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Preface

The precise origins of experimental psychol-
ogy can be debated, but by any count the field
is more than a hundred years old. The past
10 years have been marked by tremendous
progress: a honing of experimental strategies
and clearer theoretical conceptualizations in
many areas combined with a more vigorous
cross-fertilization across neighboring fields.

Despite the undeniable progress, vigorous
debate continues on many of the most funda-
mental questions. From the nature of learning
to the psychophysical functions relating sen-
sory stimuli to sensory experiences and from
the underpinnings of emotion to the nature of
attention, a good many of the questions posed
in the late 19th century remain alive and in
some cases highly controversial.

Although some have viewed this fact as
discouraging, it should scarcely be surpris-
ing. As in the biological sciences generally,
early hopes that a few simple laws and prin-
ciples would explain everything that needed
to be explained have gradually given way to a
recognition of the vast complexity of human
(and nonhuman) organisms in general, and of
their mental faculties in particular. There is no
contradiction between recognizing the magni-
tude of the progress that has been made and
appreciating the gap between current under-
standing and the fuller understanding that we
hope to achieve in the future.

Stanley Smith (“Smitty”) Stevens’ Hand-
book of Experimental Psychology, of which
this is the third edition, has made notable
contributions to the progress of the field. At
the same time, from one edition to the next,
the Handbook has changed in ways that re-
flect growing recognition of the complexity
of its subject matter. The first edition was
published in 1951 under the editorship of the
great psychophysical pioneer himself. This
single volume (described by some review-
ers as the last successful single-volume hand-
book of psychology) contained a number of
very influential contributions in the theory
of learning, as well as important contribu-
tions to psychophysics for which Stevens was
justly famous. The volume had a remarkably
wide influence in the heyday of a period in
which many researchers believed that princi-
ples of learning theory would provide the ba-
sic theoretical underpinning for psychology
as a whole.

Published in 1988, the second edition
was edited by a team comprised of Richard
Atkinson, Richard J. Herrnstein, Gardner
Lindzey, and Duncan Luce. The editors of the
second edition adopted a narrower definition
of the field, paring down material that over-
lapped with physics or physiology and reduc-
ing the role of applied psychology. The result
was a set of two volumes, each of which was

ix
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substantially smaller than the single volume
in the first edition.

Discussions of a third edition of the
Stevens’ Handbook began in 1998. My fel-
low editors and I agreed that experimental
psychology had broadened and deepened to
such a point that two volumes could no longer
reasonably encompass the major accomplish-
ments that have occurred in the field since
1988. We also felt that a greatly enlarged treat-
ment of methodology would make the Hand-
book particularly valuable to those seeking
to undertake research in new areas, whether
graduate students in training or researchers
venturing into subfields that are new to them.

The past 10 years have seen a marked in-
crease in efforts to link psychological phe-
nomena to neurophysiological foundations.
Rather than eschewing this approach, we have
embraced it without whittling down the core
content of traditional experimental psychol-
ogy, which has been the primary focus of the
Handbook since its inception.

The most notable change from the previ-
ous edition to this one is the addition of a
new volume on methodology. This volume
provides rigorous but comprehensible tuto-

rials on the key methodological concepts of
experimental psychology, and it should serve
as a useful adjunct to graduate education in
psychology.

I am most grateful to Wiley for its strong
support of the project from the beginning.
The development of the new Handbook was
initially guided by Kelly Franklin, now Vice
President and Director of Business Develop-
ment at Wiley. Jennifer Simon, Associate Pub-
lisher, took over the project for Wiley in 1999.
Jennifer combined a great measure of good
sense, good humor, and the firmness essen-
tial for bringing the project to a timely com-
pletion. Although the project took somewhat
longer than we initially envisioned, progress
has been much faster than it was in the sec-
ond edition, making for an up-to-date pre-
sentation of fast-moving fields. Both Isabel
Pratt at Wiley and Noriko Coburn at Univer-
sity of California at San Diego made essential
contributions to the smooth operation of the
project. Finally, I am very grateful to the
four distinguished volume editors, Randy
Gallistel, Doug Medin, John Wixted, and
Steve Yantis, for their enormous contributions
to this project.

Hal Pashler
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CHAPTER 1

Representational Measurement Theory

R. DUNCAN LUCE AND PATRICK SUPPES

CONCEPT OF REPRESENTATIONAL
MEASUREMENT

Representational measurement is, on the one
hand, an attempt to understand the nature of
empirical observations that can be usefully
recoded, in some reasonably unique fashion,
in terms of familiar mathematical structures.
The most common of these representing struc-
tures are the ordinary real numbers ordered in
the usual way and with the operations of ad-
dition, +, and/or multiplication, ·. Intuitively,
such representations seems a possibility when
dealing with variables for which people have
a clear sense of “greater than.” When data can
be summarized numerically, our knowledge
of how to calculate and to relate numbers can
usefully come into play. However, as we will
see, caution must be exerted not to go beyond
the information actually coded numerically. In
addition, more complex mathematical struc-
tures such as geometries are often used, for
example, in multidimensional scaling.

On the other hand, representational mea-
surement goes well beyond the mere construc-
tion of numerical representations to a careful
examination of how such representations re-
late to one another in substantive scientific

The authors thank János Aczél, Ehtibar Dzhafarov, Jean-
Claude Falmagne, and A.A.J. Marley for helpful com-
ments and criticisms of an earlier draft.

theories, such as in physics, psychophysics,
and utility theory. These may be thought of
as applications of measurement concepts for
representing various kinds of empirical rela-
tions among variables.

In the 75 or so years beginning in 1870,
some psychologists (often physicists or phy-
sicians turned psychologists) attempted to
import measurement ideas from physics, but
gradually it became clear that doing this suc-
cessfully was a good deal trickier than was
initially thought. Indeed, by the 1940s a num-
ber of physicists and philosophers of physics
concluded that psychologists really did not
and could not have an adequate basis for mea-
surement. They concluded, correctly, that the
classical measurement models were for the
most part unsuited to psychological phenom-
ena. But they also concluded, incorrectly, that
no scientifically sound psychological mea-
surement is possible at all. In part, the theory
of representational measurement was the re-
sponse of some psychologists and other social
scientists who were fairly well trained in the
necessary physics and mathematics to under-
stand how to modify in substantial ways the
classical models of physical measurement to
be better suited to psychological issues. The
purpose of this chapter is to outline the high
points of the 50-year effort from 1950 to the
present to develop a deeper understanding of
such measurement.

1
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Empirical Structures

Performing any experiment, in particular a
psychological one, is a complex activity that
we never analyze or report completely. The
part that we analyze systematically and re-
port on is sometimes called a model of the
data or, in terms that are useful in the the-
ory of measurement, an empirical structure.
Such an empirical structure of an experiment
is a drastic reduction of the entire experi-
mental activity. In the simplest, purely psy-
chological cases, we represent the empirical
model as a set of stimuli, a set of responses,
and some relations observed to hold between
the stimuli and responses. (Such an empirical
restriction to stimuli and responses does not
mean that the theoretical considerations are
so restricted; unobservable concepts may well
play a role in theory.) In many psychological
measurement experiments such an empirical
structure consists of a set of stimuli that vary
along a single dimension, for example, a set
of sounds varying only in intensity. We might
then record the pairwise judgments of loud-
ness by a binary relation on the set of stimuli,
where the first member of a pair represents
the subject’s judgment of which of two sounds
was louder.

The use of such empirical structures in
psychology is widespread because they come
close to the way data are organized for subse-
quent statistical analysis or for testing a theory
or hypothesis.

An important cluster of objections to the
concept of empirical structures or models of
data exists. One is that the formal analysis
of empirical structures includes only a small
portion of the many problems of experimen-
tal design. Among these are issues such as
the randomization of responses between left
and right hands and symmetry conditions in
the lighting of visual stimuli. For example, in
most experiments that study aspects of vision,
having considerably more intense light on the

left side of the subject than on the right would
be considered a mistake. Such considerations
do not ordinarily enter into any formal de-
scription of the experiment. This is just the
beginning. There are understood conditions
that are assumed to hold but are not enumer-
ated: Sudden loud noises did not interfere with
the concentration of the subjects, and neither
the experimenter talked to the subject nor the
subject to the experimenter during the collec-
tion of the data—although exceptions to this
rule can certainly be found, especially in lin-
guistically oriented experiments.

The concept of empirical structures is just
meant to isolate the part of the experimental
activity and the form of the data relevant to
the hypothesis or theory being tested or to the
measurements being made.

Isomorphic Structures

The prehistory of mathematics, before
Babylonian, Chinese, or Egyptian civiliza-
tions began, left no written record but none-
theless had as a major development the con-
cept of number. In particular, counting of
small collections of objects was present. Oral
terms for some sort of counting seem to exist
in every language. The next big step was the
introduction, no doubt independently in sev-
eral places, of a written notation for numbers.
It was a feat of great abstraction to develop
the general theory of the constructive opera-
tions of counting, adding, subtracting, multi-
plying, and dividing numbers. The first prob-
lem for a theory of measurement was to show
how this arithmetic of numbers could be con-
structed and applied to a variety of empirical
structures.

To investigate this problem, as we do in
the next section, we need the general no-
tion of isomorphism between two structures.
The intuitive idea is straightforward: Two
structures are isomorphic when they exhibit
the same structure from the standpoint of
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their basic concepts. The point of the formal
definition of isomorphism is to make this no-
tion of same structure precise.

As an elementary example, consider a
binary relational structure consisting of a
nonempty set A and a binary relation R de-
fined on this set. We will be considering pairs
of such structures in which both may be empir-
ical structures, both may be numerical struc-
tures, or one may be empirical and the other
numerical. The definition of isomorphism is
unaffected by which combination is being
considered.

The way we make the concept of having
the same structure precise is to require the ex-
istence of a function mapping the one struc-
ture onto the other that preserves the binary
relation. Formally, a binary relation structure
(A, R) is isomorphic to a binary relation struc-
ture (A′, R′) if and only if there is a function
f such that

(i) the domain of f is A and the codomain
of f is A′, i.e., A′ is the image of A
under f,

(ii) f is a one-one function,1 and

(iii) for a and b in A, aRb iff2 f (a)R′ f (b).

To illustrate this definition of isomorph-
ism, consider the question: Are any two finite
binary relation structures with the same num-
ber of elements isomorphic? Intuitively, it
seems clear that the answer should be neg-
ative, because in one of the structures all the
objects could stand in the relation R to each
other and not so in the other. This is indeed
the case and shows at once, as intended, that
isomorphism depends not just on a one-one
function from one set to another, but also
on the structure as represented in the binary
relation.

1In recent years, conditions (i) and (ii) together have
come to be called bijective.
2This is a standard abbreviation for “if and only if.”

Ordered Relational Structures

Weak Order

An idea basic to measurement is that the ob-
jects being measured exhibit a qualitative at-
tribute for which it makes sense to ask the
question: Which of two objects exhibits more
of the attribute, or do they exhibit it to the same
degree? For example, the attribute of having
greater mass is reflected by placing the two
objects on the pans of an equal-arm pan bal-
ance and observing which deflects downward.
The attribute of loudness is reflected by which
of two sounds a subject deems as louder or
equally loud. Thus, the focus of measurement
is not just on the numerical representation of
any relational structures, but of ordered ones,
that is, ones for which one of the relations is a
weak order, denoted �∼, which has two defin-
ing properties for all elements a, b, c in the
domain A:

(i) Transitive: if a �∼ b and b �∼ c, then a �∼ c.

(ii) Connected: either a �∼ b or b �∼ a or both.

The intuitive idea is that �∼ captures the order-
ing of the attribute that we are attempting to
measure.

Two distinct relations can be defined in
terms of �∼:

a � b iff a �∼ b and not (b �∼ a);
a ∼ b iff both a �∼ b and b �∼ a.

It is an easy exercise to show that � is transi-
tive and irreflexive (i.e., a � a cannot hold),
and that ∼ is an equivalence relation (i.e.,
transitive, symmetric in the sense that a ∼ b
iff b ∼ a, and reflexive in the sense that
a ∼ a). The latter means that ∼ partitions A
into equivalence classes.

Homomorphism

For most measurement situations one really
is working with weak orders—after all, two
entities having the same weight are not in gen-
eral identical. But often it is mathematically
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easier to work with isomorphisms to the or-
dered real numbers, in which case one must
deal with the following concept of simple or-
ders. We do this by inducing the preference
order over the equivalence classes defined by
∼. When ∼ is =, each element is an equiva-
lence class, and the weak order � is called a
simple order. The mapping from the weakly
ordered structure via the isomorphisms of
the (mutually disjoint) equivalences classes
to the ordered real numbers is called a ho-
momorphism. Unlike an isomorphism, which
is one to one, an homomorphism is many to
one. In some cases, such as additive conjoint
measurement, discussed later, it is somewhat
difficult, although possible, to formulate the
theory using the equivalence classes.

Two Fundamental Problems
of Representational Measurement

Existence

The most fundamental problem for a theory of
representational measurement is to construct
the following representation: Given an empir-
ical structure satisfying certain properties, to
which numerical structures, if any, is it iso-
morphic? These numerical structures, thus,
represent the empirical one. It is the existence
of such isomorphisms that constitutes the
representational claim that measurement of
a fundamental kind has taken place.

Quantification or measurement, in the
sense just characterized, is important in some
way in all empirical sciences. The primary
significance of this fact is that given the iso-
morphism of structures, we may pass from the
particular empirical structure to the numerical
one and then use all our familiar computa-
tional methods, as applied to the isomorphic
arithmetical structure, to infer facts about the
isomorphic empirical structure. Such passage
from simple qualitative observations to quan-
titative ones—the isomorphism of structures

passing from the empirical to the numerical—
is necessary for precise prediction or control
of phenomena. Of course, such a representa-
tion is useful only to the extent of the precision
of the observations on which it is based. A va-
riety of numerical representations for various
empirical psychological phenomena is given
in the sections that follow.

Uniqueness

The second fundamental problem of repre-
sentational measurement is to discover the
uniqueness of the representations. Solving the
representation problem for a theory of mea-
surement is not enough. There is usually a
formal difference between the kind of assign-
ment of numbers arising from different pro-
cedures of measurement, as may be seen in
three intuitive examples:

1. The population of California is greater than
that of New York.

2. Mary is 10 years older than John.

3. The temperature in New York City this
afternoon will be 92 ◦F.

Here we may easily distinguish three kinds
of measurements. The first is an example of
counting, which is an absolute scale. The
number of members of a given collection that
is counted is determined uniquely in the ideal
case, although that can be difficult in prac-
tice (witness the 2000 presidential election
in Florida). In contrast, the second example,
the measurement of difference in age, is a
ratio scale. Empirical procedures for mea-
suring age do not determine the unit of age—
chosen in the example to be the year rather
than, for example, the month or the week.
Although the choice of the unit of a per-
son’s age is arbitrary—that is, not empiri-
cally prescribed—that of the zero, birth, is
not. Thus, the ratio of the ages of any two peo-
ple is independent of its choice, and the age
of people is an example of a ratio scale. The
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measurement of distance is another example
of such a ratio scale. The third example, that
of temperature, is an example of an interval
scale. The empirical procedure of measuring
temperature by use of a standard thermometer
or other device determines neither a unit nor
an origin.

We may thus also describe the second fun-
damental problem for representational mea-
surement as that of determining the scale type
of the measurements resulting from a given
procedure.

A BRIEF HISTORY
OF MEASUREMENT

Pre-19th-Century Measurement

Already by the fifth century B.C., if not before,
Greek geometers were investigating problems
central to the nature of measurement. The
Greek achievements in mathematics are all of
relevance to measurement. First, the theory of
number, meaning for them the theory of the
positive integers, was closely connected with
counting; second, the geometric theory of pro-
portion was central to magnitudes that we now
represent by rational numbers (= ratios of in-
tegers); and, finally, the theory of incommen-
surable geometric magnitudes for those mag-
nitudes that could not be represented by ratios.
The famous proof of the irrationality of the
square root of two seems arithmetic in spirit
to us, but almost certainly the Greek discov-
ery of incommensurability was geometric in
character, namely, that the length of the di-
agonal of a square, or the hypotenuse of an
isosceles right-angled triangle, was not com-
mensurable with the sides. The Greeks well
understood that the various kinds of results
just described applied in general to magni-
tudes and not in any sense only to numbers
or even only to the length of line segments.
The spirit of this may be seen in the first def-
inition of Book 10 of Euclid, the one dealing

with incommensurables: “Those magnitudes
are said to be commensurable which are mea-
sured by the same measure, and those incom-
mensurable which cannot have any common
measure” (trans. 1956, p. 10).

It does not take much investigation to de-
termine that theories and practices relevant to
measurement occur throughout the centuries
in many different contexts. It is impossible
to give details here, but we mention a few
salient examples. The first is the discussion
of the measurement of pleasure and pain in
Plato’s dialogue Protagoras. The second is
the set of partial qualitative axioms, character-
izing in our terms empirical structures, given
by Archimedes for measuring on unequal bal-
ances (Suppes, 1980). Here the two qualitative
concepts are the distance from the focal point
of the balance and the weights of the objects
placed in the two pans of the balance. This
is perhaps the first partial qualitative axiom-
atization of conjoint measurement, which is
discussed in more detail later. The third ex-
ample is the large medieval literature giving a
variety of qualitative axioms for the measure-
ment of weight (Moody and Claggett, 1952).
(Psychologists concerned about the difficulty
of clarifying the measurement of fundamen-
tal psychological quantities should be encour-
aged by reading O’Brien’s 1981 detailed ex-
position of the confused theories of weight in
the ancient world.) The fourth example is the
detailed discussion of intensive quantities by
Nicole Oresme in the 14th century A.D. The
fifth is Galileo’s successful geometrization in
the 17th century of the motion of heavenly
bodies, done in the context of stating essen-
tially qualitative axioms for what, in the ear-
lier tradition, would be called the quantity of
motion. The final example is also perhaps the
last great, magnificent, original treatise of nat-
ural science written wholly in the geometrical
tradition—Newton’s Principia of 1687. Even
in his famous three laws of motion, concepts
were formulated in a qualitative, geometrical
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way, characteristic of the later formulation of
qualitative axioms of measurement.

19th- and Early 20th-Century
Physical Measurement

The most important early 19th-century work
on measurement was the abstract theory of
extensive quantities published in 1844 by
H. Grassmann, Die Wissenschaft der Exten-
siven Grösse oder die Ausdehnungslehre. This
abstract and forbidding treatise, not properly
appreciated by mathematicians at the time
of its appearance, contained at this early
date the important generalization of the con-
cept of geometric extensive quantities to
n-dimensional vector spaces and, thus, to the
addition, for example, of n-dimensional vec-
tors. Grassmann also developed for the first
time a theory of barycentric coordinates in n
dimensions. It is now recognized that this was
the first general and abstract theory of exten-
sive quantities to be treated in a comprehen-
sive manner.

Extensive Measurement

Despite the precedent of the massive work
of Grassmann, it is fair to say that the mod-
ern theory of one-dimensional, extensive mea-
surement originated much later in the cen-
tury with the fundamental work of Helmholtz
(1887) and Hölder (1901). The two funda-
mental concepts of these first modern at-
tempts, and later ones as well, is a binary
operation ◦ of combination and an ordering
relation �∼, each of which has different inter-
pretations in different empirical structures.
For example, mass ordering �∼ is determined
by an equal-arm pan balance (in a vacuum)
with a◦b denoting objects a and b both placed
on one pan. Lengths of rods are ordered by
placing them side-by-side, adjusting one end
to agree, and determining which rod extends
beyond the other at the opposite end, and ◦
means abutting two rods along a straight line.

The ways in which the basic axioms can be
stated to describe the intertwining of these two
concepts has a long history of later develop-
ment. In every case, however, the fundamental
isomorphism condition is the following: For
a, b in the empirical domain,

f (a) ≥ f (b) ⇔ a �∼ b, (1)

f (a ◦ b) = f (a) + f (b), (2)

where f is the mapping function from the
empirical structure to the numerical structure
of the additive, positive real numbers, that is,
for all entities a, f (a) > 0.

Certain necessary empirical (testable)
properties must be satisfied for such a rep-
resentation to hold. Among them are for all
entities a, b, and c,

Commutativity: a ◦ b ∼ b ◦ a.

Associativity: (a ◦ b) ◦ c ∼ a ◦ (b ◦ c).
Monotonicity: a �∼ b ⇔ a ◦ c �∼ b ◦ c.
Positivity: a ◦ a � a.

Let a be any element. Define a standard
sequence based on a to be a sequence a(n),

where n is an integer, such that a(1) = a,
and for i > 1, a(i) ∼ a(i – 1) ◦ a. An example
of such a standard sequence is the centimeter
marks on a meter ruler. The idea is that the
elements of a standard sequence are equally
spaced. The following (not directly testable)
condition ensures that the stimuli are com-
mensurable:

Archimedean: For any entities a, b,

there is an integer n such that a(n) � b.

These, together with the following struc-
tural condition that ensures very small ele-
ments,

Solvability: if a � b,

then for some c, a � b ◦ c,

were shown to imply the existence of the rep-
resentation given by Equations (1) and (2).
By formulating the Archimedean axiom dif-
ferently, Roberts and Luce (1968) showed that
the solvability axiom could be eliminated.
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Such empirical structures are called exten-
sive. The uniqueness of their representations
is discussed shortly.

Probability and Partial Operations

It is well known that probability P is an addi-
tive measure in the sense that it maps events
into [0, 1] such that, for events A and B that
are disjoint,

P(A ∪ B) = P(A) + P(B).

Thus, probability is close to extensive mea-
surement—but not quite, because the opera-
tion is limited to only disjoint events. How-
ever, the theory of extensive measurement can
be generalized to partial operations having the
property that if a and b are such that a ◦ b is
defined and if a �∼ c and b �∼ d, then c ◦ d is
also defined. With some adaptation, this can
be applied to probability; the details can be
found in Chapter 3 of Krantz, Luce, Suppes,
and Tversky (1971). (This reference is subse-
quently cited as FM I for Volume I of Foun-
dations of Measurement. The other volumes
are Suppes, Krantz, Luce, & Tversky, 1990,
cited as FM II, and Luce, Krantz, Suppes, &
Tversky, 1990, cited as FM III.)

Finite Partial Extensive Structures

Continuing with the theme of partial opera-
tion, we describe a recent treatment of a finite
extensive structure that also has ratio scale
representation and that is fully in the spirit of
the earlier work involving continuous models.
Suppose X is a finite set of physical objects,
any two of which balance on an equal-arm
balance; that is, if a1, . . . , an are the objects,
for any i and j, i 	= j, then ai ∼ a j . Thus, they
weigh the same. Moreover, if A and B are two
sets of these objects, then on the balance we
have A ∼ B if and only if A and B have the
same number of objects. We also have a con-
catenation operation, union of disjoint sets. If
A ∩ B = ∅, then A ∪ B ∼ C if and only if
the objects in C balance the objects in A

together with the objects in B. The qualitative
strict ordering A � B has an obvious opera-
tional meaning, which is that the objects in
A, taken together, weigh more on the balance
than the objects in B, taken together.

This simple setup is adequate to establish,
by fundamental measurement, a scheme for
numerically weighing other objects not in X.
First, our homomorphism f on X is really
simple. Since for all ai and a j and X, ai∼ a j ,

we have

f (ai ) = f (a j ),

with the restriction that f (ai ) > 0. We extend
f to A, a subset of X, by setting f (A) = |A| =
the cardinality of (number of objects in) A.
The extensive structure is thus transparent:
For A and B subsets of X, if A ∩ B = ∅ then

f (A ∪ B) = |A ∪ B| = |A| + |B|
= f (A) + f (B).

If we multiply f by any α > 0 the equation
still holds, as does the ordering. Moreover,
in simple finite cases of extensive measure-
ment such as the present, it is easy to prove di-
rectly that no transformations other than ratio
transformations are possible. Let f ∗ denote
another representation. For some object a, set
α = f (a)/ f ∗(a). Observe that if |A| = n, then
by a finite induction

f (A)

f ∗(A)
= n f (a)

n f ∗(a)
= α,

so the representation forms a ratio scale.

Finite Probability

The “objects” a1, . . . , an are now interpreted
as possible outcomes of a probabilistic mea-
surement experiment, so the ai s are the possi-
ble atomic events whose qualitative probabil-
ity is to be judged.

The ordering A �∼ B is interpreted as mean-
ing that event A is at least as probable as event
B; A ∼ B as A and B are equally probable;
A � B as A is strictly more probable than B.
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Then we would like to interpret f (A) as the
numerical probability of event A, but if f is
unique up to only a ratio scale, this will not
work since f (A) could be 50.1, not exactly a
probability.

By adding another concept, that of the
probabilistic independence of two events, we
can strengthen the uniqueness result to that
of an absolute scale. This is written A ⊥ B.
Given a probability measure, the definition of
independence is familiar: A ⊥ B if and only if
P(A ∩ B) = P(A)P(B). Independence can-
not be defined in terms of the qualitative con-
cepts introduced for arbitrary finite qualitative
probability structures, but can be defined by
extending the structure to elementary random
variables (Suppes and Alechina, 1994). How-
ever, a definition can be given for the spe-
cial case in which all atoms are equiproba-
ble; it again uses the cardinality of the sets:
A ⊥ B if and only if |X | · |A ∩ B| = |A| · |B|.
It immediately follows from this definition
that X ⊥ X , whence in the interpretation of
⊥ we must have

P(X) = P(X ∩ X) = P(X)P(X),

but this equation is satisfied only if P(X)= 0,
which is impossible since P(∅) = 0 and
X � ∅, or P(X) = 1, which means that the
scale type is an absolute—not a ratio—scale,
as it should be for probability.

Units and Dimensions

An important aspect of 19th century physics
was the development, starting with Fourier’s
work (1822/1955), of an explicit theory of
units and dimensions. This is so common-
place now in physics that it is hard to be-
lieve that it only really began at such a late
date. In Fourier’s famous work, devoted to
the theory of heat, he announced that in or-
der to measure physical quantities and express
them numerically, five different kinds of units
of measurement were needed, namely, those
of length, time, mass, temperature, and heat.

Of even greater importance is the specific
table he gave, for perhaps the first time in the
history of physics, of the dimensions of vari-
ous physical quantities. A modern version of
such a table appears at the end of FM I.

The importance of this tradition of units
and dimensions in the 19th century is to be
seen in Maxwell’s famous treatise on electric-
ity and magnetism (1873). As a preliminary,
he began with 26 numbered paragraphs on
the measurement of quantities because of the
importance he attached to problems of mea-
surement in electricity and magnetism, a topic
that was virtually unknown before the 19th
century. Maxwell emphasized the fundamen-
tal character of the three fundamental units
of length, time, and mass. He then went on
to derive units, and by this he meant quanti-
ties whose dimensions may be expressed in
terms of fundamental units (e.g., kinetic en-
ergy, whose dimension in the usual notation is
M L2T –2). Dimensional analysis, first put in
systematic form by Fourier, is very useful in
analyzing the consistency of the use of quan-
tities in equations and can also be used for
wider purposes, which are discussed in some
detail in FM I.

Derived Measurement

In the Fourier and Maxwell analyses, the ques-
tion of how a derived quantity is actually to be
measured does not enter into the discussion.
What is important is its dimensions in terms of
fundamental units. Early in the 20th century
the physicist Norman Campbell (1920/1957)
used the distinction between fundamental and
derived measurement in a sense more intrinsic
to the theory of measurement itself. The dis-
tinction is the following: Fundamental mea-
surement starts with qualitative statements
(axioms) about empirical structures, such as
those given earlier for an extensive structure,
and then proves the existence of a representa-
tional theorem in terms of numbers, whence
the phrase “representational measurement.”
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In contrast, a derived quantity is measured in
terms of other fundamental measurements. A
classical example is density, measured as the
ratio of separate measurements of mass and
volume. It is to be emphasized, of course, that
calling density a derived measure with respect
to mass and volume does not make a funda-
mental scientific claim. For example, it does
not allege that fundamental measurement of
density is impossible. Nevertheless, in under-
standing the foundations of measurement, it
is always important to distinguish whether
fundamental or derived measurement, in
Campbell’s sense, is being analyzed or used.

Axiomatic Geometry

From the standpoint of representational mea-
surement theory, another development of
great importance in the 19th century was the
perfection of the axiomatic method in geom-
etry, which grew out of the intense scrutiny
of the foundations of geometry at the be-
ginning of that century. The driving force
behind this effort was undoubtedly the dis-
covery and development of non-Euclidean ge-
ometries at the beginning of the century by
Bolyai, Lobachevski, and Gauss. An impor-
tant and intuitive example, later in the cen-
tury, was Pasch’s (1882) discovery of the ax-
iom named in his honor. He found a gap in
Euclid that required a new axiom, namely, the
assertion that if a line intersects one side of a
triangle, it must intersect also a second side.
More generally, it was the high level of rigor
and abstraction of Pasch’s 1882 book that was
the most important step leading to the mod-
ern formal axiomatic conception of geometry,
which has been so much a model for repre-
sentational measurement theory in the 20th
century. The most influential work in this line
of development was Hilbert’s Grundlagen der
Geometrie, first edition in 1899, much of its
prominence resulting from Hilbert’s position
as one of the outstanding mathematicians of
this period.

It should be added that even in one-
dimensional geometry numerical representa-
tions arise even though there is no order
relation. Indeed, for dimensions ≥2, no stan-
dard geometry has a weak order. Moreover, in
geometry the continuum is not important for
the fundamental Galilean and Lorentz groups.
An underlying denumerable field of algebraic
numbers is quite adequate.

Invariance

Another important development at the end
of the 19th century was the creation of the
explicit theory of invariance for spatial prop-
erties. The intuitive idea is that the spatial
properties in analytical representations are in-
variant under the transformations that carry
one model of the axioms into another model
of the axioms. Thus, for example, the ordi-
nary Cartesian representation of Euclidean
geometry is such that the geometrical prop-
erties of the Euclidean space are invariant un-
der the Euclidean group of transformations
of the Cartesian representation. These are the
transformations that are composed from trans-
lations (in any direction), rotations, and re-
flections. These ideas were made particularly
prominent by the mathematician Felix Klein
in his Erlangen address of 1872 (see Klein,
1893). These important concepts of invariance
had a major impact in the development of the
theory of special relativity by Einstein at the
beginning of the 20th century. Here the invari-
ance is that under the Lorentz transformations,
which are those that leave invariant geomet-
rical and kinematic properties of the space-
time of special relativity. Without giving the
full details of the Lorentz transformations, it is
still possible to give a clear physical sense of
the change from classical Newtonian physics
to that of special relativity.

In the case of classical Newtonian me-
chanics, the invariance that characterizes the
Galilean transformations is just the invariance
of the distance between any two simultaneous



pashler-44093 book December 18, 2001 10:10

10 Representational Measurement Theory

points together with the invariance of any tem-
poral interval, under any permissible change
of coordinates. Note that this characterization
requires that the units of measurement for both
spatial distance and time be held constant. In
the case of special relativity, the single in-
variant is what is called the proper time τ12

between two space-time points (x1, y1, z1, t1)
and (x2, y2, z2, t2), which is defined as

τ12 =√
(t1 − t2)2 − 1

c2

[
(x1 − x2)

2 + (y1 − y2)
2 + (z1 − z2)

2
]
,

where c is the velocity of light in the given
units of measurement. It is easy to see the
conceptual nature of the change. In the case
of classical mechanics, the invariance of spa-
tial distance between simultaneous points is
separate from the invariance of temporal in-
tervals. In the case of special relativity, they
are intertwined. Thus, we properly speak of
space-time invariance in the case of special
relativity. As will be seen in what follows,
the concepts of invariance developed so thor-
oughly in the 19th and early 20th century in
geometry and physics have carried over and
are an important part of the representational
theory of measurement.

Quantum Theory and the Problem
of Measurement

Still another important development in the
first half of the 20th century, of special rel-
evance to the topic of this chapter, was the
creation of quantum mechanics and, in par-
ticular, the extended analysis of the problem
of measurement in that theory. In contrast with
the long tradition of measurement in classical
physics, at least three new problems arose that
generated what in the literature is termed the
problem of measurement in quantum mechan-
ics. The first difficulty arises in measuring mi-
croscopic objects, that is, objects as small as
atoms or electrons or other particles of a
similar nature. The very attempt to measure a

property of these particles creates a distur-
bance in the state of the particle, a disturbance
that is not small relative to the particle itself.
Classical physics assumed that, in principle,
such minor disturbances of a measured ob-
ject as did occur could either be eliminated or
taken into account in a relatively simple way.

The second aspect is the precise limitation
on such measurement, which was formulated
by Heisenberg’s uncertainty principle. For ex-
ample, it is not possible to measure both posi-
tion and momentum exactly. Indeed, it is not
possible, in general, to have a joint probability
distribution of the measurements of the two.
This applies not just to position and momen-
tum, but also to other pairs of properties of a
particle. The best that can be hoped for is the
Heisenberg uncertainty relation. It expresses
an inequality that bounds away from zero the
product of the variances of the two proper-
ties measured, for example, the product of the
variance of the measurement of position and
the variance of the measurement of velocity
or momentum. This inequality appeared really
for the first time in quantum mechanics and is
one of the principles that separates quantum
mechanics drastically from classical physics.
An accessible and clear exposition of these
ideas is Heisenberg (1930), a work that few
others have excelled for the quality of its
exposition.

The third aspect of measurement in quan-
tum mechanics is the disparity between the
object being measured and the relatively large,
macroscopic object used for the measure-
ment. Here, a long and elaborate story can be
told, as it is, for example, in von Neumann’s
classical book on the foundations of quan-
tum mechanics, which includes a detailed
treatment of the measurement problem
(von Neumann, 1932/1955). The critical as-
pect of this problem is deciding when a mea-
surement has taken place. Von Neumann was
inclined to the view that a measurement had
taken place only when a relevant event had
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occurred in the consciousness of some ob-
server. More moderate subsequent views are
satisfied with the position that an observation
takes place when a suitable recording has been
made by a calibrated instrument.

Although we shall not discuss further the
problem of measurement in quantum mechan-
ics, nor even the application of the ideas to
measurement in psychology, it is apparent that
there is some resonance between the difficul-
ties mentioned and the difficulties of measur-
ing many psychological properties.

19th- and Early 20th-Century Psychology

Fechner’s Psychophysics

Psychology was not a separate discipline until
the late 19th century. Its roots were largely in
philosophy with significant additions by med-
ical and physical scientists. The latter brought
a background of successful physical measure-
ment, which they sought to re-create in sen-
sory psychology at the least. The most promi-
nent of these were H. Helmholtz, whose work
among other things set the stage for extensive
measurement, and G. T. Fechner, whose
Elemente der Psychophysik (Elements of
Psychophysics; 1860/1966) set the stage for
subsequent developments in psychological
measurement. We outline the problem faced
in trying to transplant physical measurement
and the nature of the proposed solution.

Recall that the main measurement device
used in 19th-century physics was concatena-
tion: Given two entities that exhibit the at-
tribute to be measured, it was essential to find
a method of concatenating them to form a third
entity also exhibiting the attribute. Then one
showed empirically that the structure satisfies
the axioms of extensive measurement, as dis-
cussed earlier. When no empirical concatena-
tion operation can be found, as for example
with density, one could not do fundamental
measurement. Rather, one sought an invari-
ant property stated in terms of fundamentally

measured quantities called derived measure-
ment. Density is an example.

When dealing with sensory intensity, phys-
ical concatenation is available but just recov-
ers the physical measure, which does not at
all well correspond with subjective judgments
such as the half loudness of a tone. A new
approach was required. Fechner continued to
accept the idea of building up a measure-
ment scale by adding small increments, as
in the standard sequences of extensive mea-
surement, and then counting the number of
such increments needed to fill a sensory in-
terval. The question was: What are the small
equal increments to be added? His idea was
that they correspond to “just noticeable dif-
ferences” (JND); when one first encounters
the idea of a JND it seems to suggest a fixed
threshold, but it gradually was interpreted to
be defined statistically. To be specific, sup-
pose x0 and x1 = x0 + ξ(x0, λ) are stimulus
intensities such that the probability of identi-
fying x1 as larger than x0 is a constant λ, that
is, Pr(x0, x1) = λ. His idea was to fix λ and to
measure the distance from x to y, x < y, in
terms of the number of successive JNDs be-
tween them. Defining x0 = x and assuming
that xi has been defined, then define xi+1 as

xi+1 = xi + ξ(xi , λ).

The sequence ends with xn ≤ y < xn+1.
Fechner postulated the number of JNDs from
x to y as his definition of distance without,
however, establishing any empirical proper-
ties of justify that definition. Put another way,
he treated without proof that a sequence of
JNDs forms a standard sequence.

His next step was to draw on an empirical
result of E. H. Weber to the effect that

ξ(x, λ) = δ(λ)x, δ(λ) > 0,

which is called Weber’s law. This is some-
times approximately true (e.g., for loudness
of white noise well above absolute threshold),
but more often it is not (e.g., for pure tones).
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His final step was to introduce, much as
in extensive measurement, a limiting process
as λ approaches 1

2 and δ approaches 0. He
called this an auxiliary mathematical prin-
ciple, which amounts to supposing without
proof that a limit below exists. If we denote
by ψ the counting function, then his assump-
tion that, for fixed λ, the JNDs are equally dis-
tant can be interpreted to mean that for some
function η of λ

η(λ) = ψ[x + ξ(x, λ)] − ψ(x)

= ψ([δ(λ) + 1]x) − ψ(x).

Therefore, dividing by δ(λ)x

ψ([δ(λ) + 1]x) − ψ(x)

δ(λ)x
= η(λ)

δ(λ)x
= α(λ)

x
,

where α(λ) = η(λ)

δ(λ)
.

Assuming that the limit of α(λ) exists, one
has the simple ordinary differential equation

dψ(x)

dx
= k

x
, k = lim

λ→ 1
2

α(λ),

whose solution is well known to be

ψ(x) = r ln x + s, r > 0.

This conclusion, known as Fechner’s law,
was soon questioned by J. A. F. Plateau
(1872), among others, although the emprical
evidence was not conclusive. Later, Wiener
(1915, 1921) was highly critical, and much
later Luce and Edwards (1958) pointed out
that, in fact, Fechner’s mathematical auxil-
iary principle, although leading to the correct
solution of the functional equation η(λ) =
ψ[x + ξ(x, λ)] − ψ(x) when Weber’s law
holds, fails to discover the correct solution
in any other case—which empirically really
is the norm. The mathematics is simply more
subtle than he assumed.

In any event, note that Fechner’s approach
is not an example of representational mea-
surement, because no empirical justification
was provided for the definition of standard
sequence used.

Reinterpreting Fechner Geometrically

Because Fechner’s JND approach using in-
finitesimals seemed to be flawed, little was
done for nearly half a century to construct
psychophysical functions based on JNDs—
that is, until Dzhafarov and Colonius (1999,
2001) reexamined what Fechner might have
meant. They did this from a viewpoint of
distances in a possible representation called
a Finsler geometry, of which ordinary Rie-
mannian geometry is a special case. Thus,
their theory concerns stimuli of any finite di-
mension, not just one. The stimuli are vec-
tors, for which we use bold-faced notation.
The key idea, in our notation, is that for each
person there is a universal function � such
that, for λ sufficiently close to 1

2 , �(ψ[x +
ξ(x, λ)] − ψ(x)) is comeasurable3 with x.
This assumption means that this transformed
differential can be integrated along any suffi-
ciently smooth path between any two points.
The minimum path length is defined to be
the Fechnerian distance between them. This
theory, which is mathematically quite elab-
orate, is testable in principle. But doing so
certainly will not be easy because its assump-
tions, which are about the behavior of in-
finitesimals, are inherently difficult to check
with fallible data. It remains to be seen how
far this can be taken.

Ability and Achievement Testing

The vast majority of what is commonly called
“psychological measurement” consists of var-
ious elaborations of ability and achievement
testing that are usually grouped under the la-
bel “psychometrics.” We do not cover any of
this material because it definitely is neither
a branch of nor a precursor to the representa-
tional measurement of an attribute. To be sure,
a form of counting is employed, namely, the

3For the precise definition, see the reference.
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items on a test that are correctly answered, and
this number is statistically normed over a par-
ticular age or other feature so that the count is
transformed into a normal distribution. Again,
no axioms were or are provided. Of the psy-
chometric approaches, we speak only of a por-
tion of Thurstone’s work that is closely related
to sensory measurement. Recently, Doignon
and Falmagne (1999) have developed an ap-
proach to ability measurement, called knowl-
edge spaces, that is influenced by representa-
tional measurement considerations.

Thurstone’s Discriminal Dispersions

In a series of three 1927 papers, L. L.
Thurstone began a reinterpretation of
Fechner’s approach in terms of the then newly
developed statistical concept of a random vari-
able (see also Thurstone, 1959). In particu-
lar, he assumed that there was an underlying
psychological continuum on which signal pre-
sentations are represented, but with variabil-
ity. Thus, he interpreted the representation of
stimulus x as a random variable 	(x) with
some distribution that he cautiously assumed
(see Thurstone, 1927b, p. 373) to be normal
with mean ψx and standard deviation (which
he called a “discriminal dispersion”) σx and
possibly covariances with other stimulus rep-
resentations. Later work gave reasons to con-
sider extreme value distributions rather than
the normal. His basic model for the probabil-
ity of stimulus y being judged larger than x
was

P(x, y) = Pr[	(y) − 	(x) > 0], x ≤ y.

(3)

The relation to Fechner’s ideas is really quite
close in that the mean subjective differences
are equal for fixed λ = P(x, y).

Given that the representations are assumed
to be normal, the difference is also normal
with mean ψy – ψx and standard deviation

σx,y = (
σ 2

x + σ 2
y − 2ρx,yσxσy

)1/2

so if zx,y is the normal deviate correspond-
ing to P(x, y), Equation (3) can be expressed
as

ψy − ψx = zx,yσx,y .

Thurstone dubbed this “a law of comparative
judgment.” Many papers before circa 1975
considered various modifications of the as-
sumptions or focused on solving this equation
for various special cases. We do not go into
this here in part because the power of mod-
ern computers reduces the need for specia-
lization.

Thurstone’s approach had a natural one-
dimensional generalization to the absolute
identification of one of n > 2 possible stimuli.
The theory assumes that each stimulus has a
distribution on the sensory continuum and that
the subject establishes n − 1 cut points to de-
fine the intervals of the range of the random
variable that are identified with the stimuli.
The basic data are conditional probabilities
P(x j |xi , n) of responding x j when xi , i, j =
1, 2, . . . , n, is presented. Perhaps the most
striking feature of such data is the follow-
ing: Suppose a series of signals are selected
such that adjacent pairs are equally detectable.
Using a sequence of n adjacent ones, abso-
lute identification data are processed through
a Thurstone model in which ψx,n and σx,n are
both estimated. Accepting that ψx,n are in-
dependent of n, then the σx,n definitely are
not independent of n. In fact, once n reaches
about 7, the value is independent of size, but
σx,7 ≈ 3σx,2. This is a challenging finding and
certainly casts doubt on any simple invari-
ant meaning of the random variable 	(x)—
apparently its distribution depends not only
on x but on what might have been presented
as well. Various authors have proposed alter-
native solutions (for a summary, see Iverson
& Luce, 1998).

A sophisticated treatment of Fechner,
Thurstone, and the subsequent literature is
provided by Falmagne (1985).
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Theory of Signal Detectability

Perhaps the most important generalization of
Thurstone’s idea is that of the theory of sig-
nal detectability, in which the basic change is
to assume that the experimental subject can
establish a response criterion β, in general
different from 0, so that

P(x, y) = Pr[	(y) − 	(x) > β], x ≤ y.

Engineers first developed this model. It was
adoped and elaborated in various psycho-
logical sources, including Green and Swets
(1974) and Macmillan and Creelman (1991),
and it has been widely applied throughout
psychology.

Mid-20th-Century Psychological
Measurement

Campbell’s Objection
to Psychological Measurement

N. R. Campbell, a physicist turned philoso-
pher of physics who was especially concerned
with physical measurement, took the very
strong position that psychologists, in partic-
ular, and social scientists, in general, had not
come up with anything deserving the name of
measurement and probably never could. He
was supported by a number of other British
physicists. His argument, though somewhat
elaborate, actually boiled down to asserting
the truth of three simple propositions:

(i) A prerequisite of measurement is some
form of empirical quantification that can
be accepted or rejected experimentally.

(ii) The only known form of such quantifi-
cation arises from binary operations of
concatenation that can be shown empir-
ically to satisfy the axioms of extensive
measurement.

(iii) And psychology has no such extensive
operations of its own.

Some appropriate references are Campbell
(1920/1957, 1928) and Ferguson et al. (1940).

Stevens’s Response

In a prolonged debate conducted before a
subcommittee of the British Association for
the Advancement of Sciences, the physicists
agreed on these propositions and the psychol-
ogists did not, at least not fully. They accepted
(iii) but in some measure denied (i) and (ii),
although, of course, they admitted that both
held for physics. The psychophysicist S. S.
Stevens became the primary spokesperson for
the psychological community. He first formu-
lated his views in 1946, but his 1951 chapter
in the first version of the Handbook of Exper-
imental Psychology, of which he was editor,
made his views widely known to the psycho-
logical community. They were complex, and
at the moment we focus only on the part rele-
vant to the issue of whether measurement can
be justified outside physics.

Stevens’ contention was that Proposition
(i) is too narrow a concept of measurement,
so (ii) and therefore (iii) are irrelevant. Rather,
he argued for the claim that “Measurement is
the assignment of numbers to objects or events
according to rule. . . . The rule of assignment
can be any consistent rule” (Stevens, 1975,
pp. 46–47). The issue was whether the rule
was sufficient to lead to one of several scale
types that he dubbed nominal, ordinal, inter-
val, ratio, and absolute. These are sufficiently
well known to psychologists that we need not
describe them in much detail. They concern
the uniqueness of numerical representations.
In the nominal case, of which the assignment
of numbers to football players was his exam-
ple, any permutation is permitted. This is not
generally treated as measurement because no
ordering by an attribute is involved. An or-
dinal scale is an assignment that can be sub-
jected to any strictly increasing transforma-
tion, which of course preserves the order and
nothing else. It is a representation with infinite



pashler-44093 book December 18, 2001 10:10

Representational Approach after 1950 15

degrees of freedom. An interval scale is one in
which there is an arbitrary zero and unit; but
once picked, no degrees of freedom are left.
Therefore, the admissible transformation is
ψ �−→ rψ +s, (r > 0). As stated, such a rep-
resentation has to be on all of the real numbers.
If, as is often the case, especially in physics,
one wants to place the representation on the
positive real numbers, then the transforma-
tion becomes ψ+ �−→ s ′ψr

+, (r > 0, s ′ > 0).
Stevens (1959, pp. 31–34) called a represen-
tation unique up to power transformations a
log-interval scale but did not seem to recog-
nize that it is merely a different way of writ-
ing an interval scale representation ψ in which
ψ = ln ψ+ and s = ln s ′. Whichever one uses,
it has two degrees of freedom. The ratio case
is the interval one with r = 1. Again, this
has two forms depending on the range of ψ .
For the case of a representation on the
reals, the admissible transformations are the
translations ψ �−→ ψ + s. There is a differ-
ent version of ratio measurement that is inher-
ently on the reals in the sense that it cannot
be placed on the positive reals. In this case,
0 is a true zero that divides the representa-
tion into inherently positive and negative por-
tions, and the admissible transformations are
ψ �−→ rψ, r > 0.

Stevens took the stance that what was im-
portant in measurement was its uniqueness
properties and that they could come about
in ways different from that of physics. The
remaining part of his career, which is sum-
marized in Stevens (1975), entailed the de-
velopment of new methods of measurement
that can all be encompassed as a form of sen-
sory matching. The basic instruction to sub-
jects was to require the match of a stimu-
lus in one modality to that in another so that
the subjective ratio between a pair of stim-
uli in the one dimension is maintained in the
subjective ratio of the matched signals. This
is called cross-modal matching. When one
of the modalities is the real numbers, it is

one of two forms of magnitude matching—
magnitude estimation when numbers are to be
matched to a sensory stimuli and magnitude
production when numbers are the stimuli to be
matched by some physical stimuli. Using geo-
metric means over subjects, he found the data
to be quite orderly—power functions of the
usual physical measures of intensity. Much of
this work is covered in Stevens (1975).

His argument that this constituted a form
of ratio scale measurement can be viewed in
two distinct ways. The least charitable is that
of Michell (1999), who treats it as little more
than a play on the word “ratio” in the scale
type and in the instructions to the subjects. He
feels that Stevens failed to understand the need
for empirical conditions to justify numerical
representations. Narens (1996) took the view
that Stevens’ idea is worth trying to formal-
ize and in the process making it empirically
testable. Work along these lines continues, as
discussed later.

REPRESENTATIONAL APPROACH
AFTER 1950

Aside from extensive measurement, the repre-
sentational theory of measurement is largely
a creation by behavioral scientists and math-
ematicians during the second half of the
20th century. The basic thrust of this school
of thought can be summarized as accept-
ing Campbell’s conditions (i), quantification
based on empirical properties, and (iii), the
social sciences do not have concatenation op-
erations (although even that was never strictly
correct, as is shown later, because of probabil-
ity based on a partial operation), and rejecting
the claim (ii) that the only form of quantifica-
tion is an empirical concatenation operation.
This school disagreed with Stevens’ broaden-
ing of (i) to any rule, holding with the physi-
cists that the rules had to be established on
firm empirical grounds.
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To do this, one had to establish the exis-
tence of schemes of empirically based mea-
surement that were different from extensive
measurement. Examples are provided here.
For greater detail, see FM I, II, III, Narens
(1985), or for an earlier perspective Pfanzagl
(1968).

Several Alternatives
to Extensive Measurement

Utility Theory

The first evidence of something different from
extensive measurement was the construction
by von Neumann and Morgenstern (1947) of
an axiomatization of expected utility theory.
Here, the stimuli were gambles of the form
(x, p; y) where consequence x occurs with
probability p and y with probability 1 – p. The
basic primitive of the system was a weak pref-
erence order �∼ over the binary gambles. They
stated properties that seemed to be at least
rational, if not necessarily descriptive; from
them one was able to show the existence of a
numerical utility function U over the conse-
quences and gambles such that for two binary
gambles g, h

g �∼ h ⇔ U (g) ≥ U (h),

U (g, p; h) = U (g)p + U (h)(1 − p).

Note that this is an averaging representation,
called expected utility, which is quite distinct
from the adding of extensive measurement
(see the subsection on averaging).

Actually, their theory has to be viewed as a
form of derived measurement in Campbell’s
sense because the construction of the U func-
tion was in terms of the numerical probabil-
ities built into the stimuli themselves. That
limitation was overcome by Savage (1954),
who modeled decision making under uncer-
tainty as acts that are treated as an assignment

of consequences to chance states of nature.4

Savage assumed that each act had a finite num-
ber of consequences, but subsequent gener-
alizations permitted infinitely many. Without
building any numbers into the domain and us-
ing assumptions defended by arguments of
rationality, he showed that one can construct
both a utility function U and a subjective prob-
ability function S such that acts are evaluated
by calculating the expectation of U with re-
spect to the measure S. This representation
is called subjective expected utility (SEU).
It is a case of fundamental measurement in
Campbell’s sense. Indirectly, it involved a
partial concatenation operation of disjoint
unions, which was used to construct a sub-
jective probability function.

These developments led to a very ac-
tive research program involving psycholo-
gists, economists, and statisticians. The basic
thrust has been of psychologists devising
experiments that cast doubt on either a repre-
sentation or some of its axioms, and of
theorists of all stripes modifying the theory
of accommodate the data. Among the key
summary references are Edwards (1992),
Fishburn (1970, 1988), Luce (2000), Quiggin
(1993), and Wakker (1989).

Difference Measurement

The simplest example of difference measure-
ment is location along a line. Here, some point
is arbitrarily set to be 0, and other points are
defined in terms of distance (length) from it,
with those on one side defined to be positive
and those on the other side negative. It is clear
in this case that location measurement forms
an example of interval scale measurement

4Some aspects of Savage’s approach were anticipated by
Ramsey (1931), but that paper was not widely known
to psychologists and economists. Almost simultane-
ously with the appearance of Savage’s work, Davidson,
McKinsey, and Suppes (1955) drew on Ramsey’s ap-
proach, and Davidson, Suppes, and Segal (1957) tested it
experimentally.
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that is readily reduced to length measurement.
Indeed, all forms of difference measurement
are very closely related to extensive measure-
ment, but with the stimuli being pairs of ele-
ments (x, y) that define “intervals.” Axioms
can be given for this form of measurement
where the stimuli are pairs (x, y) with both
x, y in the same set X. The goal is a numerical
representation ϕ of the form

(x, y) �∼ (u, v)

⇔ ϕ(x) − ϕ(y) ≥ ϕ(u) − ϕ(v).

One key axiom that makes clear how a con-
catenation operation arises is that if (x, y) �∼
(x ′, y′) and (y, z) �∼ (y′, z′), then (x, z) �∼
(x ′, z′).

An important modification is called abso-
lute difference measurement, in which the goal
is changed to

(x, y) �∼ (u, v)

⇔ |ϕ(x) − ϕ(y)| ≥ |ϕ(u) − ϕ(v)|.
This form of measurement is a precursor
to various ideas of similarity measurement
important in multidimensional scaling. Here
the behavioral axioms become considerably
more complex. Both systems can be found in
FM I, Chap. 4.

An important generalization of absolute
difference measurement is to stimuli with n
factors; it underlies developments of geomet-
ric measurement based on stimulus proximity.
This can be found in FM II, Chap. 14.

Additive Conjoint Measurement

Perhaps the single development that most
persuaded psychologists that fundamental
measurement really could be different from
extensive measurement consisted of two ver-
sions of what is called additive conjoint mea-
surement. The first, by Debreu (1960), was
aimed at showing economists how indiffer-
ence curves could be used to construct car-
dinal (interval scale) utility functions. It was,

therefore, naturally cast in topological terms.
The second (and independent) one by Luce
and Tukey (1964) was cast in algebraic terms,
which seems more natural to psychologists
and has been shown to include the topologi-
cal approach as a special case. Again, it was
an explanation of the conditions under which
equal-attribute curves can give rise to mea-
surement. Michell (1990) provides a careful
treatment aimed at psychologists.

The basic idea is this: Suppose that an at-
tribute is affected by two independent stim-
ulus variables. For example, preference for a
reward is affected by its size and the delay
in receiving it; mass of an object is affected
by both its volume and the (homogeneous)
material of which it is composed; loudness
of pure tones is affected by intensity and fre-
quency; and so on. Formally, one can think
of the two factors as distinct sets A and X,
so an entity is of the form (a, x) where
a ∈ A and x ∈ X. The ordering attribute is
�∼ over such entities, that is, over the Cartesian
product A × X. Thus, (a, x) �∼ (b, y) means
that (a, x) exhibits more of the attribute in
question than does (b, y). Again, the order-
ing is assumed to be a weak order: transitive
and connected. Monotonicity (called indepen-
dence in this literature) is also assumed: For
a, b ∈ A, x, y ∈ X

(a, x) �∼ (b, x) ⇔ (a, y) �∼ (b, y).

(a, x) �∼ (a, y) ⇔ (b, x) �∼ (b, y).
(4)

This familiar property is often examined in
psychological research in which a dependent
variable is plotted against, say, a measure of
the first component with the second compo-
nent shown as a parameter of the curves. The
property holds if and only if the curves do not
cross.

It is easy to show that this condition is
not sufficient to get an additive representa-
tion of the two factors. If it were, then any set
of nonintersecting curves in the plane could
be rendered parallel straight lines by suitable
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nonlinear transformations of the axes. More
is required, namely, the Thomsen condition,
which arose in a mathematically closely
related area called the theory of webs. Let-
ting ∼ denote the indifference relation of �∼,

the Thomsen condition states

(a, z) ∼ (c, y)

(c, x) ∼ (b, z)

}
⇒ (a, x) ∼ (b, y).

Note that it is a form of cancellation—of c in
the first factor and z in the second.

These, together with an Archimedean
property establishing commensurability and
some form of density of the factors, are
enough to establish the following additive
representation: There exist numerical func-
tions ψA on A and ψX on X such that

(a, x) �∼ (b, y)

⇔ ψA(a) + ψX (x) ≥ ψA(b) + ψX (y).

This representation is on all of the real num-
bers. A multiplicative version on the positive
real numbers exists by setting ξi = exp ψi .
The additive representation forms an inter-
val scale in the sense that ψ ′

A, ψ ′
X forms

another equally good representation if and
only if there are constants r > 0, sA, sX such
that

ψ ′
A = rψA + sA,

ψ ′
X = rψX + sX ⇔ ξ ′

A = s ′
Aξ r

A, ξ ′
X = s ′

Xξ r
X ,

s ′
i = exp si > 0.

Additive conjoint measurement can be
generalized to finitely many factors, and it is
simpler in the sense that if monotonicity is
generalized suitably and if there are at least
three factors, then the Thomsen condition can
be derived rather than assumed.

Although no concatenation operation is in
sight, a family of them can be defined in terms
of ∼, and they can be shown to satisfy the
axioms of extensive measurement. This is the
nature of the mathematical proof of the repre-
sentation usually given.

Averaging

Some structures with a concatenation opera-
tion do not have an additive representation, but
rather a weighted averaging representation of
the form

ϕ(x ◦ y) = ϕ(x)w + ϕ(y)(1 − w), (5)

where the weight w is fixed. We have already
encountered this form in the utility system if
we think of the gamble (x, p; y) as defining
operations ◦p with x◦p y ≡ (x, p; y), in which
case w = w(p). A general theory of such op-
erations was first given by Pfanzagl (1959). It
is much like extensive measurement but with
associativity replaced by bisymmetry: For all
stimuli x, y, u, v,

(x ◦ y) ◦ (u ◦ v) ∼ (x ◦ u) ◦ (y ◦ v). (6)

It is easy to verify that the weighted-average
representation of Equation (5) implies bisym-
metry, Equation (6), and x ◦ x ∼ x . The eas-
iest way to show the converse is to show that
defining �∼′ over X × X by

(a, x)�∼′ (b, y) ⇔ a ◦ x �∼ b ◦ y

yields an additive conjoint structure, from
which the result follows rather easily.

Nonadditive Representations

A natural question is: When does a concatena-
tion operation have a numerical representation
that is inherently nonadditive? By this, one
means a representation for which no strictly
increasing transformation renders it additive.
Before exploring that, we cite an example of
nonadditive representations that can in fact be
transformed into additive ones. This is helpful
in understanding the subtlety of the question.

One example that has arisen in utility the-
ory is the representation

U (x ⊕ y) = U (x) + U (y)− δU (x)U (y), (7)

where δ is a real constant and U is the SEU
or rank-dependent utility generalization (see
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Luce, 2000, Chap. 4) with an intrinsic zero—
no change from the status quo. Because Equa-
tion (7) can be rewritten

1 − δU (x ⊕ y) = [1 − δU (x)][1 − δU (y)],

the transformation V = −κ ln(1 − δU ),

δκ > 0, is additive, that is, V (x ⊕ y) =
V (x) + V (y), and order-preserving. The mea-
sure V is called a value function. The form in
Equation (7) is called p-additive because it is
the only polynomial with a fixed zero that can
be put in additive form. The source of this
representation is examined in the next major
section. It is easy to verify that both the ad-
ditive and the nonadditive representations are
ratio scales in Stevens’ sense. We know from
extensive measurement that the change of
unit in the additive representation is some-
how reflecting something important about the
underlying structure. Is that also true of the
changes of units in the nonadditive represen-
tation? We will return to this point, which can
be a source of confusion.

It should be noted that in probability theory
for independent events, the p-additive form
with δ = 1 arises since

P(A ∪ B) = P(A) + P(B) − P(A)P(B).

An earlier, similar example concerning
velocity concatenation arose in Einstein’s
theory of special relativity. Like the psycho-
logical one, it entails a representation in the
standard measure of velocity that forms a
ratio scale and a nonlinear transformation to
an additive one that also forms a ratio scale.
We do not detail it here.

Nonadditive Concatenation

What characterizes an inherently nonadditive
structure is the failure of the empirical prop-
erty of associativity; that is, for some elements
x, y, z in the domain,

x ◦ (y ◦ z) /∼ (x ◦ y) ◦ z.

Cohen and Narens (1979) made the then-
unexpected discovery that if one simply drops
associativity from any standard axiomatiza-
tion of extensive measurement, not only can
one still continue to construct numerical rep-
resentations that are onto the positive reals
but, quite surprisingly, they continue to form
a ratio scale as well; that is, the representa-
tion is unique up to similarity transformations.
They called this important class of nonaddi-
tive representations unit structures. For a full
discussion, see Chaps. 19 and 20 of FM III.

A Fundamental Account
of Some Derived Measurement

Distribution Laws

The development of additive conjoint mea-
surement allows one to give a systematic and
fundamental account of what to that point
had been treated as derived measurement. For
classical physics, a typical situation in which
derived measurement arises takes the form
〈A × X, �∼, ◦A〉. For example, let A denote a
set of volumes and X a set of homogeneous
substances; the ordering is that of mass as
established by an equal-arm pan balance in
a vacuum. The operation ◦A is the simple
union of volumes. For this case we know that
m = Vρ, where m is the usual mass measure,
V is the usual volume measure, and ρ is an
inferred measure of density.

Observe that 〈A × X, �∼〉 forms an addi-
tive conjoint structure. By the monotonicity
assumption of conjoint measurement, Equa-
tion (4), �∼ induces the weak order �∼A on A.
It is assumed that 〈A, �∼A, ◦A〉 forms an ex-
tensive structure. Thus we have the extensive
representation ϕA of 〈A, �∼A, ◦A〉 onto the
positive real numbers and a multiplicative
conjoint one ξAξX of 〈A× X, �∼〉 onto the pos-
itive real numbers.

The question is how ϕA and ξA relate.
Because both preserve the order �∼A, there
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must be a strictly increasing function F such
that ξA = F(ϕA). Beyond that, we can say
nothing without some assumption describing
how the two structures interlock. One that
holds for many physical cases, including the
motivating mass example, is a qualitative dis-
tribution law of the form: For all a, b, c, d in
A and x, y in X ,

(a, x) ∼ (c, y)

(b, x)∼ (d, y)

}
⇒ (a ◦A b, x) ∼ (c ◦A d, y).

Using this, one is able to prove that, for
some r > 0, s > 0, F(z) = r zs . Because the
conjoint representation is unique up to power
transformations, we may select s = 1, that is,
choose ξA = ϕA.

Note that distribution is a substantive, em-
pirical property that in each specific case re-
quires verification. In fact, it holds for many
of the classical physical attributes. From that
fact one is able to construct the basic structure
of (classical) physical quantities that under-
lies the technique called dimensional analysis,
which is widely used in physical applications
in engineering. It also accounts for the fact
that physical units are all expressed as prod-
ucts of powers of a relatively small set of units.
This is discussed in some detail in Chap. 10
of FM I and in a more satisfactory way in
Section 22.7 of FM III.

Segregation Law

Within the behavioral sciences we have a
situation that is somewhat similar to distri-
bution. Suppose we return to the gambling
structure, where some chance “experiment”
is performed, such as drawing a ball from an
urn with 100 red and yellow balls of which
the respondent knows that the number of red
is between 50 and 80. A typical binary gam-
ble is of the form (x, C; y), where C denotes
a chance event such as drawing a red ball, and
the consequence x is received if C occurs and
y otherwise, that is, x if a red ball and y if a
yellow ball. A weak preference order �∼ over

gambles is postulated. Let us distinguish gains
from losses by supposing that there is a spe-
cial consequence, denoted e, that means no
change from the status quo. Things preferred
to e are called gains, and those not preferred
to it are called losses. Assume that for gains
(and separately for losses) the axioms leading
to a subjective expected utility representation
are satisfied. Thus, there is a utility function U
over gains and subjective probability function
S such that

U (x, C; y) = U (x)S(C) + U (y)[1 − S(C)]

(8)

U (e) = 0. (9)

Let ⊕ denote the operation of receiving two
things, called joint receipt. Therefore, g ⊕ h
denotes receiving both of the gambles g and h.
Assume that ⊕ is a commutative5 and mono-
tonic operation with e the identity element;
that is, for all gambles g perceived as a gain,
g ⊕ e ∼ g. Again, some law must link ⊕ to
the gambles. The one proposed by Luce and
Fishburn (1991) is segregation: For all gains
x, y,

(x, C; e) ⊕ y ∼ (x ⊕ y, C; y). (10)

Observe that this is highly rational in the sense
that both sides yield x ⊕ y when C occurs and
y otherwise, so they should be seen as rep-
resenting the same gamble. Moreover, there
is some empirical evidence in support of it
(Luce, 2000, Chap. 4). Despite its apparent
innocence, it is powerful enough to show that
U (x ⊕ y) is given by Equation (7). Thus,
in fact, the operation ⊕ forms an extensive
structure with additive representation V =
−κ ln(1 − δU ), δκ > 0. Clearly, the sign of δ

greatly affects the relation between U and V:
it is a negative exponential for δ > 0, propor-
tional for δ = 0, and an exponential for δ < 0.

5Later we examine what happens when we drop this
assumption.
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Applications of these ideas are given in
Luce (2000). Perhaps the most interesting
occurs when dealing with x ⊕ y where x is
a gain and y a loss. If we assume that V is
additive throughout the entire domain, then
with x �∼ e �∼ y, U (x ⊕ y) is not additive. This
carries through to mixed gambles that no
longer have the simple bilinear form of binary
SEU, Equation (8).

Invariance and Meaningfulness

Meaningful Statistics

Stevens (1951) raised the following issues in
connection with the use of statistics on mea-
surements. Some statistical assertions do not
seem to make sense in some measurement
schemes. Consider a case of ordinal measure-
ment in which one set of three observations
has ordinal measures 1, 4, and 5, with a mean
of 10/3, and another set has measures 2, 3,
and 6, with a mean of 11/3. One would say
the former set is, on average, smaller than the
second one. But since these are ordinal data,
an equally satisfactory representation is 1, 5,
and 6 for the first set and 2, 2.1, and 6.1 for
the latter, with means respectively 12/3 and
10.2/3, reversing the conclusion. Thus, there
is no invariant conclusion about means. Put
another way, comparing means is meaning-
less in this context. By contrast, the median is
invariant under monotonic transformations. It
is easy to verify that the mean exhibits suitable
invariance in the case of ratio scales.

These observations were immediately chal-
lenged and led to what can best be described as
a tortured discussion that lasted many years.
It was only clarified when the problem was
recognized to be a special case of invariance
principles that were well developed in both
geometry and dimensional analysis.

The main reason why the discussion was
confused is that it was conducted at the level
of numerical representations, where two kinds
of transformations are readily confused, rather

than in terms of the underlying structure itself.
Consider a cubical volume that is 4 yards on
a side. An appropriate change of units is from
yards to feet, so it is also 12 feet on a side.
This is obviously different from the transfor-
mation that enlarges each side by a factor of 3,
producing a cube that is 12 yards on a side. At
the level of numerical representations, how-
ever, these two factor-of-3 changes are all too
easily confused. This fact was not recognized
when Stevens wrote, but it clearly makes very
uncertain just what is meant by saying that
a structure has a ratio or other type of repre-
sentation and that certain invariances should
hold.

Automorphisms

These observations lead one to take a deeper
look into questions of uniqueness and invari-
ance. Mapping empirical structures onto nu-
merical ones is not the most general or funda-
mental way to approach invariance. The key
to avoiding confusion is to understand what it
is about a structure that corresponds to correct
admissible transformations of the representa-
tion. This turns out to be isomorphisms that
map an empirical structure onto itself. Such
isomorphisms are called automorphisms by
mathematicians and symmetries by physicists.
Their importance is easily seen, as follows.
Suppose α is an automorphism and f is a ho-
momorphism of the structure into a numerical
one, then it is not difficult to show that f ∗ α,
where ∗ denotes function composition, is an-
other equally good homomorphism into the
same numerical structure. In the case of a ra-
tio scale, this means that there is a positive nu-
merical constant rα such that f ∗ α = rα f . The
automorphism captures something about the
structure itself, and that is just what is needed.

Consider the utility example, Equation (7),
where there are two nonlinearly related rep-
resentations, both of which are ratio scales in
Stevens’ sense. Thus, calculations of the mean
utility are invariant in any one representation,
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but they certainly are not across representa-
tions. Which should be used, if either? It turns
out on careful examination that the one set
of transformations corresponds to the auto-
morphisms of the underlying extensive struc-
ture. The second set of transformations cor-
responds to the automorphisms of the SEU
structure, not ⊕. Both changes are important,
but different. Which one should be used de-
pends on the question being asked.

Invariance

An important use of automorphisms, first em-
phasized for geometry by Klein (1872/1893)
and heavily used by physicists and engineers
in the method of dimensional analysis, is the
idea that meaningful statements should be
invariant under automorphisms. Consider a
structure with various primitive relations. It
is clear that these are invariant under the au-
tomorphisms of the structure, and it is natural
to suppose that anything that can be mean-
ingfully defined in terms of these primitives
should also be invariant. Therefore, in partic-
ular, given the structure of physical attributes,
any physical law is defined in terms of the at-
tributes and thus must be invariant. This def-
initely does not mean that something that is
invariant is necessarily a physical law. In the
case of statistical analyses of measurements,
we want the result to exhibit invariance
appropriate to the structure underlying the
measurements.

To answer Stevens’ original question about
statistics then entails asking whether the hy-
pothesis being tested is meaningful (invariant)
when translated back into assertions about the
underlying structure. Doing this correctly is
sometimes subtle, as is discussed in Chap. 22
of FM III and much more fully by Narens
(2001).

Trivial Automorphisms and Invariance

Sometimes structures have but one automor-
phism, namely the function that maps each

element of the structure into itself—the iden-
tity function. For example, in the additive
structure of the natural numbers with the stan-
dard ordering, the only automorphism is the
one that simply matches each number to itself:
0 to 0, 1 to 1, and so on.

Within the weak ordering �∼ of a structure,
there are trivial automorphisms beyond the
identity mapping, namely, those that just map
an element a to an equivalent element b; that
is, the relation a ∼ b holds.

Consider invariance in such structures. We
quickly see that the approach cannot yield any
significant results because everything is in-
variant. This remark applies to all finite struc-
tures that are provided with a weak ordering.
Thus, the only possibility is to examine the
invariant properties of the structure of the set
of numerical representations.

Let a finite empirical structure be given
with a homomorphism f mapping the struc-
ture into a numerical structure. We have al-
ready introduced the concept of an admissi-
ble numerical transformation ϕ of f , namely,
a one-one transformation of the range of f
onto a possibly different set of real numbers,
such that ϕ ∗ f is a homomorphism of the em-
pirical structure. In order to fix the scale type
and thus the nature of the invariance of the
empirical structure, we investigate the set of
all such homomorphisms for a given empirical
structure. In the case of weight, any two homo-
morphisms f1 and f2 are related by a positive
similarity transformation; that is, there is a
positive real number r > 0 such that r f1 = f2.
In the qualitative probability case with inde-
pendence, r = 1, so the set of all homomor-
phisms has only one element. With r 	= 1 in
the general similarity case, invariance is then
characterized with respect to the multiplica-
tive group of positive real numbers, each num-
ber in the group constituting a change of unit.
A numerical statement about a set of numer-
ical quantities is then invariant if and only if
its truth value is constant under any changes of
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unit of any of the quantities. This definition is
easily generalized to other groups of numeri-
cal transformations such as linear transforma-
tions for interval scales.

In contrast, consider a finite difference
structure with a numerical representation as
characterized earlier. In general, the set of all
homomorphisms from the given finite struc-
ture to numerical representations has no natu-
ral and simple mathematical characterization.
For this reason, much of the general theory
of representational measurement is concerned
with empirical structures that map onto the
full domain of real numbers. It remains true,
however, that special finite empirical struc-
tures remain important in practice in setting
up standard measurement procedures using
well-defined units.

Covariants

In practice, physicists hold on to invariance
by introducing and using the concept of co-
variants. Typical examples of such covari-
ants are velocity and acceleration, neither of
which is invariant from one coordinate frame
to another under either Galilean or Lorentzian
transformations, because, among other things,
the direction of the velocity or acceleration
vector of a particle will in general change from
one frame to another. (The scalar magnitude
of acceleration is invariant.)

The laws of physics are written in terms
of such covariants. The fundamental idea is
conveyed by the following. Let Q1, . . . , Qn

be quantities that are functions of the space-
time coordinates, with some Qi s possibly be-
ing derivatives of others, for example. Then, in
general, as we go from one coordinate system
to another (note that ′ does not mean deriva-
tive) Q′

1, . . . , Q′
n will be covariant, rather than

invariant, so their mathematical form is dif-
ferent in the new coordinate system. But any
physical law involving them, say,

F(Q1, . . . , Qn) = 0, (11)

must have the same form

F(Q′
1, . . . , Q′

n) = 0

in the new coordinate frame. This same form
is the important invariant requirement.

A simple example from classical mechan-
ics is the conservation of momentum of two
particles before and after a collision. Let vi

denote the velocity before and wi the velocity
after the collision, and mi the mass, i = 1, 2,
of each particle. Then the law, in the form of
Equation (11), looks like this:

v1m1 + v2m2 − (w1m1 + w2m2) = 0,

and its transformed form will be, of course,

v′
1m1 + v′

2m2 − (w ′
1m1 + w ′

2m2) = 0,

but the forms of vi and wi will be, in general,
covariant rather than invariant.

An Account of Stevens’ Scale-Type
Classification

Narens (1981a, 1981b) raised and partially
answered the question of why the Stevens’
classification into ratio, interval, and ordinal
scales makes as much sense as it seems to.
His result was generalized by Alper (1987),
as described later. The question may be cast
as follows: These familiar scale types have,
respectively, one, two, and infinitely many de-
grees of freedom in the representation; are
there not any others, such as ones having
three or 10 degrees of freedom? To a first ap-
proximation, the answer is “no,” but the pre-
cise answer is somewhat more complex than
that.

To arrive at a suitable formulation, a spe-
cial case may be suggestive. Consider a struc-
ture that has representations onto the reals—
continuous representations—that form an in-
terval scale. Then the representation has the
following two properties. First, given num-
bers x < y and u < v, there is a positive affine
transformation that takes the pair (x, y) into
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(u, v). It is found by setting u = r x + s, v =
r y + s, whence r = v−u

y−x and s = yu−xv

y−x . Thus,
in terms of automorphisms we have the
property that there exists one that maps any
ordered pair of the structure into any other or-
dered pair. This is called two-point homogene-
ity. Equally well, if two affine transforma-
tions map a pair into the same pair, then they
are identical. This follows from the fact that
two equations uniquely determine r and s. In
terms of automorphisms, this is called 2-point
uniqueness. The latter can be recast by say-
ing that any automorphism having two fixed
points must be the identity automorphism.

In like manner, the ratio scale case is
1-point homogeneous and 1-point unique. The
generalizations of these concepts to M—point
homogeneity and N—point uniqueness are
obvious. Moreover, in the continuous case it
is easy to show that M ≤ N . The question ad-
dressed by Narens was: Given that the struc-
ture is at least 1-point homogeneous and N—
point unique for some finite N , what are the
possibilities for (M, N )? Assuming M = N
and a continuous structure, he showed that
the only possibilities are (1, 1) and (2, 2),
that is, the ratio and interval scales. Alper
(1987) dropped the condition that M = N
and showed that (1, 2) can also occur, but that
is the only added possibility. In terms of
numerical representations on all of the real
numbers, the (1, 2) transformations are of
the form x �−→ r x + s where s is any real
and r is in some proper, nontrivial subgroup
of the multiplicative, positive real group.
One example is when r is of the form kn ,
where k > 0 is fixed and n ranges over the
positive and negative integers.

This result makes clear two things. First,
we see that there can be no continuous scales
between interval and ordinal, which of course
is not finitely unique. Second, there are scales
between ratio and interval. None of these
has yet played a role in actual scientific
measurement. Thus, for continuous structures

Stevens’ classification was almost complete,
but not quite.

The result also raises some questions. First,
how critical is the continuum assumption?
The answer is “very”: Cameron (1989)
showed that nothing remotely like the Alper-
Narens result holds for representations on the
rational numbers. Second, what can be said
about nonhomogeneous structures? Alper
(1987) classified the M = 0 case, but the re-
sults are quite complex and apparently not
terribly useful. Luce (1992) explored empir-
ically important cases in which homogeneity
fails very selectively. It does whenever there
are singular points, which are defined to be
points of the structure that remain fixed under
all automorphisms. Familiar examples are 0
in the nonnegative, multiplicative real num-
bers and infinity if, as in relativistic velocity,
it is adjoined to the system. For a broad class
of systems, he showed that if a system has
finitely many singular points and is homoge-
neous between adjacent ones, then there are
at most three singular points—a minimum,
an interior, and a maximum one. The detailed
nature of these fixed points is somewhat com-
plicated and is not discussed here. One spe-
cific utility structure with an interior singular
point—an inherent zero—is explored in depth
in Luce (2000).

Models of Stevens’ Magnitude Methods

Stevens’ (1975) empirical findings, which
were known in the 1950s, were a challenge
to measurement theorists. What underlies the
network of (approximate) power function
relations among subjective measures? Luce
(1959) attempted to argue in terms of repre-
sentations that if, for example, two attributes
are each continuous ratio scales,6 with typi-
cal physical representations ϕ1 and ϕ2, then

6Scale types other than ratio were also studied by Luce
and subsequent authors.
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a matching relation M between them should
exhibit an invariance involving an admissi-
ble ratio-scale change of the one attribute
corresponding under the match to a ratio-
scale change of the other attribute, that is,
M[rϕ1(x)] = α(r)ϕ2(x). From this it is not
difficult to prove that M is a power func-
tion of its argument. A major problem with
this argument is its failure to distinguish two
types of ratio scale transformations—changes
of unit, such as centimeters to meters—and
changes of scale, such as increasing the linear
dimensions of a volume by a factor of three.
Rozeboom (1962) was very critical of this fail-
ure. Luce (1990) reexamined the issue from
the perspective of automorphisms. Suppose M
is an empirical matching relation between two
measurement structures, and suppose that for
each translation (i.e., an automorphism with
no fixed point) τ of the first structure there
corresponds to a translation στ of the sec-
ond structure such that for any stimulus x of
the first structure and any s of the second,
then x Ms holds if and only if for each auto-
morphism τ of the first structure τ(x)Mστ (s)
also holds. This assumption, called transla-
tion consistency, is an empirically testable
property, not a mere change of units. Assum-
ing that the two structures have ratio scale
representations, this property is equivalent to
a power function relation between the repre-
sentations.

Based on some ideas of R. N. Shep-
ard, circulated privately and later modified
and published in 1981, Krantz (1972) devel-
oped a theory that is based on three prim-
itives: magnitude estimates, ratio estimates,
and cross-modal matches. Various fairly sim-
ple, testable axioms were assumed that one
would expect to hold if the psychophysical
functions were power functions of the cor-
responding physical intensity and the ratios
of the instructions were treated as mathe-
matical ratios. These postulates were shown
to yield the expected power function repre-

sentations except for an arbitrary increasing
function. This unknown function was elimi-
nated by assuming, without a strong rationale,
that the judgments for one continuum, such
as length judgments, are veridical, thereby
forcing the function to be a simple multi-
plicative factor. This model is summarized in
Falmagne (1985, pp. 309–313). A somewhat
related approach was offered by Falmagne and
Narens (1983), also summarized in Falmagne
(1985, pp. 329–339). It is based not on beha-
vioral axioms, but on two invariance princi-
ples that they call meaningfulness and dimen-
sional invariance. Like the Krantz theory, it
too leads to the form G(ϕ

ri
i ϕ

r j

j ), where G is
unspecified beyond being strictly increasing.

Perhaps the deepest published analysis of
the problem so far is Narens (1996). Unlike
Stevens, he carefully distinguished numbers
from numerals, noting that the experimen-
tal structure involved numerals whereas the
scientists’ representations of the phenomena
involved numbers. He took seriously the idea
that internally people are carrying out the
ratio-preservation calculations embodied in
Stevens’ instructions. The upshot of Narens’
axioms, which he carefully partitioned into
those that are physical, those that are behav-
ioral, and those that link the physical and the
behavioral, was to derive two empirical pre-
dictions from the theory. Let (x, p, y) mean
that the experimenter presents stimulus x and
the numeral p to which the subject produces
stimulus y as holding the p relation to x. So if
2 is given, then y is whatever the subject feels
is twice x. The results are, first, a commutativ-
ity property: Suppose that the subject yields
(x, p, y) and (y, q, z) when done in that order
and (x, q, u) and (u, p, v) when the numerals
are given in the opposite order. The prediction
is z = v. A second result is a multiplicative
one: Suppose (x, pq, w), then the prediction
is w = z. It is clear that the latter property im-
plies the former, but not conversely. Empirical
data reported by Ellemeirer and Faulhammer
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(2000) sustain the former prediction and un-
ambiguously reject the latter.

Luce (2001) provides a variant axiomatic
theory, based on a modification of some math-
ematical results summarized in Luce (2000)
for utility theory. The axioms are formulated
in terms of three primitives: a sensory order-
ing �∼ over physical stimuli varying in inten-
sity, the joint presentation x ⊕ y of signals x
and y (e.g., the presentation of pure tones of
the same frequency and phase to the two ears),
and for signals x > y and positive number p
denote by z = (x, p, y) the signal that the sub-
ject judges makes interval [y, z] stand in pro-
portion p to interval [y, x]. The axioms, such
as segregation, Equation (10), are behavioral
and structural, and they are sufficient to ensure
the existence of a continuous psychophysical
measure ψ from stimuli to the positive real
numbers and a continuous function W from
the positive reals onto the positive reals and a
constant δ > 0 such that for ⊕ commutative

x �∼ y ⇔ ψ(x) ≥ ψ(y), (12)

ψ(x ⊕ y) = ψ(x) + ψ(y) + δψ(x)ψ(y)

(δ > 0), (13)

ψ(x, p, y) − ψ(y) = W (p)[ψ(x) − ψ(y)].

(14)

We have written Equation (14) in this fashion
rather than in a form comparable to the SEU
equation for two reasons: It corresponds to
the instructions given the respondents, and
W (p) is not restricted to [0, 1]. Recent, cur-
rently unpublished, psychophysical data of R.
Steingrimsson showed an important case of ⊕
(two-ear loudness summation) that is rarely,
if ever, commutative. This finding motivated
Aczél, Luce, and Ng (2001) to explore the
noncommutative, nonassociative cases on the
assumption ⊕ has a unit representation (men-
tioned earlier) and assuming Equations (12)
and (14) and that certain unknown functions
are differentiable. To everyone’s surprise, the
only new representations replacing (13) are

either

ψ(x ⊕ y) = αψ(x) + ψ(y), (α > 1)

when x ⊕ 0 � 0 ⊕ x, or

ψ(x ⊕ y) = ψ(x) + α′ψ(y), (α′ > 1)

when x ⊕ 0 ≺ 0 ⊕ x . These are called left- and
right-weighted additive forms, respectively.
These representations imply that some fixed
dB correction can compensate the noncom-
mutativity. Empirical studies evaluating this
are underway.

One invariance condition limits the form of
ψ to the exponential of a power function of de-
viations from absolute threshold, and another
one limits the form of W to two parameters
for p ≥ 1 and two more for p < 1.

The theory not only is able to accommo-
date the Ellemeirer and Faulhammer data but
also predicts that the psychophysical function
is a power function when ⊕ is not commuta-
tive and only approximately a power function
for ⊕ commutative. Over eight or more or-
ders of magnitude, it is extremely close to a
power function except near threshold and for
very intense signals. Despite its not being a
pure power function, the predictions for cross-
modal matches are pure power functions.

Errors and Thresholds

To describe the general sources of errors and
why they are inevitable in scientific work, we
can do no better than quote the opening pas-
sage in Gauss’s famous work on the theory
of least squares, which is from the first part
presented to the Royal Society of Göttingen
in 1821:

However much care is taken with observations
of the magnitude of physical quantities, they are
necessarily subject to more or less considerable
errors. These errors, in the majority of cases,
are not simple, but arise simultaneously from
several distinct sources which it is convenient
to distinguish into two classes.
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Certain causes of errors depend, for each ob-
servation, on circumstances which are variable
and independent of the result which one obtains:
the errors arising from such sources are called
irregular or random, and like the circumstances
which produce them, their value is not suscep-
tible of calculation. Such are the errors which
arise from the imperfection of our senses and all
those which are due to irregular exterior causes,
such as, for example, the vibrations of the air
which make vision less clear; some of the errors
due to the inevitable imperfection of the best in-
struments belong to the same category. We may
mention, for example, the roughness of the in-
side of a level, the lack of absolute rigidity, etc.

On the other hand, there exist causes which
in all observations of the same nature produce
an identical error, or depend on circumstances
essentially connected with the result of the ob-
servation. We shall call the errors of this cate-
gory constant or regular.

It is evident that this distinction is relative up
to a certain point and depends on how broad a
sense one wishes to attach to the idea of obser-
vations of the same nature. For instance, if one
repeats indefinitely the measurement of a sin-
gle angle, the errors arising from an imperfect
division of the circular scale will belong to the
class of constant errors. If, on the other hand,
one measures successively several different an-
gles, the errors due to the imperfection of the
division will be regarded as random as long as
one has not formed the table of errors pertaining
to each division. (Gauss, 1821/1957, pp. 1–2)

Although Gauss had in mind problems of
errors in physical measurement, it is quite
obvious that his conceptual remarks apply as
well to psychological measurement and, in
fact, in the second paragraph refer directly
to the “imperfection of our senses.” It was
really only in the 19th century that, even in
physics, systematic and sustained attention
was paid to quantitative problems of errors.
For a historical overview of the work pre-
ceding Gauss, see Todhunter (1865/1949). As
can be seen from the references in the section
on 19th- and early 20th-century psychology,

quantitative attention to errors in psycholog-
ical measurement began at least with Fech-
ner in the second half of the 19th century.
Also, as already noted, the analysis of thresh-
olds in probabilistic terms really began in psy-
chology with the cited work of Thurstone.
However, the quantitative and mathematical
theory of thresholds was discussed earlier
by Norbert Wiener (1915, 1921). Wiener’s
treatment was, however, purely algebraic,
whereas in terms of providing relatively di-
rect methods of application, Thurstone’s
approach was entirely probabilistic in char-
acter. Already, Wiener (1915) stated very
clearly and explicitly how to deal with the
fact that with thresholds in perception, the
relation of indistinguishability—whether we
are talking about brightness of light, loud-
ness of sound, or something similar—is not
transitive.

The detailed theory was then given in the
1921 paper for constructing a measure up to an
interval scale for such sensation-intensities.
This is, without doubt, the first time that these
important psychological matters were dealt
with in rigorous detail from the standpoint of
passing from qualitative judgments to a mea-
surement representation. Here is the passage
with which Wiener ends the 1921 paper:

In conclusion, let us consider what bearing all
this work of ours can have on experimental psy-
chology. One of the great defects under which
the latter science at present labours is its propen-
sity to try to answer questions without first try-
ing to find out just what they ask. The experi-
mental investigation of Weber’s law7 is a case
in point: what most experimenters do take for
granted before they begin their experiments is
infinitely more important and interesting than
any results to which their experiments lead. One
of these unconscious assumptions is that sensa-
tions or sensation-intervals can be measured,

7Wiener means what is now called Fechner’s logarithmic
law.
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and that this process of measurement can be
carried out in one way only. As a result, each
new experimenter would seem to have devoted
his whole energies to the invention of a method
of procedure logically irrelevant to everything
that had gone before: one man asks his sub-
ject to state when two intervals between sensa-
tions of a given kind appear different; another
bases his whole work on an experiment where
the observer’s only problem is to divide a given
colour-interval into two equal parts, and so on
indefinitely, while even where the experiments
are exactly alike, no two people choose quite
the same method for working up their results.
Now, if we make a large number of comparisons
of sensation-intervals of a given sort with refer-
ence merely to whether one seems larger than
another, the methods of measurement given in
this paper indicate perfectly unambiguous ways
of working up the results so as to obtain some
quantitative law such as that of Weber without
introducing such bits of mathematical stupid-
ity as treating a “just noticeable difference” as
an “infinitesimal,” and have the further merit of
always indicating some tangible mathematical
conclusion, no matter what the outcome of the
comparisons may be. (pp. 204–205)

The later and much more empirical work of
Thurstone, already referred to, did not, how-
ever, give a representational theory of mea-
surement as Wiener, in fact, in his own way
did.

The work over the last few decades on er-
rors and thresholds from the standpoint of rep-
resentation theory of measurement naturally
falls into two parts. The first part is the al-
gebraic theory, and the second is the proba-
bilistic theory. We first survey the algebraic
results.

Algebraic Theory of Thresholds

The work following Wiener on algebraic
thresholds was only revived in the 1950s and
may be found in Goodman (1951), Halphen
(1955), Luce (1956), and Scott and Suppes
(1958). The subsequent literature is reviewed

in some detail in FM II, Chap. 16. We fol-
low the exposition of the algebraic ordinal
theory there. We restrict ourselves here to fi-
nite semiorders, the concept first introduced
axiomatically by Luce and in a modified
axiomatization by Scott and Suppes.

Let A be a nonempty set, and let � be a
binary irreflexive relation on A. Then, (A �)
is a semiorder if for every a, b, c, and d in A

(i) If a � c and b � d, then either a � d or
b � c.

(ii) If a � b and b � c, then either a � d or
d � c.

For finite semiorders (A, �) we can prove the
following numerical representational theorem
with constant threshold, which in the present
case we will fix at 1, so the theorem asserts
that there is a mapping f of A into the positive
real numbers such that for any a and b in A,

a � b iff f (a) > f (b) + 1.

A wealth of more detailed and more delicate
results on semiorders is to be found in Sec-
tion 2 of Chap. 16 of FM II, and research
continues on semiorders and various gener-
alizations of them, such as interval orders.

Axioms extending the ordinal theory of
semiorders to the kind of thing analyzed by
Wiener (1921) are in Gerlach (1957); unfor-
tunately, to obtain a full interval-scale repre-
sentation with thresholds involves very com-
plicated axioms. This is true to a lesser extent
of the axioms for semiordered qualitative
probability structures given in Section 16.6.3
of FM II. The axioms are complicated when
stated strictly in terms of the relation � of
semiorders.

Probabilistic Theory of Thresholds

For applications in experimental work, it is
certainly the case that the probabilistic the-
ory of thresholds is more natural and easier to
apply. From various directions, there are ex-
tensive developments in this area, many but
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not all of which are presented in FM II and
III. We discuss here results that are simple to
formulate and relevant to various kinds of ex-
perimental work. We begin with the ordinal
theory.

A real-valued function P on A× A is called
a binary probability function if it satisfies both

P(a, b) ≥ 0,

P(a, b) + P(b, a) = 1.

The intended interpretation of P(a, b) is as
the probability of a being chosen over b. We
use the probability measure P to define two
natural binary relations.

aW b iff P(a, b) ≥ 1

2
,

aSb iff P(a, c) ≥ P(b, c), for all c.

In the spirit of semiorders we now define
how the relations W and S are related to vari-
ous versions of what is called stochastic tran-
sitivity, where stochastic means that the in-
dividual instances may not be transitive, but
the probabilities are in some sense transitive.
Here are the definitions. Let P be a binary
probability function on A × A. We define the
following for all a, b, c, d in A:

Weak stochastic transitivity: If P(a, b) ≥
1
2 and P(b, c) ≥ 1

2 , then P(a, c) ≥ 1
2 .

Weak independence: If P(a, c) > P(b, c),
then P(a, d) ≥ P(b, d).

Strong stochastic transitivity: If P(a, b) ≥
1
2 and P(b, c) ≥ 1

2 , then P(a, c) ≥
max[P(a, b), P(b, c)].

The basic results for these concepts are
taken from Block and Marschak (1960) and
Fishburn (1973). Let P be a binary probabil-
ity function on A × A, and let W and S be
defined as in the previous equations. Then

1. Weak stochastic transitivity holds if W is
transitive.

2. Weak independence holds if S is con-
nected.

3. Strong stochastic transitivity holds if
W = S. Therefore strong stochastic transi-
tivity implies weak independence; the two
are equivalent if P(a, b) 	= 1

2 for a 	= b.

Random Variable Representations

We turn next to random variable representa-
tions for measurement. In the first type, an
essentially deterministic theory of measure-
ment (e.g., additive conjoint measurement) is
assumed in the background. But it is recog-
nized that, for various reasons, variability in
response occurs even in what are apparently
constant circumstances. We describe here the
approach developed and used by Falmagne
(1976, 1985). Consider the conjoint indiffer-
ence (a, p) ∼ (b, q) with a, p, and q given
and b to be determined so that the indiffer-
ence holds. Suppose that, in fact, b is a random
variable which we may denote B(a, p; q). We
suppose that such random variables are in-
dependently distributed. Since realizations of
the random variables occur in repeated tri-
als of a given experiment, we can define the
equivalents we started with as holding when
the value b is the Pth percentile of the dis-
tribution of the random variable B(a, p; q).
Falmagne’s proposal was to use the median,
P = 1

2 , and he proceeded as follows. Let φ1

and φ2 be two numerical representations for
the conjoint measurement in the usual deter-
ministic sense. If we suppose that such an ad-
ditive representation is approximately correct
but has an additive error, then we have the
following representation:

ϕ1[B(a, p; q)] = ϕ1(a) + ϕ2(q)

− ϕ2(p) + ε(a, p; q),

where the εs are random variables. It is ob-
vious enough how this equation provides a
natural approximation of standard conjoint
measurement. If we strengthen the assump-
tions a bit, we get an even more natural the-
ory by assuming that the random variable
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ε(a, p; q) has its median equal to zero.
Using this stronger assumption about all the
errors being distributed with a median of zero,
Falmagne summarizes assumptions that must
be made to have a measurement structure.

Let A and P be two intervals of real num-
bers, and let U = {Upq(a) | p, q ∈ P, a ∈ A}
be a collection of random variables, each with
a uniquely defined median. Then U is a struc-
ture for random additive conjoint measure-
ment if for all p, q, r in P and a in A, the
medians m pq(a) satisfy the following axioms:

(i) They are continuous in all variables p, q,

and a.

(ii) They are strictly increasing in a and p,
and strictly decreasing in q .

(iii) They map A into A.

(iv) They satisfy the cancellation rule with
respect to function composition *, i.e.,

(m pq ∗ mqr )(a) = m pr (a),

whenever both sides are defined.

For such random additive conjoint mea-
surement structures, Falmagne (1985, p. 273)
proved that there exist real-valued continuous
strictly increasing functions φ1 and φ2, de-
fined on A and P respectively, such that for
any Upq(a) in U ,

ϕ1[Upq(a)]

= ϕ2(p) + ϕ2(q) − ϕ1(a) + εpq(a),

where εpq(a) is a random variable with a
unique median equal to zero. Moreover, if ϕ′

1

and ϕ′
2 are two other such functions, then

ϕ′
1(a) = αϕ1(a) + β

and

ϕ′
2(p) = αϕ2(p) + γ,

where α > 0.
Statistical tests of these ideas are not a

simple matter but have been studied in or-
der to make the applications practical. Major

references are Falmagne (1978); Falmagne
and Iverson (1979); Falmagne, Iverson, and
Marcovici (1979); and Iverson and Falmagne
(1985). Recent important work on probabil-
ity models includes Doignon and Regenwetter
(1997); Falmagne and Regenwetter (1996);
Falmagne, Regenwetter, and Grofman (1997);
Marley (1993); Niederée and Heyer (1997);
Regenwetter (1997); and Regenwetter and
Marley (in press).

Qualitative Moments

Another approach to measuring, in a repre-
sentational sense, the distribution of a random
variable for given psychological phenomena
is to assume that we have a qualitative method
for measuring the moments of the distribution
of the random variable. The experimental pro-
cedures for measuring such raw moments will
vary drastically from one domain of experi-
mentation to another. Theoretically, we need
only to assume that we can judge qualita-
tive relations of one moment relative to an-
other and that we have a standard weak order-
ing of these qualitatively measured moments.
The full formal discussion of these matters is
rather intricate. The details can be found in
Section 16.8 of FM II.

Qualitative Density Functions

As is familiar in all sorts of elementary prob-
ability examples, when a distribution has a
given form, it is often much easier to char-
acterize it by a density distribution of a ran-
dom variable than by a probability measure
on events or by the method of moments as
just mentioned. In the discrete case, the
situation is formally quite simple. Each atom
(i.e., each atomic event) in the discrete den-
sity has a qualitative probability, and we need
judge only relations between these qualitative
probabilities. We require of a representing dis-
crete density function p on {a1, . . . , an} the
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following three properties:

(i) p(ai ) ≥ 0.

(ii)
∑n

i=1 p(ai ) = 1.

(iii) p(ai ) ≥ p(a j ) iff ai �∼ a j .

Note that the ai are not objects or stimuli in
an experiment, but qualitative atomic events,
exhaustive and mutually exclusive. Also note
that in this discrete case it follows that
p(ai ) ≤ 1, whereas in the continuous case
this is not true of densities.

We also need conditional discrete densi-
ties. For this purpose we assume that the
underlying probability space X is finite or de-
numerable, with probability measures P on
the given family F of events. The relation of
the density p to the measure P is, for ai an
atom of X ,

p(ai ) = P({ai })
Then if A is any event such that P(A) > 0,

p(ai | A) = P({ai } | A),

and, of course, p(ai | A) is now a discrete den-
sity itself, satisfying (i) through (iii).

Here are two simple, but useful, examples
of this approach. Let X be a finite set. Then
the uniform density on X is characterized by
all atoms being equivalent in the qualitative
ordering �∼, that is,

ai ∼ a j .

We may then easily show that the unique den-
sity satisfying the equivalence and (i), (ii), and
(iii) is

p(ai ) = 1

n
,

where n is the number of atoms in X .
Among the many possible discrete distri-

butions, we consider just one further exam-
ple, which has application in experiments in
which the model being tested assumes a prob-
ability of change of state independent of the
time spent in the current state. In the case of
discrete trials, such a memoryless process has

a geometric distribution that can be tested or
derived from some simple properties of the
discrete but denumerable set of atomic events
{a1, . . . , an, . . .}, on each of which is a posi-
tive qualitative probability of the occurrence
of the change of state. The numbering of the
atoms intuitively corresponds to the trials of
an experiment. The atoms are ordered in qual-
itative probability by the relation �∼. We also
introduce a restricted conditional probability.
If i > j then ai | A j is the conditional event
that the change of state will occur on trial i
given that it has not occurred on or before
trial j . (Note that here A j means no change
of state from trial 1 through j .) The qualita-
tive probability ordering relation is extended
to include these special conditional events as
well.

The two postulated properties, in addition
to (i), (ii), and (iii) given above, are these:

(iv) Order property: ai �∼ a j iff j ≥ i ;

(v) Memoryless property: ai+1 | Ai ∼ a1.

It is easy to prove that (iv) implies a weak
ordering of �∼. We can then prove that p(an)

has the form

p(an) = c(1 − c)n−1 (0 < c < 1).

Properties (i) through (v) are satisfied, but they
are also satisfied by any other c′, 0 < c′ < 1.
For experiments testing only the memoryless
property, no estimation of c is required. If it
is desired to estimate c, the standard estimate
is the sample mean m of the trial numbers on
which the change of state was observed, since
the mean µ of the density p(an) = c(1−c)n−1

satisfies the following equation:

µ = 1 − c

c
.

For a formal characterization of the full
qualitative probability for the algebra of
events—not just atomic events—in the case of
the geometric distribution, see Suppes (1987).
For the closely related but mathematically
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more complicated continuous analogue (i.e.,
the exponential distribution), see Suck (1998).

GENERAL FEATURES
OF THE AXIOMATIC APPROACH

Background

History

The story of the axiomatic method begins with
the ancient Greeks, probably in the fifth cen-
tury B.C. The evidence seems pretty convinc-
ing that it developed in response to the early
crisis in the foundations of geometry men-
tioned earlier, namely, the problem of incom-
mensurable magnitudes. It is surprising and
important that the axiomatic method as we
think of it was largely crystallized in Euclid’s
Elements, whose author flourished and taught
in Alexandria around 300 B.C. From a mod-
ern standpoint, Euclid’s schematic approach
is flawed, but compared to any other standard
to be found anywhere else for over two mil-
lennia, it is a remarkable achievement. The
next great phase of axiomatic development
occurred, as already mentioned, in the 19th
century in connection with the crisis gener-
ated in the foundations of geometry itself. The
third phase was the formalization within logic
of the entire language used and the realization
that results that could not be proved otherwise
can be achieved by such complete logical for-
malization. In view of the historical review
presented earlier in this article, we will con-
centrate on only this third phase in this section.

What Comes before the Axioms

Three main ingredients need to be fixed in
an axiomatization before the axioms are for-
mulated. First, there must be agreement on
the general framework used. Is it going to
be an informal, set-theoretical framework or
one formalized within logic? These two al-
ternatives are analyzed in more detail later.

The second ingredient is to fix the primi-
tive concepts of the theory being axioma-
tized. For example, in almost all theories of
choice we need an ordering relation as a prim-
itive concept, which means, formally, a binary
relation. We also often need, as mentioned
earlier, a binary operation as, for example,
in the cases of extensive measurement and
averaging. In any case, whatever the prim-
itives may be, they should be stated at the
beginning. The third ingredient, at least as
important, is clarity and explicitness about
what other theories are being assumed. It is a
characteristic feature of empirical axiomatiza-
tions that some additional mathematics is usu-
ally assumed, often without explicit notice.
This is not true, however, of many qualita-
tive axiomatizations of representational mea-
surement and often is not true in the founda-
tions of geometry. In contrast, many varieties
of probabilistic modeling in psychology do
assume some prior mathematics in formulat-
ing the axioms. A simple example of this
was Falmagne’s axioms for random addi-
tive conjoint measurement, presented earlier.
There, such statistical notions as the median
and such elementary mathematical notions
as that of continuity were assumed without
further explanation or definition.

Another ingredient, less important from a
formal standpoint but of considerable impor-
tance in practice, are the questions of whether
notions defined in terms of the primitive con-
cepts should be introduced when formulating
the axioms and whether auxiliary mathemati-
cal notions are assumed in stating the axioms.
The contrasting alternative is to state the ax-
ioms strictly in terms of the primitive notions.
From the standpoint of logical purity, the lat-
ter course seems desirable, but in actual fact it
is often awkward and intuitively unappealing
to state all of the axioms in terms of the prim-
itive concepts only. A completely elementary
but good example of this is the introduction of
a strict ordering and an equivalence relation
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defined in terms of a weak ordering, a move
that is often used as a way of simplifying and
making more perspicuous the formulation of
axioms in choice or preference theory within
psychology.

Theories with Standard Logical
Formalization

Explicit and formally precise axiomatic ver-
sions of theories are those that are formalized
within first-order logic. Such a logic can be
easily characterized in an informal way. This
logic assumes

(i) one kind of variable;

(ii) logical constants, mainly the sentential
connectives such as and;

(iii) a notation for the universal and existen-
tial quantifiers; and

(iv) the identity symbol =.

A theory formulated within such a logi-
cal framework is called a theory with stan-
dard formalization. Ordinarily, three kinds of
nonlogical constants occur in axiomatizing a
theory within such a framework: the relation
symbols (also called predicates), the opera-
tion symbols, and the individual constants.

The grammatical expressions of the the-
ory are divided into terms and formulas, and
recursive definitions of each are given. The
simplest terms are variables or individual con-
stants. New terms are built up by combining
simpler terms with operation symbols in the
manner spelled out recursively in the formu-
lation of the language of the theory. Atomic
formulas consist of a single predicate and the
appropriate number of terms. Compound
formulas are built up from atomic formu-
las by means of sentential connectives and
quantifiers.

Theories with standard formalization are
not often used in any of the empirical sciences,
including psychology. On the other hand, they
can play a useful conceptual role in answering

some empirically important questions, as we
illustrate later.

There are practical difficulties in casting
ordinary scientific theories into the framework
of first-order logic. The main source of the
difficulty, which has already been mentioned,
is that almost all systematic scientific theo-
ries assume a certain amount of mathematics
a priori. Inclusion of such mathematics is not
possible in any elegant and reasonable way in
a theory beginning only with logic and with no
other mathematical assumptions or apparatus.
Moreover, a theory that requires for its for-
mulation an Archimedean-type axiom, much
needed in representational theories of mea-
surement when the domain of objects consid-
ered is infinite, cannot even in principle be for-
mulated within first-order logic. We say more
about this well-known result later. For these
and other reasons, standard axiomatic formu-
lations of most mathematical theories, as well
as scientific theories, follows the methodol-
ogy to which we now turn.

Theories Defined
as Set-Theoretical Predicates

A widely used alternative approach to formu-
lating representational theories of measure-
ment and other scientific theories is to axiom-
atize them within a set-theoretical framework.
Moreover, this is close to the practice of much
mathematics. In such an approach, axioma-
tizing a theory simply amounts to defining a
certain set-theoretical predicate. The axioms,
as we ordinarily think of them, are a part of
the definition—its most important part from
a scientific standpoint. Such definitions were
(partially) presented earlier in a more or less
formal way (e.g., weak orderings, extensive
structures, and other examples of qualitative
characterizations of empirical measurement
structures). Note that the concept of isomor-
phism, or the closely related notion of homo-
morphism, is defined for structures satisfying
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some set-theoretical predicate. The language
of set-theoretical predicates is not ordinarily
used except in foundational talk; it is just a
way of clarifying the status of the axioms.
It means that the axioms are given within a
framework that assumes set theory as the gen-
eral framework for all, or almost all, mathe-
matical concepts. It provides a seamless way
of linking systematic scientific theories that
use various kinds of mathematics with math-
ematics itself. An elementary but explicit dis-
cussion of the set-theoretical approach to ax-
iomatization is found in Suppes (1957/1999,
chap. 12).

Formal Results about Axiomatization

We sketch here some of the results that we
think are of significance for quantitative work
in experimental psychology. A detailed treat-
ment is given in FM III, Chap. 21. We should
emphasize that all the systematic results we
state here hold only for theories formalized in
first-order logic.

Elementary Languages

First, we need to introduce, informally, some
general notions to be used in stating the re-
sults. We say that a language L of a theory
is elementary if it is formulated in first-order
logic. This means that, in addition to the ap-
paratus of first-order logic, the theory only
contains nonlogical relation symbols, opera-
tion symbols, and individual constants. Intu-
itively, a model of such a language L is sim-
ply an empirical structure, in the sense already
discussed; in particular, it has a nonempty do-
main, a relation corresponding to each primi-
tive relation symbol, an operation correspond-
ing to each primitive operation symbol, and
individuals in the domain corresponding to
each individual constant.

Using such logical concepts, one major re-
sult is that there are infinite weak orders that
cannot be represented by numerical order. A

specific example is the lexicographic order of
points in the plane, that is (x, y) �∼ (x ′, y′) if
and only if either x > x ′ or x = x ′ and y ≥ y′.

In examining the kinds of axioms given
earlier (e.g., those for extensive measure-
ment), it is clear that some form of an
Archimedean axiom is needed to get a numer-
ical representation, and such an axiom cannot
be formulated in an elementary language L, a
point to which we return a little later.

A second, but positive, result arises when
the domains of the measurement structures are
finite. A class of such structures closed un-
der isomorphism is called a finitary class of
measurement structures. To that end, we need
the concept of a language being recursively
axiomatizable; namely, there is an algorithm
for deciding whether a formula of L is an ax-
iom of the given theory. It can be shown that
any finitary class of measurement structures
with respect to an elementary language L is
axiomatizable but not necessarily recursively
axiomatizable in L.

The importance of this result is in show-
ing that the expressive power of elementary
languages is adequate for finitary classes but
not necessarily for the stating of a set of recur-
sive axioms. We come now to another positive
result guaranteeing that recursive axioms are
possible for a theory. When the relations, op-
erations, and constants of an empirical struc-
ture are definable in elementary form when
interpreted as numerical relations, functions,
and constants, then the theory is recursively
axiomatizable.

Nonaxiomatizability Results

Now we turn to a class of results of direct psy-
chological interest. As early as the work of
Wiener (1921), the nontransitive equivalence
relation generated by semiorders was defined
(see the earlier quotation); namely, if we think
of a semiorder, then the indistinguishability or
indifference relation that complements it will
have the following numerical representation.
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For two elements a and b that are indistin-
guishable or indifferent with respect to the
semiorder, the following equivalence holds:

| f (a) − f (b)| ≤ 1 iff a ∼ b.

Now we have already seen that finite
semiorders have a very simple axiomatiza-
tion. Given how close the indistinguishabil-
ity relation is to the semiorder itself, it seems
plausible that this relation, too, should have a
simple axiomatization. Surprisingly, Roberts
(1968, 1969) proved that this is not the case.
More precisely, let L be the elementary lan-
guage whose only nonlogical symbol is the
binary relational symbol ∼. Then the finitary
class J of measurement structures for the
binary relation of indistinguishability is not
axiomatizable in L by a universal sentence.

Note that there is a restriction in the result.
It states that ∼ is not axiomatizable by a uni-
versal sentence. This means that existential
statements are excluded. The simple axiom-
atization of semiorders, given earlier, is such
a universal axiomatization because no quan-
tifiers were required. But that is not true of
indistinguishability. A little later, we discuss
the more general question of axioms with ex-
istential quantifiers for elementary languages.

This result about ∼ is typical of a group
of theorems concerning familiar representa-
tions for which it is impossible to axiomatize
the class of finite structures by adjoining a
universal sentence to an elementary language
L. Scott and Suppes (1958) first proved this
to be true for a quaternary relation symbol
corresponding to a difference representation.
Titiev (1972) obtained the result for additive
conjoint measurement; he also showed that it
holds for the n-dimensional metric structure
using the Euclidean metric; and in 1980 he
showed that it is true for the city-block met-
ric when the number of dimensions n ≤ 3. It
is worth mentioning that the proof for n = 3
given by Titiev required computer assistance
to examine 21,780 cases, each of which

involved 10 equations and 12 unknowns in a
related set of inequalities. To our knowledge,
nothing is known about n > 3.

This last remark is worth emphasizing to
bring out a certain point about the results men-
tioned here. For any particular case (e.g., an
experiment using a set of 10 stimuli), a con-
structive approach, rather than the negative
results given here, can be found for each par-
ticular case. One can simply write down the
set of elementary linear inequalities that must
be satisfied and ask a computer program to
decide whether this finite set of inequalities
in a fixed number of variables has a solu-
tion. If the answer is positive, then a numerical
representation can be found, and the very re-
stricted class of measurement structures built
up around this fixed number of variables and
fixed set of inequalities is indeed a measure-
ment structure. What the theorems show is
that the general elementary theory of such
inequalities cannot be given in any reason-
able axiomatic form. We cannot state for the
various kinds of cases that are considered an
elementary set of axioms that will guarantee
a numerical solution for any finite model
(i.e., a model with a finite domain) satisfying
the axioms.

Finally, in this line of development, we
mention a theorem requiring more sophisti-
cated logical apparatus that was proved by Per
Lindstrom (stated as Theorem 17, p. 243, FM
III), namely, that even if existential quanti-
fiers are permitted, the usual class of finite
measurement structures for algebraic differ-
ence cannot be characterized by a finite set of
elementary axioms.

Archimedean and
Least-Upper-Bound Axioms

We have mentioned more than once that
Archimedean axioms play a special role in
formulating representational theories of mea-
surement when the domain of the empirical
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structures is infinite. Recall that the
Archimedean axiom for extensive measure-
ment of weight or mass asserts that for any
objects a and b, there exists some integer n
such that n replicas of object a, written as
a(n), exceeds b, that is, a(n) �∼ b. This ax-
iom, as well as other versions of it, cannot
be directly formulated in an elementary lan-
guage because of the existential quantification
in terms of the natural numbers. In that sense,
the fact that an elementary theory cannot in-
clude an Archimedean axiom has an immedi-
ate proof. Fortunately, however, a good deal
more can be proved: For such elementary the-
ories, of the kind we have considered in this
chapter, there can be no elementary formulas
of the elementary language L that are equiv-
alent to an Archimedean axiom. After all, we
might hope that one could simply replace the
Archimedean axiom by a conjunction of ele-
mentary formulas, but this is not the case. For
a proof, and references to the literature, see
FM III, Section 21.7.

It might still be thought that by avoiding the
explicit introduction of the natural numbers,
we might be able to give an elementary formu-
lation using one of the other axioms invoked
in real analysis. Among these are Dedekind’s
(1872/1902) axiom of completeness, Cantor’s
(1895) formulation of completeness in terms
of Cauchy sequences, and the more standard
modern approach of assuming that a bounded
nonempty set has a least-upper-bound in terms
of the given ordering. We consider only the
last example because its elementary form al-
lows us to see easily what the problem is. To
invoke this concept, we need to be able to talk
in our elementary language not only about in-
dividuals in the given domain of an empiri-
cal structure, but also about sets of these in-
dividuals. But the move from individuals to
sets of individuals is a mathematically pow-
erful one, and it is not permitted in standard
formulations of elementary languages. As in
the case of the Archimedean axiom, then,

we have an immediate argument for reject-
ing such an axiom. Moreover, as in the case of
the Archimedean axiom, we can prove that no
set of elementary formulas of an elementary
language L is equivalent to the least-upper-
bound axiom. The proof of this follows nat-
urally from the Archimedean axiom, since in
a general setting the least-upper-bound axiom
implies an Archimedean axiom.

Proofs of Independence of Axioms
and Primitive Concepts

All the theorems just discussed can be formu-
lated only within the framework of elemen-
tary languages. Fortunately, important ques-
tions that often arise in discussions of axioms
in various scientific domains can be answered
within the purely set-theoretic framework and
do not require logical formalization. The first
of these is proving that the axioms are inde-
pendent in the sense that none can be deduced
from the others. The standard method for do-
ing this is as follows. For each axiom, a model
is given in which the remaining axioms are
satisfied and the one in question is not sat-
isfied. Doing this establishes that the axiom
is independent of the others. The argument is
simple. If the axiom in question could be de-
rived from the remaining axioms, we would
then have a violation of the intuitive concept
of logical consequence. An example of lack
of independence among axioms given for
extensive measurement is the commutativity
axiom, a ◦ b ∼ b ◦ c. It follows from the
other axioms with the Archimedean axiom
playing a very important role.

The case of the independence of primitive
symbols requires a method that is a little more
subtle. What we want is an argument that will
prove that it is not possible to define one of
the primitive symbols in terms of the others.
Padoa (1902) formulated a principle that can
be applied to such situations. To prove that
a given primitive concept is independent of
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the other primitive concepts of a theory, find
two models of the axioms of the theory such
that the primitive concept in question is es-
sentially different in the two models and the
remaining primitive symbols are the same in
the two models.

As a very informal description of a triv-
ial example, consider the theory of preference
based on two primitive relations, one a strict
preference and the other an indifference rela-
tion. Assume both are transitive. We want to
show what is obvious—that strict preference
cannot be defined in terms of indifference. We
need only take a domain of two objects, for
example, the numbers 1 and 2. Then for the in-
difference relation we just take identity: 1 = 1
and 2 = 2. But in one model the strict prefer-
ence relation has 1 preferred to 2, and in the
second preference model the preference rela-
tion has 2 preferred to 1. This shows that strict
preference cannot be defined in terms of in-
difference because indifference is the same in
both models whereas preference is different.

CONCLUSIONS

The second half of the 20th century saw a
number of developments in our understanding
of numerical measurement. Among these are
the following: (a) examples of fundamental
measurement different from extensive struc-
tures; (b) an increased understanding of how
measurement structures interlock to yield sub-
stantive theories; (c) a classification of scale
types for continuous measurement in terms
of properties of automorphism groups; (d) an
analysis of invariance principles in limiting
the mathematical forms of various measures;
(e) a logical analysis of what sorts of the-
ories can and cannot be formulated using
purely first-order logic without existential or
Archimedean statements; and (f) a number of
psychological applications especially in psy-
chophysics and utility theory.

A major incompleteness remains in the so-
cially important area of ability and achieve-
ment testing. Except for the work of Doignon
and Falmange (1999), no representational re-
sults of significance exist for understanding
how individuals differ in their grasp of certain
concepts. This is not to deny the extensive de-
velopment of statistical models, but only to
remark that fundamental axiomatizations are
rarely found. This is changing gradually, but
as yet it is a small part of representational mea-
surement theory.
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CHAPTER 2

Signal Detection Theory

NEIL A. MACMILLAN

To err is human, and psychologists routinely
take advantage of this inconsistency: Accu-
racy is one of the two primary dependent vari-
ables in behavioral research (response time
being the other). If errors cannot be elimi-
nated, an understanding of how they arise is
valuable for interpreting psychological phe-
nomena and their application to fields such as
medicine and law, where the consequences of
errors can be grave.

Many situations allow a choice between
kinds of errors. In diagnosing cancer with
imperfect methods, is it better to fail to de-
tect a tumor or to detect one that is not
present? Which way should an eyewitness
lean—toward failing to report recognizing
someone who has perpetrated a crime, or to-
ward accusing someone who was not the crim-
inal? Error tradeoffs are also evident in the
laboratory; in cases of doubt, should an ex-
perimental participant report seeing an am-
biguously dim light flash or remembering a
vaguely familiar face? That such choices are
possible makes clear the importance of deci-
sion processes in perception.

Signal detection theory (SDT) is a frame-
work for understanding accuracy that makes
the role of decision processes explicit. To do
so, the theory also takes a stand on the way in
which the relevant information is represented
by the observer, identifying some aspects of
the representation with sensitivity, or inher-

ent accuracy, and others with response fac-
tors. The key assumption is that the strength of
sensory and cognitive events is continuously
variable. An observer who is trying to distin-
guish two stimulus types, for example Signal
and Noise1, is faced over trials with distribu-
tions of values for each possibility, as sketched
in Figure 2.1. Errors arise because the Signal
and Noise distributions overlap, and the de-
gree of overlap is an inverse measure of accu-
racy, or sensitivity. Improvements in sensitiv-
ity can only occur if this overlap is reduced,
and such reductions are often not under the
immediate control of the observer.

The overlap of the distributions shown in
Figure 2.1 presents the observer with a prob-
lem in choosing a response. The solution—
the decision component of SDT—is to divide
the strength axis into two regions with a cri-
terion, so that high values lead to “yes” re-
sponses (e.g., there was a signal; I have seen
this word before; there is a tumor), and low
values lead to “no” responses. The observer
can change the location of the criterion and
thus the way in which values of the internal di-
mension are mapped onto responses. The the-
ory therefore provides a conceptual distinc-
tion between sensitivity and response bias.

1Names of stimuli or stimulus sets used in experiments
are capitalized.
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Strength

N (noise)
distribution

S (signal)
distribution

False
alarms

MN

Hits

Correct
rejections

Misses

c MS

Figure 2.1 Distributions of strength for Noise
and Signal.
NOTE: The upper curve is the distribution due to
Noise trials; values above the criterion c lead to
false alarms, and those below to correct rejections.
The lower curve is the distribution due to Signal
trials; values above the criterion lead to hits, those
below to misses. The means of the distributions are
MN and MS , and the variances are equal.

A central strategy in SDT research is to
manipulate the presumed decision criterion
through instructions or other aspects of exper-
imental procedure in order to expose the sensi-
tivity factors that remain unchanged. The suc-
cess of this technique implies that decisional
aspects can be available to conscious manipu-
lation, but the theory itself is more general, as-
suming that decisions are being made whether
observers know it or not.

Table 2.1 Terminology for One-Interval Experiments

Number of responses (M)
Number of
stimuli (N ) Task M = 2 M > 2

N = 2 Discrimination, Yes-No Rating,
Recognition, Confidence
Detection

N > 2 Classification, Classification Classification (M < N ),
Identification Identification (M = N )

SCOPE OF THE THEORY AND
ORGANIZATION OF THE CHAPTER

This material in this chapter falls roughly into
two parts, and the distinction between the
parts can be viewed as one of history, method-
ology, or theory. The first half covers material
that, for the most part, was developed earliest.
Methodologically, the experimental situation
is the one-interval design: On each of a suc-
cession of trials, a single stimulus is presented.
In variants of this procedure, the stimulus can
be one of two or drawn from a larger set, and
the response can be binary or drawn from a
larger set. Table 2.1 summarizes some useful
terminology.

If the stimulus is one of two, the design
is called discrimination; for example, pattern
discrimination may be assessed by displaying
a vertical grating on some trials and a hori-
zontal one on others. If one of the stimulus
possibilities is a “null” stimulus, the experi-
ment is detection, as when the vertical grating
is discriminated from an unvarying gray stim-
ulus. Discrimination experiments are some-
times called recognition: in recognition mem-
ory experiments participants study a list of
items and are then tested with items that may
be Old (from the study list) or New (distrac-
tors, or lures). In all of these cases, the ob-
server may be allowed just two responses,
with the goal of assigning one to each stim-
ulus, but may also be asked to express con-
fidence that one or the other stimulus was
presented using a rating scale.
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Discrimination experiments, with and
without ratings, were the grist for the early
SDT program of doing away with older meth-
ods and advancing a new solution to the ques-
tion of sensitivity versus bias. At the time
SDT was introduced, two measures of ac-
curacy were used commonly in attempts to
take account of such contamination. In one,
observed success was corrected for the de-
gree to which it might have been inflated
by guessing, which was estimated from per-
formance on catch trials that contained no
signals. The second measure, proportion cor-
rect [p(c)], incorporates a similar adjustment.
The latter index is of course still very pop-
ular, and most users believe it to be inno-
cent of theory. This chapter shows that it,
like the correction for guessing, implies a dis-
crete representation in which stimuli are seen
or not, remembered or not—with no possible
gradations.

Many one-interval tasks employ a larger
number of stimuli, to be sorted into a num-
ber of categories, M , that ranges from 2 up
to N , the number of stimuli. When M < N ,
the design is called classification, and the
M = N case is called identification, or ab-
solute identification. An important example
of two-response classification is the method
of constant stimuli: On each trial of an au-
ditory experiment, the observer is presented
with a sound having one of N intensities, and
the weakest stimulus is Noise. The task is
to assign one response to the Noise stimu-
lus, the other to all the rest. In another ex-
ample a continuum of speech sounds is con-
structed to range from /ga/ to /ka/, and the
listener decides for each presentation which
syllable is more likely. Either experiment
can be transformed into identification (as has
often been done for the auditory example and
rarely for this speech example) by asking the
observer to assign a distinct response to each
stimulus. I consider several experiments of
this type, in which all stimuli are apparently

represented as differing on a single subjective
characteristic, such as loudness or memory
strength.

The second half of the chapter examines
problems for which the representation can
be thought of as multidimensional. Such rep-
resentations allow for the analysis of ex-
periments that use more than one stimulus
per trial, namely, two-alternative forced-
choice (2AFC), the same-different task, and
the multiple-look design.

Consideration of different experimental
designs raises the question of how they should
be related to each other. That paradigms vary
in inherent difficulty has long been recog-
nized, and until the development of SDT
this led to the conclusion that some tasks
were therefore to be preferred over others.
Detection theory allows the estimation of a
single sensitivity index from any discrimina-
tion paradigm, and one of its most impor-
tant contributions is to permit comparison of
data across tasks. More broadly, discrimina-
tion tasks can be compared with classification
and absolute identification. Again, SDT pro-
vides comparable sensitivity measures across
tasks, but here the conclusions are discrepant:
Discrimination is easier for the observer than
are other resolution problems. Theories that
attempt to account for this important discrep-
ancy typically use SDT as a framework and
postulate changes in representation for differ-
ent tasks.

Multidimensional representations are also
useful in two complementary content areas:
attention and perceptual interaction. In atten-
tion, the multiple sources among which the
observer must allocate resources are naturally
considered as dimensions in a psychologi-
cal space. The question in studies of interac-
tion is how multiple dimensions combine. In
both domains, concepts of independence are
crucial.

The chapter ends with a brief discussion of
statistical methods.
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THE BASIC EXPERIMENT: ONE
STIMULUS INTERVAL PER TRIAL

The Yes-No Design

In the simplest task that can be posed, and
the one with historical precedence (Tanner &
Swets, 1954), a series of trials is presented in
which the Signal sometimes, but not always,
appears in the Noise. The observer tries to
say “yes” when a signal is present and “no”
when it is not, leading to the four possible out-
comes on any trial shown in Table 2.2. The
total number of presentations of each stimu-
lus type is not of interest, so the data can be
reduced to proportions. As there are only two
choices for the observer, the proportions of
“yes” and “no” responses must add to 1, and
the matrix can be summarized by two values:

H = hit rate = P(“yes” | S)

F = false-alarm rate = P(“yes” | N ).
(1)

Normal-Distribution, Equal-Variance
Representation

The most common detection-theory model as-
sumes that repeated presentations of either
stimulus give rise to equal-variance Gaussian
distributions along a dimension. The addition
of a Signal to the Noise increases the mean of
the S distribution (MS) compared to that of the
N distribution (MN ), as shown in Figure 2.1,
but in general not so much as to eliminate the
region of uncertainty in which events could
arise from either distribution. The observer
does best (Green & Swets, 1966, chap. 2) by

Table 2.2 Possible Outcomes on a Trial of a Yes-No
Experiment

Response

Stimulus “yes” “no”

S (Signal) hit miss
N (Noise) false alarm correct rejection

setting a criterion value c on the strength axis
and responding “yes” for events above it and
“no” for events below.

Figure 2.1 shows that the observed hit rate
and false-alarm rate correspond to areas un-
der the S and N distributions, respectively.
Choosing a low, liberal location for the crite-
rion (as in Figure 2.1) leads to high values of
H and F , whereas choosing a high, conserva-
tive value leads to low ones. To express these
proportions in terms of the representation, the
variances of the distributions can be set equal
to 1, so that the distributions are unit-normal.
Letting z(p) represent the z-score correspond-
ing to a proportion p,

z(H) = MS − c

z(F) = MN − c.
(2)

The theory thus expresses the two observable
pieces of data in terms of the parameters of the
underlying distributions. But what aspects of
the representation provide the best summary
of the observer’s performance?

Measures of Sensitivity and Response Bias

The true sensitivity of the observer is unaf-
fected by criterion location and is reflected
instead by the difference between the means
of the two distributions, which is denoted by d ′

and can be derived easily from Equation (2):

d ′ = MS − MN = z(H) − z(F). (3)

An important characteristic of this definition
is that it expresses accuracy as the difference
between the hit rate and false-alarm rate, each
subjected to a transformation. In this case,
the transformation, z, is the same for both
proportions.

The location of the criterion is an obvi-
ous measure of response bias, the tendency
to say “yes” (or “no”). To define this mea-
sure, it is necessary to decide what point on
the decision axis represents 0, or no bias; a
natural choice is the halfway point between
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the distribution means. Negative values of c
thus correspond to liberal biases (as in Fig-
ure 2.1) with many “yes” responses, whereas
positive values correspond to conservative bi-
ases with many “no” responses. A midpoint
of 0 implies that MS = −MN , and c can be
found from Equation (2) to equal

c = −1

2
[z(H) + z(F)]. (4)

Early SDT theorists focused on an appar-
ently separate aspect of the representation:
The likelihood ratio is the ratio of the heights
of the S and N distribution functions. As
shown in Figure 2.1, this ratio increases to-
ward the upper end of the strength axis and
decreases toward the lower end. In fact, one
could say that the axis that I have been calling
“strength” is the likelihood ratio, which sug-
gests that c and the likelihood ratio, β, should
be monotonically related. The exact relation
(Macmillan & Creelman, 1991, p. 40) is

ln(β) = cd ′, (5)

where ln is the natural logarithm. Criterion lo-
cation and likelihood ratio are indeed mono-
tonic as long as d ′ is constant (though far from
it otherwise).

How to Calculate d ′, c, and β

Equations (3), (4), and (5) prescribe more
complex operations than those needed to com-
pute such performance measures as propor-
tion correct; in particular, they cannot be eval-
uated on most hand calculators. Tables of the
normal distribution suffice, but there is an-
other problem: If H = 1 or F = 0, as can
certainly happen in experiments with small
numbers of trials, z cannot be calculated. The
difficulty of perfect proportions (0 or 1) dis-
courages some potential users of SDT but
need not: Some recent calculations (Kadlec,
1999b) show that a good approximation can
be obtained by adding and subtracting 0.5 to

the frequency matrix when necessary. (An al-
ternative correction is to add 0.5 to all cells,
as is done in log-linear statistical analysis [see
also Snodgrass and Corwin, 1988].) Examples
of this adjustment for two sample data matri-
ces follow:

“yes” “no” “yes” “no”

S 10 0 9.5 0.5→
N 2 8 2 8

“yes” “no” “yes” “no”

S 9 1 9 1→
N 0 10 0.5 9.5

A simple way to compute SDT statistics is
with a spreadsheet; this is especially appeal-
ing for the many laboratories in which the data
themselves are collected or stored in spread-
sheets. Basic calculations are illustrated in
Table 2.3 for QuattroPro, but are very simi-
lar in Excel and other programs. The function
z is written @NORMSINV, and the height
of the distribution is @NORMSDIST. The
indexes to be entered or computed are listed
in column A, and formulas are given that can
be inserted in rows 5 through 11 of column
B, then copied to subsequent columns. Sorkin
(1999) has explored the use of spreadsheets
for SDT calculations in greater detail.

Evaluating Sensitivity Measures: Receiver
Operating Characteristic Curves

What justifies the use of d ′ as a measure of
accuracy? As the criterion moves from right
to left along the decision axis of Figure 2.2,
both H and F increase. The relation between
them is called a receiver operating character-
istic (ROC), examples of which are shown in
Figure 2.2a. The form of this curve that is pre-
dicted by SDT can be found from Equation (2)
and is easier to evaluate if the coordinates are
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Table 2.3 Formulas for Spreadsheet Calculation of SDT Statistics, with Examples

Formula (for column B; then copy to C
A (labels only) and other columns) B (Set 1) C (Set 2)

1 #hits 10 9
2 #misses 0 1
3 # false alarms 2 0
4 #correct rejections 8 10
5 H (hit rate) @IF(B2 > 0, B1/(B1 + B2),

(B1 − 0.5)/(B1 + B2)) 0.950 .900
6 F (false-alarm rate) @IF(B3 > 0, B3/(B3 + B4), 0.5/(B3 + B4)) 0.200 .050
7 z(H) @NORMSINV(B5) 1.645 1.282
8 z(F) @NORMSINV(B6) −0.842 −1.645
9 d ′ (B7 − B8) 2.486 2.926

10 c (−0.5)*(B7 + B8) −0.220 0.182
11 β @EXP(B9*B10) 0.579 1.703

transformed to z scores. Equation (3) can be
rewritten as

z(H) = d ′ + z(F), (6)

which is a straight line with unit slope and
intercept d ′ (Figure 2.2b). Early ROC data in
auditory and visual detection experiments of-
ten conformed to this shape, or at least were
far better described in this way than by the
predictions of competing theories.
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Figure 2.2 Receiver operating characteristics (ROCs) for two normal distributions with the same vari-
ance. (a) Probability coordinates. (b) z coordinates.
NOTE: In both panels, the two curves are for d ′ = 0.9 (lower curve) and 1.4 (higher curve).

Predicting Sensitivity and Bias Measures
from Experimental Variables

Having decided on appropriate statistics for
sensitivity and response bias, can one pre-
dict their values from aspects of the ex-
periment? Predicting sensitivity requires de-
velopment of an ideal-observer model that
calculates optimal d ′ from stimulus character-
istics. This approach has been most successful
in sensory experiments, with either stimulus
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characteristics or neural modeling as the pre-
sumed basis for the observer’s decision. De-
tection of a tone signal in a noise background
is well predicted by an energy-detector model,
according to which the energy in the obser-
vation interval is the only information used
in a decision (Green, McKey, & Licklider,
1959). The approach can be extended beyond
the stimulus to multiple levels of processing:
Geisler and Chou (1995) were able to pre-
dict performance in complex visual search
tasks involving stimuli that differed in color
and orientation from discrimination accuracy
for these attributes. Thus, “low-level” tasks
were enough to construct an ideal observer
for “high-level” ones.

To predict response bias, one must know
the goal of the observer, whose strategies
will depend on how the possible experimen-
tal outcomes are understood. For example,
minimizing false alarms requires a high cri-
terion, whereas minimizing misses requires
a low one. A quantitative prediction can be
derived by assigning numerical values to the
outcomes; concretely, the observer can be
rewarded with “payoffs,” financial incentives
and disincentives. A payoff matrix designed
to inhibit false alarms is shown in Table 2.4.

The optimal value of likelihood ratio de-
pends on these payoffs, and also on the relative
probability with which the signal is presented:
It is reasonable to respond “yes” more often
if there are a lot of signals. Green and Swets
(1966) showed that the optimal value is

β ={[V (correct rejection) − V (false alarm)]
× P(N )}/{[V (hit) − V (miss)]P(S)},

(7)

Table 2.4 Possible Outcomes on a Trial of a Yes-No
Experiment

Response

Stimulus “yes” “no”

S $0.05 −$0.01
N −$0.10 $0.05

where V is the financial value associated with
an outcome. For example, if three quarters of
the trials contain a signal and the payoff matrix
in Table 2.4 is in effect, the optimal value of
β is (0.15)(.25)/[(0.06)(.75)] = 0.833. This
is slightly liberal (below the equal-bias point,
where β = 1), indicating that the asymmetric
presentation probabilities favoring “yes” out-
weigh the asymmetric payoffs favoring “no.”
For a given d ′, the exact hit rate and false-
alarm rate can be predicted: For example, if
d ′ = 1, then c is found from Equation (5) to
be −.182, and Equation (2) leads to H = .75
and F = .38.

Most subjects are conservative in respond-
ing to payoffs; that is, they do not adopt
criteria that are as extreme as would be op-
timal (Green & Swets, 1966). Altering pre-
sentation probabilities can also help to control
response bias; criteria are lower when Signals
are more likely. However, this manipulation
appears to have multiple effects, affecting sen-
sitivity as well as response bias (Dusoir, 1983;
Markowitz & Swets, 1967; Van Zandt, 2000).

The Rating Design

Being able to examine complete ROC curves
is advantageous for many reasons. First, the
results are not restricted to a single, possibly
unusual, hit, false-alarm pair. Second, a full
ROC allows calculation of what is in many
applications the best single measure of accu-
racy, the area under the curve (Swets, 1986;
Swets, Dawes, & Monahan, 2000). Third, in
some content areas the exact shape of the
ROC is predicted from one or more theories,
as in recognition memory (Ratcliff, Sheu, &
Gronlund, 1992; Yonelinas, 1994). To gener-
ate an ROC, it is necessary for response bias to
be manipulated, and a straightforward but ex-
pensive way to accomplish this is to conduct
separate experimental conditions for several
different payoffs or instructions. But if ob-
servers can adopt multiple criteria in separate
conditions, they may be able to use several
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criteria simultaneously, a possibility that mo-
tivates the rating experiment.

Experimental Design

In the one-interval rating experiment, the ob-
server is still presented with a sample of Noise
or Signal, but the response set varies from
great confidence in one alternative to great
confidence in the other. A set of numerals (“1”
to “6” is common) or phrases (“sure it was
signal,” “might have been Signal,”. . . ,“sure
it was Noise”) may be used. Alternatively, the
observer may make two responses on each
trial, first “yes” or “no”, and then a level of
confidence in that response, for example “1”
for high, “2” for medium, and “3” for low
confidence. No matter what the experimen-
tal realization, the data can be represented as
a stimulus-response matrix, with successive
responses corresponding to decreasing lev-
els of confidence that a signal was presented,
as shown in Table 2.5. The entries f (S, i)
and f (N , i) are the frequencies of response
i when S and N are presented, and T (S) and
T (N ) are the total numbers of S and N trials.

To generate an ROC curve, these data are
treated as though they arose from a series of
yes-no experiments. The lowest point arises
if response “1” is treated as a “yes” and the
other responses as “no.” To obtain the next
point, responses “1” and “2” correspond to
“yes,” and so forth. In general, for the kth
point,

H =
k∑

i=1

f (S, i)/T (S)

F =
k∑

i=1

f (N , i)/T (N )

(8)

Table 2.5 A Stimulus-Response Matrix for Two Versions of the Rating Experiment

Response Numerals “1” “2” “3” “4” “5” “6” Total
Dual “yes, 1” “yes, 2” “yes, 3” “no, 3” “no, 2” “no, 1”

Stimulus S f (S, 1) f (S, 2) f (S, 3) f (S, 4) f (S, 5) f (S, 6) T (S) = � f (S, i)
N f (N , 1) f (N , 2) f (N , 3) f (N , 4) f (N , 5) f (N , 6) T (N ) = � f (N , i)

For computational examples of rating exper-
iments, see Macmillan and Creelman (1991,
in press).

It is, of course, an empirical question
whether an ROC generated in this way is the
same as one generated from a series of yes-
no experiments. Early experiments (Egan,
Schulman, & Greenberg, 1959) showed good
equivalence of rating data to yes-no data ob-
tained with different instructions or payoffs.
The rating experiment is far more efficient
than the other methods, in that a single exper-
imental run can produce an entire ROC curve,
and is the favorite in practice.

Normal-Distribution Unequal-Variance
Representation

The ROC shape found with almost all meth-
ods and in almost all areas of application is a
straight line on z-coordinates, as is expected if
the underlying distributions are normal. The
equal-variance model (Equation [6]) also im-
plies that the slope of the zROC should equal
1, however, and this prediction is often not
confirmed. If the slope of the line is s, then
a change of one z-unit on the F axis leads to
a change of s units on the H axis. Moving
along the zROC corresponds to moving the
criterion along the decision axis, so a change
of one unit on this axis relative to the N dis-
tribution equals a change of s units relative
to the S distribution. The inferred representa-
tion still has two normal distributions, but with
unequal variances [σ 2(S) �= σ 2(N )], and the
slope of the ROC, s, is the ratio of the standard
deviations, σ(N )/σ (S). Figure 2.3 shows an
unequal-variance representation and its ROC.

How can the accuracy of the observer
in Figure 2.3 be summarized? In the
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Figure 2.3 (a) Two normal distributions with unequal variance. (b) The corresponding ROC on prob-
ability coordinates. (c) The ROC on z coordinates.
NOTE: The ratio of the standard deviations s = .5, and sensitivity da = 1.26.

equal-variance case, sensitivity is the differ-
ence between the zROC [z(H) = z(F) + d ′]
and the chance line [z(H) = z(F)], and it
always equals d ′ (see Figure 2.2b). In the
unequal-variance case, however, this differ-
ence is a function of location on the curve
(Figure 2.3c) and thus is not bias-free. In terms
of the representation, the difference between
the means of the S and N distributions, �M,

is still appropriate as a sensitivity parameter
because it is not affected by criterion location.
This difference must be divided by a stan-
dard deviation; a common statistic, da , uses
the root-mean-square average of the standard
deviations of S and N :

da = �M/(1 + s2)1/2 (9)

Computationally, da can be estimated using
a maximum-likelihood procedure first devel-
oped by Dorfman and Alf (1969). Current pro-
grams are available at http://www.radiology.
arizona.edu/∼eye-mo/rocprog.htm.

The rationale for da is not just heuristic.
Green (1964) showed that the area under the
yes-no (or rating) ROC equals the proportion
correct in a two-interval forced-choice exper-
iment (discussed later in this chapter) by an
unbiased observer, a plausible nonparametric
measure of sensitivity. If the representation
is as shown in Figure 2.3a, this area Az is
monotonically related to da (Swets & Pickett,
1982):

da =
√

2 z(Az). (10)
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The area Az is, like the other accuracy in-
dexes discussed so far, based on the assump-
tion of normal distributions; I consider some
area measures that either are or claim to be
nonparametric shortly. The monotonic rela-
tion between the statistics Az and da , one an
area and the other a distance, means that (for
a given value of s) they have the same im-
plied ROC. Measures with this characteristic
are said to be equivalent: If one is a bias-free
measure of accuracy, so is the other.

In general, three aspects of sensitivity mea-
sures are interrelated: the statistic itself, the
ROC that it implies, and the representation
that it assumes. In the present example, the
statistic da implies normal distributions and a
linear zROC, and the use of d ′ is a further
commitment to equal-variance distributions
and unit-slope ROCs. To decide between these
measures requires collecting an ROC curve;
without information about how performance
changes with bias, an appropriate measure of
accuracy cannot be determined.

The rating experiment does allow, how-
ever, for accuracy statistics that are not model-
dependent. We have seen that the true area
under the ROC is a nonparametric index of
accuracy, and if there are enough data points,
this can be estimated without fitting a theoret-
ical model. Balakrishnan (1998) developed a
related measure for the dual-response version
of the rating paradigm. The separate distri-
butions of confidence ratings for Signal and
Noise take over the role of the hypothetical
distributions in SDT. The difference between
the cumulative distributions of these ratings
measures the discrepancy between the hit rate
and false-alarm rate at each level of confi-
dence. The sum of these differences is S′, an
estimate of the difference between the two
confidence distributions under the assump-
tion that the criteria used by the observer are
equally spaced. In simulations, Balakrishnan
showed that S′ did a better job than d ′ of rank
ordering conditions that differed slightly in

sensitivity. A similar strategy, applied to the
two-response rating design (“yes” or “no” fol-
lowed by a confidence judgment), leads to a
nonparametric measure of response bias.

MODELS WITH SIMPLER
ASSUMPTIONS (OR NONE AT ALL?)

Although this chapter is largely restricted to
SDT itself, two alternative approaches are
treated briefly here. The first is threshold the-
ory, in which the continuous representation
of SDT is replaced by a small set of discrete
states. The theory is important both because
it is usually wrong (most ROC data contradict
this representation) and because it is some-
times right (some ROC data are consistent
with it). The second approach is not a theory,
but an attempt to find measures of accuracy
that are not at all dependent on theory. “Non-
parametric” measures for the yes-no design
have turned out, on examination, to be equiv-
alent to threshold theory, SDT variants, or a
combination of the two.

Thresholds, High and Low

High-Threshold Theory

The idea of a threshold, a fixed level dividing
sensation from its absence, received its most
explicit treatment from Blackwell (1963).
In Blackwell’s version, a signal presentation
sometimes leads to an above-threshold event,
but noise alone never does; in this sense, the
threshold is high. False alarms occur because
of guessing, a strategy that also inflates the
hit rate. This theory captured the contempo-
rary intuitions about detection experiments
and was easy to test.

Because threshold-theory representations
have only a small number of internal events, it
is convenient to express them as flow charts,
or state diagrams, as in Table 2.6. In high-
threshold theory, there are two internal states,
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Table 2.6 State Diagram for High-Threshold Theory

Stimulus Internal event P(event) P(“yes” | event) P(“yes”)

S Detect qs 1 qs

Nondetect 1 − qs u u(1 − qs)

N Detect 0 1 0
Nondetect 1 u u

Detect and Nondetect. Signals are detected
with probability qs ; noise is never detected.
Detections always lead to the “yes” response,
but the observer also responds “yes” to a
proportion u of nondetections, whether these
events arise from Signal or Noise. The hit rate
and false-alarm rate are

H = qs + u(1 − qs)

F = u.
(11)

Equation (11) is easily transformed into the
predicted ROC:

H = qs + (1 − qs)F, (12)

which is a straight line from the point (0, qs)

to (1, 1) in ROC space (Figure 2.4). One of
SDT’s early successes was the demonstration
that empirical ROCs did not have this form,
but were well described instead by the normal-
normal shape of Figures 2.2 and 2.3.
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Figure 2.4 Predicted ROCs for high-threshold
theory, for three values of the sensitivity para-
meter qs .

Equation (12), solved for qs , is sometimes
used to correct observed hit rates for guess-
ing. The method can be extended to multiple-
choice examinations, in which the guess rate
is 1 over the number of alternative answers.
Many who use this correction for guessing
view it as atheoretical, but it makes a strong
assumption that is rarely honored in prac-
tice: that the test taker is truly guessing (i.e.,
has no partial information) when a Nonde-
tection occurs. In an early auditory detec-
tion experiment, Swets, Tanner, and Birdsall
(1961) showed that, contrary to this assump-
tion, listeners’ second-choice responses in a
four-alternative paradigm were more accurate
than chance. Together with the failure of ROC
experiments to follow the form of Equation
(12), this result is strong evidence that the cor-
rection for guessing should not be used.

A Three-State, Double-Threshold Model

The idea of a small number of internal states
can be used to generate theories that are not
so easily rejected. Luce (1963b) introduced
the idea of a low threshold that allowed Noise
trials to lead sometimes to the Detect state.
One way in which a low threshold can be
added to the high-threshold model is to sup-
pose that the observer has three states: Detect,
Uncertain, and Nondetect. Signals never fall
below threshold into the Nondetect state (a
high-threshold assumption), but may lead to
either a Detect or an Uncertain state (low-
threshold). Noise never exceeds threshold
(high) but may lead to either Nondetect or
Uncertain (low). Table 2.7 gives the state
diagram, which leads to the hit rate and
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Table 2.7 State Diagram for Double-Threshold Theory

Stimulus Internal Event P(event) P(“yes” | event) P(“yes”)

S Detect qs 1 qs

Uncertain 1 − qs u u(1 − qs)

Nondetect 0 0 0
N Detect 0 1 0

Uncertain qn u uqn

Nondetect 1 − qn 0 0

false-alarm rate:

H = qs + u(1 − qs)

F = uqn.
(13)

The most conservative response strategy,
setting u to 0, leads to the point (0, qs); the
most liberal, u = 1, leads to the point (qn ,
1); and other values of u track a line seg-
ment between these two points. ROCs of this
form have (to my knowledge) never been
reported in perception experiments but are
found in certain studies of recognition mem-
ory. Figure 2.5 displays both curvilinear (left
panel) and linear (right panel) ROCs reported
for different recognition tasks by Yonelinas
(1997). In a conventional task in which sin-
gle words were presented, the data are well-
described by a normal-distribution model, but

Figure 2.5 ROCs obtained by Yonelinas (1997) for recognition memory of single words (left panel)
and word pairs (right panel). Reprinted by permission.

in associative recognition, in which pairs of
words were to be remembered, a double-
threshold model provides a better fit. This
finding means that when word pairs are rec-
ollected with highest confidence as having
been in the study list, or when they are recol-
lected with highest confidence as not having
been in the list, no errors are made. Thus,
there must be very high-fidelity Detect and
Nondetect states, as in the double-threshold
model. Single words, on the other hand,
display a continuous ROC, consistent with
a graded strength axis. Other recognition-
memory ROCs with threshold features have
been reported by Yonelinas (1994) and
Rotello, Macmillan, and Van Tassel (2000).

The double-threshold model is most of-
ten employed implicitly, without collecting
ROCs. Suppose sensitivity is the same for both

[Image not available in this electronic edition.]



pashler-44093 book December 18, 2001 10:12

Models with Simpler Assumptions (or None at All?) 55

stimulus alternatives, so that qs = 1 − qn = q.
Assuming equal presentation probabilities,
the proportion correct equals the average of
the hit rate and correct-rejection rate; using
Equation (13), this equals

p(c) = 1

2
[H + (1 − F)] = 1

2
[q + 1]. (14)

Equation (14) shows p(c) and q to be equiva-
lent, so the use of p(c) as a measure of accu-
racy implies an ROC like that in Figure 2.5b,
but parallel to the chance line. Except in rare
cases, such ROCs are not found, and p(c) is
thus not a pure measure of accuracy. It is least
problematic when the observer is unbiased, so
that performance is near the minor diagonal in
ROC space. Note that p(c), like d ′, equals the
difference between the transformed hit rate
and false-alarm rate; in this case, however,
the transformation is the identity function, and
p(c) depends simply on H − F .

Measures Based on ROC-Space Areas
for Single ROC Points

The area under the ROC is an appealing mea-
sure of sensitivity in the rating experiment and
can be assumption-free with a large number
of ROC points. This section considers ROC
area measures of sensitivity and bias for single
hit/false-alarm pairs that were developed
without recourse to psychophysical theory.
For the most part, these “nonparametric”
indexes turn out to be equivalent to param-
eters of a standard SDT model with underly-
ing distributions that are close to normal in
shape.

If only one point in ROC space is ob-
tained in an experiment, there are many pos-
sible ROCs on which it could lie, and some
assumptions must be made to estimate the
area under the ROC. One possibility is to find
the smallest possible area consistent with that
point. As shown in Figure 2.6, this is equiva-
lent to finding the area under the two-limbed
ROC for which the obtained point forms the
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Figure 2.6 Calculation of the area under the ROC
containing the single point (F , H ).
NOTE: The minimum is the area under the quadri-
lateral below and to the right of (F , H ); the statistic
A′ is the minimum area plus one-half the sum of
areas A1 and A2.

corner. When presentation probabilities are
equal, this area turns out to equal proportion
correct, a measure already shown to imply a
threshold model.

A better estimate, proposed by Pollack and
Norman (1964), is also diagrammed in Fig-
ure 2.6. Their measure A′ is a kind of av-
erage between minimum and maximum per-
formance. Macmillan and Creelman (1996)
have shown that A′ (for above-chance perfor-
mance) can be written as a function of two
other sensitivity measures. One is p(c), and
the other is the parameter α of choice the-
ory (Luce, 1959, 1963a), which is the analog
of d ′ if the underlying distributions are logis-
tic in form rather than normal. The relation
is

A′ = 1

2
+ 1

2
p(c)(1 − α−2). (15)

At low sensitivity, this expression is domi-
nated by α, whereas at high sensitivities p(c)
is more important. The shift is illustrated in
Figure 2.7, which shows the implied ROCs for
A′ on the same plot as those for α (panel a)
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Figure 2.7 Families of ROC curves implied by A′.
NOTE: In panel (a), ROCs for two values of α (logistic sensitivity) are also shown; in panel (b), ROCs for
two levels of p(c) are shown. The comparison shows that A′ is approximately consistent with an SDT
model at low levels, and with a threshold model at high levels.

and p(c) (panel b). At low levels, a constant-
A′ ROC is very similar to a constant-α curve,
which is in turn very similar to a constant-d ′

curve. At high levels, it is quite similar to a
constant-p(c) curve.

One appeal of the area measure is that, un-
like d ′, it can be calculated directly even when
the observed hit or correct-rejection rate is 1.0.
Unfortunately, perfect performance on one of
the two stimulus classes tends to mean high
performance overall, and it is for high values
that A′ has undesirable, threshold-like char-
acteristics. At low performance levels, A′ is
much like α (and thus much like d ′). In nei-
ther case is it assumption-free.

Several bias measures have been proposed
as companion statistics to A′. The most pop-
ular is B ′′ (Grier, 1971), which is equiva-
lent to B ′

H , suggested by Hodos (1970). In
fact, B ′′ is only superficially related to A′, but
is equivalent to the logistic likelihood ratio
(Macmillan & Creelman, 1990, 1996). A dif-
ferent measure based on ROC geometry, pro-
posed by Donaldson (1992), is equivalent to
the logistic criterion b.

Two conclusions appear justified: First,
there are no “nonparametric” measures of

sensitivity or bias in the yes-no experiment,
because any candidate index is consistent
with some representations and not others.
Second, there is such a measure in the rat-
ing experiment—area under the multipoint
ROC—and the collection of rating data in
discrimination experiments is therefore well
worth the slight additional effort.

One-Dimensional Identification
and Classification

In a classification experiment, observers use
M responses to sort N stimuli into categories,
and in an identification experiment, M = N .
We first consider classification experiments
with one-dimensional stimulus sets, that is,
stimuli that differ for the participant in only
one characteristic. Detection theory allows a
theoretical meaning to be assigned to the term
“one-dimensional,” as Figure 2.8 illustrates.
The sensitivity statistic d ′ is a distance mea-
sure, and distances along a single dimension
add up. Thus if S1, S2, and S3 give rise to
distributions along a continuum, with their
means in the order µ1 < µ2 < µ3, then

d ′(1, 3) = d ′(1, 2) + d ′(2, 3). (16)
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Figure 2.8 Three normal distributions on a single
dimension display additivity: d ′(1, 3) = d ′(1, 2)+
d ′(2, 3).

Equation (16) can be viewed as a predic-
tion about the result of three different two-
stimulus experiments, or an assumption about
a single classification experiment in which
all three stimuli occur. The sensitivity dis-
tance between any stimulus and the endpoint
stimulus is a useful measure, cumulative d ′,
that can be computed by adding up adjacent
d ′ values. The value of cumulative d ′ ob-
tained between both endpoint stimuli repre-
sents the total sensitivity of the observer to
the stimulus set and is called total d ′. To-
tal d ′ is the basic measure of observer per-
formance on the entire stimulus ensemble. If
there is reason to believe that a stimulus set
will lead to a one-dimensional representation,
Equation (16) can be used to infer sensitivity
between remote stimulus pairs (like S1 and
S3) from sensitivities to adjacent pairs (S1

versus S2 and S2 versus S3). This is espe-
cially useful if the extreme stimuli are per-
fectly discriminable and cannot be directly
compared.

Bias and Sensitivity in Two-Response
Classification

Distinguishing bias and sensitivity is as valu-
able in classification and identification as it
is in discrimination, but the presence of more
stimuli complicates the analysis. We first con-

sider the important special case in which the
observer must partition the N stimuli into
only two categories; according to SDT, this
is accomplished by using a single criterion
to divide the decision axis. Whereas the two-
stimulus experiment can be summarized by
just two independent proportions, the hit rate
and the false-alarm rate, classification yields
N values, P(“yes” | Si ) for S1, S2, . . . , SN .
Multiple bias and sensitivity measures can be
defined.

A single proportion is enough to locate the
criterion relative to the mean of a single distri-
bution. Consider Figure 2.9a, in which the cri-
terion is located so that P(“yes” | S1) = .31.
Because the distribution is normal, the crite-
rion is 0.5 standard deviations above the S1

mean. Criterion location is clearly a bias mea-
sure, and it can be calculated relative to any
of the three distributions.

Sensitivity indexes require two propor-
tions: the d ′ distance between stimuli Si and
Sj is the difference in the corresponding
z scores, z[P(“yes” | Si )] − z[P(“yes” | Sj )].
There are N (N − 1)/2 such values, although
only N − 1 of them are independent. In Fig-
ure 2.9a, any of the three d ′ values can be
found using the same criterion location; for
example, d ′(2, 3) = z(.84)−z(.69) = 0.99−
0.50 = 0.49. This computation does not re-
quire that S2 and S3 be associated with dif-
ferent correct responses, or even that correct
responses be defined. Dosher (1984) proposed
the term pseudo-d ′ for a sensory distance esti-
mated from two response rates identified with
the same correct response.

As in discrimination, the important ques-
tion in classification often concerns changes
in bias and sensitivity across conditions. A
change in bias requires only two proportions:
the corresponding “yes” rates to the same
stimulus in each of two conditions. In Fig-
ure 2.9b all “yes” rates, and thus all crite-
rion locations, are different from those in Fig-
ure 2.9a, but the d ′ values are the same.
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S1 S2 S3

P(“yes”)

S1 S2 S3

.31   .69   .84

(a)

.16   .50   .69

.50   .84   .93

.31   .69   .93

(b)

(c)

0  0.5  1.0  1.5  2.0

(d)

Figure 2.9 Distributions corresponding to three stimuli on one dimension, with a single criterion
defining the regions leading to the two responses.
NOTE: Compared to panel (a), panel (b) shows a criterion shift, panel (c) a shift in all the distributions,
and panel (d) a change in the spacing of the distributions.

In Figure 2.9c all distributions have shifted
upward compared to Figure 2.9a by the same
amount, but the criterion has remained the
same. The data are exactly the same as if the
reverse had occurred (i.e., the criterion shifted
downward and the distributions remained the
same). Which situation has occurred cannot
be diagnosed with SDT tools.

Finally, to infer a change in sensitivity re-
quires two d ′ values and thus two z-score dif-
ferences. In Figure 2.9d, the S3 distribution
has moved relative to the others, and a com-
parison of z[P(“yes” | S3)]− z[P(“yes” | S2)]
for Figures 2.9d and 2.9a reveals the dis-
crepancy.

Next I consider four examples of two-
response classification and evaluate them

according to whether they measure bias, sen-
sitivity, or changes therein. Table 2.8 gives
a prospective summary of the conclusions,
which do not always agree with claims made
by experimenters about such data. Through-
out, the analyses use the simplest one-
dimensional representation that is consistent
with the results.

Psychometric Functions

Detection experiments often use N stimuli,
the “weakest” of which is noise alone. The
possible responses are “yes” and “no,” and
the data can be plotted as P(“yes”) against
stimulus level. An example is shown in Fig-
ure 2.10a. Historically, the importance of
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Table 2.8 Evaluation of Sensitivity and Bias in Two-Response Classification

Number of
Task Measure Proportions Conclusion

Psychometric function—detection Absolute threshold 1 Bias
Psychometric function—discrimination PSE 1 Bias

JND 2 Sensitivity
Speech classification Boundary location 1 Bias

Trading relation 2 Change in bias?
Sensitivity?

False memory Difference between 2 Sensitivity
“yes” rates for two
types of lures

0

0.2

0.4
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1.0
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Stimulus number
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Figure 2.10 A psychometric function for detection.
NOTE: Stimulus 1 is Noise, and the other stimuli are increasing nonzero levels of intensity. In panel (a),
P(“yes”) is plotted, in panel (b), the z score of this value is plotted. The plot in panel (b) can also be
interpreted as portraying values of cumulative d ′.

the noise-alone stimulus was not immedi-
ately appreciated, but from an SDT perspec-
tive it is obviously necessary to distinguish
sensitivity from response bias. The observer
sets a criterion along the decision axis, re-
sponding “yes” to points above and “no”
to points below it. Traditionally, the datum
most often abstracted from a psychometric
function ( frequency-of-seeing curve, in vi-
sion) is the (absolute) threshold, the stimu-
lus value corresponding to some fixed per-
formance level such as 50% “yes.” This is
just a bias measure, as it depends on a single
proportion.

In a discrimination context, a null stimu-
lus is not used, and it is the difference thresh-
old whose value is sought.2 Historical prece-
dence (Fechner is responsible, according to
Jones, 1974) and lasting influence belong
to the method of constant stimuli: A stan-
dard stimulus (usually drawn from the middle
of the stimulus range) is presented on each
trial, and the observer labels each comparison

2Two meanings of threshold must be distinguished. Ear-
lier I presented examples of threshold theories that as-
sumed discrete representations, but here the term is used
to refer to the weakest stimulus that can be detected, or
discriminated, and has no theoretical implications.
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stimulus as “larger” or “smaller” than the stan-
dard. The presence of standards makes no
difference to SDT analysis because it gives no
information regarding which response is ap-
propriate. The 50% point is now interpreted
as the point of subjective equality (PSE), the
stimulus value that appears equal to the stan-
dard, another measure of bias. The difference
threshold itself, the just noticeable difference
(JND), is a measure of how rapidly the psy-
chometric function increases; traditionally, it
is half the difference between the 75% and
25% points. Because two proportions are in-
volved, the JND indexes sensitivity.

A useful modification to both experiments
is to change the dependent variable from a
“yes” rate to d ′. In the case of absolute thresh-
old, response rates for each stimulus are com-
pared with the false-alarm rate (that is, the
“yes” rate for S1); in the difference threshold
situation, the rate corresponding to the stan-
dard stimulus is used. The resulting plot gives
information about sensitivity and is also often
a straight line, as in Figure 2.10b. In detection,
the threshold is defined by a value of d ′, often
1.0. In discrimination, the PSE can also be de-
fined this way; the JND, which is usually of
more interest, is replaced by the slope of the
function.

The threshold estimation methods just de-
scribed are classical and are included here be-
cause they serve to illustrate one-dimensional
classification. Current techniques for analyz-
ing psychometric functions, and for finding
thresholds, are more sophisticated in two
ways: first, “adaptive” procedures are often
used so that stimulus presentations can clus-
ter in the region of interest, rather than being
spread across a range of predetermined val-
ues. Second, psychometric functions can be
fit with a curve from a known family (normal
or logistic, for example), and the parameters
of the best-fitting curve are used to summarize
the outcome. For a sampler of current meth-
ods, see Klein and Macmillan (2001).

Two-Response Classification in
Nonsensory Contexts

Two-response experiments with one-
dimensional stimulus sets are common in
more cognitive areas as well. This section
briefly considers two examples, one from
speech perception and one from recognition
memory.

Trading Relations in Speech

In a common type of speech perception exper-
iment, a set of synthetic stimuli is constructed
along a continuum between two waveforms
that correspond to different speech sounds.
For example, a stimulus waveform perceived
as /ga/ can be gradually converted into one
perceived as /ka/ by lengthening voice-onset
time (VOT), the amount of time between the
beginning of the consonant and the onset of
voicing. An apparently straightforward way
to find out what a listener hears is to present
a series of randomly chosen stimuli from this
set and to ask whether each sounds more like
/ka/ or /ga/. The result is that the proportion of
trials on which “ka” is the response increases
as VOT increases (Lisker, 1975).

Two features distinguish this experiment
from the sensory detection example given ear-
lier. First, there are no correct answers; the
point of the experiment is to find out how each
sound is perceived. Second, the psychologi-
cal interest is largely in the criterion location,
whereas the detection experiment measures
a sensory distance (if the dependent measure
is d ′). The most popular dependent measure
in speech classification studies of this type,
sometimes called the category boundary, is
the point at which each response is used on
50% of trials.

The perception of voicing is influenced
not only by VOT but also by the frequency
at which F1, the first formant (or frequency
band) begins. When Lisker (1975) redid the
experiment with a higher value of F1 onset, the



pashler-44093 book December 18, 2001 10:12

Models with Simpler Assumptions (or None at All?) 61

percentage of “ka” responses increased across
the board. Results like these are called trad-
ing relations (Repp, 1982) and reflect a kind
of perceptual interaction between cues. If the
rate of responding “yes” is increasing by the
same amount (in z-score units) for all stim-
uli on the new continuum, then the inferred
representation will be the same except for the
location of the criterion (as in the compari-
son between Figures 2.9a and 2.9c). Whether
this should be considered a criterion or sen-
sitivity effect is unclear: It is not possible to
tell whether the criterion or the distributions
has moved, because only their relative loca-
tion can be inferred from the data. A later sec-
tion introduces approaches to measuring such
interactions that are clearly sensitivity-based.

“False-Memory” Experiments

Roediger and McDermott (1995) conducted a
recognition memory experiment in which the
study items on each list were thematically re-
lated, for example, bed, night, dream, blanket.
At test, one of the lures (New items) was sleep,
the core concept to which the study items
were related. (Of course, there were many
such sets of critical lures and related study
items.) Participants tended to recognize (in-
correctly) the critical lures, such as sleep, at a
higher rate than other lures, and sometimes at
a higher rate than Old items. The experiment
is of interest because it demonstrates, in a
controlled situation, the phenomenon of false
memory.

A natural question about false memory is
whether it is a sensitivity or a response-bias
effect: Do participants really remember the
critical lures as having been presented, or is
the finding somehow due to a bias (that could,
in principle, be manipulated)? To answer this
question, M. B. Miller and Wolford (1999)
conducted a variant of the Roediger and
McDermott (1995) experiment in which par-
ticipants were presented at test with six kinds
of items: Unrelated, Related, and Critical

words, each category including some words
that were Old and some that were New. They
then measured statistics closely related to d ′

and c for each type of word and found that cri-
terion changed while sensitivity did not. Thus,
the false-memory finding was attributed to re-
sponse bias.

Considering the implications of assuming
that a single underlying dimension is judged
will help in understanding these data. In mem-
ory models, familiarity is often considered to
be the relevant decision axis, and the famil-
iarity of a word can be influenced by two
factors: how frequently the item has occurred
and the number of associated words that have
recently been presented (Wixted & Stretch,
2000). Thus, New words that are Unrelated,
Related, or Critical might lead to distributions
like those in Figure 2.9a, whereas Old words
would be shifted upwards, as in Figure 2.9c. A
single criterion is of course used at test, lead-
ing to a pattern of “yes” rates that is similar
to that observed by M. B. Miller and Wolford
(1999).

How then did M. B. Miller and Wolford
(1999) conclude that response bias was re-
sponsible? In calculating c, they found the
locations of the criterion relative to the mid-
point of two distributions (see Equation [4])
for each of the three distribution pairs. In Fig-
ure 2.9, this statistic decreases from .25 for S1

to −0.75 for S2 to −1.25 for S3. The pattern
reflects the different average locations of the
Unrelated, Related, and Critical distributions
on a common axis, not a change in response
strategy.

The methodological importance of the ex-
ample is this: Estimates of sensitivity and bias
for designs using multiple stimuli must be
made with reference to a representation. A
representation like that in Figure 2.9, which
is consistent with past work on memory for
words, leads to an analysis and conclusion
that are different from those of a represen-
tation that treats each of several pairs of
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distributions in isolation. Wixted and Stretch
(2000) provide more detailed discussion.

