing of the body. Hubel and Wiesel (1962,
1965) found that cells in the visual cortex are
organized into columns that code specific reti-
nal positions or line orientations.* The para-
dox between the Lashley data and the Hubel-
Wiesel or Mountcastle data is resolved by
means of a principle of “randomness in the
small and structure in the large” (Anninos,
Beek, Csermely, Harth, & Pertile, 1970, p.
121). This principle is implicit in the bulk
of commonly used neural network models
of psychological phenomena. Most of these
models use purely deterministic equations at
the level of nodes (interpreted as neuron pop-
ulations) that could be interpreted as the av-
eraging over large ensembles of probabilistic
effects at the single-cell level.

Now we turn to the history of classes of
models that are in common use today, such as

Mt is important to note, however, that visual and so-
matosensory maps are modifiable; the somatosensory
maps, at least, can be altered even in adult life (see
Edelman, 1987, for a summary).
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back-propagation, autoassociative, and adap-
tive resonance models.

Perceptrons and Back Propagation

The descent of the three-layer back-
propagation network from Rosenblatt’s (1962)
perceptrons has been noted. Like the origi-
nal perceptrons, back-propagation networks
have typically been used for supervised learn-
ing, that is, teaching a network to perform
a desired response to specific stimuli by ad-
justment of its connection weights via error-
correcting “reinforcement” procedures. This
has been applied extensively both in psychol-
ogy, to cause a network to behave in accor-
dance with some set of data, and in engi-
neering, to make a device learn a particular
function.

The back-propagation algorithm was de-
veloped by Werbos (1974, 1993) as a pro-
cedure for optimizing the predictive ability
of mathematical models and was placed in
a widely studied connectionist framework by
Rumelhart et al. (1986). It is often applied to
discrimination or classification of sensory in-
put patterns. The network is feedforward with
three layers, composed of input units, hidden
units, and output units (Figure 6.2; see also the
second section of this chapter). A particular
pattern of output responses to particular input
patterns is desired. If the actual response to
the current input deviates from the desired re-
sponse, the weights of connections from hid-
den to output units are changed. Then those
weight changes propagate backward to cause
changes in weights from input to hidden units
that will reduce future error. The hidden units
thereby come to encode specific patterns of
input activities.

In the back-propagation algorithm, an ex-
pression is found for the total network er-
ror (based on the desired response), and the
weight changes that cause the sharpest possi-
ble decrease in error are computed. The rate
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Figure 6.2 Generic three-layer back-propagation network. Error signals from output nodes propagate
backward from hidden-to-output weights to input-to-hidden weights. In the process, hidden units learn
to encode certain input pattern classes. Semicircles represent modifiable synapses.

SOURCE: Adapted from Rumelhart et al. (1986), with permission of MIT Press.

of error correction (at both hidden-to-output
and input-to-hidden synapses) is proportional
to the derivative (rate of change) of a sigmoid
function of presynaptic node activity. Because
this rate of change is fastest over the middle
range of the sigmoid, this means heuristically
that weights are changed fastest from nodes
that have not “made up their minds” to be ac-
tive or inactive (Terence Sejnowski, personal
communication, April 1987). This scheme al-
lows for credit assignment, that is, deciding
which connections at an earlier level in the
network to alter if the responses of later stages
are inappropriate (see also Barto & Anandan,
1985).

Back-propagation networks essentially can
learn arbitrary nonlinear input-output rela-
tionships. Instead of converging to the desired
response, however, the system sometimes gets
trapped in a response that is not desired. Also,
the network varies enormously in how many
steps it requires to converge to the response

it is supposed to learn. The convergence rate
depends on the number of hidden units, and
that number must be decided separately for
each application.

Back propagation is widely considered bi-
ologically unrealistic because it uses feed-
back of synaptic weights, not of neuronal
signals, and no brain mechanism for weight
transport is known. Nonetheless, several re-
searchers have noted the utility of such an
error-correcting mechanism® and have sug-
gested possible neuronal bases for it. These
have included (a) backward flows in micro-
tubules, a part of the structural support system
of neurons and all other living cells (Dayhoff,
Hameroff, Swenberg, & Lahoz-Beltra, 1993);
(b) neurons responsive to combined activ-
ities of other neurons (Levine, 1996); and

SThere are many other error-correcting mechanisms used
in neural network models of motor control that do not
employ back propagation (see Section 4).



(c) backward-flowing signals at some sy-
napses or dendritic trees (Stuart, Spruston,
Sakmann, & Hauser, 1997). Later back-
propagation networks added recurrent (feed-
back) connections, which are useful for
modeling sequence learning and make the
networks somewhat more brain-like (Elman,
1990; Hinton, 1993; Jordan, 1986).

Autoassociation and Heteroassociation

A set of fairly abstract models representing as-
pects of associative learning and memory was
developed in the late 1960s and early 1970s in-
dependently by two groups, one led by James
Anderson and the other by Teuvo Kohonen.
This work is still finding applications in rec-
ognizing and classifying patterns and also in
modeling memory storage areas of the brain,
such as the hippocampus.

Anderson (1968, 1970, 1972) described a
memory trace as a vector or array of num-
bers, each of whose components is the activ-
ity of a single network node. Anderson’s em-
phasis was on developing a simple model that
would capture some basic properties of mem-
ory, such as recognition, retrieval, and associ-
ation, without resorting to much physiologi-
cal detail. Association was related to a theory
of synaptic connection weights in Anderson
(1972). In these articles, Anderson proposed
a model for association that involved two sets
of nodes, each encoding a stimulus pattern.
Anderson found mathematically that the op-
timal set of weights for associating these pat-
terns was one based on the Hebb (1949) rule
for connection weights, in which activities
of presynaptic and postsynaptic nodes were
multiplied.

If the association is between two distinct
patterns, such as occurs in classical condition-
ing, it is called heteroassociative. If it is be-
tween a pattern and itself (i.e., recovering a
pattern from a slight distortion of it or all of a
pattern from part of it), it is called autoasso-
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ciative. Those two terms come from Kohonen
(1977). As Kohonenetal. (1977, p. 1065) said,
“Consequently, for instance, both the recall of
a visual image from its fraction, and a paired
association in the classical conditioning, can
be regarded as different aspects in the func-
tioning of the associative memory.”

In one version of the autoassociative
model, a mathematical transformation (ma-
trix) encoding connection weights is repeat-
edly applied to a stimulus pattern, and then
boundaries are imposed on node activities.
Anderson, Silverstein, Ritz, and Jones (1977)
and Anderson and Murphy (1986) called this
brain state in a box (BSB) and applied it to
pattern categorization, with the repeated ap-
plication of this transformation leading ulti-
mately to what is interpreted as a category pro-
totype. Other autoassociative networks, with
selective attention added, have been applied
to categorization of faces, such as by gender
(Abdi et al., 1997). Finally, autoassociative
networks have been used to model the mem-
ory processes of the hippocampus (e.g., Levy,
1996).

The heteroassociative version of the model
is somewhat similar to other models that are
more biologically inspired, such as the early
work of Grossberg and his colleagues, to be
discussed next.

Biologically Inspired Models
and Modeling Principles

In the late 1960s several modelers began to
develop principles for fitting biologically rel-
evant neural network architectures to specific
cognitive and behavioral functions. This led to
models requiring partial verification on both
the physiological and the behavioral levels,
and to a toolkit of modeling techniques and
modules that is still in wide use.

The work of Grossberg and his group is
particularly important for this development.
Grossberg’s first major architecture was the
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outstar, developed to model associative learn-
ing of a pattern along lines suggested by Hull
(1943) and Hebb (1949). Grossberg (1969)
posed the question of how an organism learns
to produce one sound (say B) in response
to another (say A) after repeatedly hearing
them in sequence. He devised a network to
do this using differential equations. The vari-
ables defining these equations were based on
Hull’s notions of stimulus trace and associa-
tive strength. For each stimulus A, the stimulus
trace x4 () measures how active the memory
for A is at any given time ¢. For each pair
of stimuli A and B, the associational strength
wap(t) measures how strong the sequential
association AB is in the network’s memory at
time ¢.

Table 6.1 summarizes the effects
Grossberg incorporated into his equations. B
should be produced if, and only if, A has been
presented and AB is strong in memory. AB
should become stronger if A is presented and
followed by B. Replacing A and B by the ith
and jth stimuli in general, the variable x;
should increase if both x; and w;; are high.
Likewise, w;; should increase if both x; and
x; are high.

In the outstar (Figure 6.3) one node, called
a source, projects to other nodes, called sinks.
Long-term storage is interpreted as resid-
ing in the proportions between the weights

Table 6.1 Effects Incorporated into Grossberg’s
Differential Equations

A is presented AB has been learned B is expected

Yes Yes Yes

Yes No No

No Yes No

No No No

A is presented B is presented AB is learned
at a given time a short time later

Yes Yes Yes

Yes No No

No Yes No

No No No

Win

Xp—1 Q D X

Win—1

GO)%

W3

O O

Figure 6.3 Outstar architecture.
SOURCE: Adapted from Mathematical Biosciences,
66, D. S. Levine, Neural population modeling and
psychology: A review, 1-86, Copyright 1983, with
permission from Elsevier Science.

Wi2, ..., Wi, of source-to-sink connections.
The outstar is affected by an input to the source
node x;, and a pattern (vector) of inputs to the
sink nodes x», . .., x,. (Grossberg sometimes
interpreted the source input as a conditioned
stimulus, or CS, and the sink inputs as an un-
conditioned stimulus, or US.) The activity of
x; tends to increase if its input is present and
to decay toward a baseline otherwise. The ac-
tivity of each x; increases if both x; and wy;
(associative strength between x; and x;) are
significant, and wy; increases if x| and x; are
significant. The next section describes the re-
sulting equations.

Stimulus traces are analogous to STM, and
associative strengths are analogous to LTM.
The decay rate for LTM traces is set much
smaller than the decay rates for STM traces.
If the inputs to the sink nodes form what
Grossberg (1974) called a spatial pattern,
that is, where the relative proportions of
inputs to the different sink nodes are un-
changed over time (Figure 6.4), the input pat-
tern weights were shown to be stored in LTM
at the relative associative weights from source
to sink.
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Figure 6.4 Example of a spatial pattern input,
in which inputs may change over time but always
remain in the same proportions.

SOURCE: Adapted from Levine (2000), with the
permission of Lawrence Erlbaum Associates.

Concurrently, STM models were devel-
oped by Grossberg (1973), Wilson and Cowan
(1973), Amari (1971), and others. These mod-
els were mathematical representations of the
concept of reverberatory storage previously
considered by McCulloch, Pitts, and Hebb.
Yet what was stored in STM was not a faith-
ful representation of the original input pattern,
but a pattern transformed by means of lateral
interactions, such as the lateral inhibition that
Hartline and Ratliff (1957) found to be impor-
tant in vision.

These STM models ultimately led to many
models of sensory pattern processing, partic-
ularly of the preattentive stages of vision (see
the third section of this chapter). The models
reproduced a range of data in visual illusions
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and in the interaction of different visual fea-
tures such as form, color, depth, and lightness.
They also dealt with abstract theories about
the large-time behavior of dynamical systems
and their approach to attractors (M. A. Cohen
& Grossberg, 1983; Hopfield, 1982).

Associative learning and lateral inhibition
are two major organizing principles in the
toolkit for making models of more complex
cognitive phenomena. Some of the other prin-
ciples are shown in Table 6.2. An example
of a network that combines several princi-
ples is the adaptive resonance network for
categorization, originated in Carpenter and
Grossberg (1987) with many later variations.
Adaptive resonance networks have two lay-
ers of nodes that code individual features and
categories, with bidirectional connections and
outstar-like associative learning in both di-
rections, and lateral inhibition between com-
peting categories. Combining categorization
with other effects (e.g., selective attention and
reinforcement learning) uses still more com-
plex combinations of principles.

Principles such as those shown in Table 6.2
reflect general neural operations that are likely
to occur, with variations, in different parts
of the brain (e.g., there can be lateral in-
hibition between representations of different
retinal locations, different categories, differ-
ent emotions, different action plans, or dif-
ferent movements). Since the mid-1990s, net-
work architectures have combined general
toolkit principles with more direct physio-
logical knowledge about specific brain areas
and specific modulatory transmitter systems.
Some of these will appear in later sections of

Table 6.2 Summary of Some Important Principles in Neural Network Organization

Associative learning, to enable strengthening or weakening of connections by contiguity or probable causality.
Lateral inhibition, to enable choices between competing percepts, drives, categorizations, plans, or behaviors.
Opponent processing, to enable selective enhancement of events that change over time.

Neuromodulation, to enable contextual refinement of attention.

Interlevel resonant feedback, to enable reality testing of tentative classifications.

SOURCE: Adapted from Hestenes (1992), with the permission of Lawrence Erlbaum Associates.
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this chapter under the psychological functions
they are designed to simulate.

Some Examples of Neural
Network Methodology

There is such a diversity of neural network
methods that it would be incorrect to label
anything as a generic neural network. But let
me illustrate the process of model making by
showing how equations have been developed
and solved for the outstar network of Fig-
ure 6.3, one of the simplest networks that em-
bodies a key principle (associative learning)
and is a building block for psychologically
interesting networks.

Like most models described by Grossberg
and his colleagues, the outstar is based on
differential equations. Differential equations
represent rates of change of interacting vari-
ables in continuous time, and it is possible to
understand them and solve them computation-
ally without having taken a standard course in
differential equation theory. Such equations
say that the rate of change of each node ac-
tivity or connection weight is some (possibly
time-dependent) function of that activity or
weight and all the other activities or weights.
This means that a differential equation can be
thought of as a continuous-time update rule.

Let us represent the activity of the outstar
source node (at the center of Figure 6.3) by
x1, and the activities of the other nodes, called
sinks, by x2, x3, . .., x,, called sinks. (The el-
lipsis after x3 are a generally accepted nota-
tion for an indeterminate number of values
or variables that fit into a general form.) Let
us call the connection weights between the
source node and each of the sink nodes by
Wo, W3, ..., Wy.

The source node activity x; is affected
positively by the source node input I; and
negatively by decay back to a baseline rate
(interpreted as 0). The notation for the rate of
change (derivative) of x; as a function of time

is dx;/dt. This leads to a differential equation
of the form
dx 1

— =—ax1+ 1

R (1a)

where a is a positive constant (the decay rate).
The sink node activities x;, i
obey an equation similar to (la) with the ad-
dition of an effect of the source node ac-
tivity weighted by source-to-sink connection
strength. Hence

dx,-
dt

= 2,...,n

= —ax; +bxyw; +1I;, i=2,...,n

(1b)

where b is another positive constant (cou-
pling coefficient). The source-to-sink synap-
tic weights, or LTM traces w;, in one version
of the theory, decay only when x; is active;
this represents what happens in conditioning
when a CS is presented and not followed by
a US. This decay is counteracted by US (i.e.,
x;) activity. Thus

dW,’
dt

=xi(—cw; +ex;)), i=2,...,n
(o)

where c and e are still other positive constants
(c typically smaller than a, representing the
slow decay of LTM as compared to STM).
How does one solve a system of differen-
tial equations such as (1a), (1b), and (1c) on
a computer? There are many software pack-
ages for solving differential equations, some
of them attached to high-level languages such
as Mathematica and MATLAB. One needs to
write a routine that specifies the right-hand
sides of the differential equations and then
feed that into the differential equation solver,
usually called an ordinary differential equa-
tion (ODE) solver. Or with relatively simple
equations such as these, one obtains a good ap-
proximation by taking very small time steps,
of size .1 or less, multiplying the time steps
by the right-hand sides, and then adding to the
current value of the variable whose derivative



is being calculated to get the value of the same
variable at the next time step. For example, if
the time step is .1, the equation (1a) for the
source node activity x;, can be approximated
by an updating rule of the form

xq(attimet + 1)
= xy(attimet) + .1(—ax; (at timet)
+ I;(at time ?)).

The high-level languages also typically in-
clude packages for graphing the resulting vari-

ables as functions of time. Exact closed-form
mathematical solutions, such as are tradi-
tionally emphasized in differential equations
classes, are not necessary; in fact, closed-form
solutions are almost never obtainable in neu-
ral network equations.

Another fairly simple set of equations I
have used in introductory graduate courses
is the network for a set of nodes connected
by lateral inhibition (discussed further in the
third section). These nodes (arbitrarily many
of them) typically interact by means of shunt-
ing excitation proportional to the difference of
activity from a maximum value, and shunting
inhibition proportional to the difference of ac-
tivity from a minimum value (such as 0). This
leads to a set of (arbitrarily many) equations
of a form such as

d'xi — . — . ) — Y-
o= A%+ (B x) [ (x) xl%;f(xk)

where A and B are constants and f is typi-
cally either a sigmoid function or the square

function (Grossberg, 1973). The “X” repre-
sents summed inhibition from all other nodes.
Another well-known network that T have
found to be fairly user-friendly for introduc-
tory students is the conditioning model from
Sutton and Barto (1981). This model does not
use differential equations but instead uses sep-
arated time steps and direct updating rules
for all the node activities, eligibilities, and
weights. Levine (2000, Appendix 2) gives a
detailed description of their dynamics.
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MODELS OF SENSORY PROCESSES

Sensory perception, particularly visual, was
the first area of psychology to be modeled
successfully using neural networks. It is also
perhaps the easiest area to quantify because
of the direct connection between system pro-
cesses and events in the external world.

Short-Term Memory
and Preattentive Vision

In the middle to late 19th century, the noted
physicists Helmholtz and Mach both observed
that edges or contours between light and dark
portions of a scene tend to be enhanced rela-
tive to the light or dark interiors of the scene.
They explained this phenomenon by means
of networks of retinal cells, each excited by
light within a central area and inhibited by
light within a surrounding area. Receptive
fields with that structure were later found
experimentally, in the compound eye of the
horseshoe crab Limulus (Hartline & Ratliff,
1957) and in the vertebrate retina (Kuffler,
1953). This kind of structure is variously re-
ferred to as lateral inhibition or on-center oft-
surround.

The earliest STM models, as well as mod-
els in current use, reflect the fact that lateral
inhibition and similar operations transform
the “raw” sensory data well before they reach
the cortex, even in the preattentive stages.
In the case of vision, such transformations
serve the function of compensating for im-
perfections in the process of perception, such
as occur because of blind spots on the retina.
Yet it is well established that this compensa-
tion mechanism creates some distortions of its
own, such as illusions in every aspect of vision
(for a network analysis see, e.g., Grossberg &
Mingolla, 1985a).

There is controversy among both psychol-
ogists and neuroscientists about how wide-
spread the principle of lateral inhibition is
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and whether it operates not just in the retina
but in the cortex and other central brain ar-
eas as well. Yet McGuire, Gilbert, Rivlin, and
Wiesel (1991) and others have found that the
largest neurons in the cerebral cortex, which
are called pyramidal cells, typically excite
smaller neurons called stellate cells, which in
turn project to and inhibit other, nearby pyra-
midal cells. Similar kinds of interactions be-
tween large and small cells occur in subcorti-
cal areas such as the hippocampus (Andersen,
Gross, Lgmo, & Sveen, 1969) and cerebellum
(Eccles, Ito, & Szentagothai, 1967). Longer-
range lateral inhibition in the cortex may be
mediated by pathways connecting cortex to
thalamus and basal ganglia (Taylor & Alavi,
1993).

Hartline and Ratliff (1957) modeled inhibi-
tion in the horseshoe crab eye by means of si-
multaneous linear equations for two mutually
inhibiting receptors. However, other effects,
many of them nonlinear, have been added
by other modelers to explain mammalian vi-
sual data. For example, Sperling and Sondhi
(1968) developed a lateral inhibitory model
of the retina, including feedback, in order to
explain certain data on luminance and flicker
detection. The inhibition exerted by the feed-
back in their model is shunting rather than
subtractive (see the section titled “Some
Examples of Neural Network Methodology™).
In subtractive inhibition, the incoming signal
is linearly weighted, and an amount propor-
tional to that signal is subtracted from the
activity of the receiving node. In shunting in-
hibition, the amount subtracted is also pro-
portional to the activity of the receiving node.
Thus the inhibiting node acts as if it divides the
receiving node’s activity by a given amount,
that is, shunts a given fraction of the node’s
activity onto another, parallel pathway.

In addition to shunting (multiplicative) in-
hibition, lateral inhibitory models often in-
clude shunting excitation, whose strength is
proportional to the difference of a node’s

activity from its maximum possible level. This
contrasts with additive excitation, which sim-
ply adds an amount proportional to the excita-
tory signal to the activity of a receiving node.
Shunting interactions in neural networks have
been suggested by experimental results on the
effects of a presynaptic neuron on conduc-
tances of various ions across the postsynap-
tic membrane (cf. Freeman, 1983; Grossberg,
1973).

Sperling and Sondhi (1968) described the
effect of shunting inhibition as reducing dy-
namic range. This means that although sen-
sory inputs can be arbitrarily intense, the
response of network nodes to these inputs
has an upper limit. But while lateral inhibi-
tion can reduce distinctions between input in-
tensities at extreme ranges, it can enhance
such distinctions at intermediate ranges, an
effect called contrast enhancement (Ellias
& Grossberg, 1975; Grossberg & Levine,
1975).

Contrast enhancement is an outgrowth of
decision or competition between inputs. Com-
petition can be biased in favor of either more
intense or less intense inputs by nonlinear in-
teractions. Also, competition can be biased
in favor of motivationally significant inputs;
we return to that point in a later section on
attention.

In early models involving lateral inhibi-
tion, nonrecurrent (feedforward) and recur-
rent (feedback) inhibition were preferred for
different purposes and used to model dif-
ferent processes. The retina is designed to
encode a fairly accurate representation of on-
going visual events, so nonrecurrent lateral
inhibition is often preferred in retinal models
in order to shorten the duration of pattern rep-
resentations. The visual cortex, by contrast, is
designed to encode both present events and
memories of recent past ones; thus in corti-
cal modeling, patterns should remain active
in memory for longer periods, and recurrent
lateral inhibition tends to be preferred in



cortical models (e.g., Grossberg, 1973;
Wilson & Cowan, 1973). Differences between
actual network architecture in the retina and
in the cortex generally reflect this functional
difference.

In typical lateral inhibition models, an in-
put pattern is regarded as the initial state of
a mathematical dynamical system, which can
be defined roughly as the movement through
time of the solutions of a system of differen-
tial equations for interacting variables. This
solution is described by a vector composed of
the values of all the variables in the system
at any given time. The equations describe the
transformation of this pattern and its storage
in STM; the stored pattern is then regarded
as a limiting vector to which the system con-
verges as time increases.

Lateral inhibitory architectures tend to en-
hance contrasts between pattern intensities.
Inhibitory connections mean that larger activ-
ities tend to suppress smaller ones, so after a
while some subcollection of nodes becomes,
and remains, dominant. As a consequence, dy-
namical systems defined by such networks of-
ten, but not always, converge to an attractor
as time increases. An attractor is a state in
which the system interactions are in balance,
so that once the system reaches that state, it
will not be perturbed from it (M. A. Cohen &
Grossberg, 1983; Hopfield, 1982).

Wilson and Cowan (1973) described a lat-
eral inhibitory network for representing an
area of cerebral cortex or thalamus. This
network includes distance-dependent inter-
actions whereby excitation falls off more
sharply with distance than does inhibition.
Different positions in the visual field, or dif-
ferent line orientations, can be represented at
different cortical or thalamic locations. Their
distance-dependent networks sometimes ap-
proach attractors, but also include the possi-
bility of hysteresis, whereby if the amount of
external stimulation is changed, the dynamics
are dependent on the past history of stimula-
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tion. For some parameters they also can ex-
hibit oscillations in their long-term behavior,
which were interpreted as possible analogs
of the reverberatory loops between the cere-
bral cortex and the thalamus. The network
reproduced such visual phenomena as meta-
contrast, responses to different spatial fre-
quencies, and a hysteresis phenomenon found
in stereopsis. Ermentrout and Cowan (1980),
studying a more abstract version of Wilson
and Cowan’s network, proved the existence
of oscillatory solutions that had properties in
common with some simple visual hallucina-
tions.

Grossberg (1973) studied on-center off-
surround networks with both shunting exci-
tation and shunting inhibition. He found that
the attractor approached by the system was
heavily influenced by what activation func-
tion was used for transformations at the node
level (see the section titled “Perceptrons and
Back Propagation”). Linear activation func-
tions led to faithful representation of the in-
put pattern, and therefore to an inability to
suppress insignificant noise appearing on the
retina. Sigmoid activation functions, by con-
trast, led to proportional representation of the
pattern values above a certain activity level
and suppression of those below (contrast en-
hancement plus noise suppression).

Such lateral inhibitory (on-center off-
surround) modules have since been modified
and embedded in larger networks to capture
more realistic properties of preattentive vi-
sion and visual system structure. In partic-
ular, several network models (Grossberg &
Mingolla, 1985a, 1985b; Levine & Grossberg,
1976; Wilson & Cowan, 1973) incorporate
the notion that such illusions are by-products
of a lateral inhibitory network designed to
correct for irregularities in the luminance
data that reaches the retina. Models of visual
illusions typically involve both competition
(from shunting lateral inhibition) and co-
operation (from shunting lateral excitation),
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Figure 6.5 Illusory white square induced by four
black “pac-man” figures.