Experiments with More than
Two Responses

The assignment of many stimuli to just two
responses in the examples so far seems natu-
ral; all waveforms in the speech experiment,
for example, resemble either /ga/ or /ka/, not
a third utterance. However, there are at least
two reasons why an experimenter might pre-
fer a number of responses closer to the size
of stimulus set. First, as in two-stimulus ex-
periment, a graded response provides more
information—specifically, information from
which the variances of the underlying distri-
butions can be estimated. Second, the range of
stimulus values in one-dimensional classifica-
tion experiments is often large. In such cases,
sensitivity to differences between stimuli that
are close together in the set may be found,
but not for far-apart stimuli that are never
confused.

For example, Braida and Durlach (1972)
conducted a series of auditory identification
experiments. The largest range was 54 dB.
On each trial, one stimulus was presented,
and listeners tried to select the correspond-
ing response. The number of responses varied
across conditions; if it was 10, for example,
then the data filled a 10 × 10 matrix, and al-
though many cells contained frequencies of
0, adjacent stimuli were always confusable.
ROCs generated from those pairs were de-
scribed well by an equal-variance representa-
tion. Experiments of this sort permit calcula-
tion of the global sensitivity parameter, total
d ′, the sum of values for adjacent stimuli, by
repeated application of Equation (16). Braida
and Durlach estimated total d ′ for their audi-
tory intensity continuum to be about 13.

Note that this method of analyzing the data
does not require that the number of responses
M equal the number of stimuli N , only that
there be enough responses so that confusions

exist between each adjacent pair. Advantages
of the M = N case are that there are correct an-
swers, that the proportion correct can be calcu-
lated, and that it is possible to attempt to train
observers by using trial-by-trial feedback. On
the other hand, detection-theory analysis puts
no great stake in proportion correct, which in
identification, as in discrimination, is not a
true measure of accuracy.

Relation of Classification
to Discrimination

Although classification and discrimination
data both lead to estimates of sensitivity, they
need not converge on the same truth. In de-
tection theory, comparing classification and
discrimination in detection-theoretic terms is
uncomplicated: One measures d ′ in one ex-
periment of each type and examines the result
to see if sensitivity is constant.

In a few special cases, classification and
discrimination d ′ are (theoretically or empir-
ically) very nearly equivalent. Empirically,
Pynn, Braida, and Durlach (1972) compared
identification and discrimination of pure-tone
intensity on a very small range (2.25 dB)
and found close agreement. Theoretically, an
influential proposal about speech perception
experiments, the categorical perception hy-
pothesis, says, in part, that discrimination is
exactly as good as classification for some
speech continua. This hypothesis has been
presented in SDT language by Macmillan,
Kaplan, and Creelman (1977); its original
statement (Liberman, Harris, Hoffman, &
Griffith, 1957) was in threshold terms.

Almost always, though, there is a large dis-
crepancy between classification and discrimi-
nation accuracy. G. A. Miller (1956) summa-
rized experiments showing that increases in
the number of stimuli to classify led to cor-
responding increases in total sensitivity only
up to a total of about seven stimuli. When
the range of stimuli was increased beyond
that point, there were no further increases in
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classification performance, but discrimination
performance continued to improve.

Durlach and Braida (1969) offered a model
that relates classification and discrimination.
Although originally presented as a theory of
intensity perception, the model also applies to
domains as disparate as localization (Searle,
Colburn, Davis, & Braida, 1976) and speech
perception (Macmillan, Goldberg, & Braida,
1988). According to Durlach and Braida, fixed
discrimination tasks (those using only two
stimuli) measure sensory resolution, whereas
classification depends on both sensory and
context-coding, or labeling processes. Both
sensory and context-coding processes con-
tribute to the variance of the internal distri-
butions, so if �M is the distance between the
two means, B2 is the sensory variance and C2

is the context-coding variance, then

d ′
discriminate = �M/B (17)

d ′
classify = �M/(B2 + C2)1/2 (18)

Clearly, the discrepancy between fixed dis-
crimination and identification depends on the
relative magnitude of the sensory and con-
text variance components. The relative con-
text variance—the size of the context vari-
ance in units of the sensory variance—can be
estimated as follows:

C2/B2 = (
d ′

discriminate/d ′
classify

)2 − 1. (19)

Equation (19) can be applied to total d ′ val-
ues as well as d ′ for particular stimulus pairs,
and relative context variance provides a mea-
sure of the importance of context memory
for a stimulus pair or continuum. As stimu-
lus range increases, the precision of context
coding drops: Berliner and Durlach (1973)
estimated relative context variance to be 47.6
when the range was 54 dB, but only 1.62 when
it was 10 dB.

This descriptive approach to identifica-
tion leaves open the question of mechanism.
In a later version of their theory, Braida
and Durlach (1988) proposed that the mem-
ory limitation arises because observers use a

“noisy ruler” to locate stimuli with respect
to perceptual anchors near the edges of the
range. The unreliability of the measuring in-
strument accounts for the increase in context
variance with range, and the use of anchors
explains the edge effect, the common find-
ing of better performance for extreme stim-
uli. An alternative theory (Luce, Green, &
Weber, 1976) postulates an adjustable “atten-
tion band” that allows for high performance
within a narrow range (about 10–20 dB in
auditory intensity) and degraded performance
elsewhere. As the range increases, the propor-
tion that can be included in the band decreases,
and so does performance. The attention-band
model does not account directly for the edge
advantage, but the assumption of gradual
shifts in the location of the band does ex-
plain the presence of sequential effects, which
are substantial in identification data. One way
in which such dependencies might arise is
through criterion shifts—it is plausible that
more variance is associated with the many
criteria in classification than with the single
criterion in discrimination. Criterion variance
adds to sensory variance and provides another
possible mechanism for context memory ef-
fects. Treisman and Williams (1984) have pro-
posed a criterion-setting theory that accounts
directly for sequential effects and indirectly
for other aspects of identification findings.
The shape of a fully-integrated account of
identification experiments is dimly visible in
these related proposals but is not yet com-
pletely defined.

OTHER DISCRIMINATION DESIGNS

The one-interval experiment, with or without
ratings, is a natural way to measure discrimi-
nation in detection, recognition memory, and
some other applications. In other situations,
experimenters have preferred paradigms in
which each trial contains two or more stim-
uli separated in time or location. The three
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paradigms discussed here, two alternative
forced choice (2AFC) same-different, and
multiple-look, have played different roles in
the development of SDT. The ability to pre-
dict 2AFC performance from yes-no was one
of detection theory’s first accomplishments,
whereas a thorough understanding of same-
different arose later. The multiple-look exper-
iment provided an early test of SDT but has
more recently been important in describing
the performance of groups of observers.

The common approach is to interpret each
interval’s output as a separate dimension in
a multidimensional space. The multidimen-
sional analysis generalizes conveniently to the
problems treated in the final sections of this
chapter.

Two-Alternative Forced-Choice

In 2AFC a sample of both S and N is pre-
sented on each trial and the observer must
choose the interval that contains the signal.
The two possible sequences are <S, N> and
<N , S>, the corresponding correct responses
“1” and “2.” In auditory work, the intervals
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respond “2”
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Figure 2.11 Representations for the 2AFC task.
NOTE: Panel (a): In three dimensions. On the x-axis are values of strength for interval 1, and on the
y-axis are values for interval 2. The heights of the bivariate distributions give the likelihoods of <x , y>
points for the two possible stimulus sequences. Panel (b): In two dimensions. The decision axes are still
x and y, but the distributions are represented by the means and circles at a fixed distance from them.
The criterion line separates the space into regions for which the response is “1” (below the line) and “2”
(above it). The distance between the means is

√
2d ′.

are almost always presented sequentially, but
in other senses and especially in cognitive ap-
plications, simultaneous presentation is more
common.

Representation and Analysis

Figure 2.11 displays a representation of the
2AFC problem in which each of the axes
measures the effect of one of the intervals.
On <S, N> trials the mean value is (d ′, 0),
whereas on <N , S> trials it is (0, d ′), and the
variability in both intervals is assumed equal.
Figure 2.11a shows bivariate normal distribu-
tions whose height at each point is the like-
lihood of the corresponding pair of values;
in Figure 2.11b, the same distributions are
schematically represented by circles 1 stan-
dard deviation from the mean.

The best strategy for the observer is to
base a decision on the difference between
the effects of the two intervals. The decision
axis is the diagonal line connecting the means
of the two distributions, and it follows from
the Pythagorean theorem that the distance
between these means is

√
2 d ′. As with
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yes-no, this sensitivity statistic can be esti-
mated as the difference between the hit rate
H = P(“1” | <S, N>) and the false-alarm rate
F = P(“1” | <N , S>), so

z(H) − z(F) =
√

2 d ′. (20)

Thus, having two samples instead of one leads
to a

√
2 improvement in performance; this

is an example of the general
√

n effect that
is well known in statistics.

Response bias is, empirically, less likely
to be extreme in 2AFC than in yes-no, but
can occur. Performance as measured by p(c)
is greatest when there is no bias, and unbi-
ased p(c) is therefore often denoted p(c)max.
In Green’s (1964) area theorem, already men-
tioned, it is p(c)max that equals the area under
the yes-no ROC.

Effects of Interstimulus Interval and
Stimulus Range in 2AFC

Having two intervals allows for the manipu-
lation of two basic experimental parameters
that cannot be varied in yes-no discrimi-
nation: the time between the two intervals
and the stimulus range. An increase in either
of these variables leads to a decline in perfor-
mance.

In 2AFC experiments with stimuli differ-
ing in intensity, the second interval is com-
monly called “larger” more often than the first,
an effect called time order error. The sequence
<Small, Large> is, accordingly, correctly re-
ported more often than <Large, Small>, a
response-bias effect that increases with inter-
stimulus interval (ISI). These data have been
interpreted to show decay of a central repre-
sentation of the stimulus over time (Kohler,
1923). This explanation suggests that there
should also be an overall sensitivity drop,
and there is: Berliner and Durlach (1973),
Kinchla and Smyzer (1967, in a same-different
task), and Tanner (1961) systematically varied
ISI, and all found sensitivity to be a decreasing
function of time. In Tanner’s auditory exper-

iment, a very short ISI (less than 0.8 s) also
led to decreased discrimination, a result that
Tanner interpreted as evidence for short-term
auditory interference.

Berliner and Durlach (1973) noted that the
one-interval task has, in effect, a very long
ISI, so that d ′ values obtained from that task
should be lower than those from 2AFC. This
is in fact a typical result for discrimination
data (Jesteadt & Bilger, 1974; Creelman &
Macmillan, 1979), though not for detection
(for summaries, see Green and Swets, 1966,
chap. 4; Luce, 1963a).

The 2AFC design also permits manipu-
lation of the range of stimulus values, with
stimulus pairs from different parts of a wide
range being presented on successive trials. Al-
though this roving discrimination task is more
difficult than the corresponding fixed discrim-
ination experiment, the decision strategy of
subtracting the effects of the two intervals is
optimal for both.

Roving and fixed 2AFC discrimination
have been compared for auditory amplitude
and frequency by Jesteadt and Bilger (1974).
The fixed task used one pair of tones, differ-
ing in (say) amplitude; the roving design used
a constant amplitude difference, but the two
stimuli ranged together over many amplitudes
from trial to trial. A 40-dB range of ampli-
tudes yielded a 27% drop in intensity discrim-
ination d ′, and a 465-Hz range in frequency
led to a 37% drop in frequency discrimina-
tion. Berliner and Durlach (1973) found that
the decline in intensity discrimination perfor-
mance depended systematically on the inten-
sity range, reaching 58% for the largest range
(60 dB).

The range and ISI effects have both been
interpreted as reflecting a limitation of per-
ceptual memory and need to be incorpo-
rated into the model for 2AFC: After all, the
same

√
2 relation between 2AFC and yes-

no clearly cannot hold for all ISIs, or for
both roving and fixed discrimination. Durlach
and Braida’s (1969) trace-context theory
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addresses this problem and unifies the percep-
tual phenomena discussed so far. As in their
model for one-dimensional classification, dis-
cussed earlier, both sensory variance (B2) and
range-dependent context variance (C2) limit
performance in roving 2AFC. In identifica-
tion, context coding allows the observer to lo-
cate the stimulus within the stimulus set, and
an observer who uses context coding for each
of the two stimuli on a 2AFC trial is said to be
in context mode. Alternatively, the trace mode
allows direct comparison of the two intervals.
Context coding is best when the range is small,
and trace coding is best when the ISI is short.
Durlach and Braida suggested that these lim-
itations combine optimally, so that whichever
memory process has smaller variance dom-
inates. Trace-context theory has been tested
extensively for sets of tones differing in in-
tensity, and it describes many regularities of
the data (Berliner & Durlach, 1973).

The Same-Different Design

In 2AFC the observer chooses the interval that
has a particular characteristic, and for some
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Figure 2.12 Decision spaces for the same-different task.
NOTE: Either S or N can occur in either interval, leading to four bivariate distributions, displayed as in the
lower panel of Figure 2.11. In panel (a), the effects of the two observations are combined independently;
in (b), the effects of the two intervals are subtracted.

kinds of stimuli it can be difficult to explain
what that characteristic is. The same-different
design has the appeal of simplicity from the
point of view of the experimental participant:
On each trial the decision is merely whether
the two stimuli are the same or different. Any
one of the four pairs constructed from {S, N}
may be presented: <S, S> and <N , N> are to
be called “same,” <S, N> and <N , S> “dif-
ferent.” Figure 2.12 shows a representation for
this task, following the same approach as with
2AFC. There are four distributions arranged
in the space, and d ′ is the distance between
the means of any two distributions that differ
on only one axis.

Two decision strategies based on this
representation have been developed, an
independent-observation and a differencing
rule. The independent-observation rule is op-
timal, but differencing is the best available in
some experimental designs.

Independent-Observation Decision Rule

The optimal decision rule (Noreen, 1981) is
to decide separately whether each interval is



pashler-44093 book December 18, 2001 10:12

Other Discrimination Designs 67

S or N , then report whether these subdeci-
sions are the same or different. In the decision
space, the observer establishes a pair of cri-
terion lines that divides the space into four
quadrants. To start, consider the symmetric
case, in which these lines bisect the distribu-
tion means, as in Figure 2.12a. When <S, N>
is presented, a “different” response (a hit) oc-
curs if the observation falls either to the right
of the vertical criterion line and below the hor-
izontal one, or to the left and above. The like-
lihood of this happening (the hit rate) can be
expressed using the normal distribution func-
tion �(z), which gives the area up to the point
z. The area to the right of the vertical bound-
ary is �(d ′/2), and the proportion below the
horizontal criterion is the same value, so the
probability of falling in the lower right corner
is the product of these, [�(d ′/2)]2. Similarly,
the probability of being in the upper left corner
is [�(−d ′/2)]2. The sum of these is the hit rate
for <S, N> trials; because the decision rule is
symmetric, this is also the proportion correct
for all other trials, and for the task as a whole.
Therefore,

p(c) = [�(d ′/2)]2 + [�(−d ′/2)]2. (21)

The same-different task is more difficult
than the corresponding yes-no task. An unbi-
ased participant in yes-no obtains a proportion
correct of �(d ′/2), so the relation between the
two paradigms is

p(c)SDindependent-observation

= p(c)2
YN + [1 − p(c)YN]2.

(22)

If d ′ = 1, p(c) will be .69 in yes-no but only
.57 in same-different; for d ′ = 2, the values
are .84 and .73.

Equation (22) contains no explicit refer-
ence to d ′, and the relation does not in fact
depend on any assumption about the shape of
the distributions. The requirement is that the
distributions display no correlation between

the two intervals, and that the mean on one
axis does not depend on the stimulus value
on the other axis (e.g., that the <S, N> and
<N , N> distributions have the same projec-
tions on the interval-2 axis). These assump-
tions seem quite plausible when the two axes
are intervals in an experiment.

ROCs for the independent-observation
model can be constructed by assuming that
the observer divides the space into regions in
which the likelihood ratio of same versus dif-
ferent is greater than or less than some fixed
value (this value is 1 in the symmetric case).
Systematically varying this critical value of
likelihood ratio and calculating H and F for
each value traces out the same-different ROC.
Such curves are approximately straight lines,
with slope 1.0 on normal coordinates.

Differencing Rule

An alternative to the independent-observation
rule is a differencing strategy like that used
in 2AFC: The two observations on a trial
are subtracted, and the result is compared to
a criterion. This strategy, first described by
Sorkin (1962), is illustrated in Figure 2.12b.
The criterion lines for a constant difference
resemble the line for 2AFC, but the decision
space is more complicated. The differencing
rule is greatly at odds with the independent-
observation rule in certain regions of the
space.

Because the differencing rule depends on
a single variable (the difference between two
observations) the decision space can be rep-
resented in one dimension. When both trials
contain the same stimulus, either <S, S> or
<N , N>, the mean difference is zero. There
are, however, two types of different pairs:
those that, when subtracted, yield a mean dif-
ference of d ′, and those yielding a mean of
−d ′. The decision problem in one dimension
thus involves three difference distributions on
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one axis. The hit rate and false-alarm rate re-
sult from combining areas under these distri-
butions:

H = P(“different” | Different)

= �[(−k + d ′)/
√

2] + �[(−k − d ′)/
√

2]

F = P(“different” | Same) = 2�(−k/
√

2).

(23)

If k is varied, Equations (23) can be used to
trace out an ROC. Unlike the ROCs for the
independent-observation rule, these have less
than unit slope, so two points with equal val-
ues of z(H) − z(F) do not necessarily have
the same d ′.

Although not optimal, the differencing
model may be the only one practical in rov-
ing designs: Calculation of likelihood ratios
for large stimulus sets requires more knowl-
edge of the situation than observers typically
have, whereas subtraction has minimal re-
quirements. Roving and fixed discrimination
thus differ in the appropriate decision strategy,
as well as the memory limitations discussed
earlier. The only paradigm in which the ap-
propriate decision rule is the same for both,
apparently, is 2AFC.

Because it is nonoptimal, the differencing
strategy leads to performance levels that are
poorer than those with independent observa-
tions. The decline in p(c) is small at low levels

� � �cos(�)

�

(a) (b)

Figure 2.13 Two equivalent forms of the representation for the same-different paradigm in which there
is a correlation between the two intervals.
NOTE: In panel (a) the bivariate distributions themselves include the correlation parameter ρ, whereas in
(b) the distributions are uncorrelated but the two axes intersect at an angle θ = cos−1(−ρ).

(.02 when d ′ = 1) but equals .08 for d ′ = 3.

Turning the comparison around, a value of
p(c) = .90 implies a d ′ of 4.14 with the dif-
ferencing model, 3.24 for independent obser-
vations, and just 2.56 in yes-no. Perversely,
the inherent difficulty of the same-different
task recommends its use when d ′ is high: An
experimenter who wishes to avoid ceiling ef-
fects of, say, p(c) > .95, can estimate a d ′ of
5.10 with same-different, assuming the differ-
encing model, but is limited (for unbiased ob-
servers) to d ′ = 3.29 in yes-no and d ′ = 2.33
in 2AFC.

Relation between the Two Strategies

The independent-observation and differenc-
ing strategies are special cases of a general
situation (Dai, Versfeld, & Green, 1996). Con-
sider what would happen if the correlation ρ

between the intervals (which is zero in the di-
agrams so far) were substantial, and the same
for all four stimulus sequences. The left panel
of Figure 2.13 shows ellipses with correla-
tion ρ > 0. Because the correlations (and vari-
ances) are the same in all distributions, this
representation is equivalent to one in which
the distributions are uncorrelated but the axes
intersect at an angle of cos−1(−ρ) (Ashby &
Townsend, 1986). The right panel shows that
when ρ is not 0 (and the angle between the
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axes is not 90◦), spacing between the distri-
butions is wider along the negative diagonal
than along the positive one, an effect that re-
sults from the smaller standard deviation in
that direction. The optimal rule for this case
is not straight lines intersecting at a right an-
gle; in fact, the larger ρ is, the closer the rule is
to two parallel lines perpendicular to the neg-
ative diagonal, as in the differencing model.

Some Experimental Results

Irwin and Francis (1995a) explored the per-
ception of line drawings of objects that were
either natural (e.g., alligator, leaf) or manu-

Figure 2.14 ROC curves for same-different experiments.
NOTE: In all panels, the solid lines are for the independent-observation model, and the dashed lines are
for the differencing model. The first row shows data from an experiment in which pictures in natural and
manufactured categories were discriminated, and the three panels are for presentation to the left visual
field, right visual field, and both visual fields. The independent-observation model provides a better fit.
The second row shows data from an experiment in which colored patches were discriminated, and the
three panels are for three observers. The differencing model provides a better fit.
SOURCE: Irwin and Francis (1995a, Figures 1 and 3). Reprinted with permission.

factured (e.g., various tools). Pairs of such ob-
jects were briefly presented, and the observers
had to say whether they belonged to the same
or different categories. Thus, the correct re-
sponse for the pair (hammer, leaf) was “dif-
ferent,” whereas it was “same” for the pair
(leaf, alligator).

The observers in this experiment pro-
duced ROCs supporting the independent-
observation model, as shown in Figure 2.14
(first row). Irwin and Francis (1995a, 1995b;
Francis & Irwin, 1995) have shown, however,
that participants may adopt either strategy
spontaneously, depending on the stimulus set.

[Image not available in this electronic edition.]
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The independent-observation model applied
when observers compared letters varying in
orientation (correct vs. reversed); whereas the
differencing model was supported by data us-
ing color patches that could vary in any direc-
tion in color space (a type of roving design),
as can be seen in Figure 2.14 (second row).

Multiple-Look Experiments

In the multiple-look experiment, either S or N
is presented in each of n intervals, so the ob-
server has n pieces of information to make a
decision. When n = 2, the representation is as
shown in Figure 2.15. It is immediately clear
that having two chances to detect the stimulus
produces a

√
2 increase in the mean separation

of the distributions. The situation is parallel to
2AFC, as is evident when the figure is com-
pared with Figure 2.11, and predicted perfor-
mance is exactly the same as for that paradigm
(Equation [20]). The design can easily be ex-
tended to larger values of n, the predicted im-
provement being

√
n. Early studies (Swets,

Shipley, McKee, & Green, 1959) showed that
the rate of improvement was slightly less, pre-
sumably because of inefficiency in integrating
the observations.

This same relation can be derived in a
different way, with reference to a single de-
cision axis. Assume that the decision vari-
able is the sum of observations (on a sin-

<S, S>

<N, N>

respond “no”

respond “yes”

0 d�

d�

In
te

rv
al

 2

Interval 1

0

Figure 2.15 Decision space for the two-interval
multiple-look experiment.

gle dimension). The n stimuli will produce
a mean difference of nd ′ and a variance of
n (because the variance for one observa-
tion is 1), so the effective normalized mean
difference is nd ′/

√
n = √

nd ′. This one-
dimensional perspective has the advantage
that it allows one to go easily beyond two
samples, whereas visualizing six-dimensional
spaces is hard.

Sorkin and colleagues (Sorkin & Dai, 1994;
Sorkin, Hays, & West, 2001) have studied
analogous designs in which different indi-
viduals, rather than different observations by
the same individual, contribute to a single
decision. Each member of a team of ob-
servers makes yes-no decisions in a visual
discrimination task, and their votes are com-
bined into a group response using rules rang-
ing from simple majority to unanimity. The
group performs better than the individuals,
and better for a simple majority rule than for
stricter rules. Group accuracy is poorer than
would be predicted by analogy to multiple-
look experiments, but this is not surprising
because subdecisions, rather than d ′ values,
are being combined: In fact, group data are
well-predicted from the individual sensitivi-
ties when this is taken into account.

Other Tasks

Other tasks have been subjected to detection-
theory analysis: (a) matching-to-sample
(ABX), in which the first two intervals or each
trial contain S and N , in either order, and the
observer must decide which of them matches
the stimulus in the third interval (Pierce &
Gilbert, 1958; Macmillan et al., 1977); (b)
mAFC, an extension of 2AFC in which one
m interval contains S, the others N (to be
discussed later); and (c) oddity, in which all
the possibilities in mAFC are included, as
well as sequences in which one interval con-
tains N , the others S (Versfeld, Dai, & Green,
1996). By considering only cases of unbiased
responding, it is possible to compare p(c)
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Figure 2.16 Proportion correct as a function of d ′ for several discrimination paradigms (unbiased
responding).
NOTE: (a) Fixed designs, assuming independent-observation models for all paradigms except oddity,
which has only a differencing model. (b) Roving designs, assuming differencing models for all paradigms.
SOURCE: Macmillan and Creelman (1991).

for these paradigms, as a function of d ′, as
shown in Figure 2.16. Most designs offer both
an independent-observation and a differenc-
ing strategy, and the two panels correspond to
these two cases.

The figure permits several interesting con-
clusions. There are large differences in per-
formance across paradigms, and the magni-
tudes (and in some cases even the direction) of
the discrepancies depend on d ′. Clearly, the
shape of the psychometric function depends
on the paradigm if p(c) is the dependent vari-
able, supporting the recommendation made
in discussing psychometric functions to plot
such functions in terms of d ′ instead.

MULTIDIMENSIONAL
CLASSIFICATION: INDEPENDENCE
AND ATTENTION

The multidimensional representations with
which same-different and other discrimina-

tion designs are analyzed can be general-
ized to handle more substantive issues. Mul-
tidimensional representations provide good
descriptions of many cognitive and percep-
tual problems. For stimulus sets whose mem-
bers are completely discriminable, multidi-
mensional scaling has proved an invaluable
tool (see Chap. 3). An extended version of
detection theory is called for when discrim-
inabilities are imperfect.

The representation of multiple stimuli can
be estimated from the pattern of discriminabil-
ities in a number of ways. The simplest, con-
ceptually, is to find d ′ or another distance mea-
sure for each pair and then to infer a geomet-
rical pattern of the means of the distributions
in euclidean space. One interesting result of
such calculations is that distinct physical di-
mensions may interact, that is, may not be in-
dependent in the perceptual space. The inde-
pendence question was the first, historically,
to which multidimensional detection theory
models were applied (by Tanner, in 1956);
this section considers both Tanner’s findings
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and more recent applications of the same
strategy.

Classification experiments (N stimuli) are
commonly used, sometimes in combination
with discrimination (N = 2) tests, to infer
multidimensional representations. Because
classification experiments require grouping
multiple stimuli together (i.e., assigning them
the same response), they are the natural tools
for the study of attention. If several distinct
stimuli may occur that require the same re-
sponse, it is natural to refer to the design as
one of uncertainty about which of these stim-
uli will occur. If the response partition is such
that some aspects of the stimulus set must be
appreciated and other ignored, attention is se-
lective; if all aspects are relevant, attention
must be divided.

Attention is often studied with response
time and other measures not strictly within the
bounds of detection theory; see Pashler (1998)
for an integrative survey. The SDT approach
is particularly valuable in providing baselines
for attention “deficits.” The critical distinc-
tion is between extrinsic and intrinsic results
(Graham, 1989): Extrinsic uncertainty is in-
herent in the situation, whereas intrinsic
uncertainty is internal to the observer. It is
essential to find the extrinsic difficulty of a
classification design so that poor performance
that is in fact inevitable is not blamed on the
experimental participant’s inefficiency.

Introduction to Multidimensional
Decision Spaces

In a 1956 article, Tanner measured the dis-
criminability of each pair in a set of three stim-
uli: Noise alone and tones of two different fre-
quencies (S1 and S2). From the three possible
two-stimulus discrimination experiments, he
could determine whether the S1 and S2 dimen-
sions were orthogonal. Nonorthogonality im-
plies (for normal distributions) a correlation
between the dimensions, as in Figure 2.17;
if the dimensions intersect at an angle θ , the
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Figure 2.17 Decision space showing distribu-
tions due to Noise and two Signals that differ from
it, each along a different dimension.
NOTE: The angle between the axes measures the
dependence between the two dimensions.

correlation equals cos(θ). The results of the
three experiments can be used to estimate θ

from the geometry of Figure 2.17:

(d ′
1,2)

2 = d ′
1

2 + d ′
2

2 − 2d ′
1d ′

2 cos(θ) (24)

Equation (24) covers all possible rela-
tions between pairs of imperfectly detectable
stimuli. In one important special case, the
alternative stimuli produce independent ef-
fects, which are said to require independent
sensory channels, a metaphor introduced by
Broadbent (1958). In that case the axes are
orthogonal, so that θ = 90◦, cos(θ) = 0, and

(d ′
1,2)

2 = d ′
1

2 + d ′
2

2
. (25)

This same equation will be useful in describ-
ing capacity models of attention later in this
chapter. It also characterizes the euclidean
metric used in similarity scaling.

Values of θ less than 90◦ arise from over-
lap between the channels’ regions of sen-
sitivity: A Signal that activates one maxi-
mally also activates the other to some ex-
tent. Angles of θ greater than 90◦ might arise
from inhibition between the separate percep-
tual or sensory channels (Graham, Kramer, &
Haber, 1985; Klein, 1985). When θ = 0◦, the
representation is one-dimensional, and pair-
wise d ′ values are subtracted: cos(θ) = 1.0, so
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d ′
1,2 = d ′

1 − d ′
2. When θ = 180◦, another one-

dimensional case, the distance between the
two Signals in the recognition task is the sum
of the individual detectability values. This is
the well-known city-block metric, first de-
scribed by Shepard (1964) for the scaling of
similarity judgments.

In his experiments, Tanner found that di-
mensional orthogonality held when tones
were sufficiently different in frequency, but
that θ was less than 90◦ when they were sim-
ilar. The result is consistent with the critical-
band hypothesis, according to which auditory
inputs are divided into channels according to
frequency. Tanner’s approach offers a conve-
nient summary of the data in geometric terms,
but it has a shortcoming: The three experi-
ments result in three values of d ′. These data
are just enough to determine the internal an-
gles of the triangle in Figure 2.17, but they do
not provide any internal test of validity (Ashby
& Townsend, 1986). The addition of even one
more stimulus can give more confidence in the
representations inferred from data like these.

Concepts of Independence

The idea of perceptual independence is a cru-
cial one in many psychological applications,
but there are many varieties of this construct.
Ashby and Townsend (1986) distinguished
these in the context of a generalized version
of detection theory they called generalized
recognition theory (GRT). The three most im-
portant are perceptual independence, percep-
tual separability, and decisional separability.

Perceptual independence is a characteristic
of a single distribution in which the compo-
nent dimensions are statistically independent.
For normal distributions, this is equivalent to
the lack of correlation between them, as in the
left-hand distribution in Figure 2.18. The op-
posite, perceptual dependence, is illustrated
by the right-hand distribution, for which in-
creasing values of X tend to go with increasing
values of Y . The figure displays the marginal

Perceptual
independence

Perceptual
dependence

Marginal distributions

Figure 2.18 Perceptual independence and de-
pendence in bivariate distributions.
NOTE: Perceptually independent distributions can
be obtained by multiplying marginal distributions
together; perceptually dependent distributions
cannot.

as well as the joint distributions, and one way
to see that the elliptical distribution is not per-
ceptually independent is to compare it with
the circular (and therefore perceptually inde-
pendent) distribution to its left. This circular
distribution is the product of the marginals,
and therefore the elliptical one is not.

Perceptual separability, the characteristic
in which Tanner (1956) was interested, is de-
fined by a rectangular arrangement of distri-
bution means, as in Figure 2.19a: A change
on one dimension has no effect on the value
of the other. In perceptually integral cases
(Figure 2.19b), the two dimensions are per-
ceptually correlated, so a change on one
is at least partly confusable with a change
on the other. Such representations display
mean-shift integrality (or just mean integral-
ity; Kingston & Macmillan, 1995; Maddox,
1992) because the means of the distributions
are shifted compared to the perceptually sep-
arable case. In Figure 2.19b, lines connect-
ing the means are drawn, and the angle θ is
a measure of integrality. The presence of a
fourth stimulus—rather than the three used by
Tanner—allows the experimenter to test the fit
of the representation.
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(a) Perceptually separable

D
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C

Decisionally
separable

Decisionally
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(b) Mean integral

�

D
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C

Figure 2.19 Perceptual separability and mean-integrality.
NOTE: (a) In perceptually separable sets, the marginal distribution for one value of X is the same for all
values of Y , and vice versa. (b) In mean-integral sets, the means are shifted so that this is not true. The
two decision bounds in (a) illustrate decisional separability and nonseparability.

The third important variety of indepen-
dence concerns the decision rule rather than
the distributions. Figure 2.19a shows two
ways in which an observer might divide the
space for a classification task in which stimuli
A and C are to be assigned to one response, B
and D to the other. The solid line describes a
decisionally separable rule in which the deci-
sion depends only on X , whereas the dashed
line indicates a rule in which both variables
contribute to a decision.

Extrinsic Attention: Classification of
Multidimensional Stimuli

Performance is typically poorer in classifica-
tion designs than in a simple two-stimulus dis-
crimination experiment, and it is important to
determine the locus of this effect. This sec-
tion describes several experiments that can be
used to distinguish extrinsic (ideal observer)
explanations from intrinsic (limited attention)
ones.

Detection under Conditions of Uncertainty

In an uncertain detection experiment, each
trial may or may not contain a signal; if
present, the signal may be one of several pos-
sibilities. The observer reports only whether
a signal is present, not its identity. In many
applications, it is reasonable to suppose that

the signals are carried by independent chan-
nels: They may arise in vision from far-apart
spatial regions or different spatial frequencies
(Graham & Nachmias, 1971), or in audition
from frequencies falling into different critical
bands (Creelman, 1960; Green, 1961).

The decision space for an uncertain detec-
tion experiment with two possible signals is
shown in Figure 2.20a. Presentation of the null
signal N leads to a bivariate distribution cen-
tered at (0, 0); the S1 distribution produces
an increase on dimension 1 and the S2 dis-
tribution produces an increase on dimension
2. The uncertainty task requires observers to
establish a decision boundary in the space of
Figure 2.20a that accurately assigns stimuli S1

and S2 to one response and N to the other. The
optimal decision boundaries follow lines of
constant likelihood ratio, and varying the criti-
cal value of this statistic allows the calculation
of ROC curves for the uncertain detection ex-
periment. Nolte and Jaarsma (1967) showed
that these curves have two interesting charac-
teristics, as shown in Figure 2.20b. First, per-
formance levels are lower under uncertainty
and are increasingly poor as the number of
possible signals increases; this is true even
though the various signals are carried by in-
dependent channels. Second, the slope of the
ROC decreases with the number of channels.
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Figure 2.20 Optimal model for uncertain detection.
NOTE: (a) Decision space showing likelihood-ratio criterion curves for the two-signal case. The noise
distribution is centered at (0, 0), the signal distributions at (d ′, 0) and (0, d ′). (b) ROCs for uncertain
detection of M orthogonal signals, on z coordinates. Values of d ′ are given along the minor diagonal.
SOURCE: (a) Adapted from Figure 4 of Green and Birdsall (1978), by permission of the publisher.
Copyright 1978 by the American Psychological Association. (b) Adapted from Nolte and Jaarsma (1967),
by permission of the Acoustical Society of America.

Consider, as an example, an experiment
by Bonnel and Miller (1994), who asked ob-
servers to detect a change in background that,
on different trials, was unpredictably an in-
crement in either the luminance of a spot or
the intensity of a tone. The research ques-
tion was whether uncertainty would lower
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Figure 2.21 Decision spaces for uncertain detection, in which the observer must say whether either of
two signals was presented.
NOTE: (a) Channel integration rule. (b) Independent-observation rule.

performance compared to control conditions
in which the modality to be attended to
was known in advance. Bonnel and Miller
assumed that there was no interaction be-
tween their visual and auditory stimuli, and
that the representation was thus perceptually
separable, as illustrated in Figure 2.21. The

[Image not available in this electronic edition.]
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locations of the distribution means for visual
(S1) and auditory (S2) distributions are the
d ′ values found in the control conditions in
which each increment was discriminated from
no change (N ).

A simple nonoptimal rule is available in
this experiment. If the observer bases a de-
cision on total subjective intensity, the effec-
tive decision axis is the line y = x . A possible
decision boundary consistent with this rule
is shown in Figure 2.21a. When the S1 and
S2 distributions are projected onto the deci-
sion axis, the means are closer together than
along the x-axis or y-axis, and the model pre-
dicts a drop in accuracy due to uncertainty.
This summation rule is natural and is the
best available strategy that uses a straight-line
decision boundary; it resembles the optimal
strategy for detecting compound “multiple
looks” (Figure 2.15). It is clear, however, that
Bonnel and Miller’s (1994) observers did not
use this rule, because their performance was
better than the rule predicts.

Bonnel and Miller’s (1994) data are bet-
ter described assuming a different rule:
Compare the observation to criteria on each
dimension independently, and say “yes”
if either criterion is exceeded. This “mini-
mum” rule leads to the two-segment rectilin-
ear decision boundary shown in Figure 2.21b
and predicts a smaller deficit due to uncer-
tainty than does the summation rule. It is al-
most identical to the optimal boundary, and for
more than two dimensions the discrepancy be-
tween the minimum and optimal rules is even
smaller.

Shaw (1982) explored an interesting ex-
tension of uncertain bisensory detection. In
her task, an auditory signal, a visual one, or
both together could occur, and the observer
still had only to respond “yes” to these stim-
uli and “no” to the null stimulus. The pres-
ence of the compound stimulus allowed her to
derive nonparametric constraints on the data
for both the summation and the independent-

observation rule, and the data supported inde-
pendent decisions.

Selective and Divided Attention

It is useful to distinguish between selective
attention, in which the observer’s goal is to
attend to one dimension and ignore others,
and divided attention, in which attention to
both dimensions is necessary. The uncertain-
detection task can be viewed either way, de-
pending on the model assumed: The summa-
tion model treats attention as selective, in that
the observer must attend to subjective inten-
sity and ignore characteristics, such as modal-
ity, that distinguish stimuli S1 and S2. The
minimum and optimal models, however, ap-
pear to be strategies for dividing attention.

Selective and divided attention are easier to
distinguish operationally with four-stimulus
sets. There are three ways in which four ele-
ments can be partitioned into two equal parts,
two of these being examples of selective atten-
tion and one of divided. These are considered
here in turn.

Figure 2.22a displays a perceptually sepa-
rable representation. In one selective-attention
task, observers are instructed to respond
strictly on the basis of the x variable, assigning
one response to A and C , the other to B and
D. A decisionally separable boundary—the
vertical line in the figure—is optimal. Perfor-
mance is just as good as if only the two dis-
tributions A and B were being discriminated,
so the model predicts that for separable di-
mensions there is no performance deficit due
to filtering, as the selective task is sometimes
called. An analogous task for selective atten-
tion to the vertical dimension is analyzed in
the same way.

A mean-integral arrangement requires a
different boundary. Figure 2.22b shows the
optimal curve, for which the likelihood of ei-
ther A or C is the same as the likelihood of
either B or D, that is, for which the likelihood
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Figure 2.22 Decision spaces, with optimal decision bounds, for a selective attention task in which A
and C are assigned to one response and B and D to another.
NOTE: (a) Perceptually separable stimulus set. (b) Mean-integral set.

ratio is 1. The attention question is how per-
formance in the task sketched in Figure 2.22b
compares to performance with only stimuli A
and B. Performance is lower than for the base-
line task, and by an amount that increases as θ

(defined as in Figure 2.19b) nears 0◦ or 180◦.
The predicted (extrinsic) drop in proportion
correct when d ′ = 2 can be as large as .11.

To force attention to both dimensions, the
observer is required to assign stimuli A and D
to one response, B and C to the other. An op-
timal strategy for doing this in a perceptually
separable representation resembles that for
the same-different task shown in Figure 2.12a:
The observer divides the decision space into
four quadrants and gives one response for the
upper right and lower left regions, the other for
upper left and lower right. The problem is a
generalization of the independent-observation
model for the same-different paradigm dis-
cussed earlier. The proportion correct is the
same for all four stimuli, so one needs to con-
sider only one of them, say stimulus A. De-
noting the discriminability of A and B by d ′

x

and that of A and C by d ′
y , the observer makes

a correct response to this stimulus if the obser-
vation falls in either the upper-left or lower-
right quadrant, and the total p(c) is the sum
of these components:

p(c) = �(d ′
x/2)�(d ′

y/2)]

+ �(−d ′
x/2)�(−d ′

y/2)]. (26)

It was shown in considering the same-different
task that this is a low level of performance
compared to two-stimulus discrimination. If
d ′ = 2 on both dimensions, so that baseline
p(c) = 0.84, these terms are (0.84)2 = 0.706
and (0.16)2 = 0.026, for a sum of 0.732. For
d ′ = 1, the decline is from 0.69 to 0.572.
Clearly, the divided attention task is, extrinsi-
cally, quite difficult.

This section does not discuss the mean-
integral case in detail. The optimal decision
boundary is constructed by combining two
curves like the one in Figure 2.22b, and the
interesting result is that performance is rela-
tively unaffected by θ over its entire range.

Kingston and Macmillan (1995) have mea-
sured baseline discrimination, selective atten-
tion, and divided attention for vowel sounds
varying in two dimensions, vowel height and
nasalization. They used the baseline d ′ val-
ues to construct mean-integral representations
like those in Figure 2.22b and predicted opti-
mal selective and divided performance. Selec-
tive and divided attention were always lower
than baseline, but the extrinsic model pre-
dicted most of the drop (e.g., for vowels
in consonantal context, the model accounted
for 75% of the decline in selective attention
and 66% of the decline in divided attention).
Kingston and Macmillan concluded that lis-
teners suffered little loss due to allocating at-
tention to the two dimensions; rather, these
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dimensions were to a large degree integrated
into a single perceptual property.

The Garner Paradigm

Many stimulus sets can be constructed by
varying two or more dimensions: height and
width to make rectangles, the first and second
formants to make vowels, contrast and spatial
frequency to make gratings, and so on. Such
sets have been studied extensively by Garner
(1974) and his colleagues, with the intent
of distinguishing “integral” pairs of dimen-
sions (which interact) from “separable” ones
(which do not), and it is from this line of re-
search that GRT takes its terminology. Garner
proposed a series of classification tests to dis-
tinguish these possibilities operationally, and
his terms, applied mostly in speeded tasks
with completely discriminable stimuli, do not
exactly map onto the GRT concepts.

Garner (1974) argued that determining
whether two dimensions interact should not
rely on a single test, but on converging oper-
ations. Separability is defined by no filtering
loss (i.e., selective attention equal to baseline
performance) and no redundancy gain (e.g.,
ability to distinguish A and D being the same
as the ability to distinguish A and B in Fig-
ure 2.22). Integrality is the opposite pattern,
both a filtering loss and a redundancy gain.
Divided attention is not always included and
is not considered diagnostic in distinguishing
integrality and separability.

Does the perceptual-space model agree
with Garner’s (1974) definitions? Both ap-
proaches agree that integrality is associated
with filtering loss and that separability is as-
sociated with no loss. As for redundancy gain,
the parallelogram model predicts this effect
for all arrangements if optimal decision rules
are used, but can predict no gain in the sep-
arable case if decisional separability is as-
sumed. In many experiments using the Garner
paradigm, participants are instructed to attend
to one dimension even in the redundant case,

so it is perhaps not surprising that redundancy
gains are not found.

A multidimensional detection-theory anal-
ysis provides a theoretical convergence of op-
erations that allows for quantitative predic-
tions of the relations among these tasks, but
there are two important limitations: Predicted
performance depends on the particular deci-
sion strategy used by the observer, and de-
tection theory applies to imperfectly discrim-
inable stimulus sets and the measurement of
accuracy. Most Garner-paradigm (1974) stud-
ies have used response time, which requires
explicit modeling if quantitative predictions
are to be made.

Intrinsic Attention: Capacity Models and
Attention Operating Characteristics

The models thus far are not very explicit about
“paying attention,” or about the connection
between attentional instructions and perfor-
mance. To model these important constructs,
it helps to return to the multiple-look discrim-
ination designs discussed earlier. The optimal
model led to the prediction that an observer
who had n “looks” at the same stimulus would
improve detectability by

√
n.

The application to attention is this: Sup-
pose that a person has a fixed “capacity” T to
allocate among whatever (controlled) tasks
are at hand. As in the previous discussion of
multiple looks, assume that as each unit is al-
located, it adds a fixed amount to both the
mean and variance. Consider now the uncer-
tain detection experiment. If all attention is
allocated to dimension x , performance will
be

√
T d ′on that dimension, but 0 on dimen-

sion y. The reverse is true if all attention is
allocated to y. In general, if P of the T units
are allocated to x and T − P to y, then per-
formance on x , d ′

x , will be
√

Pd ′ and d ′
y will

be
√

(T − P)d ′.
The model says that capacity can be allo-

cated to one dimension only at the cost of the
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other and thus describes a tradeoff between
accuracy on the two tasks. When P is large,
the observer will do well on dimension x and
poorly on dimension y, and when P is small
(so that T − P is large) the opposite will be
true. The relation between x and y perfor-
mance is an attention operating characteris-
tic (AOC), analogous to the receiver operat-
ing characteristic (ROC), which describes a
tradeoff between hits and correct rejections.

The form of the AOC between d ′
x and d ′

y

can be derived from these assumptions. In
terms of the squares of the sensitivities,

d ′
y

2 = (T − P)d ′2 = T d ′2 − Pd ′2

= T d ′2 − d ′
x

2
. (27)

This is a circle—the usual equation is y2 =
r2 − x2—as shown in Figure 2.23. Rearrang-
ing the terms provides another perspective:

d ′
x

2 + d ′
y

2 = T d ′2 = constant. (28)

The idea that squared sensitivities are added

80%, 20%

50%, 50%

20%, 80%

d�y

d�x

Figure 2.23 An attention operating character-
istic showing joint performance in the dual-task
paradigm.
NOTE: Solid points are single-task performance;
the circle segment is the prediction of a fixed-
capacity model (Equation [28]); and the dashed line
is the prediction of an independent-channel model.

to estimate overall capacity was first proposed
by Lindsay, Taylor, and Forbes (1968).

What would happen if participants were
instructed to give, say, 80% attention to x
and 20% to y? They should allocate 80% of
their capacity to x and operate at the point la-
beled (80, 20) on the diagram. Experiments
of this type have often shown that partici-
pants not only follow a circular tradeoff func-
tion but also are accurate at assigning the
requested percentage of capacity (Bonnel &
Hafter, 1998). For some pairs of stimuli, how-
ever, no tradeoff is found, and the AOC con-
sists of two straight line segments, as shown
by the dashed lines in Figure 2.23. For ex-
ample, Graham and Nachmias (1971) found
that attention could be paid simultaneously to
superimposed gratings of two different fre-
quencies, thus providing strong quantitative
evidence that separate perceptual channels are
used in processing the two gratings.

MULTIDIMENSIONAL
IDENTIFICATION

This chapter has already presented one ver-
sion of the identification experiment: A sin-
gle stimulus from a known set is presented on
each trial, and it is the observer’s job to say
which it was, that is, to identify it. The pur-
poses of such experiments vary but usually
include obtaining an overall index of perfor-
mance, as well as a measure of sensitivity for
each stimulus pair and bias for each response.

If there are only two stimuli, identifica-
tion is simply the yes-no task, and perfor-
mance can be summarized by one sensitivity
parameter and one bias parameter. The na-
ture of the stimuli is unimportant; it does not
even matter if they differ along one physical
dimension (lights of different luminance) or
many (X-rays of normal and diseased tissue).
With more than two stimuli, the task is easily
described: One stimulus from a set of M is
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Figure 2.24 Analysis of simultaneous detection and identification.
NOTE: (a) ROC [P(R | S)] and IOC [P(R&C | S)] for an X-ray detection and spatial identification task.
The IOC plots the proportion of trials on which identification and detection responses were both correct.
(b) Decision space with possible criteria. The observer gives both a detection response (“yes” or “no”)
and an identification response (“1” or “2” was presented). The space is therefore divided into four regions,
one for each compound response.
SOURCE: (a) Adapted from Figure 2 of Starr et al. (1975). Reprinted by permission of the Radiological
Society of North America.

presented on each trial, and the observer must
say which it was. From the participant’s point
of view there is nothing more to say, but in
order to extend the analysis to M (more than
two) stimuli, the dimensionality of the repre-
sentation must be known. If all stimuli dif-
fer perceptually on a single dimension, then
M − 1 sensitivity distances between adjacent
stimuli and M − 1 criterion locations can be
found along it, as we saw earlier. Perceptual
distances for all other pairs of stimuli are eas-
ily calculated as the sum of the stepwise dis-
tances between them. To characterize overall
performance, it is natural to add sensitivity
distances across the range.

The assumption of unidimensionality is
a restrictive one, and this section considers
some other cases, beginning with stimulus
sets in which all members are independent of
each other. Such stimuli may be thought of
as being processed by different channels. In

perceptual-space models, each stimulus pro-
duces a mean shift along a different dimen-
sion, and the discriminability of each pair of
stimuli yields M(M − 1)/2 independent dis-
tances in a multidimensional space. This sec-
tion describes two models that use simplify-
ing assumptions to reduce the complexity of
this problem, and one that provides a more
complete analysis. Analysis of arbitrary situ-
ations with perceptual or cognitive objects is
discussed first and then is applied to the spe-
cial case in which identification is of intervals
in discrimination experiments.

Models for Identification

Pollack and Ficks (1954) systematically stud-
ied how performance in absolute identifica-
tion depends on the number of stimuli and the
number of dimensions on which they varied.
They analyzed their data using information

[Image not available in this electronic edition.]
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theory (G. A. Miller, 1956; Shannon &
Weaver, 1949) and found that although infor-
mation transmitted along one dimension was
limited to 2 or 3 bits (equivalent to perfectly
distinguishing 4 to 8 stimuli), performance
reached 7 or 8 bits (128 to 256 stimuli) when
stimuli differed on 7 or 8 dimensions.

Information theory does not allow for in-
dependent assessment of sensitivity and bias,
but a variety of SDT models can be applied.
First, assume that all stimuli are processed
by independent channels. The decision space
contains M distributions, each removed from
a common origin in a different dimension.
The simplest (and most optimistic) calcula-
tions assume that there is no bias, so p(c) can
be used to summarize accuracy. An SDT anal-
ysis that relates the proportion correct to d ′ for
equally detectable stimuli was developed by
Elliott (1964) and improved by Hacker and
Ratcliff (1979). The decision rule is simply to
choose the dimension on which the maximum
value is produced.

An implication of Luce’s (1959) choice ax-
iom is that the ratios of response frequencies in
a confusion matrix do not depend on the num-
ber stimuli in the experiment. This constant
ratio rule (Clarke, 1957) can be used to ex-
tract a 2×2 matrix from a larger one, and thus
to calculate sensitivity to any stimulus pair.
Hodge (1967; Hodge & Pollack, 1962) con-
cluded that the constant ratio rule was more
successful when applied to multidimensional
than to one-dimensional stimulus domains.

Multi-Interval Forced-Choice

It is easy to translate to the identification of
one interval in which a stimulus might be pre-
sented. The analogous task is one in which
there are m spatial or temporal intervals, one
containing S2 and the others S1. The analytic
problem is formally the same as for identi-
fication of objects, just as the same-different
discrimination task was formally the same as

divided attention. In the initial statement of
the 2AFC problem (Figure 2.11), each interval
corresponded to a separate dimension in the
decision space, and this representation is also
appropriate for m > 2 intervals. As in object
identification, there are as many dimensions
in the representation as there are intervals in
the task. The optimal unbiased strategy is to
choose the interval with largest observation.

The general models for multidimensional
identification apply directly to the multi-
interval forced-choice (mAFC) problem, and
the assumptions of equal sensitivity and of
independent effects for all alternatives are ap-
parently quite reasonable. If one is still willing
to assume unbiased responding, the Hacker
and Ratcliff (1979) tables can be used to find
d ′ values.

Simultaneous Detection and Identification

In some situations, detection and identifica-
tion are both interesting. (Obviously, the de-
tection must be under uncertainty; otherwise
there is nothing to identify.) In the laboratory,
participants may try to detect a grating that
has one of several frequencies, and also to
identify which grating was seen. In eyewit-
ness testimony, the witness must both “de-
tect” whether a perpetrator is present (in the
lineup, or in court) and also identify which
person that is. In recognition memory, the par-
ticipant must decide whether the stimulus was
presented earlier in the experiment and, if so,
from which of two sources.

When a rating response is included in the
simultaneous detection-identification experi-
ment, two types of ROCs can be constructed.
The first is the usual detection curve, plotting
the cumulative probability of a hit versus that
of a false alarm at each confidence level. The
second is the probability of both detecting and
correctly identifying a stimulus, again at each
level of confidence. There is only one set of
false-alarm probabilities; it makes no sense to
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ask the likelihood of being right in identifica-
tion when no signal is present. Figure 2.24a
shows the two performance curves: the famil-
iar ROC and (below it) the new identification
operating characteristic (IOC).

The independent-observation model can
be used to predict the identification operat-
ing curve of Figure 2.24 from the uncertain-
detection ROC (Green, Weber, & Duncan,
1977; Starr, Metz, Lusted, & Goodenough,
1975). Within this model there is a natural de-
cision rule: The channel with the maximum
output determines the identification response
and is compared to a criterion to determine the
detection response. Integration models are not
so easily adapted to identification.

To understand the relation between the two
operating characteristics, consider the deci-
sion space. Figure 2.24b shows a single detec-
tion boundary of the independent-observation
type used in uncertain detection (as in Fig-
ure 2.21b). The identification criterion line
is symmetric, because the observer is sim-
ply choosing the dimension (channel) with the
larger output. The two criteria divide the space
into four regions, those in which the observer
responds “yes-1” (there was a signal, and it
was S1), “yes-2,” “no-1,” and “no-2.”

The probability of both detecting and cor-
rectly identifying S1—the height of the IOC—
is that part of the S1 distribution in the “yes-1”
area. The probability of just detecting it—the
height of the ROC—includes both the “yes-
1” and the “yes-2” areas and must therefore
be larger. To trace out the IOC and ROC by
increasing the false-alarm rate, the detection
criterion curve is moved down and to the left.
When the curve has been moved as far as pos-
sible in this direction, both the false-alarm rate
and the detection (ROC) hit rate equal 1. The
identification (IOC) success rate equals the
proportion correct by an unbiased observer
in mAFC, as can be seen by comparing Fig-
ure 2.24b with Figure 2.11. For m = 2, the
area theorem implies that the asymptote of the

IOC equals the area under the ROC. Green
et al. (1977) have generalized the area theo-
rem to the case of m signals.

An interesting extension of the simul-
taneous detection-identification experiment
requires the observer to make an identifica-
tion response even if the detection response
is “no.” Traditionally, the ability to identify
stimuli without detecting them has been con-
sidered a hallmark of “subliminal percep-
tion,” so it is interesting to ask whether a
detection-theory analysis predicts this result.
Clearly the answer is yes: In Figure 2.24b,
points in the “no” region are likely to be on
the correct side of the identification criterion.
The surprise would be not to get subliminal
perception.

Testing Independence with
Identification Data

Identification experiments are a valuable tool
for testing whether perceptual dimensions in-
teract, or are perceived independently. The ad-
vent of GRT has clarified various type of inde-
pendence (Ashby & Townsend, 1986) and has
provided two general approaches to testing it
with identification designs. One such method
is considered next.3

The basic stimulus set for testing indepen-
dence is the feature-complete identification
design, in which each value of one dimen-
sion is factorially combined with each value
of the others. In two dimensions, choosing two
values on each dimension leads to four stim-
uli, two on one and three on the other leads
to six, and so forth. As in all identification

3The method not discussed, hierarchical model-fitting
(Ashby & Lee, 1991), is more computationally intensive.
A set of models is constructed in which more complex
models are “nested” within and tested against simpler
ones. For example, a model that includes decisional sep-
arability might be compared with one that does not; fail-
ure to find a statistically-significant improvement in fit
for the latter model is considered evidence for decisional
separability.
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experiments, the task is to assign a unique
label to each stimulus.

Earlier, three meanings of independence
were distinguished (see Figures 2.18 and
2.19). Perceptual independence is the inde-
pendence of two variables and can be ob-
served for a single stimulus. If X and Y
are perceptually independent, then their joint
distribution is the product of the marginal
distributions,

f (x, y) = g(x)g(y), (29)

and has circular equal-likelihood contours,
that is, no correlation. Perceptual separabil-
ity refers to sets of stimuli and is present if
the marginal distributions on one dimension,
say X , are the same for different values of Y ,
that is,

g(x)y=1 = g(x)y=2 (30)

and so forth for other values of Y . Decisional
separability also refers to sets of stimuli and
means that the decision criterion on one vari-
able does not depend on the value of the other.
When decisional separability occurs, decision
bounds are straight lines perpendicular to a
perceptual axis.

These independence qualities, or their op-
posites, are theoretical characteristics of the
perceptual representation, and certain statis-
tics calculated from the data provide infor-
mation about each type of independence. An

Table 2.9 Inferences about Perceptual and Decisional Separability from Identification Data

Observed results Conclusions

Marginal response Marginal d ′ Marginal criteria Perceptual Decisional
invariance? equal? equal? separability separability

T T T yes yes
T T F yes no
T F T no yes
T F F no no
F T T yes possibly no
F T F yes no
F F T no unknown
F F F no unknown

approach called multidimensional signal de-
tection analysis (MSDA), devised by Kadlec
and Townsend (1992a, 1992b), can be imple-
mented using a straightforward computer pro-
gram (Kadlec, 1995, 1999a). The MSDA tech-
nique includes several distinct analyses.

Consider an experiment reported by Kadlec
(1995), in which observers made judgments
of both the curvature and orientation of vi-
sual stimuli. In a macroanalysis of percep-
tual and decisional separability, the question
to be asked is whether judgments of curvature
are perceptually or decisionally independent
of orientation. Three aspects of the data are
important:

1. Marginal response rates. Does the prob-
ability of reporting a particular curvature
response depend on the orientation?

2. Marginal d ′ values. The hit rate and false-
alarm rate can be used to find curvature d ′

for both values of orientation.

3. Marginal criterion values. The hit rate and
false-alarm rate can be used to find cur-
vature criterion values for both values of
orientation.

In MSDA, differences of these three kinds
are tested for statistical significance. Conclu-
sions and perceptual and decisional separabil-
ity can then be made by consulting Table 2.9
(from Kadlec, 1995; Kadlec & Townsend,
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1992b). The left-hand columns give possi-
ble outcomes of the three statistical compar-
isons, in which the marginal statistics can
be equal (T, or true, in the table) or not (F,
or false). Conclusions about separability are
in the right-hand columns. Notice that if the
marginal responses are invariant, then per-
ceptual separability is associated with equal
marginal d ′ and decisional separability is as-
sociated with equal criteria. In the absence of
marginal response invariance, as in the exam-
ple, conclusions are less firm.

A different MSDA analysis can be used
to evaluate perceptual independence. Identi-
fication tasks build on a detailed theoretical
analysis (Ashby & Townsend, 1986; Kadlec
& Townsend, 1992b) and are a powerful tool
for analyzing interaction and independence.

STATISTICAL ISSUES

Signal detection analysis of data leads to es-
timates of sensitivity and bias, and standard
statistical questions can be asked about these
estimates. This section first considers single-
subject designs (or those in which a small
number of observers are each analyzed sep-
arately), in which the special characteristics
of SDT measures are most salient; then situ-
ations in which the performance of groups of
participants is evaluated. The focus will be on
sensitivity, with pointers to treatments of bias.

The first question is the distribution of
d ′. For single participants, Gourevitch and
Galanter (1967) showed that this distribution
is approximately normal and provided a for-
mula for estimating the variance of d ′. In
recent studies (Kadlec, 1999b; J. O. Miller,
1996) the accuracy of the approximation has
been tested and largely confirmed for a range
of sensitivity and bias values (using the ad-
justments for false-alarm rates of 0, discussed
earlier). Variance estimates can be used to
construct confidence intervals and to test hy-

potheses about differences between two ex-
perimental conditions; Marascuilo (1970) has
extended the analysis to multiple conditions.

The accuracy or precision of the estimates
improves, of course, as the number of trials
on which they are based increases. In some
applications (e.g., in studies of infants or of
people with impairments of some kind) a
large number of trials is not practical, and
it is necessary to pool data across observers
to avoid overuse of the correction for per-
fect scores. Two questions are raised by this
procedure. First, what is the effect on the ac-
curacy and precision of SDT parameter esti-
mates, and second, how can hypothesis testing
be done? Macmillan and Kaplan (1985) pro-
vide reassurance on the first matter, showing
that only in cases of widely varying individ-
ual response biases do estimates suffer. The
hypothesis-testing problem is that if all ob-
servers in a group are combined to estimate
d ′, then variability across participants is no
longer available to provide an error term for
ANOVAs and related procedures. One possi-
bility is to apply the Gourevitch and Galanter
(1967) and Marascuilo (1970) single-observer
methods to the pooled data. Another approach
(adopted, e.g., by Maddox and Estes, 1997) is
to estimate d ′from pooled data but conduct hy-
pothesis tests on the simpler (albeit threshold-
theoretic) statistic H − F .

If the number of trials is sufficient to
estimate a value of d ′ for each participant
in each condition, then standard parametric
hypothesis testing procedures can be used
(and the knowledge that d ′ is normally dis-
tributed is reassuring). An approach that uni-
fies hypothesis-testing and detection theory
has recently been set forth by DeCarlo (1998).
If an SDT model with underlying logistic
rather than normal distributions is assumed,
then hypotheses about signal detection pa-
rameters (e.g., ROC slope) correspond to
tests conducted by standard logistic regres-
sion software. This approach can be extended
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to other distributions (including the normal)
by the use of generalized linear models, in
which a “link function” scales the data in ac-
cordance with the assumed underlying distri-
butions.

DETECTION THEORY AND
ALTERNATIVE APPROACHES

In this chapter, I have presented SDT as a
framework in which to analyze discrimina-
tion and classification data. The theory allows
sensitivity to be separated from bias, accuracy
to be compared across paradigms, and the ex-
trinsic limitations of an experimental design
to be distinguished from intrinsic ones. With-
out pretending to offer equal time, let me ac-
knowledge two lines of dissent.

One reason for hesitation in using SDT
is a reluctance to adopt its assumptions, but
the alternative of truly assumption-free
methods is rarely available and measures in
common use such as proportion correct en-
tail alternative assumptions about underly-
ing distributions that are almost always found
wanting when tested. Explicit threshold
(“multinomial”) models have been proposed
for complex experimental problems such as
source memory (Batchelder & Riefer, 1990).
Like all models, they are useful to the degree
that they capture the phenomena of interest,
but they also bear the burden of proving that
the threshold assumptions do not distort the
picture that they draw. For an instructive ex-
change on the multinomial source monitor-
ing model, see Kinchla (1994) and Batchelder,
Riefer, and Hu (1994).

Detection theory’s power derives from its
explicitness about the representation on which
observer performance is based. The essential
claim of SDT is that aspects of this represen-
tation reflecting sensitivity remain the same
across experimental paradigms or when re-
sponse bias changes, and a substantial body

of data supports this assertion. All of it can
be reinterpreted, however, and Balakrishnan
(1999) has offered just such a tour de force,
arguing that response biases affect the repre-
sentation itself rather than decision processes.
So far, supporting data come from the dual-
response rating paradigm, and it will take time
to establish the broad usefulness of this revi-
sionist perspective. Arising just after the first
edition of this handbook was published, SDT
has needed a half-century to reach its present
standing. As a data-analysis framework and
rather general psychological model, it is not
the kind of intellectual structure that is eas-
ily defeated by isolated experiments, but its
virtues and failings are sure to look differ-
ent in another 50 years—or even in the fourth
edition.
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CHAPTER 3

Psychophysical Scaling

LAWRENCE E. MARKS AND GEORGE A. GESCHEIDER

INTRODUCTION: DEFINITIONS
AND GOALS

The term psychophysics was coined nearly
a century and a half ago by Gustav Fechner
(1860), who defined it as “an exact theory of
the functionally dependent relations of body
and [mind] or, more generally, of the material
and the mental, of the physical and the psycho-
logical worlds” (p. 7). Although he was inter-
ested in a wide range of mental phenomena,
including dreams and imagination, Fechner is
best known for his research and writings on
sensory psychophysics. In Fechner’s scheme,
physical stimuli impinge on the sense organs,
thereby evoking responses that ultimately lead
to patterns of neural activity in the brain that
are themselves, of course, physical in nature.
For the neural-physical activity in the brain,
there is corresponding sensory, or mental, ac-
tivity. It follows, Fechner argued, that there
are actually two domains of psychophysics:
an inner psychophysics, which treats the rela-
tion between neural events and mental events,
and an outer psychophysics, which treats the
relation between external stimuli and mental
events.

In modern parlance the domain of psy-
chophysics corresponds to Fechner’s (1860)

Preparation of this chapter was supported in part by grants
DC02752 to Lawrence E. Marks and DC00380 to George
A. Gescheider from the National Institutes of Health.

outer psychophysics; in particular, psycho-
physics refers to the relation between exter-
nal physical stimuli and the resulting sensa-
tions and perceptions. Psychophysical scaling
refers to the process of quantifying mental
events, especially sensations and perceptions,
after which it is possible to determine how
these quantitative measures of mental life are
related to quantitative measures of the physi-
cal stimuli. Finally, psychophysical functions
refer, in turn, to mathematical relations be-
tween scales of sensation, perception, or any
other mental event and the corresponding
physical stimuli.

Consider as an example the perception of
loudness. As the physical intensity of a tone
increases, its loudness increases. Further, the
tone will appear louder when presented si-
multaneously to both ears (binaurally) rather
than to just one ear (monaurally). How much
does loudness increase when sound intensity
increases? And how much louder is a tone
heard binaurally compared to the same tone
heard monaurally? These are psychophysi-
cal questions, and the answers to them re-
quire psychophysical scaling, that is, a way
to quantify the perception of loudness. Deter-
mining psychophysical functions for loudness
provides a means to measure the degree to
which loudness increases when, for instance,
a tone increases in intensity by 10 dB. Fur-
thermore, determining loudness functions for
both binaural and monaural listening, under

91
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conditions that measure binaural and monau-
ral loudness on a unitary scale, makes it pos-
sible to say whether a tone heard with two
ears is twice as loud as the same tone heard
with just one, and whether the ratio of binau-
ral loudness to monaural loudness is constant
across all levels of sound intensity.

What makes psychophysical functions im-
portant, and interesting, is the fact that they
are rarely linear. It was clear to Fechner, as
to others, that our sensory experiences do not
simply mirror the physical world in a quantita-
tive manner. To paraphrase Fechner, a chorus
of 100 male voices does not sound 10 times
as loud as an ensemble of 10, although the
acoustic energy presumably is about 10 times
as great. Awakening one morning with what
he believed to be a great insight, Fechner pro-
posed that the magnitudes of our sensations
are not proportional to the intensities of the
stimuli that arouse them, but instead grow
with the logarithm of intensity, a rule that has
come to be called Fechner’s law. This rule is
one of diminishing returns. It implies that uni-
form increases in the physical intensity of a
stimulus will lead to successively smaller and
smaller increments in the resulting sensation
magnitude.

Why is psychophysical scaling necessary,
and why is it important? Modern psychology
arose from the framework and traditions of
Western culture in general, and from Western
philosophy and science in particular. Within
these broad traditions, psychophysical scaling
can be traced to two crucial developments:
the dichotomy between physical and mental
quantities and qualities, and the rise of quan-
tification. The emphasis on quantification was
a crucial factor not only in the rise of mod-
ern science but also in the rise of Western
economies (see Crosby, 1997). Little wonder
that when scientific psychology emerged in
the second half of the 19th century, under the
aegis of Gustav Fechner, Wilhelm Wundt, and
others, it put such great stock in quantifica-

tion. And little wonder that modern scientific
psychology is rooted to a large extent in psy-
chophysics, which for decades was the most
estimably quantifiable branch of experimen-
tal psychology. In psychophysical scaling,
quantification came to be applied to inter-
nal psychological events, to sensations in par-
ticular but in principle also to feelings and
thoughts—at least to the extent that these
vary in some kind of magnitude. Perhaps
it is not surprising that Ebbinghaus (1885),
for instance, was inspired by Fechner’s psy-
chophysics to apply quantitative methods to
the study of human memory.

To conceive of scaling sensory or other
mental magnitudes, or to consider what data
to use and what theoretical frameworks to de-
ploy in using those data in order to quantify
sensory states, is ipso facto to acknowledge
that the quantification of mental events may
differ in important ways from the quantifica-
tion of overt physical stimuli. This is to say
that psychophysical scaling requires a broad
conception of what it is that can be measured
or quantified. Measurements can be made not
only of denumerable items that can be counted
such as the fingers on a hand, of extensive
quantities such as the area of a football field,
and of intensive quantities such as the radiant
intensity of a fire, but also of our perception of
number, of our perception of size, and of our
perception of heat intensity. When a person
stands by a fire, a physicist might measure
the thermal energy, or irradiance, that is in-
cident on the person’s face, in physical units
such as watts per square meter, whereas a psy-
chophysicist might endeavor to measure how
warm the radiation feels.

A primitive psychophysics can be found in
Locke’s (1690) account of primary and sec-
ondary ideas, and in Galileo’s (1623/1960)
anticipation of this account: “I do not be-
lieve that for exciting in us tastes, odors, and
sounds there are required in external bodies
anything but sizes, shapes, numbers, and slow
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or rapid movements; and I think that if ears,
tongues, and noses were taken away, shapes,
numbers, and motions would remain, but not
odors or tastes or sounds” (p. 311). One might
construe Galileo’s statement as an answer to
the question, “If a tree falls in the forest and
no one hears it, is there a sound?” To dis-
tinguish the physical world from the percep-
tual world is also to distinguish the domain
of physical science from the domain of men-
tal science, or what would eventually become
psychology.

Locke (1690) distinguished between two
kinds of physical properties or qualities, be-
tween what we might call macroscopic and
microscopic properties, or, in his terms, be-
tween primary and secondary qualities.
Primary qualities, such as the number of items
and their sizes and shapes, are macroscopic
features of objects in the physical world,
and these qualities pertain mainly to the ob-
jects’ extension in space and in time. Further,
Locke claimed that we perceive these primary
qualities much as they really are. When, in
modern terms, two acoustic events occur in
succession, then as long as the time inter-
val between them is not too brief, we expe-
rience their temporal succession, hearing two
sounds as distinct. When we see a sphere, we
perceive its roundness. Primary qualities, ac-
cording to Locke, are experienced more or
less veridically, pretty much as they are. In
the case of extensive qualities such as lin-
ear extent, it seems fair to infer that Locke
believed in what would now be called lin-
ear psychophysical functions, for example,
that the perception of the length of an ob-
ject is more or less proportional to its physical
length.

Secondary qualities, by way of contrast,
are those microscopic features of objects that,
according to Locke (1690), we do not expe-
rience as they are. Light waves differ in their
refractiveness, as Locke’s contemporary Sir
Isaac Newton showed, but we perceive this

physical property of light not in terms of vari-
ations in wavelengths but in terms of vari-
ations in colors. Whereas some psychologi-
cal attributes of experience may resemble the
physical qualities that produce them—by and
large the primary qualities of shape, size, and
number of objects look and feel as they really
are—other psychological attributes do not re-
semble their qualities or causes and must be
distinguished from them. We would say that
an object that is 20 cm long looks longer—in
fact, probably about once again longer—
than an object that is 10 cm long, and we
believe that our perceptions of the sizes of
objects more or less resemble or match the
objects themselves. But light of 440 nm
(billionths of 1 m) does not look shorter than
light of 540 nm. The one looks blue and the
other green. Color does not resemble wave-
length.

If perception does not faithfully reflect
the qualitative and quantitative properties of
the physical world around us, then the sci-
entific analysis of the world is not com-
plete if one treats the world of physics alone.
There is also a world of sensation, perception,
cognition, and emotion—a world of mental
events. The qualitative and quantitative psy-
chophysics implicit in Locke’s doctrine of
primary and secondary qualities helped set
the stage for philosophical discourse over the
next two centuries on the sources and va-
lidity of knowledge—the domain known as
epistemology—in which a psychology of per-
ception would implicitly play a major role.
This line of inquiry culminated in the 19th
century psychophysics of Fechner and those
who followed, a psychophysics that asks how
sensory and other psychological magnitudes
might be quantified (the problem of psy-
chophysical scaling proper) and how these
psychological magnitudes relate to the corre-
sponding physical events in the world that pro-
duce them (the problem of the psychophysical
function).
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BRIEF HISTORY OF SCALING

In proposing his psychophysical rule,
Fechner (1860) was anticipated by the math-
ematician Daniel Bernoulli, who a century
earlier had suggested that a similar psycho-
physical formula characterizes the psycho-
logical value of economic goods, or what is
called utility (see S. S. Stevens, 1975). As
in Fechner’s law, Bernoulli’s equation is one
of decreasing marginal gain: Each additional
$1,000 provides much greater marginal happi-
ness to a poor person than to a rich one. But for
a law to show diminishing returns, it need not
be logarithmic. Many mathematical formulas
show decreasing marginal gains, one example
being a square-root formula. In fact, just such
a formula was proposed by Bernoulli’s con-
temporary, Gabriel Cramer, as an alternative
to the logarithmic rule (S. S. Stevens, 1975).
Unfortunately, in the 18th century there was
little in the way of evidence with which one
could critically test the two proposals.
Fechner’s postulate would lead generations
of researchers to seek evidence supporting
or disconfirming the logarithmic rule.

As discussed later in this chapter, Fechner
sought to bolster his logarithmic law through
measures of sensory discrimination. Soon af-
ter conceiving his law, Fechner became aware
of Weber’s work, which showed the relativity
of intensity discrimination. Weber found that
the difference in stimulus intensity needed to
be just noticeable was proportional to stimulus
intensity. Once aware of this work, Fechner
saw how Weber’s findings could be enlisted
to support Fechner’s own logarithmic psy-
chophysical equation. Fechner simply made
the assumption that every just noticeable dif-
ference (JND) in stimulation constitutes a
constant increment in sensation magnitude.
By doing so, the magnitude of a sensation
elicited by a particular stimulus could then
be specified as the number of JNDs that the
stimulus stood above the absolute threshold of
detection. The logarithmic law follows from

Weber’s finding that the physical size of the
JND (�φ) increases with stimulus intensity
(φ), whereas, according to Fechner, its psy-
chological size (�ψ) does not.

This approach to psychophysical scaling
came to be characterized as indirect in that the
measures of sensation must be derived from
the data through the application of a partic-
ular theoretical model. To note that a pair of
stimuli is just barely discriminable is by it-
self to say nothing about the magnitudes of
the evoked sensations, until a theory speci-
fies how discrimination depends on sensory
magnitudes. On the other hand, certain kinds
of psychophysical judgment seem prima fa-
cie to quantify sensations, to yield scales in
a fashion that is more direct. Indeed, by the
second half of the 19th century sensory scien-
tists were already developing such methods.
Plateau (1872) and Delboeuf (1873), for ex-
ample, used what came later to be called par-
tition methods to assess sensation, asking ob-
servers to judge when two sensory intervals or
differences appeared equal. If three stimuli are
ordered in increasing physical intensity as A,
B, and C, such that the ratio B/A of physical in-
tensities equals the ratio C/B, then, according
to Fechner’s law, it follows that the perceived
difference between B and A should equal the
perceived difference between C and B. This
can be put to an empirical test by asking ob-
servers to set a stimulus B to appear midway
between A and C, a method known as bisec-
tion. Fechner’s law predicts that B = √

A × C.
The 19th century also saw the first sug-

gestions that observers may be able to judge
directly, even quantitatively, the ratios as well
as the differences between sensations. Merkel
(1888) proposed a method that he called “dou-
bled stimuli,” actually a method of doubled
sensations, in that an observer had to set one
stimulus so that its magnitude appeared to be
twice that of another. Fechner doubted such
an approach, questioning whether sensations
can even be said to have magnitudes per se.
Although it may be possible to speak of the
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size of a difference between two sensations, it
was far from evident that one could speak of
the magnitude of a sensation. This doubt was
expressed by James (1892) when he wrote,
with his usual rhetorical flourish, “Surely, our
feeling of scarlet is not a feeling of pink with
a lot more pink added; it is something quite
other than pink. Similarly with our sensa-
tions of an electric arc-light: it does not con-
tain that many smoky tallow candles in itself”
(pp. 23–24).

James’s quantity objection may have per-
suaded many of his contemporaries, but it
eventually gave way to the view that sensa-
tions can indeed be considered to have magni-
tudes: Surely we can match lights with regard
to their brightness or decide whether one light
is brighter than another, and surely we can
match sounds with regard to their loudness or
decide whether one sound is louder than an-
other. The quantification of sensation requires
more than this, to be sure, and even if one ob-
tains direct estimates of sensation magnitudes,
the assignment of numerical representations
to sensations requires an appropriate under-
lying theory, making the scaling ultimately
indirect. It is probably fair to say that most
contemporary psychophysicists view sensa-
tion magnitude as a psychological variable
that is never measured directly but that is in-
ferred from some kind of empirically based
operation or judgment, given an explicit or im-
plicit model or theory. Thus, the terms direct
scaling and indirect scaling ultimately turn
out to be convenient labels that distinguish
psychophysical methods that do or do not ask
subjects to assess sensory differences or mag-
nitudes per se. This should not be taken, how-
ever, to mean that the use of a direct scaling
method automatically gives rise to a particular
numerical scale of sensation.

Psychophysical scaling requires both a
set of empirical operations and a theoret-
ical framework through which one derives
and characterizes the numerical values or
representations. The latter is the domain of

measurement theory. For example, conjoint
measurement theory (Luce & Tukey, 1964)
provides an axiomatic framework from which
it is possible to determine numerical repre-
sentations for stimuli in ordered pairs if these
meet certain criteria. That is, in certain in-
stances, one can derive scales that define sen-
sory intervals from rank-order information.
On the other hand, the rank-order information
might arise from so-called direct judgments,
and the representations derived through con-
joint scaling need not be identical to the overt
judgments themselves (for a discussion of
measurement theory and scaling, see Luce &
Krumhansl, 1988).

Most attempts at psychophysical scaling
aim at either interval scale or ratio scale
measurement, although it is not always clear
which (if either) has been achieved in any par-
ticular study. Interval scales and ratio scales
are characterized by the uniqueness of the nu-
merical representations (see Suppes & Zinnes,
1963). Ratio scales permit multiplication by a
positive integer, whereas interval scales per-
mit multiplication by a positive integer and
addition of a constant (see Stevens, 1946,
1951). Ratio-scale measurement of length al-
lows transformation between metric scales
and English scales, between feet or yards and
centimeters or meters. Ratio scales are limited
by a fixed lower bound of zero. Interval scales,
by way of contrast, do not have a fixed zero,
as witnessed by the measurement of temper-
ature in degrees Fahrenheit and Celsius, both
of which have arbitrary zero points. It may be
tempting to classify the scale characterizing
a particular set of results solely on the basis
of the empirical operations that produce those
measurements—tempting to assume, for ex-
ample, that when an observer adjusts the light-
ness of a color to fall midway between two
others, the resulting stimuli mark off equal
steps of sensation, and thus provide measures
on an interval scale of lightness, or that when
an observer judges the loudness of one sound
to be twice another, the outcome is a ratio
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scale of loudness. This temptation should be
resisted, however, for the determination of the
type of scale requires, in addition to the basic
empirical measurements, a theoretical basis
for representing the scale values numerically.

Implicit in this discussion is a distinction
between metric and nonmetric scaling meth-
ods. Metric methods are typically direct in
that they rely on judgments that have some
prima facie metric properties. Observers may
be asked, for example, to estimate numeri-
cally the differences in loudness between var-
ious pairs of sounds that vary in intensity. One
form of metric analysis takes the numerical
estimates at face value, defining each differ-
ence in loudness as proportional to the average
numerical estimate. It is possible, however, if
not likely, that such an approach would turn up
inconsistencies within the data. An observer
might judge the difference between stimulus i
and stimulus j as 10 units, and the difference
between j and k as 12.6 units, but the dif-
ference between i and k as 45 units. But the
predicted difference between i and k would be
22.6 units, assuming a unidimensional repre-
sentation of loudness. Given such a result, it
would not be possible to assign a single nu-
merical scale value to each stimulus and still
predict the estimates accurately, as the judged
difference between i and k is much too great.
Although it is possible that loudness simply
does not have the requisite properties to de-
rive a scale, it is more likely that the incon-
sistency reflects the operation of some kind
of nonlinear numerical response process. That
is, a nonlinear rule might relate the underlying
loudness differences to the overt judgments.
If so, then it should be possible to derive a set
of scale values for the stimuli that would ac-
curately reflect the underlying sensation mag-
nitude if it were possible to uncover and undo
the nonlinear response transformation.

Such rescaling may be accomplished in
two ways. The first is to find an appropriate
equation to transform the estimates in order

to make them consistent with a uniform nu-
merical representation. In the example just
given, one might simply take the square root
of the observer’s estimates, in which case the
rescaled difference between A and B becomes
3.16, the rescaled difference between B and C
becomes 3.55, and the rescaled difference be-
tween A and C becomes 6.71, this last value
being equal to the sum of the first two. This ap-
proach is also metric in that one starts with the
numerical responses, then transforms them
according to a rule that seeks to maximize
the consistency of the rescaled values with a
single representation for each stimulus.

Another approach is to jettison the numer-
ical values altogether and simply rank the
judged differences from the smallest to the
greatest. As it turns out, if certain condi-
tions are met—if the underlying sensations
have a unidimensional representation and if
there is a sufficient number of appropriately
spaced stimuli—then the rank-order informa-
tion alone is sufficient to constrain the possi-
ble numerical representations to values on an
interval scale (Shepard, 1966). A procedure
to define such a set of scale values would be
nonmetric in that it relies on only nonmetric
(ordinal) properties of the data (it could, of
course, be applied to data that had no overt
metric properties, for instance, to ordinal com-
parisons of sensory differences). The non-
metric approach has been used successfully on
many occasions to scale sensory magnitudes
(e.g., Birnbaum & Elmasian, 1977; Parker &
Schneider, 1974; Schneider, 1980; Schneider,
Parker, Valenti, Farrell, & Kanow, 1978).

VALIDATION OF PSYCHOPHYSICAL
SCALES

As the last section implies, and as will be
evident in the sections that follow, different
scaling methods frequently produce differ-
ent psychophysical scales. Assuming that the
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underlying perceptual scales themselves re-
main unchanged when methods vary, the
question arises, if different methods produce
different scales, then which method (if any)
gives the right answer? One approach to vali-
dation is to require methods to give consistent
and coherent results—for example, to require
internal consistency in ratings of perceptual
intervals, as described in the last section. In
a similar vein, as described later, Fechner’s
assumptions have been challenged by evi-
dence that augmenting two stimuli matched
for perceived intensity by adding equal num-
bers of JNDs to both can produce new stimuli
that no longer match. Further, variants of the
very same scaling method can produce differ-
ent scales—for example, both category-rating
scales and magnitude-estimation scales de-
pend on a variety of methodological and con-
textual factors—making it necessary to deter-
mine which variant produces a valid result.

Beyond measures of consistency, one can
try to embed the process of scaling within a
theoretical framework that makes empirically
testable predictions. In Anderson’s (1970,
1982) model, scaling data are analyzed in
terms of compatibility with simple cogni-
tive rules such as addition and subtraction,
which provide a functional theoretical frame-
work, much like that of conjoint measurement
theory (Luce & Tukey, 1964). Marks and
Algom (1998) have set forth a challenge:
that psychophysical scales both inform and
be informed by substantive theories of sen-
sory, perceptual, and cognitive processes. As
the remainder of the chapter shows, at least
some tentative steps have been taken in this
direction.

SCALING BY DISCRIMINATION
METHODS

The approach established by Fechner and later
elaborated by others such as Thurstone (1927)

“reflects the belief that differences between
sensations can be detected, but that their ab-
solute magnitudes are less well apprehended”
(Luce & Krumhansl, 1988, p. 39). If mag-
nitudes are poorly apprehended, then it will
be necessary to infer sensation magnitudes
not from judgments of magnitude per se but
from the proportion of times that one stim-
ulus is reported to be greater than another,
coupling these measures of discrimination
with assumptions about the relation between
sensation magnitudes or differences and the
measures of discriminability. Generally, re-
sults using this approach are consistent with
Fechner’s logarithmic law when a fixed range
of stimuli is used and it is assumed that sensa-
tion changes by a constant unit whenever two
stimuli are equally discriminable. Given a dif-
ferent set of assumptions, however, the very
same measures of stimulus discrimination can
lead to different numerical representations of
sensation and, consequently, to different psy-
chophysical relations.

Fechnerian Discrimination Scales

Discrimination-scaling methods are designed
to construct scales of psychological attributes
from the discriminative or comparative re-
sponses of observers. These methods are
based on the Fechnerian principle that an ob-
server’s ability to discriminate two stimuli
grows as the difference between their psy-
chological magnitudes grows. Fechner (1860)
applied this principle in the use of the differ-
ence limen (DL) or JND to construct scales
of sensation magnitude. Because the DL or
JND is the physical difference between two
stimuli that can be discriminated on a spe-
cific proportion of trials (e.g., a proportion of
0.75), all JNDs define pairs of stimuli that are
equally discriminable. Recognizing this fact,
Fechner went on to derive a psychological
scale, ψ, by then assuming that every (equally
noticed) difference between stimuli separated
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Figure 3.1 The dol scale of pain. One dol of pain intensity is equal to two successive JNDs.
SOURCE: From Hardy, Wolff, & Goodell, 1947. Copyright ©1947 by the Journal of Clinical Investigation.
Reproduced by permission of the Copyright Clearance Center, Inc.

by a JND, �φ, corresponds to an equal psy-
chological difference. By making this as-
sumption that JNDs represent equal incre-
ments in sensation magnitude (�ψ), Fechner
established a unit of measurement for sensa-
tion. Subsequently, using Weber’s law, which
says that the physical size of the JND (�φ)

is proportional to stimulus intensity, φ, he de-
rived his eponymous law, which states that
sensation magnitude is proportional to the log-
arithm of stimulus intensity:

ψ = k log φ.

It is well established that the Weber frac-
tion (�φ/φ) is never constant over the entire
range of stimulus intensities as dictated by
Weber’s law. The possibility remains, how-
ever, that a valid psychophysical scale may
nevertheless be established from JNDs; one
can accomplish this by measuring JNDs as a
function of stimulus intensity instead of calcu-
lating them from Weber’s law. If one assumes
that every JND corresponds to an equal in-
crement in sensation magnitude, then one can
derive a scale by adding the subjective JNDs
and plotting them as a function of their stim-

ulus values (see Falmagne, 1971, 1974, 1985;
Luce & Galanter, 1963).

An example is the dol scale for the per-
ception of pain derived by Hardy, Wolff, and
Goodell (1947). Hardy et al. focused radiant
heat onto the forehead of an observer for a pe-
riod of 3 s at various levels from the absolute
threshold for pain to the most intense stimulus
that could be tolerated without tissue damage.
Between these limits, Hardy et al. measured
21 JNDs of pain. The dol scale, illustrated in
Figure 3.1, is based on the cumulative num-
ber of subjective (pain) JNDs as a function of
stimulus intensity. The dol, a Fechnerian unit
of measurement of pain, is equal to two JNDs.

JNDs and the Form of the
Psychophysical Function

If one makes the Fechnerian assumption that
all JNDs represent equal changes in sensa-
tion magnitude, then it follows that the physi-
cal size of the JND (�φ) must be inversely
related to the slope of the psychophysical
function relating sensation magnitude to stim-
ulus intensity. Unfortunately, the empirical

[Image not available in this electronic edition.]
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evidence suggests otherwise. When psycho-
physical functions are measured by techni-
ques other than the integration of JNDs, ex-
perimental results fail to demonstrate that �φ

is inversely related to the rate of growth of sen-
sation magnitude (Gescheider, Bolanowski,
Zwislocki, Hall, & Mascia, 1994; Hellman,
Scharf, Teghtsoonian, & Teghtsoonian, 1987;
Stillman, Zwislocki, Zhang, & Cefaratti,
1993; Zwislocki & Jordan, 1986).

Take the study of Hellman et al. (1987)
as an example. These investigators measured
loudness functions by asking observers to ad-
just the intensity of a 1000-Hz tone presented
in quiet to be as loud as the same tone pre-
sented with a background of either narrow-
band or wide-band noise. When this was done
at various intensity levels of the tone, the rate
of growth of the tone’s loudness was found
to be greater when heard in a background
of narrow-band noise. As seen in Figure 3.2,

Figure 3.2 Growth of loudness of a 1000-Hz tone
presented against a background of narrow-band
noise (NBN) or wide-band noise (WBN). At the
point where the curves cross, the difference limens
(DLs) do not differ significantly.
SOURCE: From Hellman, Scharf, Teghtsoonian, &
Teghtsoonian, 1987. Copyright © 1987 by the
Journal of the Acoustical Society of America.
Reproduced by permission.

there is a point where the two functions
cross, that is, a point at which the loudness
of the tones is the same but the slopes of
the functions differ. The insert of the figure
shows that at the crossing point, the Weber
fraction (�φ/φ) for discriminating a change
in the tone’s intensity was essentially the same
when the tone was presented in narrow-band
and wide-band noise. Because the values of
φ are, by definition, constant at the crossing
point, a constant Weber fraction at the cross-
ing point entails a constant JND (�φ). Con-
trary to Fechner’s hypothesis, this was true
even though the slopes of the loudness func-
tions differed substantially.

These findings support an alternate hypoth-
esis, set forth by Zwislocki and Jordan (1986),
that the physical size of the JND is inde-
pendent of the slope of the psychophysical
function. Zwislocki and Jordan’s hypothesis
contradicts Fechner’s assumption that JNDs
are subjectively equal. The alternate hypothe-
sis arose from the observation in patients with
unilateral hearing impairment that JNDs for
intensity are the same when sounds are pre-
sented to the normal ear and to the ear with
cochlear impairment, even though the growth
of loudness with increasing intensity is abnor-
mally rapid in the impaired ear. Evidence that
the physical size of the JND is independent of
the slope of the psychophysical function has
been reported in other sensory modalities as
well. For example, although the slopes of vi-
brotactile functions are affected greatly by the
presence of a background masking stimulus,
the JND at a fixed level of sensation magni-
tude is not (Gescheider et al., 1994).

The finding that the physical size of the
JND is independent of the slope of the psy-
chophysical function is compatible with find-
ings of earlier studies demonstrating that
JNDs are not subjectively equal; these find-
ings suggest that JNDs do not always provide
an internally consistent set of psychophysical
scales. For example, Durup and Piéron (1933)
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had observers adjust the intensities of blue and
red lights to appear equal in brightness and
found that the two stimuli no longer had the
same brightness when their intensities were
increased by the same number of JNDs. It
follows that JNDs did not provide equal in-
crements in sensation and, as a result, cannot
be used universally as a basic unit for measur-
ing sensation magnitude (for overviews, see
Krueger, 1989; Marks, 1974b; Piéron, 1952).

Ekman’s Law

Ekman (1956, 1959) proposed that the subjec-
tive size of the JND, rather than being constant
as Fechner presumed, increases in proportion
to sensation magnitude. This principle, which
became known as Ekman’s law, states that

�ψ = bψ

where �ψ is the subjective size of the JND at
sensation magnitude ψ . This equation, which
applies to the psychological continuum, is ex-
actly analogous to Weber’s law, �φ = cφ,
in the physical continuum. The value of c in
Weber’s law refers to the constant fraction by
which the stimulus, φ, must change in order
for the change to be just noticeable. The value
of b in Ekman’s law refers to the constant frac-
tion by which all values of sensation magni-
tude, ψ , change when the stimulus changes
by one JND.

It is interesting that Stevens’s power law,
which was derived mainly from the results
of magnitude-scaling procedures, implies that
Ekman’s law must also be valid if Weber’s
law is valid. Given that sensation magnitude
ψ increases as stimulus intensity φ increases,
Weber’s law means that the physical size
of the JND increases, whereas Ekman’s law
means that the corresponding subjective size
of the JND increases. It follows mathemati-
cally that sensation magnitude will grow as a
power function of stimulus intensity, with the
exponent of the power function determined by

the values of c and b. Had Fechner assumed, as
did Brentano (1874), that Weber’s law applies
to the sensation continuum as well as to the
stimulus continuum, he might have derived a
psychophysical power law instead of a loga-
rithmic law (see Gescheider, 1997). In mathe-
matical terms, Fechner assumed that Weber’s
law held at the differential level, δφ/φ = c.
Given Fechner’s assumption that JNDs are
subjectively equal, δψ = b, integrating the
equation

δψ/b = δφ/c φ

yields Fechner’s logarithmic law

ψ = k log φ + constant.

On the other hand, given Brentano’s assump-
tion that JNDs are proportional to sensa-
tion magnitude, δψ/ψ = b, integration of the
equation

δψ/bψ = δφ/c φ

yields the equation

log ψ = (c/b) log φ + constant

which is the logarithmic form of a power law.
According to R. Teghtsoonian (1971), the

ratio of the weakest to the most intense sensa-
tion magnitude that can be experienced is the
same in all sensory modalities, even though
the stimulus ranges are very different. Thus,
a single value of b may apply to all modal-
ities. Using power functions and values of c
gleaned from discrimination data in nine dif-
ferent modalities, Teghtsoonian found b to be
nearly constant at about .03. To the extent that
this is correct, Ekman’s law can be stated more
precisely as

�ψ = .03ψ

Note, however, that Ekman’s and
Teghtsoonian’s hypothesis that JNDs reflect
constant sensory ratios, like Fechner’s hy-
pothesis that JNDs are subjectively equal, is
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challenged by empirical evidence at the end
of the last section (see Marks, 1974b).

Thurstonian Scaling

Law of Comparative Judgment

In 1927 Thurstone published a paper on the
law of comparative judgment as applied to
paired comparison judgments. The law of
comparative judgment consists of a theoret-
ical model describing internal processes that
enable the observer to make paired compari-
son judgments of two stimuli with regard to
some psychological attribute. From the pro-
portion of times that one stimulus is judged to
be greater on the attribute than another stim-
ulus, it is possible to use the law of compar-
ative judgment to calculate the average psy-
chophysical scale values for each of the two
stimuli (see Dawes, 1994; Luce, 1994).

Consider a hypothetical situation in which
an observer compares the loudness of two
sounds. If one sound is very much louder than
the other, then it should be judged louder on
most or all trials. As the intensity of the louder
sound decreases, the proportion of times it is
judged louder will decrease, until the propor-
tion reaches 0.50, indicating equal loudness.
If stimulus B is judged to be louder than stim-
ulus A on only 0.55 of the trials, then the
average loudness of B must be only slightly
greater than that of A. But if stimulus C is
judged louder than stimulus A on 0.95 of the
trials, then the average loudness of C pre-
sumably is considerably greater than that of
A. That is, if the average sensation magni-
tudes produced by two stimuli differ by only
a small amount, then the stimuli will be con-
fused often and the probability that one will
be judged greater than the other will be close
to 0.50. But if the average sensation mag-
nitudes are very different, then they will be
confused much less often, and the probability
that the stronger will be judged greater than

the weaker will approach 1.0. Working on the
relative excellence of handwriting samples,
Thorndike (1910) recognized that such a prin-
ciple might serve as a basis for psychophysi-
cal scaling. He determined the proportion of
times one sample of handwriting was judged
better than another, then took the z score as-
sociated with this proportion to represent the
number of units on a psychological scale sep-
arating the perception of excellence elicited
by the two samples.

In his law of comparative judgment,
Thurstone (1927) clarified the reason for us-
ing z scores rather than proportions as units of
the psychological scale. In Thurstone’s terms,
presenting a stimulus to the observer results
in a discriminal process (sensory process) that
has some value on a psychological continuum.
Because of random fluctuations in the nervous
system, repeated presentations of the same
stimulus do not produce exactly the same per-
ceptual effect every time but instead result in
a variable discriminal process. This variabil-
ity can be described by a Gaussian distribu-
tion, the standard deviation of which is called
the discriminal dispersion. The psychologi-
cal scale value of the stimulus is designated
as the mean of the distribution of discriminal
processes.

But how can one measure this distribu-
tion on the psychological continuum in or-
der to find the average discriminal process
for a particular stimulus? Thurstone decided
that the characteristics of the distribution of
discriminal processes can be obtained only
indirectly, by considering the proportions as-
sociated with the observer’s comparative
judgments of pairs of stimuli. When stimulus
i and stimulus j are presented for compar-
ative judgment, each generates a discriminal
process. The difference between the two dis-
criminal processes on a single presentation of
the stimuli is called a discriminal difference.
Because the discriminal processes resulting
from repeated presentations of stimuli i and j
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are variable, the size of the discriminal differ-
ence also varies randomly from trial to trial.
The distribution of discriminal differences is
also Gaussian, with a mean equal to the dif-
ference between the means of the distributions
of discriminal processes for stimuli i and j .
The standard deviation of the distributions of
discriminal differences is given by

Si− j = (
s2

i + s2
j − 2ri j si s j

)1/2

where si and s j represent the discriminal dis-
persions resulting from repeated presentation
of stimuli i and j , and r is the correlation be-
tween momentary values of the discriminal
processes.

On each presentation of the stimulus pair,
the observer chooses the discriminal process
that is stronger. As seen in Figure 3.3, the
shaded area of the distribution of discrimi-
nal differences corresponds to the proportion
of times that experience i is greater than j ,
whereas the unshaded area corresponds to the
reverse. These areas can be expressed as z
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Figure 3.3 Two overlapping distributions of dis-
criminal processes on the psychological continuum
resulting from the repeated presentation of stimulus
i and stimulus j and the distribution of discriminal
differences.

scores that designate distance in standard de-
viation units. Therefore, Thurstone’s law of
comparative judgment is

Ui − U j = zi j
(
s2

i + s2
j − 2ri j si s j

)1/2

where Ui and U j are the means of the distri-
butions of discriminal processes correspond-
ing to the presentation of stimuli i and j , re-
spectively. Thurstone outlined five versions
or cases for applying the law of comparative
judgment, with Case V being the easiest to
solve because of its simplifying assumptions
(for ways to evaluate simplifying assump-
tions, see Guilford, 1954; Torgerson, 1958).
In Case V the discriminal dispersions of the
two distributions are assumed to be equal, and
the discriminal processes sampled from them
during comparative judgments are assumed to
be uncorrelated. With a common discriminal
dispersion serving as a unit of measurement,
the law of comparative judgment becomes

Ui − U j = (zi j s)
√

2.

Because si and s j have the same value, the
value assigned to s is arbitrary and affects only
the size of the unit of measurement. Thus, if
we set s = 1/

√
2, Case V implies that the dif-

ference between two scale values, Ui −U j , is
equal to the proportion of times that stimulus
j is judged greater than stimulus i , expressed
as a normal deviate; for example, a propor-
tion of 0.84 would correspond to a difference
of one scale unit.

When the law of comparative judgment is
applied to an actual scaling problem, scale val-
ues are determined for several, not just two,
stimulus values. For example, one might be in-
terested in finding the psychological scale val-
ues of stimuli Si , Sj , Sk , and Sl . The simplest
procedure is to use one of the stimuli, such as
Si , as a standard stimulus to compare to the
other three. The proportions of times that the
psychological attribute is judged greater for
Sj , Sk , and Sl than for Si is determined. These
proportions are then converted to z scores by
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referring to a table of the cumulate Gaussian
distribution. The differences in the psycholog-
ical scale values of Si and each of the other
three stimuli can then be computed.

A similar logic appears in the theory of
signal detection (TSD), as developed by
Tanner and Swets (1954) to apply to prob-
lems of stimulus detection and discrimina-
tion. The theory assumes that the observer’s
task in a discrimination experiment is to de-
cide which of two signals is more intense, and
that, over repeated trials, the effects in the ner-
vous system of these signals are noisy and
therefore produce overlapping distributions.
The observer acts like a statistical hypothesis
tester (Gigerenzer & Murray, 1987), deciding
on each trial the likelihood that one stimulus is
stronger than the other, or that a given stimu-
lus was the stronger or the weaker of the two.
Various measures of discriminability can be
determined from the results. One of these is
d ′, which is interpreted to represent the dis-
tance between the means of the two distri-
butions along the psychological continuum.
Formally, d ′ is equivalent to the difference
in scale values derived from Thurstone’s law
of comparative judgment, so the principles
underlying TSD are inherent in Thurstonian
scaling (Gigerenzer & Murray, 1987; Luce,
1977), making it possible to use TSD meth-
ods to derive psychophysical scales (for ex-
amples, see Braida & Durlach, 1972; Durlach
& Braida, 1969; Luce, Green, & Weber, 1976;
see also Macmillan & Creelman, 1991). For
a thorough account of TSD, see Chapter 2 in
this volume.

Method of Paired Comparison

The method of paired comparison is most of-
ten used to collect data for constructing scales
based on comparative judgments. It is an elab-
oration of the method just described, but in
this case the observer is required to com-
pare all possible pairs of stimuli. Given stim-
uli Si , Sj , Sl , and Sm , an observer compares

Table 3.1 Scale Value Differences and Mean Scale
Values Obtained Using the Method of Paired
Comparison

Si S j Sk Sl Mean

Si — Ui − U j Ui − Uk Ui − Ul Ui

S j U j − Ui — U j − Uk U j − Ul U j

Sk Uk − Ui Uk − U j — Uk − Um Uk

Sl Ul − Ui Ul − U j Ul − Uk — Ul

stimulus pairs Si − Sj , Si − Sk, Si − Sl ,

Sj − Sk, Sj − Sl , and Sk − Sl . The number
of comparative judgments for each pair must
be sufficiently great—at least 100 if the scale
is to be constructed for a single observer. The
number may be reduced proportionally when
the final scale is to be constructed from the
judgments of several observers. Because ev-
ery stimulus is compared to every other stimu-
lus in paired comparison, a matrix can be con-
structed like that in Table 3.1, which gives the
differences between scale values for all pos-
sible nonidentical pairs of stimuli. The final
scale value assigned to each stimulus is the
average of the scale distances between that
stimulus and other stimuli.

Because the law of comparative judgment
provides a model for converting observed pro-
portions of paired comparisons into scale val-
ues, it is possible to reverse the procedure and
calculate proportions from scale values. In the
example of Case V given in the last section,
a difference in scale value of one unit would
correspond to a proportion of 0.84. The pro-
portions calculated from the final scale values
obtained by paired comparison can be com-
pared with those obtained in the experiment.
If the proportions predicted from the model
agree closely with those obtained experimen-
tally, then the results support the application
of the model with its particular assumptions
(see Torgerson, 1958).

When measurable physical stimuli such
as sounds and weights are judged by paired
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comparison and Thurstone’s Case V is ap-
plied, the results are consistent with Fechner’s
law provided that Weber’s law holds. This re-
sult is expected because the assumption that
the variability of discriminal processes is con-
stant for different stimuli in Case V amounts to
the Fechnerian assumption that the subjective
size of the JND is constant. If Thurstone had
proposed a Case VI in which the discriminal
dispersions increase in proportion to sensa-
tion magnitude, then a power function relat-
ing sensation magnitude to stimulus intensity
might have resulted (Stevens, 1959b, 1975).

Thurstone’s model requires that paired
comparisons be transitive. If stimulus A is
preferred over stimulus B and stimulus B
is preferred over C, then stimulus A should
be preferred over stimulus C. Some results,
however, fail to exhibit transitivity. Coombs
(1950, 1964) developed a model to explain
intransitivity as resulting from the observer’s
having a preferred value at an intermediate
point on the psychological dimension, a point
that does not correspond to one of the ex-
tremes. In paired comparison, the observer
may tend to choose the stimulus that is closer
to the preferred value; as a consequence,
the scale is folded around this value. Using
Coombs’s unfolding model, scale values on
the psychological continuum are recovered by
unfolding the continuum using the observer’s
preference data.

There is another possible explanation for
lack of transitivity. Transitivity may fail if the
psychological experiences vary in several di-
mensions rather than just one. This leads to
the topic of multidimensional scaling.

Multidimensional Scaling

Much of psychophysical scaling consists of
attempts to measure an observer’s experi-
ence on a single psychological dimension. For
example, magnitude-estimation, category-
scaling, and discrimination-scaling proce-

dures have often been used to measure the
loudness of sounds, the brightness of lights,
and the intensity of pain. The success of these
procedures depends on the ability of the ob-
server to make appropriate judgments of mag-
nitudes or differences on a single psycholog-
ical dimension while ignoring concomitant
changes along other dimensions. For exam-
ple, in judging loudness an observer must
ignore any change in the pitch of tones that
may occur as the intensity of the stimulus
changes (S. S. Stevens, 1935; see also Gulick,
Gescheider, & Frisina, 1989). The problem is
compounded if the dimension of interest can-
not be clearly defined, especially if the sensa-
tions vary substantially along more than one
dimension. Fortunately, methods of multidi-
mensional scaling (Schiffman, Reynolds, &
Young, 1981) make it possible both to iden-
tify the underlying subjective dimensions as-
sociated with the perception of differences
among stimuli and to assign to each stimulus
a psychological scale value on each of these
dimensions.

Multidimensional scaling provides meth-
ods to derive a unit of measurement that is
common to all of the underlying psycho-
logical dimensions. Measuring the overall
psychological distance between two colored
stimuli that differ in hue (which color), satu-
ration (how much color), and brightness (how
intense) is meaningful only if hue, saturation,
and brightness are measured with a common
unit. In multidimensional scaling, observers
typically judge the overall similarity or dis-
similarity of all possible stimulus pairs in an
ensemble, and it is assumed that the judgments
depend on some kind of integration of com-
mensurable differences along all of the con-
stituent dimensions. From these measures it is
then possible to derive the underlying psycho-
logical dimensions mathematically and, for
each stimulus, to determine scale values on
each dimension. To do this, one often needs to
know nothing more than the rank orders of the
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overall similarities, that is, which two stimuli
are most similar, which are next, and so forth.
Given a sufficiently large set of stimuli, the
rank-order information suffices to determine
a metric structure (Shepard, 1966).

The dimensions revealed by multidimen-
sional scaling can often be represented in a
multidimensional space. A common assump-
tion is that the multidimensional space is
euclidean. Euclidean space is the space of
everyday experience, where any point in space
can be defined in terms of a set of coordinates
and the shortest distance between two points
is a straight line. For example, in the two-
dimensional space of Figure 3.4, each point
is specified in terms of values of X and Y . If
one knows the coordinate values for any two
points within the euclidean space, it is pos-
sible to compute the distance between points
from the Pythagorean theorem. The principle
is illustrated for points A and B, where the dis-
tance between i and j (Di j ) is determined by

Di j = [(Xi − X j )
2 + (Yi − Y j )

2]1/2.

In traditional nonmetric multidimensional
scaling, the distances between stimuli are es-
timated from experimental observations, and
a quantitative model is used to compute the
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Figure 3.4 Two-dimensional space illustrating
euclidean distance and city-block distance.

coordinate values for each stimulus. On suc-
cessive iterations, the distances between the
stimuli are adjusted and then compared to the
rank order of the data. Iterations end when
any improvement in goodness of fit falls be-
low a predetermined threshold. The number of
dimensions is fixed for a given computation,
but it is possible to iterate the computation as-
suming different numbers of dimensions. A
solution is accepted when adding dimensions
no longer substantially improves the fit to
the data, or the additional dimensions are not
readily interpretable. An example appears in
Figure 3.5, in which a model called ALSCAL
was used to recreate a map of the positions of
cities in the United States from a rank ordering
of their distances (Schiffman et al., 1981).

Euclidean space is easily understood when
depicted graphically. Another type of space,
also easy to understand graphically, is a city
block, in which the distance between stimuli is
given as the sum of the individual component
distances along the individual dimensions,

Di j = (Xi − X j ) + (Yi − Y j ).

In New York City, to go from 41st Street and
1st Avenue to 42nd and 2nd Avenue, one must
either walk from 41st to 42nd, then from 1st

Figure 3.5 ALSCAL analysis of intensity of
flying distances.
SOURCE: From Schiffman, Reynolds, & Young,
1981. Copyright ©1981 by Academic Press, Inc.
Reproduced by permission.
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to 2nd, or vice versa—a city-block path. In
euclidean space, one traverses the diagonal
(presumably by passing through the interme-
diate buildings). Torgerson (1958) pointed out
that city-block representations of distances
seem to fit the data better when the psycho-
logical dimensions are obvious to the ob-
server. This conjecture is supported by re-
sults of Attneave (1950), in which a city-block
space provided the best representation of sim-
ilarity judgments of visual stimuli that var-
ied along such clearly distinguishable dimen-
sions as form, size, and hue. Euclidean space
may represent the data better when the ob-
server does not easily separate the dimensions
such as pitch and loudness or hue and sat-
uration. Note, however, that it is not always
easy to distinguish the fit of city-block and
euclidean models (see Schneider & Bissett,
1981).

The generalized formula that describes the
distance, D, between two points in euclidean
or city-block space is

D =
( ∑

dn

)1/n

where d is the distance along one of the com-
ponent dimensions and n is equal to or greater
than 1. In city-block space, n = 1, and in
Euclidean space, n = 2. Both of these multidi-
mensional spaces are examples of Minkowski
n metrics. Minkowski metrics with values of
n other than 1 or 2 are more difficult to con-
ceptualize but sometimes provide superior fits
(e.g., Gregson, 1965, 1966).

The attractiveness of multidimensional
scaling derives from the presumed properties
of the space formed by the dimensions ex-
tracted. According to Melara (1992), there
are two fundamental characteristics associ-
ated with this space: First, it serves as a
psychological model, and second, it provides
a metric. As a model, the spatial relations
among stimuli, defined by the values of the
coordinates of the space, provide a represen-

tation of the psychological similarities among
stimuli.

Psychologically similar stimuli fall close
to one another in multidimensional space,
and psychologically dissimilar stimuli fall
far apart. For the distances between pairs of
points to satisfy the requirements of a met-
ric, three conditions must be satisfied (Beals,
Krantz, & Tversky, 1968). First, symmetry is
demonstrated when the distance from X to Y
equals that from Y to X . Second, positivity
dictates that distances can never be negative.
And third, the triangle inequality requires that
the sum of distances X to Y plus Y to Z can
never be smaller than the distance between
any two of them (e.g., X to Z ). These three
conditions, called metric axioms, must be sat-
isfied in order to measure the observers’ expe-
riences as they vary along multiple psycholog-
ical dimensions (see also Luce & Krumhansl,
1988).

Several analytic strategies are available
for multidimensional scaling (see Schiffman
et al., 1981). Typically, one seeks to es-
tablish the minimal number of dimensions
needed to represent the data adequately and,
for each stimulus, to establish scale values on
each dimension. Because measures of good-
ness of fit improve as the number of dimen-
sions increases, one must decide when the
fit of the model to the proximities (similari-
ties or differences) no longer substantially im-
proves with additional dimensions. Detailed
information regarding empirical methods and
analytic strategies can be found in sources
specifically devoted to the topic (e.g.,
Davison, 1983; Schiffman et al., 1981).

SCALING BY PARTITION AND
MAGNITUDE METHODS

Partition methods and magnitude methods of
psychophysical scaling require observers to
estimate or compare directly the subjective
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magnitudes of stimuli or the differences be-
tween stimuli. These methods developed
largely as doubts grew about the validity of
scales derived indirectly by applying the logic
of Fechner and Thurstone to measures of sen-
sory discrimination. Whereas scaling meth-
ods grounded in discrimination data call on
observers to make ordinal judgments about
sensations, partition-scaling and magnitude-
scaling methods call on observers to make
more sophisticated judgments of the relation-
ships among the subjective magnitudes, such
as their subjective difference or ratio.

Partition Scaling

Methods of partition scaling are designed to
construct interval scales of psychological at-
tributes directly from the judgments of ob-
servers. In these methods, observers try to par-
tition the psychological continuum into equal
perceptual intervals. Two main methods, eq-
uisection scaling and category scaling, have
been developed to accomplish this objective.
In equisection scaling, observers adjust the
values of stimuli to set off equal-appearing in-
tervals of sensations, and in category scaling,
observers label various stimuli so that succes-
sive labels represent uniform subjective steps.

Equisection Scaling

As the name implies, equisection scaling re-
quires observers to section the psychologi-
cal continuum into distances that are judged
equal. For instance, an observer may be told
that stimulus A represents the lowest value
and stimulus D the highest value of the range,
and then may be asked to set the levels of stim-
uli B and C so that the distances between A
and B, B and C, and C and D are all equal. Be-
cause observers are instructed to adjust stim-
uli so that successive intervals or differences
are equal, it is commonly assumed that the
results provide interval-scale measurement of
the psychological attribute. But the interval

properties of the scale need to be validated
independently. Unfortunately, validation pro-
cedures are often not used even when the
psychological attribute has never before been
scaled by the method.

The bisection method, originally used by
Plateau (1872), was the earliest version of eq-
uisection. In bisection, two stimuli, A and
C, are presented for inspection, and the ob-
server is asked to choose a third stimulus,
B, that falls exactly between, so that the dis-
tance from A to B equals that from B to C.
Thus, Plateau had artists paint a gray that
was midway between black and white. Gen-
erally, in equisection scaling experiments, the
observer sections more than two intervals
on the psychological continuum. Munsell,
Sloan, and Godlove (1933) used equisection
to construct a psychophysical scale of the
lightness of grays. Beginning with black and
ending with white, observers chose a series
of gray surfaces to divide the psychological
continuum into eight psychologically equal
steps.

There are two techniques for determining
a series of equal sense distances from equi-
section. In the simultaneous solution, the ob-
server is presented with two stimuli and asked
to choose n − 1 intermediate stimuli to create
n equal psychological distances. In construct-
ing the psychophysical scale, subjective mag-
nitudes on the psychological continuum are
represented by any arbitrary series of num-
bers separated by equal numerical intervals
(e.g., 1, 2, 3, 4, 5), and the relevant physi-
cal characteristic of the stimuli correspond-
ing to these equally spaced subjective
magnitudes are determined by physical mea-
surement. The results of the experiment are
generally presented as a psychophysical func-
tion, which shows the scale values of sub-
jective magnitude as a function of the rele-
vant physical dimension of the stimulus. In
this way, for example, one can determine
how the brightness of lights or the pain of



pashler-44093 book December 18, 2001 10:13

108 Psychophysical Scaling

noxious stimuli depends on the intensities of
the stimuli that elicit the experiences.

An alternative approach is the progressive
solution, in which the observer on a given trial
chooses only a single stimulus to bisect a sin-
gle sensory distance. Each of the two smaller
intervals may then be subsequently bisected,
and the procedure continued until one obtains
the desired number of equal psychological in-
tervals. If four equal intervals are desired, for
example, then the interval between the two
end stimuli would be bisected first, and the
two resulting equal intervals would be subse-
quently bisected, first one and then the other.
The simultaneous solution and the progres-
sive solution are illustrated schematically in
Figure 3.6.

A good example of the simultaneous so-
lution is provided by Stevens and Volkmann
(1940), who used the method of equisec-
tion to scale the pitch of pure tones over a
wide range of stimulus frequencies. On dif-
ferent occasions, observers sectioned into four
psychologically equal intervals each of three
overlapping frequency ranges (40–1000 Hz,
200–6500 Hz, and 3000–12000 Hz). For each
of these frequency ranges, the end tones were

Figure 3.6 Sensations that are separated by equal
sense differences as determined by simultaneous
and progressive solutions.
SOURCE: From Gescheider, 1997. Copyright ©
1997 by Lawrence Erlbaum, Inc. Reproduced by
permission.
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Figure 3.7 Three equisection scales of the pitch
of pure tones for three overlapping frequency
ranges.
NOTE: Data of S. S. Stevens and Volkmann (1940).
SOURCE: From Gescheider, 1997. Copyright ©
1997 by Lawrence Erlbaum, Inc. Reproduced by
permission.

fixed in frequency, and the observer adjusted
the frequency of three variable tones to cre-
ate four psychologically equal steps in pitch.
Stevens and Volkmann then assigned numer-
als increasing by unit steps to the five succes-
sive frequencies in each of three frequency
ranges. This procedure resulted in the three
psychophysical functions seen in Figure 3.7.

Because the objective of the experiment
was to construct a single psychophysical func-
tion for pitch, the three component functions
had to be combined into one function ex-
tending over the entire frequency range from
40 to 12000 Hz. To accomplish this, S. S.
Stevens and Volkmann (1940) used a graphic
procedure to construct a single function that
maximized overlap of the three component
functions while at the same time accurately
representing the steps measured within each.
Torgerson (1958) suggested a more system-
atic procedure. For the overlapping portions
of the frequency ranges, he simply plotted the
values in the midrange as a function of the
values in both the lower range and the up-
per range. From the linear functions fitted to
the points, he was able to convert the units of
the lower and upper ranges into the units of the
middle scale, thereby creating a single pitch
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Figure 3.8 Pitch scale for frequencies from 40 to
12000 Hz.
NOTE: The squares, circles, and triangles represent
data obtained from the lower, middle, and upper
frequency ranges, respectively. Data of Stevens and
Volkmann (1940).
SOURCE: From Torgerson, 1958. Copyright ©
1958 by John Wiley & Sons, Inc. Reproduced by
permission of the Social Science Research Council.

scale covering the entire frequency range. The
resulting pitch scale appears in Figure 3.8.

Torgerson (1958) made the important point
that although a scale can always be con-
structed using equisection procedures, the
procedures themselves usually have no built-
in criterion for accepting or rejecting the hy-
pothesis that the observer is in fact capable of
making equal-interval judgments. To demon-
strate that the intervals are indeed mathemat-
ically equal, validating procedures should be
built into the experiment, or additional exper-
iments should be conducted. If, for example,
stimulus B is found in a bisection experiment
to lie halfway between A and C, then B should
also lie halfway between A and C in an eq-
uisection experiment in which the observers
create four intervals by setting three stimuli
between A and C. The equality of sensory in-
tervals means that the intervals or differences
themselves have ratio properties. In this ex-
ample, the psychological distance between A
and C is twice that between A and B or that
between B and C.

The pitch scale of S. S. Stevens and
Volkmann (1940) satisfied one criterion for

validity, namely internal consistency, in that
the scale values obtained for the lower and
upper ranges of stimulus frequency were lin-
early related to the scale values obtained for
the overlapping portion of the middle range.
Indeed, it was this finding that made it pos-
sible to combine scale values from the three
frequency ranges into a single psychophysical
function for pitch.

Category Scaling

Methods of category scaling, like those of
equisection scaling, are designed to measure
psychological attributes on an interval scale.
Category techniques and equisection tech-
niques, however, require the observer to per-
form somewhat different tasks. In equisection
scaling observers must adjust or choose from
a large set those stimuli that serve to mark
off equal distances on the psychological con-
tinuum. In category scaling observers assign
a category label to each of several stimuli in
such a way that the categories are equidis-
tant on the psychological continuum. For ex-
ample, with a five-point category scale, ob-
servers should assign categories to stimuli so
that the distances on the psychological con-
tinuum between categories 1 and 2, between
categories 2 and 3, between categories 3 and 4,
and between categories 4 and 5 are all equal.
The method of equal-appearing intervals is the
simplest version of category scaling, in which
it is assumed that observers are able to keep the
intervals between category boundaries psy-
chologically equal as they assign stimuli to the
various categories. Under this assumption, the
category values assigned to stimuli are treated
as interval scale measures on the psychologi-
cal continuum.

Accurate estimation of scale values re-
quires that a fairly large number of judg-
ments be given to each stimulus. This can
be achieved by having many observers judge
each stimulus once, or by having one observer,
or a few observers, judge each stimulus many
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times. For a particular stimulus, the psycho-
logical scale value of the psychological at-
tribute under investigation is taken as the av-
erage (mean or median) value assigned. A plot
of the average category against the value of the
stimulus reveals the form of the psychophys-
ical function.

Several kinds of response bias can affect
category scales constructed by the method of
equal-appearing intervals. The judgments of
an observer, if determined solely by the per-
ceived magnitude on the psychological con-
tinuum of the stimulus, should be indepen-
dent of the values of other stimuli presented
on other trials. The scale values for a particu-
lar stimulus, however, are often found to de-
pend on the values of other stimuli used in the
experiment. This contaminating effect results
from a strong tendency for observers to use
the categories about equally often. When an
observer is biased to respond in this way, the
particular spacing of the stimuli on the physi-
cal continuum can greatly influence the form
of the psychophysical function. If, for exam-
ple, the function relating the mean ratings to
stimulus intensity is negatively accelerated,
then the curvature will tend to be exagger-
ated if the observers are presented a cluster
of low-intensity stimuli and only a few high-
intensity stimuli. In this case, observers tend
to assign all but a few of the highest cate-
gories to the weak stimuli, leaving the re-
maining one or two categories for the strong
ones. The result is an exaggeration of the dis-
tances among the low-intensity stimuli. The
same tendency can reduce the curvature if
the observers are presented many stimuli near
the high end of the stimulus continuum and
only a few at the low end. The effects of stimu-
lus spacing are illustrated in Figure 3.9. In this
hypothetical example, when the stimuli clus-
ter near the low end of the stimulus range, the
curvature of the function is very negatively ac-
celerated, whereas the function is almost lin-
ear when the stimuli cluster near the high end.

Figure 3.9 Hypothetical example of the effects
of stimulus spacing on the form of the category
scale.
SOURCE: From Gescheider, 1997. Copyright ©
1997 by Lawrence Erlbaum, Inc. Reproduced by
permission.

Parducci (1965, 1974) developed a range-
frequency model for category scaling. Ac-
cording to this model, the observer’s distribu-
tion of categorical responses depends on both
the range of the stimuli and the frequency with
which various stimuli are presented. Specifi-
cally, Parducci proposes that observers tend to
divide the stimulus range into equal intervals
over which they distribute their response cate-
gories. According to the first part of the model,
observers use all of the categories regardless
of whether the stimulus range is narrow or
wide, so the slope of the resulting function is
inversely related to the range of the stimuli.
According to the second part of the model,
observers assign categories equally often in-
dependent of the frequency with which vari-
ous stimuli are presented, so the curvature of
the resulting function depends on the stimulus
distribution.

Skewing the frequency distribution of
stimulus presentations positively, so that weak
stimuli are presented more often than strong
ones, causes observers to distribute their re-
sponses widely over the range of weak stim-
uli, leaving only a few high categories for the
strong stimulus levels. The resulting category
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scale, when plotted against stimulus intensity,
becomes more negatively accelerated than it
is when the distribution is uniform. On the
other hand, skewing the frequency distribu-
tion of stimulus presentations negatively, so
that the strong stimuli are presented most of-
ten, causes observers to distribute their re-
sponses widely over the strong stimuli, leav-
ing relatively few categories for the weak
stimulus levels. In this case, the resulting psy-
chophysical function is less negatively ac-
celerated than one obtained with a uniform
stimulus distribution, and may even become
positively accelerated.

The problems that arise in category scaling
as a result of the tendency to use categories
equally often can be minimized, according to
S. S. Stevens and Galanter (1957), through
the use of an iterative procedure requiring ob-
servers to scale the stimuli successively sev-
eral times. In the first scaling, the spacing of
the stimuli is arbitrary, and a scale is con-
structed from the category judgments. This
scale gives a first approximation to the uncon-
taminated scale. A new series of stimuli is then
chosen with these stimuli separated by equal
distances as defined by the first scale. Using
a new group of observers, a second scale is
determined. The second scale is then used to
define yet another set of stimuli, spaced to give
equal distances on that scale, and a third set of
ratings is obtained. The procedure continues
until successive scales no longer differ, indi-
cating that an uncontaminated scale has been
achieved by neutralizing the effects of the ob-
servers’ expectation that the stimulus series
is arranged so that categories appear equally
often (see also Pollack, 1965a, 1965b).

Another approach to minimizing these re-
sponse tendencies is to provide the observers
with a verbal label for each category. Un-
der appropriate conditions, the verbal labels
may provide landmarks or anchors that help
the observers to resist tendencies to assign
categories equally often (e.g., Borg & Borg,

1994). An example is Borg’s (1972) rating of
perceived effort (RPE) scale, in which ver-
bal labels are applied to perceived exertion
experienced in exercise, such as riding a sta-
tionary bicycle under various work loads. In
its earliest version, the highest number on the
RPE scale is 20 and has the verbal label of
“maximal exertion,” and the lowest number
on the scale is 6 and has a label of “no ex-
ertion at all”—these values being chosen to
equal about 10% of the corresponding heart
rate (200 to 60 beats/min) induced in young
observers. Between the values of 6 and 20 are
seven descriptive labels, uniformly distributed
along with the numerical scale values; experi-
mental results showed that RPE judgments are
linearly related to the work loads during exer-
cise as measured by the bicycle ergometer. A
major advantage of the RPE scale compared
to unlabeled category scales lies in the use of
the label “maximal exertion,” which presum-
ably represents an experience common to all
observers. Men and women, for example, pre-
sumably experience a similar level of exertion
at maximum, even though the levels of phys-
ical work differ, as in Figure 3.10. Borg has

Figure 3.10 Borg’s (1972) scale of perceived
exertion.
SOURCE: From Gescheider, 1997. Copyright ©
1997 by Lawrence Erlbaum, Inc. Reproduced by
permission.
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argued that this method makes it possible to
compare individuals and groups directly.

In addition to producing consistent results,
the use of verbally labeled category scales
seems to reduce the susceptibility of cate-
gory scales to some of the potentially bias-
ing effects of stimulus spacing. Ellermeier,
Westphal, and Heidenfelder (1991) had ob-
servers rate the pain produced by pressure ap-
plied to the finger. Observers were instructed
to rate pain by first determining into which
of the following categories each stimulus fell:
very slight pain, slight pain, medium pain, se-
vere pain, or very severe pain. After choos-
ing a verbal category, the observers then had
to fine-tune the rating by giving a numerical
rating on a 10-point scale within each cat-
egory. Thus, the number ranges within cat-
egories were very slight pain (1–10), slight
pain (11–20), medium pain (21–30), severe
pain (31–40), and very severe pain (41–50).
As seen in Figure 3.11, when observers rated
pain produced by stimulus sets containing rel-
atively low or high intensities, they showed
only a small tendency to give the same range
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Figure 3.11 Category ratings of pain as a
function of pressure applied to the fingertip for
stimuli in a low range and stimuli in an overlapping
higher range of intensities.
SOURCE: From Ellermeier, Westphal, &
Heidenfelder, 1991. Reproduced by permission.

of category judgments to both stimulus sets.
Instead, the category judgments tended to re-
flect more closely the absolute levels of the
stimuli presented. Ellermeier et al. concluded
that the verbal labels provided a Bezugssys-
tem (reference frame), derived from an accu-
mulation of everyday experiences, for mak-
ing category ratings that are independent of
the context of the particular stimuli presented
in the testing session (Heller, 1985). When
the observers are given only numerical la-
bels as categories, with no verbal descriptors,
then the observers tend to use the numbers
to categorize any given set of stimuli relative
to one another instead of categorizing them
within the broader frame of reference of expe-
riences obtained outside, as well as inside, the
laboratory.

Although verbally labeled category-
scaling procedures may encourage observers
to categorize stimuli according to an exter-
nal frame of reference and thus may help
minimize certain response biases, they may
introduce others. For example, the form of
the psychophysical function may be influ-
enced by the experimenter’s arbitrary choice
of the numbers assigned to the various labels
(Gescheider, 1997). Therefore, when using
verbally labeled category scales, it is impor-
tant that the assignment of numbers to verbal
categories not be arbitrary but have a well-
developed rationale.

Category scaling, like equisection, pur-
ports to provide measurements on an interval
scale; as mentioned earlier, however, deciding
whether it does depends on deeper theoretical
considerations. If we assume that the psycho-
logical representation of a set of stimuli, the
values of sensation magnitude, are indepen-
dent of the particular psychophysical task or
method used to measure them, then what does
it mean when two different versions of cate-
gory scaling produce ratings that are nonlin-
early related to each other, or when category
ratings are nonlinearly related to magnitude
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estimations? How is it possible to decide
which scale, if either, is valid?

Functional Measurement

One approach to validation has emerged from
the work of Anderson (1970, 1974, 1976,
1982, 1992) on integration psychophysics,
which focuses on measuring how separate
perceptual components combine, as when the
taste and smell of a fine wine merge to pro-
duce the perceptual experience that we might
describe as its exquisite flavor. To see how
psychological values combine, Anderson has
developed an approach called functional mea-
surement. In functional measurement, two or
more stimuli produce separate subjective im-
pressions. When the stimuli are combined,
these impressions are integrated by some rule,
often referred to as cognitive algebra, and the
observer is asked to rate the overall impres-
sions. The cognitive algebra is revealed by
examining how the observer’s ratings change
when the combination of stimuli changes.
Typically, an experimenter presents stimuli in
all possible combinations to an observer, who
rates the combinations on some psychological
dimension. If the effects of the stimulus com-
ponents combine according to a simple rule,
such as linear addition, and if responses are
linearly related to the underlying psycholog-
ical values, then the scale values will reveal
the algebraic rule directly.

Within this framework, Anderson (e.g.,
1974) has advocated the use of category scales
that have at least 20 values, or continuous
rating lines (sometimes called visual-analog
scales), because results obtained with these
scales, but often not with other scales, reveal
that the integration of perceptions obeys sim-
ple, theoretically interesting algebraic rules of
combination. If the scale is not linearly related
to the underlying psychological values but a
simple rule such as linear addition does under-
lie them, then it may nevertheless be possible
to retrieve the underlying algebraic structure,

and thus the underlying scale values, by ap-
propriately rescaling the results (see the sec-
tion titled “Examples of Partition Scaling and
Magnitude Scaling”).

Closely related to functional measurement
is the axiomatic approach called conjoint mea-
surement (Luce & Tukey, 1964). If the rank-
order properties of the data are consistent with
axioms of transitivity and cancellation, then
there is an underlying additive structure, and
analytic methods of conjoint scaling make it
possible to retrieve scale values that are con-
sistent with additivity. Conjoint scaling may
be applied to rating-scale data, but it may be
applied just as readily to paired comparisons,
as the method is nonmetric.

Anderson (1982) reported, for example,
that children as young as three years of age
are able to integrate cognitive information by
adding effects together. It has been found, for
example, that the judged naughtiness of an act
depends on the linear sum of the perceived
harm or damage of the act and the perceived
intention of the offender (Leon, 1980). The re-
sults seem to validate simultaneously the psy-
chological principle of additivity of psycho-
logical impressions and the category-scaling
procedure. Because categorical judgments of-
ten indicate simple algebraic rules for the in-
teraction of impressions, Anderson and his
associates have taken the results to support
the validity of the category scales themselves.
Note, however, that this approach presumes
that when category scaling reveals simple al-
gebraic rules but other methods reveal more
complex ones, the latter are invalid. Though
perhaps parsimonious, the conclusions need
not be correct.

Consider the example of loudness summa-
tion. It has long been known that the loudness
of two acoustic signals that lie very close in
frequency (within a critical band) depends on
the total sound energy; that is, sound ener-
gies sum linearly within a critical band (e.g.,
Scharf, 1959). In a functional measurement
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paradigm using tones falling within a critical
band, if judgments of loudness were linearly
related to sound energy, then the judgments
would reveal an additive structure. This out-
come might lead one to infer that the judg-
ments are necessarily valid and that loud-
ness is a linear function of sound energy. But
other considerations indicate that loudness is
nonlinearly related to sound energy, and that
the rule describing the combination of loud-
nesses within a critical band is not additive,
in that the components mask each other (see
Marks, 1979). As Gescheider (1997) noted,
functional measurement may be verified if
there is an independent way to test the as-
sumed cognitive algebra. If not, then the claim
that category scales are valid because the re-
sults suggest simple a cognitive algebra is
insufficient.

Estimating Perceptual Differences

Another approach to partition scaling is to
have observers judge sensory differences be-
tween stimuli. In one version of the method,
observers are asked to give numerical rat-
ings to perceptual intervals defined by pairs
of stimuli. For example, an observer could use
a category scale (or magnitude estimation) to
judge the perceived differences between stim-
ulus i and stimulus j , between stimulus j and
stimulus k, between stimulus i and stimulus k,
and so forth. If the sensations corresponding
to stimuli i, j, and k lie on a single psycho-
logical dimension and if the judgments are
linearly related to the underlying psychologi-
cal differences, then the results should be nu-
merically consistent; that is, the judged differ-
ence between i and k should equal the sum of
the judged difference between i and j and the
judged difference between j and k.

A simpler version of the method asks ob-
servers to make only ordinal judgments of the
intervals, for example, to decide whether the
perceptual interval defined by stimuli i and j
is greater or smaller than the interval defined

by stimuli k and l. Here, the objective is to rank
the perceptual differences from the smallest
to the greatest. Because the set of rank or-
ders constrains the metric properties of the
scale (given a sufficient number of stimulus
values), from the ranking of perceptual differ-
ences it is possible, by using a mathematical
procedure of nonmetric scaling (akin to the
methods used in multidimensional scaling),
to construct an interval scale of perceptual
magnitude. That is, simply by knowing the
rank order of perceptual differences and the
corresponding stimulus pairs, it is possible to
establish a psychophysical function describ-
ing the relationship between the magnitude
of a perceptual attribute and the correspond-
ing physical values of the stimulus (Shepard,
1966). Even if the data are collected with a nu-
merical procedure, such as category rating or
magnitude estimation, there may be reasons to
use only the rank order information. To per-
form the nonmetric scaling, the rank ordering
of the intervals must exhibit two properties.
One is weak transitivity

if Si S j > Sj Sk and Sj Sk > Sk Sl ,

then Si S j > Sk Sl

and the other is monotonicity

if Si S j > Sk Sl and Sj Sk > Sm Sn,

then Si Sk > Sl Sn

(for review, see Marks & Algom, 1998).
The results obtained with this method, as

with some category-rating methods and many
magnitude-scaling methods, commonly indi-
cate that sensation magnitude increases as
a power function of stimulus intensity, al-
though the exponents are consistently smaller
than those obtained with methods such as
magnitude estimation. Much of the work us-
ing this method has focused on the problem
of constructing scales of loudness (Algom
& Marks, 1984; Parker & Schneider, 1974;
Popper, Parker, & Galanter, 1986; Schneider,
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Figure 3.12 Loudness scale constructed from a
nonmetric scaling procedure.
SOURCE: From Schneider, Parker, & Stein, 1971.
Copyright ©1974 by Academic Press, Inc. Repro-
duced by permission.

Parker, & Stein, 1974). The results plotted in
Figure 3.12, from a study by Schneider et al.
(1974), illustrate a typical loudness scale ob-
tained with the method of nonmetric scaling
of perceptual differences.

Magnitude Scaling

Measurement of physical properties on ra-
tio scales is highly desirable because ratio
scales contain characteristics of order, dis-
tance, and origin while retaining maximal cor-
respondence with the number system. That the
virtues of ratio scales are equally applicable
to psychophysical measurement was recog-
nized as far back as 1888, when Merkel con-
ducted experiments to determine the change
in a stimulus that doubled the magnitude of
a sensation. A similar procedure was used by
Fullerton and Cattell (1892), who asked ob-
servers to adjust a stimulus to produce a sen-
sation that was some fraction or multiple of
the sensations produced by a standard stim-
ulus of fixed intensity. The procedure, called
ratio production, results in ratio scales of sen-
sation if the stimuli do in fact define a sensory
ratio and if it is possible to specify the ratio’s
numerical value. It was not until the 1930s,
however, when acoustical engineers became

concerned with the problem of numerically
specifying psychological values of loudness,
that techniques for ratio scaling of sensations
began to be used widely.

The practical problem of constructing
scales for loudness arose out of an obvious
failure of Fechner’s law. The law had been
accepted by those acoustical engineers who,
when they converted sound intensity to the
logarithmic decibel scale, thought they had
thereby also quantified the loudness of sound.
It soon became apparent, however, that the
decibel scale conflicted with direct experi-
ence of loudness; an 80-dB sound appears
to most people to be much more than twice
as loud as a 40-dB sound. Consequently, nu-
merous studies were conducted in the 1930s
in an attempt to construct ratio scales of
loudness (e.g., Fletcher & Munson, 1933,
Geiger & Firestone, 1933; Ham & Parkinson,
1932; Richardson & Ross, 1930; Rschevkin &
Rabinovich, 1936).

This endeavor started with the work of
Richardson and Ross (1930), who were the
first to use the method that S. S. Stevens
(1953) later called magnitude estimation. In
Richardson and Ross’s study, observers lis-
tened to a standard tone and were told that
its loudness should be represented by the nu-
meric response “1.” The observers were then
asked to give other numbers to test tones that
varied in intensity in proportion to the num-
ber “1” associated with the standard. When
the numerical judgments were plotted against
sound intensity, the result was a power func-
tion, rather than the Fechnerian logarithmic
function. The observers’ loudness judgments
were proportional to the sound pressure raised
to the power of 0.44 or, equivalently, propor-
tional to sound energy raised to the power
of 0.22.

A procedure for measuring loudness on a
ratio scale that did not require the observers
to assign numbers was developed by Fletcher
and Munson (1933). They began with the
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assumption that listening to a tone with two
ears instead of only one doubles the tone’s
loudness. By determining the intensity of a
sound presented to two ears (φ*) that sounds
as loud as a given sound presented to one
ear (φ), Fletcher and Munson could calculate
the sound intensities that corresponded to a
2:1 ratio of loudness—in this case φ should
have twice the loudness of φ* when both are
heard with just one ear. Fletcher and Munson
obtained confirming evidence first by mak-
ing the parallel assumption that the loudness
of tones widely separated in sound frequency
(falling in separate and non-overlapping crit-
ical bands) sums linearly and then by collect-
ing comparable loudness matches.

From monaural and binaural loudness
matches and from matches of single tones to
complex tones, Fletcher and Munson (1933)
constructed the loudness scale seen in Fig-
ure 3.13. When loudness is plotted on a log-
arithmic axis as a function of the logarithmic
decibel scale, the linear function reveals that
between 40 and 100 dB SPL loudness is a
power function of sound intensity (exponent
of 0.30 in terms of sound energy or 0.60 in
terms of sound pressure). The log-log slope
of the loudness function becomes steeper at
lower sound intensities and is approximately
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Figure 3.13 The loudness scale derived by
Fletcher and Munson (1933), plotted against sound
intensity in decibels.

proportional to sound energy (the square of
pressure) near threshold.

Magnitude Estimation

One of the most popular scaling methods used
in current investigations is magnitude esti-
mation, the method first used by Richardson
and Ross (1930) and then elaborated by S. S.
Stevens (1953, 1955, 1975). In magnitude es-
timation, observers are asked to make direct
numerical estimates of the perceptual magni-
tudes produced by various stimuli. Stevens,
whose name is most closely associated with
the early use of this method, conducted nu-
merous experiments using magnitude estima-
tion to study brightness, loudness, and other
sensory continua. Experiments on loudness
typically produced a power function with an
exponent of 0.3, in excellent agreement with
the scale derived by Fletcher and Munson
(1933) from the loudness-matching proce-
dure just described. Since the publication of
Stevens’s original papers on the topic, the re-
sults of hundreds of experiments, conducted
on many perceptual dimensions and under
many stimulus conditions, have revealed that
the numeric responses R of observers in mag-
nitude estimation as stimulus intensity φ is
varied can be described by a power func-
tion with exponent β and constant k in the
equation

R = kφβ.

Based on such findings, Stevens (1957, 1975)
proposed a power function as the psychophys-
ical law to replace Fechner’s logarithmic for-
mulation. This hypothesis, which has become
widely known as Stevens’s power law, is

ψ = kφβ

where ψ is sensation magnitude. Implicit in
Stevens’s hypothesis was his assumption that
the average observer’s responses are propor-
tional to the magnitude of the sensory experi-
ence (R ∝ ψ).
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S. S. Stevens (1957, 1958) described two
main versions of magnitude estimation. In
one, the observer is presented with a stan-
dard stimulus and is told that the sensation it
produces has a certain numerical value called
the modulus. On subsequent trials, the ob-
server tries to assign numbers to the sensa-
tions produced by other stimuli relative to
the assigned value of the modulus. The ob-
server is instructed to make judgments, on
a particular sensory dimension, that reflect
how many times one sensation is greater than
another sensation (the ratio between the
sensation of the modulus and that of the test
stimulus). Generally, approximately 8 to 12
stimulus values are used, and each is presented
two or three times in random order to several
observers. The data are combined by calculat-
ing the median or geometric mean response
given to each stimulus by each observer, then
by calculating overall averages (median or ge-
ometric mean) across all observers. Geomet-
ric means are commonly used because the log-
arithms of magnitude estimates tend to be nor-
mally distributed, and because the standard
deviation tends to increase linearly with the
mean. Arithmetic means are seldom used be-
cause their values may be greatly affected by
a few unrepresentative high judgments. Fur-
ther, geometric averaging can preserve char-
acteristics of psychophysical functions that
are lost in arithmetic averaging. If different
observers give power functions with different
exponents, then geometric averaging yields a
power function whose exponent is the arith-
metic average of the individual exponents,
whereas arithmetic averaging may yield a re-
sult that is inconsistent with a power function.

In the other version of magnitude esti-
mation, the standard stimulus with its
experimenter-defined modulus is omitted. In-
stead, the various stimuli are randomly pre-
sented to the observer, who assigns numbers to
sensations in proportion to their magnitudes.
Instructions to the observer may be modeled

after the following example, provided by S. S.
Stevens (1975, p. 30):

You will be presented with a series of stimuli in
irregular order. Your task is to tell how intense
they seem by assigning numbers to them. Call
the first stimulus any number that seems appro-
priate to you. Then assign successive numbers
in such a way that they reflect your subjective
impression. There is no limit to the range of
numbers that you may use. You may use whole
numbers, decimals, or fractions. Try to make
each number match the intensity, as you per-
ceive it.

Because observers have a strong tendency
to use numbers that appear to match naturally
the magnitudes of perceived stimuli, biases
may arise when observers are given a standard
stimulus and modulus chosen by the experi-
menter (Hellman & Zwislocki, 1961). There-
fore, it is generally considered better to allow
the observer to choose the modulus rather than
to designate one. In either method, the average
of the numbers assigned to a particular stim-
ulus defines the psychological scale value for
that stimulus, and a plot of the scale values as
a function of some property of the stimulus
constitutes the psychophysical function. Be-
cause extensive practice is not necessary and
because it often suffices to present each stim-
ulus only a few times to each observer, mag-
nitude estimation can be used in experiments
that vary several parameters of the stimulus.

An experiment by J. C. Stevens and Marks
(1971) illustrates how the method of magni-
tude estimation has been used to investigate
sensory information processing. The prob-
lem under investigation was spatial summa-
tion in the perception of warmth. At the detec-
tion threshold, spatial summation is expressed
as the inverse relationship between the inten-
sity of a stimulus required to detect a stimu-
lus and the size (areal extent) of the stimulus
(Kenshalo, Decker, & Hamilton, 1967). As
the area of the stimulus applied to the skin
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is made larger, the increase in temperature
needed to detect a sensation of warmth de-
creases. Indeed, to elicit a threshold sensa-
tion, it is roughly the total heat applied to the
skin—the product of the intensity (energy per
unit area) and area—that is critical.

J. C. Stevens and Marks (1971) were in-
terested in how the intensity and area of a
stimulus combine to produce warmth sensa-
tions above the detection threshold. In their
experiment, observers gave magnitude esti-
mates of the warmth produced by radiant heat
emitted from a lamp positioned near the back
or the forehead. The data in Figure 3.14 are
geometric means of the magnitude estimates,
plotted as a function of stimulus intensity for
stimuli of different sizes applied to the fore-
head. Spatial summation is indicated by the
greater estimates given to larger areas of stim-
ulation for any particular stimulus intensity. It
is clear, however, that the area of the stimu-
lus has a diminishing effect on the judgments
of warmth as stimulus intensity increases. In
fact, extrapolating the functions for different
areas of stimulation indicates that spatial sum-
mation should disappear at an intensity of
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Figure 3.14 Magnitude estimation of warmth as
a function of stimulus intensity on the forehead for
several different areas of stimulation.
SOURCE: From J. C. Stevens & Marks, 1971.
Reprinted by permission.

about 800 mW/cm2, a level corresponding to
the threshold for pain. Because body heating
(thermal load) is determined by the total en-
ergy integrated over large body areas, it is ad-
vantageous to sense warmth in this way. On
the other hand, because tissue damage due to
burning depends more on the absolute tem-
perature of the skin than on total energy ab-
sorbed, it is biologically advantageous to feel
pain once the temperature of any portion of the
skin reaches a critical level (Marks, 1974a).

The description of this experiment on
warmth perception illustrates how magni-
tude estimation has been used to investigate
the complex problem of sensory function. The
method has become a valuable tool for the
study of sensory processes, but it has not been
restricted to the research on the senses. The
simplicity of magnitude estimation makes it
easily applicable to the scaling of any psy-
chological attribute. For example, attributes
as different as the brightness of lights (J. C.
Stevens & Stevens, 1963), the psychological
worth of money (Galanter, 1962), the judged
severity of crimes (Sellin & Wolfgang, 1964),
the perception of emotional stress (Holmes &
Rahe, 1967), and the pain of labor contrac-
tions (Algom & Lubel, 1994) have all yielded
to magnitude estimation.

Magnitude Production

Magnitude production, often used in conjunc-
tion with magnitude estimation, is the inverse
procedure. In magnitude production, an ob-
server is given numerical values of sensa-
tion and is asked to adjust stimuli to produce
the corresponding sensory magnitudes. The
psychophysical function is constructed by
plotting the prescribed values of sensation
magnitude against the average settings of the
stimulus.

The use of magnitude-production and
magnitude-estimation procedures in the same
scaling experiment has been proposed as a
way to offset systematic errors inherent in
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either method (S. S. Stevens, 1958). For exam-
ple, many observers tend to exhibit what has
been termed a regression effect, where they
appear reluctant to make extremely low or ex-
tremely high responses. Thus, magnitude esti-
mates given to very weak stimuli may be “too
large,” and those given to strong stimuli may
be “too small.” Analogously, stimuli in mag-
nitude production may be set too high when
observers are given small numbers and too
low when given high numbers. The so-called
regression effect is typically seen as a reduc-
tion in the log-log slope of a psychophysical
function obtained with magnitude estimation
but as an increase in the slope of a function
obtained with magnitude production.

The regression effect is illustrated in Fig-
ure 3.15, which shows the results of experi-
ments on loudness reported by Stevens and
Guirao (1962). Each data point is the geo-
metric mean of two magnitude estimations or
two magnitude productions given by each of
10 observers. Because of the regression ef-
fect, the sensation-magnitude functions are
steeper in magnitude production than in mag-
nitude estimation (although the direction may
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Figure 3.15 Loudness of a 1000-Hz tone as de-
termined by magnitude estimation (open circles)
and magnitude production (filled circles). Data of
S. S. Stevens and Guirao (1962).

reverse when the range of stimuli or num-
bers is very small; see R. Teghtsoonian &
Teghtsoonian, 1978). When the functions dif-
fer in this way, it is generally assumed (al-
beit not proven) that the unbiased function
lies somewhere between the two, and thus it is
advisable to combine the results by some pro-
cedure. Hellman and Zwislocki (1963) have
recommended using a method of numerical
magnitude balance, in which the functions ob-
tained by magnitude estimation and magni-
tude production are geometrically averaged.

Absolute Magnitude Estimation

The method of absolute magnitude estimation
derives from the notion that for an individual
observer, at any moment in time, there is an
absolute connection between the observer’s
conception of the magnitude of a number and
the observer’s perception of sensory magni-
tudes. If so, then observers behave as though
scale values defined by these numbers are ab-
solute and, unlike ratio scales, cannot be trans-
formed even by multiplication by a positive
constant. Operationally, the implication is that
the assignment of a “deviant” numerical mod-
ulus to a stimulus will distort the resulting
magnitude estimation scale.

Hellman and Zwislocki (1961) argued that
observers tend to use absolute values rather
than ratio relations when giving magnitude
estimates of sensation. In their experiment,
they found that the ratio of magnitude estima-
tions given to a fixed pair of stimuli depended
strongly on the value of the modulus assigned
to the standard stimulus. By this time, S. S.
Stevens (1956) had already recognized the
distortions that may arise from the use of a
standard stimulus and an arbitrary modulus.
Consequently, he recommended dropping the
use of the standard stimulus so that observers
could choose their own modulus when assign-
ing a number to the stimulus presented on the
first trial. As evidence that the modulus chosen
by observers on the first trial is not arbitrary,
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there is a fairly high correlation between the
numbers chosen on the first trial by differ-
ent observers and the intensity of the stimulus
presented.

These findings and others eventually led
to the development of a method called abso-
lute magnitude estimation (AME; Zwislocki,
1983; Zwislocki & Goodman, 1980), in which
the observers are instructed to assign a num-
ber to each stimulus so that the subjective
magnitude of the number matches that of the
stimulus and to ignore numbers assigned to
preceding stimuli. The following instructions
are a generalized version of those used by
Zwislocki and Goodman (1980).

In this experiment, we would like to find out
how intense various stimuli appear to you. For
this purpose, I am going to present a series of
stimuli to you one at a time. Your task will be
to assign a number to every stimulus in such
a way that your impression of how large the
number is matches your impression of how in-
tense the stimulus is. You may use any positive
numbers that appear appropriate to you—whole
numbers, decimals, or fractions. Do not worry
about running out of numbers—there will al-
ways be a smaller number than the smallest you
use and a larger one than the largest you use. Do
not worry about numbers you assigned to pre-
ceding stimuli. Do you have any questions?

These instructions contrast most directly
with those of ratio magnitude estimation
(RME), in which observers are instructed to
make the ratio of successive numbers equal to
the ratio of successive sensations (e.g., Luce
& Green, 1974). In many instances, as in the
experiment of J. C. Stevens and Marks (1971)
described earlier, magnitude-estimation in-
structions fall somewhere between AME and
RME in that observers are asked to make their
judgments proportional to sensation magni-
tudes but are not explicitly asked to estimate
each sensation relative to the previous one.

Proponents of AME have argued that ob-
servers are capable of judging sensation mag-

nitudes not on the basis of the ratios of
their sensations but by a matching opera-
tion (Gescheider, 1993; Zwislocki, 1991),
whereby numbers are assigned according
to perceived magnitudes—according to the
magnitudes of their sensations. This opera-
tion of matching, which occurs on an ordinal
scale, is claimed to be the basis of all physical
and psychophysical measurement.

The method of AME has been used suc-
cessfully with young children as well as adults
(Collins & Gescheider, 1989; Zwislocki &
Goodman, 1980). This finding supports the
hypothesis that matching the perceived mag-
nitudes of numbers and stimuli is a natural
and relatively simple process, which may de-
velop at an early age when children begin to
learn cardinal properties of numbers. Indeed,
Collins and Gescheider (1989) found that
lines and tones assigned the same number in
AME were also judged to be equal in a cross-
modality matching task. The AME method
may even reduce contextual effects associ-
ated with response bias found in RME (e.g.,
Gescheider, 1993; Gescheider & Hughson,
1991), although AME probably does not
completely eliminate contextual effects
(Gescheider & Hughson, 1991; Ward, 1987).

Individual Differences

Magnitude-estimation functions of individ-
ual observers vary substantially. When power
functions are fitted to individual results, the
largest exponent is commonly two or even
three times as great as the smallest (e.g.,
Algom & Marks, 1984; Hellman, 1981;
Logue, 1976, Ramsay, 1979; J. C. Stevens
& Guirao, 1964), and sometimes even
greater (Collins & Gescheider, 1989; M.
Teghtsoonian & Teghtsoonian, 1983). An im-
portant problem in psychophysical scaling has
been to determine how much of this vari-
ability reflects real interindividual variation in
the relation between stimulus and sensation.
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It is generally agreed that the variabil-
ity seen in individual magnitude judgments
far exceeds the variability of the under-
lying sensory processes (Gescheider, 1988;
Gescheider & Bolanowski, 1991). For exam-
ple, interobserver variability in magnitude-
estimation scales of loudness is thought to be
much greater than the variability in the under-
lying loudness functions (Algom & Marks,
1984; Collins & Gescheider, 1989; Zwislocki,
1983). If two observers gave loudness expo-
nents of 0.4 and 0.8, and if these exponents
accurately reflected differences in their un-
derlying loudness perceptions, then the ratio
of loudnesses of a near-threshold tone (say,
10 dB SPL) and an extremely loud tone (say,
100 dB) would be more than 60 times greater
in the observer with the larger exponent. Peo-
ple undoubtedly differ far more in their overt
judgments than they do in their actual per-
ceptions. Judgments of sensory magnitude re-
flect both sensory and judgmental processes,
and both kinds of processes contribute to the
total variability across individual observers.
This contention has been supported by the
finding that correcting magnitude estimation
functions of individual observers for the id-
iosyncratic ways that they assign numbers to
sensations can substantially reduce the vari-
ability seen in individual results (Algom &
Marks, 1984; Collins & Gescheider, 1989;
Zwislocki, 1983).

It is clear that judgmental processes, which
govern how numeric responses are mapped
onto sensations, account for much of the vari-
ability found in the results of individual ob-
servers (see Baird, 1997; Gescheider, 1997;
Marks & Algom, 1998; Poulton, 1989). One
component of the processes of judgment has
been characterized by Baird (1975) and his
colleagues (Baird & Noma, 1975; Noma &
Baird, 1975; Weissmann, Hollingsworth, &
Baird, 1975) as numeric response preference
(e.g., preference for particular numbers, for
multiples of “5” and “10,” etc.). Individual

differences in numeric response preference
likely account for some of the interindividual
variability seen in magnitude estimation. For
example, numeric response preferences could
influence the absolute size of numbers chosen,
the range of numbers, and whether the num-
bers are linearly applied to sensation magni-
tudes. Although the nature of such judgmental
processes is not yet entirely understood, it is
clear that in order for numerical estimates to
be of value in measuring psychological mag-
nitude, one should use experimental controls
to minimize potential biases. The use of ex-
perimental controls can be understood best in
the context of stimulus transformations and
response transformations.

Stimulus Transformations and
Response Transformations

Of fundamental importance in psychophysics
is the stimulus-transformation function (also
known as the psychophysical law), repre-
sented as the quantitative relation between
stimulus and sensation. Although measure-
ment of physical stimuli has improved
markedly in the last century as physics and
engineering have provided increasingly better
methods for measuring environmental ener-
gies, measurement of sensation has remained
problematic. Because they are subjective
events, sensations cannot be directly observed
in others. Instead, we must infer their
existence and magnitude from observable
behavior such as magnitude estimations.
Consequently, to produce a valid stimulus-
transformation function, it is necessary to de-
rive a valid measurement of sensation mag-
nitude from observable sensory responses.
When the responses of observers accurately
reflect the underlying sensation magnitudes,
formulating a valid stimulus-transformation
function consists of describing mathemati-
cally how the responses are related to the
stimuli that evoke them. Unfortunately, it is
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Stimul se (R)

Psychophysical law

Empirically determined

Response function

Figure 3.16 Relations among the stimulus trans-
formations function, the response transformations
function, and the empirically determined stimulus-
response function.
SOURCE: From Gescheider, 1997. Copyright ©
1997 by Lawrence Erlbaum, Inc. Reproduced by
permission.

often unknown whether observers’ sensory
responses accurately reflect the underlying
sensations.

For this reason the assumption that mag-
nitude estimates are proportional to sensa-
tion magnitudes has been challenged (e.g.,
Anderson, 1970; Birnbaum, 1982; Shepard,
1981). The problem is illustrated in Fig-
ure 3.16. The limitations of the method of
magnitude estimation, or other “direct” mea-
sures, become apparent when an investigator
treats the experimentally determined function
( f3) relating stimulus (φ) and numeric re-
sponse (R)

R = f3(φ)

as equivalent to the (unknown) stimulus-
transformation function ( f1) that describes
the relation between the intervening variable,
sensation (ψ), and the stimulus (φ)

ψ = f1(φ).

Shepard (1981) pointed out that one must
consider the characteristics of a second trans-
formation, a response transformation, which
mediates between sensation and response.
This second transformation ( f2) defines the
relation between the numeric response and
the intervening variable of sensation magni-

tude (ψ)

R = f2(ψ).

The experimentally observed relationship,
R = f3(φ), between stimulus and response
results from a concatenation of the stimu-
lus transformation and the response transfor-
mation.

Shepard noted that ψ is not observable and,
consequently, the equation for R must be writ-
ten as

R = f3(φ) = f2[ f1(φ)].

Knowing f3 does not make it possible to de-
termine either of the component functions
(i.e., f1 or f2) unless one of these is also
known. Therefore, the conclusion drawn by
S. S. Stevens (1957) from magnitude esti-
mation that f1 is a power function relies on
the implicit assumption that instructions to
the observer have ensured that f2 is a sim-
ple power function. Further, for the exponent
of the underlying function f1 to be identical to
the exponent of the overt function f3, f2 must
be linear, that is, must have an exponent equal
to 1. Shepard argued that Stevens never ade-
quately grounded his assumption that instruc-
tions would have exactly this effect, and there-
fore questioned the validity of the power law
as an account of the stimulus-transformation
function.

These considerations lead to a two-stage
theory of magnitude estimation. In the two-
stage theory, the first stage is sensory, involv-
ing the neural transformation of stimuli to
sensations, whereas the second stage is more
cognitive, involving processes of judgment.
The theory originated in the early work of
Attneave (1962) and Curtis, Attneave, and
Harrington (1968), according to which an ob-
server’s responses result from two processes:
First, the stimulus produces a sensation, and
second, the sensation leads to an overt re-
sponse. To the extent that the first of these two
stages is of primary interest, the second stage
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must be taken into account when making in-
ferences from observed relations between the
stimulus and response.

Category-Ratio Scales

Both RME and AME leave unresolved the
matter of how to measure individual differ-
ences in underlying sensory magnitudes. As
Borg (1982) wrote, “if one subject calls the
loudness of a certain sound ‘8’ and another
‘20,’ this does not necessarily mean that the
person who says ‘20’ perceives the sound to
be louder than the one who says ‘8.’ If, on
the other hand, one says ‘weak’ and the other
says ‘loud’ or ‘strong,’ we can be fairly sure
that the first person perceived the sound to be
weaker than the second one” (p. 28). Accord-
ing to Borg, numeric procedures such as mag-
nitude estimation yield information about the
relative differences in the subjective impres-
sions of stimuli but provide little information
about the absolute levels of these impressions.
Consequently, magnitude estimates given by
individual observers cannot be meaningfully
compared in any simple or direct manner. This
is true in AME as well as in RME because the
natural number systems used in AME can dif-
fer among observers by as much as two orders
of magnitude (Collins & Gescheider, 1989).

Borg’s (1982) solution was to create a
scaling procedure with properties of both
verbally labeled category scales and magni-
tude scales—which he calls a category-ratio
scale. Borg initially designed the category-
ratio scale to measure perceived exertion dur-
ing exercise, such as pedaling a stationary
bicycle. A critical assumption is that dif-
ferent individuals experience the same sub-
jective value at maximal perceived exertion,
even though they vary in their physical ca-
pacity. Borg also assumes that the psycho-
logical range from “minimal” to “maximal”
perceived exertion is roughly the same in dif-
ferent individuals. Given these assumptions,
all observers should have a common scale

of perceived exertion, with a common anchor
at the point of maximal exertion. The theory
also assumes that through association of de-
scriptive adjectives (e.g., “extremely strong,”
“strong,” “moderate,” “weak,” “very weak”)
with various everyday experiences of exer-
tion, different observers learn to associate
verbal descriptors with comparable levels of
perceived exertion. So, for example, if one
person is able to exercise at a maximal level
of 250 W, another at only 150 W, the first per-
son may report “moderate exertion” at 75 W,
the second at 50 W; and when they do, they
have comparable perceptual experiences. In
constructing his category-ratio scale, Borg as-
signed numbers to the descriptive adjectives
in such a way as to make the results ob-
tained with his scale agree well with those
obtained with magnitude scaling (see Marks,
Borg, & Ljunggren, 1983). A related method,
called labeled-magnitude scaling, developed
by Green, Shaffer, and Gilmore (1993), has
seen increasing use in recent years, especially
in studies of oral sensations, such as taste and
oral irritation.

Line-Length Calibration

Zwislocki (1983) developed a technique to
estimate the response transformations of in-
dividual observers from magnitude estimates
of the perceived length of lines. Perceived
length is assumed to be linearly related to
physical length. If this assumption is correct,
then the function relating magnitude estimates
to physical length reveals the response trans-
formation for perceived length. By assuming
further that a given observer uses the same
response transformation when judging loud-
ness as well as line length, Zwislocki was able
to correct the loudness judgments of individ-
ual observers. When he did this, the results
showed that all observers exhibited perfect
linear summation of the loudness of tones of
widely different frequencies (i.e., tones pre-
sented in different critical bands).
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Figure 3.17 Magnitude estimates of loudness corrected by the response transformations functions
estimated from magnitude estimates of apparent length of lines.
NOTE: Data of Collins and Gescheider (1989).

The technique of line-length calibration is
illustrated in Figure 3.17 for one observer
who gave magnitude estimates of the loud-
ness of tones and the perceived lengths of lines
(Collins & Gescheider, 1989). At each tone
intensity, the magnitude estimate of loudness
is converted to a line length that was given
the same magnitude estimate as the tone. As-
suming that the sensation magnitude of line
length is proportional to actual line length, line
length becomes the measure of sensation mag-
nitude (in this case, loudness). The function
in the lower right quadrant of the figure is the
corrected loudness function. The procedure is
simplified when magnitude estimates of both
the continuum of interest and line length are
power functions. For example, the corrected

power function exponent (θ) for loudness is

θ = α/β

where α is the exponent for magnitude es-
timation of loudness and β is the exponent
for magnitude estimation of perceived length
(see Collins & Gescheider, 1989; Zwislocki,
1983).

A related method, cross-modality match-
ing, avoids the necessity of having observers
use numbers at all. In cross-modality match-
ing, observers adjust the intensities of stim-
uli in different modalities to make them ap-
pear equally intense (J. C. Stevens, Mack,
& Stevens, 1960; J. C. Stevens & Marks,
1965; S. S. Stevens, 1959a). When Collins
and Gescheider (1989) had observers match
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line length to loudness, the resulting loud-
ness scales were essentially the same as those
measured by the line-length calibration pro-
cedure just described. The calibrated loud-
ness function in Figure 3.17, for example,
agrees closely with the results obtained by di-
rectly matching perceived length to loudness.
Because scales obtained by length matching
are essentially the same as those determined
from the calibration method, both methods
may be used with confidence, so practical con-
siderations govern which approach to take in
a given situation. The variability across ob-
servers, presumably due largely to variation
in response transformations, is much smaller
than that in magnitude estimation when one of
these cross-modality methods is used (Collins
& Gescheider, 1989).

Magnitude Matching

A closely related way to deal with individual
differences in the use of numbers in magnitude
estimation is through a method called mag-
nitude matching that was developed by J. C.
Stevens and Marks (1980). Here, the objective
is to have observers judge the sensory mag-
nitudes of stimuli from two different modali-
ties, A and B, on a single common scale. To
this end, stimuli from the two modalities are
presented within the same session, sometimes
alternating between modalities from trial to
trial. One of the two modalities serves as the
standard and the other as the test modality.
If the individuals or groups can be assumed
alike in their perception of stimuli presented
to the standard modality, then judgments in the
standard modality can serve as a basis for cor-
recting judgments made of stimuli presented
to the test modality.

To illustrate the method, we turn to an ex-
periment by Marks, Stevens, Bartoshuk, Gent,
Rifkin, and Stone (1988) on the perception of
taste in two groups of observers: “nontasters”
and “tasters.” Nontasters, about 30% of the

population, have genetically determined high
thresholds, relative to tasters, for detecting
a particular class of bitter compounds such
as PTC (phenylthiourea) and PROP (6-n-
propylthiouracil). The standard continuum,
within which the sensory experiences of
tasters and nontasters were assumed to be the
same, was the loudness of 1000-Hz tones, and
the test continua were the taste intensities of
PROP and NaCl (salt).

Converting the judgments of each observer
to a common scale involved the following
steps: (a) for each observer, computing the
average of all loudness judgments (pooled
over trials and intensities); (b) determining the
multiplicative factor Fi needed to bring the av-
erage loudness judgment of each observer i to
a common value, such as 10 (Fi = 10/average
judgment for observer i); and (c) then mul-
tiplying all of the taste judgments of each
observer by the value of Fi . After this com-
putation, the corrected results were averaged
and plotted as shown in Figure 3.18. It is
clear that PROP but not NaCl was less in-
tense to the nontasters than to the tasters. In
addition to determining whether groups of ob-
servers differ, the method may be useful in

Figure 3.18 Magnitude estimates of PROP and
NaCl by tasters and nontasters after correction by
magnitude matching.
SOURCE: From Marks et al., 1988. Copyright ©
1998 by Oxford University Press. Reproduced by
permission.
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determining whether the sensory magnitudes
experienced by an individual differ from the
norm or from those of another individual.
Furthermore, magnitude matching is reliable
in that results obtained from individual ob-
servers are consistent over repeated testing
(Marks, 1991).

Master Scaling

Another procedure for dealing with individ-
ual differences was developed by Berglund
(1991) and is called master scaling. In this
case, the main goal has been primarily to com-
pare perceptions of different sets of environ-
mental stimuli. Because practical considera-
tions may require these stimuli to be judged
by different groups of subjects (for instance,
one might want to compare traffic noises in
large cities of different countries), the prob-
lem ipso facto requires calibrating the scaling
behavior of different groups of subjects. In a
study of traffic noise, for example, a master
scale would first be constructed by having a
group of observers make magnitude estima-
tions of the loudness of a fixed set of noises
of varied intensity. Once the master scale is
established, it becomes possible to examine
the perception of traffic noises by having ob-
servers judge sample stimuli from the master
set as well as the traffic noises. In this way, it is
possible to rescale the judgments of the stim-
uli of interest into values on the master scale.

EXAMPLES OF PARTITION SCALING
AND MAGNITUDE SCALING

This section provides more detailed examples
of partition-scaling and magnitude-scaling
experiments. As is typical in experimental sci-
ence, the starting point was a substantive ques-
tion about perception: in this case, how the two
ears sum loudness when sounds are presented
binaurally. Various decisions of experimental
design and analysis followed both from the

question being asked and from research on
psychophysical methodology.

Choosing a Psychophysical Question

As discussed earlier, Fletcher and Munson
(1933) were able to construct a scale for loud-
ness by assuming that a tone presented to
two ears is exactly twice as loud as the same
tone presented to one ear. But is this assump-
tion correct? Two studies by Marks (1978,
1979) sought to shed some light on the ques-
tion by testing the additivity of loudnesses
more directly. Not only did Fletcher and
Munson assume simple linear summation of
loudness, but their experimental measure-
ments were taken on only a limited class
of stimuli, namely, tones presented to one
ear (monaural tones) and tones presented at
equal intensity levels to the two ears (binau-
ral tones). A more thorough test of the ad-
ditivity of loudness is possible if both un-
equal and equal sound levels are presented
to the two ears (dichotic tones). In particular,
Marks based his experiments on the logic of
Anderson’s (1970, 1974) functional measure-
ment theory. Functional measurement pro-
poses that perceptual (or cognitive) systems
may combine stimulus inputs linearly. In the
present case, Marks proposed that individual
loudnesses at the two ears add linearly. If this
is true, then a sound presented to either ear
will contribute to the overall impression of
loudness an amount that is independent of any
sound presented to the other ear.

Assume for simplicity that the two ears are
equally sensitive, and arbitrarily say that a
40-dB tone presented to either ear produces
one unit of loudness. If loudnesses sum lin-
early in the two ears, then a 40-dB tone pre-
sented to an ear will always contribute one
unit of loudness, regardless of the sound level
presented to the other ear; if both ears receive
40 dB, the total loudness will equal two units.
Assume that one ear receives 40 dB and the
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Figure 3.19 Theoretical family of functions
showing linear binaural loudness summation.
NOTE: Regardless of the SPL presented to the right
ear, a fixed SPL presented to the left ear adds a
constant amount of loudness, so each successive
loudness function is displaced up from the previ-
ous function by a constant distance.

other ear receives 60 dB, and assume further
that the 60-dB sound produces four loudness
units at that ear. Given additivity, it follows
that the total loudness would be five units. Fi-
nally, if both ears receive 60-dB sounds, the
total loudness will be eight units.

A graphical display of the additive func-
tional measurement model appears in Fig-
ure 3.19. The stimuli used in the experiment
are chosen according to a factorial design in
which each of a fixed number of stimulus in-
tensities presented to the left ear is presented
in combination with each of a fixed number
of stimulus intensities presented to the right
ear. If the loudnesses produced at the two ears
combine linearly, and if the response measure
is linearly related to loudness, then the result-
ing factorial plot will look like Figure 3.19.
In this figure, it is assumed that there are five
stimulus levels presented to each ear, making
25 different stimulus combinations in all. The
abscissa represents the intensity level in dB

SPL of the component presented to the right
ear, and each curve gives the overall loudness
(shown on the ordinate) for a particular SPL
of the component presented to the left ear.
Given linear addition of loudness, the amount
of loudness evoked by a fixed SPL at the left
ear will be the same regardless of the SPL at
the right ear, and curves will all be parallel,
displaced uniformly up and down.

Choosing a Method

Many factors enter into the choice of a psy-
chophysical method, as every method has its
virtues and its limitations. Under ideal cir-
cumstances, magnitude methods may produce
ratio scales of sensory or perceptual magni-
tudes, making it possible to say that a given
stimulus produces a psychological magnitude
that is two or three or seven times that of
another stimulus. Under ideal circumstances,
categorical methods with verbal labels may
make it possible to know that a particular
stimulus level is perceived as very weak, or
as moderately strong, a kind of information
not provided by magnitude methods. But all
methods are susceptible to various contex-
tual effects and response biases. For example,
ratings and magnitude estimates alike gen-
erally show sequential effects. The response
to a given stimulus depends not only on the
physical characteristics of that stimulus such
as its intensity, but also on the stimulus pre-
sented on previous trials and on the responses
made to those stimuli (e.g., DeCarlo, 1992;
Jesteadt, Luce, & Green, 1977; Luce & Green,
1974; Staddon, King, & Lockhead, 1980;
Ward, 1973; see Marks & Algom, 1998, for a
review).

Categorical methods are especially sensi-
tive to the range and distribution of the stimuli
(e.g., Marks, 1978; Parducci & Perrett,
1971), reflecting a tendency for observers
to use categories equally often (Parducci,
1965, 1974). But magnitude estimation is



pashler-44093 book December 18, 2001 10:13

128 Psychophysical Scaling

also sensitive to the range of stimulation.
Thus, it has often been reported that expo-
nents of power functions fitted to magni-
tude estimates decrease when the range of
stimulation increases (R. Teghtsoonian, 1973;
R. Teghtsoonian & Teghtsoonian, 1978). Cat-
egorical methods generally have fixed upper
and lower response boundaries; consequently,
these methods may also show end effects.
What should observers do if, for example, they
have already assigned the highest category to
a previous stimulus and now encounter one
that is even stronger?

Categorical methods are also sensitive to
the number of response categories made avail-
able to the observer (Marks, 1968; Parducci &
Wedell, 1986), an issue that does not arise with
methods that use continuous scales, such as
visual-analog scaling and magnitude estima-
tion. On the other hand, magnitude estimates
are sensitive to the level of the stimulus used
as a standard and to the number assigned to
the standard—the numerical modulus—when
a standard and modulus are used (Hellman &
Zwislocki, 1961). Given all of these consider-
ations, Marks (1978, 1979) attacked the ques-
tion of binaural loudness summation by using
both a rating method and a magnitude method.

Graphic Rating

For this study, Marks (1979) chose a graphic
(visual-analog) scale, a device that has seen
increasing use in many domains, notably
in studies of pain perception (see Collins,
Moore, & McQuay, 1997; Huskisson, 1983).
A virtue of the graphic-rating method is that it
avoids potential problems that are associated
with categorical methods, such as deciding on
the number of response categories to make
available to the observers. With the graphic-
rating method, on each trial the observer is
presented a line, about 150 mm long, and is
instructed to denote the perceived magnitude
of the stimulus by marking the appropriate lo-
cation on the line.

Graphic-rating scales behave much like
categorical scales in cases in which the num-
ber of categories is very large (e.g., around
100), which makes graphic rating an espe-
cially good option given the evidence sug-
gesting that categorical scales should provide
at least 15 to 20 response categories (e.g.,
Anderson, 1981). To minimize the potential
problems associated with end effects, Marks
(1979) took two precautions. First, the ob-
servers had available throughout the test ses-
sion a sample line on which two marks ap-
peared, 10 mm from each end of the line. At
the beginning of the test session, the observers
were presented two sample stimuli represent-
ing the softest and loudest sounds they would
hear. The softest sound was a 15-dB tone pre-
sented to just one ear, and the observers were
informed that the left-hand mark on the sam-
ple indicated its loudness. The loudest sound
was a 50-dB tone presented to both ears, and
the observers were informed that the right-
hand mark on the sample indicated its loud-
ness. By anchoring the weakest and softest
sounds to points medial to the ends of the
line, the observers were provided extra room
on the scale to help minimize end effects. As
a second precaution, the observers were told
that, if necessary, they could extend the line in
either direction, where an additional 30 mm
were available (6 of the 15 observers did this).
These precautions provide the graphic-rating
scale with positive features of magnitude
estimation.

Magnitude Estimation

For magnitude scaling, Marks (1978) used a
common form of the method of magnitude
estimation described earlier, one that has no
designated standard stimulus or modulus. The
particular version of magnitude estimation
used in the experiment may be thought of as a
hybrid of ratio magnitude estimation and ab-
solute magnitude estimation: Observers were
instructed to assign to the first sound whatever
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number seemed to them most appropriate
to represent its loudness. This aspect of the
instructions is much like the instruction in
absolute magnitude estimation. To each sub-
sequent sound, observers were instructed to
assign other numbers in proportion to their
relative loudness. In this respect, the instruc-
tions more closely resembled the instructions
of RME. In RME, however, observers are ex-
plicitly told to judge each stimulus relative
to the previous stimulus, an instruction that
Marks did not use. Although there is proba-
bly no formal way to decide whether the in-
structions used in this experiment were more
similar to AME or RME, it is our view that
these instructions fall closer to AME than to
RME.

Designing the Graphic-Rating and
Magnitude-Estimation Experiments

Aside from the scaling methods themselves
and the associated instructions to the ob-
servers, the graphic-rating experiment (Marks,
1979) and the magnitude-estimation experi-
ment (Marks, 1978) were virtually identical in
their design. It should be noted that both stud-
ies reported results from several experiments,
but the present exposition focuses on two ex-
periments that used different scaling methods
but comparable experimental designs to study
binaural summation. For example, the exper-
iments used the same set of stimuli. In any
given experiment, the choice of stimuli is dic-
tated primarily by the goals of the study and
by constraints that may be imposed by the
sensory or perceptual system.

In the present case, the stimulus levels were
relatively low, a decision based on the desire
to avoid any potentially confounding effects
that might arise from conduction of sound
through bone from one ear to the other. Bone
conduction might become significant at high
sound levels, especially if the sound level at
one ear were high and the level at the other
ear were low. For this reason, the maximal

SPL of the 1000-Hz tone was held to 50 dB.
At the lower end, younger observers’ absolute
thresholds for detecting these tones typically
lie in the vicinity of 5 dB SPL; consequently,
to preclude the possibility that some observers
might fail to hear the weakest tones, the lowest
SPL in the two experiments was set to a value
of 15 dB. Within the range of 15 to 50 dB SPL,
the sound levels were spaced, as a matter of
convenience, in steps of 5 dB. This entailed a
stimulus ensemble in which each of 8 SPLs
at the left ear was combined with each of the
same 8 SPLs at the right ear, making 64 dif-
ferent stimulus combinations in all. Further-
more, to provide additional comparisons, each
of the 8 SPLs was also presented monaurally
to each ear, that is, with no stimulation to the
contralateral ear. Thus the stimulus set con-
tained 80 different stimuli in all. This set of
80 stimuli was used in both the graphic-rating
experiment and the magnitude-estimation ex-
periment, but the latter also included a null
stimulus, that is, a stimulus of zero intensity
to both ears, making a total set of 81.

In both experiments, the entire stimulus
ensemble (80 stimuli for graphic rating, 81
for magnitude estimation) was presented in
two replicates to each observer, with 15 ob-
servers tested in graphic rating and 14 ob-
servers tested in magnitude estimation. This
meant that each stimulus received a total of 28
or 30 ratings in all, probably about the small-
est number necessary to provide stable results.
With only two judgments made of each stim-
ulus by each observer, it was not feasible to
examine results of individual subjects; to ob-
tain reasonably reliable data from individual
observers it would have been necessary to
present each stimulus at least 8 to 10 times
to each observer.

Analyzing the Data

As just mentioned, the experiments under
consideration did not lend themselves to
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analysis of data on individual observers. In-
stead, data were pooled over observers to as-
sess the characteristics of the resulting psy-
chophysical relations. It should be noted that
ratings and magnitude estimates typically
have rather different statistical characteris-
tics. With various kinds of ratings, including
graphic rating, the distributions of responses
made to a given stimulus tend to be reason-
ably symmetrical, and measures of variabil-
ity tend to be more or less uniform across
the range of stimulus values. By contrast, dis-
tributions of magnitude estimates tend to be
highly skewed, and the variability tends to in-
crease as the level of the stimulus increases.
These properties have led to the use of dif-
ferent measures of central tendency, with rat-
ings typically being averaged arithmetically
and magnitude estimates typically being av-
eraged geometrically.

The use of geometric averaging with mag-
nitude estimates serves to preserve the ratio re-
lations among the numbers given by each ob-
server to the various stimuli, while at the same
time weighting each observer’s ratios equiv-
alently. Were one simply to pool magnitude
estimates linearly across observers, the result-
ing means would be dominated by the data of
any observers who used very large numbers.
Arithmetic averaging may be necessary, how-
ever, if there are many estimates of zero. In
such cases, before the data are averaged, it is
necessary to normalize them in order to bring
observers to a common scale. One way to ac-
complish this is to calculate, for each observer,
the geometric or arithmetic average of the es-
timates given by that observer to all stimuli,
and then divide this average into all of the
observer’s magnitude estimates. This proce-
dure serves to make the overall geometric or
arithmetic mean of the transformed judgments
of every observer identical, thereby eliminat-
ing differences in absolute size of numbers,
and making subsequent arithmetic averaging
more appropriate.
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Figure 3.20 Graphic ratings of loudness of 1000-
Hz tone in a binaural-summation paradigm, like
that of Figure 3.19.
SOURCE: From Marks, 1979. Copyright © 1979
by the American Psychological Association.
Reproduced by permission.

Figure 3.20 shows the results obtained
by averaging arithmetically the graphic rat-
ings of loudness, and Figure 3.21 shows the
comparable results obtained by averaging
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Figure 3.21 Magnitude estimates of loudness of
1000-Hz tone in a binaural-summation paradigm,
like that of Figure 3.19.
SOURCE: From Marks, 1978. Copyright © 1978
by the Journal the Acoustical Society of America.
Reproduced by permission.
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geometrically the magnitude estimates of
loudness. Following the paradigm of Fig-
ure 3.19, each figure shows the judgment of
loudness plotted against the SPL of the com-
ponent presented to the right ear, with each
curve representing a different but constant
SPL of the component presented to the left ear.
In both Figures 3.20 and 3.21, the lowermost
curve shows the results obtained with monau-
ral presentation to the right ear (zero intensity
to the left ear); each successively higher-lying
curve represents constant SPLs of 15, 20, 25,
30, 35, 40, 45, and 50 dB.

At first glance, the two sets of curves ap-
pear strikingly different. Graphic rating pro-
duced a family of psychophysical functions
that tend to converge at the upper right,
whereas magnitude estimation produced a
family of functions that appear to be spaced
more or less uniformly in the vertical plane—
as they should be if (a) component loudnesses
evoked by stimulating the left and right ears
add linearly, and (b) the magnitude-estimation
scale is linearly related to loudness. It is no-
table, however, that the two sets of data are
closely related ordinally. That is, for any given
pair of stimuli, whichever was judged louder
by graphic rating was also judged louder by
magnitude estimation. This is shown in Fig-
ure 3.22, in which the graphic ratings are plot-
ted against the corresponding magnitude esti-
mates. That most of the data points collapse
onto a single function implies that the ordinal
relation between the two scales is very close,
and the nonlinear form of the function—its
downward concavity—is typical of compar-
isons between ratings and magnitude esti-
mates (e.g., S. S. Stevens & Galanter, 1957).
Given the reasonable assumption that dif-
ferent scaling methods tap the same under-
lying perceptions, this outcome should not
be surprising; the only important difference
between scaling methods is the way that
observers map their response scale onto these
perceptions. That is, different scaling methods
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Figure 3.22 Magnitude estimates of Fig-
ure 3.21 plotted against magnitude estimates of
Figure 3.20.
SOURCE: From Marks, 1979. Copyright © 1979
by the American Psychological Association.
Reproduced by permission.

induce observers to apply different response
transformations, as discussed earlier (see
Figure 3.17). If different scaling methods do
nothing more than induce different response
transformations, however, then there will be
for every method a single function relating
loudness to the overt response. If this is so,
then if any two stimuli are equal in loud-
ness, it should not matter whether observers
judge loudness by graphic rating or by magni-
tude estimation. Certain invariant characteris-
tics of perception are revealed by all scaling
methods.

It follows from these considerations that
it should be possible to apply a nonlinear
but monotonic response transformation to ei-
ther set of data in order to make them resem-
ble the other set. Thus, if a function that fits
the data of Figure 3.22 is used to transform
the graphic ratings, the outcome is a new
family of loudness functions that resembles
the magnitude estimates, showing a rough
parallelism consistent with linear additivity
(Figure 3.23). One simple interpretation of
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Figure 3.23 Graphic ratings of Figure 3.20,
rescaled through the function in Figure 3.22 re-
lating magnitude estimates to graphic ratings.
SOURCE: From Marks, 1979. Copyright © 1979
by the American Psychological Association.
Reproduced by permission.

these results is that loudness is binaurally ad-
ditive, at least to a first approximation, and that
magnitude estimates are linearly related to
loudness. As discussed earlier, however, there
remains nonetheless a degree of theoretical in-
determinacy. It is conceivable that the paral-
lelism obtained through magnitude estimation
is fortuitous, that loudness is not binaurally
additive (see Gigerenzer & Strube, 1983), and
that some other, still unknown transformation
of the data would be necessary to reveal the
“true” underlying values of loudness.

CONCLUSION

As Marks and Algom (1998) pointed out, psy-
chophysical scaling can serve two broad pur-
poses. The traditional purpose, which orig-
inated with Fechner (1860), is to elucidate
the relation between the mental realm and
the physical, as characterized by the psy-
chophysical law. Now, nearly a century and
a half later, psychophysicists have a ware-
house of methods, yet questions remain as

to what method produces valid measures
of sensory and perceptual experiences. In
this epistemic role, as Marks and Algom
called it, psychophysical scaling still lacks
a widely accepted theoretical framework, al-
though there have been several notable at-
tempts along these lines (see, for example,
Baird, 1997).

On the other hand, psychophysical scaling
methods have continued to play a major role,
a more pragmatic role, in the study of sensory
and perceptual processes. This is especially
true when scaling methods are used to ex-
amine how sensory or perceptual experiences
vary under multivariate stimulation. Category
scaling and magnitude scaling alike can reveal
how the perception of loudness or brightness
or taste or smell intensity depends not only
on the intensity of a stimulus but on its du-
ration, its spatial distribution over the recep-
tor surface, the presence of other stimuli that
may serve as maskers, the age of the observer,
the state of adaptation of the sensory system,
and countless other variables. For thorough
accounts, see Marks (1974b) and Marks and
Algom (1998).
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CHAPTER 4

Cognitive Neuropsychology

MAX COLTHEART

The aim of cognitive psychology is to learn
more about the mental information-processing
systems that people use when engaged in such
cognitive activities as producing or under-
standing language, recognizing objects or
faces, acting skillfully, retrieving information
from memory, doing mental calculations, and
so on. There are two ways of carrying out
such research. One is to study people who
have acquired skill in these cognitive activities
and who perform them well. The other is
to study people who perform such activities
abnormally.

Such abnormality has two possible forms.
An investigator might be studying an indi-
vidual who had attained a normal degree of
skill in some cognitive activity but who then
suffered some form of brain damage that
impaired performance of that activity; here
the investigator is studying an acquired dis-
order of cognition. Alternatively, an investi-
gator might be studying an individual who
had never attained a normal degree of skill
with respect to the cognitive activity in ques-
tion; here such an investigator is studying a
developmental disorder of cognition.

Cognitive neuropsychology is the investi-
gation of disordered cognition with the aim of

The author thanks Colin Davis, Phil Gold, Elaine and
Graham Funnell, John Marshall, Genevieve McArthur,
Niels Schiller, and John Wixted for helpful comments
and criticisms.

learning more about normal cognition. There-
fore, it is a branch of cognitive psychology.
When an acquired disorder of cognition is
studied, the aim is to learn about the normal
processes of cognition by studying how they
can break down after brain damage. When a
developmental disorder of cognition is studied
(the area of investigation known as develop-
mental cognitive neuropsychology), the aim is
to learn how cognitive abilities are normally
acquired by studying ways in which such
acquisition fails or proceeds abnormally.

Even though most cognitive neuropsychol-
ogists study people with brain damage, and
despite the impression that might be given by
the prefix “neuro” in the term “cognitive neu-
ropsychology,” cognitive neuropsychology is
not about the brain; it is about the mind. Many
scientists, of course, are interested in the
neural structures subserving cognition, and
investigation of the brain in people with ac-
quired disorders of cognition is one obvious
way to pursue such an interest. But this is
not cognitive neuropsychology; it is cogni-
tive neuroscience. Just as cognitive neuropsy-
chology is a branch of cognitive psychology,
cognitive neuroscience is a branch of neuro-
science. One is about the mind; the other is
about the brain (and the rest of the nervous
system).

Contemporary cognitive psychology treats
cognition as mental information processing,
that is, as involving the formation and

139
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transformation of mental representations.
Therefore, any theory about how a particu-
lar cognitive activity is achieved will take the
general form of a description of information
flow. Such descriptions require statements
about what specific information-processing
mechanisms are the components of the hy-
pothesized mental information-processing
system as well as statements about the flow
of information between these components.

Quite often, these descriptions are ex-
pressed as box-and-arrow flow charts, such as
the diagram shown in Figure 4.1. This way of
notating theories has the advantage of making
them explicit and complete. Each box repre-
sents a particular component of the postulated
information-processing system; each of the
pathways of information flow between these
components is represented by an arrow.

This, by the way, is not a novel notation
for expressing theories about cognition; on the

Figure 4.1 An information-processing system.

contrary, it was widely used by the cognitive
neuropsychologists of the 19th century (see
Coltheart, Rastle, Perry, Langdon, & Ziegler,
2001, for some examples).

MODULARITY

We need some term to refer to the components
of a system such as that shown in Figure 4.1,
and the term I use here is module; thus the
system in Figure 4.1 has eleven modules, and
the system itself is said to have the property
of modularity.

Fodor (1983) provided a valuable explica-
tion of the concept of modularity, and I use
the term essentially as he did. Although it is
quite often suggested that Fodor’s book pro-
posed a definition of modularity, and that the
book contains proposals about necessary con-
ditions for the application of this term, neither
of these suggestions is correct. Fodor empha-
sized that he was not intending to provide a
definition of the term, nor any necessary char-
acteristics; instead, he was suggesting a list of
features that were characteristic of modules.
The features he listed included (a) domain
specificity, (b) innateness, (c) informational
encapsulation, (d) fast operation, (e) neural
specificity, and (f) automaticity. According
to Fodor, each of these features is typical of
modules, although none is necessary. I use the
term module in essentially this sense, except
that I follow Coltheart (1999) in believing that
one feature of modules is necessary for the
term to be applicable. This necessary feature
is domain specificity: “A cognitive system is
domain-specific if it only responds to stimuli
of a particular class: thus, to say that there
is a domain-specific face-recognition module
is to say that there is a cognitive system that
responds when its input is a face, but does not
respond when its input is, say, a written word,
or a visually-presented object, or someone’s
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voice” (Coltheart, 1999, p. 118). I take the
other five Fodorian features as commonly, but
not invariably, true of modules; thus, for ex-
ample, some modules may not be innate, even
if many modules are innate.

To be more specific, the focus here is on
functional modularity because modules are
being described in terms of their particu-
lar mental information-processing functions.
One can distinguish functional modularity
from anatomical modularity (an anatomical
module is a specific delimited region of the
brain that carries out some specific form of
information-processing; for example, area V5
is a specific brain region responsible for the
processing of motion and thus can be re-
ferred to as an anatomical module for motion-
detection). Perhaps one can also distinguish
functional modularity from neurochemical
modularity (a neurochemical module is a sys-
tem in the brain that uses a particular spe-
cific neurotransmitter). These are logically
independent concepts; for example, the mind
could be functionally modular even if the
brain were neither anatomically nor neuro-
chemically modular. If that were so, cogni-
tive neuropsychology would be impossible
because anatomical or neurochemical brain
damage could never impair some functional
modules while sparing others, and it is such
selective patterns of cognitive impairment
and sparing that are the basic data of cogni-
tive neuropsychology. Because cognitive neu-
ropsychology is possible, it would seem that
both the mind and the brain are modular
in structure. That is presumably what Fodor
(1983) had in mind with the term neurally
specific: to say that a functional module is
neurally specific is to say that it is also an
anatomical module.

It needs to be emphasized here that if
what we mean by “module” is “a domain-
specific information-processing system,” then
we have to be willing to call the entire system

depicted later in Figure 4.3 a module because
that system is an information-processing sys-
tem and because it is domain-specific (it does
not respond to auditory input or olfactory in-
put, just to visual input). But we also have
to be willing to call the individual compo-
nents of the system in Figure 4.3 modules too,
because those components are also domain-
specific information-processing systems: for
example, the component labeled “visual word
recognition” responds only to input that is let-
ters. Even an individual component in Fig-
ure 4.3 may have an internal modular struc-
ture. For example, in patients with semantic
impairments, some patients have impairment
in the understanding only of words referring
to animate objects, and others only of words
referring to inanimate objects (for a review
of this literature, see Caramazza & Shelton,
1998). This suggests that within the seman-
tic system there are at least two modules, one
whose domain is inanimate objects and an-
other whose domain is animate objects. In
general, then, the conception of modularity
used here commits one to the view that mod-
ules can be within modules that are within
modules, and hence to an abandonment of
the view, proposed in Fodor (1983) but not
in Fodor (2000), that an important property of
modules is that they are “not assembled”—not
composed of smaller processing components.
Block (1995) discusses where the nesting of
modules within modules might stop, and this
issue is considered later in this chapter.

One can distinguish two types of functional
modules: knowledge modules and processing
modules. A knowledge module is a body of
knowledge that is autonomous (i.e., indepen-
dent) of other bodies of knowledge (e.g., the
on-line catalog of a library, which is indepen-
dent of other bodies of knowledge about the li-
brary, such as its floor plan, its wiring diagram,
or the layout of its sewage disposal system). A
processing module is an autonomous system



pashler-44093 book December 18, 2001 10:15

142 Cognitive Neuropsychology

for processing information (e.g., the search
engine used to retrieve information from the
library’s on-line catalog, or the library’s fire-
protection mechanism that detects smoke and
dispenses water). One way to make diagrams
such as that of Figure 4.1 even more pre-
cise is to replace the rectangular boxes with
symbols that distinguish the two types of
functional module: ellipses for knowledge
modules, say, and rectangles for process-
ing modules (Funnell, 1983; Gane & Sarsen,
1977). This is probably a useful notational
discipline, although it will not be adopted
here: Both types of functional modules will
be represented just by rectangles.

Although the diagram in Figure 4.1 is ex-
plicit about how many modules and how many
pathways of communication the depicted pro-
cessing system has, it is nevertheless utterly
opaque: What is it supposed to do? What sort
of input does it accept, what sort of output
does it produce, and what processing proce-
dures does it apply to the input in order to
create the output? This opacity can only be
eliminated if the nature of the input and out-
put is stated and if each module in the system
is labeled according to what processing proce-
dure it carries out. That is done in Figure 4.2,
which makes clear the fact that Figure 4.1 is
a diagram of a system that makes chocolate
and cocoa.

As shown in Figure 4.3, however, there is
a very different way of labeling the modules
and the inputs and outputs of (a minor variant
of) Figure 4.1. This second way of labeling
makes clear the fact that Figure 4.1 is a dia-
gram of a system for naming pictures, printed
words, and printed nonwords, as well as a di-
agram of a system that makes chocolate and
cocoa.

The example represented by Figures 4.1
through 4.3 is meant to illustrate several
points. First, although Figure 4.1 is an ex-
plicit description of the structure of a mod-
ular processing system, this description is

Pulverise

Cocoa powder Sweet chocolate Milk chocolate

Roast

Dry whole cocoa beans

Press

Refine

Grind

Add chocolate
liquor and sugar

Conch

Add chocolate
liquor, sugar

and milk solids

Conch

Extract cocoa
butter

Extract cocoa
cake

Figure 4.2 A system for manufacturing choco-
late.
SOURCE: Adapted from McGee (1984, p. 405).

at such an abstract level that it can apply
equally well to a chocolate factory as to a
mind; its input can be cocoa beans or reflected
light, and its output can be chocolate, cocoa,
or speech.

Labeling the modules eliminates this level
of abstraction: Figure 4.2 cannot be about
the mind, and Figure 4.3 cannot be about a
chocolate factory. However, a crucial level
of abstraction remains: Neither of these two
diagrams specifies anything at all about hard-
ware. Figure 4.2 says nothing about any phys-
ical properties of the machinery within the
factory, and Figure 4.3 says nothing about
any neural systems in the brain. For exam-
ple, conching is the process by which choco-
late is heated to between 130 and 200 de-
grees Fahrenheit and then slowly kneaded and
folded for hours or days; this reduces bitter
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Grapheme-
phoneme

rule application
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semantics

Visual word
recognition

Spoken word
production

Phoneme
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Letter
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Visual object
recognition

Speech Speech

Early visual processing

Visual feature analysis

Visual segregation

Feature binding

Visual stimulus

Figure 4.3 A system for naming pictures, words,
and nonwords.

flavors and makes the chocolate smoother
in texture. This functional description of the
conching process says nothing about the ac-
tual machine that does the conching. Further-
more, even if people were allowed full access
to the factory and could thoroughly inspect
all the machines in it, they would not be able
to work out what the conching machine does
just from scrutinizing it unless they were al-
ready armed with the functional description of
the conching process. Close inspection of the
machine shown in Figure 4.4 would not tell
anyone that what it does is conching. In just
the same way, if people were able to obtain
a complete description of the neural structure
of the part of the brain that does letter recogni-
tion during reading, they would not be able to
work out what function that part of the brain
actually serves.

Figure 4.4 A conching machine.

Similarly, imagine someone who was in-
terested in determining whether a particular
desktop computer could do word processing.
Taking the lid off and looking at the hard-
ware inside could not provide an answer to
this question. In contrast, imagine that some-
one who is a programmer were given the code
for a program and asked whether this pro-
gram could do word processing. That ques-
tion could be answered by scrutiny of the
program. Considerations like this led Block
(1995, p. 376) to the doctrine that “the mind
is the software of the brain,” a corollary of
which is that cognitive psychology is the study
of that software.

This same perspective on cognitive science
was also offered by Marr (1982, p. 24). He
distinguished “three levels at which any ma-
chine carrying out an information-processing
task must be understood”; these were the lev-
els of computational theory, representation
and algorithm, and hardware implementation
and emphasized the independence of under-
standing at the representation-and-algorithm
level from understanding at the hardware-
implementation level: “Trying to understand
perception by studying only neurons is like
trying to understand bird flight by study-
ing only feathers. It just cannot be done”
(p. 27).
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COGNITIVE-
NEUROPSYCHOLOGICAL
INFERENCE AND
THE CHOCOLATE FACTORY

Imagine now that a person were interested
in discovering exactly how the chocolate
factory functions—in learning exactly what
procedures the factory uses to turn cocoa
beans into milk chocolate, sweet chocolate, or
cocoa powder—but the only data available
from which one might infer anything about
this are data about what goes into the factory
and what comes out. Looking inside the fac-
tory is not allowed.

Careful chronometry might reveal that
after a consignment of cocoa beans is de-
livered, packages of cocoa powder begin to
emerge from the factory sooner than pack-
ages of sweet chocolate or milk chocolate,
whereas the latter two products begin emerg-
ing at about the same time. From that differ-
ence in latency of response one might deduce
that the production of cocoa powder requires
fewer processing stages than the production of
sweet chocolate or milk chocolate, with these
two requiring the same number of processing
stages. One might even begin to sketch out
a theory of the factory’s operations accord-
ing to which all the stages needed to make
cocoa powder are also needed to make sweet
chocolate or milk chocolate, and on top of this
there is one extra stage, or several extra stages,
required for making sweet chocolate or milk
chocolate but not for making cocoa powder.
That would be a wild extrapolation, however.
It could be that the three products depend on
three completely different processing proce-
dures that have nothing at all in common; it
just so happens that one of these procedures
works quickly, and the other two relatively
slowly.

Then one day it appears that there is some-
thing wrong with both the cocoa powder and

the chocolate that are produced; their forms
and textures are appropriate, but they taste raw
rather than roasted, though they have the right
sweetness. What might be deduced from these
data concerning the processing system inside
the factory? It seems reasonable to conclude
that the control of the form, texture, and sweet-
ness of the product must depend on a system
or systems that are separate from the system
that roasts the beans; in other words, there is
a single Roasting Module that is used for pro-
ducing all three products. If so, that provides a
simple explanation for why all three products
show the same defect: the Roasting Module is
down, so unroasted beans are being passed on
to the rest of the system. The rest of the system
is still functioning normally, so the products
still have normal form, texture, and sweetness.

An alternative possibility, though—an al-
ternative possible functional architecture for
the factory—is that there are three separate
Roasting Modules, one for each of the three
products, and all three of these happen to
have gone down simultaneously. Would that
be rather a coincidence? Not necessarily. If
there were three separate Roasting Modules,
it would make sense for them to be physically
located very close together, because the co-
coa beans they need could then be delivered
to only one location in the factory rather than
three. If these three modules were physically
adjacent, then any trauma to the factory that
affected one of them (e.g., a fire in one part of
the factory, or the collapse of part of the fac-
tory roof) would be likely to affect all three.
Thus, the association seen here among three
deficits (unroasted cocoa powder, unroasted
sweet chocolate, and unroasted milk choco-
late) might be an uninteresting consequence
of some physical fact about the factory, rather
than an interesting consequence of some func-
tional fact.

Suppose that on another day one notices
that something is wrong with the cocoa
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powder that is produced. It tastes as it should,
but it isn’t powdered; instead, it is emerging
from the factory in the form of solid cakes.
Yet the sweet chocolate and milk chocolate
are absolutely normal. This immediately sug-
gests that there is a processor in the fac-
tory whose job is specifically to turn solid
cakes into powder—called, for example, the
Pulverizer—and that this processor does not
play any part in the production of sweet choco-
late or milk chocolate. If there is such a Pul-
verizer, and if it is not working just now, the
outcome would be that sweet chocolate and
milk chocolate would still be produced nor-
mally, but cocoa powder would not. Specifi-
cally, the cocoa would still be coming out, but
abnormally—as cakes rather than as powder.

This inference seems entirely reasonable,
but again an alternative explanation comes
fairly readily to mind. Perhaps there is no
Pulverizer Module; perhaps instead there’s a
single machine that both presses and (when
required) pulverizes, and so is needed in the
making of all three products. Suppose, as
might seem natural, that this machine needs
more electrical power to pulverize than to
press, and the electricity supply to the fac-
tory has weakened. In that case, pressing will
still happen but pulverizing will not—but not
because the two functions are functionally dis-
tinct. Here the dissociation (cocoa powder de-
fective yet chocolate intact) can be plausibly
explained without postulating the existence of
a distinct Pulverizer Module.

Finally, suppose that on yet another day
a different defect emerges: Both the sweet
chocolate and the milk chocolate begin to taste
bitter and to be coarse in texture. The cocoa
powder is just fine, however. One possible
explanation for these data is that there is a
processor in the factory whose job is specif-
ically to reduce the bitterness and smooth
the texture of the two types of chocolate—
called the Concher—and that this does not

play any part in the production of cocoa
powder.

Data suggesting that the factory contains
a Pulverizer Module and a Concher Module
cannot instead be explained in terms of pos-
sible effects of a weakened electricity supply,
because on that hypothesis one could never
see bad pulverizing and good conching on one
occasion, and good pulverizing but bad conch-
ing on another. A single dissociation could be
explained on the electricity-supply hypothe-
sis; but a double dissociation between the two
defects cannot. Thus, the hypothesis that the
system in the factory contains a Pulverizer
Module and a Concher Module looks strong,
and until someone devises an alternative hy-
pothesis that is also compatible with the data
on the two different patterns of breakdown
that have been observed, it is reasonable to
conclude that the functional architecture of
the factory includes a Pulverizer Module and
a Concher Module.

ASSOCIATIONS, DISSOCIATIONS,
AND DOUBLE DISSOCIATIONS

The discussion of these studies of breakdowns
of the chocolate factory introduced three con-
cepts that loom large in discussions of the
methodology of cognitive neuropsychology:
associated deficits, dissociated deficits, and
doubly dissociated deficits.

Association

Two deficits X and Y are referred to as associ-
ated when both are present (for the chocolate
factory example, cocoa powder not roasted
and chocolate not roasted; or, with a brain-
damaged patient, faces not recognized and
printed words not recognized). The cause of
these associations might be damage to a sin-
gle module on which two tasks depend: There
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might be a single roasting module used both
in the production of cocoa powder and in the
production of chocolate, and there might be a
single visual recognition system used both in
the recognition of faces and in the recognition
of printed words.

The one-module conclusions could in fact
be correct, but cognitive neuropsychologists
are wary of drawing such conclusions from
associations because there is always a plausi-
ble alternative explanation of an association
of deficits, an alternative according to which
there are two modules in the relevant system,
rather than one. On this alternative, whatever
causes damage to a particular physical part of
the system might be likely to cause damage
to physically adjacent parts of the system as
well. That point was illustrated earlier in re-
lation to the chocolate factory; in relation to
humans, there could be two visual recognition
modules, one for faces and another for words,
located in adjacent regions of the brain. Brain
injury due to a blow to the head or to a bullet
wound that damaged one module would of-
ten damage physically adjacent modules; or if
two modules shared a common blood supply,
a stroke that interfered with that supply would
generate two deficits. Nevertheless, there are
two modules here, not one. Arguments like
these weaken conclusions about modular or-
ganization that are based upon the observation
of associated deficits.

Dissociation

Two deficits X and Y are referred to as dis-
sociated when one is present and the other is
absent (for the chocolate factory example, the
cocoa powder is abnormal but the chocolate
is normal; or, with a brain-damaged patient,
faces are not recognized but printed words
are). These dissociations might arise because
there is a module in each system that is used
for one task but not for the other (a Pulverizer

Module used in the production of cocoa pow-
der but not in the production of chocolate;
a Face Recognition Module used for recog-
nizing faces but not for recognizing printed
words).

Such conclusions about the existence of
modules dedicated to one task but not an-
other, reached because of observations of dis-
sociated deficits, could in fact be correct; but
once again cognitive neuropsychologists are
wary of drawing such conclusions from dis-
sociations because there is always a plausi-
ble alternative explanation of a dissociation
of deficits, an alternative according to which
the system does not in fact contain these in-
ferred modules. In the case of the chocolate
factory, that point has already been made:
Perhaps the factory just needs more electri-
cal power to carry out pulverization than to
carry out other functions. In the case of hu-
mans, there could be a single Visual Recogni-
tion Module used for recognizing both faces
and printed words, and partial damage to this
single system could impair face recognition
without impairing visual word recognition
because faces are visually more complex, so
stress this system more, so are more affected
than are printed words when the module is
partially damaged. Arguments like these
weaken conclusions about modular organi-
zation that are based on the observation of
dissociated deficits.

Double Dissociation

Two deficits X and Y are referred to as “doubly
dissociated” when there is a case where deficit
X is present and deficit Y is absent, and an-
other case where the reverse is true, i.e., deficit
X is absent and deficit Y is present (for the
chocolate factory example, on one occasion
the cocoa powder is abnormal but the choco-
late is normal, whereas on another occasion
the cocoa powder is normal but the chocolate
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is abnormal; or, with brain-damaged patients,
in one patient faces are not recognized but
printed words are, whereas in another patient
face recognition is intact but word recognition
is impaired).

One way in which double dissociations can
be interpreted is in terms of the existence of a
module that is used for task A but not for task
B, and the existence of another module that
is used for task B but not for task A. For the
chocolate factory, these two modules are the
Pulverizer and the Concher. For the human,
they are the face recognition system and the
visual word recognition system.

As indicated earlier, the problem with as-
sociations and with single dissociations is that
they are inherently ambiguous; in both cases,
both a one-module interpretation and a two-
module interpretation are plausibly available.
Double dissociations are different: A plausi-
ble alternative interpretation is not inevitably
present. An interpretation in terms of differen-
tial difficulty is untenable if in one case per-
formance of task A is worse and in another
case performance of Task B is worse, and
an interpretation in terms of neuroanatomi-
cal proximity is irrelevant because that only
applies to associations. For this reason, cog-
nitive neuropsychologists regard double dis-
sociation evidence as, on the whole, superior
to evidence based on associations or single
dissociations.

That is not to say that an alternative (one-
module) interpretation can never be offered
when a double dissociation has been used to
draw a two-module conclusion. The point is
that alternatives are not automatically present,
as they are in the case of associations and
single dissociations. Thus, in any situation
in which a double dissociation has been ob-
served, it is incumbent upon any theorist wish-
ing to dispute the two-module theory (for
which the double dissociation has been used
as evidence) to demonstrate that there is a dif-

ferent plausible theory that is also consistent
with the double dissociation data. Whenever
this has not been demonstrated it is reasonable
for one to propose, at least for the time being,
that the two-module theory is correct.1

Challenging a two-module theory by de-
monstrating that there is an alternative theory
that is also consistent with the double dissoci-
ation data is quite different from challenging
the two-module theory by arguing that there
could be a different theory also consistent with
the data. It is true for every theory in every sci-
ence that there could be an alternative theory
also consistent with the relevant data, so this
kind of challenge is a feeble one that requires
no answer. To put this point another way: No
cognitive neuropsychologist ever argues that
because there is a double dissociation there
must be two modules. To argue like that is to
claim that a theory can be logically required
by data; and surely no scientists, including
cognitive neuropsychologists, believe that.

It was explained earlier why in cognitive
neuropsychology double dissociation data

1Plaut (1995) provided some simulation data in which
various forms of lesioning of a small-scale neural net-
work model of reading via meaning produced a double
dissociation between the network’s ability to read abstract
words and its ability to read concrete words, even though
the network contained nothing that could be construed
as a module for concrete words and a separate module
for abstract words; he therefore challenged the utility of
double dissociations as evidence of modularity. Bullinaria
and Chater (1995, p. 227) argued that Plaut’s results were
an artifact of using only a very small network, and their
studies of lesioning of larger neural networks led them to
this conclusion: “Investigation on the effects of damage
on a range of small artificial neural networks that have
been trained to perform two distinct mappings suggest
that a double dissociation is possible without modularity.
When these studies are repeated using sufficiently larger
and more distributed networks, double dissociations are
not observed. Further analysis suggests that double dis-
sociation between performance on rule-governed and
exceptional items is only found when the contribution
of individual units to the overall network performance is
significant, suggesting that such double dissociations are
artifacts of scale.”
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tend to be accorded stronger weight than
association or single dissociation data. But it
would be quite wrong to conclude from this
that association data and single dissociation
data are worthless for theoretical purposes.
The reason this would be wrong is as follows:
When two alternative plausible hypotheses
are consistent with the data (one arguing for
the existence of a particular module, the other
not), the theorist is not compelled to stop there.
Instead, what can be done is to acknowledge
that there are two alternative theories both
consistent with the existing empirical data,
and then to seek to adjudicate between them
on the basis of new empirical data.

To illustrate this point, let us return to the
example of associated deficits in the choco-
late factory: the case where the cocoa pow-
der, sweet chocolate, and milk chocolate do
not taste roasted. That association of deficits
might have occurred because there is a single
Roasting Module that is needed for roasting
all three products; but there is an alternative
theory, which is that there are three Roast-
ing Modules, that they are located close to-
gether in the factory (to allow beans to be
delivered to one location), and that a collapse
of the roof above them has damaged all three
of them.

Now suppose that we measure just how
underroasted the cocoa powder is, how un-
derroasted the sweet chocolate is, and how
underroasted the milk chocolate is, and we
obtain exactly the same answer for each: All
three products are roasted to exactly 19% of
the correct level.

How is that to be explained by the theory
of three Roasting Modules? Why should the
three Roasting Modules have been damaged
to exactly the same degree by the physical
insult from the roof? That would be sheer
coincidence. In contrast, the theory of one
Roasting Module predicts that the degree of
underroasting must be the same for all three
products; if this degree were different for the

different products, that would be evidence
directly falsifying this theory.

Here, then, is an example of how, with
adequate further investigation, soundly based
theoretical conclusions can be drawn starting
off from an observation of an association of
deficits. The same is true in human cognitive
neuropsychology, as the following example
shows.

Suppose that after brain damage a pa-
tient shows both a reading impairment and
a spelling impairment. The patient misreads
many irregular words by giving rule-based
responses to them (regularization errors such
as reading have to rhyme with “cave”). The
patient also misspells many irregular words,
again by giving rule-based responses to them
(such as spelling “tomb” as toom). One might
reach an exciting theoretical conclusion here.
This conclusion says that there is a body
of whole-word orthographic knowledge that
must be accessed from print if irregular words
are to be read correctly; that there is a body
of whole-word orthographic knowledge from
which information must be retrieved if irreg-
ular words are to be spelled correctly; and
that the reason this patient both misreads and
misspells irregular words is that the same
body of orthographic knowledge is used both
for recognizing and for spelling words. Thus
Patterson and Shewell (1987) were wrong in
proposing that there is an orthographic input
lexicon and a separate orthographic output
lexicon, whereas Allport and Funnell (1981)
were right in proposing that there is only a
single orthographic lexicon used both for
reading and for spelling.

This view is a major claim about functional
architecture; but it derives from the observa-
tion of an association of deficits, so the alter-
native two-lexicon view can be defended in
the standard way. It could be that an ortho-
graphic input lexicon is used for reading and
a separate orthographic output lexicon is used
for spelling, that these are located very close
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together in the brain, and that the patient’s
lesion is extensive enough that both of these
adjacent brain regions are affected. Thus,
there are two alternative explanations of the
association: a one-module explanation and a
two-module explanation.

Instead of giving up in the face of this am-
biguity, the investigator can do further work
to try to resolve it. Suppose that the patient
were given exactly the same irregular words
to read and to spell, and it was found that the
patient could spell all the irregular words that
he or she could read, and that the patient could
not spell all the irregular words that he or she
could not read. For example, the patient reads
tomb as “tom” and spells it as toom, and the
patient reads have to rhyme with “cave” and
spells it as hav. The patient both reads and
spells correctly “yacht” and “aunt.”

Why is it exactly the same words that
the patient misreads and misspells? The two-
module theory can only ascribe this to sheer
coincidence. In contrast, the one-module
theory can offer an explanation: that a single
orthographic lexicon is used for both read-
ing and spelling, that the brain damage has
caused some of its entries to be deleted or
to have become inaccessible while others can
still be used, and that accordingly some words
will be both read and spelled correctly and
all other words will be both misread and
misspelled.

Thus, as argued also by McCloskey (2001),
the difference between double dissociation
data on the one hand and association or sin-
gle dissociation data on the other is not that
the former are worthy and the latter worthless;
association or single dissociation data can be
just as compelling theoretically, provided one
has the patience to acknowledge the alter-
native interpretations and to seek to adjudi-
cate between them by carrying out the right
kinds of further studies. Hence, all three types
of data can be of value in cognitive neuro-
psychology.

A WORKED COGNITIVE-
NEUROPSYCHOLOGICAL
EXAMPLE: HOW ARE VISUAL
STIMULI RECOGNIZED?

Three important classes of visual stimuli for
the human being are faces, objects, and printed
words. The literate person can recognize stim-
uli from all three classes. By recognize I mean
that such people can correctly say, “I have
seen this face before but never that one; I have
seen this object before but never that one; I
have seen this printed letter string before but
never that one.” When people can perform
these tasks, they must possess knowledge
representing those visual stimuli that they can
recognize and also a means of accessing this
knowledge.

A typical cognitive-neuropsychological
question here is: How many distinct bodies
of knowledge and access procedures are in-
volved here? Is a single visual recognition
module used for all three types of input, or
are there two modules (one for linguistic
input, the other for nonlinguistic input, say),
or are there three (one for each of the three
categories of stimuli)?

If there is just one module, then faces,
objects, and printed words are recognized
by the same procedures and with reference
to the same single body of stored knowl-
edge. In that case, a difficulty in recognizing
seen objects (visual agnosia) should always
be accompanied by a difficulty in recogniz-
ing faces (prosopagnosia) and in recognizing
printed words (alexia without agraphia, also
known as pure alexia); dissociations between
any of these three deficits should never be
observed.

However, such dissociations have been re-
ported. Profoundly impaired face recognition
accompanied by no detectable defect of object
recognition has been reported by De Renzi
(1986); patient 4 in this paper could no longer
recognize the faces of his own relatives and



pashler-44093 book December 18, 2001 10:15

150 Cognitive Neuropsychology

close friends but performed flawlessly on tests
of recognition of household objects, samples
of writing (his own versus those of others),
cats, coins, and his car among many other cars
in a parking lot. This is consistent with the
view that there are separate modules for face,
object, and word recognition, with only the
first of these three modules damaged in this
patient.

Of course, because this result is a sin-
gle dissociation, the standard alternative in-
terpretation of single dissociations could be
offered: Perhaps faces, objects, and printed
words are recognized by a common visual-
recognition module, but faces might be more
difficult stimuli than objects or printed words,
so partial impairment of that module might
affect faces without affecting objects or
printed words.

The standard reply to this standard alter-
native explanation is to consider whether
there is a relevant double dissociation: Are
there reports of impaired object recognition
with intact face recognition, for example?
The answer is yes, as reported by Feinberg,
Gonzalez-Rothi, and Heilman (1986); Hecaen
and Ajuriaguerra (1956); McCarthy and
Warrington (1986); Pillon, Signoret, and
Lhermitte (1981); and others. Hence, one
cannot propose that there is a single mod-
ule for recognizing faces and objects where
mild damage will result only in prosopagnosia
while more extensive damage will result in
prosopagnosia plus visual agnosia, because
on that hypothesis one will never see cases
of visual agnosia without prosopagnosia.

It is therefore reasonable to conclude from
these neuropsychological data that faces and
objects are recognized by different modules.
Note, however, what “different modules”
means here. The face recognition module is
itself likely to have an internal modular struc-
ture: One of its modules might be, for exam-
ple, a visual feature processing system. Sim-
ilarly, the object recognition module is also
likely to have an internal modular structure:

One of its modules might be, for example, a vi-
sual feature processing system. Thus the two
recognition modules might share common,
smaller, modular subcomponents; it would
not seem reasonable to suggest that there is
both a visual feature processing system that
is dedicated to face recognition and a second
and separate visual feature processing system
that is dedicated to object recognition. The
claim that faces and objects are recognized by
different modules simply says that there is at
least one such smaller modular subcomponent
that is part of the face recognition module but
not part of the object recognition module, and
at least one other such smaller modular sub-
component that is part of the object recogni-
tion module but not part of the face recogni-
tion module.

This is an important point, so I will offer
another example. In the form of acquired read-
ing impairment known as surface dyslexia
(Patterson, Marshall, & Coltheart, 1985),
patients can read aloud nonwords much
better than they can exception words; in the
form of reading impairment known as phono-
logical dyslexia (Coltheart, 1996), patients
can read aloud exception words much better
than they can nonwords. This is often taken
(e.g., by Coltheart et al., 2001) as evidence
for the existence of separate lexical-reading
and nonlexical-reading modules. But few
people would deny that letter recognition
is needed both for the reading of excep-
tion words and for the reading of nonwords.
Therefore, the lexical-reading module con-
tains a letter recognition submodule, and the
nonlexical-reading module contains the same
submodule. Figure 4.3 makes the same point:
It contains an Object Recognition Module and
a Word Recognition Module, and these two
modules share their first four submodules.

If the two recognition modules, one for
faces and one for objects, share many modular
subcomponents, damage to any one of those
components will affect both face and object
recognition; this offers an account of why
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the two abilities so rarely dissociate. Most
patients with prosopagnosia have visual ag-
nosia, and vice versa. Association is common
here, but as documented earlier, dissociations
in both directions have been found.

Note also that although there are numerous
reports of visual agnosia without prosopag-
nosia, case 4 of De Renzi (1986) is, as far
as I know, the only really clear report of pro-
sopagnosia without visual agnosia. One might
therefore ask whether we should be drawing
major theoretical conclusions about how faces
and objects are normally recognized by ev-
erybody on the basis of data from only a sin-
gle brain-damaged individual. Later I discuss
the assumption of uniformity of cognitive ar-
chitecture, which licenses such use of single-
patient data.

If we conclude that there are separate
recognition modules for faces and objects (us-
ing “separate” in the sense described earlier),
what about printed words? Do they have their
own separate recognition module? The way
to investigate that is to look for dissociations
between word and face recognition impair-
ments and between word and object recogni-
tion impairments. The form of acquired im-
pairment of reading in which it is specifically
the rapid visual recognition of the printed
word that is impaired is, as mentioned ear-
lier, known as pure alexia. Thus the topic
of study here is the pattern of associations
and dissociations one sees among prosopag-
nosia, visual agnosia, and pure alexia. This
has been comprehensively discussed by Farah
(1990, 1991).

Consider first visual word recognition and
face recognition. These doubly dissociate.
Pure alexia can occur when face recogni-
tion is normal (Larrabee, Levin, Huff, Kay,
& Guinto, 1985), and prosopagnosia can oc-
cur when visual word recognition is normal
(Gomori & Hawyrluk, 1984).

Next consider visual word recognition and
object recognition. These also doubly dis-
sociate. Pure alexia can occur when object

recognition is normal (Chialant & Caramazza,
1998), and visual agnosia can occur when
visual word recognition is normal (Albert,
Reches, & Silverberg, 1975).

Because each of the three abilities doubly
dissociate from the other two, one might be
led to the conclusion that there are three sep-
arate visual recognition modules. However,
Farah (1990, 1991) has proposed an alterna-
tive theory: that there are not three distinct
visual recognition modules, but only two.

Farah (1990, 1991) developed this pro-
posal from the argument that the recognition
of certain kinds of visual stimuli (e.g., tools)
is based on a decomposition of the stimulus
into many parts and on recognition via these
parts; other kinds of visual stimuli (e.g., faces)
are recognized much more holistically. Imag-
ine, therefore, that there is one module that is
responsible for the ability to represent parts
themselves, including parts for objects that
undergo little or no decomposition (and faces
might be “parts” that are not decomposed at
all); call this module P (for Parts). Further
imagine that there is a second module whose
task is the rapid encoding of multiple parts,
and call this module E (for Encoding). Given
this hypothesis about the cognitive architec-
ture for visual recognition, Farah was able to
develop a plausible account of the patterns of
associations and dissociations evident in her
literature review. This account was based on
two premises:

(a) that decomposition into multiple parts is
most crucial for visual word recognition
(the parts being letters in this case), less
crucial for object recognition, and least
crucial for face recognition (because it is
done so holistically); and

(b) that the parts themselves are least com-
plex in the case of words (the parts
being letters), more complex in the case
of objects, and most complex in the case
of faces (a face being represented as just
one very complex part, the whole face).
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Suppose now that module P is impaired.
Objects whose parts are especially complex
will suffer most here because the more com-
plex a part is the more difficult it will be to rep-
resent, so the more stress it will put on module
P. A mild impairment of module P will only
harm faces; here we will have prosopagnosia
without object agnosia. In another patient
where module P is somewhat more severely
impaired, only those stimuli with the simplest
parts will survive; these are printed words, so
this patient will exhibit prosopagnosia and
visual agnosia without pure alexia. All three
disorders will be present in a patient with a
very severe impairment of module P (or suffi-
ciently severe impairments of both modules).
But there is no kind of impairment of mod-
ule P that could result in pure alexia without
prosopagnosia, nor any that could result in
pure alexia without visual agnosia.

Next consider the consequences of impair-
ment of module E. This will have the most
serious consequence for stimuli with many
different parts, all or most of which must be
recognized for the stimulus to be recognized
(i.e., printed words). Here, then, if there is a
mild impairment of module E, one would see
pure alexia in the absence of visual agnosia
and prosopagnosia. A more severe impair-
ment of module E would impair object recog-
nition as well, producing pure alexia and vi-
sual agnosia in the absence of prosopagnosia.
All three disorders will be present in a patient
with a very severe impairment of module E.
But there is no kind of impairment of mod-
ule P that could result in prosopagnosia with-
out pure alexia, nor any that could result in
prosopagnosia without visual object agnosia.

These ideas about the cognitive architec-
ture of the visual recognition system are
important for at least two reasons. The first
is that a major theoretical claim is being made
about how people recognize visual stimuli.
The second is that implicit here is a second
claim (which Farah makes explicitly else-

where): that only abilities that are old in evo-
lutionary terms can be cognitively modular
(Farah & Wallace, 1991). Reading is an abil-
ity that has been attained by humankind so
recently that it cannot have evolved; and on
Farah’s view about the cognitive architecture
of visual recognition, there is no reading mod-
ule. Instead, reading is accomplished by pig-
gybacking on two modules that are arguably
evolutionarily old (module P and module E).

Farah has applied this view more gener-
ally to other kinds of acquired impairment
of reading. For example, in phonological
dyslexia (see Coltheart, 1996, for review) pa-
tients are specifically impaired at reading non-
words aloud. If there is a reading module,
one might expect it to contain a submodule
that uses knowledge about correspondences
between graphemes and phonemes to read
aloud, and one could then interpret phono-
logical dyslexia as a specific impairment of
this submodule. But if one denies that there
is a reading module, then some other inter-
pretation of phonological dyslexia is needed.
Hence Farah, Stowe, and Levinson (1996)
raised the possibility that this form of reading
disorder is caused not by an orthographic im-
pairment but by an impairment of phonolog-
ical abilities (which are evolutionarily old).
Patterson and Lambon Ralph (1999) have
discussed whether it might in general be the
case that all acquired impairments of read-
ing might be explicable as arising from im-
pairments of some nonorthographic cognitive
system, thus envisaging the possibility that
there is no reading module (and, of course,
no spelling module).

It remains to be seen whether this fas-
cinating view that the only cognitive mod-
ules that can exist are those that reflect
evolutionarily old abilities could turn out to
be true in general. As far as the specific claim
made by Farah about pure alexia is concerned,
however, empirical evaluation of this claim
is possible, because the claim is falsifiable
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because there is one pattern of impairment
of visual recognition that, according to this
claim, cannot ever be observed (Farah, 1991,
p. 8), namely, visual object agnosia without
prosopagnosia or pure alexia. This pattern
cannot occur on her theory, because if the
object agnosia is due to a sufficiently severe
impairment of module E, then visual word
recognition, for which module E is particu-
larly vital, must be affected too, so pure alexia
must be present. If, on the other hand, the
object agnosia is due to a sufficiently severe
impairment of module P, then face recogni-
tion, for which module P is particularly vital,
must be affected too, so prosopagnosia must
be present. Hence the prediction is that visual
agnosia will never be seen in isolation from
the other two visual disorders.

Two Competing Theories
of Visual Recognition

This chapter has presented two different
theories about how visually presented stim-
uli are recognized: the three-module theory
(a Faces module, an Objects module, and
a Words module) and Farah’s two-module
theory (a P module and an E module).

The three-module theory predicts the oc-
currence of all possible patterns of preserva-
tion and impairment of the three abilities. The
two-module theory predicts that one of these
patterns will never be seen: isolated visual
object agnosia with neither prosopagnosia nor
pure alexia.

Humphreys and Rumiati (1998) described
a patient MH who had a profound visual object
agnosia: She could name fewer than 50% of
line drawings of objects; she performed sim-
ilarly when asked to name visually presented
miniature models of animals; and she was
very poor at tests of picture comprehension.
This was not due to some low-level visual im-
pairment, as she was good at copying pictures.
In contrast, she was within the normal range

in a test of naming familiar faces and in
a test of reading aloud single words. Thus,
MH exhibited object agnosia without prosop-
agnosia and pure alexia—the pattern that, ac-
cording to the two-module theory of visual
recognition, will never be observed, but that
is expected on the three-module theory. This
result therefore supports the three-module
theory and is inconsistent with the two-module
theory.

THE ASSUMPTION OF UNIFORMITY
OF COGNITIVE ARCHITECTURE

The literature review by Farah (1990) cov-
ered 99 cases; 97 of these were consistent with
the two-module account of visual recognition,
and the two that were not were sufficiently
unclear as to be plausibly discounted. Thus,
if one adds patient MH ( just described) to
these 99 cases, there are 100 relevant patients,
and only a single one of these is inconsistent
with the two-module account. Might the enor-
mous preponderance of cases consistent with
the two-module account be taken as strong
evidence for this account?

Not on the cognitive-neuropsychological
approach, according to which a single in-
consistent case is enough to falsify a model,
no matter how many consistent cases have
been observed. This methodological tenet
of cognitive neuropsychology is justified by
the assumption of uniformity of cognitive
architecture.

According to this assumption, in all peo-
ple who do not have acquired or develop-
mental disorders of cognition, the architec-
tures of cognitive systems are identical. A
particular module might vary quantitatively
from person to person—some people may
have larger auditory vocabularies than others,
for example—but what modules there are and
what modules there are not are the same
from person to person. It follows that if one
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concludes from just one case study that the
person studied had three different visual recog-
nition modules prior to brain injury, one may
then conclude that this is true for everyone.
That is why just one case can be sufficient
to falsify a theory, no matter how many other
cases are consistent with that theory.

This is, of course, a strong assumption,
but it is not an assumption peculiar to cog-
nitive neuropsychology. It is an assumption
generally made in cognitive psychology, be-
cause cognitive-psychological theorists want
to make statements about the cognitive
architectures of everyone on the basis of data
about the cognitive architectures of a relative
few. If the assumption of uniformity of cog-
nitive architecture is completely false, then
cognitive neuropsychology cannot be done;
but nor can the rest of cognitive psychology.

It is sometimes argued that sampling er-
ror is a problem here. If only one patient in a
hundred shows a particular effect, might not
that just be a statistical artifact? This objection
is misguided. If just one task is administered
to a hundred patients, and just one patient
shows a statistically significant difference be-
tween two conditions with that task, taking
that result seriously could indeed be capital-
izing on sampling error. But that is not how
cognitive neuropsychologists do their work.
To show, for example, that a certain patient
has visual object agnosia but no prosopag-
nosia or pure alexia, cognitive neuropsycholo-
gists would typically administer many tests of
object recognition, many tests of face recogni-
tion, and many tests of reading. If the patient is
impaired on all of the object recognition tests
and normal on all the tests of face processing
and all the tests of reading, it is reasonable to
claim that this is a case of an isolated visual
object agnosia, even if all other patients in the
literature who had visual object agnosia have
also had either prosopagnosia or pure alexia.
Here the multiple testing and its consistent
results render untenable an objection based
on sampling error.

WHY THE EMPHASIS
ON SINGLE-CASE STUDIES IN
COGNITIVE NEUROPSYCHOLOGY?

Research in cognitive neuropsychology char-
acteristically takes the form of extremely de-
tailed case studies of individual people with
disorders of cognition. Whole doctoral theses
(e.g., Haywood, 1996)—even whole books
(e.g., Howard & Franklin, 1988)—have been
written about single patients. One reason for
this has already been mentioned: If the as-
sumption of uniformity of cognitive archi-
tecture is made, data from just one case are
sufficient to falsify a theory.

There is a more general reason, however,
for this emphasis on single-case studies (see
Coltheart, 1984; Howard & Franklin, 1988;
Marshall, 1984). Any modular model of any
system used for carrying out any interesting
cognitive activity will consist of a substan-
tial number of submodules and pathways of
communication between them. For example,
the model depicted in Figure 4.3 has 11 boxes
and 14 arrows for a total of 25 components.
If there is anatomical modularity as well as
functional modularity, then there are 25 dif-
ferent loci that are independently damageable
by brain injury. This means that the number of
different possible patterns of impairments and
preservations to the functional components of
that model is 225. All but one of those patterns
corresponds to a different brain-damaged pa-
tient (the one pattern that does not is where all
boxes and arrows are intact). Because 225−1 is
an unimaginably large number, the probabil-
ity of coming across two patients with exactly
the same cognitive impairment is unimagin-
ably small. Therefore, every patient the cogni-
tive neuropsychologist sees will be effectively
unique, so averaging across groups of patients
cannot be justified. Instead, every patient must
be investigated, and his or her data reported,
individually.

Take surface dyslexia, for example. The
defining symptom of this syndrome is the
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regularization error in reading aloud: An
exception word is read as if it conformed to
English spelling-sound rules, so that broad is
read as if it rhymed with “road,” and have
as if it rhymed with “cave.” Coltheart and
Funnell (1987) demonstrated that on any plau-
sible model of the reading system, there are
numerous different loci in the system at which
damage would lead to the occurrence of regu-
larization errors; given the particular model of
the reading system they proposed, there were
seven such different loci. Some of these are
quite remote from each other; for example,
the orthographic input lexicon and the phono-
logical output lexicon are both loci at which
damage would lead to the reading of broad to
rhyme with “road.”

If each member of a group of patients
classified as exhibiting the same syndrome
(all classified as surface dyslexics, for exam-
ple, or all classified as Broca’s aphasics) can
have a unique pattern of impairment of the rel-
evant cognitive system, then the syndrome is
not an appropriate object of scientific study. If,
as is the case, there is no specific impairment
of the language-processing system that all
Broca’s aphasics have in common, then there
is no coherent scientific entity to be called
Broca’s aphasia, so there’s nothing to study
here.

This does not mean that there is no place
at all in cognitive neuropsychology for
syndrome-oriented research. The history of
the subject shows that when one is begin-
ning cognitive-neuropsychological investiga-
tion of a cognitive domain that has not been
investigated at all from that approach, identi-
fying subgroups of patients with similar im-
pairments is a good way to start off—a valu-
able ground-clearing exercise. For example,
the cognitive neuropsychological investiga-
tion of reading was launched by Marshall and
Newcombe (1973), who distinguished be-
tween three different syndromes of acquired
reading disorder (surface dyslexia, deep
dyslexia, and visual dyslexia), and described

for each syndrome two characteristic patients.
This seminal paper has been the stimulus for
an enormous amount of work on acquired
dyslexia over the past quarter of a century; but
in subsequent work the syndrome approach
was soon abandoned by cognitive neuropsy-
chologists as it became clear that within any
one of these syndromes of acquired dyslexia
patients differed in important ways from each
other.

GENERALIZATION IN COGNITIVE
NEUROPSYCHOLOGY

If, from the cognitive-neuropsychological
point of view, one does not study patients in
order to learn more about the characteristics
of some neuropsychological syndrome, and if
every patient is unique, how can one seek to
generalize one’s research findings here? The
answer is that one studies particular patients
with the aim of learning something about
some general theory of the cognitive archi-
tecture of the relevant cognitive system; data
from the patient are used to develop or extend
or test such a general theory. It is no prob-
lem that each patient in such a study has a
unique pattern of impairments of that cogni-
tive system; indeed, it may be a benefit. What
matters is that all the patients had the same
architecture of the system prior to damage—
the assumption of uniformity of cognitive
architecture.

DEVELOPMENTAL COGNITIVE
NEUROPSYCHOLOGY

Figure 4.3 could be a correct account of the
system that adults use for naming pictures
and reading aloud words and nonwords; that
is, it could be a correct description of the
cognitive architecture of people aged, say, 40.
But it could not be a correct description of
the cognitive architecture of people aged 4.



pashler-44093 book December 18, 2001 10:15

156 Cognitive Neuropsychology

As a rule, people of that age know nothing
about reading, so their cognitive architectures
will not contain modules that carry out ortho-
graphic tasks such as letter or word recogni-
tion (though they will contain modules for
visual object recognition, semantic process-
ing, and speech production, all of which
4-year-olds can do).

But what about people aged 8? Most of
them have learned something about reading
but have not attained maximum skill at that
task. What can cognitive neuropsychology
say about the cognitive architecture of these
people’s juvenile reading systems, and about
how this relates to the cognitive architecture
of the skilled reading system? Some devel-
opmental psychologists have been extremely
dubious about whether cognitive neuropsy-
chology can contribute anything useful to the
study of cognitive development.

Initially this concern was expressed specif-
ically in relation to reading: “The already ex-
isting structural model, useful as it is in de-
scribing the skilled reading process, needs to
be complemented by a developmental model
in order to make sense of the varieties of devel-
opmental dyslexia” (Frith, 1985, p. 326); “A
far greater problem arises when researchers
[on children’s reading] fail to adopt a develop-
mental perspective when analyzing their data”
(Snowling, 1987, p. 83); “A static model of
adult performance, such as dual route theory,
is inadequate for understanding how children
learn to read and why some children learn
to read easily while others have difficulties”
(Snowling, Bryant, & Hulme, 1996, p. 444).

It was difficult to evaluate such concerns
because the people expressing them had not
explained what errors might ensue when static
models of adult performance were applied.
Fortunately, Bishop (1997) has recently not
only spelled out these concerns but also dis-
cussed them in relation to other forms of
developmental cognitive impairment. This is
clearest in her discussion of specific language

impairment (SLI), a developmental disorder
in which a child’s language acquisition lags
far behind other aspects of the child’s cog-
nitive development for no apparent reason.
Bishop (1997) mentions three competing ex-
planations of the occurrence of SLI:

1. Language difficulties are caused by im-
pairment in discriminating rapid brief
auditory stimuli (Tallal & Katz, 1989).

2. Language difficulties are caused by limita-
tions in phonological short-term memory
(Gathercole & Baddeley, 1990).

3. Specialized mechanisms for grammar ac-
quisition are impaired (Crago & Gopnik,
1994).

She then says: “The traditional logic of cog-
nitive neuropsychology is inadequate to dis-
criminate these possibilities” (p. 903).

This is a valuable challenge. The way to
meet it is by invoking a distinction between
the proximal and distal causes of cognitive
impairments, a distinction that is central in
developmental cognitive neuropsychology.

Proximal versus Distal Cause

Returning just for a moment to the example
of the chocolate factory, one can imagine the
following conversation between a chocolate
consumer and a person familiar with the func-
tional architecture of the factory:

“Why does the chocolate taste bitter and have a
coarse texture today?”
“Because the Concher isn’t working properly.”
“Why not?”
“Beats me. You’ll have to ask a hardware guy
about that.”
[Asks hardware guy] “It’s because the
Concher’s splinges are worn out and need to
be replaced.”

What is the cause of the chocolate defect
here? Is it that the Concher is not working
properly, or is it that the splinges are worn
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out? Obviously, both are causes: The choco-
late is poor because the Concher is not work-
ing properly, and the Concher is not working
properly because of its defective splinges.
Notice that these are not the same cause, be-
cause “The Concher is not working properly”
could be true even if “The splinges are worn
out” is not true (because the Concher problem
could have been due to its cron being clogged
up, rather than to its splinges being worn out).
In the chocolate factory as in the mind, the
same functional defect can be caused by var-
ious different physical defects.

When a system’s operation is defective,
there is not just one cause, but a chain of
causes. The cause that is closest to the de-
fective behavior is the proximal cause; the
other (more remote) causes are distal causes
(Jackson & Coltheart, 2001).

This distinction applies to Bishop’s (1997)
SLI example as follows. Part of the human
language-processing system is a system that
handles grammatical inflections—a system
that people use for creating past tenses when
we need to, for example. In some cases of
SLI, there is a specific difficulty in dealing
with inflections, even if some other aspects of
the language system (e.g., phonology) have
been acquired appropriately. In such children
there is presumably a defect of a syntactic part
of the language-processing system that is re-
sponsible for processing grammatical inflec-
tions.2 What might cause such a defect? There
are many possibilities; one is that specialized
innate mechanisms for acquiring this part

2This seems circular but is not. If a child responds when
asked “What’s your mother doing with the peas?” by
saying “shell” rather than “shelling,” that could be due
to some problem with syntactic processing, but that is
not the only possibility. Another possibility is that the
defect is phonological (specifically, a difficulty in pro-
ducing unstressed syllables). These alternatives could be
distinguished by asking the child, at least in predecimal
times, “What’s the name of the coin that twelve pennies
make?” Can the child respond “shilling”?

of grammar are genetically impaired in this
particular child.

Here the proximal cause of the child’s
abnormal speech is a particular defect of
the language system, and the distal cause
of the child’s abnormal speech is a genetic
deficit in mechanisms for acquisition of
grammar.

Or instead the distal cause could be a lim-
itation of phonological working memory that
affected the child’s ability to acquire grammar
from exposure to spoken language; or it could
be that the child has a difficulty in speech
discrimination for brief and rapidly changing
auditory stimuli that affects the perception of
very brief and unstressed segments of speech
(such as inflections).

Here there are three different possible dis-
tal causes of the proximal cause of the child’s
abnormal spoken language.

Bishop’s claim was that the methods of
cognitive neuropsychology are not suitable
for discriminating between these alternative
possible distal causes. Whether this is true
is not important because the central aim of
cognitive neuropsychology is to discover the
proximal cause of abnormal behavior in any
cognitive domain.

This is easily demonstrated by considering
any acquired disorder of cognition, for exam-
ple, prosopagnosia. The proximal cause of this
disorder is an abnormality of one or more of
the components of the cognitive system used
for recognizing faces; it is cognitive neuropsy-
chology’s job to propose theories about what
these components might be, and then to see
whether any such theory can explain details
of the patient’s face-processing performance.
The distal cause of this disorder is damage
to mechanisms of the brain that are involved
in face processing, and that is the province
of cognitive neuroscience, not of cognitive
neuropsychology.

Although this point is most easily demon-
strated with respect to acquired disorders of
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cognition, it applies equally to developmen-
tal disorders. The job of developmental cog-
nitive neuropsychology is to propose theories
about the functional architecture of the mental
information-processing system that children
of a certain age use to perform some partic-
ular cognitive activity (e.g., sentence produc-
tion) and to investigate whether the perfor-
mance of children of that age who have an
abnormality in this cognitive domain can be
understood with reference to that theory. The
system abnormality is the hypothesized prox-
imal cause of the performance abnormality.
The system abnormality itself will have some
cause or causes, and these are distal causes
of the performance abnormality. These distal
causes might, like the proximal cause, be at
the cognitive level (e.g., the proximal cause
of inflectional errors in sentence production
might be an impairment of syntactic knowl-
edge, and the cause of that impairment, a distal
cause of the performance abnormality, might
be impaired phonological short-term memory,
which is also at the cognitive level). However,
distal cause can also be at the biological level
(such as genetic causes, or anoxic brain dam-
age that occurred perinatally), or at the envi-
ronmental level (such as high concentrations
of lead in the environment).

Suppose, then, that one is studying an
8-year-old boy whose reading ability is much
worse than that of the other 8-year-olds in his
class. It is conceivable that his reading system
is no worse than theirs, and that his poor per-
formance when his reading is being assessed
is due to inattentiveness or contrariness rather
than to an abnormality of his reading sys-
tem. That possibility can be discounted if the
boy is performing normally in assessments of
all other school subjects except for reading.
If that can be demonstrated, then there must
be some difference between this boy’s read-
ing system and the reading systems of all
the other children in the class; that will be
the proximal cause of his reading disorder.

Furthermore, there must be some reason
why his reading system is different from the
others; that will be the distal cause of his
reading disorder.

The cognitive neuropsychologist’s job is to
discover what this proximal cause is. Because
this proximal cause is an abnormality of the
reading system, this job can only be accom-
plished if it is known what the reading system
is normally like in 8-year-old children. How
big is the sight vocabulary of a typical 8-year-
old normal reader? What kinds of nonwords
can 8-year-old normal readers read aloud
correctly, and what kinds typically cause them
problems?

In general, then, the way developmental
cognitive neuropsychology works is as fol-
lows. A child is found who is strikingly
less capable of performing some cognitive
task than are other children of the same age.
A developmental cognitive neuropsycholo-
gist would be interested in studying such a
child because such an investigation might re-
veal more about how the relevant cognitive
system is normally acquired, and about what
that cognitive system is typically like for chil-
dren of that age. A functional architecture for
that cognitive system at that age might then
be hypothesized, followed by an investiga-
tion of whether the pattern of normal and ab-
normal performance of that child on a bat-
tery of relevant tests could be understood as
being due to a pattern of normally and ab-
normally acquired components of that func-
tional architecture. If such an understanding
is achieved, then a hypothesis about the prox-
imal cause of the child’s relative incapabil-
ity in this cognitive domain will have been
generated.

After that, an investigation of possible dis-
tal causes of this proximal cause can be pur-
sued. But analysis of proximal cause—the
developmental cognitive neuropsychological
work—must come first. Consider, for exam-
ple, the question of whether SLI has a genetic
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cause. That is asking about a distal cause
of a particular developmental performance
pattern without first considering proximal
cause, and it lays such an investigation open
to a problem. Children can earn the diagno-
sis of SLI because they perform poorly on
tests of language comprehension or because
the sentences that they produce are abnor-
mally syntactically simple for their age. Here
there are two different proximal causes of the
child’s language impairment. It could be that
one of these has a genetic basis and that the
other does not. A genetic investigation that
did not treat these two groups of children sep-
arately would be unlikely to yield anything
useful. This specific example illustrates a gen-
eral point: Hypotheses about distal causes of
developmental disorders of cognition need to
be hypotheses about the distal cause of a prox-
imal cause. Hence, to pursue any research on
distal (e.g., genetic) causes of developmental
disorders, one needs first to identify the prox-
imal cause—the particular abnormality of the
relevant cognitive system. Identifying prox-
imal causes of developmental cognitive dis-
orders is what developmental cognitive neu-
ropsychology does.

Yet another way in which the perspective
of developmental cognitive neuropsychology
can assist attempts to understand developmen-
tal disorders of cognition is to make the point
that it is likely to be a mistake to think of
the three explanations of SLI just listed as
competing theories among which there must
be adjudication. SLI is a syndrome and, as
such, is an ultimately inappropriate object of
study even though the syndrome approach
may be a useful way to begin investigation
of some cognitive disorder. Children classi-
fied as SLI are not a homogenous group all
having a single, identical impairment of the
language system. Because this is a hetero-
geneous group of children with a variety of
forms of impaired language, it is perfectly
possible that each of these three accounts of

SLI apply to some of the children in any such
group. Some of the children may have im-
paired abilities to discriminate rapid brief au-
ditory stimuli, and this may have impaired
some other aspects of their language learning;
others may have deficient phonological short-
term memory, and this may have impaired
some other aspects of their language learn-
ing. Still others may have a genetic impair-
ment of innate mechanisms, and this may have
impaired yet other aspects of their language
learning.

Finally, in any case, the claim that “the tra-
ditional logic of cognitive neuropsychology
is inadequate to discriminate between these
possibilities” (Bishop, 1997, p. 903) is not
even true. It was once argued that the distal
cause of visual agnosia was some combination
of a low-level visual impairment plus some
impairment of frontal lobe function. The tra-
ditional logic of cognitive neuropsychology
in this circumstance is to investigate whether
there are any people who possess low-level vi-
sual impairments and frontal lobe damage but
do not possess visual agnosia. Such cases were
found, so this particular theory about the dis-
tal cause of visual agnosia was refuted. Apply-
ing this logic to SLI would involve identifying
children with impaired ability to discriminate
rapid brief auditory stimuli and determining
whether any of them showed no evidence of
SLI; the discovery of one such child would
refute this theory of the distal cause of SLI.
Similarly, one could investigate children with
deficient phonological short-term memory to
see whether any such child shows no evidence
of SLI. Investigations like these represent the
application of the traditional logic of cogni-
tive neuropsychology for the purpose of dis-
criminating between these possible accounts
of SLI.3

3I thank John Marshall for providing me with this
example.
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SOME PRACTICALITIES
PECULIAR TO COGNITIVE
NEUROPSYCHOLOGY

Suppose there is a researcher in cognitive
psychology who has so far carried out lab-
oratory research exclusively involving cogni-
tively normal college students. The researcher
can see, however, that a particular question of
interest could be addressed by appropriate in-
vestigations of a person suffering from a cog-
nitive impairment caused by brain damage.

For example, the question of interest might
be the following. People know various facts
about inanimate objects, including facts about
the correct way in which to interact physically
with the object (for those objects that actually
have a correct way) and facts about the func-
tions that these objects serve (for those objects
that actually have a function). Is there a single
body of knowledge about objects that contains
both types of information? Or is information
about how to interact physically with a key
stored quite separately from the fact that keys
are for opening locked things and for locking
open things?

The researcher has read this chapter at-
tentively up to this point, so he or she can
already see how an investigation of people
whose brain damage has affected their knowl-
edge of objects in some way might provide an
answer to this question. Suppose, for exam-
ple, that when such a person was shown a key
and asked what it was for, the person could
say, “It’s for locking and unlocking things”;
but that when given the instruction “Show me
how you would use it,” the person was quite
unable to do so. This person can accurately
imitate key-turning behavior when the investi-
gator performs this action (so there’s no ques-
tion of paralysis), but nevertheless cannot pro-
duce this behavior in response to the stimulus
of a key.

The researcher has read this chapter very
attentively, however, so he or she knows that a

dissociation is not really what is needed. The
data that the researcher has observed might be
evidence for distinct knowledge systems for
object function and object use; but there is an
alternative explanation, which is that there is a
single object knowledge system, but for some
reason information about object use in that
system is more vulnerable to brain damage
than is information about object function. The
researcher knows, of course, the answer to this
problem: a double dissociation is necessary.
The researcher needs to find a second brain-
damaged person who can pick up a key and
put it in a lock and turn it, and mime the use of
a key when shown one, but who when shown
a key and asked what it is for will say, “I don’t
know. What is that thing?”

As it happens, both kinds of patients
have been reported in the cognitive-
neuropsychological literature. The condition
in which patients can normally use objects and
mime their use but are poor at providing ver-
bal information about what an object is used
for when shown it is known as optic apha-
sia (Beauvois, 1982). The opposite pattern—
impaired object use and miming with intact
verbal knowledge—also occurs (Leiguarda &
Marsden, 2000).

I believe that anyone interested in how ob-
ject knowledge is represented, even some-
one who has so far only studied this via
experiments with cognitively normal college
students, would be fascinated by such obser-
vations and would consider them directly rel-
evant to the development of a theory about
how object knowledge is represented in peo-
ple’s cognitive systems. So the researcher in
this example decides to do research with peo-
ple in whom brain damage has affected such
knowledge in various different ways. What is
the researcher’s next step?

The researcher will need to develop a re-
lationship with a neuropsychology clinic or a
neurology ward, a relationship in which it is
clear to all parties, and accepted by them, that
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the researcher’s interest is in research and not
in treatment. After this, the researcher is ready
to study patients with interesting disorders of
object knowledge.

Unfortunately, experiments in cognitive
neuropsychology are experiments of nature.
The researcher has no control at all over
the neuroanatomical location and the func-
tional consequences of the brain injuries suf-
fered by the patients admitted to the ward
or clinic with which the researcher has es-
tablished a relationship. Hence, it is quite
possible that the researcher will never have
access to a patient who has an interesting dis-
order of object knowledge, because it could
happen that none of the admitted patients
have suffered the appropriate kind of brain
injury.

There are at least three ways for the
fledgling cognitive neuropsychologist to ma-
neuver a solution to this problem. The first is
to establish relationships with a large num-
ber of neuropsychology clinics and neurol-
ogy wards, and to ensure that the clinicians
in those centers not only are willing to draw
attention to any relevant patients who come
along but also are sufficiently well briefed that
they are able to identify which patients might
be of interest because they have disorders
of object knowledge and which patients—no
matter how fascinating their cognitive deficits
might be—are not relevant. Then the re-
searcher must simply be patient.

The second is to find some way of develop-
ing a collaboration with a cognitive neuropsy-
chology laboratory where such connections
are already well established and where work
on patients with disorders of object knowl-
edge is already under way. Examples of rele-
vant laboratories include the Cognitive Sci-
ence Research Centre at the University of
Birmingham, the Center for Cognitive Neu-
roscience at the University of Pennsylvania,
and the Moss Rehabilitation Research Insti-
tute in Philadelphia.

The third, and much more common, ma-
neuver is to recognize that very many brain-
injured patients are capable of informing cog-
nitive neuropsychologists about some domain
of cognition. Thus, even if a cognitive neu-
ropsychologist has access only to patients ad-
mitted to one clinical center, that will guaran-
tee access to a variety of patients who would
richly repay cognitive-neuropsychological in-
vestigation. The problem here is that the in-
vestigator has no control over which domain
of cognition could profitably be studied with
each patient. Thus, an investigator whose field
of expertise is, say, high-level vision in par-
ticular and object knowledge in general might
be confronted first with a patient with an inter-
esting acquired disorder of speech production,
and next with a patient with an interesting ac-
quired disorder of calculation, and then with
a patient with an interesting acquired disor-
der of auditory recognition of environmental
sounds. All three patients might have unin-
terestingly intact high-level vision and object
knowledge. The only recourse that cognitive
neuropsychologists have here is to be willing
to become jacks-of-all-trades: to be prepared
to educate themselves in new areas of cog-
nitive psychology as a function of the kinds
of patients who turn up in the clinical center.
That is what most cognitive neuropsycholo-
gists do.

John Marshall, for example, began his
cognitive-neuropsychological career by work-
ing on impairments of word retrieval and of
reading but subsequently has studied spelling,
spoken language comprehension, global and
local processing, visual attention, and hallu-
cinations, all from a cognitive-neuropsycho-
logical perspective. Tim Shallice’s first
cognitive-neuropsychological work was on
impairments of short-term memory, but he
has subsequently studied reading, spelling, se-
mantic memory, executive function, and con-
sciousness, all from a cognitive-neuropsycho-
logical perspective. Alfonso Caramazza’s first
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cognitive-neuropsychological work was on
impairments in the production and compre-
hension of spoken language, but he has sub-
sequently investigated reading, spelling, mor-
phology, semantic memory, visual attention,
and bilingualism, all from a cognitive-neuro-
psychological perspective. Such extreme di-
versity of interests is rarely seen in cognitive
psychologists who work solely with cog-
nitively normal individuals. It is common
amongst cognitive neuropsychologists, how-
ever, because they need to work with whatever
kinds of cognitive disorders nature provides to
them.

How one can develop access to appropriate
brain-damaged patients is one purely practical
consideration for the cognitive neuropsychol-
ogist; there are others. A patient being stud-
ied may not be in a stable condition: Cogni-
tive abilities can worsen as a study progresses
(the patient may suffer a second stroke, or
may be suffering from a progressive disorder
such as Alzheimer’s disease) or can improve
as a study progresses (e.g., because the patient
is receiving rehabilitation, or because in the
weeks or months after insult to the brain the
condition of the brain itself can improve be-
cause of such factors as reduction in swelling
and intracranial pressure as fluid produced by
the insult drains away). Whenever such wors-
ening or improvement over time might be hap-
pening, the investigator has to be particularly
careful in drawing conclusions from compar-
isons between tests administered at different
points in time.

Finally, there is the issue of statistical
methods appropriate to data from single case
studies. It might be thought that when N = 1,
many forms of statistical analysis common in
areas of cognitive psychology that use group
data cannot be applied. However, this is not
really so. Imagine, for example, that you were
investigating the effects of word frequency
and word imageability on a patient’s ability to
repeat words. This would be done by select-

ing a sufficiently large set of words in which
these two variables were orthogonally varied,
administering these in random order to the
patient, and for each word measuring, say,
latency of repetition. This would result in a
2 × 2 table of data, each cell of the table con-
taining a set of latencies for one combination
of the word frequency and word imageability
categories. A two-factor independent-groups
analysis of variance is entirely appropriate
here. Why is it an independent-groups analy-
sis? Because the set of words in any one cell
is independent of the set in each other cell; no
word belongs to more than one cell (just as, in
an independent-groups analysis of group data,
the set of subjects in any one cell is indepen-
dent of the set in each other cell; no subject be-
longs to more than one cell). In general, then,
the emphasis on single case studies in cog-
nitive neuropsychology does not lead to any
particular statistical difficulties in selecting
appropriate statistical techniques for analysis
of cognitive-neuropsychological data. There
might be occasions when the fact that data are
drawn from only one subject leads to viola-
tion of some assumption of a parametric test
(e.g., the data might be highly skewed), but
that is easily dealt with by using randomiza-
tion tests (Edgington, 1995) that do not rely
on these assumptions and yet are of equal
power to parametric tests.

FUTURE DIRECTIONS IN
COGNITIVE NEUROPSYCHOLOGY

Cognitive Neuroimaging
and Cognitive Neuropsychology

A great deal of recent work in cognitive neuro-
science has been devoted to imaging the brains
of people as they perform cognitive tasks on-
line. One can imagine two kinds of motivation
for such work. The first is the hope that in-
vestigations of this kind could tell us more
about the nature of cognition itself—about
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the functional architecture of some cognitive
system. The second and different motivation
is to seek to localize in the brain the individ-
ual components, the modules, of the proposed
functional architecture of some cognitive
system.

I know of no neuroimaging work so far re-
ported that has clearly achieved the first of
these aims—that is, to reveal something new
about the organization of the functional ar-
chitecture of any cognitive system. Indeed,
it is not absolutely clear how this aim might
ever be achieved. Suppose one were serious
in proposing Figure 4.3 as a correct descrip-
tion of the functional architecture of the cog-
nitive system that people use to understand
and name pictures and to read aloud words
and nonwords. What is an example of a pos-
sible outcome of a cognitive neuroimaging
experiment that would be regarded as falsi-
fying this claim about cognitive architecture?
Suppose, for example, one has in mind the
double dissociation between surface dyslexia
(interpreted as selective impairment of the
reading route that proceeds via visual word
recognition) and phonological dyslexia (in-
terpreted as selective impairment of the read-
ing route that proceeds via the application of
grapheme-phoneme rules). This might moti-
vate one to carry out a neuroimaging study in
which brain activation occurring while people
were reading aloud exception words was com-
pared with brain activation occurring while
people were reading aloud nonwords. Sup-
pose one could detect absolutely no difference
between these two conditions. Would that
be evidence falsifying the Figure 4.3 model?
No, because the Figure 4.3 model makes
no claims about anatomical modularity; it is
a claim about the mind and not about the
brain. Figure 4.3 could be a correct descrip-
tion of a human functional architecture even
if the system it describes is represented in the
brain in a completely nonmodular way (which
would prevent activation patterns from differ-

ing as a function of which reading routes were
being used).

Perhaps I am revealing a failure of imagi-
nation here; perhaps there are ways of show-
ing that, at least in principle, data from cog-
nitive neuroimaging studies are capable of
constraining theories about functional archi-
tectures of cognition. However, I am not alone
in being dubious about this: see Van Orden &
Paap (1997) for an even more skeptical view
concerning whether cognitive neuroimaging
could ever inform theorizing about the func-
tional architecture of cognition. Only the fu-
ture will tell; but it does seem that at least up
to the present time no cognitive neuroimaging
work has made any serious difference to ideas
about the functional architecture of cognition.

In response to the above, Marshall (per-
sonal communication, March 2001) said,
“You claim that imaging cannot tell you any-
thing much about the functional architecture.
I kind of agree, but consider this example: A
woman cannot move (or at best doesn’t move)
the left side of her body, although there is no
discoverable structural lesion. You think up
a few “functional” (?) explanations. (i) Her
relevant motor centers have nonetheless been
put out of action; (ii) Her relevant motor cen-
ters have been disconnected from her “voli-
tion” centers; (iii) Her relevant motor centers
are OK, but get inhibited by some other cen-
ter, etc., etc., etc. Marshall, Halligan, Fink,
Wade, and Frackowiack (1997) in Cognition
is an attempt (not too unsuccessful I would
argue) to distinguish between these hypothe-
ses using PET. Note that this is not quite
the same as using functional neuroimaging
to test the right hemisphere hypothesis for
deep dyslexia. I was, I think, testing a func-
tional, not anatomical, hypothesis.” The imag-
ing data in this study of a hysterical paral-
ysis revealed that when the patient tried to
move her left leg, motor and/or premotor ar-
eas of the right hemisphere associated with
movement preparation and execution were
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activated, but the right motor primary cortex
was not; the right orbitofrontal and right ante-
rior cingulated cortex were also activated. The
authors concluded that the latter two areas “in-
hibit prefrontal (willed) effects on the right
primary motor cortex when the patient tries
to move her left leg” (Marshall et al., 1997,
p. B1). These are fascinating results, but they
still do not, pace Marshall, constitute an ex-
ample in which functional neuroimaging has
told us something new about the functional ar-
chitecture of cognition. The functional archi-
tecture described by Marshall earlier in this
paragraph (a motor center system; a “voli-
tion” center; a center for inhibiting motor ac-
tivity) was not proposed as a consequence of
the imaging data. Quite the contrary: It was
proposed as a framework that then allowed
the design of the imaging study.

Perhaps one can be a little more sanguine
about the second of the two possible aims
of cognitive neuroscience, the aim of local-
izing cognitive modules. But this is very dif-
ferent from the first aim because this kind of
work presupposes, rather than attempts to dis-
cover, what the functional architecture of a
particular cognitive system is like; the ques-
tion “Where is module X located in the brain?”
presupposes that there is a module X. Because
one of the most fertile sources of informa-
tion about what the modules of some cogni-
tive system might be is cognitive neuropsy-
chology, the assertion here is a dependence of
cognitive neuroscience upon cognitive neuro-
psychology.

To illustrate this with an example, imag-
ine that someone with an interest in the brain
mechanisms used for reading decides to in-
vestigate this by imaging the brains of peo-
ple who had suffered brain damage that had
impaired their reading, in order to discover
which particular part of the brain was dam-
aged in such people. That part of the brain
could then be claimed to be the brain site for
reading. One reason why this would be point-
less is that the cognitive system we use for

reading is functionally modular in nature, and
damage to any one of these modules would
impair reading in some way; if the reading
system is also anatomically modular, then a
group of people selected just because brain
damage had affected their reading in some
way or other will have various different loci
of brain damage. There will be no single brain
site for reading. Obviously the problem here is
that reading is a process with many modules,
and questions about localization can only be
posed with respect to single modules; thus,
that question needs to be posed separately in
relation to each of the modules of the reading
system.

Instead of imaging the brains of patients
with various different kinds of reading diffi-
culties, then, it is necessary to focus on only
one kind of reading difficulty, for example,
a difficulty in reading aloud nonwords ac-
companied by good reading of words (i.e.,
phonological dyslexia). Imaging the brains of
a group of people with this highly specific
reading difficulty should provide us with in-
formation about where in the brain the non-
word reading module is.

One problem that would need to be faced
here is that typical causes of brain damage
such as stroke or head injury produce damage
to various parts of the brain. There might be
various separate small lesions, or there might
be one lesion that is large and covers sev-
eral brain regions, only one of which has to
do with nonword reading. Therefore, imag-
ing the brain of one person with phonologi-
cal dyslexia might reveal several small lesion
sites, in which case one would not know which
of these should be blamed for the phonolog-
ical dyslexia; or it might reveal one large le-
sion, in which case one would not know which
particular region within this large lesioned
area should be blamed for the phonological
dyslexia.

A typical solution to this problem is to
image the brains of a series of patients with
phonological dyslexia and to superimpose the
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successively determined lesion sites on a di-
agram of the brain, the idea being that only
overlapping areas—sites lesioned in every
brain—could possibly be related to phono-
logical dyslexia. If, as brains are added in,
the regions of complete overlap get fewer and
fewer until there is only one very small region
left that is abnormal, that region could be the
anatomical module for nonword reading (or
at least could contain that module).

In practice, however, what is very likely to
happen in such an investigation is either

(a) that as brains are added in, the regions
of complete overlap get fewer and fewer
until there are none left, or

(b) that as brains are added in, an originally
large single region of complete overlap
shrinks and shrinks until it vanishes com-
pletely.

Either result would suggest that there is no
brain region that is damaged in all cases of
phonological dyslexia. Yet brain damage can
selectively impair nonword reading. What is
going on here?

These hypothetical researchers arrived at
this puzzling state of affairs by initially rec-
ognizing that because the reading system has
a modular organization, it makes no sense to
seek the location of the reading center in the
brain by imaging the brains of patients with
some or other form of impaired reading. What
the researchers did instead was to specify just
one particular module of the reading system—
the nonword reading module—and to image
the brains of patients all of whom had se-
lectively impaired nonword reading. Why did
they still end up with a result that makes no
sense? It is because they failed to solve the
original problem. They saw that it makes no
sense to use imaging to search for the reading
center in the brain because the reading system
is modular in structure—but for the same rea-
son it makes no sense to use imaging to search

for the nonword reading center in the brain,
because the nonword reading system is itself
modular in structure.

It is known that this is so because re-
search on patients with a specific impair-
ment in the ability to read nonwords has
shown that such patients are heterogeneous;
that is, the same symptom (many nonwords
read wrongly, or not at all) can arise from im-
pairments at different loci in the functional
architecture of the nonword reading system.
For example, in the first study of phonological
dyslexia, by Beauvois and Derouesné (1979),
four such patients were studied. Two showed
better reading for pseudomophonic nonwords
(English examples would be brane or yot) than
for nonpseudomophonic nonwords (brone or
yut), but were unaffected by whether in non-
words there were many-to-one mappings of
letters to phonemes (choof, thish) or only one-
to-one mappings (clisk, trint). The other two
patients showed the reverse result. Thus, al-
though all four patients had the same read-
ing symptom (all four read nonwords far less
well than they read words), they did not have
the same impairment in the reading system;
two different loci of impairment of the non-
word reading component of the reading sys-
tem were present here. One could propose
that two of these patients had an impairment
of a graphemic parsing module of the non-
word reading component of the reading sys-
tem (and thus could not cope when graphemes
consisted of more than one letter) and that
the other two had a difficulty in activating
the level of phonemic representation in the
nonword reading module (a difficulty that
could be partly ameliorated by feedback to
that level from a phonological lexicon, feed-
back which would only be available if the
set of phonemes being activated was a word,
as is the case when the printed stimulus is a
pseudohomophone).

Hence, the move from imaging any kind
of patient with a reading disorder to imag-
ing only patients with a specific reading
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disorder—phonological dyslexia—was insuf-
ficient: The original problem, heterogeneity
of damage to functional architecture, is still
there. How is that problem to be solved?

This is not easy, but a plausible answer is
offered by Block (1995). In his terms, what
has been going on in the preceding paragraphs
is “functional decomposition.” The reading
system has been decomposed into smaller
components, such as the nonword reading sys-
tem, and the nonword reading system has been
decomposed into still smaller components,
such as the grapheme parsing system. De-
composition stops when all the components
are primitive processors—because the opera-
tion of a primitive processor cannot be further
decomposed into suboperations. For example
an AND-gate: it is just defined in terms of
its input-output function, and that function is
not decomposable. “Primitive processors are
the only computational devices for which be-
haviorism is true . . . the largest components
of the system whose operation must be ex-
plained, not in terms of cognitive science, but
rather in terms of electronics or mechanics
or some other realization science. . . . If the
mind is the software of the brain, then we
must take seriously the idea that the func-
tional analysis of human intelligence will bot-
tom out in primitive processors in the brain”
(Block, 1995, p. 389).

Thus, perhaps the solution to the prob-
lem for cognitive neuroimaging here is that it
makes sense to use that technique to localize
cognitive modules only when these modules
are Blockian primitive processors—cognitive
subsystems that are, in the term used by Fodor
(1983), “not assembled.”

Be that as it may, my aim in this section of
the chapter is to make the case that cognitive
neuroimaging studies whose aims are to de-
termine the neuroanatomical localization of
cognitive modules have to be predicated on
some prior and explicit conception of what
the constituent modules of the relevant cogni-

tive system are. Because the richest source of
such conceptions is cognitive neuropsychol-
ogy, then cognitive neuroscience, if it is to
progress, needs to develop a much closer de-
pendence on cognitive neuropsychology.

Computational Cognitive
Neuropsychology

An important recent advance in cognitive psy-
chology is the development of computational
modeling as an aid to theory evaluation. A
computational model of some theory in cog-
nitive psychology is achieved by representing
that theory in the form of a computer program
that is capable of carrying out the cognitive
task in question, and which does so using ex-
actly the procedures that, according to the cog-
nitive theory, are used by human beings when
they are carrying out that cognitive task. Mak-
ing a theory into a computational model helps
theorizing in a variety of ways. For example,
it reveals hitherto unsuspected ways in which
the theory is underspecified or implicit: One
cannot make a running program from a theory
unless that theory is fully specified and ex-
plicit. Furthermore, if the program does run
and is able to perform the cognitive task in
question, and if the speed or accuracy of its
performance is affected by the same stimulus
variables that affect the speed or accuracy of
human performance, that shows that the the-
ory is a sufficient one.

This way of doing cognitive psychology
is called computational cognitive psychology,
and its virtues are sufficiently extensive that
one might argue that all theorizing in cognitive
psychology should be accompanied by com-
putational modeling—that is, that it should
be standard practice for theorists in cogni-
tive psychology to express their theories in
the form of executable computer programs.

Here it is important to distinguish between
the terms computational model, connection-
ist model, and neural-net model. Figure 4.3
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is helpful here. An ambitious project in theo-
retical cognitive psychology would be to seek
to make the cognitive theory represented by
Figure 4.3 into a computer program that ac-
tually performed the tasks of naming pictures
and reading aloud words and nonwords; this
would provide a way of rigorously testing
the theory depicted by Figure 4.3. This pro-
gram’s structure would have to be isomor-
phic to the structure of Figure 4.3 if the pro-
gram were to be a computational realization
of the theory. Thus, for example, the program
would have to contain program modules for
each of the processing models of Figure 4.3.
Such a program would be a computational
model in the sense in which I am using that
term.

Would it be a connectionist model as well?
Not necessarily. For a model to be prop-
erly termed connectionist, communication be-
tween adjacent modules of the model would
need to be conceptualized in terms of connec-
tions between elements of one module and
elements of the other. For example, commu-
nication between the letter recognition and vi-
sual word recognition components would be
effected via actual connections between letter
units and word units: The letter unit for P-in-
the-first-position would be literally connected
to all the word units for words that begin with
P. Because this connectionist conception of
the nature of intermodule communication is
only one of various possible ways in which
such communication could be conceptualized
in computational models, not all computa-
tional models are connectionist models. For
example, the models of reading aloud offered
by Coltheart et al. (2001); Plaut, McClelland,
Seidenberg, and Patterson (1996); Seidenberg
and McClelland (1989); and Zorzi, Houghton,
and Butterworth (1998) are all computational
models (because all are expressed as work-
ing computer programs), but only three are
connectionist models; the model of Coltheart
et al. (2001) is not a connectionist model.

A major motivation for connectionist
computational modeling is the hope that the
connections by which adjacent modules com-
municate could be given an actual physi-
cal interpretation—as neurons or neuronal
tracts. Connectionist modelers with particu-
larly strong hopes of this kind refer to their
connectionist models as neural-net models.
In Chapter 6 of this volume, Levine con-
siders just how justified such modelers are
in asserting that their connectionist models
are “neurally plausible.” Here I merely note
that the arrows in a diagram like that of Fig-
ure 4.3 denote pathways of communication
between modules, that Figure 4.3 does not as-
sert anything at all about how such pathways
are physically realized in the brain, and that
a computational realization of Figure 4.3—a
computational model of the relevant cogni-
tive processes—may be neither a connection-
ist model nor a neural-net model.

Computational models can be used to sim-
ulate not only normal behavior but abnormal
behavior as well. Researchers can interfere
with the programs in various ways in order to
see whether they then produce patterns of im-
paired cognitive performance that correspond
in detail to the patterns of impaired perfor-
mance seen in people with acquired or devel-
opmental disorders of cognition. This is com-
putational cognitive neuropsychology.

Computational cognitive psychology is
only now beginning to develop, so compu-
tational cognitive neuropsychology is still
very underdeveloped. Nevertheless, a certain
amount has already been done on the com-
putational cognitive neuropsychology of ac-
quired dyslexia. This work has focused largely
on the simulation of the two types of acquired
dyslexia discussed at several points in this
chapter—surface dyslexia and phonological
dyslexia. The work on computational model-
ing of reading by Seidenberg and McClelland
(1989), Plaut et al. (1996), and Zorzi et al.
(1998) has included some attempts to simulate
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acquired dyslexia, but not one of these imple-
mented models was able to simulate success-
fully both phonological dyslexia and surface
dyslexia. In contrast, the dual-route cascaded
(DRC) model of visual word recognition
and reading aloud (Coltheart et al., 2001)—
a computational realization of the dual-route
theory of reading—has been successful in
simulating both of these acquired dyslex-
ias (Coltheart, Langdon & Haller, 1996;
Coltheart et al., 2001).

Figure 4.3 includes, in somewhat simpli-
fied form, the two routes of the DRC model
and is therefore convenient for illustrating the
DRC work on simulating acquired dyslexia.
Suppose Figure 4.3 were turned into a com-
putational model. It would have a computa-
tional route that can read all words aloud cor-
rectly (the route via visual word recognition)
but cannot read nonwords, and another com-
putational route that can read all nonwords
and regular words aloud correctly (the route
via application of grapheme-phoneme rules)
but misreads exception words.

Now, it would be merely trivial to interfere
with such a model so as to make it able to read
all words aloud correctly but no nonwords—
to make it severely phonologically dyslexic.
One would only have to delete the grapheme-
phoneme rule application subroutine from the
program. It would be equally trivial to inter-
fere with the model so as to make it able to
read all nonwords and regular words aloud
correctly, but misread all exception words.
One would only have to delete all the units
in the visual word recognition database of the
program. Thus, the computational cognitive
neuropsychologist must be more ambitious
here and seek to simulate much more detailed
aspects of the reading performances seen in
phonological and surface dyslexia.

No person with surface dyslexia has ever
been reported who could read no exception
words at all. These patients can correctly
read some exception words, and there is a

frequency effect here: The more frequent an
exception word is, the more likely the sur-
face dyslexic will be able to read it correctly.
That is a more subtle effect that one might
seek to simulate. Coltheart et al. (2001) suc-
ceeded in making the DRC model misread
some exception words while correctly read-
ing others by altering the sensitivity to fre-
quency of the visual word recognition com-
ponent of the model in such a way that this
component no longer responded adequately
to low-frequency words. The model now read
some exception words correctly, reading all
the others by regularizing them (reading them
as if they obeyed the rules); the more frequent
an exception word was, the more likely the
model was to read it correctly. Thus, this sim-
ulation produced quite a detailed match be-
tween the behavior of the lesioned model and
the behavior of patients with surface dyslexia.

As discussed, some phonological dyslex-
ics read pseudohomophonic nonwords with
a higher accuracy rate than they read non-
pseudohomophonic nonwords (Beauvois and
Derouesné, 1979); furthermore, these authors
reported that this pseudohomophone advan-
tage was found to be greater when the pseudo-
homophone was orthographically very close
to its parent word (an English example
would be “koat”) than when it was not (an
English example would be “kote”). When the
nonlexical route of the DRC model is inter-
fered with by slowing down the rate at which
the grapheme-phoneme rules are applied, the
model now begins to misread some nonwords.
Also, its performance shows a pseudohomo-
phone advantage as well as an interaction of
this advantage with visual similarity to par-
ent word (Coltheart et al., 2001), just as re-
ported for human phonological dyslexics by
Beauvois and Derouesné. Thus, again this
simulation produced quite a detailed match
between the behavior of the lesioned model
and the behavior of phonological dyslexic
patients.
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As mentioned, this kind of work is still
in its infancy. Prospects do seem good, how-
ever, that as computational modeling becomes
more widespread in cognitive psychology,
one of the important ways of using a compu-
tational model to test the theory from which it
was derived will be to lesion the model in var-
ious ways and then to investigate the success
with which the lesioned model’s behavior re-
produces detailed aspects of the performance
of people with impairments of the relevant
cognitive system. That is computational cog-
nitive neuropsychology.

Cognitive Neuropsychiatry

When cognitive neuropsychology was reborn
45 or 50 years ago,4 it initially focused largely
on just one cognitive ability, namely, reading
aloud. Its scope, however, widened rapidly,
and the cognitive abilities mentioned so far in
this chapter that have been thoroughly investi-
gated from the cognitive-neuropsychological
perspective include, in addition to reading
aloud, visual word recognition, spelling, face
recognition, object recognition, object knowl-
edge, language comprehension, spoken lan-
guage production, attention, skilled action,
and short-term memory.

Visual scientists would regard visual ob-
ject recognition as an example of high-level
vision, but for cognitive scientists it is an
example of low-level cognition, as is every
other cognitive ability listed in the previ-
ous paragraph. All of these are classified as
low-level cognitive abilities so as to contrast
them with such high-level cognitive abili-
ties as belief formation, belief evaluation, and
reasoning.

4Cognitive neuropsychology had flourished in the last
40 years of the 19th century but disappeared in the first
part of the 20th century as behaviorism came to the fore
in psychology and antilocalizationist tendencies came to
the fore in neurology.

It is therefore interesting to note that so far
cognitive neuropsychology has confined itself
almost entirely to the study of low-level cog-
nitive abilities. Why might that be? Could it
be because Fodor’s “first law of the nonexis-
tence of cognitive science” (Fodor, 1983) is
true? This law avers that the scientific study
of such high-level cognitive abilities as belief
formation, belief evaluation, and reasoning
will never be possible. According to this law,
then, cognitive science can only make discov-
eries about relatively low-level (i.e., modular)
cognitive abilities, a view reiterated by Fodor
(2000).

It is even more interesting to note, there-
fore, that the cognitive-neuropsychological
approach, in the past few years, has begun
to be applied to the investigation of be-
lief formation and belief evaluation. Let me
remind the reader of the definition of cogni-
tive neuropsychology with which this chap-
ter began: it is the investigation of disor-
dered cognition with the aim of learning more
about normal cognition. Thus, the investiga-
tion of belief formation and belief evalua-
tion from the cognitive-neuropsychological
perspective necessarily involves the study
of people with disorders of belief forma-
tion and belief evaluation (e.g., people with
delusions).

This domain of cognitive neuropsychol-
ogy is known as cognitive neuropsychiatry
(David & Halligan, 1996) because it typically
involves the investigation of people with dis-
orders that might be seen as the province of
the psychiatrist. Just as cognitive neuropsy-
chology began by focusing on just one dis-
order of low-level cognition (impaired read-
ing), so cognitive neuropsychiatry has begun
by focusing on just one disorder of high-level
cognition (delusion), though it is already
beginning to branch out to other high-level
disorders, such as hallucination.

I will conclude this chapter, then, with
an illustration of the nature of cognitive
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neuropsychiatry that uses current work on
delusional belief as an example.

Many delusions are monothematic or
encapsulated: The deluded person has only
a single delusory belief, or at most a small
collection of closely related delusory beliefs.
Outside the domain of the delusory belief, the
person is, or at least appears to be, entirely
rational; for example, the person accepts that
the belief he or she holds is an improbable one
and is not surprised when others challenge it,
though the person nevertheless clings to it.
Table 4.1 lists some examples of monothe-
matic delusional beliefs that are currently be-
ing studied by cognitive neuropsychiatrists.

A key discovery in the cognitive neuropsy-
chiatry of delusion was that of Ellis, Young,
Quayle, and de Pauw (1997). When normal
subjects are shown pictures of faces, they
exhibit an arousal response indexed by, for
example, substantially increased skin con-
ductance; and the skin conductance response
(SCR) is larger when the face is familiar than
when it is unfamiliar. Ellis et al. found that
this was not so for patients with Capgras delu-
sion: Only very weak SCRs were observed in
response to faces, and familiarity of the face
did not increase the SCR. These authors sug-
gested that this was a key factor in the delu-

Table 4.1 Eight Monothematic Delusions

• Capgras delusion: My closest relatives have been
replaced by impostors.

• Cotard delusion: I am dead.
• Fregoli delusion: I am being followed around by

people who are known to me but who are
unrecognizable because they are in disguise.

• Mirrored-self misdentification: The person I see in the
mirror is not really me.

• Reduplicative paramnesia: A person I knew who died
is nevertheless in the hospital ward today.

• This arm [the speaker’s left arm] is not mine, it is yours;
you have three arms.

• Alien control: Someone else is able to control my
actions.

• Thought insertion: Someone else’s thoughts are being
inserted into my mind.

sion: Capgras sufferers are confronted with
the curious situation that they do not experi-
ence any emotional response when they en-
counter a person who should evoke such a
response, such as a spouse. How could the
person account for this? Perhaps it is because
the encountered person is not the spouse, de-
spite his or her claims to be; in that case, the
encountered person is an impostor.

However, although this impairment in
emotional responsiveness may be necessary
for the occurrence of the Capgras delusion,
Davies and Coltheart (2000) have argued that
it is not sufficient because of the work of
Tranel, Damasio, and Damasio (1995), who
described cases of patients in whom brain
damage had also eliminated the SCR to faces,
but who were not delusional. This led Davies
and Coltheart (see also Langdon & Coltheart,
2000) to the view that in patients with
Capgras syndrome a second deficit must also
be present. One deficit (affecting emotional
responsiveness to faces) is responsible for the
initial entertainment of the false, bizarre, and
implausible belief; the second deficit (an im-
pairment of the belief formation system) pre-
vents the patient from being able to evaluate
and so reject this belief. Davies and Coltheart
then went on to explore the possibility that
this two-deficit theory might offer an account
of all forms of monothematic delusion—all
the forms of delusion listed in Table 4.1, for
example.

The general idea here is that in all cases of
monothematic delusion, there is

(a) a neuropsychological impairment that
produces an abnormality of a perceptual
or affective response to the environment
that leads the patient to some false belief
about the environment (this impairment
will vary from patient to patient), and

(b) a second impairment affecting belief. This
is an impairment of the system we use to
evaluate beliefs that occur to us and to
decide whether to accept or reject these
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beliefs (this impairment is of the same
nature for all people with delusions, and
there is evidence that it is associated with
damage to the right hemisphere of the
brain, which is commonly present in
patients with monothematic delusions).

To illustrate this theory, consider two pa-
tients described by Breen, Caine, Coltheart,
Hendy, and Roberts (2000), both of whom
had the condition known as mirrored-self
misidentification—each man expressed the
belief that the person he saw whenever he
looked in a mirror was not himself, but some
stranger who happened to look like him. For
both men, this was the only abnormal belief
they expressed; they knew that it was im-
plausible; and they were not surprised at the
attempts of their families to dissuade them.
Nevertheless, they retained the belief stead-
fastly.

Breen et al. (2000) sought to establish
whether in both men there were two deficits
of the kind proposed in the theory of delu-
sion just outlined. They were able to show that
one man was suffering from an impairment
of face-processing, so his face in the mirror
might well look rather different now from the
face he had been used to seeing in the mirror.
The other man had intact face processing but
was suffering from mirror agnosia, which is a
loss of the ability to understand how mirrors
work. When he was looking into a mirror and
an investigator held an object above his shoul-
der (so that he could only see it in the mirror)
and asked him to touch the object, the patient
invariably reached for or behind the mirror,
just as if the mirror were an open window and
the object was on the other side of it. If this
were the true nature of mirrors, then anyone
seen in a mirror must be in a different posi-
tion in space from the viewer—from which it
follows that anyone seen in a mirror cannot
be oneself. Hence, both patients had percep-
tual deficits of a kind that could suggest the
implausible belief that they held.

Did they also have the second deficit? This
belief formation deficit is currently so poorly
characterized that it is quite unclear how one
would go about investigating such a question.
However, on neuropsychological testing both
men showed normal left-hemisphere func-
tioning and impaired right-hemisphere func-
tioning, which is at least consistent with the
presence of this second deficit.

It seems, then, that this cognitive-neuro-
psychological account of monothematic delu-
sion has some promise. Its major problem at
present is that far too little is said about the
nature of the second deficit, and many im-
portant questions regarding this deficit are
left unanswered—for example, if these pa-
tients have a defective belief evaluation sys-
tem, why are they not deluded about many
different things, rather than just about the one
thing?

This kind of attempt to explain delusions
in cognitive-neuropsychological terms is par-
ticularly challenging precisely because cog-
nitive psychology does not currently offer
an adequate theory of the normal processes
of belief formation and evaluation; perhaps
Fodor’s first law is correct, which means
that such a theory will never be found, in
which case cognitive neuropsychiatry will
never flourish.

But let us not despair. When Marshall
and Newcombe (1973) published their sem-
inal paper on acquired dyslexia almost 30
years ago, theorizing about the nature of the
normal reading system was quite primitive;
now it is so sophisticated (thanks in consid-
erable part to cognitive-neuropsychological
work on acquired dyslexia) that interpret-
ing acquired reading disorders in the con-
text of a theory of the normal reading sys-
tem is often comfortably achieved. Perhaps
after 30 more years theorizing about the
nature of the normal system responsible for
belief formation and evaluation will be so
sophisticated (thanks in considerable part to
cognitive-neuropsychiatric work on delusion)
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that interpreting cognitive-neuropsychiatric
disorders in the context of a theory of the nor-
mal processes of belief formation and evalua-
tion will also often be comfortably achieved.
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CHAPTER 5

Functional Brain Imaging

LUIS HERNANDEZ-GARCÍA, TOR WAGER, AND JOHN JONIDES

In recent years there has been explosive in-
terest in the use of brain imaging to study
cognitive and affective processes. For exam-
ple, Figure 5.1 shows the dramatic rise in the
number of publications from 1992 to 1999 in
which the term functional magnetic resonance
imaging (fMRI) appears in the title. Because
of the surge of empirical work that now re-
lies on a combination of behavioral and neu-
roimaging data, it is critical that students of
the mind be students of the brain as well be-
cause data about each inform the other. Our
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Figure 5.1 A graph showing the results of a
search of the Medline database for articles with
the words “functional magnetic resonance imag-
ing (fMRI)” in the title.

goal in this chapter is to provide an introduc-
tion to the growing field of neuroimaging re-
search for those not expert in it. The chapter
provides general coverage of the various steps
involved in conducting a neuroimaging exper-
iment, from the design of tasks to the interpre-
tation of results. We begin by detailing several
reasons that one might want to use neuroimag-
ing data to understand cognitive and other pro-
cesses. Having provided this motivation, we
then trace out several techniques that are used
in the design and execution of imaging experi-
ments. Finally, in the last section of the chapter
we provide a detailed overview of positron-
emission tomography (PET) and functional
magnetic resonance imaging (fMRI): a re-
view of the physics underlying each technique
and of the analytical tools that can be used to
work with the resulting data. With these three
sections we hope to illustrate to the reader
the why, the what, and the how of functional
neuroimaging.

THE WHY: USES OF DATA FROM
FUNCTIONAL NEUROIMAGING

Brain Mapping

Perhaps the most obvious rationale for con-
ducting functional neuroimaging experiments
is to correlate structure with function. Al-
though some psychologists in the last century

175
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argued that the brain operated by the prin-
ciple of mass action (Lashley, 1950), we
now know that many functions are substan-
tially localized in the neural tissue of the
brain. Knowing this, many investigators have
sought to map out the primitive processes
that are engaged when various brain struc-
tures are active. In a certain gross sense,
modern neuroimaging is similar to the 18th-
century practice of phrenology, whose prac-
titioners read patients’ personality traits from
bumps on their skulls. To be sure, both mod-
ern functional imaging and phrenology are at-
tempts to map out the localization of func-
tions in the brain. But the similarity ends
there. Modern neuroimaging measures pro-
cesses within the brain that are replicable and
have been extensively cross-validated with
other neuroscientific methodologies. Phre-
nology, of course, turned out to be wrong.
However, it is instructive to compare the as-
sumptions of phrenology with those of mod-
ern neuroimaging. Phrenologists believed that
a lump at a certain place on the head cor-
responded with a particular personality trait;
the larger the lump, the larger that trait.
So, for example, a larger bump might indi-
cate more agreeableness, or a better mem-
ory. In neuroimaging, by contrast, it is as-
sumed that complex psychological processes
are best described in terms of combinations
of constituent elementary operations. The el-
ementary processes may not be localized in
single locations in the brain. Rather, they
are often the result of networks of neurons
(often spatially distributed) acting together.
Unlike phrenologists, moreover, most mod-
ern researchers do not assume that skill at
one mental operation is a function of the
sheer size of the underlying neural tissue
involved. The assumptions of neuroimaging
lead naturally to a search for the brain activa-
tions that accompany elementary psychologi-
cal processes. Mapping these elementary pro-
cesses onto regions and functional networks

in the brain is a major goal of modern research
on brain imaging.

We should note that once certain regions
of the brain have been identified with cer-
tain psychological processes, researchers may
go beyond simple assignment of structure to
function. Instead, they can examine circuits of
activation that might be involved in a complex
psychological task by using statistical tech-
niques such as interregional correlations, fac-
tor analysis, and structural equation modeling,
which we review below. These techniques add
value because they permit us to go beyond the
functions of any single region or small set of
regions involved in an elementary cognitive
operation. These tools can be used to help an-
alyze what combinations of elementary pro-
cesses are involved in a psychological task.
Thus, we can go from the elementary to the
complex by examining patterns of activation
and knowing the functions of the structures
that are activated in a pattern.

Overall, the sort of behavioral neurology
that is provided by studies of functional neu-
roimaging is quite helpful on several fronts. A
detailed mapping of the functions of various
brain structures will give us solid evidence
about the primitive psychological processes
of the brain. It will also provide detailed in-
formation for neurosurgical planning and al-
low us to predict which functions will be lost
on the occasion of brain injury, whether fo-
cal or diffuse. Thus, if there were no other
reason to conduct studies that use functional
neuroimaging, mapping the brain would be
sufficient. However, there are additional
reasons.

Dissociating Psychological Processes

One of the great benefits of having data on the
patterns of activation caused by two different
psychological tasks is that it permits one to
examine whether the two tasks doubly disso-
ciate (Smith and Jonides, 1995). The logic is
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this: Suppose there is some brain region A
that mediates some cognitive process a. Sup-
pose, similarly, that there is some other brain
region B that mediates some other cognitive
process b. Now imagine that we can devise
two psychological tasks, 1 and 2, such that
Task 1 requires cognitive process a but not b
and Task 2 requires cognitive process b but not
a. If we have subjects perform these two tasks
while we image the activations in their brains,
we should find activation of region A during
performance of Task 1 but not during perfor-
mance of Task 2, and vice versa for region B.
This pattern of evidence would permit one to
argue that there are two separable psychologi-
cal processes involved in the tasks, as there are
two brain regions that are activated (within the
spatial limitations of the neuroimaging tech-
nique, of course). This logic applies, by the
way, whether regions A and B are single sites
in the brain or networks of sites, thus gen-
eralizing the method to a wide variety of
circumstances.

Now consider a similar but more complex
case. Suppose that both Task 1 and Task 2
require several psychological processes. By
the assumptions outlined above, we should
find activations in various regions of the brain
when subjects engage in Task 1 and Task 2.
If Task 1 activates some group of sites that
is wholly different from that activated while
subjects engage in Task 2, we would have ev-
idence of differing processes in the two tasks.
However, the two tasks may activate some
quite different sites as well as some simi-
lar sites. In this case, we get leverage in ac-
counting for the processes involved in the two
tasks by noting the sites whose activations
are shared by or unique to each task. If we
knew the functions of each site from other
research, we would then have a more com-
plete understanding of the processes involved
in these tasks, both those that they share in
common and those that differ between the
tasks.

The use of imaging data to evaluate double
dissociations has become quite widespread.
These data go beyond previous demonstra-
tions of double dissociations that have in-
volved behavioral data on subjects with and
without brain injury. In the case of behav-
ioral data on normal subjects, double disso-
ciations can be established by finding two
experimental variables, one of which affects
performance on Task 1 but not on Task 2, and
another of which affects performance on Task
2 but not on Task 1. This pattern permits one
to argue that the two tasks differ in their en-
gagement of some set of psychological pro-
cesses, although it is not very specific about
the particular processes that are engaged. In
the case of behavioral data on brain-injured
subjects, a researcher seeks two patients: one
who can perform Task 1 but not Task 2, and
one who can perform Task 2 but not Task 1.
This pattern again allows one to argue that the
tasks differ in the underlying processes that
they recruit, but there are weaknesses to this
approach: Often, damage in patients is not
tightly localized; sometimes patients develop
compensatory mechanisms for their deficits;
and studies of this sort require one to make
conclusions about normal performance from
patients who have selective deficits, perhaps
compromising the generality of the conclu-
sions one can reach. Because double dis-
sociations in neuroimaging have a different
set of weaknesses (most prominently, they
are limited by the spatial resolution of the
techniques), they complement neuropsycho-
logical dissociations, making neuroimaging
another important point of leverage in distin-
guishing psychological processes.

To see how successful this double-
dissociation technique can be, consider an ex-
ample. For some time, researchers have sus-
pected that working memory may consist of at
least two subsystems, one concerned with spa-
tial information and one concerned with ver-
bal information. This was originally proposed
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by Baddeley (e.g., 1986, 1992), and the pro-
posal has received support from behavioral
studies of normal and brain-injured adults (see
Jonides et al., 1996, for a review). A critical
finding that helps seal the case for two sub-
systems of working memory comes from a
pair of experiments that compared the brain
regions activated by parallel spatial and ver-
bal working memory tasks (for details, see
Awh et al., 1996; Jonides et al., 1993; Smith,
Jonides, & Koeppe, 1996). A schematic that
illustrates the two tasks is shown in Figure 5.2.
In the spatial case, subjects had to encode
three locations marked by dots on a screen
and to retain these in memory for 3 s. Fol-
lowing the retention interval, a single loca-
tion was marked, and subjects had to indicate
whether this location matched one of the three
in memory. The verbal task was similar in that
subjects had to encode 4 letters and to retain
these in memory for 3 s, after which a single
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Figure 5.2 A spatial and a verbal task used to
study item-recognition performance in working
memory.
NOTE: The two tasks are similar in structure except
for the material that must be retained and retrieved.

Figure 5.3 Lateral and superior images revealing
activations in spatial and verbal working memory
tasks.
NOTE: In each row, three views of the brain in grey-
scale renderings of a composite MRI have superim-
posed on them activations from a PET experiment,
where the activations are shown in a color scale
with blue the least active and red the most active.

letter was presented and subjects had to de-
cide whether it matched one of the three in
memory.

As shown in Figure 5.3 (see insert), PET
scans of subjects engaged in these two tasks
revealed a striking dissociation in the circuitry
that underlies them. The figure includes left
and right lateral as well as superior views
of the brain; the activations for each of the
memory tasks are superimposed on these. The
spatial task recruited mechanisms of neocor-
tex predominantly of the right hemisphere,
whereas the verbal task recruited mechanisms
predominantly of the left hemisphere. The
details of which regions were activated and
what these activations might signal for the
processes in each task are reported elsewhere
(Smith et al., 1996). For the present, it is
sufficient to note that this pattern of results
provides sufficient support for the claim that
working memory is composed of separable
systems for different sorts of information, a
claim that relies on the sort of double dissoci-
ation shown in the figure.
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Convergence of Neuroimaging and
Behavioral Data in Normal Adults

One of the great strides forward that the advent
of neuroimaging will make possible arises
because of the opportunity for convergence
between behavioral data and neuroimaging
data drawn from normal experimental par-
ticipants. The leverage that is gained from
this convergence is large. If we have data
from behavioral studies that suggest a dis-
sociation between two different psycholog-
ical processes, we have the opportunity to
study whether these processes are represented
in separable neural tissue. If so, this greatly
strengthens the case for separable processing
systems.

Consider the following example from work
in our laboratory (Badre et al., 2000). This
work has been concerned with identifying ex-
ecutive processes and their neural implemen-
tations. One such executive process is task
management, the ability to manage multiple
tasks simultaneously. We have constructed a
situation that requires task management of
two sorts, illustrated in Figure 5.4. Subjects
see a series of computer displays that have
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Figure 5.4 A schematic of a task used to study processes required to switch between two tasks.
NOTE: The figure shows that the task entails two types of switches: between different internal counters
or between different operations on the contents of those counters.

two panels, one on the left and one on the
right. Each display contains a single arrow
that points up or down. Subjects begin each
series of trials with two counters set at “20”
each, and each time an arrow appears on one
side or the other, they are to change that count
up or down, depending on whether the arrow
points up or down. At the end of a run of trials,
subjects are queried about each of the counter
values to be sure that they have kept the counts
accurately. Notice that in this task there are
two counters that must be managed. On suc-
cessive trials, subjects may have to access the
same counter, or they may have to switch
counters from one to the other. Notice also
that the task requires two types of counting
operations: incrementing and decrementing.
Again, on successive trials, subjects may use
the same operation or may have to switch from
one operation to the other. Behavioral data
about the time it takes subjects to complete
each trial (measured by subjects’ depressing a
response button when they are ready to accept
the next stimulus display) show a clear effect:
There is a cost in switching between coun-
ters, and there is a cost in switching between
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Figure 5.5 Behavioral data from the dual-
switching task.
NOTE: There are main effects of both types of
switch, and there is no interaction between these
two separate effects.

operations. Importantly, these two costs are
independent of one another, as shown in Fig-
ure 5.5. The time cost of each type of switch
does not reliably influence the time cost of
the other. This result leads to the implica-
tion that there may be two mechanisms in-
volved in the two types of switches (two dis-
sociable executive processes); if so, we may
be able to find neural evidence of the two
mechanisms.

Figure 5.6 One contrast in brain activations between the two types of switches in the dual-switching
task.
NOTE: The top panel shows activation in a ventromedial prefrontal site, and the bottom panel shows
activation in a lateral prefrontal site for each type of switch. Note the double dissociation in patterns of
activations in these two sites for the two types of switch.

In fact, a follow-up experiment that stud-
ied subjects performing this task in an fMRI
environment found just this evidence. Some
data from this experiment are shown in Fig-
ure 5.6. The figure shows that there is a region
of lateral frontal cortex that is activated by the
switch in counters but not by the switch in
operations; similarly, there is another region
of medial frontal cortex, anterior to the first,
that is activated by a switch in operations but
not by a switch in counters. This sort of dou-
ble dissociation follows the behavioral data
well in suggesting two (at least partially) in-
dependent mechanisms for the two executive
processes. So, here is a case in which the be-
havioral data about a task led to an imaging
experiment whose data converged with the be-
havior in normal adults.

Convergence of Neuroimaging and
Behavioral Data in Patients

It is possible to extend this hunt for conver-
gence beyond the study of normal adults as
well. An excellent example comes from the
study of memory processes. It is by now well
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documented that two memory systems sub-
serve long-term memory in adults. The dis-
tinction between the two types is often called
a distinction between explicit and implicit
memory. Take the concept of a bicycle, for ex-
ample. You may be able to remember where
you parked your bicycle this morning or yes-
terday, or where you bought that bike. These
would be examples of explicit memory be-
cause you are explicitly retrieving a piece of
information that you have previously stored.
By contrast, most adults can ride a bicycle
with little trouble, but any young child will tell
you that it is quite difficult. The skill to ride
a bicycle reflects that adults have stored some
information that translates into motor move-
ments that make possible balancing, pedaling,
turning, and so forth. This is a kind of implicit
memory because while riding a bike, a person
has no sense of explicitly retrieving informa-
tion from memory; rather, information is re-
trieved in the course of executing the required
behavior.

As it happens, the distinction between
explicit and implicit memory is well sup-
ported by studies that reveal a double disso-
ciation between these two types of memory
in patients with brain lesions. Some patients
with medial temporal lobe lesions, includ-
ing extensively studied patients such as H.M.
(Milner, Corkin, & Teuber, 1968), have an
inability to acquire new information and re-
trieve that information explicitly, but they
have intact implicit memory for motor skills
and other procedural knowledge. By contrast,
Gabrieli, Fleishman, Keane, Reminger, and
Morell (1995) reported the result of a pa-
tient with damage to the right occipital lobe,
M.S., who has an intact and functioning ex-
plicit memory system but impaired implicit
memory (although probably not of bicycle rid-
ing, as in the earlier example). Taken together,
pairs of patients such as these suggest the ex-
istence of two memory systems that dissociate
in their functions and in the neural tissue that

subserves them. This claim leads naturally
to the prediction that testing normal adults
on explicit and implicit memory tasks ought
to find different patterns of brain activation
as the signatures of these two memory sys-
tems. By now, various reports that support this
contention have surfaced (see, e.g., Schacter
and Buckner, 1998). In general, explicit mem-
ory tasks (compared to a control condition)
cause increased activation of medial tempo-
ral lobe structures, and implicit memory tasks
cause decreased activation in association cor-
tex of posterior regions of the brain. Why these
two particular patterns of increase and de-
crease of activation should occur in response
to explicit and implicit tasks respectively is a
question beyond our scope here; but the re-
sult illustrates how imaging evidence and ev-
idence from patient populations can be used
in tandem to converge on a view of cognitive
processing.

Convergence of Neuroimaging Data in
Humans with Behavioral Data in Animals

Invasive and recording studies on animals
other than humans have raised important hy-
potheses about the layout of various cogni-
tive systems residing in sensory, motor, or as-
sociation cortex. Neuroimaging studies with
humans now permit tests of these hypothe-
ses. One caveat regarding this convergence
between animal and human studies that re-
searchers must heed has to do with homol-
ogy. It is often difficult to determine just what
structure in the brain of some animal (e.g., a
monkey) is homologous to a structure in a hu-
man brain. Sometimes this homology can be
approached cytoarchitectonically by examin-
ing the morphology of cells in brain regions of
the two species in question; sometimes func-
tional data from other studies give good leads
about which areas in the brains of two species
are performing related functions. Regardless
of the approach one takes to the problem of
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homology, one must carefully ensure that a
case can be made for a structural or functional
similarity.

However, sometimes the homology is rea-
sonably straightforward, as it appears to be
for a leading case that has exploited the op-
portunity to relate data from monkeys and hu-
mans concerning visual function. Since the
pioneering work of Ungerleider and Mishkin
(1982), it has become increasingly clear that
early visual processing proceeds along two
streams. A ventral stream of information flows
from primary visual cortex to temporal cor-
tex; this stream contains increasingly complex
computations performed on the information
in the service of revealing the forms, colors,
and identities of objects in the environment.
A dorsal stream also flows from primary vi-
sual cortex to structures of the parietal lobe
and is responsible for processing information
about the spatial locations and movements of
objects. The data from which this view of the
visual system derives come from studies of
lesioned monkeys performing tasks of object
recognition or spatial localization as well as
from single-cell recording studies of the func-
tions of temporal and parietal systems. Both
sorts of studies have provided quite strong
support for the duality of the visual processing
stream.

Much more recently, evidence from human
neuroimaging studies has provided conver-
gence with the data from monkeys. Perhaps
the seminal study was that by Haxby et al.
(1994), in which human volunteers performed
a matching-to-sample task under two condi-
tions. In one, subjects compared a sample face
to two alternatives and picked the alternative
that matched the sample. In the other, subjects
compared the position of a dot in a frame to
the positions of two other dots in frames to
see which of the two was identical to the first.
The first task required the processing of in-
formation about shape and form, whereas the
second required the processing of information

about spatial position. As predicted by the data
from monkeys, the two tasks resulted in acti-
vation of separable regions in cortex: The task
involving form caused activation of occipital
and temporal cortex, whereas the task involv-
ing location caused activation of occipital and
parietal cortex. Here, then, is an illustration of
how data from cognitive studies with animals
can motivate researchers to use neuroimag-
ing techniques to examine cortical function in
humans.

Let us summarize. We have devoted sig-
nificant space at the opening of this chapter
to a detailed examination of why one would
want to conduct research using neuroimag-
ing techniques, especially PET and fMRI. The
motivations for these techniques are numer-
ous, as we have elaborated. Overall, there
is good reason to believe that neuroimaging
methods will become centerpieces in the ar-
ray of tools available to cognitive psychology
(and to other fields in psychology as well).
Therefore, it is well worth the effort for the
student of cognition to learn what techniques
are available and how they can be applied to
the study of psychological tasks. We turn now
to these issues.

THE WHAT: NEUROIMAGING
TECHNIQUES AND TASK DESIGN

Neuroimaging Techniques

Imaging methods for human studies include
a number of alternatives: fMRI, PET, sin-
gle positron emission computerized tomogra-
phy (SPECT), event-related potentials (ERP),
electroencephalography (EEG), magnetoen-
cephalography (MEG), and near-infrared
spectroscopy. A number of other brain imag-
ing techniques are available for use in ani-
mals using radiolabeling, histological, or op-
tical imaging techniques.

Although all these techniques are in fre-
quent use and provide important insights into
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Table 5.1 Summary of PET and fMRI Methods

What Is Imaged PET fMRI

Brain structure Structural T1 and T2 scans

Regional brain activation Blood flow (15O) BOLD (T ∗
2 )

Glucose metabolism (18FDG) Arterial spin tagging (AST)
Oxygen consumption FAIR

Anatomical connectivity Diffusion tensor imaging
Receptor binding and regional Benzodiazapines, dopamine, acetylcholine, MR spectroscopy

chemical distribution many others
Kinetic modeling

Gene expression Various radiolabeling compounds MR spectroscopy with
kinetic modeling

brain function, we focus on the two techniques
most commonly used in current human re-
search concerned with localization of func-
tion: PET and fMRI. The main advantages of
these techniques are that they can be used on
humans, that they offer a useful balance be-
tween spatial resolution and temporal resolu-
tion, and that they can be used to create im-
ages of the whole brain. This last feature offers
a great potential for synergy with animal re-
search. Single-cell recording in animals, for
example, offers not only spatial resolution
down to a single neuron but also millisec-
ond temporal resolution. Its main weakness
is that testing usually occurs within single,
isolated brain regions, and thus other regions
important to performance of some task may be
missed. Neuroimaging using PET and fMRI
is well suited to exploratory analyses of brain
processes and allows new hypotheses about
specific brain areas to be developed and tested
in animal models. In addition, neuroimaging
with PET and fMRI offers a broad view of
how remote brain regions interact in partic-
ular psychological functions, complementing
the detailed analysis of individual cell behav-
ior that is possible using animal models.

What PET and fMRI Can Measure

The number of techniques for imaging brain
processes with PET and fMRI is growing. Al-
though a thorough discussion of all of these

is far beyond the scope of this chapter, it is
important to realize what sorts of processes
can be imaged using these techniques. Some
of the alternatives are described here briefly;
our subsequent discussions of task design will
focus on measures of regional brain activa-
tion because these are the ones used most
often to study human cognition and affect.
Table 5.1 shows a summary of the various
methods available using PET and fMRI as
measurement tools. Following is a brief de-
scription of each method.

Structural Scans. Functional magnetic
resonance imaging can provide detailed
anatomical scans of gray and white mat-
ter with resolution well below 1 mm3. This
can be useful if one expects either struc-
tural differences between two populations,
such as between individuals with and with-
out schizophrenia (Andreasen et al., 1994),
or changes in gross brain structure with prac-
tice or some other variable. An example is a
recent study that reported larger posterior hip-
pocampi in London taxi drivers who had ex-
tensive training in spatial navigation (Maguire
et al., 2000). Another structural scanning tech-
nique is diffusion tensor imaging, described
later. This technique allows one to identify
white matter tracts in the human brain, which
is useful for studying not only structures such
as the corpus callosum but also changes in
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these structures as a function of some vari-
able, such as age.

Regional Brain Activation. Perhaps the
most frequent use of both PET and fMRI,
and the one that is the focus of this chap-
ter, is the study of changes in some prop-
erty of metabolism or of the vasculature that
accompany changes in neural activity. With
PET, one may separately measure glucose
metabolism, oxygen consumption, and re-
gional cerebral blood flow (rCBF). Each of
these techniques allows one to make infer-
ences about the localization of neural activity
based on the assumption that neural activity is
accompanied by a change in metabolism, oxy-
gen consumption, or blood flow. Functional
MRI using the blood oxygen level dependent
method (BOLD) is sensitive to changes in
blood volume and in the concentration of de-
oxygenated hemoglobin in the blood across
regions of the brain. The rationale is that (a)
more deoxygenated blood in an area causes
a decrease in BOLD signal and (b) neural
activity is accompanied by increased blood
flow, which dilutes the concentration of de-
oxygenated hemoglobin and produces a rel-
ative increase in signal (Hoge et al., 1999).
Since both BOLD fMRI and PET measure-
ments of rCBF take advantage of changes in
blood flow with changed neural activation,
there should be good correspondence between
these two measures for the same tasks, and this
is generally the case (Joliot et al., 1999;
Kinahan & Noll, 1999; Ramsey et al., 1996).
One difference appears to be that fMRI activa-
tions are usually located several millimeters
dorsal to those of PET, consistent with the
idea that fMRI is sensitive to deoxygenated
hemoglobin in the capillaries and draining
venules surrounding synapses.

Anatomical Connectivity. Diffusion
tensor imaging is the name of a new method-
ology being developed to map the white mat-

ter tracts that connect regions of the brain.
Several current methods use standard MRI
scanners configured to be sensitive to the dif-
fusion of water in order to estimate water dif-
fusion tensors in each area of the brain (Peled,
Gudbjartsson, Westin, Kikinis, & Jolesz,
1998). We explore this technique in greater
detail later, but for now thinking of a tensor
as a measure of motion in the x, y, and z di-
mensions (a vector is a special kind of tensor)
should suffice. Researchers are interested in
the shapes of the tensors in different brain lo-
cations. Water diffuses with equal ease in all
directions in the ventricles and other fluid
spaces, producing a spherical tensor. At the
edges of the brain and in other areas, water
may be restricted from diffusing in one direc-
tion, producing a planar tensor. Near a white
matter tract, however, water diffuses most eas-
ily along the tract, producing a diffusion ten-
sor that is large along the axis of the tract and
small in the other dimensions. These linear
tensors mark the existence and direction of a
white matter tract in the brain. Factors that
affect the shape of a tensor are the density of
axon fibers in the tract, the degree of myelina-
tion, the fiber diameter, and the similarity in
the directions of the fiber projections. Diffu-
sion tensors can be measured on a time scale
of a minute or less.

In the published literature, diffusion tensor
images are usually labeled with different col-
ors for the x, y, and z components of motion; a
solid block of one color indicates fiber tracts
running along the x-, y-, or z-axis of the im-
age. Although most studies of diffusion tensor
imaging have so far focused on the method-
ology itself, there are many potential applica-
tions to the study of brain function, including
combined studies of structure and brain acti-
vation to help define functional networks.

Receptor Binding. The affinity of par-
ticular chemicals for specific types of neuro-
transmitter receptors offers researchers a lever-
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age point for investigating the functional neu-
rochemistry of the human brain. Radioactive
labels are attached to carefully chosen com-
pounds, which are then injected into the ar-
teries of a subject either by a single injection
(called a bolus) or by a continuous infusion of
the substance until the brain concentrations
reach a steady state. This method can be used
to image the density of a specific type of re-
ceptor throughout the brain. It can also be used
to image the amount of binding to a particu-
lar type of receptor that accompanies perfor-
mance of a task, as it was used in one study of
dopamine binding during video game playing
(Koepp, 1998).

The most common radioligands and trans-
mitter systems studied are dopamine (partic-
ularly D2 receptors) using [11C]raclopride or
[123I]iodobenzamide, muscarinic cholinergic
receptors using [11C]scopolamine, and ben-
zodiazepines using [11C]flumazenil. In addi-
tion, researchers have developed radioactive
compounds that bind to serotonin, opioids,
and a number of other receptors. Because the
dynamics of radioligands are complex, re-
searchers have developed a special class of
mathematical models, called kinetic models,
to describe their distribution. Kinetic model-
ing allows researchers to estimate how much
of the radiolabeled compound is in the vas-
culature, how much is freely circulating in
brain tissue, how much is bound to the spe-
cific receptor type under investigation, and
how much is bound at nonspecific sites in the
brain. Estimation of all these parameters re-
quires a detailed knowledge of the properties
of the specific substances used and of the way
in which they act in the brain over time.

Gene Expression. Very recently, new
methods of both PET and fMRI have allowed
researchers to investigate local gene expres-
sion within the living brain. Researchers can
use PET to image the distribution of an en-
zyme in the brain by radiolabeling one of its

substrate compounds. When the labeled sub-
strate is converted into the enzyme, the label
becomes trapped in tissue and emits a persis-
tent signal that can be detected by the PET
camera. One recent study used this method
to label a substrate of an adenoviral enzyme
that directs the expression of a particular gene
in mice, thereby indirectly indexing gene ex-
pression (Gambhir et al., 1999).

Magnetic resonance spectroscopy pro-
vides a different way to image enzymes and
biochemicals related to gene expression. The
arrangement of atoms in their constituent
molecules gives rise to very small inhomo-
geneities in the scanner’s magnetic field.
These magnetic variations alter the spectrum
of energy that the atoms will absorb, giv-
ing rise to a characteristic frequency signa-
ture for various types of atoms. One research
group used magnetic resonance spectroscopy
to quantify the amount of fluorine-containing
compounds related to expression of a partic-
ular gene (Stegman et al., 1999). A combi-
nation of creativity and specific knowledge of
the relevant physics and biochemistry can lead
to imaging solutions for a very large number
of experimental questions.

Having provided a brief summary of these
various techniques, we shall concentrate on
PET and fMRI as they are used to measure
changes in blood flow and oxygenation.

Limitations of PET and fMRI

Spatial Limitations. Certain limitations
restrict what both PET and fMRI can mea-
sure. Neither technique is good for imaging
small subcortical structures or for doing fine-
grained analysis of cortical activations. The
spatial resolution of PET, on the order of 1 cm3

to 1.5 cm3, precludes experiments testing for
neural activity in focused areas of the brain
(e.g., mapping receptive fields of cells in vi-
sual cortex). The spatial resolution of fMRI
is much greater: as low as 1 mm3 but often
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on the order of 3 mm3 for functional studies.
The impact of this limitation in spatial resolu-
tion is that activation in some structures may
be mislocated or missed entirely, although re-
cent fMRI studies have reported activity in
structures as small as the nucleus accumbens
(Breiter et al., 1997). Also, fMRI techniques
often cause distortions of the images in ar-
eas that are close to interfaces between tis-
sue and air (e.g., the basal ganglia or areas
of the frontal lobe that are adjacent to the
sinuses).

Artifacts. Artifactual activations (i.e.,
patterns that appear to be activations but arise
from nonneural sources) may come from a
number of sources, some unexpected. One
study, for example, found a prominent PET
activation related to anticipation of a painful
electric shock in the temporal pole (Reiman,
Fusselman, Fox, & Raichle, 1989). However,
it was discovered some time later that this tem-
poral activation was actually located in the
jaw; the subjects were clenching their teeth in
anticipation of the shock!

As mentioned, fMRI signals are especially
susceptible to artifacts near air and fluid si-
nuses and at the edges of the brain. Test-
ing of hypotheses related to activity in brain
regions near these sinuses, particularly or-
bitofrontal cortex and inferior temporal cortex
among neocortical regions, is problematic us-
ing fMRI. Functional MRI also contains more
sources of signal variation due to noise than
does PET, including a substantial slow drift
of the signal in time and higher frequency
changes in the signal due to physiological pro-
cesses accompanying heart rate and respira-
tion (the high-frequency noise is especially
troublesome for imaging the brainstem). The
low-frequency noise component can obscure
results related to a psychological process of
interest and can produce false positive results,
so it is usually removed statistically prior to

analysis. The low-frequency source of noise
also makes it difficult to test hypotheses of
slow changes during a session (e.g., effects
of practice during scanning), although care-
ful design still allows such issues to be tested
(Frith & Friston, 1997).

Temporal Resolution and Trial Struc-
ture. Another important limitation of scan-
ning with PET and fMRI is the temporal res-
olution of data acquisition. The details of this
are discussed in later sections, but it is im-
portant to note here that PET and fMRI mea-
sure very different things over different time
scales. Because PET computes the amount
of radioactivity emitted from a brain region,
at least 30 s of scanning must pass before a
sufficient sample of radioactive counts is col-
lected. This limits the temporal resolution to
blocks of time of at least 30 s, well longer
than the temporal resolution of most cognitive
processes. Functional MRI has its own tem-
poral limitation due largely to the latency and
duration of the hemodynamic response to a
neural event. Typically, changes in blood flow
do not reach their peak until several seconds
after a neural event, so the locking of neu-
ral events to the vascular response is not very
tight.

Duty Cycle. A final limitation for both
PET and fMRI has to do with what is often
called the duty cycle of a task. To create a
measurable hemodynamic response, the neu-
ral event must take up a substantial proportion
of the time taken in any measurement period.
For example, if only a small number of nerve
cells fire for some process or if the duration
of firing is small with respect to the tempo-
ral resolution of the measurement technique,
then the signal-to-noise ratio for that event is
low and may be difficult to detect. Although
processes that elicit very brief neural activity,
such as brief flashes of light, can be detected
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using neuroimaging, experiments need to be
designed so that the process of interest occu-
pies a substantial proportion of the measure-
ment window of time.

As an example of how differences in duty
cycle may cause problems, consider a hy-
pothetical neuroimaging study of the Stroop
task. In the task participants see a series of
color words printed in colored ink, and they
must name the color of the ink in which each
word is printed. Words in a study may be con-
gruent, in which case the color and the word
match (e.g., “blue” printed in blue ink), or they
may be incongruent, in which case the color
and word are different (e.g., “blue” printed in
red ink). In the PET scanner, participants al-
ternate every 2 min between performing the
task on blocks of congruent words and blocks
of incongruent words. Suppose, for the sake
of this example, that we present each word
500 ms after the participant responds to the
previous word and allow participants to com-
plete as many words as they can in a 2-min
block.

By allowing the participants to perform at
their own pace, we have created a duty-cycle
problem. Participants are faster in the congru-
ent condition, and they perform more congru-
ent than incongruent trials during each 2-min
scan. Accordingly, visual, motor, and other
cognitive processes are becoming activated
more frequently during the congruent scans
than during the incongruent scans. As a re-
sult, participants spend more time planning
and making vocal responses in the congruent
conditions. Researchers comparing the incon-
gruent to the congruent control blocks in an
analysis of these data would likely find rela-
tive decreases in activation in Broca’s area,
motor cortex, and premotor cortex—all of
which are related to response planning and
execution. They might erroneously attribute
these deactivations (which are really activa-
tions in the congruent condition) to the at-

tentive processes required to resolve conflict
between mismatching ink colors and words.
Alternatively, areas that are more heavily re-
cruited in the incongruent than in the congru-
ent condition might be missed: Even though
the incongruent words produce higher peaks
of activation in such areas, the congruent trials
activate them more frequently, and the mean
level of activation during the scanning block
may be the same.

Duty cycle can be an insidious problem
because it is often hard to know if partici-
pants are really spending the same amount
of time on each task, which in turn makes
it difficult to compare the tasks in a mean-
ingful way. Consider a neuroimaging exper-
iment that aims to study affect-related brain
responses to viewing emotionally positive
versus negative pictures. This study might
show increases in extrastriate visual cortex
activity for positive pictures relative to neg-
ative ones. Rather than being a brain area that
participates in affect, however, the activation
might be due only to the fact that participants
fail to look at or attend as long to negative
pictures because of their unpleasant content.
The difference in the duty cycle of attention
is a hidden confound that might make inter-
pretation of this activation difficult without
converging evidence from other sources.

Summary of Advantages of PET and fMRI

We have commented on the limitations of PET
and fMRI, but we also need to point out their
advantages when used as tools to measure the
vascular response to neural events. Each has
some unique features that makes it apt for cer-
tain types of experiment. Table 5.2 summa-
rizes these advantages.

An inspection of the table shows that PET
and fMRI have different characteristics that
make each particularly suited to certain types
of imaging questions.
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Table 5.2 Relative Advantages of PET and fMRI

PET fMRI

• Mapping of receptors and other neuroactive agents • Repeated scanning
• Direct measurement of glucose metabolism • Single-subject analyses possible
• No magnetic susceptibility artifacts • Higher spatial resolution
• Quiet environment for auditory tasks • Higher temporal resolution
• Imaging near fluid spaces • Single trial designs
• Easily combined with ERP and other measurements • Estimation of hemodynamic response and separation

because there is no magnetic field of stimulus and task set related variables
• Lower cost

A Road Map of a Neuroimaging
Experiment

Before starting a neuroimaging experiment,
several important decisions must be made.
First, a specific hypothesis must be chosen,
much as we described several hypotheses in
the introduction to this chapter and how these
led to imaging experiments. Second, appro-
priate methods must be selected; these choices
will be constrained by the nature of the task
chosen, the available imaging technology and
its limitations, and the types of inferences one
wishes to draw from the study. Third, an ex-
periment must be conducted, analyzed, and
interpreted. Here is an overview of some of
the highlights in each of these steps, with de-
tails to follow.

The design of a task limits the ultimate
interpretability of the data. Tasks must be
chosen that yield theoretical insight into the
neural and psychological processes under in-
vestigation, and they must avoid the influence
of nuisance variables. Nuisance variables may
be neural processes unrelated to the question
of interest (either prescribed by the task or
unrelated to it); they may be technological ar-
tifacts such as slow drift in the signal from
an fMRI scanner; or they may be artifacts
due to heart rate, respiration, eye movements,
or other physiological processes. To the ex-
tent that nuisance variables influence the brain
activations in a task, they will mitigate the
uniqueness of an interpretation that one may

place on the data. That is, one would like to
claim that neuroimaging activations are re-
lated to psychological process X, not that ac-
tivations are related to process X or process Y
or some physiological artifact such as irrele-
vant eye movements during a task. Construct-
ing adequate tasks can be quite challenging,
and it may not be possible in some situations.

Once a task is designed and data are col-
lected, analysis of those data is composed of
two important substages: preprocessing of the
images and statistical analysis of the resulting
activations. Preprocessing consists of several
steps. Before statistical tests are performed,
the various images in a set of data must be
aligned to correct for head motion that may
have occurred from one image acquisition to
the next. Following alignment, images are of-
ten normalized to a standard template brain so
that results from several subjects can be com-
bined into averages and plotted in standard co-
ordinates for comparison with other studies.
Many researchers also smooth images, aver-
aging activity levels among neighboring vox-
els to achieve smooth regions of activation.
Although smoothing decreases the spatial res-
olution of the images, it helps to estimate and
control for statistical noise.

Following these preprocessing stages, sta-
tistical tests are performed on the data. Most
analyses are essentially variants of the gen-
eral linear model. Studies are often ana-
lyzed using t tests that compare one or more
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experimental conditions of interest with a con-
trol condition. Slightly more complicated de-
signs may use analysis of variance (ANOVA)
with one or more factors. An increasingly pop-
ular technique uses multiple regression both
to model the processes of interest and to take
into account the influence of nuisance covari-
ates. This kind of analysis constructs a co-
variate that contrasts periods when activity of
interest is supposed to occur (i.e., the experi-
mental condition in a blocked study or a neu-
ral response-evoking event in an event-related
study) with control periods. Nuisance covari-
ates are constructed in order to model the ac-
tivity related to processes of no interest, such
as heartbeat or processes included in the task
that are of no theoretical relevance. The effects
of the nuisance covariates are statistically re-
moved from the data during the analysis, de-
creasing the statistical error and increasing
the power of the analysis. With fMRI, signals
at low spatial frequencies—essentially slow,
random drift due to variations in the magnetic
field—may produce artifacts in the data, so
these are usually either modeled as nuisance
covariates as well or filtered out before begin-
ning the analysis.

With this brief summary, we are ready to
launch into a more thorough treatment of ex-
perimental design. We do this by reviewing
the various designs that have become popular
in experiments using PET and fMRI measure-
ment techniques. Following our description of
these designs, we review techniques that can
be used with these designs to contrast differ-
ent experimental conditions.

Types of Experimental Designs

Blocked Designs

Because PET experiments demand long inter-
vals of time (30 s or more) for collecting data
sufficient to yield a good image, the standard
experimental design used in PET activations
studies is the blocked design. A blocked de-

sign is one in which different conditions in the
experiment are presented as separate blocks of
trials, with each block representing one scan
during an experiment. Thus, the activations
of interest in a PET experiment are ones that
accumulate over the entire recording interval
of a scan. If one is interested in observing the
neural effect of some briefly occurring psy-
chological process (e.g., the activation due to
a briefly flashed light stimulus), in a PET ex-
periment one would have to iterate the event
repeatedly during a block of trials so that ac-
tivations due to it accumulate over the record-
ing interval of a scan. One could then compare
the activations in this scan to an appropriate
baseline control scan in which the event did
not occur. Given the temporal limitation of
this technique, PET is not well suited to ex-
amining the fine time course of brain activity
that may change within seconds or fractions
of a second.

The blocked structure of PET designs is
a major factor in the interpretability of re-
sults. Activations related to slowly changing
factors such as task set or general motiva-
tion are captured in the imaging study. This
is an advantage if one wishes to image such
effects. However, PET is not suited to imaging
neural responses to individual stimuli. Even if
such slowly changing processes are of inter-
est, one must take care to elevate their duty
cycle within a scan so that their neural signa-
tures form a significant portion of the entire
scan’s processes.

Some researchers have made good use of
differences in duty cycle as a way to circum-
vent some limitations of blocked designs (e.g.,
Garavan, Ross, Li, & Stein, 2000). These stud-
ies have used trial blocks with different per-
centages of certain trial types to capture a
process of interest. For example, one might
conduct a blocked study of a particular pro-
cess of interest but parametrically vary the
number of trials within the block that recruit
that process. Rather than comparing blocks



pashler-44093 book December 18, 2001 10:17

190 Functional Brain Imaging

of the active task with rest, one might com-
pare blocks in which the task of interest was
performed, for example, on 80% of the trials
with blocks in which the task of interest was
performed on 20% of the trials.

Many studies using fMRI have also made
good use of blocked designs. One advantage
of a blocked design is that it offers more sta-
tistical power to detect a change—one esti-
mate is that it offers four times the power of a
single-trial design (authors, unpublished ob-
servations). As with PET, the ability to exam-
ine brain activations due to single trials is lost.
Because the time to acquire a stable image is
substantially less with fMRI than with PET,
fMRI does allow one to conduct experiments
in which activations due to single trials can
be collected in a stable way. A sample of the
MRI signal in the whole brain can be obtained
in 2 to 3 s on average, depending on the way
in which data are acquired and depending on
the required spatial resolution of the voxels
that are imaged. For studies that do not sam-
ple the whole brain, acquisition can be much
more rapid: as low as 100 ms for single-slice
fMRI. In fact, the limiting factor in the tem-
poral resolution of fMRI is not the speed of
data acquisition, but the speed of the underly-
ing hemodynamic response to a neural event,
which peaks 5 to 8 s after that neural activity
has peaked.

Individual-Trial, Event-Related fMRI

To take advantage of the rapid data-acquisition
capabilities of fMRI, researchers developed
an event-related fMRI technique to create im-
ages of the neural activity related to specific
stimuli or to cognitive events within a trial.
The technique involves spacing stimuli far
enough apart in time that the hemodynamic
response to a stimulus or cognitive event is
permitted to return to baseline before the on-
set of the next stimulus or event. Most re-
searchers consider 14 to 16 s enough time for
this to occur (Aguirre, Zarahn, & D’Esposito,

1998; Dale & Buckner, 1997), although some
data have revealed that the hemodynamic
response can persist somewhat longer
(Boynton, Engel, Glover, & Heeger, 1996).
Using this technique, signals from individ-
ual trials of the same task can be averaged
together, and the time course of the hemo-
dynamic response within a trial can be deter-
mined. This technique permits the randomiza-
tion of trials from different conditions, which
is essential for certain tasks. It also allows re-
searchers to analyze only selected types of tri-
als in a mixed trial block, enabling the study of
error monitoring (to name one example) and
a number of other processes that occur only
on some trials.

Selective averaging provides one way
around the temporal limitations imposed by
the hemodynamic response function. By av-
eraging across trials of the same type and
by comparing these averages across differ-
ent conditions, researchers can distinguish the
time course of fMRI signals differing by as
little as 100 ms. An example comes from
the work of Aguirre, Singh, and D’Esposito
(1999), who studied activation in the fusiform
gyrus in response to upright and inverted
faces. When they compared trials from the
two conditions, they found that the BOLD re-
sponse was shifted 100 ms later for inverted
faces, paralleling increased reaction times to
recognize inverted faces.

Another creative example of the added
hypothesis-testing power of event-related
fMRI comes from studies of episodic mem-
ory. Buckner et al. (Buckner et al., 1998)
studied people encoding lists of words, and
they subsequently tested the participants to
see which words they remembered correctly.
Functional MRI scanning during the learning
of each word allowed the researchers to com-
pare activity during the encoding of words that
were successfully retrieved with the encoding
of words that were later forgotten, revealing
important differences.
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Rapid Event-Related fMRI

More recent developments in event-related
fMRI designs have made experimental tri-
als more similar to those found in standard
behavioral experiments (Zarahn, Aguirre, &
D’Esposito, 1997). The main problem with
the event-related design discussed earlier is
that trials are very slow in pacing (12–16 s
required between successive trials). It is pos-
sible to accelerate this pace substantially by
making use of knowledge of the precise shape
of the hemodynamic response function to a
pulse of neural event. Various investigators
have measured the nature of this response,
and good models of it now are used rou-
tinely. Using prior knowledge of the typical
hemodynamic response function, or measur-
ing it individually for each subject, one can
now perform experiments in which succes-
sive stimuli or cognitive events can be pre-
sented with as little as 750 ms intervening
(Burock, Buckner, Woldorff, Rosen, & Dale,
1998; Dale & Buckner, 1997). Closely packed
trials of a number of experimental conditions
can then be presented in random order in a
scanning interval. One then creates a model
function that includes the timing of critical
stimuli or cognitive events convolved with a
model of the known or hypothesized hemo-
dynamic response function. This convolved
predictor function can then be used as a re-
gressor in a multiple regression analysis, and
the fit of the actual data to the expected pattern
of BOLD signal can be measured. Of course,
one would have several regressors to fit to the
data, each one designed to predict the effect
of one type of cognitive event (i.e., one con-
dition). In this way, one can compare differ-
ent regressors to examine which fit the data
best, thereby accounting for the pattern of ob-
tained activations. We describe this technique
in more detail later.

This method has led to several important
advances. One is the ability to space trials

closely in time, resulting in a pacing that is
more in line with the large body of literature in
experimental psychology. Another is that the
design minimizes the effects of fatigue, bore-
dom, and systematic patterns of thought un-
related to the task during long intertrial inter-
vals. In addition, the ability to obtain images
of more trials per unit time, compared with
individual event-related designs, counters the
loss of power that occurs when using a single-
trial design instead of a blocked design. This
makes designs with closely packed trials more
efficient than those with long intertrial inter-
vals. Of course, if trials are spaced too closely,
the ability to tell which part of the signal came
from which type of trial is decreased, so there
is a trade-off between the number of trials one
can include and how much resolving power is
lost. Some researchers have estimated that a
4-s intertrial interval is optimal for detecting
task-related activations (Postle & D’Esposito,
1999), although much more research needs to
be done on the specifications and limitations
of this new technique.

An important element of these rapid event-
related designs is that the intertrial interval
must be varied from trial to trial. The abil-
ity to separate signals coming from different
trial types when the hemodynamic responses
to each trial overlap in time depends on jit-
tering the time between trials and on either
randomly intermixing trials of different ex-
perimental conditions or carefully counterbal-
ancing their order. To get an intuition about
how rapid designs allow one to discriminate
the effects of different conditions, consider
that with a randomized and jittered design,
sometimes several trials of a single type will
follow one another and that because the hemo-
dynamic response to closely spaced events
sums in a roughly additive fashion (although
there are minor nonlinearities; e.g., Boynton
et al., 1996; Dale & Buckner, 1997), the ex-
pected response to that trial type will build
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to a high peak. Introducing longer delays
between some trials and shorter ones between
others allows for the development of peaks
and valleys in activation that are specific to
particular experimental conditions. A regres-
sion model will be more sensitive to a design
with such peaks and valleys than it will be to
a design that has a uniform spacing of trials
because one with peaks and valleys will create
a unique signature for that type of trial. The
effect of jittering is essentially to lower the
effective temporal frequency of the design, so
it is particularly appropriate for rapidly pre-
sented trials. Without jittering the intertrial
interval, the neural events would occur too
rapidly to be sampled effectively.

One problem with the hemodynamic
response-convolution technique used in rapid
event-related designs is that it is based on
a predicted shape of the hemodynamic re-
sponse. Therefore, if one misspecifies this
response function, one will lose significant
power in this experimental technique. This
problem is especially acute when compar-
ing different subject populations (e.g., older
versus younger adults, or patients and nor-
mal controls) because their hemodynamic re-
sponse functions may differ from one another
(D’Esposito, Zarahn, Aguirre, & Rypma,
1999). One approach that researchers have
used to avoid this problem is the measurement
of hemodynamic responses in each individ-
ual subject, often by presenting brief flashes
of light and measuring the BOLD response
over the seconds following the stimulation
in the primary visual cortex or by measuring
the hemodynamic response in motor cortex
to simple finger movements (Aguirre et al.,
1998). Of course, this technique is best used
when the region of interest in an experiment
corresponds to the region in which the hemo-
dynamic response is measured. If it does not,
one must assume that the measured hemody-
namic response in one region of the brain is
equivalent to that in another region.

Techniques for Contrasting
Experimental Conditions

For a psychologist, the main value of neu-
roimaging data is that they provide new tools
for understanding psychological processes.
For example, finding that premotor cortex
is activated during the identification of tool-
like objects opens up a new set of hypothe-
ses about the nature of object recognition
(Martin, Haxby, Lalonde, Wiggs, & Ungerlei-
der, 1995). Likewise, finding that visual cortex
is activated in blind individuals who perform
tactile tasks suggests a set of hypotheses about
the extent of plasticity in the sensory nervous
system (Sadato et al., 1996).