SOURCE: Kanizsa, Gaetano, Subjective contours.
Copyright by Jerome Kuhl. All rights reserved.

sometimes along different dimensions and
sometimes within the same dimension.
Orientation and visual field position are
coded by cell populations in the visual cor-
tex, along with spatial frequency, disparity of
the right and left retinal images (a measure of
depth), color, ocularity (cells may have a pref-
erence for one or another eye or else respond
equally to inputs from either eye), and mo-
tion. Some neural networks used to simulate

visual data combine two or more of these vari-
ables. For example, the networks of Grossberg
and Mingolla (1985a), which simulate some
illusory percepts of visual contours, use both
orientation and position information. In Fig-
ure 6.5, from Kanizsa (1976), two white line
segments that are present and of the same ori-
entation are perceptually joined together by an
illusory longer line segment. In their network,
boundaries are perceived as signals “sensitive
to the orientation and amount of contrast at
a scenic edge, but not to its direction of con-
trast” (Grossberg & Mingolla, 1985a, p. 176).

Figure 6.6a illustrates insensitivity to con-
trast direction. Each node responds to lines
of a particular orientation at a particular posi-
tion. There is competition between receptors
for like orientations at nearby positions (Fig-
ure 6.6b) and between receptors for widely
different orientations at the same location
(Figure 6.6¢). Short-range competition is sup-
plemented by long-range cooperation (Fig-
ure 6.6d). Such long-range cooperation en-
ables continuous contours to form by linking
together separated lines of the same orienta-
tion. One of the benefits to the organism of
this linkage of contours is compensation for
discontinuities (caused by blind spots) in the
image on the retina.

[Image not available in this electronic edition.]

(a)

()

©

(d)

Figure 6.6 (a) Boundary signals sensitive to orientation and amount of contrast, but not to direction of
contrast. (b) Like orientations compete at nearby perceptual locations. (c) Different orientations compete
at each perceptual location. (d) Once activated, aligned orientations cooperate across a larger visual

domain to form contours.

SOURCE: Grossberg & Mingolla, Psychological Review, 92, 173-211, 1985. Copyright 1985 by the
American Psychological Association. Reprinted by permission.



Some models of vision are based on the im-
portance of boundaries for detecting objects.
For example, Marr (1982) described bound-
aries between light and dark areas of a scene as
points of zero curvature (or inflection points)
of the curve for luminance as a function of dis-
tance, as shown in Figure 6.7. Mathematically,
this represents the point of sharpest transition
in the luminance value.

However, the mechanism for perceiving
boundaries must be supplemented by an-
other mechanism for perceiving the form of
what is inside those boundaries. The feature-
detecting mechanism, unlike the boundary-
detecting mechanism, should be sensitive to
direction of contrast. Grossberg (1983) dis-
cusses one possible combination of boundary
and feature contour mechanisms (Figure 6.8).
A linear nonrecurrent mechanism that can
only generate boundaries (Figure 6.8b) is con-
trasted with a nonlinear recurrent mechanism
that can generate both boundaries and interi-
ors (Figure 6.8c). Initially, all nodes excited
by the rectangular input of Figure 6.8a re-
ceive equal inputs. Because the inhibitory in-
teraction coefficients are distance-dependent,
nodes excited by the part of the rectangle near
its boundary receive less inhibition than do
those nodes nearer the rectangle’s center. As

(a) (b) (©)

Figure 6.7 Zero-crossing. (a) Transition (edge)
between dark and light regions is shown by a sharp
rise in the graph of luminance as a function of
distance. (b) First derivative of this function has
a peak. (c¢) Second derivative has a zero-crossing
(transition from positive to negative) at Z.
SOURCE: Adapted from Marr (1982), with permis-
sion of W. H. Freeman and Company.
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(a)

(b)

©

Figure 6.8 (a) Input pattern whereby a region is
activated uniformly. (b) Response of feedforward
competitive network to pattern (a); edges of the
activated region are enhanced and its interior is
suppressed. (c) Response of a feedback competi-
tive network to pattern (a); interior is activated in
a spatially periodic fashion.

SOURCE: Grossberg (1983), with permission of
Cambridge University Press.

time goes on, those enhanced boundary nodes
inhibit other nodes whose preferred positions
are contiguous to those boundaries but closer
to the center. This in turn disinhibits some
nodes still nearer to the center, leading to a
wave-like pattern (Figure 6.8c). The distance
between peaks of the wave is dependent non-
linearly on excitatory and inhibitory interac-
tion coefficients.

Figure 6.8 provides a possible explanation
for the experimental result that many visual
cortical neurons fire preferentially to some
specific spatial frequency (Robson, 1975).
From this result, many theorists have con-
cluded that spatial frequency is one of the
primitives of the visual system, or, more
speculatively, that the visual system performs
Fourier analysis of patterns into frequency
components (e.g., Pribram, 1991).

The interacting feature and boundary con-
tour systems provided the basis for a theory
of visual object recognition. In contrast to
Marr’s (1982) view that people see mainly
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boundaries, Grossberg (1987a) advanced the
“radical claim that all boundaries are invis-
ible until they can support different filled-in
featural contrasts within the FC [feature con-
tour] System” (p. 108). Within the feature
contour system in this theory, the appar-
ently separate modules that neurophysiolo-
gists have discovered in the cerebral cortex
for processing form, color, and depth are seen
as part of a unified whole.

Recall that one function suggested for re-
current lateral interactions is to compensate
for imperfections in the retina’s uptake of vi-
sual stimuli. Some of these imperfections re-
sult from blind spots or blood vessels in the
eye. Others result from possible distortions
of relative brightness or color relationships in
the scene by the ambient light; hence, one of
the functions of the cortical networks is to dis-
count the illuminant, that is, calculate color or
brightness of the actual scene rather than what
impinges directly on the retina. The proposed
brain mechanisms for all this involve several
different parts of the visual cortex and lateral
geniculate body.

Competitive-cooperative neural networks
have also been fruitful in modeling the con-
struction of a three-dimensional image from
the disparate images received by the left and
right retinas. Many binocular vision theorists
(e.g., Dev, 1975) have explained the formation
of depth percepts using networks whose nodes
detect specific disparities between the two
retinal images. The basic computational prob-
lem involved in stereo vision was described in
Marr and Poggio (1979) as the elimination of
false targets. That is, given a point in the left-
eye image, the eyes and brain first calculate its
disparity with respect to many points on the
right-eye image. Hence, several depth mea-
surements are possible, and one must choose
(using a competitive mechanism) the correct
corresponding point in the right-eye image.

Marr and Poggio (1979) also noted that
retinal image disparity measures are insuffi-

cient to compute perceived depth but must
be integrated with orientation and spatial fre-
quency information. In Marr and Poggio’s
(1979) model, a three-dimensional scene is fil-
tered through channels (masks) that select par-
ticular orientations. Boundaries can be located
by taking the image through given orientation
masks and locating the edges at zeros of the
second derivative of perceived luminance (see
Figure 6.7). Similar filtering is done through
spatial frequency channels. Marr and Poggio
showed how to integrate disparity, orienta-
tion, and spatial frequency information into
a coherent three-dimensional approximation
of a given three-dimensional scene preced-
ing binocular integration, which they called
a2!/,-D sketch.

Another approach to binocular vision
has been developed by M. A. Cohen and
Grossberg (1984) and Grossberg (1987b).
Their networks include feedback between
monocular and binocular representation ar-
eas, each with its own separate on-center
off-surround network and including oppo-
nent processing. In contrast to Marr and
Poggio’s idea of the pre-binocular 2!/,-D
sketch, Grossberg and Cohen developed a the-
ory in which binocular integration is nearly in-
separable from the processing of other visual
information such as color and form.

As for visual motion perception, this vi-
sual phenomenon, like others, has an illu-
sory as well as a veridical component; for
example, apparent motion can be generated
by two separate flashes of light in different
locations at particular time intervals. Marr
and Ullman (1981) explained this using a
neural network that combines different nodes
with sustained and transient responses to stim-
uli. The sustained units respond to particu-
lar contrast and orientation patterns that per-
sist even if their location in the visual field
shifts slightly. The transient units respond
to changes in light intensity, color, and the
like at particular locations. Marr and Ullman



based the visual responses in their network on
zero crossings that represent transition points
or boundaries (see Figure 6.7). Grossberg
and Rudd (1992) combined the Marr-Ullman
idea of sustained and transient detectors with
the feature and boundary contour systems
(Grossberg & Mingolla, 1985a, 1985b)
achieved by shunting on-center off-surround
interactions. Grossberg and Rudd saw “a com-
plex interdependency between such stimulus
variables as contrast, size, duration, color, and
figural organization in determining the per-
ceived motion” (p. 82). They described how
this approach leads to a system including
nodes combining signals from both sustained
and transient units, and with properties analo-
gies to the visual motion area of the cortex
(V4 or medial temporal).

Sensory Coding

Building on models of sensory STM, several
researchers starting in the 1970s modeled how
a node in a neural network can learn to re-
spond to particular patterns of activity at other
groups of nodes. These patterns of activity, in
turn, could represent combinations of sensory
features. This section deals with coding in that
sense, not in the sense of how the primary rep-
resentation of a sensory stimulus is actually
formed in the nervous system. Network mech-
anisms for this kind of coding have possible
implications for biological organisms during
development.

Current models of coding and categoriza-
tion are often based on ideas introduced by
Malsburg (1973). Malsburg’s model is based
on recurrent excitation and inhibition be-
tween simulated cortical nodes, combined
with modifiable (by associative or Hebbian
learning) synapses to the “cortex” from an
input (“retinal”) layer of nodes. His motiva-
tion for developing this model was a body
of experimental results on the mammalian
visual system. These results suggested that
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the “task of the cortex for the processing
of visual information is different from that
of the peripheral optical system. Whereas
eye, retina and lateral geniculate body (LGB)
transform the images in a ‘photographic’ way,
i.e., preserving essentially the spatial arrange-
ment of the retinal image, the cortex trans-
forms this geometry into a space of concepts”
(p. 85).

In particular, Malsburg’s (1973) model and
subsequent ones discussed in this section drew
their inspiration from physiological results
on single-cell responses to line orientations.
These models can explain findings that neu-
rons in the cat or monkey visual cortex re-
spond preferentially to lines of a particular
orientation, and that cells responding to sim-
ilar orientations are grouped close together
anatomically, in columns (Hubel & Wiesel,
1962, 1965, 1968). These models also explain
findings that preferred orientations of neu-
rons are influenced by early visual experience
(e.g., Blakemore & Cooper, 1970; Hirsch &
Spinelli, 1970).

Some models (e.g., Bienenstock, Cooper,
& Munro, 1982, p. 32; Grossberg, 1976a,
p- 131) also address evidence that there is a
critical period in the development of orienta-
tion detectors. That is, for a short period of
time (in cats, age 23 days to 4 months; in hu-
mans, 6 months to 2 years), cortical orienta-
tion tuning is much more modifiable than it is
either earlier or later.

Malsburg’s (1973) simulated cortex is or-
ganized into two separate populations, ex-
citatory and inhibitory nodes. The variation
of connection strengths with distance endows
the simulated cortex with a crude form of the
lateral inhibitory architecture of narrow-range
excitation and broad-range inhibition. In the
terminology of the last section, Malsburg’s
laws for lateral interaction between nodes
are additive rather than shunting. Excitatory
and inhibitory nodes are organized into two
parallel planes, each with a hexagonal
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Figure 6.9 Standard set of stimuli used on the simulated retina. Larger dots denote locations of activated

nodes.

SOURCE: Reprinted from Malsburg (1973) with permission of Springer-Verlag.

arrangement of nodes. Excitatory nodes ex-
cite neighboring nodes, both excitatory and
inhibitory ones, whereas inhibitory nodes in-
hibit excitatory nodes that are a distance of
two away.

Of the connections in Malsburg’s (1973)
model, only those from retinal afferents to
cortical nodes have modifiable weights. The
rule for changing these weights combines an
associative learning law with a synaptic con-
servation rule that makes inactive connec-
tions decay as active ones grow with learning.
Synaptic conservation was imposed to prevent
the unbounded growth of synaptic strengths
that would otherwise result from associative
learning.

Figure 6.9 shows the standard set of stim-
uli used on Malsburg’s (1973) model retina.
These stimuli correspond to bars of light at dif-
ferent orientations. As shown in Figure 6.10,
orientation detectors, such as were found by
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Figure 6.10 Simulated cortex after 100 time
steps of learning. Each bar indicates the orienta-
tion to which the excitatory node at that location is
most responsive. Blank spaces represent locations
of nodes that never learn to react to any of the stan-
dard stimuli.

SOURCE: Adapted from Malsburg (1973) with per-
mission of Springer-Verlag.



Hubel and Wiesel (1962, 1968), develop spon-
taneously among Malsburg’s simulated corti-
cal cells. After 100 learning steps, the lateral
excitatory and inhibitory interactions lead to
self-organization of cortical nodes, whereby
most nodes have preferred orientations and
nodes of similar preferred orientations tend to
be grouped together.

The idea of synaptic conservation is intu-
itively based on the notion that some chem-
ical substance, whether a transmitter or sec-
ond messenger, is present in a fixed amount
at postsynaptic sites and is distributed in vari-
able fashion across impinging synapses. This
mechanism is necessary for the effects in
Malsburg (1973) and in a related model of the
visual cortex by Wilson (1975). Some catego-
rization models (e.g., Carpenter & Grossberg,
1987; Rumelhart & Zipser, 1985) also use
learning laws whereby strengthening of some
synapses weakens other synapses. Such laws
are reminiscent of Rescorla and Wagner’s
(1972) learning scheme, which includes an
upper bound on the total associative strength
of all stimuli with a given reinforcer.

Grossberg (1976a) developed a model
that has many principles in common with
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Malsburg’s (1973) but does not use a synap-
tic conservation law for learning. He ar-
gued mathematically that such a conservation
law is incompatible with secondary classical
conditioning. Moreover, although Malsburg
used this law to keep synaptic strengths—
and therefore total network activity—from
growing too large, one can also achieve this
by replacing additive lateral interactions with
shunting interactions. His model for develop-
ment and tuning of feature detectors, combin-
ing lateral inhibition for STM with associative
synaptic modification for LTM, is discussed
in Grossberg (1976a). Figure 6.11 shows the
minimal network of that article. This network,
like that of Malsburg, includes unidirectional
modifiable synapses from an input layer F
to a “cortical” layer F,, leading to coding of
input patterns by cortical nodes. Grossberg
(1976b) extended this model to include modi-
fiable feedback from F> to F;. To describe the
mutually excitatory dynamics that emerge in a
modifiable network with top-down feedback,
he coined the term adaptive resonance. This
work ultimately led to the well-known adap-
tive resonance theory (ART) of Carpenter and
Grossberg (1987).

1. Normalize total activity
2. Contrast enhance
3. STM

LTM in plastic
synaptic strengths

1. Compute time average
of presynaptic signal
and postsynaptic STM
trace product

2. Multiplicatively gate
signals

. Normalize total
activity

Input pattern /;

Figure 6.11 Minimal model of development and tuning of feature detectors using STM and LTM

mechanisms.

SOURCE: Adapted from Grossberg (1976a) with permission of Springer-Verlag.
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The network of Figure 6.11 has nonre-
current (feedforward) on-center off-surround
connections between the input-receiving
nodes x; and recurrent on-center off-surround
connections between the pattern-coding nodes
xy;. Fy and F, represent successive layers
in a hierarchical network. Grossberg sug-
gested that variations on the same hierarchy
could be repeated in different brain regions. In
Malsburg (1973), F; was interpreted as either
retina or thalamus, and F, as visual cortex.
But F; might also be identified with a com-
posite of early processing areas in the retina
and F, with retinal areas closer to the optic
nerve (Grossberg, 1976a). Also, because the
visual cortex itself contains several process-
ing stages, identified with cell groups known
as simple, complex, and hypercomplex cells
(Hubel & Wiesel, 1962, 1965, 1968), F; and
F> might be interpreted as different parts of
cortex. Nor are these architectures restricted
to vision: Grossberg (1976a) described yet an-
other interpretation, whereby Fj is the olfac-
tory bulb and F; is olfactory cortex.

Malsburg’s and Grossberg’s coding archi-
tectures follow a similar generic plan: two
layers hierarchically arranged, with associa-
tive learning in bottom-up synapses and the
second-level nodes coding patterns of activ-
ities in the first level. Other neural networks
with similar designs include Bienenstock et al.
(1982) and Edelman and Reeke (1982). In
addition to modeling the development of vi-
sual feature (especially orientation) detectors,
these networks provide a basis for the more
complex process of modeling categorization
(see the sixth section). The set of patterns that
preferentially excites each of the high-level
nodes in a coding model forms a category. In
order to stabilize the code representations un-
der the barrage of possible new input patterns,
Grossberg (1976b) also included associative
learning in top-down as well as bottom-up
connections. This provides in his model the
basis for learning prototypes (which change

with experience) and is the heart of the adap-
tive resonance model that he and Carpenter
developed. Yet even without top-down feed-
back, models of coding lead naturally into
models of categorization.

MODELS OF MOTOR CONTROL

Neural network modeling of brain processes
has basically proceeded from the outside in,
so that sensory and motor processes began to
be modeled before more central ones. First
came models of planned individual move-
ments, then sequences of movements.

Individual Movements

Kuperstein (1988, p. 1308) discussed some
issues involved in modeling motor control:
“The human brain develops accurate senso-
rimotor coordination despite many unfore-
seen changes in the dimensions of the body,
strength of the muscles, and placements of
the organs. This is accomplished for the most
part without a teacher.” Two other issues are
the ability to learn an invariant movement
regardless of velocity and the synchroniza-
tion of different muscles into a coordinated
movement.

Modelers disagree about whether motor
control has requirements similar to or differ-
ent from those for sensory pattern process-
ing. Discussing their arm movement control
model, Wada and Kawato (1993, p. 932) state,
“It is expected that this trajectory formation
model can be used as a pattern recognition
network because a kind of duality exists be-
tween pattern formation and recognition in
this framework.” Yet Gaudiano and Grossberg
(1991, pp. 180—181) suggest that the two sets
of tasks require fundamentally different ar-
chitectures, because sensory pattern process-
ing needs to be based on match learning (such
as adaptive resonance; see the sixth section),



whereas motor control needs to be based on
mismatch learning (i.e., some form of error
correction).

Because of space limitations this chap-
ter will only cover models of arm move-
ment control, except to note that some of
the principles used in arm movement model-
ing have also been applied to eye movements
(Grossberg & Kuperstein, 1989) and speech
production (Guenther, 1995). Bullock and
Grossberg (1988) modeled a variety of data
on the invariances of planned arm movements.
This includes, for example, the bell-shaped
velocity profile based on data of Atkeson and
Hollerbach (1985): The velocity of movement
as a function of time has the same qualitative
shape over a wide range of movement sizes
and speeds. Such invariances can be modeled
using a network that includes high-level nodes
that explicitly calculate the trajectory opti-
mizing some physical function (e.g., Flash &
Hogan, 1985; Wada & Kawato, 1993). How-
ever, the variable-speed and synchronization
issues mentioned at the start of this section led
Bullock and Grossberg toward a network in
which globally invariant properties are not ex-
plicitly programmed but emerge from events
distributed across many interacting sensory,
neural, and muscular loci. Such models in-
clude error correction (of a type reminiscent
of the circular reaction of Piaget, 1952) but no
explicit optimization.

In Bullock and Grossberg’s (1988) vec-
tor integration to endpoint (VITE) model, a
given movement is performed at variable ve-
locities depending on the activity of a “GO”
signal (see Figure 6.12). The GO activity is
multiplied by the computed vector of mus-
cle activities. Such factorization of a neural
activity vector into a product of energy (to-
tal intensity) and pattern (relative strengths)
has been a theme of Grossberg’s work, in per-
ceptual as well as motor contexts. For exam-
ple, this theme appears in the studies of rel-
ative weights in an outstar (discussed in the
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[DV]T GO |<— GO

PPC

+

Figure 6.12 VITE motor control circuit. TPC =
target position command; PPC = present position
command; DV = difference vector (error); GO =
GO signal, which is multiplied by the difference
vector. The full circuit includes interactions be-
tween DV and PPC stages of agonist and antag-
onist muscle commands.

SOURCE: Adapted by permission of the publisher
from Bullock & Grossberg, in W. A. Hershberger
(ed.), Wolitional Action, pp. 253-298. Copyright
1989 by Elsevier Science Publishing Co., Inc.

second section) and of discounting the illu-
minant (discussed in the third section). The
present position command (PPC) is compared
with a target position command (TPC) to form
a difference vector (DV). The GO command
(identified with output from the globus pal-
lidus of the basal ganglia) interacts with the
DV. The PPC is gradually updated by integrat-
ing the multiplied vector, that is, summing it
over (continuous) time. The effect of the PPC
on motoneurons is organized through agonist-
antagonist pairs of muscles. Cells analogous
to DV nodes have been located in arm zones of
the premotor, motor, and parietal areas of the
cerebral cortex (e.g., Georgopoulos, Kalaska,
Caminiti, & Massey, 1984).

Gaudiano and Grossberg (1991) developed
an adaptive extension of the VITE model
called the vector associative map (VAM) to
enable the corrective DV calculations to be
influenced by visual feedback. This involves
learning that depends on random generation
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of potential arm positions at the PPC by mo-
tor “babbling,” which is again reminiscent
of Piaget’s circular reaction. This class of
models was also extended to multiple arm
joints in Bullock, Grossberg, and Guenther
(1993). Still further extensions of this class
of models involve specific roles for the cere-
bellum, motor cortex, and other brain motor
control regions (Bullock, Cisek, & Grossberg,
1998; Cisek, Grossberg, & Bullock, 1998).
Hence a network theory previously developed
to model task-imposed constraints was ex-
tended in order to map closely onto cortical
neuroanatomy and neurophysiology.
Kawato, Furukawa, and Suzuki (1987) and
Kawato, Isobe, Maeda, and Suzuki (1988)
simulated a control circuit driven by sensory
signals and inspired by known anatomy and
physiology of several brain areas. Like the
Bullock-Grossberg (1988) network, the net-
works of Kawato et al. can learn a movement
atone speed and then perform the same move-
ment at a different speed. These models com-
bine solution of the inverse problem (calculat-
ing movements from a desired position) with
that of the forward problem (calculating pos-
sible consequences of particular movements).
Unlike the models of Grossberg’s group, those
of Kawato’s group are based on explicit min-
imization of a motor-related variable: rate of
change of torque. Interleaved learning of for-
ward and inverse mappings is found in some
other models (e.g., Jordan & Rumelhart, 1992,
which is based on back propagation with ad-
ditional units, and Bullock et al., 1993).

Models of Motor Sequence Learning

Several investigators have added recurrent
interactions to the basic supervised back-
propagation network in order to train a net-
work to produce a specified time sequence of
outputs. The first of these was Jordan (1986),
who added to a standard back-propagation
network some feedback and some plan units

activated by external stimuli. The net effect
is to have a decaying memory of past events
blended with current plans. The sequential
network has been applied to controlling arm
motor trajectories (Massone & Bizzi, 1989)
and also to learning linguistic sequences
(Elman, 1990).

Other sequence models have been based
on the ART model (Carpenter & Grossberg,
1987), which is based on high-level nodes
classifying patterns of low-level node activity.
Bapi and Levine (1994, 1997) combined ART
with a mechanism for storing multiple copies
of list items combined with learnable long-
term transition weights between items. They
applied their network to simulating monkey
data showing that prefrontal lesions do not
disrupt learning simple motor sequences but
disrupt learning of sequences classes.

Bapi and Levine’s networks can learn many
sequences composed of rearrangements of the
same elements by encoding them at sequence
detector nodes. Sequence nodes also appear
in the models of Dominey and Arbib (1992)
and Dominey, Arbib, and Joseph (1995) for
learning a sequence of eye movements based
on associations between visual cues and target
positions. These models include basal gan-
glia, along with parietal and frontal cortex
and various parts of thalamus and midbrain,
in generating eye movements. This includes
learnable signals from the cortex to basal
ganglia pathways involved in selective dis-
inhibition of generations of saccades in par-
ticular directions. In one set of simulations,
learnable signals to basal ganglia from infer-
otemporal cortex were used to simulate data
on conditioned discrimination of associations
between visual cues and target eye move-
ment responses in monkeys. A variant of the
model, using prefrontal instead of inferotem-
poral cortex, learns to produce a sequence of
saccades in response to a sequence of spa-
tial targets. These networks also use reward
and punishment signals to change weights



between context elements and sequence gen-
erators.

Modeling motor sequence learning relates
to modeling temporal sequence perception.
Some models of temporal sequence percep-
tion incorporate specific neurophysiological
interactions, such as those in the hippocam-
pus. Levy (1996) developed a sequence-
discriminating network based on autoassoci-
ation (see the section titled “Autoassociation
and Heteroassociation”)—inspired by long-
term potentiation at hippocampal synapses—
that solved disambiguation problems in
temporal sequence learning. Denham and
McCabe (1996) emphasized the role of the
hippocampal CA3 region in comparing inputs
from two other regions, one representing a
predicted next element of a sequence and the
other representing the actual element.

MODELS OF
COGNITIVE-EMOTIONAL
INTERACTIONS

Neural network models considered the ef-
fects of reward and punishment fairly early in
their development (Grossberg, 1972a, 1972b;
Klopf, 1982; Werbos, 1974). Some of them
also considered the interplay of positive and
negative affect via opponent processing
(Grossberg, 1972a, 1972b). The interactions
of cognitive and emotional variables have
played a major role in models of condition-
ing and, more recently, of interactions among
brain areas such as the cortex, limbic system,
and basal ganglia.

Models of Conditioning

Klopf (1982) proposed that a synapse is in-
creased in efficacy if its activity is followed
by a net increase in the depolarization (posi-
tive stimulation) received by the postsynaptic
cell. In other words, he proposed that depo-
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larization acts as positive reinforcement for
neurons. Klopf’s theory was based on an anal-
ogy between single neurons and whole brains,
both treated as goal-seeking devices. This is
the reason why he titled his book The Hedo-
nistic Neuron.

The importance of activity change, as op-
posed to activity itself, was also highlighted in
Rescorla and Wagner’s (1972) theory, which
is not neurally based but has influenced the
work of many neural modelers. Their theory is
based on the results of classical conditioning
experiments indicating that associative learn-
ing of a CS can be greatly influenced by the
background stimuli present during both train-
ing and recall trials. The main tenet of their
theory was that “organisms only learn when
events violate expectations. Certain expecta-
tions are built up about the events follow-
ing a stimulus complex: expectations initi-
ated by the complex and its component stimuli
are then only modified when consequent
events disagree with the composite expecta-
tion” (p. 75).

Sutton and Barto (1981) set out to explain
classical conditioning with a theory that in-
cluded elements of both the Rescorla-Wagner
(1972) and Klopf (1982) theories. Their con-
ditioning model includes n stimulus traces
x;(f), an output signal y(f), and n synaptic
weights w; (), as shown in Figure 6.13. These
weights are considered to denote associations
between CSs and a primary reinforcer or US.

Sutton and Barto (1981) proposed that in
addition to the stimulus traces that denote the
duration and intensity of given CSs, additional
traces are separate from the stimuli and last
longer. These are the actual memory traces,
but Sutton and Barto termed them eligibility
traces because they indicate when a particular
synapse is eligible for modification. Possible
cellular mechanisms involving calcium ions
and cyclic nucleotides were suggested for el-
igibility traces. Finally, the current amount of
reinforcement, y(¢), was compared with the
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Figure 6.13 Network with n learnable condi-
tioned stimulus (CS) pathways, and a pathway with
fixed weight w, for the unconditioned stimulus
(US). The node y represents unconditioned and
conditioned responses (UR and CR).

SOURCE: From Sutton & Barto, Psychological Re-
view, 88, 135-170, 1981. Copyright 1981 by the
American Psychological Association. Adapted by
permission.

weighted average of values of y over some
time interval preceding .

The two innovations in Sutton and Barto’s
(1981) model—eligibility traces and learn-
ing dependent on change in postsynaptic
activity—were motivated by results on tim-
ing in classical conditioning. In particular, the
model can explain the fact that in many condi-
tioning paradigms, the optimal interstimulus
interval is greater than 0. Sutton and Barto’s
network can also simulate other contextual ef-
fects in classical conditioning, such as block-
ing the formation of associations to a new
stimulus if another stimulus that has already
been conditioned is simultaneously present.

Sutton and Barto’s (1981) work was elabo-
rated by Klopf (1988) and others into the dif-
ferential Hebbian learning rule (also called the
drive-reinforcement rule), whereby synapses
change in strength as a function of changes
over time in both presynaptic and postsynap-
tic activities. Klopf was led to such a rule by
his earlier hedonistic neuron theory, in which
neurons themselves were goal-seeking.

Klopf’s (1988) network simulated a wide
variety of classical conditioning data. These

data included blocking, secondary condition-
ing, extinction and reacquisition of an ex-
tinguished response, conditioned inhibition,
effects of interval between CS and US oc-
currences, and effects of stimulus durations
and amplitudes. (However, the simulations of
CS and US interval effects depend on some
weighting factors for time delays, and these
factors were chosen specifically to match
those data. Klopf did not suggest an underly-
ing mechanism for generating those weight-
ing factors.) A summary of classical condi-
tioning data reproduced by the Klopf model
and its comparison with other conditioning
models appear in Chance, Cheung, Lykins,
and Lawton (1997).

The synaptic learning law involving
change in postsynaptic activity is not the only
possible way to simulate timing effects or
blocking in classical conditioning. The same
data were simulated by Grossberg and Levine
(1987) using a network that combines asso-
ciative learning with attentional effects due to
lateral inhibition. Also, the Grossberg school
has incorporated into conditioning models a
mechanism for affective opponent processing,
which is the basis for an architecture called the
gated dipole. The gated dipole theory was mo-
tivated by an effort to compare current values
of stimulus or reinforcement variables with
recent past values of the same variables.

Gated dipoles were introduced by
Grossberg (1972a, 1972b) to answer the fol-
lowing question about reinforcement. Sup-
pose an animal receiving steady electric shock
presses a lever that turns off the shock. Later,
in the same context, the animal’s tendency to
press the lever is increased. How can a mo-
tor response associated with the absence of a
punishing stimulus (shock) become itself pos-
itively reinforcing?

Figure 6.14 shows a schematic gated
dipole. The synapses w; and w,, marked with
squares, have a chemical transmitter that tends
to be depleted with activity, as indicated by
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Figure 6.14 Schematic gated dipole network. J is
a significant input (electric shock in the example
of Grossberg, 1972b), and / is nonspecific arousal.
Synapses w, and w, can undergo depletion (as w
has in this diagram), as indicated by partial light-
ening of square boxes. After Jis shut off, w; < w,
(transiently), so x; < x,. By competition, x4 is ac-
tivated, enhancing a motor output suppressed by J.

the —y;w; terms in the differential equations
for those w; values. This could be called
an anti-Hebbian law because the direction of
change with use is opposite to the one Hebb
and others use for associative learning. Other
terms in those equations denote new trans-
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mitter production, which is greatest when the
transmitter is much less than its maximum. In
Figure 6.14, the input J represents shock, for
example. The input / is a nonspecific arousal
to both channels y;-to-x;-to-x3 and y,-to-x,-
to-x4, which compete for activation. While
shock is on, the left channel receives more
input than the right channel; hence transmit-
ter is more depleted at w than at w,. But
the greater input overcomes the more depleted
transmitter, so left channel activity x; exceeds
right channel activity x,. This leads, by feed-
forward competition between channels, to net
positive activity from the left channel out-
put node x3. For a short time after shock is
removed, both channels receive equal inputs
I, but the right channel is less depleted of
transmitter than the left channel. Hence, right
channel activity x, now exceeds x; until the
depleted transmitter recovers. Again, com-
petition leads to net positive activity from
the right channel output node x4. Whichever
channel has greater activity either excites or
inhibits x5, thereby enhancing or suppressing
a particular motor response.

The network is called a gated dipole be-
cause it has two channels that are opposite
(negative and positive) and that gate signals
based on the amount of available transmitter.
Characteristic output of one gated dipole is
graphed in Figure 6.15. This graph illustrates
the rebound in x4 activity after the cessation of

Input

Time

Figure 6.15 Typical time course of the channel outputs of a gated dipole.
SOURCE: Adapted from Neural Networks, 2, D. S. Levine & P. S. Prueitt, Modeling some effects of frontal
lobe damage: Novelty and perseveration, 103—116, with permission from Elsevier Science.
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X3 activity. Grossberg’s work was concurrent
with Solomon and Corbit’s (1974) opponent-
processing theory of motivation, whereby sig-
nificant events elicit both an initial reaction
and a subsequent counterreaction. Indeed,
Grossberg (1987b) hinted that a gated dipole
can exhibit switching back and forth between
opposite responses.

Grossberg (1987b) used this transmitter-
depletion mechanism instead of a simple time-
difference mechanism to model the effects of
stimulus changes in order to capture two ef-
fects in conditioning. One is that the positive
reinforcement value of escape from shock is
sensitive to both its intensity and its duration.
The other is that the amount of reinforcement
depends on the overall arousal level of the net-
work (or organism).

If the two channels in Figure 6.14 are re-
versed in sign so that the channel receiving in-
putis the positive one, the network provides an
explanation for frustration when a positively
reinforcing event either is terminated or does
not arrive when expected. The rebounds be-
tween positive and negative also explain the
partial reinforcement acquisition effect. Ac-
cording to the gated dipole theory, a reward’s
attractiveness is enhanced by comparison with
an expected lack of reward.

The idea of opponent processing can be
generalized to many other neural processes. It
is an old idea in vision; for example, the retina
contains pairs of receptors for opponent colors
(e.g., green and red), and one of the two colors
is transiently perceived after removal of the
other one. The dipole in the sensory domain
includes nodes responding to presence or ab-
sence of specific sensory stimuli. Grossberg
(1980) used transient rebounds in such dipoles
to model visual phenomena such as color-
dependent tilt aftereffects. Also, gated dipoles
have been applied to modeling motor sys-
tems. In those models, dipoles simulate the
actions of neuron populations innervating
agonist-antagonist muscle pairs (Bullock &

Grossberg, 1988; Grossberg & Kuperstein,
1989; see the fourth section).

Involvement of Different Brain Areas

Many of the conditioning models discussed
in the last section were inspired by data on
the rabbit’s nictitating membrane response
(NMR), that is, the conditioned eye blink in
response to a clicking sound paired with a tap
to the forehead. Since the early 1990s, more
data has appeared on brain areas involved
in the NMR, and these data have influenced
the development of neural network models.
Thompson (1990) mapped the detailed cir-
cuitry of the NMR involving connections be-
tween the cerebellum and areas of the brain-
stem controlling facial sensation and eye
movement. Perrett, Ruiz, and Mauk (1993)
found that lesions to the cerebellar cortex dis-
rupt timing of conditioned NMRs.

The role of the cerebellum in mediating
timing of the conditioned response is comple-
mented by a role of the hippocampus in en-
coding the timing of stimulus arrivals. In par-
ticular, Berger, Berry, and Thompson (1986)
found that during the NMR and conditioned
jaw movement paradigms, the pattern of neu-
ron responses in hippocampal pyramidal neu-
rons mimics the time course of the condi-
tioned response. This time course fits the
learned timing of US arrival.

These adaptively timed cell responses are
from the CA3 subregion of hippocampus,
which receives inputs from different types of
cells in another region of hippocampus, the
dentate gyrus. These dentate cells are time-
locked to the CS; that is, each cell exhibits an
increase in firing rate starting at a fixed time
interval after the CS. Hence, the hippocampal
network has to convert an array of fixed time
delays into adaptive timing.

Grossberg and Schmajuk (1989) designed
a neural network, an extension of their 1987
model (see the previous subsection), whereby



a collection of neurons with a range of time
delays is involved in timing a conditioned re-
sponse. Subsequent models related their in-
sights to cerebellar and hippocampal data
(Bullock, Fiala, & Grossberg, 1994; Fiala,
Grossberg, & Bullock, 1996; Grossberg &
Merrill, 1996; see also Gluck & Myers, 1993,
and Myers & Gluck, 1994, for related mod-
els). Their technique for accomplishing this
timing function consists of a network with a
large number (80 in their first simulation) of
gated dipoles (the opponent processing model
of Figure 6.14), each becoming activated and
habituated at a different rate. The authors
called this device spectral timing because it in-
cludes a spectrum of possible activation rates,
thereby enabling the network to learn to ex-
pect stimuli or perform responses at specific
time delays after the CS.

Grossberg and Merrill (1996) proposed
that the spectral timing architecture appears
in both the cerebellum and the hippocampus
and performs different functions in each. In
the cerebellum it controls the timing of the
conditioned motor response. In the hippocam-
pus it controls the relationship between timing
of sensory stimuli and learning of their appeti-
tive or aversive significance; for example, if an
animal expects to receive food at a given time
after a bell is rung, it should not have a frus-
tration response to the nondelivery of food be-
fore that time. Bullock et al. (1994) modeled
the neurophysiology of cerebellar aspects of
timing on the NMR. Fiala et al. (1996) elab-
orated that model by incorporating detailed
biochemistry of transmitters, receptors, and
second messengers that affect both climbing
fiber and parallel fiber input to Purkinje cells.

In addition to these animal learning mod-
els, there have been many neural network
studies of brain in human
cognitive-emotional interactions. Many of
these studies relate to the prefrontal cortex,
a region long implicated as playing a special
role in coordinating and integrating plans of

involvement
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action based on combining sensory signals
from the environment and visceral and mo-
tivational signals from the organism.

Most efforts at neural network modeling of
frontal lobe function have focused on specific
cognitive tasks that illustrate certain common
themes in effects of prefrontal lesions in hu-
man patients or monkeys. These themes in-
clude, for example, reduced ability to learn
and perform planned sequences of behav-
iors, disruption of cognitive-motivational in-
teractions, and disturbance in the processing
of context. The models of sequence learning
were discussed in the fourth section, so we
now discuss models of the other two types of
disruption.

Disruption of Cognitive-Motivational
Interactions

The frontal lobes are the part of cortex with
the strongest reciprocal connections with sub-
cortical parts of the brain involved in process-
ing internal drive levels (the hypothalamus)
and positive or negative valences of stimuli
(the limbic system). For this reason, frontal
lobe damage leads to diminished influence of
reinforcement on behavioral performance. An
aspect of this syndrome is perseveration in be-
haviors that were formerly, but are no longer,
rewarding.

An example of perseveration occurs in
the Wisconsin Card Sorting Test (WCST),
whereby the participant is given a sequence
of 128 cards, each displaying a number, color,
and shape, and is asked to match each card to
one of four template cards. The experimenter
then says whether the match is right or wrong,
without saying why. After 10 correct color
matches, the experimenter switches the crite-
rion to shape, without warning. After 10 cor-
rect shape matches, the criterion is switched to
number, then back to color, and so on. Milner
(1963, 1964) showed that most patients with
damage to a certain region of frontal cortex
(the dorsolateral region) can learn the color
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Figure 6.16 Network used to simulate card-sorting data. Frontal damage is modeled by reduced gain
of signals from the reinforcement node to bias nodes W; (i =1 for number, 2 for color, 3 for shape). Bias
nodes gate signals from feature to category nodes. Each bias node is influenced by the corresponding habit
node, which encodes past decisions that used the given matching criterion. The match signal generators
M; send positive signals to habit nodes, and signals (of the same sign as the reinforcement) to bias nodes.
Dark lines signify the positive feedback loop between habits and decisions, which can be broken only

by strong penalty signals.

SOURCE: Adapted from Leven & Levine, 1987, copyright © 1987 IEEE; reprinted by permission of the

publishers.

criterion as rapidly as normals, but then can-
not switch to shape.®

Leven and Levine (1987) simulated the
card-sorting data using the network of Fig-
ure 6.16. In this network, based on adaptive
resonance theory (see the next section), nodes
in F; code features (numbers, colors, and
shapes), whereas nodes in F, code template
cards. Corresponding to each feature class
(number, color, or shape) is a “habit node”
and a “bias node.” Habit nodes code how of-
ten classifications have been made, rightly or
wrongly, on the basis of each feature. Bias

6Since Milner’s (1963, 1964) work, other clinicians have
found that the WCST may not be the most sensitive test
of dorsolateral prefrontal damage, so use other tests such
as verbal fluency (for left prefrontal damage) and design
fluency (for right prefrontal damage).

nodes add habit node activities to reinforce-
ment signals (the experimenter’s “Right” or
“Wrong”), then gate the excitatory signals
from Fj to F,. A network parameter measur-
ing the strength of reinforcement signals to
bias nodes was varied. The network with high
reinforcement acted like Milner’s normal sub-
jects, whereas the network with low reinforce-
ment acted like Milner’s frontal patients.

But perseveration due to frontal damage
can be overridden by attraction to novelty,
as in the monkey data of Pribram (1961).
Pribram placed a peanut under a junk object
several times, unobserved by a monkey. Each
time this was done, he added a new object to
the scene and waited for the monkey to choose
which object to lift for food. On the first trial
with a novel object present, normal monkeys



tended to choose another object that had previ-
ously been rewarded, whereas monkeys with
lesions of the ventral frontal cortex chose the
novel object immediately. Levine and Prueitt
(1989) simulated the novelty data using a net-
work based on the gated dipole (see the last
section). In their network, each sensory stim-
ulus has an on and off channel structured like
the two competing channels of a gated dipole
(cf. Figure 6.14). With weak reward signals,
as in frontally lesioned animals, the on chan-
nel for the old object is more depleted than
the on channel for the new object, because

O Reward

Rule-coding
clusters
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the old cue channel has been active longer.
Hence, the new object is approached. With
strong reward signals, as in normal animals,
associative learning at synapses between the
output node corresponding to the previously
rewarded object and the node related to the
food reward enhances approach to that ob-
ject enough to counteract transmitter deple-
tion, and the old object is approached.
Another network model of the WCST was
developed by Dehaene and Changeux (1991).
Dehaene and Changeux’s model (Figure 6.17)
was intended to represent somewhat more

Error cluster

Input

i

<

2, 17]6

Figure 6.17 Schematic architecture of Dehaene and Changeux’s model of the Wisconsin Card Sorting

Test. Cards are coded along the dimensions of color,

shape, and number, and their features are stored at

memory clusters. Memory clusters activate the clusters defining current intention (about which card to
sort with). Rule-coding clusters modulate the transmission between memory and intention clusters, thus
deciding the sorting rule. Positive or negative reward strengthens or weakens the rule currently in force.
SOURCE: Adapted from Dehaene and Changeux (1991) with the permission of Oxford University Press.
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general cognitive and inferential capabilities
than those manifested by the WCST. De-
spite different underlying foundations, most
parts of Dehaene and Changeux’s network can
be mapped fairly closely either into Levine
and Prueitt’s (1989) WCST model or into
their novelty preference model. For example,
Dehaene and Changeux’s “memory” and
“intention” nodes are closely analogous to
Levine and Prueitt’s (ART-based) “feature”
and “category” fields. Also, the “rule-coding
clusters” of Figure 6.17 are similar struc-
turally and functionally to the “bias nodes” of
Figure 6.16. Dehaene and Changeux added to
their model a feature that they called episodic
memory, though it differs somewhat from the
common psychological usage of that term
(Tulving, 1972). Their version of episodic
memory kept track of rules that had been pre-
viously tried and did not lead to reinforce-
ment, and selectively reduced the activation
of nodes representing such rules. This is anal-
ogous to the opponent processing mechanism
(via the gated dipole network) used by Levine
and Prueitt to enhance selectively representa-
tions of novel inputs.

Recently, several authors have simulated
the WCST using models that are formally sim-
ilar to the Levine et al. or Dehaene-Changeux
models but incorporate more details of known
neuroanatomy, such as the interconnections
among frontal cortex, basal ganglia, and tha-
lamus. The most detailed of these models is
that of Monchi and Taylor (1999).

Disruption of Context Processing

J. D. Cohen and Servan-Schreiber (1992)
used a back propagation network to simu-
late three cognitive tasks that require the par-
ticipant to perform a nondominant but con-
textually appropriate response. One of these
was the Stroop test, whereby the participant
sees the word for a color printed in ink of either
the same or a different color and must state
the color of the ink. Reaction time is slower if

the ink color and word do not match (e.g.,
if the word “red” is written in green ink).
People with dorsolateral frontal damage, as
well as many schizophrenics, have an even
slower reaction time under these incongru-
ent conditions. Cohen and Servan-Schreiber
also simulated a continuous performance task,
whereby subjects were instructed to respond
to a target pattern while receiving a steady
stream of other stimuli, and a lexical disam-
biguation task.

J. D. Cohen and Servan-Schreiber (1992)
reproduced deficits of schizophrenics on all
three tasks, which they attributed to a deficit
of dopamine inputs to the dorsolateral pre-
frontal cortex. Their network includes a node
that selectively influences signals along two
competing neural pathways (e.g., pathways
coding words and colors in the Stroop test)
and that is assumed to be decreased in activ-
ity in the case of dorsolateral frontal damage
or schizophrenia. Although their network ap-
pears anatomically unrealistic, they captured
some qualitative functional relationships that
are important for a wide class of tasks that
involve prefrontal executive function.

Context is also involved in the frontal
task of discriminating which of two items in
a sequence occurred more recently (Milner,
1982). Simulation results on that task were
presented in Monchi and Taylor (1998) us-
ing a network called ACTION, which was
based on mimicking interactions between the
prefrontal cortex, thalamus, and basal ganglia
combined with back-propagation learning.

There has been much recent work wherein
lesions in particular parts of a neural net-
work cause the network to perform a cogni-
tive function deficiently in a manner reminis-
cent of some mental or neurological disorder.
There are four edited books (Parks, Levine,
& Long, 1998; Reggia, Ruppin, & Berndt,
1996; Reggia, Ruppin, & Glanzman, 1999;
Stein & Ludik, 1998) about models of mental
and cognitive disorders. The models conform



in varying degrees to known neuroanatomy
and physiology. Even those models that are
less biologically realistic illustrate principles
that will be required for a more refined the-
ory of the dynamic processes involved in such
mental disorders.

Perhaps the first article of this type was
Grossberg (1984), which discusses network
analogs of Parkinson’s disease, some forms
of schizophrenia, some forms of depression,
and juvenile hyperactivity. Grossberg showed
mathematically that in the gated dipole (Fig-
ure 6.14), if the nonspecific arousal is within
a certain range, the network behaves in a
fashion that is usually considered normal.
Above or below that range, the network ex-
hibits pathologies that suggest symptoms of
certain common mental disorders. When the
network is underaroused, its threshold of re-
sponse to limited-duration (phasic) inputs is
raised. Paradoxically, once this threshold is
exceeded, the on-reaction is hypersensitive to
inputincrements. Giving the network a “drug”
that increases nonspecific arousal (analogous
to an upper) reduces these symptoms of hy-
persensitivity. But if too much of the upper is
administered, the network can develop the op-
posite syndrome associated with overarousal.
Grossberg compared underarousal effects in
his network to observed symptoms of both ju-
venile hyperactivity and Parkinsonism. These
illnesses are frequently treated by drugs that
enhance the efficacy of the neural transmit-
ter dopamine: Ritalin (at the time Grossberg
wrote, amphetamine) for hyperactive chil-
dren and L-DOPA for Parkinson patients. The
side effects of overdoses of those drugs can
include schizophrenic-like symptoms. Con-
versely, some drugs used to treat schizophren-
ics by suppressing dopamine have Parkinson-
like side effects.

Based on these analogies, Grossberg
(1984) made two experimental predictions
about sufferers from these two disorders that,
to my knowledge, have still not been tested.
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First, he suggested that hyperactive and
Parkinson patients should exhibit a weak af-
fective rebound. For example, they should
have an abnormally small reaction to halving
a reward or punishment and an abnormally
small aftereffect to halving the brightness of a
visual cue. Second, he suggested that the same
sudden increments in nonspecific arousal that
would cause an off-rebound in normals would
cause increased on-channel activity in hyper-
active and Parkinson patients. This could lead
to dishabituation, thence distractibility, by
irrelevant yet unexpected events.

The effects of overarousal in this network
are opposites of some underarousal effects.
The threshold for response to a phasic input is
reduced. But once the threshold is achieved,
the network is abnormally insensitive to in-
crements in input intensity. This is analogous
to the flatness of affect characteristic of some
kinds of schizophrenia.

Grossberg (1984) discussed neurochemi-
cal analogs for some of his network variables.
He compared overarousal to excessive activ-
ity in the diffuse synapses from the substantia
nigra (an area of the midbrain) to the cortex,
limbic system, and corpus striatum. The in-
put to the striatum plays an important role
in Parkinson’s disease. The synapses from
the substantia nigra use the neurotransmit-
ter dopamine. Contreras-Vidal and Stelmach
(1995) developed a network model, based on
Grossberg’s principles, of the effects of
Parkinsonism on both the motor and cognitive
functions of the basal ganglia and of remedi-
ation with L-DOPA.

MODELS OF HIGH-LEVEL
COGNITION

Neural networks have been applied to model-
ing many high-level cognitive processes: cat-
egorization, decision making, language un-
derstanding, and reasoning and analogy. We
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consider these in turn and then discuss the
fledgling applications of neural networks to
social psychology. Pattern categorization and
classification has engaged three of the best
known neural network architectures: back
propagation, ART, and BSB.

Categorization and Classification

Categorization models have been divided into
supervised and unsupervised models. Super-
vised means that there is a training set and
that the network is told to which categories
each training stimulus belongs and then ad-
justs its weights so as to categorize a more
general class of stimuli. Unsupervised means
that the system is self-organizing and picks
out the regularity in the stimuli it receives,
a process often called clustering. The back-
propagation model is entirely supervised. The
ART and BSB models were originally unsu-
pervised but added supervision later on. The
brain probably uses a mixture of unsuper-
vised architectures, which enable it to detect
regularity in the environment, and supervised
architectures, which enable it to learn simi-
lar responses to dissimilar stimuli based on
feedback from the environment (e.g., which
mushrooms are poisonous or edible and which
phonetic distinctions one should not make in
a given language).

Neural networks for supervised learning
of predetermined classifications date back
to Rosenblatt (1962; cf. the second section
of this chapter) and were developed fur-
ther by Rumelhart et al. (1986) in the back-
propagation architecture. To illustrate use of
back propagation in a specific problem do-
main, they taught the network to discriminate
between a “T” and a “C” regardless of po-
sition or orientation in the visual field. Fig-
ure 6.18 illustrates the different rotations of
the T and C. Translation invariance is achieved
by adding an additional transformation to the
rule for learning input-to-hidden-unit connec-

[Image not available in this electronic edition.]

Figure 6.18 Stimulus set for the T-versus-C
problem. The set consists of a block T and a block
C in each of four orientations. One of the eight pat-
terns is presented on each trial.
SOURCE: Reprinted from Rumelhart et al. (1986)
with permission of MIT Press.

tions. To make the learning of a pattern inde-
pendent of its location in the visual field, all
hidden units are constrained to learn exactly
the same pattern of weights. This is accom-
plished by adding together the weight changes
dictated by the error correction rule for each
unit and then changing all weights by averages
of those amounts.