Of course, the value of neuroimaging data
to psychological inference depends on an ac-
curate assessment of which brain regions are
activated in any task. The problem with mak-
ing inferences about cognitive processes from
neuroimaging data is that nearly any task, per-
formed alone, produces changes in most of the
brain. To associate changes in brain activation
with a particular cognitive process requires
that we isolate changes related to that pro-
cess from changes related to other processes.
In short, it requires that we have contrasting
experimental conditions that isolate the pro-
cesses that interest us. One can understand
how these contrasts can be designed without
understanding details of data acquisition and
analysis, topics that we treat in the final sec-
tion of this chapter. However, one fact about
data acquisition is particularly useful: Data in
neuroimaging experiments are in the form of
a matrix of signal intensity values in each re-
gion of the brain. The brain is divided up into
voxels, typically 60,000 to 100,000 small vol-
umes of brain tissue, whose size and number
vary from study to study depending on the
acquisition methods used to gather the data.
These voxels are the elementary units of data;
we assume that the signal in a voxel repre-
sents the neural activation in that region of the
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brain (more on the biophysics of that assump-
tion later). The behavior of these voxels is the
focus of an imaging experiment. Four tech-
niques are most frequently used to study the
behavior of brain voxels: subtraction, para-
metric variation, factorial designs, and corre-
lational studies.

Subtraction

The first method devised for making infer-
ences about psychological processes from
neuroimaging data involves statistically com-
paring activations derived from an experimen-
tal condition with activations from a control
condition that is putatively identical except
that it does not recruit the process of interest.
This is the subtraction method, the logic of
which dates back to Donders (1868). The tech-
nique was first used by Posner and colleagues
(Petersen, Fox, Posner, Mintun, & Raichle,
1988; Posner, Petersen, Fox, & Raichle, 1988)
in a study of reading processes. The logic of
subtraction is this: If one tests two experimen-
tal conditions that differ by only one process,
then a subtraction of the activations of one
condition from those of the other should re-
veal the brain regions associated with the tar-
get process. This subtraction is accomplished
one voxel at a time. Together, the results
of the voxel-wise subtractions yield a three-
dimensional matrix of the difference in acti-
vation between the two conditions through-
out the scanned regions of the brain. T tests
can be performed for each voxel to discover
which of the subtractions is reliable (of course,
one needs to correct for the fact that multi-
ple comparisons are being conducted—more
about this later). The resulting parametric map
of the t values for each voxel shows the relia-
bility of the difference between the two con-
ditions throughout the brain, and images of t
maps or comparable statistics (z or F maps)
are what generally appear in published reports
of neuroimaging studies.

As an example of the implementation of
subtraction logic, consider an experiment
from our laboratory (Reuter-Lorenz et al.,
2000) that was similar to the task shown
in Figure 5.2. In the experiment of Reuter-
Lorenz et al., subjects had to encode the loca-
tions of three target dots on a screen and store
these in memory for 3 s, following which a
single probe dot appeared and subjects had
to decide whether the probe dot was in the
same spatial position as one of the previous
three target dots. In order to isolate processes
of spatial storage, we constructed a control
condition that was identical to this experimen-
tal condition, but with one difference: In the
experimental condition, the retention interval
was 3 s, whereas in the control condition it was
200 ms. We reasoned that a subtraction of
the activations from the control condition
from those of the experimental condition
would then reveal the brain regions respon-
sible for the extra storage required in the ex-
perimental condition.

In our experiment the logic of the subtrac-
tion method was fairly safe. In general, how-
ever, subtraction logic rests on a critical as-
sumption that has been called the assumption
of pure insertion (Sternberg, 1969). Accord-
ing to this assumption, changing one process
does not change the way other processes are
performed. Thus, by this assumption the pro-
cess of interest may be purely inserted into
the sequence of operations without altering
any other processes. Although violations of
subtraction logic have been demonstrated ex-
perimentally (Zarahn et al., 1997), the logic is
still widely used because it greatly simplifies
the inference-making process. If this assump-
tion is violated, a difference in the observed
neuroimaging signal between an experimen-
tal and a control condition may be due to one
of these other altered processes rather than the
process of interest.

To appreciate the difficulty of implement-
ing subtraction logic in an experimental
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setting, consider a hypothetical study. In the
experimental condition subjects must press a
button every time they see a red stimulus;
in the control condition they passively view
the same stimulus sequence as in the experi-
mental condition. The experimenter might as-
sume that activity related to visual processing
is the same in both conditions and that the
two tasks differ only in that the first requires
the execution of a response. Thus, when acti-
vations from the control condition are sub-
tracted from those of the experimental condi-
tion, the experimenter may attribute the signif-
icantly activated areas to response-execution
processes.

This conclusion has a number of flaws, and
these provide some insight into the assump-
tions of subtraction logic. First, several pro-
cesses vary at once, because the experimental
condition includes an overt manual response
as well as a cognitive decision to execute a
response. We cannot know whether activated
areas are related to the decision, to response
preparation, to response execution, or to an
interaction between two or more of those pro-
cesses. In addition, the experiment may vio-
late the assumption of pure insertion. When
we assume pure insertion in this case, we as-
sume that adding decision and response pro-
cesses will not change the nature of the per-
ceptual processing of the stimuli. However,
making a stimulus relevant and causing at-
tention to be directed to the stimulus alter
perceptual processing in very early areas
of visual cortex (Hopfinger, Buonocore, &
Mangun, 2000; Hopfinger and Mangun, in
press). Our naive experimenter may assume
that activations in the occipital lobe revealed
by the subtraction are related to the response
process, when in fact those areas may be in-
volved in processing the color of the stimuli,
modulated by changes in attentional focus.

This example illustrates the difficulty in se-
lecting experimental and control conditions
appropriately. It also illustrates another point

about subtraction logic. Several researchers
have argued that pure insertion can be tested
within the experiment, and that violations of
pure insertion will appear as significant de-
creases in signal when the control task is sub-
tracted from the experimental task (Petersen,
van Mier, Fiez, & Raichle, 1998). Although
this may be true in many cases, there are two
problems with assuming that pure insertion
is only violated in cases in which deactiva-
tions occur. First, it is difficult to tell whether
decreases in signal are due to a violation of
pure insertion (i.e., the control task includes
a process that the experimental task does not)
or to an actual inhibition of a certain brain
area related to the process of interest. Second,
our hypothetical example illustrates a case in
which pure insertion may be violated, but the
violation would produce no decreases in ac-
tivity, just an increase unrelated to the process
under investigation. Clearly, inferences about
cognitive processes that rely on subtraction
of activation in two conditions must be inter-
preted with caution.

Parametric Variation

Several approaches have been used to improve
upon subtraction logic and to strengthen the
credibility of inferences drawn from differ-
ences between conditions. One of these is
parametric variation over several levels of a
particular process of interest. Examples of ex-
perimental parameters that can be varied in-
crementally include the number of words to
remember in a memory experiment, the per-
centage of a certain type of trial, or the time
on task.

An example of this is the studies of work-
ing memory by Jonides et al. (1997) using the
n-back task in a PET experiment. In the n-
back task, participants see a string of letters
appearing one at a time and must match each
letter to the one that appeared n items back
in the series. In separate conditions, the val-
ues of n varied from 1 to 2 to 3. A 0-back



pashler-44093 book December 18, 2001 10:17

The What: Neuroimaging Techniques and Task Design 195

control condition required participants to in-
dicate a match each time a fixed letter (e.g.,
“G”) appeared. Encoding and response pro-
cesses are common to all tasks, but the work-
ing memory load and the requirement to up-
date information stored in working memory
differ. Jonides et al. found that several regions
varied in their activations systematically with
variations in working memory load, as com-
pared to other regions that showed no system-
atic variation. In a later experiment by Cohen
et al. (1997) using fMRI, a finer dissociation
was documented among the regions show-
ing variation with working memory load.
Some regions, such as posterior parietal cor-
tex, showed monotonic increases in activity
with increases in load, whereas dorsolateral
prefrontal cortex (DLPFC) showed a step-
function increase in activation from 1-back
to 2-back, with no other differences in acti-
vation. Thus, the parametric technique per-
mitted a fine discrimination of areas involved
in working memory from other brain regions,
and it permitted an examination of the details
of activation differences even among the re-
gions involved in working memory.

Another example of parametric variation
is a study of the Tower of London task by
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Figure 5.7 Measured rCBF responses in three areas across six conditions (one rest condition and five
levels of increasing difficulty) in the Tower of London task.
NOTE: These areas showed linear increases in rCBF with increasing difficulty, whereas other areas (such
as visual cortex) showed a response to task vs. rest but no changes among the five difficulty levels.
SOURCE: Reproduced from Dagher et al. (1999).

Dagher, Owen, Boecker, and Brooks (1999).
This task requires participants to make a se-
quence of moves to transfer a stack of col-
ored balls from one post to another in the
correct order. Participants must plan out a
number of moves, devising them and stor-
ing them in memory in advance of completing
the task. The experimenters varied the num-
ber of moves incrementally from 1 to 6. As
shown in Figure 5.7, their results showed lin-
ear increases in activity in DLPFC across the
six levels of the variable, suggesting that this
area served the planning operations critical for
Tower of London performance.

The power of parametric variation lies in
two features. First, the reliance on pure in-
sertion is weakened. Rather than assuming
that insertion of a process does not change
other processes, the logic assumes that alter-
ing the load on one process does not change
other component processes in the task. Sec-
ond, the results are more highly constrained
because unlike a subtraction study, parametric
variation permits one to make multiple com-
parisons among multiple levels of a variable
(e.g., 1- vs. 2- vs. 3-back in the n-back task).
This feature permits researchers to search for
a pattern of change in activation across all
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levels of a variable, such as a monotonic in-
crease. Such a pattern renders more unlikely
false positives and spurious activations due to
improperly controlled variables.

Factorial Designs

Factorial designs are an extension of subtrac-
tion logic. Whereas the foundation of sub-
traction studies is the t test, factorial studies
rely on factorial analysis of variance. Con-
sider a simple factorial design from our stud-
ies of task switching presented in the intro-
duction of this chapter. Our studies contained
two types of switching, each varied indepen-
dently: switching which of two mental coun-
ters was to be updated, and switching which
of two operations (add or subtract) should be
applied. This design is a simple 2 × 2 facto-
rial, with two levels of counter switching and
two levels of operation switching. The neu-
roimaging data from this experiment can be
analyzed with a factorial ANOVA on a voxel-
by-voxel basis and subsequently corrected for
multiple comparisons. By testing for main ef-
fects, we would then be asking if each voxel
is sensitive to switching counters, to switch-
ing operations, or to both. By testing for the
interaction, we would be asking whether ac-
tivity in the voxel was affected by both kinds
of switch in a nonadditive fashion. For ex-
ample, a voxel might be activated only when
both counter-switch and operation-switch are
required, signaling that this brain area might
be involved in the coordination of two kinds
of executive processes.

In principle, factorial designs suffer from
the same problems as subtraction designs, but
pooling activity across different levels of a
factor may make the estimation of main ef-
fects more interpretable. Because main ef-
fects are estimated by collapsing across sev-
eral conditions that share a common cognitive
process of interest, activations due to cogni-
tive components that vary among the condi-

tions (e.g., idiosyncrasies of particular task
conditions) will tend to wash out.

Another advantage of factorial designs is
that they allow one to investigate the effects
of several variables on brain activations. They
also permit a more detailed characterization of
the range of processes that activate a partic-
ular brain region (e.g., counter-switch only,
operation-switch only, either, or both). Facto-
rial designs also permit one to discover dou-
ble dissociations of functions within a single
experiment. To restate, a double dissociation
occurs when one variable affects one brain re-
gion but not another, and when a second vari-
able affects a second region but not the first.
A factorial design is required in order to infer
that a manipulation (e.g., counter switching)
affected DLPFC but that a second manipula-
tion (e.g., operation switching) did not.

Factors whose measurements and statisti-
cal comparisons are made within subjects, as
are those just described, are within-subjects
factors. When researchers examine differ-
ences between older and younger subjects, be-
tween normal individuals and members of a
patient population, or between other groups,
the subject group becomes a between-subjects
factor because different levels of the factor
are represented by different subjects. Because
there are many reasons that two groups of
subjects might differ in brain activation, re-
searchers typically compare between-subjects
differences in activation related to a spe-
cific task. This comparison involves first sub-
tracting a control task from a task of in-
terest within subjects and then comparing
the different images between subjects. As
an example, consider the fact that older and
younger subjects differ in the amount of at-
rophy present in their brains, with older sub-
jects typically showing some 15% more at-
rophy than younger subjects. To mitigate this
difference in comparing activations between
old and young, Reuter-Lorenz et al. (2000)
tested older and younger subjects in a work-
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ing memory task and a control condition. They
then subtracted the activations of the control
from the memory task and compared older
and younger subjects on their differences in
these subtracted activations. This technique
allows one to remove statistically any effects
of the differences in brain atrophy between the
groups.

Correlational Studies

Correlational designs are often considered a
weaker type of design from the perspective of
making inferences because a correlation be-
tween two variables does not carry any infor-
mation about the causal relationship between
them. However, correlations have been used
effectively in neuroimaging studies in several
ways.

The most straightforward way is to exam-
ine the correlation of regional activation with
behavioral performance variables. For exam-
ple, Casey et al. (1997) found correlations be-
tween anterior cingulate activation and errors
in a go/no-go task in children, suggesting that
the anterior cingulate plays a role in response
selection or inhibition. As another example,
Lane et al. (1998) found that a region of an-
terior cingulate correlated with self-ratings of
emotional awareness in women.

Another important way that researchers
use correlations is by examining the inter-
regional correlations among brain areas. A
high correlation between two voxels is taken
to be a measure of functional or effective
connectivity—the tendency for two brain ar-
eas to be coactive (Frith & Friston, 1997).
One recent trend is to examine the effects
of different tasks on functional connectiv-
ity. For example, a study by Coull, Buchel,
Friston, and Frith (1999) found that con-
nectivity patterns were different between an
attention-demanding task and rest, suggesting
that attention changes the functional connec-
tivity of the brain.

Although functional connectivity is often
taken to mean the degree to which one brain
area activates another, caution must be taken
in the interpretation of such data, as with all
correlational data. The data do not indicate
which of two functionally connected areas
sends output to the other, or if both are in-
fluenced by a third area as the cause of the
correlations between the two.

Although functional neuroimaging data
are often analyzed in terms of separate re-
gions that are differentially active among con-
ditions, most psychological processes that re-
searchers may want to study do not map
one to one onto unique brain regions. They
are often served by processing in distributed
networks of interconnected areas, some of
which overlap and some of which do not.
The mapping of regional correlations in con-
junction with principal components analysis,
described later, can be used to identify sep-
arate distributed networks that are related to
different processes. Intuitively, voxels whose
signals are correlated are grouped together to
define a functional network in the brain, or
spatial mode, which then becomes the unit
of analysis for task-related effects. For exam-
ple, Frith and Friston (1997) described a study
in which they identified three distributed net-
works of brain areas that tended to be coac-
tivated. One area was related to task perfor-
mance; a second was related to the effects
of practice within a session; and a third was
related to magnetic artifact during the initial
scans. The inference about which mode corre-
sponds to which part of the task can be made
by examining the pattern of activation that
voxels in each spatial mode displayed. If the
activity of most voxels in a spatial mode varies
with the frequency of the task, one can infer
that the mode is related to task performance. If
the activity of the voxels varies in a linear fash-
ion across the entire session, the spatial mode
is likely to be related to practice or fatigue
effects.
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Another technique for examining networks
of connectivity using correlational data is
structural equation modeling. To use this tech-
nique, one creates an a priori model of ex-
pected patterns of connectivity and deter-
mines how well the data fit the prespecified
theoretical model. This approach can be very
useful for testing hypotheses about networks
of activations that may be involved in a task.
Marshuetz et al. (1999), for example, investi-
gated the ability of a tripartite model of work-
ing memory to account for imaging data in
working memory tasks, and they were able to
compare this model to several others to deter-
mine which provided the best fit.

Kanwisher, McDermott, and Chun (1997)
employed one particularly useful generaliza-
tion of factorial designs to study face recogni-
tion. They identified an area on the fusiform
gyrus that responded to pictures of faces and
drawings of faces, but not to houses, scram-
bled faces, partial faces, facial features, ani-
mal faces, and other control stimuli. By pre-
senting a large number of control stimuli of
various types, Kanwisher et al. were able to in-
fer that the brain area they studied was specific
to the perception of faces. In general terms,
they presented a number of different kinds of
stimuli (each one a sort of factor, but without
clearly defined levels) in an attempt to define
which stimuli do and do not elicit a response
from a region. In the case of face recognition,
it was very important to use a wide variety
of control stimuli, as it could be argued that
face-specific activations are really related to
the color, general shape, or spatial frequency
of the stimuli. This technique is particularly
powerful for ruling out alternative explana-
tions based on variables of no interest (e.g.,
spatial frequency of visual stimuli) that are
confounded with processes of interest (e.g.,
face perception).

We have now provided broad coverage of
the motivation for using neuroimaging data
and of the various techniques that can be used

with PET and fMRI as the imaging tools. Hav-
ing covered this ground, we are now prepared
to examine the details of these two imaging
modalities.

THE HOW: DATA ACQUISITION
AND ANALYSIS

The Physics of PET and fMRI

Currently, functional neuroimaging tech-
niques are based on the assumption that neu-
ronal activity will cause changes in regional
blood flow and metabolism that can be de-
tected by the imaging technique of choice. If
one discovers a regional change in blood flow
or metabolism, then one infers that the neu-
ral activity in that region has changed. These
changes in blood flow and metabolism are
usually elusive and require sophisticated sta-
tistical analyses to distinguish a real signal
from the surrounding statistical noise. Very
often, the statistical analysis of functional
imaging data requires corrections for different
effects that are specific to the acquisition tech-
nique, so it is quite important that the investi-
gator understand the physics and the details of
the experiment. An array of methods for func-
tional neuroimaging exists, each method con-
stituting an area of research in itself. Unfortu-
nately, an in-depth review of all the available
techniques is beyond the scope of this chap-
ter, so we focus on PET and fMRI. Our aim
is to provide the reader with the background
necessary for understanding the data acquisi-
tion process and the relationship between the
acquisition and the analysis of functional data.

A Brief Summary of the Physics of PET

Positron-emission tomography is based on
the detection of positrons emitted by a ra-
dioactive tracer that is injected into the sub-
ject. Some man-made isotopes decay by emit-
ting positrons (subatomic particles having
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the same mass as an electron but the oppo-
site charge—they are “antimatter electrons”).
Some isotopes that emit positrons include
75Br, 18F, 11C, 15O, 13N, 68Ga, and 82Rb, and
they are usually made by bombarding the
atoms with accelerated particles. The decay
rate of such isotopes is quite fast, and their
half-lives are on the order of a few hours or
less. Oxygen-15, for example, is the isotope
used most frequently in studies of blood flow
using PET, and its half-life is approximately
2 min. This makes PET scans quite expensive
because a cyclotron must be nearby in order to
obtain a fresh supply of isotopes for the tracer.

When an emitted positron encounters an
electron (from either the same isotope or from
a neighboring atom), they collide. The result
of this collision is that the positron and the
electron are annihilated, and two photons get
ejected in opposite directions from one an-
other. Thus, the scanner does not directly de-
tect the positrons themselves; rather, it detects
the energy released by their annihilation. The
laws of conservation of energy and mass dic-
tate that the energy of the emitted photons
be equal to the added masses of the electron

Scintillation
counter

Display

Scintillation
counter

Neighboring
electron

180�
Annihilation emits
two photons in 
opposite directions

Positron emitted
by isotope decay

Coincidence
detector

Computer

Figure 5.8 A schematic diagram of the main components of a PET scanner.

and the positron. The law of conservation of
momentum predicts that the momenta of the
emitted photons be equal, but in exactly op-
posite directions. The implications are that
each emitted photon can be detected at around
511 keV (the equivalent mass of an electron),
and that they must be detected simultaneously
and in pairs by two detectors situated oppo-
site one another. These two facts are important
because they allow us to differentiate photons
that arise from a positron annihilation from
other sources of radiation, and they allow us
to localize the annihilation.

Thus, in order to establish the location of
an annihilation event as well as to make sure
that the detected photons indeed came from
an annihilation event, one needs a set of de-
tector pairs placed around the source, the sub-
ject’s head. Additionally, each pair of detec-
tors must be wired to a coincidence detector
circuit, as illustrated in Figure 5.8. The coin-
cidence detector counts only the photons that
are detected pairwise within a few nanosec-
onds of each other, and it dismisses other pho-
tons as background radiation. Ideally, the only
photons detected are those that emerge from
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the annihilation of positrons in the tissue di-
rectly between the detectors in the pair. Un-
fortunately, photons from other locations can
also be counted if they arrive simultaneously
at the pair of detectors by sheer chance. To
avoid detecting events that happen outside of
the column of tissue between a given pair of
detectors, small tubes (called septa or collima-
tors) are usually placed around the detectors
to shield them from radiation from the sides,
while letting in the radiation from the front.
Depending on the design, most PET scanners
are made up of an array of detectors that are
arranged in a circle around the subject’s head,
or in two separate flat arrays that are rotated
around the subject’s head by a gantry.

Using PET for Neuroimaging

When researchers inject a tracer into a subject,
the tracer distributes itself through the brain
and accumulates in some locations more than
others, depending on the tissue and the na-
ture of the tracer. Let’s use a two-dimensional
function D(r) to describe the density of the
tracer in a given slice of brain, where r is a
vector that indicates a location in space. The
coincidence detectors simply count the num-
ber of coincidences (and therefore the number
of emitted positrons) detected by a pair of de-
tectors during the scan time. Thus, the number
of positrons that are counted by each pair of
detectors around the subject is proportional
to the amount of tracer in a column of tissue
running between the two detectors, as shown
in Figure 5.9. In essence, the raw data from
a PET scanner are a set of projections of the
function D(r) onto the detector array at differ-
ent angles, and the objective is to reconstruct
the function D(r) from the projections.

An intuitive way to think about the image
formation process is to start with a blank im-
age in which all the pixels have a value of
0. Next, one takes the individual intensities
(number of counts) in one of the projections
along a given angle and adds these values to

�

Detector:
P(�) � �D(r)

rn

Detector

D(rn)

Figure 5.9 The PET scanner.
NOTE: Each detector counts the number of an-
nihilation events that take place in a column of
tissue. The column can be subdivided into smaller
units that represent the image pixels. The detector
counts the sum of the events in each of the elements
in the column.

the image pixels along a line perpendicular to
the projection, as illustrated in Figure 5.10a.
We then move on to the next projection angle
and repeat the procedure, adding the counts
from the detectors along the new projection,
and so on. The result is that different areas of
the image will accumulate different numbers
of counts from the projections, depending on
the original distribution of the tracer in the
plane, as shown in Figures 5.10b and 5.10c.
This distribution of tracer density constitutes
the image. Now, because neither the number
of projections nor the number of pixels in the
image is infinite, some severe artifacts will
occur in the image, and one must compen-
sate for them by applying different filters to
the data. This method is referred to as filtered
backprojection.

In practice, this procedure is usually imple-
mented by using a Fourier transform. More
rigorously, the projections can be described
by

P(θ) =
∑

r

D(r) · �r
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(c)

(a) (b)

Figure 5.10 PET image reconstruction.
NOTE: The raw data are a set of projections (sums)
at different angles as shown in A. “Backproject-
ing” the raw data onto the image means adding the
numbers of counts in the projection to the pixels
that are aligned with each point in the projection,
as shown in B. An image can be obtained after the
data from all the projections has been added, as
shown in C .

where P(θ) is the projection, or sum of the
counts through the columns at the angle θ .
Each �r constitutes a portion of the object
along the projection, as shown in Figure 5.9.
The function D(r) can be reconstructed from
all the projections, P(θ) by computing the in-
verse Fourier transform of the data. Thus, the
two-dimensional function describing the den-
sity of the tracers in a slice of tissue being
imaged is given by

D(r) = FT −1{r · P(θ)}.

The reader should be aware that there are a
number of other methods to reconstruct PET
images, as well as corrections for scattering
and other nuisances, that are beyond the scope
of this chapter. We refer the user to the texts

by Macovski (1983), Sandler (1995), and
Bendriem and Townsend (1998) for greater
details.

Thus, PET allows the investigator to de-
termine a map of the density of a radioac-
tive tracer by reconstructing an image from
the projections of the different angles. The
tracers are usually physiologically relevant
molecules that are labeled radioactively. One
can label tracers that flow through the tis-
sue, such as water, or specific radioligands
that will bind to specific sites. This is where
the strength of PET resides: it allows the re-
searcher to measure a number of parame-
ters with spatial specificity depending on the
choice of tracer. There are three classes of
techniques in which PET is used, as summa-
rized earlier. One is tracking regional cere-
bral blood flow; a second is tracking regional
metabolism; and the third is tracking the bind-
ing of neurotransmitters to their receptors.

In most blood flow studies, radioactive wa-
ter (H2O15) is injected intravenously, permit-
ting measurement of blood flow by monitor-
ing the passage of the labeled water through
the tissue and measuring the uptake rate of
the water into the tissue. Metabolism is mea-
sured using 18-fluorodeoxyglucose (FDG),
a deoxyglucose molecule labeled with a ra-
dioactive 18-Fluorine atom. Just like glucose,
it is taken up by tissue for energy produc-
tion; one can identify regions of activity by
monitoring its uptake rate. For studies of re-
ceptor binding, radioactive labels have been
developed for several hundred compounds re-
lated to specific neurochemical systems in the
brain. The major neurotransmitter systems are
most commonly studied, and this is accom-
plished by attaching radioactive labels such as
11C, 13C (carbon), or 123I (iodine) to a receptor
agonist or antagonist. The researcher must ex-
ercise great care in selecting and imaging ra-
diolabeled compounds because the observed
signal level depends on the concentration of
the radiolabeled substance in the blood, on the
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blood flow and volume, on the binding affinity
of the substance to receptors, on the presence
of other endogenous chemicals that compete
with the labeled substance, on the rate of dis-
sociation of the substance from receptors, and
on the rate at which the substance is broken
down by endogenous chemicals.

A Brief Summary of the Physics of fMRI

Functional MRI evolved from nuclear mag-
netic resonance (NMR), a technique em-
ployed by chemists and physicists since the
1940s to study quantum mechanics and to
identify or characterize the structure of
molecules (Bloch 1946; Hahn 1950; Purcell,
Torrey, & Pound 1946). The raw signals in
both NMR and fMRI are produced the same
way. As we explain in more detail later, a sam-
ple is placed in a strong magnetic field and
is radiated with a radiofrequency (RF) elec-
tromagnetic field pulse. The nuclei absorb the
energy only at a particular frequency, which is
dependent on their electromagnetic environ-
ment, and then return it at the same frequency.
The energy is in turn detected by the same
antenna that produced the RF field. In NMR
experiments, the types of nuclei present in a
molecule can then be identified and quantified
by analyzing the frequency characteristics of
the returned signal. In the 1970s researchers
discovered that one could obtain spatial infor-
mation about the nuclei emitting the radiation
by manipulating the magnetic fields around
the sample (Lauterbur, 1973; Mansfield &
Pykett, 1978).

Let us now examine more closely the pro-
duction of a signal in an NMR experiment
and then proceed to how one can obtain spa-
tial information from that signal to obtain an
image. As most people know, the human body
consists mostly of water, and the brain is no
exception. Let us then consider the hydrogen
atoms that are present in a water molecule.
A hydrogen atom consists of a single pro-

ton and a single electron. Every proton has its
own magnetic dipole moment represented by
a vector. A magnetic moment is the amount
of magnetization of an object, and it deter-
mines how strongly it interacts with magnetic
or electric fields (a bar magnet is a dipole,
and a very strong one would have a very large
dipole moment).

When they are placed in a magnetic field,
such as that of a magnetic resonance (MR)
scanner, a portion of the protons (or spins,
as they are often referred to in the literature)
will align with or against the magnetic field. A
couple of things should be kept in mind about
this alignment. First, the larger the magnetic
field, the greater the proportion of spins that
are aligned, which makes the alignment eas-
ier to detect. Second, whether the spins are
aligned with or against the field is determined
by their spin quantum number, which can
have values of +1/2 and −1/2. Being aligned
with the magnetic field takes less energy than
being aligned against it, so a greater number
of spins will be aligned in the direction of the
field.

Magnetic dipoles are represented by vec-
tors. The interaction between the main mag-
netic field (usually labeled B0) with the proton
dipole produces a set of forces that result in the
precession of the dipole. Precession of a vec-
tor is a movement that takes place such that the
origin of the vector stays fixed, whereas the tip
spins and describes a circle around a vertical
axis, as shown in Figure 5.11. The vectors rep-
resenting the magnetic moment of the +1/2
spins will precess about the magnetic field,
and the −1/2 spins will precess about the op-
posite direction of the magnetic field. The rate
of precession, ω0 (i.e., the angular velocity of
the spins’ precession) is proportional to the
magnetic field B0, as described by

ω0 = γ · B0

where γ is a constant called the gyromagnetic
ratio. This nicely linear relationship between
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Spin �

B0

The magnetic moment of the spins precesses around the
axis of the main magnetic field (B0). Its orientation is

determined by their quantum state.

1
2 Spin 1

2

Figure 5.11 Representation of the proton’s
magnetization.

the precession frequency and the magnetic
field is a key factor that, as we will see, enables
us to obtain spatial information about the sam-
ple by simple manipulations of the magnetic
field. The gyromagnetic ratio is specific for
the nucleus in question (a hydrogen nucleus’s
γ is 42.58 MHz/T), which can allow us to ob-
tain NMR signals from specific nuclei without
interference from other nuclei. The molecular
environment around the nuclei (the number of
electrons present, the proximity of other nu-
clei, etc.) can change the B0 field around the
nuclei and thus alter their precession rate, as
predicted by the previous equation (which is
how one can make inferences about the molec-
ular structure of a molecule that contains
protons).

Let us now consider the net magnetiza-
tion vector of a population of spins. Together,
the spins’ magnetization vectors add up to a
single magnetization vector that is aligned
with the magnetic field (see Figure 5.12). Be-
cause the x and y components of the mag-
netic moments are randomly oriented at any
given time, they cancel each other when all the

x

y

z

M

Net Magnetization vector 
of the ensemble of spins.

Magnetic
moments of
the individual 
spins

When the individual 
magnetization
vectors are summed, 
their xy-components
cancel each other out
because of their 
random orientations.

Figure 5.12 The spin ensemble.

vectors in a large population are added to-
gether. Thus, all that remains is the component
that is parallel to the magnetic field along the
z-axis (remember that more spins align with
the field than against it).

Now that we have a picture of the behavior
of the magnetic moments of water protons in a
large magnetic field (B0), let us consider what
happens when a second magnetic field (B1)

is applied in a direction perpendicular to the
main magnetic field. This B1 field is generated
by the transmitter coil in magnetic resonance
experiments, and it rotates at a particular fre-
quency. If the B1field rotates at the precession
frequency of the spins, it looks to them like
a stationary magnetic field because they are
both rotating at the same rate. In fact, to sim-
plify things, one can look at the whole system
from a rotating frame of reference. Consider
how things look when one rides a carousel.
The other children do not seem to be mov-
ing, but their parents and anything outside the
carousel do. In this rotating frame of refer-
ence, we now have a magnetization vector, M,
which is aligned with the main magnetic field,
B0, and a second magnetic field B1, which is
rotating in the laboratory frame of reference
but is stationary in our new rotating frame of
reference. According to classical physics, the
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Figure 5.13 Tipping the magnetization vector
from the z-axis onto the xy-plane.
NOTE: The duration and strength of the B1 field de-
termine how far the vector is tipped (i.e., the “flip
angle”).

B1 field will exert a torque on the magneti-
zation vector such that it is rotated onto the
x-y plane at an angular velocity determined
by the magnitude of B1. This is illustrated in
Figure 5.13.

In our rotating frame of reference, after we
turn the B1 field off, the magnetization vector
is stationary on the x-y plane, but relative to
the real world, the magnetization vector is ro-
tating about the z-axis on the x-y plane at an
angular velocity ω0. A property of classical
electromagnetism is that changes in a mag-
netic field will induce electrical currents in a
wire coil. The antenna used for transmission
of the RF pulse is such a coil, and when the
magnetization vector rotates through it, it in-
duces a current. This current induced in the
coil is the NMR signal that we observe. The
induced current oscillates at the frequency of
the angular rotation of the magnetization vec-
tor (this is the same frequency that is used to
transmit the RF pulse, also called the reso-
nance frequency).

When the transmitter is turned off after
the application of a pulse, the magnetization
vector will relax back to its equilibrium posi-

tion. This relaxation happens through several
mechanisms: Spin-lattice relaxation occurs as
the spins give away their energy and return
to their original quantum state. This trans-
lates into the longitudinal (i.e., along the z-
axis) component returning to its equilibrium
value at a rate T1. Spin-spin relaxation hap-
pens along the transverse (i.e., on the x-y
plane) component of the magnetization vec-
tor and is due to the ensemble of spins falling
out of phase with each other and thus adding
destructively to the net magnetization vector,
as illustrated in Figure 5.14. These two mech-
anisms are often referred to as T1 and T2 re-
laxation, respectively.

Another kind of relaxation is caused by in-
homogeneities in the magnetic field at the mi-
croscopic level. If there are variations in the
magnetic field, there will also be variations

z
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Figure 5.14 The dephasing process.
NOTE: This process occurs because all the spins
in the ensemble do not precess at the exact same
rate. Some of them get ahead, and some of them
lag behind. The net effect is that they start can-
celing each other out, shortening the length of the
magnetization vector.
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in the individual protons’ precession frequen-
cies, which cause the ensemble to lose phase
coherence faster than expected due to sim-
ple T2. This change is referred to as T ∗

2 (pro-
nounced “T -2-star”). The relaxation rate con-
stants T1, T2, and T ∗

2 are dependent on a num-
ber of properties of the nuclei themselves and
of their environment at the molecular level.
This is quite useful in several ways. The re-
laxation constants can be used to identify the
nuclei in an NMR spectroscopy experiment,
or they can provide a mechanism for im-
age contrast between different tissues, such
as white and gray mater, or lesions, when per-
forming an imaging experiment. For example,
T1-weighted images are acquired with param-
eters such that the image contrast between
tissues is mostly determined by their T1 re-
laxation rate. An example of the same slice of
tissue imaged with T1 and T2 weighting can be
seen in Figure 5.15; as one can see, the images
look strikingly different. Changing the con-
trast mechanism can be very useful in differ-
entiating brain structures or lesions because
some structures will be apparent in some kind
of images but not in others. For example, mul-
tiple sclerosis lesions are virtually invisible in

Figure 5.15 The same slice of brain tissue can appear very different, depending on which relaxation
mechanism is emphasized as the source of the contrast in the pulse sequence.
NOTE: Using long echo times emphasizes T2 differences between tissues, and shortening the repetition
time emphasizes T1 differences in tissue. Left: one slice of a T1 image. Right: the same slice acquired as
a T2 image.

T1-weighted images but appear very bright in
T2-weighted ones.

From the NMR Signal to Neuroimaging

Now that we have an idea of how a signal is
produced, let us take a look at how we can
extract spatial information from it to form an
image. We mentioned earlier that the preces-
sion frequency of the spins (and thus their
resonance frequency) was proportional to the
strength of the magnetic field. Now, consider
what happens when we apply another mag-
netic field in the direction of B0, but one that
varies linearly with location along the x-axis
(This is referred to as a magnetic field gra-
dient in the x direction). What we have now
is a magnetic field whose intensity changes
in direct proportion to the location in space
along the x-axis. Because the magnetic field
strength varies with the position in space, the
resonance frequencies of the spins also vary
with their position in space (recall the equa-
tion ω0 = γ B0).

Thus, if we tip the spins onto the x-y plane
with a B1 pulse and then turn on a magnetic
field gradient, the signal that we get back from
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the sample will not simply oscillate at the res-
onant frequency, as we described earlier. It
will be a more complex signal made up of the
sum of the signals generated by the tissue at
different locations along the x-axis, and thus
oscillating at different frequencies. This tech-
nique is usually called frequency encoding.

The contribution of each frequency com-
ponent of the signal is proportional to the
magnitude of the magnetization vector at the
corresponding location. Therefore, if we can
separate the different frequency components
of the signal, we will get the distribution
of magnetization across the x-axis in space.
Luckily, there is a mathematical technique de-
signed to do exactly that: The Fourier trans-
form separates a function into its frequency
components, providing a distribution of how
much each component contributes to the orig-
inal function.

In reality, things are a bit more complex.
Because the spins at different locations along
the x-axis are precessing at different rates in
the presence of the gradient, their magnetiza-
tion vectors get out of phase with each other,
causing the net x-y magnetization to decay
quickly. The spins can be brought back into
phase in two different ways. One could reverse
the gradient, making the spins gain phase in
the opposite direction, but at the same rate as
during the dephasing period. At some point,
the spins will regain their phase coherence,
inducing a signal on the receiver coil. This
signal is called a gradient-echo. Alternatively,
one could also apply another RF pulse to ro-
tate the magnetization 180 degrees, then reap-
ply the original gradient, such that the spins
regain their phase coherence, as shown in
Figure 5.16.

We have seen how we can obtain spatial
information along a single dimension, but to
form an image we need to extract the distri-
bution of proton densities along at least two
dimensions. We need to devise a method to
encode the spatial information along both the

M

M M

M

Gradient echo technique:  A gradient in the magnetic field 
causes the spins to lose phase coherence. Reversal of the 
gradient causes them to regain it.

Spin echo technique: Spins are dephased by the gradient. After 
application of a 180º pulse, all the spins are rotated about the
y-axis, and the application of the same gradient causes the spins 
to regain coherence along the negative x-axis.

Figure 5.16 Refocusing of the spins by gradient
echoes and spin echoes.

x- and y-axes. The way to do that is to per-
form frequency encoding along the x-axis, as
before, with an additional brief gradient field
applied in the y-direction. This second gradi-
ent causes the precession of the spins to get a
little bit ahead (or gain phase) depending on
where they are along the y-axis. Recall that
applying a gradient causes the spins to pre-
cess faster or slower depending on their loca-
tion, so a short gradient pulse causes them to
change their precession rate briefly, resulting
in a phase gain that depends on the location
of the spins along the y-axis and the duration
of the gradient pulse.

The sequence is repeated a number of
times, increasing the magnitude of the phase
encoding gradient, so that we can get a whole
distribution of phase gains along the y-axis.
The end result is a set of echoes acquired
with a distribution of phase gains along the
y-direction. This forms a two-dimensional
data set that contains the x-direction distribu-
tion of densities encoded in frequency along
the x-axis and the y-direction distribution of
densities encoded in phase along the y-axis.
The Fourier transform of this raw data image
along both the horizontal and vertical dimen-
sions produces an image of the magnetization
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vector across the imaging plane. Before the
Fourier transform, the data are said to be in K
space, and the objective of most MR imaging
techniques is to sample this K space. Once
we have an image of K space, forming an im-
age of the brain is as simple as applying the
Fourier transform to the data.

It is very useful to have such an image of the
magnetization vector across tissue because a
number of tissue-specific properties affect the
magnetization and thus provide a contrast be-
tween different kinds of tissues. These include
the water content as well as the T1, T2, and
T ∗

2 relaxation rates. As mentioned, the pulse
sequence parameters can be manipulated to
emphasize the contrast due to any of those
properties individually.

There are many different ways to form an
image using MR, and we have discussed only
one of them in order to give the reader an
idea of the principles underlying the forma-
tion of an MR image. Acquiring individual
gradient or spin echoes in the traditional way,
with their many individual phase encoding
repetitions, simply takes too long for func-
tional imaging. Thus, we must resort to alter-
native techniques that will acquire the raw K
space data faster. Most commonly, one tries
to acquire each plane of K space with a single
excitation of the tissue. Such techniques are
referred to as echo planar, and the most com-
monly used ones are called echo planar imag-
ing (EPI) and spiral imaging. The specifics of
these are beyond the scope of this chapter; for
a more rigorous treatment of the subject of
MR imaging techniques, we refer the reader
to excellent texts such as Nishimura (1996) or
Elster (1994).

Functional MRI Using the BOLD Effect

Let us now explore how we can use MR imag-
ing to obtain functional images by taking ad-
vantage of the BOLD effect. Functional stud-
ies can be made because the intensity of the

water signal depends on many parameters, as
mentioned earlier. Among those parameters
are the water density and the T ∗

2 relaxation
rate of the tissue. Hemoglobin in blood can
take two different conformations, depending
on whether it is oxygenated. In the deoxy-
genated state, iron atoms are more exposed
to the surrounding water, creating small dis-
tortions in the B0 field. The magnetic suscep-
tibility of a substance is its ability to distort
a magnetic field, and it affects the relaxation
constant T ∗

2 . Thus, the magnetic susceptibil-
ity of hemoglobin is higher when it is in its
deoxygenated state, and this change in sus-
ceptibility translates into a shortening of the
T ∗

2 of the deoxygenated blood (Ogawa, Lee,
Kay, & Tank, 1990).

When brain tissue becomes active, it re-
quires more oxygen than when it is at rest.
In order to accommodate this need, a blood
flow increase raises the amount of oxygenated
blood to the tissue. During periods of activa-
tion, the increase in blood flow brings in more
oxygenated blood, decreasing the concentra-
tion of deoxyhemoglobin. Thus, the increases
in blood flow and blood volume contribute
to an increase in signal, and the increase in
magnetic susceptibility increases the ampli-
tude of the water signal. The net result is an in-
crease in signal following activation. It is im-
portant to realize that the degree to which the
blood flow and the deoxyhemoglobin content
are coupled can vary, and modeling the exact
properties of the BOLD response is currently
a topic of intense research (Buxton, Wong,
& Frank, 1998; Frahm, Merboldt, Hanicke,
Kleinschmidt, & Boecker, 1994; Vazquez &
Noll, 1998).

An alternative technique is to measure
changes in blood flow alone using arterial
spin labeling (ASL) techniques (Detre, Leigh,
Williams, & Koretsky, 1992; Kim, 1995;
Williams, Detre, Leigh, & Koretsky, 1992),
which are based in magnetic resonance imag-
ing techniques and mimic PET blood flow
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techniques by tracking the passage of a tracer
through the tissue. In the case of PET, the
tracer is a radioactive substance that is in-
jected intravenously. In the case of ASL, the
tracer is simply the water in the arterial blood,
which is magnetically labeled by an RF pulse.
The label consists of tipping the arterial wa-
ter’s magnetization vector all the way to the
negative z-axis by a B1 pulse that is applied
somewhere upstream from the tissue of in-
terest. As those inverted spins flow through
the tissue, they can be detected by changes in
the signal intensity of the image. A number
of limitations render the technique imprac-
tical for many applications, but overcoming
these limitations is a growing area of research
(Kim 1995; Gonzalez, Alsop, & Detre, 2000;
Wong, Buxton, & Frank, 1997), and the tech-
nique will likely soon become a powerful tool
for functional studies.

Diffusion Tensor Imaging

Diffusion tensor imaging can be used to ex-
plore questions about connectivity among
brain regions by identifying the orientation of
white matter tracts. The technique produces
images whose intensity is dependent on the
diffusion of the tissue water, and this can yield
information about the orientation of the tissue
fibers. For example, in the case of a pot of
water, the water molecules are equally likely
to diffuse in all directions, except near the
walls, which restrict the movement of the wa-
ter molecules. If we were to put some lasagna
noodles into the pot of water such that they
lay flat on top of each other, the water would
be more likely to move horizontally than ver-
tically because the water molecules would be
more likely to bump against the lasagna noo-
dles when they try to move vertically than
when they try to move horizontally. Simi-
larly, the geometry of the white matter tracts
in the brain running parallel between two dif-
ferent structures restricts the diffusion of wa-
ter molecules along all directions perpendic-

ular to the direction of the tracts. As we soon
discuss, the diffusion of the spins can affect
the MR signal. We can take advantage of this
phenomenon to obtain images that are sensi-
tive to the microscopic geometry of the tis-
sue, even though MR images do not afford
the resolution to see the actual microscopic
structures.

In an imaging experiment, when a spin
moves in the presence of a magnetic field
gradient, its precession frequency varies de-
pending on its location along that gradient, as
we saw earlier. That means that it acquires a
phase difference in its rotation relative to the
rest of the ensemble of stationary spins (recall
that acquiring phase means that the magneti-
zation vector for that spin gets ahead of the
rest). If all spins move together in the same
direction and at the same speed, then they all
acquire the same amount of phase coherently,
and the magnitude of the net magnetization
vector is altered. However, in the diffusion
process movement occurs randomly and in-
coherently among the spins in the ensemble,
so the net effect is a signal loss because some
of the moving spins will gain and some will
lose phase, depending on which direction they
move. The degree of attenuation seen in the
signal is related to the freedom of movement
of the water molecules in the direction of the
applied gradient, as well as to the duration and
magnitude of that gradient.

This has found a number of applications for
clinical imaging, such as providing informa-
tion about membrane integrity in brain tissue
cells. It can also give information about the
orientation of the tissue through acquiring dif-
fusion tensor images. Diffusion tensor images
are produced by applying diffusion gradients
during the imaging process in different combi-
nations of the x, y, and z gradients. The result
is a set of images that are weighted according
to the restriction of water movement along the
direction of the applied gradient combination.
(Le Bihan, 1995; Moseley et al., 1990).
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Consider again the shape of white matter
tracts. If two areas are functionally connected,
then one can expect that there are a large num-
ber of tracts running between the two areas.
If in a region of tissue there is a large number
of tracts running parallel, then the diffusion
of water is less restricted along that direction
because the water molecules are more likely
to collide against fibers when they move in
directions other than those of the fibers. Thus,
by obtaining images whose intensity is pro-
portional to the diffusion coefficient of water
in a particular direction in space, one can ob-
tain information about how the tissue is struc-
turally laid out, giving information about what
regions of the brain are structurally intercon-
nected.

The Biophysics of PET and fMRI

We have described several ways that changes
in blood flow and oxygenation can be de-
tected by neuroimaging scanners. Critical to
the undertaking is the assumption that these
changes reliably result in a signal that can be
detected by a scanner. However, before this
signal change can be interpreted as neural ac-
tivation, another critical assumption must be
justified: the assumption that changes in blood
flow and oxygenation reflect changes in neu-
ral activity.

Roy and Sherrington (1890) were the first
to hypothesize a connection between blood
flow and neural activity. Since then, re-
searchers have investigated at length the
mechanism behind the relationship between
blood flow and neural activity. For example,
Shulman and Rothman (1998) have proposed
that increased glucose uptake is controlled
by astrocytes, whose end-feet contact the en-
dothelial cells lining the walls of blood ves-
sels. Glutamate, the primary excitatory neu-
rotransmitter in the brain, is released by some
60% to 90% of the brain’s neurons. When
glutamate is released into synapses, astro-

cytes absorb it and transform it into glutamine.
When glutamate activates the uptake trans-
porters in an astrocyte, it may signal the astro-
cyte to increase glucose uptake from the blood
vessels. Vasodilation, resulting in increased
blood flow and increased oxygen consump-
tion, may be coupled to neural activity through
similar mechanisms. If it is only glutamate re-
lease that triggers the vascular, oxygen, and
glucose uptake effects, then activation is ex-
citatory. However, release of GABA (gamma
amino butiric acid) or other inhibitory neu-
rotransmitters could trigger these responses
as well. Further research is needed before
firm conclusions are reached about what spe-
cific changes produce the observed changes
in blood flow or BOLD signal.

Also, importantly, the relationship between
neural activity and glucose uptake indicates
that the neuroimaging signal reflects activity
in the neuropil, at the synapses where neu-
rotransmitters are released, and not in the
brain regions containing cell bodies. A neu-
roimaging signal may therefore be related to
increased input in an area, which may lead to
increased output from that area to other local
or remote brain regions. If a task activates
DLPFC, for example, it means that DLPFC is
receiving substantial input from other areas.
That input could be excitatory or inhibitory.

Although there is still uncertainty about
the exact mechanism by which a neuroimag-
ing signal is produced, sufficient evidence has
been collected that we may proceed forward
with reasonable confidence. In the end, all the
available indices of neural activation—rCBF,
oxygen uptake, or glucose utilization—may
be suitable for most studies of psychological
function.

Statistical Analysis of Neuroimaging Data

Armed with a general understanding of the
physical information contained in PET and
fMRI images, we are now in a position to
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extract information about brain function from
our imaging studies. In the case of PET, im-
ages will be acquired under different experi-
mental conditions, and their signal intensity
will be dependent on the amount of tracer
present in each voxel. In the case of fMRI,
the signal intensity will be dependent on the
BOLD response (based on oxygenation and
blood flow). The task at hand for analysis of
the signal is primarily to identify those voxels
whose activity matches a predicted model, be
it a model due to subtraction logic, paramet-
ric variation, factorial manipulation, or corre-
lation. Because fMRI has become the domi-
nant modality for the collection of data about
rCBF, we focus our discussion on the analy-
sis of data from an fMRI experiment. How-
ever, most of the principles apply to PET as
well.

The General Linear Model

Consider an ideal experiment in which a sub-
ject’s brain is inactive when there is no task
to perform and is activated only by an exper-
imental task of interest. Each time the task
is performed, a set of physiological events
takes place in a functional region resulting in a
BOLD response, as described earlier. To sim-
plify the statistical analysis, we approximate
the behavior of brain tissue as a linear, time-
invariant system, whose input is the task and
whose output is the BOLD response. Thus,
for our ideal experiment the input function
can be considered as a train of spikes corre-
sponding to the psychological events involved
in the task (e.g., encoding stimuli, making de-
cisions, executing responses). Each of these
events may cause neural tissue somewhere
in the brain to become activated, which in
turn causes hemodynamic changes. As with
any linear, time-invariant system, the output
(change in signal intensity in any voxel of the
brain) is described by the convolution of the
input (a function describing the train of

A set of stimuli at randomized times

Predicted response to the stimuli

Response to a single stimulus

Figure 5.17 The BOLD response to a single
event is shown in the top portion of the figure.
NOTE: This is commonly referred to as the hemody-
namic response function (HRF). A train of events,
like the one shown in the middle figure, would pro-
duce a BOLD response like the one shown in the
bottom part of the figure.

events) with the system’s transfer function
(a function that describes the hemodynamic
response to a single stimulus). Figure 5.17
shows the response to a single stimulus, as
well as the response to a train of stimuli oc-
curring at random times.

By design, psychological events from dif-
ferent conditions of an experiment may be
intermingled, as in an event-related design,
or they may be grouped into epochs, as in a
blocked design. Under the assumptions of a
general linear model, different tasks consti-
tute different input functions that give rise to
their own BOLD responses. So, if one con-
structed an experiment with different condi-
tions (i.e., different tasks) intermingled in an
event-related design, one could construct dif-
ferent input functions to model the output
function. In order to create a more realistic
model for the observed signal, one must also
include other input functions for such vari-
ables as drift in the scanner signal, effects due
to motion of the subject, effects of respiration
and heart rate, and other nuisance variables.
Thus, the observed signal from a voxel can be
thought of as a sum of weighted functions
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corresponding to the different predicted ef-
fects. Some of these effects are of interest,
some are not, and the weights of those func-
tions are a set of scalar parameters that de-
termine the amplitude of those functions. For
example, if our model is made up of effects
that are represented by functions x1(t), x2(t),
x3(t) . . . , and each of these is weighted by a
coefficients β1, β2, β3 . . . , then the predicted
signal is given by

y(t) = β1 · x1(t) + β2 · x2(t) + β3 · x3(t)

+ · · · + ε1 + ε2 + ε3 + · · ·
where the ε germs represent the error. All of
this can be expressed in matrix form as

Y = β X + E

where Y is the observed signal in a given voxel
expressed as a vector whose elements are the
individual time observations, X is a matrix
whose columns contain the individual func-
tions that make up the model, β is a vector
containing the weights of the individual com-
ponent functions, and E is the residual noise
in the measurement. The matrix X is often re-
ferred to as the design matrix and displayed
as an image whose intensities correspond to
the values of the elements, as shown in Fig-
ure 5.18. Our tasks in the analysis are to obtain
an estimate for β and to identify the voxels
that fit the estimated model.

It can be shown that β can be estimated by

β̂ = (X T X)−1 X T Y.

Note that β̂ is used to represent the estimated
value of β. Now, what remains is to test each
individual voxel in the image to see which
ones fit the model described by Y and β̂. This
can be accomplished by computing the signif-
icance of the estimate of the coefficient. De-
pending on the statistical approach taken, one
can obtain a T or F score for the correlation.
In the simplest case, when there is only a sin-
gle coefficient and a baseline intensity, this

Figure 5.18 The design matrix.
NOTE: The design matrix should include all the sig-
nificant effects that are present in the experiment.
Each effect is represented by a column of data con-
taining the expected time series that one would see
if that were the only effect present.

is identical to performing a linear regression
analysis of the data and the model.

One could ask many questions using the
same model; in fact, one can test for the pres-
ence of any given linear combination of the
covariates contained in the design matrix’s
columns by multiplying the parameter esti-
mates by a contrast vector c. This vector con-
tains additional weights to be multiplied by
the parameter estimates in the vector β. In the
design matrix shown in Figure 5.18, for exam-
ple, we could test for the voxels in which the
activity in the first condition minus the activ-
ity in the second condition is significant, while
disregarding all other effects as nuisance co-
variates, by using a contrast [ 1 −1 0 0 0 0 ].
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If the difference is significant, this would im-
ply that the first covariate’s intensity is greater
than the second’s.

Statistical Inference from the General
Linear Model

As usual with all statistical procedures, we
must calculate the significance of the correla-
tion between the model and the data in each
voxel (whether it is a correlation coefficient
or a T , F , or Z score). This is usually done by
calculating the probability of obtaining that
value by sheer chance, given the probability
distribution of the statistic. In neuroimaging,
however, we must be aware of the fact that
there are hundreds of thousands of voxels in
an image, so a number of them are bound by
chance to be correlated to the design matrix. If
the voxels’ signals were independent of each
other, we could compute a Bonferroni correc-
tion of the significance level, but that is not
usually the case because the voxels tend to
be correlated with their neighbors. Addition-
ally, the Bonferroni correction tends to be very
conservative. Instead, we must come up with
a method for examining the statistical image
(made up of T values or such) and calculat-
ing the likelihood of having a cluster of voxels
above a given threshold. Random fields theory
does exactly that. Based on the assumption of
Gaussian-distributed background noise in an
image, we can measure the spatial character-
istics of the distribution in three dimensions,
and from those measurements we can make
predictions about the number of clusters ex-
pected to appear significant in the statistical
image just by chance.

The Euler characteristic of a solid geomet-
ric figure is a measure of how many of its ele-
ments are connected together and how many
holes exist within it. As it turns out, the ex-
pected Euler characteristic of a thresholded
statistical image is a good approximation of
the likelihood that a cluster of voxels above a

certain threshold will occur by chance in a ran-
dom image. The calculation of the expected
Euler characteristic is based on a calculation
of the smoothness of the image, and is beyond
our scope. The smoothness of an image is a
measure of how many independent measure-
ments exist within the image. These indepen-
dent measurements are referred to as resels
(short for resolution elements). This sort of
technique has great applications in the anal-
ysis of noisy imaging data, when the objec-
tive is to identify significant clusters (not just
in functional neuroimaging, but in astronomy
as well). For greater detail on the calculation
of the smoothness of the image and the
Euler characteristic, see Worsley and col-
leagues (Worsley, Evans, Marrett, & Neelin,
1992; Poline et al., 1995; Worsley et al.,
1996); Petersson, Nichols, Poline, and
Holmes (1999); and Friston, Holmes, Price,
Buchel, and Worsley (1999).

Assumptions

The main assumption underlying the general
linear model is that the BOLD response to a
set of neuronal processes is a time-invariant,
linear combination of those processes. A time-
invariant system is one whose response to a
given input is always the same, regardless of
the previous events. Linearity means that if
two separate inputs are applied to the system,
its response will equal the sum of the indi-
vidual responses to those inputs. It is becom-
ing increasingly clear that the BOLD response
is neither linear nor time-invariant (Boynton
et al., 1996; Buxton & Frank, 1998; Vazquez
& Noll, 1998), but these violations are not se-
vere within reasonable boundary conditions.

Because of the necessity of evaluating sig-
nificance for the computed statistics, the gen-
eral linear model is also heavily dependent on
the theory of Gaussian random fields, whose
main underlying assumption is that the resid-
ual variance in the images after applying a
model is distributed normally, and that each



pashler-44093 book December 18, 2001 10:17

The How: Data Acquisition and Analysis 213

voxel’s signal is independent of the signal in
other voxels. Unfortunately, for both PET and
fMRI, the signal intensity in one voxel is al-
ways contaminated by the signal of other vox-
els. In the case of PET, the correlation is due
to scattering of the positrons and to smooth-
ing of images during data preprocessing. In
the case of fMRI, it is largely a function of
limitations in resolution and of any smooth-
ing that is done during preprocessing. Thus,
one must take care that these correlations are
not serious contaminants of the data, and the
data must be spatially smoothed, as described
later.

Pitfalls

A major concern in the analysis of fMRI data
is that the BOLD effect is a vascular one, not
an electrochemical one. It is a response to the
underlying neuronal activity, and it distorts
that neuronal activity to the extent that it does
not mimic it directly. The limitations here are
ones of time and space. In time, the hemo-
dynamic response lags behind the neuronal
response by as long as several seconds, and
it is stretched out longer than the neuronal
response as well. In space, the blood flow
changes that are measured may or may not
be in the immediate neighborhood of the un-
derlying neuronal response that caused them
because the vasculature is not tuned precisely
to the spatial location of the neural tissue to
which it is responding. Thus, to have a good
idea of when and where a neural response oc-
curred, one needs to have a good idea of the
nature of the hemodynamic response in that
part of the brain; this is currently a matter of
extensive study.

Using the general linear model also poses a
number of limitations on the analysis of neu-
roimaging data. The general linear model is
used to ask whether the data fit a set of pre-
dictions. Thus, one must have a set of predic-
tions. If these are wrong, then one might repeat
an analysis with a different model, looking

for a better fit. There are other approaches to
data analysis (discussed briefly below), such
as principal components analysis and inde-
pendent components analysis. These extract
the underlying functions from the response
without an a priori guess. At the same time,
though, these approaches yield no informa-
tion about which component corresponds to
which process.

When building a design matrix for the gen-
eral linear model, one must be very careful
to include all the effects present in the data,
including confounds. At the same time, one
must also be careful not to include too many
effects in a single experiment. If one under-
parameterizes the analysis, the variance of the
confounds can overwhelm the signal, making
the effects of interest insignificant. If one over-
parameterizes, one expands the search space
for the β coefficients, making erroneous re-
sults more likely.

As discussed earlier, the BOLD response
is not always linear, and at the present time
experiments must be designed such that the
BOLD responses will be in the near-linear
range. Otherwise, the regressors in the model
will not fit the data well enough to yield ac-
curate results. To approximate linearity, one
must ensure that the intervals between trials
are within 1 to 15 s long. In addition, longer
stimulus durations tend to produce more lin-
ear responses (Vazquez, 1998).

Preprocessing Requirements

Several conditions about the fMRI images
must be met in order to carry out a successful
data analysis. Most analyses are based on the
assumption that all voxels in any given image
from the series of images taken over time were
acquired at the same time. They also assume
that each data point in the time series from
a given voxel was collected from that voxel
only. Another assumption is that the resid-
ual variance (i.e., variance remaining after re-
moving all the effects of interest) will have a
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Gaussian distribution. Additionally, when car-
rying out analyses across different subjects,
the researcher assumes that any given voxel
will correspond to the same brain structure in
all subjects in the study. Without any prepro-
cessing, not one of these assumptions holds
entirely true, and they will introduce errors
in the results. Therefore, the researcher must
carry out several steps before diving into an
analysis so that the data will meet (or at least
approximate) the assumptions.

Slice Timing. Because most image-
acquisition sequences acquire brain images
slice by slice, there can be a difference of 1
to 3 s between the acquisition of the first slice
and the acquisition of the last slice. The prob-
lem is that an analysis assumes that all voxels
in an image acquired at a given time point of
the time series are acquired at the same time.
In reality, the data from different slices are
shifted in time relative to each other. Thus, the
researcher must calculate the signal intensity
of all slices at the same moment in the ac-
quisition period. This is done by interpolating
the signal intensity at the chosen time point
from the same voxel in previous and subse-
quent acquisitions. A number of interpolation
techniques exist, from bilinear to sinc inter-
polations, with varying degrees of accuracy
and speed. Event-related experiments require
more precise control over the onset time of the
stimulus than do blocked-design experiments,
so the interpolation is often not necessary in
blocked designs, in which the epochs can last
many seconds (e.g., more than 30 s). Because
of the long length of epochs, not much sensi-
tivity will be lost if the slices are not collected
at the same time.

Realignment. A major problem in most
time-series experiments is movement of the
subject’s head during acquisition of the time
series. When this happens, the voxels’ sig-
nal intensity gets contaminated by the signals

from its neighbors. Thus, one must rotate and
translate each individual image to undo the
subject’s movements.

The coordinates of a point in three-
dimensional space (x, y, z) can be expressed
as a vector. It can be shown that the coordi-
nates of a given point in space after any given
translation, rotation, or combination of both
can be calculated by multiplying a matrix by
the original vector. Such a matrix is called an
affine transformation matrix. Thus, in order to
undo the rotation and translation of the head,
one must calculate the elements in this affine
transformation matrix and apply the matrix to
all voxels in the image. Usually, this is done by
a least squares approximation that will mini-
mize the difference between the image to be
corrected and the first image in the time series.

Smoothing. Random field theory as-
sumes that each voxel is independent of the
other voxels, and that the images have nor-
mally distributed noise. This is not the case
in most experiments, because the signal is
often correlated among different voxels, es-
pecially in fMRI experiments. To make the
noise in the images meet the assumption, the
images are convolved with a Gaussian ker-
nel, which gives the noise a more Gaussian
distribution. This smoothing of images also
effectively produces a weighted average of
the signal across neighboring voxels, which
gives the smoothed images a blurry appear-
ance. A side effect of smoothing is a reduction
of the amount of high-frequency spatial noise
present in the data. This can be an advantage
by increasing the overall signal-to-noise ra-
tio of the individual images in the time series,
making the tests more sensitive at the expense
of spatial resolution.

Normalization. In order to make quanti-
tative comparisons across subjects, the corre-
sponding brain structures must have the same
spatial coordinates. Of course, this is usually
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not the case, because people’s brains are dif-
ferent. We can, however, stretch and compress
the images (not the actual brains, of course!)
in different directions so that the brain struc-
tures are in approximately the same locations.
Usually we normalize all the brain images so
that they will match a standard brain (e.g., the
Talairach or Montreal Neurological Institute
brain templates).

The normalization process includes an ini-
tial realignment of a set of images so that
they approximate the template in orientation.
Additionally, the images are transformed by
multiplying them by a series of cosine basis
functions, whose coefficients are estimated by
a least squares error-minimization approach.
This is analogous to searching for some func-
tion that will give the right transformation
of the image. Because we do not know what
the function is, we search for coefficients in
the lower-order terms that would make up the
unknown function. For more information on
techniques for estimating the parameters, see
Frackowiak (1997).

Random Effects

One approach to analyzing multisubject data
is to normalize all images from all subjects
and concatenate them into the design matrix,
while including additional regressors for each
subject. The result is a massive analysis in-
cluding all trials from all subjects, which is
quite expensive from a computational point
of view. This is referred to as a fixed-effects
analysis. Such an analysis would answer the
question: If we repeat this experiment many
times on the same subjects, what is the like-
lihood that we will get the same significant
voxels?

If, on the other hand, one is interested in
making a statistical inference about the popu-
lation from which those subjects were taken,
one would need first to analyze each subject
separately, then look for commonalities across
the statistical maps obtained in this first level

of analysis. It has been shown that one can
make statistical inferences across subjects by
simple statistical tests performed on the sta-
tistical parameter maps (Friston et al., 1999;
Holmes and Friston, 1998). The tests (usu-
ally t tests) can be carried out on the maps
of β estimates calculated in the general linear
model to search for those voxels that give the
same magnitude of response to the condition.
Those tests can also be carried out across the
T-statistic maps obtained from the analysis of
individual subjects, in order to search for vox-
els with the same level of significance.

Thus, one can perform a multisubject anal-
ysis in two stages: first, the estimation of pa-
rameters at the individual-subject level, and
then another test of the individuals’ statisti-
cal maps across subjects to see which voxels
show the same level of activation across sub-
jects. In doing this, one assumes that (a) the
images have been spatially normalized such
that the tests are conducted on correspond-
ing structures from subject to subject, (b) the
global intensity of the images has been scaled
to a common level, and (c) all brains have
similar BOLD responses to the same activity.
These assumptions are not always met per-
fectly, and they introduce some errors into
across-subjects analyses.

Other Approaches: Principal Components
and Independent Components Analysis

An analysis based on the general linear model
allows researchers to identify the voxels
whose brain activity matches their model, but
it does not reveal any additional informa-
tion about the activations. Additionally, in the
presence of unknown or nonlinear confounds,
analyses based on the general linear model are
not effective in removing the variance due to
those confounds. A few methods based on the
temporal signal have been designed to identify
the major task-related patterns of activation in
the brain without any a priori knowledge of the
stimulation paradigm. Principal components
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analysis and independent components analy-
sis are among these.

Principal components analysis calculates
spatial patterns that account for the greatest
amount of variability in a time series of im-
ages. This is done by obtaining the eigen-
vectors of a matrix containing the covariance
among all voxels of the time series images.
The eigenvectors, x, of a matrix, A, are those
that satisfy the condition

Ax = λx

where λ is a scalar value called the eigenvalue.
Eigenvectors of a matrix are useful because
they provide a set of basis functions for the
original matrix.

There are a number of techniques for cal-
culating the eigenvectors of an image. In neu-
roimaging, the eigenvectors are usually cal-
culated through single value decomposition
(SVD) of a covariance matrix. The result of
SVD of a matrix is a set of three matrices
whose columns are orthogonal vectors, U, S,
and V. In the framework of neuroimaging, U
is interpreted as the temporal patterns present
in the time series, V as the spatial patterns of
covariant voxels, and S is a diagonal matrix
whose elements are a measure of how much
variance is accounted for by a particular spa-
tial pattern. The columns of the matrix V can
be shown to be the eigenvectors of the orig-
inal data matrix. For details on eigenvectors,
eigenvalues, and SVD, see a linear algebra
text such as Strang (1988).

Independent components analysis is akin
to principal components analysis in that the
independent components algorithm also pro-
duces a set of components of the signal. How-
ever, in independent components analysis,
there is an additional constraint that the com-
ponents be statistically independent, and not
necessarily orthogonal. Orthogonality, which
characterizes principal components analysis,
implies that the voxel values are uncorrelated
between all pairs of components. Statistical

independence, which characterizes indepen-
dent components analysis, implies that the
joint probability of all the components is the
same as the product of the individual proba-
bilities, and that higher-order correlations be-
tween the components are also zero. Thus,
independent components analysis involves a
different criterion (McKewon et al., 1998a).
The algorithm for extracting the independent
components is an iterative procedure based on
information theory and is beyond the scope of
this chapter; suffice it to say that the algorithm
searches for a solution that will maximize the
entropy (or minimize the mutual information)
between the components. For more details,
see McKewon et al. (1998a, 1998b), Bell and
Sejnowski (1995), and Petersson et al. (1999).

SUMMARY

We have completed our tour of the why, the
what, and the how of neuroimaging. There
are many reasons one might delve into neu-
roimaging, both for an understanding of brain
mechanisms and for an understanding of psy-
chological mechanisms. Having recognized
this, cognitive neuroscientists have developed
a number of techniques that allow one to im-
plement neuroimaging techniques in exper-
imental contexts of interest to psychology.
Understanding the physics of how these tech-
niques work is crucial to understanding what
they offer and what constrains them. Equally
important is understanding how experiments
are designed to maximize their inference-
making power as well as what analysis meth-
ods are available. Having surveyed these
issues, we have proffered a tour of the high-
lights. The interested student of cognitive
neuroscience will benefit from deeper anal-
yses of all the topics we have surveyed,
which are available from several sources.
Other excellent introductory papers include
those by Frith and Friston (1997), Aguirre
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and D’Esposito (1999), and Buckner and
Braver (1999). Some useful texts include El-
ster (1994) for a clear explanation of mag-
netic resonance imaging principles, Strang’s
(1988) linear algebra text, and Frackowiak
et al.’s (1997) Human Brain Function. There
is also a vast amount of information on
functional imaging on the Internet, at sites
such as the Cambridge University’s
(http://www.mrc-cbu.cam.ac.uk/Imaging/) or
the FIL’s (Functional Imaging Laboratory)
(http://www.fil.ion.ucl.ac.uk/spm/) among
many others.
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CHAPTER 6

Neural Network Modeling

DANIEL S. LEVINE

WHAT IS NEURAL NETWORK
MODELING?

The use of neural networks studied through
computer simulations or mathematical theo-
rems in modeling psychological data dates
back to the late 1960s and early 1970s. Yet
it took until the late 1980s for this method-
ology to become widely accepted by experi-
mental psychologists. The reasons for the ac-
ceptance were mainly the greater availability
of powerful personal computers and the wide
distribution of a few influential multidisci-
plinary publications in cognitive science, no-
tably the two-volume collection by Rumelhart
and McClelland (1986).

Of all the neural network methods, the
three-layer back-propagation technique
(Rumelhart, Hinton, & Williams, 1986;
Werbos, 1974, 1993; also sometimes called
the multilayer perceptron) has been the most
widely used—in psychological modeling as
well as in engineering applications—because
of the method’s relative simplicity and univer-
sality. In fact, I have often heard psychologists
and other researchers say the words “neural
network” when they mean a back-propagation
network. There are even commentaries with
titles such as “Are neural networks like the
brain?” which is absurd because the brain is
of course a network of neurons and neural
structures!

A better question is “What neural networks
are like the brain?” Back-propagation net-
works have a very specific structure: feedfor-
ward and reliance on an external “teacher”
to set their weights, with feedback in the
form of weight transport between synapses.
There is debate over whether structures of
this sort exist in the brain at all (see Levine,
2000, Section 6.2, for a partial discussion),
but it is certain that they are hardly repre-
sentative of actual brain networks. Feedback,
at the level of neurons and not of synapses,
is the norm for connections between differ-
ent brain regions.1 Furthermore, the tight su-
pervision of back-propagation learning, the
constraints that move it in the direction of
specific input-output responses, are unchar-
acteristic of learning as it takes place in the
brain. Thus, the field of neural networks en-
compasses much more than that one type of
network structure.

If the neural networks used in models are
not necessarily back-propagation networks,
what do they have in common? They consist of

1Some neuroscientists follow Edelman (1987) in replac-
ing the term “feedback” by “reentry.” This is because his
definition of “feedback” is a narrow one based on engi-
neering control structures. I do not mean feedback in that
sense, but simply in the sense of reciprocal connections,
such as the cortex sending out axons that synapse on the
thalamus and the thalamus sending out axons that synapse
on the cortex.
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nodes, which may or may not be interpreted as
single neurons, but have activities that are ide-
alized action potential frequencies. The con-
nections between nodes have weights that are
idealized synaptic strengths. The ultimate aim
is to make these networks as biologically real-
istic as possible. Sometimes nodes correspond
to brain areas or specific cell types in those
brain areas. At other times, when not enough
is known about brain processes or when one
desires modeling at a functional level, nodes
correspond to cognitive entities such as the
memory of a specific word, the tendency to
approach a specific object, or the intensity of
a specific drive or emotion.

Neural networks are also, of course, used
by computer scientists and engineers for “in-
telligent” applications (pattern recognition,
signal processing, robotics, medical and fi-
nancial data analysis, etc.). The diverse range
of researchers who study them have not agreed
on one definition for the concept. The clos-
est to a widely recognized definition is proba-
bly the following from the 1988 Defense Ad-
vanced Research Projects Agency (DARPA)
study:

A neural network is a system composed of many
simple processing elements operating in paral-
lel whose function is determined by network
structure, connection strengths, and the pro-
cessing performed at computing elements or
nodes. . . . Neural network architectures are in-
spired by the architecture of biological nervous
systems. (p. 60)

More recently, the notion that biological neu-
rons are “simple processing elements” has
been challenged as researchers have discov-
ered the complexity of subthreshold elec-
trical interactions among the thousands of
dendrites of a single neuron and of biochemi-
cal interactions among transmitters and recep-
tors involving various messenger compounds
(see, e.g., Aparicio & Levine, 1994; Pribram,
1993). Neural networks encompass neurons

with realistic dendritic interactions as well as
those with formal, simpler neurons.

As neural networks have evolved, two
trends have emerged. The first trend is that
more detail about simulated brain areas has
appeared in network models. This means that
as more behaviorally relevant biological data
has been available, due to such advances as
positron-emission tomography and magnetic
resonance imaging, different schools of neu-
ral network modeling (such as back propaga-
tion and adaptive resonance) have converged
somewhat. The modeling architectures of ma-
jor neural network research groups are in-
creasingly driven as much by the data as by
their own characteristic network structures.

The second trend is that models have cov-
ered an expanded range of psychological data.
In the 1970s network modeling was most
advanced in the area of visual perception,
and second most advanced in serial learning
and short-term memory. The early and mid-
dle 1980s saw the growth of models of ani-
mal learning and conditioning data. The late
1980s and early 1990s, buoyed by the inter-
disciplinary cognitive science revolution, saw
early models of high-level cognition, includ-
ing language acquisition, and its breakdown
in various mental disorders. All these areas
are still active, and now a few models have ap-
peared in social psychology. By now, although
there is little agreement on the “right” model
for any of these phenomena, the network tools
available, as well as the knowledge of cog-
nitive neuroscience, are sophisticated enough
that all areas of psychology—cognitive, be-
havioral, physiological, social, developmen-
tal, and clinical—are amenable to neural net-
work modeling.

The next section gives a historical overview
of major trends in psychologically relevant
neural network modeling over about 50 years.
It ends with a short description of the mathe-
matical processes of building one simple net-
work model. The succeeding sections discuss
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current modeling trends, organized into spe-
cific (interacting yet partially dissociable) ar-
eas of application: sensory processes, motor
control, cognitive-emotional interactions, and
high-level cognition. The goal is to describe
the modeling process by communicating the
intuitive flavor of networks used to model
different phenomena. A concluding section
discusses possible future trends and provides
suggestions for experimental psychologists
interested in learning more about neural net-
works.

HISTORY OF NEURAL NETWORK
MODELING

The Cybernetic Revolution

The history herein is partly adapted from more
technical accounts in Levine (1983, Sections
1–4; 2000, chap. 2). It begins with the work
of McCulloch and Pitts (1943), which was
also connected with the early development of
digital computers. Perceived similarities be-
tween computers and brains spurred an inter-
disciplinary group to develop a new science
they called cybernetics, the science of con-
trol systems (Wiener, 1948). The computer-
brain analogy was based on the fact that neu-
rons are all-or-none, either firing or not firing,
just as binary switches in a digital computer
are either on or off. All-or-none neurons are
oversimplified because graded electrical po-
tentials in neurons are important, not just ac-
tion potentials. Also, functional units in cur-
rent neural network models tend to be neuron
populations rather than single neurons. Nev-
ertheless, current approaches still owe many
of their formulations to cybernetic pioneers
from the 1940s.

McCulloch and Pitts (1943) demonstrated
that a neuron can be embedded into a network
of all-or-none neurons so as to fire selectively
in response to any given pattern of network ac-
tivity representing a class of stimuli impinging

on the network. McCulloch-Pitts networks in-
clude abstract neurons2 connected by excita-
tion and inhibition with computations done in
discrete time intervals. Each neuron obeys a
simple linear threshold law: It fires whenever
at least a given (threshold) number of exci-
tatory pathways, and no inhibitory pathways,
impinging on it are active from the previous
time. The connections do not change with ex-
perience; thus the network deals with perfor-
mance but not with learning.

Despite its simplifications, the McCulloch-
Pitts (1943) model presages important is-
sues in current models. For example, many
McCulloch-Pitts networks have neurons anal-
ogous to the three types of nodes in back prop-
agation networks: input units, output units,
and hidden units. Input units react to data fea-
tures from the environment, whereas output
units generate organismic responses. Hidden
units, via network connections, influence out-
put units to respond to prescribed patterns of
input-unit activities. These three classes are
analogous to sensory neurons, motor neurons,
and all other neurons (interneurons) in the
brain. The output, however, may not be a mo-
tor output but an internal state (e.g., a catego-
rization or an emotion) that could influence a
present or future motor response.

Also, McCulloch and Pitts (1943) dealt
with how to create output-unit responses to
given inputs that depend on previous inputs.
For example, one of their networks modeled
a sensation of heat obtained from holding a
cold object to the skin and then removing
it. Hence, this network responds to the dif-
ference between a present input and a previ-
ous one. Response to change has been used
in neural network models of conditioning

2In most neural network models, network elements are
called “nodes” or “units” rather than “cells” or “neurons,”
because they might represent more or less than a single
neuron. In the McCulloch-Pitts (1943) network, however,
the term “neurons” is used because the network is inspired
by the all-or-none firing properties of neurons.
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data (Grossberg, 1972a, 1972b; Grossberg &
Schmajuk, 1987; Klopf, 1988). These data
include results showing that a motor act is re-
inforced when it turns off an unpleasant stim-
ulus (relief); that withholding an expected
reward is unpleasant (frustration); and that the
reward value of food is enhanced if the food
is unexpected (partial reinforcement).

McCulloch and Pitts (1943) encoded mem-
ory by reverberatory neural circuits. Other in-
vestigators, starting with Hebb (1949), added
the distinction between short-term memory
(STM), due to reverberation, and long-term
memory (LTM), due to changes at synapses.

Modeling Learning

Hull (1943) proposed that the two memory
processes involved the storage of two sets
of traces, as in classical conditioning exper-
iments. He distinguished between stimulus
traces subject to rapid decay and associa-
tive strengths (habit strengths) able to persist
longer. Although Hull’s model did not include
neural connections, his stimulus traces can be
considered as the amounts of activity of par-
ticular nodes in a neural network, and his asso-
ciative strengths are the strengths of connec-
tions between nodes. This suggests that such
connection strengths should change with ex-
perience.

Hebb (1949) declared that reverberatory
feedback loops, which McCulloch and Pitts
(1943) had suggested as a memory mecha-
nism, could be a useful mechanism for STM
but not for LTM, because they would be too
sensitive to external interruptions. He recog-
nized that a stable LTM depended on some
structural change. His hypothesis was, “When
the axon of cell A is near enough to excite a
cell B and repeatedly or persistently takes part
in firing it, some growth process or metabolic
change takes place in one or both cells such
that A’s efficiency, as one of the cells firing B,
is increased” (p. 62). Later investigators inter-

preted Hebb’s rule mathematically in various
ways, most often that the strength of a connec-
tion between two nodes changed by an amount
proportional to the product of the activities of
those two nodes.

Hebb’s (1949) rule for learning was
incorporated into networks of all-or-none
McCulloch-Pitts (1943) neurons by many
early modelers, particularly Rosenblatt
(1962) in the perceptron. In this network, the
McCulloch-Pitts linear threshold law was
generalized to laws whereby activities of all
pathways impinging on a neuron are com-
puted, and the neuron fires whenever some
weighted sum of those activities is above a
given threshold.

Rosenblatt’s (1962) work anticipated many
themes of modern adaptive networks such
as those of the parallel distributed process-
ing (PDP) research group (cf. Rumelhart &
McClelland, 1986); in fact, the latter type of
network is often called multilayer percep-
trons. The main function he proposed for his
perceptrons was to make and learn choices
between different patterns of sensory stim-
uli. Rosenblatt set out to study the pattern-
classification capabilities of networks of
sensory (S), associative (A), and response
units (R) with various connection structures—
mostly feedforward but some including feed-
back from R to A units—and various learn-
ing rules, which he called the reinforcement
system.

Rosenblatt (1962) found that the percep-
trons that learned fastest were those using
an error-correcting reinforcement system,
whereby the connection strength changes up-
ward or downward if the response is de-
termined elsewhere to be incorrect. Rein-
forcement rules of the error-correcting type
were concurrently developed by Widrow and
Hoff (1960) and are still used widely (e.g.,
Abdi, Valentin, & O’Toole, 1997; Anderson
& Murphy, 1986; J. D. Cohen & Servan-
Schreiber, 1992).
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In one of Rosenblatt’s (1962) experiments,
the S units are arranged in a rectangular grid.
Connections from S units to A units are ran-
dom, whereas all A units connect to the single
R unit. The perceptron was taught to discrimi-
nate vertical from horizontal bars. Rosenblatt
found that if all possible vertical and horizon-
tal bars are presented to the perceptron, and
the perceptron is reinforced positively for re-
sponding to the vertical bars and negatively
for responding to the horizontal,3 eventually
the network gives the desired response reli-
ably to each one. However, if only some ver-
tical and horizontal bars are presented and re-
inforced, the perceptron cannot generalize its
behavior to other bars that have not been pre-
sented. In models of visual pattern discrim-
ination, issues such as translation invariance
(ability to recognize a given pattern regard-
less of where it is in the visual field) remain
difficult. This property is exhibited by the
Neocognitron of Fukushima (1980) and the
What-and-Where filter inspired by visual cor-
tex architecture (Carpenter, Grossberg, &
Lesher, 1998).

Because these were computational experi-
ments that did not include much brain struc-
ture, they attracted researchers (the term
“computer scientist” was not yet widely
used) who were interested in building ma-
chines with “intelligent” functions, regardless
of whether the mechanisms for those func-
tions were similar to brain mechanisms. This
was the birth of the field now known as arti-
ficial intelligence. In particular, Minsky and
Papert (1969) studied mathematically a class
of abstract perceptrons that were inspired by
Rosenblatt’s previous work, with parts that
corresponded loosely to sensory, associative,
and response areas. Minsky and Papert proved
that their abstract perceptrons can learn any

3Rosenblatt (1962) used the term “negative reinforce-
ment” to mean what psychologists now call “punish-
ment.”

classification of patterns, but that the percep-
trons needed to make some geometrically im-
portant classifications had to get arbitrarily
large as the pattern size increased. Theorems
of this sort were widely interpreted as dis-
crediting perceptron-like devices as learning
machines, even though some of the visual dis-
criminations that are difficult for perceptrons
are also difficult for humans.

The discrediting of perceptrons was re-
lated to the growth of mainstream artificial
intelligence and its emphasis on design of de-
vices based on heuristic computer programs
and not involving networks and connections
at all. This type of work is still very active,
but around the mid-1980s heuristic programs
were found inadequate for many program-
ming problems involving imprecise data (e.g.,
signal processing and face recognition). This
led to a rebirth of interest among computer sci-
entists in brain-like networks, a development
known as connectionism.

As part of the connectionist revival, the
PDP research group’s models, which orig-
inated about 1981 and are summarized in
Rumelhart and McClelland (1986), recap-
tured some threads from Rosenblatt’s work.
They showed that some distinctions difficult
for Minsky and Papert’s perceptrons can be
made by perceptrons with additional hidden
unit layers and nonlinear functions represent-
ing intelayer transmission. I return to the PDP
models later, after reviewing the controversy
over discrete (digital) versus continuous (ana-
log) models.

Continuous and Nonlinear Dynamics

While the cybernetic revolution was stimu-
lating discrete (digital) models of intelligent
behavior, a concurrent proliferation of re-
sults from both neurophysiology and psychol-
ogy stimulated the development of continuous
(analog) neural models. In most applications
of mathematics to physical phenomena,
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including the biophysics of current flow in
single neurons, there are variables that are not
all-or-none but may take on any of a range
of values. Hence, such processes are typically
modeled using differential equations, which
are equations describing continuous changes
over time in an interacting collection of vari-
ables (cf. Levine, 2000, Appendix 2). For this
reason, Rashevsky (1960) used differential
equations to model perceptual data such as
relations of reaction times to stimulus inten-
sities and just noticeable differences among
intensities. It was difficult to reconcile this
approach with the all-or-none McCulloch-
Pitts (1943) framework. This paradox was re-
solved with the observation that behavioral
data reflect the combined activity of large
numbers of neurons. Hence “the discontin-
uous laws of interaction of individual neu-
rons lead to a sort of average continuous
effect which is described by . . . differential
equations” (Rashevsky, 1960, p. 3).

Rashevsky’s reconciliation between con-
tinuous and discrete models is still in common
use. The description in terms of average activ-
ity is in line with modeling based on nodes that
may represent large numbers of neurons. This
idea dates back to Hebb (1949), who proposed

�
Input

Output
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�
Input

Output

(b)

Threshold

Figure 6.1 Schematic of linear (a) and sigmoid (b) functions of suprathreshold activity.

that percepts or concepts are coded by groups
of neurons called cell assemblies. Researchers
have yet to define precisely the boundaries of
cell assemblies in actual mammalian brains.
Edelman (1987) speculated that groups on the
order of several thousand neurons in size en-
code significant stimulus categories. Burnod
(1988) stressed the functional importance of
cell columns in the cerebral cortex. Other
theorists speculated that concepts or percepts
could be coded by synchronized electrical ac-
tivity of large distributed groups of neurons
(see, e.g., Gray & Singer, 1989).

Neural models often average random
single-neuron effects across the functional
groups of neurons that constitute network
nodes, making the interactions between nodes
deterministic. In addition, many models aver-
age random effects over short time intervals
so that the node activity variable is interpreted
as representing a firing frequency rather than a
voltage. Rashevsky assumed that the average
frequency of impulses transmitted by a neuron
is a linear function of the cell’s suprathreshold
activity (see Figure 6.1a), a useful assump-
tion for some neural models of sensory trans-
duction (e.g., Hartline & Ratliff, 1957). Yet
averaging can also lead to nonlinear, notably
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sigmoid, functions (Figure 6.1b). If the firing
threshold of an all-or-none neuron is a random
variable with a normal distribution, the mean
value of its output signal is a sigmoid function
of activity. For this reason, and because they
have been observed in real neurons (Kernell,
1965), sigmoids are popular in neural mod-
els (e.g., Grossberg, 1973; Rumelhart et al.,
1986).

Some data have indicated that brain con-
nections may be random within certain neural
populations and specific between these popu-
lations. Lashley (1929) showed that memories
for specific events are retained after extensive
brain lesions, inspiring the idea that represen-
tations of events are distributed throughout the
brain rather than localized. Other experiments
showed, however, that specific connections
are important for other functions. Mountcastle
(1957) found that the somatosensory cortex
includes a well-organized topographic encod-
ing of the body. Hubel and Wiesel (1962,
1965) found that cells in the visual cortex are
organized into columns that code specific reti-
nal positions or line orientations.4 The para-
dox between the Lashley data and the Hubel-
Wiesel or Mountcastle data is resolved by
means of a principle of “randomness in the
small and structure in the large” (Anninos,
Beek, Csermely, Harth, & Pertile, 1970, p.
121). This principle is implicit in the bulk
of commonly used neural network models
of psychological phenomena. Most of these
models use purely deterministic equations at
the level of nodes (interpreted as neuron pop-
ulations) that could be interpreted as the av-
eraging over large ensembles of probabilistic
effects at the single-cell level.

Now we turn to the history of classes of
models that are in common use today, such as

4It is important to note, however, that visual and so-
matosensory maps are modifiable; the somatosensory
maps, at least, can be altered even in adult life (see
Edelman, 1987, for a summary).

back-propagation, autoassociative, and adap-
tive resonance models.

Perceptrons and Back Propagation

The descent of the three-layer back-
propagation network from Rosenblatt’s (1962)
perceptrons has been noted. Like the origi-
nal perceptrons, back-propagation networks
have typically been used for supervised learn-
ing, that is, teaching a network to perform
a desired response to specific stimuli by ad-
justment of its connection weights via error-
correcting “reinforcement” procedures. This
has been applied extensively both in psychol-
ogy, to cause a network to behave in accor-
dance with some set of data, and in engi-
neering, to make a device learn a particular
function.

The back-propagation algorithm was de-
veloped by Werbos (1974, 1993) as a pro-
cedure for optimizing the predictive ability
of mathematical models and was placed in
a widely studied connectionist framework by
Rumelhart et al. (1986). It is often applied to
discrimination or classification of sensory in-
put patterns. The network is feedforward with
three layers, composed of input units, hidden
units, and output units (Figure 6.2; see also the
second section of this chapter). A particular
pattern of output responses to particular input
patterns is desired. If the actual response to
the current input deviates from the desired re-
sponse, the weights of connections from hid-
den to output units are changed. Then those
weight changes propagate backward to cause
changes in weights from input to hidden units
that will reduce future error. The hidden units
thereby come to encode specific patterns of
input activities.

In the back-propagation algorithm, an ex-
pression is found for the total network er-
ror (based on the desired response), and the
weight changes that cause the sharpest possi-
ble decrease in error are computed. The rate
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Figure 6.2 Generic three-layer back-propagation network. Error signals from output nodes propagate
backward from hidden-to-output weights to input-to-hidden weights. In the process, hidden units learn
to encode certain input pattern classes. Semicircles represent modifiable synapses.
SOURCE: Adapted from Rumelhart et al. (1986), with permission of MIT Press.

of error correction (at both hidden-to-output
and input-to-hidden synapses) is proportional
to the derivative (rate of change) of a sigmoid
function of presynaptic node activity. Because
this rate of change is fastest over the middle
range of the sigmoid, this means heuristically
that weights are changed fastest from nodes
that have not “made up their minds” to be ac-
tive or inactive (Terence Sejnowski, personal
communication, April 1987). This scheme al-
lows for credit assignment, that is, deciding
which connections at an earlier level in the
network to alter if the responses of later stages
are inappropriate (see also Barto & Anandan,
1985).

Back-propagation networks essentially can
learn arbitrary nonlinear input-output rela-
tionships. Instead of converging to the desired
response, however, the system sometimes gets
trapped in a response that is not desired. Also,
the network varies enormously in how many
steps it requires to converge to the response

it is supposed to learn. The convergence rate
depends on the number of hidden units, and
that number must be decided separately for
each application.

Back propagation is widely considered bi-
ologically unrealistic because it uses feed-
back of synaptic weights, not of neuronal
signals, and no brain mechanism for weight
transport is known. Nonetheless, several re-
searchers have noted the utility of such an
error-correcting mechanism5 and have sug-
gested possible neuronal bases for it. These
have included (a) backward flows in micro-
tubules, a part of the structural support system
of neurons and all other living cells (Dayhoff,
Hameroff, Swenberg, & Lahoz-Beltra, 1993);
(b) neurons responsive to combined activ-
ities of other neurons (Levine, 1996); and

5There are many other error-correcting mechanisms used
in neural network models of motor control that do not
employ back propagation (see Section 4).
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(c) backward-flowing signals at some sy-
napses or dendritic trees (Stuart, Spruston,
Sakmann, & Hauser, 1997). Later back-
propagation networks added recurrent (feed-
back) connections, which are useful for
modeling sequence learning and make the
networks somewhat more brain-like (Elman,
1990; Hinton, 1993; Jordan, 1986).

Autoassociation and Heteroassociation

A set of fairly abstract models representing as-
pects of associative learning and memory was
developed in the late 1960s and early 1970s in-
dependently by two groups, one led by James
Anderson and the other by Teuvo Kohonen.
This work is still finding applications in rec-
ognizing and classifying patterns and also in
modeling memory storage areas of the brain,
such as the hippocampus.

Anderson (1968, 1970, 1972) described a
memory trace as a vector or array of num-
bers, each of whose components is the activ-
ity of a single network node. Anderson’s em-
phasis was on developing a simple model that
would capture some basic properties of mem-
ory, such as recognition, retrieval, and associ-
ation, without resorting to much physiologi-
cal detail. Association was related to a theory
of synaptic connection weights in Anderson
(1972). In these articles, Anderson proposed
a model for association that involved two sets
of nodes, each encoding a stimulus pattern.
Anderson found mathematically that the op-
timal set of weights for associating these pat-
terns was one based on the Hebb (1949) rule
for connection weights, in which activities
of presynaptic and postsynaptic nodes were
multiplied.

If the association is between two distinct
patterns, such as occurs in classical condition-
ing, it is called heteroassociative. If it is be-
tween a pattern and itself (i.e., recovering a
pattern from a slight distortion of it or all of a
pattern from part of it), it is called autoasso-

ciative. Those two terms come from Kohonen
(1977). As Kohonen et al. (1977, p. 1065) said,
“Consequently, for instance, both the recall of
a visual image from its fraction, and a paired
association in the classical conditioning, can
be regarded as different aspects in the func-
tioning of the associative memory.”

In one version of the autoassociative
model, a mathematical transformation (ma-
trix) encoding connection weights is repeat-
edly applied to a stimulus pattern, and then
boundaries are imposed on node activities.
Anderson, Silverstein, Ritz, and Jones (1977)
and Anderson and Murphy (1986) called this
brain state in a box (BSB) and applied it to
pattern categorization, with the repeated ap-
plication of this transformation leading ulti-
mately to what is interpreted as a category pro-
totype. Other autoassociative networks, with
selective attention added, have been applied
to categorization of faces, such as by gender
(Abdi et al., 1997). Finally, autoassociative
networks have been used to model the mem-
ory processes of the hippocampus (e.g., Levy,
1996).

The heteroassociative version of the model
is somewhat similar to other models that are
more biologically inspired, such as the early
work of Grossberg and his colleagues, to be
discussed next.

Biologically Inspired Models
and Modeling Principles

In the late 1960s several modelers began to
develop principles for fitting biologically rel-
evant neural network architectures to specific
cognitive and behavioral functions. This led to
models requiring partial verification on both
the physiological and the behavioral levels,
and to a toolkit of modeling techniques and
modules that is still in wide use.

The work of Grossberg and his group is
particularly important for this development.
Grossberg’s first major architecture was the
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outstar, developed to model associative learn-
ing of a pattern along lines suggested by Hull
(1943) and Hebb (1949). Grossberg (1969)
posed the question of how an organism learns
to produce one sound (say B) in response
to another (say A) after repeatedly hearing
them in sequence. He devised a network to
do this using differential equations. The vari-
ables defining these equations were based on
Hull’s notions of stimulus trace and associa-
tive strength. For each stimulus A, the stimulus
trace xA(t) measures how active the memory
for A is at any given time t. For each pair
of stimuli A and B, the associational strength
w AB(t) measures how strong the sequential
association AB is in the network’s memory at
time t.

Table 6.1 summarizes the effects
Grossberg incorporated into his equations. B
should be produced if, and only if, A has been
presented and AB is strong in memory. AB
should become stronger if A is presented and
followed by B. Replacing A and B by the ith
and j th stimuli in general, the variable x j

should increase if both xi and wi j are high.
Likewise, wi j should increase if both xi and
x j are high.

In the outstar (Figure 6.3) one node, called
a source, projects to other nodes, called sinks.
Long-term storage is interpreted as resid-
ing in the proportions between the weights

Table 6.1 Effects Incorporated into Grossberg’s
Differential Equations

A is presented AB has been learned B is expected
Yes Yes Yes
Yes No No
No Yes No
No No No

A is presented B is presented AB is learned
at a given time a short time later
Yes Yes Yes
Yes No No
No Yes No
No No No

x1
x3xn�1

w13

x2

w12

w1,n�1

xn

w1n

Figure 6.3 Outstar architecture.
SOURCE: Adapted from Mathematical Biosciences,
66, D. S. Levine, Neural population modeling and
psychology: A review, 1-86, Copyright 1983, with
permission from Elsevier Science.

w12, . . . , w1n of source-to-sink connections.
The outstar is affected by an input to the source
node x1, and a pattern (vector) of inputs to the
sink nodes x2, . . . , xn . (Grossberg sometimes
interpreted the source input as a conditioned
stimulus, or CS, and the sink inputs as an un-
conditioned stimulus, or US.) The activity of
x1 tends to increase if its input is present and
to decay toward a baseline otherwise. The ac-
tivity of each xi increases if both x1 and w1i

(associative strength between x1 and xi ) are
significant, and w1i increases if x1 and xi are
significant. The next section describes the re-
sulting equations.

Stimulus traces are analogous to STM, and
associative strengths are analogous to LTM.
The decay rate for LTM traces is set much
smaller than the decay rates for STM traces.
If the inputs to the sink nodes form what
Grossberg (1974) called a spatial pattern,
that is, where the relative proportions of
inputs to the different sink nodes are un-
changed over time (Figure 6.4), the input pat-
tern weights were shown to be stored in LTM
at the relative associative weights from source
to sink.
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Figure 6.4 Example of a spatial pattern input,
in which inputs may change over time but always
remain in the same proportions.
SOURCE: Adapted from Levine (2000), with the
permission of Lawrence Erlbaum Associates.

Concurrently, STM models were devel-
oped by Grossberg (1973), Wilson and Cowan
(1973), Amari (1971), and others. These mod-
els were mathematical representations of the
concept of reverberatory storage previously
considered by McCulloch, Pitts, and Hebb.
Yet what was stored in STM was not a faith-
ful representation of the original input pattern,
but a pattern transformed by means of lateral
interactions, such as the lateral inhibition that
Hartline and Ratliff (1957) found to be impor-
tant in vision.

These STM models ultimately led to many
models of sensory pattern processing, partic-
ularly of the preattentive stages of vision (see
the third section of this chapter). The models
reproduced a range of data in visual illusions

Table 6.2 Summary of Some Important Principles in Neural Network Organization

Associative learning, to enable strengthening or weakening of connections by contiguity or probable causality.
Lateral inhibition, to enable choices between competing percepts, drives, categorizations, plans, or behaviors.
Opponent processing, to enable selective enhancement of events that change over time.
Neuromodulation, to enable contextual refinement of attention.
Interlevel resonant feedback, to enable reality testing of tentative classifications.

SOURCE: Adapted from Hestenes (1992), with the permission of Lawrence Erlbaum Associates.

and in the interaction of different visual fea-
tures such as form, color, depth, and lightness.
They also dealt with abstract theories about
the large-time behavior of dynamical systems
and their approach to attractors (M. A. Cohen
& Grossberg, 1983; Hopfield, 1982).

Associative learning and lateral inhibition
are two major organizing principles in the
toolkit for making models of more complex
cognitive phenomena. Some of the other prin-
ciples are shown in Table 6.2. An example
of a network that combines several princi-
ples is the adaptive resonance network for
categorization, originated in Carpenter and
Grossberg (1987) with many later variations.
Adaptive resonance networks have two lay-
ers of nodes that code individual features and
categories, with bidirectional connections and
outstar-like associative learning in both di-
rections, and lateral inhibition between com-
peting categories. Combining categorization
with other effects (e.g., selective attention and
reinforcement learning) uses still more com-
plex combinations of principles.

Principles such as those shown in Table 6.2
reflect general neural operations that are likely
to occur, with variations, in different parts
of the brain (e.g., there can be lateral in-
hibition between representations of different
retinal locations, different categories, differ-
ent emotions, different action plans, or dif-
ferent movements). Since the mid-1990s, net-
work architectures have combined general
toolkit principles with more direct physio-
logical knowledge about specific brain areas
and specific modulatory transmitter systems.
Some of these will appear in later sections of
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this chapter under the psychological functions
they are designed to simulate.

Some Examples of Neural
Network Methodology

There is such a diversity of neural network
methods that it would be incorrect to label
anything as a generic neural network. But let
me illustrate the process of model making by
showing how equations have been developed
and solved for the outstar network of Fig-
ure 6.3, one of the simplest networks that em-
bodies a key principle (associative learning)
and is a building block for psychologically
interesting networks.

Like most models described by Grossberg
and his colleagues, the outstar is based on
differential equations. Differential equations
represent rates of change of interacting vari-
ables in continuous time, and it is possible to
understand them and solve them computation-
ally without having taken a standard course in
differential equation theory. Such equations
say that the rate of change of each node ac-
tivity or connection weight is some (possibly
time-dependent) function of that activity or
weight and all the other activities or weights.
This means that a differential equation can be
thought of as a continuous-time update rule.

Let us represent the activity of the outstar
source node (at the center of Figure 6.3) by
x1, and the activities of the other nodes, called
sinks, by x2, x3, . . . , xn , called sinks. (The el-
lipsis after x3 are a generally accepted nota-
tion for an indeterminate number of values
or variables that fit into a general form.) Let
us call the connection weights between the
source node and each of the sink nodes by
w2, w3, . . . , wn .

The source node activity x1 is affected
positively by the source node input Ii and
negatively by decay back to a baseline rate
(interpreted as 0). The notation for the rate of
change (derivative) of x1 as a function of time

is dx1/dt . This leads to a differential equation
of the form

dx1

dt
= −ax1 + I1 (1a)

where a is a positive constant (the decay rate).
The sink node activities xi , i = 2, . . . , n
obey an equation similar to (1a) with the ad-
dition of an effect of the source node ac-
tivity weighted by source-to-sink connection
strength. Hence

dxi

dt
= −axi + bx1wi + Ii , i = 2, . . . , n

(1b)

where b is another positive constant (cou-
pling coefficient). The source-to-sink synap-
tic weights, or LTM traces wi , in one version
of the theory, decay only when x1 is active;
this represents what happens in conditioning
when a CS is presented and not followed by
a US. This decay is counteracted by US (i.e.,
xi ) activity. Thus

dwi

dt
= x1(−cwi + exi ), i = 2, . . . , n

(1c)

where c and e are still other positive constants
(c typically smaller than a, representing the
slow decay of LTM as compared to STM).

How does one solve a system of differen-
tial equations such as (1a), (1b), and (1c) on
a computer? There are many software pack-
ages for solving differential equations, some
of them attached to high-level languages such
as Mathematica and MATLAB. One needs to
write a routine that specifies the right-hand
sides of the differential equations and then
feed that into the differential equation solver,
usually called an ordinary differential equa-
tion (ODE) solver. Or with relatively simple
equations such as these, one obtains a good ap-
proximation by taking very small time steps,
of size .1 or less, multiplying the time steps
by the right-hand sides, and then adding to the
current value of the variable whose derivative
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is being calculated to get the value of the same
variable at the next time step. For example, if
the time step is .1, the equation (1a) for the
source node activity x1, can be approximated
by an updating rule of the form

x1(at time t + 1)

= x1(at time t) + .1(−ax1(at time t)

+ I1(at time t)).

The high-level languages also typically in-
clude packages for graphing the resulting vari-
ables as functions of time. Exact closed-form
mathematical solutions, such as are tradi-
tionally emphasized in differential equations
classes, are not necessary; in fact, closed-form
solutions are almost never obtainable in neu-
ral network equations.

Another fairly simple set of equations I
have used in introductory graduate courses
is the network for a set of nodes connected
by lateral inhibition (discussed further in the
third section). These nodes (arbitrarily many
of them) typically interact by means of shunt-
ing excitation proportional to the difference of
activity from a maximum value, and shunting
inhibition proportional to the difference of ac-
tivity from a minimum value (such as 0). This
leads to a set of (arbitrarily many) equations
of a form such as

dxi

dt
= −Axi + (B − xi ) f (xi )− xi

∑
k �=i

f (xk)

where A and B are constants and f is typi-
cally either a sigmoid function or the square
function (Grossberg, 1973). The “�” repre-
sents summed inhibition from all other nodes.

Another well-known network that I have
found to be fairly user-friendly for introduc-
tory students is the conditioning model from
Sutton and Barto (1981). This model does not
use differential equations but instead uses sep-
arated time steps and direct updating rules
for all the node activities, eligibilities, and
weights. Levine (2000, Appendix 2) gives a
detailed description of their dynamics.

MODELS OF SENSORY PROCESSES

Sensory perception, particularly visual, was
the first area of psychology to be modeled
successfully using neural networks. It is also
perhaps the easiest area to quantify because
of the direct connection between system pro-
cesses and events in the external world.

Short-Term Memory
and Preattentive Vision

In the middle to late 19th century, the noted
physicists Helmholtz and Mach both observed
that edges or contours between light and dark
portions of a scene tend to be enhanced rela-
tive to the light or dark interiors of the scene.
They explained this phenomenon by means
of networks of retinal cells, each excited by
light within a central area and inhibited by
light within a surrounding area. Receptive
fields with that structure were later found
experimentally, in the compound eye of the
horseshoe crab Limulus (Hartline & Ratliff,
1957) and in the vertebrate retina (Kuffler,
1953). This kind of structure is variously re-
ferred to as lateral inhibition or on-center off-
surround.

The earliest STM models, as well as mod-
els in current use, reflect the fact that lateral
inhibition and similar operations transform
the “raw” sensory data well before they reach
the cortex, even in the preattentive stages.
In the case of vision, such transformations
serve the function of compensating for im-
perfections in the process of perception, such
as occur because of blind spots on the retina.
Yet it is well established that this compensa-
tion mechanism creates some distortions of its
own, such as illusions in every aspect of vision
(for a network analysis see, e.g., Grossberg &
Mingolla, 1985a).

There is controversy among both psychol-
ogists and neuroscientists about how wide-
spread the principle of lateral inhibition is
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and whether it operates not just in the retina
but in the cortex and other central brain ar-
eas as well. Yet McGuire, Gilbert, Rivlin, and
Wiesel (1991) and others have found that the
largest neurons in the cerebral cortex, which
are called pyramidal cells, typically excite
smaller neurons called stellate cells, which in
turn project to and inhibit other, nearby pyra-
midal cells. Similar kinds of interactions be-
tween large and small cells occur in subcorti-
cal areas such as the hippocampus (Andersen,
Gross, Lømo, & Sveen, 1969) and cerebellum
(Eccles, Ito, & Szentagothai, 1967). Longer-
range lateral inhibition in the cortex may be
mediated by pathways connecting cortex to
thalamus and basal ganglia (Taylor & Alavi,
1993).

Hartline and Ratliff (1957) modeled inhibi-
tion in the horseshoe crab eye by means of si-
multaneous linear equations for two mutually
inhibiting receptors. However, other effects,
many of them nonlinear, have been added
by other modelers to explain mammalian vi-
sual data. For example, Sperling and Sondhi
(1968) developed a lateral inhibitory model
of the retina, including feedback, in order to
explain certain data on luminance and flicker
detection. The inhibition exerted by the feed-
back in their model is shunting rather than
subtractive (see the section titled “Some
Examples of Neural Network Methodology”).
In subtractive inhibition, the incoming signal
is linearly weighted, and an amount propor-
tional to that signal is subtracted from the
activity of the receiving node. In shunting in-
hibition, the amount subtracted is also pro-
portional to the activity of the receiving node.
Thus the inhibiting node acts as if it divides the
receiving node’s activity by a given amount,
that is, shunts a given fraction of the node’s
activity onto another, parallel pathway.

In addition to shunting (multiplicative) in-
hibition, lateral inhibitory models often in-
clude shunting excitation, whose strength is
proportional to the difference of a node’s

activity from its maximum possible level. This
contrasts with additive excitation, which sim-
ply adds an amount proportional to the excita-
tory signal to the activity of a receiving node.
Shunting interactions in neural networks have
been suggested by experimental results on the
effects of a presynaptic neuron on conduc-
tances of various ions across the postsynap-
tic membrane (cf. Freeman, 1983; Grossberg,
1973).

Sperling and Sondhi (1968) described the
effect of shunting inhibition as reducing dy-
namic range. This means that although sen-
sory inputs can be arbitrarily intense, the
response of network nodes to these inputs
has an upper limit. But while lateral inhibi-
tion can reduce distinctions between input in-
tensities at extreme ranges, it can enhance
such distinctions at intermediate ranges, an
effect called contrast enhancement (Ellias
& Grossberg, 1975; Grossberg & Levine,
1975).

Contrast enhancement is an outgrowth of
decision or competition between inputs. Com-
petition can be biased in favor of either more
intense or less intense inputs by nonlinear in-
teractions. Also, competition can be biased
in favor of motivationally significant inputs;
we return to that point in a later section on
attention.

In early models involving lateral inhibi-
tion, nonrecurrent (feedforward) and recur-
rent (feedback) inhibition were preferred for
different purposes and used to model dif-
ferent processes. The retina is designed to
encode a fairly accurate representation of on-
going visual events, so nonrecurrent lateral
inhibition is often preferred in retinal models
in order to shorten the duration of pattern rep-
resentations. The visual cortex, by contrast, is
designed to encode both present events and
memories of recent past ones; thus in corti-
cal modeling, patterns should remain active
in memory for longer periods, and recurrent
lateral inhibition tends to be preferred in
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cortical models (e.g., Grossberg, 1973;
Wilson & Cowan, 1973). Differences between
actual network architecture in the retina and
in the cortex generally reflect this functional
difference.

In typical lateral inhibition models, an in-
put pattern is regarded as the initial state of
a mathematical dynamical system, which can
be defined roughly as the movement through
time of the solutions of a system of differen-
tial equations for interacting variables. This
solution is described by a vector composed of
the values of all the variables in the system
at any given time. The equations describe the
transformation of this pattern and its storage
in STM; the stored pattern is then regarded
as a limiting vector to which the system con-
verges as time increases.

Lateral inhibitory architectures tend to en-
hance contrasts between pattern intensities.
Inhibitory connections mean that larger activ-
ities tend to suppress smaller ones, so after a
while some subcollection of nodes becomes,
and remains, dominant. As a consequence, dy-
namical systems defined by such networks of-
ten, but not always, converge to an attractor
as time increases. An attractor is a state in
which the system interactions are in balance,
so that once the system reaches that state, it
will not be perturbed from it (M. A. Cohen &
Grossberg, 1983; Hopfield, 1982).

Wilson and Cowan (1973) described a lat-
eral inhibitory network for representing an
area of cerebral cortex or thalamus. This
network includes distance-dependent inter-
actions whereby excitation falls off more
sharply with distance than does inhibition.
Different positions in the visual field, or dif-
ferent line orientations, can be represented at
different cortical or thalamic locations. Their
distance-dependent networks sometimes ap-
proach attractors, but also include the possi-
bility of hysteresis, whereby if the amount of
external stimulation is changed, the dynamics
are dependent on the past history of stimula-

tion. For some parameters they also can ex-
hibit oscillations in their long-term behavior,
which were interpreted as possible analogs
of the reverberatory loops between the cere-
bral cortex and the thalamus. The network
reproduced such visual phenomena as meta-
contrast, responses to different spatial fre-
quencies, and a hysteresis phenomenon found
in stereopsis. Ermentrout and Cowan (1980),
studying a more abstract version of Wilson
and Cowan’s network, proved the existence
of oscillatory solutions that had properties in
common with some simple visual hallucina-
tions.

Grossberg (1973) studied on-center off-
surround networks with both shunting exci-
tation and shunting inhibition. He found that
the attractor approached by the system was
heavily influenced by what activation func-
tion was used for transformations at the node
level (see the section titled “Perceptrons and
Back Propagation”). Linear activation func-
tions led to faithful representation of the in-
put pattern, and therefore to an inability to
suppress insignificant noise appearing on the
retina. Sigmoid activation functions, by con-
trast, led to proportional representation of the
pattern values above a certain activity level
and suppression of those below (contrast en-
hancement plus noise suppression).

Such lateral inhibitory (on-center off-
surround) modules have since been modified
and embedded in larger networks to capture
more realistic properties of preattentive vi-
sion and visual system structure. In partic-
ular, several network models (Grossberg &
Mingolla, 1985a, 1985b; Levine & Grossberg,
1976; Wilson & Cowan, 1973) incorporate
the notion that such illusions are by-products
of a lateral inhibitory network designed to
correct for irregularities in the luminance
data that reaches the retina. Models of visual
illusions typically involve both competition
(from shunting lateral inhibition) and co-
operation (from shunting lateral excitation),
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Figure 6.5 Illusory white square induced by four
black “pac-man” figures.
SOURCE: Kanizsa, Gaetano, Subjective contours.
Copyright by Jerome Kuhl. All rights reserved.

sometimes along different dimensions and
sometimes within the same dimension.

Orientation and visual field position are
coded by cell populations in the visual cor-
tex, along with spatial frequency, disparity of
the right and left retinal images (a measure of
depth), color, ocularity (cells may have a pref-
erence for one or another eye or else respond
equally to inputs from either eye), and mo-
tion. Some neural networks used to simulate

��

(c) (d)

Figure 6.6 (a) Boundary signals sensitive to orientation and amount of contrast, but not to direction of
contrast. (b) Like orientations compete at nearby perceptual locations. (c) Different orientations compete
at each perceptual location. (d) Once activated, aligned orientations cooperate across a larger visual
domain to form contours.
SOURCE: Grossberg & Mingolla, Psychological Review, 92, 173–211, 1985. Copyright 1985 by the
American Psychological Association. Reprinted by permission.

visual data combine two or more of these vari-
ables. For example, the networks of Grossberg
and Mingolla (1985a), which simulate some
illusory percepts of visual contours, use both
orientation and position information. In Fig-
ure 6.5, from Kanizsa (1976), two white line
segments that are present and of the same ori-
entation are perceptually joined together by an
illusory longer line segment. In their network,
boundaries are perceived as signals “sensitive
to the orientation and amount of contrast at
a scenic edge, but not to its direction of con-
trast” (Grossberg & Mingolla, 1985a, p. 176).

Figure 6.6a illustrates insensitivity to con-
trast direction. Each node responds to lines
of a particular orientation at a particular posi-
tion. There is competition between receptors
for like orientations at nearby positions (Fig-
ure 6.6b) and between receptors for widely
different orientations at the same location
(Figure 6.6c). Short-range competition is sup-
plemented by long-range cooperation (Fig-
ure 6.6d). Such long-range cooperation en-
ables continuous contours to form by linking
together separated lines of the same orienta-
tion. One of the benefits to the organism of
this linkage of contours is compensation for
discontinuities (caused by blind spots) in the
image on the retina.

[Image not available in this electronic edition.]

(a) (b)
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Some models of vision are based on the im-
portance of boundaries for detecting objects.
For example, Marr (1982) described bound-
aries between light and dark areas of a scene as
points of zero curvature (or inflection points)
of the curve for luminance as a function of dis-
tance, as shown in Figure 6.7. Mathematically,
this represents the point of sharpest transition
in the luminance value.

However, the mechanism for perceiving
boundaries must be supplemented by an-
other mechanism for perceiving the form of
what is inside those boundaries. The feature-
detecting mechanism, unlike the boundary-
detecting mechanism, should be sensitive to
direction of contrast. Grossberg (1983) dis-
cusses one possible combination of boundary
and feature contour mechanisms (Figure 6.8).
A linear nonrecurrent mechanism that can
only generate boundaries (Figure 6.8b) is con-
trasted with a nonlinear recurrent mechanism
that can generate both boundaries and interi-
ors (Figure 6.8c). Initially, all nodes excited
by the rectangular input of Figure 6.8a re-
ceive equal inputs. Because the inhibitory in-
teraction coefficients are distance-dependent,
nodes excited by the part of the rectangle near
its boundary receive less inhibition than do
those nodes nearer the rectangle’s center. As

(a) (b) (c)

Z

Figure 6.7 Zero-crossing. (a) Transition (edge)
between dark and light regions is shown by a sharp
rise in the graph of luminance as a function of
distance. (b) First derivative of this function has
a peak. (c) Second derivative has a zero-crossing
(transition from positive to negative) at Z.
SOURCE: Adapted from Marr (1982), with permis-
sion of W. H. Freeman and Company.

(a)

(b)

(c)

Figure 6.8 (a) Input pattern whereby a region is
activated uniformly. (b) Response of feedforward
competitive network to pattern (a); edges of the
activated region are enhanced and its interior is
suppressed. (c) Response of a feedback competi-
tive network to pattern (a); interior is activated in
a spatially periodic fashion.
SOURCE: Grossberg (1983), with permission of
Cambridge University Press.

time goes on, those enhanced boundary nodes
inhibit other nodes whose preferred positions
are contiguous to those boundaries but closer
to the center. This in turn disinhibits some
nodes still nearer to the center, leading to a
wave-like pattern (Figure 6.8c). The distance
between peaks of the wave is dependent non-
linearly on excitatory and inhibitory interac-
tion coefficients.

Figure 6.8 provides a possible explanation
for the experimental result that many visual
cortical neurons fire preferentially to some
specific spatial frequency (Robson, 1975).
From this result, many theorists have con-
cluded that spatial frequency is one of the
primitives of the visual system, or, more
speculatively, that the visual system performs
Fourier analysis of patterns into frequency
components (e.g., Pribram, 1991).

The interacting feature and boundary con-
tour systems provided the basis for a theory
of visual object recognition. In contrast to
Marr’s (1982) view that people see mainly
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boundaries, Grossberg (1987a) advanced the
“radical claim that all boundaries are invis-
ible until they can support different filled-in
featural contrasts within the FC [feature con-
tour] System” (p. 108). Within the feature
contour system in this theory, the appar-
ently separate modules that neurophysiolo-
gists have discovered in the cerebral cortex
for processing form, color, and depth are seen
as part of a unified whole.

Recall that one function suggested for re-
current lateral interactions is to compensate
for imperfections in the retina’s uptake of vi-
sual stimuli. Some of these imperfections re-
sult from blind spots or blood vessels in the
eye. Others result from possible distortions
of relative brightness or color relationships in
the scene by the ambient light; hence, one of
the functions of the cortical networks is to dis-
count the illuminant, that is, calculate color or
brightness of the actual scene rather than what
impinges directly on the retina. The proposed
brain mechanisms for all this involve several
different parts of the visual cortex and lateral
geniculate body.

Competitive-cooperative neural networks
have also been fruitful in modeling the con-
struction of a three-dimensional image from
the disparate images received by the left and
right retinas. Many binocular vision theorists
(e.g., Dev, 1975) have explained the formation
of depth percepts using networks whose nodes
detect specific disparities between the two
retinal images. The basic computational prob-
lem involved in stereo vision was described in
Marr and Poggio (1979) as the elimination of
false targets. That is, given a point in the left-
eye image, the eyes and brain first calculate its
disparity with respect to many points on the
right-eye image. Hence, several depth mea-
surements are possible, and one must choose
(using a competitive mechanism) the correct
corresponding point in the right-eye image.

Marr and Poggio (1979) also noted that
retinal image disparity measures are insuffi-

cient to compute perceived depth but must
be integrated with orientation and spatial fre-
quency information. In Marr and Poggio’s
(1979) model, a three-dimensional scene is fil-
tered through channels (masks) that select par-
ticular orientations. Boundaries can be located
by taking the image through given orientation
masks and locating the edges at zeros of the
second derivative of perceived luminance (see
Figure 6.7). Similar filtering is done through
spatial frequency channels. Marr and Poggio
showed how to integrate disparity, orienta-
tion, and spatial frequency information into
a coherent three-dimensional approximation
of a given three-dimensional scene preced-
ing binocular integration, which they called
a 21/2-D sketch.

Another approach to binocular vision
has been developed by M. A. Cohen and
Grossberg (1984) and Grossberg (1987b).
Their networks include feedback between
monocular and binocular representation ar-
eas, each with its own separate on-center
off-surround network and including oppo-
nent processing. In contrast to Marr and
Poggio’s idea of the pre-binocular 21/2-D
sketch, Grossberg and Cohen developed a the-
ory in which binocular integration is nearly in-
separable from the processing of other visual
information such as color and form.

As for visual motion perception, this vi-
sual phenomenon, like others, has an illu-
sory as well as a veridical component; for
example, apparent motion can be generated
by two separate flashes of light in different
locations at particular time intervals. Marr
and Ullman (1981) explained this using a
neural network that combines different nodes
with sustained and transient responses to stim-
uli. The sustained units respond to particu-
lar contrast and orientation patterns that per-
sist even if their location in the visual field
shifts slightly. The transient units respond
to changes in light intensity, color, and the
like at particular locations. Marr and Ullman
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based the visual responses in their network on
zero crossings that represent transition points
or boundaries (see Figure 6.7). Grossberg
and Rudd (1992) combined the Marr-Ullman
idea of sustained and transient detectors with
the feature and boundary contour systems
(Grossberg & Mingolla, 1985a, 1985b)
achieved by shunting on-center off-surround
interactions. Grossberg and Rudd saw “a com-
plex interdependency between such stimulus
variables as contrast, size, duration, color, and
figural organization in determining the per-
ceived motion” (p. 82). They described how
this approach leads to a system including
nodes combining signals from both sustained
and transient units, and with properties analo-
gies to the visual motion area of the cortex
(V4 or medial temporal).

Sensory Coding

Building on models of sensory STM, several
researchers starting in the 1970s modeled how
a node in a neural network can learn to re-
spond to particular patterns of activity at other
groups of nodes. These patterns of activity, in
turn, could represent combinations of sensory
features. This section deals with coding in that
sense, not in the sense of how the primary rep-
resentation of a sensory stimulus is actually
formed in the nervous system. Network mech-
anisms for this kind of coding have possible
implications for biological organisms during
development.

Current models of coding and categoriza-
tion are often based on ideas introduced by
Malsburg (1973). Malsburg’s model is based
on recurrent excitation and inhibition be-
tween simulated cortical nodes, combined
with modifiable (by associative or Hebbian
learning) synapses to the “cortex” from an
input (“retinal”) layer of nodes. His motiva-
tion for developing this model was a body
of experimental results on the mammalian
visual system. These results suggested that

the “task of the cortex for the processing
of visual information is different from that
of the peripheral optical system. Whereas
eye, retina and lateral geniculate body (LGB)
transform the images in a ‘photographic’ way,
i.e., preserving essentially the spatial arrange-
ment of the retinal image, the cortex trans-
forms this geometry into a space of concepts”
(p. 85).

In particular, Malsburg’s (1973) model and
subsequent ones discussed in this section drew
their inspiration from physiological results
on single-cell responses to line orientations.
These models can explain findings that neu-
rons in the cat or monkey visual cortex re-
spond preferentially to lines of a particular
orientation, and that cells responding to sim-
ilar orientations are grouped close together
anatomically, in columns (Hubel & Wiesel,
1962, 1965, 1968). These models also explain
findings that preferred orientations of neu-
rons are influenced by early visual experience
(e.g., Blakemore & Cooper, 1970; Hirsch &
Spinelli, 1970).

Some models (e.g., Bienenstock, Cooper,
& Munro, 1982, p. 32; Grossberg, 1976a,
p. 131) also address evidence that there is a
critical period in the development of orienta-
tion detectors. That is, for a short period of
time (in cats, age 23 days to 4 months; in hu-
mans, 6 months to 2 years), cortical orienta-
tion tuning is much more modifiable than it is
either earlier or later.

Malsburg’s (1973) simulated cortex is or-
ganized into two separate populations, ex-
citatory and inhibitory nodes. The variation
of connection strengths with distance endows
the simulated cortex with a crude form of the
lateral inhibitory architecture of narrow-range
excitation and broad-range inhibition. In the
terminology of the last section, Malsburg’s
laws for lateral interaction between nodes
are additive rather than shunting. Excitatory
and inhibitory nodes are organized into two
parallel planes, each with a hexagonal
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Figure 6.9 Standard set of stimuli used on the simulated retina. Larger dots denote locations of activated
nodes.
SOURCE: Reprinted from Malsburg (1973) with permission of Springer-Verlag.

arrangement of nodes. Excitatory nodes ex-
cite neighboring nodes, both excitatory and
inhibitory ones, whereas inhibitory nodes in-
hibit excitatory nodes that are a distance of
two away.

Of the connections in Malsburg’s (1973)
model, only those from retinal afferents to
cortical nodes have modifiable weights. The
rule for changing these weights combines an
associative learning law with a synaptic con-
servation rule that makes inactive connec-
tions decay as active ones grow with learning.
Synaptic conservation was imposed to prevent
the unbounded growth of synaptic strengths
that would otherwise result from associative
learning.

Figure 6.9 shows the standard set of stim-
uli used on Malsburg’s (1973) model retina.
These stimuli correspond to bars of light at dif-
ferent orientations. As shown in Figure 6.10,
orientation detectors, such as were found by

Figure 6.10 Simulated cortex after 100 time
steps of learning. Each bar indicates the orienta-
tion to which the excitatory node at that location is
most responsive. Blank spaces represent locations
of nodes that never learn to react to any of the stan-
dard stimuli.
SOURCE: Adapted from Malsburg (1973) with per-
mission of Springer-Verlag.
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Hubel and Wiesel (1962, 1968), develop spon-
taneously among Malsburg’s simulated corti-
cal cells. After 100 learning steps, the lateral
excitatory and inhibitory interactions lead to
self-organization of cortical nodes, whereby
most nodes have preferred orientations and
nodes of similar preferred orientations tend to
be grouped together.

The idea of synaptic conservation is intu-
itively based on the notion that some chem-
ical substance, whether a transmitter or sec-
ond messenger, is present in a fixed amount
at postsynaptic sites and is distributed in vari-
able fashion across impinging synapses. This
mechanism is necessary for the effects in
Malsburg (1973) and in a related model of the
visual cortex by Wilson (1975). Some catego-
rization models (e.g., Carpenter & Grossberg,
1987; Rumelhart & Zipser, 1985) also use
learning laws whereby strengthening of some
synapses weakens other synapses. Such laws
are reminiscent of Rescorla and Wagner’s
(1972) learning scheme, which includes an
upper bound on the total associative strength
of all stimuli with a given reinforcer.

Grossberg (1976a) developed a model
that has many principles in common with

1. Normalize total activity
2. Contrast enhance
3. STM

1. Normalize total
activity
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1. Compute time average
of presynaptic signal
and postsynaptic STM
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2. Multiplicatively gate
signals

LTM in plastic
synaptic strengths

Figure 6.11 Minimal model of development and tuning of feature detectors using STM and LTM
mechanisms.
SOURCE: Adapted from Grossberg (1976a) with permission of Springer-Verlag.

Malsburg’s (1973) but does not use a synap-
tic conservation law for learning. He ar-
gued mathematically that such a conservation
law is incompatible with secondary classical
conditioning. Moreover, although Malsburg
used this law to keep synaptic strengths—
and therefore total network activity—from
growing too large, one can also achieve this
by replacing additive lateral interactions with
shunting interactions. His model for develop-
ment and tuning of feature detectors, combin-
ing lateral inhibition for STM with associative
synaptic modification for LTM, is discussed
in Grossberg (1976a). Figure 6.11 shows the
minimal network of that article. This network,
like that of Malsburg, includes unidirectional
modifiable synapses from an input layer F1

to a “cortical” layer F2, leading to coding of
input patterns by cortical nodes. Grossberg
(1976b) extended this model to include modi-
fiable feedback from F2 to F1. To describe the
mutually excitatory dynamics that emerge in a
modifiable network with top-down feedback,
he coined the term adaptive resonance. This
work ultimately led to the well-known adap-
tive resonance theory (ART) of Carpenter and
Grossberg (1987).
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The network of Figure 6.11 has nonre-
current (feedforward) on-center off-surround
connections between the input-receiving
nodes x1i and recurrent on-center off-surround
connections between the pattern-coding nodes
x2i . F1 and F2 represent successive layers
in a hierarchical network. Grossberg sug-
gested that variations on the same hierarchy
could be repeated in different brain regions. In
Malsburg (1973), F1 was interpreted as either
retina or thalamus, and F2 as visual cortex.
But F1 might also be identified with a com-
posite of early processing areas in the retina
and F2 with retinal areas closer to the optic
nerve (Grossberg, 1976a). Also, because the
visual cortex itself contains several process-
ing stages, identified with cell groups known
as simple, complex, and hypercomplex cells
(Hubel & Wiesel, 1962, 1965, 1968), F1 and
F2 might be interpreted as different parts of
cortex. Nor are these architectures restricted
to vision: Grossberg (1976a) described yet an-
other interpretation, whereby F1 is the olfac-
tory bulb and F2 is olfactory cortex.

Malsburg’s and Grossberg’s coding archi-
tectures follow a similar generic plan: two
layers hierarchically arranged, with associa-
tive learning in bottom-up synapses and the
second-level nodes coding patterns of activ-
ities in the first level. Other neural networks
with similar designs include Bienenstock et al.
(1982) and Edelman and Reeke (1982). In
addition to modeling the development of vi-
sual feature (especially orientation) detectors,
these networks provide a basis for the more
complex process of modeling categorization
(see the sixth section). The set of patterns that
preferentially excites each of the high-level
nodes in a coding model forms a category. In
order to stabilize the code representations un-
der the barrage of possible new input patterns,
Grossberg (1976b) also included associative
learning in top-down as well as bottom-up
connections. This provides in his model the
basis for learning prototypes (which change

with experience) and is the heart of the adap-
tive resonance model that he and Carpenter
developed. Yet even without top-down feed-
back, models of coding lead naturally into
models of categorization.

MODELS OF MOTOR CONTROL

Neural network modeling of brain processes
has basically proceeded from the outside in,
so that sensory and motor processes began to
be modeled before more central ones. First
came models of planned individual move-
ments, then sequences of movements.

Individual Movements

Kuperstein (1988, p. 1308) discussed some
issues involved in modeling motor control:
“The human brain develops accurate senso-
rimotor coordination despite many unfore-
seen changes in the dimensions of the body,
strength of the muscles, and placements of
the organs. This is accomplished for the most
part without a teacher.” Two other issues are
the ability to learn an invariant movement
regardless of velocity and the synchroniza-
tion of different muscles into a coordinated
movement.

Modelers disagree about whether motor
control has requirements similar to or differ-
ent from those for sensory pattern process-
ing. Discussing their arm movement control
model, Wada and Kawato (1993, p. 932) state,
“It is expected that this trajectory formation
model can be used as a pattern recognition
network because a kind of duality exists be-
tween pattern formation and recognition in
this framework.” Yet Gaudiano and Grossberg
(1991, pp. 180–181) suggest that the two sets
of tasks require fundamentally different ar-
chitectures, because sensory pattern process-
ing needs to be based on match learning (such
as adaptive resonance; see the sixth section),
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whereas motor control needs to be based on
mismatch learning (i.e., some form of error
correction).

Because of space limitations this chap-
ter will only cover models of arm move-
ment control, except to note that some of
the principles used in arm movement model-
ing have also been applied to eye movements
(Grossberg & Kuperstein, 1989) and speech
production (Guenther, 1995). Bullock and
Grossberg (1988) modeled a variety of data
on the invariances of planned arm movements.
This includes, for example, the bell-shaped
velocity profile based on data of Atkeson and
Hollerbach (1985): The velocity of movement
as a function of time has the same qualitative
shape over a wide range of movement sizes
and speeds. Such invariances can be modeled
using a network that includes high-level nodes
that explicitly calculate the trajectory opti-
mizing some physical function (e.g., Flash &
Hogan, 1985; Wada & Kawato, 1993). How-
ever, the variable-speed and synchronization
issues mentioned at the start of this section led
Bullock and Grossberg toward a network in
which globally invariant properties are not ex-
plicitly programmed but emerge from events
distributed across many interacting sensory,
neural, and muscular loci. Such models in-
clude error correction (of a type reminiscent
of the circular reaction of Piaget, 1952) but no
explicit optimization.

In Bullock and Grossberg’s (1988) vec-
tor integration to endpoint (VITE) model, a
given movement is performed at variable ve-
locities depending on the activity of a “GO”
signal (see Figure 6.12). The GO activity is
multiplied by the computed vector of mus-
cle activities. Such factorization of a neural
activity vector into a product of energy (to-
tal intensity) and pattern (relative strengths)
has been a theme of Grossberg’s work, in per-
ceptual as well as motor contexts. For exam-
ple, this theme appears in the studies of rel-
ative weights in an outstar (discussed in the

DV
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[DV]� GO 

�
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Figure 6.12 VITE motor control circuit. TPC =
target position command; PPC = present position
command; DV = difference vector (error); GO =
GO signal, which is multiplied by the difference
vector. The full circuit includes interactions be-
tween DV and PPC stages of agonist and antag-
onist muscle commands.
SOURCE: Adapted by permission of the publisher
from Bullock & Grossberg, in W. A. Hershberger
(ed.), Volitional Action, pp. 253–298. Copyright
1989 by Elsevier Science Publishing Co., Inc.

second section) and of discounting the illu-
minant (discussed in the third section). The
present position command (PPC) is compared
with a target position command (TPC) to form
a difference vector (DV). The GO command
(identified with output from the globus pal-
lidus of the basal ganglia) interacts with the
DV. The PPC is gradually updated by integrat-
ing the multiplied vector, that is, summing it
over (continuous) time. The effect of the PPC
on motoneurons is organized through agonist-
antagonist pairs of muscles. Cells analogous
to DV nodes have been located in arm zones of
the premotor, motor, and parietal areas of the
cerebral cortex (e.g., Georgopoulos, Kalaska,
Caminiti, & Massey, 1984).

Gaudiano and Grossberg (1991) developed
an adaptive extension of the VITE model
called the vector associative map (VAM) to
enable the corrective DV calculations to be
influenced by visual feedback. This involves
learning that depends on random generation
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of potential arm positions at the PPC by mo-
tor “babbling,” which is again reminiscent
of Piaget’s circular reaction. This class of
models was also extended to multiple arm
joints in Bullock, Grossberg, and Guenther
(1993). Still further extensions of this class
of models involve specific roles for the cere-
bellum, motor cortex, and other brain motor
control regions (Bullock, Cisek, & Grossberg,
1998; Cisek, Grossberg, & Bullock, 1998).
Hence a network theory previously developed
to model task-imposed constraints was ex-
tended in order to map closely onto cortical
neuroanatomy and neurophysiology.

Kawato, Furukawa, and Suzuki (1987) and
Kawato, Isobe, Maeda, and Suzuki (1988)
simulated a control circuit driven by sensory
signals and inspired by known anatomy and
physiology of several brain areas. Like the
Bullock-Grossberg (1988) network, the net-
works of Kawato et al. can learn a movement
at one speed and then perform the same move-
ment at a different speed. These models com-
bine solution of the inverse problem (calculat-
ing movements from a desired position) with
that of the forward problem (calculating pos-
sible consequences of particular movements).
Unlike the models of Grossberg’s group, those
of Kawato’s group are based on explicit min-
imization of a motor-related variable: rate of
change of torque. Interleaved learning of for-
ward and inverse mappings is found in some
other models (e.g., Jordan & Rumelhart, 1992,
which is based on back propagation with ad-
ditional units, and Bullock et al., 1993).

Models of Motor Sequence Learning

Several investigators have added recurrent
interactions to the basic supervised back-
propagation network in order to train a net-
work to produce a specified time sequence of
outputs. The first of these was Jordan (1986),
who added to a standard back-propagation
network some feedback and some plan units

activated by external stimuli. The net effect
is to have a decaying memory of past events
blended with current plans. The sequential
network has been applied to controlling arm
motor trajectories (Massone & Bizzi, 1989)
and also to learning linguistic sequences
(Elman, 1990).

Other sequence models have been based
on the ART model (Carpenter & Grossberg,
1987), which is based on high-level nodes
classifying patterns of low-level node activity.
Bapi and Levine (1994, 1997) combined ART
with a mechanism for storing multiple copies
of list items combined with learnable long-
term transition weights between items. They
applied their network to simulating monkey
data showing that prefrontal lesions do not
disrupt learning simple motor sequences but
disrupt learning of sequences classes.

Bapi and Levine’s networks can learn many
sequences composed of rearrangements of the
same elements by encoding them at sequence
detector nodes. Sequence nodes also appear
in the models of Dominey and Arbib (1992)
and Dominey, Arbib, and Joseph (1995) for
learning a sequence of eye movements based
on associations between visual cues and target
positions. These models include basal gan-
glia, along with parietal and frontal cortex
and various parts of thalamus and midbrain,
in generating eye movements. This includes
learnable signals from the cortex to basal
ganglia pathways involved in selective dis-
inhibition of generations of saccades in par-
ticular directions. In one set of simulations,
learnable signals to basal ganglia from infer-
otemporal cortex were used to simulate data
on conditioned discrimination of associations
between visual cues and target eye move-
ment responses in monkeys. A variant of the
model, using prefrontal instead of inferotem-
poral cortex, learns to produce a sequence of
saccades in response to a sequence of spa-
tial targets. These networks also use reward
and punishment signals to change weights
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between context elements and sequence gen-
erators.

Modeling motor sequence learning relates
to modeling temporal sequence perception.
Some models of temporal sequence percep-
tion incorporate specific neurophysiological
interactions, such as those in the hippocam-
pus. Levy (1996) developed a sequence-
discriminating network based on autoassoci-
ation (see the section titled “Autoassociation
and Heteroassociation”)—inspired by long-
term potentiation at hippocampal synapses—
that solved disambiguation problems in
temporal sequence learning. Denham and
McCabe (1996) emphasized the role of the
hippocampal CA3 region in comparing inputs
from two other regions, one representing a
predicted next element of a sequence and the
other representing the actual element.

MODELS OF
COGNITIVE-EMOTIONAL
INTERACTIONS

Neural network models considered the ef-
fects of reward and punishment fairly early in
their development (Grossberg, 1972a, 1972b;
Klopf, 1982; Werbos, 1974). Some of them
also considered the interplay of positive and
negative affect via opponent processing
(Grossberg, 1972a, 1972b). The interactions
of cognitive and emotional variables have
played a major role in models of condition-
ing and, more recently, of interactions among
brain areas such as the cortex, limbic system,
and basal ganglia.

Models of Conditioning

Klopf (1982) proposed that a synapse is in-
creased in efficacy if its activity is followed
by a net increase in the depolarization (posi-
tive stimulation) received by the postsynaptic
cell. In other words, he proposed that depo-

larization acts as positive reinforcement for
neurons. Klopf’s theory was based on an anal-
ogy between single neurons and whole brains,
both treated as goal-seeking devices. This is
the reason why he titled his book The Hedo-
nistic Neuron.

The importance of activity change, as op-
posed to activity itself, was also highlighted in
Rescorla and Wagner’s (1972) theory, which
is not neurally based but has influenced the
work of many neural modelers. Their theory is
based on the results of classical conditioning
experiments indicating that associative learn-
ing of a CS can be greatly influenced by the
background stimuli present during both train-
ing and recall trials. The main tenet of their
theory was that “organisms only learn when
events violate expectations. Certain expecta-
tions are built up about the events follow-
ing a stimulus complex: expectations initi-
ated by the complex and its component stimuli
are then only modified when consequent
events disagree with the composite expecta-
tion” (p. 75).

Sutton and Barto (1981) set out to explain
classical conditioning with a theory that in-
cluded elements of both the Rescorla-Wagner
(1972) and Klopf (1982) theories. Their con-
ditioning model includes n stimulus traces
xi (t), an output signal y(t), and n synaptic
weights wi (t), as shown in Figure 6.13. These
weights are considered to denote associations
between CSs and a primary reinforcer or US.

Sutton and Barto (1981) proposed that in
addition to the stimulus traces that denote the
duration and intensity of given CSs, additional
traces are separate from the stimuli and last
longer. These are the actual memory traces,
but Sutton and Barto termed them eligibility
traces because they indicate when a particular
synapse is eligible for modification. Possible
cellular mechanisms involving calcium ions
and cyclic nucleotides were suggested for el-
igibility traces. Finally, the current amount of
reinforcement, y(t), was compared with the
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Figure 6.13 Network with n learnable condi-
tioned stimulus (CS) pathways, and a pathway with
fixed weight w0 for the unconditioned stimulus
(US). The node y represents unconditioned and
conditioned responses (UR and CR).
SOURCE: From Sutton & Barto, Psychological Re-
view, 88, 135–170, 1981. Copyright 1981 by the
American Psychological Association. Adapted by
permission.

weighted average of values of y over some
time interval preceding t.

The two innovations in Sutton and Barto’s
(1981) model—eligibility traces and learn-
ing dependent on change in postsynaptic
activity—were motivated by results on tim-
ing in classical conditioning. In particular, the
model can explain the fact that in many condi-
tioning paradigms, the optimal interstimulus
interval is greater than 0. Sutton and Barto’s
network can also simulate other contextual ef-
fects in classical conditioning, such as block-
ing the formation of associations to a new
stimulus if another stimulus that has already
been conditioned is simultaneously present.

Sutton and Barto’s (1981) work was elabo-
rated by Klopf (1988) and others into the dif-
ferential Hebbian learning rule (also called the
drive-reinforcement rule), whereby synapses
change in strength as a function of changes
over time in both presynaptic and postsynap-
tic activities. Klopf was led to such a rule by
his earlier hedonistic neuron theory, in which
neurons themselves were goal-seeking.

Klopf’s (1988) network simulated a wide
variety of classical conditioning data. These

data included blocking, secondary condition-
ing, extinction and reacquisition of an ex-
tinguished response, conditioned inhibition,
effects of interval between CS and US oc-
currences, and effects of stimulus durations
and amplitudes. (However, the simulations of
CS and US interval effects depend on some
weighting factors for time delays, and these
factors were chosen specifically to match
those data. Klopf did not suggest an underly-
ing mechanism for generating those weight-
ing factors.) A summary of classical condi-
tioning data reproduced by the Klopf model
and its comparison with other conditioning
models appear in Chance, Cheung, Lykins,
and Lawton (1997).

The synaptic learning law involving
change in postsynaptic activity is not the only
possible way to simulate timing effects or
blocking in classical conditioning. The same
data were simulated by Grossberg and Levine
(1987) using a network that combines asso-
ciative learning with attentional effects due to
lateral inhibition. Also, the Grossberg school
has incorporated into conditioning models a
mechanism for affective opponent processing,
which is the basis for an architecture called the
gated dipole. The gated dipole theory was mo-
tivated by an effort to compare current values
of stimulus or reinforcement variables with
recent past values of the same variables.

Gated dipoles were introduced by
Grossberg (1972a, 1972b) to answer the fol-
lowing question about reinforcement. Sup-
pose an animal receiving steady electric shock
presses a lever that turns off the shock. Later,
in the same context, the animal’s tendency to
press the lever is increased. How can a mo-
tor response associated with the absence of a
punishing stimulus (shock) become itself pos-
itively reinforcing?

Figure 6.14 shows a schematic gated
dipole. The synapses w1 and w2, marked with
squares, have a chemical transmitter that tends
to be depleted with activity, as indicated by
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Figure 6.14 Schematic gated dipole network. J is
a significant input (electric shock in the example
of Grossberg, 1972b), and I is nonspecific arousal.
Synapses w1 and w2 can undergo depletion (as w1

has in this diagram), as indicated by partial light-
ening of square boxes. After J is shut off, w1 < w2

(transiently), so x1 < x2. By competition, x4 is ac-
tivated, enhancing a motor output suppressed by J.

the −yi wi terms in the differential equations
for those wi values. This could be called
an anti-Hebbian law because the direction of
change with use is opposite to the one Hebb
and others use for associative learning. Other
terms in those equations denote new trans-
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Figure 6.15 Typical time course of the channel outputs of a gated dipole.
SOURCE: Adapted from Neural Networks, 2, D. S. Levine & P. S. Prueitt, Modeling some effects of frontal
lobe damage: Novelty and perseveration, 103–116, with permission from Elsevier Science.

mitter production, which is greatest when the
transmitter is much less than its maximum. In
Figure 6.14, the input J represents shock, for
example. The input I is a nonspecific arousal
to both channels y1-to-x1-to-x3 and y2-to-x2-
to-x4, which compete for activation. While
shock is on, the left channel receives more
input than the right channel; hence transmit-
ter is more depleted at w1 than at w2. But
the greater input overcomes the more depleted
transmitter, so left channel activity x1 exceeds
right channel activity x2. This leads, by feed-
forward competition between channels, to net
positive activity from the left channel out-
put node x3. For a short time after shock is
removed, both channels receive equal inputs
I , but the right channel is less depleted of
transmitter than the left channel. Hence, right
channel activity x2 now exceeds x1 until the
depleted transmitter recovers. Again, com-
petition leads to net positive activity from
the right channel output node x4. Whichever
channel has greater activity either excites or
inhibits x5, thereby enhancing or suppressing
a particular motor response.

The network is called a gated dipole be-
cause it has two channels that are opposite
(negative and positive) and that gate signals
based on the amount of available transmitter.
Characteristic output of one gated dipole is
graphed in Figure 6.15. This graph illustrates
the rebound in x4 activity after the cessation of
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x3 activity. Grossberg’s work was concurrent
with Solomon and Corbit’s (1974) opponent-
processing theory of motivation, whereby sig-
nificant events elicit both an initial reaction
and a subsequent counterreaction. Indeed,
Grossberg (1987b) hinted that a gated dipole
can exhibit switching back and forth between
opposite responses.

Grossberg (1987b) used this transmitter-
depletion mechanism instead of a simple time-
difference mechanism to model the effects of
stimulus changes in order to capture two ef-
fects in conditioning. One is that the positive
reinforcement value of escape from shock is
sensitive to both its intensity and its duration.
The other is that the amount of reinforcement
depends on the overall arousal level of the net-
work (or organism).

If the two channels in Figure 6.14 are re-
versed in sign so that the channel receiving in-
put is the positive one, the network provides an
explanation for frustration when a positively
reinforcing event either is terminated or does
not arrive when expected. The rebounds be-
tween positive and negative also explain the
partial reinforcement acquisition effect. Ac-
cording to the gated dipole theory, a reward’s
attractiveness is enhanced by comparison with
an expected lack of reward.

The idea of opponent processing can be
generalized to many other neural processes. It
is an old idea in vision; for example, the retina
contains pairs of receptors for opponent colors
(e.g., green and red), and one of the two colors
is transiently perceived after removal of the
other one. The dipole in the sensory domain
includes nodes responding to presence or ab-
sence of specific sensory stimuli. Grossberg
(1980) used transient rebounds in such dipoles
to model visual phenomena such as color-
dependent tilt aftereffects. Also, gated dipoles
have been applied to modeling motor sys-
tems. In those models, dipoles simulate the
actions of neuron populations innervating
agonist-antagonist muscle pairs (Bullock &

Grossberg, 1988; Grossberg & Kuperstein,
1989; see the fourth section).

Involvement of Different Brain Areas

Many of the conditioning models discussed
in the last section were inspired by data on
the rabbit’s nictitating membrane response
(NMR), that is, the conditioned eye blink in
response to a clicking sound paired with a tap
to the forehead. Since the early 1990s, more
data has appeared on brain areas involved
in the NMR, and these data have influenced
the development of neural network models.
Thompson (1990) mapped the detailed cir-
cuitry of the NMR involving connections be-
tween the cerebellum and areas of the brain-
stem controlling facial sensation and eye
movement. Perrett, Ruiz, and Mauk (1993)
found that lesions to the cerebellar cortex dis-
rupt timing of conditioned NMRs.

The role of the cerebellum in mediating
timing of the conditioned response is comple-
mented by a role of the hippocampus in en-
coding the timing of stimulus arrivals. In par-
ticular, Berger, Berry, and Thompson (1986)
found that during the NMR and conditioned
jaw movement paradigms, the pattern of neu-
ron responses in hippocampal pyramidal neu-
rons mimics the time course of the condi-
tioned response. This time course fits the
learned timing of US arrival.

These adaptively timed cell responses are
from the CA3 subregion of hippocampus,
which receives inputs from different types of
cells in another region of hippocampus, the
dentate gyrus. These dentate cells are time-
locked to the CS; that is, each cell exhibits an
increase in firing rate starting at a fixed time
interval after the CS. Hence, the hippocampal
network has to convert an array of fixed time
delays into adaptive timing.

Grossberg and Schmajuk (1989) designed
a neural network, an extension of their 1987
model (see the previous subsection), whereby
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a collection of neurons with a range of time
delays is involved in timing a conditioned re-
sponse. Subsequent models related their in-
sights to cerebellar and hippocampal data
(Bullock, Fiala, & Grossberg, 1994; Fiala,
Grossberg, & Bullock, 1996; Grossberg &
Merrill, 1996; see also Gluck & Myers, 1993,
and Myers & Gluck, 1994, for related mod-
els). Their technique for accomplishing this
timing function consists of a network with a
large number (80 in their first simulation) of
gated dipoles (the opponent processing model
of Figure 6.14), each becoming activated and
habituated at a different rate. The authors
called this device spectral timing because it in-
cludes a spectrum of possible activation rates,
thereby enabling the network to learn to ex-
pect stimuli or perform responses at specific
time delays after the CS.

Grossberg and Merrill (1996) proposed
that the spectral timing architecture appears
in both the cerebellum and the hippocampus
and performs different functions in each. In
the cerebellum it controls the timing of the
conditioned motor response. In the hippocam-
pus it controls the relationship between timing
of sensory stimuli and learning of their appeti-
tive or aversive significance; for example, if an
animal expects to receive food at a given time
after a bell is rung, it should not have a frus-
tration response to the nondelivery of food be-
fore that time. Bullock et al. (1994) modeled
the neurophysiology of cerebellar aspects of
timing on the NMR. Fiala et al. (1996) elab-
orated that model by incorporating detailed
biochemistry of transmitters, receptors, and
second messengers that affect both climbing
fiber and parallel fiber input to Purkinje cells.

In addition to these animal learning mod-
els, there have been many neural network
studies of brain involvement in human
cognitive-emotional interactions. Many of
these studies relate to the prefrontal cortex,
a region long implicated as playing a special
role in coordinating and integrating plans of

action based on combining sensory signals
from the environment and visceral and mo-
tivational signals from the organism.

Most efforts at neural network modeling of
frontal lobe function have focused on specific
cognitive tasks that illustrate certain common
themes in effects of prefrontal lesions in hu-
man patients or monkeys. These themes in-
clude, for example, reduced ability to learn
and perform planned sequences of behav-
iors, disruption of cognitive-motivational in-
teractions, and disturbance in the processing
of context. The models of sequence learning
were discussed in the fourth section, so we
now discuss models of the other two types of
disruption.

Disruption of Cognitive-Motivational
Interactions

The frontal lobes are the part of cortex with
the strongest reciprocal connections with sub-
cortical parts of the brain involved in process-
ing internal drive levels (the hypothalamus)
and positive or negative valences of stimuli
(the limbic system). For this reason, frontal
lobe damage leads to diminished influence of
reinforcement on behavioral performance. An
aspect of this syndrome is perseveration in be-
haviors that were formerly, but are no longer,
rewarding.

An example of perseveration occurs in
the Wisconsin Card Sorting Test (WCST),
whereby the participant is given a sequence
of 128 cards, each displaying a number, color,
and shape, and is asked to match each card to
one of four template cards. The experimenter
then says whether the match is right or wrong,
without saying why. After 10 correct color
matches, the experimenter switches the crite-
rion to shape, without warning. After 10 cor-
rect shape matches, the criterion is switched to
number, then back to color, and so on. Milner
(1963, 1964) showed that most patients with
damage to a certain region of frontal cortex
(the dorsolateral region) can learn the color



pashler-44093 book December 18, 2001 10:18

252 Neural Network Modeling

Categories (F2FF )

�
�

�
� �

� �
�

�

wij

wjiw

� �

�

�

�

�

Biases

xi

i � 1,2,3,4

Numbers

Features (F1)

i

i �

Colors

xi

i � 9,10,11,12

Shapes

Shape

1

�

WW

h1 h2

h3

�

�

� �

2

�

�

�

�

� or �r

�

�

�

Number Color

Number Color

Shape

Habits

R

Reinforcement

Attentional
gating

�

�

�

M1

M2MM M3MM

Input
card

Match

Signalsngn
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publishers.

criterion as rapidly as normals, but then can-
not switch to shape.6

Leven and Levine (1987) simulated the
card-sorting data using the network of Fig-
ure 6.16. In this network, based on adaptive
resonance theory (see the next section), nodes
in F1 code features (numbers, colors, and
shapes), whereas nodes in F2 code template
cards. Corresponding to each feature class
(number, color, or shape) is a “habit node”
and a “bias node.” Habit nodes code how of-
ten classifications have been made, rightly or
wrongly, on the basis of each feature. Bias

6Since Milner’s (1963, 1964) work, other clinicians have
found that the WCST may not be the most sensitive test
of dorsolateral prefrontal damage, so use other tests such
as verbal fluency (for left prefrontal damage) and design
fluency (for right prefrontal damage).

nodes add habit node activities to reinforce-
ment signals (the experimenter’s “Right” or
“Wrong”), then gate the excitatory signals
from F1 to F2. A network parameter measur-
ing the strength of reinforcement signals to
bias nodes was varied. The network with high
reinforcement acted like Milner’s normal sub-
jects, whereas the network with low reinforce-
ment acted like Milner’s frontal patients.

But perseveration due to frontal damage
can be overridden by attraction to novelty,
as in the monkey data of Pribram (1961).
Pribram placed a peanut under a junk object
several times, unobserved by a monkey. Each
time this was done, he added a new object to
the scene and waited for the monkey to choose
which object to lift for food. On the first trial
with a novel object present, normal monkeys
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tended to choose another object that had previ-
ously been rewarded, whereas monkeys with
lesions of the ventral frontal cortex chose the
novel object immediately. Levine and Prueitt
(1989) simulated the novelty data using a net-
work based on the gated dipole (see the last
section). In their network, each sensory stim-
ulus has an on and off channel structured like
the two competing channels of a gated dipole
(cf. Figure 6.14). With weak reward signals,
as in frontally lesioned animals, the on chan-
nel for the old object is more depleted than
the on channel for the new object, because

Reward

Error cluster

Rule-coding
clusters

Curr
Current intention

color

number

Go

Output

Input

form

Figure 6.17 Schematic architecture of Dehaene and Changeux’s model of the Wisconsin Card Sorting
Test. Cards are coded along the dimensions of color, shape, and number, and their features are stored at
memory clusters. Memory clusters activate the clusters defining current intention (about which card to
sort with). Rule-coding clusters modulate the transmission between memory and intention clusters, thus
deciding the sorting rule. Positive or negative reward strengthens or weakens the rule currently in force.
SOURCE: Adapted from Dehaene and Changeux (1991) with the permission of Oxford University Press.

the old cue channel has been active longer.
Hence, the new object is approached. With
strong reward signals, as in normal animals,
associative learning at synapses between the
output node corresponding to the previously
rewarded object and the node related to the
food reward enhances approach to that ob-
ject enough to counteract transmitter deple-
tion, and the old object is approached.

Another network model of the WCST was
developed by Dehaene and Changeux (1991).
Dehaene and Changeux’s model (Figure 6.17)
was intended to represent somewhat more
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general cognitive and inferential capabilities
than those manifested by the WCST. De-
spite different underlying foundations, most
parts of Dehaene and Changeux’s network can
be mapped fairly closely either into Levine
and Prueitt’s (1989) WCST model or into
their novelty preference model. For example,
Dehaene and Changeux’s “memory” and
“intention” nodes are closely analogous to
Levine and Prueitt’s (ART-based) “feature”
and “category” fields. Also, the “rule-coding
clusters” of Figure 6.17 are similar struc-
turally and functionally to the “bias nodes” of
Figure 6.16. Dehaene and Changeux added to
their model a feature that they called episodic
memory, though it differs somewhat from the
common psychological usage of that term
(Tulving, 1972). Their version of episodic
memory kept track of rules that had been pre-
viously tried and did not lead to reinforce-
ment, and selectively reduced the activation
of nodes representing such rules. This is anal-
ogous to the opponent processing mechanism
(via the gated dipole network) used by Levine
and Prueitt to enhance selectively representa-
tions of novel inputs.

Recently, several authors have simulated
the WCST using models that are formally sim-
ilar to the Levine et al. or Dehaene-Changeux
models but incorporate more details of known
neuroanatomy, such as the interconnections
among frontal cortex, basal ganglia, and tha-
lamus. The most detailed of these models is
that of Monchi and Taylor (1999).

Disruption of Context Processing

J. D. Cohen and Servan-Schreiber (1992)
used a back propagation network to simu-
late three cognitive tasks that require the par-
ticipant to perform a nondominant but con-
textually appropriate response. One of these
was the Stroop test, whereby the participant
sees the word for a color printed in ink of either
the same or a different color and must state
the color of the ink. Reaction time is slower if

the ink color and word do not match (e.g.,
if the word “red” is written in green ink).
People with dorsolateral frontal damage, as
well as many schizophrenics, have an even
slower reaction time under these incongru-
ent conditions. Cohen and Servan-Schreiber
also simulated a continuous performance task,
whereby subjects were instructed to respond
to a target pattern while receiving a steady
stream of other stimuli, and a lexical disam-
biguation task.

J. D. Cohen and Servan-Schreiber (1992)
reproduced deficits of schizophrenics on all
three tasks, which they attributed to a deficit
of dopamine inputs to the dorsolateral pre-
frontal cortex. Their network includes a node
that selectively influences signals along two
competing neural pathways (e.g., pathways
coding words and colors in the Stroop test)
and that is assumed to be decreased in activ-
ity in the case of dorsolateral frontal damage
or schizophrenia. Although their network ap-
pears anatomically unrealistic, they captured
some qualitative functional relationships that
are important for a wide class of tasks that
involve prefrontal executive function.

Context is also involved in the frontal
task of discriminating which of two items in
a sequence occurred more recently (Milner,
1982). Simulation results on that task were
presented in Monchi and Taylor (1998) us-
ing a network called ACTION, which was
based on mimicking interactions between the
prefrontal cortex, thalamus, and basal ganglia
combined with back-propagation learning.

There has been much recent work wherein
lesions in particular parts of a neural net-
work cause the network to perform a cogni-
tive function deficiently in a manner reminis-
cent of some mental or neurological disorder.
There are four edited books (Parks, Levine,
& Long, 1998; Reggia, Ruppin, & Berndt,
1996; Reggia, Ruppin, & Glanzman, 1999;
Stein & Ludik, 1998) about models of mental
and cognitive disorders. The models conform
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in varying degrees to known neuroanatomy
and physiology. Even those models that are
less biologically realistic illustrate principles
that will be required for a more refined the-
ory of the dynamic processes involved in such
mental disorders.

Perhaps the first article of this type was
Grossberg (1984), which discusses network
analogs of Parkinson’s disease, some forms
of schizophrenia, some forms of depression,
and juvenile hyperactivity. Grossberg showed
mathematically that in the gated dipole (Fig-
ure 6.14), if the nonspecific arousal is within
a certain range, the network behaves in a
fashion that is usually considered normal.
Above or below that range, the network ex-
hibits pathologies that suggest symptoms of
certain common mental disorders. When the
network is underaroused, its threshold of re-
sponse to limited-duration (phasic) inputs is
raised. Paradoxically, once this threshold is
exceeded, the on-reaction is hypersensitive to
input increments. Giving the network a “drug”
that increases nonspecific arousal (analogous
to an upper) reduces these symptoms of hy-
persensitivity. But if too much of the upper is
administered, the network can develop the op-
posite syndrome associated with overarousal.
Grossberg compared underarousal effects in
his network to observed symptoms of both ju-
venile hyperactivity and Parkinsonism. These
illnesses are frequently treated by drugs that
enhance the efficacy of the neural transmit-
ter dopamine: Ritalin (at the time Grossberg
wrote, amphetamine) for hyperactive chil-
dren and L-DOPA for Parkinson patients. The
side effects of overdoses of those drugs can
include schizophrenic-like symptoms. Con-
versely, some drugs used to treat schizophren-
ics by suppressing dopamine have Parkinson-
like side effects.

Based on these analogies, Grossberg
(1984) made two experimental predictions
about sufferers from these two disorders that,
to my knowledge, have still not been tested.

First, he suggested that hyperactive and
Parkinson patients should exhibit a weak af-
fective rebound. For example, they should
have an abnormally small reaction to halving
a reward or punishment and an abnormally
small aftereffect to halving the brightness of a
visual cue. Second, he suggested that the same
sudden increments in nonspecific arousal that
would cause an off-rebound in normals would
cause increased on-channel activity in hyper-
active and Parkinson patients. This could lead
to dishabituation, thence distractibility, by
irrelevant yet unexpected events.

The effects of overarousal in this network
are opposites of some underarousal effects.
The threshold for response to a phasic input is
reduced. But once the threshold is achieved,
the network is abnormally insensitive to in-
crements in input intensity. This is analogous
to the flatness of affect characteristic of some
kinds of schizophrenia.

Grossberg (1984) discussed neurochemi-
cal analogs for some of his network variables.
He compared overarousal to excessive activ-
ity in the diffuse synapses from the substantia
nigra (an area of the midbrain) to the cortex,
limbic system, and corpus striatum. The in-
put to the striatum plays an important role
in Parkinson’s disease. The synapses from
the substantia nigra use the neurotransmit-
ter dopamine. Contreras-Vidal and Stelmach
(1995) developed a network model, based on
Grossberg’s principles, of the effects of
Parkinsonism on both the motor and cognitive
functions of the basal ganglia and of remedi-
ation with L-DOPA.

MODELS OF HIGH-LEVEL
COGNITION

Neural networks have been applied to model-
ing many high-level cognitive processes: cat-
egorization, decision making, language un-
derstanding, and reasoning and analogy. We
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consider these in turn and then discuss the
fledgling applications of neural networks to
social psychology. Pattern categorization and
classification has engaged three of the best
known neural network architectures: back
propagation, ART, and BSB.

Categorization and Classification

Categorization models have been divided into
supervised and unsupervised models. Super-
vised means that there is a training set and
that the network is told to which categories
each training stimulus belongs and then ad-
justs its weights so as to categorize a more
general class of stimuli. Unsupervised means
that the system is self-organizing and picks
out the regularity in the stimuli it receives,
a process often called clustering. The back-
propagation model is entirely supervised. The
ART and BSB models were originally unsu-
pervised but added supervision later on. The
brain probably uses a mixture of unsuper-
vised architectures, which enable it to detect
regularity in the environment, and supervised
architectures, which enable it to learn simi-
lar responses to dissimilar stimuli based on
feedback from the environment (e.g., which
mushrooms are poisonous or edible and which
phonetic distinctions one should not make in
a given language).

Neural networks for supervised learning
of predetermined classifications date back
to Rosenblatt (1962; cf. the second section
of this chapter) and were developed fur-
ther by Rumelhart et al. (1986) in the back-
propagation architecture. To illustrate use of
back propagation in a specific problem do-
main, they taught the network to discriminate
between a “T” and a “C” regardless of po-
sition or orientation in the visual field. Fig-
ure 6.18 illustrates the different rotations of
the T and C. Translation invariance is achieved
by adding an additional transformation to the
rule for learning input-to-hidden-unit connec-

Figure 6.18 Stimulus set for the T-versus-C
problem. The set consists of a block T and a block
C in each of four orientations. One of the eight pat-
terns is presented on each trial.
SOURCE: Reprinted from Rumelhart et al. (1986)
with permission of MIT Press.

tions. To make the learning of a pattern inde-
pendent of its location in the visual field, all
hidden units are constrained to learn exactly
the same pattern of weights. This is accom-
plished by adding together the weight changes
dictated by the error correction rule for each
unit and then changing all weights by averages
of those amounts.

The unsupervised version of ART is best
introduced in Carpenter and Grossberg
(1987a), which describes the ART 1 model
for classifying binary (0 or 1 to each node) in-
puts. Modifications of this algorithm for clas-
sifying analog (running over a range, e.g., be-
tween 0 and 1) inputs are ART 2 (Carpenter &
Grossberg, 1987b) and fuzzy ART (Carpenter,
Grossberg, & Rosen, 1991). The architec-
tures of all these networks were based on the
idea of adaptive resonant feedback between
two layers of nodes (Grossberg, 1976b; see
Section 3.2).

Figure 6.19 illustrates the structures of
ART 1. The F1 layer consists of nodes re-
sponding to input features, analogous to cell
groups in a sensory area of cortex. The F2

layer consists of nodes responding to cat-
egories of F1 node activity patterns. Con-
nection weights between the two layers are
learnable in both directions. The F1 nodes do
not directly interact with each other, but the
F2 nodes are connected via recurrent lateral

[Image not available in this electronic edition.]
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Figure 6.19 ART 1 architecture. Short-term memory at the feature level F1 and category level F2,
and bottom-up and top-down interlevel long-term memory traces, are modulated by other nodes. The
orienting system generates a reset wave at F2 when bottom-up and top-down patterns mismatch at F1,
that is, when the ratio of F1 activity to input activity is less than vigilance r. This wave tends to inhibit
recently active F2 nodes. (Adapted from Carpenter & Grossberg, 1987, with permission of Academic
Press.)

inhibition (cf. the third section of this chap-
ter). Recall that lateral inhibition is a common
device in neural networks for making choices
in STM. In this version, the simplest form of
choice (winner-take-all) is made: Only the F2

node receiving the largest signal from F1 be-
comes active. Inhibition from F2 to F1 (via
“gain control” nodes) prevents F2 activity
from always exciting F1, thereby preventing
“hallucinations” from occurring when a cat-
egory node is active. Also, it shuts off most
neural activity at F1 if there is mismatch be-
tween the input pattern and the active cate-
gory’s prototype. Only with a sufficient match
are enough of the same F1 nodes excited by
both the input and the active F2 category node,
which is needed to overcome nonspecific in-
hibition from F2. The criterion for match uses
an adjustable parameter, called vigilance, that
determines category size.

If match occurs, enhanced F1 activity in-
hibits the activity of the node r representing
the orienting subsystem. This stabilizes the

categorization of the given input pattern in
the given F2 node. By contrast, if mismatch
occurs, F1 activity is not sufficient to inhibit
r, which thereby becomes active. The orient-
ing system node activity leads to F2 reset,
which shuts off the active category node as
long as the current input is present. The F2

node receiving the next largest F1 signal is
then tested, and the process is repeated.

Supervision was added to the ART struc-
ture in the ARTMAP network of Carpenter,
Grossberg, and Reynolds (1991). ARTMAP
is an autonomous learning network that learns
the association between two sets of categories
based on predictive success. This supervised
learning system consists of a pair of ART
modules (ARTa and ARTb). These ART mod-
ules learn stable recognition categories in re-
sponse to the inputs at their feature layers.
They are joined by an internal controller that
enables an association to be formed between
the categories learned in each ART module.
During training, the ARTa module receives a
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set of input vectors, and ARTb receives a set
of input patterns, each of which is the correct
prediction given one of the ARTa vectors. If
there is a predictive error at ARTb, then the
map field orienting subsystem adjusts the vig-
ilance parameter of ARTa so that the category
size of the ARTa input is adjusted to minimize
this error. For example, if ARTa and ARTb

categorize bananas based on visual and taste
features respectively, then green and yellow
bananas can share the common features of the
banana category in ARTa and still can predict
different taste categories in ARTb. This can
be achieved in training by feeding back the
taste information from ARTb to enable ARTa

to form different categories for these two
kinds.

The BSB model (Anderson et al., 1977;
Anderson & Murphy, 1986) associates vec-
tor patterns of activities at a set of nodes
with other patterns at the same nodes. The
matrix consisting of the connection weights
between nodes provides feedback that trans-
forms the pattern. The network then converges
to one of the characteristic system states corre-
sponding to corners of a box in n-dimensional
space (n being the number of nodes). Catego-
rization of the original input pattern is based
on whichever of these corners is reached.
The BSB model is applicable to both au-
toassociative and heteroassociative encoding
(see the section titled “Autoassociation and
Heteroassociation”).

This algorithm represents positive feed-
back as it might occur in the brain, due to
the past operation of a Hebbian associative
learning law. This feedback has the desirable
property of enhancing significant activities or
stimuli, but often has an additional property
that is undesirable. Repeated application to a
pattern vector will drive the state of the system
outside the box, that is, cause values of some
or all of the xi to get outside the bounds of the
system. To prevent activities from becoming
unbounded, Anderson et al. (1977) imposed

an additional rule whereby if any one of the
activities becomes greater or less than the lim-
its imposed by the box, it is reset to the closest
limiting value. Hence, the BSB model, like all
neural network models, includes a method for
keeping activities within bounds, correspond-
ing to the limits on possible neuron firing
frequencies.

Anderson and Murphy (1986) combined
BSB with an error-correction learning rule (cf.
Rumelhart & McClelland, 1986). This was
applied to processing linguistic inputs that
are converted to vectors of 1s and −1s by
means of ASCII codes. This model has re-
produced the disambiguation by context of
words with more than one meaning. Other ap-
plications of this categorization system have
included prototype learning in random-dot
patterns, retrieving medical information, clas-
sifying radar signals, learning how to do arith-
metic, and perceptually disambiguating the
Necker cube. In addition, Abdi et al. (1997)
applied an autoassociative network based not
on BSB but on a variant of Anderson (1972) to
classifying human faces by gender. The face
classification employs a modified autoassoci-
ator designed to allow for selective attention
to different parts of the feature space.

Decision Making

Most psychologists by now are very famil-
iar with Tversky and Kahneman’s (e.g., 1974,
1981) results indicating that human decision
processes violate rational utility-maximizing
norms in some systematic and repeatable
ways. The influence of nonrational factors in
cognitive tasks poses a challenge for quanti-
tative modeling but has been approached us-
ing the type of models previously used for
cognitive-emotional interactions (see the fifth
section of this chapter).

Grossberg and Gutowski (1987) applied
opponent processing (the gated dipole of
Figure 6.14) to explaining some Tversky-
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Kahneman data on decision making under
risk. Previously, Kahneman and Tversky
(1979) themselves had proposed a variant of
utility theory, called prospect theory, whereby
preferences are a nonlinear function of both
gain (or loss) and its probability of occur-
rence. But prospect theory excludes the con-
text of statements and the past experience of
decision makers. Grossberg and Gutowski’s
theory considers such dynamic variables.
Recall from the last section that gated dipoles
provide a means to compare current values
of motivational or sensory variables with ex-
pected values of those same variables. Such
expectation could be based either on recent
past events or on verbally induced anticipa-
tion. The latter possibility explains Tversky
and Kahneman’s data on effects of linguistic
framing on decisions, for example, that prefer-
ences among possible public health measures
are different if framed in terms of people dy-
ing versus people saved.

Grossberg and Gutowski’s (1987) explana-
tion of Tversky and Kahneman’s choice data
is a significant but incomplete advance. Their
network still optimizes a single variable, even
if its optimization is not analogous to ratio-
nal calculation in humans. In this case, the
variable is net activity of the positive chan-
nel in a gated dipole, the dipole interpreted
as relating to affect or motivation. More re-
alistic explanations of decision processes are
likely to depend on multiple decision criteria,
including affect, habit, and novelty, and on
multiple attributes or features of the data to
be decided about. Which criterion is used de-
pends both on the cognitive task involved and
on the current state of the organism (or net-
work). Thus far, researchers have not modeled
extensive psychological data on mood and
memory.

Leven and Levine (1996) developed an ex-
tension of this gated dipole model of choice to
multiattribute decision making. These authors
modeled soft drink consumer preferences dur-

ing the New Coke fiasco of the mid-1980s.
New Coke had outscored Coke in blind taste
tests because of its sweetness but was a fail-
ure in the market because it lacked the famil-
iarity of the earlier Coke. This suggests that
the mood change due to changed context al-
tered selective attention to different features of
soft drinks. This was modeled using a network
connecting gated dipoles for features, drives,
and drink categories, with a categorization
mechanism similar to ART (Figure 6.19) but
with feature vectors attentionally weighted as
well as associative learning of connections be-
tween drives and features. More work needs
to done on applying this model to simula-
tion of other multiattribute decision data and
on relating the decision modules to specific
brain regions. One other application of a sim-
ilar model has been to animal foraging under
predation risk (Coleman, Brown, Levine, &
Mellgren, 1998).

Neural network answers to questions about
decision processes are beginning to emerge
from physiological and biochemical data on
complex circuits, including such brain re-
gions as the association (particularly pre-
frontal) cortex, limbic system, basal ganglia,
and parts of the midbrain. Some articles edited
by Damasio, Damasio, and Christen (1995)
discuss tentative connections between brain
regions and decision making that still need to
be incorporated into neural network models.

Models of Language Understanding

The cognitive science revolution of the mid-
1980s had a strong component of linguists
as well as computer scientists and psychol-
ogists (such as Rumelhart and McClelland)
interested in language. Thus, it was not sur-
prising that many early applications of back
propagation and other PDP networks dealt
with language understanding. For example,
Rumelhart and McClelland (1986, Chap. 18)
dealt with learning past tenses of English



pashler-44093 book December 18, 2001 10:18

260 Neural Network Modeling

verbs. Words were treated as binary pat-
terns, and the network learned transforma-
tions (such as from a word to the same word
followed by “-ed”) that it saw repeatedly
in the training set. This network reproduced
characteristic development of children’s past
tense learning. In its early stages, the network
learned a few common past tenses such as go
→ went and look → looked. As the network
developed, it learned the “-ed” rule and reg-
ularized irregular forms, producing either go
→ goed or go → wented. Eventually it could
know the “-ed” rule and also remember ex-
ceptions, but it would tend to regularize any
new verbs it learned.

Cognitive connectionist modeling of lan-
guage has been carried out ever since then,
with back propagation networks (some non-
recurrent and some recurrent) for different lin-
guistic tasks, including both phonological and
lexical information. This has been applied par-
ticularly to mental and cognitive disorders that
impair verbal abilities. For example, Plaut and
Shallice (1994) modeled the condition called
deep dyslexia. This condition involves vary-
ing types of word errors in reading text aloud,
with a preponderance in each patient either
of semantic errors (e.g., substituting “wind”
for “blowing”) or visual errors (e.g., substitut-
ing “white” for “while”). They simulated this
form of dyslexia by selectively “lesioning”
different parts of a network that first mapped
from writing units to meaning units and from
there to sound units, with recurrent interac-
tions at meaning and sound levels via “cleanup
units.”

These language models illustrate impor-
tant distinctions and properties, and therefore
account for a range of experimental and clin-
ical data. They have not yet tapped the exten-
sive knowledge of cognitive neuroscience and
how such linguistic interactions are embodied
in the brain; this should be a major growth area
of neural networks as more such knowledge
emerges.

Models of Analogical Reasoning

A few neural network models of different
types of analogy making have appeared re-
cently. Some of them are hybrids of traditional
artificial intelligence with connectionism, and
thus are of limited interest for understand-
ing human reasoning processes. Of the fully
connectionist models, the most ambitious is
Hummel and Holyoak’s (1997) Learning and
Inference with Schemas and Analogies
(LISA) model, which deals with complex se-
mantic analogies. LISA relied on previous
models of binding particular entities to par-
ticular roles in a sentence. It was designed to
account for the two analogical processes of
“access” (i.e., how potential analogs in both
source and target domains are retrieved from
memory) and “mapping” (i.e., the working
memory process that discerns relationships
between source and target elements). Hum-
mel and Holyoak’s model can account for
various psychological data on differential fac-
tors influencing access and mapping. Hence,
it reproduced characteristic human patterns of
analogical inference, such as learning close
and natural analogies better than logically
consistent but contrived analogies. The limita-
tions of this model are that it relies heavily on
the assumed previous learning of very high-
level abstract concepts and that its structure
does not appear to be based in any way on bi-
ologically realistic models of simpler mental
processes.

Jani and Levine (2000) worked with sim-
pler proportional analogies (e.g., apple : red ::
banana : ?) in an attempt to understand the
basics of a process that begins at a young
age (typically about 2 to 3) in humans. Their
model was based on adaptive resonance
(Carpenter & Grossberg, 1987) with the addi-
tion of modules that represented characteris-
tic transformations such as adding, deleting,
keeping, or changing an item and a form of
“weight transport” that allows generalizing
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from “keep red” to “keep color.” It reproduced
several simple proportional analogies and al-
lowed for queries such as “What is the color of
an apple?” However, this network fell short of
a theory of how analogies might be encoded
in the brain. Such neurally realistic models
probably depend on more detailed brain imag-
ing data: Some results indicate parietal, pre-
frontal, and cingulate cortices as being in-
volved in reasoning tasks, but the details of
what area is involved in what stage of the task
have yet to be discovered.

Applications to Social Psychology

A few neural network models of social-
psychological phenomena are reviewed in the
collection edited by Read and Miller (1998).
These models cover person perception and
impression formation, stereotyping and so-
cial categorization, causal attribution, per-
sonality and behavior, attitudes and beliefs
(including cognitive dissonance), and social
influence and group interaction. These are
mostly based on the recurrent form of the
back-propagation network. The nodes in these
networks represent neither brain regions nor
all-purpose cognitive modules but rather in-
terrelated cognitive entities; for example, in
a model of a cognitive dissonance paradigm
involving children being punished for playing
with an attractive toy, the nodes included eval-
uation, play, and threat. Other models in this
same general vein include the work of Westen
(1999) on judgment of President Clinton’s
sexual conduct by people with different po-
litical opinions, and of Brown, Tumeo, Larey,
and Paulus (1998) on creativity in group
brainstorming.

As with many models of language and
mental disorders, these social-psychology
models do not yet incorporate principles (cf.
Table 6.2) that govern the processes by which
the brain achieves effective interactions with a
complex environment. However, these recur-

rent connectionist models capture some rela-
tionships among social cognitions that need
to be included in models that are more brain-
like and therefore more likely to be predictive
of human behavior. Predictive models may be
derived from extending models of other cog-
nitive phenomena: For example, a model of
stereotyping might be based on the work of
Furl (1999), who extended the ART catego-
rization model (Carpenter & Grossberg, 1987)
to include property inheritance and exception
learning.

CONCLUSIONS

The work reviewed herein indicates that neu-
ral network modeling is extremely diverse and
that there is no standard way to construct mod-
els. My own recommendation to the psychol-
ogist wishing to become involved in model-
ing is to become as familiar as possible with
the principles outlined in Table 6.2. That is,
he or she should learn how researchers have
employed associative learning, lateral inhibi-
tion (shunting and additive, recurrent and non-
recurrent), opponent processing, neuromod-
ulation, resonant feedback, error correction,
and other network constructs in models of
different phenomena as well as what types
of cognitive constraints each of these princi-
ples enables the network to satisfy (the table
briefly summarizes those constraints). Other
sources on the use of these principles include
Grossberg (1980), Hestenes (1992), Levine
(2000), and—for relationships with cognitive
psychology—Martindale (1991). Also, famil-
iarity with brain regions relevant to the pro-
cess being modeled, as suggested by human
imaging and EEG and animal neurophysi-
ological studies, helps to constrain network
designs.

In much of cognitive and social psychol-
ogy, the brain mechanisms involved in gener-
ating the behavior are only dimly known, and
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qualitative models based on PDP mechanisms
(Rumelhart & McClelland, 1986) are useful.
For that type of modeling, a great deal of soft-
ware is available on the Internet and commer-
cially. However, enough is known about inter-
relationships among psychological processes
that even in these areas of psychology one can
venture to construct more brain-like models.
For this purpose, again, what is most impor-
tant is a knowledge of principles such as those
of Table 6.2 and of the cognitive neuroscience
of relevant brain regions. This type of model-
ing requires flexibility: For example, someone
modeling a process that includes categoriza-
tion (of personalities, percepts, or whatever)
might build on the adaptive resonance model
(Carpenter & Grossberg, 1987) but adapt the
details of control of interlevel connections in
that model to fit the constraints of the data
set one is trying to model. Similarly, some-
one modeling a process that involves oppo-
nent processing or enhancement of novel per-
cepts might adapt the gated dipole (Grossberg,
1972a, 1972b) to fit the constraints of the
data set.

Because flexibility is desired for this richer
type of modeling, my opinion is that almost
any commercially available neural network
software is too restrictive. Several research
groups have worked on developing object-
oriented software so that particular structures
might be taken as adaptable submodules, but
I have found this approach difficult to master.
A better course is to use a high-level program-
ming language such as C++, Mathematica, or
Matlab (the latter two are particularly good
for graphing), to write equations for network
interactions, and to use the ordinary differ-
ential equation or difference equation solv-
ing program within that language. The ability
to translate network interactions into equa-
tions does not require advanced mathemati-
cal knowledge (e.g., a course in differential
equations). It does require some familiarity
with the calculus notion of a derivative as a
rate of change and with a few mathematical

rules such as using a minus sign for inhibition,
a plus sign for multiplication, and particular
types of multiplication for shunting interac-
tions or for transmitter modulation; these rules
are discussed, with fragments of simulation
code, in Levine (2000, Appendix 2).

This type of neural network modeling
(which is also called, by some biological
purists, computational neuroscience) plays a
major role in providing bridges between psy-
chology and neuroscience. It is also bridg-
ing some gaps between different speciali-
ties and schools within psychology (Staats,
1999; Tryon, 1995) and thereby contributing
to the conceptual foundations of psychology
itself.
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CHAPTER 7

Parallel and Serial Processing

GORDON D. LOGAN

INTRODUCTION

I remember myself as a preschooler asking my
mother whether a person could do two things
at once. I remember where we stood in the
hallway when I asked the question, and I re-
member her answer: “Sometimes you can and
sometimes you can’t. It depends.” I remember
not being very satisfied with that answer. Too
many years later, I find myself an expert on the
question. I earned my doctorate asking it, and
I spent a good part of my career asking it. After
all this experience, my expert answer is this:
Sometimes you can process things in parallel,
and sometimes you process things in series. It
depends. My mother was right all along, and
my expert answer is no more satisfying than
hers. In my expert opinion, the problem lies
in the question, not in the answer. The ques-
tion of parallel versus serial processing can
be answered meaningfully only in the context
of other issues and other concepts—the things
on which “it depends.”

A major difficulty in answering the ques-
tion lies in knowing what the answer means.
How could one tell if processing were paral-
lel or serial? In many ways, serial processes
behave like parallel ones. They are affected
similarly by experimental manipulations. One
can trace the logic from the assumption of par-
allel versus serial processing to prediction of
reaction time (RT) and accuracy, and the pre-
dictions are often very similar. This makes it

hard, if not impossible, to argue from the data
back to the theory. There are two routes to the
same end, and given the end point, one cannot
tell which route was taken. When parallel and
serial processing predict the same results, the
results do not distinguish the theories. This
is the problem of mimicry. I was also into
mimicry at an early age—it was a good way
to annoy my brother Jack—but those experi-
ences are more relevant to abnormal than to
experimental psychology.

My purpose in writing this chapter is to
discuss the methods that people use to ask
whether processing is parallel or serial. In the
years since I first asked my mother the ques-
tion, researchers have been asking Mother
Nature the same thing. They learned a lot
about the things on which “it depends.” Much
of the progress involved understanding the
mimicry problem and finding ways to solve it.
At the same time, researchers investigating at-
tention and memory found themselves having
to ask questions about serial versus parallel
processing. They, too, made a lot of progress,
though their conclusions were usually more
specific. My goal is to explain the ways in
which people ask the question and the issues
that they confront in doing so. This chapter is
intended more as a guidebook to orient people
to the issues than as a user’s manual to teach
specific methods (for reviews of the various
issues, see J. Miller, 1988; Townsend, 1990;
Van Zandt & Townsend, 1993).
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BASIC DEFINITION

Put most simply, the question of parallel ver-
sus serial processing is about simultaneity and
precedence in processing. Imagine two pro-

Figure 7.1 Varieties of parallel and serial processing.
NOTE: The boxes represent stages of processing, and the arrows represent information flow between
the boxes. The letters on the boxes represent different processes. P represents perceptual processes, M
represents motor processes, and A and B represent central processes. The left column represents single-
task situations, and the right column represents dual-task situations. The top row represents parallel
processes; A and B are simultaneous, and neither precedes the other. The second row represents serial
processes. A and B are never simultaneous. A begins and ends before B begins. The third row represents
cascaded processes. B begins before A finishes, and A begins to transmit information to B before A
finishes. A and B are simultaneous, but A precedes B. The bottom row represents overlapping processes.
A and B begin at different times but run simultaneously for some period.

cesses, A and B. If A and B go on simulta-
neously, then processing is parallel. If A pre-
cedes B or B precedes A, then processing is
serial. Parallel and serial processing are illus-
trated in the top two panels of Figure 7.1. The
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left column represents the processes under-
lying performance of a single task (i.e., pro-
ducing a single response to a single stimulus),
and the right column represents the processes
underlying performance in a dual task (i.e.,
producing two responses to two stimuli). In
the parallel processing examples, A and B be-
gin at the same time and end at the same time.
In the serial processing examples, A begins
and ends before B.

The simple question of whether process-
ing is parallel or serial has intrigued every
generation of cognitive psychologists. In the
1950s Broadbent (1957, 1958) argued that
sensory processes were parallel and that cog-
nitive (“perceptual”) processes were serial.
In the 1960s Sternberg (1966, 1969) argued
that short-term memory scanning was serial
rather than parallel. In the 1970s Shiffrin and
Schneider (1977) argued that automatic pro-
cesses were parallel and that controlled pro-
cesses were serial. In the 1980s Treisman
and colleagues (Treisman & Gelade, 1980;
Treisman & Schmidt, 1982) argued that fea-
ture search was parallel and that conjunction
search was serial. In the 1990s Meyer and
Kieras (1997) argued that dual tasks could be
performed in parallel, contradicting conven-
tional wisdom, which says that dual tasks are
carried out strictly in series (e.g., Pashler &
Johnston, 1989; Welford, 1952). Also in the
1990s Rickard (1997) and I (Logan, 1988)
argued over the serial nature of memory re-
trieval (see also Delaney, Reder, Straszewski,
& Ritter, 1998). Many of these issues are
not resolved, and the arguments will continue
throughout the new century.

The zeitgeist has changed considerably
over the generations, and the relative plau-
sibility of serial and parallel processing has
changed with it. In the early years, when
the idea that mind is computation first took
hold, people took the serial nature of compu-
tation quite seriously. Computers were serial,
and people took the mind-as-serial-computer

analogy quite literally. They were more likely
to think of processing as serial than parallel.
In recent years, at the end of the “decade of the
brain,” people have been impressed with the
massive parallel nature of the brain and seem
more likely to think that processing is parallel
because that seems more brain-like than does
serial processing. How serial behavior can
emerge from a parallel brain has become an
important question once again (see Lashley,
1951). I presume that the brain and the way
it implements thinking have not changed with
the zeitgeist.

COMPLICATIONS

The simple question of whether processing is
parallel or serial is seductive because it seems
so easy to answer. One need only be able to
detect process A and process B and measure
the times at which they occur. This turns out
to be harder than it seems. There is no direct
way to observe the occurrence of mental pro-
cesses. One must infer their existence from
changes in behavior that result from experi-
mental manipulations. Most investigations of
serial and parallel processing focus on accu-
racy and RT in relatively simple tasks. Ac-
curacy and RT are final outcome measures
that reflect the combined effects of all pro-
cesses that go into producing a response. Most
often, the question of serial or parallel pro-
cessing concerns only some of the processes
that contribute to a response, and separating
the interesting processes from the uninterest-
ing ones makes the inference from behavior
to theoretical processes more complicated. In
order to have a theory of the processes of in-
terest, one must have also some kind of the-
ory of the other processes and of how they
combine to perform the whole task. The other
processes may interact with the process of in-
terest, and clever experiments may have to
be done to tease them apart. Even with the
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cleverest experiment, the chain of inference
from observation to conclusion grows more
complex.

Researchers have responded to these com-
plications in two ways. One, which might be
called the general class approach, is to create
general classes of theory by combining binary
(or ternary) distinctions among theories and
then deriving in-principle predictions that dis-
tinguish the classes. To use a familiar exam-
ple, visual search may be either parallel or se-
rial and either exhaustive or self-terminating.
The factorial combination yields four general
classes of models from which predictions can
be derived and tested (and these will be con-
sidered in the next section). Perhaps the most
important results from this approach concern
mimicry, showing that some models make the
same predictions as other models so that ob-
servation of the predicted effects cannot dis-
tinguish the models.

The alternative approach, which might be
called the specific theory approach, is to pro-
pose theories that account for specific sets
of experimental data (e.g., Bundesen, 1990;
Cave & Wolfe, 1990; Humphreys & Müller,
1993; Logan, 1996; Meyer & Kieras, 1997;
Wolfe, 1994). Creating these theories requires
making decisions about the binary distinc-
tions studied in the other approach, so the
general theories may fit into some category
in the general class approach. The focus is
different, however. The theories are often in-
terpreted as models of the computations that
underlie performance in the tasks they ad-
dress, and the focus is on the nature of the
computation and the way it is executed rather
than on general properties of the computa-
tion, such as serial versus parallel process-
ing. The most important results from this ap-
proach may be an increased understanding of
the computational problems that underlie cog-
nition and the discovery of some ways to solve
them.

This chapter is organized around these two
approaches to the problem of complexity. The
main topics are organized around the general
class approach, introducing the complexities
one by one. The different complexities high-
light different empirical situations and, con-
sequently, illustrate different specific theories.
Thus, the specific theory approach is embed-
ded in the general class approach.

FOUR BASIC DISTINCTIONS

The general class approach involves making
broad distinctions between classes of mod-
els and combining distinctions factorially to
produce subclasses of models that differ from
each other in fundamental ways. Most of the
work has focused on four binary distinctions
that combine to produce 16 classes of theory:
parallel versus serial processing, discrete ver-
sus continuous processing, limited versus un-
limited capacity, and self-terminating versus
exhaustive search. From the perspective of
this chapter, parallel versus serial processing
is the focal distinction, and the others are com-
plications. I begin with discrete versus contin-
uous processing because it is the most general
complication.

Discrete versus Continuous Processing

The first broad distinction is between discrete
and continuous processes. Discrete processes
transmit the information that they produce in a
single step at a discrete point in time. Discrete
transmission implies that processes begin and
end at discrete points in time; they begin when
they receive input (a transmission from a log-
ically precedent process), and they end when
they give output (a transmission to a logically
subsequent process). The idea of discrete pro-
cessing has been with us since the beginning
of experimental psychology (e.g., Donders,
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1868). It prevailed throughout history (e.g.,
Sternberg, 1969), and it prevails today (e.g.,
Meyer & Kieras, 1997; Pashler & Johnston,
1989). The assumption of discrete processing
makes formal modeling easier. It allows the
modeler to derive predictions that are clear
and intuitively compelling. Consequently, it
has been popular among theorists. Indeed,
much of the formal work on serial versus par-
allel processing that was done in the general
class approach assumes discrete processing.
Discrete processes fit the simple definitions
of parallel and serial processing nicely. If A
and B are discrete processes that are part of the
same task, then they are serial if one precedes
the other and parallel if they are simultane-
ous. The most commonly used techniques for
analyzing RT assume discrete processing, in-
cluding Donders’ (1868) subtractive method,
Sternberg’s (1969) additive factors method,
and the various analyses derived from them
(e.g., Fisher & Goldstein, 1983; Goldstein
& Fisher, 1991; Pashler & Johnston,
1989; Schweickert, 1978; Schweickert &
Townsend, 1989; Townsend & Schweickert,
1989).

Donders’ (1868) subtractive method as-
sumes that RT is the sum of the durations of
a series of stages that extend from stimulus
to response. Different tasks require different
stages and different numbers of stages. The
subtractive method considers special cases in
which two tasks differ in exactly one stage; the
remaining stages are the same in both tasks.
In these special cases, the duration of the extra
stage can be estimated by subtracting RT for
the simpler task from RT for the more com-
plex task. Sternberg’s (1969) additive factors
method also assumes that RT is the sum of
the durations of a series of stages, but the goal
is to identify processing stages rather than to
estimate their durations. Stages are identified
with experimental variables that affect them.
Variables that affect different stages will have

additive effects because the durations of dif-
ferent stages add together to produce RT.
Variables that affect the same stage will inter-
act in a superadditive manner. Both methods
assume discrete stages.

The alternative continuous processes trans-
mit the information they produce gradually
in an infinite number of infinitesimally small
steps. Their beginning points and end points
are not so clear, nor is the point at which
they begin transmitting information to logi-
cally subsequent processes. It is clear, how-
ever, that logically subsequent processes can
begin well before logically prior processes
end. Continuous processes constantly report
their current state to subsequent processes.
Small changes in the current state propagate
rapidly to the next stage and begin to affect
its processing well before either stage has ac-
cumulated enough change to finish process-
ing. Precedent processes are active simulta-
neously. Thus, continuous processes do not
fit nicely into the simple definition of paral-
lel and serial processes. The logical and tem-
poral precedence suggest that processing is
serial, but the simultaneous processing sug-
gests that processing is parallel. To escape
this quandary, some researchers refer to pro-
cesses like this as cascaded, which reflects the
mixture of precedence and simultaneity (e.g.,
McClelland, 1979). Other researchers think
of continuous processes as parallel. Cascaded
processes are illustrated in the third row of
Figure 7.1. Single-task processing is on the
left, and dual task processing is on the right.

Processes that are not continuous may be
precedent and simultaneous if the precedence
is only temporal and not logical (i.e., if the
stage that begins second does not require
information from the stage that begins first).
In these cases, the processes may be dis-
crete and parallel. Consider a single-task sit-
uation in which A and B are discrete parallel
processes preceded by processes P ′ and P ′′,
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respectively. If P ′′ takes longer than P ′, A will
start before B. At some later point, they both
operate simultaneously. This is illustrated in
the left side of the bottom row in Figure 7.1.
In this case, the simultaneity and precedence
of A and B do not require one to assume that
they are continuous stages.

In dual-task situations, process A may be
part of one task, and process B may be part
of the other. Process A may begin before B,
and thus be precedent, but A may end after
B begins, and thus be simultaneous. In this
case, the precedence is due to stimulus condi-
tions (e.g., stimulus onset asynchrony) or to
differences in the durations of processes prior
to A and B. There is no logical contingency
between A and B because they are parts of
different tasks. Processes A and B are paral-
lel and could be discrete. Their simultaneity
and precedence do not require one to assume
that they are continuous. Overlapping dual-
task processes are illustrated in the bottom-
right row of Figure 7.1.

A second case of precedent but simultane-
ous processing can occur in continuous tasks,
such as typing, in which there is a chain
of precedent processes and each process is
active all the time. The discrete processing
assumption can be salvaged if the differ-
ent processes operate on different parts of
the input. In typing “red ball,” for exam-
ple, perceptual processes may be working on
“ball” while motor processes are busy with
“red” (see, e.g., Butsch, 1932; Inhoff, Briihl,
Bohemier, & Wang, 1992). An individual in-
put would still be processed discretely, acti-
vating only one process at a time and jump-
ing from one process to the next in a single
discrete step. Jolicoeur, Tombu, Oriet, and
Stevanovsky (in press) call this sort of pro-
cessing pipelining. Pipelining speeds perfor-
mance by allowing the system as a whole to
process several inputs concurrently (in par-
allel) while each component of the system
processes its input discretely (in series). For

example, a three-stage model could process
three inputs concurrently if each stage took the
next input as soon as it was finished with the
current one. By analogy, it takes four hours to
build a single car in an assembly line, but the
different stations on the line work on differ-
ent cars at the same time, so the lag between
successive cars is very short. The four-hours-
per-car pipeline produces several cars in a
single hour. Pipelining may save the discrete
stage assumption, but it does not require it.
Continuous processes may also be pipelined.
It is interesting that the major formal theory
of typewriting assumes continuous processing
(Rumelhart & Norman, 1982).

Continuous processing has had a much
shorter history than has discrete processing.
It was proposed first around 1980 (e.g., C. W.
Eriksen & Schultz, 1979; McClelland, 1979)
as an alternative to discrete stage analyses
of RT. Shortly afterward, the connectionist
revolution began and adopted continuous
processing as a fundamental assumption.
Continuous processing is the “parallel” part
of “parallel distributed processing” (e.g.,
McClelland, Rumelhart, & the PDP Research
Group, 1986). Many connectionist models
address response probability rather than RT
and so do not address the issue of parallel
versus serial processing in the usual sense.
Connectionist approaches to RT are often very
complicated and require simulation instead
of mathematical analysis, and that makes it
hard to produce general predictions (but see
McClelland, 1993).

As J. Miller (1988, 1993) pointed out, dis-
crete and continuous processes are at opposite
ends of a continuum. Miller argued that infor-
mation passes from one stage to another in
chunks that can vary in size. The continuum
that links discrete and continuous processes
is defined by the chunk-size variable, which
Miller called grain size. Grain size is deter-
mined by the number of chunks that must
accumulate before processing terminates.
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Discrete processes have the largest grain;
processing terminates when one chunk is pro-
duced. Continuous processes have the small-
est grain; processing terminates when an in-
finite number of infinitesimally small chunks
are produced. Processes in the middle of the
continuum have intermediate grain. Several
chunks must be accumulated before process-
ing terminates.

The issue of discrete versus continuous
processing was a central focus of the empirical
literature in the 1980s and 1990s, and the bulk
of the evidence appears to contradict strictly
discrete processes. Behavioral experiments
by J. Miller showed evidence of continuous
processing (e.g., 1982a, 1983, 1987). Meyer,
Irwin, Osman, and Kounois (1988) found ev-
idence of partial information with a response
signal method that required subjects to re-
spond on signal even if they had not finished
processing. Psychophysiological experiments
by Coles and colleagues showed evidence
of concurrent, subthreshold activation of
competing responses in electromyographic
(EMG; Coles, Gratton, Bashore, Eriksen, &
Donchin, 1985) and electroencephalographic
(EEG; Gratton, Coles, Sirevaag, Eriksen, &
Donchin, 1988) data in the B. A. Eriksen
and Eriksen (1974) flanker task. J. Miller and
Hackley (1992) and Osman, Bashore, Coles,
and Donchin (1992) showed evidence of sub-
threshold activation of responses on no-go tri-
als in go/no-go tasks. These data may rule out
pure discrete processes, in which one chunk
is enough to terminate processing, but they
do not distinguish between continuous and in-
termediate grain-size partial-information dis-
crete processes (see J. Miller, 1988; see also
Meyer et al., 1988, vs. Ratcliff, 1988).

Limited versus Unlimited Capacity

The idea that the capacity for processing in-
formation is limited has been an essential
part of cognitive psychology since the 1950s,

particularly in research on attention (e.g.,
Broadbent, 1958) and memory (e.g., G. A.
Miller, 1956). The idea that capacity may not
always be limited has been a part of cogni-
tive psychology for just as long (e.g., Sperling,
1960). Many careers have been made in decid-
ing whether particular processes are limited or
unlimited in capacity. The capacity issue in-
tersects the parallel versus serial processing
issue because limited capacity processes are
often thought of as serial whereas unlimited
capacity processes are often thought of as par-
allel (e.g., Treisman & Gelade, 1980; Van der
Heijden, 1992). Parallel processes need not
be unlimited in capacity. Indeed, resource or
general capacity theories often assume par-
allel allocation of a limited pool of “men-
tal energy” (e.g., Kahneman, 1973; Navon &
Gopher, 1979; Norman & Bobrow, 1975), so
processing is parallel but limited in capacity.

In the modern attention literature, the idea
that serial processing is limited in capacity
and parallel processing is unlimited in ca-
pacity plays out in two lines of investiga-
tion. One is the visual search literature that
distinguishes between preattentive processes
that are parallel and unlimited in capacity
and focal attentive processes that are serial
and limited in capacity (Cave & Wolfe, 1990;
Duncan & Humphreys, 1989; Humphreys
& Müller, 1993; Treisman & Gelade, 1980;
Wolfe, 1994). The other is the memory and
skill acquisition literature that distinguishes
between automatic processing that is paral-
lel and unlimited in capacity and controlled,
strategic, effortful, or attentional processing
that is serial and limited in capacity (Jacoby,
1991; Logan, 1988; Shiffrin & Schneider,
1977).

Processing capacity can be defined as the
rate at which information is processed, ex-
pressed in units of information per unit time
(Townsend & Ashby, 1983; Wenger &
Townsend, 2000). From this perspective,
capacity limitations are defined in terms of
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changes in the processing rate for a particular
element when another element is added to the
task. Capacity is unlimited if the processing
rate does not change when another element is
added to the task. That is,

v(x, i)N = v(x, i)N−1 (1)

where v(x, i)N is the rate at which object x
is compared to category i when there are N
elements in the task, and v(x, i)N−1 is the rate
at which object x is compared to category i
when there are N − 1 elements in the task.
Capacity is limited if the processing rate slows
down when another element is added to the
task. That is,

v(x, i)N < v(x, i)N−1. (2)

Capacity is fixed if, when another element
is added, the processing rate decreases in a
manner in which the sum of the processing
rates over all elements in the task remains con-
stant. If capacity is allocated equally to all N
elements, then

v(x, i)N = v(x, i)N−1
N − 1

N
. (3)

If capacity is fixed and capacity allocation is
not equal, then there is little constraint on a
particular processing rate. The sum of rates
is constrained to add to a constant C , but the
amount allocated to a particular process can
vary between 0 and C . The rate of process-
ing for a particular process may even increase
(e.g., if the person shifted from dividing at-
tention among elements to focusing primarily
on one element). Limited and fixed capacity
are very hard to distinguish from each other.

Capacity and Resources

The idea of capacity is often confused with
the idea of processing resources. Sometimes
researchers use the terms interchangeably. In
my view, however, “capacity” and “resources”
have distinctly different meanings and one
does not necessarily imply the other. The term

“capacity” is relatively neutral theoretically;
capacity is simply a rate measure, the amount
of information processed per unit time. The
term “resource” embeds the idea of capac-
ity in complex theories of attention and per-
formance that make many more assumptions
than the simple assertion that performance can
be measured in terms of processing rate (e.g.,
Kahneman, 1973; Navon & Gopher, 1979;
Norman & Bobrow, 1975). Resource theo-
ries assume that capacity is fixed or severely
limited, that capacity is a kind of mental en-
ergy that can be allocated selectively to acti-
vate mental processes, that capacity can be
allocated in parallel, and that performance
changes smoothly as capacity is added and
withdrawn (Logan, 1997; Navon, 1984). Each
of these additional assumptions is controver-
sial, and not one of them is implied by the
idea of capacity as a measure of processing
rate. Resource theory may imply limited or
fixed capacity, but limited or fixed capacity
does not imply resource theory. Researchers
should only say “resource” if they mean it.
They should not say “resource” when they
mean “capacity.”

Capacity Limitations and Load Effects

Many investigations of search tasks and dual
tasks manipulate processing load. In search
tasks, load depends on the number of items
to be processed (i.e., the number of items in
a search display, the number of items in a set
of targets to be compared with the display,
or both). In dual tasks, load depends on the
difficulty of one or both tasks. Many people
interpret load effects as evidence for capacity
limitation. However, load effects can occur for
several reasons other than capacity limitations
(see, e.g., Duncan, 1980; Navon, 1984). The
occurrence of load effects depends in part on
the assumptions one makes about the cogni-
tive architecture in which processing occurs.
Load effects occur regardless of capacity lim-
itations in certain independent race models
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(e.g., Bundesen, 1990) and in equivalent Luce
choice models (e.g., Luce, 1963). Consider an
independent race model in which N objects in
the display race to be categorized as members
of category i . If the distributions of finishing
times are exponential in form, then the prob-
ability that object x wins the race is given by

P(“x is i”) = v(x, i)
N∑

z=1
v(z, i)

. (4)

Marley and Colonius (1992) and Bundesen
(1993) showed that independent race models
such as this one are equivalent to Luce choice
models in the sense that one can construct
an independent race model that mimics the
choice probabilities of any given Luce choice
model. Consequently, Equation (4) describes
response probabilities in Luce choice models
as well as in independent race models.

Now consider what happens when another
item is added to the display, so that N in-
creases by 1. If processing capacity is fixed,
P(“x is i”) will decrease because v(x, i) in
the numerator of Equation (4) must decrease
so that the sum of processing rates over the
display—that is,

∑
v(z, i) in the denomina-

tor of Equation (1)—remains constant. If pro-
cessing capacity is limited but not fixed, P(“x
is i”) will also decrease because v(x, i) de-
creases in the numerator and because the pro-
cessing rate for the N th item, v(N , i), is added
to the denominator, and the denominator in-
creases. If processing capacity is unlimited,
v(x, i) will remain the same in the numera-
tor, but P(“x is i”) will decrease because the
processing rate for the N th item, v(N , i), will
be added to the denominator. Thus, for inde-
pendent exponentially distributed race models
and Luce choice models, load affects response
probability whether capacity is fixed, limited,
or unlimited. Therefore, contrary to popular
opinion, the observation of load effects does
not indicate fixed or limited capacity (see also
Duncan, 1980; Navon, 1984).

Functional and Stochastic Independence

Fixed or limited capacity suggests a kind of
dependence among concurrent processes in
that the rate of processing one element de-
pends on the number of concurrently pro-
cessed elements. However, formal models of
fixed and limited capacity processes often as-
sume independence. These ideas may seem
contradictory, but they are not. They reflect
different kinds of independence: functional
independence and stochastic independence,
respectively. Processes A and B are stochasti-
cally independent if the probability that A and
B occur together is the product of the proba-
bilities that each occurs separately. That is,

P(A ∩ B) = P(A)P(B). (5)

One tests stochastic independence by manipu-
lating P(A) and P(B) and observing changes
in P(A∩ B). If it remains predictable through
the relationship in Equation (5), then A and
B are stochastically independent. If it departs
significantly from the relationship in Equation
(5), then A and B are not stochastically in-
dependent. Stochastic independence is a very
important assumption in mathematical model-
ing of parallel and serial processing. It simpli-
fies the mathematics tremendously (see, e.g.,
Townsend & Ashby, 1983).

Processes A and B are functionally inde-
pendent if the probability that A occurs is not
correlated with the probability that B occurs.
One tests functional independence by manip-
ulating P(A) and observing changes in P(B).
If P(B) does not change when P(A) changes,
then A and B are functionally independent.
If P(B) changes when P(A) changes, then
A and B are functionally dependent. Func-
tional independence has been important in
studies in cognitive psychology and neuropsy-
chology that rely on the logic of dissocia-
tions (e.g., Kelley & Lindsay, 1996). A dis-
sociation occurs when a factor affects two
processes differently—when processes are
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functionally independent or negatively corre-
lated. Functional independence represents a
single dissociation; negative correlation rep-
resents a double dissociation.

Researchers often confuse stochastic and
functional independence even though they are
quite distinct conceptually. The two kinds
of independence are tested by manipulat-
ing the same probability—P(A)—but con-
clusions about them are based on different
probabilities. Stochastic independence rests
on changes in P(A ∩ B) when P(A) is ma-
nipulated; functional independence rests on
changes in P(B) when P(A) is manipulated.
Relationships between P(A ∩ B) and P(A)

are separate from relationships between P(B)

and P(A), so the two kinds of independence
address different aspects of the data. In partic-
ular, the functional dependence seen in fixed
capacity and limited capacity models does not
imply stochastic dependence. In a fixed or
limited capacity system, taking capacity from
A and giving it to B would increase P(A)

and decrease P(B), signaling a violation of
functional independence. However, stochas-
tic independence rests on what happens to
P(A ∩ B), not to P(B). If P(A ∩ B) changes
in accord with the relationship in Equation (5),
then A and B are stochastically independent
even though they are functionally dependent.

Capacity Limitations in Search

Capacity limitations were central issues in the
memory search literature of the 1970s and the
visual search literature of the 1980s, where
they were bound together with the issue of
parallel versus serial processing. Sternberg
(1966) contrasted serial processing with par-
allel processing in his classic paper on mem-
ory search, arguing that serial processing pre-
dicted the observed linear increase in RT with
the number of items in the memory set to
which the probe was compared (memory set
size, or N ), whereas parallel processing pre-
dicted a negatively accelerated increase (see

Figure 7.2 Predicted mean reaction times (RTs)
for limited-capacity (broken lines and open
squares) and unlimited-capacity (solid lines and
filled diamonds) parallel models with exponen-
tially distributed processing times.
NOTE: The rate parameter was 0.04 in both cases.

Figure 7.2). The predictions for serial process-
ing are clear: There is one comparison for
each item in the memory set, and the mean
time for successive comparisons is constant,
so RT increases linearly with N . Sternberg
modeled parallel processing by assuming that
memory search involves N independent par-
allel comparisons between the probe and the
memory set. The probe is compared against
all the items in the memory set before a deci-
sion is made (i.e., processing is exhaustive,
as discussed later), so RT is the maximum
of N independent samples from the distribu-
tion of comparison times. The maximum of
N independent samples increases as a nega-
tively accelerated function of N (see Gumbel,
1958), so RT should increase in that fashion if
processing is parallel. The data contradicted
that prediction, so Sternberg rejected parallel
models.

Townsend and Ashby (1983) presented
a derivation of Sternberg’s (1966) predic-
tion with independently and identically dis-
tributed (i.i.d.) exponential comparison pro-
cesses. There is one such process for each
of the N items in the memory set, and the
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comparisons continue until all have finished
(i.e., processing is exhaustive). The time for
the last one to finish can be broken down into a
sum of intercompletion times that represents
the intervals between the finishing times of
successive processes. The N processes be-
gin together but finish at different times, and
they can be ranked in the order in which they
finish. Intercompletion time is the time be-
tween successive ranks. The processes race
against each other, each at the same rate, v.
The first completion occurs when the fastest
of the N processes finishes. The distribution of
finishing times for the fastest runner in a race
between exponential distributions is an expo-
nential distribution itself with a rate parame-
ter equal to the sum of the rate parameters of
all the runners in the race.1 Because there are
N runners with the same rate parameter, the
rate parameter for the first comparison to fin-
ish is Nv, and the mean finishing time for the
first comparison is 1/Nv. Because the distri-
butions are exponential, the interval between
the first completion and the second is also ex-
ponentially distributed. This intercompletion
time can be thought of as a race between the
N −1 remaining comparisons. The winner of
that race is exponentially distributed with a

1The probability density function for the minimum of two
samples’ probability density functions f (x) and g(x) is

f1(x) = f (x)[1 − G(x)] + g(x)[1 − F(x)]

where F(x) and G(x) are cumulative distribution func-
tions (Townsend & Ashby, 1983). If f (x) and g(x) are
both exponential with rate parameters v1 and v2, respec-
tively, then the distribution of the minima of two samples
drawn from them is

f1(x) = v1 exp[−v1x]exp[−v2x]
+ v2 exp[−v2x]exp[−v1x]

= (v1 + v2)exp[−(v1 + v2)x]

which is an exponential distribution itself with a rate pa-
rameter that is the sum of the rate parameters for the two
runners in the race. This derivation can be generalized by
recursion to a race between N exponential distributions.
If the rate parameters for the different runners are all the
same, then the expected finishing time for a race between
N processes is 1/Nv.

rate parameter of (N − 1)v and a mean fin-
ishing time of 1/(N − 1)v. The interval be-
tween the second and third comparison is also
exponentially distributed with a rate parame-
ter of (N − 2)v and a mean finishing time
of 1/(N − 2)v, and so on. Continuing this
process, mean finishing time for all N com-
parisons is

E(T )

= 1

Nv
+ 1

(N − 1)v
+ 1

(N − 2)v
+ · · · + 1

v

= 1

v

N∑
i=1

1

i
. (6)

It is instructive to reverse the series to see
what happens as items are added to the mem-
ory set:

E(T ) = 1

v
+ 1

2v
+ 1

3v
+ · · · + 1

Nv
.

Each successive item that is added to the mem-
ory set increases comparison time, but the
amount by which it increases gets progres-
sively smaller as N increases. This produces
negative acceleration in the function relating
mean RT to set size. This effect can be seen
in the predicted mean RTs from the i.i.d. ex-
ponential parallel (exhaustive) model plotted
in Figure 7.2.

Atkinson, Holmgren, and Juola (1969) and
Townsend (1974) noticed that Sternberg’s
(1966) parallel model assumed unlimited ca-
pacity. The rate at which individual compar-
isons were executed was the same for each
value of N ; for example, in Equation (6) it is
always v. This assumption was central to the
derivation of the prediction (Gumbel, 1958),
so changing the assumption may change the
prediction. Atkinson et al. and Townsend dis-
covered that parallel processing could predict
the observed linear increase in RT with N
if capacity was fixed and it could be reallo-
cated as soon as a comparison was finished
and the distribution of comparison times was
exponential. This was an important discovery



pashler-44093 book December 18, 2001 10:20

282 Parallel and Serial Processing

because it was one of the first formal demon-
strations of mimicry.

The argument is similar to the argument
for unlimited capacity processing. The time
that the last comparison finishes can be bro-
ken down into a sum of the first finishing time
and N − 1 intercompletion times. If capac-
ity is fixed at C and allocated equally among
all simultaneous comparisons during the first
period before any of the comparisons finish,
then the rate of processing for each individual
comparison is C/N . When the first compar-
ison finishes, capacity is immediately reallo-
cated, and the rate for the first intercompletion
time is C/(N − 1). The rate for the second
intercompletion time is C/(N − 2), and so
on. The expected finishing time for all N pro-
cesses can be computed by substituting these
processing rates for the vs in Equation (6):

E(T ) = N

NC
+ N − 1

(N − 1)C

+ N − 2

(N − 2)C
+ · · · + 1

C

= 1

C
+ 1

C
+ 1

C
+ · · · + 1

C

= N

C
. (7)

Equation (7) shows that the mean finishing
time for a parallel fixed-capacity exponen-
tial process with immediate reallocation in-
creases linearly with set size (with a slope of
1/C), just as mean finishing time increases
in serial models. Predicted RTs from the par-
allel fixed-capacity model are plotted along
with the predictions of the parallel unlimited-
capacity model in Figure 7.2.

The contrast between Equations (6) and (7)
shows why fixed capacity produces a linear in-
crease in RT with set size. When capacity is
unlimited, as in Equation (6), each additional
comparison takes progressively less time. The
new comparison adds another runner to a race
that is already fast; the more runners in the
race, the smaller the new runner’s impact on

the expected finishing time. When capacity
is fixed and allocated equally among runners,
adding a new runner reduces the amount of ca-
pacity that each runner gets, and the race slows
down. The slowdown from the reduction in
capacity per item compensates for the statis-
tical speedup that results from having more
runners in the race, so each new runner adds
about the same amount of time to the race (see
Equation [7]).2

2The argument depends on the idea that the finishing time
for all N parallel processes can be broken down into the
sum of the first finishing time and N − 1 intercomple-
tion times. The focus on intercompletion times suggests
that the race begins anew with one less runner when each
comparison finishes, and this idea often runs counter to
people’s intuitions about parallel processing. The runners
that continue to run after the first one finishes were sup-
posed to have begun running at the same time as the first
runner, and all that time spent running ought to count for
something. It seems that the interval between the first run-
ner and the second should be a lot shorter than the time
it took for the first runner to finish. The counterintuitive
idea that the race begins anew and takes the same time
to run each time, on average, stems from the “memory-
less” property of exponential distributions. Because of
that property, the probability that an event occurs before
time t1 + t2 given that it has not occurred before time t1
is equal to the probability that the event occurs in the first
t2 time units. The relationship goes as follows:

P(T < t1 + t2 | T > t1)

= P(T < t1 + t2 ∩ T > t1)

P(T > t1)

= F(t1 + t2) − F(t1)

1 − F(t1)

= (1 − exp[−v(t1 + t2)]) − (1 − exp[−vt1])

1 − (1 − exp[−vt1])

= exp[−vt1] − exp[−v(t1 + t2)]

exp[−vt1]

= exp[−vt1] − exp[−vt1]exp[−vt2]

exp[−vt1]

= exp[−vt1](1 − exp[−vt2])

exp[−vt1]

= 1 − exp[−vt2] = F(t2) = P(T < t2).

In other words, the distribution of finishing times for
events in the race that continues after the first event fin-
ishes at time t1 is the same as the distribution of finishing
times for a race with the same number of runners that
begins at time 0.
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In my view, Townsend’s (1974) demon-
strations of mimicry between serial and par-
allel processes signaled the beginning of the
end of a period of intense interest in mem-
ory search. Models that could account for
the linear increase in mean RT with set size
proliferated, and the empirical arena shifted
to other aspects of the data, such as se-
quential effects and RT distributions, and
mimicry issues appeared in these other as-
pects as well (for reviews, see Luce, 1986;
Townsend & Ashby, 1983). By the early
1980s, research on parallel versus serial pro-
cessing in memory search seemed to have
reached a stalemate, and interest shifted
elsewhere.

Around 1980, inspired by Treisman and
Gelade’s (1980) elegant experiments, atten-
tion researchers embraced the issue of paral-
lel versus serial processing in visual search.
Treisman and Gelade showed that search RT
for simple targets such as a red item among
green items or an X among Os (i.e., fea-
ture search) was independent of the number
of items in the display (i.e., display size),
whereas search RT for conjunctive targets
such as a red X among red Os and green
Xs (i.e., conjunction search) increased lin-
early with N . Their feature integration theory
interpreted their data as indicating that fea-
ture search was parallel and that conjunction
search was serial. Citing Townsend (1971),
they acknowledged the possibility that the
linear functions in conjunction search could
be produced by parallel processes, but they
preferred to interpret them as evidence for
serial processing. The burgeoning literature
on feature and conjunction search followed
their lead, mostly ignoring the mimicry is-
sue. The functions relating RT to display size
were markedly different in feature search and
conjunction search, and that difference was
enough to sustain the idea that the tasks were
performed by different processes, regardless
of the possible mimicry.

Wolfe and colleagues proposed guided
search theory as an improvement on fea-
ture integration theory (Cave & Wolfe, 1990;
Wolfe, 1994; Wolfe, Cave, & Franzel, 1989)
but still interpreted the linear functions in con-
junction search as evidence for serial pro-
cessing. Duncan and Humphreys (1989) were
more neutral on the issue, interpreting the
slopes of RT × display size functions as mea-
sures of search efficiency. Humphreys and
Müller (1993) made the mimicry problem
concrete by proposing search by recursive re-
jection that accounted for flat RT × display
size functions in feature search and for steep,
linear RT × display size functions in conjunc-
tion search with the same parallel model.
Researchers pitting their model against fea-
ture integration theory or guided search theory
must grapple with the issue of parallel versus
serial processing.

Several researchers proposed compromise
models that sample regions of the display
in series but process items within regions
in parallel (Duncan & Humphreys, 1989;
Grossberg, Mingolla, & Ross, 1994; Logan,
1996; Treisman & Gormican, 1988). It seems
to me that these models are on the right track
if theories of visual search are to be general-
ized to real-world behavior. Although we do
spend more and more time staring at computer
screens like in visual search experiments, even
the most sedentary among us spends a lot of
time each day searching large-scale environ-
ments such as refrigerators, rooms, shopping
malls, streets, and freeways. The gradient of
retinal acuity forces us to move our eyes to
search these large-scale environments, impos-
ing serial processing on our search behavior.
Search may be parallel within fixations, pro-
cessing all items in the fovea and parafovea.

Capacity Limitations
in Dual-Task Situations

Capacity limitations may be most apparent in
dual-task situations, in which the ability to do



pashler-44093 book December 18, 2001 10:20

284 Parallel and Serial Processing

one task is strongly affected by the require-
ment to do another (for a review, see Pashler,
1994a). The contrast between serial and par-
allel processing has played out in this litera-
ture since the beginning of the modern era of
cognitive psychology. The first modern the-
ory of dual-task performance was Welford’s
(1952) single channel theory, which assumed
that people dealt with dual tasks in series.
Welford’s idea was adopted and extended by
Broadbent (1957, 1958), who made serial pro-
cessing a core property of attention within and
beyond dual-task situations.

Serial processing was the favored explana-
tion of dual-task performance until the end
of the 1960s, when resource theory arose
(e.g., Kahneman, 1973; Moray, 1967; Posner
& Boies, 1971). Resource theories argued
that people perform dual tasks in parallel
but with less efficiency than in single-task
conditions because capacity is severely lim-
ited. Kahneman proposed the broadest the-
ory. He applied a single-resource theory to
all problems in attention but focused espe-
cially on dual-task performance. In his theory,
resources were allocated in parallel whenever
it was beneficial to do so. By the end of the
1970s, single-resource theory was replaced
by multiple-resource theory (e.g., Navon &
Gopher, 1979), but dual-task performance
was still thought to be parallel. Multiple-
resource theory agreed with single-resource
theory in suggesting that a single resource
could be allocated in parallel, but it went be-
yond single-resource theory in arguing that
different resources could also be allocated in
parallel. This added a new wrinkle: Two tasks
that demanded different resources could go on
in parallel without interference.

In the middle of the 1980s, Pashler (1984;
Pashler & Johnston, 1989) resurrected single-
channel theory and derived new predictions
from it that confirmed the idea of serial pro-
cessing in dual-task situations. Predictions de-
rived from resource theory, on the hypothesis

that dual-task processing is parallel, fared less
well (e.g., Pashler, 1994b).

In the 1990s the parallel versus serial issues
played in two areas, one empirical and one
theoretical. The empirical arena contrasted
dual-task effects seen in speeded tasks, such
as the psychological refractory period (PRP)
procedure championed by Welford (1952)
and Pashler (1984), with effects seen in un-
speeded tasks with brief exposures, such as
the attentional blink procedure introduced by
Raymond, Shapiro, and Arnell (1992) and
Chun and Potter (1995). The speeded tasks
seemed to tax a central bottleneck that se-
lected one response at a time (i.e., serial pro-
cessing), whereas the unspeeded tasks seemed
to tax central resources involved in form-
ing perceptual representations (i.e., parallel
processing). In the theoretical arena, Meyer
and Kieras (1997) challenged the fundamen-
tal idea underlying both central bottleneck and
resource theories of dual-task interference, ar-
guing that dual-task effects were often arti-
facts of the strategies that subjects adopted to
deal with dual-task experiments rather than
central capacity limitations (see also Logan
& Gordon, 2001). They focused primarily on
the PRP situation, explaining PRP effects in a
model that had no central bottlenecks or cen-
tral capacity limitations, but their argument
generalizes to many dual-task situations.

Researchers noted the potential for
mimicry between serial and parallel expla-
nations of dual-task interference early on. A
serial process that alternated rapidly enough
would seem like a parallel process. This idea
was exploited in early multiuser operating
systems for serial computers: If the computer
switched back and forth between users rapidly
enough, the users could think they were op-
erating the computer at the same time. In the
empirical arena, subjects could seem to be per-
forming two tasks in parallel even though they
were switching rapidly between them (see,
e.g., Broadbent, 1982). This kind of mimicry
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seems amenable to empirical testing. One can
measure the time required to switch attention
in order to see if it switches rapidly enough.
Unfortunately, there is no consensus on meth-
ods for estimating the time required to shift
attention, and estimated switching time varies
across methods by two orders of magnitude.
Estimated switching time is fastest in search
tasks, where it may be on the order of 20 ms
to 40 ms, and slowest in cuing tasks, where
it may be on the order of 1,000 ms to 2,000
ms. Duncan, Ward, and Shapiro (1994; see
also Ward, Duncan, & Shapiro, 1996) esti-
mated the time required to switch attention
in an attentional blink task and argued that
it was too slow to support serial processing
in search tasks. Moore, Egeth, Berglan, and
Luck (1996) contested that conclusion, argu-
ing that their procedure substantially over-
estimated switching time.

Recent studies of the PRP procedure have
used the parallel versus serial issue to localize
a hypothesized bottleneck in processing (e.g.,
Pashler, 1984; Pashler & Johnston, 1989). By
hypothesis, stages prior to the bottleneck can
go on in parallel within and between tasks,
whereas the bottleneck stage is strictly serial.
Task 1 and Task 2 can be processed in paral-
lel up to the stage at which they require the
bottleneck. At that point, one task gets the
bottleneck (usually Task 1) and the other task
has to wait for it (usually Task 2). The period
during which Task 2 has to wait for the bottle-
neck is called slack, and the bottleneck can be
located by finding the locus of the slack in the
processing chain. Processes prior to the bot-
tleneck are parallel and so can begin as soon
as they receive input. There is no slack before
them. The slack period appears just before the
bottleneck begins, so localizing the slack also
localizes the bottleneck.

The method, often called the locus of slack
method, is illustrated in Figure 7.3. It involves
a factorial experiment with at least two fac-
tors: the stimulus onset asynchrony (SOA)

between the stimulus for Task 1 (S1) and
the stimulus for Task 2 (S2) and a manipu-
lation of Task 2 difficulty. SOA usually pro-
duces a strong main effect on RT to S2 (RT2),
and the difficulty manipulation is chosen so
that it also produces a strong main effect on
RT2. The key datum is the interaction be-
tween SOA and the Task 2 difficulty variable.
Task 2 difficulty variables that affect stages
prior to the bottleneck will produce under-
additive interactions with SOA; Task 2 diffi-
culty variables that affect stages at or after the
bottleneck will produce null or additive inter-
actions with SOA (see Pashler & Johnston,
1989; see also Fisher & Goldstein, 1983;
Goldstein & Fisher, 1991; Schweickert, 1978;
Schweickert & Townsend, 1989; Townsend,
1984; Townsend & Schweickert, 1989).

Figure 7.3A shows why variables that af-
fect prebottleneck stages produce underaddi-
tive interactions with SOA. The top part shows
flow charts for Task 1 and easy and hard ver-
sions of Task 2 with a short SOA. Because
SOA is short, Task 2 has to wait for the bot-
tleneck stage, and there is slack in the easy
version of Task 2. The hard version of Task 2
has time to catch up to the easy version during
the slack period, and it is almost finished when
the slack period ends. The effects of the Task 2
difficulty manipulation are absorbed into the
slack, so the Task 2 difficulty manipulation
has only a small effect on RT2. The bottom
part shows the same Task 1 and Task 2 con-
ditions when SOA is long and Task 2 does
not have to wait for the bottleneck. There is
no slack period to absorb the Task 2 difficulty
effect, so it appears full-blown in RT2. When
RT2 is plotted against SOA, as in the right
side of Figure 7.3A, Task 2 difficulty effects
are smaller when the SOA effects are larger.
Consequently, Task 2 difficulty interacts un-
deradditively with SOA.

Figure 7.3B shows why variables that af-
fect bottleneck stages produce additive or null
interactions with SOA. The top part shows
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Figure 7.3 Postponing prebottleneck processes vs. postponing bottleneck and postbottleneck
processes.
NOTE: Panel A: The effects of postponing prebottleneck processes. The left side presents flow diagrams
of processes underlying Task 1 and Task 2. P represents prebottleneck perceptual processes, B represents
bottleneck processes, and M represents motor processes. The top part represents short stimulus onset
asynchrony (SOA). Stage P ′ is a prolonged version of stage P . The short SOA causes Task 2 to wait for
the bottleneck stage B, and both P and P ′ have time to finish during the “slack” period while Task 2
waits for the bottleneck. The effect of P versus P ′ on RT2 is given by �RT and is plotted on the RT2 ×
SOA graph beside the flow diagram. The bottom part represents long SOA. Task 2 does not have to wait
for the bottleneck, so the effect of P versus P ′ propagates to RT2. The �RT value is much larger and
results in an underadditive interaction between SOA and P versus P ′ when plotted on the RT2 × SOA
graph beside the flow diagram. Thus, prolonging prebottleneck Task 2 processes produces underadditive
interactions between Task 2 difficulty variables and SOA.

Panel B: The effects of postponing bottleneck or postbottleneck processes. The left side presents flow
diagrams of processes underlying Task 1 and Task 2. In this panel, the bottleneck stage B is prolonged
in Task 2. The effects of prolongation appear undiminished in RT2 because the Task 2 bottleneck pro-
cessing does not begin until Task 1 is finished with the bottleneck, regardless of SOA. The right side
plots the effects in a graph of RT2 × SOA. The effect of B versus B ′ is clearly additive with SOA. Thus,
prolonging bottleneck or postbottleneck Task 2 processes produces additive (null) interactions between
Task 2 difficulty variables and SOA.

286



pashler-44093 book December 18, 2001 10:20

Four Basic Distinctions 287

flow charts for Task 1 and easy and hard ver-
sions of Task 2, but now difficulty affects
the bottleneck stage. Because SOA is short,
Task 2 has to wait for the bottleneck. Because
the Task 2 difficulty manipulation affects the
bottleneck stage, which has to wait, the easy
and hard versions start at the same time, and
the difficulty effect appears full-blown in RT2.
The bottom part shows the same conditions
with a long SOA. Task 2 does not have to
wait, and the difficulty manipulation appears
full-blown in RT2 once again. Its magnitude
is the same as in the short SOA condition, so
the joint effects of SOA and Task 2 difficulty,
plotted on the right side of the panel, are
additive; the interaction is null.

The locus of slack logic is a generalization
of Sternberg’s (1969) additive factors method
for decomposing single tasks into component
stages. The locus of slack logic is also a spe-
cial case of a much broader and more for-
mal generalization of the additive factors logic
by Schweickert, Townsend, and Fisher (e.g.,
Fisher & Goldstein, 1983; Goldstein & Fisher,
1991; Schweickert, 1978; Schweickert &
Townsend, 1989; Townsend, 1984; Townsend
& Schweickert, 1989). In the general logic,
underadditive interactions between difficulty
variables are often diagnostic of parallel pro-
cesses, whereas additive or null interactions
are often diagnostic of serial processes
(Townsend, 1984). These principles cannot be
applied universally, however. The issue of par-
allel versus serial processing remains compli-
cated; interested readers should refer to the
original sources.

Like many other tests of parallel versus se-
rial processing, the locus of slack method as-
sumes that processing in the bottleneck stage
is discrete, not continuous. Task 1 finishes
with the bottleneck at a distinct point in time,
and Task 2 starts using the bottleneck at an-
other distinct point in time. The latter never
precedes the former. However, some recent
data from the PRP procedure suggest that

response selection—a favorite candidate for
bottleneck processing—may not be discrete.
Hommel (1998) and Logan and Schulkind
(2000) showed that RT to the first PRP stimu-
lus was influenced by the response category of
the second PRP stimulus, speeding up if that
response category was congruent with its own
and slowing down if it was incongruent. This
suggests that Task 2 response selection be-
gan before Task 1 response selection finished,
arguing against the hypothesis that response
selection is discrete and serial.

The seriousness of the consequences of vi-
olating the assumption of discrete processing
remains to be seen. Although it is clear that
the logic of the locus of slack model and the
generalizations of it were developed on the
assumption of discrete processing, it is not
clear whether a continuous model would make
different predictions. As yet, no one has
worked out the predictions, although several
investigators are working on applications of a
single-resource theory to the SOA × difficulty
manipulation factorial experiments, and the
theory appears to be able to predict the same
kinds of underadditive and additive features
as can a serial discrete model. That would be
a most interesting result.

Self-Terminating versus
Exhaustive Search

One of the most important complications of
the issue of parallel versus serial processing in
the search literature is how processing stops.
Search tasks require several comparisons be-
tween items in the display and items in mem-
ory. At some point, the comparisons stop, and
the results are passed on to the next stage
so that, ultimately, they can be reported. The
key question is, how the comparison processes
stop? Traditionally, there have been two alter-
natives: Search is self-terminating or exhaus-
tive. Search is self-terminating if it stops as
soon as a target is found or exhaustive if it
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continues until all of the comparisons are fin-
ished, regardless of whether or when a target
is found.

The issue of self-terminating versus ex-
haustive search interacts with the issue of par-
allel versus serial processing in search tasks.
The way that search terminates determines the
number of items that need to be compared
(i.e., N if search is exhaustive; less than N if
search is self-terminating), and parallel ver-
sus serial processes are distinguished in terms
of the effects of the number of items in the
display or in the memory set. If search is
self-terminating, the number compared may
not equal the number displayed or memo-
rized. Indeed, the predictions of unlimited ca-
pacity parallel models and the mimicry of
fixed capacity parallel models and serial mod-
els described earlier requires the assumption
that search is exhaustive. If search is self-
terminating, parallel unlimited capacity mod-
els can predict a null effect of set size (i.e., no
increase in RT with set size). In an unlimited
capacity model, the rate at which the target
comparison is executed is the same regardless
of the number of concurrent nontarget com-
parisons, so the time required to find the target
should be independent of display size. (Dis-
play size is usually manipulated by varying
the number of nontargets.)

Intuition suggests that search should al-
ways be self-terminating, because that seems
most efficient. Perhaps the most remarkable
aspect of Sternberg’s (1966) data is that they
suggested that search is exhaustive. Sternberg
noted that self-terminating search requires the
system to decide whether to terminate search
after each comparison, whereas exhaustive
search requires only one decision after all the
comparisons are finished. Sternberg argued
that if the decision to terminate was costly,
then exhaustive search may be more effi-
cient than self-terminating search. The cost of
extra comparisons that finish after the target
has been found may be small compared to the

accumulated cost of deciding whether to ter-
minate search after each comparison, partic-
ularly if the number of items to be compared
is small. Search may become self-terminating
with larger numbers of items. Indeed,
Sternberg studied memory sets of one to five
items. Visual search experiments show evi-
dence of exhaustive search when the number
of items in the display (display size) varies
between one and five (e.g., Atkinson et al.,
1969) and evidence of self-terminating search
when display size varies over a larger range
(e.g., 4–40; Treisman & Gelade, 1980).

The issue of self-terminating versus ex-
haustive search focuses primarily on the in-
teraction between display size or memory
set size and target presence or absence. In
general, self-terminating search predicts su-
peradditive interactions between set size and
target presence, whereas exhaustive search
predicts additive or null interactions. Often,
RT increases linearly with set size, and the
predictions are expressed in terms of ratios
of the slopes of the functions relating RT
to set size. Self-terminating search is often
said to predict that the ratio of the target-
absent slope to the target-present slope is 2:1,
whereas exhaustive search predicts a ratio of
1:1. Sternberg’s (1966) data showed the 1:1
ratio, so he rejected self-terminating search
in favor of exhaustive search. Treisman and
Gelade’s (1980) data showed the 2:1 ratio,
so they rejected exhaustive search in favor of
self-terminating search.

The predicted slope ratios follow from the
expected number of comparisons when the
target is present versus absent. With exhaus-
tive search, subjects perform all comparisons
whether the target is present or absent, so the
expected number of comparisons for set size
N is N for both target-present and target-
absent trials. With self-terminating search,
subjects perform all comparisons only if there
is no target; self-terminating search is ex-
haustive on target-absent trials. Target-absent
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trials require N comparisons if set size is N .
On target-present trials, however, processing
can terminate whenever a target is found. If
search is random, the target could be found
after the first, second, third, or later com-
parison but on average would be found after
(N +1)/2 comparisons. For the same set size,
self-terminating search requires about twice
as many comparisons for target-absent trials
as for target-present trials. If the slope of the
function relating RT to the number of compar-
isons is the same for target-absent and target-
present trials (i.e., if each comparison takes
the same amount of time), then the slope of
the function relating RT to set size will be
twice as large for target-absent trials.

Van Zandt and Townsend (1993) showed
that self-terminating search does not always
predict a 2:1 slope ratio and that in some
cases it predicts a 1:1 slope ratio (see also
Townsend & Colonius, 1997). That suggests
a potentially paralyzing mimicry. However,
they showed that exhaustive models almost
always predict a 1:1 slope ratio, so finding
a ratio other than 1:1 allows us to reject ex-
haustive models in favor of self-terminating
models.

The issue of self-terminating versus ex-
haustive search usually focuses on target-
present trials, asking whether subjects stop
when they find a target. Chun and Wolfe
(1996) focused on target-absent trials and
asked how subjects decide to stop searching
when they do not find a target. Environments
are usually cluttered with many things, but
people ignore most of them when they search
for something. When I search for my car in a
parking lot, I look at the cars, not the trees and
buildings and people. Chun and Wolfe argued
that subjects set some criterion for similarity
to the target object and restrict their search
to items that are similar to the target. They
argued that the criterion is set dynamically,
decreasing if the distractors are dissimilar to
the target and increasing if the distractors are

similar to the target. This adjustment process
can reduce the number of items examined on
target-absent trials to a value that is substan-
tially smaller than N , and that may affect the
ratio of target-absent to target-present slopes.
In their view, self-terminating search does not
necessarily predict a 2:1 slope ratio.

Data beyond mean RT can be used to
distinguish between self-terminating and ex-
haustive search. Townsend and Ashby (1983)
noted that the models make different predic-
tions about the variance of RT. For serial ex-
haustive search, the variance of the compari-
son times is simply the sum of the variances
in the processing times for each comparison.
If the variances are all equal, then

Varexhaustive = NVar(T ) (8)

where Var(T ) is the variance in a single com-
parison time. The same prediction can be de-
rived for parallel exhaustive search, where T
is intercompletion time (Townsend & Ashby,
1983).

Equation (8) also describes the relation
between variance and set size for target-
absent trials in serial self-terminating search.
For target-present trials, however, serial self-
terminating search predicts a stronger in-
crease in variance with set size:

Varself-terminating

= N + 1

2
Var(T ) + (N − 1)(N + 1)

12
E(T )2.

(9)

The variance on target-present trials depends
on the variance in time required for each
comparison, as it did on target-absent tri-
als, but it also depends on variation in the
number of items compared before the target
is found. This additional source of variation
makes the overall variance increase faster with
N on target-present than on target-absent tri-
als. Again, similar arguments can be made
for parallel self-terminating processes (see
Townsend & Ashby, 1983).
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ALTERNATIVES TO
PARALLEL PROCESSING

The four basic distinctions that drove the gen-
eral class approach were discovered in the
1950s and 1960s. Since then, two new alterna-
tives to parallel processing have come on the
scene, one in the attention literature that deals
with the effects of redundant signals and one
in the skill acquisition literature that addresses
the development of automaticity.

Statistical Facilitation versus Coactivation

Parallel processing is an important issue in
divided attention. When participants look (or
listen) for a target in two channels (two dis-
play locations or two acoustic sources), they
respond faster if a target appears in both chan-
nels than if it appears in only one of them
(Miller, 1978, 1982b). This redundant signals
effect is interesting because it rules out most
of the parallel and serial models considered
so far in this chapter. Serial and parallel ex-
haustive models can be ruled out by the ef-
fect itself. If targets and distractors take the
same amount of time to process, they pre-
dict no advantage of redundant targets (but
see Townsend & Nozawa, 1997). Parallel and
serial self-terminating models can predict the
occurrence of the effect—processing can stop
as soon as one target is found, and that will
be faster when there are two targets—but they
can be ruled out in many cases because their
quantitative predictions underestimate the ob-
served effect.

Serial self-terminating models predict an
advantage of redundant targets when each
channel contains either a target or a distractor.
If search is random and targets are assigned
randomly to channels, then the first object ex-
amined will always be a target on redundant
trials, but it will only be a target half of the
time on single-target trials. On the other half
of single-target trials, the distractor will be

examined first, so RT will increase. Averaging
the two kinds of single-target trials produces a
mean RT that is slower than the mean RT for
redundant target trials, thus predicting a re-
dundant signals effect. The observed effects
are often larger than these models predict,
however (see Miller, 1982b). Moreover,
serial self-terminating models predict no ad-
vantage when no distractors are presented
(i.e., targets appear alone or in tandem), be-
cause the first object examined will always be
a target, and redundant signals effects are of-
ten found under those circumstances (Miller,
1978, 1982b).

The strongest candidate among the models
discussed so far is the class of independent
unlimited-capacity parallel self-terminating
models. They predict statistical facilitation
with redundant signals. The time to find a tar-
get when two are present is the minimum of
the times required to find each target alone,
and the minimum is generally faster than the
mean of the parent distributions from which
it is sampled (Gumbel, 1958). This argument
extends to distributions as well as means, and
Miller (1978, 1982b) developed it into a gen-
eral test for cumulative distribution functions.
The distribution of minima sampled from
two parent distributions can be constructed
from the parent distributions themselves. If
the samples are independent, then

P(min(T1, T2) < t) = P(T1 < t) + P(T2 < t)

− P(T1 < t ∩ T2 < t)

(10)

where P(min(T1, T2) < t) is the observed cu-
mulative RT distribution with redundant sig-
nals and P(T1 < t) and P(T2 < t) are the ob-
served cumulative distributions with targets
in channels 1 and 2, respectively. The fi-
nal term is not easy to observe directly, so
Miller (1978, 1982b) suggested rearranging
the equation to produce an inequality called
the race model inequality that investigators
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could use to test the predictions of inde-
pendent unlimited-capacity parallel self-
terminating models:

P(min(T1, T2) ≤ P(T1 < t) + P(T2 < t).
(11)

The race model inequality has the advantage
over Equation (10) in that all the terms in it are
observable, so it can be used to test empirical
data.

Miller (1978, 1982b) and others tested
the race model inequality in several data
sets. Amazingly, the data violated the pre-
dicted inequality. Performance with redun-
dant signals was better than what was pre-
dicted from the most efficient parallel model.
In order to explain the redundant signals ef-
fect, something more than unlimited-capacity
parallel processing had to be proposed. Miller
(1978, 1982b) proposed coactivation, which
he viewed as resulting from interactions and
cross talk between concurrent channels.
Mordkoff and Yantis (1991; see also Mordkoff
& Egeth, 1993) suggested an interactive race
model, which they simulated and applied to
their data. Townsend and Nozawa (1997) sug-
gested the idea of supercapacity, an alterna-
tive to fixed, limited, and unlimited capacity
in which the processing rate actually increases
as load increases.

Races versus Mixtures

Parallel processing is an important issue in
skill acquisition. Logan’s (1988) instance the-
ory of automaticity seems salient in this
context. Instance theory explains automati-
zation as a transition from a general algo-
rithm that is used to solve novel problems
and memory retrieval of past solutions to
familiar problems. The theory assumes that
people store memory traces, or instances,
of each encounter with each stimulus, so a
task-relevant knowledge base builds up with
practice. The theory assumes that people

retrieve memory traces when familiar stimuli
are encountered and that retrieval is a self-
terminating unlimited-capacity parallel pro-
cess, also known as an independent race
model. Instance theory explains the learn-
ing curve—the ubiquitous speedup in RT
with practice—as statistical facilitation from a
race between the instances in memory, whose
number grows with each encounter with the
stimulus.

Newell and Rosenbloom (1981) reviewed
50 years of research on skill acquisition and
declared the power law; RT decreased as a
power function of practice:

RT = a + b N−c (12)

where a is an irreducible asymptote, b is the
amount by which RT can change over learn-
ing, and c is the learning rate. Logan (1992)
reviewed studies published in the 10 years
after Newell and Rosenbloom’s paper and
found power function learning in each of
them. A typical power function with a = 500,

b = 500, and c = 0.5 is plotted in Figure 7.4.

Figure 7.4 Mean reaction time (RT) as a function
of the number of practice trials for a power func-
tion learning curve (solid line) and an exponential
function learning curve (dotted line).
NOTE: The power function was generated from the
equation RT = 500 + 500N−0.5. The exponential
function RT = 589 + 429e−0.2N was generated by
fitting an exponential function to the power func-
tion data. The similarity in the learning curves re-
flects the potential for one to mimic the other.
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Logan (1988, 1992) showed that the inde-
pendent race model predicted a power func-
tion speedup on the assumption that the dis-
tribution of retrieval times was Weibull. The
Weibull is a generalization of the exponential
in which the exponent is raised to a power. Its
distribution function is

F(x) = 1 − exp[−wxc]. (13)

Per Gumbel (1958), the distribution function
of minima from N i.i.d. distributions is

Fmin(x) = 1 − [1 − F(x)]N . (14)

Substituting Equation (13) into Equation (14)
yields

Fmin(x) = 1 − {1 − (1 − exp[−wxc])}N

= 1 − exp[−wxc]N

= 1 − exp[−Nwxc]

= 1 − exp[−w(N 1/cx)c]

= F(N 1/cx). (15)

Thus, the distribution of minima of N sam-
ples from i.i.d. Weibull distributions is itself a
Weibull distribution with its scale reduced by
a power function of N . This implies that the
entire distribution of retrieval times decreases
as a power function of practice—the mean, the
standard deviation, and all of the quantiles of
the distribution should all decrease as power
functions of practice3 with a common expo-
nent, 1/c. Logan (1988) tested the prediction
for means and standard deviations, and Logan
(1992) tested the prediction for distribution.
The predictions were mostly confirmed.

3The Weibull is a special case of the exponential distri-
bution with the variable x raised to a power (i.e., c). If the
exponential distribution function, F(x) = 1−exp[−wx],
is substituted into Equation (14) instead of the Weibull,
then the distribution of minima becomes F1(x) = 1 −
exp[−Nwx], which is an exponential distribution with
rate parameter Nw and mean 1/Nw , which is consistent
with previous results in this chapter (see, e.g., n. 1). Note
that the mean of the exponential decreases as a power
function of N with an exponent of −1.

Instance theory assumes two races. One,
just described, is between the various traces in
memory. It determines the speedup in memory
retrieval over practice. The other is between
the algorithm and memory retrieval. The al-
gorithm is necessary early in practice before
instances are available in memory, so subjects
are prepared to use it on each trial. If the stim-
ulus is novel, they have no other choice but to
execute the algorithm. If the stimulus is famil-
iar, the algorithm and memory retrieval start at
the same time, and the faster of the two deter-
mines performance. The theory assumes that
the time for the algorithm does not change
over practice whereas the time for memory
retrieval speeds up. This allows memory re-
trieval to win the race more and more often,
until the subject relies on it entirely and aban-
dons the algorithm.

The assumption that the algorithm does
not change with practice was made for con-
venience. With that assumption, the finishing
time for the algorithm can be thought of as just
another Weibull distribution in the race whose
effects will be dominated by other runners as
practice continues. Instance theory assumes
also that the time to retrieve an individual
memory trace does not change over practice.
This assumption was made for convenience
and for rhetorical force. The “parent” distri-
butions of algorithm finishing time and mem-
ory retrieval time do not change with practice.
All that changes is the number of traces, and
that produces the statistical facilitation that
predicts the power law of learning.

Compton and Logan (1991) pitted the in-
dependent race model against a probability
mixture model in which subjects choose to
use the algorithm with probability p and mem-
ory retrieval with probability 1 − p. The par-
ent distributions do not change with practice.
Memory retrieval is faster than the algorithm
at the outset and remains so throughout prac-
tice. Instead, p changes in a manner that pro-
duces the power function speedup required by
the power law. This model predicted the same
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change in mean RT as instance theory but a
different change in the standard deviation of
RT. Whereas instance theory predicts a power
function reduction in the standard deviation
over practice, the probability mixture model
predicts that the standard deviation will first
increase and then decrease over practice. The
variance of a probability mixture of memory
retrieval and algorithm finishing times is

Var(T )mix

= p Var(T )a + (1 − p)Var(T )m

+ p(1 − p)[E(T )a − E(T )m]2 (16)

where Var(T ) is the variance of RT, E(T ) is
mean RT, and the subscripts a and m refer to
the algorithm and memory retrieval, respec-
tively. The rightmost term in Equation (16)
produces a “bubble” in the variance as p
goes from 1 to 0, reaching a maximum when
p = .5. The observed standard deviations dis-
confirmed this prediction and confirmed the
prediction of instance theory.

Nosofsky and Palmeri (1997; see also
Palmeri, 1997) extended instance theory, com-
bining it with Nosofsky’s (1984, 1986, 1988)
generalized context model of classification to
form the exemplar-based random walk model.
It accounted for a great deal of data in cat-
egorization and skill acquisition, expanding
the scope of the theory substantially (see also
Logan, in press). The sun shone brightly on
the instance theory empire. Then two clouds
rose on the horizon.

The first was Rickard’s (1997) component
power law model. Like instance theory, it as-
sumed that automatization was a transition
from algorithm to memory retrieval. Unlike
instance theory, a probability mixture, rather
than a race, made the choice between algo-
rithm and memory retrieval. Rickard solved
the problem with mixture models raised by
Compton and Logan (1991) by assuming that
both the algorithm and memory retrieval im-
proved with practice. He assumed that each
improved as a power function of practice

(hence, “component power law”) and that the
choice between them depended on their rela-
tive strengths. Equation (16) still described the
change in RT variance with choice probability,
but the means and variances of the parents de-
creased over practice, changing the predicted
learning curve. Rickard pointed out a bubble
in data that Logan (1988) reported in favor
of instance theory, and he produced bubbles
in several data sets of his own. He convinced
me that under some circumstances, the algo-
rithm and memory retrieval do not race; the
subject chooses to do one or the other (for
further discussion of parallel and serial pro-
essing in memory retrieval, see Rohrer,
Pashler, & Etchegaray, 1998; Rohrer &
Wixted, 1994).

The other cloud on the horizon is an attack
on the generality of the power law. Delaney
et al. (1998) proposed a model in which per-
formance was a mixture of different strategies,
each of which improved as a power function of
practice. They had subjects report the strate-
gies they used on individual trials. When they
aggregated data over strategy reports (i.e.,
over blocks of trials, as researchers typically
do), the power function did not fit the data very
well. However, when they sorted the data by
strategy report, power functions fit the data
from each strategy very well. They argued for
a mixture model like Rickard’s (1997). More-
over, Van Zandt and Ratcliff (1995) analyzed
probability mixtures of gamma distributions
with stochastic rate parameters and found that
they produced the same power-function re-
duction in the RT distribution as did the in-
stance theory.

The most serious challenge may be empir-
ical. Heathcote, Brown, and Mewhort (2000)
argued that the ubiquity of the power law is an
artifact of averaging over exponential learning
curves for individual items (but see Myung,
Kim, & Pitt, 2000). They showed that an ex-
ponential learning curve

RT = a + b exp[−cN ] (17)
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fit the data at the level of individual items bet-
ter than the power function in several data sets.
Rickard and I confirmed their findings in our
own laboratories. This is a serious threat to
instance theory and to all theories of skill ac-
quisition that predict a power-function learn-
ing curve (i.e., most theories). If the data
do not conform to the predicted power law,
the prediction—as well as the theories from
which it was derived—is falsified.

A typical exponential learning curve is
plotted along with the power function in Fig-
ure 7.4. The exponential learning curve is very
similar to the power function learning curve.
They can be hard to discriminate, particularly
when the data are noisy (e.g., data from indi-
vidual items). However, averaging over items
or subjects (or both) tends to distort the func-
tion, and averages of exponential functions
are often better fit by power functions than by
exponential functions (Anderson, & Tweney,
1997; Heathcote et al., 2000). This bias to-
ward the power function can be minimized by
averaging geometrically instead of arithmeti-
cally (Myung et al., 2000; Wixted & Ebbesen,
1997), but analysis of averaged data remains
problematic.

DISCUSSION

So that is how people ask whether processing
is parallel or serial. There are many differ-
ent methods and many different situations to
which they may be applied. In terms of re-
search publications, the question of parallel
versus serial processing must be one of the
most productive questions ever asked in ex-
perimental psychology. But what do all these
publications amount to? What kind of cumu-
lative progress have we made in the last 50
years?

The question of parallel versus serial pro-
cessing epitomizes the difference between
two general approaches to psychology. One,

endorsed by Broadbent (e.g., 1971), might be
called the general principle approach or “20
questions” approach. It suggests that the right
theory can be found by conducting a series
of experiments that addresses a succession of
general principles (like parallel versus serial
processing), ruling out alternatives until only
one remains. The experimenter plays 20 ques-
tions with Mother Nature, trying to choose
questions that divide the remaining alterna-
tives in half (Platt, 1964). The other approach,
endorsed by Newell (1973), might be called
the general theory approach. Newell argued
that “you can’t play 20 questions with nature
and win,” claiming that investigations of gen-
eral dichotomies such as parallel versus se-
rial processing were doomed to failure. Pro-
cesses interact with each other and therefore
cannot be studied separately. One needs a the-
ory of the whole system to understand a single
process. Newell’s own work (e.g., 1990) ex-
emplified the promise of the general theory
approach.

The issue of parallel versus serial process-
ing figures prominently in the contrasts be-
tween these approaches. Nearly 30 years later
we can examine the progress in the field and
count up the score. It seems to me that Newell
(1973, 1990) was right about parallel and se-
rial processing. After all this research, we
still cannot say definitively whether search is
parallel or serial or whether two tasks are done
in parallel or serially. As my mother said, it
depends. To decide whether search is parallel
or serial, one must decide also whether it is
limited or unlimited in capacity and whether
it is exhaustive or self-terminating. To predict
performance, one must model the whole task,
a tactic that Newell would have endorsed. On
the other hand, we have made a lot of progress
in answering more specific versions of the
question, and lots of methods are available for
asking them. In my view, learning to ask better
questions is an important kind of cumulative
progress.
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Newell (1973, 1990) appears to have been
right also about the capacity issue. The nature
of capacity limitations remains unclear. It may
seem clear in specific cases, but there is little
generality across procedures and paradigms,
so the big picture may be even sketchier than it
was in 1973. It is hard enough to tell whether
capacity is limited. We are only beginning
to address the question why capacity is lim-
ited. Theories seem to have internalized my
mother’s observation that sometimes you can
do two things at once and sometimes you can-
not, proposing that one part of the mind can
do two things at once and another can do only
one thing at a time. This internalization gen-
erated a lot of research aimed at localizing
one part relative to the other. However, it does
not explain why the part that can do only one
thing at a time must do one thing at a time
or why the part that can do two things at once
can do so. The selection-for-action view
(Allport, 1987; Neumann, 1987; Van der
Heijden, 1992) and the selection-for-
cognition view (Logan & Zbrodoff, 1999)
provide alternatives to the standard view, and
the contrast between them may shed new light
on the capacity issue.

Broadbent was right about the issue of
continuous versus discrete processing. Be-
havioral and psychophysiological data clearly
rule out strict discrete processing (for a re-
view, see Miller, 1988). Nevertheless, many
theorists continue to propose discrete models,
and popular empirical tests of parallel versus
serial processing assume discrete processing.
Discrete processing makes the mathematics
easier, and that makes the reasoning clearer. A
comprehensible discrete theory that approxi-
mates continuous reality may be better than
an incomprehensible but more realistic con-
tinuous theory (McCloskey, 1991).

Broadbent was also right about the issue of
self-terminating versus exhaustive search. It is
pretty clear that search is self-terminating, at
least with large displays (more than 6 items;

Chun & Wolfe, 1996; Van Zandt & Townsend,
1993). Broadbent may be right about the par-
allel versus coactivation issue in divided atten-
tion, and it remains to be seen whether Newell
(1973, 1990) or Broadbent is right about the
race versus mixture issue in skill acquisition.

At this point, the 20 questions approach is
ahead of the general theory approach 3 to 2
with 1 issue still playing itself out. It looks
like a tie. Perhaps the game of pitting one
general approach against another cannot be
won either. From one perspective, sitting in
the empirical trenches, it may not matter much
which approach we take. How we got there
may matter less than what we do while we are
there. The best experiments fit neatly into a
tight web of logic, as the general theory ap-
proach recommends, and they pit crucial al-
ternatives against each other, as the 20 ques-
tions approach recommends. A person in the
trenches had better do something that works,
regardless of the approach that recommends
it. There are plenty of things to choose from.
I hope that this chapter helps those who are in
the trenches to find the tools that they need.
My mother would like that.
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CHAPTER 8

Methodology and Statistics
in Single-Subject Experiments

NORMAN H. ANDERSON

Single-subject design and analysis is an
experimental ideal. An individual is studied
under a number of conditions, and the anal-
ysis is performed on the data of this indi-
vidual. The prime advantage is substantive:
maximal congruence with psychological phe-
nomena. A collateral substantive advantage is
that longer-term investigations may be practi-
cable, unfolding phenomena barely present in
the common one-session experiment. There is
the further advantage that error variability will
be even less than it is in repeated-measures
design.

Single-subject design has always been a
mainstay in perception. One reason is that
many perceptual phenomena can be embod-
ied in stable-state tasks. One subject can thus
provide a complete pattern of data across
all experimental conditions. Many studies
use just two or three subjects and present
results separately for each. Generalization
is often possible on the basis of extrasta-
tistical background knowledge about simi-

For helpful comments on drafts of this chapter, the au-
thor is indebted to Ted Carr, Joe Farley, Etienne Mullet,
Laura Schreibman, Saul Sternberg, Ben Williams, Wendy
Williams, and John Wixted. This chapter is adapted from
Chapter 11 of Empirical Direction in Design and Analy-
sis (Anderson, 2001) with permission of the publishers,
Lawrence Erlbaum Associates.

larity of sensory-perceptual process across
individuals.

Single-subject design has been useful also
in diverse other areas. Among these are clas-
sical and operant conditioning, judgment-
decision theory, physiological psychology,
behavior modification, and medical science.
Also notable are studies of unusual indi-
viduals.

A pall hangs over single-subject design
and analysis. This topic goes virtually un-
mentioned in current graduate statistics texts.
Whole areas of experimental analysis that
could benefit from this approach make little
use of it. The reader may check how very
few single-subject studies appear in any is-
sue of any journal published by the American
Psychological Association.

On the other hand, areas that have em-
phasized single-subject research have mostly
been averse to formal statistics. As a conse-
quence, the potential of single-subject design
has been markedly underutilized.

SINGLE-SUBJECT DATA

Analysis of single-subject data faces special
difficulties that arise because the data are
a temporal (or spatial) sequence of observ-
ations. Successive observations may thus be

301
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intercorrelated, which complicates the relia-
bility analysis. Furthermore, position and
carryover effects may occur, which compli-
cates the validity analysis. These two difficul-
ties are considered in the following sections.

Reliability

Reliability is a basic problem in empirical
analysis, no less important with studies of
single subjects than with studies of multiple
subjects. With a single subject, however, the
issue of reliability faces a special difficulty
because typical data constitute an interrelated
temporal sequence. To illustrate, consider a
subject who receives a sequence of trials
under treatment A followed by a sequence of
trials under treatment B.

The reliability question is whether the
mean response differs reliably between the
two treatments. Some difference must be
expected simply from chance, that is, from
natural variability among responses to each
separate treatment. Any argument that the
observed mean difference is reliable should
show at least that it is larger than could rea-
sonably be expected by chance. Common
sense points to the answer: Compare the dif-
ference between the means with the differ-
ences among the separate responses within
each treatment condition.

This commonsense comparison may
sometimes be done by visual inspection, as
illustrated later in the behavior modification
experiment of Figure 8.4. This commonsense
answer, not surprisingly, is the foundation
for statistical theory; the cited comparison is
quantified by the F ratio of ANOVA.

But this reliability comparison faces a crit-
ical problem because of the likelihood of
serial correlation, that is, correlation between
successive responses. One source of serial
correlation is assimilation or contrast across
successive trials. Trial-to-trial assimilation
appears in various tasks of psychophysics

and judgment-decision, for example, even
though subjects are otherwise in a stable state.
Thus, the response on one trial is positively
correlated with the response on the previous
trial.

A rather different source of serial corre-
lation may be called local drift. This refers
to organismic changes in response level that
extend over two or more successive obser-
vations but fluctuate unsystematically over
longer periods. The subject’s attention may
drift away and snap back; mood and moti-
vation may wax and wane. The state of the
subject is thus more similar across successive
trials than across nonsuccessive trials. This in-
duces serial correlation in the observed behav-
ior even though there is no systematic trend.

Serial correlation means that successive
observations are not independent; each
new observation is partly implicit in the pre-
ceding observation, so it carries only partial
information. To see the consequence, sup-
pose that the response is plotted as a function
of successive trials. With a high positive se-
rial correlation, responses on successive trials
will be highly similar. The data will look less
variable, so to speak, than the behavior they
represent.

Visual inspection has no way to allow for
the serial correlation. Instead, visual inspec-
tion tends to treat successive responses as
independent. With positive serial correlation,
visual inspection sees the data falsely as too
reliable. The usual formula for variance does
the same, of course, thereby producing confi-
dence intervals that are falsely too short and
F ratios that are falsely too large. Statistical
method, however, can assess the magnitude
of the serial correlation, estimate the likely
bias, and perhaps even correct for it, which
visual inspection cannot do.

At the same time, any happenstance in-
fluence on one trial may carry over partly
to successive trials. To visual inspection, a
one-trial external influence may seem to be a
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systematic effect lasting several trials. A visu-
ally convincing trend in the graph of the data
may thus be an artifact of serial correlation,
not a real effect of treatment.

Serial correlation can be controlled in two
main ways. One way is with treatment ran-
domization, which can break up the serial
correlation to obtain independence. The other
way is to minimize serial correlation through
experimental procedure, as by allowing ample
time between observations or by interpolat-
ing a baseline treatment between successive
experimental treatments.

Validity

Confounding from position and carryover ef-
fects is a universal concern for single-subject
design. Any two treatments differ in time and
order of presentation; external and internal
temporal effects are thus both confounded
with treatment effects. Such confounding af-
fects the meaning and validity of the results.

External temporal factors include events
in the environment that influence the behav-
ior. If treatment B follows treatment A, any
difference in response may be due to some
environmental factor: drift or shift in experi-
mental procedure, happenstance events in the
environment, and so forth. Any and all such
external factors, known and unknown, con-
found the A-B comparison. External factors
can, in principle, be handled with replication
over successive time periods. Consistency of
the A-B difference over successive time peri-
ods argues against external influences.

Internal temporal factors include position
and carryover effects. Position effects re-
fer to temporal changes due to practice, fa-
tigue, adaptation, and so forth, that occur as
a function of position, independently of par-
ticular treatments. Carryover effects include
treatment-specific transfer from one treat-
ment to following treatments, as well as to
local drift in organism or environment.

Position and carryover effects are usually
undesirable. Unless learning or transfer are
under study, position and carryover effects
generally need to be controlled through pro-
cedure and design. One common control is to
adapt the subject to the task before collect-
ing the main data. Other forms of control are
noted later.

DESIGN AND ANALYSIS

Extrastatistical Generalization

Scientific inference depends largely on ex-
trastatistical considerations. Appropriate use
of statistical methods requires appreciation of
their limitations that is at least as good as
appreciation of their capabilities. This basic
matter deserves preliminary discussion (see
Anderson, 2001, chap. 1).

Virtually all scientific inference rests on
evidence from samples. The investigator seeks
to generalize the results from one particular
sample to some larger population. If the sam-
ple was chosen randomly from that popula-
tion, then such generalization is obtainable
with standard statistical techniques.

Most samples, however, are handy sam-
ples. Rarely are the observations a random
sample from some larger population. This ba-
sic fact is manifestly true of most experiments
with groups of subjects; it applies no less to
behavior samples from a single subject.

This limitation of handy samples can be
ameliorated by random assignment. Group
experiments, accordingly, routinely assign
subjects at random across experimental con-
ditions. Statistical inference can then be ap-
plied to assess whether the observed group
differences are reliable by comparing dif-
ferences between groups to response vari-
ability within groups. Statistically, of course,
this inference does not extend beyond the
given handy sample, but it is nonetheless a
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remarkable accomplishment. It can show that
the observed treatment differences are reli-
able for the handy sample, which is prerequi-
site to extrastatistical generalization beyond
this handy sample.

The same approach may be applied to one
class of single-subject experiments by assign-
ing treatment conditions at random across
serial positions in the sequence of treatments.
Statistical inference then becomes feasible
in the same way as it does for group ex-
periments. This approach is discussed in the
later section titled “Randomized Treatment
Design.”

Generalization beyond the handy sample,
however, depends on extrastatistical consider-
ations. Standard statistical techniques have an
essential role with single subject experiments,
exactly as with group experiments. In either
case, however, this role is a minor part in the
overall chain of scientific inference.

Data Analysis

Two points of terminology need mention.
First, statsig is employed as short for statisti-
cally significant to avoid unjustified meanings
of “significant” from everyday language.
Second, ANOVA (analysis of variance) is used
as an convenient umbrella term for standard
statistical techniques, virtually all of which
rely on some measure of variance.

Visual Inspection

The first rule of data analysis is to look at the
data. Sometimes no more is needed. In fact,
nearly all the experiments reported in the 11
figures of this chapter are clear from visual
inspection. Even in such cases, however, a
confidence interval or other statistical index
of prevailing variability may help the reader.

Visual inspection is also sensitive to pat-
tern or trend, which may well be obscured
in standard statistical techniques. Above all,
the data should be scrutinized for extreme

scores, which have disproportionate effects
on the likely error of the mean. Statistics texts
and courses should place heavy emphasis on
developing skills of visual inspection.

Confidence Interval

The confidence interval is an ideal statistic.
It represents the mean, or difference between
two means, not as a single number, but in
its proper form: a range of likely location.
The confidence interval is thus more infor-
mative than a significance test, for the latter
may be derived from the former. At the same
time, the confidence interval provides visual
indications of the response variability and
of the size of the effect.

Unfortunately, confidence intervals have
limited usefulness. One limitation is that there
is no confidence interval for three or more
groups. The obvious tack of constructing
confidence intervals for each pair of means
markedly increases the false-alarm (type I
error) parameter. To appreciate the severity
of this problem, consider the usual 95% con-
fidence interval between the largest and small-
est sample means from three populations
with equal true means. The false-alarm pa-
rameter for this confidence interval is not .05,
but almost .13. The true confidence is thus
not .95 but little more than .87. This loss
of confidence increases with additional
conditions. The overall F test, however,
maintains the false-alarm parameter at its
assigned value regardless of the number of
treatment conditions.

Significance Test

A brief comment on the significance test may
ameliorate the opprobrium under which this
concept suffers. One standard class of exper-
iments seeks to compare mean response un-
der two treatment conditions, as in the classic
experimental-versus-control paradigm. The
essential question is whether the difference
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between the two conditions is reliable.
Evidence that the observed difference is not a
likely outcome of chance, that is, of prevail-
ing variability, is surely prerequisite to ask-
ing others to pay attention to the results. The
function of a significance test is to provide
such evidence.

In this view, visual inspection may suffice
as a test of significance. In the experiment on
behavior modification of Figure 8.4, for ex-
ample, the reliability of the difference is clear
to visual inspection. To include a formal sig-
nificance test not only is unnecessary clutter
but also would betray a weak understanding
of the nature of science.

Often, of course, more formal statistical
analysis is needed. Nevertheless, the main
problems of scientific inference are extrasta-
tistical and should receive primary attention.
The rule that less is more is as applicable
with formal statistics as so often elsewhere
in life.

Reducing Variability

Statistical theory emphasizes the importance
of reducing variability, which determines the
likely error of the observed means. This is
one reason, already noted, for preferring
single-subject design to repeated-measures
design, and for preferring repeated-measures
design to independent-groups design. Within
each of these classes of designs, however, ex-
treme scores are sometimes a major headache,
as in studies of various patient classes.

The first line of defense against extreme
scores is good experimental procedure. Good
procedure, however, may not be enough.
Statistical theory has given extensive atten-
tion to various supplementary aids, including
response transformation, rank-order statistics,
and outlier rejection techniques. Of these aids,
trimming seems to have high potential but is
surprisingly little used (see Anderson, 2001,
chap. 12).

Experimental Design

The most important functions of statistics ap-
pear before the data are collected, when plan-
ning the experimental design. Most statistical
inference, however, applies after the data have
been collected. Then it is too late to remedy
deficiencies of the design, too late to apply
procedural precautions to minimize extreme
scores, and too late to use a Latin square to
balance and measure position effects.

Power

Before doing an experiment, it seems prudent
to determine that it has a reasonable chance
of demonstrating a desired result. In statistics,
this is called power—the probability that the
result will be statsig. Everyone makes some
intuitive estimate of power in any experiment,
but usually by guess and by God. Statistics
provides simple formulas that can make such
intuitive estimates more precise.

This issue of power is illustrated later
in the behavior modification experiment of
Figure 8.5. These data give little sign of re-
liable differences between placebo and any
level of drug. The differences between dif-
ferent treatment means are comparable to the
differences within each treatment condition.
This could have been foreseen with a pre-
liminary power calculation, and steps could
have been taken to increase power.

Confounding

The big problem in any investigation is not re-
liability, the province of ANOVA, but validity.
Granted a real effect, what does it mean?

Confounds are the big threat to meaning-
ful interpretation. That some medicine im-
proves a patient’s condition may mean lit-
tle if a placebo control has been neglected.
A placebo control may be less than use-
less unless it is blind. The experiment of
Figure 8.5 was well designed in these and
related respects.
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Problems of confounding are mainly ex-
trastatistical. A complete chapter is devoted
to this issue in Anderson (2001, chap. 8).
Statistical theory can help. One such aid is
the Latin square design for control of position
and carryover effects.

Latin Square Design

The main defense against position and carry-
over effects is with experimental procedure,
as already noted. But these effects can hardly
be eliminated completely; some will remain.
The experimental design should guard against
confounding them with treatments. Even
when these effects are expected to be negli-
gible, moreover, showing that they are may
still be desirable.

Latin square design can help deal with
position and carryover effects. The follow-
ing table shows a balanced Latin square for
four treatment conditions, A1 to A4, which
are listed in different order in each row of
the square. The subject would receive these
16 treatment conditions in the given lexico-
graphic order.

Balanced Latin Square

A1 A2 A3 A4

A4 A3 A2 A1

A2 A4 A1 A3

A3 A1 A4 A2

Two forms of balance appear in this square.
First, each treatment occurs once in each row
and once in each column. The row and col-
umn means of the corresponding 4 × 4 data
table are thus measures of whatever position
effects may be present. Because of the bal-
ance, the treatment means themselves are de-
confounded from these position effects.

In addition, each treatment follows each
other treatment exactly once. This balance
provides partial control of possible carryover
effects, as well as some information about
their magnitude.

This balanced Latin square design could
have been useful in the behavior modifica-
tion study of Figure 8.5. Treatment conditions
would be the four drug levels. Each row of the
square would represent four days of one week.
Position effects, which may show a within-
week pattern, are thus balanced across treat-
ments, and their magnitudes are given by the
column means of the 4 × 4 data table. Adap-
tation across weeks would appear similarly
in the row means. These position effects may
well be negligible, of course, but demonstrat-
ing that they are has advantages over assum-
ing that they are.

The drug in this experiment (Ritalin) is
thought to be completely eliminated from the
body in 24 hours. If so, carryover effects might
well be expected to be negligible. Their mag-
nitude can be assessed because of the balance
in this design. The calculations are simpler if
the last column is replicated so that each treat-
ment follows itself once as well as each other
treatment. Statistical details together with a
numerical example are given by Cochran and
Cox (1957, Section 4.6a).

Stimulus Integration

Every behavior is an integrated outcome of
multiple coacting variables. Understanding
and predicting behavior accordingly depend
on understanding the rules that govern such
integration. Two aspects of this integration
problem are considered here.

Psychological Measurement Theory

A fundamental difficulty with analysis of
stimulus integration appears in the simplest
integration rule, namely, addition of two de-
terminants. Such an addition rule occurs in
standard factorial ANOVA, in which the sta-
tistical interaction term represents deviations
from additivity. Statsig interaction, accord-
ingly, is commonly interpreted to mean that
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the effect of one variable depends on the level
of the other.

But this interpretation of Anova interac-
tions rests on a critical assumption, namely,
that the observed response is a linear (equal-
interval) scale. There is ample reason to doubt
this in psychology, as many writers have em-
phasized. Strength of response, for example,
may be measured either with time or speed
(rate) in certain tasks, yet both cannot be lin-
ear scales. Hence, a statistical interaction ob-
tained with one measure may disappear with
the other, or even reverse direction (Anderson,
1961). This measurement problem, it may be
reemphasized, does not afflict main effects in
randomized designs.1

1The importance of psychological measurement for in-
terpreting interactions is clear in the following example
revised slightly from Anderson (1961). Consider an or-
ganism performing a certain task under two incentives,
each of which may be Low or High, in a 2×2 design. The
left 2 × 2 data table shows the times taken to perform the
task under the four pairs of incentive conditions. Raising
either incentive from low to high reduces response time
by 0.5 s; but raising the other incentive as well yields
an additional decrease of only 0.25 s. An interaction is
present, as shown by the nonparallelism, and its direction
seems meaningful.

Low High Low High

Low: 1.0 .50 1.0 2.0
High: .50 .25 2.0 4.0

But we could just as well have measured speed (rate).
Indeed, speed may be preferable as a direct measure of
action dynamics. The speed data, obtainable as the recip-
rocals of the time data, are shown in the right 2 × 2 data
table. Raising one incentive from low to high raises speed
from 1 to 2; but if the other incentive is also raised, speed
jumps from 2 to 4, an apparent synergy. An interaction is
present, but it is in the opposite direction.

This example illustrates the general truth that unless
we know the true linear scale, interpretion of this—and
any other—factorial-type data pattern is hazardous. This
serious problem is almost completely neglected in current
texts for graduate courses on design and analysis.

This issue is a general problem for analysis of stimu-
lus integration, which depends heavily on meaning of re-

The problem of psychological measure-
ment has been controversial ever since
Fechner’s claim that just noticeable differ-
ences are equal psychologically and hence
may be considered additive units. Fechner’s
approach was amplified by Thurstone (see
Link, 1994), but nearly all applications of
Thurstonian techniques deal with proportions
of groups of people and thus are sociological
rather than psychological scales. The conjoint
measurement approach of axiomatic measure-
ment theory (e.g., Krantz, Luce, Suppes, &
Tversky, 1971) has been devoid of empiri-
cal applications and therefore has been called
the “revolution that never happened” by Cliff
(1992, p. 186; see similarly, Anderson, 1981,
pp. 347–356; 2001, pp. 734–736). But without

sponse patterns. Joint manipulation of two or more stimu-
lus variables leads naturally to factorial-type designs and
to factorial-type data patterns. With a true linear response
scale, the pattern in such graphs is a direct reflection of
the integration process, as shown in Figures 8.2 and 8.3.
But without a true linear response scale, the observable
pattern may be totally misleading.

(To avoid confusion, it should be emphasized that main
effects in randomized designs do not suffer this afflic-
tion of interactions. There is a qualitative difference be-
tween main effects and interactions. In the 2 × 2 de-
sign, each main effect makes a direct comparison between
two means, that is, between two points on the response
scale. The direction of this difference cannot generally be
changed by a monotone transformation of the response.
In contrast, interactions compare differences between two
pairs of means, that is, between two intervals at different
locations on the response scale. Barring crossover, the
direction of this difference can readily be changed, as the
given example shows.)

Psychological measurement theory, as this example
shows, needs to shift away from its traditional focus on
stimulus measurement. Response measurement has far
greater importance. The linearity of the rating method es-
tablished in the work on functional measurement theory
means that ratings can be interpreted with some confi-
dence in other situations, at least if standard precautions
are adopted (see, e.g., Anderson, 1996, pp. 92–98). With
a linear response, pattern in the observed data is a veridi-
cal reflection of pattern in the underlying process. Linear
response methodology thus provides a priceless foothold
on analysis of stimulus integration that follows configural
or nonalgebraic rules.
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a measurement theory that can yield linear
scales, analysis of stimulus integration cannot
get very far, as illustrated with the time-speed
example of note 1.

Functional Measurement Theory

A solution to the integration-measurement
problem was obtained with functional mea-
surement theory, which employs algebraic
integration rules as the base and frame for psy-
chological measurement. The simplest ver-
sion of this approach involves the parallelism
theorem. Two premises are employed in this
theorem: that the integration is additive, and
that the response scale is linear (equal inter-
val). Two conclusions follow directly: The
factorial graph will be parallel, showing no
statistical interaction; and the row and column
means will be linear (equal-interval) scales of
the functional psychological values of the row
and column variables.

Observed parallelism thus provides joint
support for both premises, including the lin-
earity of the response measure. If additive
rules exist, accordingly, they can be used to
obtain true psychological measurement, both
for the response and for the stimulus variables
(see Anderson, 1996, chap. 2 and chap. 3). The
conceptual validity of this functional mea-
surement logic has been acknowledged by
Krantz et al. (1971, p. 445).

What is important, of course, is empirical
validity. Unless additive integration rules hold
empirically, the parallelism theorem will not
be worth much. As it happened, adding/aver-
aging rules have been found in almost every
area of psychology, even with young children
(e.g., Figures 8.2, 8.6, and 8.9). An analogous
linear fan theorem applies to multiplication
models, and an application is shown in the
operant experiment of Figure 11.

Of the three indicated benefits of the paral-
lelism theorem, that of support for response
linearity deserves special emphasis. Linear

response measures are invaluable because pat-
tern in the observed data is then a veridical
picture of pattern in the underlying process.
Response linearity thus provides a unique tool
for analysis of configural integration. Reponse
linearity is also invaluable for analysis of sit-
uations in which factorial-type design cannot
be used (e.g., Figure 8.10).

RANDOMIZED TREATMENT DESIGN

In randomized treatment design, treatment
conditions are given in randomized order.
The line-box illusion of Figure 8.1 is an ex-
ample from visual perception. Although two
line-box figures are shown here to dramatize
the illusion, only one was presented in the ex-
perimental task, in which the subject drew a
line equal in length to the apparent length of
the centerline. A three-factor design was used
to vary the sizes of the two flanking boxes and
the length of the centerline. All stimulus com-
binations from this design could be presented
in random order within each replication. For

Figure 8.1 Line-box illusion.
NOTE: Apparent length of centerline is affected by
flanking boxes. For experimental analysis, just one
of the two line-box figures is presented; the sub-
ject draws a line equal to the apparent length of
the centerline. Contrary to century-long belief, the
illusion involves assimilation, not contrast. The
boxes make the line look longer, not shorter.
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a given subject, factorial graphs would show
how the apparent length of the centerline de-
pends on the separate and integrated effects of
the two boxes. These graphs revealed the per-
ceptual structure of the comparison processes
involved in this illusion.

Similar treatment randomization is used in
many other perceptual tasks as well as in tasks
of judgment-decision in diverse fields (e.g.,
Figures 8.2, 8.3, 8.9, and 8.10). Although such
investigations often use repeated-measures
design with multiple subjects, single-subject
design and analysis may sometimes be
preferable.

Two Benefits of Treatment
Randomization

Treatment randomization has two important
potential benefits. It can deconfound treat-
ments from position effects and from some
carryover effects, markedly easing questions
about validity. Also, it can make treatment
responses independent, markedly easing
questions about reliability.

Position and Carryover Effects

The first potential benefit of treatment ran-
domization is to nullify confounding from po-
sition effects. If one presents treatments to the
subject in the same lexicographic order as one
lists data for the computer, then one embraces
temporal confounding. Response to early and
late levels of a variable could differ because
of learning, fatigue, and other internal fac-
tors. External happenstance could cause sim-
ilar confounding.

Such confounding tends to be nullified
with treatment randomization. Temporal
effects are randomized across treatments,
thereby reducing or eliminating the confound-
ing from the treatment means. Of course, the
position effects do not disappear. Instead, they
are randomized into the variability of the treat-

ment means. The logic is identical to that for
random assignment of subjects to conditions
in group experiments.

This logic also applies to some carryover
effects. Among these are local drift in the
organism or environment and carryover ef-
fects from one treatment to the following
response that do not depend on the treat-
ment on the following trial. With numerous
treatment conditions, moreover, as with many
experiments in perception and judgment-
decision, carryover that depends on the spe-
cific treatments on successive trials tends to
be diluted.

Independent Observations

Treatment randomization also helps ensure
independence of different responses to the
same treatment. Suppose instead that all repli-
cations of a given treatment were presented in
one consecutive block. Independence could
then be violated by trial-to-trial assimila-
tion, for example, which would induce pos-
itive serial correlation in the sequence of
responses to each treatment. Something sim-
ilar would occur if the treatments were given
in any systematic order, say, from low to
high.

To appreciate how randomization pro-
duces independence, consider the responses to
two replications of a given treatment. Because
their location is randomized in the sequence
of trials, knowing the response to one tells us
nothing about the component of momentary
variability in the response to the other; the two
responses are statistically independent. With
independence, differences between responses
to the same treatment provide a valid estimate
of error variability and valid confidence in-
tervals. An early experimental application of
randomized treatment design to single sub-
jects is shown later in Figure 8.2.
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Limitation of Treatment Randomization

Treatment randomization may not be effec-
tive with small numbers of treatments or tri-
als. To illustrate, consider two treatments, A
and B, each presented twice. The random se-
quence, A-A-B-B, which has probability 1/6,
confounds treatments with temporal change.
With this sequence, practice or adaptation
can make B appear more (or less) different
from A than it really is. Serial position ef-
fects are randomized out over all six possi-
ble sequences, it is true, but the investigator
is stuck with whatever confounding may ac-
company the one particular sequence selected.
Such treatment-independent temporal effects
can, however, be randomized out over a long
sequence.

Treatment-specific carryover effects are
more serious, as when one treatment affects
response to some specific other treatment.
Treatment randomization may dilute the con-
founding but does not nullify it.

When the number of treatment conditions
or number of trials is small, systematic order is
usually needed. Thus, a better alternative to A-
A-B-B would seem to be A-B-B-A. System-
atic design can help balance and measure po-
sition and carryover effects, as was discussed
with the Latin square.

Analysis of Randomized
Treatment Designs

Independence of observations is the main
requirement for applying concepts and meth-
ods of statistics. The central limit theorem
(which states that the sampling distribution
of the mean becomes more normal for larger
samples) is usually even more efficacious
with independent observations from a sin-
gle subject than from a group of subjects.
This central limit theorem provides a foun-
dation of confidence intervals and other tech-
niques of ANOVA. With independence, these
ANOVA techniques have identical formulas

and implications for single-subject data as for
data from independent groups.2

Besides independence, the equinormality
(normal distribution and equal variance) as-
sumption also needs consideration. Normal-
ity, on the whole, may be better satisfied with
single-subject data than with group data. The
same holds for the equal variance assump-
tion. Equinormality is not usually an empiri-
cal problem, although it may be badly violated
in some situations. Aversive tasks may yield
extreme scores, for example, and time scores
may be skewed. Alternative analyses such as
trimming may then be needed. Personal expe-
rience and pilot work with the task at hand are,
as always, the foundation for prudent choice
of analysis.

Restricted randomization may generally be
advisable. When treatments are replicated,
each successive replication could be random-
ized separately in consecutive blocks of trials.
In the experiment of Figure 8.2, for exam-
ple, the 27 treatments were randomized sep-

2Randomization tests, extensively developed by
Edgington (1987), provide an alternative to ANOVA
that do not assume normality and are less sensitive to
unequal variance. However, randomization tests rely on
massive computation, which may need hand-tailoring
to each new experiment. Some writers have advocated
randomization tests instead of ANOVA, without realizing
that the independence assumption is equally essential, as
Edgington makes clear.

ANOVA is far more general and far more flexible than
randomization tests. Edgington’s (1987) book is focused
entirely on significance tests; confidence intervals seem to
go unmentioned despite their value as descriptive statis-
tics. Other advantages of ANOVA include simple formu-
las for power, trimming, multiple comparison range tests,
Latin square designs, and so forth.

These advantages of ANOVA rest of an empirical
base—variance as a key empirical entity. The variability
within a set of data obtained under each separate treat-
ment condition is no less important that the differences
between conditions. The latter is only meaningful rela-
tive to the former, as the confidence interval makes clear.
In randomization tests, however, this variability is lost to
sight, a loss of contact with an important aspect of the
behavior. Randomization tests can be useful with badly
distributed data, but they are not a general purpose tool.
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arately for each of the five days of the exper-
iment. In some situations, as with studies of
motivation or emotion, it may be advisable
to include blocks as a factor in the analysis,
perhaps treating blocks as a random factor so
that block × treatment interactions are used
for error, exactly as with subject × treatment
interactions in repeated-measures design.

SERIAL OBSERVATION DESIGN

Treatment randomization is not always ap-
propriate or even possible. In some operant
studies, a single treatment may last a month
and may hardly be repeatable. Some studies
in behavior modification and medical science
have only two treatments, one of which repre-
sents the normal, pretreatment situation. Va-
lidity and reliability both present difficulties.

A-B-Type Design

A-B refers to designs that present a sequence
of trials under treatment A followed by a se-
quence of trials under treatment B. A-B-type
includes the simple A-B design as well as
A-B-A, A-B-B-A, and other such designs.
This section comments briefly on the valid-
ity problem.

Temporal Confounding in A-B-Type Design

In the simple A-B design, a single treatment
B is initiated at some time point subsequent
to a sequence of trials under some compari-
son treatment A. In a prototypical application,
A represents the normal situational condition
before the experimental treatment. In general,
however, A and B may be experimental treat-
ments of equal importance. A sequence of
observations is assumed to be available un-
der both A and B conditions. The researcher’s
task is to scrutinize the pattern of these two
sets of data to assess reliability and validity of
the observed difference in the A and B effects.

The validity question, whether B does bet-
ter than A, might seem unanswerable; B is
completely confounded with any and all tem-
poral factors. Suppose, however, that a graph
of the behavior as a function of time shows
a flat trend over a longish sequence of A ob-
servations, followed by a sharp change when
B is introduced. This is prima facie evidence
for a B effect. Given a long, flat trend under
A, it seems unlikely that the behavior would
change just when B was introduced unless B
had a real effect.

In practical affairs, the simple A-B design
is sometimes all that is available. If one’s
child’s health/behavior problem is improving
under some treatment, one would hardly insist
on inclusion of a control treatment. A-B de-
sign is thus common in medicine and behav-
ior modification, as well as in everyday life.
A-B design also occurs naturally with laws or
regulations intended to improve some unde-
sirable state of affairs, such as environmental
pollution or teaching in the universities.

One difficulty with simple A-B design is
that real effects are often not clear-cut. Tem-
poral confounding is thus a serious threat, a
threat that can be reduced with stronger de-
signs. The next strongest is the A-B-A design,
obtained by terminating B and reverting to A.
If the behavior also reverts, the case for a B
effect is strengthened. The A-B-A design also
gives some protection against temporal trend.
Additional periods of A and B provide further
protection.

Baseline Procedure

Baseline procedure is a form of control in-
tended to produce a standard state between
successive experimental treatments. Baseline
conditions are common for minimizing carry-
over effects in perception. In olfactory studies,
for example, one baseline condition requires
subjects to smell their own elbows between
trials with the experimental stimuli. Each of
us has a personal odor, as any bloodhound can
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tell, and smelling our own elbow appears to be
an effective way to readapt to a standard state.
Analogous procedure may be useful with the
choice and rating responses widely employed
in cognitive domains. In judgment-decision
tasks, interspersing a standard stimulus be-
tween successive experimental stimuli may
absorb carryover effects and also firm up the
frame of reference for the judgment-decision.
Baseline conditions are also common in med-
ical science, where they are called washout
conditions.

Many operant studies use treatment
schedules that produce systematic, cumu-
lative changes in behavior. Accordingly, a
standard baseline schedule may be introduced
after each experimental schedule, hoping to
return the subject to a standard state before
proceeding. If A and B j denote the base-
line and experimental treatments, the design
would be A-B1-A-B2-A-B3, and so on. Effec-
tiveness of baseline procedure cannot be taken
for granted, of course, but needs situation-
specific justification.

Serial Independence

With serial observation data, reliability must
usually be estimated from trial-to-trial vari-
ability in response. This estimate is biased
when serial correlation is present. In exper-
imental analysis, the best hope is usually to
avoid or minimize serial correlation.

Serial Independence Assumption

Standard ANOVA is directly applicable if
successive responses are statistically inde-
pendent. To illustrate, consider an A-B de-
sign with n independent responses in each
treatment condition. To assess reliability of
the mean difference between treatments, con-
struct a confidence interval. To estimate power
of a proposed experiment, apply standard
ANOVA power analysis.

The reasonableness of the independence
assumption depends on situational specifics.

With only a single observation in each ses-
sion, as in some of the later experimental ex-
amples, serial correlation may well be small
enough to cause no problem. If multiple A ob-
servations are taken in a single session, on the
other hand, serial correlation is a real possibil-
ity. Even in this case, however, interpolation of
a standard treatment between successive ex-
perimental treatments, as in the cited example
of elbow smelling, may reduce any serial cor-
relation to an acceptably small size.

Zero Serial Correlation
in Behavior Modification?

Serial correlation may not be too serious in
many behavior modification studies. Single-
subject A-B-type design is common in this
area, as in the two later examples of behav-
ior modification with children. On the face of
it, of course, serial correlation seems likely.
In part because of this expectation, standard
statistical methods have been shunned.

Little empirical evidence was available,
however, because the number of observations
per period has typically been no more than
10, far too few for adequate power to assess
possible serial correlation. Instead, the prob-
lem was considered serious on the plausible
feeling that behavior should be more similar
on successive than on nonsuccessive observa-
tions. Positive serial correlation was thus con-
sidered normal, and proposals to use ANOVA
were harshly criticized.

Huitema (1985) cogently proposed that the
question of serial correlation should be stud-
ied empirically. Accordingly, he considered
all articles from the first 10 years of the Jour-
nal of Applied Behavior Analysis, the premier
journal in this field. Of these, 441 studies re-
ported data that could be used to calculate a
serial correlation. On the expectation of posi-
tive serial correlation in even a good fraction
of these studies, the mean of all 441 serial cor-
relations should be positive. This mean should
have a narrow confidence interval, moreover,
based on such a large N.
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Contrary to expectation, the actual mean
was slightly negative for the data of the ini-
tial baseline phase. This absence of serial
correlation was supported by similar results
from subsequent treatment phases. Huitema
did find indirect evidence for a small propor-
tion of positive serial correlations, and a some-
what larger proportion was found similarly by
Matyas and Greenwood (1996) for the subse-
quent seven-year period in the same journal.3

These analyses suggest that serial cor-
relation is not a problem in many studies

3Although Huitema’s (1985) Herculean effort should
have been welcomed, the reaction was remarkably neg-
ative (see critiques cited in Huitema, 1988). In every
critique the central objection was that the small num-
ber of observations in each separate study yielded very
low power. The objection was mistaken; this power prob-
lem had been addressed by Huitema, who saw how to
resolve it by considering the aggregate of studies. If
the true correlation was generally positive in the 441
studies, the mean of the 441 serial correlations would
have been positive. That was why he went to the great
labor of reading and analyzing the data from all 441
studies; had each separate study had adequate power,
a small random sample would have sufficed. More re-
cently, Matyas and Greenwood (1996) have given a sen-
sible discussion of the issue, together with additional data
that suggest more serial correlation than was obtained by
Huitema, although markedly less than had generally been
expected.

Two complications with Huitema’s analysis should be
noted. First, under the null hypothesis, a serial correla-
tion based on N observations has an expected value of
−1/(N − 1), not 0 (Huitema & McKean, 1991). Under
the total null hypothesis of zero true serial correlation in
all 441 studies, the expected mean of the observed values
would be about −.10, whereas the actual value was −.01.

Second, Huitema sought more detailed information
by standardizing each serial correlation on the assump-
tion that this would yield a unit normal distribution under
the total null hypothesis. A statsig overplus of data in ei-
ther tail of the distribution would then suggest that some
cases had nonzero serial correlation. This procedure was
also followed by Matyas and Greenwood (1996), who
discussed some problematic aspects of the standardiza-
tion formula. It was on this uneasy, indirect basis that the
excess of positive serial correlations noted in the text was
obtained.

A more informative alternative would correlate the
observed serial correlations with likely determinants,
such as intertrial interval. This approach makes direct,
empirical use of all the data, not just extreme cases, and
is potentially more revealing.

of behavior modification and that standard
ANOVA techniques will often be applicable.
Regrettably, little information on the empiri-
cal conditions that do and do not produce se-
rial correlation is available. Serial correlation
seems likely with short intertrial intervals and
has been explicitly studied in psychophysics.
More generally, when drift in the subject’s
state has a longer period than the interval
between trials, it will induce serial correla-
tion. With one observation per day, however,
negligible serial correlation seems a good
hope.

Obtaining a solid data base on serial cor-
relation is an urgent need for methodology
of serial observation design. This need is no
less for visual inspection than for confidence
intervals and power estimates. Unfortunately,
criticisms of Huitema’s (1985) efforts have
obscured the importance of obtaining longer
sequences of observations to allow reliable es-
timates of serial correlation in different kinds
of experimental situations. Such data could be
collected in some empirical situations without
too much trouble if their importance was rec-
ognized. Likely determinants of serial corre-
lation are of special concern, such as intertrial
interval, type of task, and interspersed base-
line treatment.

Serial Correlation
as Substantive Phenomenon

Serial correlation embodies behavioral pro-
cesses. It tells us something about the orga-
nization and dynamics of behavior. From this
standpoint, serial correlation is not a statistical
complication, but a phenomenon of potential
importance.

Huitema’s (1985) evidence on serial cor-
relation thus has deeper importance. It in-
dicates that the prevailing expectation about
serial correlation rested on a misconception
about the organization of behavior. Lack of
knowledge about serial correlation reflects
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lack of knowledge about what controls
behavior.

ILLUSTRATIVE SINGLE-SUBJECT
EXPERIMENTS

Illustrative single-subject investigations from
seven areas are presented in the following
sections. These include randomized treat-
ment design and serial observation design, as
well as one time series of field data. These
diverse investigations point up the potential
of single-subject design across the whole of
psychology.

Person Cognition

When Thales, the ancient Greek philoso-
pher, was asked “What is the hardest thing?”
he replied, “To know thyself,” a view well
supported throughout modern psychology. If
self-cognition is hard, cognition about other
persons would seem still harder.

Meaning Invariance

One perennially attractive hypothesis holds
that person cognition is configural. One’s cog-
nition of another person—one’s spouse, for
example—is developed by integrating multi-
ple informers over the course of time. This
cognition seems clearly unified, not a repro-
ductive memory list, but an organized, func-
tional system of knowledge. Such organi-
zation suggests that each new informer is
interpreted in relation to what is already
known. Its effective meaning is not fixed, it
would seem, but is configurally dependent on
other informers. With concrete examples of
experimental stimuli, such meaning change
becomes overwhelmingly convincing to com-
mon sense. Self-reports of thought processes
by expert judges in every field are replete
with similar expressions of configural inte-
gration.

This configural view appeared in numer-
ous approaches that postulated one or another
principle of cognitive consistency. The guid-
ing idea was that the mind shuns inconsis-
tency and strives for consistency. Cognitive
consistency promised to be a sovereign prin-
ciple, a foundation for a unified theory of
cognition.

This principle of cognitive consistency im-
plies meaning change: The informer stimuli
interact and change one another’s meanings
in order to make a more consistent, unified
whole. Similar hypotheses of meaning change
appear in psycholinguistics. Quite different is
the hypothesis of meaning invariance: The
informers are integrated with no change of
meaning.

ANOVA provides an easy, cogent test of
the hypothesis of meaning change. Single-
subject ANOVA allows for individual dif-
ferences in meaning of the stimulus inform-
ers; idiosyncratic changes in meaning are not
averaged away, as could happen with group
analysis.

In the initial experiment, each of 12 sub-
jects received sets of three personality trait ad-
jectives that described a hypothetical person.
They judged how much they would like the
person on a scale of 1 to 20. The 27 person de-
scriptions were constructed from a 33 design,
with Lo, Med, and Hi adjectives as the levels
of each factor. To assess stimulus generality,
six different stimulus designs were used, each
with a different selection of adjectives, with
two subjects in each stimulus design. Sub-
jects were run individually for five successive
days. Each day began with eight warm-up de-
scriptions, followed by the 27 experimental
descriptions in random order. Treatment ran-
domization made the responses statistically
independent, thereby allowing single-subject
ANOVAs, which were performed on the data
of the last three days, the first two being treated
as practice to bring the subject into a stable
state.
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Figure 8.2 Parallelism pattern supports nonconfigural, adding-type rule in person cognition.
NOTE: Subjects judged likableness of hypothetical persons described by two trait adjectives listed in the
row × column design: row adjectives of level-headed, unsophisticated, and ungrateful; column adjectives
of good-natured, bold, and humorless. Each of these 3 × 3 = 9 person descriptions corresponds to one
data point. Data averaged over third trait for simplicity; see Figure 1.4 of Anderson, 1982.
SOURCE: After Anderson (1962).

Visual inspection and ANOVA provide
simple, direct tests of the hypothesis of mean-
ing change. Suppose that the meaning of
each adjective does change depending on
which other adjectives it is combined with.
Then its effect on the response will differ
from one cell to another in the design. Be-
ing thus variable, the effect of a given adjec-
tive can hardly be an additive constant. In-
stead, systematic deviations from parallelism
will be obtained. This nonparallelism will ap-
pear in ANOVA as nonadditive interaction
residuals.

On the other hand, suppose each adjective
has a fixed, invariant meaning. Suppose also
that the adjectives in each person description
are added or averaged to determine the lik-
ableness of the person. Then the interaction
residuals are zero in principle, and the facto-
rial graphs should exhibit parallelism.

Two-factor graphs for the first two subjects
in this experiment are shown in Figure 8.2,
together with illustrative trait adjectives. Both

subjects show parallelism. Parallelism dis-
confirms the cognitive consistency theories
en bloc because they imply nonparallelism.
Parallelism supports the averaging model
together with the hypothesis of meaning
invariance.

Most subjects showed similar parallelism,
and this visual inspection was supported by
the single-subject ANOVAs. The pooled in-
teraction residuals, with 20/54 d f, have high
power to detect deviations from the pre-
diction of the averaging model. This ini-
tial application of functional measurement
thus disconfirmed an entire class of cognitive
consistency theories in a simple, effective
way. This disconfirmation was constructive,
for it revealed unexpected organization of
cognition—perhaps the first established alge-
braic law of thought—together with meaning
invariance. No less important, this result im-
plied distinct modules for the valuation of the
separate informers and for their integration
into a unified response.
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Blame Schema

Blaming and avoiding blame are prominent in
social-personal dynamics but have received
little scientific study. Pioneering work by
Piaget (1932/1965) led him to conclude that
young children cannot integrate the two main
determinants of blame, namely, the intent be-
hind a harmful act and the amount of harm. In-
stead, they center on one or the other determi-
nant and judge solely on that. This doctrine of
centration was later extended to Piaget’s main
field of commonsense physics and became a
central concept in his theory. Centration, how-
ever, has been found to be an artifact of con-
founding in Piaget’s standard methodology.

These confoundings were avoided by Leon
(1976, 1980), who asked children to judge the
amount of deserved punishment for a story
child who had interfered with workmen paint-
ing a house. Each story presented one of three
levels of the intention that the story child
had to cause harm, and one of four levels of
physical damage. Children at five age levels,
from first to seventh grade, judged each of the
12 stories on a graphic rating scale. Each child
thus provided a factorial graph, which allowed
diagnosis of individual integration schemas.

Piaget’s (1932/1965) centration hypothe-
sis was disproved at once with this facto-
rial design, for centration implies only one
main effect in the ANOVA. Leon’s functional
measurement analysis showed that the major-
ity of children followed the algebraic blame
schema:

Deserved punishment = Intent + Damage.

This algebraic schema goes further to show
that children have cognitive abilities quali-
tatively different from those recognized in
Piagetian theory.

Some children showed certain other inte-
gration schemas. Spontaneous verbalizations
had indicated that some children thought no
punishment should be given when the dam-

age was accidental. Being clumsy, young chil-
dren have a personal interest in this schema.
Accordingly, all children were selected who
showed at most a one-point difference in their
judgments of the two stories with least and
most damage, both accidental.

Visual inspection of the individual facto-
rial graphs of these 43 children revealed three
distinct response patterns, corresponding to
three distinct integration schemas. Six chil-
dren followed an intent-only schema, shown
in the right panel of Figure 8.3. The large
separation between these curves indicates a
large effect of intent; their flatness indicates a
very small effect of damage. Another eight
children had a similar pattern (not shown),
but with a little larger effect of damage.

An accident-configural schema was exhib-
ited by the other 29 children, shown in the
left panel of Figure 8.3. The flatness of the
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Figure 8.3 Schema diagnosis for single subjects
in moral judgment.
NOTE: Two forms of the blame schema: intent-only
schema in right panel, accident-configural schema
in left panel. Children judged deserved punishment
for harmful action by a story child, given the intent
behind the action and the damage it caused. Curve
parameter indicates level of intent: A = accident;
D = displaced aggression; P = purposive damage.
Increasing levels of damage on horizontal axis, A,
B, C, D. Schemas diagnosed from pattern in indi-
vidual factorial graphs, here pooled over subgroups
of subjects.
SOURCE: After Leon (1976, 1980).
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bottom curve shows that these children dis-
regarded damage when it was accidental.
However, the near-parallelism of the two top
curves shows that these same children aver-
aged Intent + Damage when the act had some
deliberate intent behind it. This accident-
configural schema appeared at all ages, even
with a few adults.

Leon’s (1980) seminal study illustrates
the importance of individual analyses. It
also illustrates a cognitive methodology with
notable advantages over the choice method-
ology popularized by Piaget.

Behavior Modification

Operant conditioning techniques have been
applied to a wide spectrum of behavior prob-
lems, especially with children. Among the
advantages of operant techniques are their
flexibility and the power of reinforcement
over behavior. Two examples of single-subject
analysis are cited here.

Aggression in Retarded Children

Sam was a mentally retarded, nonverbal
9-year-old who understood only simple com-
mands. He was referred by his teacher because
he met all attempts at instruction with aggres-
sion (pinching, hair pulling, and scratching).
Drugs and a special diet had been ineffective.

The rationale for this study began with
the hypothesis that Sam’s aggressive behavior
functioned as a means to escape aversive de-
mand situations. A further hypothesis was that
the aggression could be controlled with pos-
itive reinforcers (Carr, Newsom, & Binkoff,
1980).

This study is instructive because, among
other reasons, it illustrates the development
of an effective task—the foundation of exper-
imental analysis. Some behavioral task must
be found that will elicit Sam’s aggression but
also elicit correct responses that can be rein-

forced. In addition, personal reinforcers must
be found to suit Sam’s idiosyncracies.

The behavioral task was a buttoning board
that had been used in Sam’s classroom. At
the beginning of each daily 10-min session,
Sam was handed a buttoning board and was
told every 10 s to do one button. Although
this demand typically elicited aggression, it
was nearly always performed.

In addition, pretesting was needed to estab-
lish effective reinforcers for Sam. One potato
chip and a music box turned on for 4 s by
the experimenter were two that were selected.
These reinforcers have the advantage of not
interfering unduly with the opportunity to
emit aggressive behavior.

Sam and the experimenter sat in two facing
chairs, 40 cm apart, so Sam had easy opportu-
nity to aggress against the experimenter. One
or two observers, seated separately, recorded
frequency of aggression.

Two conditions were used in the A-B-A-B
design of Figure 8.4. The control A condi-
tion consisted of demands to fasten a button,
which received brief verbal praise just as in
Sam’s classroom instruction. The experimen-
tal B condition consisted of the same treat-
ment plus one of the cited reinforcers. Suc-
cessive data points represent successive days.

control
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Figure 8.4 Positive reinforcement decreases
aggression.
NOTE: Aggressive responses by Sam in 10-min
daily sessions in aversive task. Open circles rep-
resent performance of simple aversive motor task
under classroom task situation; filled circles repre-
sent same situation plus positive reinforcers.
SOURCE: After Carr, Newsom, & Binkoff (1980).
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The data of Figure 8.4 speak for them-
selves: Aggression is high during the con-
trol condition and drops immediately when
the personal reinforcers are used. The serial
independence assumption seems reasonable
in this situation, so a formal ANOVA could
be applied to supplement the visual inspec-
tion. Of course a formal test is obviously not
needed here.

Figure 8.4 presents one of two experiments
with Sam. The published paper also included
two experiments with Bob, a 14-year-old who
was so aggressive that the experimenter had
to wear protective clothing and could only
tolerate a 5-min session. This case was fur-
ther complicated by the lack of positive re-
inforcers; Bob had an eating problem and no
interest in music. To see how the investigators
succeeded in extinguishing Bob’s aggressive
behavior and shaping him into an instructable
person, see Carr et al. (1980, Experiment 4).

Attention-Deficit Disorder

About 1.5 million children in the United
States suffer from attention-deficit disorder.
These children often have poor literary skills
and may have trouble following teacher in-
structions. Special education services are
often required.

About half of these children are treated
with stimulant medication, most commonly
with methylphenidate (Ritalin). Evidence for
positive effects of methylphenidate comes
from a careful, intensive study by Rapport
et al. (1987), who presented both group and in-
dividual data for 42 children. These individual
data were thought to indicate that drug effects
are somewhat idiosyncratic across children as
well as across tasks. This pattern, however,
may simply reflect marginal power. Marginal
power may also explain why the optimal dose
level does not seem predictable. In practice,
the operative dose is usually determined by re-
ports of parents or teachers, which is not too
satisfactory. Parents and teachers are likely to

judge on docility, not on what the children
learn, as noted long ago by Binet in his pio-
neering studies of intelligence.

An experimental approach to the prob-
lem of determining optimal dosage was pre-
sented by Stoner, Carey, Ikeda, and Shinn
(1994). One response measure was the num-
ber of words read aloud in the classroom sit-
uation from a passage of a school text. Such
curriculum-based assessment, as it is called,
has been extensively developed and has many
attractive properties. Among these are sim-
plicity, reliability, suitability for repeated
administration, and face ecological validity.

Both subjects were rural children who had
been referred to a university clinic by their
family physician. A double-blind procedure
was used. Following a coded schedule, each
morning’s dose was administered by the par-
ents, who had been involved in the decision
to perform the experiment. Performance was
measured 1 to 2 hr later in school, at which
time the drug effects were thought to be max-
imal. Besides the reading measure, an analo-
gous arithmetic measure was also used. Many
careful, thoughtful details of procedure are
passed over here.

The outcome of this experiment is illus-
trated in Figure 8.5, which presents reading
scores for 32 school days for Bill, a l3-year-
old eighth-grader. The article presents a simi-
lar graph for Bill’s arithmetic performance as
well as graphs for the other subject, who re-
ceived a different sequence of dosage levels.

Visual inspection of Figure 8.5, in my opin-
ion, shows no evidence for treatment effects.
The response is about as high for the placebo
as for the 10-mg and l5-mg doses. Response
to the 5-mg dose is considerably higher, but it
also shows high variability, and the difference
is visibly unreliable. Indeed, the later follow-
up under 5 mg actually shows lower perfor-
mance than the placebo.

The authors took a more positive view, pre-
senting their data to the parents and physician



pashler-44093 book December 18, 2001 10:22

Illustrative Single-Subject Experiments 319

Figure 8.5 Methylphenidate medication evidently fails to help attention-deficit child.
NOTE: Each data point represents number of words read aloud from standardized text in classroom
situation. No medication in baseline treatment (filled circles); 5, 10, and 15 mg indicate daily dosage of
medication; placebo is a comparable dose with 0 mg medication.
SOURCE: After Stoner, Carey, Ikeda, & Shinn (1994).

as a basis for selecting a dosage level for con-
tinued treatment. Their published paper in-
cludes cautionary comments about the threat
of temporal confounding and about high vari-
ability, it is true, but the other three graphs in
this article were about equally negative.

This study illustrates the need for
standard statistics in the field of behavior
modification—especially at the design stage.
In this study, a power calculation would surely
have shown that the given design had little
chance of success. Moreover, a Latin square
design would have been markedly more effec-
tive, as indicated in the earlier discussion. And
because the literature had shown inconsistent
results, visual inspection could not have been
expected to be adequate.

Standard statistics seems applicable in this
case. With one trial per day, serial correla-
tion could be expected to be near zero. Posi-
tive serial correlation would yield an effective
false-alarm parameter somewhat larger than
its nominal value, which might be tolerable in
this situation. Taking advantage of standard
statistics, to paraquote the authors on the need

for replication of their study “holds promise
for contributing to improved outcomes for
the hundreds of thousands of children who
are prescribed stimulant medication annually”
(Stoner et al., 1994, p. 111).

Personality and Clinical Psychology

Single-subject design, especially randomized
treatment design, should be central in
personality-clinical psychology. However,
“these designs are rarely taught in research
training in clinical psychology despite their
potential for widespread use” (Kazdin, 1992,
p. 470). The one chapter in Kazdin’s edited
book that focuses on this issue is a light
overview of serial observation design (Hayes,
1992). Little more is found in Hersen, Kazdin,
and Bellack (1991).

The work on behavior modification consti-
tutes a resource for clinical applications which
also aim at behavior modification. Much is
there to be learned, both dos and don’ts, as
from the two foregoing studies. Indeed, the
discussions cited in the previous paragraph
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rest largely on methods developed in behav-
ior modification, which is much neglected in
personality-clinical psychology.

Another resource comes from judgment-
decision theory, illustrated with the studies
of person cognition in Figures 8.2 and 8.3.
Such randomized treatment design with sin-
gle subjects seems almost totally neglected in
personality-clinical psychology, yet it offers
unique advantages.4

The lack of progress in personality-clinical
psychology has been repeatedly bewailed by
Meehl (e.g., 1990, pp. 229–230, Meehl’s
italics):

Null hypothesis testing of correlational predic-
tions from weak substantive theories in soft
psychology is subject to the influence of ten
obfuscating factors whose effects are usually
(1) sizeable, (2) opposed, (3) variable, and
(4) unknown. The net epistemic effect of these
ten obfuscating influences is that the usual lit-
erature research review is well-nigh uninter-
pretable.

Meehl explicitly considers only “soft psy-
chology,” dealing with “nonmanipulated fac-
tors” and relying on correlational analysis.
His main “obfuscating factor” is the “crud
factor,” essentially that “everything correlates

4My concern about the conceptual framework that guides
research in clinical psychology coalesced when I did
some studies of judgment-decision in marriage in the
late 1970s. Despite the overwhelming social importance
of marriage and family life, despite the great opportu-
nities for clinical research, and despite the importance
of family therapy, clinical branches of psychology de-
partments showed near-zero interest in marriage at that
time. This concern was sharpened by one participant at an
American Psychological Association symposium who
declared that to go into marital therapy, the first thing to
do was to throw away everything you had learned about
clinical psychology. Working through the problem, the
classical approach, was sure to aggravate the trouble. In-
stead, the goal should be to forget the past and move
forward.

The paucity of single-subject experiments in
personality-clinical psychology contrasts dramatically
with the idiographic emphasis on the uniqueness of the
individual. Meehl’s (1990) criticisms of significance tests

to some extent with everything else” (p. 204),
which makes analysis of causal process
almost impossible. This lack of progress
contrasts sharply, it may be added, with im-
pressive recent progress in developmental
psychology, psycholinguistics, perception,
behavior genetics, neuroscience, and some
other fields that employ experimental
analysis.

A new way of thinking is needed in
personality-clinical psychology. The root of
the problem lies in a conceptual framework
that leads to the “bunch of nothing” that
Meehl (1990, p. 230) decries. Single-subject
methodology provides one potentially useful
approach discussed in the later section titled
“Personal Design.”

Perception

Single-subject design is natural and appropri-
ate in many tasks of perception and judgment–
decision. Surprisingly few, however, utilize
single-subject ANOVA.5

Color Contrast

In color contrast, one hue induces its comple-
mentary hue. A gray field adjacent to a red
field appears tinged with green, the hue com-
plementary to red. Even more striking, a green

and hypothesis testing miss the main problem. The main
problem is that the hypotheses being tested stem from an
ineffectual conceptual framework, symptomatized in his
“crud factor,” based on correlation analysis of groups of
people. A shift to a conceptual framework oriented toward
experimental analysis with single persons is needed.

A few comments relevant to single-subject design
in personality-clinical psychology are given for emo-
tion in Anderson (1989) and for ego defense in Anderson
(l991b). Marriage and family life are considered in
Anderson and Armstrong (1989) and Anderson (1991a).
Of special interest and high potential are the studies of
self-experimentation reported by Roberts and Neuringer
(1998).

5I am surprised by the paucity of single-subject ANOVAs
in perception. In fact, I had trouble finding experimental
illustrations. I should appreciate information about other
applications in this area, and in other areas as well.
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Figure 8.6 Additivity of red-green contrast.
NOTE: Hue judgments plotted as a function of hue
of judged test field (horizontal axis) and hue of
contrast-inducing field (curve parameter). Paral-
lelism of solid curves implies that the apparent
hue of the test field is the sum of its own proper
hue and the contrast hue from the inducing field.
(Dotted curve represents baseline response to test
field by itself; its greater slope provides evidence
for secondary induction. Scale on horizontal is rel-
ative activation of red cones, with the total [red +
green] luminance held constant.)
SOURCE: After Stefurak (1987); see Anderson
(1996, pp. 290ff ).

field adjacent to a red field appears greener.
Such contrast effects misrepresent physical
reality but provide important information on
the operation of the visual system. Contrast is
also found with affective senses and seems to
be a general adaptive process.

A single-subject study of red-green con-
trast is shown in Figure 8.6. The subject saw
two small, adjacent color fields, test field
and inducing field, each varied independently
from red to green in five steps. The subject
rated the test field (horizontal axis) on a scale
from “red 9” to “green 9.” Each curve repre-

sents one inducing field, which produced con-
trast. Each point is the mean of 10 judgments
for subject K.F.P.

The main conclusion is that color contrast
follows an exact additive model. It might seem
that a red inducing field would have less effect
on a red test field than on a gray or green test
field. Instead, the effect is constant, as shown
by the parallelism of the solid curves.

Also of interest are the implications for
psychophysical measurement. The paral-
lelism of the solid curves indicates that the
rating response is a true linear scale of sub-
jective hue. Furthermore, because the solid
curves are straight lines, it follows that the
physiological hue scale for the test field on
the horizontal is also a true linear scale of sub-
jective hue. This physiological hue scale was
defined in terms of activation of red and green
cones, but whether it was a true linear scale of
subjective sensation was not known. This ap-
plication of functional measurement theory
illustrates a novel link between objective
physical measures and subjective psycholog-
ical measures.

Our Knowledge of the External World

A primary goal of psychological science is to
understand how an organism develops knowl-
edge of the external world. As noted else-
where (Anderson, 1996, pp. 281 f ),

We live in two worlds together. One is the exter-
nal physical world, in which our bodies move
and function. Within our bodies is a very differ-
ent world, a world of everyday sights, sounds,
and other sensory-perceptual experience. We
take it for granted that this internal psycholog-
ical world mirrors the physical world. . . .

Everyday theory of perception assumes we
have direct contact with the external world.
We think, without really thinking, that the eye
somehow transmits little images of the external
world to our conscious apprehension. The rea-
son we see objects and motions is simple: That’s
what’s there. . . .
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This naive theory of direct perception has
persuasive arguments in its favor. Perception
seems effortless and immediate. Simple arith-
metic and memory tasks often give us trouble,
but perceiving complex scenes does not. . . .

Of course, this commonsense theory of di-
rect perception is not correct. This became clear
when systematic study of the sensory systems
was begun. The sensory nerves do not trans-
mit little images. Instead, they transmit neuro-
electrical impulses, a biological computer code.
Everyday consciousness is totally unaware of
nature’s engineering marvels by which our sen-
sory systems convert physical energy, such as
light, into neuroelectrical impulses—and from
this computer code of the nerves construct this
fantastic internal world of three-dimensional
shapes, motions, and chromatic magnificence.

What are nature’s engineering marvels? One
is neurons sensitive to specific physical fea-
tures, such as orientation of the contour lines
of an object. Certain single neurons will fire in
response to a vertical line, for example, but not
to a horizontal line. Indeed, orientation assess-
ment is one of the most important components
of vision. Detection of such visual features is
thought to occur very early in the chain of
visual processing, at a preattentive stage that
does not require focusing of attention.

Figure 8.7 Visual discrimination learning under no feedback.
SOURCE: After Shiu & Pashler (1992).

A curious result is at issue in the follow-
ing study (Shiu & Pashler, 1992). Subjects
improved on a difficult task of discriminat-
ing angular orientation of a line—without
feedback about correctness. However, this
improvement occurred only if the subjects
attended to orientation; it did not occur if sub-
jects were trained to judge these same lines in
terms of brightness. Over the first two exper-
iments, moreover, there was little transfer to
a new, equivalent position in the retinal field.
The learning thus appeared to occur locally
in the retina and in topographically connected
regions of the brain.

Data from one subject in Experiment 2 are
used here to illustrate aspects of single-subject
design in perception. The main purpose was to
verify the suggestion of Experiment 1 that ac-
curacy improved even when subjects received
no accuracy feedback. Subject P. P. received
12 blocks of 40 trials each day, under in-
structions to identify which of two lines with
slightly different tilt had been presented on
each trial. No feedback about correctness was
given.

The results are shown in Figure 8.7, which
plots percentage correct on successive days.
A linear trend test over days 1 through 5
yielded a comfortably statsig result. This
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verified the previous experiment’s suggestion
that learning occurred without feedback. This
learning is not some initial adjustment to the
task, for it occurred mainly on later days.

Transfer tests were given on alternating
trial blocks on days 6 and 7. The two open cir-
cles at the top right of Figure 8.7 show mild
continued improvement on the training task
itself. The most notable transfer is the large
decrement shown by the lower filled circle,
for trials on which the line angle was changed
by 90◦, a curious result that seems to have
remained unexplored. In addition, the statsig
difference between the two data points for
day 7 shows substantial decrement from
merely changing the position in the visual
field at which the test line occurs. Together,
these two results imply that the learning did
not represent a focusing of attention.

Three subjects were run, of which P. P.
showed the slowest improvement over days.
This slowest subject was chosen here to reem-
phasize limitations of the common one-
session experiment.

To buttress the visual inspection, some
measure of error variability is needed to
assess the reliability of the visible trends.
The base for analysis was the unit score,
namely, percentage correct in each block of
40 trials. This yielded 12 scores per day. A
days × blocks ANOVA yielded a statsig
linear trend over days.

Additive-Factor Method
in Perception/Cognition

Sternberg’s (1969) additive-factor method is
an ingenious application of factorial design
to dissect the sequence of processes that lead
from a given stimulus to a response. Further, it
illustrates a class of perceptual/cognitive tasks
that may require joint use of individual and
group analysis.

Donders’s subtraction method, published
just one century before Sternberg, was a
historic attempt to dissect components of

stimulus-response processing. Donders mea-
sured reaction time to a given stimulus with
and without insertion of an additional com-
ponent of the task. The difference in reaction
time, he argued, measured the time required
for the inserted component.

The critical assumption of Donders’ sub-
traction method is that the inserted compo-
nent does not alter the times for processes that
precede or follow it. This assumption is un-
certain, and there is no way to test it. As a
consequence, Donders’ method has seen only
sporadic use.

This difficulty is resolved with Sternberg’s
(1969) additive-factor method. In one experi-
ment, the subject saw a numeral either intact
or degraded with visual noise (Stimulus Qual-
ity) and was to respond either with the numeral
itself or with the numeral plus 1 (Stimulus-
Response Mapping). Stimulus Quality and
Stimulus-Response Mapping may be expected
to influence independent stages of the over-
all response process, the former at the stimu-
lus encoding stage, the latter at the response
output stage. If so, their times should be ad-
ditive, and this additivity will be revealed
in the ANOVA. Observed parallelism in this
2 × 2 design would thus support stage inde-
pendence of the two manipulated factors.

Data for two of the five subjects are shown
in Figure 8.8. The two dashed curves for
each subject represent the case in which the
numeral on each trial could be 1, 2, . . . , 8.
Visual inspection indicates little deviation
from parallelism. The two solid curves for the
condition in which the numeral was either 1
or 8 show a little nonparallelism, but hardly
enough to cause worry.6

6The logic of Sternberg’s additive-factor method seems
compelling. As with all theories, however, some alterna-
tive may hold instead. In fact, it appears that reasonable
alternatives very different in nature can also yield additive
results (Miller, van der Ham, & Sanders, 1995).

Additive models can also produce linear fan patterns in
some tasks, as illustrated in Shanteau’s (1991) application
of functional measurement to a list-search task.
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Figure 8.8 Test of additive-factor method.
NOTE: Parallelism of paired dashed lines and paired solid lines for each subject supports additivity of
processing times for stimulus quality and stimulus-response mapping.
SOURCE: After Sternberg (1969).

It is instructive to compare advantages
of single-subject ANOVA with the repeated-
measures ANOVA that Sternberg used.
Sternberg gave extensive preliminary train-
ing to bring subjects to a near-stable state and
collected ample data that would have allowed
individual ANOVA. Many studies in percep-
tion/cognition present similar opportunities.

Advantages of the group analysis are that
only one ANOVA is required and that the error
term for each ANOVA source is composed of
the corresponding interactions with subjects.
If subjects were a random sample from some
population, this error term would warrant sta-
tistical generalization of the sample results to
the population. Subjects are virtually always
handy samples, of course, but this same error
term is appropriate for extrastatistical gener-
alization to other subjects.

Single-subject ANOVA has advantages of
greater sensitivity. The error term contains
only response unreliability of each individ-
ual; the repeated-measures error is larger be-
cause it includes also the subject interaction
residuals. Group analysis may thus obscure
pertinent aspects of the individual behavior,
especially an occasional deviant individual.
In this regard, single-subject analysis may

actually be more appropriate for extrastatis-
tical generalization.

Judgment-Decision

The field of judgment-decision seems ideal for
single-subject design because most investiga-
tors aim to employ stable-state tasks. Instead,
repeated-measures analysis is generally used.
Even so, it seems advisable to collect enough
data from each subject to allow supplemen-
tary single-subject analysis, as in the follow-
ing study.

Fundamental Violation
of Classical Utility Theory

“More is better” is a basic principle of utility
theory, widely used in economic theory and in
judgment-decision theory. Some form of this
principle appears in the sure-thing axiom and
in the dominance axiom, both of which have
been central in attempts to develop general
theory.

The ubiquitous averaging process of cogni-
tive algebra, however, implies that more may
be worse. If a positive object is added to an-
other positive object, the overall value may
actually decrease. A well-planned study by
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Figure 8.9 More may be worse, contrary to classical utility theory.
NOTE: Crossover of dashed and solid curves for both ages of children shows that adding one positive
object to another may actually decrease the value of the two together.
SOURCE: After Schlottmann (2000).

Schlottmann (2000) showed that this averag-
ing process held for children at two age levels.

Schlottmann’s (2000) results are in Fig-
ure 8.9. The near-parallelism of the three solid
curves in each panel of Figure 8.9 supports an
exact cognitive integration rule, by virtue of
the parallelism theorem. These solid curves
come from the two-factor design that com-
bined each of three chances to win the skip-
ping rope with each of three chances to win
the marbles. The near-parallelism thus sug-
gests an exact algebra of subjective utility at
all age levels.

Parallelism, however, can result from
either of two rules: averaging or adding. To get
a critical test between these two rules, com-
pare the dashed curve (the judged value of the
low, medium, or high chance to win the skip-
ping rope alone) with the solid curve labeled
medium (for the same chance to win the skip-
ping rope together with a medium chance to
win the marbles).

Utility theory requires the dashed curve
to lie below all the solid curves; even a low

chance of winning the marbles is worth some-
thing and so should raise the dashed curve at
every point. Utility theory is disordinally vio-
lated by the crossover of the dashed and solid
curves for both ages of children.

Instead, the crossover of the dashed and
solid curves implies that children averaged:
The medium chance to win the marbles aver-
ages down the high chance and averages up the
low chance to win the skipping rope. Adults,
in contrast, integrate by adding in this task,
as shown by the location of the dashed curve
below and parallel to all the solid curves.

Schlottmann’s (2000) application of func-
tional measurement is cited here to illus-
trate a common class of situations in which
a few subjects are not enough, unlike most
previous examples, yet individual analyses
are important. The double difficulty is that
children’s judgments are more variable than
adults’ judgments and that relatively few judg-
ments can be obtained before they lose inter-
est. Schlottmann obtained two replications for
each child, but even two replications requires
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experimenter skill to maintain children’s in-
terest and motivation. Because many sub-
jects were used, an overall repeated-measures
ANOVA was used to summarize the main
trends. This was supplemented with visual in-
spection of the factorial graph for each sub-
ject, together with single-subject ANOVAs
that were reported in verbal summaries. At
each age level, all individuals exhibited simi-
lar patterns. In fact, the dashed curve lay be-
low the solid curves for all 16 adults, but for
none of the 32 children at each age group.
Such agreement across children is notable in
this hard task and should not be expected in
general (e.g., Figure 8.3).

Personal Design with Self-Estimated
Parameters

Values of the stimulus informers may need
to be measured beforehand to account for an
integrated response. This problem of stimu-
lus measurement was neatly finessed with the
parallelism theorem, which requires measure-
ment only of the response. But parallelism
analysis requires factorial-type design, which
is often not possible.

The problem of stimulus measurement
arises when a stimulus object has attributes
that cannot be manipulated as independent
factors. In the following experiment, for ex-
ample, female subjects judged photographs
of males on desirability as dates. Preliminary
work had suggested that the judgment of each
photograph was the product of two attributes:
physical attractiveness of the male and the
probability that he would go out with the sub-
ject. This probability may well depend on the
attractiveness. Hence, the two variables could
not well be manipulated independently in fac-
torial design.

In this experiment (Shanteau & Nagy,
1979), accordingly, the subject was asked to
judge each photograph on each separate at-
tribute as well as on desirability as a date. To

test the cited multiplication hypothesis, these
two attribute judgments were multiplied and
compared with the judged desirability.

The integration hypothesis is well sup-
ported in Figure 8.10. The predicted judg-
ments (dotted lines) are close to the observed
judgments (solid lines). The seven males are
located on the horizontal axis according to
their physical attractiveness, which differs
across subjects. The dashed curves at the top
give the corresponding probability judgments.
Note the low desirability judgments of the two
most attractive males by Subject B. W. This
low desirability presumably stems from fear
of rejection, as reflected in the low probability
judgments for these two males.

Analysis of many situations, perhaps most,
faces the same difficulty: that the separate
stimulus attributes cannot be manipulated in-
dependently. This important integration issue
seems largely buried under the general con-
cern with one-variable experiments and facto-
rial manipulation. As this experiment shows,
methodology for linear response measures
can be useful for attacking this difficult class
of problems (see further Anderson & Zalinski,
1991).

Operant Matching Law

In matching behavior, subjects adjust their re-
sponse rates to match relative rates of rein-
forcement. Matching behavior has been ex-
tensively demonstrated with two-choice tasks,
both in probability learning with humans and
in concurrent operant schedules with pigeons.

In operant theory, this matching law is usu-
ally expressed in terms of observable quanti-
ties as

R1

R2
= S1

S2
, (observable matching law)

where R1 and R2 denote response rates on the
two alternatives, and S1 and S2 denote corre-
sponding rates of reinforcement. Tests of this
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Figure 8.10 Females judge date desirability of photographs of males.
NOTE: Functional measurement prediction supported by closeness of observed and predicted pref-
erences (solid and dotted lines, respectively). Female subjects judged photographs of males on
(a) physical attractiveness (horizontal axis), (b) probability of acceptance (upper dashed curve), and
(c) desirability as a date (solid curve). Dotted curve gives theoretical predictions from theoretical model.
Note that the three females give different rank orders for physical attractiveness of the seven males on
the horizontal axis.
SOURCE: After Shanteau & Nagy (1979); see Anderson (1981, p. 76).

matching law are straightforward because all
four terms are directly observable.

However, this matching law rests on a
strong implicit assumption that the two
choices yield equivalent reinforcements. This
will not generally be true. Reinforcements on
the two choices may differ in amount, for ex-
ample, or in quality. It is desirable, accord-
ingly, to allow different values for each rein-
forcer. Because these values will in general
be unknown, they are denoted by ψ instead of
S. This psychological version of the matching
law may be written

R1

R2
= ψ1

ψ2
. (psychological matching law)

This psychological matching law has been de-
clared tautological on the argument that val-

ues of ψ1 and ψ2 could always be found to
make the data fit the law.

In fact, functional measurement provides a
strong test of the psychological matching law.
With R = R1/R2, the equation may be writ-
ten as a multiplication rule, R = ψ1 × ψ−1

2 .

By the linear fan theorem of functional mea-
surement theory, varying the two reinforcers
in a factorial design should yield a linear fan
(Anderson, 1978).

Just such linear fans appear for the two pi-
geons of Figure 8.11, based on the careful,
arduous experiment by Farley and Fantino
(1978). Joint food-shock reinforcement was
used for each choice alternative. The ψ value
of each was varied across three schedules to
yield the 3 × 3 design indicated in the figure.
Functional measurement theory goes beyond
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SOURCE: After Farley & Fantino (1978).

verifying the psychological matching law to
provide validated scales of the ψ values. In
this tour de force, Farley and Fantino were
thus able to express food and shock in equiv-
alent units, a milestone in attempts to unify
positive and negative reinforcement.7

Time Series

Most experimental analysis of single-subject
data uses one of the two foregoing approaches

7The operant study by Farley and Fantino (1978) cited
in Figure 8.11 was the first application with animal sub-
jects of the linear fan analysis for multiplication mod-
els introduced by Anderson and Shanteau (1970). Other
applications of linear fan analysis to animal experiments
are given by Hawkins, Roll, Puerto, and Yeomans (1983),
Roberts (1987), and Gibbon and Fairhurst (1994). This
work gives substantial support to the hypothesis that re-
sponse rate is a true psychological scale.

of treatment randomization or serial observa-
tion design to deal with serial correlation. A
third approach rests on diagnosing the nature
of the operative serial correlation and incorpo-
rating it in a mathematical model. The model
is intended to control the serial correlation by
factoring it out of the data, thereby satisfy-
ing the independence assumption. This ap-
proach, which goes under the name of time
series analysis, is used frequently with tem-
poral sequences of economic data, as in fore-
casts of the economy.

A behavioral application of time series
analysis to study effectiveness of wearing seat
belts is included here to emphasize the im-
portance of nonexperimental field research.
In this time series, which is typical of data on
many social issues, the subject was the entire
population of North Carolina.
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This example has multiple purposes. First,
it illustrates a large class of social issues that
lie outside the scope of traditional experimen-
tal analysis. These issues require a different
perspective. Second, this example illustrates
an enlightened state legislature that recog-
nized the need to evaluate the effects of their
laws. Third, it illustrates the value of fore-
thought to broaden the database, as with the
preliminary program of observations on ac-
tual seat belt usage. Fourth, it underscores
the need to develop and verify statistical the-
ory for time series within specific empirical
contexts.

Foresighted provision for an evaluation of
effectiveness was included in the 1985 law
passed by the state of North Carolina that re-
quired wearing seat belts for front seat occu-
pants of passenger cars and light-duty trucks
and vans. A well-designed probability sam-
pling study began assessing frequency of seat
belt wearing three months before the law took
effect. Beginning 1 October 1985, violators
were issued warning tickets for 15 months.
Beginning 1 January l987, violators were sub-
ject to fines of $25 (Reinfurt, Campbell,
Stewart, & Stutts, 1990).

A time series graph showing seat belt usage
at successive monthly times, was dramatically
clear: 25% in the prelaw baseline period; an
immediate jump to a stable 45% in the warn-
ing period; and an instant jump to near 80% at
the beginning of the fine period, with a slow
decline to about 65%.

But was this increase in belt usage effec-
tive in reducing accidents? Accident data were
available from police records, which provided
a baseline period back to 1981. Visual inspec-
tion of this times series showed perhaps a mild
decline in vehicle accidents from baseline in
the warning period, with a more definite mild
decline in the fine period. Although this time
series was quite irregular and complicated by
a pronounced seasonal decline at year-end,
visual inspection seems fairly persuasive.

Visual inspection was supplemented by a
statistical time series analysis, which was used
to forecast what would have happened with-
out the law. Comparing these forecasts to the
observed data yielded an inferred reduction
of 5.4% for the warning period and 14.6% for
the fine period. Both inferred reductions were
statsig, suggesting that the law had substantial
social benefits.

But these two values, 5.4% and 14.6%,
are not real data. They come from forecasts,
obtained from the time series, about what
would have happened had no law been passed.
These forecasts rest on the empirical valid-
ity of the model employed in the time series,
which could hardly be considered solidly es-
tablished. How far the time series statistics
can be trusted is thus uncertain. This exem-
plifies a common difficulty with observational
data.