The unsupervised version of ART is best
introduced in Carpenter and Grossberg
(1987a), which describes the ART 1 model
for classifying binary (0 or 1 to each node) in-
puts. Modifications of this algorithm for clas-
sifying analog (running over a range, e.g., be-
tween 0 and 1) inputs are ART 2 (Carpenter &
Grossberg, 1987b) and fuzzy ART (Carpenter,
Grossberg, & Rosen, 1991). The architec-
tures of all these networks were based on the
idea of adaptive resonant feedback between
two layers of nodes (Grossberg, 1976b; see
Section 3.2).

Figure 6.19 illustrates the structures of
ART 1. The F; layer consists of nodes re-
sponding to input features, analogous to cell
groups in a sensory area of cortex. The F,
layer consists of nodes responding to cat-
egories of F; node activity patterns. Con-
nection weights between the two layers are
learnable in both directions. The F; nodes do
not directly interact with each other, but the
F, nodes are connected via recurrent lateral
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Figure 6.19 ART 1 architecture. Short-term memory at the feature level F and category level F,,
and bottom-up and top-down interlevel long-term memory traces, are modulated by other nodes. The
orienting system generates a reset wave at F, when bottom-up and top-down patterns mismatch at Fj,
that is, when the ratio of F; activity to input activity is less than vigilance r. This wave tends to inhibit
recently active F, nodes. (Adapted from Carpenter & Grossberg, 1987, with permission of Academic

Press.)

inhibition (cf. the third section of this chap-
ter). Recall that lateral inhibition is a common
device in neural networks for making choices
in STM. In this version, the simplest form of
choice (winner-take-all) is made: Only the F,
node receiving the largest signal from F| be-
comes active. Inhibition from F, to F; (via
“gain control” nodes) prevents F, activity
from always exciting Fy, thereby preventing
“hallucinations” from occurring when a cat-
egory node is active. Also, it shuts off most
neural activity at F if there is mismatch be-
tween the input pattern and the active cate-
gory’s prototype. Only with a sufficient match
are enough of the same F) nodes excited by
both the input and the active F; category node,
which is needed to overcome nonspecific in-
hibition from F,. The criterion for match uses
an adjustable parameter, called vigilance, that
determines category size.

If match occurs, enhanced F; activity in-
hibits the activity of the node r representing
the orienting subsystem. This stabilizes the

categorization of the given input pattern in
the given F, node. By contrast, if mismatch
occurs, F activity is not sufficient to inhibit
r, which thereby becomes active. The orient-
ing system node activity leads to F, reset,
which shuts off the active category node as
long as the current input is present. The F,
node receiving the next largest F signal is
then tested, and the process is repeated.
Supervision was added to the ART struc-
ture in the ARTMAP network of Carpenter,
Grossberg, and Reynolds (1991). ARTMAP
is an autonomous learning network that learns
the association between two sets of categories
based on predictive success. This supervised
learning system consists of a pair of ART
modules (ART, and ART},). These ART mod-
ules learn stable recognition categories in re-
sponse to the inputs at their feature layers.
They are joined by an internal controller that
enables an association to be formed between
the categories learned in each ART module.
During training, the ART, module receives a
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set of input vectors, and ART}, receives a set
of input patterns, each of which is the correct
prediction given one of the ART, vectors. If
there is a predictive error at ARTy, then the
map field orienting subsystem adjusts the vig-
ilance parameter of ART, so that the category
size of the ART, input is adjusted to minimize
this error. For example, if ART, and ART,
categorize bananas based on visual and taste
features respectively, then green and yellow
bananas can share the common features of the
banana category in ART, and still can predict
different taste categories in ARTy. This can
be achieved in training by feeding back the
taste information from ART}, to enable ART,
to form different categories for these two
kinds.

The BSB model (Anderson et al., 1977,
Anderson & Murphy, 1986) associates vec-
tor patterns of activities at a set of nodes
with other patterns at the same nodes. The
matrix consisting of the connection weights
between nodes provides feedback that trans-
forms the pattern. The network then converges
to one of the characteristic system states corre-
sponding to corners of a box in n-dimensional
space (n being the number of nodes). Catego-
rization of the original input pattern is based
on whichever of these corners is reached.
The BSB model is applicable to both au-
toassociative and heteroassociative encoding
(see the section titled “Autoassociation and
Heteroassociation”).

This algorithm represents positive feed-
back as it might occur in the brain, due to
the past operation of a Hebbian associative
learning law. This feedback has the desirable
property of enhancing significant activities or
stimuli, but often has an additional property
that is undesirable. Repeated application to a
pattern vector will drive the state of the system
outside the box, that is, cause values of some
or all of the x; to get outside the bounds of the
system. To prevent activities from becoming
unbounded, Anderson et al. (1977) imposed

an additional rule whereby if any one of the
activities becomes greater or less than the lim-
its imposed by the box, it is reset to the closest
limiting value. Hence, the BSB model, like all
neural network models, includes a method for
keeping activities within bounds, correspond-
ing to the limits on possible neuron firing
frequencies.

Anderson and Murphy (1986) combined
BSB with an error-correction learning rule (cf.
Rumelhart & McClelland, 1986). This was
applied to processing linguistic inputs that
are converted to vectors of 1s and —1s by
means of ASCII codes. This model has re-
produced the disambiguation by context of
words with more than one meaning. Other ap-
plications of this categorization system have
included prototype learning in random-dot
patterns, retrieving medical information, clas-
sifying radar signals, learning how to do arith-
metic, and perceptually disambiguating the
Necker cube. In addition, Abdi et al. (1997)
applied an autoassociative network based not
on BSB but on a variant of Anderson (1972) to
classifying human faces by gender. The face
classification employs a modified autoassoci-
ator designed to allow for selective attention
to different parts of the feature space.

Decision Making

Most psychologists by now are very famil-
iar with Tversky and Kahneman’s (e.g., 1974,
1981) results indicating that human decision
processes violate rational utility-maximizing
norms in some systematic and repeatable
ways. The influence of nonrational factors in
cognitive tasks poses a challenge for quanti-
tative modeling but has been approached us-
ing the type of models previously used for
cognitive-emotional interactions (see the fifth
section of this chapter).

Grossberg and Gutowski (1987) applied
opponent processing (the gated dipole of
Figure 6.14) to explaining some Tversky-



Kahneman data on decision making under
risk. Previously, Kahneman and Tversky
(1979) themselves had proposed a variant of
utility theory, called prospect theory, whereby
preferences are a nonlinear function of both
gain (or loss) and its probability of occur-
rence. But prospect theory excludes the con-
text of statements and the past experience of
decision makers. Grossberg and Gutowski’s
theory considers such dynamic variables.
Recall from the last section that gated dipoles
provide a means to compare current values
of motivational or sensory variables with ex-
pected values of those same variables. Such
expectation could be based either on recent
past events or on verbally induced anticipa-
tion. The latter possibility explains Tversky
and Kahneman’s data on effects of linguistic
framing on decisions, for example, that prefer-
ences among possible public health measures
are different if framed in terms of people dy-
ing versus people saved.

Grossberg and Gutowski’s (1987) explana-
tion of Tversky and Kahneman’s choice data
is a significant but incomplete advance. Their
network still optimizes a single variable, even
if its optimization is not analogous to ratio-
nal calculation in humans. In this case, the
variable is net activity of the positive chan-
nel in a gated dipole, the dipole interpreted
as relating to affect or motivation. More re-
alistic explanations of decision processes are
likely to depend on multiple decision criteria,
including affect, habit, and novelty, and on
multiple attributes or features of the data to
be decided about. Which criterion is used de-
pends both on the cognitive task involved and
on the current state of the organism (or net-
work). Thus far, researchers have not modeled
extensive psychological data on mood and
memory.

Leven and Levine (1996) developed an ex-
tension of this gated dipole model of choice to
multiattribute decision making. These authors
modeled soft drink consumer preferences dur-
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ing the New Coke fiasco of the mid-1980s.
New Coke had outscored Coke in blind taste
tests because of its sweetness but was a fail-
ure in the market because it lacked the famil-
iarity of the earlier Coke. This suggests that
the mood change due to changed context al-
tered selective attention to different features of
soft drinks. This was modeled using a network
connecting gated dipoles for features, drives,
and drink categories, with a categorization
mechanism similar to ART (Figure 6.19) but
with feature vectors attentionally weighted as
well as associative learning of connections be-
tween drives and features. More work needs
to done on applying this model to simula-
tion of other multiattribute decision data and
on relating the decision modules to specific
brain regions. One other application of a sim-
ilar model has been to animal foraging under
predation risk (Coleman, Brown, Levine, &
Mellgren, 1998).

Neural network answers to questions about
decision processes are beginning to emerge
from physiological and biochemical data on
complex circuits, including such brain re-
gions as the association (particularly pre-
frontal) cortex, limbic system, basal ganglia,
and parts of the midbrain. Some articles edited
by Damasio, Damasio, and Christen (1995)
discuss tentative connections between brain
regions and decision making that still need to
be incorporated into neural network models.

Models of Language Understanding

The cognitive science revolution of the mid-
1980s had a strong component of linguists
as well as computer scientists and psychol-
ogists (such as Rumelhart and McClelland)
interested in language. Thus, it was not sur-
prising that many early applications of back
propagation and other PDP networks dealt
with language understanding. For example,
Rumelhart and McClelland (1986, Chap. 18)
dealt with learning past tenses of English
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verbs. Words were treated as binary pat-
terns, and the network learned transforma-
tions (such as from a word to the same word
followed by “-ed”) that it saw repeatedly
in the training set. This network reproduced
characteristic development of children’s past
tense learning. In its early stages, the network
learned a few common past tenses such as go
— went and look — looked. As the network
developed, it learned the “-ed” rule and reg-
ularized irregular forms, producing either go
— goed or go — wented. Eventually it could
know the “-ed” rule and also remember ex-
ceptions, but it would tend to regularize any
new verbs it learned.

Cognitive connectionist modeling of lan-
guage has been carried out ever since then,
with back propagation networks (some non-
recurrent and some recurrent) for different lin-
guistic tasks, including both phonological and
lexical information. This has been applied par-
ticularly to mental and cognitive disorders that
impair verbal abilities. For example, Plaut and
Shallice (1994) modeled the condition called
deep dyslexia. This condition involves vary-
ing types of word errors in reading text aloud,
with a preponderance in each patient either
of semantic errors (e.g., substituting “wind”
for “blowing”) or visual errors (e.g., substitut-
ing “white” for “while”). They simulated this
form of dyslexia by selectively “lesioning”
different parts of a network that first mapped
from writing units to meaning units and from
there to sound units, with recurrent interac-
tions at meaning and sound levels via “cleanup
units.”

These language models illustrate impor-
tant distinctions and properties, and therefore
account for a range of experimental and clin-
ical data. They have not yet tapped the exten-
sive knowledge of cognitive neuroscience and
how such linguistic interactions are embodied
in the brain; this should be a major growth area
of neural networks as more such knowledge
emerges.

Models of Analogical Reasoning

A few neural network models of different
types of analogy making have appeared re-
cently. Some of them are hybrids of traditional
artificial intelligence with connectionism, and
thus are of limited interest for understand-
ing human reasoning processes. Of the fully
connectionist models, the most ambitious is
Hummel and Holyoak’s (1997) Learning and
Inference with Schemas and Analogies
(LISA) model, which deals with complex se-
mantic analogies. LISA relied on previous
models of binding particular entities to par-
ticular roles in a sentence. It was designed to
account for the two analogical processes of
“access” (i.e., how potential analogs in both
source and target domains are retrieved from
memory) and “mapping” (i.e., the working
memory process that discerns relationships
between source and target elements). Hum-
mel and Holyoak’s model can account for
various psychological data on differential fac-
tors influencing access and mapping. Hence,
it reproduced characteristic human patterns of
analogical inference, such as learning close
and natural analogies better than logically
consistent but contrived analogies. The limita-
tions of this model are that it relies heavily on
the assumed previous learning of very high-
level abstract concepts and that its structure
does not appear to be based in any way on bi-
ologically realistic models of simpler mental
processes.

Jani and Levine (2000) worked with sim-
pler proportional analogies (e.g., apple : red ::
banana : ?) in an attempt to understand the
basics of a process that begins at a young
age (typically about 2 to 3) in humans. Their
model was based on adaptive resonance
(Carpenter & Grossberg, 1987) with the addi-
tion of modules that represented characteris-
tic transformations such as adding, deleting,
keeping, or changing an item and a form of
“weight transport” that allows generalizing



from “keep red” to “keep color.” It reproduced
several simple proportional analogies and al-
lowed for queries such as “What is the color of
an apple?” However, this network fell short of
a theory of how analogies might be encoded
in the brain. Such neurally realistic models
probably depend on more detailed brain imag-
ing data: Some results indicate parietal, pre-
frontal, and cingulate cortices as being in-
volved in reasoning tasks, but the details of
what area is involved in what stage of the task
have yet to be discovered.

Applications to Social Psychology

A few neural network models of social-
psychological phenomena are reviewed in the
collection edited by Read and Miller (1998).
These models cover person perception and
impression formation, stereotyping and so-
cial categorization, causal attribution, per-
sonality and behavior, attitudes and beliefs
(including cognitive dissonance), and social
influence and group interaction. These are
mostly based on the recurrent form of the
back-propagation network. The nodes in these
networks represent neither brain regions nor
all-purpose cognitive modules but rather in-
terrelated cognitive entities; for example, in
a model of a cognitive dissonance paradigm
involving children being punished for playing
with an attractive toy, the nodes included eval-
uation, play, and threat. Other models in this
same general vein include the work of Westen
(1999) on judgment of President Clinton’s
sexual conduct by people with different po-
litical opinions, and of Brown, Tumeo, Larey,
and Paulus (1998) on creativity in group
brainstorming.

As with many models of language and
mental disorders, these social-psychology
models do not yet incorporate principles (cf.
Table 6.2) that govern the processes by which
the brain achieves effective interactions with a
complex environment. However, these recur-
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rent connectionist models capture some rela-
tionships among social cognitions that need
to be included in models that are more brain-
like and therefore more likely to be predictive
of human behavior. Predictive models may be
derived from extending models of other cog-
nitive phenomena: For example, a model of
stereotyping might be based on the work of
Furl (1999), who extended the ART catego-
rization model (Carpenter & Grossberg, 1987)
to include property inheritance and exception
learning.

CONCLUSIONS

The work reviewed herein indicates that neu-
ral network modeling is extremely diverse and
that there is no standard way to construct mod-
els. My own recommendation to the psychol-
ogist wishing to become involved in model-
ing is to become as familiar as possible with
the principles outlined in Table 6.2. That is,
he or she should learn how researchers have
employed associative learning, lateral inhibi-
tion (shunting and additive, recurrent and non-
recurrent), opponent processing, neuromod-
ulation, resonant feedback, error correction,
and other network constructs in models of
different phenomena as well as what types
of cognitive constraints each of these princi-
ples enables the network to satisfy (the table
briefly summarizes those constraints). Other
sources on the use of these principles include
Grossberg (1980), Hestenes (1992), Levine
(2000), and—for relationships with cognitive
psychology—Martindale (1991). Also, famil-
iarity with brain regions relevant to the pro-
cess being modeled, as suggested by human
imaging and EEG and animal neurophysi-
ological studies, helps to constrain network
designs.

In much of cognitive and social psychol-
ogy, the brain mechanisms involved in gener-
ating the behavior are only dimly known, and
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qualitative models based on PDP mechanisms
(Rumelhart & McClelland, 1986) are useful.
For that type of modeling, a great deal of soft-
ware is available on the Internet and commer-
cially. However, enough is known about inter-
relationships among psychological processes
that even in these areas of psychology one can
venture to construct more brain-like models.
For this purpose, again, what is most impor-
tant is a knowledge of principles such as those
of Table 6.2 and of the cognitive neuroscience
of relevant brain regions. This type of model-
ing requires flexibility: For example, someone
modeling a process that includes categoriza-
tion (of personalities, percepts, or whatever)
might build on the adaptive resonance model
(Carpenter & Grossberg, 1987) but adapt the
details of control of interlevel connections in
that model to fit the constraints of the data
set one is trying to model. Similarly, some-
one modeling a process that involves oppo-
nent processing or enhancement of novel per-
cepts might adapt the gated dipole (Grossberg,
1972a, 1972b) to fit the constraints of the
data set.

Because flexibility is desired for this richer
type of modeling, my opinion is that almost
any commercially available neural network
software is too restrictive. Several research
groups have worked on developing object-
oriented software so that particular structures
might be taken as adaptable submodules, but
I have found this approach difficult to master.
A better course is to use a high-level program-
ming language such as C++, Mathematica, or
Matlab (the latter two are particularly good
for graphing), to write equations for network
interactions, and to use the ordinary differ-
ential equation or difference equation solv-
ing program within that language. The ability
to translate network interactions into equa-
tions does not require advanced mathemati-
cal knowledge (e.g., a course in differential
equations). It does require some familiarity
with the calculus notion of a derivative as a
rate of change and with a few mathematical

rules such as using a minus sign for inhibition,
a plus sign for multiplication, and particular
types of multiplication for shunting interac-
tions or for transmitter modulation; these rules
are discussed, with fragments of simulation
code, in Levine (2000, Appendix 2).

This type of neural network modeling
(which is also called, by some biological
purists, computational neuroscience) plays a
major role in providing bridges between psy-
chology and neuroscience. It is also bridg-
ing some gaps between different speciali-
ties and schools within psychology (Staats,
1999; Tryon, 1995) and thereby contributing
to the conceptual foundations of psychology
itself.
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CHAPTER 7

Parallel and Serial Processing

GORDON D. LOGAN

INTRODUCTION

Iremember myself as a preschooler asking my
mother whether a person could do two things
at once. I remember where we stood in the
hallway when I asked the question, and I re-
member her answer: “Sometimes you can and
sometimes you can’t. It depends.” I remember
not being very satisfied with that answer. Too
many years later, I find myself an expert on the
question. I earned my doctorate asking it, and
I'spent a good part of my career asking it. After
all this experience, my expert answer is this:
Sometimes you can process things in parallel,
and sometimes you process things in series. It
depends. My mother was right all along, and
my expert answer is no more satisfying than
hers. In my expert opinion, the problem lies
in the question, not in the answer. The ques-
tion of parallel versus serial processing can
be answered meaningfully only in the context
of other issues and other concepts—the things
on which “it depends.”

A major difficulty in answering the ques-
tion lies in knowing what the answer means.
How could one tell if processing were paral-
lel or serial? In many ways, serial processes
behave like parallel ones. They are affected
similarly by experimental manipulations. One
can trace the logic from the assumption of par-
allel versus serial processing to prediction of
reaction time (RT) and accuracy, and the pre-
dictions are often very similar. This makes it

hard, if not impossible, to argue from the data
back to the theory. There are two routes to the
same end, and given the end point, one cannot
tell which route was taken. When parallel and
serial processing predict the same results, the
results do not distinguish the theories. This
is the problem of mimicry. I was also into
mimicry at an early age—it was a good way
to annoy my brother Jack—but those experi-
ences are more relevant to abnormal than to
experimental psychology.

My purpose in writing this chapter is to
discuss the methods that people use to ask
whether processing is parallel or serial. In the
years since I first asked my mother the ques-
tion, researchers have been asking Mother
Nature the same thing. They learned a lot
about the things on which “it depends.” Much
of the progress involved understanding the
mimicry problem and finding ways to solve it.
At the same time, researchers investigating at-
tention and memory found themselves having
to ask questions about serial versus parallel
processing. They, too, made a lot of progress,
though their conclusions were usually more
specific. My goal is to explain the ways in
which people ask the question and the issues
that they confront in doing so. This chapter is
intended more as a guidebook to orient people
to the issues than as a user’s manual to teach
specific methods (for reviews of the various
issues, see J. Miller, 1988; Townsend, 1990;
Van Zandt & Townsend, 1993).
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BASIC DEFINITION cesses, A and B. If A and B go on simulta-

neously, then processing is parallel. If A pre-
Put most simply, the question of parallel ver- cedes B or B precedes A, then processing is
sus serial processing is about simultaneity and  serial. Parallel and serial processing are illus-
precedence in processing. Imagine two pro- trated in the top two panels of Figure 7.1. The

Single Task Dual Task
Parallel . A " P LA LIM
P - M
B P B M
Serial
P F’LA Lyl M

Cascaded

p 4;%& M
P AL B M

PRSI

Overlapping
P M

Figure 7.1 Varieties of parallel and serial processing.

NOTE: The boxes represent stages of processing, and the arrows represent information flow between
the boxes. The letters on the boxes represent different processes. P represents perceptual processes, M
represents motor processes, and A and B represent central processes. The left column represents single-
task situations, and the right column represents dual-task situations. The top row represents parallel
processes; A and B are simultaneous, and neither precedes the other. The second row represents serial
processes. A and B are never simultaneous. A begins and ends before B begins. The third row represents
cascaded processes. B begins before A finishes, and A begins to transmit information to B before A
finishes. A and B are simultaneous, but A precedes B. The bottom row represents overlapping processes.
A and B begin at different times but run simultaneously for some period.



left column represents the processes under-
lying performance of a single task (i.e., pro-
ducing a single response to a single stimulus),
and the right column represents the processes
underlying performance in a dual task (i.e.,
producing two responses to two stimuli). In
the parallel processing examples, A and B be-
gin at the same time and end at the same time.
In the serial processing examples, A begins
and ends before B.

The simple question of whether process-
ing is parallel or serial has intrigued every
generation of cognitive psychologists. In the
1950s Broadbent (1957, 1958) argued that
sensory processes were parallel and that cog-
nitive (“perceptual”) processes were serial.
In the 1960s Sternberg (1966, 1969) argued
that short-term memory scanning was serial
rather than parallel. In the 1970s Shiffrin and
Schneider (1977) argued that automatic pro-
cesses were parallel and that controlled pro-
cesses were serial. In the 1980s Treisman
and colleagues (Treisman & Gelade, 1980;
Treisman & Schmidt, 1982) argued that fea-
ture search was parallel and that conjunction
search was serial. In the 1990s Meyer and
Kieras (1997) argued that dual tasks could be
performed in parallel, contradicting conven-
tional wisdom, which says that dual tasks are
carried out strictly in series (e.g., Pashler &
Johnston, 1989; Welford, 1952). Also in the
1990s Rickard (1997) and I (Logan, 1988)
argued over the serial nature of memory re-
trieval (see also Delaney, Reder, Straszewski,
& Ritter, 1998). Many of these issues are
not resolved, and the arguments will continue
throughout the new century.

The zeitgeist has changed considerably
over the generations, and the relative plau-
sibility of serial and parallel processing has
changed with it. In the early years, when
the idea that mind is computation first took
hold, people took the serial nature of compu-
tation quite seriously. Computers were serial,
and people took the mind-as-serial-computer
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analogy quite literally. They were more likely
to think of processing as serial than parallel.
Inrecent years, at the end of the “decade of the
brain,” people have been impressed with the
massive parallel nature of the brain and seem
more likely to think that processing is parallel
because that seems more brain-like than does
serial processing. How serial behavior can
emerge from a parallel brain has become an
important question once again (see Lashley,
1951). I presume that the brain and the way
it implements thinking have not changed with
the zeitgeist.

COMPLICATIONS

The simple question of whether processing is
parallel or serial is seductive because it seems
so easy to answer. One need only be able to
detect process A and process B and measure
the times at which they occur. This turns out
to be harder than it seems. There is no direct
way to observe the occurrence of mental pro-
cesses. One must infer their existence from
changes in behavior that result from experi-
mental manipulations. Most investigations of
serial and parallel processing focus on accu-
racy and RT in relatively simple tasks. Ac-
curacy and RT are final outcome measures
that reflect the combined effects of all pro-
cesses that go into producing a response. Most
often, the question of serial or parallel pro-
cessing concerns only some of the processes
that contribute to a response, and separating
the interesting processes from the uninterest-
ing ones makes the inference from behavior
to theoretical processes more complicated. In
order to have a theory of the processes of in-
terest, one must have also some kind of the-
ory of the other processes and of how they
combine to perform the whole task. The other
processes may interact with the process of in-
terest, and clever experiments may have to
be done to tease them apart. Even with the
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cleverest experiment, the chain of inference
from observation to conclusion grows more
complex.

Researchers have responded to these com-
plications in two ways. One, which might be
called the general class approach, is to create
general classes of theory by combining binary
(or ternary) distinctions among theories and
then deriving in-principle predictions that dis-
tinguish the classes. To use a familiar exam-
ple, visual search may be either parallel or se-
rial and either exhaustive or self-terminating.
The factorial combination yields four general
classes of models from which predictions can
be derived and tested (and these will be con-
sidered in the next section). Perhaps the most
important results from this approach concern
mimicry, showing that some models make the
same predictions as other models so that ob-
servation of the predicted effects cannot dis-
tinguish the models.

The alternative approach, which might be
called the specific theory approach, is to pro-
pose theories that account for specific sets
of experimental data (e.g., Bundesen, 1990;
Cave & Wolfe, 1990; Humphreys & Miiller,
1993; Logan, 1996; Meyer & Kieras, 1997;
Wolfe, 1994). Creating these theories requires
making decisions about the binary distinc-
tions studied in the other approach, so the
general theories may fit into some category
in the general class approach. The focus is
different, however. The theories are often in-
terpreted as models of the computations that
underlie performance in the tasks they ad-
dress, and the focus is on the nature of the
computation and the way it is executed rather
than on general properties of the computa-
tion, such as serial versus parallel process-
ing. The most important results from this ap-
proach may be an increased understanding of
the computational problems that underlie cog-
nition and the discovery of some ways to solve
them.

This chapter is organized around these two
approaches to the problem of complexity. The
main topics are organized around the general
class approach, introducing the complexities
one by one. The different complexities high-
light different empirical situations and, con-
sequently, illustrate different specific theories.
Thus, the specific theory approach is embed-
ded in the general class approach.

FOUR BASIC DISTINCTIONS

The general class approach involves making
broad distinctions between classes of mod-
els and combining distinctions factorially to
produce subclasses of models that differ from
each other in fundamental ways. Most of the
work has focused on four binary distinctions
that combine to produce 16 classes of theory:
parallel versus serial processing, discrete ver-
sus continuous processing, limited versus un-
limited capacity, and self-terminating versus
exhaustive search. From the perspective of
this chapter, parallel versus serial processing
is the focal distinction, and the others are com-
plications. I begin with discrete versus contin-
uous processing because it is the most general
complication.

Discrete versus Continuous Processing

The first broad distinction is between discrete
and continuous processes. Discrete processes
transmit the information that they produce in a
single step at a discrete point in time. Discrete
transmission implies that processes begin and
end at discrete points in time; they begin when
they receive input (a transmission from a log-
ically precedent process), and they end when
they give output (a transmission to a logically
subsequent process). The idea of discrete pro-
cessing has been with us since the beginning
of experimental psychology (e.g., Donders,



1868). It prevailed throughout history (e.g.,
Sternberg, 1969), and it prevails today (e.g.,
Meyer & Kieras, 1997; Pashler & Johnston,
1989). The assumption of discrete processing
makes formal modeling easier. It allows the
modeler to derive predictions that are clear
and intuitively compelling. Consequently, it
has been popular among theorists. Indeed,
much of the formal work on serial versus par-
allel processing that was done in the general
class approach assumes discrete processing.
Discrete processes fit the simple definitions
of parallel and serial processing nicely. If A
and B are discrete processes that are part of the
same task, then they are serial if one precedes
the other and parallel if they are simultane-
ous. The most commonly used techniques for
analyzing RT assume discrete processing, in-
cluding Donders’ (1868) subtractive method,
Sternberg’s (1969) additive factors method,
and the various analyses derived from them
(e.g., Fisher & Goldstein, 1983; Goldstein
& Fisher, 1991; Pashler & Johnston,
1989; Schweickert, 1978; Schweickert &
Townsend, 1989; Townsend & Schweickert,
1989).

Donders’ (1868) subtractive method as-
sumes that RT is the sum of the durations of
a series of stages that extend from stimulus
to response. Different tasks require different
stages and different numbers of stages. The
subtractive method considers special cases in
which two tasks differ in exactly one stage; the
remaining stages are the same in both tasks.
In these special cases, the duration of the extra
stage can be estimated by subtracting RT for
the simpler task from RT for the more com-
plex task. Sternberg’s (1969) additive factors
method also assumes that RT is the sum of
the durations of a series of stages, but the goal
is to identify processing stages rather than to
estimate their durations. Stages are identified
with experimental variables that affect them.
Variables that affect different stages will have
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additive effects because the durations of dif-
ferent stages add together to produce RT.
Variables that affect the same stage will inter-
act in a superadditive manner. Both methods
assume discrete stages.

The alternative continuous processes trans-
mit the information they produce gradually
in an infinite number of infinitesimally small
steps. Their beginning points and end points
are not so clear, nor is the point at which
they begin transmitting information to logi-
cally subsequent processes. It is clear, how-
ever, that logically subsequent processes can
begin well before logically prior processes
end. Continuous processes constantly report
their current state to subsequent processes.
Small changes in the current state propagate
rapidly to the next stage and begin to affect
its processing well before either stage has ac-
cumulated enough change to finish process-
ing. Precedent processes are active simulta-
neously. Thus, continuous processes do not
fit nicely into the simple definition of paral-
lel and serial processes. The logical and tem-
poral precedence suggest that processing is
serial, but the simultaneous processing sug-
gests that processing is parallel. To escape
this quandary, some researchers refer to pro-
cesses like this as cascaded, which reflects the
mixture of precedence and simultaneity (e.g.,
McClelland, 1979). Other researchers think
of continuous processes as parallel. Cascaded
processes are illustrated in the third row of
Figure 7.1. Single-task processing is on the
left, and dual task processing is on the right.

Processes that are not continuous may be
precedent and simultaneous if the precedence
is only temporal and not logical (i.e., if the
stage that begins second does not require
information from the stage that begins first).
In these cases, the processes may be dis-
crete and parallel. Consider a single-task sit-
uation in which A and B are discrete parallel
processes preceded by processes P’ and P”,
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respectively. If P” takes longer than P’, A will
start before B. At some later point, they both
operate simultaneously. This is illustrated in
the left side of the bottom row in Figure 7.1.
In this case, the simultaneity and precedence
of A and B do not require one to assume that
they are continuous stages.

In dual-task situations, process A may be
part of one task, and process B may be part
of the other. Process A may begin before B,
and thus be precedent, but A may end after
B begins, and thus be simultaneous. In this
case, the precedence is due to stimulus condi-
tions (e.g., stimulus onset asynchrony) or to
differences in the durations of processes prior
to A and B. There is no logical contingency
between A and B because they are parts of
different tasks. Processes A and B are paral-
lel and could be discrete. Their simultaneity
and precedence do not require one to assume
that they are continuous. Overlapping dual-
task processes are illustrated in the bottom-
right row of Figure 7.1.

A second case of precedent but simultane-
ous processing can occur in continuous tasks,
such as typing, in which there is a chain
of precedent processes and each process is
active all the time. The discrete processing
assumption can be salvaged if the differ-
ent processes operate on different parts of
the input. In typing “red ball,” for exam-
ple, perceptual processes may be working on
“ball” while motor processes are busy with
“red” (see, e.g., Butsch, 1932; Inhoff, Briihl,
Bohemier, & Wang, 1992). An individual in-
put would still be processed discretely, acti-
vating only one process at a time and jump-
ing from one process to the next in a single
discrete step. Jolicoeur, Tombu, Oriet, and
Stevanovsky (in press) call this sort of pro-
cessing pipelining. Pipelining speeds perfor-
mance by allowing the system as a whole to
process several inputs concurrently (in par-
allel) while each component of the system
processes its input discretely (in series). For

example, a three-stage model could process
three inputs concurrently if each stage took the
next input as soon as it was finished with the
current one. By analogy, it takes four hours to
build a single car in an assembly line, but the
different stations on the line work on differ-
ent cars at the same time, so the lag between
successive cars is very short. The four-hours-
per-car pipeline produces several cars in a
single hour. Pipelining may save the discrete
stage assumption, but it does not require it.
Continuous processes may also be pipelined.
It is interesting that the major formal theory
of typewriting assumes continuous processing
(Rumelhart & Norman, 1982).

Continuous processing has had a much
shorter history than has discrete processing.
It was proposed first around 1980 (e.g., C. W.
Eriksen & Schultz, 1979; McClelland, 1979)
as an alternative to discrete stage analyses
of RT. Shortly afterward, the connectionist
revolution began and adopted continuous
processing as a fundamental assumption.
Continuous processing is the “parallel” part
of “parallel distributed processing” (e.g.,
McClelland, Rumelhart, & the PDP Research
Group, 1986). Many connectionist models
address response probability rather than RT
and so do not address the issue of parallel
versus serial processing in the usual sense.
Connectionist approaches to RT are often very
complicated and require simulation instead
of mathematical analysis, and that makes it
hard to produce general predictions (but see
McClelland, 1993).

As J. Miller (1988, 1993) pointed out, dis-
crete and continuous processes are at opposite
ends of a continuum. Miller argued that infor-
mation passes from one stage to another in
chunks that can vary in size. The continuum
that links discrete and continuous processes
is defined by the chunk-size variable, which
Miller called grain size. Grain size is deter-
mined by the number of chunks that must
accumulate before processing terminates.



Discrete processes have the largest grain;
processing terminates when one chunk is pro-
duced. Continuous processes have the small-
est grain; processing terminates when an in-
finite number of infinitesimally small chunks
are produced. Processes in the middle of the
continuum have intermediate grain. Several
chunks must be accumulated before process-
ing terminates.

The issue of discrete versus continuous
processing was a central focus of the empirical
literature in the 1980s and 1990s, and the bulk
of the evidence appears to contradict strictly
discrete processes. Behavioral experiments
by J. Miller showed evidence of continuous
processing (e.g., 1982a, 1983, 1987). Meyer,
Irwin, Osman, and Kounois (1988) found ev-
idence of partial information with a response
signal method that required subjects to re-
spond on signal even if they had not finished
processing. Psychophysiological experiments
by Coles and colleagues showed evidence
of concurrent, subthreshold activation of
competing responses in electromyographic
(EMG; Coles, Gratton, Bashore, Eriksen, &
Donchin, 1985) and electroencephalographic
(EEG; Gratton, Coles, Sirevaag, Eriksen, &
Donchin, 1988) data in the B. A. Eriksen
and Eriksen (1974) flanker task. J. Miller and
Hackley (1992) and Osman, Bashore, Coles,
and Donchin (1992) showed evidence of sub-
threshold activation of responses on no-go tri-
als in go/no-go tasks. These data may rule out
pure discrete processes, in which one chunk
is enough to terminate processing, but they
do not distinguish between continuous and in-
termediate grain-size partial-information dis-
crete processes (see J. Miller, 1988; see also
Meyer et al., 1988, vs. Ratcliff, 1988).

Limited versus Unlimited Capacity

The idea that the capacity for processing in-
formation is limited has been an essential
part of cognitive psychology since the 1950s,
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particularly in research on attention (e.g.,
Broadbent, 1958) and memory (e.g., G. A.
Miller, 1956). The idea that capacity may not
always be limited has been a part of cogni-
tive psychology for justas long (e.g., Sperling,
1960). Many careers have been made in decid-
ing whether particular processes are limited or
unlimited in capacity. The capacity issue in-
tersects the parallel versus serial processing
issue because limited capacity processes are
often thought of as serial whereas unlimited
capacity processes are often thought of as par-
allel (e.g., Treisman & Gelade, 1980; Van der
Heijden, 1992). Parallel processes need not
be unlimited in capacity. Indeed, resource or
general capacity theories often assume par-
allel allocation of a limited pool of “men-
tal energy” (e.g., Kahneman, 1973; Navon &
Gopher, 1979; Norman & Bobrow, 1975), so
processing is parallel but limited in capacity.

In the modern attention literature, the idea
that serial processing is limited in capacity
and parallel processing is unlimited in ca-
pacity plays out in two lines of investiga-
tion. One is the visual search literature that
distinguishes between preattentive processes
that are parallel and unlimited in capacity
and focal attentive processes that are serial
and limited in capacity (Cave & Wolfe, 1990;
Duncan & Humphreys, 1989; Humphreys
& Miiller, 1993; Treisman & Gelade, 1980;
Wolfe, 1994). The other is the memory and
skill acquisition literature that distinguishes
between automatic processing that is paral-
lel and unlimited in capacity and controlled,
strategic, effortful, or attentional processing
that is serial and limited in capacity (Jacoby,
1991; Logan, 1988; Shiffrin & Schneider,
1977).

Processing capacity can be defined as the
rate at which information is processed, ex-
pressed in units of information per unit time
(Townsend & Ashby, 1983; Wenger &
Townsend, 2000). From this perspective,
capacity limitations are defined in terms of
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changes in the processing rate for a particular
element when another element is added to the
task. Capacity is unlimited if the processing
rate does not change when another element is
added to the task. That is,

v(x, i)y = v(x, i)N-1 ey

where v(x, i)y is the rate at which object x
is compared to category i when there are N
elements in the task, and v(x, i) y_; is the rate
at which object x is compared to category i
when there are N — 1 elements in the task.
Capacity is limited if the processing rate slows
down when another element is added to the
task. That is,

vix, )y <v(x,i)y_1. 2)

Capacity is fixed if, when another element
is added, the processing rate decreases in a
manner in which the sum of the processing
rates over all elements in the task remains con-
stant. If capacity is allocated equally to all N
elements, then

3

v(x, Dy =v(x, )N-1 N

If capacity is fixed and capacity allocation is
not equal, then there is little constraint on a
particular processing rate. The sum of rates
is constrained to add to a constant C, but the
amount allocated to a particular process can
vary between O and C. The rate of process-
ing for a particular process may even increase
(e.g., if the person shifted from dividing at-
tention among elements to focusing primarily
on one element). Limited and fixed capacity
are very hard to distinguish from each other.

Capacity and Resources

The idea of capacity is often confused with
the idea of processing resources. Sometimes
researchers use the terms interchangeably. In
my view, however, “capacity” and “resources”
have distinctly different meanings and one
does not necessarily imply the other. The term

“capacity” is relatively neutral theoretically;
capacity is simply a rate measure, the amount
of information processed per unit time. The
term “resource” embeds the idea of capac-
ity in complex theories of attention and per-
formance that make many more assumptions
than the simple assertion that performance can
be measured in terms of processing rate (e.g.,
Kahneman, 1973; Navon & Gopher, 1979;
Norman & Bobrow, 1975). Resource theo-
ries assume that capacity is fixed or severely
limited, that capacity is a kind of mental en-
ergy that can be allocated selectively to acti-
vate mental processes, that capacity can be
allocated in parallel, and that performance
changes smoothly as capacity is added and
withdrawn (Logan, 1997; Navon, 1984). Each
of these additional assumptions is controver-
sial, and not one of them is implied by the
idea of capacity as a measure of processing
rate. Resource theory may imply limited or
fixed capacity, but limited or fixed capacity
does not imply resource theory. Researchers
should only say “resource” if they mean it.
They should not say “resource” when they
mean “capacity.”

Capacity Limitations and Load Effects

Many investigations of search tasks and dual
tasks manipulate processing load. In search
tasks, load depends on the number of items
to be processed (i.e., the number of items in
a search display, the number of items in a set
of targets to be compared with the display,
or both). In dual tasks, load depends on the
difficulty of one or both tasks. Many people
interpret load effects as evidence for capacity
limitation. However, load effects can occur for
several reasons other than capacity limitations
(see, e.g., Duncan, 1980; Navon, 1984). The
occurrence of load effects depends in part on
the assumptions one makes about the cogni-
tive architecture in which processing occurs.
Load effects occur regardless of capacity lim-
itations in certain independent race models



(e.g., Bundesen, 1990) and in equivalent Luce
choice models (e.g., Luce, 1963). Consider an
independent race model in which N objects in
the display race to be categorized as members
of category i. If the distributions of finishing
times are exponential in form, then the prob-
ability that object x wins the race is given by
. v(x, i)
P(xisi”) = ——. “4)
> vz i)
=1

Marley and Colonius (1992) and Bundesen
(1993) showed that independent race models
such as this one are equivalent to Luce choice
models in the sense that one can construct
an independent race model that mimics the
choice probabilities of any given Luce choice
model. Consequently, Equation (4) describes
response probabilities in Luce choice models
as well as in independent race models.

Now consider what happens when another
item is added to the display, so that N in-
creases by 1. If processing capacity is fixed,
P(“x is i) will decrease because v(x, i) in
the numerator of Equation (4) must decrease
so that the sum of processing rates over the
display—that is, > v(z, i) in the denomina-
tor of Equation (1)—remains constant. If pro-
cessing capacity is limited but not fixed, P (“x
is i) will also decrease because v(x, i) de-
creases in the numerator and because the pro-
cessing rate for the Nthitem, v(N, i), is added
to the denominator, and the denominator in-
creases. If processing capacity is unlimited,
v(x, i) will remain the same in the numera-
tor, but P (“x is i) will decrease because the
processing rate for the Nth item, v(N, i), will
be added to the denominator. Thus, for inde-
pendent exponentially distributed race models
and Luce choice models, load affects response
probability whether capacity is fixed, limited,
or unlimited. Therefore, contrary to popular
opinion, the observation of load effects does
not indicate fixed or limited capacity (see also
Duncan, 1980; Navon, 1984).
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Functional and Stochastic Independence

Fixed or limited capacity suggests a kind of
dependence among concurrent processes in
that the rate of processing one element de-
pends on the number of concurrently pro-
cessed elements. However, formal models of
fixed and limited capacity processes often as-
sume independence. These ideas may seem
contradictory, but they are not. They reflect
different kinds of independence: functional
independence and stochastic independence,
respectively. Processes A and B are stochasti-
cally independent if the probability that A and
B occur together is the product of the proba-
bilities that each occurs separately. That is,

P(ANB) = P(A)P(B). (5)

One tests stochastic independence by manipu-
lating P(A) and P (B) and observing changes
in P(AN B).If it remains predictable through
the relationship in Equation (5), then A and
B are stochastically independent. If it departs
significantly from the relationship in Equation
(5), then A and B are not stochastically in-
dependent. Stochastic independence is a very
important assumption in mathematical model-
ing of parallel and serial processing. It simpli-
fies the mathematics tremendously (see, e.g.,
Townsend & Ashby, 1983).

Processes A and B are functionally inde-
pendent if the probability that A occurs is not
correlated with the probability that B occurs.
One tests functional independence by manip-
ulating P (A) and observing changes in P (B).
If P(B) does not change when P (A) changes,
then A and B are functionally independent.
If P(B) changes when P(A) changes, then
A and B are functionally dependent. Func-
tional independence has been important in
studies in cognitive psychology and neuropsy-
chology that rely on the logic of dissocia-
tions (e.g., Kelley & Lindsay, 1996). A dis-
sociation occurs when a factor affects two
processes differently—when processes are
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functionally independent or negatively corre-
lated. Functional independence represents a
single dissociation; negative correlation rep-
resents a double dissociation.

Researchers often confuse stochastic and
functional independence even though they are
quite distinct conceptually. The two kinds
of independence are tested by manipulat-
ing the same probability— P (A)—but con-
clusions about them are based on different
probabilities. Stochastic independence rests
on changes in P(A N B) when P(A) is ma-
nipulated; functional independence rests on
changes in P(B) when P(A) is manipulated.
Relationships between P(A N B) and P(A)
are separate from relationships between P (B)
and P(A), so the two kinds of independence
address different aspects of the data. In partic-
ular, the functional dependence seen in fixed
capacity and limited capacity models does not
imply stochastic dependence. In a fixed or
limited capacity system, taking capacity from
A and giving it to B would increase P(A)
and decrease P(B), signaling a violation of
functional independence. However, stochas-
tic independence rests on what happens to
P(ANB),notto P(B).If P(AN B) changes
in accord with the relationship in Equation (5),
then A and B are stochastically independent
even though they are functionally dependent.

Capacity Limitations in Search

Capacity limitations were central issues in the
memory search literature of the 1970s and the
visual search literature of the 1980s, where
they were bound together with the issue of
parallel versus serial processing. Sternberg
(1966) contrasted serial processing with par-
allel processing in his classic paper on mem-
ory search, arguing that serial processing pre-
dicted the observed linear increase in RT with
the number of items in the memory set to
which the probe was compared (memory set
size, or N), whereas parallel processing pre-
dicted a negatively accelerated increase (see

Figure 7.2 Predicted mean reaction times (RTs)
for limited-capacity (broken lines and open
squares) and unlimited-capacity (solid lines and
filled diamonds) parallel models with exponen-
tially distributed processing times.

NOTE: The rate parameter was 0.04 in both cases.

Figure 7.2). The predictions for serial process-
ing are clear: There is one comparison for
each item in the memory set, and the mean
time for successive comparisons is constant,
so RT increases linearly with N. Sternberg
modeled parallel processing by assuming that
memory search involves N independent par-
allel comparisons between the probe and the
memory set. The probe is compared against
all the items in the memory set before a deci-
sion is made (i.e., processing is exhaustive,
as discussed later), so RT is the maximum
of N independent samples from the distribu-
tion of comparison times. The maximum of
N independent samples increases as a nega-
tively accelerated function of N (see Gumbel,
1958), so RT should increase in that fashion if
processing is parallel. The data contradicted
that prediction, so Sternberg rejected parallel
models.

Townsend and Ashby (1983) presented
a derivation of Sternberg’s (1966) predic-
tion with independently and identically dis-
tributed (i.i.d.) exponential comparison pro-
cesses. There is one such process for each
of the N items in the memory set, and the



comparisons continue until all have finished
(i.e., processing is exhaustive). The time for
the last one to finish can be broken down into a
sum of intercompletion times that represents
the intervals between the finishing times of
successive processes. The N processes be-
gin together but finish at different times, and
they can be ranked in the order in which they
finish. Intercompletion time is the time be-
tween successive ranks. The processes race
against each other, each at the same rate, v.
The first completion occurs when the fastest
ofthe N processes finishes. The distribution of
finishing times for the fastest runner in a race
between exponential distributions is an expo-
nential distribution itself with a rate parame-
ter equal to the sum of the rate parameters of
all the runners in the race.! Because there are
N runners with the same rate parameter, the
rate parameter for the first comparison to fin-
ish is Nv, and the mean finishing time for the
first comparison is 1/Nv. Because the distri-
butions are exponential, the interval between
the first completion and the second is also ex-
ponentially distributed. This intercompletion
time can be thought of as a race between the
N — 1 remaining comparisons. The winner of
that race is exponentially distributed with a

!The probability density function for the minimum of two
samples’ probability density functions f(x) and g(x) is

Si) = fOOI = G+ g)[1 = F(x)]

where F(x) and G(x) are cumulative distribution func-
tions (Townsend & Ashby, 1983). If f(x) and g(x) are
both exponential with rate parameters v; and vy, respec-
tively, then the distribution of the minima of two samples
drawn from them is

Sf1(x) = v exp[—vix]lexp[—v2x]
+ vy exp[—vax]exp[—vx]
= (v1 + v2)exp[—(vi + v2)x]

which is an exponential distribution itself with a rate pa-
rameter that is the sum of the rate parameters for the two
runners in the race. This derivation can be generalized by
recursion to a race between N exponential distributions.
If the rate parameters for the different runners are all the
same, then the expected finishing time for a race between
N processes is 1/Nv.
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rate parameter of (N — 1)v and a mean fin-
ishing time of 1/(N — 1)v. The interval be-
tween the second and third comparison is also
exponentially distributed with a rate parame-
ter of (N — 2)v and a mean finishing time
of 1/(N — 2)v, and so on. Continuing this
process, mean finishing time for all N com-
parisons is

E(T)
: + : + : + -+ :
T Nv (N—Dv (N=2w v

1 1
=;Z;. (6)

It is instructive to reverse the series to see
what happens as items are added to the mem-
ory set:

1 1 1 1
E(T)—;‘F%“r:;—v“r"'-l-m.
Each successive item that is added to the mem-
ory set increases comparison time, but the
amount by which it increases gets progres-
sively smaller as N increases. This produces
negative acceleration in the function relating
mean RT to set size. This effect can be seen
in the predicted mean RTs from the i.i.d. ex-
ponential parallel (exhaustive) model plotted

in Figure 7.2.

Atkinson, Holmgren, and Juola (1969) and
Townsend (1974) noticed that Sternberg’s
(1966) parallel model assumed unlimited ca-
pacity. The rate at which individual compar-
isons were executed was the same for each
value of N; for example, in Equation (6) it is
always v. This assumption was central to the
derivation of the prediction (Gumbel, 1958),
so changing the assumption may change the
prediction. Atkinson et al. and Townsend dis-
covered that parallel processing could predict
the observed linear increase in RT with N
if capacity was fixed and it could be reallo-
cated as soon as a comparison was finished
and the distribution of comparison times was
exponential. This was an important discovery
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because it was one of the first formal demon-
strations of mimicry.

The argument is similar to the argument
for unlimited capacity processing. The time
that the last comparison finishes can be bro-
ken down into a sum of the first finishing time
and N — 1 intercompletion times. If capac-
ity is fixed at C and allocated equally among
all simultaneous comparisons during the first
period before any of the comparisons finish,
then the rate of processing for each individual
comparison is C/N. When the first compar-
ison finishes, capacity is immediately reallo-
cated, and the rate for the first intercompletion
time is C/(N — 1). The rate for the second
intercompletion time is C/(N — 2), and so
on. The expected finishing time for all N pro-
cesses can be computed by substituting these
processing rates for the vs in Equation (6):

E(T)zi_,_Ni_l
NC (N-1C
N-2 1
TowoactTe
1 1 1 1
“ctectette
N
ZE' @)

Equation (7) shows that the mean finishing
time for a parallel fixed-capacity exponen-
tial process with immediate reallocation in-
creases linearly with set size (with a slope of
1/C), just as mean finishing time increases
in serial models. Predicted RTs from the par-
allel fixed-capacity model are plotted along
with the predictions of the parallel unlimited-
capacity model in Figure 7.2.

The contrast between Equations (6) and (7)
shows why fixed capacity produces a linear in-
crease in RT with set size. When capacity is
unlimited, as in Equation (6), each additional
comparison takes progressively less time. The
new comparison adds another runner to a race
that is already fast; the more runners in the
race, the smaller the new runner’s impact on

the expected finishing time. When capacity
is fixed and allocated equally among runners,
adding a new runner reduces the amount of ca-
pacity that each runner gets, and the race slows
down. The slowdown from the reduction in
capacity per item compensates for the statis-
tical speedup that results from having more
runners in the race, so each new runner adds
about the same amount of time to the race (see
Equation [7]).?