In the present investigation, however, a
comparison time series was at hand. This gave
corresponding percentages for rear seat oc-
cupants, who were not required to wear seat
belts. The corresponding analysis of this time
series showed a 10.2% decrease, nearly as
large as the 14.6% for the front seat occupants.
This comparison clouds the main analysis and
leaves the results less convincing. At the same
time, it emphasizes the value of forethought
in obtaining such comparison time series.

The need to deal with time series is clear;
behavior is normally a continuous temporal
evolution. The discrete trials that characterize
so many experiments miss a dynamic of per-
ception, thought, and action. Unfortunately,
analysis of time series depends on empirical
validity of some assumed statistical model,
which is not often well established. In learning
theory and psychophysics, time series have
been studied in terms of sequential depen-
dencies. This work, however, has had mixed
success, even with the inestimable advantages
of experimental control. It is surprising that
books on time series have not paid more
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attention to the mass of data available from
these two fields.

METHODOLOGY
IN SINGLE-SUBJECT DESIGN

Much methodology is area- and task-specific.
Methods and procedures differ in many ways
across person cognition, behavior modifica-
tion, visual perception, judgment-decision,
and field studies, as illustrated in the forego-
ing eleven studies. Each area needs its own
single-subject methodology.

Some issues of method, however, are com-
mon across areas. Foremost is independence,
already discussed. A few additional issues of
single-subject methodology are taken up in
the following sections.

Generalizing within Subjects

Generality for a single subject has both ex-
ternal and internal aspects. External general-
ity refers to other situations and other times
for the same subject. Present behavior may
not generalize to other situations because they
differ from the present situation in some perti-
nent way. Present behavior may not generalize
to future times because the organism changes
over time, whether in fluctuations of health
and motivation or in systematic changes of
maturation and experience.

Assessment of external generality can be
assisted with experimental design. Stimulus
generality can be studied by including stim-
ulus materials as a factor in the design, as
in the study of person cognition of Fig-
ure 8.2. Some information on temporal gener-
ality can be obtained with designs that can as-
sess position and carryover effects, especially
through replication of the experiment over
time. For the most part, though, external gen-
erality depends on extrastatistical judgment
about stability of the behavior and about sim-

ilarity of the experimental situation to other
situations.

Internal outcome generality refers to the
reliability of the present behavior. In one
sense, the present behavior is a fact, so no
question of reliability arises. In a more useful
sense, each present response is considered to
include variability from causes specific to the
moment of response. The pertinent question,
accordingly, is whether treatment differences
are larger than could be expected from this
momentary variability.

This question of internal outcome general-
ity is illustrated in the two foregoing studies
of behavior modification. In one of these, the
treatment difference is clearly reliable. In the
other, it is clearly not. Internal outcome gener-
ality is prima facie a statistical question: mean
differences relative to variability. Although
this comparison can sometimes be made by
visual inspection, as in the two cited studies,
it is essentially statistical in nature.

Generalizing across Subjects

Most studies of single subjects seek to gen-
eralize to a population of subjects. Even the
cited studies of behavior modification, con-
cerned with treatment of particular children,
were expected to be relevant to treatment for
other children.

Response pattern thus becomes a primary
concern. Individuals will surely differ in mag-
nitude of response but may still show similar
patterns. Individual analysis is often neces-
sary to assess individual patterns, which can
be obscured by averaging over individuals.

Commonality of response patterns across
individuals, however, differs between sub-
stantive tasks. In some tasks, virtually all sub-
jects are expected to show similar response
patterns, with individual differences appear-
ing merely as amount or magnitude parame-
ters. Two or three subjects may then suffice,
with data presented separately for each. This
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approach is common in perception, as illus-
trated in three of the foregoing studies, and in
some operant tasks.

In other areas, individuals may be expected
to differ in response pattern. The study of per-
son cognition in Figure 8.2, for example, used
12 subjects for this reason. As it happened,
most subjects in this experiment showed the
parallelism pattern. With judgments of blame,
however, several different response patterns
are found (Figure 8.3), and the same may
happen even in intuitive physics (Karpp &
Anderson, 1997).8

Diagnosis of individual differences in re-
sponse pattern presents two practical prob-
lems. The first is to get enough data to obtain
adequately firm pattern diagnosis for each in-
dividual. The second is that a fairly large num-
ber of subjects may be required to get even
two or three instances of less common pat-
terns. In the blame example, the intent-only
pattern occurs in perhaps 1 subject in 10. If
only one subject showed this pattern, its reli-
ability and validity would seem uncertain. A
total of 30 subjects would not seem too many
to be reasonably sure of getting two or three in

8Other examples of individual analysis of response pat-
tern include Anderson and Butzin (1978), Carterette and
Anderson (1979), Cuneo (1982), Falk and Wilkening
(1998), Karpp and Anderson (1997), Léoni and Mullet
(1993), Lopes (1976), Shanteau and Anderson (1969,
1972), Surber (1985), and Wilkening and Anderson
(1991). Assessing the generality of these individual pat-
terns across time and task, as in Dozier and Butzin (1988),
is a prime need.

The importance of visual inspection of individual data
with group experiments is nicely illustrated in Farkas
(1991, p. 89, n. 2). By looking at the individual data,
Farkas uncovered an unclarity in stimulus materials that
he rectified in his subsequent thesis experiments.

Schlottmann’s ingenious analysis of individual behav-
ior patterns in Michotte’s task of phenomenal causality
deserves special mention (see Schlottmann & Anderson,
1993). Schlottmann established a solid base of single-
subject data and used the averaging model to estimate the
weight that each individual placed on different inform-
ers. These measured weights, leveraged with a prescient
instructional manipulation, revealed five response strate-
gies that could never be seen in the data themselves.

this subgroup. This, however, yields an over-
plus in the modal subgroup. In such situations
it could be helpful to develop a procedure to
screen out subjects likely to exhibit common
patterns.

Single-Subject or Repeated-Measures
Analysis of Variance

Many investigations replicate a single-subject
design for each of a substantial number of sub-
jects. Two modes of ANOVA are then pos-
sible: a number of single-subject ANOVAs
or a single repeated-measures ANOVA. The
repeated-measures ANOVA is simpler and
more compact. It also bears on the question
of generality because the error term includes
individual differences in the form of subject-
treatment interaction residuals.

An ideal approach is to design the experi-
ment so that both modes of analysis are pos-
sible and to do both. Apposite illustrations of
this combined approach appeared in the fore-
going discussion of Figure 8.3, which required
breakdown into subgroups characterized by
different response patterns, and in Figure 8.9,
in which the group means gave an adequate
picture of the individual response patterns.

This ideal approach requires that each sin-
gle subject provide enough data to yield an
adequately reliable response pattern. In par-
ticular, replication of the experiment for each
single subject is usually necessary. At least
two observations are then available under each
treatment, thereby allowing a proper measure
of response variability for each individual.
This point is not always realized in planning
the experiment.

Too many experiments in perception and
cognition that could be treated in single-
subject manner are instead studied with
repeated-measures design. The line-box il-
lusion of Figure 8.1 is a typical example.
Many workers in these areas adopt repeated-
measures design without considering the
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potential of single-subject design. If different
individuals exhibit the same response pattern,
this deserves to be shown. If they exhibit dif-
ferent response patterns, this deserves even
more to be shown.

Personal Design

Single-subject design culminates in personal
design, in which the task or stimuli are person-
alized to the individual subject and the anal-
ysis allows for personal values. Personal de-
sign thus aims to embed the experimental task
within experiential knowledge systems of the
individual. Such embedding has a twofold ad-
vantage: It maximizes the meaning and rel-
evance of the experimental task and it can
tap into well-established psychological pro-
cesses. Both advantages increase the mean-
ingfulness of the results.

The study of Figure 8.4 on aggressive
behavior is a fine example of personal design,
for it was personalized through choice of task
and reinforcers for each child. The studies of
person cognition of Figures 8.2 and 8.3 were
partly personalized in that functional mea-
surement analysis took full account of per-
sonal meanings of the stimuli.

Individual differences are prominent in
human affairs. Affective differences are
substantial even in so biological an activity as
eating. Individual differences in attitudes un-
derlie virtually all social thought and action:
marital roles of wife and husband, parent-
child interaction, work, friendship, and so on.

This basic fact of individual differences lies as
a quagmire in the path of psychological sci-
ence. Three main strategies for navigating this
quagmire have been tried. The experimental
strategy sought to capitalize on the power of
experimental method for causal analysis. The
dominant experimental approach, however, was
predicated on an assumption about general laws
of behavior that would hold across individuals
and even across species. Too often, this exper-

imental strategy relied on standard group de-
sign that consigned individual differences to the
statistical error term, thus burying much that
needed study.

The strategy of differential psychology did
focus squarely on individual differences, but
with methods of correlation and personality
tests that have little power for cognitive analy-
sis. Strategies of phenomenology, ranging from
the historical school of introspection to case
histories in the psychoanalytic tradition and to
contemporary action theories, have given pri-
mary attention to the person. These strategies
are severely limited, however, because much
of everyday cognition is not accessible to phe-
nomenological scrutiny. Whereas the dominant
experimental approach failed to take adequate
account of the individual, phenomenological
approaches generally lack the analytical power
needed for theory of social cognition.

What is needed is a strategy that can com-
bine experimental control with phenomenol-
ogy. This is the aim of personal design, which
uses experimental method to study the individ-
ual at the individual level. (Anderson, 1990,
pp. 243–244)

The experimental and phenomenological
approaches cited in this quotation are of-
ten called nomothetic and idiographic, re-
spectively. Personal design unifies nomoth-
etic search for general laws with idiographic
recognition of individual differences in val-
ues. Such unification is illustrated in the study
of person cognition of Figure 8.2, which
demonstrated generality of the integration
rule across subjects at the same time that it
measured and used the personal values of
the stimuli. The nomothetic conclusion rested
squarely on the idiographic capability.

Personal design usually requires a consid-
erable number of responses from each indi-
vidual, often assumed to be in a stable state,
which limits its applicability. Within its lim-
its, however, personal design may be useful
in bringing experimental analysis to areas not
ordinarily considered experimental, such as
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marriage and family life. Personal designs
constructed around focal incidents or emo-
tions in an individual’s life may provide new
methods for personality-clinical psychology.

Functions of Statistics

Visual inspection is always necessary and
sometimes sufficient. It is unscientific, not
to say unseemly, to muddle one’s results
with statistical busywork. But more objective
methods are sometimes essential to assess re-
liability of data patterns. Visual inspection and
ANOVA are complementary tools. Both help
one to understand the data.

Statistics is most important in planning
stages of an investigation, before the main
data have been collected. The standard stereo-
type of statistics as significance tests obscures
these more basic functions.

One function of statistics concerns in-
dependence, important for both classes of
single-subject design. Thus, treatment ran-
domization is important regardless of whether
the data are analyzed by visual inspection or
formal test. With serial observation design,
assessment of variability perforce relies on
some conceptual model of the behavior, al-
though this model is often left implicit and
uncertain. Visual inspection generally makes
an implicit assumption of independence and
lacks capability to allow for serial correlation.
Formal statistics is essential for understand-
ing and helping to deal with serial correla-
tion. Indeed, the problems of serial correla-
tion can hardly be understood without formal
statistics.

A second function of statistics concerns de-
scription. Thus, the confidence interval for a
sample mean rightly conceptualizes the mean
not as a single number, but as an interval of
likely location. As another example, the after-
minus-before difference score seems the ob-
vious measure of change, but this hides sur-
prising and sometimes fatal shortcomings that

are revealed only through statistical analysis.
Statistical theory has many such uses: under-
standing selection-regression artifacts, avoid-
ing inappropriate measures of effect size and
importance, using trimmed means to reduce
effective variability, and so on.

Another function of statistics concerns
power. All experiments rest on some assump-
tion that they have adequate power; statistics
can help decide how far this assumption is jus-
tified. The need for power calculation has been
illustrated in the foregoing study of attention-
deficit children (Figure 8.5).

Perhaps the most important functions of
statistics appear in experimental design. One
example is the Latin square, especially squares
balanced for carryover effects. With this de-
sign, formal statistical analysis is essential
to estimate means for treatment and carry-
over effects and to get confidence intervals.
Statistical understanding of these and other
designs is especially important for single-
subject studies.

A major hindrance is that single-subject re-
search has often originated with phenomeno-
logical approaches or with experimental tasks
for which visual inspection was enough. Neg-
ative attitudes toward more formal statistics
often developed that hindered later work as
better methods became increasingly needed.
A prime example is psychophysics, which still
suffers from certain methods that were once
at the forefront but now are largely obsolete.
One sign of this backwardness may be seen in
the paucity of single-subject ANOVA in the
psychophysical literature.

Behavior modification, although the most
articulately averse to formal statistics, is the
main area that has given concerted atten-
tion to single-subject methodology. Several
books have been written, all of which can
be read with profit, as they attack real prob-
lems that are important also in other areas.
These books, like the present book, represent
an empirical direction in design and analysis.
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Methodology consists of cumulative exper-
imental procedure—not static precepts, but
evolving knowledge systems.9

Each area faces its own special problems
and needs to develop its own single-subject
methodology. Methodology is a continual
concern of active investigators, and beginners

9Reference books on single-subject design include
Barlow and Hersen (1984); Franklin, Allison, and
Gorman (1996); Kratochwill and Levin (1992); and
Lattal and Perone (1988). Many chapters in these books
can be helpful. But these books are almost entirely lim-
ited to serial observation design, mainly in operant tasks.
Typical studies have only two treatment conditions, more-
over, which limits the effectiveness of treatment random-
ization. In many areas, however, randomized treatment
design with single subjects is feasible, as in perception,
cognition, psycholinguistics, and personality/social. Sys-
tematic methodology is largely undeveloped in these ar-
eas, although modest progress has been made in informa-
tion integration theory (Anderson, 1982).

Contributors to Franklin, Allison, and Gorman (1996)
give useful coverage of statistical topics, including power
and serial correlation. Chapters in other books, however,
not infrequently show shortcomings in statistical under-
standing that compromise some of their conclusions. It
is common to read, for example, that standard statistics
is only applicable to group data; in fact, single-subject
ANOVA has been around for decades (e.g., Figure 8.2).

One consequence of this negative attitude toward statis-
tics has been neglect of needed groundwork for single-
subject methodology, most notably with the problem of
serial correlation. A vital first step would be to obtain
longer sequences of observations, which would be feasi-
ble in some situations but is rarely done, partly because
the need for doing so has not been appreciated. Finding
determinants of serial correlation, which is essential to
get the problem under control, has hardly begun.

The total absence of single-subject design in grad-
uate statistics texts may be due partly to narrowness
in previous presentations of single-subject methodology.
Although these presentations have made important con-
tributions to serial observation design, treatment random-
ization is largely ignored. Some identify single-subject
design with the rise of operant psychology in the 1930s,
seemingly unaware that single-subject design had been
common for well over a century in the fields of perception
and learning. Some argue that group design and single-
subject design have an “intractable divergence” or are
even “fundamentally incompatible” (see Baron & Perone,
1998).

There are important differences between single-subject
and group design. But the principles of design and anal-
ysis are the same in both.

in a field can profit from attention to issues
of design and procedure in published articles.
Much methodology, however, remains task-
and area-specific lore. Efforts to crystallize
such lore and make it useful to workers in
other areas would be helpful.

Methodology is a bad word to many. Most in-
vestigators are truly concerned with methods,
of course, but the term methodology suggests
a dogmatic stance on standardization of proce-
dure and correct data analysis. It connotes in-
volvement in niceties and complexities of appa-
ratus and especially statistics that are generally
barren, often useless digressions, sometimes ac-
tive hindrances to productive inquiry.

Properly considered, however, methodology
is an organic part of substantive inquiry. Nec-
essarily so, for the validity of methods derives
from the empirical results that they bring in. . . .

Knowledge is not divorced from the methods
by which it was acquired; those methods them-
selves constitute an integral part of knowledge.
(Anderson, 1982, p. 349)
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CHAPTER 9

Analysis, Interpretation, and Visual Presentation
of Experimental Data

GEOFFREY R. LOFTUS

Following data collection from some experi-
ment, two goals arise that should guide sub-
sequent data analysis and data presentation.
The first goal is for the data collector to un-
derstand the data as thoroughly as possible
in terms of (a) how they may bear on the
specific question that the experiment was de-
signed to address, (b) what surprises the data
may have produced, and (c) what such sur-
prises may imply about the original questions,
related questions, or anything else. The sec-
ond goal is to determine how to present the
data to the scientific community in a manner
that is as clear, complete, and intuitively com-
pelling as possible. This second goal is inti-
mately entwined with the first: Whatever data-
analysis and data-presentation techniques best
instill understanding in the investigator to be-
gin with are generally also optimal for convey-
ing the data’s meaning to the data’s eventual
consumers.

So what are these data-analysis and data-
presentation techniques? It is not possible in

The writing of this chapter was supported by NIMH grant
MH41637. The author thanks the late Merrill Carlsmith
for introducing him to many of the techniques described
in this chapter and David Krantz for a great deal of more
recent conceptual enlightenment about some of the sub-
tler aspects of hypothesis testing, confidence intervals,
and planned comparisons.

a single chapter or even in a very long book
to describe them all, because there are an in-
finite number of them. Although most prac-
ticing scientists are equipped with a concep-
tual foundation with respect to the basic tools
of data analysis and data presentation, such a
foundation is far from sufficient: It is akin to an
artist’s foundation in the tools of color mixing,
setting up an easel, understanding perspective,
and the like. To build on this analogy, a sci-
entist analyzing any given experiment is like
an artist rendering a work of art: Ideally, the
tools comprising the practitioner’s foundation
should be used creatively rather than dogmat-
ically to produce a final result that is beautiful,
elegant, and interesting, instead of ugly, con-
voluted, and prosaic.

My goal in this chapter is to try to demon-
strate how a number of data-analysis tech-
niques may be used creatively in an effort to
understand and convey to others the meaning
and relevance of a data set. It is not my intent
to go over territory that is traditionally cov-
ered in statistics texts. Rather, I have chosen
to focus on a limited, but powerful, arsenal of
techniques and associated issues that are re-
lated to, but are not typically part of, a standard
statistics curriculum. I begin this chapter with
an overview of data analysis as generically
carried out in psychology, accompanied by a

339
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critique of some standard procedures and as-
sumptions, with particular emphasis on a cri-
tique of null hypothesis significance testing
(NHST). Next, I discuss a collection of topics
representing some supplements and alterna-
tives to the kinds of standard analysis proce-
dures about which I will have just complained.
These discussions include (a) a description of
various types of pictorial representations of
data, (b) an overview of the use of confidence
intervals that, I believe, constitutes an attrac-
tive alternative to NHST, (c) a review of the
benefits of planned comparisons that entail an
analysis of percent between-conditions vari-
ance accounted for, (d) a description of tech-
niques involving percent total variance ac-
counted for, (e) a brief set of suggestions about
presentation of results based on mathematical
models (meant to complement the material
in Chapter 11 of this volume), and, finally,
(f ) a somewhat evangelical description of
what I have termed equivalence techniques.

My main expositional strategy is to il-
lustrate through example. In most instances,
I have invented experiments and associated
data to use in the examples. This strategy has
the disadvantage that it is somewhat divorced
from the real world of psychological data, but
it has the dominating advantage that the ex-
amples can be tailored specifically to the il-
lustration of particular points.

The logic and mathematical analysis in this
chapter is not meant to be formal or complete.
For proofs of various mathematical assertions
that I make, it is necessary to consult a math-
ematically oriented statistics text. There are a
number of such texts; my personal favorite is
Hays (1973), and where appropriate, I supply
references to Hays along with specific page
numbers.

My choice of material and the recommen-
dations that I selected to include in this chapter
have been strongly influenced by 35 years of
experience in reviewing and editing journals.
In the course of these endeavors I have noticed

an enormous number of data-analysis and
data-presentation techniques that have been
sadly inimical to insight and clarity—and con-
versely, I have noticed enormous numbers of
missed opportunities to analyze and present
data in such a way that the relevance and im-
portance of the findings are underscored and
clearly conveyed to the intended recipients.
Somewhere in this chapter is an answer to ap-
proximately 70% of these complaints. It is my
hope that, among other things, this chapter
will provide a reference to which I can guide
authors whose future work passes across my
desk—as an alternative, that is, to trying to
solve what I believe to be the world’s data-
analysis and data-presentation problems one
manuscript at a time.

FOUNDATIONS: THE LINEAR
MODEL AND NULL HYPOTHESIS
SIGNIFICANCE TESTING

Suppose that a memory researcher were in-
terested in how stimulus presentation time
affects memory for a list of words as mea-
sured in a free-recall paradigm. In a hypo-
thetical experiment to answer this question,
the investigator might select J = 5 presen-
tation times consisting of 0.5, 1.0, 2.0, 4.0,
and 8.0 s/word and carry out an experiment
using a between-subjects design in which
n = 20 subjects are assigned to each of the
5 word-duration conditions—hence, N = 100
subjects in all. Each subject sees 20 words,
randomly selected from a very large pool of
words. For each subject, the words are pre-
sented sequentially on a computer screen,
each word presented for its appropriate dura-
tion. Immediately following presentation of
the last word, the subject attempts to write
down as many of the words as possible.
The investigator then calculates the propor-
tion correct number of words (out of the 20
possible) for each subject.
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Table 9.1 Types of Models

Model Model Name

R = α + β X + γ Y Multiple regression (additive)
R = α + β X + γ Y + δXY Multiple regression (bilinear)
R = α + β X + γ Y + δY 2 Multiple regression (quadratic in Y )
R = α + βi + γ j Two-way ANOVA (additive)
R = α + βi + γ j + δi j Two-way ANOVA with interaction
R = α + β X + γ j One-way ANCOVA (additive)
R = α + βi + γ j + δβi γ j Tukey’s one-degree-of-freedom interaction model

NOTE: The response measure is R, and the values of independent variables are labeled X and Y . The model parameters
are indicated by Greek letters α, β, γ , and δ. All models listed are linear models except for the last, which is not linear
because it includes the product of three parameters, δβi γ j .

The results of this experiment therefore
consist of 100 numbers: one for each of the
100 subjects. How are these 100 numbers to
be treated in order to address the original ques-
tion of how memory performance is affected
by presentation time? There are two steps to
this data-interpretation process. The first is
the specification of a mathematical model1,
within the context of which each subject’s
experimentally observed number results from
assumed events occurring within the subject.
There are an infinite number of ways to for-
mulate such a mathematical model. The most
widely used formulation, on which I focus in
this chapter, is referred to as the linear model
(LM).

The second step in data interpretation is to
carry out a process by which the mathematical
model, once specified, is used to answer the
question at hand. Note that there are numerous
possibilities for how this can be done. The
process that is the most widely used is NHST.

Most readers of this chapter are probably
familiar with both the LM and the process of
NHST. Nonetheless, to ensure a common con-
ceptual and notational foundation, I describe
both of them briefly in the next two sections.

1I have sometimes observed that the term mathemati-
cal model casts fear into the hearts of many researchers.
However, if it is numbers from an experiment that are
to be accounted for, then the necessity of some kind of
mathematical model is logically inevitable.

The Linear Model

Although central to most statistical analysis,
the LM is described by surprisingly few in-
troductory statistics books (Hays, 1973—my
statistics reference of choice in this chapter—
is one of them). The LM includes a variety of
assumptions, the exact configuration of which
depends on the nature of the experimental
design. At its most general level, within the
context of the LM, some response variable,
R, is modeled as a linear function of vari-
ous parameters, labeled α, β, γ, δ, and so on.
Table 9.1 provides some examples of com-
mon LMs along with the names of these mod-
els. For comparison purposes, the last entry in
Table 9.1 is an example of a nonlinear model
in which one term is a product of several of
the parameters. It is noteworthy, incidentally,
that (unlike many social science statistics texts
and statistics courses) the LM does not make
a sharp distinction between ANOVA and re-
gression. Instead, both are simply viewed as
instances of the same general model.

In the simple free-recall example just de-
scribed, the LM is formulated as follows.

1. The subjects in the experiment are as-
sumed to constitute a random sample from
some population to which conclusions are
to apply.

2. Similarly, the words provided to each
subject are assumed to be a random
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sample drawn from a large population of
words.

3. Across the subjects × words population
there is a “grand mean,” denoted µ, of the
dependent variable measured in the exper-
iment. The grand mean is a theoretical en-
tity but can be construed roughly as the
number that would result if all individuals
in the target population were run in the ex-
periment for an infinite number of times
in all conditions, using in the course of
this lengthy process the entire population
of words, and the mean of all the resulting
scores were computed.

4. Each condition j in the experiment has as-
sociated with it an effect that is referred to
as α j . Any score obtained by a subject in
condition j is increased by α j compared
to the grand mean, µ. Over the population,
the mean score for condition j , which is
referred to as µ j , is µ j = µ + α j . The
model defines these effects such that

J∑
j=1

α j = 0

which means, of course, that either all the
α j s are zero, or that some are positive while
others are negative.

5. Associated with each subject participat-
ing in the experiment is an error term that
is specific to that subject. This error term
is independent of condition, and the error
term for subject i in condition j is labeled
ei j . It is assumed that the ei j s are randomly
drawn from a normal distribution whose
mean is zero and whose variance is σ 2, a
value that is constant over conditions.2

2A technical point is in order here. The error term for
this experiment has two components. The first is a sub-
ject component reflecting the fact that proportion correct
varies among subjects. The second is a binomial compo-
nent reflecting variation over the 20 words. Because the
binomial variance component changes with the mean, the
overall error variance cannot be assumed to be fully con-
stant. Nonetheless, the LM formulated would still be a
very useful approximation.

These assumptions imply that the Xi j , the
score of subject i in condition j, is equal to

Xi j = µ + α j + ei j

which in turn implies that Xi j s within each
condition j are distributed with a variance
of σ 2.

Null Hypothesis Significance Testing

Equipped with a mathematical model, the in-
vestigator’s next step in the data-analysis pro-
cess is to use the model to arrive at answers
to the question at hand. As noted, the most
pervasive means by which this is done is via
NHST, which works as follows.

1. A null hypothesis (H0) is established.
Technically, a null hypothesis is any hy-
pothesis that specifies quantitative values
for all the α j s. In practice, however, a null
hypothesis almost always specifies that the
independent variable has no effect on the
dependent variable, which means that

H0 : α1 = α2 = · · · = αJ = 0

or, equivalently, that,

H0 : µ1 = µ2 = · · · = µJ .

Mathematically, the null hypothesis may
be viewed a single-dimensional hypothe-
sis: The only variation permissible is the
single value of the J population means.

2. An alternative hypothesis (H1) is estab-
lished that in its most general sense is “Not
H0.” That is, the general alternative hy-
pothesis states that one way or another, at
least one of the J population means must
differ from at least one of the others. Math-
ematically, such an alternative hypothesis
may be viewed as a composite hypothe-
sis, representable in J dimensions corre-
sponding to the values of the J population
means.

3. The investigator computes a single sum-
mary score, which constitutes evidence
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that the null versus the alternative hypoth-
esis is correct. Generally, the greater the
value of the summary score is, the greater
is the evidence that the alternative hypoth-
esis is true. In the present example—a one-
way ANOVA design—the summary score
is an F-ratio that is proportional to the vari-
ance among the sample means. A small
F constitutes evidence for H0, whereas
the larger F is, the greater is the evidence
for H1.

4. The sampling distribution of the summary
score is determined under the assumption
that H0 is true.

5. A criterion summary score is determined
such that if H0 is correct, the obtained value
of the summary score will be achieved or
exceeded with some small probability re-
ferred to as α (traditionally, α = .05).

6. The obtained value of the summary score
is computed from the data.

7. If the obtained summary score equals or
exceeds the criterion summary score, a de-
cision is made to reject the null hypothesis,
which is equivalent to accepting the alter-
native hypothesis. If the obtained summary
score is less than the criterion summary
score, a decision is made to fail to reject
the null hypothesis.

8. By this logic, the probability of rejecting
the null hypothesis given that the null hy-
pothesis is actually true (thereby making
what is known as a type I error) is equal to
α. As indicated, α is set by the investigator
via the investigator’s choice of a suitable
criterion summary score. Given that the al-
ternative hypothesis is true, the probability
of failing to reject H0 is known as a type
II error. The probability of a type II er-
ror is referred to as β. Closely related to
β is (1 − β) or power, which is the prob-
ability of correctly rejecting the null hy-
pothesis given that H1 is true. Typically,
β and power cannot be easily measured,
because to do so requires a specific alter-

native hypothesis, which typically is not
available.3

Problems with the LM and with NHST

The LM can be used without proceeding on
to NHST, and NHST can be used with models
other than the LM. However, a conjunction of
the LM and NHST is used in the vast major-
ity of experiments within the social sciences
as well as in other sciences, notably the med-
ical sciences. Both the LM and NHST have
shortcomings with respect to the insight into
a data set that they provide. However, it is
my opinion that the shortcomings of NHST
are more serious than the shortcomings of the
LM. In the next two subsections, I briefly de-
scribe the problems with the LM, and I then
provide a somewhat lengthier discussion of
the problems with NHST.

Problems with the LM

The LM is what might be termed an off-
the-shelf model: That is, the LM is a plau-
sible model that probably bears at least some
approximation to reality in many situations.
However, its pervasiveness often tends to
blind investigators to alternative ways of rep-
resenting the psychological processes that un-
derlie the data in some experiment.

More specifically, although there are dif-
ferent LM equations corresponding to differ-
ent experimental designs, all of them are ad-
ditive with respect to the dependent variable;
that is, the dependent variable is assumed to
be the sum of a set of theoretical parameters
(see, e.g., Table 9.1 and Equation [1]). The
simplicity of this arrangement is elegant, but
it deemphasizes other kinds of equations that
might better elucidate the underlying psycho-
logical processes.

3More precisely, power can be represented as a function
over the J-dimensional space, mentioned earlier, that cor-
responds to the J-dimensional alternative hypothesis.



pashler-44093 book December 18, 2001 10:24

344 Analysis, Interpretation, and Visual Presentation of Experimental Data

I will illustrate this point in the context of
the classic question: What is the effect of de-
gree of original learning on subsequent for-
getting, and more particularly, does forgetting
rate depend on degree of original learning?
My goal is to show how the LM leads inves-
tigators astray in their attempts to answer this
question and how an alternative to the LM
provides considerably more insight.

Slamecka and McElree (1983) reported a
series of experiments with the goal of deter-
mining the relation between degree of original
learning and forgetting rate. In their exper-
iments, subjects studied word lists to one of
two degrees of proficiency. Subjects’ memory
performances then were measured following
forgetting intervals of 0, 1, or 5 days. Within
the context of the LM, the relevant equation
relating mean performance µ jk to delay inter-
val j and initial learning level k is

µ jk = µ + α j + βk + γ jk (1)

where α j is the effect of delay interval j (pre-
sumably, α j monotonically decreases with
increasing j), βk is the effect of degree of
learning k (presumably, βk monotonically in-
creases with increasing k) and γ jk , a term ap-
plied to each combination of delay interval
and learning level, represents the interaction
between delay interval and learning level.

Within the context of the LM, two theo-
retical components are construed as indepen-
dent if there is no interaction between them.
In terms of Equation (1), degree of learning
and forgetting are independent if all the γi j s
are equal to zero. The critical null hypothesis
tested by Slamecka and McElree (1983) was
therefore that γi j = 0 for all i, j . They used
their resulting failure to reject this null hy-
pothesis as evidence for the proposition that
forgetting rate is independent of degree of
original learning.

This conclusion is dubious for a variety of
reasons. For present purposes, I want to em-
phasize that Slamecka and McElree’s (1983)

analysis technique (which Slamecka, 1985,
vigorously defended) emerged quite naturally
from the LM-based Equation (1). Because the
LM is so simple and so ingrained as a basis
for data analysis, it seemed, and still seems,
unnatural for workers in the field to consider
alternatives to the LM.

What would such an alternative look like?
In the final section of this chapter, I pro-
vide some illustrations of alternatives to the
LM. In the present context, I briefly dis-
cuss an alternative model within which the
learning-forgetting independence issue can be
investigated. This model, described by Loftus
(1985a, 1985b; see also Loftus & Bamber,
1990) rests on an analogy to forgetting of
radioactive decay. Consider two pieces of
radioactive material, a large piece (say 9 g)
and a small piece (say 5 g). Suppose that the
decay rates are the same in the sense that both
can be described by the equation

M = M0e−kd (2)

where M is the remaining mass after an inter-
val of d days, M0 is the original mass, and k
is the decay constant.4

Decay curves generated by Equation (2)
corresponding to the two different chunks are
shown in Figure 9.1, with the same decay
constant, k = 0.5, describing the two curves.
These curves could, of course, be described by
the LM (Equation [1]). The γ jk terms would
be decidedly nonzero, reflecting the interac-
tion that is represented in Figure 9.1 by the de-
creasing vertical distance between the two de-
cay curves with increasing decay time. Thus,
using the LM, and Slamecka and McElree’s
(1983) logic, one concludes that large-chunk
decay is faster than small-chunk decay.

4This is not a technically correct description of radioac-
tive decay, as radioactive material actually decays to
some inert substance instead of to nothing, as implied
by Equation (2). For the purposes of this discussion, the
decaying material may be thought of as that portion of
the material that actually does decay, and the logic is
unaffected.
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Radioactive Decay
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Figure 9.1 Radioactive decay curves.
NOTE: The decay rate is the same (k = 5) for both
the large chunk (9 units) and small chunk (5 units).
Note that the vertical distance between the curves
decreases over decay time, whereas the horizontal
distance between the two curves is independent of
amount of decay time.

This conclusion would, in a very powerful
sense, be incorrect: As noted earlier, the decay
curves in Figure 9.1 were generated by equa-
tions having identical decay rates (k = 0.5).
The key to understanding this error is that in-
dependence of radioactive decay rates is not
associated with lack of interaction within the
context of the LM. Instead, it is associated
with another kind of lack of interaction that
can be intuitively understood as follows. Con-
sider the large chunk. After some time period
(which is approximately 1.175 days, as indi-
cated in Figure 9.1), the large chunk has de-
cayed to the point at which only 5 g remain;
that is, it is physically identical to what the
small chunk had been at time zero. There-
fore, the large-chunk decay curve following
time 1.175 days must be identical to the small-
chunk decay curve following time zero; that
is, the two decay curves are horizontally par-
allel, separated by a constant delay of 1.175
days. This corresponds to “no interaction” in
the horizontal rather than the LM-oriented
vertical sense.

The original question, “What is the effect
of learning rate on memory?” can now be

addressed using the same logic and: forget-
ting curves resulting from different degrees
of original learning must be compared hori-
zontally rather than vertically. The finding of
horizontally parallel curves implies that for-
getting rate is independent of degree of origi-
nal learning, whereas horizontally nonparallel
curves imply that forgetting rate depends on
degree of original learning.5

The general model to be tested, given this
logic, is

µ(L1, d j ) = µ[L2, f (d j )] (3)

where µ(X, d j ) refers to mean performance at
learning level X following delay interval d j ,
and f (d j ) is some function of d j . Of interest is
the nature of the function f on the right side of
Equation (3). Various possibilities can be con-
sidered. A finding of f (d j ) = d j would imply
no effect at all of original learning on perfor-
mance. A finding of f (d j ) = d j + c, c �= 0,

would imply that forgetting rate is indepen-
dent of degree of original learning: The curves
are parallel, separated by some interval c. Fi-
nally, a finding of f (d j ) = d j +c+α j , where
α j is an amount that varies with d j , would im-
ply that forgetting rate depends on degree of
original learning: The curves are not horizon-
tally parallel.

To summarize, the LM is widely used
and probably an approximately correct de-
scription of many experimental situations.
However, it is not always the best model
within which an experimental situation can
be described, and it is sometimes seriously
misleading. It is imperative to realize that one
is not bound by the LM just because it is
pervasive.

5For ease of exposition, I have assumed exponential decay
in this description. However, as proved by Loftus (1985b,
Appendix 2), the implication of independence from hor-
izontally parallel curves does not require the assumption
of exponential decay.
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Problems with Null Hypothesis
Significance Testing

Upon stepping down as editor of the Journal
of Experimental Psychology, Arthur Melton
published a highly influential editorial
(Melton, 1962). In this editorial Melton em-
phasized that the criteria used by his journal
for accepting manuscripts revolved heavily
around NHST, pointing out that (a) articles
in which the null hypothesis was not rejected
were almost never published and (b) rejection
at the .05 significance level was rarely ade-
quate for acceptance; rather, rejection at the
.01 level was typically required.

This is a remarkable position. Essentially,
it places the process of NHST at the heart
not only of data analysis but also of per-
sonal scientific advancement: If you do not
reject null hypotheses, you do not publish. It
is little wonder that NHST is so pervasive in
psychology.

Over the past half-century, periodic articles
have questioned the value of NHST.6 Until re-
cently, these articles seem to have had little
effect on the means by which data analysis
has been carried out. Over the past 10 years,
however, there has at least been some recogni-
tion of the issues raised by these articles; this
recognition has resulted in APA and APS task
forces and symposia on the topic, editorials
explicitly questioning the use of NHST (e.g.,
Loftus, 1993b), and occasional calls for the
banning of NHST (with which I do not agree),
along with a small but still dimly perceptible
shift away from exclusive reliance on NHST

6A sample of these writings is, in chronological order,
Tyler (1935); Jones (1955); Nunnally (1960); Rozebloom
(1960); Grant (1962); Bakan (1966); Meehl (1967);
Lykken (1968); Carver (1978); Meehl (1978); Berger and
Berry (1988); Hunter and Schmidt (1990); Gigerenzer
et al. (1989); Rosnow and Rosenthal (1989); Cohen
(1990); Meehl (1990); Loftus (1991, 1993b); Carver
(1993); Cohen (1994); Loftus and Masson (1994); Maltz
(1994); Loftus (1995, 1996); Schmidt (1996); and
Harlow, Mulaik, and Steiger (1997).

as a means of interpreting and understanding
data.

As I suggested earlier in this chapter, prob-
lems with the LM pale in comparison to prob-
lems with NHST. These problems have been
reviewed in the books and articles cited in
note 3, and it is not my goal here to provide
a detailed rehash of them. Instead, I sketch
them here briefly; the reader is referred to the
cited articles for more detailed information.
I should note, in the interests of full disclo-
sure, that a number of well-reasoned argu-
ments have been made in favor at assigning
NHST at least a minor supporting role in the
data-comprehension drama. The reader is di-
rected to Abelson (1995) and Krantz (1999)
for the best of such arguments.

The major difficulties with NHST are the
following.

Information Loss as a Result of Binary
Decision Processes. A data set is often quite
rich. As a typical example, a 3 × 5 factorial
design contains 15 conditions and hence 15
sample means to be accounted for (ignoring
per the LM, of course, the raw data from
within each condition along with less favored
statistics such as the variance, the kurtosis,
etc.). However, a standard ANOVA reduces
this data set to three bits of information: Re-
jection or failure to reject the null hypothe-
ses corresponding to the effects of Factor 1,
Factor 2, and the interaction. Granted, one can
carry out additional post hoc tests or simple-
effects tests, but the end result is still that the
complex data set is understood, via the NHST
process, only in terms of a series of binary de-
cisions rather than as a unified pattern. This is
a poor basis for acquiring the kind of gestalt
that is necessary for insight and gut-level un-
derstanding of a data set.

The Implausibility of the Null Hypoth-
esis. Consider the hypothetical experiment
described at the beginning of this chapter.
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There were five conditions, involving five ex-
posure durations in a free-recall experiment.
In a standard ANOVA, the null hypothesis
would be

µ1 = µ2 = µ3 = µ4 = µ5 (4)

where the µ j s refer to the population means of
the five conditions. Note here that =s in Equa-
tion (4) must be taken seriously: Equal means
equal to an infinite number of decimal places.
If the null hypothesis is fudged to specify that
“the population means are about equal” then
the logic of NHST collapses, or at least must
be supplemented to include a precise defini-
tion of what “about equal” means.

As has been argued by many, a null hy-
pothesis of the sort described by Equation (4)
cannot literally be true. Meehl (1967) makes
the argument most eloquently, stating,

Considering . . . that everything in the brain is
connected with everything else, and that there
exist several “general state-variables” (such as
arousal, attention, anxiety and the like) which
are known to be at least slightly influence-
able by practically any kind of stimulus in-
put, it is highly unlikely that any psycholog-
ically discriminable situation which we apply
to an experimental subject would exert literally
zero effect on any aspect of performance. Al-
ternatively, the µ j s can be viewed as measur-
able values on the real-number line. Any two
of them being identical implies that their dif-
ference (also a measurable value on the real-
number line) is exactly zero—which has a prob-
ability of zero.7 (p. 104)

7A caveat is in order here. Most null hypotheses are of the
sort described by Equation (4); that is, they are quantita-
tive, specifying a particular set of relations among a set
of population parameters. It is possible, in contrast, for a
null hypothesis to be qualitative (see, e.g., Frick, 1995,
for a discussion of this topic). An example of such a hy-
pothesis, described by Greenwald et al., 1996, is that the
defendant in a murder case is actually the murderer. This
null hypothesis could certainly be true; however; the kind
of qualitative null hypothesis that it illustrates constitutes
the exception rather than the rule.

And therein lies a serious problem: It is
meaningless to reject a null hypothesis that is
impossible to begin with. An analogy makes
this clear: Suppose an astronomer were to an-
nounce, “Given our data, we have rejected
the null hypothesis that Saturn is made of
green cheese.” Although it is unlikely that
this conclusion would be challenged, a con-
sensus would doubtless emerge that the as-
tronomer must have been off his rocker for
even considering such a null hypothesis to be-
gin with. Strangely, psychologists who make
equally meaningless statements on a routine
basis continue to be regarded as entirely sane.
(Even stranger is the common belief that an
α-level of .05 implies that an error is made
in 5% of all experiments in which the null
hypothesis is rejected. This is analogous to
saying that, of all planets reported not to be
made of green cheese, 5% of them actually
are made of green cheese.)

Decision Asymmetry. Putting aside for
the moment the usual impossibility of the null
hypothesis, there is a decided imbalance be-
tween the two types of errors that can be made
in a hypothesis-testing situation. The proba-
bility of a type I error, α, can be, and is, set
by appropriate selection of a summary-score
criterion. However, the probability of a type II
error,β, is, as noted earlier, generally unknow-
able because of the lack of a quantitative al-
ternative hypothesis. The consequence of this
situation is that rejecting the null hypothesis
is a “real” decision, whereas failing to reject
the null hypothesis is, as the phrase suggests,
a nondecision: It is simply an admission that
the data do not provide sufficient information
to support a clear decision.

Accepting H0. The teaching of statistics
generally emphasizes that “we fail to reject the
null hypothesis” does not mean the same thing
as “we accept the null hypothesis.” Nonethe-
less, the temptation to accept the null hypoth-
esis (usually implicitly so as not to disobey



pashler-44093 book December 18, 2001 10:24

348 Analysis, Interpretation, and Visual Presentation of Experimental Data

the rules brazenly) often seems to be over-
whelming, particularly when an investigator
has an investment in such acceptance. As I
noted in the previous section, accepting a typ-
ical null hypothesis involves faulty reasoning
anyway because a typical null hypothesis is
impossible. However, particularly in practi-
cally oriented situations, an investigator is jus-
tified in accepting the null hypothesis “for all
intents and purposes” if the investigator has
convincingly shown that there is adequate sta-
tistical power (see Cohen, 1990, 1994). Such
a power analysis is most easily carried out
by computing some kind of confidence in-
terval (described in detail later) that would
allow a meaningful conclusion such as “the
population mean difference between Condi-
tions 1 and 2 is, with 95% confidence, between
±ε,” where ε is a sufficiently small number
that the actual difference between Conditions
1 and 2 is inconsequential from a practical
perspective.

The Misleading Dichotomization of
“p < .05” vs. “p > .05” Results. As indi-
cated in his 1962 editorial, summarized ear-
lier, Melton considered an observed p value of
.05 to be maximal for acceptance of an article.
Almost four decades later, more or less this
same convention holds sway: Who among us
researchers has not observed the heartrending
spectacle of a student or colleague struggling
to somehow transform a vexing 0.051 into an
acceptable 0.050?

This is bizarre. The actual difference be-
tween a data set that produces a p value of
0.051 versus one that produces a p value of
0.050 is, of course, miniscule. Logically, very
similar conclusions should issue from both
data sets, yet they do not: The .050 data set
produces a “reject the null hypothesis” con-
clusion, whereas the .051 data set produces
a “fail to reject the null hypothesis” conclu-
sion. This is akin to a chaotic situation in
which small initial differences distinguishing

two situations lead to vast and unpredictable
eventual differences between the situations.

The most obvious consequence of this sit-
uation is that the lucky recipient of the .050
data set gets to publish, whereas his unlucky
.051 colleague does not. There is another con-
sequence, however, which is more subtle but
probably more insidious: The reject/fail-to-
reject dichotomy keeps the field awash in
confusion and artificial controversy. This is
because investigators, like most humans, are
loath to make and stick to conclusions that
are both weak and complicated (e.g., “we fail
to reject the null hypothesis”). Instead, in-
vestigators are prone to (often unwittingly)
transform the conclusion into the stronger
and simpler, “we accept the null hypothe-
sis.” Thus, two similar experiments—one in
which the null hypothesis is rejected and one
in which the null hypothesis is not rejected—
can and often do lead to seemingly contra-
dictory conclusions—“the null hypothesis is
true” versus “the null hypothesis is false.”
The inevitable head scratching and subse-
quent flood of “critical experiments” that are
generated by such “failures to replicate” may
well constitute the single largest source of
wasted time in the practice of psychology.

The Counternull. Rosenthal and Di-
Matteo (Chap. 10, this volume) have sug-
gested a simple score, called the counternull,
that serves to underscore the difficulty in ac-
cepting H0. The counternull revolves around
an increasingly common measure called “ef-
fect size,” which, essentially, is the mean mag-
nitude of some effect (e.g., the mean dif-
ference between two conditions) divided by
the standard deviation (generally pooled over
the conditions). Obviously, all else equal, the
smaller the effect size, the less inclined one
is to reject H0. Suppose, to illustrate, that
in some experiment one found an effect size
of 0.20, which was insufficiently large to re-
ject H0. As noted earlier, the temptation is
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often overwhelming to accept H0 in such a
situation because the world seems so much
clearer that way. It is therefore useful to report
Rosenthal and DiMatteo’s counternull, which
is simply twice the effect size, or 0.40 in this
example. It is sobering to realize that the data
permit a reality corresponding to the coun-
ternull (0.40) just as much as they permit a
reality corresponding to H0 (an effect size of
zero). The use of the counternull also subtly
underscores a fact that is almost invisible in
an NHST framework, specifically that the best
estimate of some population parameter is the
corresponding statistic that is measured in the
experiment. Thus, in this example the best es-
timate of the population effect size is exactly
what was measured (0.20) rather than the zero
value toward which the investigator is drawn
in an hypothesis-testing framework.

The p (data | H0) versus p (H0 | data)
Confusion. In the previous section I dis-
cussed the critical consequences of having a
data set that produces p = .050 versus one
that produces p = .051. To what, exactly, do
these p values refer?

To address this question I again set aside
the awkward fact of the null hypothesis’s usual
impossibility and suppose that the null hy-
pothesis actually has a reasonable possibility
of being true. It is taught in every statistics
class that a p value less than .05 means that

p = p(data | H0) < .05. (5)

So what does one do with a sufficiently small
p value? Reject the null hypothesis. What
does it mean to reject the null hypothesis? In
everyday language, to reject the null hypoth-
esis in light of the data means pretty unequiv-
ocally that given the data, the probability of
the null hypothesis is so low that it should be
rejected, that is,

p(H0 | data) is small. (6)

Thus, it should come as no surprise that the

sacred .05 is often incorrectly associated with
the conditional probability of Equation (6)
rather than correctly associated with the op-
posite conditional probability of Equation (5).

Now indeed, if p(data | H0) < .05, then
it is likely that p(H0 | data) is also smallish:
After all, because

p(H0 | data) = p(H0 ∩ data)

p(data)

and

p(data | H0) = p(H0 ∩ data)

p(H0)

the two conditional probabilities share the
same numerator and are therefore somewhat
related to one another. However, the probabil-
ity that the investigator is primarily interested
in—p(H0 | data)—is not known to any degree
of precision. It is therefore breathtakingly silly
to place such vast emphasis on the exact value
of p(data | H0) when this probability is only
indirectly interesting to begin with.

SUGGESTED DATA-ANALYSIS
TECHNIQUES

I now turn to a description of six data-analysis
techniques that are considerably more useful
than is strict adherence to NHST in their abil-
ity to illuminate a data set’s meaning and to an-
swer whatever question originally prompted
the experiment. The first two of these—the
use of pictorial representations and the use
of confidence intervals—are not novel; they
are just not widely used, or at least are not
widely used to the best advantage. The third
and fourth techniques—use of planned com-
parisons and other means of accounting for
different sources of variance—are also not
novel, but are hardly ever used. The fifth—
use of mathematical process models—has an
honorable tradition in the area of mathemati-
cal psychology, but is still not pervasive. The
final set of techniques, which I have termed
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Table 9.2 Data (proportion correct) for an
Experiment in Which Stimuli Are Presented at One
of Six Durations and One of Three Contrast Levels

Contrast

Duration (ms) 0.05 0.10 0.20

10 0.069 0.134 0.250
20 0.081 0.267 0.375
40 0.230 0.466 0.741
80 0.324 0.610 0.872

160 0.481 0.768 0.898
320 0.574 0.799 0.900

equivalence techniques, are standard in vi-
sion science but are almost never used in other
areas of psychology.

Pictorial Representations

If the results of an experiment consist of more
than two numbers, then providing some form
of pictorial representation of them is enor-
mously useful in providing a reader with an
overall, gestalt image of what the data are all
about. (This seems so obvious that it is hardly
worth saying, but the obviousness of the con-
cept does not always translate into the con-
comitantly obvious behavior.)

To illustrate, Table 9.2 and Figure 9.2
show the same data set (response probabili-
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Figure 9.2 Hypothetical data from a 5 (stimulus
exposure duration) × 3 (stimulus contrast level)
experiment.
NOTE: The dependent variable is proportion correct
recall. Error bars represent standard errors.

ties from a hypothetical experiment in which
digit strings are presented for varying dura-
tions and contrasts) as a table and as a figure.
It is obvious that the table can only be under-
stood (and not very well understood at that)
via a lengthy serial inspection of the numbers
within it. In contrast, a mere glance at the cor-
responding figure renders entirely clear what
is going on.

Graphs versus Tables

Despite the obvious and dominating exposi-
tional advantage of figures over tables, data
continue to be presented as tables at least
as often as figures, or possibly more often.
For most of psychology’s history, the rea-
son for this curious practice appeared to be
founded in a prosaic matter of convenience:
Although it was relatively easy to construct a
table of numbers on a typewriter, construct-
ing a decent figure was a laborious undertak-
ing. You drew a draft of the figure on graph
paper, took the draft to an artist who invari-
ably seemed to reside on the other side of the
campus, following which you waited a week
for the artist to produce a semi-finished ver-
sion. Then you made whatever changes in the
artist’s rendering seemed appropriate. Then,
you repeatedly iterated through this dreary
process until the figure was eventually satis-
factory. Finally, adding insult to injury, you
had to take the finished drawing somewhere
else to have its picture taken before the pub-
lisher would take it. Who needed that kind of
hassle?

Today, obviously, things are much differ-
ent, as electronic means of producing figures
abound. To obtain information about popular
graphing techniques, I conducted an informal
survey in which I e-mailed to all researchers
in my e-mail address book a request that they
tell me what graphing techniques they use.
The 161 respondents used a total of 229 tech-
niques, and the summarized results are pro-
vided in Table 9.3.
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Table 9.3 Techniques for Plotting Data, as Revealed
by an Informal Survey

Application Name Frequency

Microsoft Excel 55
CricketGraph 27
SigmaPlot 22
KaleidaGraph 17
SPSS 16
MATLAB 15
PowerPoint 10
DeltaGraph 9
S-plus 7
Mathematica 5
Microsoft Office 5
Systat 5
Igor/Igor Pro 4
Statistica 4
Gnuplot 3
Canvas 2
Hand plotting 2
StatView 3
ABC Graphics 1
Autocad 1
Axum 1
c graph-pac 1
ClarisDraw 1
Grapher 1
Graphpad 1
Illustrator 1
JMP 1
MacDraw 1
Maple 2D 1
Origin 1
PsiPlot 1
Quattro Pro 1
R 1
SciPlot 1
Smartdraw 1
TK solver 1

The results of this survey can be sum-
marized as follows. Fewer than 25% of the
application programs mentioned were sta-
tistical packages, perhaps because the most
commonly used packages do not provide
very flexible graphing options. Over a third
of the applications were specialized draw-
ing programs (CricketGraph, SigmaPlot, and
KaleidaGraph were the most popular, but
many others were mentioned). About 10%
of the applications were general-purpose pre-

sentation programs (PowerPoint was the most
popular) and the final one third was general-
purpose analysis programs, with Microsoft
Excel accounting for the majority of these in-
stances. Excel was by far the single leading
application used for graphing. Seven respon-
dents reported never graphing data, and 13
reported assigning the task to someone else.
Two people reported still drawing graphs by
hand. The remaining 139 respondents used
some form of electronic graphing techniques.

At the present time, a brief description of
graphing programs is supplied by Denis Pelli
(personal communication) and can be found at
http://vision.nyu.edu/Tips/RecSoftware.html.

Graph-Making Transgressions

I have tried to present a fairly bright picture
of the ease of creating high-quality graphs.
There is, however, a dark side of this process:
A graph creator has the capability of going
wild with graphical features, thereby produc-
ing a graph that is difficult or impossible to in-
terpret. For example David Krantz (personal
communication on September 8, 2000) has
noted that, for example, graph makers often
attempt to pack too much information into a
graph, that they produce graphs that are dif-
ficult to interpret without intense serial pro-
cessing, that they produce unintended and dis-
tracting emergent perceptual features, or that
they simply omit key information either in the
graph itself or in the graph’s legend. There are,
of course, many other such transgressions,
treatments of which are found in the refer-
ences provided in the next section. (My own
personal bête noire is the three-dimensional
bar graph.)

Other Graphical Representations

A discussion of graphs is limited in the sense
that there are myriad means of visually pre-
senting the results of a data set. It is beyond the
scope of this chapter to describe all of them.
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For initial pointers to a set of sophisticated
and elegant graphical procedures, the reader
is directed to excellent discussions and exam-
ples in Tufte (1983, 1990), Tukey (1977), and
Wainer and Thissen (1993). The main point I
want to make is that pictorial representations
almost always excel over their verbal coun-
terparts as an efficient way of conveying the
meaning of a data set.

The Use of Confidence Intervals

Earlier, I described the LM as the standard
model for linking a data set to the answer to
the scientific question at hand. Somewhere in
a LM equation (e.g., Equation [1]) are always
one or more error terms that represent the
uncertainty in the world.

Using the LM to answer scientific ques-
tions is a two-stage process. The first stage
is to determine knowledge of relevant pop-
ulation parameters given measured sample
statistics along with the inevitable statistical
noise. The second stage is to use whatever
knowledge emerges about population param-
eters to answer the question at hand as best as
possible.

It seems almost self evident that the second
stage—deciding the implications of the pat-
tern of population parameters for the answer
to the question at hand—should be the investi-
gator’s fundamental goal. In contrast, the typ-
ical routine of statistical analysis—carrying
out some procedure designed to cope with
the noise-limited relation between the sample
statistics and the corresponding population
parameters—should be viewed as a necessary
but boring nuisance. If the real world suddenly
transformed into an ideal world in which ex-
periments produced no statistical noise, there
would be cause for rejoicing among investi-
gators, as a major barrier to data interpretation
would be absent.

Two basic procedures help to cope with sta-
tistical noise in the quest of determining the

relations between a set of sample statistics and
their population counterparts. The first pro-
cedure entails attempting to determine what
the pattern of population parameters is not—
that is, trying to reject a null hypothesis of
some specific, usually uninteresting, pattern
of population parameters, via NHST. The sec-
ond procedure entails attempting to determine
what the pattern of population parameters is,
using the pattern of sample statistics as an es-
timate of the corresponding pattern of pop-
ulation parameters, along with error bars to
represent the degree of conclusion-obscuring
statistical noise. It is my (strong) opinion that
trying to determine what something is gen-
erally more illuminating than trying to deter-
mine what it is not.

The use of error bars (e.g., in the form
of 95% confidence intervals) around plotted
sample statistics (usually sample means) is an
ideal way of presenting data in such a way
that the results of both these two data-analysis
and data-interpretation stages are represented
and that their relative importance is depicted.
Consider a plot such as that shown in Fig-
ure 9.2. The pattern of sample means repre-
sents the best estimate of the corresponding
pattern of population means. This pattern is
fundamental to understanding how perception
is influenced by contrast and duration, and
this pattern is most obvious and fundamen-
tal in the graph. Furthermore, the confidence
intervals provide a quantitative visual repre-
sentation of the faith that should be placed
in the pattern of sample means as an esti-
mate of the corresponding pattern of popu-
lation means. Smaller confidence intervals, of
course, mean a better estimate: In the extreme,
if the confidence intervals were of zero length,
it would be clear that error was irrelevant and
that the investigator could spend all of his or
her energy on the fundamental task of figur-
ing out the implications of the pattern of pop-
ulation means for answering the questions at
hand.
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The Interpretation of a Confidence Interval

The technically correct interpretation of a con-
fidence interval is this: Suppose that many
random samples of size n are drawn from
some population. The sample mean, M , is
computed for each sample, and a confidence
interval—suppose, for simplicity of exposi-
tion, a 95% confidence interval—is drawn
around each mean. Approximately 95% of
these confidence intervals will include µ, the
population mean.

Returning now to planet Earth, what does
this logic imply in the typical case in which a
single mean is computed from a single sam-
ple, and a single confidence interval is plotted
around that sample mean? If the confidence
interval were the only information available
to the investigator, then the investigator would
conclude that, with 95% probability, this con-
fidence interval is one of the 95% of all possi-
ble confidence intervals that include µ; that is,
the investigator can draw the simple conclu-
sion that with 95% probability the confidence
interval includes µ.

However, the caveat must be issued that
sometimes an investigator does have addi-
tional information available (such informa-
tion is, for instance, the basis for doing a one-
tailed rather than a two-tailed test). In this
case, the investigator’s subjective probability
that the confidence interval contains a pop-
ulation parameter may be influenced by this
additional information as well as by the con-
fidence interval itself. For instance, an inves-
tigator examining a 95% confidence interval
constructed around a particular sample mean
may, based on such other information, doubt
that it does in fact contain µ. Whether an
investigator chooses to quantify such beliefs
using probabilities, it is sometimes mislead-
ing to state unequivocally, after examining the
data, that the particular interval has a 95%
probability of including µ.

Despite this caveat, however, construal
of an x% confidence interval as including

the population parameter with x% probabil-
ity is generally a reasonable rule of thumb
(as distinguished from something like, “since
p < .05, H0 is likewise true with a probability
of less than about .05,” which is definitely not
a reasonable rule of thumb).

Confidence Intervals around Linear
Combinations of Variables

For many of the examples to follow, the
reader must keep in mind the relation be-
tween a confidence interval around a sin-
gle mean and a confidence interval around
a linear combination of means. In particu-
lar, suppose an experiment results in a se-
ries of means, M1, M2, . . . , MJ . If the con-
fidence interval around any of the M j s has
a length of X , then the confidence interval
around any linear combination of the means,
k1 M1 + k2 M2, . . . , + kJ MJ , has a length of

X
√

k2
1 + k2

2 + · · · + k2
J . (7)

The most frequent use of the property de-
scribed by Equation (7) is when a confidence
interval around a difference score, (M1 − M2)

is desired. In this situation, k1 = 1, k2 = −1,
and the difference-score confidence interval is
therefore the individual-mean confidence in-
terval multiplied by

√
2. Some additional im-

plications of this fact will be provided later in
this chapter.

Confidence Intervals and Statistical Power

Within the context of NHST, the definition
of power is simple: As indicated earlier, it
is the probability of correctly rejecting the
null hypothesis given that the null hypothesis
is false. However (despite frequent requests
on the part of journal editors) explicit power
analyses rarely make their way into journal
pages. The reasons for this deficit appear to
be twofold. First, to compute an exact value
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of power requires a quantitative alternative
hypothesis which is almost never available.
Second, the concept of power, while seem-
ingly straightforward is, as anyone who has
tried to teach it well knows, almost impossi-
ble to get across to anyone who hasn’t some-
how figured it out already. Many educators
and authors give up on the topic; for instance,
in his widely read Fundamental Statistics in
Psychology and Education, Guilford (1942)
declared power to be “too complicated to
discuss.”

As has been frequently noted, the issue of
power is particularly important if a scientific
conclusion entails the acceptance of some null
hypothesis. In such a situation, it is incumbent
on the investigator to convince his or her audi-
ence that the power of the relevant statistical
test is high. How should this be done?

Because there is indeed a profound dearth
of quantitative alternative hypotheses in the
social sciences, a single value of power typ-
ically cannot be computed. Therefore, some
more general representation of power must
be concocted for a particular experiment. One
such representation that is occasionally sug-
gested involves the use of power curves (e.g.,
Hays, 1973; p. 359) whereby power is plotted
as a function of the value of the alternative
hypothesis.

Another way of representing power is via
the magnitude of confidence intervals. The
rule here is simple: The greater the statisti-
cal power, the smaller are the confidence in-
tervals. To illustrate, imagine a hypothetical
experiment in which a clinical researcher is
investigating the relative effectiveness of two
methods, Method A and Method B, of re-
ducing anxiety. Two groups of high-anxiety
subjects participate in the experiment, one
receiving Method A and the other receiving
Method B. Following their treatment, subjects
rate their anxiety on a 7-point scale. Suppose
that the experiment results in a small, not sta-
tistically significant difference between the
two methods. In what follows, I will demon-

strate two techniques of presenting the results
for two hypothetical cases: a low-power case
involving n subjects, and a high-power case
involving 100n subjects.

The first analysis technique incorporates
standard NHST, along with a formal power
analysis. Figure 9.3 shows the graphical re-
sults of this kind of analysis for the low-power
case (left panels) and the high-power case
(right panels). The top panels show bar graphs
depicting the main experimental results, and
the bottom panels show power curves that de-
pict power as a function of the difference be-
tween two population means according to a
continuous succession of alternative hypothe-
ses. Power is represented by the slope of the
power curves. As illustrated by the arrows,
the low-power curve achieves a power of 0.90
when the alternative hypothesis is that the
population means differ by about 3.0, and
the high-power curve achieves 0.90 when the
alternative hypothesis is that the population
means differ by about 0.3.

Figure 9.4 shows a different way of repre-
senting this power information for the same
low-power case (left panel) and high-power
case (right panel). Figure 9.4 again shows the
bar graph, but here the bars are accompanied
by 95% confidence intervals around the means
that they depict. The free-floating error bars
show the magnitude of the 95% confidence
interval around the population mean differ-
ences in each of the panels. Here, power is
represented quite simply by the size of the
confidence intervals, which are large in the
left (low-power) graph, but small in the right
(high-power) graph.

In short, Figures 9.3 and 9.4 show the same
information. However, Figure 9.4 presents
the information in a much simpler and more
intuitive manner than does Figure 9.3. Fig-
ure 9.4 makes it immediately and visually
clear how seriously the sample means and
the sample mean differences are to be taken
as estimates of the corresponding population
means; this, in turn, provides critical infor-
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Figure 9.3 One technique for carrying out a power analysis.
NOTE: A low-power situation is in the left panels, and a high-power situation is in the right panels. The
top panels show the data, and the bottom panels show power curves.

mation about how “nonsignificance” should
be treated. The left panel of Figure 9.4 leaves
no doubt that failure to reject the null hypoth-
esis is a nonconclusion—that there is not suf-
ficient statistical power to make any conclu-

0.0

7.0

6.0

5.0

M
ea

n 
R

at
in

g

4.0

3.0

2.0

1.0

Method A Method B
0.0

7.0

6.0

5.0

M
ea

n 
R

at
in

g

4.0

3.0

2.0

1.0

Method A Method B

Low Power
CI: Mean Difference

( �2.77)

High Power
CI: Mean Difference

( �0.277)

Figure 9.4 A second technique for carrying out a power analysis in the anxiety treatment method
experiment.
NOTE: Smaller confidence intervals reflect greater power.

sions at all about the relative magnitudes of
the two population means. The right panel, in
contrast, makes it evident that something very
close to the null hypothesis is actually true—
that the true difference between the population
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Source df SS MS Obt F Crit F

Btwn 3 4,810 1,603 4.97 2.87
Within 36 11,615 323

Total 39 16,426

Figure 9.5 Data from a hypothetical experiment in which reaction time is measured as a function of
caffeine consumption in a between-subjects design.
NOTE: The right panel shows the mean data with each mean surrounded by individual-subject data points.
The right panel shows 95% confidence intervals around the sample means.

means is, with 95% confidence, restricted to
a range of 0.277, which is very small in the
grand scheme of things.

Confidence Intervals or Standard Errors?

Thus far I have been using 95% confidence
intervals in my examples. This is one of the
two standard configurations for error bars, the
other being a standard error, which is approx-
imately a 67% confidence interval.8 In the
interests of standardization, one of these con-
figurations or the other should be used un-
less there is some compelling reason for some
other configuration.

I suggest, in particular, being visually con-
servative, which means deliberately stack-
ing the deck against concluding whatever
one wishes to conclude. This means that one
should use 95% confidence intervals, which
have a greater effect of suggesting no differ-
ence, when the interest is in rejecting some
null hypothesis. Conversely, one should use
standard errors, which have a greater effect of
suggesting a difference, when the interest is
in confirming some null hypothesis (e.g., as

8The exact coverage of a standard error depends, of
course, on the number of degrees of freedom going into
the error term.

when comparing observed to predicted data
points in a model fit).

Different Kinds of Confidence Intervals

The interpretation of a confidence interval
is somewhat different depending on whether
it is used in a between-subjects or in a
single-factor within-subjects (i.e., repeated-
measures) design, a multifactor within-
subjects design, or a mixed design (some
factors between, other factors within). These
differences are discussed in detail by Loftus
and Masson (1994). The general idea is as
follows.

Between-Subjects Designs. A confidence
interval is designed to isolate a population pa-
rameter, most typically a population mean, to
within a particular range. A between-subjects
design constitutes the usual venue in which
a confidence interval has been used in psy-
chology, to the extent that confidence intervals
have been used at all. Consider as an exam-
ple a simple one-way ANOVA experiment in
which the investigator is interested in the ef-
fects of caffeine on reaction time (RT). Four
conditions are defined by four levels of caf-
feine: 0, 1, 2, or 3 caffeine units per unit body
weight. Suppose that n = 10 subjects are ran-
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Figure 9.6 Data from a hypothetical experiment in which reaction time is measured as a function of
caffeine consumption in a within-subjects design.
NOTE: All 40 data points are the same as those shown in Figure 9.5. The left panel shows the mean data
(heavy line) along with individual-subject data points (light lines). The right panel shows 95% “within-
subject” confidence intervals around the sample means that are based on the subject × interaction
variance.

domly assigned to, and participate in, each
of the four conditions. The outcome of the
experiment is as represented in Figure 9.5a,
which shows the mean data (solid line) along
with dashes surrounding each mean that
represent the 10 individual data points within
each condition. The results of an ANOVA are
shown at the bottom left of the panel and are
straightforward. Note that the total sum of
squares, which, of course, reflects the total
variability of all 40 scores in the experiment
is 16,426, and the 39 total degrees of freedom
are divided into 3 (between, i.e., caffeine) and
36 (error, i.e., within). (These factoids will be-
come relevant in the next section.)

Computing a confidence interval in such
a design is entirely straightforward and is
obtained by the equation at the bottom of
Figure 9.5b:

CI = ±
(√

MS(Within)

n

)
crit t (dfW) (8)

using the MS (Within) from the ANOVA
table in Figure 9.5a. The error term going into
the confidence interval is the same as in the
ANOVA—MS (Within)—and the criterion t

is based on dfW, which is 36 in this exam-
ple. The resulting 95% confidence interval is
±11.52.

Single-Factor within Subjects Designs.
I now treat the exact same data that I just de-
scribed as having come from a within-subjects
design. That is, I treat the data assuming that
each of a total of n = 10 subjects had par-
ticipated, at one time or another, in each of
the 4 conditions. It is now possible to draw
a curve relating RT to caffeine for each of
the 10 subjects. These curves, along with the
same mean curve from Figure 9.5, are shown
in Figure 9.6a. At the bottom of Figure 9.6a
is the within-subjects ANOVA. Note that the
16,426 total sum of squares (now referred to
as “between cells”) is divided into caffeine
conditions (as with the between-subjects de-
sign, equal to 4,810, and based on 3 degrees of
freedom), subjects (based on 9 degrees of free-
dom) and the subject × caffeine interaction
(based on 27 degrees of freedom). The relative
consistency of the caffeine effect across the
different subjects is represented graphically
by the relative parallelness of the individual
subject curves and is represented within the
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ANOVA by the relatively small interaction
(i.e., error) term of MS (Interaction) = 20.
The F ratio of 79.72 is considerably greater
in this design than it was in the between-
subjects design (where F = 4.97). The rea-
son for this is that a large portion of the
error variance—the between-subjects vari-
ability reflected by SS (Subjects) = 11,072—
is irrelevant in this within-subjects design,
whereas this very same variability formed part
of the error term—was part of SS (Within)—
in the between-subjects design.

How should a confidence interval be
constructed in this kind of within-subjects
design? Technically, as described earlier, a
confidence interval is designed to isolate a
population mean with some degree of prob-
ability. In this within-subjects design, the un-
certainty of any condition population mean
is based on exactly the same uncertainty as
it was in the between-subjects design. More
specifically, in the between-subjects design
this uncertainty was referred to as “within-
condition variance,” and in that example it
was SS (Within), based on 36 degrees of free-
dom. In this within-subjects design, the lo-
cation of a condition mean is uncertain be-
cause of both variability due to subjects, SS
(Subjects) = 11,072 based on 9 degrees of
freedom, and variability due to the subject by
condition interaction, SS (Interaction) = 543,
based on the remaining 27 degrees of freedom.
The combined error variance SS (Subjects
plus Interaction) is therefore 11,615, based on
36 degrees of freedom, just as it was in the
between-subjects design, and the confidence
interval of 11.52 is therefore identical also.

Intuitively this seems wrong. Just as the
within-subjects design includes a great deal
more sensitivity, as reflected in the substan-
tially greater F ratio in the ANOVA, so it
seems that the greater sensitivity should also
be reflected in a smaller confidence interval.
What is going on?

To answer this question, it is necessary
to consider not what a confidence interval is

technically used to accomplish, but what a
confidence interval is actually used to accom-
plish. An investigator is usually interested not
in absolute values of population means, but
in patterns of population means. So, for in-
stance, in the data in Figures 9.5 and 9.6,
the mean RT declines from approximately
240 ms to 215 ms across the caffeine condi-
tions. However, it is not the exact means that
are important for determining caffeine’s effect
on RT; rather, it is the decrease, or perhaps the
form of mathematical function describing the
decrease, that is of interest.9

This observation has an important impli-
cation for the interpretation of confidence in-
tervals: Confidence intervals are rarely used
in their “official” role of isolating population
means. Instead, they are generally used as a
visual aid to judge the reliability of a pat-
tern of sample means as an estimate of the
corresponding pattern of population means.
In the between-subjects data in Figure 9.5,
for instance, the confidence intervals indicate
that a hypothesis of monotonically decreasing
population-mean RTs with increased caffeine
is reasonable.

How does this logic relate to within-
subjects designs? The answer, detailed by
Loftus and Masson (1994), is that a confi-
dence interval based on the interaction vari-
ance is appropriate for the goal of judging the
reliability of a pattern of sample means as an
estimate of the corresponding pattern of pop-
ulation means; thus, the within-subjects con-
fidence interval equation is

CI = ±
(√

MS(Interaction)

n

)
crit t (dfI)

(9)
where n again represents the number of obser-
vations on which each mean is based (n = 10

9I should note that this is not always true. Sometimes
an investigator is interested in isolating some population
mean. An obvious example would be when the investi-
gator wishes to determine whether performance in some
condition is at a chance value.
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in this example). Using Equation (9) (see
Figure 9.6b), the confidence intervals in
Figure 9.6a were computed using the MS
(Interaction) shown in the ANOVA table
within Figure 9.6a. The resulting confidence
interval is ±3.21. This value is, of course, con-
siderably smaller than the between-subjects
counterpart of 11.52 shown in Figure 9.5. It
bears emphasis, however, that this apparent
increase in power occurs because information
is lost: In particular, the confidence intervals
no longer isolate absolute values of population
means; rather, they are appropriate only for as-
sessing the reliability of the pattern of sample
means as an estimate of the underlying pat-
tern of population means. That is, they serve
the same function as they do in the between-
subjects ANOVA.

Multifactor Within-Subjects Designs.
In a pure between-subjects design, there is
only one error term, MS (Within), regard-
less of the number of factors in the design.
Therefore, assuming homogeneity of vari-
ance, a single confidence interval, computed
by Equation (8) or Equation (9), is always
appropriate.

In a multifactor within-subjects design, the
situation is more complicated in that there are
multiple error terms, corresponding to multi-
ple subject-by-something interactions. For in-
stance, in a two-factor within-subjects design,
there are three error terms: one corresponding
to Factor A, one corresponding to Factor B,
and one corresponding to the (A × B) inter-
action. These error terms are summarized in
Table 9.4 for a standard two-factor, within-
subjects design.10 This raises the problem of
how to compute confidence intervals, as it

10With more than two factors, the same general argu-
ments hold, but they are simply more complex because
there are yet more error terms. For example in a three-
factor, within-subjects design, there are three main-effect
error terms, three two-way interaction error terms, and
one three-way interaction error term, or seven error terms
in all.

Table 9.4 ANOVA Table for a Two-Factor, Within-
Subjects Design

Source Degrees of Freedom Error Term

Factor A(A) df(A) MS(A × S)
Factor B(B) df(B) MS(B × S)
Inter. (A × B) df(A × B) MS(A × B × S)
Subjects (S) df(S)
A × S df(A) × df(S)
B × S df(B) × df(S)
(A × B) × S df(A) × df(B) × df(S)

would appear that there are as many possible
confidence intervals as there are error terms.
Which confidence intervals are appropriate to
display?

Often, the answer to this question is simple,
because in many such two-factor designs—
and in many multifactor within-subjects de-
signs in general—the error terms are all
roughly equal (i.e., they differ by no more than
a factor of around 2:1). In such instances, it
is reasonable simply to pool error terms, that
is, to compute an overall error term by di-
viding the sum of the sum of squares (error)
by the total degrees of freedom (error) to ar-
rive at a single “subject × condition” interac-
tion, where a “condition” is construed as sin-
gle combination of the various factors (e.g., a
5 × 3 subjects design would have 15 separate
conditions). This single error term can then
be entered into Equation (9) to compute a sin-
gle interaction. Here, dfI refers to degrees of
freedom in the total interaction between sub-
jects and conditions. So, for instance, in a 5
(Factor A) × 3 (Factor B) × 20 (subjects) de-
sign, dfI would be (15 − 1) × (20 − 1) = 266.
As before, n in Equation (9) refers to the num-
ber of observations on which each mean is
based: 20 in this example.

Of course, nature is not always this kind,
and the investigator sometimes finds that the
various error terms have widely varying val-
ues. In this situation, the investigator is in a
position of having to provide a more complex
representation of confidence intervals, and the
situation becomes akin to that described in the
next section, where a mixed design is used.
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Mixed Designs. A mixed design is one
in which some of the factors are between sub-
jects and other factors are within subjects. For
simplicity, I describe the simplest such de-
sign: a two-factor design with one between-
subjects factor and one within-subjects factor
(see also Loftus & Masson, 1994, pp. 484–
486).

Imagine the caffeine experiment described
earlier except that two different subject popu-
lations are investigated: young adults (in their
20s) and older adults (in their 70s). Thus, there
are two variables, one of which (caffeine) is
within-subjects and the other of which (age)
is between subjects. Again, there are n = 10
subjects in each of the two age groups. Sup-
pose that the data are as depicted in Figure 9.7a
(note that again the relevant ANOVA table is
provided at the bottom of the figure).

As described in many standard statistics
textbooks, there are two error terms in this de-
sign. The error term for the age effect is MS
(Subjects within age groups) = 1,656, and the
error term for caffeine and for the caffeine ×
age interaction is the MS (Caffeine × Sub-
jects) = 99. Correspondingly, two separate
confidence intervals can be computed. The

ANOVA (mixed design)
Source df SS MS Obt F

Caffeine 3 15,791 5,264 53.278
Age 1 12,128 12,128 7.322

C � A 3 1,445 482 4.876
Subj 18 29,812 1,656

C � S 54 5,335 99
Total 79 64,512
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Figure 9.7 Data from a hypothetical experiment in which reaction time is measured as a function of
caffeine consumption.
NOTE: Caffeine consumption is varied within subjects, and two different age groups are included. The
right panel shows 95% “within-subject” confidence intervals around the sample means that are based on
the subject × interaction variance, along with a free-floating confidence interval that is appropriate for
comparing the two age curves.

first, computed by Equation (9), is the kind of
within-subjects confidence interval that was
described in the previous section. This confi-
dence interval, which, as indicated at the bot-
tom of Figure 9.7b, is computed to be ±6.3,
is appropriate for assessing the observed ef-
fects of caffeine and of the age × caffeine
interaction as estimates of the corresponding
population effects. This confidence interval is
plotted around each of the cell means in Fig-
ure 9.7b. Note that this confidence interval is
not appropriate for describing the absolute age
effect. The easiest way to conceptualize what
this means is to think of an extreme situation in
which the within-subjects confidence interval
were zero; thus, one could be entirely confi-
dent of the nature of the caffeine effect and of
the interaction (i.e., one could be entirely con-
fident of the shape of each of the two curves
in Figure 9.7). However, the vertical relations
of the two age curves to one another would
still be uncertain.

How uncertain? This would be determined
by the size of the other, between-subjects
confidence interval, based on MS (Subjects).
As shown at the bottom of Figure 9.7b,
the equation for computing this confidence
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interval is

CI =
√

MS(Subjects)

n × J
crit t (dfS)

or 13.5. The value of this confidence interval,
along with a pictorial representation of it, is
shown in the middle of Figure 9.7b. Because
there are only two age levels, an alternative
way of depicting the age effect would be in
terms of the age difference: The confidence
interval around a difference score is always
equal to the confidence interval around the in-
dividual component times

√
2. In this exam-

ple, the observed mean difference is 25 ms, so
the confidence interval around this mean dif-
ference score would be 25 ± (13.5 × √

2) =
25 ± 19.1.

Why is the denominator of Equation (9) n×
J (= 4×10 = 40 in this example) rather than
the usual n (= 10 in this example), as would be
the case if this were a pure between-subjects
design? The reason for this further illustrates
the different conclusions that can be made
from a within-subjects design compared to a
between-subjects design. In a purely between-
subjects design, the confidence interval ap-
plies to a single condition mean. However, in
this kind of mixed design, the confidence in-
terval for the between-subjects factor—age—
applies to the entire age curves rather than to
just a single mean. For this reason, the con-
fidence interval is actually around an entire
curve mean that is based on n × J , or, in this
case, 40 observations. Again, this issue is most
easily conceptualized by imagining the situa-
tion in which the within-subjects confidence
interval is zero and the only uncertainty in
the experiment is of age. The age uncertainty
applies to an entire curve, not an individual
mean; that is, once a given mean within a par-
ticular curve is known, the remaining three
means in the curve are similarly known.

Confidence Intervals Around Interac-
tion Effects. Often the nature of an inter-
action is a key factor underlying the con-

Table 9.5 Hypothetical Data from a 2 × 2 Factorial
Design

Factor 1

Level 1 Level 2

Factor 2 Level 1 M11 = 5 M21 = 8
Level 2 M12 = 7 M22 = 12

clusions that are made from some data set.
Interactions with more than a single degree of
freedom are the topic of a later section on con-
trasts. In this section, I briefly describe how
a one-degree-of-freedom interaction may be
assessed as a single value plus a confidence in-
terval rather than within the usual hypothesis-
testing context.

Table 9.5 shows a hypothetical example of
a 2 × 2 design. The magnitude of the interac-
tion may be computed as

I = (M21 − M22) − (M11 − M12)

which in this case is I = 2.0. Suppose that
the confidence interval around the individual
mean is computed to be X (e.g., suppose X =
0.4 in this example). Thus, by Equation (7),
the confidence interval around this interaction
magnitude is

I ± x
√

12 + 12 + 12 + 12 = I ± 2X

which would be 2.0 ± 0.8 in this example.

Asymmetrical Confidence Intervals.
Thus far in the chapter I have been describ-

ing confidence intervals that are symmetrical
around the obtained sample statistics (gener-
ally the sample mean). However, some cir-
cumstances demand asymmetrical confidence
intervals. In this section, I describe how to
compute asymmetrical confidence intervals
around three common statistics: variances,
Pearson rs, and binomial proportions. In gen-
eral, asymmetry reflects the bounded nature
of the variable: variances are bounded at zero;
Pearson rs are bounded at ±1).

As described by Hays (1973, pp. 441–445)
the confidence interval for a sample variance



pashler-44093 book December 18, 2001 10:24

362 Analysis, Interpretation, and Visual Presentation of Experimental Data

based on n observations (Xi s) with mean
M is

(Upper limit):
(n − 1)est σ 2

χ2(n − 1; p(upper limit))
CI =

(Lower limit):
(n − 1)est σ 2

χ2(n − 1; p(lower limit))
.

Here, est σ 2 (or s2 in Hays’ notation) is the
best estimate of the population variance com-
puted by

est σ 2 =

n∑
i=1

(Xi j − M)2

n − 1
=

n∑
i=1

X2
i − nM2

n − 1

and p(upper limit) and p(lower limit) are the
probability boundaries for the upper and lower
limits of the confidence interval (e.g., 0.975
and 0.025 for a 95% confidence interval).

Suppose, to illustrate, that a sample of
n = 100 scores produced a sample variance,
est σ 2 = 20. The upper limit of a 95% confi-
dence interval would be

(100 − 1)(20)

χ2(9, 0.975)
= 99 × 20

73.36
= 26.99

and the lower limit would be

(100 − 1)(20)

χ2(9, 0.025)
= 99 × 20

128.42
= 15.42.

The confidence interval around a Pearson
r is based on Fisher’s r -to-z transformation.
In particular, suppose that a sample of n X-Y
pairs produces some value of Pearson r . Given
the transformation,

z = 0.5 ln

(
1 + r

1 − r

)
(10)

z is approximately normally distributed, with
an expectation equal to

0.5 ln

(
1 + ρ

1 − ρ

)

where ρ is the population correlation of which
r is an estimate, and a standard deviation of

σ =
√

1/(n − 3).

Therefore, having computed an obtained z
from the obtained r via Equation (10), a con-
fidence interval can be constructed easily in
z-space as

z ± criterion z

where the criterion z corresponds to the de-
sired confidence level (e.g., 1.96 in the case
of a 95% confidence interval). The upper and
lower z limits of this confidence interval can
then be transformed back to upper and lower
r limits.

Suppose, for instance, that a sample of n =
25 X-Y pairs produces a Pearson r of 0.90 and
that a 95% confidence interval is desired. The
obtained z is thus

z = 0.5 × ln[(1 + .90)/(1 − .90)] = 1.472

which is distributed with a standard deviation
of √

1/(25 − 3) = 0.213.

The upper and lower confidence interval lim-
its in z-space are therefore

1.472 + (.213)(1.96) = 1.890

and

1.472 − (.213)(1.96) = 1.054.

To translate from z-space back to r -space,
it is necessary to invert Equation (10). It is
easily shown that such an inversion produces

r = e2z − 1

e2z + 1
. (11)

The upper and lower confidence interval lim-
its may then be computed from Equation (11):

upper limit: r = e2×1.890 − 1

e2×1.890 + 1
= 0.955

and

lower limit: r = e2×1.054 − 1

e2×1.054 + 1
= 0.783.

Thus, the 95% confidence interval around the
original obtained r of 0.90 ranges from 0.783
to 0.955.
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To compute confidence intervals around
binomial proportions, note first that the equa-
tion for the standard deviation of a proportion
is

σ =
√

pq

n

where p is the proportion, q is (1 − p), and n
is the number of observations.

Suppose now that one wishes to compute
the upper limit of a X% confidence interval.
Call the corresponding criterion z, zX (e.g.,
zX = 1.64 for a 90% confidence interval,
zX = 1.96 for a 95% confidence interval, and
so on). It follows then that the upper limit, U ,
for an X% confidence interval around some
obtained proportion, p, can be written as,

U = p + 1

2n
+ zxσ

= p + 1

2n
+ zx

√
U (1 − U )

n
(12)

where the factor (1/2n) corrects for continuity,
as the normal approximation to the binomial
is most easily used in these computations. The
equation for the lower limit, L , is the same ex-
cept that the second plus sign in Equation (12)
is replaced with a minus sign, that is,

L = p + 1

2n
− zxσ = p + 1

2n
− zx

√
L(1 − L)

n
.

These equations for both U or L , can, after
suitable algebraic manipulation, be written as
standard quadratics of the form,

aU 2 + bU + c = 0

and

aL2 + bL + c = 0

where for both U and L , the values of a, b,
and c can be computed as,

a = 1 + z2
x

n
(13)

and

b = −2p − z2
x

n
− 1

n
(14)

and

c = p2 + p

n
+ 1

4n2
. (15)

The seemingly odd fact that the values of a, b,
and c are the same for both U and L comes
about because when one squares the far-right
term in Equation (12) as part of the aforemen-
tioned algebraic manipulation, the minus sign
in the equation for L disappears, and hence
the equations for U and L become identical.
Nevertheless, distinct values for both U and L
emerge from the following quadratic solution.

A quadratic equation of the form

aX2 + bX + c = 0

has two solutions, which are computed as
follows:

X = −b ± √
b2 − 4ac

2a
. (16)

When the values of a, b, and c obtained by
Equations (13), (14), and (15) are plugged into
Equation (16), the two resulting solutions cor-
respond to the U and L , the upper and lower
limits of the confidence interval.

As an example, suppose that an obtained
proportion of p = .96 is obtained based on
n = 5 observations, and suppose that one
wishes to compute a 99% confidence interval
around this obtained value of p = .96. The cri-
terion z for a 99% confidence interval is zX =
2.576. This information is sufficient to com-
pute the values of the quadratic-equation co-
efficients, a, b, and c via Equations (13), (14),
and (15). They are a = 2.327, b = −3.447,
and c = 1.124. Plugging these three values, in
turn, into Equation (16) leads to solutions—
upper and lower limits—of U = 0.997 and
L = 0.484.
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Homogeneity of Variance

Let us return to the standard, one-way,
between-subjects ANOVA design, as pre-
sented in the example of RT as a function
of caffeine (see Figure 9.5). There is only a
single MS (Error) in this design, in this case
MS (Within) = 323. Computation of this sin-
gle MS (Within) rests on the homogeneity of
variance assumption, which is this: Although
the treatment in some experiment (caffeine
variation in this example) may affect the pop-
ulation means, it does not affect population
variances. Accordingly, a single population
variance, σ 2, is assumed to characterize the
populations corresponding to all levels of the
independent variable. Although not apparent
in the usual formulas, the MS (Within) is the
weighted average of separate estimates of σ 2

obtained from each level of the independent
variable.11

Although almost invariably false, the
homogeneity of variance assumption is nec-
essary for carrying out an ANOVA. The
consequences of violating the homogeneity of
variance assumption to a mild degree are not
severe (see, e.g., Hays, 1973, pp. 481–483).
The homogeneity of variance assumption is
not necessary at all, however, for comput-
ing confidence intervals. In the following sec-
tions, I touch on computation of confidence
intervals in the absence of the homogeneity
of variance assumption in several representa-
tive designs and, in the process, demonstrate
the value of confidence intervals in illumi-
nating the effects of the independent variable
on condition variance as well as on condition
mean.

Single-Factor Between-Subjects Designs.
In a single-factor between-subjects design
such as the one illustrated in Figure 9.5, the

11The weighting is by degrees of freedom. In the example
at hand, there are equal ns and hence equal degrees of
freedom in each condition.

relevant LM equation is

Yi j = µ + α j + ei j (17)

where Yi j is the score for subject i in condi-
tion j, µ is the grand population mean, α j is
the effect of treatment (condition) j , and ei j

is an error associated with subject i in condi-
tion j . Homogeneity of variance is reflected
by the assumption that the ei j s are distributed
normally with a mean of zero and a variance,
σ 2, that is independent of j .

If the investigator is willing to forego an
ANOVA, the homogeneity of variance as-
sumption may be dropped in favor of the more
general and realistic assumption that the in-
dependent variable affects condition variance
as well as condition mean, that is, that the
variance of the ei j s in Equation (17) is σ 2

j

for condition j . To illustrate, I return to the
single-factor caffeine experiment whose re-
sults are depicted in Figure 9.5. Suppose that
the data from this experiment had turned out as
depicted in Figure 9.8a. Making the standard
homogeneity of variance assumption, a single
confidence interval can be computed based on
MS (Within) and displayed as shown.

Suppose that the homogeneity of variance
assumption necessary for the ANOVA were
dropped and that separate confidence intervals
were computed for each condition by

CI j =



√
est σ 2

j

n j


 crit t (n j − 1)

where j indexes condition. Here, est σ 2
j is the

estimate of condition j’s population variance,
computed by

est σ 2
j =

n j∑
i=1

(xi j − M j )
2

n j − 1

=

n j∑
i=1

x2
i j − T 2

j

/
n j

n j − 1
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ANOVA
 Source df SS MS Obt F 
 Btwn 3 19,150 6,383 3.59* 
 Within 36 63,968 1,777 
 Total 39 83,118 
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Figure 9.8 Caffeine data from a hypothetical between-subjects design similar to that of Figure 9.6.
NOTE: Homogeneity of variance is assumed (as usual) in the left panel, in which an ANOVA is possible,
and equal-sized 95% confidence intervals are shown. Homogeneity of variance is not assumed in the
right panel. An ANOVA cannot be carried out; however, the different-sized 95% confidence intervals
represent the differently estimated variances in the different conditions.

where Tj , M j and n j are, respectively, the to-
tal of, mean of, and number of subjects in the
j th condition (n j = 10 for all conditions in
this example). Note that when assuming ho-
mogeneity of variance as in Figure 9.8a, the
criterion t for the confidence interval is based
on degrees of freedom within (36 in this ex-
ample). When not assuming homogeneity of
variance, the criterion t for the condition j
confidence interval is based on (n j − 1) de-
grees of freedom, the number of degrees of
freedom in condition j.

These new confidence intervals—
computed without assuming homogeneity of
variance—are plotted in Figure 9.8b, which
provides important intuitive pictorial infor-
mation about the effect of caffeine on vari-
ance that is not available in the ANOVA of
Figure 9.8a. In particular, it suggests that caf-
feine’s effect on the variance should be con-
strued as at least as important as caffeine’s
effect on the mean.

Multi-Factor Between-Subjects Designs.
Considerations involving homogeneity of
variance become more complex when more
than a single factor is included in the design,

as there are many configurations of variance
homogeneity that could be assumed. For a
two-factor, J × K design, the most coherent
possibilities are as follows (for simplicity, I
assume equal ns in all conditions):

1. Complete homogeneity of variance is as-
sumed. In this case, a single confidence
interval can be computed, appropriate for
each of the J × K conditions, based on
(J × K ) × (n − 1) degrees of freedom
within.

2. No homogeneity of variance is assumed at
all. In this case, a confidence interval can
be computed independently for the each
of the J × K conditions. The confidence
interval for the J K th condition is based on
(n − 1) degrees of freedom.

3. Homogeneity of variance can be assumed
across the J levels of Factor 1 but not
across the K levels of Factor 2. In this case,
K confidence intervals are computed, one
for each level of Factor 2, each based on
J × (n − 1) degrees of freedom. The con-
fidence interval for Level k of Factor 2 is
appropriate for all J Factor-1 levels within
Level k of Factor 2.
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4. Conversely, homogeneity of variance can
be assumed across the K levels of Factor 2
but not across the J levels of Factor 1. In
this case, J confidence intervals are com-
puted, one for each level of Factor 1, each
based on K × (n − 1) degrees of freedom.
The confidence interval for Level j of Fac-
tor 1 is appropriate for all K Factor-2 levels
within Level j of Factor 1.

Single-Factor Within-Subjects Designs.
In a single-factor within-subjects design illus-
trated in Figure 9.6, the issue of homogeneity
of variance is somewhat complicated. The rel-
evant LM equation is

Yi j = µ + βi + α j + γi j

where Yi j and α j are as in Equation (17), βi

is an effect of subject i, and γi j is an interac-
tion term unique to the subject i × condition
j combination. Homogeneity of variance in
this design is the assumption that the γi j terms
are all distributed normally with a variance of
σ 2. Dropping the homogeneity of variance as-
sumption would allow the variance of the γi j

terms to have different variances σ 2
j for the

different conditions, j .
Estimation of the separate σ 2

j s is described
by Loftus and Masson (1994, p. 484 and in
their Appendix B). Unlike the corresponding
between-subjects situation described in the
previous section, such separate estimation is
sufficiently involved that I do not redescribe it
here. Moreover, the procedure entails poten-
tial estimation problems described by Loftus
and Masson (which are exacerbated by small
sample sizes). For this reason, I do not rec-
ommended that this procedure be used unless
there is very good reason to do so.

Multifactor Within-Subjects Designs.
Many of the considerations that apply to
multi-factor between-subjects designs apply
similarly to multifactor within-subjects de-
signs. Consider for example a J (Factor 1) × K

(Factor 2) × n (subjects) design. Although, as
just noted, it is somewhat tedious to estimate
different variances, σ 2

j , of the γ s correspond-
ing to the J different levels within a given
factor, it is simple to estimate values of γ if
they are presumed different for different lev-
els of Factor 2 but, within each level of Fac-
tor 2, the same for all levels of Factor 1: One
need only apply Equation (9) separately and
independently for each level of Factor 2. (Of
course, the same logic applies when reversing
Factors 1 and 2).

To illustrate, suppose that the effect of
caffeine on RT is again under consideration. In
this hypothetical example, Factor A is amount
of caffeine (which again can be one of four
levels), while Factor B is amount of sleep de-
privation, which is either 1 or 24 hours. Sup-
pose that n = 10 subjects participate in each
of the 8 caffeine × deprivation conditions. As-
sume for the sake of argument that the three
error terms—the interactions of subject ×
caffeine, subject × deprivation, and subject ×
caffeine × deprivation—are approximately
the same. Using the logic described earlier,
the investigator could compute a single confi-
dence interval using the combined error term,
which would be based on 9 (degrees of free-
dom for subjects) × 7 (degrees of freedom for
the 8 conditions) = 63 degrees of freedom (or
alternatively, 9 × 3 + 9 × 1 + 9 × 3 × 1 = 63
degrees of freedom if one prefers to think in
terms of adding the degrees of freedom from
the three separate error terms).

Suppose, alternatively, that the investiga-
tor suspected that the effect of caffeine was
less consistent over subjects with 24 hours
of sleep deprivation than over subjects with
1 hour of sleep deprivation. Again, foregoing
a standard ANOVA, the investigator could es-
sentially view the design as comprising two
separate experiments—one involving the ef-
fect of caffeine on RT following one hour of
sleep deprivation and the other involving the
effect of caffeine on RT following 24 hours
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of sleep deprivation. Two confidence inter-
vals could then be computed, each based on of
these two separate experiments—that is, each
based on the subject × caffeine interaction
within one of the sleep-deprivation levels—
and each based on 9 × 3 = 27 degrees of
freedom.

Planned Comparisons (Contrasts)

Psychological research, along with the anal-
ysis of psychological data, varies widely in
the degree of quantitative sophistication that
is used. At or near one end of this contin-
uum is the use of mathematical process mod-
els to generate quantitative predictions for the
summary statistics obtained in an experiment
(and, in some cases, distributions of the raw
data as well; see, e.g., Chap. 11, this vol-
ume). At or near the other end of the con-
tinuum is NHST, used to evaluate verbally
presented hypotheses in which the only math-
ematical model is some form of the standard
linear model. The use of planned comparisons
falls somewhere in the middle. Planned com-
parisons provide an organized and systematic
means of accounting for variability between
conditions in an experiment.

The formal logic and details of the use of
planned comparisons are presented in Hays
(1973, pp. 584–593). The basic logic of a
planned comparison is as follows

Some hypothesis about what the pattern of
population means looks like is used to gen-
erate a set of numbers called weights—one
weight corresponding to each condition in the
experiment. The general idea is that the pat-
tern of weights over conditions corresponds
to the pattern of population means that is pre-
dicted by the hypothesis. It is important to
realize that unlike a mathematical model de-
signed to generate an exact quantitative pre-
diction for each condition, each individual
weight of a planned comparison need not
bear any particular relation to its correspond-

ing sample mean. Rather, it is the pattern
of weights that should correspond to the pre-
dicted pattern of means. In most applications
of planned comparisons, the weights must
sum to zero, in which case the comparison
is conventionally referred to as a contrast.

The correlation (Pearson r2) between the
hypothesis weights and the sample means is
computed. This Pearson r2, like any Pearson
r2, is interpreted as the percent of variance
between conditions, that is, the percent of
SS (Between) that is accounted for by the
hypothesis.

Accordingly, the product of the Pearson r2

and SS (Between) is interpretable as a sum of
squares. This sum of squares is based on one
degree of freedom.

Within the context of NHST, two null hy-
potheses can be tested. The first, which I label
a uselessness null hypothesis, is that the cor-
relation between the hypothesis weights and
the condition population means is 0.0 (infor-
mally, that the hypothesis is useless as a de-
scriptor of reality). The second, which I label
a sufficiency null hypothesis, is that the corre-
lation between the hypothesis weights and the
condition population means is 1.0 (informally,
that the hypothesis is sufficient as a descriptor
of reality).

An Example of the Use of
Planned Comparisons

Suppose that an investigator is studying fac-
tors that influence attitude change. The gen-
eral paradigm is this. Subjects listen to a
speaker who describes the benefit of a some-
what controversial issue, specifically clear-
cutting in national forests. Following the
speech, the subjects rate the degree to which
they favor the speaker’s position on a scale
from 1 (“don’t agree at all”) to 7 (“agree
fully”). In an initial experiment, the effect of
speaker affiliation is investigated. In J = 5
conditions, subjects are provided either (a) no
information or information that the speaker
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Table 9.6 Data from a Hypothetical Experiment in
Which Attitude Change (rating) Is Measured as a
Function of the Perceived Affiliation of the Speaker

A. Means (Ms) and Construction
of Weights (Wjs)

Speaker Information M j W j (1) W j (2)

None 2.25 0 −1.20
Sierra Club 6.05 2 0.80
Audubon Society 5.50 2 0.80
Timber industry 3.70 1 −0.20
Paper industry 2.90 1 −0.20

B. ANOVA
Source df SS MS F %var = r2

Between 4 215.7

Hypothesis 1 194.6 194.6 19.86 0.902
Residual 3 21.1 7.0 0.72 0.098

Within 95 931.0 9.8

NOTE: Panel A provides original data plus two succes-
sively constructed sets of weights: The W (2)s are devia-
tion scores obtained from the W (1)s. Panel B shows the
ANOVA results for the contrast and for the residual.

is a member of (b) the Sierra Club, (c) the
Audubon Society, (d) the timber industry, or
(e) the paper industry. The conditions are sum-
marized in Table 9.6, Panel A.

Suppose that the investigator wishes to test
a hypothesis that is the conjunction of the
following two assumptions. First, knowing
something about the speaker leads to more
attitude change than does knowing nothing
at all. Second, attitude change is greater for
speakers whose affiliated organization is per-
ceived to oppose the expressed opinion (i.e.,
the Sierra Club and the Audubon Society are
perceived to oppose clear-cutting) than for
speakers whose affiliated organization is per-
ceived to support the expressed opinion (i.e.,
the timber and paper industries are perceived
to support clear-cutting).

To assess the viability of this hypothe-
sis, the sample means are plotted in Fig-
ure 9.9 along with the confidence intervals.
The pattern of observed sample means ap-
pears roughly to bear out the hypothesis: The
“None” condition produces the lowest mean
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Figure 9.9 Data from a hypothetical experiment
in which attitude change (rating) is measured as a
function of the perceived affiliation of the speaker.
NOTE: The error bars are 95% confidence intervals.

persuasion value; the values for the Sierra
Club and Audubon Society are highest; and
the timber and paper industry conditions are
intermediate.

To acquire a quantitative handle on this ap-
parent confirmation of the hypothesis, the in-
vestigator carries out a planned comparison.
The investigator’s first job is to create a set of
weights that reflects the hypothesis just de-
scribed. The first step is to create weights,
ignoring for the moment the constraint that
the weights must sum to zero. The simplest
such weights would assign zero to the “None”
condition, 2s to the Sierra Club and Audubon
Society conditions, and 1s to the timber in-
dustry and paper industry conditions. These
weights are provided in the column labeled
“W j (1)” in Table 9.6, Panel A. The next step
is to preserve the pattern produced by this set
of weights but to make the weights add to zero.
This is easily accomplished by computing the
mean of the W j (1)s, which is 1.2, and sub-
tracting that mean from the W j (1)s to generate
a set of deviation scores that, while preserv-
ing the pattern of the W j (1)s, are, of course,
guaranteed to add to zero. The resulting final
weights are provided in the column labeled
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“W j (2)”. (It is worth pointing out that this any-
numbers-then-make-deviation-scores trick is
quite useful for generating weights in any
situation.)

Percent of Between-Condition Variance
Accounted for by the Hypothesis. As
noted, a basic goal is to compute the Pearson
r2 between the sample means and the weights
corresponding to the hypothesis. Although
this could easily be done using the standard
Pearson r2 equation, it is more instructive,
within the context of planned comparisons,
to do the computation via a somewhat differ-
ent route. In particular, a sum of squares due
to the hypothesis may be computed using the
equation

SS (Hypothesis) = n
( ∑J

j=1 M j W j
)2

∑J
j=1 W 2

j

(18)

where n is the number of subjects in each con-
dition (n = 20 in this example). Applying
Equation (18) to the present data produces SS
(Hypothesis) = 194.6, shown in Panel B of
Table 9.6. The ratio of SS (Hypothesis) to SS
(Between) is 194.6/215.7 = 0.902, which is
the sought-after Pearson r2 between the W j s
and the M j s.

This sum of squares representing a single
pattern of variation across the five conditions
is based on one degree of freedom. By sub-
traction one can compute the portion of SS
(Between) that is not accounted for by the hy-
pothesis: 215.7 − 194.6 = 21.1, a value that
is referred to as SS (Residual). SS (Resid-
ual) represents all forms of variability other
than that engendered in the original hypothe-
sis, and it is based on 3 degrees of freedom = 4
[df (Between)] − 1[df (Hypothesis)].

Mean squares can be computed in the nor-
mal fashion based on sums of squares and de-
grees of freedoms due to the hypothesis and
the residual; these mean squares are in the
column labeled “MS” in Table 9.6, Panel B.

If one is inclined to work within the NHST
framework, then these mean squares are used
to test two null hypotheses.12

A Uselessness Null Hypothesis. The
Pearson r2 of 0.902 shown in the column la-
beled “%var = r2” in Panel B of Table 9.6 is
the r2 between the sample means (M j s) and
the weights (W j s). As in any situation involv-
ing unknown population parameters, it would
be of more interest to address the Pearson
r2 between the W j s and the population means
(i.e., the µ j s). Two null hypotheses are rele-
vant to this issue. The first is the null hypoth-
esis that the Pearson r2 between the W j s and
the µ j s is zero—that is, that the hypothesis is
useless as an account of SS (Between). If this
were true, then the MS (Hypothesis) as shown
in Table 9.6 is an estimate of MS (Within), and
a standard F test can be carried out wherein F
(dfH, dfW) = MS (Hypothesis)/MS (Within).
As indicated in Table 9.6, this F , which
is 19.86, is statistically significant, thereby
allowing rejection of this uselessness null
hypothesis.

A Sufficiency Null Hypothesis. The
second null hypothesis is that the Pearson r2

between the W j s and the µ j s is 1.0—that is,
that the hypothesis is sufficient to account for
SS (Between). Testing this null hypothesis en-
tails an F ratio of MS (Residual) against MS
(Within). In Table 9.6 it can be seen that the
resulting F(3, 95) is 0.72, which is, of course,
nonsignificant.

Reminder of Problems with NHST. It
is necessary to bear in mind that these uses of
NHST carry with them all of the problems
with NHST described earlier. In particular,

12Some terminology glitches arise here. I want to empha-
size that the term hypothesis, when used alone, refers to a
form of an alternative hypothesis. The term null hypothe-
sis refers to the two specific quantitative hypotheses that
will be described.
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an outcome such as the one portrayed in
Table 9.6—that the hypothesis is significant,
but the residual is not—should be accompa-
nied by a number of caveats, the most impor-
tant of which is that failure to reject the suffi-
ciency null hypothesis does not mean that the
sufficiency null hypothesis is correct. Indeed,
in the present example it should set off alarm
bells that only 90% of the between-condition
variance is accounted for by the hypothesis.
These are the same alarm bells that should
be set off by the relatively large confidence
intervals that are depicted in Figure 9.9.

Planned Comparisons of Linearity

Investigators frequently use planned compar-
isons to test a hypothesis of linearity. To illus-
trate, suppose that an investigator is studying
the effect of audience size on the degree of
stage fright suffered by a public speaker (e.g.,
Jackson & Latané, 1981). In a hypothetical
experiment, subjects give prepared speeches
to audiences whose sizes are, in different con-
ditions, 3, 6, 12, 20, or 29 people. Following,
the speech, a subject indicates the degree of
stage fright that he or she has experienced on
a scale ranging from 0 (“not frightened at all”)
to 7 (“terrified”). A between-subjects design
is used with n = 15 subjects participating
in each of the J = 5 audience-size condi-
tions. The data from this experiment, shown in
Figure 9.10, are provided in Table 9.7, which
is organized like Table 9.6.

Suppose the investigator wishes to test the
hypothesis that stage fright, as measured by
the rating, increases linearly with audience
size; thus, the best linear fit is provided in
Figure 9.10 along with the data points. It ap-
pears that a linearity hypothesis is roughly
confirmed.

The first task in carrying out the planned
comparison of linearity is to generate weights
that are linearly related to audience size. This
enterprise is complicated slightly because the
audience-size levels (3, 6, 12, 20, 29) are not
evenly spaced. The simplest way of coping

Table 9.7 Data from a Hypothetical Experiment in
Which Stage Fright (rating) Is Measured as a
Function of Audience Size

A. Means (Ms) and Construction
of Weights (Wjs)

Audience Size M j W j (1) W j (2) W j (3)

3 1.100 3 −11 −0.0244
6 0.833 6 −8 −0.0178

12 4.033 12 −2 −0.0044
20 4.167 20 6 0.0133
29 6.500 29 15 0.0333

B. ANOVA
Source df SS MS F %var = r2

Between 4 336.7

Hypothesis 1 305.1 305.1 64.0** 0.906

Residual 3 31.6 10.6 2.11 ns 0.094

Within 70 514.5 7.3

NOTE: Panel A provides original data plus three succes-
sively constructed sets of weights: The W (2)s are devia-
tion scores obtained from the W (1)s, and the W (3)s are
scaled W (2)s (scaling designed to render the contrast in
“natural units” as described in the text). Panel B shows
the ANOVA results for the contrast and for the residual.
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Figure 9.10 Data from a hypothetical experiment
in which stage fright (rating) is measured as a func-
tion of audience size.
NOTE: The error bars are standard errors.

with this complication is to use the trick de-
scribed earlier and to begin by selecting ap-
propriate weights—in this case, weights that
are linear with audience size—without con-
cern about whether they add to zero. A simple
and suitable candidate for such weights are the
audience sizes themselves, as indicated in the
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column labeled “W j (1)” in Table 9.7, Panel A.
As in the previous example, this pattern of
weights can be made to add to zero by trans-
forming the W j (1)s to deviation scores. The
resulting weights are provided in the column
labeled “W j (2)”. (The “W j [3]” column is de-
scribed in the next section). The remainder
of the process is exactly as it was in the pre-
vious example: The W j (2)s are plugged into
Equation (18) to find the SS (Hypothesis); SS
(Residual) is found by subtraction; the per-
centages of the SS (Between) accounted for
by the Hypothesis and Residual are computed;
and the uselessness and sufficiency null hy-
pothesis tests are carried out. These results
are shown in Panel B of Table 9.7.

A Contrast as a Dependent Variable:
Scaling the Wjs

The heart of Equation (18) is in the term that
constitutes the actual contrast:

Contrast = C =
J∑

j=1

M j W j . (19)

The larger C is, the “better” the hypothesis
may be assumed to be. Often it is useful to
view C as a dependent variable in the exper-
iment. This strategy is particularly advanta-
geous if the contrast has easily interpretable or
“natural” units. A very simple example of
such use occurs when the weights are all zero
except for a “1” and a “−1,” in which case the
contrast is interpretable as a difference score.

However, more sophisticated uses of con-
trasts as a natural dependent variable can be
engineered. Before providing an example of
how this might be done, it is critical to point
out the scalability property of the W j s. To un-
derstand this property, note that the denom-
inator of Equation (18) serves to eliminate
any effect of scaling the weights. Suppose
that an investigator has chosen some suitable
set of weights, W = (W1, W2, . . . , WJ ), and
that a SS (Hypothesis) were computed via
Equation (18). Now suppose that an alterna-

tive set, W ′ = kW = (kW1, kW2, . . . , kWJ ),
were used where k is some nonzero constant.
Applying Equation (18) to W ′ would yield
a factor of k2 in both the numerator and the
denominator compared to using the original
W . Therefore, the k2s would cancel, and the
same SS (Hypothesis) and r2 would emerge.
In short, once one has chosen a suitable set
of weights, any other scaled set is equally
suitable.

An investigator can use this fact to his or
her advantage to scale weights in such a way
that the contrast is expressed in some form of
natural units. An obvious example of this sort
of procedure is when a linear hypothesis is
under investigation, as in the stage-fright ex-
ample depicted in Figure 9.10 and Table 9.7.
In particular, a natural unit for the contrast
would be the slope of the function relating
the stage-fright rating to audience size. How
might the weights in Table 9.7 be scaled to
accomplish this?

The W j (2) weights from Table 9.7 are al-
ready scaled in units of audience size; they
are just shifted in order to constitute deviation
scores. Thus, the slope of the audience-size
function may be computed using the standard
regression equation

slope =
5

5∑
j=1

M j W j −
(

5∑
j=1

M j

)(
5∑

j=1
W j

)

5∑
j=1

W 2
j −

(
5∑

j=1
W j

)2

or, because the W j s must sum to zero,

slope =

5∑
j=1

M j W j

5∑
j=1

W 2
j

.

This in turn means that if the original weights
(i.e., the W j [2] weights from Table 9.7) are
scaled by a factor of 1/

∑
W 2

j = 1/450, then
a set of weights will emerge that will produce
as a contrast the slope of the function. It is
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these scaled weights that are labeled W j (3)
in Table 9.7. Applying Equation (19) to the
M j s and the W j (3)s from Table 9.7 yields
C = 0.213, which is the slope of the audience-
size function.

Confidence Intervals around Contrasts

One can also compute a confidence interval
around the observed value of C. Such com-
putation is straightforward. As is well known,
and as is indicated in Equation (7), any linear
combination of means, as in Equation (19),
has a variance of

σ 2
C = σ 2

M

(
W 2

1 + W 2
2 + · · · + W 2

J

)
where σ 2

M is the standard error of the mean (it
is necessary, of course, to assume homogene-
ity of variance here). Because σ 2

M is estimated
by [MS (Within)]/n, the standard error of C
may be computed as

SE = ±
√[

MSW

n

](
W 2

1 + W 2
2 + · · · + W 2

J

)
(20)

and any desired-size confidence interval may
be computed by multiplying Equation (20) by
the appropriate criterion t(dfW).

Recall that the contrast from the W j (3)s
in Table 9.7 was C = slope = 0.213. Ap-
plying Equation (18) to the MS (Within) and
the W j (3)s yields a 95% confidence interval
of 0.066. In short, one may summarize the
stage-fright data by stating that the slope of
the audience-size function is 0.213 with a 95%
confidence interval of 0.066.

Using Planned Comparisons
in Within-Subjects Designs

Planned comparisons can be used in within-
subjects designs much in the same way that
they can be used in between-subjects designs.

Example: Visual Search and “Popout.”
As an example, consider a visual search task
in which the subject’s task is to determine

whether some target stimulus is present in
some set of distractors. Suppose that two con-
ditions are constructed: a “search” condition
in which it is predicted that the subject will
have to search serially to make the decision
and a “popout” condition in which it is pre-
dicted that the subject will be able to process
all members of the stimulus array in parallel.
The size of the search set is also varied and
consists of 1, 2, 4, or 9 items. The design is
entirely within-subjects, and the 8 conditions
defined by 2 (search/popout) × 4 (set size) are
presented randomly to each of n = 9 subjects
over a long series of trials.

The data from this hypothetical experiment
(means plus confidence intervals) are shown
in Figure 9.11. It is clear that RT increases
with set size in the search condition, whereas
RT is relatively low and flat in the popout
condition. These means are reproduced nu-
merically in Table 9.8, Panel A. Panel B of
Table 9.8 shows a standard ANOVA table for
these data. F ratios have been computed for
the standard three factors—effects of set size,
search/popout, and the interaction. As one
would surmise from Figure 9.11, all three of
these effects are highly significant.
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Figure 9.11 Data from a hypothetical experi-
ment in which search time (reaction time) is mea-
sured as functions of set size and whether search is
required.
NOTE: The error bars are 95% confidence intervals.
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Testing the Hypothesis with Planned
Comparisons. Testing the prediction of the
hypothesis that RT should increase linearly
with set size in the search condition but should
be flat (and presumably low) in the popout
condition is of primary interest. I now de-
scribe two planned comparisons that are suit-
able for doing this. I should note that the over-
all ANOVA shown in Panel B of Table 9.8
was provided for expositional purposes only:
When the investigator carries out planned
comparisons, the overall ANOVA is generally
not necessary.

The first planned comparison is shown in
Table 9.8, Panel C. As with the previous ex-
amples, I use a two-part process to generate
the appropriate W jks. The W jk(1)s are con-
structed without regard to making the W jks
add to zero, whereas the W jk(2)s are the
W jk(1) deviation scores.

This procedure illustrates an important
point: When carrying out this kind of a
planned comparison using a two-factor de-
sign (whether it be within-subjects, as in
the present example, or between-subjects) the
row × column design structure becomes rel-
evant only as a mnemonic aid. From the per-
spective of the planned comparison, the exper-
iment is simply viewed as containing J × K
different conditions, and the W jks must add
to zero across all J × K conditions. There
are, for the moment, no other constraints on
the W jks.

The statistical results of this procedure are
shown at the bottom of Panel C, labeled “Con-
trast ANOVA.” The top source of variance is
from between conditions (i.e., the component
in Panel B labeled “Conditions”) and is based
on seven degrees of freedom. The SS (Hypoth-
esis), computed via Equation (18), is the next
variance component; and finally, as in previ-
ous examples, SS (Residual) is computed by
subtraction. Note from the rightmost column
that the SS (Hypothesis) accounts for only
94% of the between-conditions variance. Both

Table 9.8 Hypothetical Data

A. Original Data (in ms)
Number of Items in the Search Set

1 2 4 9

Search 509 544 662 882
Popout 400 422 449 472

B. Overall ANOVA
Source df SS MS F

Subjects (S) 7 219,325
Conditions (C) 7 1,432,963

Set Size (Z) 3 471,767 157,256 38.68
Search/Popout (P) 1 729,957 729,957 136.18
Z × P 3 231,239 77,080 13.80

S × Z 21 85,386 4,066
S × P 7 37,522 5,360
S × Z × P 21 117,336 5,587

S × C 49 240,244 4,903

TOTAL 63 1,892,532

C. Contrast from Total SS (Between Cells)
1 2 4 9

W jk(1)
1 1 1 1

−1.5 −0.5 1.5 6.5
W jk(2)

−1.5 −1.5 −1.5 −1.5

Contrast ANOVA
Source df SS MS F %var = r2

Conditions 7 1,432,963

Hypothesis 1 1,350,749 1,350,749 275.5 94.3
Residual 6 82,214 13,702 2.8 5.7

D. Contrast from Interaction SS Only
5 6 8 13

W jk(1)

11 10 8 3

−3 −2 0 5
W jk(2)

3 2 0 −5

Contrast ANOVA
Source df SS MS F %var = r2

Interaction 3 231,239

Hypothesis 1 229,907 229,907 46.89 99.4
Residual 2 1,333 666 0.14 0.6

NOTE: Panel A: Original search-time data. Panel B:
ANOVA results. Panels C and D: Contrasts described in
the text.
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the hypothesis and the residual are highly
significant.

The planned comparison just described
had a certain degree of arbitrariness about it.
Essentially, the main prediction under inves-
tigation was that there should be a particu-
lar type of interaction between set size and
search/popout; the main effects of the two
variables were of secondary importance. For
example, the large percentage of between-
condition variance not accounted for by the
hypothesis comes about because, as is evi-
dent in Figure 9.11, the search condition RT
is greater than the popout condition RT even
in the set size = 1 conditions; the arbitrary
choice in the contrast in Panel C was to as-
sume these two conditions to be equal.

Accordingly, it would be useful to carry
out a planned comparison that investigated the
role of the particular expected interaction. The
resulting contrast is constructed in Table 9.8,
Panel D. The goal here is to maintain the hy-
pothesized interaction pattern in the eventual
contrast, but to eliminate main effects. The
resulting contrast shown in Panel D accom-
plishes this; note that each row and column
of the final contrast (i.e., W jk[2]) sums to
zero, so only interaction variance is reflected.
The interaction variance remains specifically
that RT is positively linear with set size for
search and negatively linear with set size for
popout.13

The ANOVA relevant to this contrast is
shown at the bottom of Panel D. The top
source of variance is from the interaction (i.e.,
the component labeled “Z × P” in Panel B)
and is based on three degrees of freedom. The
interaction-only contrast accounts for over

13That the hypothesis includes “negatively linear for
popout” may elicit some confusion because the original
hypothesis predicted no set-size effect for popout. One
must remember, however, that this contrast applies to the
interaction variance only, which implies no main effect
for set size, and which in turn implies canceling set-size
effects for search and popout.

99% of this interaction variance, and the small
residual is not statistically significant.

Using a Contrast as a Dependent Vari-
able. It is instructive to illustrate once again
how a contrast may be translated into natu-
ral units via suitable scaling of the weights.
In the present example, a useful natural unit
for the contrast would be the difference be-
tween the search slope and the popout slope.
To do this, I work from the weights in Panel B
of Table 9.8, where only the interaction vari-
ance is at issue. Again, the W jk(2) weights
are already scaled to set size. Using much the
same logic entailed in scaling the weights in
the stage-fright example, and noting the con-
straints on the W jk(2) weight pattern, it can
be shown that the appropriate scaling factor
is 2/

∑
W 2

jk , where the sum is over all eight
conditions. The resulting weights, W jk(3),
are shown in Table 9.9, Panel B. (Note that
Panel A, along with part of Panel B, presents
relevant information from Table 9.8 again.)
Panel C of Table 9.9 shows the contrasts (Cks)
that result for each subject, k. Thus, the con-
trast value for each subject, which has been
designed to be the difference between the two
slopes for that subject, can be treated as a stan-
dard dependent variable. The mean and 95%
confidence interval shown at the bottom of
Panel C of Table 9.9 are computed directly
from the Cks.

Multiple Planned Comparisons

Multiple planned comparisons may be carried
out on the same data set by generating multi-
ple sets of weights, presumably from multiple
hypotheses, and iterating through the steps de-
scribed at the beginning of this section. Any
two contrasts (along with the hypotheses that
generated them) are independent of one an-
other if and only if the Pearson r2 between
the two sets of weights is equal to zero. In
practice, because any set of weights sums to
zero, the Pearson r2 between the two sets of
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Table 9.9 Additional Information for the Visual-
Search Data

A. Original Data (in ms)
Number of Items in the Search Set

1 2 4 9

Search 509 544 662 882
Popout 400 422 449 472

B. Contrast from Interaction SS Only
5 6 8 13

W jk(1)
11 10 8 3

−3 −2 0 5
W jk(2)

3 2 0 −5

−0.070 −0.053 0.000 0.132
W jk(3)

0.079 0.053 0.000 −0.132

C. Contrast Values for Individual Subjects
Subject (k) Ck

1 5.4
2 49.9
3 29.2
4 44.4
5 57.6
6 40.5
7 23.4
8 60.7

Mean Confidence Interval
38.89 15.61

NOTE: Panels A and B show the original data along with
W jk (1) and W jk (2) from Table 9.7. The W jk (3)s are
scaled W jk (2)s (scaling designed to render the contrast
in “natural units,” as described in the text). Panel C: Val-
ues of the contrast for 8 subjects along with the mean and
95% confidence interval of the 8 contrast values.

weights is equal to zero if and only if the sum
of the cross products of the two sets of weights
is equal to zero.

Percent Total Variance Accounted For (ω2)

In correlational studies the primary dependent
variable is a Pearson r2. Every psychologist
realizes that a Pearson r2 represents the per-
cent of variance in some predicted variable, Y ,
accounted for by variation in some predictor
variable, X .

Given the overwhelming prevalence of
measures of percent accounted for, such as

Pearson r2 in correlational research, it is puz-
zling that there is little use of the equiva-
lent measures in experimental research. These
measures, termed ω2, are generally applicable
to any ANOVA-type design and are, essen-
tially, the percentage of total variance in the
experiment accounted for by variation in the
independent variable. Computation of ω2 is
particularly useful in practical situations in
which the emphasis is on the effect’s real-
world significance (as opposed to its statis-
tical significance). Hays (1973, pp. 417–424,
484–491, & 512–514) provides formal anal-
yses of ω2 for several experimental designs. I
briefly illustrate its use in a between-subjects,
one-way ANOVA situation.

Vitamin C and Colds

Suppose that an investigator is interested in
determining whether variations in dosages of
vitamin C affect the amount of time a person is
afflicted with colds. In a hypothetical experi-
ment, subjects in three different double-blind
conditions are provided 2 g, 3 g, or 4 g, re-
spectively, of vitamin C per day for five years,
and the number of days on which each sub-
ject considers him- or herself to have a cold
is recorded. A very large sample size is used:
n = 10,000 subjects per condition. The data
are provided in Panel A of Table 9.10 and in
Figure 9.12, both of which make it clear that
there is a highly significant, decreasing effect
of vitamin C on number of days with colds.

A closer inspection of the data, however,
raises serious doubts about vitamin C’s ef-
ficacy: The absolute decrease in cold days
is miniscule, falling from about 9.8 days to
about 9.6 days as vitamin C dosage is doubled
from 2 to 4 g. The reason that such a small ef-
fect is so highly significant is, of course, that
the n = 10,000 subjects per condition confers
an enormous amount of statistical power, and
therefore even a tiny effect of the independent
variable will be detected.
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Table 9.10 Data from a Hypothetical Experiment
in Which the Effect of Dosages of Vitamin C on Cold
Durations is Examined

A. Original Data (n = 10,000/Condition)
Amount of Mean Days
Vitamin C with Colds
(g)

2 9.79
3 9.72
4 9.56

B. ANOVA
Source df SS MS F Crit F

Between 2 290 145 16.12 3.00
Within 29,997 89,991 9

Total 29,999 90,281

NOTE: Panel A: Original data (10,000 subjects). Panel B:
ANOVA results.
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Figure 9.12 Data from a hypothetical experi-
ment in which the effect of dosages of vitamin C
on cold durations is examined.
NOTE: Note the limited range of the ordinate. The
error bars are 95% confidence intervals.

How Much Vitamin C Should One Take?

There are 30,000 data points in this experi-
ment. As indicated in Panel B of Table 9.10,
the total variance is SS (Total) = 90,281,
of which only SS (Between) = 290 is from
between conditions. Thus, essentially only
290/90,281 or about 0.32% of the total vari-
ance is attributable to variation in vitamin C.

More precisely, because part of SS (Be-
tween) is attributable to random error, the
appropriate computation is somewhat more
complex. The reader is referred to the Hays
(1973) references provided earlier for the for-
mal logic. The end result is that to estimate the
percent of total variance attributable to varia-
tion in the independent variable, one uses the
equation.

est ω2 = SS(Between) − (J − 1) × MS(Within)

SS(Between) + SS(Within) + MS(Within)

which in the present example is 0.30%. The
inescapable implication is that vitamin C ac-
counts for only a tiny percentage of total vari-
ability in days of having colds. The practical
conclusion is that if one wishes to cut down
on colds, there are probably many other more
important variables to which one should pay
attention than the amount of vitamin C one
takes.

This ω2 computation places the large sta-
tistical significance found in this experiment
in a somewhat harsher light, and it serves to
underscore the important difference between
determining that an effect exists on the one
hand (i.e., the high statistical significance im-
plied by F > 16) and evaluating the effect’s
importance on the other hand (i.e., the minute
practical significance implied by ω2 < 1%).

A Caveat

In the example I have just provided, the con-
sumer of the research is presumably most
interested in very practical considerations:
Specifically, in deciding whether to go through
the hassle and expense of taking large doses of
vitamin C, it is useful to understand the mag-
nitude of the expected reward in terms of cold
relief. However, one might be interested in a
separate question altogether, namely, inves-
tigating the relation between vitamin C and
colds strictly from the perspective of address-
ing some biological question. In such an in-
stance, the relation between vitamin C and
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cold reduction, no matter how small, could
potentially be of intense interest.

Model Fitting

Myung and Pitt (Chap. 11, this volume) de-
scribe the use of mathematical models in some
detail. It is not my intent to reiterate what
they have already said. Rather, in the spirit of
the content of the present chapter, I provide
suggestions for understanding and presenting
some data/model combinations.

Finding and Presenting Optimal
Parameter Values

A simple and familiar example of fitting a
mathematical model is in the context of lin-
ear regression, in which some variable Y is
assumed to be linearly related to some other
variable X . Typically, some number of XY
pairs constitute the data. Here, two parame-
ters must be estimated: the slope and the inter-
cept of the assumed linear function relating Y
to X . The standard equations for determining
the best-fitting slope and intercept are based
on the proposition that “best” means the slope
and intercept values that produce the smallest
total squared error between the observed and
predicted Y values.

Like regression models, typical mathe-
matical models have parameters. The main
difference between fitting a simple regres-
sion model and a typical mathematical model
is that the former has an analytical solu-
tion,14 whereas the latter usually do not. Even
a model that is closely related to a linear
model—an exponential growth to an asymp-
tote model, expressed by the equation

Y = A(1 − ecX )

14This mean that equations for the best-fitting param-
eter values can be generated; for example, for a linear-
regression model, slope = (n
XY −
X
X)/ [n
X2−
(
X)2].

with two parameters c, the exponential decay
rate, and A, the asymptote—does not have an
analytical solution. To find the best-fitting pa-
rameter values, some sort of search procedure
is needed whereby candidate parameter sets
are systematically evaluated and the approxi-
mate best-fitting set is determined.

When carrying out such a search, it is nec-
essary to decide what is meant by “best.” Typ-
ically, one of three criteria is used to find the
parameter set that (a) minimizes total squared
error between observed and predicted data
points, (b) minimizes the χ2 between the ob-
served and predicted frequencies, or (c) max-
imizes the probability of the data values given
a particular parameter set (i.e., maximum like-
lihood techniques).

Fit Quality Expressed in Intuitive Units.
My concern here is not with which technique
is used—discussions of this issue may be
found in many mathematical methods texts
(e.g., Atkinson, Bower, & Crothers, 1965,
Chapter 9)—but with how the results of the
search are presented. In particular, I recom-
mend that however the best-fitting parameter
set is found, the quality of the fit should be
presented as root-mean-square-error (RMSE),
which is obtained by

RMSE =
√ ∑

j (M j − Pj )2

degrees of freedom

where the sum is over j experimental condi-
tions, M j and Pj are observed and predicted
results in condition j , and degrees of freedom
is degrees of freedom, which is approximately
and most easily computed as the number of
fitted data points minus the number of esti-
mated parameters. The reason for this recom-
mendation is that RMSE, being in units of the
original dependent variable, is most straight-
forward and allows a reader to grasp and eval-
uate intuitively.
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Parameters Expressed in Intuitive Units.
In the same spirit, the results of applying a
mathematical model are best understood if the
parameters themselves are expressed in natu-
ral and well-defined units. Parameter units—
such as probability correct raised to the 1.6
power, for instance—are not intuitively ap-
pealing, whereas parameter units such as time
(e.g., ms) are much more intuitively appeal-
ing. When parameters are defined in natural
units, results of experiments can be conveyed
in terms of the effects of independent vari-
ables on parameter values, which is consider-
ably simpler than trying to describe the data
in terms of, say, a set of complex interac-
tions. A simple example of such a model is
Sternberg’s (e.g., 1967) short-term scanning
model, in which two parameters—the scan-
ning time per item and a “time for everything
else” parameter—are both defined in units of
time (ms). Given the validity of the model, the
results of any given experimental Sternberg-
task condition can be described by one num-
ber: the slope of the search function, which is
an estimate of the scanning time per item. Dif-
ferent conditions (e.g., degraded versus unde-
graded target-item conditions) can then be de-
scribed simply in terms of the degree to which
scanning time differs over the different con-
ditions.

Model Fitting and Hypothesis Testing.
Thus far, I have treated model fitting and hy-
pothesis testing as separate enterprises. At
their core, however, they are the same thing.
In both instances, a model is proposed, and
the data are treated in such a way as to eval-
uate the plausibility of the data given that the
model is correct.

The difference between model fitting and
hypothesis testing is one of tradition, not of
substance. In a hypothesis-testing procedure,
the null hypothesis is almost invariably that
population means in some set are all equal
to one another. However, such a character-

ization of the null hypothesis is not neces-
sary; as suggested in the earlier section on
planned comparisons, any single-degree-of-
freedom hypothesis is a valid null hypothesis.
Thus, the best-fitting set of parameter values
issuing from the fit of a mathematical model
to a data set can be characterized as a null hy-
pothesis and can be tested with the standard
hypothesis-testing machinery. Note that two
other departures from tradition are involved
in this process. First, the investigator’s goal
is typically to accept the null hypothesis (i.e.,
to confirm the model) rather than to reject the
null hypothesis; second, reliance on the lin-
ear model is deemphasized considerably (the
mathematical model being tested could be lin-
ear, but it often is not).

Display of Data Fits

My final comments about mathematical mod-
els revolve around displays of data fits. As
just indicated, many experimental results can
most parsimoniously be expressed as effects
of independent variables on parameter values.
This technique works best when the model un-
der consideration is well-tested and accepted
as an accurate description of the experimental
paradigm under investigation. With this kind
of mature model, the validity of the model is
not under consideration; rather the model is
being used as a tool to investigate something
else (e.g., in the example from Sternberg,
1967, to investigate the effect of stimulus
degradation on search slope, where “slope”
is preaccepted as a meaningful entity within
the context of the Sternberg, 1967, model).

With less developed models, however, a
central issue is often whether (or the degree
to which) the model is adequately fit by the
data to begin with. In this case, the main re-
sult to be presented is the model fit itself. As
noted, the most straightforward way of doing
this is with a single number, the RMSE. How-
ever, a graphical display of the model fit is
also critical in order that systematic failures



pashler-44093 book December 18, 2001 10:24

Suggested Data-Analysis Techniques 379

of the model can be highlighted. How this is
done depends on the relation between what
the model predicts and the dependent variable
measured in the experiment.

Quantitative Predictions. When the
model is sufficiently precise that it predicts a
specific value of the dependent variable for
each experimental condition, the fit can be
presented as a standard graph of the observed
data plus predicted data. As an example, con-
sider data from my laboratory generated by an
experiment in which four-digit strings were
presented at varying durations for immediate
recall. The strings were either spatially filtered
in order to leave only low spatial frequencies,
or only high spatial frequencies, or were pre-
sented normally (i.e., including all spatial fre-
quencies). A mathematical model described
by Olds and Engel (1998), which predicted
an exact value of the dependent variable (pro-
portion recalled) for each condition, was fit
to the data. The data and model fit are shown
in Figure 9.13. I wish to emphasize several
aspects of the data presentation.

First, the data are presented as symbols
only (diamonds and triangles), whereas the
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Figure 9.13 Unpublished data from Harley and Loftus showing digit recall performance as a function
of stimulus duration and the nature of spatial filtering.
NOTE: Smooth lines through the data points represent theoretical predictions based on the best-fitting
parameter values. The error bars are standard errors.

model fits are presented as lines without
symbols.

Second, the model predictions are “com-
plete.” By this I mean that the theoretical lines
include predicted fits not just for the discrete
durations selected for the experiment, but con-
tinuously over the selected range. This means
that the predicted curves are smooth, and
the predictions of the theory are clearer than
they would be if only the predictions corre-
sponding to the experimental durations were
shown.

Finally, at the risk of sounding overly com-
pulsive, it is mnemonically wise, as well
as aesthetically elegant, to select, if possi-
ble, data symbols that are somehow natu-
rally associated with the conditions. In the
case of Figure 9.13, for example, downward-
pointing triangles represent low spatial fre-
quencies; upward-pointing triangles repre-
sent high spatial frequencies; and diamonds
(i.e., the superimposition of downward- and
upward-pointing triangles) represent all spa-
tial frequencies.

Monotonic Predictions. Sometimes a
mathematical model predicts a quantity that
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may be assumed to be only monotonically
related to the dependent variable measured
in the experiment. For example, Loftus and
Irwin (1998) developed a theory of missing-
dot, temporal-integration performance (e.g.,
Di Lollo, 1980). In this paradigm, 24 dots
are briefly presented to a subject as a 5 × 5
dot array with one dot missing. The subject’s
task is to identify the position of the miss-
ing dot, and missing-dot detection probability
is the dependent variable. The dots are pre-
sented in two temporal halves: During half 1,
a random 12 of the 24 dots are presented, and
the remaining 12 dots are presented during
half 2. This means that in order to perform the
missing-dot detection task, the subject must
integrate the spatial information correspond-
ing to the two dot-array halves over time. For
purposes of the present discussion, the dura-
tion of half 2 was short (20 ms), and the du-
ration of half 1 varied from 20 to 100 ms in
20-ms steps; the duration of the interstimulus
interval (ISI) separating the end of half 1 from
the start of half 2 varied from 20 ms to 60 ms
in 20-ms steps.

Central to Loftus and Irwin’s theory was
the proposition that a visual stimulus triggers
an internal sensory-response function that
rises over time beginning at stimulus onset and
falls, eventually back to zero, following stim-
ulus offset (see also Busey & Loftus, 1994;
Loftus & McLean, 1999). In the missing-dot
paradigm, each stimulus half produces one
such sensory-response function, and perfor-
mance is determined by (i.e., is a monotonic
function of) the correlation over time between
the two sensory-response functions (as sug-
gested by Dixon & Di Lollo, 1994). The the-
ory can specify the magnitude of this correla-
tion for any stimulus condition, but it does not
specify the nature of the monotonic function
that relates missing-dot detection probability
to correlation magnitude.

In this kind of situation, it is not possible to
fit the theory using the techniques listed earlier

because they require the theory to predict the
actual dependent variable, not just something
presumed to be monotonically related to the
dependent variable. A straightforward alter-
native is to use as a fit criterion the rank-order
correlation (Spearman ρ) over conditions be-
tween the data and the theory. The fit may then
be represented as the data-theory scatter plot,
which would be monotonic if the data fit the
theory perfectly.

Figure 9.14 provides an example using
the paradigm and theory that I have just de-
scribed. The predicted data points are gener-
ated by the parameter values corresponding
to the highest data × theory that Spearman
ρ (ρ = 0.987) found by the search procedure.
The scatter plot shows data (mean proportion
of correctly detected missing-dot positions)
plotted against theory (predicted correlation)
across the 25 half-1 duration × ISI condi-
tions. Within the scatter plot, different half-
1 durations are represented by different curve
symbols, whereas within each half-1 duration,
increasing predicted and observed values cor-
respond to decreasing ISIs.

Presenting the fit as a scatter plot con-
fers at least two benefits. First, the shape of
the scatter plot (which is ogival in this ex-
ample) constitutes an empirical estimate of
the actual monotonic function relating the de-
pendent variable to the theoretical construct,
thereby providing clues about the mechanism
that relates the dependent variable to the the-
oretical construct. Second, the scatter plot un-
derscores systematic discrepancies in the data
fit. In this example, it appears that perfor-
mance in the long half-1 duration conditions
(e.g., the 100-ms half-1 duration conditions,
represented by the open squares) are observed
to be systematically higher than they are pre-
dicted to be compared to short half-1 duration
conditions (e.g., the 20-ms half-1 duration
conditions represented by the solid circles),
thereby pinpointing a specific deficit in the
theory.
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integration experiment.
NOTE: The different curve symbols correspond to different values of half-1 duration. The 5 data points
within each half-1 duration correspond to different ISI values (data from Loftus & Irwin, 1998). The
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Equivalence Techniques for Investigating
Interactions

In the large majority of psychological experi-
ments, an investigator sets the levels of some
independent variable and measures the result-
ing values of the dependent variable. Of inter-
est, then, is how changes in the independent
variable lead to changes in the dependent vari-
able. Moreover, a sizeable number of experi-
ments are primarily concerned not with main
effects, but with how one or more indepen-
dent variables interact in their effects on the
dependent variable.

As numerous writers have pointed out
(e.g., Bogartz, 1976; Loftus, 1978), many con-
clusions resting on interactions have strong
limitations, the most severe of which is that
nonordinal (i.e., noncrossover) interactions
lack generality both with respect to other per-
formance measures that are nonlinearly re-
lated to one that is actually measured (e.g.,
an interaction in a memory experiment ob-
served in terms of probability correct can-
not necessarily be generalized to d ′) and

also with respect to underlying theoretical
constructs that are nonlinearly related to the
performance measure (e.g., an interaction ob-
served in terms of probability correct cannot
necessarily be generalized to some generi-
cally defined “memory strength”).

To circumvent these difficulties, one can
turn to equivalence techniques, which are a
set of theoretical/methodological procedures
for determining the rules under which dif-
ferent combinations of independent variables
lead to equivalent states of some inferred in-
ternal psychological state. Equivalence tech-
niques have roots in classical statistics (e.g.,
Hays, 1973) and in conjoint measurement
(e.g., Krantz, Luce, Suppes, & Tversky, 1971;
Krantz & Tversky, 1971; Tversky & Russo,
1969).

Equivalence techniques are common in
vision science. Perhaps the best illustration
of how such techniques are used to under-
stand the workings of the visual system is the
classic color-matching experiment, wherein
an observer adjusts some additive combina-
tion of primary colors such that it matches a
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monochromatic test color (e.g., Wright, 1929,
1946). The resulting two stimuli—the com-
bination of primaries and the monochrome
stimulus—constitute color metamers, which,
though entirely different physically, are equiv-
alent psychologically in a fundamental way:
They entail equal quantum catches in the three
classes of cone photoreceptors. The origi-
nal success of the color-matching experiment
constituted the empirical foundation of the
trichromacy theory of color vision, and ver-
sions of the color-matching experiment have
been used more recently to refine and modify
the theory (e.g., Wandell, 1982).

As is discussed in the next two subsections,
equivalence techniques can be used in two
ways virtually any area of psychology. First,
relatively weak hypotheses about effects of
certain variables can be studied using state-
trace analysis. Second, stronger hypotheses
make specific, unique, and testable predic-
tions about the specific quantitative rules by
which multiple independent variables com-
bine to produce equivalent values of the de-
pendent variable.

State-Trace Analysis

State-trace analysis was introduced by
Bamber (1979) as a means of investigating
relations among independent variables, de-
pendent variables, and hypothesized internal
dimensions. In particular, state-trace analysis
can be used to answer two related questions.
First, is the assumption of a single internal di-
mension sufficient to account for observed re-
lations among multiple independent variables
and multiple dependent variables? Second, if
more than one dimension is necessary, what
are the characteristics of the multiple dimen-
sions; that is, how are they affected by the
independent variables, and how do they influ-
ence the dependent variables?15

15Examples of state-trace analysis are rare in most of psy-
chology. In addition to examples provided by Bamber

To illustrate the use of state-trace analy-
sis, consider a face-recognition investigation
described by Busey, Tunnicliff, Loftus, and
Loftus (2000). The experimental paradigm
entailed an initial study phase in which a series
of face pictures was sequentially presented,
followed by a yes-no recognition test phase
in which two dependent variables—accuracy
(hit probability) and confidence (on a four-
point scale)—were measured. Of principal in-
terest was whether accuracy and confidence
were simply two measures of the same in-
ternal state that, for mnemonic convenience,
might be termed “strength.” The experiment
entailed two independent variables that were
manipulated during the study phase. First, ex-
posure duration was varied, and second, each
studied face was followed by a 15-s period
during which visual rehearsal of the just-seen
face was either required or prohibited. The
main results were, not surprisingly, that both
accuracy and confidence increased with in-
creasing exposure duration and with rehearsal
compared to no rehearsal. That is, qualita-
tively, both accuracy and confidence were
affected in the same way by the two inde-
pendent variables, thereby suggesting, in the
tradition of dissociation techniques, that they
were simply two measures of the same inter-
nal state.

However, the use of state-trace analysis
allowed a much more precise answer to the
question. More specifically, the proposition
that any two dependent variables—accuracy
and confidence in this instance—are measures
of the same internal state can be couched in
the form of a hypothesis called the single-

(1979) and Busey et al. (2000), see Loftus and Irwin
(1998), who used such analyses to address the ques-
tion, “Are visible persistence and iconic memory just
two names for the same internal process?” Palmer (e.g.,
1986a, l986b) has used related (and formally identical)
equivalence techniques to examine numerous issues in
attention and perception.
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dimension model: There exists a single
internal dimension (call it “strength”) whose
value is jointly determined by duration and
rehearsal, and that, in turn, determines the
values of both confidence and accuracy. The
form of this model is shown at the top of
Figure 9.15. Pitted against this single-
dimensional model is some form of multidi-
mensional model, according to which the two
dependent variables are determined at least
in part by different internal dimensions. Al-
though a single-dimensional model (akin to a
standard null hypothesis) is unique, there are
an infinite number of possible multidimen-
sional models (as there are an infinite num-
ber of alternative hypotheses). One reasonable
multidimensional model is shown at the bot-
tom of Figure 9.15. Here, a second dimension,
termed “certainty,” is affected by rehearsal but
not by duration, and it affects confidence but
not accuracy.

The key prediction of the single-
dimensional hypothesis rests on the logic
that any two conditions—a long-duration, no-
rehearsal condition, and a shorter-duration,
rehearsal condition—that produce equal ac-
curacy must have done so because they pro-
duced the same strength values. Thus—and

Strength: S � f (D, R)

Single-Dimensional Model

D � Duration

R � Rehearsal

Recognition Accuracy:
A � mA (S)

Confidence:
C � mC (S)

Strength: S � f(D, R)

Certainty: T � g(R)

One Possible Multidimensional Model

D � Duration

R � Rehearsal

Recognition Accuracy:
A � mA (S)

Confidence:
C � mC (S, T )

Figure 9.15 Two models on the relations between two independent variables and two dependent vari-
ables in a face-recognition experiment (reported by Busey et al., 2000).
NOTE: The shaded round rectangles on the left represent independent variables, whereas the shaded
round rectangles on the right represent dependent variables. The unshaded round rectangles in the middle
represent unidimensional theoretical constructs.

here is the key prediction—because confi-
dence is also determined by strength, these
same two conditions must also produce equal
confidence values.

To evaluate this prediction, one constructs
state-trace plots, which are scatter plots of one
dependent variable plotted against the other
(accuracy plotted as a function of confidence,
in this instance) over the experimental condi-
tions defined by the combination of the two in-
dependent variables—in this case, conditions
defined by the duration × rehearsal combina-
tions. The prediction then translates to the fol-
lowing: The curve traced out by the rehearsal
conditions must overlie the curve traced out
by the no-rehearsal conditions.

It should be noted, incidentally, that the
success of state-trace analysis does not re-
quire that one be lucky enough to find pairs of
duration × rehearsal conditions that happen
to produce identical performance. The for-
mal rationale for this assertion is described in
Bamber (1979).

Essentially, one assumes that the measured
points are samples from an underlying contin-
uous function whose form can be estimated
by “connecting the dots” in the state-trace
plot.
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Figure 9.16 Theoretical predictions from the models shown in Figure 9.15.
NOTE: The left and middle panels show “standard” data presentation: the dependent variable plotted as
functions of the independent variables. The right panels show state-trace plots that are scatter plots of
one dependent variable plotted against the other. With the state-trace plots, the distinct predictions of the
two models are considerably more apparent than they are in the standard plots.

Figure 9.16 shows predictions from the
single-dimensional model (top panels) and
from the multi-dimensional model (bottom
panels) of Figure 9.15. In each panel, circles
correspond to the rehearsal conditions while
triangles correspond to the no-rehearsal con-
ditions. The five instances of each curve sym-
bol correspond to five exposure durations. For
each of the two models, the two left-hand pan-
els (“Accuracy” and “Confidence”) present
the data in the manner in which such data
are normally presented: The dependent vari-
able is plotted as a function of the independent
variables (duration along the abscissa and re-
hearsal as the curve parameter in this exam-
ple). Based on these standard data, there is
nothing very obvious that distinguishes the
predictions of the two models.

However, the state-trace plots shown as the
rightmost panels (“C-A Scatterplot”) distin-
guish strongly between the two models. As
described above, the single-dimensional
model predicts that the two scatterplots corre-

sponding to the two rehearsal levels fall atop
one another. However, the multi-dimensional
model predicts that the two scatterplots are
distinguishable in some manner that depends
on the exact construction of the multi-
dimensional model. In the multi-dimensional
model of Figure 9.15, a second internal di-
mension, “certainty” is increased by rehearsal
but not duration, and increased certainty in-
creases confidence but not accuracy. There-
fore, according to this particular multi-
dimensional model, two conditions that
produce the same accuracy values must have
done so because they produced the same
strength value. However, comparing two con-
ditions that produce the same strength values,
the rehearsal condition will produce greater
confidence than the no-rehearsal condition,
because certainty is greater in the rehearsal
condition than in the no-rehearsal condition.
Therefore, as is evident in the prediction (Fig-
ure 9.16, bottom-right panel) this particular
multidimensional model predicts the rehearsal
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curve to be displaced to the right of the no-
rehearsal curve.

In sum, state-trace analysis has two virtues.
First, it allows one to test any form of single-
dimensional model, which is generally a
strong test of the common question in psy-
chology: “Are two dependent variables, Y and
Y ′ simply two measures of the same inter-
nal state?” Second, given that one rejects a
single-dimensional model, the resulting form
of the state-trace plots provides strong clues
as to the nature of the implied multidimen-
sional model. To briefly illustrate, Busey et al.
(1990) actually investigated two kinds of con-
fidence: prospective confidence, given at the
time of study, and retrospective confidence,
given at the time of test. They determined that
a single-dimensional model was appropriate
to describe retrospective confidence, but a
multidimensional model of the sort depicted
at the bottom of Figure 9.15 was necessary to
describe prospective confidence.

Additive and Multiplicative Effects

As just described, state-trace analysis deals
with the qualitative question: Do multiple in-
dependent variables affect the same internal
memory dimension which then determines
performance in the relevant memory tasks?
An investigator can also use equivalence tech-
niques to unveil stronger quantitative rules
by which independent variables combine to
produce a value on the internal dimension.
To illustrate such rules, I will use two ex-
amples in which memory is measured as a
function of the exposure duration of the to-be-
remembered stimulus (as in the Busey et al.,
2000 experiment described in the last sec-
tion). In this kind of experimental paradigm,
define a performance curve as a curve that
relates memory performance to exposure du-
ration (as, for example, in Figure 9.16, four
left panels.) Define a focal variable as some
variable under consideration that is factori-
ally combined with exposure duration (e.g.,

rehearsal in the Busey et al. experiment). The
equation relating performance curves for two
levels of the focal variable is:

p[i, d] = p[ j, f (d)] (21)

where p[i, d] and p[ j, f (d)] denote perfor-
mance for levels i and j of the focal variable,
d and f (d) are durations, and f is a mono-
tonic function. Again in the spirit of equiva-
lence, it is important to realize that Equation
(21) describes duration relations that produce
equal performance for different focal-variable
levels.

Of theoretical interest in a given situation
is the nature of the function f (d) on the right
side of Equation (21). Different f (d)s are im-
plied by different hypotheses about the fo-
cal variable’s effect. I illustrate this with two
common hypotheses. The first is that the fo-
cal variable’s effect is additive—that is, that
f (d) = d + k—which means that

p(i, d) = p( j, d + k) (22)

Here, k is a constant in units of time. The in-
terpretation of an additive effect is that being
in level i of the focal variable is equivalent
to having an additional k ms of stimulus dura-
tion compared to being in level j . As shown in
Panel A of Figure 9.17, stimulus masked/not
masked exemplifies an additive focal vari-
able with k = 100 ms—which is the basis
for the claim made by Loftus, Johnson, and
Shimamura (1985) that an icon is worth
100 ms.

The second hypothesis is that the focal
variable’s effect is multiplicative—that
f (d) = cd , which means that

p(i, d) = p( j, cd) (23)

Here, c is a dimensionless constant. The in-
terpretation of a multiplicative effect is that
being in level j of the focal variable slows
down processing by a factor of c, compared
to being in level i . As shown in Panel B of
Figure 9.17, stimulus luminance exemplifies
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Figure 9.17 Additive and Multiplicative Predictions
NOTE: Panel A: Performance as a function of stimulus duration and stimulus masked/not masked. The
horizontally parallel curves (after Loftus et al., 1992) reflect an additive effect of masking: The iconic
image eliminated by the mask is worth 100 ms of additional physical exposure duration. Panel B:
Stimulus contrast (high, low) replaces stimulus masked/not masked. Here a multiplicative result occurs:
The exposure duration required to achieve a constant performance level is greater (by a factor of 2) for the
low-contrast compared to the high-contrast condition (after Loftus, 1985c). Panel C: The multiplicative
relation from Panel B plotted on a log-duration axis produces easy-to-test horizontally parallel curves
rather than the difficult-to-test, constant-ratio diverging curves of Panel B.

a multiplicative focal variable with c = 2 (see
Loftus, 1985c; Sperling, 1986; as shown by
Loftus & Ruthruff, 1994, the same is true
when contrast is the focal variable).

Figure 9.17 illustrates three important
facets of using equivalence techniques. First,
testing various hypotheses (e.g., that the
effect of some focal variable is additive or
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multiplicative) involves horizontally compar-
ing performance curves because, as indicated
in Equations (16) through (18), the critical
comparisons are of the durations d and f (d)

required to achieve equal performance for dif-
ferent focal-variable levels, i and j . Second,
an additive hypothesis predicts that perfor-
mance curves will be horizontally parallel as
in Panel A of Figure 9.17, whereas a multi-
plicative hypothesis predicts that performance
curves will be constant-ratio diverging as in
Panel B of Figure 9.17. Third, Panel C of
Figure 9.17 demonstrates that a multiplicative
hypothesis can be conveniently tested by plot-
ting performance on a log-duration scale in-
stead of on a linear-duration scale. When d is
on a log scale, Equation (23) becomes

p[i, ln(d)] = p[ j, ln(c) + ln(d)]

and performance curves are again horizon-
tally parallel, separated by a constant of ln(c),
which then, of course, can be exponentiated
to recover c.

As I asserted earlier, equivalence tech-
niques represent scale-independent means of
identifying the fundamental nature of inter-
actions among variables. Equivalence tech-
niques allow conclusions that are more gener-
alizable and robust than are conclusions based
on most traditional statistical interactions.
Because performance curves are compared
horizontally, any conclusion issuing from the
comparison (e.g., that the curves are or are
not horizontally parallel on a linear or on a
log-duration scale) is invariant over all mono-
tonic transforms of the performance mea-
sure because any points that are equal in one
scale must also be equal in any monotoni-
cally related scale. Therefore, conclusions is-
suing from equivalence techniques apply not
only to the particular dependent variable being
measured (e.g., proportion correct) but also
to any theoretical construct that is assumed
to be monotonically related to the dependent
variable (e.g., “memory strength”). Such con-

clusions also apply, mutatis mutandis, to any
dependent variable that is monotonically re-
lated to the dependent variable being mea-
sured (e.g., to d ′ if the measured variable is
proportion correct).

CONCLUSIONS

It is worth concluding by briefly reiterating
the sentiments expressed at the outset of this
chapter. Lurking within a typical data set is
often a wealth of fascinating information that
can be summoned forth if sufficiently clever
detective techniques are used. As has been ar-
gued in many places (see particularly, Loftus,
1996; Schmidt, 1996), there are, at present,
many standard data-analysis techniques that
not only are ill-crafted for eliciting such infor-
mation, but also actively bias the investigator
against finding anything interesting or nonob-
vious from the data. It is my hope that some of
the less common techniques described in this
chapter—and other related techniques that
readers are left to devise on their own—will
provide some assistance in coping with the
vast sea of psychological data that our present
technology currently produces for us.
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CHAPTER 10

Meta-Analysis

ROBERT ROSENTHAL AND M. ROBIN DIMATTEO

CUMULATING SCIENTIFIC
EVIDENCE

The fundamental goal of meta-analytic pro-
cedures is the cumulation of evidence. There
has long been underlying pessimism in the
younger social, behavioral, and biomedical
sciences that our progress has been exceed-
ingly slow and less orderly than we would
like, at least when compared to the progress
of older, more programmatic sciences such
as physics and chemistry. In other words, the
more recent work in physics and chemistry
seems to build directly on the older work of
those sciences, whereas the more recent work
of the social, behavioral, and biomedical sci-
ences seems often to be starting from scratch.
Those who have looked closely at the issue
of cumulation in the physical sciences have
pointed out that these disciplines have ample
problems of their own (Collins, 1985; Hedges,
1987; Mann, 1990; Pool, 1988). Nonetheless,
in the matter of cumulating evidence, the so-
cial and biomedical sciences have much to be
modest about.

In this chapter the authors have drawn on the work of
many authors and especially on some of their earlier writ-
ings in this area, including R. Rosenthal (1991a, 1994b,
1995b, 1998, 2000); R. Rosenthal and DiMatteo (2001);
R. Rosenthal and Rosnow (1991); and R. Rosenthal,
Rosnow, and Rubin (2000).

Limited success in the process of cumula-
tion does not seem to be caused by a lack of
replication, or by the failure to recognize the
need for replication. Indeed, there are many
areas of the social, behavioral, and biomedical
sciences for which the results of many stud-
ies, all addressing essentially the same ques-
tion, are available. Our summaries of the re-
sults of these sets of studies, however, have
not been nearly as informative as they might
have been, either with respect to summarized
significance levels or with respect to summa-
rized effect sizes. Even the best reviews of re-
search by the most sophisticated scholars have
been primarily qualitative narratives and have
rarely told us much more about each study
than the direction of the relationship between
the variables investigated and whether a given
significance level was attained.

This state of affairs is beginning to change,
however. More and more reviews of the lit-
erature are moving from the traditional lit-
erary approach to quantitative approaches to
research synthesis described in an increas-
ing number of textbooks of meta-analysis
(Cooper, 1989; Cooper & Hedges, 1994a;
Glass, McGaw, & Smith, 1981; Hedges &
Olkin, 1985; Hunter & Schmidt, 1990; Light
& Pillemer, 1984; R. Rosenthal, 1991a). The
goals of these quantitative approaches of
meta-analysis are to help us discover what we
have learned from the results of the studies

391
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conducted, and to help us discover what we
have not yet learned.

DEFINING RESEARCH RESULTS

Before we can consider various issues and
procedures in the cumulation of research re-
sults, we must become quite explicit about the
meaning of the concept results of a study. It
is easiest to begin with what we do not mean.
We do not mean the prose conclusion drawn
by the investigator and reported in the abstract,
the results, or the discussion section of the re-
search report. We also do not mean the results
of an omnibus F test with df > 1 in the nu-
merator or an omnibus chi-square test with
df > 1.

What we do mean is the answer to the ques-
tion, What is the relationship between any
variable X and any variable Y ? The variables
X and Y are chosen with only the constraint
that their relationship be of interest to us. The
answer to this question should normally come
in two parts: (a) the estimate of the magnitude
of the relationship (the effect size), and (b) an
indication of the accuracy or reliability of the
estimated effect size (e.g., as indexed by a con-
fidence interval placed around the effect size
estimate). An alternative to the second part of
the answer is one not intrinsically more useful,
but rather one more consistent with the exist-
ing practices of researchers: the significance
level of the difference between the obtained
effect size and the effect size expected under
the null hypothesis (usually an effect size of
zero).

Because a complete reporting of the results
of a study requires the report of both the ef-
fect size and level of statistical significance, it
is useful to make explicit the relationship be-
tween these quantities. The general relation-
ship is given by

Significance Test = Effect Size×Study Size.

In other words, the larger the study in terms
of the number of sampling units, the more sig-
nificant the results will be. This is true unless
the size of the effect is truly zero, in which case
a larger study will not produce a result that is
any more significant than a smaller study. Ef-
fect sizes of exactly zero, however, are rarely
encountered.

META-ANALYSIS: A BRIEF
HISTORICAL NOTE

We are inclined to think of meta-analysis as a
recent development, but it is older than the t
test, which dates back to 1908 (Gosset, 1908)!

Let us simultaneously describe the early
history of meta-analysis and provide a classic
illustration of the meta-analytic enterprise. In
1904 Pearson (1904) collected six correlation
coefficients: .58, .58, .60, .63, .66, and .77. The
weighted mean of these six correlation coeffi-
cients was .64, the unweighted mean was .63,
and the median was .61. Pearson was collect-
ing correlation coefficients because he wanted
to know the degree to which inoculation
against smallpox saved lives. His own rough-
and-ready summary of his meta-analysis of
six studies was that there was a .6 corre-
lation between inoculation and survival—a
truly huge effect.

When Pearson quantitatively summarized
six studies of the effects of smallpox inocu-
lation, a meta-analysis was an unusual thing
to do. Recently, however, there has been an
explosion of meta-analytic research synthe-
ses, such that a rapidly increasing proportion
of all reviews of the literature are in the form
of quantitative reviews (i.e., meta-analyses).
Despite its increasing frequency in the liter-
ature, however, meta-analysis is not without
controversy and criticism, which we examine
later.

Before we do that, it will be useful
to consider the concept of replication.
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Meta-analysis, after all, involves summariz-
ing or synthesizing studies that are broadly
thought of as replications. It is important to
note that studies typically included in meta-
analyses are not replications in a narrow sense.
Rather, they examine the same underlying re-
lationships even if their independent and de-
pendent variables are operationally defined in
different ways.

HOW SHALL WE THINK
OF SUCCESSFUL REPLICATION?

There is a long tradition in psychology of
urging replication of each other’s research.
Although we have been very good at call-
ing for such replications, we have not been
very good at deciding when a replication has
been successful. The issue we now address is,
When shall a study be deemed successfully
replicated?

Ordinarily, this is taken to mean that in a
new study at time 2, a null hypothesis that has
been rejected at time 1 is rejected again, and
with the same direction of outcome. We have a
“failure to replicate” when one study was sig-
nificant and the other was not, but such “fail-
ures” may be quite misleading. Let us consider
an example.

Pseudo-Failures to Replicate

The Saga of Smith and Jones

Smith has published the results of an experi-
ment in which a certain treatment procedure
was predicted to improve performance. She
reported results significant at p < .05 in the
predicted direction. Jones published a rebut-
tal to Smith, claiming a failure to replicate.
Both had an effect size r of .24 and a d of
.50. But Smith had 80 subjects and Jones had
only 20. In this type of situation, it is often the
case that although the p value associated with

Smith’s results is smaller than that of Jones’s,
the studies were in quite good agreement
on their estimated sizes of effect as defined
either by Cohen’s d [(Mean1 − Mean2)/σ ]
or by r , the point biserial correlation between
group membership (coded 0 or 1) and per-
formance score (a more continuous score;
Cohen, 1988; R. Rosenthal, 1991a). Thus,
studies labeled as failure to replicate may turn
out to provide strong evidence for the replica-
bility of the claimed effect.

On the Odds against Replicating
Significant Results

A related error often found in the behavioral
and social sciences is the implicit assumption
that if an effect is real, we should expect it to
be found significant again upon replication.
Nothing could be farther from the truth.

Suppose there is, in nature, a real ef-
fect with a true magnitude of d = .50 (i.e.,
[Mean1 − Mean2]σ = .50 σ units), or, equi-
valently, r = .24, a difference in success rate
of 62% versus 38%, as shown in the bino-
mial effect size display in which r is the
difference between the success rates of the
two conditions. The success rates are given
as .50 + r/2 and .50 − r/2 hence for this
example, .62 − .38 = .24, the value of r . For
further details see R. Rosenthal and Rubin
(1982b). Further suppose that an investigator
studies this effect with an N of 64 subjects or
so, giving the researcher a level of statistical
power of .50, a very common level of power
for behavioral researchers in the last 35 years
(Cohen, 1962; Sedlmeier & Gigerenzer,
1989). Even though a d of .50 or an r of .24 can
reflect a very important effect, there is only
one chance in four (p = .25) that both the orig-
inal investigator and a replicator will get re-
sults significant at the .05 level; i.e., the prob-
ability (power) for the first study (p = .50)
is multiplied by the probability for the sec-
ond study (p = .50) to yield .50 × .50 = .25.
If there were two replications of the original
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study, there would be only one chance in eight
(p = .125) that all three studies would be sig-
nificant (i.e., p = .5 × .5 × .5 = .125), even
though we know that the effect in nature is
very real and very important.

Contrasting Views of Replication

The traditional, less useful view of replica-
tion has two primary characteristics: It (a)
focuses on significance level as the relevant
summary statistic of a study and (b) makes
its evaluation of whether replication has been
successful in a dichotomous fashion. For ex-
ample, replications are successful if both or
neither p < .05, and they are unsuccessful if
one p < .05 and the other p > .05. Psycholo-
gists’ reliance on a dichotomous decision pro-
cedure has been well documented (Nelson,
Rosenthal, & Rosnow, 1986; R. Rosenthal
& Gaito, 1963, 1964). In this dichotomous
procedure, differences between p levels are
all regarded as trivial except the difference
between a p ≤ .05 and a p > .05, or some
other critical level of significance at which
we have decided to “reject the null hypoth-
esis.” This dichotomous approach to signifi-
cance testing has been increasingly criticized,
for example, by the American Psychological
Association’s Task Force on Statistical Infer-
ence (Wilkinson & the Task Force on Statis-
tical Inference, 1999).

The newer, more useful views of replica-
tion success have two primary characteristics:
(a) a focus on effect size as the more important
summary statistic of a study, with a relatively
more minor interest in the statistical signifi-
cance level, and (b) an evaluation of whether
replication has been successful, made in a con-
tinuous fashion. For example, two studies are
not said to be successful or unsuccessful repli-
cates of each other; rather, the degree of fail-
ure to replicate is indexed by the magnitude of
difference between the effect sizes obtained in
the two studies.

CRITICISMS OF META-ANALYSIS

Does the enormous increase in the number of
meta-analytic reviews of the literature repre-
sent a giant stride forward in the development
of the behavioral and social sciences gener-
ally, or does it signal a lemming-like flight
to disaster? Judging from reactions to past
meta-analytic enterprises, there are at least
some who take the more pessimistic view.
Some three dozen scholars were invited to
respond to a meta-analysis of studies of in-
terpersonal expectancy effects (R. Rosenthal
& Rubin, 1978a). Although much of the com-
mentary dealt with the substantive topic of in-
terpersonal expectancy effects, a good deal of
it dealt with methodological aspects of meta-
analytic procedures and products. Some of the
criticisms offered were accurately anticipated
by Glass (1978) who had earlier received com-
mentary on his meta-analytic work (Glass,
1976) and that of his colleagues (Glass et al.,
1981; Smith & Glass, 1977). Because these
criticisms have been addressed elsewhere in
detail (R. Rosenthal, 1991a; R. Rosenthal &
Rubin, 1978b), we organize them into half a
dozen conceptual categories and summarize
them briefly.

Sampling Bias and the File
Drawer Problem

This criticism holds that there is a retrievabil-
ity bias such that studies retrieved do not re-
flect the population of studies conducted. One
version of this criticism is that the probability
of publication is increased by the statistical
significance of the results, so that published
studies may not be representative of the stud-
ies conducted. This is a well-taken criticism,
though it applies equally to more traditional
narrative reviews of the literature. Later in this
chapter, we describe procedures that can be
employed to address this problem in our dis-
cussion of the interpretive data of the results
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section of a meta-analytic review. More de-
tailed discussions are available elsewhere
(R. Rosenthal, 1979, 1991a; R. Rosenthal &
Rubin, 1988).

Loss of Information

One criticism has been that summarizing a
research domain by a single value, such as a
mean effect size, loses valuable information.
However, comparing studies, which means
trying to understand differences between their
results, is as much a part of meta-analytic
procedures as is summarizing the overall re-
sults of the set of studies. We should also note
that even within a single study psychologists
have historically found it quite helpful to com-
pute the mean of the experimental and control
groups, despite the fact that computing a mean
always involves a loss of information.

Heterogeneity of Method and Quality

Meta-analysts summarize studies with differ-
ent operationalizations of independent and
dependent variables as well as with differ-
ent types of sampling units. Well-done meta-
analyses take these differences into account
by treating them as moderator variables.
Meta-analyses are also criticized for throw-
ing together good and bad studies. Aside from
some difficulties in defining bad studies (e.g.,
the studies of my “enemies,” as Glass et al.,
1981, have put it), we can deal with this prob-
lem quite simply by weighting studies by their
quality. Such weighting includes a weight of
zero for the truly terrible study (R. Rosenthal,
1991a, 1991b).

Problems of Independence

Sometimes the same subjects generate mul-
tiple effect sizes within the same study, of-
ten creating a problem for significance test-
ing in particular. Technical procedures are
available for adjusting for nonindependence

(R. Rosenthal, 1991a; R. Rosenthal & Rubin,
1986). More subtle problems of possible non-
independence arise because different studies
conducted in one laboratory may yield re-
sults that are more correlated with each other
than with different studies conducted in an-
other laboratory. In other words, there may be
laboratory effects (Jung, 1978; R. Rosenthal,
1966, 1969, 1976). These can be handled by
treating laboratory effects as moderator vari-
ables and by analyzing research domains by
laboratory as well as by study (R. Rosenthal,
1969, 1991a).

Exaggeration of Significance Levels

Perhaps the only criticism of meta-analysis
that is based entirely on a misunderstanding
of the fundamental equation of data analysis
(i.e., SignificanceTest = Effect Size × Study
Size) is the criticism that as more and more
studies are added to a meta-analysis, the re-
sults are more and more significant. That is
certainly true, but it is difficult to perceive as
a negative feature or as anything other than a
mathematical fact.

Small Effects

The final criticism is that the results of socially
important meta-analyses show only small ef-
fects because the r2s obtained are small. This
criticism has been addressed in detail else-
where, where it has been shown that r2s of
nearly zero can save 34 lives per 1,000 (e.g.,
in the physicians’ aspirin study; R. Rosenthal,
1995a; R. Rosenthal & Rubin, 1979a, 1982b;
Steering Committee of the Physicians Health
Study Research Group, 1988).

BENEFITS OF META-ANALYSIS

There are several fairly obvious benefits
of meta-analysis. Quantitative summaries of
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research domains using meta-analytic proce-
dures are likely to be more complete, more
explicit, and more powerful (in the sense of
decreasing type II errors), than are qualitative
reviews, and, for all these reasons, are help-
ful to the process of cumulation. Moderator
variables are more easily spotted and evalu-
ated in the context of a quantitative research
summary, thereby aiding theory development
and increasing empirical richness. There are
also some less obvious benefits.

Decreased Overemphasis
on Single Studies

One less obvious benefit that will accrue to
psychological science is the gradual decrease
in the overemphasis on the results of a single
study. There are good sociological grounds for
our preoccupation with the results of a single
study. Those grounds have to do with the re-
ward system of science by which recognition,
promotion, reputation, and the like depend on
the results of the single study, the smallest unit
of academic currency. The study is “good,”
“valuable,” and above all, “publishable” when
p ≤ .05 and not when p > .05. Our discipline
would be further ahead if we adopted a more
cumulative view of psychology. With such a
view, the impact of any one study would be
evaluated less on the basis of p levels and
more on the basis of its own effect size. In ad-
dition, such a view would lead us to evaluate
the revised effect size and combined proba-
bility that resulted from the addition of the
new study to any earlier studies investigat-
ing the same or a similar intervention or other
relationship.

Decreased Differentiation Drive

Related to the problem of overemphasis on
single studies is the problem of “differenti-
ation drive,” a motivational state (and pos-
sibly even a trait) sometimes found among

scientists in all fields. This is the drive to
be more different, more ahead, more cor-
rect, and more unique than others. “Priority
strife” is one reflection of the differentiation
drive. Another reflection is the occurrence
of “renomination,” the mechanism by which
a well-known process is given a new name
in hopes of effecting “concept capture”—the
mechanism by which ownership of a con-
cept is claimed by virtue of the renaming
of the concept. Differentiation drive keeps
us from viewing the world meta-analytically,
or in a more Bayesian way, by keeping us
from seeing the similarity of our work to
the work of others. Skinner (1983, p. 39)
has spoken eloquently, if indirectly, on this
matter:

In my own thinking, I try to avoid the kind
of fraudulent significance which comes with
grandiose terms or profound “principles.” But
some psychologists seem to need to feel that
every experiment they do demands a sweeping
reorganization of psychology as a whole. It’s
not worth publishing unless it has some such
significance. But research has its own values,
and you don’t need to cook up spurious reasons
why it’s important.

The New Intimacy

This new intimacy is between the reviewer
and the data. We cannot do a meta-analysis by
reading abstracts and discussion sections. We
are forced to look at the numbers and, very of-
ten, compute the correct ones ourselves. Meta-
analysis requires us to cumulate data, not con-
clusions. Reading a paper is quite a different
matter when we need to compute an effect
size and a fairly precise significance level—
often from a results section that does not in-
clude effect sizes or precise significance levels
(and was not prepared following the Publica-
tion Manual of the American Psychological
Association)!
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The Demise of the Dichotomous
Significance Testing Decision

Far more than is good for us, social and be-
havioral scientists operate under a dichoto-
mous null hypothesis decision procedure in
which the evidence is interpreted as antinull
if p ≤ .05 and pronull if p > .05. If our disser-
tation p is <.05, it means joy, a doctorate, and
a tenure-track position at a major university.
If our p > .05, it means ruin, despair, and our
advisor suddenly thinking of a new control
condition that should be run. That attitude is
not helpful. God loves the .06 nearly as much
as the .05. Indeed, there is good information
that God views the strength of evidence for or
against the null as a fairly continuous func-
tion of the magnitude of p. As a matter of
fact, two .06 results are much stronger evi-
dence against the null than one .05 result, and
10 ps of .10 are stronger evidence against the
null than 5 ps of .05.

Exactly how two results of p = .06 con-
stitute stronger evidence against the null
hypothesis than one result of .05 is not at all
intuitively obvious. Indeed, when asked to
combine two probabilities of .06 and .06,
almost all researchers would suggest multi-
plying the two values and calling their prod-
uct the new combined level of significance.
Mosteller and Bush (1954, p. 329) have
pointed out, however, that the product of two p
values will lead to p ≤ .05 not 5% of the time
but 20% of the time when the null hypothesis
is true. That is due to the many different ways
in which it is possible to achieve a product of
two p values that is less than or equal to .05.
A good many procedures for combining inde-
pendent p values have been summarized over
the years (e.g., Becker, 1994; Hedges & Olkin,
1985; Mosteller & Bush, 1954; R. Rosenthal,
1978). Three of the best known methods are
the Fisher, Stouffer, and Edgington methods
which yield combined p values (for two ps
of .06) of .024, .014, and .0072, respectively
(R. Rosenthal, 1991a).

The Overthrow of the Omnibus Test

It is common to find specific questions ad-
dressed by F tests with df > 1 in the numer-
ator or by χ2 tests with df > 1. For example,
suppose that the specific question is whether
increased frequency of meeting improves the
effectiveness of therapy groups. We employ
four levels of frequency so that our omnibus
F test would have 3 df in the numerator, or
our omnibus χ2 would be on at least 3 df.
Common as these tests are, they reflect poorly
on our teaching of data-analytic procedures.
The diffuse hypothesis tested by these om-
nibus tests usually tells us nothing of impor-
tance about our research question. The rule
of thumb is unambiguous: Whenever we have
tested a fixed effect with df > 1 for χ2 or for
the numerator of F , we have tested a question
that almost surely does not really interest us.

The situation is even worse when there are
several dependent variables as well as mul-
tiple df for the independent variable. The
paradigm case here is canonical correlation,
and special cases are MANOVA, MANCOVA,
multiple discriminant function, multiple path
analysis, and complex multiple partial corre-
lation. Although all of these procedures have
useful exploratory data-analytic applications,
they are commonly used to test null hypothe-
ses that are, scientifically, almost always of
doubtful value. The effect size estimates they
yield (e.g., the canonical correlation) are also
almost always of doubtful value.

The Increased Recognition
of Contrast Analysis

Meta-analytic questions are basically contrast
questions. F tests with df > 1 in the numer-
ator or χ2s with df > 1 are useless in meta-
analytic work. That leads to the following
additional scientific benefit: Meta-analytic
questions require precise formulation of ques-
tions, and contrasts are procedures for obtain-
ing answers to such questions, often in the
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context of analysis of variance or table anal-
ysis. Although most statistics textbooks de-
scribe the logic and the machinery of contrast
analyses, one still sees contrasts employed
all too rarely. That is a real pity given the
precision of thought and theory they encour-
age, and (especially relevant to these times
of publication pressure) given the boost in
power conferred with the resulting increase
in .05 asterisks (R. Rosenthal & Rosnow,
1985, 1991; R. Rosenthal, Rosnow, & Rubin,
2000).

Meta-Analytic Procedures Are Applicable
beyond Meta-Analyses

Many of the techniques of contrast analy-
ses among effect sizes, for example, can be
used within a single study (R. Rosenthal &
Rosnow, 1985). Computing a single effect size
from correlated dependent variables as well as
comparing treatment effects on two or more
dependent variables serve as illustrations
(R. Rosenthal & Rubin, 1986).

The Decrease in the Splendid Detachment
of the Full Professor

Meta-analytic work requires careful reading
of research and moderate data-analytic skills.
We cannot send an undergraduate research as-
sistant to the computer or the library with a
stack of 5 × 8 cards to bring us back “the re-
sults.” That seems often to have been done
with narrative reviews. With meta-analysis,
the reviewer must get involved with the
actual data, and that is all to the good of
science.

EFFECT SIZE AND SIGNIFICANCE
TESTS

When behavioral and biomedical researchers
speak of “the results” of research, they are

still referring most often to the statistical
significance (p values) of the results, some-
what less often to the effect size estimates
associated with those p values, and still less
often to both the p value and the effect size. To
make explicit the relationship between these
two kinds of results, we can write the prose
equation we presented earlier (Cohen, 1965;
R. Rosenthal & Rosnow, 1991):

Significance Test = Effect Size×Study Size.

Any particular test of significance can be
obtained by one or more definitions of ef-
fect size multiplied by one or more definitions
of study size. For example, if we are inter-
ested in χ2

(1)as a test of significance, we can
write

χ2
(1) = φ2 × N (1)

where χ2
(1) is a χ2 on 1 df (e.g., from a

2 × 2 table of counts), φ2 is the squared
Pearson product moment correlation (the ef-
fect size) between membership in the row cat-
egory (scored 1 or 0) and membership in the
column category (scored 1 or 0), and N (the
study size) is the total number of sampling
units, for example, found in the cells of the
2 × 2 table.

If we are interested in t as a test of signif-
icance, we have a choice of many equations
(R. Rosenthal, 1991a, 1994b), including the
following:

t = r√
1 − r2

×
√

d f (2)

t = d ×
√

d f /2 (3)

where r is the point biserial Pearson r be-
tween group membership (scored 1 or 0) and
obtained score, d is the difference between
means divided by the pooled standard devi-
ation (σ ), and df is the degrees of freedom,
usually N − 2.
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TWO IMPORTANT FAMILIES
OF EFFECT SIZES

Two of the most important families of effect
sizes are the r family and the d family.

The r Family

The r family includes the Pearson product mo-
ment correlation in any of its popular incar-
nations with labels:

r when both variables are continuous

φ when both variables are dichotomous

rpb when one variable is continuous and
one variable is dichotomous

ρ when both variables are in ranked form

The r family also includes Zr , the Fisher
transformation of r , and the various squared
indexes of r and r -like quantities, including
r2, ω2 (omega-squared), ξ 2 (epsilon-squared),
and η2. Because squared indexes of effect size
lose their directionality (is the treatment help-
ing or hurting, is the correlation positive or
negative?) they are of little use in scientific
work for which information on directionality
is essential. Another reason to avoid the use
of the squared indexes of effect size is that
the practical magnitude of these indexes is
likely to be seriously misinterpreted as much
less important than it really is; we illustrate
this further in the section about the physi-
cians’ aspirin study (R. Rosenthal, 1990a;
R. Rosenthal & Rosnow, 1991; R. Rosenthal
& Rubin, 1979a, 1982b).

The d Family

The three central members of the d family
are Cohen’s d , Hedges’s g, and Glass’s �; all
three employ the same numerator, the differ-
ence between the means of the groups being
compared (i.e., M1 − M2). The denominators

of these three indexes differ, however:

Cohen’s d = M1 − M2

σ
(4)

Hedges’s g = M1 − M2

S
(5)

Glass’s � = M1 − M2

Scontrol
(6)

where σ is the square root of the pooled
variance computed from the two groups (i.e.,
σ =

√
	(X − M)2/n), S is the square root

of the pooled unbiased estimate of the vari-
ance S =

√
	(X − M)2/(n − 1), and Scontrol

is like the S in the denominator of Hedges’s
g but is computed only for the control group.
Computing S based only on the control group
is a useful procedure when we know or sus-
pect that the treatment may affect not only the
mean but also the variance of the scores in the
treatment condition.

The d family of effect sizes also includes
such other indexes of differences as the raw
difference in proportions d1 (Fleiss, 1994) and
the difference between two proportions after
each has been transformed to radians (Cohen’s
h, Case 1; Cohen, 1988, p. 200), probits, or
logits (Glass, McGaw, & Smith, 1981). Read-
ers employing categorical outcome variables
should consult the references just cited.

EFFECT SIZES FOR THE
ONE-SAMPLE CASE

The effect size estimates discussed so far have
applied to situations in which we wanted to
index the magnitude of a linear relationship
between two variables by means of a corre-
lation or by means of a comparison between
the means of two conditions (e.g., by d, �, or
g). In some situations, however, there is only
a single sample in our experiment, perhaps
with each sampling unit exposed to two differ-
ent experimental conditions. Examples might
include teachers’ favorableness of nonverbal
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behavior toward children for whom they hold
more versus less favorable expectations, or
the health outcomes to the same patients of
a new drug versus a placebo taken at different
points in time. One test of significance of this
effect of teachers’ expectations on their non-
verbal behavior, or of patients’ reactions to the
two different medications, could be the t for
correlated observations. Two equations illus-
trating our basic relationship between signifi-
cance tests and effect sizes for this one-sample
case are (R. Rosenthal, 1994b)

t = r√
1 − r2

×
√

d f (7)

t = d ×
√

d f . (8)

The first equation shows that an r index can be
used in the one-sample case, and the second
equation shows that a d index can be used
in the one-sample case. It should be noted,
however, that the r index is identical in the
one-sample and two-sample cases, whereas
the d index is quite different in the one-
sample and two-sample cases (Cohen, 1988;
R. Rosenthal, 1994b). This practical advan-
tage of r over d is discussed shortly.

Dichotomous Data

When the data are dichotomous rather than
continuous, a number of d family indexes are
available, including Cohen’s g and h (case 2)
as well as a newer index, 
. Cohen’s g is sim-
ply the difference between an observed pro-
portion and .50. For example, the magnitude
of an electoral victory is given directly by g.
If .60 of the electorate voted for the winner,
then g = .60 − .50 = .10. Such an effect size
might be regarded as enormous in the case of
an election result but as far less noteworthy as
the result of a true-false test in a high school
history class! Cohen’s h (case 2) is the dif-
ference between an observed proportion and
a theoretically expected proportion after each
of these proportions has been transformed to

radians (an arcsin transformation). For exam-
ple, in a multiple-choice history test in which
one of four alternatives is correct and the
position of the correct alternative has been
assigned at random, guessing alone should
yield an accuracy rate of .25. If the actual
performance on this examination were found
to be .75, we would compute h by trans-
forming the actual (.75) and the expected
(.25) proportions by means of 2 arcsin

√
P

yielding

h = 2 arcsin
√

.75 − 2 arcsin
√

.25

= 2.09 − 1.05 = 1.04.

The reason for employing the arcsin transfor-
mation is to make the hs comparable. Dif-
ferences between raw proportions are not all
comparable, for example, with respect to sta-
tistical power. Thus a difference between pro-
portions of .95 and .90 yields an h of .19,
whereas a difference between proportions of
.55 and .50 yields an h of only .10 (Cohen,
1988).

The one-sample effect size index, 
, is ex-
pressed as the proportion of correct guesses if
there had been only two choices from which
to choose. When there are more than two
choices, 
 converts the proportion of hits to
the proportion of hits made if there had been
only two equally likely choices:


 = P(k − 1)

P(k − 2) + 1
(9)

when P is the raw proportion of hits and k
is the number of alternative choices available.
The standard error of 
 is

SE(
) = 1√
N

(

(1 − 
)√

P(1 − P)

)
(10)

This index would be especially valuable in
evaluating performance on a multiple-choice
type of examination in which the number of
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alternatives varies from item to item. The
index 
 allows us to summarize the overall
performance so that we could compare perfor-
mances on tests made up of varying numbers
of alternatives per item. Further details can be
found in R. Rosenthal and Rubin (1989, 1991)
and in Schaffer (1991).

In this section we have described some
effect size estimates, obtained from just a
single sample of research participants, that
we may want to employ in our meta-analysis.
In the next section we describe effect sizes
employed when we want to compare two
effect sizes in our meta-analysis.

EFFECT SIZES FOR COMPARING
EFFECT SIZES

The Two-Sample Case

Sometimes the basic research question con-
cerns the difference between two effect sizes.
For example, a developmental psychologist
may hypothesize that two cognitive perfor-
mance measures will be more highly cor-
related in preschool children than in fifth
graders. The degree to which the hypoth-
esis is supported will depend on the dif-
ference between the correlations obtained
from preschoolers and fifth graders, r1 − r2.
Cohen’s q is just such an index—one in which
each r is transformed to Fisher’s Zr before the
difference is computed, so that

Cohen’s q = Zr1 − Zr2. (11)

The One-Sample Case

Cohen’s q can also be employed when an ob-
tained effect size is to be compared to a the-
oretical value of r . In this case we simply
take the difference between the Zr associated
with our observed sample and the Zr associ-
ated with our theoretical value of r (Cohen,
1988).

COMPARING THE r AND d FAMILIES

It seems natural to employ r -type effect size
estimators when the original effect size esti-
mates are reported in r -type indexes such as in
meta-analyses of validity coefficients for test
instruments (e.g., Hunter & Schmidt, 1990).
Similarly, it seems natural to employ d-type
effect size estimates when the original studies
have compared two groups so that the differ-
ence between their means and their within-
group Ss or σ s are available. In meta-analytic
work, however, it is often the case that the ef-
fect size estimates will be a mixture of r -type
and d-type indexes.

Because r -type and d-type estimates can
readily be converted into one another, obtain-
ing both types of estimates will cause no hard-
ship. However, it will be necessary to make a
decision in meta-analytic work to convert all
effect size estimates to just one particular in-
dex, usually to r or Zr for the r family, or to
Hedges’s g (or Cohen’s d) for the d family.
Although any of these effect size estimates
can be employed, there are some reasons for
viewing r as the more generally useful effect
size estimate.

Generality of Interpretation

If our data came to us as rs, it would not make
much sense to convert rs to ds because the
concept of a mean difference index makes lit-
tle sense in describing a linear relationship
over a great many values of the independent
variable. On the other hand, given a d-type
effect size estimate, r makes perfectly good
sense in its point biserial form (i.e., just two
levels of the independent variable).

Suppose that our theory calls for us to em-
ploy five levels of our independent variable,
and that we predict a quadratic trend in the re-
lationship between the level of arousal and the
subsequent performance. The magnitude of
the effect associated with our quadratic trend
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contrast is quite naturally indexed by r but
not so naturally indexed by d-type indexes.
The contrast weights for our quadratic trend
would be −2, +1, +2, +1, −2, or better per-
formance in the middle levels of arousal than
in the more extreme levels of arousal, with the
very best performance in the midmost condi-
tion. The effect size r would index the degree
to which the contrast weights accurately pre-
dicted the actual obtained performance.

Consistency of Meaning in the
One-Sample Case

The r -type index requires no computational
adjustment in moving from the two-sample
or multisample case to the one-sample case.
As noted earlier, r is identically related to t for
both the two-sample and the one-sample case.
That is not the case for the d-type indexes,
however. For example, the definition of the
size of the study changes by a factor of 2 in
going from a t test for two samples to a t test
for one sample.

Simplicity of Interpretation

Finally, r is more simply interpreted in terms
of practical importance than are the usual
d-type indexes such as Hedges’s g or
Cohen’s d . We give details in the following
section.

THE INTERPRETATION
OF EFFECT SIZES

Despite the growing awareness of the impor-
tance of estimating effect sizes, there is a
problem in evaluating various effect size es-
timators from the point of view of practical
usefulness (Cooper, 1981). R. Rosenthal and
Rubin (1979a, 1982b) found that neither ex-
perienced behavioral researchers nor experi-
enced statisticians had a good intuitive feel

for the practical meaning of common effect
size estimators and that this was particularly
true for such squared indexes as r2, ω2, ε2,
and similar estimates.

The Physicians’ Aspirin Study

At a special meeting held on December 19,
1987, the Steering Committee of the Physi-
cians Health Study Research Group (1988)
decided to end, prematurely, a randomized
double-blind experiment on the effects of as-
pirin on reducing heart attacks. The reason be-
hind this unusual termination was that it had
become so clear that aspirin prevented heart
attacks (and deaths from heart attacks) that it
would be unethical to continue to give half
of the research participants a placebo. And
what was this magnitude of the experimental
effect that was so dramatic as to call for the
termination of this research? Was r2 .80 or
.60, so that the corresponding rs would have
been .89 or .77? Was r2 .40 or .20, so that the
corresponding rs would have been .63 or .45?
No, none of these. Actually, r2 was .00—or, to
four decimal places, .0011, with a correspond-
ing r of .034. The decision to end the aspirin
experiment was an ethical necessity; it saved
lives. Most social and behavioral scientists are
surprised that life-saving interventions can be
associated with effect sizes as small as rs of
.034 and r2s of .0011.

The Binomial Effect Size Display

Table 10.1 shows the results of the aspirin
study in terms of raw counts and percent-
ages and as a binomial effect size display
(BESD). This display is a way of showing
the practical importance of any effect indexed
by a correlation coefficient. The correlation is
shown to be a simple difference in outcome
rates between the experimental and the con-
trol groups in this standard table, which al-
ways adds up to column totals of 100 and row
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Table 10.1 Effects of Aspirin on Heart Attacks
among 22,071 Physicians

No
Heart Attack Heart Attack Total

I. Raw Counts in
Four Conditions

Aspirin 104 10,933 11,037
Placebo 189 10,845 11,034
Total 293 21,778 22,071

II. Percentages
of Patients

Aspirin 0.94 99.06 100
Placebo 1.71 98.29 100
Total 1.33 98.67 100

III. Binomial Effect
Size Display

Aspirin 48.3 51.7 100
Placebo 51.7 48.3 100
Total 100 100 200

totals of 100 (R. Rosenthal & Rubin, 1982b).
We obtain the BESD from any obtained effect
size r by computing the treatment condition
success rate as .50 plus r/2 and the control
condition success rate as .50 minus r/2. Thus
an r of .20 yields a treatment success rate of
.50 + .20/2 = .60 and a control success rate
of .50 − .20/2 = .40, or a BESD of

Success Failure 	

Treatment 60 40 100
Control 40 60 100
	 100 100 200

Had we been given the BESD to examine
before knowing r , we could have easily cal-
culated it mentally for ourselves; r is sim-
ply the difference between the success rates
of the experimental versus the control group
(.60 − .40 = .20).

The type of result seen in the physicians’
aspirin study is not at all unusual in biomed-
ical research. Some years earlier, on October
29, 1981, the National Heart, Lung, and Blood
Institute discontinued its placebo-controlled

study of propranolol because results were so
favorable to the treatment that it would be un-
ethical to continue withholding the life-saving
drug from the control patients. Once again the
effect size r was .04, and the leading digits of
the r2 were .00! As behavioral researchers, we
are not used to thinking of rs of .04 as reflect-
ing effect sizes of practical importance. But
when we think of an r of .04 as reflecting a
4% decrease in heart attacks—the interpreta-
tion given r in a BESD—the r does not appear
to be quite so small.

Additional Results

Table 10.2 gives three further examples of
BESDs. In a study of 4,462 army veterans of
the Vietnam War era (1965–1971), the cor-
relation between having served in Vietnam
(rather than elsewhere) and having suffered
from alcohol abuse or dependence was .07
(Centers for Disease Control Vietnam Ex-
perience Study, 1988). The top display of
Table 10.2 shows that the difference between
the problem rates of 53.5 and 46.5 per 100 is
equal to the correlation coefficient of .07.

Table 10.2 Other Examples of Binomial Effect
Size Displays

Vietnam Service and Alcohol Problems (r = .07)

Problem No Problem Total
Vietnam Veteran 53.5 46.5 100
Non-Vietnam 46.5 53.5 100

Veteran
Total 100 100 200

AZT in the Treatment of AIDS (r = .23)

Death Survival Total
AZT 38.5 61.5 100
Placebo 61.5 38.5 100
Total 100 100 200

Benefits of Psychotherapy (r = .39)a

Less Benefit Greater Benefit Total
Psychotherapy 30.5 69.5 100
Control 69.5 30.5 100
Total 100 100 200

aThe analogous r for 464 studies of interpersonal
expectancy effects was .30 (R. Rosenthal, 1994a).
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Table 10.3 Effect Sizes of Various Independent Variables

Independent Variable Dependent Variable r r2

Aspirina Heart attacks .03 .00
Beta Caroteneb Death .03 .00
Streptokinasec Death .03 .00
Propranolold Death .04 .00
Magnesiume Convulsions .07 .00
Vietnam veteran status f Alcohol problems .07 .00
Garlicg Death .09 .01
Indinavirh Serious AIDS events .09 .01
Testosteronei Adult delinquency .12 .01
Compulsory hospitalization Alcohol problems .13 .02

versus treatment choice j

Cyclosporinek Death .15 .02
Ganzfeld perceptionl Accuracy .16 .03
Cisplatin & Vinblastinem Death .18 .03
AZT for neonatesn HIV infection .21 .04
Cholesterol-lowering regimeno Coronary status .22 .05
AZTp Death .23 .05
Treatment choice vs. AAq Alcohol problems .27 .07
Psychotherapyr Improvement .39 .15
Compulsory hospitalization versus AAs Alcohol problems .40 .16
Progesteronet SIV infection .65 .42

aSteering Committee of the Physicians Health Study Research Group, 1988; bAlpha-Tocopherol, Beta Carotene
Cancer Prevention Study Group, 1994; cGISSI, 1986; d Kolata, 1981; eForeman, 1995; f Centers for Disease Con-
trol Vietnam Experience Study, 1988; gGoldfinger, 1991; hKnox, 1997; i Dabbs & Morris, 1990; j Cromie, 1991;
kCanadian Multicentre Transplant Study Group, 1983; l Chandler, 1993; mCromie, 1990, nAltman, 1994; oRoberts,
1987; pBarnes, 1986; q Cromie, 1991; r Smith, Glass, & Miller, 1980; sCromie, 1991; t Contraceptive trials set for a
link to AIDS risk, 1996.

The center display of Table 10.2 shows the
results of a study of the effects of AZT on the
survival of 282 patients suffering from AIDS
or AIDS-related complex (ARC) (Barnes,
1986). This correlation of .23 between sur-
vival and receiving AZT (an r2 of .054) was
so dramatic that the clinical trial was pre-
maturely terminated on the ethical grounds
that it would be improper to continue to
give placebos to the patients in the control
group.

The bottom display of Table 10.2 shows
the results of a famous meta-analysis of psy-
chotherapy outcome studies reported by
Smith, Glass, and Miller (1980). Of partic-
ular interest to behavioral researchers, the
magnitude of the effect of psychotherapy
was substantially greater than the effects of

a good many breakthrough medical inter-
ventions. Table 10.3 shows the effect sizes
obtained in a convenience sample of 20 dif-
ferent studies; eight of the studies, employ-
ing dependent variables of convulsions, AIDS
events, alcohol problems, heart attacks, and
death, were associated with effect size rs of
less than .10. One desirable result of our con-
sideration of these biomedical effect size es-
timates is to make those of us working in
the social and behavioral sciences less pes-
simistic about the magnitude and importance
of our research results (R. Rosenthal, 1990a,
1995a).

The examples of the BESDs shown in
Tables 10.1 and 10.2 and of the effect sizes
shown in Table 10.3 were all health related.
However, the BESD can be applied appropri-
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ately in any domain of the behavioral, biomed-
ical, brain, cognitive, and social sciences.
Because it is always appropriate to compute
a Pearson product moment correlation be-
tween any independent and any dependent
variable, it is also always appropriate to em-
ploy a BESD.

For example, suppose investigators found
support for their theory that condition A fos-
tered improved memory more than did con-
dition B. Further suppose that they employed
Cohen’s d to index the magnitude of their ef-
fect, finding it to be about .4. To display the
magnitude of the effect as a BESD, they con-
vert d to r by means of the equation

r =
√

d2

d2 + 4
=

√
(.4)2

(.4)2 + 4
= .20,

where r is readily displayed as a BESD as
follows:

Memory

Poorer Better Total

Condition A 40 60 100
Condition B 60 40 100
Total 100 100 200

Table 10.4 Three Examples of Four Effect Size Estimates

Die Live Relative Odds Risk r
Risk Ratio Difference

Control A B

Treatment C D

(
A

A + B

/
C

C + D

) (
A

B

/
C

D

) (
A

A + B
− C

C + D

)

Study 1
Control 10 990 10.00 10.09 .01 .06
Treatment 1 999

Study 2
Control 10 10 10.00 19.00 .45 .50
Treatment 1 19

Study 3
Control 10 0 10.00 ∞ .90 .90
Treatment 1 9

OTHER EFFECT SIZE ESTIMATES
FOR 2 × 2 TABLES OF COUNTS:
THE BIOMEDICAL CONTEXT

The effect size index, r , can be readily applied
to any 2 × 2 table of counts. Three other in-
dexes of effect size have been found useful in
biomedical contexts: relative risk, odds ratio,
and risk difference. All three are illustrated for
several hypothetical outcomes in Table 10.4.
Each study compared a control condition to
a treatment condition with two possible out-
comes: not surviving or surviving.

Relative Risk

Relative risk is defined as the ratio of the
proportion of the control patients at risk (not
surviving) divided by the proportion of the
treated patients at risk. With the cells of the
2 × 2 table of counts labeled A, B, C, and D
from upper left to lower right (as shown in
Table 10.4) relative risk (RR) is defined as:

R R =
(

A

A + B

/
C

C + D

)
.

A limitation of this effect size estimate can
be seen in Table 10.4. We examine the three
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study outcomes closely and ask ourselves the
following: If we had to be in the control con-
dition, would it matter to us whether we were
in Study 1, Study 2, or Study 3? We think most
people would rather have been in Study 1 than
Study 2, and we think that virtually no one
would have preferred to be a member of the
control group in Study 3. Despite the very im-
portant phenomenological differences among
these three studies, however, Table 10.4 shows
that all three relative risks are identical: 10.00.
That feature may be a serious limitation to the
value and informativeness of the relative risk
index.

Odds Ratio

The odds ratio is defined as the ratio of the
not-surviving control patients to the surviv-
ing control patients divided by the ratio of the
not-surviving treated patients to the surviving
treated patients. In Table 10.4 the odds ratio
(OR) is defined as:

O R =
(

A

B

/
C

D

)
.

In Table 10.4 the odds ratio behaves more
as expected than does the relative risk in that
the odds ratio increases with our phenomeno-
logical discomfort as we go from the results of
Study 1 to Study 2 to Study 3. However, the
high odds ratio for Study 1 seems alarmist.
Indeed, if the data showed

Die Live Total

Control 10 999,990 106

Treated 1 999,999 106

Total 11 1,999,989 2(106)

so that an even smaller proportion of patients
were at risk, the odds ratio would remain at
10.00, an even more alarmist result.

The odds ratio for Study 3 is also unattrac-
tive. Because all the controls die, we could

perhaps forgive the infinite odds ratio. How-
ever, very different phenomenological results
yield an identical odds ratio. If the data
showed

Die Live Total

Control 1,000,000 0 106

Treated 999,999 1 106

Total 1,999,999 1 2(106)

we would again have an infinite odds ratio—
definitely an alarmist result. In this case even
the problematic relative risk index would yield
a phenomenologically more realistic result
of 1.00.

Risk Difference

The risk difference is defined as the difference
between the proportion of the control patients
at risk and the proportion of the treated pa-
tients at risk. In Table 10.4 the risk difference
(RD) is defined as

RD =
(

A

A + B
− C

C + D

)
.

The last column of Table 10.4 shows the
Pearson product moment correlation (r ) be-
tween the independent variable of treatment
(scored 0, 1) and the dependent variable of
outcome (scored 0, 1). Comparison of the risk
differences with r in Table 10.4 (and else-
where) shows that the risk difference index
is never unreasonably far from the value of r .
For that reason the risk difference index may
be least likely to be quite misleading under
special circumstances, so we prefer it as our
all-purpose index if we have to use one of the
three indexes under discussion. But even here
we feel we can do better.

Standardizing the Three Risk Measures

We propose a simple adjustment that stan-
dardizes our measures of relative risk, odds
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Table 10.5 Standardized Outcomes of Table 10.4

Die Live Standardized Standardized Standardized Risk
Relative Risk Odds Ratio Difference (r)

Control A C
Treatment C A (A/C) (A/C)2 (A − C)/100

Study 1
Control 53 47 1.13 1.27 .06
Treatment 47 53

Study 2
Control 75 25 3.00 9.00 .50
Treatment 25 75

Study 3
Control 95 5 19.00 361.00 .90
Treatment 5 95

ratio, and risk difference (R. Rosenthal &
Rubin, 1998). We simply compute the cor-
relation r between the treatment and outcome
and display r in a BESD, as described above.

Table 10.5 shows the BESD for the three
studies of Table 10.4. Although the tables
of counts of Table 10.4 varied from Ns of
2,000 to 40 to 20, the corresponding BESDs of
Table 10.5 all show the standard margins of
100, which is a design feature of the BESD.
The computation of our new effect size in-
dexes is straightforward. We simply compute
relative risks, odds ratios, and risk differences
on our standardized tables (BESDs) to obtain
standardized relative risks, standardized odds
ratios, and standardized risk differences. The
computation of these three indexes is simpli-
fied because the A and D cells of a BESD
always have the same value (as do the B and
C cells). Thus, the computational equations
simplify to A/C for standardized relative risk
(SRR), to (A/C)2 for standardized odds ratio
(SOR), and to (A-C)/100 for standardized risk
difference (SRD).

Table 10.5 shows the standardized relative
risks increasing as they should in going from
Study 1 to Study 3. The standardized odds
ratios also increase as they go from Study 1
to Study 3 but without the alarmist value for
Study 1 and the infinite value for Study 3.

(A standardized odds ratio could go to infin-
ity only if r were exactly 1.00, an unlikely
event in behavioral or biomedical research.)
The standardized risk difference is shown in
Table 10.5 to be identical to r , which is an at-
tractive feature emphasizing the interpretabil-
ity of r as displayed in a BESD.

MINIMIZING ERRORS IN THINKING
ABOUT EFFECT SIZES: THE
COUNTERNULL VALUE OF AN
EFFECT SIZE

The counternull value of an effect size was
recently introduced as a new statistic (R.
Rosenthal & Rubin, 1994). It is useful in
virtually eliminating two common errors: (a)
equating failure to reject the null with the es-
timation of the effect size as equal to zero
and (b) equating rejection of a null hypoth-
esis on the basis of a significance test with
having demonstrated a scientifically impor-
tant effect. In most applications the value of
the counternull is simply twice the magnitude
of the obtained effect size (e.g., d, g, �, Zr ).
Thus with r = .10 found to be nonsignifi-
cant, the counternull value of r = .20 is ex-
actly as likely as the null value of r = .00. For
any effect size with a symmetric reference
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distribution such as the normal or any t dis-
tribution, the counternull value of an effect
size can always be found by doubling the ob-
tained effect size and subtracting the effect
size expected under the null hypothesis (usu-
ally zero). Thus, if we found that a test of sig-
nificance did not reach the chosen level (e.g.,
.05), the use of the counternull would pre-
vent us from concluding that the mean effect
size was, therefore, probably zero. The coun-
ternull value of 2d or 2Zr would be just as
tenable a conclusion as concluding d = 0 or
Zr = 0.

The counternull is a kind of confidence in-
terval conceptually related to the more tra-
ditional (e.g., 95%) confidence interval. As
Cohen (1990, 1994) pointed out with his cus-
tomary wisdom, the behavioral and medical
sciences would be more advanced had we
always routinely reported not only p values
but also effect size estimates with confidence
intervals.

DIFFERENTIATING FOUR
CORRELATIONS

So far in our discussion of r as our preferred
effect size, we have not mentioned that we
can actually employ four rs usefully as effect
size estimates. That is the case both in meta-
analytic work and in the analysis of the data
of a single study. The r to which we have been
referring is only one of those rs, specifically,
rcontrast. Ideally, both in meta-analytic work
and in the analysis of the data of individual
studies, we would report all four correlations,
because each addresses a different question
(R. Rosenthal et al., 2000).

The rcontrast Correlation

This r is a partial correlation between the
scores on the dependent variable of individual
sampling units and the predicted mean score

(contrast weight) of the group to which they
belong—with other between-group variation
partialed out. This is the most frequently used
correlation in meta-analytic work because it
is often the only correlation we can calculate
from other people’s data. We can find rcontrast

from tests of significance by any of the fol-
lowing equations:

rcontrast =
√

Fcontrast

Fcontrast + d fwithin
, (15)

rcontrast =
√

t2
contrast

t2
contrast + d fwithin

, (16)

rcontrast =
√

χ2
(1)

N
, (17)

rcontrast = Z√
N

, (18)

and we can compute rcontrast from the effect
size estimate d using the following:

rcontrast =
√

d2

d2 + 4
. (19)

For further details on other equivalences
among effect size estimates, see R. Rosenthal
(1991a, 1994b) and R. Rosenthal and Rosnow
(1991).

In the simplest case, where two groups are
being compared, rcontrast is the point biserial
correlation between membership in one of the
two groups (coded, e.g., 0 and 1) and the score
on the dependent variable. In this simple two-
group case we report only the value of rcontrast

and not the values of the other three correla-
tions.

When three or more groups are being stud-
ied, however, each of the four correlations tells
us something different about the relationship
between the independent and dependent vari-
ables. For example, ralerting, the correlation be-
tween the predicted and obtained mean scores
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per condition, often alerts us to an other-
wise overlooked relationship. For example,
we may read a report that there is no rela-
tionship between age level (e.g., ages 8, 9,
10, 11, 12) and cognitive performance with
F(4,95) = 1.00, p = .41. However, looking at
the five means of this report may show a per-
fect correlation (ralerting) between age level
and mean performance, clearly contradicting
the conclusion of the report that there was
no relationship between age and performance.
That claim had been based on an inappropri-
ate omnibus F test with 4 df in the numera-
tor. A properly computed Fcontrast would have
yielded F(1,95) = 4.00, p = .048, rcontrast =
.20, (ralerting = 1.00, t very large, p very
small). Other uses of ralerting include its role in
the computation of contrasts in other people’s
data (R. Rosenthal & Rosnow, 1985; Rosnow
& Rosenthal, 1996).

The reffect size Correlation

This is the correlation between the scores on
the dependent variable of individual sampling
units and the predicted mean score (contrast
weight) of the group to which they belong
without any partialing. Because it involves no
partialing of other between-group effects out
of the error term, reffect size is never larger than
rcontrast and is usually smaller than rcontrast—
sometimes dramatically so. The reffect size cor-
relation can be computed from

reffect size

=
√

Fcontrast

Fcontrast + Fnoncontrast(d fnoncontrast) + d fwithin
.

(20)

The ralerting Correlation

This is the correlation between the condi-
tion means and the predicted mean scores
(contrast weights). The ralerting correlation can

be computed from

ralerting

=
√

Fcontrast

Fcontrast + Fnoncontrast(d fnoncontrast)
.

(21)

The rBESD Correlation

This is a usually more conservative effect
size correlation that permits generalization
not only to other sampling units in the same
conditions but also to other levels of the same
independent variable. The rBESD correlation
can be computed from

rBESD

=
√

Fcontrast

Fcontrast + Fnoncontrast(d fnoncontrast + d fwithin)
.

(22)

In Equation (22), when Fnoncontrast is less than
1.00, it is entered as equal to 1.00. Fnoncontrast

is computed as

Fbetween(d fbetween) − Fcontrast

d fbetween − 1
. (23)

The restriction that Fnoncontrast in Equation
(22) cannot drop below 1.00 formalizes the
assumption that the noncontrast variation is
noise and forces rBESD to be less than, or
at most equal to, reffect size. Detailed discus-
sions of these four correlations are provided in
R. Rosenthal et al. (2000).

PREPARING META-ANALYTIC
REVIEWS

The purpose of the remainder of this chapter
is to provide some guidelines for the prepara-
tion of meta-analytic reviews of the literature.
Meta-analytic reviews are quantitative sum-
maries of research domains that describe the
typical strength of the effects or phenomena
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being described, their variability, their statis-
tical significance, and the nature of the mod-
erator variables from which one can predict
their relative strength (Cooper, 1989; Glass
et al., 1981; Hedges & Olkin, 1985; Hunter
& Schmidt, 1990; Light & Pillemer, 1984;
R. Rosenthal, 1991a).

Our goal is not to enumerate the many
quantitative procedures employed in meta-
analytic reviews, because these are described
in detail in the textbooks just listed, as well as
in a handbook edited by Cooper and Hedges
(1994a).

As is the case in the analysis of the data
of any individual study, the analysis of data
from a set of studies can vary greatly in com-
plexity. For example, the six texts just listed
can be roughly divided into two levels of com-
plexity and completeness. The books by Glass
et al. (1981), Hedges and Olkin (1985), and
Hunter and Schmidt (1990) are more detailed
and quantitatively more demanding than those
by Cooper (1989), Light and Pillemer (1984),
and R. Rosenthal (1991a). There are theoreti-
cal differences among these six texts as well,
and the remainder of this chapter should be
useful to meta-analysts working within any
of these frameworks. Thus, although some of
the more complex procedures described by
Hedges and Olkin and by Hunter and Schmidt
are not specifically mentioned, those working
within their frameworks can easily add those
analyses to the “basics” here. Regardless of
how complex the meta-analytic procedures
will become in a given review of the literature,
reporting the basics makes for a meta-analysis
that the typical reader can follow more easily
and understand at a deeper level. Reporting
the basics also makes it easier for a reader to
check the tenability of conclusions drawn by
the meta-analyst.

The heart of what follows will be a dis-
cussion of what should be considered for in-
clusion in a meta-analytic report. Not all of
the suggestions of what to report will apply

equally well to all meta-analytic undertakings,
but on average, researchers who seriously
consider the suggestions mentioned here will
likely minimize important omissions.

Who should be thinking of preparing meta-
analytic reviews? Anyone considering a re-
view of an entire literature, or of a specifi-
able subset of a literature, may as well do
it quantitatively as nonquantitatively, because
all of the virtues of narrative reviews can be
preserved in a meta-analysis, which merely
adds the quantitative features as a bonus. The
level of quantitative skill and training required
to employ basic meta-analytic procedures is
so modest that any researchers capable of
analyzing the results of their own research
will be capable of learning the small num-
ber of calculations required to answer stan-
dard meta-analytic questions (e.g., what is
the mean and standard deviation of this list
of correlation coefficients or other effect size
estimates?).

Keeping the basic meta-analytic proce-
dures very descriptive, very simple, and very
clear is a positive virtue. In many years of
reviewing meta-analytic literature syntheses,
we have never seen a meta-analysis that was
too simple; however, we have often seen meta-
analyses that were very fancy and very much
in error.

The most important part of a meta-analysis
is the descriptive section that displays the ef-
fect sizes (e.g., correlation coefficients) and
summarizes their distribution and central ten-
dency. Good meta-analytic practice, like good
data-analytic practice in general, adopts an
exploratory orientation toward these displays
and summaries (Tukey, 1977), and little
“high-tech statistication” is required for this
valuable enterprise. Indeed, the computations
required for the most basic meta-analytic
work are so trivial that in much of our own
meta-analytic work over the past many years
we have never felt the need to use a software
package that “does meta-analysis.”
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Good software for meta-analytic proce-
dures can, of course, be a great time saver.
However, a drawback to the development of
sophisticated software that does meta-analytic
(or any other data-analytic) computations is
that some researchers (who feel less expert
than they might like) believe that the software
itself will do the analysis. Alas, that is not
the case. The software will do a variety of
computations, and it will do them fast, but
for any given application, the computations
may be either wise or foolish. Staying simple,
keeping close to the data, and emphasizing de-
scription will prevent most serious errors. It is
better to consult with a more experienced col-
league who knows exactly what is being com-
puted by the software than to trust the soft-
ware to do the analysis. That advice applies to
all data-analytic undertakings, of course, not
merely to meta-analytic procedures. It is wise
always to verify computer-based results by
guesstimations or rough calculations; if that is
not possible, they should be checked against
the output of another program (Wilkinson
& the Task Force on Statistical Inference,
1999).

Without any implication that all good
meta-analyses will look alike and will in-
corporate all the suggestions to follow, the
rest of this chapter discusses what might be
reported in most meta-analyses and what
should at least be considered for almost all
meta-analyses. Some additional reporting
checklist items for observational studies in
epidemiology have also recently become
available (Meta-analysis of Observational
Studies in Epidemiology Group, 2000).

THE INTRODUCTION TO A
META-ANALYTIC REVIEW

The introduction to a meta-analysis does not
differ strategically from the introduction to
any scientific paper. It tells readers why they

should want to read the paper, what makes
it important, and how it will achieve what
has not been achieved before. The issue un-
der study should be placed into a theoretical
context.

If the literature is made up of several types
of studies, it is helpful to describe a study typi-
cal of each of the several types. If the results of
the research differ widely (e.g., some results
strongly favor the treatment condition, some
results strongly favor the control condition),
it will be useful to give examples of studies
showing this wide variation in results. This
preliminary overview helps readers to under-
stand better the need for the meta-analysis
and its major function of examining moder-
ator variables.

THE METHODS SECTION OF A
META-ANALYTIC REVIEW

Literature Searches

Here, readers are told how the studies to
be summarized were located, what databases
were searched, what journals were painstak-
ingly gone through, what research registers
were consulted, and what steps were taken
to retrieve the fugitive literature (i.e., the un-
published or otherwise difficult-to-retrieve re-
search reports). For those of us not trained
as information scientists, the Handbook of
Research Synthesis edited by Cooper and
Hedges (1994a) brings considerable help and
enlightenment. Most of what any meta-analyst
needs to know (and even more) about re-
trieving the data for a meta-analysis is con-
tained in some 50 pages of the four chap-
ters prepared by White (1994), Reed and
Baxter (1994), Dickersin (1994), and M. C.
Rosenthal (1994).

The reason for trying to locate all the re-
search on the topic of our meta-analysis is
primarily to avoid the biased retrieval of
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searching only the major journals, which may
selectively publish only the results charac-
terized by lower p values and larger effect
sizes. If the domain being searched is one
with a great many studies—more than we
have the resources to analyze—it is better to
sample the exhaustive listing of results than
to select only the more readily retrievable
results.

Criteria for Inclusion

Information Available

Not all the reports retrieved will be appropri-
ate for inclusion in the meta-analysis. Some
will turn out to have no data of any kind,
and some will report on the data so poorly
that they will be unusable. Some will be bor-
derline cases in which we are given enough
data that good detective work will allow us
to obtain at least an approximate effect size
estimate and significance level. Many stud-
ies, for example, simply say “there was no
effect of X on Y ” or “the effect was not signifi-
cant.” Meta-analysis involves the summariza-
tion of data, not of authors’ conclusions, so the
above statements are of little help to the meta-
analyst. However, if the relevant means and
standard deviations are given, we can com-
pute effect sizes ourselves. If sample sizes are
given as well, we can also compute accurate
p values.

For studies claiming “no effects” or “no
significant effects,” we may well want to as-
sign an effect size estimate of 0.00 and a
one-tailed p of .50 (Z = 0.00). Experience
suggests that this procedure is conservative
and leads to effect size estimates that are too
small. The alternative of not using those stud-
ies, however, is likely to lead to effect size
estimates that are too large, and almost surely
to p values that are too small (i.e., too signif-
icant). Confronted with this choice of proce-
dures, we should “do it both ways” in order to

learn just how much difference it will really
make to our overall view of the data. Consid-
erations of alternative approaches to the data
are part of the process of “sensitivity anal-
ysis” described by Greenhouse and Iyengar
(1994).

Study Quality

Of the studies we retrieve, some will be
methodologically exemplary, and others will
be stunningly bad. Shall we include them
all or only the good ones? The question of
quality criteria for inclusion is really a ques-
tion of weighting by quality (R. Rosenthal,
1991b). Including good studies and exclud-
ing bad ones is simply a 1, 0 weighting sys-
tem and one that is often suspect on grounds
of weighter-bias. We are too likely to think
of our own studies, as well as those of our
students, of our friends, and of those who
successfully replicate our work as good stud-
ies. In addition, we are too likely to think of
the studies of our enemies and of those who
fail to replicate our work as bad studies. As
protection against our biases, we do better
to evaluate the retrieved studies for quality
by some procedure that allows disinterested
coders or raters to make the required judg-
ments. Indeed, some workers feel that coders
or raters should be “blind” to the results of the
study.

Coding of studies for their quality usually
requires only simple judgments of the pres-
ence or absence of desirable design features
such as whether the experiment is random-
ized, whether the experimenter is blind to
the hypothesis, and whether the demand char-
acteristics are controlled. Quality points can
then be assigned on the basis of the number
of desirable features present. Rating of studies
usually requires a more global, overall assess-
ment of the methodological quality of a study,
using, for example, a seven-point rating scale.
Reliability of coding or rating should be re-
ported. The quality weightings obtained for
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each study can then be employed as an adjust-
ment mechanism in computing average effect
size or as a moderator variable to see whether
quality is, in fact, related to obtained effect
size. Further detail on quality assessment,
weighting, and reliability are available in Hall,
R. Rosenthal, Tickle-Degnen, and Mosteller
(1994); R. Rosenthal (1991a); and Wortman
(1994).

Independence

For a database of any size, the meta-analyst
will soon discover that some studies are not
independent of one another; that is, the same
subjects have been employed in two or more
studies. Sometimes, slightly different depen-
dent variables are reported in multiple re-
ports on the same subjects. For example, if
the subjects’ responses had been recorded in
video, audio, or transcript form, new ideas for
dependent variables can be evaluated years
later. Although such multiple uses of the
subjects’ data archives can be scientifically
useful, they present a problem for the un-
wary meta-analyst. Most computational pro-
cedures dealing with significance testing
require that the studies summarized be in-
dependent. Treating nonindependent studies
as independent leads to significance tests that
are in error. These errors can be avoided by
treating the several nonindependent studies as
a single study with multiple dependent vari-
ables (R. Rosenthal, 1991a; R. Rosenthal &
Rubin, 1986). For a more technical treatment
of problems of nonindependence, see Gleser
and Olkin (1994).

Minimum Number of Studies

What if our meta-analytic efforts result in the
retrieval of only a few studies? What num-
ber of studies is too few for a meta-analysis?
Meta-analytic procedures can be applied to
as few as two studies, but the meta-analytic
results will be relatively unstable when there
are very few studies. In such cases, it would be

more economical of journal space and editors’
and reviewers’ time to incorporate the meta-
analysis as an extension of the results section
of the last in the series of a few studies. Thus,
if our study finds a correlation r between the
two variables of interest, we might end our
results section by combining and comparing
our r and p values with those obtained earlier
by other investigators.

What Was Recorded?

Study Characteristics

Readers should be told what information was
recorded for each study. For example, the sub-
jects’ number, age, sex, education, and volun-
teer status (R. Rosenthal & Rosnow, 1991)
might be recorded for each study regardless
of whether subjects themselves were the sam-
pling unit or whether classrooms, therapists,
groups, wards, clinics, or other organizations
served as the unit of analysis (e.g., the basis for
computing degrees of freedom for the analy-
sis). Was the study conducted in a laboratory
or in the field? Was it an observational study
or a randomized experiment? What was the
year of publication and the form of publica-
tion (book; article; chapter; convention report;
bachelors, masters, or doctoral thesis; tech-
nical report; unpublished)? These particular
study characteristics are often included, but
each meta-anaysis should also include all the
variables that the meta-analyst’s knowledge
of and intuition into the literature suggest may
be important correlates of the magnitudes of
the effect sizes obtained. More detailed dis-
cussions of the selection, coding, and eval-
uation of study characteristics have recently
become available (Lipsey, 1994; Lipsey &
Wilson, 2001; Orwin, 1994; Stock, 1994).
All of the foregoing study characteristics will
be used in two ways: as descriptions of the
study set retrieved, and as potential moderator
variables.
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Summarizing Study Characteristics

An overview of various study characteristics
is often valuable. These include the range and
median of ages employed in the assembled
studies, the range and median of dates of
published and unpublished studies, the pro-
portions found in various types of publication
formats, the range and median of proportions
of samples that were female or male, the pro-
portion of studies found that were laboratory
or field studies, and the proportion of studies
that were randomized experiments rather than
observational studies. These readily summa-
rized statistics will be useful to readers.

Other Moderator Variables

All of the study characteristics recorded for
each study and summarized for the set of stud-
ies can be employed as moderator variables,
that is, variables correlated with the magni-
tude of effect size obtained for the different
studies. In addition to these fairly standard po-
tential moderators, however, specific moder-
ator variables have particular meaning for the
specific area of research being summarized.

For example, in a meta-analysis of thin
slices of expressive behavior, short periods
(under 5 min) of observation of expressive
behavior were surprisingly predictive of
various objective outcomes (Ambady &
Rosenthal, 1992). One of the moderator vari-
ables examined was the presence or absence
of verbal content accompanying the nonverbal
behavior. It was found that studies including
verbal content did not yield a higher average
effect size of predictive accuracy. Another ex-
ample of a moderator variable analysis grew
out of a meta-analysis of studies of the effects
of teachers’ expectations on pupils’ IQ gains
(Raudenbush, 1994). Raudenbush employed
the moderator variable of how long teachers
had known their pupils before the teachers
were given randomly assigned favorable ex-
pectations for pupils’ IQs. He found that the

longer teachers had known their pupils before
the experiment began, the smaller were the
effects of experimentally induced teacher
expectations.

Effect Size Estimates

Effect size estimates are the meta-analytic
coin of the realm. Whatever else may be
recorded, the estimated effect size must be
recorded for each study entered into the meta-
analysis.

As discussed earlier, the two main fami-
lies of effect sizes are the r family and the d
family. The most important members of the
former are Pearson product moment correla-
tions (r ) and Zr , the Fisher transformation of
r . The most important members of the d fam-
ily are Cohen’s d, Hedges’s g, and Glass’s
�, all characterized as differences between
means divided by some standard deviation.
Detailed explanations of these and other ef-
fect size estimates are given elsewhere (R.
Rosenthal, 1991a, 1994; R. Rosenthal et al.,
2000; and for categorical data, see also Fleiss,
1994).

Significance Levels

Though far less important than effect size esti-
mates, significance levels should be recorded
for each study unless the meta-analyst is cer-
tain that questions of the statistical signif-
icance of the overall results of the meta-
analysis will not arise. All such levels should
be computed as accurately as possible and
recorded as the one-tailed standard normal de-
viates associated with the p level. Thus ps of
.10, .01, .001, and .000001 are reported as Zs
of 1.28, 2.33, 3.09, and 4.75, respectively. Re-
sults that are significant in the unpredicted or
uncharacteristic direction are reported as neg-
ative Zs (e.g., if p = .01 one-tailed, but in
the wrong direction—that is, the unpredicted
direction—it is recorded as −2.33).
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THE RESULTS SECTION OF A
META-ANALYTIC REVIEW

Descriptive Data

The heart of a meta-analytic report is a de-
scription of the effect sizes obtained. Unless
the number of studies is very small, it is often
valuable to provide a visual display of the ef-
fect sizes obtained as well as various indexes
of central tendency and variability. The value
of visual displays in the analysis of psycho-
logical data in general has been emphasized
by Wilkinson and the Task Force on Statistical
Inference (1999).

Visual Display

Different visual displays may be useful un-
der different conditions, and many of these
are described by Cooper (1989); Glass et al.
(1981); Greenhouse and Iyengar (1994);
Hedges and Olkin (1985); Light and Pillemer
(1984); Light, Singer, and Willett (1994);
R. Rosenthal and Rosnow (1991); and Tukey
(1977). Sometimes a specially prepared gra-
phic would be most useful—one not found in
any of these references. It would be instruc-
tive in that case to consult some of the ex-
cellent general texts on visual displays, for
example, those by Cleveland (1985, 1995),
Kosslyn (1994), and Tufte (1983). There is
not space here to describe the many visual dis-
plays that may be instructive (e.g., box plots,
funnel plots, stem-and-leaf displays), but as a
single example of an often-useful visual dis-
play we describe Tukey’s stem-and-leaf dis-
play. This is a versatile picture of the data
that perfectly describes the distribution of re-
sults while retaining each of the recorded ef-
fect sizes (Tukey, 1977). Table 10.6 is a stem-
and-leaf display from a recent meta-analysis
of 38 studies of the predictive value of thin
slices of nonverbal and verbal behavior. Each
of the 38 effect sizes (rs) is recorded with the
first digit found in the column labeled “Stem”

Table 10.6 Stem and Leaf Display of 38 Effect
Size r s

Stem Leaf

.9

.8 7

.7 3, 4

.6 3, 8

.5 0, 2, 2, 3, 4, 4

.4 0, 0, 0, 1, 7

.3 1, 3, 5

.2 1, 1, 1, 2, 3, 3, 4, 5, 6, 6, 7, 8, 9

.1 0, 0, 4, 5, 6, 6

.0

NOTE: rs include relationships between two continuous
variables (r ), two dichotomous variables ( phi), and
one dichotomous and one continuous variable (point
biserial r ).
SOURCE: Based on Ambady & R. Rosenthal (1992).

and the second digit found in the column la-
beled “Leaf.” The top three entries of Table
10.6, therefore, are read as three rs of .87, .73,
and .74.

Central Tendency

Several indexes of central tendency should
be reported, and differences among these in-
dexes should be discussed and reconciled.
These include the unweighted mean effect
size, the weighted mean effect size, the un-
weighted median, the weighted median, and
(more optionally) the proportion of studies
showing effect sizes in the predicted direc-
tion (Hiller, R. Rosenthal, Bornstein, Berry,
& Brunell-Neuleib, 1999; R. Rosenthal,
Hiller, Bornstein, Berry, & Brunell-Neuleib,
in press). The number of independent effect
sizes on which these indexes are based should
be reported along with (again, more option-
ally) the total number of subjects on which
the weighted mean is based, and the median
number of subjects per obtained effect size.
The weighted mean effect size here refers
to weighting by size of study (e.g., the df ),
but other weightings can be used as well.
For example, weighting may also be done
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by the quality of the study or by any other
study characteristic that is likely to be of sub-
stantive or methodological interest. In larger
meta-analyses, subsets of studies that can be
meaningfully grouped together on the ba-
sis of study characteristics can be examined
separately, subset by subset, with respect to
their central tendencies and other descriptive
features.

Variability

The most important index of variability of ef-
fect sizes is simply their standard deviation. It
is also helpful to give the maximum and min-
imum effect sizes and the effect sizes found
at the 75th percentile (Q3) and the 25th per-
centile (Q1). For normally distributed effect
sizes the standard deviation is estimated by
.75 (Q3 − Q1). Table 10.7 provides a check-
list of descriptive data that should often, if not
always, be reported.

Examining the distance (e.g., in units of
S) of the maximum and minimum effect sizes
from the mean, median, Q1, and Q3 of the
full distribution of effect sizes is a useful start
in the analysis of the data for outliers. Valu-
able discussions of the problem of outliers are
found in Barnett and Lewis (1978), Hedges
and Olkin (1985), Hunter and Schmidt (1990),
and Light and Pillemer (1984). If extreme out-
liers are found, they can be set aside by using
equitable trimming. That is, if the very highest
value is seen to be an outlier to be set aside,
then the very lowest value should also be set
aside so that there will be no effect on the
median.

Several meta-analysts discuss separating
the variability among effect sizes into compo-
nents that are due to ordinary sampling error
and components that are due to other sources
(Hedges & Olkin; 1985, Hunter & Schmidt,
1990; Light & Pillemer, 1984). This can be
especially valuable in alerting us to “non-
sampling error” variability that must then be

Table 10.7 Checklist of Descriptive Data for the
Results Section

Visual Displays of Effect Sizes (Often Useful)
stem-and-leaf plots (as in Table 10.6)
box plots (if many are to be compared)
funnel plots (e.g., to investigate publication bias)
other plots (as needed)

Central Tendency
unweighted mean
weighted meana

unweighted median (repeated for convenience as Q2

below)
weighted medianb

proportion of positive effects
k (the number of independent studies)
N (the number of independent participants)
n (median number of participants per study)

Variability
S (the standard deviation)c

maximum effect sized

Q3 (75th percentile effect size)
Q2 (50th percentile effect size)
Q1 (25th percentile effect size)
minimum effect sized

normal-based S = .75 (Q3 − Q1)

aWeighting usually by df; means weighted by study qual-
ity or by other weightings should also be reported, if
computed.
bThe weighted median correlation is the effect size for the
study that includes the midmost participant. To obtain the
weighted median we list studies in order of magnitude of
their effect size and the associated cumulative frequency
of their sample sizes. Thus, if there were 6,000 partici-
pants in a meta-analysis of 40 studies, we go from the
smallest to the largest effect size until we have found
the midmost (3,000.5th) participant. The effect size of
the study in which we find the midmost participant is the
weighted median.
cIt is also often valuable to report separately the variabil-
ity “corrected” for sampling variation.
d Useful in a preliminary check for outliers.

investigated in order to identify potential mod-
erator variables. However, a conclusion that
all of the effect size variability is due to “or-
dinary sampling error” does not mean that we
cannot or should not investigate the variability
by considering moderator variables. Indeed,
scientific progress can be defined in terms
of our continually reducing the magnitude of
sampling error by increasing our understand-
ing of moderator variables.
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Inferential Data

Significance Testing

Many procedures are available for testing the
significance of an estimate of the typical ef-
fect size found in a particular meta-analysis.
Mosteller and Bush (1954) described three
procedures; R. Rosenthal (1991a) described
nine procedures; and Becker (1994) listed 18.
One of the most generally useful of these
methods is the Stouffer method, in which we
simply compute the standard normal deviate
(Z) associated with each p value in our meta-
analysis. Then we add all these Zs (one per
study) and divide this sum by

√
k, where k is

the number of independent studies, to find the
new Z that tests the overall statistical signifi-
cance of the result of the meta-analysis.

A related procedure for significance test-
ing has been described in detail by Hedges,
Cooper, and Bushman (1992). This proce-
dure, called the lower confidence limit
(LCL) method, also yields a standard nor-
mal deviate, Z . The LCL Z and the Stouffer
Z agree most (nearly 99%) of the time; but
when they do disagree, the LCL method may
be more powerful (unless the smaller stud-
ies summarized in the meta-analysis are as-
sociated with the larger effect sizes—a fairly
likely situation). The LCL method tends to re-
ject the null hypothesis when it is true (Type
I error) more often than does the Stouffer
method; but because the null hypothesis may
essentially never be true, that is not a serious
problem (Cohen, 1994).

In both the Stouffer and LCL methods, Z
depends for its magnitude on both the effect
sizes obtained and the sizes of the studies and
is interpreted as a fixed effect. That is, gener-
alization of the results is to other subjects of
the type found in the specific k studies of the
meta-analysis. Generalization to other studies
is ordinarily not justified.

Because of this limitation of the generaliz-
ability of fixed effect analyses, it is desirable

also to employ a random effects test of sig-
nificance. Such tests permit generalization to
other studies from the same population from
which the retrieved studies were sampled. A
simple one-sample t test on the mean effect
size serves this purpose (Mosteller & Bush,
1954). For example, if we were working with
Fisher Z -transformed rs, t would equal the
mean Zr divided by the square root of the
quantity S2/k where S is the standard devia-
tion of Zr s and k is the number of indepen-
dent Zr s. This t (with df = k − 1) tends to
be more conservative than Stouffer’s Z but
should nevertheless also be employed because
of its greater value in generalizing to other
studies.

Another random effects approach to sig-
nificance testing that is likely to be even more
conservative than the one-sample t test is
the one-sample χ2(1) test. This test assesses
the null hypothesis that there is no difference
in the proportion of studies showing posi-
tive effect sizes rather than negative effect
sizes. When there are fewer than 10 effect
sizes, the binomial test will tend to give more
accurate p values than will χ2(1) (Siegel,
1956).

We should emphasize the difference be-
tween the fixed effect and the random ef-
fect view of the results obtained in our meta-
analysis. When we adopt a fixed effect view
of the results, the significance testing is based
on the total number of sampling units (e.g.,
subjects, patients, organisms), but our gener-
alization is restricted to other sampling units
that might have been assigned only to the very
same studies of our meta-analysis. The fixed
effect good news, therefore, is greater statis-
tical power; the bad news is more limited
generalizability. When we adopt a random
effect view of the results, the significance
testing is based not on the total number
of sampling units but on the total number
of studies included. However, the generaliza-
tion can go beyond the specific studies we
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have retrieved to others that belong to the
same population from which we obtained our
studies. The random effect good news, there-
fore, is increased generalizability; the bad
news is decreased statistical power. We should
not try to be overly precise in our applica-
tion of “random effects,” however, because
there is precious little random sampling of
studies in meta-analytic work. Indeed, even
in the fixed effect model, when we gener-
alize to other sampling units within studies,
we assume that the new sampling units will
be randomly sampled within the study from
the same population from which we sampled
the original sampling units. In behavioral or
biomedical research, it is very seldom indeed
that we sample our subjects or patients ran-
domly. Hence “random” should be thought of
as “quasi-random” at best.

Tables 10.8 and 10.9 give an intuitive feel
for the fixed versus random effect issue. Ta-
ble 10.8 shows a simple meta-analytic model
in which 10 studies have been retrieved, each
with a treatment and a control condition with
20 subjects in each of the 2 × 10 = 20 cells.
Table 10.9 shows the expected mean squares

Table 10.8 Meta-Analytic Model Illustrating Fixed
versus Random View of Studies Summarized

Condition

Study Treatment Control

1

2

3

4

5

6

7

8

9

10

NOTE: Assume n = 20 for each of the 2×10 = 20 cells.

and F tests when studies are regarded as
fixed versus random (Snedecor & Cochran,
1989). With treatment always regarded as a
fixed effect, the F tests for studies and for
the treatment × studies interaction are the
same whether studies are regarded as fixed
or random. However, the treatment effect is
tested against different error terms when stud-
ies are viewed as fixed versus random, and
the degrees of freedom for the F test are also
different. In the example of Tables 10.8 and
10.9, when studies are viewed as fixed, the
error term is the one expected to be small-
est (subject variation within cells) and the df
for error = 380. When studies are viewed as
random, the error term will often be larger
than when viewed as fixed to the extent that
there are nonzero treatment × study interac-
tion effects. In addition, the df will be smaller
(9 instead of 380 in this example). More re-
cent and more detailed discussions of the
fixed versus random effect issue can be found
in Hedges (1994b), Raudenbush (1994), and
Shadish and Haddock (1994).

Confidence Intervals

Confidence intervals should be computed
around the mean effect size, preferably using
a simple random effects approach. That is, the
standard error of the mean effect size estimate
(e.g., Zr ) should be computed as S/

√
k, with k

being the number of independent effect sizes.
At least the 95% confidence interval should
be recorded; sometimes it is useful to give the
90%, the 99%, and other intervals as well.

An example will be helpful. Suppose we
have k = 25 independent studies available
with an unweighted mean d of .50 and a stan-
dard deviation (S) of these 25 ds of 1.00.
Then the standard error (SE) of the 25 ds
will be given by S/

√
k = 1.00/

√
25 = .20.

The 95% confidence interval is then given by
the rough and ready mean d(d) ± 2(SE) or
.50 ± 2(.20) = an interval from .10 to .90. A
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Table 10.9 Expected Mean Squares and F Tests When Studies Are Viewed as Fixed versus Random

Studies Fixeda Studies Randomb

Source d f EMS F EMS F

(T) Treatment
(Fixed Effect) 1 σ 2 + 200KT

2 T/U σ 2 + 20σTS
2 + 200KT

2 T/TS
(S) Studies 9 σ 2 + 40KS

2 S/U σ 2 + 40σS
2 S/U

(TS) Treatment × Studies 9 σ 2 + 20KTS
2 TS/U σ 2 + 20σTS

2 TS/U
(U) Participants (Units)

in cells 380 σ 2 σ 2

aRecognizes these 10 studies as the entire population of studies that are of interest.
bRegards these 10 studies as a “random” sample from some larger population of studies to which the meta-analyst
would like to generalize.

more accurate interval is obtained by replac-
ing the 2 by the critical .025 one-tailed value of
t for the appropriate df (i.e., k − 1). That crit-
ical value of t for k = 25, (df = 24) is 2.064.
Therefore, in this example the confidence in-
terval is .50 ± (2.064)(.20), an interval run-
ning from .09 to .91 (R. Rosenthal & Rubin,
1978a). Our interpretation of this confidence
interval is that if we claim that the effect size
for the population (from which our 25 studies
must be viewable as a random sample) falls
within the 95% confidence interval, our claim
will be correct 95% of the time.

The example given is based on the con-
servative random effects procedure in which
studies—not individual subjects within
studies—are employed as the sampling units.
It is often useful also to compute confidence
intervals in which subjects rather than stud-
ies are employed as the sampling units. How-
ever, the confidence intervals obtained by such
procedures can appear dramatically more op-
timistic (i.e., narrower) than those based on
the random effects procedures just illustrated.
Computational procedures for confidence in-
tervals based on subjects as sampling units
are described in varying degrees of detail by
Hedges (1994b), Hedges and Olkin (1985),
Hunter and Schmidt (1990), and Shadish and
Haddock (1994).

Heterogeneity Tests

Statistical tests of the heterogeneity of signif-
icance levels (R. Rosenthal & Rubin, 1979b)
and of effect size estimates (Hedges, 1982; R.
Rosenthal & Rubin, 1982b) are readily avail-
able. By heterogeneity of significance levels
we mean the degree of variability of p levels
among the studies of our meta-analysis. By
heterogeneity of effect sizes we mean the de-
gree of variability of effect sizes among the
studies of our meta-analysis. Statistical tests
of heterogeneity (typically chi-square tests)
provide p values associated with the degree
of variability of the obtained significance lev-
els or effect sizes. Usually we are more inter-
ested in the heterogeneity of effect sizes than
of significance levels, and it is usually helpful
to present the results of such an analysis. Two
common problems in the use of these tests
must be pointed out, however.

The first of these problems is a widespread
belief that a test of heterogeneity must be
found to be significant before contrasts can
be computed among the obtained effect sizes.
That is not the case. Contrasts, and partic-
ularly planned contrasts, can and should be
computed among the obtained effect sizes
whether the overall test of heterogeneity is
significant or not. The situation is identical
to that in a one-way analysis of variance in
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which many investigators believe it is im-
proper to compute contrasts unless the overall
F is significant. Actually, planned contrasts
should be computed without reference to the
overall F , and even unplanned contrasts can
be computed with appropriate adjustments of
their levels of significance (R. Rosenthal &
Rosnow, 1985, 1991). If overall tests of het-
erogeneity are not to serve as licenses to pur-
sue contrast analyses, why compute them at
all? They do provide some useful informa-
tion. If very significant, they alert us to the
likelihood that all our effect sizes are not cut
from the same cloth and that we should try
to find the moderator variables accounting
for the significant heterogeneity of our effect
sizes. Thus, a very significant χ2 for hetero-
geneity “morally” obligates us to search for
moderators, whereas a nonsignificant χ2 does
not preclude our search.

The second common problem in the use of
heterogeneity tests occurs when we treat them
as though they were estimates of the magni-
tude of heterogeneity. They are not; they are
tests of significance, and like all tests of signif-
icance they are a function of the magnitudes
of the effect and the sample sizes. Thus, the
widely varying (S = .40) effect sizes (r) .80,
.40, and .00 may be found not to differ sig-
nificantly if they are based on small sample
sizes (e.g., n = 10), whereas the homogeneous
(S = .05) rs of .45, .40, .35 may be found to
differ significantly if they are based on large
sample sizes (e.g., n = 800). The magnitude
of the effect size heterogeneity is given by
the indexes of variability described earlier, in
particular by S, the standard deviation of the
effect sizes.

Some meta-analysts like to present sepa-
rately one or both of the ingredients of the
standard deviation (S) of the effect size. We
can illustrate these two ingredients by exam-
ining in Table 10.9 the expected mean squares
for the treatment-by-studies interaction when
studies are viewed as random. The two com-

ponents of variance are σ 2 and σ 2
T S . We ob-

tain the estimate of σ 2 directly from the mean
square for subjects nested in conditions; we
obtain the estimate of σ 2

T S in two steps:

M ST S − M SU

= (σ 2 + 20 σ 2
T S) − (σ 2) = 20 σ 2

T S (1)

σ 2
T S = 20σ 2

T S

20
, (2)

where 20 was the number of subjects in each
cell. The estimate of σ 2 gives us the basic
“noise level” of the dependent variable, and
the estimate of σ 2

T S gives us the variation of
the study outcomes over and above that basic
noise level.

Contrasts

The statistical significance of the relation-
ship between a moderator variable and the
effect sizes obtained is given by the compu-
tation of a contrast test (R. Rosenthal, 1991a;
R. Rosenthal & Rubin, 1982b) or by more
complex procedures of fitting models to ef-
fect size data in the spirit of multiple regres-
sion (Hedges & Olkin, 1985). As was the case
for tests of heterogeneity, however, the tests of
significance of contrasts do not give a direct
indication of the magnitude of the modera-
tor variable’s relationship to the effect sizes
obtained. Such an indication is readily avail-
able, however, simply by correlating the effect
sizes obtained with their corresponding score
on the moderating variable. Such a correla-
tion, in which the sample size is the number
of independent studies, reflects a random ef-
fects view of the data with generalizability to
other potential results drawn from the same
population that yielded the obtained results.
When the number of studies retrieved is quite
small, such correlations of effect sizes with
their moderators are not very stable, and we
may be forced to take a less generalizable,
fixed effect view of the data (Raudenbush,
1994). In such cases we can get a serviceable
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Table 10.10 Checklist of Inferential Data for the
Results Section

Significance Testing
combined (Stouffer) Z (and/or other such tests

as needed)
t test (one-sample)
test of proportion positive (Z )

Confidence Intervals
From To

90% (optionally)
95% (almost always desirable)
99% (optionally)
99.9% (optionally)
standard error (S/

√
k)

Heterogeneity Tests
χ2(k − 1)

p of χ2

S (magnitude of heterogeneity; or other indexes of
magnitude not dependent on sample size)

Contrasts
For each contrast or predictor variable give:
test of significance
effect size for contrast

indicator of the magnitude of the moderator
effect by dividing the obtained test of the sig-
nificance of the contrast, Z , by the square root
of the sum of the sample sizes contributing to
the computation of the Z . This “fixed effect”
type of r tends to be smaller than the ran-
dom effects r but tends to be associated with a
more significant test statistic. Table 10.10 pro-
vides a checklist of inferential data that should
often, if not always, be reported.

Interpretive Data

In this section we summarize a number of
procedures and statistics that are often useful
in understanding and interpreting the descrip-
tive and inferential data of the meta-analysis.
They are described here more as a reminder of
their availability and utility than as a standard
requirement of all meta-analyses.

The Binomial Effect Size Display

The BESD is a display procedure that shows
the practical importance of an effect size
(R. Rosenthal & Rubin, 1982a). As described

earlier in this chapter, the input to the BESD
is a specific effect size estimate, the Pear-
son r . Because any other effect size esti-
mate can be converted to an r , the BESD
can be used to display the mean or median
effect size estimate of any meta-analysis.

The Coefficient of Robustness

The standard error of the mean effect size
along with confidence intervals placed around
the mean effect size are of great value (R.
Rosenthal & Rubin, 1978a). Employing a
statistic that does not increase simply as a
function of the increasing number of repli-
cations may also be useful. Thus, if we want
to compare two research areas for their ro-
bustness, adjusting for the difference in the
number of replications in each research area,
we may prefer the robustness coefficient. This
is simply the mean effect size divided by the S
of the effect sizes. This metric is the reciprocal
of the coefficient of variation (R. Rosenthal,
1990b, 1993). The coefficient of robustness
(CR) can also be viewed in terms of the one-
sample t test on the mean of the set of k effect
sizes, when each is given equal weight. Thus,
CR is given by t/

√
k, or t adjusted for the

number of studies.
The utility of this coefficient is based on

two ideas. First, robustness (or replication
success, or clarity) depends on the homogene-
ity of the obtained effect sizes. Second, robust-
ness depends on the unambiguity or clarity
of the directionality of the result. Thus, a set
of replications grows in robustness when the
variability (S) of the effect sizes (the denom-
inator of the coefficient) decreases and when
the mean effect size (the numerator of the
coefficient) increases. Incidentally, the mean
may be weighted, unweighted, or trimmed
(Tukey, 1977). Indeed, it need not be the mean
at all, but any measure of location or central
tendency (e.g., the unweighted or weighted
median).
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The coefficient of robustness can be seen
as a kind of second-order effect size. An il-
lustration will be helpful. Imagine that three
meta-analyses of three treatments have been
conducted with mean effect size ds of .8, .6,
and .4. If the variability (S) of the three meta-
analyses were quite similar to one another,
the analysis showing the .8 mean d would,
of course, be declared the most robust. How-
ever, suppose that the Ss for the three analyses
were 1.00, 0.60, and 0.20. Then the three co-
efficients of robustness would be .8/1.00 =
.8, .6/.60 = 1.0, and .4/.20 = 2.0. Assum-
ing reasonable and comparable sample sizes
and numbers of studies collected for the three
analyses, the treatment with the smallest effect
size (i.e., .4) would be declared most robust
with the implication that its effect is the most
consistently positive.

The Counternull

A new statistic was recently introduced to
aid our understanding and presentation of re-
search results: the counternull value of the
obtained effect size (R. Rosenthal & Rubin,
1994). As described earlier in this chapter, in
most meta-analytic applications the value of
the counternull is simply twice the magnitude
of the obtained effect size (e.g., d, g, �, Zr )

and indicates the value of the effect size that
has exactly the same probability as the null
value.

The File Drawer Analysis

The file drawer problem refers to the well-
supported suspicion that the studies retriev-
able in a meta-analysis are not likely to be
a random sample of all studies conducted
(R. Rosenthal, 1979, 1991a). The suspicion
has been that published studies are more likely
to have achieved statistical significance than
are studies that remain squirreled away in file
drawers (Sterling, 1959). No definitive solu-
tion to this problem is available, but we can
establish reasonable boundaries and can esti-

mate the degree of damage that could be done
by the file drawer problem. The fundamen-
tal idea in coping with the file drawer prob-
lem is simply to calculate the number of stud-
ies averaging null results that must be in the
file drawers before the overall probability of
a Type I error can be brought to any precisely
specified level of significance, for example,
p = .05. This number of filed studies, or the
tolerance for future null results, is then evalu-
ated for whether such a tolerance level is small
enough to threaten the reviewer’s overall con-
clusion. If the overall level of significance of
the research review will be brought down to
the level of barely significant by the addition
of just a few more null results, the finding is
not resistant to the file drawer threat.

Details of the calculations and rationale
are given elsewhere (R. Rosenthal, 1991a);
briefly, however, we can find the number (X)

of new, filed, or unretrieved studies averaging
null results that is required to bring the new
overall p to .05 from the following:

X = [(	Z)2/2.706] − k (24)

where 	Z is the sum of the standard normal
deviates associated with the one-tailed ps of
all the k studies we have retrieved.

It should be noted that the file drawer
analysis addresses only the effects on pub-
lication bias of the results of significance
testing. Very sophisticated graphic (Light &
Pillemer, 1984), and other valuable proce-
dures are available for the estimation and cor-
rection of publication bias (e.g., Begg, 1994;
Hedges & Olkin, 1985; Hunter & Schmidt,
1990).

Power Analysis

In large meta-analyses it is usually the case
that the null hypothesis is found to be un-
likely at a very low p value. In smaller meta-
analyses, however, the overall results may not
be found to be significant. Before concluding
that the population value of the effect size is
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Table 10.11 Checklist of Interpretive Data for the
Results Section

Binomial Effect Size Display
Dependent Variable 	

Independent High Low
Variable
High 100
Low 100

100 100

Coefficient of Robustness
Mean/Sa

Counternull
(Especially if overall results not significant)

File Drawer Analysis
(Tolerance for future null results)

Power Analysis
(If overall results not significant)

aSeveral may be reported employing weighted or un-
weighted mean or median effect size for the numerator
and weighted or unweighted S for the denominator.

zero, it will be helpful to perform a power
analysis along with computing the counter-
null value of the overall effect size obtained.
In this application we assume a population ef-
fect size equivalent to the overall effect size
actually obtained and simply enter Cohen’s
(1977, 1988) tables to find the power at which
we have been testing the null hypothesis. If
that power level is low, the evidence for the
null hypothesis is weak and should be reported
as such. Table 10.11 provides a checklist of in-
terpretive data that should often be considered
and reported when appropriate.

THE DISCUSSION SECTION
OF A META-ANALYTIC REVIEW

The discussion may begin with a summary of
the meta-analytic results followed by tentative
explanations of these results. These explana-
tions may be in terms of the theories of the
area in which the meta-analysis was done, or
they may require new theory (Hall, Rosenthal,
Tickle-Degnen, & Mosteller, 1994). The im-

plications for theory (old or new), for practice
(if relevant), and for further primary-level re-
search may be discussed. Limitations of the
meta-analysis should be pointed out, includ-
ing possible sampling biases, the size of the
sample of studies included (if quite modest),
and the level of quality of the studies in-
cluded (if that level seemed especially ques-
tionable).

The overall goal of the discussion may be
seen as the answer to the question, Where are
we now that this meta-analysis has been con-
ducted? The meta-analysis is placed in the
context of the field, and the field, very of-
ten, is placed into the context of the meta-
analysis.

APPENDIXES TO A META-ANALYTIC
REVIEW

One appendix should provide a full reference
to each of the studies included in the meta-
analysis.

An additional appendix should be in the
form of a table that gives for each of the in-
cluded studies the overall effect size, the sam-
ple size, the Z corresponding to an accu-
rate p level, and the coded or rated score for
each study of the primary study characteris-
tics and moderator variables employed in the
meta-analysis. The journal editor and review-
ers will then have important information to
guide them in their evaluation of the meta-
analysis. If the printing of this appendix table
would make the paper too long, the author
note should offer a copy of this table to inter-
ested readers.

CONCLUSION

Most reviews of the literature should be quan-
titative, just as most primary research stud-
ies should be quantitative. The statistical
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procedures employed in meta-analyses range
from the basic to the very complex, just as
those of primary research studies do. There
is no one way to do a meta-analysis or to re-
port a meta-analysis any more than there is
just one way to do or to report the data analy-
sis of a primary research study. Therefore, the
goal of this chapter has not been prescriptive
in the sense that every meta-analysis should
include everything suggested here. The goal
instead has been to provide some conceptual
and historical background and some general
guidelines that may be useful to meta-analysts
who want to follow the standard procedures
of the various authors of meta-analytic text-
books. Our own bias has been to keep the
analyses simple, basic, and intuitive, as well
as to recommend simplicity and clarity of
reporting even when complex analyses are
required. When we write our meta-analytic
reviews, after all, they are intended for a far
larger audience than the other authors of texts
and papers on meta-analytic methodology.
That larger audience of content experts was
advised by Fisher (1935) to remember that it
was they, the experimenters, and not the statis-
ticians, who knew best the working content
and the working methods of their discipline
(p. 49).
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CHAPTER 11

Mathematical Modeling

IN JAE MYUNG AND MARK A. PITT

INTRODUCTION

Why Do Mathematical Modeling?

As psychologists, we seek to identify lawful
patterns of behavior, infer mental structures
and processes underlying these patterns, and
develop theories that provide a succinct ex-
planation of the behavior. Within psychology
today, most theories exist in a verbal form
only. That is, they are a set of statements for-
mulated from observations (i.e., data) about
behavior. Verbal modeling is popular in cur-
rent psychological research for a number of
good reasons. First, a verbal model, stated
in everyday language, helps readers to grasp
the essence of an idea, thereby providing a
good conceptual understanding of the phe-
nomenon of interest. Second, verbal model-
ing is a somewhat conservative approach to
knowledge acquisition because specification
of the inner workings of the theory does not
stretch too far beyond what is, in principle,
observable in the data. Such a strategy makes
sense when data are scarce or a clear under-
standing of the phenomenon is lacking, espe-
cially in the early stages of research. It is pru-
dent to avoid assuming too much about the

The authors thank Barbara Mellers for valuable com-
ments on an earlier version of this chapter. The authors
were supported by NIMH Grant MH57472.

phenomenon for fear of leading the research
enterprise astray. Third, considerable mileage
can be made with verbal modeling. In con-
junction with hypothesis-driven experimenta-
tion, a verbal model can be used to identify key
variables that affect the phenomenon of inter-
est, such as the influence of word frequency
in word recognition and the influence of serial
position in memory retrieval.

At its best, a verbal model furnishes
testable predictions about the relationship be-
tween variables and levels of a variable, while
making as few assumptions as possible about
the details of the underlying mental process.
Verbal modeling can thus lead to good quali-
tative descriptions of the data, yielding many
useful insights into the underlying process.

Although researchers have made many im-
portant advances in science and psychology
through the use of verbal modeling, a case
of diminishing returns can be reached un-
less the theory is specified in more detail.
The lack of precision is a serious shortcom-
ing of verbal modeling (Lewandowsky, 1993;
Ratcliff, 1998). Because it is expressed ver-
bally or graphically without making use of
explicit mathematical formulations, a verbal
model does not provide sufficient informa-
tion about structural or functional charac-
teristics of the phenomenon being studied.
For instance, computational mechanisms
may be vaguely specified or sometimes left

429
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undefined, making it unclear which predic-
tions follow from the model and which do
not (Forster, 1994). Moreover, the lack of pre-
cision in verbal modeling opens up the pos-
sibility of multiple interpretations of how a
model functions, each with distinct predic-
tions, possibly making the model too pow-
erful to test or virtually unfalsifiable (Jacobs
& Grainger, 1994). If two competing theo-
ries exhibit this property, a form of gridlock
can arise, making scientific advancement dif-
ficult. Furthermore, although they furnish or-
dinal information about the effect of interest,
most verbal models are silent about its mag-
nitude. That is, verbal models do not specify
how exactly the magnitude of an effect may
be influenced by other relevant variables. For
example, a model of the word frequency effect
states that response time in a lexical decision
task is a monotonically decreasing function
of word frequency: the more frequent a word,
the faster the response time. The model, how-
ever, is mute on the specific characteristic of
the functional relationship between response
time and word frequency, such as whether it
is linear or nonlinear. From the standpoint of
the theory of measurement, variables of verbal
models can be specified only on ordinal scales
of measurement, not on more precise interval
and ratio scales. Consequently, many poten-
tially important questions formulated in terms
of magnitude relationships are left untestable.

Mathematical modeling represents an al-
ternative approach that overcomes these lim-
itations (Luce, 1995, 1997; Ratcliff, 1998).
Mathematical models, which seek quantita-
tive descriptions of data, attempt to charac-
terize patterns of behavior by directly asking
about the form of the underlying mechanism
that gives rise to the behavior of interest.
These include questions about how stimu-
lus information is represented, what com-
putations are performed on the input, what
circuits are involved in information process-
ing, and so on. In mathematical modeling,

researchers formulate hypotheses about the
underlying mechanisms using closed-form
expressions, algorithms, or other simulation
procedures, thereby imposing precision and
clarity on what is meant. As a result, mathe-
matical modeling enables, even requires, pre-
cise predictions be made from the underly-
ing assumptions, which improves the ability
to discriminate among models and hypothe-
ses. The virtue of the approach is particularly
evident when the predictions and outcomes
are not obvious.

As Luce (1995) put it, mathematical mod-
eling is the “opened black box” approach to
psychological inquiry, as opposed to the “un-
opened black box” characteristic of verbal
modeling. Because the goal of mathemati-
cal modeling is to specify the details in the
black box, it may not be the best strategy to
use in the early, exploratory stage of research,
when a phenomenon is first being investi-
gated. Rather, it is probably most fruitful in the
more advanced stage of research, when con-
siderable knowledge has been acquired about
the behavior through verbal modeling. Oth-
erwise, one’s quantitative formulation of the
process is difficult to justify and most likely
will be a poor approximation of the true form
of the mental process. The following recent
example from the literature demonstrates how
research can benefit from mathematical
modeling.

A Reinterpretation of Brinley Plots

A Brinley plot (Brinley, 1965) is a plot of
mean response time by older adults against
mean response time by younger adults on
some cognitive task (e.g., mental rotation,
memory scanning). A typical observation is
that the mean response time for the older
adults is slower than that for younger adults.
The relationship between these two groups
has proven to be very consistent, so much so
that the data of older adults can be estimated
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from the data of younger adults by a straight-
forward linear transformation:

RTold = αRTyoung − β (α > 1, β > 0) (1)

where β, the y intercept, is frequently posi-
tive, and α, the slope, often hovers around 1.5.
Researchers have sought to explain the cause
of this linear relationship, whereby the data
of older subjects can be predicted from that
of younger subjects through a constant fac-
tor (i.e., the slope). For example, for α = 1.5
and β = 200, RTold = 700 ms and RTyoung =
600 ms would be observed in one cognitive
task with a slowing effect of 100 ms. The con-
sistency of this finding has been interpreted as
an across-the-board, general slowing of cog-
nitive processes in the elderly.

Although this cognitive-slowing interpre-
tation of the Brinley plot seems clear-cut and
convincing, Ratcliff, Spieler, and McKoon
(2000) showed that the strong linear asso-
ciation might be an artifact of the analysis
technique itself. Using simulations as well as
analytic methods, they identified a set of sta-
tistical conditions under which the Brinley
pattern can be observed. Most enlightening
was their quantile-quantile (Q-Q) analysis,
which revealed that (a) a Brinley plot is linear
because the distributions of responses times
for the older adults have about the same shape
as that for the younger group, (b) the slope is
greater than 1 because the standard deviation
of the older group’s response times is greater
than that of the younger group’s, and (c) the in-
tercept is negative because the motor response
time is more or less the same for both the older
and younger groups. The linearity in Brinley
plots derives from a constant difference in the
variability in response time between the two
groups (point b) and is not unambiguous evi-
dence of a static (cognitive-slowing) relation-
ship between the performances of older and
younger adults.

Ratcliff et al. (2000) made this point even
more strongly by showing that extant models

of aging effects, such as Cerella’s (1985) lin-
ear model, Meyerson, Hale, Wagstaff, Poon,
and Smith’s (1990) information loss model,
and even Ratcliff’s (1978) random walk
model, can be reinterpreted as being con-
sistent with the Q-Q analysis, making each
model capable of accounting for the Brinley
pattern of results, though with differing as-
sumptions about the underlying cognitive
process. Particularly disturbing is Ratcliff
et al.’s (2000) demonstration through simu-
lations that the diffusion model can repro-
duce the Brinley pattern of results by simply
manipulating two parameters (the boundary-
position and drift-rate parameters) indepen-
dently or in combination, even when they were
varied in a counterintuitive manner with re-
spect to the effects of aging.

In short, the Brinley pattern can appear
on first encounter to provide compelling evi-
dence that performance differences as a func-
tion of age are related in a straightforward,
linear fashion. Ratcliff et al.’s (2000) inves-
tigation shows the pattern can be observed
under a variety of modeling assumptions and
thus provides only very weak constraints on
modeling. Such insights become evident only
through quantitative analysis of the data and
competing models.

Critical tests of cognitive slowing will re-
quire analysis of aspects of the data besides
plots of means. Examples of such data are
the shape of the response time distributions,
the joint relationship between response time
and accuracy, and the relative speeds of cor-
rect and error responses. Along with these
data, researchers need a modeling approach
that makes explicit assumptions about the
underlying process, generates clearly falsifi-
able predictions about the shape of the data,
and thus provides a means of discriminating
among specific hypotheses about the men-
tal process. Mathematical modeling is neces-
sary to address such issues, and the random
walk model is one example. For instance, by
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varying the appropriate parameters, one can
test whether older adults respond slowly be-
cause the quality of the information that they
use to make decisions is relatively poor or be-
cause they set more conservative decision cri-
teria. Comparing the simulated data with the
observed data in each case will answer this
question. Much more information can be ex-
tracted from the data when evaluating quanti-
tative models, allowing the researcher to test
many pointed hypotheses, a feat that is not
possible in verbal modeling.

Three lessons can be drawn from the above
Brinley plot example. First, a reliance on ver-
bal models, while useful initially, can lead
to serious misinterpretations of observed pat-
terns of results, because the evidence may be
far less constraining than was imagined. Sec-
ond, a formal mathematical analysis of the
problem in question can provide a clearer pic-
ture of the theoretical constraints, revealing
previously unsuspected insufficiencies in the
model and in data interpretation. Third, math-
ematical modeling avoids the pitfalls of verbal
modeling by formally expressing the details of
the model and then squeezing as much infor-
mation from the data as possible to test its ac-
curacy, not just its mean performance. The end
product is both a deeper understanding of the
mental process of interest and the adequacy
of one’s approximation to it (Lewandowsky,
1993).

Overview

The aim of this chapter is to serve as an intro-
duction to the field of mathematical modeling,
first covering the different types of models and
then discussing how to create (i.e., define) a
model, how to test it, and how to compare
it with competitors. Examples are provided
along the way to illustrate points and serve as
brief tutorials. The focus throughout most of
the chapter is on statistical models, because
these are in widespread use and their popular-

ity is growing. For in-depth, technically rig-
orous treatments of mathematical modeling
in psychology, the reader may consult books
on specialized topics and conference proceed-
ings (see, e.g., Ashby, 1992; Brown &
Keith-Smith, 1991; Dowling, Roberts, &
Theuns, 1998; Estes, 1991; Healy, Kosslyn,
& Shiffrin, 1992; Luce, 1986; Marley, 1997;
McFall & Townsend, 1998; Townsend &
Ashby, 1983; Wickens, 1982).

The chapter was written for graduate stu-
dents who have completed a year of statistics
courses. Some readers may be challenged by
the technical details in a few sections, but a
thorough understanding of the mathematics
is not necessary to follow the discussion.

TYPES OF MODELS

Model Building via Regularity
Constraints

In this approach, a model is created by con-
straining it to be subject to certain regularity
conditions at the level of behavior. Functional
equation models and axiomatic models are of
this type.

Functional Equation Models

Rather than making specific assumptions
about the form of functions in a mathemat-
ical model, this method (Aczel, 1966) makes
certain equality restrictions involving an un-
known function. The restrictions themselves,
however, are so severe that they yield a par-
ticular solution as the only possible form for
the function. To illustrate this approach, con-
sider models of psychophysics, which aim
to capture the relationship between physi-
cal scale (e.g., intensity of a tone) and psy-
chological scale (e.g., perceived loudness).
Fechner’s logarithmic law and Stevens’s
power law are two well-known, well-studied
models of psychophysics. Fechner’s law can
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be derived using the functional equation
method. That is, suppose that the following
equation holds for all values x and y of phys-
ical stimulation strength,

ψ(xy) = ψ(x) + ψ(y)

for some unknown function �. For instance,
according to the above constraint, we must
observe �(50) = �(5) + �(10) = �(2) +
�(25), and so on, for various pairs of stimula-
tion strengths. It is then shown (F. S. Roberts,
1979, p. 162) that the function that satis-
fies the above equation must be logarithmic
in the form �(x) = k ln(x) for a constant
k, which is just Fechner’s law. Note here
that the model is derived entirely in terms of
overt behavior, with no explicit assumption
of any intervening variables or mental pro-
cesses. Instead of the additive form of the
functional equation, if a multiplicative con-
straint, �(xy) = �(x)�(y), is imposed, this
gives rise to Stevens’s power law of psy-
chophysics, �(x) = xk.

In the above discussion, the set of objects
or things under study on which the model
equation is defined is continuous. If the set is
discrete (e.g., set of people or cities), similar
constraints may be used to derive the model
equation. As an example, consider a system
in which an individual is required to select
between a pair of choices, say a and b. For in-
stance, participants might be asked to decide
whether they prefer choice a to choice b in
a decision making experiment, to classify an
ambiguous visual stimulus into category a or
b in a categorization experiment, or to judge
whether stimulus a is brighter than stimulus b
in a psychophysical task. Let Pab denote the
probability of choosing stimulus a over b. By
definition we should have Pab + Pba = 1 for
all a and b. Suppes and Zinnes (1963) showed
that the product rule

Pab Pbc Pca = Pba Pcb Pac for all a, b, c

uniquely derives the following model of

choice probability:

Pab = f (a)

f (a) + f (b)

for some real-valued function f (a). It is im-
portant to note that the product rule and the
about model are logically equivalent, meaning
that one implies the other and vice versa. The
f (a) in the previous equation is interpreted as
a measure of response strength and defines a
ratio scale (F. S. Roberts, 1979, pp. 281–283).
Many models in cognitive psychology are of
this form or of its extension, for example,
Luce’s (1959) choice model, context models
of categorization (Medin & Schaffer, 1978;
Nosofsky, 1986), and connectionist models of
category learning (Gluck & Bower, 1988).

Axiomatic Models

In an axiomatic model, regularity conditions
that are imposed upon observed variables are
in the form of ordinal relations called axioms,
rather than equality relations as in functional
equation models. A set of such ordinal rela-
tions often sufficiently constrains the possible
solution to be uniquely identified. The class of
axiomatic models in judgment and decision
making (Fishburn, 1982; Luce, 1996; Luce &
Fishburn, 1991) is of this type. For example,
the expected utility (EU) model of decision
making under uncertainty (Von Neumann &
Morgenstern, 1944) assumes that individuals
select among a set of alternative choices the
one that maximizes expected utility, which is
defined as

EU(A) =
∑

i

p(Ai )u(Ai )

where the sum is over probabilistic events of
choice A, p(Ai ) is the probability of event
Ai , and u(Ai ) is the utility of the event. For
instance, the expected utility of a gamble in
which one receives $100 with probability 0.2
or $0 with probability 0.8 is calculated as
the sum (0.2)u($100) + (0.8)u($0) for some
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nondecreasing function u(x). A set of axioms
on choice behavior that guarantees the exis-
tence of a utility function u(x) defined on
choice alternatives such that the expected util-
ity model holds includes the following:

1. Transitivity (if choice A is preferred to
choice B, which in turn is preferred to C,
then choice A is preferred to choice C)

2. Independence (addition or subtraction of
the same event to all choices does not
change preference rankings)

3. Dominance (if choice A is preferred to
choice B, then choice A is preferred to
any probabilistic combination of choices
A and B)

4. Solvability (no choice is infinitely better
than any other choices)

For further detail on these and other axioms,
see Fishburn (1982).

Model Building via Processing
Assumptions

In the preceding approach, the model is de-
rived from a set of regularity conditions im-
posed at the level of behavior. The models
described in this section are created by mak-
ing a set of assumptions about (unobservable)
internal processes, which are presumed to be
involved in generating an observed response
given an input stimulus in an experimental
task. These assumptions eventually give rise
to a model equation that specifies observed re-
sponse as a function of some internal variables
(i.e., parameters). They are classified into four
categories: differential-process, algorithmic,
connectionist, and algebraic models.

Differential-Process Models

For this class a model is obtained by making
assumptions about internal mental processes
of interest in terms of changes in behavior.
From these assumptions the model is derived

by integrating the constraining equations. As
an example of this approach, consider again
Fechner’s logarithmic law of psychophysics.
Fechner derived his law by assuming that ev-
ery change (i.e., increase or decrease) in the
strength of a physical stimulus does not neces-
sarily result in a constant change in perception
but, instead, that the change in perception is
proportional to the relative change in stimula-
tion, which is known as Weber’s law:

�ψ = k
�x

x
(Weber’s law)

where � is the psychological scale, x is the
physical scale, and k is a positive scaling con-
stant. Note that the internal process assumed
to be responsible for this transformation is not
directly observable. Rather, the observed re-
sponse must be derived from such assump-
tions. This is carried out by integrating both
sides of the above equation, resulting in the
following logarithmic form:

ψ(x) = k ln(x) (Fechner’s Law).

Instead of Weber’s law, if it is assumed that
a relative increase in sensation occurs in pro-
portion to the relative change in stimulation,
this assumption then leads to the derivation of
Stevens’s power law of psychophysics:

�ψ

ψ
= k

�x

x
⇒ ψ(x) = xk (Stevens’ Law).

As another example, consider a model of
forgetting that assumes that the rate of mem-
ory loss, rather than being constant across
time, depends on the current memory load.
Specifically, the rate of forgetting is pro-
portional to the load: the more items stored
in memory, the larger the mean number of
items lost during each time interval after stor-
age. This assumption leads to the exponential
model of forgetting (Wickelgren, 1970):

�y

�t
= −cy ⇒ y(t) = y(0)e−ct

(Exponential Model)
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where y denotes memory load at time t and c
is a positive constant.

Algorithmic Models

For this class a model is defined in terms of
a simulation procedure (Jacobs & Grainger,
1992). The procedure specifies in detail how
specific internal processes interact with one
another to yield output behavior as a final
result. Often, the processes involved are too
complicated to be expressed in closed form;
consequently, to derive predictions from the
model, the entire process must often be simu-
lated on computer with help of random num-
ber generators (see the Appendix to this chap-
ter). A sample of cognitive processes that
algorithmic models have been employed to
model includes discrimination (Link & Heath,
1975; Smith, 1995), memory retrieval
(Ratcliff, 1978), recognition memory (Hintz-
man, 1988; Shiffrin & Steyvers, 1997), and
decision making (Busemeyer & Townsend,
1993; Diederich, 1997). The random walk
model of memory retrieval (Ratcliff, 1978) is
described in detail to illustrate the idea.

The random walk model makes the as-
sumption that memory retrieval is a search
process. Specifically, given a probe item on a
recognition memory test, the decision whether
the probe is new or old is made by comparing
it to each item in the memory search set si-
multaneously and in parallel. Each individual
comparison proceeds by the gradual accumu-
lation of evidence over time via a random walk
process. On each trial of the random walk,
the probe evokes either a sympathetic or a
nonsympathetic “vibration” in a memory-set
item, each determined with a fixed probabil-
ity. The value of this probability is obtained
as a random sample drawn from a normal dis-
tribution, the mean of which is assumed to
be equal to the relatedness value between the
probe and the memory-set item. If a sympa-
thetic vibration occurs, then the walk moves
upward by one unit, and downward otherwise.

Over a series of trials, the random walk of
each comparison process moves up and down
on the scale until it eventually hits an upper
boundary (match) or a lower boundary (non-
match).

The decision process is made by combin-
ing outcomes of such individual comparison
processes; a positive “yes” response is made
if any one of the parallel comparisons termi-
nates with a match, and a negative “no” re-
sponse is made if all comparisons terminate
with a nonmatch. The distribution of reaction
times for each positive or negative response
and also the probability of the response are
obtained by simulating the random walk pro-
cess on computer. By using different param-
eter values for different experimental condi-
tions, the model can generate simulated data
sets for the entire experiment that are com-
pared against observed data to determine the
model’s viability.

The algorithmic modeling approach pro-
vides an attractive environment in which to
design models. Scientists can easily construct
many variants of a model and quickly test a
hypothesis to observe the model’s behavior.
The model can be made as sophisticated as
one likes without having to worry about en-
suring that there is a closed-form solution.
Accordingly, the approach allows the scien-
tist to work with ideas that cannot yet be ex-
pressed in precise mathematical form (Estes,
1975). All these features may explain its
popularity.

The approach, however, is not without dis-
advantages. The main disadvantage is the lack
of transparency between the parts of the model
and their corresponding mental process. A
typical algorithmic model makes a host of
assumptions about the mental processes in-
volved, which are difficult to verify empiri-
cally because they are not directly observable.
This is problematic because the adequacy of
the model can be evaluated only by relying
upon its predictions of output responses, even
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if the model provides an excellent descrip-
tion of the data. Consequently, it can be dif-
ficult to determine which assumptions of the
model are critical for explaining human per-
formance and which assumptions serve no
purpose but to provide a good redescription
of the data. Furthermore, the ease with which
algorithmic models can be constructed may
make it tempting to add more assumptions
(i.e., parts) to improve the model’s ability to
mimic human data. This exacerbates the prob-
lem and can lead to the creation of super-
models, which may do a good job of fitting
the data but possess meaningless and poorly
justified properties. In contrast, for models in
the functional equation and axiomatic mod-
eling approaches, their assumptions are usu-
ally theoretically well-grounded. To mini-
mize the transparency problem, algorithmic
models should be designed with a minimally
sufficient number of assumptions, each of
which is well justified and psychologically
plausible.

Connectionist Models

Connectionist models (Grossberg, 1987;
Kruschke, 1992; McClelland & Elman, 1986;
Rumelhart & McClelland, 1986; Seidenberg
& McClelland, 1989) are essentially of the
algorithmic type, so all the advantages and
disadvantages discussed in the preceding sec-
tion apply also to this class of models, es-
pecially to localist connectionist models. On
the other hand, connectionist models—in
particular artificial neural networks—possess
a few unique features that set them apart
from other algorithmic models. First, these
connectionist models make few explicit as-
sumptions about the underlying processes in
advance, but instead learn the regularities
underlying the data through training (e.g.,
back-propagation rule). Because of this, the
parameters (i.e., connection weights and ar-
chitectural characteristics) of connectionist

models have no predefined meaning and can
be difficult to interpret. Second, connection-
ist models might not be entirely falsifiable,
enabling them to fit almost any pattern of
data, including idiosyncratic noise. Mathe-
maticians (Hecht-Nielsen, 1989; Hornik,
Stinchcomb, & White, 1989, 1990) proved
this unlimited flexibility for three-layer feed-
forward networks with hidden units. Specifi-
cally, their results showed that the three-layer
network with back-propagation learning and a
sufficient number of hidden units can approx-
imate any continuous nonlinear input-output
function to any desired degree of accuracy. If
used blindly the power of such models can
also be their downfall. Care must be taken to
ensure that a connectionist model learns only
the regularities underlying the data and not the
whole data set, in which case it degenerates
into a redescription of the data, which pro-
vides little useful insight into the phenomenon
of interest, if any.

Algebraic Models

In an algebraic model the operation of the un-
derlying cognitive process being modeled in
the data is explicitly specified in its parame-
ters and in the model equation. For example,
the parameters may specify the relevant psy-
chological or stimulus dimensions to which
the underlying process is sensitive. The model
equation may describe exactly how these pa-
rameters and the input stimulus are combined
to produce an output response. This speci-
ficity creates a tight link between descriptive
(verbal) theory and its computational instan-
tiation because the relationships among the
input, output, and parameters are clearly iden-
tifiable in the model equation. Accordingly,
algebraic models can be easy to understand,
and their assumptions can usually be well jus-
tified, often axiomatically or through func-
tional equations. Further, quantitative as well
as qualitative predictions can oftentimes be
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derived analytically. Examples of the alge-
braic modeling approach include the fuzzy
logical model of perception (FLMP; Oden
& Massaro, 1978), context models of cate-
gorization (Medin & Schaffer, 1978; Nosof-
sky, 1986), the signal detection theory of
perceptual identification (Green & Swets,
1966), the processing tree models of mem-
ory (Batchelder & Riefer, 1990), and infor-
mation processing models of cognitive slow-
ing (Cerella, 1985; Meyerson et al., 1990).
Cerella’s (1985) linear model of cognitive
slowing is described to illustrate the idea.

The model assumes that response time
(RT) in a cognitive task is equal to the sum
of the durations of two subprocesses:

RT = C + M

where C represents the amount of time re-
quired for central cognitive processing and
thus reflects task difficulty. M represents
sensory-motor processing time. The model
explains age-related slowing by assuming
that for the elderly, each of these process-
ing times is increased by a constant propor-
tion; that is, Cold = aCyoung and Mold =
bMyoung (a, b > 1). With this assumption and
after simple algebraic manipulations, one can
write response time for older adults in terms
of response time for younger adults in the fol-
lowing form:

RTold = aRTyoung + (b − a)Myoung. (2)

Thus the model predicts that response time
for old adults is a linear function of response
time for young adults with a slope greater
than 1 and an intercept that may be negative or
positive depending upon the sign of (b − a).
As discussed earlier, these predictions were
generally confirmed across many individual
studies in a variety of experimental settings.
According to the model, this outcome is due
to a general slowing of cognitive and sensory-
motor processing. In particular, the typical ob-
servation of a negative intercept in the linear

functional relationship in response time be-
tween older and younger adults may suggest
that the slowing of central cognitive processes
is more severe than that of sensory-motor pro-
cesses (i.e., a > b).

To summarize, there are a number of ap-
proaches to modeling behavior. Each has pros
and cons, and the modeler must be aware of
these when choosing and using the approach.
For example, if one is interested in develop-
ing the most accurate redescription of the data
without reference to the underlying process
(i.e., mapping the input-output relationship as
in psychophysical modeling), then the func-
tional equation approach might be most suit-
able. On the other hand, if the goal is to model
the processes underlying this input-output re-
lationship, then one of the other approaches
should be used.

MODEL CONSTRUCTION
AND TESTING

The goal of modeling in psychology is to in-
fer the regularity present in given data while at
the same time assessing the veridicality of the
hypothesized model. From a statistical stand-
point, the data y = (y1, . . . , ym) with m ob-
servations is a random sample generated from
a true but unknown probability distribution,
which represents the regularity underlying the
data. Formally, a model is defined as a family
of probability distributions, { f (y | θ), θ ∈ �}
where � is the parameter space. The proba-
bility distribution function f (y | θ) specifies
the probability of observing data y given the
parameter θ of the model. The same prob-
ability curve f (y | θ) when expressed as a
function of the parameter θ given a particular
value of data y, is called the likelihood func-
tion. The parameter θ = (θ1, . . . , θk) may
be a vector as an element of a multidimen-
sional parameter space. By varying values of
the parameter, different shapes of probability
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distribution are generated. In formal terms,
a model consists of the collection of all such
probability distributions indexed by its param-
eter vector.

In some circumstances, the data y can be
written as a sum of a deterministic component
plus random error:

yi = g(θ, xi ) + ei (i = 1, . . . , m) (3)

where xi is the value of an independent vari-
able, g(θ, xi ) is the mean of yi , and ei is a
random noise with zero mean.

As an illustrated example, consider again
Cerella’s (1985) linear model of cognitive
slowing in Equation (2). The model relates
response times for younger adults (xi ) to re-
sponse times for older adult (yi ) across tasks
(i) by a linear function,

yi = θ1xi + θ2 + ei

(Cerella’s linear model) (4)

where i = 1, . . . , m. According to this equa-
tion, the model assumes two parameters, θ =
(θ1, θ2), and the mean function in the form of
g(θ, xi ) = θ1xi + θ2. Note that the two param-
eters a and (b−a)Myoung in Equation (2) now
correspond to θ1 and θ2 in the Equation (4), re-
spectively. As such, the slope parameter θ1 is
interpreted as a ratio of the cognitive process-
ing time for older adults over younger adults,
whereas the intercept parameter θ2 is propor-
tional to the difference in the age-related slow-
ing ratio between sensory-motor and cogni-
tive processing. The model may further as-
sume that the error ei is normally distributed
with variance σ 2. This implies that for given
values of θ1, θ2, and xi , the data value yi is
normally distributed with mean (θ1xi + θ2)

and variance σ 2. The linear model therefore
defines a family of normal probability distri-
butions, N (θ1xi + θ2, σ

2), created by varying
the values of the two parameters θ1 and θ2 for
a fixed value of xi . The probability density
function of yi given all parameter values then

takes the following form:

f (yi |θ)= 1√
2πσ

exp

(
− (yi − θ1xi − θ2)

2

2σ 2

)

(i = 1, . . . , m) (5)

where exp(x) stands for the exponential func-
tion, that is, exp(x) = ex . Quite often, the
equation g(θ, xi ) itself is taken to define a
mathematical model and the underlying prob-
ability distribution is kept implicit. Assum-
ing independent observations, the probabil-
ity distribution function of the entire data set,
y = (y1, . . . , ym), can be written as the mul-
tiplication of m individual density functions
as follows:

f (y | θ) =
m∏

i=1

f (yi | θ). (6)

The model-testing approach presented
later requires that a model be specified by its
parametric family of probability distributions,
{ f (y | θ), θ ∈ �}, or at least by its mean func-
tion g(θ, xi ). Most of the models discussed
in the preceding section, including algebraic
models and connectionist models, satisfy this
requirement. Exceptions are some axiomatic
models, in which the specification of the prob-
ability distributions and the mean function is
not possible. In this case, testing of such “non-
statistical” models requires an alternative ap-
proach, which is described briefly at the end
of this section.

Before discussing model testing, a word
about what one can reasonably hope to achieve
in modeling behavior is in order. Psycholog-
ical phenomena have the potential to be very
complex and may involve many subsystems
interacting with one another in a highly non-
linear fashion. It could easily be the case that
a mathematical model with at least a dozen
parameters is necessary to capture the phe-
nomenon accurately. In the early stages of
modeling, all models will most certainly be
wrong in many details. Because of this, they
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are also likely to be misspecified, meaning
that they do not include as a special case the
“true” model that generated the observed data.
It may also be impossible to build a model
that captures the underlying mental process in
every detail. Thus, it is probably most accu-
rate and instructive to think of mathematical
models as best approximations to the truth.
Practically speaking, the goal of mathemati-
cal modeling is to find the best approximation
to the truth, with the hope that the winning
model is correctly specified (i.e., includes the
true model as a special case). It is useful to
keep this in mind to avoid placing undue faith
in these models.

Model Falsifiability and Identifiability

Once a model is defined along with the fam-
ily of probability distributions indexed by
the model’s parameters, two important issues
must be checked before the model is fitted to
observed data to assess its validity. They are
falsifiability and identifiability.

Falsifiability (Popper, 1959), also called
testability, refers to whether there exist po-
tential observations that are inconsistent with
the model (i.e., data that it does not predict).
This is a necessary precondition for testing a
model; unless a model is falsifiable, there is
no point in testing the model. An unfalsifiable
model is one that can describe all possible
patterns of data that can arise in a given ex-
periment. For example, one may wish to test
a two-parameter linear model, y = θ1 + θ2x ,
against data that consist of just two observa-
tions, (x1, y1) and (x2, y2). In this case the
model is unfalsifiable because it can provide
a perfect fit to the data for any (xi , yi ) pairs
(i = 1, 2). On the other hand, if one addi-
tional point (x3, y3) is added to the data, then
the two-parameter model becomes falsifiable.
In other words, whether a model is falsifi-
ability or not depends upon the size of the
data set.

A rule of thumb for assessing falsifiability
is that a model is falsifiable if the number of
free parameters is less than the number of ob-
servations in the data. Bamber and van Santen
(1985) showed, however, that this “counting
rule” can be misleading, especially for non-
linear models, and provided counterexamples
as evidence. Consider Luce’s (1959) choice
model. The model assumes that the probabil-
ity of choosing choice alternative i over al-
ternative j is determined by their respective
utility values in the following form:

Pi> j = ui

ui + u j
(ui > 0; i, j = 1, . . . , s)

where ui is the utility parameter to be esti-
mated from the data. Note that the number
of parameters in the model is equal to the
number of choice alternatives (s), whereas the
number of independent observations is equal
to s(s − 1)/2. Hence, for s = 3, both the
number of parameters and the number of ob-
servations are equal. However, it is easy to
show that the model is falsifiable in this case.
In another, more dramatic example, Bamber
and van Santen (1985, p. 453) showed that the
number of parameters (7) in a model exceeded
the number of data observations (6), yet the
model was still falsifiable!

Rectifying the apparent limitations of the
counting rule of falsifiability, Bamber and van
Santen (1985) provided a formal definition of
falsifiability and also a criterion for assessing
falsifiability, which includes the counting rule
as a special case. Specifically, the criterion
states that a model is falsifiable if the rank of
what is called the Jacobian matrix, defined as

Ji j (θ) = [∂ E(y j )/∂θi ],

(i = 1, . . . , k; j = 1, . . . , m),

is less than the number of independent obser-
vations (m) in the data for all θ values.

Model identifiability refers to whether the
parameters of a model are unique given ob-
served data. As with falsifiability, a model is
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identifiable or unidentifiable with respect to
data size. When a model is unidentifiable, the
problem of equivalent models arises in which
there exist multiple sets of parameter values
that provide exactly the same fit to the data.
When this happens, one cannot meaningfully
interpret the parameter values of the model. To
illustrate, consider a three-parameter model
of y = θ1 + θ2x + θ3x2 and suppose that two
data points are obtained, say (x1, y1) = (1, 1)

and (x2, y2) = (2, 5). The model is uniden-
tifiable given these data because there ex-
ist multiple sets of the model’s parameter
values (θ1, θ2, θ3) that fit the data perfectly,
for example, (θ1, θ2, θ3) = (−1, 1, 1) and
(θ1, θ2, θ3) = (−5, 7, −1). There are, in fact,
an infinite number of such parameter values
of the model that can provide a perfect de-
scription of the data. In order for this model
to be identifiable, three or more data points
are needed.

A rule of thumb for assessing identifiabil-
ity is that a model is identifiable if the number
of free parameters is less than or equal to the
number of independent observations. Again,
Bamber and van Santen (1985) provide a for-
mal definition of identifiability and show that
this rule is also imperfect.

Although it might appear that falsifiabil-
ity and identifiability should be related to
each other, there exists only one consistent
relationship between the two: The counting
rule of falsifiability is valid if the model is
identifiable. If a model is not identifiable,
the counting rule for assessing falsifiability
may be inapplicable (Bamber & van Santen,
1985).

The lack of a tight relationship between
these properties of a model means that a model
can be falsifiable but not identifiable. A case
in point is FLMP (Oden & Massaro, 1978).
To demonstrate this situation, consider a letter
recognition experiment in which participants
have to classify the stimulus as belonging to
one of two categories, A and B. Assume that

the probability of classifying a stimulus as a
member of category A is a function of the ex-
tent to which the two feature dimensions of
the stimulus (i and j) support the category re-
sponse (Massaro & Friedman, 1990). Specif-
ically, FLMP assumes that the response prob-
ability Pi j is a function of two parameters, θi

and λ j , each of which represents the degree
of support for a category A response given the
specific i and j feature dimensions of an input
stimulus:

Pi j = g(θi , λ j ) = θiλ j

θiλ j + (1 − θi )(1 − λ j )

where 0 < θi , λ j < 1, 1 ≤ i ≤ s, 1 ≤ j ≤ v.
s and v represent the number of stimulus levels
on the two feature dimensions, i and j, respec-
tively, and together constitute the design of
the experiment.

FLMP is falsifiable, which can be shown
using the falsifiability rule mentioned ear-
lier (Bamber and van Santen, 1985; see also
Batchelder, 1997). For example, one can eas-
ily come up with a set of Pi j s that do not fit
into the model equation, such as Pi j = (ai +
b j )/2 for 0 < ai , b j < 1 (N. H. Anderson,
1981).

Regarding the identifiability of FLMP, for
the s × v experimental design, the number of
independent observations is sv, and the num-
ber of parameters of FLMP is (s + v). For
example, for s = v = 8, the number of ob-
servations is 64, which far exceeds the num-
ber of parameters in the model (16). Surpris-
ingly, however, Crowther, Batchelder, and Hu
(1995) have shown that FLMP is not iden-
tifiable for all values of s and v. Accord-
ing to their analysis, for any given set of pa-
rameter values (θi , λ j ) that satisfy the above
model equation, another set of parameter val-
ues (θ∗

i , λ∗
j ) that also satisfy the same equation

can always be obtained:

θ∗
i = θi

1 + c(1 − θi )
; λ∗

j = λ j

1 + c(1 − λ j )
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for any constant c > −1. One can easily ver-
ify the equivalence by plugging the parame-
ters (θ∗

i , λ∗
j ) into the model equation. Because

there are an infinite number of possible c val-
ues, there will be an equal number of param-
eter sets, each of which provides exactly the
same fit to the observed data, meaning that
FLMP is not identifiable.

Can FLMP be made identifiable? The an-
swer to this equation is yes. For example,
one of its parameters can be fixed to a pre-
set constant (e.g., θi = 0.15, for some i). Al-
ternatively, the model equation can be modi-
fied to accommodate four response categories
instead of two. For further details, consult
Crowther et al. (1995).

Parameter Estimation

Once data have been collected and the model
is shown to be falsifiable as well as iden-
tifiable, one is in a position to assess the
model’s goodness of fit to the experimental
data. Goodness of fit refers to how well the
model fits the observed data. Given that the
model contains many (theoretically infinite)
probability distributions, each associated with
a distinct set of parameter values, the objective
is to find a set of parameter values that best
fits the observed data in some defined sense.
This process is called parameter estimation.

Two generally accepted methods of pa-
rameter estimation are least square estimation
(LSE) and maximum likelihood estimation
(MLE). In LSE the parameter values that min-
imize the mean squared error (MSE) between
predictions and observations are sought:

MSE =
√√√√ 1

m

m∑
i=1

(yi − g(θ, xi ))2 (7)

where �(yi − g(θ, xi ))
2 is the sum of squares

error (SSE).
On the other hand, in MLE the likelihood of

the data, f (y | θ), is maximized with respect

�1

�2

f (y��)

(�1, �2)^ ^

Figure 11.1 Schematic plot of the likelihood
function f (y | θ) as a function of the two param-
eters.
NOTE: The best-fitting parameter vector that max-
imizes the likelihood function is indicated by θ̂ =
(θ̂1, θ̂2).

to the model’s parameter values, as illustrated
schematically in Figure 11.1. Assuming inde-
pendent observations and normal error with a
constant variance σ 2, we can write the loga-
rithm of the likelihood, called the log likeli-
hood, as

ln f (y | θ) = − 1

2σ 2

m∑
i=1

(yi − g(θ, xi ))
2

− m ln(
√

2πσ) = αMSE2 + β

(8)

where α = −m/(2σ 2), β = −m ln(
√

2πσ).
Note that α and β do not depend upon the pa-
rameter θ . Therefore, if yi s are normally dis-
tributed with equal variances, maximizing the
likelihood is equivalent to minimizing MSE,
and therefore the same parameter values are

obtained under either method. Otherwise, the
two solutions tend to differ. In general, MLE
is a preferred method of estimation, espe-
cially when the equal variance assumption is
violated (e.g., binomial probability distribu-
tions). Throughout this chapter the best-fitting
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Figure 11.2 Modeling cognitive aging data.
NOTE: Open circles represent the data in Cerella et al. (1981). The thick and thin curves are best fits by the
two-parameter linear model and the five-parameter nonlinear model, respectively. Plus signs represent
artificial data points in a validation data set.

parameter vector obtained in MLE or LSE is
denoted by θ̂ .

Finding the parameter values that maxi-
mize MLE or minimize MSE usually requires
use of nonlinear estimation techniques unless
the solution can be found in analytic form.
For example, suppose that the model is a lin-
ear regression model, Y = Xθ + E , where Y
and E are m × 1 dependent and error vectors
respectively, X is a m × k design matrix and
θ is a k × 1 parameter vector. In this case,
the solution that minimizes MSE can be ob-
tained in analytic form. For nonlinear models,
however, it is generally impossible to obtain
such analytic form solutions; consequently, a
solution must be sought numerically using op-
timization algorithms (Thisted, 1988).

To illustrate parameter estimation, con-
sider again Cerella’s (1985) linear model of
cognitive slowing, which has two free param-
eters, θ1 (slope) and θ2 (intercept). We fitted

the model to a data set reported in Cerella,
Poon, and Fozard (1981). The observed data
consist of ten pairs of response times for old
and young adults collected under the normal-
parity condition in a letter rotation task, and
are shown as open circles in Figure 11.2. The
values of the parameters that minimized MSE
were θ1 = 2.488 and θ2 = −0.958, with MSE
minimization equal to 0.109. The model ac-
counted for 95.7% of the total variance in the
data. The thicker solid line in Figure 11.2 de-
picts this best-fitting linear model. What do
the parameter values mean? According to the
model, the slope parameter (θ1) is interpreted
as the proportion of slowing in central cog-
nitive processing for older adults relative to
younger adults, whereas the sign of the inter-
cept parameter (θ2) indicates whether slowing
in sensory-motor processing is more (+) or
less (−) severe than slowing in central cog-
nitive processing. The results indicate that in
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the letter rotation task, the slowing of central
cognitive processing is more severe than is
slowing of sensory-motor processing.

Goodness-of-Fit Testing

Although parameter estimation yields a mea-
sure of how well the model fits the observed
data, a goodness-of-fit measure, by itself, is
not particularly meaningful. How good is
an MSE of 0.109? To answer this question,
one must conduct a goodness-of-fit test. One
method of doing so is via hypothesis testing,
in which the null hypothesis that the model is
correct (i.e., viable) is tested against the alter-
native hypothesis that it is not correct.

Null Hypothesis Testing for Discrete
Random Variables

In this test the model’s goodness of fit is as-
sessed by comparing the expected counts un-
der the null hypothesis against the actually
observed counts, yi s. The two most popular,
general-purpose methods used to test the null
hypothesis are the Pearson chi-square (χ2)

test and the log likelihood ratio (G2) test:

χ2 =
m∑

i=1

(yi − n f (yi | θ̂ ))2

n f (yi | θ̂ )
;

(9)

G2 = −2
m∑

i=1

yi ln
n f (yi | θ̂ )

yi
.

In the equation, θ̂ is the MLE parameter es-
timate or any other reasonable estimate such
as LSE, and n is the sample size, which is the
number of repeated random samples (i.e., ob-
servations) collected to obtain count yi. Note
that when there is perfect agreement between
the null hypothesis and the observed data, that
is, yi = n f (yi | θ̂ )(i = 1, . . . , m), both statis-
tics become zero, χ2 = G2 = 0, and otherwise
they take on positive values. The greater the
discrepancies, the larger the value of the statis-
tic. Under the null hypothesis, both statis-

tics are distributed as a chi-square distribution
with (m−k−1) degrees of freedom where k is
the number of free parameters. Therefore, the
null hypothesis may be retained or rejected
by comparing the observed value of χ2 or
G2 statistic to the critical χ2 value obtained
for an appropriate alpha level. If the model is
rejected, one may look for some alternative
model that is more consistent with the data.
Although both statistics, χ2 or G2, are equiv-
alent for large n under the assumption that the
model is correct, we recommend the latter be-
cause it is more robust and requires fewer as-
sumptions. Nevertheless, in practice, the dif-
ference between the two statistics is rarely
large enough to lead to differing conclusions.
When the model is not correct, however, the
two statistics can yield very different results
even with large sample sizes. A more com-
prehensive treatment of goodness-of-fit tests
for discrete random variables, including the
χ2 and G2 tests, can be found in Read and
Cressie (1988).

Null Hypothesis Testing for Continuous
Random Variables

Testing the goodness of fit of a model with the
dependent variable y measured on a continu-
ous scale is a bit complicated. No general-
purpose method of testing the validity of a
single model exists unless probability distri-
butions are restricted to a few known fam-
ilies, such as exponential and normal fami-
lies (D’Agostino & Stephens, 1986). On the
other hand, the relative ability of two nested
models to account for observed data can be
tested via the generalized likelihood ratio test
(Wilks, 1938). Two models are nested if one
model can be reduced to a special case of
the other. For example, a two-parameter linear
model of the form y = θ1 + θ2x + error and a
three-parameter quadratic model of the form
y = θ1 + θ2x + θ3x2 + error with the same
probability distribution of the error are nested.
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This is because the former is obtained from
the latter as its special case by setting θ3 = 0.
On the other hand, an exponential model of
the form y = θ1 + θ2 exp(−θ3x) + error and
y = θ1 + θ2x + θ3x2 + error are nonnested.

The basic idea of the generalized likeli-
hood ratio test is to create two models, M1 (re-
stricted model) and M2 (full model), in such
a way that M1 is nested within M2. For ex-
ample, M1 might be created by holding con-
stant values of one or several parameters of
M2, rather than treating them as free param-
eters. Each of the two models is then fitted
to the data, and its best-fitting parameter val-
ues are obtained via MLE. Let L1 and L2 de-
note the maximized likelihood value of M1

and M2, respectively. The generalized like-
lihood ratio test is based on the G2 statistic
defined as

G2 = 2(ln L2 − ln L1) (10)

which takes on nonnegative values. Under the
null hypothesis that M1 is correct, this statistic
is distributed as a chi-square distribution with
degrees of freedom equal to the difference in
the number of free parameters between the
two models. The standard hypothesis testing
procedure is then applied to decide whether to
retain or reject the null hypothesis. If the null
hypothesis is retained, one concludes that the
reduced model M1 offers a sufficiently good
description of the data, and thus the extra free
parameters of the full model M2 appear to pro-
vide no real improvement in fit and therefore
may be unjustified. On the other hand, if the
null hypothesis is rejected, one concludes that
the extra parameters may be necessary to ac-
count for the observed pattern of data. This
generalized likelihood test based on G2 can
also be applied to discrete random variables. It
is worth noting that no comparable test based
on χ2 for the same purpose exists.

As an illustrated example of the above gen-
eralized likelihood test, suppose that one is
interested in testing the adequacy of Cerella’s

(1985) linear model of age-related deficits. In
order to apply the method, we created the fol-
lowing nonlinear model that yields the linear
model as a special case (i.e., θ2 = θ4 = 1 and
θ3 = 0):

yi = θ1(θ2xi + θ3)
θ4 + θ5 + ei

(i = 1, . . . , m).

This model is motivated from and is a gen-
eralized version of Meyerson et al.’s (1990)
information loss model of cognitive aging.
The latter model assumes that a constant pro-
portion of information is lost in each succes-
sive step of cognitive processing and, further,
that the proportion is greater for older adults
than for younger adults. Specifically, the pa-
rameter θ4 represents the ratio of informa-
tion loss between older and younger adults;
similarly, other parameters of the model can
be related to information loss (see Meyerson
et al., 1990, for details). Best-fit parameter
values of the model for the same data set
from Cerella et al. (1981) were obtained as
θ1 = 0.467, θ2 = 1.512, θ3 = −0.162, θ4 =
2.143, θ5 = 0.588, with the minimized MSE
equal to 0.089. The thinner solid line in Fig-
ure 11.2 represents the best-fitting nonlinear
model. This five-parameter model fit the data
almost perfectly, accounting for 97.1% of the
variance, which is an increase of 1.4% over
Cerella et al.’s (1981) two-parameter linear
model. The generalized likelihood test can
then be performed to determine whether the
mere 1.4% increase represents meaningful
improvement in fit. To obtain the required
G2 statistic, the MSE values must be con-
verted to the corresponding maximized log
likelihood values. This was done using Equa-
tion (10), and the resulting log likelihood val-
ues were equal to 7.99 and 10.0 for the re-
stricted and full models, respectively. G2 was
then calculated and found to be equal to 4.02,
which is smaller than 7.81, the critical value
of χ2(d f = 3, α = 0.05). Therefore, the null



pashler-44093 book December 18, 2001 10:32

Model Construction and Testing 445

hypothesis that the linear model is a correct
description of the data should be retained. The
three extra parameters (θ2, θ3, θ4) do not seem
necessary to account for the observed data.

Although null hypothesis testing is easy to
use and provides a reasonable and informa-
tive assessment of the validity of a model in
its own way, the usefulness of the method is
somewhat over-sold, especially in the behav-
ioral sciences. The reader should be aware of
the limitations and criticisms of the method
(Chap. 10; Berger & Berry, 1988; Cohen,
1994; but see Hagan, 1997) and is cautioned
against possible misinterpretations of hypoth-
esis testing results. For example, retaining the
null hypothesis (i.e., failing to reject the null
hypothesis) does not necessarily imply that
the hypothesis is more likely to hold than is
the alternative hypothesis, let alone that it is
confirmed to be the correct (i.e., true) model.
Jumping to such conclusions is still common-
place in the psychological literature, so it is
particularly important to guard against mak-
ing such errors in reasoning.

As mentioned earlier, the generalized like-
lihood ratio test requires that the two models
be nested. If they are not, if both have the
same number of parameters but differ in their
model equation (e.g., y = θx vs. y = xθ ), or
if more than two models are being compared,
the generalized likelihood test is not appropri-
ate. In such cases, another method of statisti-
cal inference must be used. This and related is-
sues are discussed in the section titled “Model
Selection.”

Testing Nonstatistical Models

So far we have dealt with statistical models
only. A statistical model specifies the prob-
ability of observing data—that is, f (y | θ)—
given the model’s parameter values. This al-
lows a probabilistic formulation for testing the
validity of the model using null hypothesis
testing. On the other hand, there are classes

of nonstatistical models for which the proba-
bility distribution is not specified. Some ax-
iomatic models that are formulated in the form
of ordinal predictions fall into this category.
For such qualitative models, it is not entirely
clear how to construct a probabilistic formu-
lation for model testing. To illustrate, sup-
pose that an axiomatic model assumes tran-
sitivity and that when the axiom was tested
against observed data sets, it was found that it
held up pretty well, with violations observed
in only 3% of the data. Should this be con-
sidered sufficient evidence for retaining the
model? If this question were answered by per-
forming a statistical test, one would need to
calculate the probability of observing viola-
tions of the axiom in 3% or more of the data
under the assumption that the model, or an
appropriately chosen null model, holds. Be-
cause the model specifies no error theory for
its axioms, it is not possible to calculate this
probability.

Monte Carlo methodology may present
a possible remedy for testing nonstatistical
models. For example, Nygren (1983) pro-
posed a Monte Carlo approach by which the
likelihood of violating an axiom by chance
is estimated through numerical simulations.
Specifically, to assess the fit of an axiomatic
model to observed data, we first generate arti-
ficial data sets under a random response model
with no particularly meaningful structure. An
axiom of interest is then tested individually
in these random data sets, and the propor-
tion of violations that would be expected
under the random model is obtained. This
baseline violation rate is then used as a bench-
mark against the empirically observed pro-
portion. An appropriate statistical test, such
as the t test using the binomial distribution,
may be performed to examine whether the
observed data represent a significantly better
fit than would be expected under the null hy-
pothesis of the random response model. The
procedure may be repeated for each of the
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axioms of the model to assess an overall fit of
the model.

Interpreting Good Fits

What does it mean when a model fits the data
well? It is important not to jump to the conclu-
sion that one has identified the form of the un-
derlying process and therefore discovered the
true model. As S. Roberts and Pashler (2000)
noted, a good fit is only one of many condi-
tions that must be satisfied before such a con-
clusion should even be contemplated. At first
blush, a good fit would seem to be sufficient
to claim that the model is accurate. After all,
by fitting the data well, the model has demon-
strated its ability to mimic the phenomenon of
interest. However, a good fit merely qualifies
the model as a true model, placing it in the set
of models that could be true. As the example
on interpreting the linearity of Brinley plots
shows, this information is not terribly infor-
mative by itself, for there are without a doubt
many models in this set.

Simply put, verification of a model’s pre-
dictions (i.e., data fitting) can never amount
to a sufficiency test of the model. What con-
stitutes a sufficiency test? Given that a model
is defined as a set of assumptions about the
underlying mental processes of interest, the
model is sufficient only when all of its as-
sumptions are tested and validated indepen-
dently, which could be a challenging task. The
model itself must be well understood before
such a claim can be made. For starters, we
need to be able to answer the question, “Why
does the model fit the data well?” The answer
should be “because it is a good approximation
of the mental process.” As discussed in the
next section, good fits can be achieved for rea-
sons that have nothing to do with the model’s
exactness. For this reason we recommend that
the more appropriate measure of a model’s ad-
equacy is a test of its generalizability, not its
goodness of fit.

MODEL SELECTION

The preceding discussion should make it
clear that the objective in model testing is to
test the viability of a model, not to take the ad-
ditional step and conclude that it is the correct
model. To do so is unwarranted because one’s
model has not been demonstrated to be supe-
rior to others. Model selection, on the other
hand, involves a set of competing models,
all of which have passed goodness-of-fit tests
and have been found to provide a “good” de-
scription of the data. The objective in model
selection is to decide which one is the best
model in the sense that it most closely approxi-
mates the underlying mental process. A more
detailed and technically rigorous discussion
of some of the issues presented here can be
found in the book Model Selection (Linhart &
Zucchini, 1986) and in a special issue on
model selection of the Journal of Mathemat-
ical Psychology (Myung, Forster, & Browne,
2000).

There are a number of criteria for choos-
ing among mathematical models (Jacobs &
Grainger, 1994): (a) explanatory adequacy (is
the theoretical explanation of the model rea-
sonable and consistent with established find-
ings?); (b) plausibility (are the assumptions
of the model biologically and psychologically
plausible?); (c) interpretability (do the param-
eters of the model make sense and have mean-
ingful interpretations?); (d) goodness of fit or
descriptive adequacy (does the model provide
a good description of the observed data?); (e)
generalizability (does the model predict well
the statistics of new, as yet unseen, data?);
and (f) complexity or simplicity (does the
model capture the phenomenon in the sim-
plest possible manner?). Although each of
these criteria is important to consider in model
selection, the last three (goodness of fit, gen-
eralizability, and complexity) are particularly
pertinent to choosing among mathematical
models, and quantitative methods have been
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developed with this purpose in mind. We be-
gin by defining these criteria in more de-
tail and then demonstrating their interrelation-
ships in an illustrated example.

Model Selection Criteria

Goodness of Fit

Goodness of fit, such as MSE and maximized
likelihood (ML), is a necessary component of
model selection. Because data are our only
link to the cognitive process under investiga-
tion, a model must be able to describe well
the output from this process if a model is to
be considered seriously. Failure to do so in-
validates the model. As stated earlier, good-
ness of fit is not a sufficient condition for
model selection. This is because model selec-
tion based solely on goodness of fit will result
in the choice of a model that overfits the data.
Why? Because the model will capture vari-
ability present in the particular data set that
comes from sources other than the underlying
process of interest.

Statistically speaking, the observed data
are a sample generated from a population and
therefore will contain at least three types of
variation: variation due to sampling error be-
cause the sample is only an estimate of the
population, variation due to individual differ-
ences, and variation due to the cognitive pro-
cess of interest. Most of the time it is only the
third of these that one is interested in model-
ing, yet goodness-of-fit measures do not dis-
tinguish between any of them. Measures such
as MSE treat all variation identically. They
are blind to its source and try to absorb as
much of it as possible (this is demonstrated
later). What is needed is a means of filtering
out these unwanted sources of noise. Gener-
alizability achieves this.

Generalizability

Generalizability refers to a model’s ability to
fit not only the observed data in hand but also

future, unseen data sets generated from the
same underlying process. To illustrate, sup-
pose that the model is fitted to the initial set
of data and that its best-fitting parameter val-
ues are obtained. With these parameter values
held constant, if the model also provides a
good fit to additional data samples collected
from replications of that same experiment
(i.e., the same underlying probability distribu-
tion or regularity), then the model generalizes
well. Only under such circumstances can one
be sure that a model is accurately capturing
the underlying process, and not the idiosyn-
crasies of a particular sample.

The superiority of this criterion becomes
readily apparent in the following illustration.
In Figure 11.3 the solid circles represent ob-
served data points, and the curves represent

Model A

Model B

Figure 11.3 Illustration of the trade-off between
goodness of fit and generalizability.
NOTE: Two models (curves) are fitted to the same
data set (solid circles). New observations are shown
by the open circle.
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best-fits by two hypothetical models. Model A
not only captures the general trend in the cur-
rent data but also does a good job of capturing
new observations (open circles). On the other
hand, Model B provides a much better fit than
model A, but it does so by fitting the random
fluctuations of each data point as well as the
general trend, and consequently suffers in fit
when new observations are introduced into the
sample. As the example shows, generalizabil-
ity is a very reliable way to overcome the prob-
lem of noise and extract the regularity present
in the data. Further examples later will demon-
strate why generalizability should be adopted
as the primary quantitative criterion on which
the adequacy of a model is evaluated.

Complexity

Intuitively, model complexity refers to the
flexibility inherent in a model that enables
it to fit diverse patterns of data. For the mo-
ment, think of it as a continuum, with sim-
ple models at one end and complex models
at the other. A simple model assumes that a
relatively narrow range of more of less simi-
lar patterns will be present in the data. When
the data exhibit one of these few patterns, the
model fits the data very well; otherwise, its
fit will be rather poor. All other things being
equal, simple models are attractive because
they are sufficiently constrained to make them
easily falsifiable, requiring a small number of
data points to disprove the model. In contrast,
a complex model, usually one with many pa-
rameters that are combined in a highly nonlin-
ear fashion, do not assume a single structure in
the data. Rather, like a chameleon, the model
is capable of assuming multiple structures by
finely adjusting its parameter values. This en-
ables the model to fit a wide range of data
patterns.

There are at least two independent dimen-
sions of model complexity: the number of free
parameters in a model and its functional form,
which refers to the way in which the parame-

ters are combined in the model equation. For
example, y = θx and y = xθ have the same
number of parameters (1) but differ in func-
tional form. The two dimensions of model
complexity, and their interplay, can improve a
model’s fit to the data but—strange though
it may seem—not improve generalizability.
This is illustrated next.

As shown in Table 11.1, four models were
compared on their ability to fit two data sam-
ples generated by the two-parameter linear
model (P2), which by definition is the true
model. Goodness of fit was assessed by find-
ing parameter values for each model that gave
the best fit to the first sample. With these pa-
rameters fixed, generalizability was assessed
by fitting the models to the second sample. In
the first row of Table 11.1 are each model’s
mean fit to data drawn from P2. As can be
seen, P2 fitted better than P1, which is an
incorrect model having one fewer parameter
than the true model. The results for P3 and P4

are more interesting. These two models have
two more parameters than P2 and contain the
true model as a special case. Note that they
both provided a better fit to the data than P2

itself. Given that the data were generated by
P2, one would have expected P2 to fit its own
data best at least some of the time. But this
never happened. Instead, P3 and P4 always
fitted better. The improvement in fit of P3 and
P4 over P2 represents the degree to which the
data were overfitted. The two extra parame-
ters in the two models enabled them to absorb
nonsystematic variation (i.e., random error)
in the data, thus improving fit beyond what
is needed to capture the underlying regular-
ity. Note also that P4 provided a better fit than
P3 (0.79 vs. 0.91), and did so much more of-
ten (99% vs. 1%). This difference in fit must
be due to functional form because these two
models differ only in how the parameters and
data are combined in the model equation.

The results in the second row of Table 11.1
demonstrate that overfitting a specific sample
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Table 11.1 Goodness of Fit and Generalizability of Models Differing in Complexity

Model P1 P2 (true) P3 P4

Goodness of fit 1.32 (0%) 0.89 (0%) 0.91 (1%) 0.79 (99%)
Generalizability 1.39 (6%) 1.06 (52%) 1.14 (21%) 1.13 (21%)

NOTE: Mean squared error of the fit of each model to the data and the percentage of samples in which the particular
model fitted the data best (in parenthesis). The four models are as follows: P1 : y = θ1x + e; P2 : y = θ1x + θ2 +
e; P3 : y = θ1(θ2x + 1)θ3 + θ4 + e; P4 : y = θ1x + θ2x2 + θ3x3 + θ4 + e. The error e was normally distributed with a
mean of zero and a standard deviation of 1. A thousand pairs of samples were generated from M2 (true model) using
θ1 = 4 and θ2 = −2.5 on the same 12 points for x , which ranged from 3 to 14 in increments of 1.

of data results in a loss of generalizability.
MSEs are now greater for P3 and P4 than
for P2; also, the two overly complex models
yielded the best fit to the second sample much
less often than the true model, P2.

This example demonstrates that the best-
fitting model does not necessarily generalize
the best and that model complexity can signif-
icantly affect generalizability and goodness of
fit. Because of its extra flexibility, a complex
model can fit a single data set better than a sim-
ple model. The cost of the superior fit shows
up in a loss of generalizability when fitted
to new data sets, precisely because it over-
fitted the first data set by absorbing random
error. Figure 11.4 illustrates the intricate rela-
tionship among goodness of fit, generalizabil-
ity, and model complexity. Fit index such as
percent variance accounted for is represented
along the vertical axis, and model complex-

Goodness of fit

Generalizability

Complexity

Fi
t I

nd
ex

Overfitting

Underlying
regularity

Excess
complexity

Figure 11.4 Illustration of the relationship
among goodness of fit, generalizability, and model
complexity.

ity is represented along the horizontal axis.
Goodness of fit increases as complexity in-
creases. Generalizability also increases posi-
tively with complexity but only up to the point
where the model is sufficiently complex to
capture the regularities underlying in the data.
Additional complexity beyond this point will
cause a drop in generalizability as the model
begins to capture random noise, thereby over-
fitting the data.

In conclusion, a model must not be chosen
solely on the basis of its goodness of fit. To
do so risks selecting an overly complex model
that generalizes poorly to other data generated
from the same underlying process. If the goal
is to develop a model that resembles the under-
lying process, then the model must be able to
fit all current and future data reasonably well.
Only generalizability can measure this prop-
erty of the model, and thus it should be used in
model selection. The next section introduces
techniques for measuring generalizability and
demonstrates their application.

Measures of Generalizability

The trade-off between goodness of fit and
complexity illustrated in the preceding ex-
ample is what makes model selection so dif-
ficult. The model must be complex enough
to describe the variation in any data sample
that is due to the underlying process, yet not
overfit the data by absorbing noise and thus
lose generalizability. Conversely, the model
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must not be too simple to capture the under-
lying process and thereby underfit the data,
which will also lower generalizability. The
goal of model selection methods is to esti-
mate a model’s generalizability by weighting
fit against complexity. This goal is realized
by defining a selection criterion that makes
an appropriate adjustment to its goodness of
fit by taking into account the contribution of
complexity. Five representative methods that
are currently in use are the Akaike informa-
tion criterion (AIC; Akaike, 1973; Bozdogan,
2000), the Bayesian information criterion
(BIC; Schwarz, 1978), cross-validation (CV;
Browne, 2000; Stone, 1974), Bayesian model
selection (BMS; Kass & Raftery, 1995;
Myung & Pitt, 1997; Wasserman, 2000),
and minimum description length (MDL;
Grunwald, 2000; Rissanen, 1983, 1996). The
first two of these (AIC, BIC) are limited in
their application because they take into ac-
count only the number of parameters in their
complexity measure. The other three (CV,
BMS, MDL) consider the functional form di-
mension of model complexity as well, either
implicitly (CV, BMS) or explicitly (MDL).

The first two methods are defined as
follows:

AIC = −2 ln f (y | θ̂ ) + 2k

BIC = −2 ln f (y | θ̂ ) + k ln n

where ln f (y | θ̂ ) is the natural logarithm of
a model’s maximized likelihood, k is the
number of free parameters in the model,
and n is the sample size. When errors are
normally distributed, the first term of AIC
and BIC, −2 ln f (y | θ̂ ), can be replaced by
(n · ln(SSE) + constant). These selection
methods prescribe that the model minimizing
a given criterion should be chosen.

Note that each of these two criteria con-
sists of two terms: The first represents lack
of fit, and the second term is naturally inter-
preted as model complexity (i.e., 2k for AIC

and k · ln(n) for BIC). Model selection is car-
ried out by trading lack of fit for complexity.
A complex model with many parameters, hav-
ing a large value in the complexity term, will
not be chosen unless its fit justifies the extra
complexity.

AIC and BIC are simple and easy to com-
pute and are by far the most commonly
used criteria. The only difference between the
two is that BIC includes an extra complex-
ity penalty term for sample size. The BIC is
derived as a large sample approximation of
BMS, described later.

The number of parameters is the only di-
mension of complexity that is considered by
these two methods. As discussed earlier, func-
tional form can also significantly affect model
fit and therefore needs to be taken into account
in model selection. The selection methods de-
scribed next are sensitive to functional form
as well as the number of parameters.

The CV, BMS, and MDL methods are de-
fined as follows:

CV = − ln f (yval.|θ̂ cal.)

BMS = − ln
∫

f (y|θ)π(θ) dθ

MDL = − ln f (y | θ̂ ) + k

2
ln

(
n

2π

)

+ ln
∫ √

det I (θ) dθ.

In the equation, π(θ) is the prior density of the
model parameter, and det I (θ) is the determi-
nant of the Fisher information matrix defined
as

Ii j (θ) = −1

n
E

(
∂2 ln f (y|θ)

∂θi∂θ j

)

for i, j = 1, . . . , k where the expectation E is
taken over y ( e.g., see Robert, 1994, p. 114).
These methods prescribe that the model min-
imizing a given criterion should be selected.

CV estimates a model’s generalizability
without explicitly considering model com-
plexity. In this method, one first randomly
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Table 11.2 Cross Validation Example

X Ycal Yprd Yval (Ycal − Yprd)
2 (Yval − Yprd)

2

0.806 1.132 1.048 1.026 0.007 0.000
0.820 1.182 1.082 1.217 0.010 0.018
0.910 1.268 1.306 1.433 0.001 0.016
0.911 1.293 1.309 1.150 0.000 0.025
1.030 1.553 1.605 1.745 0.003 0.020
1.030 1.564 1.605 1.369 0.002 0.056
1.155 1.819 1.916 1.736 0.009 0.032
1.205 1.836 2.040 1.940 0.042 0.010
1.295 2.465 2.264 2.583 0.040 0.102
1.475 2.775 2.712 2.619 0.004 0.009

NOTE: In this example, the observed data sample was divided into two sub-samples of equal size, calibration (Ycal)
and validation (Yval). Then a two-parameter linear model, y = θ1x + θ2 + error, was fitted to the calibration sample,
and least square estimates of the parameter values were obtained as θ1 = 2.448 and θ2 = −0.958. These parameter
estimates define the model’s prediction (Yprd) as yprd = 2.448x − 0.958. From this, mean squared error (MSE) for
the calibration sample is obtained as MSE = √

SSE/m = √
0.119/10 = 0.109, where SSE stands for the sum of

squares error, �(Ycal −Yprd)
2, as shown on the fifth column of the table. This MSE is translated into 95.7% of the total

variance accounted for (i.e., 1 − SSE/SST = 1 − 0.119/2.756 = 0.957). Similarly, from the SSE, �(Yval − Yprd)
2,

shown on the last column of the table, MSE for the validation sample is obtained as MSE = √
0.288/10 = 0.170, or

equivalently, 89.9% variance accounted for (i.e., 1 − SSE/SST = 1 − 0.288/2.853 = 0.89.9).

divides the observed data into two subsam-
ples, calibration and validation. One then uses
the former to estimate the best-fitting parame-
ter values of the model. These values, denoted
by θ̂Cal, are then fixed and used by the model
to fit the validation sample, denoted by yval.,
yielding the model’s CV index, which repre-
sents an estimate for the model’s generaliz-
ability. This index may be expressed using an
appropriate fit measure such as the negative
log likelihood, the MSE, or the percent vari-
ance accounted for. Note that the value of the
CV index is dependent on how the calibra-
tion and validation samples are selected. This
unwelcome dependency can be removed or
at least minimized by repeatedly performing
cross validation for each combination of the
calibration and validation samples and then
calculating the average CV index.

The CV method somehow takes into ac-
count the effects of functional form, but how
it does this is not clear. Complexity, there-
fore, cannot be independently measured in
CV. Nevertheless, its ease of use and versatil-
ity (being applicable for comparing algebraic,

algorithmic, and differential-process models)
make it an extremely attractive method.
Therefore, we recommend its use in model
testing, especially when comparing nonnested
models. A detailed example of how to use
the procedure is provided here and in Ta-
ble 11.2. Let us again consider Cerella’s
(1985) linear model of age-related deficits.
Suppose that one wishes to calculate the CV
index of this model given the data of Cerella
et al. (1981), and further imagine that one
divided the original data into two subsam-
ples (calibration and validation), each consist-
ing of ten (x, y) pairs. The open circles and
plus signs in Figure 11.2 represent the cali-
bration and validation samples, respectively.
Application of CV requires that we first fit the
model to the calibration sample and obtain its
best-fitting parameter values. This part has al-
ready been completed, as described in the sec-
tion titled “Parameter Estimation.” The best-
fitting parameter values were θ1 = 2.448 and
θ2 = −0.958 with MSE = 0.109, or, equiva-
lently, 95.7% variance accounted for. Now, us-
ing these parameter values, predictions from
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the model were generated, that is, yprd,i =
2.448xi − 0.958, i = 1, . . . , 10. The predic-
tions, as represented by the thicker solid line
in Figure 11.2, were then fitted to the vali-
dation sample (plus signs), with no further
parameter tuning. When this was done, the
resulting MSE was 0.170, with 89.9% vari-
ance accounted for, yielding a poorer fit. The
latter value represents an estimated general-
izability measure of the model in the sense
that it is expected, on average, that the lin-
ear model will account for about 89.9% of the
variance when fitted to all potential data sam-
ples generated from the same underlying pro-
cess. Consequently, the 5.8% (= 95.7−89.9)

difference between the calibration and valida-
tion samples is the amount by which the cali-
bration sample was overfitted—the amount of
random error in the data that was absorbed by
Cerella’s 1981 model (Cerella, 1985). Finally,
the value of the CV index defined earlier is ob-
tained by converting the MSE value of the val-
idation sample into the minus log likelihood
value using Equation (8), in which the popu-
lation standard deviation σ is replaced by the
MSE value (0.170), its sample estimate. The
resulting value is −3.55.

In BMS the goal is to select the one model
among the set of models that maximizes the
posterior probability of the model given the
data in hand. Under the assumption of equal
model priors, the inference leads to maxi-
mization of what is called the marginal like-
lihood, which is the average probability of
the data given the model, weighted by the pa-
rameter prior density function, π(θ). BMS it-
self is defined as the minus logarithm of the
marginal likelihood. Under the assumptions
of normality and large sample, BMS can be
written as

BMS ≈ −ln f (y | θ̂ ) + (1/2) ln det(H(θ)).

In the above equation, H(θ) denotes the ob-
served Hessian matrix, whose elements con-
sist of the second derivatives of the minus log

likelihood, −ln f (y | θ), differentiated with
respect to the parameter vector θ . The sec-
ond term of the above expression can be in-
terpreted as a Bayesian complexity measure.
Note that the value of the Hessian matrix de-
pends on the functional form of the model’s
likelihood function as well as on the number of
parameters in the model, as does the Bayesian
complexity measure. When the sample size is
sufficiently large, BMS is simply reduced to
one half of the BIC.

Finally, MDL was developed within the
domain of algorithmic coding theory in com-
puter science, where the goal of model se-
lection is to choose the model that permits
the greatest compression of data in its de-
scription. The assumption underlying the ap-
proach is that regularities or patterns in data
imply redundancy. The more the data can be
compressed by extracting this redundancy, the
more we learn about the underlying regular-
ities governing the cognitive process of in-
terest. As with the other selection methods,
the first term of MDL is the lack of fit mea-
sure. The second and third together consti-
tute the intrinsic complexity of the model.
The model that minimizes MDL uncovers the
greatest amount of regularity in the data and
thus should be preferred.

BMS and MDL are theoretically related
to each other (Vitanyi & Li, 2000) and of-
ten perform similarly in practice. One draw-
back in the application of these methods is
that they can be computationally intensive,
as both require evaluation of numerical in-
tegration (see, e.g., Gilks, Richardson, &
Spiegelhalter, 1996; Thisted, 1988).

Given the variety of selection methods, it
is reasonable to wonder when each is appro-
priate to use. We end this section by offer-
ing a few guidelines. In the ideal situation in
which (a) the models being compared are all
nested within one another, (b) one of them is
correctly specified, and (c) the sample size is
sufficiently large (e.g., 200), all five criteria
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should perform equivalently and pick the true
model most often. When models being com-
pared are nonnested, functional form has the
potential to play a significant role in model
performance. In this situation, the first two
methods (AIC, BIC) will in general perform
worse than the other three (CV, BMS, MDL),
which are sensitive to this dimension of model
complexity. As a rule of thumb, the latter three
may be the safest to use, though there is no
guarantee that they will always perform the
best. Relative performance of these selection
methods can vary considerably depending on
the specific set of models being compared,
such as nested versus nonnested and correctly
specified versus misspecified, and on the sam-
ple size, level of random noise, and other char-
acteristics of the data.

Computational considerations will also
influence the choice of method. The most
general-purpose methods are likely to be
MDL and BMS, which perform most accu-
rately across a range of conditions. Unfortu-
nately, they are difficult to implement and re-
quire substantial mathematical sophistication
to use. The other methods are easier to im-
plement and are likely to perform satisfacto-
rily under restricted conditions. For example,
when models have the same number of pa-
rameters but differ in functional form, CV is
recommended because it, unlike AIC or BIC,
is sensitive to this dimension of complexity. If
models differ only in number of parameters,
then AIC and BIC should do a good job.

OTHER ISSUES IN MATHEMATICAL
MODELING

Because of space limitations, we cannot fully
discuss a number of other issues of which the
modeler should be aware, but we briefly touch
on a few of these in this section. For a more
in-depth treatment of each, the reader should
consult the references provided herein.

Individual Differences

Individual differences are an important,
though often neglected, topic in mathematical
modeling (Luce, 1997). They arise when par-
ticipants’ data can be fit by the same model but
with different values of the model’s parame-
ters. For example, suppose that in a forgetting
study one participant’s performance measured
by proportion recall decreases according to a
power curve with a forgetting rate of 0.25,
yt,sub.1 = t−0.25, as a function of the reten-
tion interval t . Another participant’s perfor-
mance may follow the same power curve but
with a different value of the forgetting param-
eter, for example, yt,sub.2 = t−0.40. Whenever
individual differences are suspected, averag-
ing across individuals’ data should be done
with extreme care; otherwise it can yield a
distorted view of the underlying psychologi-
cal structure, especially for nonlinear models
(see, e.g., R. B. Anderson & Tweney, 1997;
Ashby, Maddox, & Lee, 1994; Estes, 1956;
Hintzman, 1980; Melton, 1936; Myung, Kim,
& Pitt, 2000; Siegler, 1987; Singh, 1996). Per-
haps a better solution is to analyze the data
using a method that takes into account in-
dividual differences, such as the hierarchi-
cal modeling approach (Bryk & Raudenbush,
1992).

Random Error in Nonlinear Models

Random error in a nonlinear model can create
the illusion of a statistically reliable and repro-
ducible effect, which in actuality is an artifact.
An implicit assumption behind the standard
notation of a model, y = g(θ, x) + e, is that
the random error e is additive to the observed
dependent variable y. It may be instructive to
examine the integration of other types of ran-
dom error. For instance, random error could
arise inside the mean function g(θ, x), instead
of outside:

y = g(θ, xi , ei ) (i = 1, . . . , m).
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For example, a model may assume that the
data are generated according to the follow-
ing model equation: yi = θ1(xi + ei )

2 + θ2

(i = 1, . . . , m). In this equation, xi might rep-
resent the strength/magnitude of a variable
representing an internal mental process (e.g.,
perceived loudness of a stimulus tone, sub-
jective likelihood of an uncertain event), and
because of the way it is coded internally in
the brain (e.g., frequency of neuronal spikes),
xi itself is a random variable with an asso-
ciated probability distribution. Or, simply, it
may not be possible to obtain the exact value
of the independent variable xi , and instead,
it is measured with error included. In either
case, misspecification of the error for a non-
linear form of the mean function g(θ, x) can
create an artifactual effect that has no relation
to the underlying process that is being mod-
eled. See Erev, Wallsten, and Budescu (1994)
for an example. In short, to avoid such pit-
falls, one must develop a proper error theory
when modeling cognition and take it into ac-
count when analyzing data (Busemeyer, 1980;
Busemeyer & Jones, 1983; Luce, 1995).

Equivalent Models

We often distinguish one model from another
by the model’s equation. For instance, the
power model, y = xθ + e, is clearly different
from the exponential model, y = eθx +e. The
look of the model equation can be deceiving,
however, because models with distinct equa-
tions can often be the same model. For ex-
ample, the exponential model is equivalent to
the model y = αx + e, as the former can
be obtained from the latter through a param-
eter transformation α = eθ . When one model
is transformed into another through such a
reparameterization, both become equivalent
models in the sense that they will fit any
given data set with identical precision. Conse-
quently, they are indistinguishable from one
another. A similar problem of equivalent mod-

els, though in a different sense, arises in co-
variance structure modeling (see MacCallum,
Wegener, Uchino, & Fabrigar, 1993).

As another example of reparameterization-
equivalent models, consider the FLMP model
(Oden & Massaro, 1978) and the Rasch (1960)
model of aptitude defined as follows:

FLMP : g(θi , λ j ) = θiλ j

θiλ j + (1 − θi )(1 − λ j )

(0 < θi , λ j < 1)

Rasch : g(αi , β j ) = 1

1 + exp(αi + β j )

(0 < αi , β j < ∞).

FLMP the two parameters θi and λ j rep-
resent dimensions of input stimuli (e.g., au-
ditory and visual) and are combined multi-
plicatively, which is represented by the mean
function g(θi , λ j ). On the other hand, in the
Rasch model the parameters αi and β j are
combined in an additive fashion. Despite this
difference, however, they are equivalent mod-
els under the following parameter transforma-
tion (Batchelder, 1997):

αi = ln((1 − θi )/θi ); β j = ln((1 − λ j )/λ j ).

Thus one can perfectly mimic the other. There-
fore, the question of whether the sensory di-
mensions are combined multiplicatively or
additively cannot be answered using statisti-
cal tests alone. Answering the question will
require use of some nonstatistical means such
as an experimental manipulation. In short, for
a model with at least one reparameterization-
equivalent model, the specific form of the
model’s equation may not be identifiable.

CONCLUSION

The purpose of mathematical modeling is to
add precision and clarity to the study of be-
havior. It forces the scientist to be explicit
about the architectural characteristics of the
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processing system, specifying its structure in
detail that almost always goes beyond what
is known about the process from experimen-
tal data. Once specified, the model can be
scrutinized in tests of internal consistency
(e.g., identifiability) and rigorously evaluated
by comparing model performance with hu-
man data and then with other competing mod-
els. Such tests are only meaningful when we
understand what the tests actually measure
and—just as importantly—what they do not
measure. Another purpose of this chapter has
been to alert the reader to the tough problems
that must be tackled in order to do model-
ing. The widespread availability of modeling
software bodes well for the future of the dis-
cipline. Consider this chapter a companion
piece intended to guide would-be modelers
and assist them in making informed decisions.

APPENDIX: RANDOM NUMBER
GENERATORS

In this appendix we list random number gen-
erators for five selected probability distri-
butions that are often assumed in modeling
mental processes. For random number gener-
ators for other distributions not listed here, see
Appendix B of Robert (1994), upon which
the present appendix is based. The book by
Bratley, Fox, and Schrage (1983) is also a
useful reference. We assume that the user has
an access to a routine that generates random
numbers, Ui ’s, on the uniform probability dis-
tribution on [0, 1].

Normal Distribution. The normal prob-
ability distribution of mean µ and variance σ 2

is given by

f (y | µ, σ 2) = 1√
2πσ

exp

(
− (y − µ)2

2σ 2

)

where exp(x) stands for the exponential func-
tion (that is, exp(x) = ex and −∞ < y < ∞.

The following algorithm generates random
numbers, ys, that are normally distributed
with mean µ and variance σ 2:

Step 1. Generate U1, U2.

Step 2. Take x = √−2 ln (U1) cos(2πU2).

Step 3. Take y = µ + σ x .

Note in the above algorithm that the function
ln(x) denotes the natural logarithm of base e,
not the logarithm of base 10.

Exponential Distribution. The expo-
nential probability distribution of mean α and
variance α2 is given by

f (y | α) = 1

α
exp(−y/α)

where 0 < y < ∞ and α > 0. The algorithm
for exponential random numbers is as follows:

Step 1. Generate U .

Step 2. Take y = − ln(U )/α.

Beta Distribution. The beta probability
distribution of mean α/(α + β) and variance
αβ/((α + β)2(α + β + 1)) is defined as

f (y | α, β) = �(α + β)

�(α)�(β)
yα−1(1 − y)β−1

where 0 ≤ y ≤ 1 and α, β > 0. In the equa-
tion, �(x) denotes the gamma function whose
value is equal to (x−1)(x−2) · · · · · 2 · 1 for a
positive integer x but otherwise must be eval-
uated numerically using a recursion formula.
Note that the uniform distribution is obtained
as a special case of the beta distribution for
α = β = 1.