2The argument depends on the idea that the finishing time
for all N parallel processes can be broken down into the
sum of the first finishing time and N — 1 intercomple-
tion times. The focus on intercompletion times suggests
that the race begins anew with one less runner when each
comparison finishes, and this idea often runs counter to
people’s intuitions about parallel processing. The runners
that continue to run after the first one finishes were sup-
posed to have begun running at the same time as the first
runner, and all that time spent running ought to count for
something. It seems that the interval between the first run-
ner and the second should be a lot shorter than the time
it took for the first runner to finish. The counterintuitive
idea that the race begins anew and takes the same time
to run each time, on average, stems from the “memory-
less” property of exponential distributions. Because of
that property, the probability that an event occurs before
time 71 + t, given that it has not occurred before time #;
is equal to the probability that the event occurs in the first
1 time units. The relationship goes as follows:

P(T <t +0|T>1n)
P(T <ty +6oNT >1t)
P(T > 1)
_Fti+n)—F@)
T 1-F@)
(I —exp[=v(t + 1)) — (1 — exp[—v1])
B 1 — (1 —exp[—v1])

exp[—vt1] —exp[—v(t1 + 12)]
exp[—vi]

exp[—vt;] — exp[—vt; Jexp[—vir]
exp[—vt1]

exp[—vt](1 — exp[—via])
exp[—vt]

=1—exp[—v] = F(2) = P(T <t).

In other words, the distribution of finishing times for
events in the race that continues after the first event fin-
ishes at time 1 is the same as the distribution of finishing
times for a race with the same number of runners that
begins at time 0.



In my view, Townsend’s (1974) demon-
strations of mimicry between serial and par-
allel processes signaled the beginning of the
end of a period of intense interest in mem-
ory search. Models that could account for
the linear increase in mean RT with set size
proliferated, and the empirical arena shifted
to other aspects of the data, such as se-
quential effects and RT distributions, and
mimicry issues appeared in these other as-
pects as well (for reviews, see Luce, 1986;
Townsend & Ashby, 1983). By the early
1980s, research on parallel versus serial pro-
cessing in memory search seemed to have
reached a stalemate, and interest shifted
elsewhere.

Around 1980, inspired by Treisman and
Gelade’s (1980) elegant experiments, atten-
tion researchers embraced the issue of paral-
lel versus serial processing in visual search.
Treisman and Gelade showed that search RT
for simple targets such as a red item among
green items or an X among Os (i.e., fea-
ture search) was independent of the number
of items in the display (i.e., display size),
whereas search RT for conjunctive targets
such as a red X among red Os and green
Xs (i.e., conjunction search) increased lin-
early with N. Their feature integration theory
interpreted their data as indicating that fea-
ture search was parallel and that conjunction
search was serial. Citing Townsend (1971),
they acknowledged the possibility that the
linear functions in conjunction search could
be produced by parallel processes, but they
preferred to interpret them as evidence for
serial processing. The burgeoning literature
on feature and conjunction search followed
their lead, mostly ignoring the mimicry is-
sue. The functions relating RT to display size
were markedly different in feature search and
conjunction search, and that difference was
enough to sustain the idea that the tasks were
performed by different processes, regardless
of the possible mimicry.

Four Basic Distinctions 283

Wolfe and colleagues proposed guided
search theory as an improvement on fea-
ture integration theory (Cave & Wolfe, 1990;
Wolfe, 1994; Wolfe, Cave, & Franzel, 1989)
but still interpreted the linear functions in con-
junction search as evidence for serial pro-
cessing. Duncan and Humphreys (1989) were
more neutral on the issue, interpreting the
slopes of RT x display size functions as mea-
sures of search efficiency. Humphreys and
Miiller (1993) made the mimicry problem
concrete by proposing search by recursive re-
jection that accounted for flat RT x display
size functions in feature search and for steep,
linear RT x display size functions in conjunc-
tion search with the same parallel model.
Researchers pitting their model against fea-
ture integration theory or guided search theory
must grapple with the issue of parallel versus
serial processing.

Several researchers proposed compromise
models that sample regions of the display
in series but process items within regions
in parallel (Duncan & Humphreys, 1989;
Grossberg, Mingolla, & Ross, 1994; Logan,
1996; Treisman & Gormican, 1988). It seems
to me that these models are on the right track
if theories of visual search are to be general-
ized to real-world behavior. Although we do
spend more and more time staring at computer
screens like in visual search experiments, even
the most sedentary among us spends a lot of
time each day searching large-scale environ-
ments such as refrigerators, rooms, shopping
malls, streets, and freeways. The gradient of
retinal acuity forces us to move our eyes to
search these large-scale environments, impos-
ing serial processing on our search behavior.
Search may be parallel within fixations, pro-
cessing all items in the fovea and parafovea.

Capacity Limitations
in Dual-Task Situations

Capacity limitations may be most apparent in
dual-task situations, in which the ability to do
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one task is strongly affected by the require-
ment to do another (for a review, see Pashler,
1994a). The contrast between serial and par-
allel processing has played out in this litera-
ture since the beginning of the modern era of
cognitive psychology. The first modern the-
ory of dual-task performance was Welford’s
(1952) single channel theory, which assumed
that people dealt with dual tasks in series.
Welford’s idea was adopted and extended by
Broadbent (1957, 1958), who made serial pro-
cessing a core property of attention within and
beyond dual-task situations.

Serial processing was the favored explana-
tion of dual-task performance until the end
of the 1960s, when resource theory arose
(e.g., Kahneman, 1973; Moray, 1967; Posner
& Boies, 1971). Resource theories argued
that people perform dual tasks in parallel
but with less efficiency than in single-task
conditions because capacity is severely lim-
ited. Kahneman proposed the broadest the-
ory. He applied a single-resource theory to
all problems in attention but focused espe-
cially on dual-task performance. In his theory,
resources were allocated in parallel whenever
it was beneficial to do so. By the end of the
1970s, single-resource theory was replaced
by multiple-resource theory (e.g., Navon &
Gopher, 1979), but dual-task performance
was still thought to be parallel. Multiple-
resource theory agreed with single-resource
theory in suggesting that a single resource
could be allocated in parallel, but it went be-
yond single-resource theory in arguing that
different resources could also be allocated in
parallel. This added a new wrinkle: Two tasks
that demanded different resources could go on
in parallel without interference.

In the middle of the 1980s, Pashler (1984;
Pashler & Johnston, 1989) resurrected single-
channel theory and derived new predictions
from it that confirmed the idea of serial pro-
cessing in dual-task situations. Predictions de-
rived from resource theory, on the hypothesis

that dual-task processing is parallel, fared less
well (e.g., Pashler, 1994b).

In the 1990s the parallel versus serial issues
played in two areas, one empirical and one
theoretical. The empirical arena contrasted
dual-task effects seen in speeded tasks, such
as the psychological refractory period (PRP)
procedure championed by Welford (1952)
and Pashler (1984), with effects seen in un-
speeded tasks with brief exposures, such as
the attentional blink procedure introduced by
Raymond, Shapiro, and Arnell (1992) and
Chun and Potter (1995). The speeded tasks
seemed to tax a central bottleneck that se-
lected one response at a time (i.e., serial pro-
cessing), whereas the unspeeded tasks seemed
to tax central resources involved in form-
ing perceptual representations (i.e., parallel
processing). In the theoretical arena, Meyer
and Kieras (1997) challenged the fundamen-
tal idea underlying both central bottleneck and
resource theories of dual-task interference, ar-
guing that dual-task effects were often arti-
facts of the strategies that subjects adopted to
deal with dual-task experiments rather than
central capacity limitations (see also Logan
& Gordon, 2001). They focused primarily on
the PRP situation, explaining PRP effects in a
model that had no central bottlenecks or cen-
tral capacity limitations, but their argument
generalizes to many dual-task situations.

Researchers the potential
mimicry between serial and parallel expla-
nations of dual-task interference early on. A
serial process that alternated rapidly enough
would seem like a parallel process. This idea
was exploited in early multiuser operating
systems for serial computers: If the computer
switched back and forth between users rapidly
enough, the users could think they were op-
erating the computer at the same time. In the
empirical arena, subjects could seem to be per-
forming two tasks in parallel even though they
were switching rapidly between them (see,
e.g., Broadbent, 1982). This kind of mimicry

noted for



seems amenable to empirical testing. One can
measure the time required to switch attention
in order to see if it switches rapidly enough.
Unfortunately, there is no consensus on meth-
ods for estimating the time required to shift
attention, and estimated switching time varies
across methods by two orders of magnitude.
Estimated switching time is fastest in search
tasks, where it may be on the order of 20 ms
to 40 ms, and slowest in cuing tasks, where
it may be on the order of 1,000 ms to 2,000
ms. Duncan, Ward, and Shapiro (1994; see
also Ward, Duncan, & Shapiro, 1996) esti-
mated the time required to switch attention
in an attentional blink task and argued that
it was too slow to support serial processing
in search tasks. Moore, Egeth, Berglan, and
Luck (1996) contested that conclusion, argu-
ing that their procedure substantially over-
estimated switching time.

Recent studies of the PRP procedure have
used the parallel versus serial issue to localize
a hypothesized bottleneck in processing (e.g.,
Pashler, 1984; Pashler & Johnston, 1989). By
hypothesis, stages prior to the bottleneck can
go on in parallel within and between tasks,
whereas the bottleneck stage is strictly serial.
Task 1 and Task 2 can be processed in paral-
lel up to the stage at which they require the
bottleneck. At that point, one task gets the
bottleneck (usually Task 1) and the other task
has to wait for it (usually Task 2). The period
during which Task 2 has to wait for the bottle-
neck is called slack, and the bottleneck can be
located by finding the locus of the slack in the
processing chain. Processes prior to the bot-
tleneck are parallel and so can begin as soon
as they receive input. There is no slack before
them. The slack period appears just before the
bottleneck begins, so localizing the slack also
localizes the bottleneck.

The method, often called the locus of slack
method, is illustrated in Figure 7.3. It involves
a factorial experiment with at least two fac-
tors: the stimulus onset asynchrony (SOA)
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between the stimulus for Task 1 (S1) and
the stimulus for Task 2 (S2) and a manipu-
lation of Task 2 difficulty. SOA usually pro-
duces a strong main effect on RT to S2 (RT2),
and the difficulty manipulation is chosen so
that it also produces a strong main effect on
RT2. The key datum is the interaction be-
tween SOA and the Task 2 difficulty variable.
Task 2 difficulty variables that affect stages
prior to the bottleneck will produce under-
additive interactions with SOA; Task 2 diffi-
culty variables that affect stages at or after the
bottleneck will produce null or additive inter-
actions with SOA (see Pashler & Johnston,
1989; see also Fisher & Goldstein, 1983;
Goldstein & Fisher, 1991; Schweickert, 1978;
Schweickert & Townsend, 1989; Townsend,
1984; Townsend & Schweickert, 1989).

Figure 7.3A shows why variables that af-
fect prebottleneck stages produce underaddi-
tive interactions with SOA. The top part shows
flow charts for Task 1 and easy and hard ver-
sions of Task 2 with a short SOA. Because
SOA is short, Task 2 has to wait for the bot-
tleneck stage, and there is slack in the easy
version of Task 2. The hard version of Task 2
has time to catch up to the easy version during
the slack period, and it is almost finished when
the slack period ends. The effects of the Task 2
difficulty manipulation are absorbed into the
slack, so the Task 2 difficulty manipulation
has only a small effect on RT2. The bottom
part shows the same Task 1 and Task 2 con-
ditions when SOA is long and Task 2 does
not have to wait for the bottleneck. There is
no slack period to absorb the Task 2 difficulty
effect, so it appears full-blown in RT2. When
RT2 is plotted against SOA, as in the right
side of Figure 7.3A, Task 2 difficulty effects
are smaller when the SOA effects are larger.
Consequently, Task 2 difficulty interacts un-
deradditively with SOA.

Figure 7.3B shows why variables that af-
fect bottleneck stages produce additive or null
interactions with SOA. The top part shows
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Figure 7.3 Postponing prebottleneck processes vs. postponing bottleneck and postbottleneck
processes.

NOTE: Panel A: The effects of postponing prebottleneck processes. The left side presents flow diagrams
of processes underlying Task 1 and Task 2. P represents prebottleneck perceptual processes, B represents
bottleneck processes, and M represents motor processes. The top part represents short stimulus onset
asynchrony (SOA). Stage P’ is a prolonged version of stage P. The short SOA causes Task 2 to wait for
the bottleneck stage B, and both P and P’ have time to finish during the “slack” period while Task 2
waits for the bottleneck. The effect of P versus P’ on RT2 is given by ART and is plotted on the RT2 x
SOA graph beside the flow diagram. The bottom part represents long SOA. Task 2 does not have to wait
for the bottleneck, so the effect of P versus P’ propagates to RT2. The ART value is much larger and
results in an underadditive interaction between SOA and P versus P’ when plotted on the RT2 x SOA
graph beside the flow diagram. Thus, prolonging prebottleneck Task 2 processes produces underadditive
interactions between Task 2 difficulty variables and SOA.

Panel B: The effects of postponing bottleneck or postbottleneck processes. The left side presents flow
diagrams of processes underlying Task 1 and Task 2. In this panel, the bottleneck stage B is prolonged
in Task 2. The effects of prolongation appear undiminished in RT2 because the Task 2 bottleneck pro-
cessing does not begin until Task 1 is finished with the bottleneck, regardless of SOA. The right side
plots the effects in a graph of RT2 x SOA. The effect of B versus B’ is clearly additive with SOA. Thus,
prolonging bottleneck or postbottleneck Task 2 processes produces additive (null) interactions between
Task 2 difficulty variables and SOA.



flow charts for Task 1 and easy and hard ver-
sions of Task 2, but now difficulty affects
the bottleneck stage. Because SOA is short,
Task 2 has to wait for the bottleneck. Because
the Task 2 difficulty manipulation affects the
bottleneck stage, which has to wait, the easy
and hard versions start at the same time, and
the difficulty effect appears full-blown in RT2.
The bottom part shows the same conditions
with a long SOA. Task 2 does not have to
wait, and the difficulty manipulation appears
full-blown in RT2 once again. Its magnitude
is the same as in the short SOA condition, so
the joint effects of SOA and Task 2 difficulty,
plotted on the right side of the panel, are
additive; the interaction is null.

The locus of slack logic is a generalization
of Sternberg’s (1969) additive factors method
for decomposing single tasks into component
stages. The locus of slack logic is also a spe-
cial case of a much broader and more for-
mal generalization of the additive factors logic
by Schweickert, Townsend, and Fisher (e.g.,
Fisher & Goldstein, 1983; Goldstein & Fisher,
1991; Schweickert, 1978; Schweickert &
Townsend, 1989; Townsend, 1984; Townsend
& Schweickert, 1989). In the general logic,
underadditive interactions between difficulty
variables are often diagnostic of parallel pro-
cesses, whereas additive or null interactions
are often diagnostic of serial processes
(Townsend, 1984). These principles cannot be
applied universally, however. The issue of par-
allel versus serial processing remains compli-
cated; interested readers should refer to the
original sources.

Like many other tests of parallel versus se-
rial processing, the locus of slack method as-
sumes that processing in the bottleneck stage
is discrete, not continuous. Task 1 finishes
with the bottleneck at a distinct point in time,
and Task 2 starts using the bottleneck at an-
other distinct point in time. The latter never
precedes the former. However, some recent
data from the PRP procedure suggest that
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response selection—a favorite candidate for
bottleneck processing—may not be discrete.
Hommel (1998) and Logan and Schulkind
(2000) showed that RT to the first PRP stimu-
lus was influenced by the response category of
the second PRP stimulus, speeding up if that
response category was congruent with its own
and slowing down if it was incongruent. This
suggests that Task 2 response selection be-
gan before Task 1 response selection finished,
arguing against the hypothesis that response
selection is discrete and serial.

The seriousness of the consequences of vi-
olating the assumption of discrete processing
remains to be seen. Although it is clear that
the logic of the locus of slack model and the
generalizations of it were developed on the
assumption of discrete processing, it is not
clear whether a continuous model would make
different predictions. As yet, no one has
worked out the predictions, although several
investigators are working on applications of a
single-resource theory to the SOA x difficulty
manipulation factorial experiments, and the
theory appears to be able to predict the same
kinds of underadditive and additive features
as can a serial discrete model. That would be
a most interesting result.

Self-Terminating versus
Exhaustive Search

One of the most important complications of
the issue of parallel versus serial processing in
the search literature is how processing stops.
Search tasks require several comparisons be-
tween items in the display and items in mem-
ory. At some point, the comparisons stop, and
the results are passed on to the next stage
so that, ultimately, they can be reported. The
key question is, how the comparison processes
stop? Traditionally, there have been two alter-
natives: Search is self-terminating or exhaus-
tive. Search is self-terminating if it stops as
soon as a target is found or exhaustive if it



288 Parallel and Serial Processing

continues until all of the comparisons are fin-
ished, regardless of whether or when a target
is found.

The issue of self-terminating versus ex-
haustive search interacts with the issue of par-
allel versus serial processing in search tasks.
The way that search terminates determines the
number of items that need to be compared
(i.e., N if search is exhaustive; less than N if
search is self-terminating), and parallel ver-
sus serial processes are distinguished in terms
of the effects of the number of items in the
display or in the memory set. If search is
self-terminating, the number compared may
not equal the number displayed or memo-
rized. Indeed, the predictions of unlimited ca-
pacity parallel models and the mimicry of
fixed capacity parallel models and serial mod-
els described earlier requires the assumption
that search is exhaustive. If search is self-
terminating, parallel unlimited capacity mod-
els can predict a null effect of set size (i.e., no
increase in RT with set size). In an unlimited
capacity model, the rate at which the target
comparison is executed is the same regardless
of the number of concurrent nontarget com-
parisons, so the time required to find the target
should be independent of display size. (Dis-
play size is usually manipulated by varying
the number of nontargets.)

Intuition suggests that search should al-
ways be self-terminating, because that seems
most efficient. Perhaps the most remarkable
aspect of Sternberg’s (1966) data is that they
suggested that search is exhaustive. Sternberg
noted that self-terminating search requires the
system to decide whether to terminate search
after each comparison, whereas exhaustive
search requires only one decision after all the
comparisons are finished. Sternberg argued
that if the decision to terminate was costly,
then exhaustive search may be more effi-
cient than self-terminating search. The cost of
extra comparisons that finish after the target
has been found may be small compared to the

accumulated cost of deciding whether to ter-
minate search after each comparison, partic-
ularly if the number of items to be compared
is small. Search may become self-terminating
with larger numbers of items. Indeed,
Sternberg studied memory sets of one to five
items. Visual search experiments show evi-
dence of exhaustive search when the number
of items in the display (display size) varies
between one and five (e.g., Atkinson et al.,
1969) and evidence of self-terminating search
when display size varies over a larger range
(e.g., 4-40; Treisman & Gelade, 1980).

The issue of self-terminating versus ex-
haustive search focuses primarily on the in-
teraction between display size or memory
set size and target presence or absence. In
general, self-terminating search predicts su-
peradditive interactions between set size and
target presence, whereas exhaustive search
predicts additive or null interactions. Often,
RT increases linearly with set size, and the
predictions are expressed in terms of ratios
of the slopes of the functions relating RT
to set size. Self-terminating search is often
said to predict that the ratio of the target-
absent slope to the target-present slope is 2:1,
whereas exhaustive search predicts a ratio of
1:1. Sternberg’s (1966) data showed the 1:1
ratio, so he rejected self-terminating search
in favor of exhaustive search. Treisman and
Gelade’s (1980) data showed the 2:1 ratio,
so they rejected exhaustive search in favor of
self-terminating search.

The predicted slope ratios follow from the
expected number of comparisons when the
target is present versus absent. With exhaus-
tive search, subjects perform all comparisons
whether the target is present or absent, so the
expected number of comparisons for set size
N is N for both target-present and target-
absent trials. With self-terminating search,
subjects perform all comparisons only if there
is no target; self-terminating search is ex-
haustive on target-absent trials. Target-absent



trials require N comparisons if set size is N.
On target-present trials, however, processing
can terminate whenever a target is found. If
search is random, the target could be found
after the first, second, third, or later com-
parison but on average would be found after
(N +1)/2 comparisons. For the same set size,
self-terminating search requires about twice
as many comparisons for target-absent trials
as for target-present trials. If the slope of the
function relating RT to the number of compar-
isons is the same for target-absent and target-
present trials (i.e., if each comparison takes
the same amount of time), then the slope of
the function relating RT to set size will be
twice as large for target-absent trials.

Van Zandt and Townsend (1993) showed
that self-terminating search does not always
predict a 2:1 slope ratio and that in some
cases it predicts a 1:1 slope ratio (see also
Townsend & Colonius, 1997). That suggests
a potentially paralyzing mimicry. However,
they showed that exhaustive models almost
always predict a 1:1 slope ratio, so finding
a ratio other than 1:1 allows us to reject ex-
haustive models in favor of self-terminating
models.

The issue of self-terminating versus ex-
haustive search usually focuses on target-
present trials, asking whether subjects stop
when they find a target. Chun and Wolfe
(1996) focused on target-absent trials and
asked how subjects decide to stop searching
when they do not find a target. Environments
are usually cluttered with many things, but
people ignore most of them when they search
for something. When I search for my car in a
parking lot, I look at the cars, not the trees and
buildings and people. Chun and Wolfe argued
that subjects set some criterion for similarity
to the target object and restrict their search
to items that are similar to the target. They
argued that the criterion is set dynamically,
decreasing if the distractors are dissimilar to
the target and increasing if the distractors are

Four Basic Distinctions 289

similar to the target. This adjustment process
can reduce the number of items examined on
target-absent trials to a value that is substan-
tially smaller than N, and that may affect the
ratio of target-absent to target-present slopes.
In their view, self-terminating search does not
necessarily predict a 2:1 slope ratio.

Data beyond mean RT can be used to
distinguish between self-terminating and ex-
haustive search. Townsend and Ashby (1983)
noted that the models make different predic-
tions about the variance of RT. For serial ex-
haustive search, the variance of the compari-
son times is simply the sum of the variances
in the processing times for each comparison.
If the variances are all equal, then

Varexhausive = N Var(T) ¥

where Var(T) is the variance in a single com-
parison time. The same prediction can be de-
rived for parallel exhaustive search, where T
is intercompletion time (Townsend & Ashby,
1983).

Equation (8) also describes the relation
between variance and set size for target-
absent trials in serial self-terminating search.
For target-present trials, however, serial self-
terminating search predicts a stronger in-
crease in variance with set size:

Var self-terminating

1 (N-DWN+1

N+ )
= ——Var(T E(T)".
5 Var(h)+ B (T)

(©))

The variance on target-present trials depends
on the variance in time required for each
comparison, as it did on target-absent tri-
als, but it also depends on variation in the
number of items compared before the target
is found. This additional source of variation
makes the overall variance increase faster with
N on target-present than on target-absent tri-
als. Again, similar arguments can be made
for parallel self-terminating processes (see
Townsend & Ashby, 1983).
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ALTERNATIVES TO
PARALLEL PROCESSING

The four basic distinctions that drove the gen-
eral class approach were discovered in the
1950s and 1960s. Since then, two new alterna-
tives to parallel processing have come on the
scene, one in the attention literature that deals
with the effects of redundant signals and one
in the skill acquisition literature that addresses
the development of automaticity.

Statistical Facilitation versus Coactivation

Parallel processing is an important issue in
divided attention. When participants look (or
listen) for a target in two channels (two dis-
play locations or two acoustic sources), they
respond faster if a target appears in both chan-
nels than if it appears in only one of them
(Miller, 1978, 1982b). This redundant signals
effect is interesting because it rules out most
of the parallel and serial models considered
so far in this chapter. Serial and parallel ex-
haustive models can be ruled out by the ef-
fect itself. If targets and distractors take the
same amount of time to process, they pre-
dict no advantage of redundant targets (but
see Townsend & Nozawa, 1997). Parallel and
serial self-terminating models can predict the
occurrence of the effect—processing can stop
as soon as one target is found, and that will
be faster when there are two targets—but they
can be ruled out in many cases because their
quantitative predictions underestimate the ob-
served effect.

Serial self-terminating models predict an
advantage of redundant targets when each
channel contains either a target or a distractor.
If search is random and targets are assigned
randomly to channels, then the first object ex-
amined will always be a target on redundant
trials, but it will only be a target half of the
time on single-target trials. On the other half
of single-target trials, the distractor will be

examined first, so RT will increase. Averaging
the two kinds of single-target trials produces a
mean RT that is slower than the mean RT for
redundant target trials, thus predicting a re-
dundant signals effect. The observed effects
are often larger than these models predict,
however (see Miller, 1982b). Moreover,
serial self-terminating models predict no ad-
vantage when no distractors are presented
(i.e., targets appear alone or in tandem), be-
cause the first object examined will always be
a target, and redundant signals effects are of-
ten found under those circumstances (Miller,
1978, 1982b).

The strongest candidate among the models
discussed so far is the class of independent
unlimited-capacity parallel self-terminating
models. They predict statistical facilitation
with redundant signals. The time to find a tar-
get when two are present is the minimum of
the times required to find each target alone,
and the minimum is generally faster than the
mean of the parent distributions from which
it is sampled (Gumbel, 1958). This argument
extends to distributions as well as means, and
Miller (1978, 1982b) developed it into a gen-
eral test for cuamulative distribution functions.
The distribution of minima sampled from
two parent distributions can be constructed
from the parent distributions themselves. If
the samples are independent, then

P(min(T,, 1) <t) = P(Ty <t)+ P(Tr <1t)
—P(Ti<tNTy<t)
(10)

where P (min(Ty, T») < t) is the observed cu-
mulative RT distribution with redundant sig-
nals and P(T} <t) and P(T, <t) are the ob-
served cumulative distributions with targets
in channels 1 and 2, respectively. The fi-
nal term is not easy to observe directly, so
Miller (1978, 1982b) suggested rearranging
the equation to produce an inequality called
the race model inequality that investigators



could use to test the predictions of inde-
pendent unlimited-capacity parallel self-
terminating models:

Pmin(T,, 1) < P(T; <t)+ P(T, < t).
1D
The race model inequality has the advantage
over Equation (10) in that all the terms in it are
observable, so it can be used to test empirical
data.

Miller (1978, 1982b) and others tested
the race model inequality in several data
sets. Amazingly, the data violated the pre-
dicted inequality. Performance with redun-
dant signals was better than what was pre-
dicted from the most efficient parallel model.
In order to explain the redundant signals ef-
fect, something more than unlimited-capacity
parallel processing had to be proposed. Miller
(1978, 1982b) proposed coactivation, which
he viewed as resulting from interactions and
cross talk between concurrent channels.
Mordkoff and Yantis (1991, see also Mordkoff
& Egeth, 1993) suggested an interactive race
model, which they simulated and applied to
their data. Townsend and Nozawa (1997) sug-
gested the idea of supercapacity, an alterna-
tive to fixed, limited, and unlimited capacity
in which the processing rate actually increases
as load increases.

Races versus Mixtures

Parallel processing is an important issue in
skill acquisition. Logan’s (1988) instance the-
ory of automaticity seems salient in this
context. Instance theory explains automati-
zation as a transition from a general algo-
rithm that is used to solve novel problems
and memory retrieval of past solutions to
familiar problems. The theory assumes that
people store memory traces, or instances,
of each encounter with each stimulus, so a
task-relevant knowledge base builds up with
practice. The theory assumes that people
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retrieve memory traces when familiar stimuli
are encountered and that retrieval is a self-
terminating unlimited-capacity parallel pro-
cess, also known as an independent race
model. Instance theory explains the learn-
ing curve—the ubiquitous speedup in RT
with practice—as statistical facilitation from a
race between the instances in memory, whose
number grows with each encounter with the
stimulus.

Newell and Rosenbloom (1981) reviewed
50 years of research on skill acquisition and
declared the power law; RT decreased as a
power function of practice:

RT=a+bN* (12)

where a is an irreducible asymptote, b is the
amount by which RT can change over learn-
ing, and c is the learning rate. Logan (1992)
reviewed studies published in the 10 years
after Newell and Rosenbloom’s paper and
found power function learning in each of
them. A typical power function with a = 500,
b =500, and ¢ =0.5 is plotted in Figure 7.4.

Power vs. exponential learning curves
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Figure7.4 Meanreaction time (RT) as a function
of the number of practice trials for a power func-
tion learning curve (solid line) and an exponential
function learning curve (dotted line).

NOTE: The power function was generated from the
equation RT = 500 + 500N 3. The exponential
function RT = 589 + 429¢=%2" was generated by
fitting an exponential function to the power func-
tion data. The similarity in the learning curves re-
flects the potential for one to mimic the other.
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Logan (1988, 1992) showed that the inde-
pendent race model predicted a power func-
tion speedup on the assumption that the dis-
tribution of retrieval times was Weibull. The
Weibull is a generalization of the exponential
in which the exponent is raised to a power. Its
distribution function is

F(x) =1—exp[—wx‘]. (13)

Per Gumbel (1958), the distribution function
of minima from N i.i.d. distributions is

Fuin(x) =1 —[1 = F(x)1". (14)

Substituting Equation (13) into Equation (14)
yields

Frin(x) =1 — {1 — (1 — exp[—wx‘D}"
=1 —exp[—wx]"
=1—exp[—Nwx€]
=1 —exp[—w(N"x) ]

= F(NY¢x). (15)

Thus, the distribution of minima of N sam-
ples from i.i.d. Weibull distributions is itself a
Weibull distribution with its scale reduced by
a power function of N. This implies that the
entire distribution of retrieval times decreases
as apower function of practice—the mean, the
standard deviation, and all of the quantiles of
the distribution should all decrease as power
functions of practice’ with a common expo-
nent, 1/c. Logan (1988) tested the prediction
for means and standard deviations, and Logan
(1992) tested the prediction for distribution.
The predictions were mostly confirmed.

3The Weibull is a special case of the exponential distri-
bution with the variable x raised to a power (i.e., ¢). If the
exponential distribution function, F(x) = 1—exp[—wx],
is substituted into Equation (14) instead of the Weibull,
then the distribution of minima becomes Fj(x) = 1 —
exp[—Nwx], which is an exponential distribution with
rate parameter Nw and mean 1/Nw, which is consistent
with previous results in this chapter (see, e.g., n. 1). Note
that the mean of the exponential decreases as a power
function of N with an exponent of —1.

Instance theory assumes two races. One,
justdescribed, is between the various traces in
memory. It determines the speedup in memory
retrieval over practice. The other is between
the algorithm and memory retrieval. The al-
gorithm is necessary early in practice before
instances are available in memory, so subjects
are prepared to use it on each trial. If the stim-
ulus is novel, they have no other choice but to
execute the algorithm. If the stimulus is famil-
iar, the algorithm and memory retrieval start at
the same time, and the faster of the two deter-
mines performance. The theory assumes that
the time for the algorithm does not change
over practice whereas the time for memory
retrieval speeds up. This allows memory re-
trieval to win the race more and more often,
until the subject relies on it entirely and aban-
dons the algorithm.

The assumption that the algorithm does
not change with practice was made for con-
venience. With that assumption, the finishing
time for the algorithm can be thought of as just
another Weibull distribution in the race whose
effects will be dominated by other runners as
practice continues. Instance theory assumes
also that the time to retrieve an individual
memory trace does not change over practice.
This assumption was made for convenience
and for rhetorical force. The “parent” distri-
butions of algorithm finishing time and mem-
ory retrieval time do not change with practice.
All that changes is the number of traces, and
that produces the statistical facilitation that
predicts the power law of learning.

Compton and Logan (1991) pitted the in-
dependent race model against a probability
mixture model in which subjects choose to
use the algorithm with probability p and mem-
ory retrieval with probability 1 — p. The par-
ent distributions do not change with practice.
Memory retrieval is faster than the algorithm
at the outset and remains so throughout prac-
tice. Instead, p changes in a manner that pro-
duces the power function speedup required by
the power law. This model predicted the same



change in mean RT as instance theory but a
different change in the standard deviation of
RT. Whereas instance theory predicts a power
function reduction in the standard deviation
over practice, the probability mixture model
predicts that the standard deviation will first
increase and then decrease over practice. The
variance of a probability mixture of memory
retrieval and algorithm finishing times is

Var(T)mix
= p Var(T)y + (1 — p)Var(T),,
+p(1 = p)E(T), — E(T),]* (16)

where Var(T) is the variance of RT, E(T) is
mean RT, and the subscripts a and m refer to
the algorithm and memory retrieval, respec-
tively. The rightmost term in Equation (16)
produces a “bubble” in the variance as p
goes from 1 to 0, reaching a maximum when
p = .5. The observed standard deviations dis-
confirmed this prediction and confirmed the
prediction of instance theory.

Nosofsky and Palmeri (1997; see also
Palmeri, 1997) extended instance theory, com-
bining it with Nosofsky’s (1984, 1986, 1988)
generalized context model of classification to
form the exemplar-based random walk model.
It accounted for a great deal of data in cat-
egorization and skill acquisition, expanding
the scope of the theory substantially (see also
Logan, in press). The sun shone brightly on
the instance theory empire. Then two clouds
rose on the horizon.

The first was Rickard’s (1997) component
power law model. Like instance theory, it as-
sumed that automatization was a transition
from algorithm to memory retrieval. Unlike
instance theory, a probability mixture, rather
than a race, made the choice between algo-
rithm and memory retrieval. Rickard solved
the problem with mixture models raised by
Compton and Logan (1991) by assuming that
both the algorithm and memory retrieval im-
proved with practice. He assumed that each
improved as a power function of practice
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(hence, “component power law”) and that the
choice between them depended on their rela-
tive strengths. Equation (16) still described the
change in RT variance with choice probability,
but the means and variances of the parents de-
creased over practice, changing the predicted
learning curve. Rickard pointed out a bubble
in data that Logan (1988) reported in favor
of instance theory, and he produced bubbles
in several data sets of his own. He convinced
me that under some circumstances, the algo-
rithm and memory retrieval do not race; the
subject chooses to do one or the other (for
further discussion of parallel and serial pro-
essing in memory retrieval, see Robhrer,
Pashler, & Etchegaray, 1998; Rohrer &
Wixted, 1994).

The other cloud on the horizon is an attack
on the generality of the power law. Delaney
et al. (1998) proposed a model in which per-
formance was a mixture of different strategies,
each of which improved as a power function of
practice. They had subjects report the strate-
gies they used on individual trials. When they
aggregated data over strategy reports (i.e.,
over blocks of trials, as researchers typically
do), the power function did not fit the data very
well. However, when they sorted the data by
strategy report, power functions fit the data
from each strategy very well. They argued for
a mixture model like Rickard’s (1997). More-
over, Van Zandt and Ratcliff (1995) analyzed
probability mixtures of gamma distributions
with stochastic rate parameters and found that
they produced the same power-function re-
duction in the RT distribution as did the in-
stance theory.

The most serious challenge may be empir-
ical. Heathcote, Brown, and Mewhort (2000)
argued that the ubiquity of the power law is an
artifact of averaging over exponential learning
curves for individual items (but see Myung,
Kim, & Pitt, 2000). They showed that an ex-
ponential learning curve

RT = a + bexp[—cN] (17
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fit the data at the level of individual items bet-
ter than the power function in several data sets.
Rickard and I confirmed their findings in our
own laboratories. This is a serious threat to
instance theory and to all theories of skill ac-
quisition that predict a power-function learn-
ing curve (i.e., most theories). If the data
do not conform to the predicted power law,
the prediction—as well as the theories from
which it was derived—is falsified.

A typical exponential learning curve is
plotted along with the power function in Fig-
ure 7.4. The exponential learning curve is very
similar to the power function learning curve.
They can be hard to discriminate, particularly
when the data are noisy (e.g., data from indi-
vidual items). However, averaging over items
or subjects (or both) tends to distort the func-
tion, and averages of exponential functions
are often better fit by power functions than by
exponential functions (Anderson, & Tweney,
1997; Heathcote et al., 2000). This bias to-
ward the power function can be minimized by
averaging geometrically instead of arithmeti-
cally (Myung et al., 2000; Wixted & Ebbesen,
1997), but analysis of averaged data remains
problematic.

DISCUSSION

So that is how people ask whether processing
is parallel or serial. There are many differ-
ent methods and many different situations to
which they may be applied. In terms of re-
search publications, the question of parallel
versus serial processing must be one of the
most productive questions ever asked in ex-
perimental psychology. But what do all these
publications amount to? What kind of cumu-
lative progress have we made in the last 50
years?

The question of parallel versus serial pro-
cessing epitomizes the difference between
two general approaches to psychology. One,

endorsed by Broadbent (e.g., 1971), might be
called the general principle approach or “20
questions” approach. It suggests that the right
theory can be found by conducting a series
of experiments that addresses a succession of
general principles (like parallel versus serial
processing), ruling out alternatives until only
one remains. The experimenter plays 20 ques-
tions with Mother Nature, trying to choose
questions that divide the remaining alterna-
tives in half (Platt, 1964). The other approach,
endorsed by Newell (1973), might be called
the general theory approach. Newell argued
that “you can’t play 20 questions with nature
and win,” claiming that investigations of gen-
eral dichotomies such as parallel versus se-
rial processing were doomed to failure. Pro-
cesses interact with each other and therefore
cannot be studied separately. One needs a the-
ory of the whole system to understand a single
process. Newell’s own work (e.g., 1990) ex-
emplified the promise of the general theory
approach.

The issue of parallel versus serial process-
ing figures prominently in the contrasts be-
tween these approaches. Nearly 30 years later
we can examine the progress in the field and
count up the score. It seems to me that Newell
(1973, 1990) was right about parallel and se-
rial processing. After all this research, we
still cannot say definitively whether search is
parallel or serial or whether two tasks are done
in parallel or serially. As my mother said, it
depends. To decide whether search is parallel
or serial, one must decide also whether it is
limited or unlimited in capacity and whether
it is exhaustive or self-terminating. To predict
performance, one must model the whole task,
a tactic that Newell would have endorsed. On
the other hand, we have made a lot of progress
in answering more specific versions of the
question, and lots of methods are available for
asking them. In my view, learning to ask better
questions is an important kind of cumulative
progress.



Newell (1973, 1990) appears to have been
right also about the capacity issue. The nature
of capacity limitations remains unclear. It may
seem clear in specific cases, but there is little
generality across procedures and paradigms,
so the big picture may be even sketchier than it
was in 1973. It is hard enough to tell whether
capacity is limited. We are only beginning
to address the question why capacity is lim-
ited. Theories seem to have internalized my
mother’s observation that sometimes you can
do two things at once and sometimes you can-
not, proposing that one part of the mind can
do two things at once and another can do only
one thing at a time. This internalization gen-
erated a lot of research aimed at localizing
one part relative to the other. However, it does
not explain why the part that can do only one
thing at a time must do one thing at a time
or why the part that can do two things at once
can do so. The selection-for-action view
(Allport, 1987; Neumann, 1987; Van der
Heijden, 1992) and the selection-for-
cognition view (Logan & Zbrodoff, 1999)
provide alternatives to the standard view, and
the contrast between them may shed new light
on the capacity issue.

Broadbent was right about the issue of
continuous versus discrete processing. Be-
havioral and psychophysiological data clearly
rule out strict discrete processing (for a re-
view, see Miller, 1988). Nevertheless, many
theorists continue to propose discrete models,
and popular empirical tests of parallel versus
serial processing assume discrete processing.
Discrete processing makes the mathematics
easier, and that makes the reasoning clearer. A
comprehensible discrete theory that approxi-
mates continuous reality may be better than
an incomprehensible but more realistic con-
tinuous theory (McCloskey, 1991).

Broadbent was also right about the issue of
self-terminating versus exhaustive search. Itis
pretty clear that search is self-terminating, at
least with large displays (more than 6 items;
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Chun & Wolfe, 1996; Van Zandt & Townsend,
1993). Broadbent may be right about the par-
allel versus coactivation issue in divided atten-
tion, and it remains to be seen whether Newell
(1973, 1990) or Broadbent is right about the
race versus mixture issue in skill acquisition.

At this point, the 20 questions approach is
ahead of the general theory approach 3 to 2
with 1 issue still playing itself out. It looks
like a tie. Perhaps the game of pitting one
general approach against another cannot be
won either. From one perspective, sitting in
the empirical trenches, it may not matter much
which approach we take. How we got there
may matter less than what we do while we are
there. The best experiments fit neatly into a
tight web of logic, as the general theory ap-
proach recommends, and they pit crucial al-
ternatives against each other, as the 20 ques-
tions approach recommends. A person in the
trenches had better do something that works,
regardless of the approach that recommends
it. There are plenty of things to choose from.
I hope that this chapter helps those who are in
the trenches to find the tools that they need.
My mother would like that.
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CHAPTER 8

Methodology and Statistics
in Single-Subject Experiments

NORMAN H. ANDERSON

Single-subject design and analysis is an
experimental ideal. An individual is studied
under a number of conditions, and the anal-
ysis is performed on the data of this indi-
vidual. The prime advantage is substantive:
maximal congruence with psychological phe-
nomena. A collateral substantive advantage is
that longer-term investigations may be practi-
cable, unfolding phenomena barely present in
the common one-session experiment. There is
the further advantage that error variability will
be even less than it is in repeated-measures
design.

Single-subject design has always been a
mainstay in perception. One reason is that
many perceptual phenomena can be embod-
ied in stable-state tasks. One subject can thus
provide a complete pattern of data across
all experimental conditions. Many studies
use just two or three subjects and present
results separately for each. Generalization
is often possible on the basis of extrasta-
tistical background knowledge about simi-

For helpful comments on drafts of this chapter, the au-
thor is indebted to Ted Carr, Joe Farley, Etienne Mullet,
Laura Schreibman, Saul Sternberg, Ben Williams, Wendy
Williams, and John Wixted. This chapter is adapted from
Chapter 11 of Empirical Direction in Design and Analy-
sis (Anderson, 2001) with permission of the publishers,
Lawrence Erlbaum Associates.

larity of sensory-perceptual process across
individuals.

Single-subject design has been useful also
in diverse other areas. Among these are clas-
sical and operant conditioning, judgment-
decision theory, physiological psychology,
behavior modification, and medical science.
Also notable are studies of unusual indi-
viduals.

A pall hangs over single-subject design
and analysis. This topic goes virtually un-
mentioned in current graduate statistics texts.
Whole areas of experimental analysis that
could benefit from this approach make little
use of it. The reader may check how very
few single-subject studies appear in any is-
sue of any journal published by the American
Psychological Association.

On the other hand, areas that have em-
phasized single-subject research have mostly
been averse to formal statistics. As a conse-
quence, the potential of single-subject design
has been markedly underutilized.

SINGLE-SUBJECT DATA

Analysis of single-subject data faces special
difficulties that arise because the data are
a temporal (or spatial) sequence of observ-
ations. Successive observations may thus be
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intercorrelated, which complicates the relia-
bility analysis. Furthermore, position and
carryover effects may occur, which compli-
cates the validity analysis. These two difficul-
ties are considered in the following sections.

Reliability

Reliability is a basic problem in empirical
analysis, no less important with studies of
single subjects than with studies of multiple
subjects. With a single subject, however, the
issue of reliability faces a special difficulty
because typical data constitute an interrelated
temporal sequence. To illustrate, consider a
subject who receives a sequence of trials
under treatment A followed by a sequence of
trials under treatment B.

The reliability question is whether the
mean response differs reliably between the
two treatments. Some difference must be
expected simply from chance, that is, from
natural variability among responses to each
separate treatment. Any argument that the
observed mean difference is reliable should
show at least that it is larger than could rea-
sonably be expected by chance. Common
sense points to the answer: Compare the dif-
ference between the means with the differ-
ences among the separate responses within
each treatment condition.

This comparison may
sometimes be done by visual inspection, as
illustrated later in the behavior modification
experiment of Figure 8.4. This commonsense
answer, not surprisingly, is the foundation
for statistical theory; the cited comparison is
quantified by the F ratio of ANOVA.

But this reliability comparison faces a crit-
ical problem because of the likelihood of
serial correlation, that is, correlation between
successive responses. One source of serial
correlation is assimilation or contrast across
successive trials. Trial-to-trial assimilation
appears in various tasks of psychophysics

commonsense

and judgment-decision, for example, even
though subjects are otherwise in a stable state.
Thus, the response on one trial is positively
correlated with the response on the previous
trial.

A rather different source of serial corre-
lation may be called local drift. This refers
to organismic changes in response level that
extend over two or more successive obser-
vations but fluctuate unsystematically over
longer periods. The subject’s attention may
drift away and snap back; mood and moti-
vation may wax and wane. The state of the
subject is thus more similar across successive
trials than across nonsuccessive trials. This in-
duces serial correlation in the observed behav-
ior even though there is no systematic trend.

Serial correlation means that successive
observations are not each
new observation is partly implicit in the pre-
ceding observation, so it carries only partial
information. To see the consequence, sup-
pose that the response is plotted as a function
of successive trials. With a high positive se-
rial correlation, responses on successive trials
will be highly similar. The data will look less
variable, so to speak, than the behavior they
represent.

Visual inspection has no way to allow for
the serial correlation. Instead, visual inspec-
tion tends to treat successive responses as
independent. With positive serial correlation,
visual inspection sees the data falsely as too
reliable. The usual formula for variance does
the same, of course, thereby producing confi-
dence intervals that are falsely too short and
F ratios that are falsely too large. Statistical
method, however, can assess the magnitude
of the serial correlation, estimate the likely
bias, and perhaps even correct for it, which
visual inspection cannot do.

At the same time, any happenstance in-
fluence on one trial may carry over partly
to successive trials. To visual inspection, a
one-trial external influence may seem to be a

independent;



systematic effect lasting several trials. A visu-
ally convincing trend in the graph of the data
may thus be an artifact of serial correlation,
not a real effect of treatment.

Serial correlation can be controlled in two
main ways. One way is with treatment ran-
domization, which can break up the serial
correlation to obtain independence. The other
way is to minimize serial correlation through
experimental procedure, as by allowing ample
time between observations or by interpolat-
ing a baseline treatment between successive
experimental treatments.

Validity

Confounding from position and carryover ef-
fects is a universal concern for single-subject
design. Any two treatments differ in time and
order of presentation; external and internal
temporal effects are thus both confounded
with treatment effects. Such confounding af-
fects the meaning and validity of the results.

External temporal factors include events
in the environment that influence the behav-
ior. If treatment B follows treatment A, any
difference in response may be due to some
environmental factor: drift or shift in experi-
mental procedure, happenstance events in the
environment, and so forth. Any and all such
external factors, known and unknown, con-
found the A-B comparison. External factors
can, in principle, be handled with replication
over successive time periods. Consistency of
the A-B difference over successive time peri-
ods argues against external influences.

Internal temporal factors include position
and carryover effects. Position effects re-
fer to temporal changes due to practice, fa-
tigue, adaptation, and so forth, that occur as
a function of position, independently of par-
ticular treatments. Carryover effects include
treatment-specific transfer from one treat-
ment to following treatments, as well as to
local drift in organism or environment.
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Position and carryover effects are usually
undesirable. Unless learning or transfer are
under study, position and carryover effects
generally need to be controlled through pro-
cedure and design. One common control is to
adapt the subject to the task before collect-
ing the main data. Other forms of control are
noted later.

DESIGN AND ANALYSIS

Extrastatistical Generalization

Scientific inference depends largely on ex-
trastatistical considerations. Appropriate use
of statistical methods requires appreciation of
their limitations that is at least as good as
appreciation of their capabilities. This basic
matter deserves preliminary discussion (see
Anderson, 2001, chap. 1).

Virtually all scientific inference rests on
evidence from samples. The investigator seeks
to generalize the results from one particular
sample to some larger population. If the sam-
ple was chosen randomly from that popula-
tion, then such generalization is obtainable
with standard statistical techniques.

Most samples, however, are handy sam-
ples. Rarely are the observations a random
sample from some larger population. This ba-
sic fact is manifestly true of most experiments
with groups of subjects; it applies no less to
behavior samples from a single subject.

This limitation of handy samples can be
ameliorated by random assignment. Group
experiments, accordingly, routinely assign
subjects at random across experimental con-
ditions. Statistical inference can then be ap-
plied to assess whether the observed group
differences are reliable by comparing dif-
ferences between groups to response vari-
ability within groups. Statistically, of course,
this inference does not extend beyond the
given handy sample, but it is nonetheless a
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remarkable accomplishment. It can show that
the observed treatment differences are reli-
able for the handy sample, which is prerequi-
site to extrastatistical generalization beyond
this handy sample.

The same approach may be applied to one
class of single-subject experiments by assign-
ing treatment conditions at random across
serial positions in the sequence of treatments.
Statistical inference then becomes feasible
in the same way as it does for group ex-
periments. This approach is discussed in the
later section titled “Randomized Treatment
Design.”

Generalization beyond the handy sample,
however, depends on extrastatistical consider-
ations. Standard statistical techniques have an
essential role with single subject experiments,
exactly as with group experiments. In either
case, however, this role is a minor part in the
overall chain of scientific inference.

Data Analysis

Two points of terminology need mention.
First, statsig is employed as short for statisti-
cally significant to avoid unjustified meanings
of “significant” from everyday language.
Second, ANOVA (analysis of variance) is used
as an convenient umbrella term for standard
statistical techniques, virtually all of which
rely on some measure of variance.

Visual Inspection

The first rule of data analysis is to look at the
data. Sometimes no more is needed. In fact,
nearly all the experiments reported in the 11
figures of this chapter are clear from visual
inspection. Even in such cases, however, a
confidence interval or other statistical index
of prevailing variability may help the reader.

Visual inspection is also sensitive to pat-
tern or trend, which may well be obscured
in standard statistical techniques. Above all,
the data should be scrutinized for extreme

scores, which have disproportionate effects
on the likely error of the mean. Statistics texts
and courses should place heavy emphasis on
developing skills of visual inspection.

Confidence Interval

The confidence interval is an ideal statistic.
It represents the mean, or difference between
two means, not as a single number, but in
its proper form: a range of likely location.
The confidence interval is thus more infor-
mative than a significance test, for the latter
may be derived from the former. At the same
time, the confidence interval provides visual
indications of the response variability and
of the size of the effect.

Unfortunately, confidence intervals have
limited usefulness. One limitation is that there
is no confidence interval for three or more
groups. The obvious tack of constructing
confidence intervals for each pair of means
markedly increases the false-alarm (type I
error) parameter. To appreciate the severity
of this problem, consider the usual 95% con-
fidence interval between the largest and small-
est sample means from three populations
with equal true means. The false-alarm pa-
rameter for this confidence interval is not .05,
but almost .13. The true confidence is thus
not .95 but little more than .87. This loss
of confidence with additional
conditions. The overall F test, however,
maintains the false-alarm parameter at its
assigned value regardless of the number of
treatment conditions.

increases

Significance Test

A brief comment on the significance test may
ameliorate the opprobrium under which this
concept suffers. One standard class of exper-
iments seeks to compare mean response un-
der two treatment conditions, as in the classic
experimental-versus-control paradigm. The
essential question is whether the difference



between the two conditions is reliable.
Evidence that the observed difference is not a
likely outcome of chance, that is, of prevail-
ing variability, is surely prerequisite to ask-
ing others to pay attention to the results. The
function of a significance test is to provide
such evidence.

In this view, visual inspection may suffice
as a test of significance. In the experiment on
behavior modification of Figure 8.4, for ex-
ample, the reliability of the difference is clear
to visual inspection. To include a formal sig-
nificance test not only is unnecessary clutter
but also would betray a weak understanding
of the nature of science.

Often, of course, more formal statistical
analysis is needed. Nevertheless, the main
problems of scientific inference are extrasta-
tistical and should receive primary attention.
The rule that less is more is as applicable
with formal statistics as so often elsewhere
in life.

Reducing Variability

Statistical theory emphasizes the importance
of reducing variability, which determines the
likely error of the observed means. This is
one reason, already noted, for preferring
single-subject design to repeated-measures
design, and for preferring repeated-measures
design to independent-groups design. Within
each of these classes of designs, however, ex-
treme scores are sometimes a major headache,
as in studies of various patient classes.

The first line of defense against extreme
scores is good experimental procedure. Good
procedure, however, may not be enough.
Statistical theory has given extensive atten-
tion to various supplementary aids, including
response transformation, rank-order statistics,
and outlier rejection techniques. Of these aids,
trimming seems to have high potential but is
surprisingly little used (see Anderson, 2001,
chap. 12).
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Experimental Design

The most important functions of statistics ap-
pear before the data are collected, when plan-
ning the experimental design. Most statistical
inference, however, applies after the data have
been collected. Then it is too late to remedy
deficiencies of the design, too late to apply
procedural precautions to minimize extreme
scores, and too late to use a Latin square to
balance and measure position effects.

Power

Before doing an experiment, it seems prudent
to determine that it has a reasonable chance
of demonstrating a desired result. In statistics,
this is called power—the probability that the
result will be statsig. Everyone makes some
intuitive estimate of power in any experiment,
but usually by guess and by God. Statistics
provides simple formulas that can make such
intuitive estimates more precise.

This issue of power is illustrated later
in the behavior modification experiment of
Figure 8.5. These data give little sign of re-
liable differences between placebo and any
level of drug. The differences between dif-
ferent treatment means are comparable to the
differences within each treatment condition.
This could have been foreseen with a pre-
liminary power calculation, and steps could
have been taken to increase power.

Confounding

The big problem in any investigation is not re-
liability, the province of ANOVA, but validity.
Granted a real effect, what does it mean?

Confounds are the big threat to meaning-
ful interpretation. That some medicine im-
proves a patient’s condition may mean lit-
tle if a placebo control has been neglected.
A placebo control may be less than use-
less unless it is blind. The experiment of
Figure 8.5 was well designed in these and
related respects.
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Problems of confounding are mainly ex-
trastatistical. A complete chapter is devoted
to this issue in Anderson (2001, chap. 8).
Statistical theory can help. One such aid is
the Latin square design for control of position
and carryover effects.

Latin Square Design

The main defense against position and carry-
over effects is with experimental procedure,
as already noted. But these effects can hardly
be eliminated completely; some will remain.
The experimental design should guard against
confounding them with treatments. Even
when these effects are expected to be negli-
gible, moreover, showing that they are may
still be desirable.

Latin square design can help deal with
position and carryover effects. The follow-
ing table shows a balanced Latin square for
four treatment conditions, A; to A4, which
are listed in different order in each row of
the square. The subject would receive these
16 treatment conditions in the given lexico-
graphic order.

Balanced Latin Square

A As As As
Ay A; A, Ay
As As A As
As Ay Ay A,

Two forms of balance appear in this square.
First, each treatment occurs once in each row
and once in each column. The row and col-
umn means of the corresponding 4 x 4 data
table are thus measures of whatever position
effects may be present. Because of the bal-
ance, the treatment means themselves are de-
confounded from these position effects.

In addition, each treatment follows each
other treatment exactly once. This balance
provides partial control of possible carryover
effects, as well as some information about
their magnitude.

This balanced Latin square design could
have been useful in the behavior modifica-
tion study of Figure 8.5. Treatment conditions
would be the four drug levels. Each row of the
square would represent four days of one week.
Position effects, which may show a within-
week pattern, are thus balanced across treat-
ments, and their magnitudes are given by the
column means of the 4 x 4 data table. Adap-
tation across weeks would appear similarly
in the row means. These position effects may
well be negligible, of course, but demonstrat-
ing that they are has advantages over assum-
ing that they are.

The drug in this experiment (Ritalin) is
thought to be completely eliminated from the
body in 24 hours. If so, carryover effects might
well be expected to be negligible. Their mag-
nitude can be assessed because of the balance
in this design. The calculations are simpler if
the last column is replicated so that each treat-
ment follows itself once as well as each other
treatment. Statistical details together with a
numerical example are given by Cochran and
Cox (1957, Section 4.6a).

Stimulus Integration

Every behavior is an integrated outcome of
multiple coacting variables. Understanding
and predicting behavior accordingly depend
on understanding the rules that govern such
integration. Two aspects of this integration
problem are considered here.

Psychological Measurement Theory

A fundamental difficulty with analysis of
stimulus integration appears in the simplest
integration rule, namely, addition of two de-
terminants. Such an addition rule occurs in
standard factorial ANOVA, in which the sta-
tistical interaction term represents deviations
from additivity. Statsig interaction, accord-
ingly, is commonly interpreted to mean that



the effect of one variable depends on the level
of the other.

But this interpretation of Anova interac-
tions rests on a critical assumption, namely,
that the observed response is a linear (equal-
interval) scale. There is ample reason to doubt
this in psychology, as many writers have em-
phasized. Strength of response, for example,
may be measured either with time or speed
(rate) in certain tasks, yet both cannot be lin-
ear scales. Hence, a statistical interaction ob-
tained with one measure may disappear with
the other, or even reverse direction (Anderson,
1961). This measurement problem, it may be
reemphasized, does not afflict main effects in
randomized designs.'

!'The importance of psychological measurement for in-
terpreting interactions is clear in the following example
revised slightly from Anderson (1961). Consider an or-
ganism performing a certain task under two incentives,
each of which may be Low or High, in a 2 x 2 design. The
left 2 x 2 data table shows the times taken to perform the
task under the four pairs of incentive conditions. Raising
either incentive from low to high reduces response time
by 0.5 s; but raising the other incentive as well yields
an additional decrease of only 0.25 s. An interaction is
present, as shown by the nonparallelism, and its direction
seems meaningful.

Low High Low High
Low: 1.0 .50 1.0 2.0
High: .50 25 2.0 4.0

But we could just as well have measured speed (rate).
Indeed, speed may be preferable as a direct measure of
action dynamics. The speed data, obtainable as the recip-
rocals of the time data, are shown in the right 2 x 2 data
table. Raising one incentive from low to high raises speed
from 1 to 2; but if the other incentive is also raised, speed
jumps from 2 to 4, an apparent synergy. An interaction is
present, but it is in the opposite direction.

This example illustrates the general truth that unless
we know the true linear scale, interpretion of this—and
any other—factorial-type data pattern is hazardous. This
serious problem is almost completely neglected in current
texts for graduate courses on design and analysis.

This issue is a general problem for analysis of stimu-
lus integration, which depends heavily on meaning of re-
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The problem of psychological measure-
ment has been controversial ever since
Fechner’s claim that just noticeable differ-
ences are equal psychologically and hence
may be considered additive units. Fechner’s
approach was amplified by Thurstone (see
Link, 1994), but nearly all applications of
Thurstonian techniques deal with proportions
of groups of people and thus are sociological
rather than psychological scales. The conjoint
measurement approach of axiomatic measure-
ment theory (e.g., Krantz, Luce, Suppes, &
Tversky, 1971) has been devoid of empiri-
cal applications and therefore has been called
the “revolution that never happened” by Cliff
(1992, p. 186; see similarly, Anderson, 1981,
pp- 347-356;2001, pp. 734-736). But without

sponse patterns. Joint manipulation of two or more stimu-
lus variables leads naturally to factorial-type designs and
to factorial-type data patterns. With a true linear response
scale, the pattern in such graphs is a direct reflection of
the integration process, as shown in Figures 8.2 and 8.3.
But without a true linear response scale, the observable
pattern may be totally misleading.

(To avoid confusion, it should be emphasized that main
effects in randomized designs do not suffer this afflic-
tion of interactions. There is a qualitative difference be-
tween main effects and interactions. In the 2 x 2 de-
sign, each main effect makes a direct comparison between
two means, that is, between two points on the response
scale. The direction of this difference cannot generally be
changed by a monotone transformation of the response.
In contrast, interactions compare differences between two
pairs of means, that is, between two intervals at different
locations on the response scale. Barring crossover, the
direction of this difference can readily be changed, as the
given example shows.)

Psychological measurement theory, as this example
shows, needs to shift away from its traditional focus on
stimulus measurement. Response measurement has far
greater importance. The linearity of the rating method es-
tablished in the work on functional measurement theory
means that ratings can be interpreted with some confi-
dence in other situations, at least if standard precautions
are adopted (see, e.g., Anderson, 1996, pp. 92-98). With
a linear response, pattern in the observed data is a veridi-
cal reflection of pattern in the underlying process. Linear
response methodology thus provides a priceless foothold
on analysis of stimulus integration that follows configural
or nonalgebraic rules.
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a measurement theory that can yield linear
scales, analysis of stimulus integration cannot
get very far, as illustrated with the time-speed
example of note 1.

Functional Measurement Theory

A solution to the integration-measurement
problem was obtained with functional mea-
surement theory, which employs algebraic
integration rules as the base and frame for psy-
chological measurement. The simplest ver-
sion of this approach involves the parallelism
theorem. Two premises are employed in this
theorem: that the integration is additive, and
that the response scale is linear (equal inter-
val). Two conclusions follow directly: The
factorial graph will be parallel, showing no
statistical interaction; and the row and column
means will be linear (equal-interval) scales of
the functional psychological values of the row
and column variables.

Observed parallelism thus provides joint
support for both premises, including the lin-
earity of the response measure. If additive
rules exist, accordingly, they can be used to
obtain true psychological measurement, both
for the response and for the stimulus variables
(see Anderson, 1996, chap. 2 and chap. 3). The
conceptual validity of this functional mea-
surement logic has been acknowledged by
Krantz et al. (1971, p. 445).

What is important, of course, is empirical
validity. Unless additive integration rules hold
empirically, the parallelism theorem will not
be worth much. As it happened, adding/aver-
aging rules have been found in almost every
area of psychology, even with young children
(e.g., Figures 8.2, 8.6, and 8.9). An analogous
linear fan theorem applies to multiplication
models, and an application is shown in the
operant experiment of Figure 11.

Of the three indicated benefits of the paral-
lelism theorem, that of support for response
linearity deserves special emphasis. Linear

response measures are invaluable because pat-
tern in the observed data is then a veridical
picture of pattern in the underlying process.
Response linearity thus provides a unique tool
for analysis of configural integration. Reponse
linearity is also invaluable for analysis of sit-
uations in which factorial-type design cannot
be used (e.g., Figure 8.10).

RANDOMIZED TREATMENT DESIGN

In randomized treatment design, treatment
conditions are given in randomized order.
The line-box illusion of Figure 8.1 is an ex-
ample from visual perception. Although two
line-box figures are shown here to dramatize
the illusion, only one was presented in the ex-
perimental task, in which the subject drew a
line equal in length to the apparent length of
the centerline. A three-factor design was used
to vary the sizes of the two flanking boxes and
the length of the centerline. All stimulus com-
binations from this design could be presented
in random order within each replication. For

0—

Figure 8.1 Line-box illusion.

NOTE: Apparent length of centerline is affected by
flanking boxes. For experimental analysis, just one
of the two line-box figures is presented; the sub-
ject draws a line equal to the apparent length of
the centerline. Contrary to century-long belief, the
illusion involves assimilation, not contrast. The
boxes make the line look longer, not shorter.



a given subject, factorial graphs would show
how the apparent length of the centerline de-
pends on the separate and integrated effects of
the two boxes. These graphs revealed the per-
ceptual structure of the comparison processes
involved in this illusion.

Similar treatment randomization is used in
many other perceptual tasks as well as in tasks
of judgment-decision in diverse fields (e.g.,
Figures 8.2, 8.3, 8.9, and 8.10). Although such
investigations often use repeated-measures
design with multiple subjects, single-subject
design and analysis may sometimes be
preferable.

Two Benefits of Treatment
Randomization

Treatment randomization has two important
potential benefits. It can deconfound treat-
ments from position effects and from some
carryover effects, markedly easing questions
about validity. Also, it can make treatment
responses independent, markedly easing
questions about reliability.

Position and Carryover Effects

The first potential benefit of treatment ran-
domization is to nullify confounding from po-
sition effects. If one presents treatments to the
subject in the same lexicographic order as one
lists data for the computer, then one embraces
temporal confounding. Response to early and
late levels of a variable could differ because
of learning, fatigue, and other internal fac-
tors. External happenstance could cause sim-
ilar confounding.

Such confounding tends to be nullified
with treatment randomization. Temporal
effects are randomized across treatments,
thereby reducing or eliminating the confound-
ing from the treatment means. Of course, the
position effects do not disappear. Instead, they
are randomized into the variability of the treat-
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ment means. The logic is identical to that for
random assignment of subjects to conditions
in group experiments.

This logic also applies to some carryover
effects. Among these are local drift in the
organism or environment and carryover ef-
fects from one treatment to the following
response that do not depend on the treat-
ment on the following trial. With numerous
treatment conditions, moreover, as with many
experiments in perception and judgment-
decision, carryover that depends on the spe-
cific treatments on successive trials tends to
be diluted.

Independent Observations

Treatment randomization also helps ensure
independence of different responses to the
same treatment. Suppose instead that all repli-
cations of a given treatment were presented in
one consecutive block. Independence could
then be violated by trial-to-trial assimila-
tion, for example, which would induce pos-
itive serial correlation in the sequence of
responses to each treatment. Something sim-
ilar would occur if the treatments were given
in any systematic order, say, from low to
high.

To appreciate how randomization pro-
duces independence, consider the responses to
two replications of a given treatment. Because
their location is randomized in the sequence
of trials, knowing the response to one tells us
nothing about the component of momentary
variability in the response to the other; the two
responses are statistically independent. With
independence, differences between responses
to the same treatment provide a valid estimate
of error variability and valid confidence in-
tervals. An early experimental application of
randomized treatment design to single sub-
jects is shown later in Figure 8.2.
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Limitation of Treatment Randomization

Treatment randomization may not be effec-
tive with small numbers of treatments or tri-
als. To illustrate, consider two treatments, A
and B, each presented twice. The random se-
quence, A-A-B-B, which has probability 1/6,
confounds treatments with temporal change.
With this sequence, practice or adaptation
can make B appear more (or less) different
from A than it really is. Serial position ef-
fects are randomized out over all six possi-
ble sequences, it is true, but the investigator
is stuck with whatever confounding may ac-
company the one particular sequence selected.
Such treatment-independent temporal effects
can, however, be randomized out over a long
sequence.

Treatment-specific carryover effects are
more serious, as when one treatment affects
response to some specific other treatment.
Treatment randomization may dilute the con-
founding but does not nullify it.

When the number of treatment conditions
or number of trials is small, systematic order is
usually needed. Thus, a better alternative to A-
A-B-B would seem to be A-B-B-A. System-
atic design can help balance and measure po-
sition and carryover effects, as was discussed
with the Latin square.

Analysis of Randomized
Treatment Designs

Independence of observations is the main
requirement for applying concepts and meth-
ods of statistics. The central limit theorem
(which states that the sampling distribution
of the mean becomes more normal for larger
samples) is usually even more efficacious
with independent observations from a sin-
gle subject than from a group of subjects.
This central limit theorem provides a foun-
dation of confidence intervals and other tech-
niques of ANOVA. With independence, these
ANOVA techniques have identical formulas

and implications for single-subject data as for
data from independent groups.?

Besides independence, the equinormality
(normal distribution and equal variance) as-
sumption also needs consideration. Normal-
ity, on the whole, may be better satisfied with
single-subject data than with group data. The
same holds for the equal variance assump-
tion. Equinormality is not usually an empiri-
cal problem, although it may be badly violated
in some situations. Aversive tasks may yield
extreme scores, for example, and time scores
may be skewed. Alternative analyses such as
trimming may then be needed. Personal expe-
rience and pilot work with the task at hand are,
as always, the foundation for prudent choice
of analysis.

Restricted randomization may generally be
advisable. When treatments are replicated,
each successive replication could be random-
ized separately in consecutive blocks of trials.
In the experiment of Figure 8.2, for exam-
ple, the 27 treatments were randomized sep-

2Randomization tests, extensively developed by
Edgington (1987), provide an alternative to ANOVA
that do not assume normality and are less sensitive to
unequal variance. However, randomization tests rely on
massive computation, which may need hand-tailoring
to each new experiment. Some writers have advocated
randomization tests instead of ANOVA, without realizing
that the independence assumption is equally essential, as
Edgington makes clear.

ANOVA is far more general and far more flexible than
randomization tests. Edgington’s (1987) book is focused
entirely on significance tests; confidence intervals seem to
go unmentioned despite their value as descriptive statis-
tics. Other advantages of ANOVA include simple formu-
las for power, trimming, multiple comparison range tests,
Latin square designs, and so forth.

These advantages of ANOVA rest of an empirical
base—variance as a key empirical entity. The variability
within a set of data obtained under each separate treat-
ment condition is no less important that the differences
between conditions. The latter is only meaningful rela-
tive to the former, as the confidence interval makes clear.
In randomization tests, however, this variability is lost to
sight, a loss of contact with an important aspect of the
behavior. Randomization tests can be useful with badly
distributed data, but they are not a general purpose tool.



arately for each of the five days of the exper-
iment. In some situations, as with studies of
motivation or emotion, it may be advisable
to include blocks as a factor in the analysis,
perhaps treating blocks as a random factor so
that block x treatment interactions are used
for error, exactly as with subject x treatment
interactions in repeated-measures design.

SERIAL OBSERVATION DESIGN

Treatment randomization is not always ap-
propriate or even possible. In some operant
studies, a single treatment may last a month
and may hardly be repeatable. Some studies
in behavior modification and medical science
have only two treatments, one of which repre-
sents the normal, pretreatment situation. Va-
lidity and reliability both present difficulties.

A-B-Type Design

A-B refers to designs that present a sequence
of trials under treatment A followed by a se-
quence of trials under treatment B. A-B-type
includes the simple A-B design as well as
A-B-A, A-B-B-A, and other such designs.
This section comments briefly on the valid-
ity problem.

Temporal Confounding in A-B-Type Design

In the simple A-B design, a single treatment
B is initiated at some time point subsequent
to a sequence of trials under some compari-
son treatment A. In a prototypical application,
A represents the normal situational condition
before the experimental treatment. In general,
however, A and B may be experimental treat-
ments of equal importance. A sequence of
observations is assumed to be available un-
der both A and B conditions. The researcher’s
task is to scrutinize the pattern of these two
sets of data to assess reliability and validity of
the observed difference in the A and B effects.
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The validity question, whether B does bet-
ter than A, might seem unanswerable; B is
completely confounded with any and all tem-
poral factors. Suppose, however, that a graph
of the behavior as a function of time shows
a flat trend over a longish sequence of A ob-
servations, followed by a sharp change when
B is introduced. This is prima facie evidence
for a B effect. Given a long, flat trend under
A, it seems unlikely that the behavior would
change just when B was introduced unless B
had a real effect.

In practical affairs, the simple A-B design
is sometimes all that is available. If one’s
child’s health/behavior problem is improving
under some treatment, one would hardly insist
on inclusion of a control treatment. A-B de-
sign is thus common in medicine and behav-
ior modification, as well as in everyday life.
A-B design also occurs naturally with laws or
regulations intended to improve some unde-
sirable state of affairs, such as environmental
pollution or teaching in the universities.

One difficulty with simple A-B design is
that real effects are often not clear-cut. Tem-
poral confounding is thus a serious threat, a
threat that can be reduced with stronger de-
signs. The next strongest is the A-B-A design,
obtained by terminating B and reverting to A.
If the behavior also reverts, the case for a B
effect is strengthened. The A-B-A design also
gives some protection against temporal trend.
Additional periods of A and B provide further
protection.

Baseline Procedure

Baseline procedure is a form of control in-
tended to produce a standard state between
successive experimental treatments. Baseline
conditions are common for minimizing carry-
over effects in perception. In olfactory studies,
for example, one baseline condition requires
subjects to smell their own elbows between
trials with the experimental stimuli. Each of
us has a personal odor, as any bloodhound can
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tell, and smelling our own elbow appears to be
an effective way to readapt to a standard state.
Analogous procedure may be useful with the
choice and rating responses widely employed
in cognitive domains. In judgment-decision
tasks, interspersing a standard stimulus be-
tween successive experimental stimuli may
absorb carryover effects and also firm up the
frame of reference for the judgment-decision.
Baseline conditions are also common in med-
ical science, where they are called washout
conditions.

Many operant studies treatment
schedules that produce systematic, cumu-
lative changes in behavior. Accordingly, a
standard baseline schedule may be introduced
after each experimental schedule, hoping to
return the subject to a standard state before
proceeding. If A and B; denote the base-
line and experimental treatments, the design
would be A-B;-A-B,-A-B3, and so on. Effec-
tiveness of baseline procedure cannot be taken
for granted, of course, but needs situation-
specific justification.

use

Serial Independence

With serial observation data, reliability must
usually be estimated from trial-to-trial vari-
ability in response. This estimate is biased
when serial correlation is present. In exper-
imental analysis, the best hope is usually to
avoid or minimize serial correlation.

Serial Independence Assumption

Standard ANOVA is directly applicable if
successive responses are statistically inde-
pendent. To illustrate, consider an A-B de-
sign with n independent responses in each
treatment condition. To assess reliability of
the mean difference between treatments, con-
struct a confidence interval. To estimate power
of a proposed experiment, apply standard
ANOVA power analysis.

The reasonableness of the independence
assumption depends on situational specifics.

With only a single observation in each ses-
sion, as in some of the later experimental ex-
amples, serial correlation may well be small
enough to cause no problem. If multiple A ob-
servations are taken in a single session, on the
other hand, serial correlation is a real possibil-
ity. Evenin this case, however, interpolation of
a standard treatment between successive ex-
perimental treatments, as in the cited example
of elbow smelling, may reduce any serial cor-
relation to an acceptably small size.

Zero Serial Correlation
in Behavior Modification?

Serial correlation may not be too serious in
many behavior modification studies. Single-
subject A-B-type design is common in this
area, as in the two later examples of behav-
ior modification with children. On the face of
it, of course, serial correlation seems likely.
In part because of this expectation, standard
statistical methods have been shunned.

Little empirical evidence was available,
however, because the number of observations
per period has typically been no more than
10, far too few for adequate power to assess
possible serial correlation. Instead, the prob-
lem was considered serious on the plausible
feeling that behavior should be more similar
on successive than on nonsuccessive observa-
tions. Positive serial correlation was thus con-
sidered normal, and proposals to use ANOVA
were harshly criticized.

Huitema (1985) cogently proposed that the
question of serial correlation should be stud-
ied empirically. Accordingly, he considered
all articles from the first 10 years of the Jour-
nal of Applied Behavior Analysis, the premier
journal in this field. Of these, 441 studies re-
ported data that could be used to calculate a
serial correlation. On the expectation of posi-
tive serial correlation in even a good fraction
of these studies, the mean of all 441 serial cor-
relations should be positive. This mean should
have a narrow confidence interval, moreover,
based on such a large N.



Contrary to expectation, the actual mean
was slightly negative for the data of the ini-
tial baseline phase. This absence of serial
correlation was supported by similar results
from subsequent treatment phases. Huitema
did find indirect evidence for a small propor-
tion of positive serial correlations, and a some-
what larger proportion was found similarly by
Matyas and Greenwood (1996) for the subse-
quent seven-year period in the same journal.?

These analyses suggest that serial cor-
relation is not a problem in many studies

3 Although Huitema’s (1985) Herculean effort should
have been welcomed, the reaction was remarkably neg-
ative (see critiques cited in Huitema, 1988). In every
critique the central objection was that the small num-
ber of observations in each separate study yielded very
low power. The objection was mistaken; this power prob-
lem had been addressed by Huitema, who saw how to
resolve it by considering the aggregate of studies. If
the true correlation was generally positive in the 441
studies, the mean of the 441 serial correlations would
have been positive. That was why he went to the great
labor of reading and analyzing the data from all 441
studies; had each separate study had adequate power,
a small random sample would have sufficed. More re-
cently, Matyas and Greenwood (1996) have given a sen-
sible discussion of the issue, together with additional data
that suggest more serial correlation than was obtained by
Huitema, although markedly less than had generally been
expected.

Two complications with Huitema’s analysis should be
noted. First, under the null hypothesis, a serial correla-
tion based on N observations has an expected value of
—1/(N — 1), not 0 (Huitema & McKean, 1991). Under
the total null hypothesis of zero true serial correlation in
all 441 studies, the expected mean of the observed values
would be about —.10, whereas the actual value was —.01.

Second, Huitema sought more detailed information
by standardizing each serial correlation on the assump-
tion that this would yield a