The following algorithm generates beta
random numbers:

Step 1. Generate Gα, Gβ (see following)

Step 2. Take y = Gα/(Gα + Gβ).

The required random number, Gx (x > 0),
in the above algorithm is generated from one
of the following routines depending upon the
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value of x :

Case 1: x > 1

Step 1. Define a = x − 1, b = (x − (1/6x))/

a, c = 2/a, d = 1 + c, and e =
1/

√
x

Step 2. Generate U1, U2.

If x ≤ 2.5, then proceed to Step 4. Other-
wise, take U1 = U2 + e(1 − 1.86 U1).

Step 3. If U1 ≤ 0 or U1 ≥ 1, then go to Step
2.

Step 4. If (cU1 + bU2/U1 + U1/(bU2)) ≤ d
or (c ln(U1)−ln(bU2/U1)+bU2/U1)

≤ 1, then take Gx = abU2/U1. Oth-
erwise, go to Step 2.

Case 2: x = 1 In this case, generate the de-
sired random number, Gx=1, from the expo-
nential distribution with α = 1.

Case 3: x < 1

Step 1. Generate U .

Step 2. Generate z = Gx+1 using the above
routine for (x + 1) > 1.

Step 3. Take Gx = zU 1/x .

Binomial Distribution. The binomial
probability distribution of mean np and vari-
ance np(1 − p) is given by

f (y | p) = n!

y!(n − y)!
py(1 − p)n−y

where y = 0, 1, 2, . . . , n, 0 ≤ p ≤ 1. The
following algorithm generates binomial ran-
dom numbers:

Step 1. Generate U1, U2, . . . , Un .

Step 2. Define xi = 1 if Ui < p, and xi = 0
otherwise, for i = 1, . . . , n.

Step 3. Take y = x1 + x2 + · · · + xn .

In essence, this algorithm counts the number
of n uniform random numbers whose values
are less than p.

Poisson Distribution. The Poisson prob-
ability distribution of mean α and variance α

is given by

f (y | α) = e−ααy

y!

where y = 0, 1, 2, . . . ,∞, α > 0. The fol-
lowing algorithm generates Poisson random
numbers:

Step 1. Initialize a = 1, b = 0.

Step 2. Generate U
Let a = aU, b = b + 1
If a ≥ e−α , then go to Step 2. Other-
wise, go to Step 3.

Step 3. y = b
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CHAPTER 12

Analysis of Response Time Distributions

TRISHA VAN ZANDT

Response time (RT) is ubiquitous in exper-
imental psychology. It is perhaps the most
important measure used to investigate hy-
potheses about mental processing. Fifteen
of the 24 studies published in the Febru-
ary 2000 issue of the Journal of Experimen-
tal Psychology: Human Perception and Per-
formance used some form of RT analysis.
Not restricted to cognitive psychology, RTs
are collected routinely in empirical inves-
tigations in biological, social, developmen-
tal, and clinical psychology as well. RTs are
collected from both human and animal sub-
jects. Over 27,000 abstracts in the PsychInfo
database spanning from 1887 to the end of
April 2000 make reference to reaction, RT, or
latency.

One reason that RTs are so important in
experimental psychology is because they—
like other physical measurements such as
length, weight, or force—are defined on a
ratio scale (Townsend, 1992). This means
that one can bring all possible mathemati-
cal machinery to bear on the analysis of RT.
One can devise precise mathematical models

While writing this chapter the author was very fortu-
nate to have advice and criticisms from several promi-
nent developers of tools for response time analysis, and
she is extraordinarily grateful to them: Hans Colonius,
Ehtibar Dzhafarov, Richard Schweickert, and James T.
Townsend. Thanks are also due Tjeerd Dijkstra, who ver-
ified the accuracy of the MATLAB code. This chapter
was also made possible by NSF grant SBR-9702291.

of cognitive processing and make predictions
about process durations as a function of phys-
ical (numerical) variables in the experimen-
tal context and about how those processes
change with changes in these variables. Since
Kinnebrook’s brief tenure in Maskelyne’s ob-
servatory in 1796 (Mollon & Perkins, 1996),
variations in RT have seemed to be a clean
and easy way to get at how mental processing
unfolds over time.

Although the use of RTs in cognitive re-
search has been established for over a century,
basic issues of analysis still arise. Techniques
such as Neyman-Pearson null hypothesis test-
ing are routinely applied to RTs, even though
the basic assumptions required for such analy-
ses, such as normality and independence, are
known to be violated.1 RT distributions are
not normally distributed; rather, they are posi-
tively skewed. Individual RTs are not typically
independent of one another; some trial-by-
trial sequential effects persist even in the most
carefully controlled experiments. For these
and other reasons, RT analysis is not always
as straightforward as it appears.

1These violations are particularly obvious in the analy-
sis of single-subject data, where raw RTs are subjected
to Neyman-Pearson methods. However, even in the more
common group analysis, where the mean RTs from indi-
vidual subjects are used to compute the test statistics, the
critical assumption of identically distributed observations
is violated, even though the individual means can safely
be assumed to be normal.

461
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For the most part, RT analyses occur at the
level of the means. That is, hypotheses are
formulated with regard to predicted average
increases or decreases in RT, as opposed to
effects on less obvious parameters of the RT
distribution, such as skew. Of the 15 studies in
the issue of the journal just cited, 12 reported
only mean RTs. The remaining three stud-
ies investigated the RT distributions in greater
depth. This disparity actually reflects a recent
trend: It is becoming more and more important
to consider the overall distribution, as many
significant and interesting findings are typi-
cally hidden when observations are collapsed
into averages. Some of my colleagues have
seen changes in patterns of RTs in their data
across conditions but faced the frustration that
ANOVAs on the mean RTs failed to show sig-
nificant main effects. They then performed the
same ANOVAs on the RT medians, or on some
trimmed or otherwise modified averages, in an
attempt to demonstrate for some measure of
central tendency what was obvious at the level
of the distribution.

The purpose of this chapter is to provide
an outline of RT analyses, particularly at the
distributional level. Space constrains me from
writing a complete primer or handbook of
such analyses, but appropriate references will
be provided along the way. There are many
statistical and mathematical packages that can
help those who are less skilled at program-
ming to perform these analyses, and point-
ers to these packages will also be provided.
In particular, I have provided in the appendix
to this chapter some MATLAB routines that
can perform some of the analyses I will ex-
amine. I begin by discussing RTs as random
variables and the ways that random variables
can be characterized. I present problems of
estimation, not only of central tendency but
also of the parameters of a given theoreti-
cal distribution. I also discuss estimation of
the functional forms of the distribution. In
the second half of the paper, I give some

thought to how distributional estimates can
be used to test theories about the structure of
processing.

CHARACTERIZATION OF
RANDOM VARIABLES

RTs are random variables. A sample of RTs,
such as might be collected in an experiment
(under fixed conditions), is drawn at random
from the entire population or distribution of
possible RTs. The observations in the sam-
ple are assumed to be independent and iden-
tically distributed, or iid. That is, each ob-
servation was taken from exactly the same
distribution as each other observation (there
are no changes in the distributional parame-
ters or in the form of the distribution across
trials), and the observations are statistically
independent from each other (so the proba-
bility of the ith observation is unaffected by
the value of the jth observation). The iid as-
sumption is important for a number of rea-
sons, not the least of which is the desire that
the many trials within identical experimental
conditions all have exactly the same effect on
the human observer. Note, however, that the
independence assumption is likely to be vio-
lated by sequential effects and parameter drift
(Burbeck & Luce, 1982). Unfortunately, re-
searchers do not have the tools to deal with
this problem and must assume that the covari-
ances between observations are small enough
that they can be neglected.

A random variable can be characterized
in a number of ways. One way is to spec-
ify parameters of the distribution from which
the variable is sampled, such as its mean or
variance. Another way is to specify the func-
tional form of the distribution itself. There are
several useful functional forms, including the
density, distribution, and survivor and hazard
functions. Each of these different functions
describes a different aspect of the behavior
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of the random variable, but the relationship
between the functions is unique. That is, once
a particular density function has been spec-
ified, for example, the distribution, survivor
and hazard functions are then determined.
Random variables from different distributions
cannot have the same functional form, regard-
less of which kind of function is examined.
Therefore, only one of these functions needs
to be specified to characterize completely the
behavior of the random variable.

I now discuss each functional form and
the relationships between them. For additional
information, the reader might consult Luce
(Luce, 1986), Townsend and Ashby (1983),
or any good textbook on probability theory
(e.g., Hoel, Port, & Stone, 1971).

Density Function

The density functions f (t) for an ex-Gaussian
(the sum of a normal and an exponential ran-
dom variable) and a Wald random variable are
shown in Figure 12.1, top panel. The x-axis is
time, or potential values of RT, and the y-axis
is the height of the density function f (t). If RT
were a discrete random variable, the height of
the function at a point t would give the proba-
bility of observing an RT equal to t . However,
RT is generally considered to be a continuous
random variable, and therefore the value of
the density function does not represent prob-
ability. Instead, it is the area under the density
function that gives measures of probability.

For example, suppose that we want to know
the probability of observing an RT between
values a and b. This probability is measured
by integrating the density function between
the values a and b:

P(a ≤ RT ≤ b) =
∫ b

a
f (t) dt.

More generally, any positive function f that
has total area of 1 when integrated from neg-
ative to positive infinity is a density function.

For RT data, the shapes of the empiri-
cal (estimated) density functions are typically
unimodal and positively skewed, like those
shown in Figure 12.1. The majority of the ob-
servations is generally fast, but a large pro-
portion of the observations is slower, pulling
the positive tail of the density function to the
right. There are a number of distributions that
have density functions of this form, including
the gamma, Wald, and Weibull distributions,
but by far the most popular characterization of
RT densities is that of the ex-Gaussian (e.g.,
Balota & Spieler, 1999; Heathcote, Popiel, &
Mewhort, 1991; Ratcliff & Murdock, 1976).
The ex-Gaussian density can capture a very
large number of shapes from almost symmet-
ric (like the normal density) to very asym-
metric (like the exponential density, which is
shown in Figure 12.2).

The density function is a useful way of
characterizing RTs because it is an intuitive
way to think about how likely different RTs
are to be observed. The shape of the density
function can be useful in discriminating be-
tween some classes of random variables, but
it should be noted that many unimodal, pos-
itively skewed distributions exist, and many
are flexible enough that they can look very
similar to each other. This is demonstrated
by the close correspondence between the
ex-Gaussian and Wald densities in the figure.
I talk again about similarities between distri-
butions at the close of this chapter.

Distribution Function

The cumulative distribution functions (CDFs)
F(t) of the same ex-Gaussian and Wald ran-
dom variables are shown in Figure 12.1, cen-
ter panel. The x-axis gives the possible values
of RT, and the y-axis gives the values of the
CDF F(t). For a particular point t along the
x-axis, the value of F(t) gives the probability
of observing an RT less than the value t:

F(t) = P(RT < t).
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Figure 12.1 Density functions (top panel), CDFs (center panel), and hazard functions (bottom panel)
for an ex-Gaussian (solid curves) and Wald (dotted curves) random variable.

The CDF is found from the density function
by integration from −∞ to the point t:

F(t) =
∫ t

−∞
f (u) du.

Any positive function F(t) that is non-
decreasing and has the properties that
limt→−∞ F(t) = 0 and limt→∞ F(t) = 1 is
a CDF.

The CDF gives the percentile ranks of
each possible value of RT. In Figure 12.1,
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Figure 12.2 The ex-Gaussian density (open circles) plotted with its normal (dotted line) and exponential
(solid line) components.

for example, the median RT can be found by
drawing a horizontal line from the .50 point
on the y-axis and dropping a vertical line to
the x-axis at the point of intersection with the
desired curve F(t). This relationship between
the CDF and the quantiles of the distribution
is particularly useful for simulating different
random variables. To simulate a random vari-
able RT with a known CDF F(t), select a
point u on the y-axis at random (using a uni-
form [0, 1] generator), and then compute the
corresponding quantile RT = F−1(u). Invert-
ing F may require numerical methods but is
typically straightforward.

Unlike the density function, the CDF is not
as useful in distinguishing between different
kinds of random variables. Most CDFs are
S-shaped; all distributions increase from 0 to
1. Therefore, all CDFs tend to look similar
regardless of the random variables that they
describe. For example, in Figure 12.1 the
Wald and ex-Gaussian CDFs are practically
identical.

Survivor and Hazard Functions

The survivor and hazard functions are two al-
ternative functions that characterize a random

variable. These functions arise frequently in
reliability and survival analysis (when ma-
chines break or people die), hence the choice
of vocabulary.

The survivor function F(t) is the probabil-
ity that the “lifetime” of an object is at least t,
that is, the probability that failure occurs after
t. In terms of RT,

F(t) = P(RT > t) = 1 − F(t) :

The survivor function is simply one minus the
CDF.

The hazard function h(t) gives the likeli-
hood that an event will occur in the next small
interval dt in time, given that it has not oc-
curred before that point in time. From the def-
inition of a conditional probability,

h(t) = lim
dt→0

P(t ≤ RT ≤ t + dt | RT ≥ t)/dt

= f (t)

F(t)
.

The hazard function for the ex-Gaussian and
Wald distributions are shown in Figure 12.1,
bottom panel.

When F(t) is differentiable, the hazard
function can be expressed as a function of the
survivor function:

h(t) = − d

dt
ln F(t),
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where ln indicates the natural logarithm. The
function −ln F(t) is called the log survivor
function or integrated hazard function, and
it can be useful for distinguishing between
different distributions. I make use of it later
to answer questions about certain properties
of cognitive processes. The density function
can also be expressed in terms of the hazard
function:

f (t) = h(t) exp

[
−

∫ t

−∞
h(u) du

]
.

Some attention has been paid to the anal-
ysis of hazard functions in RT work, because
the hazard function can frequently be very use-
ful in discriminating between different ran-
dom variables (Ashby, Tein, & Balakrishnan,
1993; Bloxom, 1984; Colonius, 1988; Luce,
1986; Maddox, Ashby, & Gottlob, 1998;
Thomas, 1971). Although it is very difficult
to discriminate between the ex-Gaussian and
Wald densities shown in the top panel of Fig-
ure 12.1, the differences between the two vari-
ables become clear by examining the hazard
functions in the bottom panel. Whereas the
ex-Gaussian hazard function increases to an
asymptote, the Wald hazard function is non-
monotonic, increasing and then decreasing.
It has been suggested, therefore, that estima-
tion of hazard functions may provide a way to
identify RT distributions, and hence the pro-
cess underlying the execution of an RT task
(Burbeck & Luce, 1982).

If one can determine how RTs are dis-
tributed, then one has gone a long way toward
isolating the process responsible for generat-
ing the RTs. In practice, then, a researcher
might try to estimate one or more of these
functions in an attempt to identify or rule out
various distributional forms for consideration.
In the next section I talk about problems as-
sociated with estimating these functions. The
problem of estimation is not a trivial one, how-
ever, and I must begin by discussing estima-

tion in general. I then talk about estimation
of parameters, and then about estimation of
functional forms.

ESTIMATION

The goal of estimation is to determine from
RT data the properties of the distribution from
which the data were sampled. One may wish
to know only gross properties, such as the
mean or skewness, or one may hope to deter-
mine the exact functional form of the distribu-
tion. The most common sort of statistical anal-
ysis involves inferences about the mean and
variance of the population distribution. Given
a particular sample of size n, one can attempt
to estimate the central tendency and disper-
sion of the population, perhaps using the sam-
ple mean X and variance s2. Or, one might try
to estimate the shape of the distribution itself,
perhaps by constructing a histogram indicat-
ing the relative frequency of each observation
in the sample. Both of these estimation prob-
lems are commonly encountered, and they are
not necessarily separate problems. I discuss
each in this section.

It is important to remember that any esti-
mate, whether of a parameter or of a func-
tion, is a random variable. Associated with
it is some degree of variation and some (of-
ten unknown) distributional form. The goal
of estimation, therefore, is not just estimating
values of parameters, but estimating those pa-
rameters in such a way that the distributions of
those estimates have desirable properties. For
example, the sample mean X is an estimate
of a parameter, µ, the population mean. The
estimate X is a random variable because its
value will change for different samples, even
when those samples are taken from the same
population. There is a distribution associated
with X that by the Central Limit Theorem is
known to be approximately normal. The mean
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of this distribution is µ, the mean of the pop-
ulation from which the sample was drawn.
Something is known also about the variance
of the distribution of X . As long as the sample
is iid, the variance of the distribution is σ 2/n,
the variance of the population from which the
sample is drawn divided by the size of the
sample n.

I begin by discussing problems of param-
eter estimation, including the mean and vari-
ance of the RT distribution, and also the more
explicit problem of estimating the parameters
of a theoretical RT distribution. I then discuss
the problem of distribution estimation, includ-
ing the estimation of the density, distribution,
and hazard functions.

Throughout the rest of this chapter, I will
refer to the data presented in Table 12.1 to mo-
tivate and illustrate the discussion. These data
were collected in a simple detection experi-
ment, roughly designed after an experiment
presented by Townsend and Nozawa (1995),
in which one, two, or no dots appeared in
two locations on a computer screen. The ob-
server’s task was to press one key as soon as a
dot was detected, and the other key if no dots
were detected. Each dot could be either large
or small. Only the target (dot) present data are
provided in the table, and error RTs are not
included. This experiment is an example of
what Townsend and Nozawa have called the
double factorial paradigm, which has proved
to be very important in examining hypotheses
about processing information from multiple
sources of information, as discussed later.

Properties of Estimators

Consider an iid sample {X1, X2, . . . , Xn} of
size n from a population with meanµ and vari-
ance σ 2. The sample mean X = ∑n

i=1 Xi/n
is an estimate of the parameter µ. The sample
mean has a number of desirable properties as
an estimate of µ: it is (a) unbiased, (b) consis-

tent, (c) efficient, and, if the variable X is nor-
mally distributed, (d) a maximum likelihood
estimate.

If an estimator is unbiased, then its ex-
pected value (mean) is equal to the param-
eter being estimated. For the sample mean,
the expected value of X is equal to µ, the
parameter that X estimates. In other words,
on average the sample mean will equal the
population mean. More generally, suppose
that one wishes to estimate a parameter α

with the estimator α̂. The estimator α̂ is
unbiased if

E(α̂) = µα̂ = α,

where E is the expected value operator, de-
fined as

E(X) =
∫ ∞

−∞
x f (x) dx .

If an estimator is also consistent, then as
the sample size n grows, the probability that
it differs from the estimated parameter shrinks
to zero. We sometimes call this property con-
vergence in probability. For the sample mean
X , this property takes the form of the Law
of Large Numbers. As n grows very large,
the probability that X differs from µ shrinks
to zero. More generally, for a consistent
estimator α̂,

lim
n→∞ P(|α̂ − α| ≥ ε) = 0,

for any ε > 0, no matter how small. For prac-
tical purposes, this means that the accuracy of
the estimator α̂ can be improved by increasing
sample size n. Consistency is therefore a very
important property. One might wish to sacri-
fice unbiasedness for consistency, as long as
the variance of the estimator decreases fairly
rapidly with n.

A property closely related to consistency
is that of asymptotic unbiasedness, meaning
that as n grows, the expected value of the



pashler-44093 book December 18, 2001 10:33

468 Analysis of Response Time Distributions

Table 12.1 Response Times from a Simple Detection Experiment

Both Left Only Right Only

ss sl ls ll s l s l

i RTi fi RTi fi RTi fi RTi fi RTi fi RTi fi RTi fi RTi fi

1 374 1 340 1 353 1 350 2 350 1 361 1 334 1 374 1
2 381 1 354 1 354 1 365 1 365 1 378 1 430 1 377 1
3 398 1 357 1 374 2 369 1 375 1 379 1 453 1 381 1
4 400 1 377 1 377 1 376 1 409 1 389 1 456 1 398 1
5 401 1 378 2 382 1 377 1 422 3 398 1 461 1 401 1
6 406 1 380 1 384 1 382 1 423 1 402 1 470 1 405 1
7 408 1 385 1 385 1 408 1 426 1 405 1 473 1 409 1
8 412 1 388 1 398 1 422 4 428 1 413 1 477 1 425 1
9 425 1 398 1 405 2 425 1 429 1 418 1 480 1 426 1

10 426 1 401 1 422 2 426 1 449 1 422 1 481 1 429 1
11 428 1 404 1 425 1 428 1 450 3 426 2 485 1 446 1
12 429 1 405 1 428 1 429 1 454 1 429 1 494 1 448 1
13 432 1 412 1 429 2 430 1 457 2 433 2 497 1 450 2
14 446 3 421 1 436 1 432 1 465 1 436 1 498 1 457 1
15 452 1 422 1 444 1 441 1 470 1 446 2 501 1 465 1
16 457 1 424 1 446 1 445 1 476 1 450 1 505 1 466 1
17 469 1 425 1 448 1 446 1 480 1 452 2 509 2 470 4
18 470 1 432 2 457 1 453 3 485 1 453 2 518 2 473 1
19 476 1 433 3 461 2 456 1 498 1 457 1 524 1 474 1
20 484 1 445 1 465 1 460 1 505 1 458 1 525 1 478 1
21 485 1 446 1 470 1 464 1 512 1 473 1 526 1 480 1
22 489 1 452 1 473 1 470 3 525 1 474 1 542 2 481 1
23 494 1 453 2 477 1 474 1 532 1 477 1 544 1 485 3
24 502 1 457 1 478 1 476 2 537 1 481 2 552 1 497 2
25 505 1 460 1 494 1 493 1 542 1 498 1 553 1 500 1
26 517 1 473 2 498 1 497 1 545 1 501 1 557 1 504 1
27 522 1 477 2 500 1 498 1 589 1 513 1 565 1 516 1
28 524 1 480 1 501 1 500 1 590 1 518 1 566 1 518 1
29 526 1 485 1 504 1 504 1 618 2 524 2 580 1 525 2
30 528 1 493 1 518 1 505 1 633 1 525 2 596 2 545 1
31 529 1 494 1 541 2 512 1 665 1 533 1 613 1 565 1
32 548 2 496 1 544 1 517 1 740 1 535 1 614 1 566 1
33 562 1 501 1 546 1 518 1 765 1 538 1 640 1 569 2
34 613 1 504 1 550 1 522 1 809 1 541 1 689 1 577 1
35 628 1 506 1 613 1 536 1 811 1 549 1 694 1 594 1
36 637 1 522 1 614 1 541 1 829 1 566 1 700 1 618 1
37 665 1 524 1 618 1 586 1 927 1 593 1 733 1 645 1
38 713 1 525 1 628 1 593 1 944 1 617 1 734 1 661 1
39 720 1 545 1 641 1 604 1 1029 1 618 2 881 1 670 1
40 757 1 572 1 644 1 628 1 641 1 1188 1 716 1
41 788 1 593 1 661 1 748 1 785 1 848 1
42 931 1 661 1 688 1
43 935 1 891 1 757 1
44 787 1

NOTE: Small (s) and large (l) circles were presented at left and right locations on a computer monitor (after Townsend
and Nozawa, 1995).
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estimator approaches the value of the esti-
mated parameter. Although this may seem to
be the same as consistency, it is not. It is a
stronger property, meaning that the conditions
under which it holds are more stringent than
those for consistency. Therefore, an estimator
may be consistent but asymptotically biased.

The third property, efficiency, refers to the
variance of the estimator. Because the esti-
mate of a parameter is a random variable, one
would like for the variance of that variable to
be relatively small. So, if the estimator is unbi-
ased, it is not likely to vary too much from the
true value of the parameter. The sample mean
is efficient, which means that it has a smaller
variance relative to any other estimate of µ

that we might choose, such as the median or
the mode.

The fourth property, maximum likelihood,
has to do with the probability of the observed
sample. That is, there is some probability as-
sociated with having sampled exactly the ob-
servations that we obtained: an n-fold joint
probability distribution. To use a simplistic
perspective, if one observes a particular sam-
ple, then it must have been highly probable, so
one should choose the estimates of the popu-
lation parameters that make this probability as
large as possible. If X is normally distributed,
then the sample mean is a maximum like-
lihood estimator of µ. Note that maximum
likelihood estimators are not guaranteed to
be unique or to exist at all. I discuss max-
imum likelihood estimation in some detail
later.

Although I have been talking about prop-
erties of estimators of a single population pa-
rameter, it is important to remember that these
properties also hold for estimators of func-
tions, such as densities or CDFs. For example,
suppose that a density function were to be es-
timated by a relative frequency histogram of a
sample. The height of the histogram at every
point is a random variable, and the shape of the

histogram will change with every new sam-
ple. Therefore, one can characterize estima-
tors of the density, distribution, and survivor
and hazard functions as unbiased, consistent,
efficient, and so forth.

Parameter Estimation

Mean and Variance

By far the most common parameters estimated
in an RT analysis are the mean and variance
(µ and σ 2) of the RT distribution. However,
because of the asymmetric shape of the RT
distribution, it is important to recognize that
these parameters are not necessarily (perhaps
not even frequently) the best parameters to
characterize the RT distribution. Because of
the RT distribution’s skewness (see Figure
12.1), the mean does not represent the most
typical or likely RT. It is pulled upward, in the
direction of the skew. A similar problem exists
with the variance σ 2. The large upper tail in
the RT distribution has the effect of creating
“outliers,” values in the sample that are much
longer than the majority of the observations.
Outliers are a problem in all areas of statistical
analysis, but the unusual aspect of outliers in
RT data is that they potentially derive from the
process of interest. That is, they are not neces-
sarily outliers in the sense of contaminations
of the data. Because the sample variance is
greatly increased by such outliers, the power
of the statistical tests to be performed on the
data is greatly reduced.

As an example, consider the RTs shown in
the condition labeled Left Only (s) in Table
12.1. These are the detection RTs for when a
single small dot appeared in the left position.
These data are positively skewed: Although
most of the observations fall between 300 ms
and 600 ms, a small proportion of the sam-
ple extends as high as 1,029 ms. The sample
mean is X = 550.60 ms, and the sample stan-
dard deviation s = 164.58 ms. If the value
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of the slowest RT, 1,029 ms, is changed to
2,060 ms—a value that might typically be ob-
served in such an experiment—one finds now
that the sample mean X = 573.50 ms and the
sample standard deviation s = 270.42 ms. As
a result of changing a single observation, the
sample mean increased by 23 ms (almost a
detectable effect, in some RT experiments),
and the sample standard deviation increased
by over 60%.

One says that neither the mean µ nor the
variance σ 2 is a robust parameter, meaning
that very small changes in the shape of the
distribution, such as the change of a single
observation, can produce very large changes
in the values of these parameters. In a practi-
cal sense, this means that confidence intervals
constructed for these parameters are likely to
be too large and placed incorrectly, reducing
the power of hypothesis tests involving the
mean RT (Wilcox, 1998). This is particularly
a concern for RT data in which not only large
degrees of skew but also a good number of
outliers (either extremely long or short RTs)
are to be expected. An alternative is to esti-
mate parameters that are not as sensitive to
outliers or skew, such as the median or in-
terquartile range. Using the same example as
in the previous paragraph, the original sam-
ple has median Md = 485 ms and interquar-
tile range IQR = 169 ms. After doubling the
slowest RT to 2,060 ms, these estimates are
unchanged.

Unfortunately, the standard errors of X and
s2 are typically considerably smaller than the
standard errors of Md and IQR (Stuart & Ord,
1999). For example, although the standard
error of X is σ/

√
n, if the sample is taken

from a normal population, the standard error
of Md is approximately 1.25σ/

√
n. Although

the sampling distributions of X , s2, Md, and
IQR are asymptotically normal, the sample
sizes required to approximate normality are
much larger for Md and IQR than for X and
s2. Furthermore, whereas the sample mean X

is an unbiased estimator of µ, the sample me-
dian Md is a biased estimator of the popula-
tion median when the population is skewed
(J. Miller, 1988).2 These factors have pre-
vented widespread use of the statistics Md and
IQR, despite the fact that they are probably
better for characterizing central tendency and
dispersion for RT data than are X and s2.

Using Monte Carlo simulations, Ratcliff
(1993) investigated a number of RT data treat-
ments that reduce or eliminate the effects of
outliers on the mean and variance. These in-
cluded cutoff values, above and below which
RTs are eliminated from the sample, and trans-
formations such as the inverse and logarithm.
For each of these strategies, he computed
power and the probability of Type I errors for
analyses of variance, with and without out-
liers mixed into the data. Although no method
had strong effects on the number of Type I er-
rors, the method chosen had strong effects on
power.

Using Md as a measure of central tendency
generally resulted in lower power than did us-
ing cutoffs or transformations, probably be-
cause of the greater variance and bias of Md.
Fixed cutoffs (e.g., 2,000 or 2,500 ms) main-
tained the highest power. The use of fixed
cutoffs, however, is highly dependent on the
range of the data in different experimental
conditions; a 2,000 ms cutoff in one experi-
ment might eliminate half the observations in
another experiment. Thus there is no hard and
fast rule that could be used to establish cut-
offs. Because of this problem, it is common
to find examples in which cutoffs are based on
the sample standard deviation. For example,
one might eliminate all observations greater
than 3 standard deviations above the mean.

2For even very skewed distributions, median bias is gen-
erally less than 10 ms for samples of size 25 or higher.
When one or more groups has sample size less than 25,
the median should not be used, as the bias difference be-
tween the groups could introduce an artifactual effect.
See J. Miller (1988) for more details.
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Unfortunately, Ratcliff (1993) found that bas-
ing cutoffs on the standard deviation could
have disastrous effects on power, depending
on whether the experimental factors had their
effects on the fast or slow RTs. Ratcliff instead
recommended exploring a range of potential
cutoff values for different experimental con-
ditions.

However, Ulrich and Miller (1994) have
noted that using cutoffs can introduce asym-
metric biases into statistics such as the sam-
ple mean, median, and standard deviation,
and they cautioned strongly against the use
of cutoffs without consideration of these ef-
fects. Van Selst and Jolicoeur (1994) pre-
sented a procedure that produces a uniform
bias across sample sizes, thus minimizing the
potential for artifactual differences between
conditions. Unfortunately, even Van Selst and
Jolicoeur’s method produces a highly biased
estimate (as great as 30 ms too small for
the distributions they examined), and this
could also result in significant artifacts, es-
pecially in the presence of floor or ceiling
effects.

The next most powerful approach to min-
imizing the effects of outliers was the in-
verse transformation, which Ratcliff (1993)
recommended as a way of verifying the ap-
propriateness of the selected cutoffs if cut-
offs were used. Transforming RTs to speed,
1/RT, reduces the effect of slow outliers and
maintains good power. In the example taken
from Table 12.1, the mean transformed RT
is X = 1.947 × 10−3/ms with standard de-
viation s = 0.466 × 10−3/ms. If the slow-
est RT is doubled, the mean transformed
RT is X = 1.936 × 10−3/ms with stan-
dard deviation s = 0.494 × 10−3/ms; there
is some effect of the long outlier, but it is
greatly reduced relative to the effect on the
mean RT.

To see how outliers reduce power, con-
sider the two conditions in Table 12.1 de-
noted Both (ss) and Right Only (s). The

nature of the experiment was such that one
might have expected that RTs in the Right
Only (s) conditions would be slower than RTs
in the Both (ss) condition. This is because,
essentially, twice the amount of information
was available to the observer in the Both
(ss) condition, resulting in a faster accumu-
lation of evidence that targets were present.
As predicted, the mean RT for Both (ss)
responses is 524.61 ms, and the mean RT
for Right Only (s) responses is 563.70 ms.
Unfortunately, this difference (39 ms) does
not reach statistical significance: t (88) =
1.3734, p > .08. If one considers instead the
response rates—1.85 × 10−3/ms and 2.00 ×
10−3/ms for Both (ss) and Right Only (s),
respectively—then the rate difference (−.15 ×
10−3/ms) is significant: t (88) = 1.94, p <

.05.3

A large statistical literature has developed
over the past few decades addressing robust
statistics and how to reduce the effects of
outliers or skewed distributions (Barnett &
Lewis, 1994). Few psychology researchers are
considering these alternative techniques for
their data. Wilcox (1997, 1998) has made a
special effort to bring robust analyses to the
attention of experimental psychologists, and
it is hoped that as more and more statistical
packages incorporate robust techniques, the
field will see more interest in these alternatives
in the years to come. In the meantime, how-
ever, the best approach to dealing with outliers
in RT data is probably the inverse transforma-
tion, which gives the greatest power. Cutoffs
should be avoided unless one is willing to un-
dertake either Ulrich and Miller’s (1994) or
Van Selst and Jolicoeur’s (1994) procedures.

3Note that it is also possible to eliminate significant ef-
fects by transformation. Also note that transformed RTs
will not necessarily be useful for testing some kinds of
model predictions (e.g., serial stage models in which du-
rations are summed). I am only advocating the use of
transformed RTs for null hypothesis testing, not for ver-
ifying model predictions.
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As with any procedures that involve remov-
ing data from a sample, when attempting to
employ cutoffs to reduce the effects of out-
liers, statistical results should be presented for
both the complete and trimmed data sets so
that readers are aware of potential artifactual
results.

The Ex-Gaussian Parameters

Because outliers are not only bothersome but
also potentially interesting in the context of
RTs, some have argued that the ex-Gaussian
distribution could be used as a parametric
(although atheoretical) estimate of RT dis-
tributions (Heathcote, Popiel, & Mewhort,
1991; Ratcliff, 1979; Ratcliff & Murdock,
1976) without excluding any data that are
suspiciously slow or fast. The ex-Gaussian
distribution—the distribution of the sum of
a normal and an exponentially distributed
variable—has three parameters. The normal
component has parameters µ and σ 2, the nor-
mal mean and variance. The exponential com-
ponent has parameter τ , the exponential mean.
Figure 12.2 shows the ex-Gaussian density
presented in the top panel of Figure 12.1, to-
gether with its component normal and expo-
nential densities. (The exponential has been
shifted from its minimum, 0, to demonstrate
the relation between the tails of the expo-
nential and ex-Gaussian densities.) The nor-
mal distribution determines the leading edge
of the ex-Gaussian density, and the exponen-
tial distribution determines skewness, or the
height of the positive tail. The mean of the
ex-Gaussian is µ + τ , and its variance is
σ 2 + τ 2.

Rather than discussing RT means and vari-
ances, estimates of the parameters µ, σ 2, and
τ could be used to characterize RT data and
isolate the effects of experimental variables
either in the slow or fast RTs (Heathcote
et al., 1991; Hockley, 1984). I estimated these
parameters for the data from the Both (ss)
and Right Only (s) condition using maximum

likelihood. For Both (ss), µ̂ = 390.47 ms,
σ̂ = 16.60 ms, and τ̂ = 134.09 ms. For
Right Only (s), µ̂ = 458.64 ms, σ̂ = 47.54
ms, and τ̂ = 105.06 ms. Several routines are
publicly available to assist in performing
these computations (Cousineau & Larochelle,
1997; Dawson, 1988; Heathcote, 1996), and
MATLAB routines are provided in the
Appendix.

Given the estimated ex-Gaussian parame-
ters, one might want to infer that the presence
of two dots decreased µ and σ and increased
τ . However, because the distributions of the
estimates of these parameters are unknown,
inferential statistical procedures are difficult.
One approach is to estimate the standard er-
rors of the estimates by “bootstrapping” the
samples (Efron, 1979). This is a simple pro-
cedure in which bootstrapped samples of size
n are obtained from the original sample by se-
lecting n observations from the sample with
replacement. The ex-Gaussian parameters are
then estimated from each bootstrapped sam-
ple, and the standard deviation of those esti-
mates is a fairly good estimate of the standard
error. I simulated 100 bootstrapped samples
for each condition and computed the standard
errors of µ̂, σ̂ , and τ̂ to be 14.80 ms, 13.09
ms, and 22.37 ms, respectively, for the Both
(ss) condition, and 25.00 ms, 23.02 ms, and
31.79 ms, respectively, for the Right Only (s)
condition. Given these standard errors, one
can argue that µ is greater for the Right Only
(s) than for the Both (ss) condition. However,
one cannot conclude that any differences exist
between σ or τ for the two conditions because
the variance of the estimates is too large. This
finding is consistent with earlier work show-
ing the variance of the estimates in σ and τ to
be quite large for smaller samples (Van Zandt,
2000).

In sum, the ex-Gaussian characterization
of RTs could potentially be quite useful in
skirting problems of skewness and outliers.
Unfortunately, the sampling distributions of
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µ̂, σ̂ , and τ̂ cannot be determined explic-
itly, and their distributions also depend on
the underlying (and unknown) RT distribu-
tion. It may not be possible, therefore, to
argue conclusively about the effects that ex-
perimental manipulations have on these pa-
rameters. An additional problem arises when
one considers that despite the utility of the
ex-Gaussian distribution, RTs are not gener-
ally distributed as ex-Gaussians (Burbeck &
Luce, 1982; Luce, 1986; Van Zandt, 2001).
Because the ex-Gaussian is an atheoretical
model of the RT distribution, it is difficult,
if not impossible, to attribute psychological
meaning to changes in the different param-
eters. As Ratcliff (1993) argues, using the
ex-Gaussian parameters to characterize RT
distributions might not be very useful in
the absence of a model explaining the pro-
cesses that generated the RTs in the first
place.

Nonparametric Function Estimation

Some estimation procedures, such as least-
squares minimization and maximum likeli-
hood estimation, ensure that estimates are
unbiased, consistent, efficient, and so forth,
given certain constraints on the sample. Un-
fortunately, these constraints are rarely sat-
isfied when dealing with RT distributions.
Furthermore, when estimating density func-
tions, the extent of bias depends on the true
form of the underlying population distribu-
tion, which is unknown. Therefore, when es-
timating RT densities, the extent of error is
also unknown.

A number of issues bear on the estimation
procedure. The issue of primary importance
is whether the analysis is model-driven. That
is, has a process been specified that states how
RTs should be distributed and explains the re-
lationship between the physical parameters of
the experiment and the theoretical parameters
of the RT distribution? If a model of this de-

gree of precision has been specified, then a
parametric procedure will be used to recover
the theoretical parameters of the RT distri-
bution. If not, then nonparametric procedures
will probably be more appropriate.

Quantiles and the Cumulative
Distribution Function

The CDF is the easiest of the functional forms
to estimate because an unbiased, consistent,
maximum likelihood estimate for the CDF
exists in the form of the cumulative relative
frequency distribution, empirical distribution
function (EDF). That is,

F̂(t) = [number of observations less

than or equal to t]/n. (1)

The EDF is an estimator of the percentile
ranks of the possible RTs that might be ob-
served and is asymptotically normal at every
point. This means that at every point t , F̂(t)
will be normally distributed around the value
of the true CDF F(t). Because the EDF F̂(t)
is an unbiased estimate of the CDF, it should
be noted that 1 − F̂(t) is therefore an unbi-
ased estimate of the survivor function. The
survivor function estimate is used later in this
chapter.

It is often useful to compute the estimates
F̂−1(p) of the quantiles of an RT distribu-
tion (e.g., Logan, 1992; Van Zandt, 2000; Van
Zandt, Colonius, & Proctor, 2000). The CDF
F(t) can then be estimated by plotting p for
a number of estimates tp = F̂−1(p). To es-
timate the pth quantile tp, where P(RT ≤
tp) = p, the RTs are ordered from smallest
to largest. The simplest way to estimate the
pth quantile is to find the npth observation
in the sample, if np is an integer. If np is not
an integer, then an average of the [npth] and
[np] + 1th observation is computed, where
[np] indicates the integer part of np. Typically,
the midpoint of [np] and [np] + 1 is used, but
other weighting schemes can be used as well
(Davis & Steinberg, 1983).
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As an example, consider the data in con-
ditions Left Only (s) in Table 12.1. The me-
dian, the p = .50 quantile, is estimated. There
are n = 45 observations in this sample, so
np = 22.5. The [np]th observation is (count-
ing frequencies from the smallest observed
RT) RT17 = 480 ms, and the [np] + 1th ob-
servation is RT18 = 485 ms. The average
of these two observations is 482.5 ms; there-
fore F̂−1(.5) = Md = 482.5 ms. Like the
EDF, quantile estimates are asymptotically
normal and unbiased. These characteristics of
the EDF and quantile estimates make infer-
ential statistical analyses easy to perform be-
cause the sampling distributions of quantiles
and percentile ranks are known exactly (Stuart
& Ord, 1999).

A widely used method for estimating quan-
tiles of RT distributions is called “Vincentiz-
ing” (Ratcliff, 1979). To describe this pro-
cedure, suppose that q quantiles are to be

estimated from a sample of n observations.
I call the estimated quantiles “vincentiles”

(Heathcote, Brown, & Mewhort, in press) to
distinguish them from the quantiles estimated
by the procedure described earlier. It is typi-
cally assumed (Ratcliff, 1979) that the vincen-
tiles are evenly spaced across the data. Note,
however, that the vincentiles are quantile mid-
points, so that q +1 bins are obtained through
Vincentizing. For instance, suppose that 10
deciles were computed by the standard quan-

tile estimation procedure described above.
These estimates would correspond to the 10th,
20th, . . . , percentiles. Now suppose that 10
vincentiles were computed. We would assume
that these vincentiles were located at approxi-
mately the 5th, 15th, 25th, . . . , percentiles—
the midpoints of the decile ranges. Thus, the
vincentiles separate the sample into q + 1
groups; the relative frequencies of the mid-
dle groups are 1/q , and the relative fre-
quencies of the slowest and fastest groups
are 1/2q .

Consider the RTs for condition Left Only
(s) shown in Table 12.1. There are n = 45
observations in this condition, and q = 5
vincentiles are to be estimated. To do this,
one first makes q copies of each observation.
Then, starting from the smallest RTs, one be-
gins averaging the duplicated order statistics
in groups of n. The first vincentile for this
sample is therefore

V1 = (5)(350 ms)+(5)(365 ms)+(5)(375 ms)+(5)(409 ms)+(15)(422 ms)+(5)(423 ms)+(5)(426 ms)
45

= 401.56 ms.

The second vincentile is the average of the
next n = 45 observations:

V2 = (5)(428 ms)+(5)(429 ms)+(5)(449 ms)+(15)(450 ms)+(5)(454 ms)+(10)(457 ms)
45

= 447.11 ms.

The averaging procedure is continued
throughout the remaining observations in the
duplicated sample, yielding V3 = 490.67 ms,
V4 = 578.22 ms, and V5 = 835.44 ms.

The vincentiles V1, V2, and so on should
estimate the 10th, 30th, 50th, 70th, and 90th
quantiles. It is informative to compare the val-
ues of the vincentiles to the estimates of the
quantiles found using the standard quantile
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estimation procedure. For p = .10, [np] = 4
and [np] + 1 = 5. The average of the 4th
and 5th order statistics (409 and 422 ms) is
t̂.1 = 415.5 ms. For p = .30, [np] = 13
and [np] + 1 = 14. The average of the 13th
and 14th order statistics (450 and 450 ms) is
t̂.3 = 450 ms. Continuing in this way, t̂.5 =
482.50 ms, t̂.7 = 567.00 ms, and t̂.9 = 810 ms.
Although t̂.3 = 450 ms is close to the value
V2 = 447.11 ms, none of the other vincentiles
are as close to the estimated quantiles. Nor do
the vincentiles divide the sample into equally
frequent groups. It turns out that the only time
that vincentiles are estimates of the quantiles
to which they are supposed to correspond is
when the sample is drawn from a symmetric
distribution (Heathcote et al., 2000). Simu-
lations show that the vincentiles do not cor-
respond to known quantiles for nonsymmet-
ric distributions, and therefore they are not
useful for estimating RT CDFs (Van Zandt,
2000).

The major attraction of the Vincentizing
procedure is that it allows for averaging of
RT distributions across subjects in an exper-
iment (Ratcliff, 1979). This is useful when
small sample sizes prevent accurate estimates
of RT distributions for individual subjects (al-
though CDFs and quantiles can be accurately
estimated with as few as 50 observations; see
Van Zandt, 2000). To average RT distribu-
tions across subjects, the vincentiles are com-
puted for each subject’s data and then av-
eraged. Because each vincentile corresponds
(presumably) to a particular percentile rank,
the resulting averages can be used to construct
the EDF. However, because the vincentiles do
not typically correspond to known percentiles,
averaging should be performed using standard
quantiles rather than the vincentiles. There
seems to be no particular benefit to using vin-
centiles instead of quantiles, and using vin-
centiles may introduce error, depending on the
goals of the analysis.

The Density Function

Probably the most popular and easiest method
for density estimation is the simple histogram.
Observations are binned, and the relative fre-
quency of the number of observations within
each bin is used as a density estimate. Un-
fortunately, there is no best estimator for the
density function as there was for the CDF.
A large area in statistics is devoted to density
function estimation, only a little of which may
be touched on in this chapter. See Silverman
(1986) for a basic and accessible treatment of
this problem.

The issue of unbiased and consistent esti-
mators for density functions is a tricky one.
To illustrate why, consider a rather large class
of density function estimators called general
weight function estimators. The simple his-
togram is one member of this class. Asso-
ciated with each of the estimators in this
class is a parameter hn—sometimes called
a smoothing or bandwidth parameter—that
depends on the sample size n. In the case of
a simple histogram, hn would be the width
of the bins. In general, the larger n is, the
smaller hn needs to be. Under some fairly
general constraints, to be sure that the esti-
mate is asymptotically unbiased, it must be
that limn→∞ hn = 0. But even if this holds,
to ensure that the estimator is consistent, it
must also be that limn→∞ nhn = ∞. Thus, hn

must go to zero as n gets large, but it cannot
go to zero too quickly. For any particular den-
sity estimator, bias will be a function of the
sample size n and the true underlying density,
which in practice is always unknown. Fur-
thermore, RT densities have a special prob-
lem in their skew, which makes some potential
estimators unsuitable. It is important to realize
that a density estimate is probably biased, that
the degree of bias will be unobservable, and
that the bias will not necessarily get smaller
with increases in sample size.
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For this chapter, I present two types of den-
sity estimators. The simple and very popu-
lar histogram estimators are easy to compute
but can be inaccurate. Kernel estimators are
more accurate, but they are a little more dif-
ficult to understand and require more compu-
tation. These two types of estimators barely
begin to cover the statistical literature on non-
parametric density estimators. There are more
accurate estimators than the ones presented
here. However, it is especially important to
remember that density estimation is an exer-
cise in descriptive statistics only. Under no cir-
cumstances should parameter estimation (i.e.,
model fitting) depend in some way on a den-
sity estimate. Appropriate parameter estima-
tion methods will be discussed shortly. For
graphical purposes, the kernel estimator de-
scribed later should suffice.

Histogram Estimators

Histogram estimators are perhaps the most
well-known density estimators. Construction
of the histogram estimate is fairly simple and
involves selecting r bins with bin boundaries
{t0, t1, t2, . . . , tr } along the time axis. The es-
timate is a function of the number of observa-
tions falling in each bin:

f̂ (t) = number of observations in bin i

nhi
,

ti−1 ≤ t < ti ,

where hi = ti − ti−1 is the width of the i th
bin. The bins can be of fixed width or can vary
according to the density of the observations
along the time axis.

For fixed-width estimators, an origin t0
and a bandwidth hn are selected, and the bin
boundaries are computed as {t0, t0 + hn, t0 +
2hn, . . .}. The histogram estimate for the Left
Only (s) data is shown in Figure 12.3, using
t0 = 200 ms and hn = 50 ms. Unfortunately,
there is no automatic way to select t0 or hn

and no systematic way to adjust hn with sam-

200 400 600 800 1000 1200

Time (ms)

f^ (t
)

Figure 12.3 The histogram density estimate
(bars) and Gaussian kernel estimate (solid curve)
for the RTs from the Left Only (s) condition.

ple size to ensure asymptotic unbiasedness
or consistency of the estimator. An appropri-
ate t0 and hn must be selected after inspect-
ing the sample for which the density is to be
estimated.

For this reason, variable-width histograms
that specify the frequency of observations
within each bin are frequently used in RT anal-
ysis. One such estimator is based on the vin-
centiles (Ratcliff, 1979). For this estimator,
the vincentiles are assumed to divide the sam-
ple into equally probable intervals (with the
exception of the fastest and slowest bins), as
described earlier. The height of the estimate
for each bin is then computed so that the area
of the interval is equal to 1/q (the number of
vincentiles).

I previously investigated the accuracy of
histogram estimators, both fixed and variable
widths, for a number of different RT models
(Van Zandt, 2000). Unfortunately, variable-
width estimators based on quantiles and vin-
centiles were highly inaccurate and quite vari-
able even for very large sample sizes. As I
demonstrated earlier, the vincentiles do not
divide the sample into groups of equal fre-
quency, so the heights of the density estimate
computed under this assumption are incorrect.
The fixed-width histogram performed better
than density estimates based on quantiles, but
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Figure 12.4 The method of Gaussian kernel estimation.
NOTE: The kernel is the normal density shown as a solid curve, and the sample observations are shown
as points along the time axis.

because of the lack of an algorithm to adjust hn

with increasing sample size, accuracy did not
improve with increases in sample size. There-
fore, the histogram estimates should not be
relied upon for any serious RT distributional
analysis.

Kernel Estimators

The kernel estimator is also a member of the
class of weight function estimators. A kernel
is simply a function K (x) that is integrated
or, in the discrete case, summed, over x . To
estimate the density at a particular point t , the
kernel is summed over all of the observations
Ti in the sample. Another way of looking at
the kernel estimate is that every point on the
estimate is a weighted average of all the ob-
servations in the sample.

The general form of the kernel estimate is

f̂ (t) = 1

nhn

n∑
i=1

K

(
t − Ti

hn

)
. (2)

Notice the presence of the bandwidth param-
eter hn in the denominator of the kernel vari-
able. The larger hn is, the smoother the esti-

mate will be: Large values of hn will tend to
minimize the deviations in the sample from
the point t . The kernel K (x) is itself a density
function, a positive function that integrates to
1 over all x , and is typically symmetric. The
kernel estimate of the density at the point t ,
then, is found by centering the kernel over
the point t . Each observation is then weighted
by the height of the kernel at its value, and
the average height across the entire sample
is the estimate of the density at time t . This
is illustrated in Figure 12.4, which shows the
observations from the sample Left Only (s)
as points along the time axis, and a Gaussian
kernel centered at 500 ms. The estimate of
f (500) is the average of the heights of the
kernel at each of the observed points along
the axis. Hence, the higher the density of the
points around the center of the kernel (500
ms), the higher the estimated density function
will be at that point.

The Gaussian kernel estimator is gener-
ally a good estimator of RT densities, espe-
cially for larger samples (n > 500; Van Zandt,
2000). It also gives reasonably accurate es-
timates for moderate samples (100 ≤ n ≤



pashler-44093 book December 18, 2001 10:33

478 Analysis of Response Time Distributions

500), although accuracy will depend some-
what on the form of the distribution. For the
Gaussian kernel, the kernel function K (x) is
the standard normal density function:

K (x) = 1√
2π

e−x2/2.

Note from Equation (2) that in the case
of the Gaussian kernel, the bandwidth hn

serves as the standard deviation of the nor-
mal density. Alternative kernels may give
more efficient estimates of the RT density
(Silverman, 1986). Adaptive kernel tech-
niques, in which the value of hn varies with the
local density of the sample, may also be worth
considering. The adaptive techniques have the
benefit of improving the estimate where few
observations are obtained, a problem that is
likely to be of concern with the long-tailed RT
density. However, in my experience the simple
Gaussian kernel gives acceptable density esti-
mates with moderate (n ≥ 100) sample sizes.
Even with smaller sample sizes, the differ-
ences between the Gaussian kernel estimator
and other, more complex estimators are quite
small.

To illustrate how the Gaussian kernel es-
timate is computed, consider again the RT
data from condition Left Only (s) given in
Table 12.1. First, an appropriate bandwidth
hn needs to be determined. Using Silverman’s
(1986) method,

hn = 0.9

n.2
min

(
s,

IQR

1.349

)
,

where s is the sample standard deviation and
IQR is the interquartile range. This formula
maintains the mean integrated squared error
(the continuous version of the sum of squared
error) between the estimated and true density
at a small value. The value 0.9 can be adjusted,
as long as it remains fairly small (less than
1), but not too small. Silverman recommends
starting with 0.9 and then making adjustments

according to one’s expectations about the den-
sity’s appearance. The minimum statistic in
this formula is a measure of the spread of the
data and is selected to prevent problems of
oversmoothing, in which critical details of an
empirical density, such as bimodality or skew-
ness, could be masked by selecting too large
a value for hn .

For the Left Only (s) data, s = 164.58 ms
and IQR = 165 ms. Using Silverman’s (1986)
formula,

hn = 0.9

45.2
min(164.58, 165/1.349) = 51.42.

One can now begin to estimate the density
function. Consider the point t = 500, around
which the kernel is centered in Figure 12.4.
The height of this centered kernel at each
of the observed sample points must be com-
puted. Beginning with the smallest observa-
tion, T1 = 350 ms, and using Equation (2),

K

(
t − T1

hn

)/
hn

= 1√
2π

exp

(
− 1

2

(
500 − 350

51.42

)2)/
51.42

= .0050.

Similarly, for the next observation, T2 =
365 ms,

K

(
t − T2

hn

)/
hn

= 1√
2π

exp

(
− 1

2

(
500 − 365

51.42

)2)/
51.42

= .0111.

One continues in this way through all of the
observations in the sample and averages the
results to obtain

f̂ (500) = 1

45
(.0050+ .0111+· · ·) = .0033.

This procedure is repeated for all points t at
which an estimate of f (t) is desired. Although
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it seems tedious, it is in fact quite simple,
and the entire estimate can be computed us-
ing a single MATLAB command (see App-
endix).

Notice that if the kernel is continuous in t ,
then the estimate f̂ (t) is also continuous in t .
This means that one can compute the estimate
as finely or as sparsely as one needs. I com-
puted the estimate for the Left Only (s) data
at 10 ms intervals beginning from 200 ms.
The result is shown as the curve in Figure
12.3. The sample size on which the estimate
is based is quite small, so we might expect
that the estimate is not a very accurate picture
of the true density. In practice, one should ob-
tain at least 100 observations for density es-
timation purposes and always remember that
even with much larger samples, the Gaussian
kernel estimate might be biased (Van Zandt,
2000).

The Hazard Function

Recall that the hazard function for a random
variable X is defined as h(t) = f (t)/F(t):
the variable’s density function divided by its
survivor function. A likely candidate for the
estimate of h(t) is therefore ĥ(t) = f̂ (t)/
(1 − F̂(t)). Although one can estimate F(t)
well, and one can estimate f (t) reasonably
well, problems arise in computing ĥ(t) be-
cause the denominator goes to zero, inflating
errors in the estimate f̂ (t). The sparseness of
data from the tail of the distribution in the
sample generally makes the hazard function
difficult to observe just at the point where the
hazard function is most diagnostic (see Fig-
ure 12.1, bottom panel). This error inflation
often results in large oscillations in the tail
of the estimate, just before the estimate goes
to infinity (because the denominator becomes
1 − 1 = 0 for all t > T(n), where T(n) is the
nth order statistic of the sample, or the largest
observed RT).

A number of estimation methods try to
work around this problem in the tail, in-
cluding random smoothing (D. R. Miller &
Singpurwalla, 1977), splines (Bloxom, 1985;
Senthilselvan, 1997), and various types of ker-
nel estimators (Tanner & Wong, 1983; Watson
& Leadbetter, 1964). Unfortunately, those es-
timators that prevent oscillations in the tail of
the hazard function often show artificial de-
creases in the tail, as well as severe biases
in the early portion of the curve. Spline es-
timators have the additional difficulty in that
in order to prevent the estimate from becom-
ing negative, the shape of the hazard function
(e.g., monotonic increasing) must be guessed
in advance and appropriate constraints must
be placed on the estimate (Bloxom, 1985).
This renders the spline estimates less useful
for examining questions such as whether a
hazard function is monotonic increasing or
increasing then decreasing. Note that more
complicated spline estimators exist that do not
have this problem, however (Senthilselvan,
1997).

In sum, hazard function estimation is very
difficult, and conclusions based on such esti-
mations should be backed up by independent
evidence. The estimator that I have had the
most success with is based on a kernel method,
and it appears to be less biased and to preserve
more accurate tail information than the other
estimators presented.

The Epanechnikov Kernel Estimator

The basic idea of a kernel estimate was pre-
sented earlier in the context of density estima-
tion. A function is centered over the point at
which an estimate is desired, and the value of
the estimate is a weighted sum of the value
of the function at each observed point. The
smoothing parameter of the kernel estimate
hn is a function of the spread of the data,
as computed from the standard deviation and
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the interquartile range. The estimate used
here is

ĥ(t) = f̂ (t)

1 − F̂(t)
, (3)

where f will be estimated by f̂ using an
Epanechnikov kernel and F̂(t) = ∫ t

0 f̂ (t).
Therefore,

f̂ (t) = 1

nhn

n∑
i=1

K

(
t − Ti

hn

)
,

and

F̂(t) = 1

n

n∑
i=1

K̃

(
t − Ti

hn

)
,

where K̃ (t) is the integral of K (t) from −∞
to t (see Silverman, 1986).

Unpredictable behavior in the tail of the
hazard function estimate occurs because the
decrease in 1− F̂(t) inflates errors in the esti-
mate f̂ (t), which are particularly pronounced
in the tail where data is sparse. By estimating
F with a kernel estimate, F̂(t) is continuous in
t. That is, there is no discontinuity at the point
t = T(n), which results in 1− F̂(t) = 0. Even-
tually, however, 1 − F̂(t) will be very close
to zero, and the hazard function estimate will
show a tremendous acceleration toward posi-
tive infinity. In my experience, however, this
hazard estimate is to be preferred over many
others because it gives the most accurate esti-
mate for the greatest range, and the accelera-
tion toward infinity is very sharp. Therefore,
it is easy to see where the estimate is inaccu-
rate. This is not true of other estimators, such
as the variable kernel estimator (Tanner, 1983;
Tanner & Wong, 1983), which, despite
otherwise nice properties, always shows a
slow decay in the tail of the estimate toward
zero regardless of the true shape of the haz-
ard function. This makes determining where
the hazard estimate becomes inaccurate very
difficult.

The Epanechnikov kernel (Silverman,
1986) is given by

K (x) =
{

3
4
√

5

(
1 − x2

5

)
if |x | <

√
5

0 else

This is a simple function that is similar to the
Gaussian density, being symmetric and uni-
modal and integrating to 1. However, the do-
main of the Epanechnikov kernel is bounded
between −√

5 and
√

5. For density estimates
this kernel is actually more efficient than
the Gaussian kernel (although, in my expe-
rience, there is very little difference between
them, but see Silverman, 1986). The inte-
gral of the kernel, necessary for computing
F̂(t), is

∫ x

−√
5

K (u) du = 3

4
√

5
(x − x3/15) + 1

2
.

To illustrate how the estimate ĥ(t) is com-
puted, consider again the Left Only (s) data
from Table 12.1. One first must determine the
appropriate bandwidth hn , and to do this I
again rely on Silverman’s method, described
above. However, I reduce the multiplying con-
stant from .9 to .3, because the hazard func-
tions I computed with the constant .9 were
oversmoothed, resulting in significant bias for
most points on the hazard estimate. I talk
shortly about how one might objectively eval-
uate whether the bandwidth has been well-
chosen. For this sample,

hn = 0.3

45.2
min(164.58, 165/1.349) = 17.14

Next, the estimate for f (t) is computed.
For t = 500, the first term is

K

(
t − T1

hn

)
= K

(
500 − 350

17.14

)

= K (8.75) = 0.

This first term is zero because the kernel
K is zero outside the domain [−√

5,
√

5].
Similarly, the next 12 terms (i = 2, . . . , 13)
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Figure 12.5 The Epanechnikov kernel estimate of the hazard function for the RTs from the Left Only
(s) condition.
NOTE: The dotted lines show ±1 estimated standard deviation of the estimate.

are zero. However, for i = 14,

K

(
t − T14

hn

)
= K

(
500 − 465

17.14

)

= K (2.04) = .06.

Continuing throughout the sample,

f̂ (500) = (.06 + .13 + .20 + .24 + · · ·)/
[(45)(17.14)] = .0029.

Now F̂(500) must be computed. Proceeding
in the same way, the first term in the expres-
sion for F̂(500) is

K̃

(
t − T1

hn

)
= K̃

(
500 − 350

17.14

)

= K̃ (8.75) = 1.00.

Continuing throughout the sample,

F̂(500) = (1.00 + 1.00 + 1.00 + 1.00 + · · ·)/
45 = .5283.

The estimate of h(t) for t = 500 is therefore

ĥ(500) = f̂ (500)

1 − F̂(500)
= .0029

1 − .5283
= .0061.

The estimate of h(t) for values of t from
200 to 1,100 ms is shown in Figure 12.5. The
estimate increases and then decreases until
550 ms. It then increases and decreases over
the range 550 ms to 700 ms. After 700 ms,
the estimate oscillates, and the standard error
of the estimate (estimated by bootstrapping4)
is extraordinarily large, indicating that the os-
cillation is a result of error.

From this figure, one can see that the points
estimated beyond around 700 ms are highly

4The standard errors estimated by bootstrapping were
very close to the estimated asymptotic standard error of
the hazard function estimate,

1

nhn

ĥ(t)2

f̂ (t)

∫
K (u)2 du.
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suspect and can be ignored. The fact that the
initial increase and decrease of the estimate
to 700 ms appears to be real can be used to
rule out candidate RT distributions that pre-
dict monotonic increasing hazard functions.
(However, these results cannot be used to
rule out models that predict increasing haz-
ard functions, because parameter variability
can produce nonmonotonic hazard functions;
see Van Zandt & Ratcliff, 1995). Note that
the sample size, n = 45, for this example is
very small, and that a serious hazard function
analysis would use samples of at least a few
hundred observations.

To determine the value of the multiplica-
tive constant in the bandwidth hn , and also
to evaluate the accuracy of the Epanechnikov
kernel estimate, I simulated samples of RTs
from known distributions and compared the

Figure 12.6 Mean Epanechnikov kernel estimates of ex-Gaussian (top panel) and gamma (bottom
panel) hazard functions.
NOTE: The estimates are shown as solid lines, and the true hazard functions as dashed lines. The dotted
lines show ±1 estimated standard deviation of the estimate.

estimated hazard functions to the real hazard
functions. I simulated 1,000 samples of size
n = 45 from an ex-Gaussian and a gamma
distribution. The parameters of these distri-
butions were the best-fitting (maximum like-
lihood) parameters derived from fitting the
ex-Gaussian and gamma to the Left Only (s)
data. The hazard function for each sample
was estimated using the kernel method, and
then the mean and standard deviations at each
point were computed at each time point across
the 1,000 estimates. The results are shown
in Figure 12.6 together with the true hazard
functions.

The true hazard functions, shown as dashed
lines, rise monotonically to their asymptotes.
Similarly, the average estimates, shown as
solid lines, rise monotonically and closely to
the true hazard function. For the ex-Gaussian,
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the estimate rises to approximately the asymp-
tote and remains there until about 700 ms,
where the estimate becomes unstable. For the
gamma, which asymptotes much later than the
ex-Gaussian, the estimate also hugs the true
hazard function quite closely until the esti-
mate becomes unstable. If I use the constant
.9 in the computation of hn , there is a pro-
nounced bias in both curves that results (for
the ex-Gaussian) in an estimated asymptote
much less than that of the true hazard func-
tion. By comparing the mean estimate to the
true hazard function for a range of values of
hn , one can determine when the estimate is
oversmoothed or undersmoothed. For differ-
ent samples or different random variables, dif-
ferent smoothing parameters may be required.

There are two reasons why I like the
Epanechnikov kernel estimator for hazard
functions. One, mentioned earlier, is that it
is clear when the estimates become unstable
and when the behavior of the estimate can
be disregarded. In Figures 12.5 and 12.6, this
point occurred around 700 ms. The evalu-
ation of instability is made by reference to
the standard error of the estimate, which can
be computed using bootstrapping or by com-
puting the asymptotic standard error directly
(see n. 4). The second reason is shown in
Figure 12.6: Even with a very small sample
size, the Epanechnikov kernel is surprisingly
accurate for a function that is very difficult to
estimate well. It bears repeating, however, that
serious hazard function analyses will require
samples much larger than the one used here.
Also, the extent of bias will depend on the true
distribution, which is in practice unknown.

Model Fitting

A common goal of any RT analysis is to eval-
uate hypotheses related to a proposed model
of the cognitive task of study. Many models
predict explicitly the distribution of RTs that
should be observed. A natural point of inves-

tigation is therefore to fit the model to the
data to determine whether the RTs are dis-
tributed as predicted. Such fits require an es-
timate of the distributional parameters. Often
goodness-of-fit statistics, such as χ2, are com-
puted. Furthermore, changes of the estimated
parameters under different experimental con-
ditions can be evaluated according to whether
the changes make sense in terms of the
psychological interpretation placed on those
parameters.

There are two good ways to estimate the
parameters of a model. The first is maximum
likelihood, and the second involves least-
squares fits to the EDF. Whereas methods of
maximum likelihood require numerical com-
putation of the density function, least-squares
fits to the EDF require numerical computation
of the CDF. Therefore, when computation of
the density is expensive or unwieldy, the CDF
may be fit, or when the CDF is intractable, the
density may be used in maximum likelihood.

Maximum Likelihood

The goal of maximum likelihood is to obtain
estimates of the model parameters that make
the probability of the observed sample as large
as possible. Intuitively, the probability of hav-
ing observed a particular sample should not
be too small. Because the observations in the
sample T = {T1, T2, . . . , Tn} are iid, the prob-
ability of the sample can be written as

P(T) = P(T1 ∩ T2 ∩ · · · ∩ Tn)

=
n∏

i=1

P(Ti ).

Replacing the probability notation in this
equation with the density function of T, the
likelihood is defined as

L(θ̂) =
n∏

i=1

fT (Ti ; θ̂ ),



pashler-44093 book December 18, 2001 10:33

484 Analysis of Response Time Distributions

where θ̂ is a vector of parameters to be es-
timated (such as θ̂ = {µ̂, σ̂ , τ̂ } for the ex-
Gaussian distribution), and fT is the theoret-
ical (to-be-fit) density function. It is usually
computationally simpler to work with the log
likelihood function

ln L(θ̂) =
n∑

i=1

ln fT (Ti ; θ̂ ).

Because the relationship between L and
ln L is monotonic, maximizing ln L also
maximizes L .

The process of maximizing (or minimiz-
ing) any function requires a search algorithm.
Given a set of starting values θ̂0 for the pa-
rameters, the algorithm will adjust the val-
ues of the parameters until the function can-
not be made any larger or smaller. There are
many algorithms that one might use, includ-
ing Gauss-Newton (Hartley, 1961) and the
simplex algorithm (Nelder & Mead, 1965)
among others. I do not discuss the selec-
tion of a search algorithm in this chapter, ex-
cept to mention that I typically use a simplex
algorithm (Van Zandt, 2000; Van Zandt et al.,
2000). There are benefits and drawbacks to
each method, and the choice must be deter-
mined by the analyses at hand. Prepackaged
model-fitting applications, such as RTSYS
(Heathcote, 1996) or those found in larger ap-
plications such as SAS, SPSS or MATLAB
will typically explain the search algorithm that
will be used if they do not provide a choice.

To illustrate parameter estimation using
maximum likelihood, I step through how the
ex-Gaussian distribution was fit to the Left
Only (s) data in Table 12.1. The Gaussian ker-
nel estimate of the density for this sample is
shown in Figure 12.3. The expression for the
ex-Gaussian density function is

fT (t; θ) = 1

τ
e− t

τ
+ µ

τ
+ σ2

2τ2 �

(
t − µ − σ 2/τ

σ

)
,

where � is the standard normal CDF. Us-
ing the starting values θ̂0 = {200, 15, 100}

for θ = {µ, σ, τ }, the value of the den-
sity for the first observed RT is f (T1; θ̂0) =
f (350; {200, 15, 100}) = .0023. For the
second observed RT, it is f (T2; θ̂0) =
f (365; {200, 15, 100}) = .0019. Continuing
in this way, the values of the density function
for all Ti in the sample are obtained. To com-
pute the log likelihood, the log transform of
all of the density values is summed:

ln L(θ̂0) =
n∑

i=1

ln fT (Ti ; θ̂0)

= ln 0.0023 + ln 0.0019 + · · ·
= −364.4964.

Now the values of the parameters must be
changed to determine if the log likelihood ra-
tio can be made larger. If µ̂ is changed to 300,
the value of ln L(θ̂) increases to

ln L(θ̂) =
n∑

i=1

ln fT (Ti ; {300, 15, 100})

= ln 0.0061 + ln 0.0053 + · · ·
= −319.4972.

It would be nearly impossible, even with only
three parameters, to adjust the values of θ̂ by
hand to search thoroughly for a global max-
imum of the function ln L(θ̂). This is why
a good search algorithm is necessary. The
surface of the function ln L(θ̂) is shown in
Figure 12.7 (the parameter σ is held constant
in the figure). This function is smooth and
well-behaved for the region plotted, meaning
that there are no discontinuities and only one
maximum. It is important to realize that this
need not be the case in fitting RT distribu-
tions. Often, the function to be minimized or
maximized is characterized by many local ex-
trema and abrupt changes of contours, which
complicates the search for global extrema. In
this case, the maximum is quickly found to be
θ̂ = {µ = 393.78, σ = 32.58, τ = 156.58}.
This point is marked on the figure.
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Figure 12.7 The surface of the ex-Gaussian likelihood function for the RTs from the Left Only (s)
condition. The estimate σ̂ is held constant, and likelihood is plotted as a function of µ̂ and τ̂ .

Distributional Fits

An alternative to maximum likelihood estima-
tion is least-squares fits of theoretical quan-
tiles or CDFs. I have previously shown that
this technique is of approximately equivalent
accuracy as maximum likelihood when re-
covering parameters for a number of com-
mon RT models (Van Zandt, 2000). In this
technique, a number of time points are se-
lected in the range of the data, and the squared
deviations between the percentile rank of
the scores and the predicted percentile rank
(as given by the CDF) are minimized. So,
percentiles are computed for a set of times
{t1, t2, . . . , tr } according to the EDF F̂ de-
fined earlier. Then a set of estimated param-
eters θ̂ is selected, and the predicted percentile
ranks {FT (t1; θ̂ ), FT (t2; θ̂ ), . . . , FT (tr ; θ̂ )} are
computed. The parameters θ̂ are adjusted to
minimize

SSE(θ̂) =
r∑

i=1

[F̂(ti ) − FT (ti ; θ̂ )]2.

A nearly equivalent procedure is to select the
points {t1, t2, . . . , tr } according to the propor-
tion of observations falling between each (or
according to the predicted proportions given
by the model), and select parameters to mini-
mize the χ2 statistic

χ2 = n
r∑

i=0

(Oi − Ei )
2/Ei

(Smith & Vickers, 1988; Van Zandt et al.,
2000). In this expression, Oi and Ei are the
observed and expected proportions of RTs be-
tween ti and ti+1 (t0 = 0 and tr+1 = ∞).
One nice aspect of minimizing χ2 is that the
value of χ2 after minimization gives an indi-
cation of how well the model is fit. However,
such judgments must be made cautiously. If
χ2 is sufficiently small, the model fits well.
But large values of χ2 do not necessarily in-
dicate an incorrect or misspecified model. The
χ2 statistic is very sensitive to sample size and
frequently can be “significantly” large even
when the model is correct (Van Zandt, 2000).
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An important observation is that least-
squares fits of the CDF result in parameter
estimates that are of comparable accuracy to
maximum likelihood estimate (MLE) param-
eters. Occasionally, the density function may
be intractable or result in ill-behaved likeli-
hood functions that make parameter searches
difficult. Fitting the CDF can, in these circum-
stances, be considerably easier (Van Zandt
et al., 2000). To illustrate the technique, I
fit the ex-Gaussian CDF to the Left Only (s)
data from Table 12.1. The ex-Gaussian CDF
is given by

F(t) = �

(
t − µ

σ

)

− e− t
τ
+ µ

τ
+ σ2

2τ2 �

(
t − µ − σ 2/τ

σ

)
.

(4)

I begin by selecting the same starting val-
ues as for the MLE procedure: θ̂ = {200, 15,

100} for θ = {µ, σ, τ }. The EDF for the Left
Only (s) data is computed as above for the time
points between 200 and 1,400 ms. For each

Figure 12.8 The surface of the ex-Gaussian sums of squares for the RTs from the Left Only (s) condition.
The estimate σ̂ is held constant, and sum of squared error (SSE) is plotted as a function of µ̂ and τ̂ .

time point, the value of the ex-Gaussian GDF
is then computed using Equation (4). For ex-
ample, for t = 200 ms, F(200) = .0546. The
EDF at time t = 200 ms is F̂(200) = .0000.
The first term in the sum of squared errors is
therefore

(F(200) − F̂(200))2 = (.0546 − .0000)2

= .0030.

For t = 201 ms, the process is repeated,
obtaining

(F(201) − F̂(201))2 = (.0592 − .0000)2

= .0035.

Continuing in this way through all values of t ,

SSE(θ̂) = .0030 + .0035 + · · · = 127.1986.

Now the parameter vector θ̂ must be changed
to try to make SSE(θ̂) smaller. Changing µ

from 200 ms to 350 ms, SSE(θ̂) = 20.6001 is
obtained, a tremendous improvement. Contin-
uing to adjust parameters and moving along
the SSE surface shown in Figure 12.8, one
reaches the minimum, θ̂ = {µ = 383.69, σ =
19.88, τ = 166.94}, which is marked on the
curve.
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Notice that these parameter values are sim-
ilar but not exactly equal to those obtained
by maximum likelihood. I have shown else-
where (Van Zandt, 2000) that, on average, the
parameters recovered by least-squares fits are
of the same accuracy as those recovered by
maximum likelihood, at least for several pop-
ular RT models. This fact is convenient when
the surface to be minimized or maximized is
poorly behaved (i.e., has lots of local extrema
and abrupt transitions).

Summary

In this first section, I discussed how RT distri-
butions are described and how characteristics
of the RT distribution may be estimated. These
characteristics included not only the mean and
variance of the distribution, but the functions
that describe the distribution, that is, the den-
sity, CDF, and survivor and hazard functions.
A vast statistical literature deals with these es-
timation problems, and the interested reader
is encouraged to consult Silverman (1986) for
background and further reading on density es-
timation, Wilcox (1997) for robust estimation
procedures, and Wickens (1982) for discus-
sion of estimation problems in a psychologi-
cal context.

In the remainder of the chapter, I present
a number of applications of RT distributional
analysis that allow for testing of specific hy-
potheses concerning the nature and arrange-
ment of mental processes measured by RT.
I illustrate how these techniques are used by
way of the data set presented in Table 12.1.
However, the reader should be cautioned that
these samples are much smaller than the sam-
ples that should be considered in a serious
distributional analysis.

MODEL AND HYPOTHESIS TESTING

Over the past several years, a surprising wealth
of theoretical tools has been developed that

is indispensable for discriminating between
different kinds of cognitive architectures. As
explained earlier, the main idea is that the RT
distribution can, when identified, provide in-
formation about the process that gave rise to it.
If RTs from several conditions are examined
simultaneously, it becomes possible not only
to speculate about the forms of the RT distri-
butions recovered, but also to use informa-
tion derived from the relationships between
the different RT distributions to make more
general statements about processing architec-
ture, even when the forms of the RT distribu-
tions are unknown. In this section I provide a
review of some of these tools. I will not give
any mathematical derivations of the tools ex-
amined; the reader should refer to the original
references instead. My goal is to demonstrate
how these tools can be applied to real data.

I start first by discussing the possible rela-
tionships between RT distributions in differ-
ent experimental conditions that might be of
interest. In this context, I present a number of
important inequalities, relationships that hold
or fail to hold between RT distributions under
certain structural hypotheses. I also examine a
number of ways that RTs can be decomposed
into putative processing time components.

Orderings of Distributions

Hierarchical Inference

It is common to formulate hypotheses about
the effects of certain experimental variables
on RT. Masking a stimulus, making it sur-
prising or emotionally disturbing, or increas-
ing the number of possible responses could
slow responses, whereas increasing its inten-
sity or expectation could speed responses. But
how exactly should an increase or decrease
in processing time be measured? As I dis-
cussed in the opening paragraphs of this chap-
ter, such changes are typically measured by
mean RT. However, it may be possible that an
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experimental manipulation affects only slow
responses, and that another affects only fast
responses. It is not hard to imagine situations
in which the mean RT is constant across condi-
tions but the experimental factors have effects
on other aspects of the RT distribution.

Townsend (1990) tackled this problem by
considering all the ways that an experimen-
tal manipulation might affect RT and derived
the implications of such effects not only on
the mean RT, but also on the medians, CDF,
densities, hazard functions, and likelihood ra-
tio. For example, suppose that a manipulation
slows mean RT by some amount, but the actual
effect of the manipulation is to add some con-
stant amount to the overall processing time.
This means that the mean will increase by that
constant amount, but it also means that the
RT density is shifted by that constant amount.
This in turn implies that the RT CDFs must be
ordered, so that the CDF for the faster process
is everywhere greater than the CDF for the
slower process. This, then, implies not only
that the mean RT is increased, but the median
RT also, and that the probability of observing
an RT from the fast condition that is faster
than an RT from the slow condition is greater
than 0.5 (see Townsend, 1990, Figure 12.1).

It makes sense, therefore, to examine
changes in RT not just at the level of the
means,butat thestrongest level of Townsend’s
(1990) hierarchy, because all other weaker
properties are then implied. If, for instance,
I can show that the hazard functions for two
experimental conditions are ordered, then it
must follow that the CDFs, means, and me-
dians are ordered as well. If I can show that
the likelihood ratio (defined as the density of
the faster process divided by the density of the
slower process) is monotonic decreasing, then
it follows that the hazard functions must be or-
dered and hence the CDFs, means, and medi-
ans are also ordered. If the density functions
cross only once, then the CDFs must be or-
dered and the means and medians as well.

It is difficult, however, when dealing with
estimates of functions, to determine whether
significant violations of orderings exist. For
the hazard function, for example, if the
Epanechnikov kernel estimate is used, the
variance of this estimate can be computed ex-
actly only if the true hazard function is known.
This is never going to be the case in practice,
which leaves researchers at something of a
loss. Not only the variance of ĥslow(t) but also
the variance of ĥslow(t)− ĥfast(t) is unknown,
so one cannot say with any certainty if the
difference between the estimated hazard func-
tions in the slow and fast conditions is greater
than or less than zero. The only option is to
estimate the variability in the hazard functions
by bootstrapping, as described earlier.

For purposes of illustration, consider the
data in Table 12.1 for conditions Both (ss) and
Both (ll). Using Townsend’s (1990) system
of hierarchical inference, I attempt to deter-
mine the relationships between the distribu-
tions in these two conditions. The estimated
density and hazard functions, EDFs, and like-
lihood ratio for these two samples are shown
in Figure 12.9. The mean RT for condition
Both (ll) is 469 ms, and for condition Both (ss)
is 525 ms. In terms of the means, one can say
that reducing the size of the circles in the de-
tection task slowed responding. However, us-
ing Townsend’s hierarchy, much more can be
said. Examining the densities (top left panel),
one can see that they cross exactly once. Also,
the Both (ss) hazard function tends to domi-
nate the Both (ll) hazard function (bottom left
panel). These two characteristics of the sam-
ples show that the CDFs and therefore also
the means and medians must be ordered. The
relationship between the CDFs is verified in
the figure: The EDF for the Both (ll) condi-
tion is everywhere larger than the EDF for the
Both (ss) condition. The medians are 458 ms
and 487 ms for the Both (ll) and Both (ss)
conditions, respectively, as implied by the or-
dering of the EDFs.
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Figure 12.9 Estimated density functions (top-left panel), empirical distribution functions (EDF, top-
right panel), estimated hazard functions (bottom-left panel), and likelihood ratio (bottom-right panel) for
the Both (ss) (solid lines) and Both (ll) (dashed lines) conditions.

The strongest condition that we can ex-
amine for RTs under Townsend’s (1990) hi-
erarchy is the shape of the likelihood ratio.
To estimate the likelihood ratio, I divided the
Gaussian kernel density estimate of the Both
(ll) condition by the Gaussian kernel density
estimate of the Both (ss) condition. The re-
sult is shown in Figure 12.9 (bottom right
panel). The estimate of the likelihood ratio
decreases, but it wiggles along the way. Are
these nonmonotonicities due to error in the
density estimates, or are they real? To answer
this question, I computed the standard error of
the estimated likelihood at each time point us-
ing 1,000 bootstrapped samples. The results
are shown in Figure 12.10 as error bars around
the original estimate shown in Figure 12.9.
Clearly, the variance of the estimate is very
large at some points, especially for very fast
and very slow RTs.

It appears from Figure 12.10 that the
estimated likelihood ratio is not monotonic
decreasing. The extent of the variance sur-
rounding some of the nonmonotonicities
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Figure 12.10 Likelihood ratio (solid curve) from
Figure 12.9 (bottom right) plotted with estimated
±1 standard deviation (dashed curves).
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suggests that they are due to error in the den-
sity estimates, especially the very first non-
monotonicity around 325 ms and all wiggles
after 600 ms. However, the nonmonotonic-
ity between 400 and 500 ms cannot be so
easily dismissed. One might suspect that the
method of dividing the two Gaussian kernel
estimators is not the best way to estimate non-
parametrically the likelihood ratio. Alterna-
tive methods are given by Dykstra, Kochar, &
Robertson (1995), including a procedure for
testing the hypothesis that the likelihood ratio
is nondecreasing. I do not review these proce-
dures here.

In sum, the hierarchical orders investigated
by Townsend (1990) provide a broad basis for
characterizing the effects of an experimental
variable on RT. It should also be noted that
these insights between the functional char-
acterizations of a random variable have been
very useful in the development of additional
theoretical tools, some of which are presented
next.

Parallel Channel Models and
Self-Terminating Processes

Parallel channel models are a broad class of
models that assume that information flows
through more than one pathway toward the
execution of a response. Some examples of
these models are sequential sampling models
(Grice, Canham, & Boroughs, 1984; Marley
& Colonius, 1992; McGill, 1963; Pike, 1973;
Vickers, 1979), and other examples make no
mechanistic assumptions about how informa-
tion flows (Mordkoff & Yantis, 1991; Egeth,
Folk, & Mullin, 1989). These models are often
conceptualized as a race in which each chan-
nel corresponds to a potential response and
the response is made based on the channel
that accumulates the requisite amount of in-
formation first. RTs for race models are there-
fore distributed as the minimum of the pro-
cessing times for all of the channels. Such
race models are often called self-terminating

because processing ends before all the chan-
nels are finished. Other models require that
all channels complete processing before a re-
sponse is made, and RTs are distributed as the
maximum of the processing times for all of
the channels. These models are often called
exhaustive.

Many hypotheses have been proposed and
tested about parallel channel models using
RTs. A number of empirical tests based on
the RT distributions have been designed, and
I discuss several of them here.

The Race Inequality. The race inequal-
ity (frequently referred to as the Miller in-
equality; Miller, 1982) was developed in the
context of the redundant targets paradigm. In
this task an observer is asked to make a sim-
ple response as soon as a stimulus is detected,
regardless of the identity of the stimulus. The
channels through which information flows de-
pend on the properties of the stimulus. For
instance, there could be visual and auditory
channels for stimuli that can be either visual
or auditory. There could be separate spatial
channels for stimuli that appear in different
locations. There could be channels defined by
the nominal identities of the stimuli (e.g., ani-
mal versus vegetable). In the redundant targets
paradigm, one or more stimuli might be pre-
sented simultaneously. It is assumed that the
detection response can be made as soon as any
channel signals the presence of a stimulus.

If stimuli are presented simultaneously to
more than one channel, detection RT typically
decreases relative to the detection RT for a
single stimulus presented to one channel only.
Because the RT in the redundant target case is
assumed to arise from a race, some decrease
in overall RT would be expected statistically.
This is called the statistical advantage: The
minimum of two random variables will have a
smaller mean than the means of either of the
two random variables alone. However, if there
is any interaction between the two channels,
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one might expect to see a greater decrease in
the redundant target mean RT than would be
expected from a simple race, or one might
expect to see not quite enough of a decrease
if the two channels interfere with each other.

The race inequality is an empirical rela-
tionship between the RT distribution functions
for the redundant and single target conditions
that must hold if a parallel race model is re-
sponsible for the detection RTs. If the two
channels (stimuli) are L and R, and FL R is
the RT CDF for the redundant condition and
F L R and FL R are the RT CDFs for the R-only
and L-only conditions, respectively, the race
inequality 5 states that

FL R(t) ≤ F L R(t) + FL R(t).

If this inequality is violated, then the par-
allel channel model is falsified. (It does not
follow, however, that if the inequality holds,
then the parallel channel model must be true.)
The inequality can be tested empirically by
estimating the RT CDFs in each condition
(L R, L R, and L R), and examining F̂ L R(t)
versus F̂ L R(t) + F̂ L R(t) for all values of
t. Clearly, it is the faster RTs for which
the inequality will be diagnostic. For longer
RTs, the right-hand side of the inequality ap-
proaches 2, whereas the left-hand side ap-
proaches 1, so the inequality will always hold
for long RTs.

This analysis can be applied to the data
in Table 12.1. Consider the RTs collected
in conditions Both (ii) (L R), Left Only (i)
(L R), and Right Only (i) (L R), where i
is either s or l. The channels that are pro-

5Note that this relationship between the CDFs is a special
case of Boole’s inequality: P(L ∪ R) ≤ P(L) + P(R),

for events L and R, and Boole’s inequality holds regard-
less of the degree of dependence between L and R. Note
also that to apply this inequality, one must make the non-
trivial assumption that the marginal CDFs for the left
and right channel finishing times in the redundant con-
dition are equal to the L-only and R-only CDFs, respec-
tively. This assumption is called context independence
(Colonius, 1990).

posed to be operating in this task are spatial
in nature, so that Both (ii) is the redundant
condition—targets are present in both chan-
nels. Left Only (i) and Right Only (i) are
the single target conditions. For each condi-
tion, the EDF must be computed as defined
in Equation (1). Three sequences of cumu-
lative proportions are obtained for each time
point t between 300 ms and 1,200 ms for each
sample of RTs: F̂ L R(t), F̂ L R(t), and F̂ L R(t).
Then the sequence F̂ L R(t) + F̂ L R(t) is ex-
amined and compared to F̂ L R(t) at each time
point t. The results for both i = s and i = l
are shown in Figure 12.11 in terms of the dif-
ference F̂ L R(t) − [F̂ L R(t) + F̂ L R(t)].

Violations of the race inequality occur
whenever F̂ L R(t) is greater than F̂ L R(t) +
F̂ L R(t), or when the differences shown in
Figure 12.11 are positive. The small target dif-
ferences are shown in the top panel, and the
large target differences are shown in the bot-
tom panel. Both conditions show small posi-
tive excursions of the difference for very fast
RTs. Are these excursions significant viola-
tions of the race inequality? The answer to
that question seems to be no, based on the es-
timated standard deviations of the difference
computed (again) by bootstrapping the sam-
ple. The error bars plotted around each dif-
ference as a dotted line show no positive ex-
cursions that are significantly different from
zero. One therefore cannot conclude that the
race inequality is violated in these data and
must retain the hypothesis that the left and
right channels operate in parallel. Of course,
the sample sizes under consideration are quite
small, and any serious effort to use the race in-
equality should use as many observations as
possible.

Some efforts to test the race inequality
have used sequential z-tests for each estimated
point of the inequality. Because the numbers
of observations falling below a point on the
CDFs are binomial random variables, it is
straightforward to construct the appropriate



pashler-44093 book December 18, 2001 10:33

492 Analysis of Response Time Distributions

Figure 12.11 The race inequality for the small (top panel) and large (bottom panel) in the redundant
targets conditions.
NOTE: The inequality is plotted as the difference between the redundant target empirical dis-
tribution function [EDF(Both)] and the sum of the single target empirical distribution functions
[EDF(Left) − EDF(Right)].

z statistics for every time point and examine
their p values. However, this procedure fails
to consider that the points on each curve are
not independent from each other. This depen-
dence between the points artificially inflates
the likelihood that significant differences will
be found. That is, if one point along the in-
equality is spuriously significant, the points
immediately surrounding it are likely to be as
well. Bootstrapping to estimate the standard
errors avoids this problem.

The Grice Inequality. An inequality
closely related to the race inequality is the
so-called Grice inequality (Grice, Canham, &
Gwynne, 1984; Townsend & Nozawa, 1995).
As for the race inequality, the Grice inequality
relates the finishing time distributions for two
processing channels in the conditions of the
redundant targets paradigm. Colonius (1990)

has shown that the race and Grice inequalities
correspond to maximal negative and positive
dependence (respectively) between the paral-
lel channels. Where the race inequality pro-
vides the upper (negative dependence) bound,
the Grice inequality provides the lower (pos-
itive dependence) bound. The redundant tar-
gets RT distribution must satisfy (see n. 5)

max{F L R(t), FL R(t)} ≤ FL R(t)

if a parallel channel race model is the appro-
priate processing architecture.

The data were analyzed with respect to the
Grice inequality as for the race inequality. The
maxima of the EDFs for the Left Only (i)
and Right Only (i) conditions were computed
at all time points and compared to the EDF
for the Both (i) condition. The difference be-
tween the maximum and the Both (i) EDF
is shown in Figure 12.12 together with error
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Figure 12.12 The Grice inequality for the small (top panel) and large (bottom panel) in the redundant
targets conditions.
NOTE: The inequality is plotted as the difference between the maximum of the single target empirical dis-
tribution functions max[EDF(Left),EDF(Right)] and the redundant target empirical distribution function
[EDF(Both)].

bars (dotted lines) of plus and minus 1 stan-
dard error computed via bootstrapping 1,000
samples. Positive differences are violations of
the Grice inequality. Again, for both the small
and large circle conditions, not one of the vi-
olations is significantly different from zero.
Therefore one cannot conclude that these data
are not generated by a parallel channel model.

The Survivor Function Interaction Con-
trast and Processing Capacity. Townsend
and Nozawa (1995) investigated the Miller
and Grice inequalities in a more general con-
text. They noted that the redundant target
paradigm is a specific case of the more general
double factorial design, in which two exper-
imental factors are assumed to influence two
separate processing channels (see the section
titled “Selective Influence”). In the running
example, the two factors are the size of the

circles (small or large) and the visual field
in which they are presented (left or right).
The size of the circle in one visual field is
assumed to influence the processing time as-
sociated with only the channel in that visual
field. That is, the size of the circles selectively
influences the processing times in the left and
right channels. The goal is to determine the
relationship between the two (or more) chan-
nels. Must processing on both channels finish
(an exhaustive strategy), or can a response be
made as soon as one channel finishes (a self-
terminating strategy)? Can processing take
place in both channels at the same time (a par-
allel architecture), or must processing in the
second channel wait until processing in the
first channel is finished (a serial architecture)?

Letting l and s represent the conditions in
which a large and small circle was presented,
respectively, and letting Fij(t) be the survivor
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function when stimulus i is presented in the
left channel and stimulus j is presented in
the right channel, the Grice and race inequal-
ities can be recast in terms of the survivor
functions:

Fsl(t) + Fls(t) − 1 ≤ Fll(t)

≤ min{Fsl(t), Fls(t)}.
Notice that this expression assumes that tar-
gets of different strength are presented in both
the left and right channels. The redundant tar-
gets paradigm, to which the race and Grice
inequalities are typically applied, is the spe-
cial case in which the “low” level of the
stimulus is actually a zero intensity level.
As Townsend and Nozawa (1995) noted, the
race and Grice inequalities are really state-
ments about the capacity of the process. If
both the race and Grice inequalities hold, the
process is unlimited in capacity, meaning that
the channels neither speed up nor slow down
when both channels are processing. Increas-
ing the amount of information to be processed
does not harm the efficiency of the channels.
If the Grice inequality is violated, the pro-
cess is very limited in capacity: Processing
that occurs in both channels slows the sys-
tem down. If the race inequality is violated,
the process is supercapacity: Processing that
occurs in both channels improves system per-
formance. Miller (1982) called such channels
coactive, meaning that information passes be-
tween them in such a way that responses can
be executed more quickly if both channels are
occupied.

Townsend and Nozawa (1995) used the
survivor functions to examine processing ar-
chitectures not only in terms of the channels
through which information flows but also in
terms of their capacities. Of particular im-
portance is the survivor function interaction
contrast, given by

I C(t) = Fss(t) − Fsl(t) − Fls(t) + Fll(t).
(5)

Capacity of the system can be examined using
the capacity coefficient:

C(t) = − ln F L R(t)

− ln F L R(t) − ln F L R(t)
. (6)

Note the difference between these two ex-
pressions. In the case of I C(t), the im-
portant predictions are made with different
levels of stimuli in both channels. In the
case of C(t), stimuli are present in only
one or both of the channels—the redun-
dant targets paradigm. The log survivor func-
tions used in the capacity coefficient have
to do with the relationship between the sur-
vivor function and the hazard function and
with the fact that the hazard function reflects
the processing capacity of the channels. See
Townsend and Nozawa for more details on
this measure.

Townsend and Nozawa (1995) derived the
predicted form of the interaction contrast for
different processing architectures. These pre-
dictions are shown in Table 12.2. For the
capacity coefficient, if C(t) > 1 for all or
some times t, processing is supercapacity
(improves with additional stimuli to be pro-
cessed) for those times t. If C(t) < 1 for
all or some times t, processing is limited in
capacity for those times t. If processing is un-
limited in capacity, C(t) = 1. Townsend and
Nozawa also investigated the implications of
supercapacity processing with regard to vio-
lations of the Miller inequality. The relation-
ships between these properties are discussed
in their paper.

Table 12.2 Survivor Function Interaction Contrast
Predictions for Different Cognitive Architectures
(After Townsend & Nozawa, 1995.)

Serial self-terminating I C(t) = 0 for all t
Serial exhaustive I C(t) < 0 for t < t∗

and I C(t) > 0 for t > t∗
Parallel self-terminating I C(t) > 0 for all t
Parallel exhaustive I C(t) < 0 for all t
Coactivation I C(t) < 0 for t < t∗

and I C(t) > 0 for t > t∗
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Using the functions IC(t) and C(t),
Townsend and Nozawa (1995) showed that
processing in the redundant targets paradigm
seemed to occur over parallel channels, and
that the response is likely to be based on
a coactivation mechanism, although a race
mechanism may still be plausible. One can
perform the same sort of analysis of the data in
Table 12.1. First, examine the capacity func-
tion. For the redundant targets conditions—
Both (ii), Left Only (i), and Right Only (i),
i = s or l—the EDFs are constructed as be-
fore. Then, the EDFs are subtracted from 1
at each time point to arrive at estimates of
the survivor functions. These values are then
plugged into Equation (6) to estimate the func-
tion C(t) over t. The results for the small
and large circle conditions are shown in Fig-
ure 12.13, together with the bootstrapped es-
timates of the standard deviation of Ĉ(t). Any
values of Ĉ(t) greater than 1 suggest superca-
pacity processing, such as might be found in

Figure 12.13 The capacity coefficient C(t) for the small (top panel) and large (bottom panel) redundant
targets conditions.

coactive processing channels, and any values
of Ĉ(t) less than 1 suggest limited capacity
processing.

Although portions of the early curves
shown in Figure 12.13 suggest supercapac-
ity processing, these portions do not seem to
be significantly greater than 1 given the esti-
mated standard deviations of the curves. It is
clear, however, that the capacity coefficients
are significantly less than one for much of the
slower parts of the curves, indicating limited
capacity processing for both small and large
circles. One could do more at this point to de-
termine, for example, whether the degree of
limited capacity is above the limitation im-
posed by the Grice inequality, but I forgo that
analysis here. Interested readers should con-
sult Townsend and Nozawa (1995) for more
details.

Next, the interaction contrast I C(t) is ex-
amined. To compute this contrast, one needs
the conditions corresponding to the factorial



pashler-44093 book December 18, 2001 10:33

496 Analysis of Response Time Distributions

Figure 12.14 The interaction contrast I C(t) for the redundant targets conditions.

combination of stimulus intensity with chan-
nel: Both (ll), Both (sl), Both (ls), and Both
(ss). As before, the EDFs for the RTs in these
conditions are computed. The EDFs are sub-
tracted from 1 at all times t to estimate the
survivor functions, and the results are plugged
into Equation (5). The estimate of I C(t) is
shown in Figure 12.14 together with the boot-
strapped estimate of its standard deviation.
The estimate is positive for all values of t
except for a single negative excursion around
350 ms. This excursion is not significantly less
than zero. Although the estimate appears to be
significantly greater than zero only at a lim-
ited number of points, all but a single point
on the estimate are positive. From Table 12.2,
one can determine that these data are consis-
tent with parallel self-terminating processing
of the channels or, if one wants to take seri-
ously the estimated standard deviation of the
estimate Î C(t), with serial self-terminating
processing.

Again, it should be noted that the number
of observations in these simple examples is

probably not sufficient to draw strong conclu-
sions about processing architecture in the de-
tection task. Although the variance of the EDF
is quite small even for samples around n = 50,
functions of the EDF such as C(t) and I C(t)
will have much greater variance. No one has
yet performed simulation studies to deter-
mine the extent of variance in the estimates of
these functions for standard models, so I have
no concrete recommendations about sample
size. Several hundred observations per condi-
tion, however, will probably provide sufficient
power. (Townsend and Nozawa’s 1995 exper-
iment used approximately 100 observations
per condition per subject.)

I conclude this discussion of distributional
inequalities by noting that I have only touched
on a few of the possible procedures that one
might use to examine processing architecture.
Many other techniques are discussed, for ex-
ample, by Townsend and Ashby (1983) and
Colonius and Vorberg (1994). Although these
procedures are important in their own rights,
they become even more powerful when used
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in the context of an explicit model of informa-
tion processing. This is because the distribu-
tional inequalities predicted by certain models
are necessary but not always sufficient condi-
tions for the existence of those models. That
is, the properties examined here are consis-
tent with the models from which they were
derived, but in many cases (e.g., the Miller in-
equality) they could also be consistent with
other very different models, some with ar-
chitectures that have not yet been considered
(Townsend & Nozawa, 1997). However, when
used to test characteristics of a model consid-
ered a priori, for which independent empirical
evidence has been collected, these techniques
can be very powerful indeed.

Reaction Time Decomposition

The goal of RT decomposition is twofold.
First, one might wish to determine how two or
more postulated stages of processing are ar-
ranged (e.g., in series or in parallel). Second,
given that two or more stages of processing
are serially arranged, the duration of one or
more stages might be isolated from the overall
processing time. In this section, I present the
tools used to perform these analyses, begin-
ning with a general theory of selective influ-
ence and an application, and followed by two
techniques by which processing times might
be isolated.

Selective Influence

One common aim of RT analysis is to in-
fer the arrangement of individual processing
components by examining the effects of ex-
perimental factors on RT. Selective influence
of the factors is typically assumed (Dzhafarov
& Cortese, 1996; Dzhafarov & Schweickert,
1995; Roberts & Sternberg, 1992). This means
that a particular factor α will affect process-
ing A in the processing chain but will not
affect any other process B. Another factor
β will affect process B but not process A.

The meaning of selective influence is obvi-
ous when the selectively influenced processes
are stochastically independent, but the notion
can be extended to dependent processes as
well (Dzhafarov, 1999, in press; Townsend,
1984).

Tests of different processing stage compo-
sitions (e.g., serial versus parallel processing)
often rely on the selective influence assump-
tion, as in the previous section. Practically
speaking, it is not an unrealistic assumption
for a wide range of experimental paradigms.
One example of presumed selective influence
can be found in signal detection theory, in
which it is proposed that a stimulus effect
such as signal strength will affect discrim-
inability but not bias; payoffs will affect bias
but not discriminability. Given selective influ-
ence, one can perform a battery of tests to rule
out different cognitive architectures.

Probably the most well-known RT tests are
those related to Sternberg’s additive factors
method (Sternberg, 1969). Under selective in-
fluence, the changes in mean RT across exper-
imental conditions in which different levels of
α and β are manipulated are measured. If pro-
cessing stages A and B are arranged serially,
then one would expect to see an additive ef-
fect of α and β on mean RT (under certain
general conditions). That is, the effect when
manipulating α and β simultaneously will be
equal to the sum of the effects when each are
manipulated alone. If one were to plot mean
RT as a function of α for each level of β, a se-
ries of parallel lines would result. Later work
has concentrated on the predictions made by
nonserial architectures, both at the level of
mean RT (Schweickert, 1978) and at the level
of the distribution (Townsend & Nozawa,
1995).

These issues have been tackled from a
very general level that allows for testing
not only of serial processing but also of a
broad class of general decomposition rules.
I present first Dzhafarov and Schweickert’s
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(1995) approach, followed by an application
of their results to our data.

The General Theory. Dzhafarov and
Schweickert (1995) provided a more general
theory of RT decomposition under the selec-
tive influence assumption. This theory encom-
passes not just the additive effects predicted
by the independent serial stage model but
a wide range of composition rules connect-
ing selectively influenced RT components.
These components are assumed to be stochas-
tically independent (like the independent se-
rial stage model) or dependent in a special way
(perfect positive dependence, described later).
The range of composition rules covered by the
theory includes all operations that are associa-
tive, commutative, and continuous. The au-
thors call such rules simple. This broad class
of operations includes simple addition (a +
b), the maximum (max(a, b)) and minimum
(min (a, b)) as special cases. These are the
cases that this chapter concentrates on, al-
though the theory applies equally to such
unconventional composition rules as a × b,

(a p + bp)(1/p), and infinitely many others.
Suppose that, for an experimental task,

there are two critical processing components
A and B. Abusing notation for simplicity, let
A(α) and B(β) also represent the processing
durations of the two components under lev-
els α and β of two experimental conditions
(say, the location of a light and its intensity).
Assume that there are two levels of α, low and
high, represented by α = 1 and α = 2, respec-
tively, and that there are two levels of β, low
and high, represented by β = 1 and β = 2,
respectively. The durations A(1), A(2), B(1),

and B(2) cannot be observed directly. What
one observes in an experiment in which the
levels of α and β are factorially combined is
Tαβ for each condition: T11, T12, T21, and T22.

One is interested in the way that A(α) and
B(β) combine to form Tαβ . For instance, if A
and B are serial independent processes, then

Tαβ
d= A(α) + B(β).6 If A and B are par-

allel independent processes, and a response
can be executed as soon as either process

is completed, then Tαβ
d= min[A(α), B(β)].

More generally, let any simple composition
rule be denoted by the operator ⊕, so that

Tαβ
d= A(α) ⊕ B(β). Noting that

T11
d= A(1) ⊕ B(1),

T12
d= A(1) ⊕ B(2),

T21
d= A(2) ⊕ B(1), and

T22
d= A(2) ⊕ B(2),

because ⊕ is associative and commutative,
then

T11 ⊕ T22
d= [A(1) ⊕ B(1)] ⊕ [A(2) ⊕ B(2)]
d= [A(1) ⊕ B(2)] ⊕ [A(2) ⊕ B(1)]
d= T12 ⊕ T21.

Thus, one can examine the relationship
between the observable random variables
T11⊕T22 and T12 ⊕ T21 to investigate candi-
date composition operators ⊕. Dzhafarov and
Schweickert (1995) showed that if the above
relationship holds, it must do so uniquely.
Equality between the variables T11 ⊕ T22 and
T12 ⊕ T21 cannot be satisfied by more than
one operator ⊕ except in certain very artificial
and stringent conditions.

We now need to be concerned about the
relationship between A and B. Are A and B
completely independent from each other, or
are they dependent? A strong form of depen-
dence is called perfect positive dependence
(PPD), meaning that both A and B are increas-
ing functions of the same random variable;
when A increases by some amount, B must

6The relationship
d= means “equal in distribution.” When

two variables are equal in distribution, it means that the
values that each take on at a particular time might be
different, but their probability distributions are the same.
For instance, if we know that both X and Y are normally
distributed with mean µ and variance σ 2, then it is not
necessarily the case that X = Y, but it is true that X

d= Y.



pashler-44093 book December 18, 2001 10:33

Model and Hypothesis Testing 499

also increase, and the amount of that increase
will be perfectly predictable from the value of
A. The distributional equality of T11 ⊕T22 and
T12 ⊕T21 holds for both independent and PPD
A and B as long as the Ti j s are all related by
the same kind of dependence. However, the
conclusions that we can draw from a positive

or negative test of T11 ⊕ T22
d= T12 ⊕ T21 de-

pends on whether A and B are independent
or PPD. If A and B are PPD, then only one
⊕ can successfully decompose the RTs. That

is, if T11 ⊕ T22
d= T12 ⊕ T21, then it must be

the case that ⊕ is the correct decomposition.
However, if A and B are independent, a suc-
cessful test might be performed when in fact
no decomposition is possible. In both situa-
tions, however, only one operation will result
in a successful test.

In the special case where ⊕ represents ad-
dition and A and B are independent, Ashby
and Townsend (1980) proposed the summa-
tion test, which was later applied to experi-
mental data by Roberts and Sternberg (1992).
Dzhafarov and Schweickert (1995) gener-
alized this procedure to all simple opera-
tions ⊕, and Dzhafarov and Cortese formu-
lated a statistical test of the null hypothesis
FT11⊕T22 = FT12⊕T21 (Cortese & Dzhafarov,
1996; Dzhafarov & Cortese, 1996). The next
section demonstrates how this test is per-
formed, using the data from the “Both” con-
ditions in Table 12.1.

Application of the Theory. Let α rep-
resent the size of the dot presented in the
left visual field and let β represent the size
of the dot presented in the right visual field.
The RTs in the Both (ss) condition will be
represented by T11, and the RTs in the Both
(ll) condition will be represented by T22. The
RTs in the Both (sl) conditions will be rep-
resented by T12 and the RTs in the Both
(ls) condition will be represented by T21. For
the case where independence is assumed, the
test proceeds by constructing samples from

the distributions of T11 ⊕ T22 and T12 ⊕ T21.
Denote the observed RTs in each condition
as {T 1

11, T 2
11, . . . , T n11

11 }, {T 1
12, T 2

12, . . . , T n12
12 },

{T 1
21, T 2

21, . . . , T n21
21 }, and {T 1

22, T 2
22, . . . , T n22

22 },
where n11, n12, n21, and n22 are the sample
sizes in each condition. The notation T r

i j in-
dicates the RT observed on the r th trial,
so it is important that the samples be un-
ordered. We can then construct the samples
{T 1

11 ⊕ T 1
22, T 2

11 ⊕ T 2
22, . . . , T m1

11 ⊕ T m1
22 } and

{T 1
12 ⊕T 1

21, T 2
12 ⊕T 2

21, . . . , T m2
12 ⊕ T m2

21 }, where
m1 = min{n11, n22} and m2 = min{n12, n21}.

For example, the unordered samples for
T11 and T22 for the data shown in Table 12.1
are T11 = {484, 720, 485, . . .} and T22 =
{536, 369, 430, . . .}. If I wish to test the “min-
imum” decomposition, that is, that the RTs
are of the form Ti j = min[A(i), B( j)], then I
need to construct a sample of min(T11, T22):

{min(484, 536), min(720, 369),

min(485, 430), . . .}
= {484, 369, 430, . . .}.

I also need to do the same for the sam-
ples T12 and T21. The observations in the
two constructed samples are then ordered,
and the EDFs are computed for both. For
the “min” decomposition rule, the resulting
EDFs are shown in Figure 12.15. The statistic
that we need in order to test whether the min
decomposition rule is appropriate—that is,
whether the two EDFs shown in Figure 12.15
are statistically different from each other—
is the maximum absolute value of the differ-
ence between the two EDFs across all time
points: the Kolmogorov-Smirnov statistic, or
the Smirnov distance. For the EDFs shown in
Figure 12.15, this distance is d = .1415.

Dzhafarov and Cortese (1996) computed
the asymptotic p values for this statistic un-
der the assumption of independence and PPD.
They showed that for large n, the p value
of the Smirnov distance can be approxi-
mated by 1 − B(

√ n
2 d), where B(z) can be
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Figure 12.15 The rate function lambda (t) to test for the presence of an exponentially inserted stage
of processing.

expressed as

B(z) = 1 − 2
∞∑
j=1

(−1) j−1 exp{−2( j z)2}.

Note that this approximation holds only under
the assumption of independence, or when the
decomposition operator is min or max. For
PPD, this approximation is actually the upper
bound of a region containing the true p value,
the lower bound of which is 1 − B(

√
nd).

The function B is easy to compute because
it is something called a theta function. Math-
ematica and Maple, for example, both have
built-in theta functions. I wrote a theta func-
tion for MATLAB, and it is included in the
Appendix. Given that the observed Smirnov
distance is d = .1415, and letting n = 46.91,
the harmonic mean of the sample sizes m1 =
45 and m2 = 49, the p value of this statis-
tic is approximately 1, indicating that the null
hypothesis of equality in distribution must be
retained. (A MATLAB routine to calculate the

upper and lower p values for any decomposi-
tion rule and dependence state is given in the
Appendix.) Unfortunately, the small sample
size (n = 46.91) means that there is very little
power to reject the null hypothesis. Dzhafarov
and Cortese (1996) showed that sample sizes
of at least several hundred were necessary to
obtain reasonable power—sample sizes eas-
ily obtained in most experiments but consid-
erably larger than ours.

Under the PPD assumption, the test pro-
ceeds in almost exactly the same way, except
that the samples are now formed by {T (1)

11 ⊕
T (1)

22 , T (2)
11 ⊕ T (2)

22 , . . . , T (m1)
11 ⊕ T (m1)

22 } and
{T (1)

12 ⊕ T (1)
21 , T (2)

12 ⊕ T (2)
21 , . . . , T (m2)

12 ⊕ T (m2)
21 },

where m1 and m2 are as before, but T (1)
11 ⊕T (1)

22

(for example) is computed from the ordered
samples as given in Table 12.1. For example,
min(T11, T22) = {min(T (1)

11 , T (1)
22 ), min(T (2)

11 ,

T (2)
22 ), . . .} = {min(374, 350), min(381,

350), . . .} = {350, 350, . . .}. The samples for
the two random variables are thus constructed;
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the EDFs for each sample are computed; and
the Smirnov distance is subjected to the de-
composition test.

Although the decomposition test cannot
tell us much about the process that produced
the data in Table 12.1, this is because the sam-
ple sizes are too small to provide any power.
The decomposition test is a very important
method for testing hypotheses about mental
architecture—far more powerful than tradi-
tional additive factors logic as applied to mean
RT data—and should be considered whenever
issues of processing stage arrangement are of
concern. As with all of the tests presented
here, the decomposition test should be used
as one source of converging evidence to sup-
port a theory. If the assumption of selective
influence is incorrect, then the outcome of the
test will not be terribly meaningful.

Exponentially Inserted Stages

Ashby and Townsend (1980) explored RT de-
composition under the assumption that an ex-
perimental variable resulted in the insertion
of a stage of processing into a task’s process-
ing stream. This assumption was particularly
important given the effort then being devoted
to serial and parallel models of memory and
visual search. Under the assumption of serial
processing of some number of visual stimuli,
a stimulus added to a display should require
an additional stage of processing.

Ashby and Townsend (1980) explored a
number of different hypotheses about the na-
ture of the inserted stage of processing. For
this chapter, I concentrate only on the case
where the inserted stage has a processing
time duration that is exponentially distributed.
The reader should consult the original article
for more information. Ashby and Townsend
showed that a necessary and sufficient condi-
tion for an inserted stage to have exponential
duration is that

λ = fk(t)

Fk−1(t) − Fk(t)
,

where k − 1 represents the task before the ex-
perimental manipulation is made, and k repre-
sents the task with the experimental manipu-
lation. The functions fk, Fk , and Fk−1 are the
density and CDFs for conditions k and k − 1.
It is assumed that the manipulation slows pro-
cessing. For example, adding an item to a dis-
play of k − 1 elements to be searched will
increase RT.

The condition above states that, for all
times t, the ratio of the density function in
the slowed condition (k) to the difference be-
tween the CDFs in the two conditions must
be a constant λ, where λ turns out to be
the rate of the exponentially inserted stage.
To test whether this condition holds, Ashby
and Townsend (1980) proposed estimating
fk(t), Fk−1(t), and Fk(t) and using these es-
timates to compute the right-hand side of the
previous equation. This will result in a series
of values λ(t). This series can then be sub-
jected to a regression analysis to determine
whether the slope of a least-squares regression
line through the pointsλ(t) is significantly dif-
ferent from zero. Ashby and Townsend pro-
posed that the condition “holds” if the slope
of the regression line is less than 1/10,000.

As an example, consider the data from
the Both (ll) and Both (ls) condition from
Table 12.1. By making the right circle small—
in the Both (ls) condition—RT is slowed by
31 ms. Is this slowing the result of inserting
an additional, exponentially distributed stage
of processing? I computed the Gaussian ker-
nel estimate of fL S(t), and the EDFs F̂ L L(t)
and F̂ L S(t). For every time point t, I then
computed λ(t) = f̂ L S(t)/[F̂ L L(t)− F̂ L S(t)],
giving the solid line shown in Figure 12.15.
(The dotted lines are the standard error of the
ratio at each point as computed from 1,000
bootstrapped samples.) The earliest sections
of the curve vacillate around a constant value,
and the later sections of the curve are constant
around the value λ = .02. Regressing λ(t) on
t gives values of the slope and intercept of
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λ(t) of 0.000 (less than 1/10,000) and 0.016,
neither of which is significantly different from
zero.

Thus, the data from the Both (ll) and Both
(ls) condition are consistent with the hypoth-
esis of a serially inserted stage of processing.
However, as in our previous examples, our
sample sizes are very small, so power may be
an issue. Ashby and Townsend (1980) showed
that the constant λ could be recovered accu-
rately with as few as 25 observations in the
two conditions k and k − 1 when an expo-
nential stage was present, but they did not ex-
amine power. Van Zandt and Ratcliff (1995)
showed that a constant λ(t) could be obtained
from a model in which an exponential stage
was not inserted, even though the constant
λ(t) is a necessary and sufficient condition
for the presence of such a stage. That is, even
though a constant λ(t) implies that a serial ex-
ponential stage must have been inserted, other
models can predict λ(t) functions that are so
close to being constant that they cannot be
discriminated from the exponential models.
This again underscores the importance of us-
ing techniques such as Ashby and Townsend’s
exponential RT decomposition in the context
of an explicit model of processing that can be
tested empirically, and as one piece of con-
verging evidence among many.

Estimating a Processing Time

Suppose that RT can be modeled as the sum
of two components, T = R + D. Often, R
is a residual time, the unmodeled processing
stages, and D is the decision time, the process
for which a model exists and that can be tested.
Now suppose that the distribution of R can be
empirically estimated. As an example, con-
sider Donders’s (1868/1969) original method
of subtraction, where the decision time in a
go/no-go task is estimated by subtracting the
time for simple RT (R) from the go/no-go RT
(R + D). If enough observations of R are col-
lected, then one can perhaps isolate the pro-

cessing time distribution of D and determine
whether it is the same as that predicted by our
model. To do this, we are going to make use
of a convenient feature of Fourier transforms.

If the two variables R and D are inde-
pendent and have density functions fR(t) and
fD(t), respectively, then the density function
fT (t) of RT is given by the convolution of the
densities fR and fD:

fT (t) =
∫ ∞

−∞
fR(u) fD(t − u) du. (7)

Now, convolutions are either (at best) tricky
to compute or (at worst) impossible to com-
pute. However, something interesting hap-
pens if we examine the Fourier transform of
fT (t). When applied to density functions, the
Fourier transform is a special kind of expected
value. It is the expected value of the function
exp{−2π iθ X}, where i is the imaginary num-
ber

√−1 and X is the random variable whose
density is being transformed:

g(θ) =
∫ ∞

−∞
f (t) exp{−2π iθ t} dt.

The Fourier transform takes the variable X
(or RT), which is a measure of time, and trans-
forms it to the variable θ , which is a measure of
frequency. The reader may recall that Fourier
analysis allows one to write any function f (t)
as an infinite weighted sum of sine and cosine
functions that vary in frequency. The Fourier
transform function g(θ) provides the weights
for each of those sines and cosines as a func-
tion of their frequencies θ .

Transforming both sides of Equation (7)
into the frequency domain, one obtains

gT (θ) = gR(θ)gD(θ).

The messy convolution becomes simple mul-
tiplication after transformation. Further, if one
has an estimate of fR(t) from one experimen-
tal condition and an estimate of fT (t) from an-
other experimental condition, then one should
be able to isolate fD(t) by transforming fR
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and fT to gR and gT , estimating

gD(θ) = gT (θ)

gR(θ)
,

and then taking the inverse Fourier transform
to the result, that is,

f̂ D(t) = IFT

[
FT( f̂ T (t))

FT( f̂ R(t))

]
,

where FT and IFT indicate the Fourier trans-
form and inverse Fourier transform operators,
respectively.

This technique has been used by Burbeck
and Luce (1982), Green and Luce (1971), and
Smith (1990), among others, with mixed re-
sults. Given the variance typically observed
in RT data, it is often more difficult than the
previous equations suggest to isolate uniquely
a stage of processing. Before proceeding all
the way through the steps just outlined, the
data must be filtered. The process of filtering
is identical to the kernel estimation problems
already discussed: The data are smoothed, av-
eraged, or truncated in some systematic way
to make them less noisy. Smith examined a
number of options for filtering noise from the
data and showed how filtering the data after
computing the Fourier transform is mathemat-
ically equivalent to using a kernel estimator
of the density functions. Unfortunately, Smith
also showed that recovery of reasonably accu-
rate deconvolved density estimates requires
several thousand data points per density, at
least, which prevents me from demonstrating
the procedure with the data from Table 12.1.
Even with theoretically exact density func-
tions, Smith demonstrated that a number of
problems can arise if, for example, too few
significant digits are used in the transform
computation or if inappropriately designed fil-
ters are used.

Several tricks are required to perform a
Fourier deconvolution successfully that I do
not elaborate on here. Interested readers
should consult Smith (1990) or a good nu-

merical reference for details, such as Press,
Teukolsky, Vetterling, & Flannery (1992). Al-
though MATLAB has Fourier transform rou-
tines that are easy to use, the reader should
not expect simply to step through the previous
equations and obtain nice deconvolved den-
sity estimates. The reader should also be cau-
tioned that even after the successful recovery
of a candidate density for D, the decomposi-
tion obtained is not necessarily unique. That
is, if there is error in the estimation of fR or
fT , a density for D can be recovered, but it
will not be the right one (Sheu & Ratcliff,
1995). This problem is particularly severe for
densities that are sharply peaked, such as the
exponential.

As Sheu and Ratcliff (1995) pointed out,
once a density has been deconvolved from the
data, there are no warnings that indicate when
something might have gone wrong. The de-
convolution technique does not care about the
process that actually produced the RT data:
Given a data set and a candidate estimate for
the density of R, deconvolution will produce
an estimated density for D even when the de-
composition RT = R + D is completely inap-
propriate. Again I must emphasize, as I have
with all the techniques presented in this sec-
tion, the importance of converging evidence
in such a decomposition, that is, additional
sources of evidence that suggest that the re-
covered fD is in fact the correct one. Deconvo-
lution should not be attempted without some
a priori expectation of the form of the density
that should result.

Dependence of Decision and Base Times

An approach related to both decision time
deconvolution and selective influence of
stages was suggested by Dzhafarov (1992;
Dzhafarov & Rouder, 1996). Dzhafarov’s
techniques are useful primarily in psycho-
physical tasks, in which a stimulus can take
on a fairly large range of values from weak
to very strong. Typically, the time to detect



pashler-44093 book December 18, 2001 10:33

504 Analysis of Response Time Distributions

the presence of a stimulus decreases with
stimulus strength: for example, observers re-
spond quite rapidly to the onset of a loud tone
and more slowly to the onset of a soft tone.
Dzhafarov (1992) used the finding that the de-
composition RT = R + D reflects mostly R
for strong stimuli; that is, the decision time de-
creases to some small value as stimuli increase
in strength (see also, e.g., Kohfeld, Santee,
& Wallace, 1981). Therefore, the most direct
way to estimate the distribution of R (required
for the Fourier decomposition technique) is to
take as R the RTs at the very highest stimulus
strengths.

The quantiles of RT will decrease as a
(not necessarily linear) function of stimulus
strength. Under general assumptions about R
and D, the quantiles of R at fixed percentiles
can be estimated from the intercepts of regres-
sion lines computed for fixed percentiles of
RT as a function of a “linearized” function of
stimulus strength. Furthermore, whether the
slopes of the regression lines for each quantile
remain constant or vary will be determined by
the dependent relationship between R and D.

The application of Dzhafarov’s (1992)
techniques is straightforward. The most dif-
ficult step is determining the function that
linearizes the relationship between RT quan-
tiles and stimulus strength. Once this function
(s[A], strength of the stimulus at amplitude A)
has been found (by nonlinear regression), RT
can be plotted as a function of s(A), and slopes
and intercepts can be determined by simple
regression. Unfortunately, the present data set
is inappropriate to demonstrate this technique,
having only two stimulus strengths. Briefly, if
R and D are independent, then the slopes of
the regression lines should be equal for all per-
centiles. If R and D are PPD (see earlier), the
slopes should increase as percentile increases.
Dzhafarov’s results suggested that the two
components are positively correlated, because
the slopes of the regression functions changed
systematically with RT quantile. Dzhafarov

and Rouder (1996) gave further guidelines on
the sample sizes required to distinguish accu-
rately between types of dependence.

Mixture Distributions

It is usually hoped that the RTs collected in a
condition in an experiment are sampled from
a single distribution. This was the identically
distributed assumption discussed earlier, and
it is the critical assumption that allows us to at-
tempt to estimate functions and perform infer-
ential statistics. However, all RT researchers
know that this assumption is probably false.
The treatment of outliers was discussed ear-
lier in this chapter. Outliers are RTs that are
not distributed as the others in the sample.
Often, the problem of fast guesses arises, in
which RTs are collected from trials in which
the stimulus was not processed. More gen-
erally, one might expect that the parameters
of the process measured by RTs drift over
time, perhaps from fatigue or from learning
(Burbeck & Luce, 1982; Van Zandt & Ratcliff,
1995). RTs collected at the onset of a testing
session might be sampled from a distribution
with mean µ1, but those collected at the close
of that same session might be sampled from a
distribution with mean µ2. The parameters of
the process may themselves be random vari-
ables that depend on particular aspects of the
task. In this case, one must be prepared to deal
with RTs collected from a very large num-
ber of populations, all with the same form
(e.g., ex-Gaussian), but with different param-
eter values.

When a sample is assumed to arise from
more than one population, the distribution of
the random variable represented in the sample
is a mixture. In psychology the binary mixture
has received the most attention in the analy-
sis of RTs. RTs are assumed to be sampled
from one of two fixed distributions—for ex-
ample, a guessing time distribution, in which
the response is prepared before the stimulus is
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presented or processed, and a processing time
distribution, in which the response is based
on information obtained from the stimulus.
Experimental conditions are designed to pro-
voke changes in the guessing rate, such as em-
phasizing speed over accuracy. Although one
might expect that the density function of the
RTs obtained from a binary mixture would be
multimodal, one mode reflecting the (usually
fast) guesses and the other mode reflecting the
slower process-based responses, binary mix-
tures result in multimodal densities only under
fairly restrictive conditions. The presence or
absence of bimodality, therefore, is not diag-
nostic of the presence or absence of a binary
mixture.

Perhaps the most well-known diagnostic
of a binary mixture is the fixed-point property,
first discussed by Falmagne (1968). The fixed-
point property states that the RT densities es-
timated for different experimental conditions
should intersect at one and only one point.
Taking into account the variability of the den-
sity estimates, the fixed-point property gener-
ally does not hold (Falmagne, 1968). Further-
more, even if it did, there would be no way to
isolate the processing times from the guessing
times without knowing the exact probability
of guessing and the shape of the guessing time
distribution.

It will not be possible to review the appli-
cations and results of mixture analyses as they
have appeared in the cognitive psychology lit-
erature. Yantis, Meyer, and Smith (1991) pro-
vided a thorough review of the findings with
respect to both mean RTs and RT distribu-
tions, and the reader is encouraged to consult
this paper for more detail. It is important to
note, however, that there are methods for iso-
lating mixture components under more gen-
eral conditions. A large statistical literature
is devoted to just this problem. In psychol-
ogy, Yantis et al. have proposed a multinomial
maximum likelihood method that makes rela-
tively few assumptions. They assume that RTs

are collected in a number of conditions, and
that some number of those conditions repre-
sent the “basis” distributions. Basis distribu-
tions are those distributions that are not com-
posed of mixtures, but of which mixtures are
composed in the remaining conditions. The
distinction between basis and mixture distri-
butions is theoretically based and depends on
the tasks for which RTs are measured. They
then outline a simple technique that allows for
recovery of the mixture probabilities in the
“mixed” conditions. The technique also per-
forms a goodness-of-fit analysis so that the
hypotheses concerning the basis and mixture
distributions and the mixing probabilities can
be evaluated.

Determining the number of components in
a finite mixture is the sticking point in mix-
ture analyses. Priebe and colleagues (James,
Priebe, & Marchette, 2000; Priebe &
Marchette, in press) have investigated semi-
parametric methods for estimating the num-
ber of components of a mixture and the mix-
ing probabilities. Unlike Yantis et al.’s (1991)
approach of designating some conditions as
the basis distributions and the other condi-
tions as the mixtures of those, semiparametric
methods require only a single sample and a
parametric form for the densities composing
the mixture. It is typically assumed that the
basis densities are normal. Semiparametric
methods compare the best-fitting parametric
mixture of m distributions to a nonparametric
(e.g., Gaussian kernel) estimate of the den-
sity. The number of components in the mix-
ture is incremented, and the nonparametric
density estimate is modified, until the differ-
ence between them is as small as possible.
Under the assumption of normal basis dis-
tributions, James et al. presented conditions
ensuring that the number of estimated com-
ponents converges (almost surely) to the true
number of components.

The utility of the semiparametric meth-
ods in RT analysis is limited at this point,
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primarily because of the normality assump-
tion. (It should be noted, however, that the
popular ex-Gaussian, discussed above, can be
viewed as a mixture of normals with exponen-
tially distributed means.) The best approach
may be to model the mixing process directly,
using empirical procedures to influence the
mixing probabilities, and then to use these
techniques to support or disconfirm the effi-
ciency of the empirical procedures. Mixture
analysis is difficult and without an explicit
model of the process under study may be of
limited utility.

CONCLUDING REMARKS

I began this chapter by emphasizing the im-
portance of distributional analysis in the in-
vestigation of RT data. I defined the ways that
RT distributions can be characterized, both
at the level of means and variances and at
the level of the functional descriptors of the
RT distribution: the density, CDF, and sur-
vivor and hazard functions. I demonstrated
how each function can be estimated from RT
data and discussed briefly how theoretical pa-
rameters can be estimated from RT data. I
then presented a number of powerful theo-
retical tools that can be used to test hypothe-
ses about the properties of mental processes,
including distributional ordering techniques,
methods of RT decomposition, and a brief dis-
cussion of mixture analysis.

RT data is a very rich source of information
about mental processing. However, the myr-
iad components that enter into a single RT are
surely far more complex than those consid-
ered by the models presented here. It is there-
fore very important that RT analyses be con-
ducted in the context of one or more explicit
mechanistic and quantitative explanations of
the process under study. RT analysis without
such explanations will not, in the long run,
be very useful. RT analysis should also take
place over several experimental conditions so

that the arguments for a particular model do
not rest on goodness-of-fit statistics for lim-
ited samples (Roberts & Pashler, 2000).

The reason for this is that even with explic-
itly defined models in hand, RTs will not al-
ways be diagnostic. That is, the behavior of the
RT distribution under different conditions will
not necessarily be able to rule out alternative
models. This means that no matter how so-
phisticated the RT analysis, the results of that
analysis could possibly have been predicted
by two or more very different kinds of mental
processing. These kind of results have been
called “mimicking,” and mimicking between
models can occur either through mathematical
equivalence of two models (Townsend, 1972)
or through the statistical properties of the
models (Van Zandt & Ratcliff, 1995). Math-
ematical equivalence is a stronger property
than is statistical equivalence. In the case of
mathematical equivalence, two or more mod-
els predict exactly the same distribution of
RTs. In the case of statistical equivalence, the
models may predict different distributional
forms, but parameters of those models may be
chosen in such a way that the two forms are so
similar that they cannot be discriminated by
statistical tests. The densities shown in Fig-
ure 12.1 are examples of two distributional
forms that statistically mimic each other.

Given that very different kinds of models
can produce very similar distributions, know-
ing that, say, an ex-Gaussian distribution can
be well-fit to a particular sample of data does
not allow one to say much about the process
that might have produced the data. The ex-
Gaussian is typically conceived as the sum of
an exponential and a normal random variable.
Hohle (1965) proposed that decision times
were exponentially distributed and that the
sum of the many other stages of processing
occurring between a stimulus and a response
would be normally distributed by the Central
Limit Theorem. If RTs are truly distributed
as ex-Gaussians for some task, one might,
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using Hohle’s model, start wondering about
the exponentially distributed decision time.
However, the ex-Gaussian could also arise
from a process that produces normally dis-
tributed RTs, in which the mean of the process
is itself a random variable that is distributed
exponentially. Clearly, a model that predicts
exponentially distributed decision times is not
the same as a model that predicts normally
distributed decision times, but one could not
distinguish between them on the basis of the
RT distribution.

Consider also theoretical results by
Dzhafarov (1993, 1997), Townsend (1976),
and Marley and Colonius (1992). Dzhafarov
examined the Grice model of information
accumulation (Grice, 1968). In this model,
information accumulates at the response se-
lection stage of processing according to some
deterministic (nonrandom) function of time,
say, a straight line increase in the level of
information from the time a stimulus is pre-
sented. As soon as the level of information
reaches a threshold level, which in Grice’s
model is a random variable (e.g., normally
distributed), a response can be made. The vari-
ability in the threshold produces variability in
the RTs. Dzhafarov showed that with the ap-
propriate accumulation function and the ap-
propriate threshold distribution, any simple
RT distribution can be mathematically mim-
icked. He also showed that this result extends
to N -choice RT by choosing N Grice accu-
mulators and modeling RT as the fastest of
these processes to reach threshold. These re-
sults imply that one can always find some form
of Grice’s model that will fit any observed RT
distribution (see also Dzhafarov, 1997).7

Townsend (1976) and Marley and
Colonius (1992) examined mathematical

7Note, however, that it is not trivial to find a Grice repre-
sentation that will mimic the family of RT distributions
produced by different types of stimuli; see Townsend and
Ashby (1983) and Van Zandt et al. (2000) regarding the
principle of correspondent change.

equivalence in similar contexts. When RT is
determined by a minimum process, such as
the race of Grice accumulators just described,
Townsend showed that there exists an equiv-
alent RT representation in terms of a sum
of independent (serial) subprocesses. There-
fore, one can always find a serial process
mimic to a parallel race model. Marley and
Colonius’s results can be applied to two differ-
ent kinds of response mechanisms, one a ran-
dom walk, in which information accumulates
in both positive and negative directions toward
two response thresholds (Laming, 1968; Link,
1975; Link & Heath, 1975; Ratcliff, 1978),
and the other a race, in which information ac-
cumulates in two or more independent chan-
nels. Marley and Colonius showed that any
race between arbitrarily correlated channels
(of which the random walk is an asympototic
case, being perfectly correlated) can be rep-
resented as a race between independent chan-
nels. Thus, these two very different kinds of
models, the race and the random walk, can be
mathematically equivalent to each other under
certain circumstances.

In sum, even if the RT distribution is known
exactly, researchers still have some way to
go before being able to use that information
in support of any particular model of cogni-
tive processing. This is why it is so important
to perform all RT analyses within the con-
fines of a prespecified model. The model will
make predictions about RT distributions that
can be confirmed or disconfirmed. Further-
more, the model will suggest experiments that
can be performed that should have predictable
influences on the parameters of the RT dis-
tribution: what Townsend and Ashby (1983)
have called the principle of correspondent
change (Van Zandt et al., 2000). The model
will also determine which of several of the
methods presented (e.g., distributional order-
ing or RT decomposition) might provide good
sources of converging evidence to evaluate the
model.
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APPENDIX

I present here some MATLAB code to perform the analyses described in the text.

1. Bootstrapping a sample. If y is a column vector containing the ordered RTs, one boot-
strapped sample may be taken as

yboot = y([fix(rand(length(y),1)*length(y)) + 1]);

The resulting column vector yboot contains the same number of observations as y, sampled
with replacement from y. This line can be embedded in a for loop to obtain sufficient
bootstrapped samples to compute standard deviations. For example, to compute the standard
error of a hazard function estimate based on n samples bootstrapped samples, execute the
following commands:

for i=1:n_samples,

yboot = y([fix(rand(length(y),1)*length(y)) + 1]);

h_hat(:,i) = hazard(t,yboot);

end

The columns in the matrix h hat will contain the estimated hazard functions for each
bootstrapped sample. (See the hazard function presented later.)

The Statistics toolbox also has a bootstrap subroutine that computes desired statistics
given the data vector y,but it cannot compute error estimates for a function, only for statistics
that return a scalar-valued statistic from each sample (e.g., the mean).

2. Computing the empirical distribution function. The following function takes as an argu-
ment an ordered column vector of RTs y and a column vector of points t for which the EDF
is desired. It returns a column vector equal in length to the vector t containing the points of
the EDF.

function F=EDF(t,y)

% EDF The empirical distribution function

% Syntax F=EDF(t,y), where y is the ordered data vector and t is an

% ordered vector of points at which an estimate is desired.

F=ones(length(t),1);

for i=1:length(t)

F(i) = sum(y<=t (i))/length(y);

end

3. The Gaussian kernel estimator. Given a column vector y containing the ordered RTs, a
column vector t containing the time points at which the estimate is desired, and a smoothing
parameter h, the Gaussian kernel estimator is computed with the function Gausskernel.

function fhat=Gausskernel(t,y,a)
% GAUSSKERNEL The Gaussian kernel density estimate.
% Syntax k=Gausskernel(t,y,a), where t are the time points, y is the
% sorted data, and a is an optional multiplicative constant for the
% bandwidth parameter h.
if (nargin==2)

c=.9;
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elseif (nargin==3)
c=a;

end
h = c*min(std(y),iqr(y)/1.349)/length(y)^.2;
fhat = mean(normpdf( (ones(length(t),1) * y’ - t * ones(1,length(y)))’,0,h))’;

The functions normpdf and iqr are in the Statistics toolbox.
Note that the argument to normpdf could be a rather large matrix. On smaller computers,

the size of this matrix could cause memory errors. If this occurs, the routine can be modified
by putting the computation in a loop, as follows:

for i=1:length(t)

fhat(i,1) = mean(normpdf( (t(i) - y) ,0,h));

end

4. The ex-Gaussian density and cumulative distribution function. The following two functions,
exgauss and Iexgauss give the density function and CDF, respectively, for the ex-Gaussian
distribution. The arguments to both functions are t, a column vector of times for which the
density or CDF is to be computed, and theta, a vector of three elements, µ, σ, and τ (in that
order). Both functions return column vectors of the same length as t. The normcdf function
is in the Statistics toolbox.
function f=exgauss(t,theta)
% EXGAUSS The ex-Gaussian pdf
% Syntax f=exgauss(t,theta), where t is a vector of times for which the
% density is to be computed, and theta is the vector of exgaussian
% parameters (mu,sigma,tau).
mu=theta(1); sigma=theta(2); tau=theta(3);
part1=exp(-t./tau + mu./tau + sigma.^2./2./tau.^2);
part2=normcdf((t-mu-sigma.^2./tau)./sigma)./tau;
f=part1.*part2;

function F=Iexgauss(t,theta)
% IEXGAUSS The ex-Gaussian CDF (Integrated ex-Gaussian)
% Syntax F=Iexgauss(t,theta), where t is a vector of times for which the
% CDF is to be computed, and theta is the vector of exgaussian
% parameters (mu,sigma,tau).
mu=theta(1); sigma=theta(2); tau=theta(3);
part1=-exp(-t./tau + mu./tau + sigma.^2./2./tau.^2);
part2=normcdf((t-mu-sigma.^2./tau)./sigma);
part3=normcdf((t-mu)/sigma);
F=part1.*part2 + part3;

5. The Epanechnikov kernel estimate of the hazard function. There are three parts to this
routine: the functions epanech and Iepanech, the Epanechnikov kernel and its integral, and
the function hazard, which returns the hazard function estimate. The function hazard takes
two arguments, t and y. The argument t is the vector of points at which the estimate is
desired. The argument y is the ordered vector of observed RTs.
function k=epanech(t)
% EPANECH The Epanechnikov kernel takes arguments between -sqrt(5) and sqrt(5).
% All other values return 0.
% Syntax k=epanech(t)
k=(abs(t)<sqrt(5)).*(.75.*(1.-0.2.*t.^2)/sqrt(5));

function k=Iepanech(t)
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% IEPANECH The integrated Epanechnikov kernel.
% Syntax k=Iepanech(t)
k2=(t>=sqrt(5)).*ones(size(t));
k1=(abs(t)<=sqrt(5)).*(.75.*(t/sqrt(5) - t.^3/5/sqrt(5)/3) + .5);
k=k1+k2;

function [k,s]=hazard(t,y,a)
% HAZARD The Epanechnikov hazard function estimator.
% Syntax [k,s]=hazard(t,y,a)
% The column vector t is the points for which the hazard function
% is to be estimated. The column vector y is the ordered data.
% The optional constant a determines the degree of smoothing. If output
% argument s is specified, an estimated standard error of the
% hazard estimate k (Silverman, 1986) will be returned.
if (nargin==2)

c=.3;
elseif (nargin==3)

c=a;
end
n=length(y);
h = c*min(std(y),iqr(y)/1.349)/n^.2;
fhat = mean( epanech( ((ones(length(t),1)*y’)-(t*ones(1,n)))’/h ))’/h;
Fhat = mean(Iepanech( (t*ones(1,n)-ones(length(t),1)*y’)’/h ))’;
k=fhat./(1-Fhat);
if (nargout==2)

s=sqrt(.2683281571*k.^2./fhat/n/h);
end

Note that as in the Gaussian kernel estimator, the arguments to epanech and Iepanech
could be quite large matrices. If this causes memory errors, replace the expressions for fhat
and Fhat with the following loop:

for i=1:length(t)

fhat(i,1) = mean( epanech( (t(i) -y)/h ))/h;

Fhat(i,1) = mean(Iepanech( (t(i) - y)/h ));

end

6. Some routines for performing maximum likelihood and least-squares parameter estimation.
These routines use the fminsearch routine provided in the Optimization toolbox. The Op-
timization toolbox also has other routines that perform maximum likelihood and nonlinear
least squares regression, but I found them difficult to use. There are two routines provided
here, MLE and SSE. The reader may need to program his or her own density or CDF to be
fit using these routines.

The function MLE takes three arguments: p is a vector of starting values for the parameters
to be estimated; func is a character variable specifying the theoretical density function (e.g.,
’exgauss’) that may need to be programmed if a suitable density function is not already
available in the Statistics toolbox, and y, the vector of observed RTs.

function F=MLE(p,func,y)

% MLE Objective function for maximizing likelihood

% Syntax F=MLE(p,func,y)

% Call as, e.g., X=fminsearch(’MLE’,p,[],func,y)

F=-sum(log(feval(func,y,p)));
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The function SSE takes four arguments: p and func are as in the function MLE, but tp
is the EDF computed for the sample, and t is the vector of times at which the EDF is
computed.

function F=SSE(p,func,t,tp)

% SSE Objective function for minimizing SSE

% Syntax F=SSE(p,func,t,tp)

% Call as, e.g., X=fminsearch(’SSE’,p,[],func,t,tp)

F=norm(feval(func,t,p)-tp)^2;

As an example, to fit the ex-Gaussian distribution using maximum likelihood to a sample
of observations y, the command

X=fminsearch(’MLE’,[200,7,150],[],’exgauss’,y)

could be executed. The starting values of µ̂, σ̂ , and τ̂ are given by the vector [200, 7, 150],
and the best-fitting parameter values will be returned in the vector X.

7. The decomposition test. The following two functions, theta4 and decomptest together pro-
vide upper and lower p values for Dzhafarov and Cortese’s (1996) sample-level decompo-
sition test. The function theta4 is the fourth theta function, which takes two arguments, v

and z. The parameter v determines the periodicity of the function (which here is 0) and z is
a (possibly vector-valued) variable proportional to the Smirnov distance d.

function theta=theta4(v,z)
% THETA4 The fourth theta function
% Syntax theta=theta4(v,z), where v is the periodicity of the function
% (possibly 0) and z is a (possibly vector-valued) argument.
tiny = 1E-10;
sum_terms = ceil(sqrt(-log(tiny)/2)/min(z));
j=[1:sum_terms]’;
summed=((-1).^j)’* ...

(exp(-2.*(j.^2)*(z.^2)’) .* (cos(2.*j.*v.*pi)*ones(1,length(z))) );
theta = 1 + 2*summed’;

The next function, decomptest is the decomposition test itself. It takes as arguments
four unordered vectors t11, t12, t21, and t22 containing the RTs from the four experimental
conditions, a character variable rule, which specifies the addition-like operation to be tested
(e.g., ’plus’ for addition, ’min’ for minimum, and ’max’ for maximum, or any other user-
defined function), and the binary variable dep, which equals 0 for independence and 1 for
perfect positive interdependence. It returns a vector of length 2 containing the upper and
lower p-value limits, both of which may not be necessary for a particular hypothesis (see
Dzhafarov and Cortese, 1996). The Smirnov distance is computed within the function. The
routine uses the function harmmean, which is in the Statistics toolbox.

function [plo,phi]=decomptest(t11,t12,t21,t22,rule,dep)
% DECOMPTEST Test for decomposition rule "rule" given unordered
% RTs from four conditions (T11,T12,T21,T22) and presumed dependency
% "dep" (0=s.-independence or 1=p.p.s.-interdependence) between the
% components of Tij. The function returns the lowest (plo) and highest
% (phi) p-values of the Smirnov statistic D under the hypothesis that
% the decomposition rule is "rule." Rule can be anything, including
% "plus" (for addition), "min" (for minimum) or "max" (for maximum).
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% Syntax [plo,phi]=decomptest(t11,t12,t21,t22,rule,dep)
%
% Note that plo and phi both are not required. For dep=0, only plo is
% needed.
%
% This routine makes use of the function THETA4, the fourth theta
% function, which provides the p-values. It also uses EDF, which
% computes the empirical distribution function.
if dep==1

t11 = sort(t11);
t12 = sort(t12);
t21 = sort(t21);
t22 = sort(t22);

end
%
% Compute the sample sizes:
n=harmmean([min(length(t11),length(t22)),min(length(t12),length(t21))]);
%
% Form the samples according to the desired rule:
t1122 = feval(rule,t11(1:n1),t22(1:n1));
t1221 = feval(rule,t12(1:n2),t21(1:n2));
%
% Determine the range over which the EDFs are to be computed:
low = min(min(t1122),min(t1221));
high = max(max(t1122),max(t1221));
t = [low:high]’;
t1122 = sort(t1122);
t1221 = sort(t1221);
F1 = EDF(t,t1122);
F2 = EDF(t,t1221);
%
% Compute the Smirnov distance:
d = max(abs(F1-F2));
%
% Compute the upper and lower p-values:
z = sqrt(2)*d/pi;
plo = 1-theta4(0,sqrt(n)*z);
phi = 1-theta4(0,sqrt(n/2)*z);
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CHAPTER 13

Testing and Measurement

Advances in Item Response Theory
and Selected Testing Practices

RONALD K. HAMBLETON AND MARY J. PITONIAK

The assessment of an individual’s status and
change on constructs of interest is often car-
ried out with educational and psychological
tests. It has been noted that “the psychologi-
cal test stands as the most important invention
that psychological science has bequeathed to
society” (Lubinski & Dawis, 1995, p. xxi).
Although many would debate the validity of
such a strong assertion, it seems likely that
psychological tests, as well as the theory
and practice of educational and psychological
measurement, would be judged as very impor-
tant to the success and progress of researchers
and practitioners in the fields of psychology
and education. Many of the changes that are
occurring today in the field of educational and
psychological measurement are addressed in
this chapter.

Tests come in many forms. Anastasi
(1988) noted that distinctions may be made
among intelligence tests, ability/aptitude/
achievement tests, and personality tests. Tests
may also be distinguished by the primary
area in which they are used, leading to the
specification of terms such as educational
testing and psychological testing. Follow-
ing the example set by the recently revised
Standards for Educational and Psychological

Testing (Standards), produced by the
American Educational Research Association
(AERA), American Psychological Associa-
tion (APA), and National Council on Mea-
surement in Education (NCME; AERA, APA,
& NCME, 1999), the term educational test-
ing will be used for tests of ability (into
which both aptitude and achievement tests
fall), whereas the term psychological test-
ing will be used for tests of general cog-
nitive functioning (into which intelligence
tests fall), personality, and vocational inter-
ests. These distinctions are made, however,
with an awareness that, in practice, any given
test may be given in a number of different
settings.

Basic psychometric concepts such as relia-
bility and validity—as well as standardization
of administration in producing test scores that
will measure up on both of these criteria—
underlie both educational and psychological
tests. However, there are often differences in
the ways in which both types of tests are ad-
ministered. For example, tests used for admis-
sion to college and postgraduate institutions
are typically large-scale assessments admin-
istered several times a year in group settings.
In contrast, a test of cognitive functioning is

517
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often administered one-on-one in a clinical
setting.

Educational tests—both ability tests used
for admissions purposes and achievement
tests used to measure progress in kindergarten
through grade 12—are perhaps the most visi-
ble tests. These tests are administered to mil-
lions of students annually, and in recent years
they have become even more widespread.
Educational reforms and accompanying em-
phases on student, school, district, and state
accountability have led many states to im-
plement statewide testing programs. Recent
federal legislation would add more testing by
denying federal funding for education unless
states assess all students in grades 3 through
8 in the areas of reading and mathematics.
Because these state and national tests are be-
coming increasingly important to students, to
their parents, and to teachers and administra-
tors, these tests are undergoing even greater
scrutiny. The resulting examination of testing
practices may cause discomfort for some, but
it will undoubtedly lead to gains in knowl-
edge about testing and improvements in test-
ing practices as psychometricians conduct
research to ensure that test scores are reliable
and valid.

In the past several decades we have seen
major advances in test theory and testing prac-
tices. Test theory itself has been reshaped
since the classical works of Gulliksen (1950)
and Lord and Novick (1968). Over the past
30 years modern test theory and practices
have been replacing classical test theory and
practices; paper and pencil tests are being
replaced by computer-based tests; criterion-
referenced tests have become a useful and
well-developedalternativetonorm-referenced
tests for purposes such as assessing exam-
inees’ levels of accomplishment; new item
types are emerging to assess high-level cogni-
tive skills; cognitive models are being merged
with psychometric models to generate new
types of tests; the analysis of tests for ev-

idence of item bias is as common today as
carrying out item analyses; and testing alter-
natives and accommodations are becoming
common for students who need them. AERA,
APA, and NCME revised the test standards in
1954, 1966, 1974, 1985, and 1999 to reflect
these and many more changes in psychomet-
ric theory and practices.

Perhaps the biggest change in psychomet-
ric methods has been the gradual shift from
classical test theory to modern test theory, bet-
ter known as item response theory (IRT). IRT
dates back at least to the 1940s, but it was the
introduction of IRT in the widely read test the-
ory text by Lord and Novick (1968) and in the
text by Rasch (1960) that marked the begin-
ning of the transition from classical to modern
test theory and related models. Modern test
theory is characterized by modeling test data
at the item level and making strong but testable
assumptions about the interactions between
examinees and the test items that they are ad-
ministered. This transition has occurred be-
cause IRT models permit more flexibility in
the processes of test development and data
analysis, because IRT models have many use-
ful properties that classical test models do not
(e.g., item statistics that are less dependent on
examinee samples), and because IRT models
allow psychometricians to model more effec-
tively the test data with which they work. With
emerging item types and new demands on test-
ing (e.g., more flexibility in test administra-
tions and shorter tests), this added flexibility
is especially important.

Today, IRT models are used or have been
used in many well-known testing programs,
including the National Education Longitu-
dinal Study (NELS; a national longitudinal
study of achievement growth of high school
students), the National Assessment of Edu-
cational Progress (NAEP; a national assess-
ment of major subject areas given every two
years to students in grades 4, 8, and 12), the
Third International Mathematics and Science



pashler-44093 book December 18, 2001 10:35

Item Response Theory and Applications 519

Study (TIMSS in 1995 and TIMSS-Repeat
in 1999; used to evaluate the quality of sci-
ence and mathematics achievement in over
40 countries), the Organization for Economic
Cooperation and Development’s Program for
International Student Assessment (PISA; an
assessment of reading, mathematics, and
science in 15-year-olds from over 30 coun-
tries initiated in 2000 and given every three
years), nearly all of the national standardized
achievement tests used in the United States
(e.g., California Achievement Tests, Compre-
hensive Tests of Basic Skills, Metropolitan
Achievement Tests, and Stanford Achievement
Tests), major college and post-graduate ad-
missions tests (e.g., the Scholastic Assessment
Test, Graduate Management Admissions Test,
Law School Admissions Test, and the Grad-
uate Record Exam), the Test of English as a
Foreign Language (a computer-based test
used widely by universities and colleges to as-
sess the English skills of foreign applicants),
the Armed Services Vocational Aptitude
Battery (used in the selection of recruits for
the military service and to assign military
recruits to occupational specialties), and ma-
jor psychological test batteries such as the
Woodcock-Johnson Psychoeducational Bat-
tery. Many of the test developers are using
IRT models today in designing and construct-
ing tests, in equating test scores, in identifying
potentially biased test items, in administering
computer-based tests, and in reporting scores.
The list of applications today is very long. For
an international perspective on IRT use, see
the paper by Hambleton and Slater (1997).

The purposes of this chapter are (a) to in-
troduce the main IRT concepts and to de-
scribe several widely used IRT models and
their applications to the development of tests
and computer-adaptive testing, and (b) to de-
scribe a number of other prominent changes
that are taking place in the testing field and
that have methodological implications for the
practice of measurement (e.g., new item types,

cognitive-based models for assessment, set-
ting standards on tests, new conceptions of
validity, and testing of individuals with dis-
abilities).

ITEM RESPONSE THEORY
AND APPLICATIONS

Shortcomings of Classical Test Models

Theories and models are very useful in edu-
cational and psychological testing: They can
describe anticipated relations among impor-
tant variables such as examinee ability and er-
rors of measurement, and these relations may
provide the basis for a deeper understanding
of the relationships among educational and
psychological variables. These theories and
models may be helpful also in predicting
and explaining observable outcomes such as
test score distributions and correlations be-
tween variables; often they are useful in un-
derstanding the role of errors and how errors
might be controlled in the testing situation.

Classical test theory is concerned with the
estimation and control of error in the test-
ing process. Recent advances in generaliz-
ability theory, an extension of classical test
theory, have furthered the study of error and
components of error in a variety of test de-
signs such as those involving multiple raters,
multiple tasks, and multiple test occasions,
as well as their interactions (Brennan, 1992;
Shavelson & Webb, 1991).

The classical test model begins with a spec-
ification of a linear relationship among three
constructs: test score (X ), true score (T ),
and error (E). The model is well known:
X = T + E . In the model, error is assumed
to be randomly distributed with a mean of 0
across the population of examinees for whom
the test is intended and to be uncorrelated
with true scores and with error scores on par-
allel test administrations. No distributional
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assumptions need to be made about X, T , or E
for producing the main results of the classical
test theory. In some true score models, how-
ever, errors are assumed to be normally dis-
tributed, and this allows for hypothesis testing
and the setting up of confidence bands around
test scores with known probabilities.

From this simple linear model, true score
theory has been advanced to produce numer-
ous results that have been used to guide test de-
velopment, test evaluations, and test score in-
terpretations (see, e.g., Gulliksen, 1950; Lord
& Novick, 1968; Crocker & Algina, 1986).
These important results include (a) the estima-
tion of the measurement error associated with
a test (i.e., the standard error of measurement),
(b) the estimation of reliability (e.g., test-
retest, parallel-form, corrected split-half, in-
ternal consistency), (c) formulas showing the
impact of test length on test score reliability
and validity (e.g., the generalized Spearman-
Brown formula and the test length–test valid-
ity formula), (d) a formula for adjusting the
observed correlation between two variables
for measurement error to estimate the correla-
tion between true scores on the two variables,
and (e) a formula for adjusting correlations
for the restriction of range in one or both vari-
ables. Clearly, classical test theory has been
valuable in the generation and evaluation of
tests for nearly a century.

Unfortunately, classical test theory is as-
sociated also with a number of shortcomings.
One important flaw is that standard item statis-
tics (item difficulty and item discrimination)
and test reliability estimates used in test de-
velopment work are sample-dependent. The
statistics themselves have descriptive value,
and test developers can spot nonfunctioning
items, tests that may be too easy, and so on.
At the same time, these item and test statistics
may be less useful when they are used to build
a test for an examinee population for which
the statistics are not representative. But ob-
taining representative samples of examinees

for field-tests is not always possible. Sample-
dependent item and test statistics are not
without value, but constructing tests to meet
detailed statistical specifications becomes
problematic under these conditions.

A second shortcoming is that test scores are
highly dependent on the particular choice of
test items. Examinee scores rise and fall with
the difficulty of test items that they are ad-
ministered. The same examinee might score
high on an easy mathematics test and low on
a difficult mathematics test even though the
that examinee’s ability level remains the same
on both test administrations. Critics of classi-
cal test theory would prefer to estimate abil-
ity rather than true score, which varies with
test difficulty. Ability is considered to be a
more fundamental construct because it is a
characteristic of the examinee and is there-
fore invariant over tests measuring that abil-
ity. When all examinees see the same items,
or when designs exist for effectively equat-
ing tests of different difficulty, then no prob-
lems arise. Because examiners currently wish
to allow more flexibility in test administra-
tion times, to construct multiple forms, and to
match test difficulty to examinee ability, the
fact that test scores (and true scores) depend
on the particular set of administered items is
a major shortcoming.

A third shortcoming is that the classical
test model assumes that the size of the error
is the same for all examinees. This seems im-
plausible: It should be obvious that errors of
measurement for low-performing examinees
will be higher than errors of measurement for
high-performing examinees (see, e.g., Lord,
1984). Although this assumption may not se-
riously threaten the usefulness of the classical
model, models that do not make this restric-
tive assumption would be preferable. Strong
true-score models (Kolen & Brennan, 1995;
Lord & Novick, 1968) represent one solution
for obtaining error estimates that are condi-
tional on test score or true score within the
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framework of classical test theory, but such a
solution does not address the other shortcom-
ings of the classical test model.

A fourth shortcoming is that classical test
modeling of the test data is not done at the
item level. There is no attempt, for example,
to try and model the interaction between an
examinee at a particular ability level and the
examinee’s performance on the item. It is pre-
cisely this level of modeling that is needed
to accommodate some of the innovations in
testing practices, such as computer-adaptive
testing. This level of modeling is needed to
choose test items in an optimal fashion.

Introduction to Models of
Item Response Theory

Classical test theory and related models have
been valuable to test developers for over 80
years, and nearly all important tests in this
country—up until the last 20 years or so—
have been constructed and evaluated with
these models. However, these models lack
four valuable features: (a) item statistics that
are independent of the examinee group,
(b) ability estimates for an examinee, apart
from measurement error, that are statistically
equivalent even though the tests from which
the scores came may not be parallel, (c) mod-
els that are free of implausible or difficult as-
sumptions, and (d) models that provide a basis
for matching test items to ability levels.

These desirable properties or features can
be obtained, in principle, within the frame-
work of IRT (Hambleton & Swaminathan,
1985; Lord, 1952, 1980; Wright & Stone,
1979). IRT refers to a group of statistical pro-
cedures for modeling the relations between
examinee ability and item and test perfor-
mance. Here, the term ability is used to de-
scribe the construct measured by the test,
which could be an aptitude, achievement, per-
sonality, or psychomotor variable. Perhaps the
term latent trait would be more suitable for

psychologists, but the convention among IRT
researchers has been to call the construct mea-
sured by the test ability regardless of the na-
ture of the construct being measured. Only
a few psychologists have resisted the con-
vention (see, e.g., Embretson & Reise, 2000;
Samejima, 1974). IRT models are based on
strong assumptions about examinees and the
test data, but the assumptions can be checked;
when the assumptions are met, at least to a rea-
sonable extent, estimates of examinee ability
and item parameter have the desirable features
just mentioned.

Over 100 IRT models have been developed
to date, and many of these have been used to
analyze real data (see van der Linden & Ham-
bleton, 1997). Some current models can han-
dle literally all types of educational and psy-
chological data: discrete or continuous item
responses that are dichotomously or polyto-
mously scored; ordered or unordered item-
score categories; and homogeneous (i.e., one
ability) or heterogeneous (i.e., multiple) abil-
ities.

IRT models are based on two strong as-
sumptions. The first concerns the dimensional
structure of the test—typically, unidimen-
sionality is assumed (i.e., the test measures
a single trait)—and the second concerns the
mathematical relationship between examinee
responses to items and the construct measured
by the test. This is known as the item charac-
teristic function (or item characteristic curve),
and it may take many mathematical forms cor-
responding to different IRT models. Both are
strong assumptions about the test data. Fortu-
nately, unlike with classical test models, there
are statistical approaches for assessing the
viability of the assumptions.

Item Characteristic Functions or Curves

The upper part of Figure 13.1 shows the
general form of item characteristic functions
(ICFs; often called item characteristic curves,
or ICCs) applied to dichotomous data. This
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Figure 13.1 An item characteristic function for
a dichotomously scored item and ability distribu-
tions for groups A and B.

model assumes that the ability measured by
the test to which the model is applied is uni-
dimensional, and the data are scored 0 or 1.
(The lower part of Figure 1, labeled Sample
Distribution, shows how two samples of ex-
aminees with different distributions of ability
performed on the item; the relationship be-
tween the information presented in the two
parts of the Figure will be discussed later,
in the IRT Model Properties Section of this
chapter.)

ICFs can be generated from, for exam-
ple, the three-parameter logistic model by the
expression

Pi (θ) = ci + (1 − ci )
eDai (θ−bi )

1 + eDai (θ−bi )

i = 1, 2, . . . , n.

This expression links examinee (observable)
performance on an item scored 0-1 to the un-
derlying (unobservable) ability measured by
the test. Pi1(θ) gives the probability of a cor-
rect response to item i as a function of abil-
ity (denoted θ )—a monotonically increasing
function of ability. Of course, probabilities
range from 0.00 to 1.00. The c parameter (i.e.,
pseudo-guessing parameter) in the model is

the height of the lower asymptote of the ICF.
This parameter is introduced into the model
to account for the performance of low-ability
examinees on multiple-choice test items. This
parameter is not needed in the model when
fitting, for example, free-response data or any
data for which the guessing probability is very
low. The b parameter (i.e., item difficulty pa-
rameter) is the point on the ability scale at
which an examinee has a (1 + c)/2 probabil-
ity of a correct answer. Hard items are shifted
to the higher end of the ability continuum, and
easier items are shifted to the lower end. The
a parameter (i.e., the item discrimination pa-
rameter) is proportional to the slope of the ICF
at the point b on the ability scale. The higher
the a parameter, the steeper the slope, and the
more discriminating the item is said to be. The
D in the model is simply a scaling factor that
was introduced many years ago (see Lord &
Novick, 1968, Chap. 17) to bring the interpre-
tation of logistic and normal-ogive model pa-
rameters in agreement with one another. This
is accomplished with D set to a value of 1.7.
The symbol n refers to the number of items in
the test.

It should be noted that choosing logistic or
normal ogive functions to represent the mono-
tonic relationships between item and ability
parameters provides no information about the
shape or placement of the ability distribution.
The logistic and normal ogive functions are
simply a convenient way to represent the re-
lationships. The fact that they are cumulative
distribution functions for the logistic and nor-
mal density functions is of no importance for
ability estimation. In fact, one of the strengths
of IRT is that no distributional assumptions
need to be made about ability.

Pi0(θ) gives the probability of an incorrect
response to item i as a function of ability, and
this curve is also shown in Figure 13.1. It is
not common to do so because Pi0(θ) is sim-
ply the complement of Pi1(θ). At the same
time, drawing this second expression reminds
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people who use these models that there are
two responses to this item and that each has an
associated item-score category function. Con-
sidering an examinee with θ = 0.5 (it is cus-
tomary to scale ability scores to a mean of 0
and a standard deviation of 1) in Figure 13.1,
the probability of a correct response is .79,
and the probability of an incorrect response is
.21. If this item were from a dichotomously
scored personality scale, we might say that
the examinee has a .79 chance of endorsing
the item, and a .21 chance of not.

Many S-shaped ICFs can be generated
to fit actual examinee item-response data by
changing the item parameter values in the
model. Figure 13.2 shows the ICFs for a
set of six test items with the following item
statistics:

Item a b c

1 0.66 0.06 0.07
2 1.30 1.80 0.20
3 1.50 1.03 0.02
4 1.08 −1.08 0.20
5 1.40 −0.18 0.17
6 1.56 −2.19 0.14

These are typical item statistics for the three-
parameter logistic model. Item difficulty pa-
rameters tend to range from −2.0 to +2.0;
item discrimination parameters tend to range
from 0.0 to 2.0; and the item pseudo-guessing
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Figure 13.2 A set of six item characteristic
functions.

parameters tend to take on values of 0.00 to
0.25. These are typical values when ability
scores have been scaled to a mean of 0.0 and
a standard deviation of 1.0. The ability scale
itself is defined only up to a linear transfor-
mation. For score reporting it is common to
transform the ability scores to a more conve-
nient scale (i.e., a scale in which scores do
not have decimals and are nonnegative). Fig-
ure 13.2 reveals that test items 2 and 3 are the
most difficult and that test items 4 and 6 are
the easiest. Test items 3 and 6 are the most
discriminating (although this is not obvious
from Figure 13.2 because test items 2 and 5
are only slightly less discriminating), and test
item 1 is the least discriminating. Test items 2
and 4 have the highest lower asymptotes, and
test item 3 has the lowest asymptote. Note too
that the ICFs extend to plus and minus infinity.
Only the portions of the ICFs between ability
scores of −3.0 and +3.0 are shown in this and
other figures in the chapter.

All the ICFs in Figure 13.2 were generated
from the three-parameter logistic test model.
Simpler logistic IRT models can be obtained
either by setting ci = 0 (to obtain the two-
parameter logistic model) or by setting ci = 0
and ai = 1 (to obtain the one-parameter logis-
tic model). The one-parameter logistic model
is better known as the Rasch model after its
original developer, Georg Rasch (1960). This
model has become very popular among some
testing specialists because it is simpler to work
with than are other models, because the soft-
ware available for it is user-friendly, and be-
cause it has been found to fit many sets of
test data adequately. Also, with this model
the number right score is a sufficient statistic
for estimating ability, and some of the com-
plexities of ability estimation with IRT models
with more item parameters are avoided. At the
same time, other researchers feel that model
fit should be a main criterion in choosing IRT
models, and they thus prefer to use more gen-
eral models with the presence of additional
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parameters for fitting test data (for discussion
of the issues of a priori choosing of mod-
els vs. choosing the best-fitting models, see
Hambleton, 1989; Wright & Stone, 1979).

While researchers were conducting impor-
tant technical studies and application anal-
yses with the unidimensional, one-, two-,
and three-parameter, normal and logistic IRT
models, the late 1960s saw the advent of
other model-building initiatives by Samejima
(1969). By the early 1980s the increasing
interest in polytomously scored tasks in stu-
dent tests and credentialing exams (e.g., es-
says and extended problem-solving tasks) had
steered many more researchers toward the ear-
lier work of Samejima. Samejima (1969) in-
troduced the useful graded response model to
analyze data from Likert attitude scales and
other polytomously scored performance data.
Her model and extensions of it were the first
of many models developed by psychometri-
cians to handle polytomously scored data (for
an extensive review of models for analyzing
polytomously scored data, see van der Linden
& Hambleton, 1997).

With Samejima’s graded response model,
the probability that an examinee with ability
level θ will obtain a particular score, k, or a
higher score up to the highest score mi on item
i , is assumed to be given by a two-parameter
logistic model:

P∗
ik(θ) = eDai (θ−bik )

1 + eDai (θ−bik )
i = 1, 2, . . . , n;

k = 0, 1, . . . , mi .

This expression, called the cumulative score
category response function (CSCRF), gives
the probability that the examinee will ob-
tain a score of k or higher on item i. Fig-
ure 13.3 contains the CSCRFs for a task
score 0 to 3.

In addition, the probabilities of obtaining
scores of 0 or greater, mi + 1 or greater, and
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Figure 13.3 Cumulative score category response
functions for the graded response model for a four-
score category item.

k on item i need to be defined:

P∗
i0(θ) = 1.0

P∗
i(mi +1)(θ) = 0.0

Then,

Pik(θ) = P∗
ik(θ) − P∗

i(k+1)(θ)

is the probability that the examinee will ob-
tain a score of k on item i . It is assumed that
each response category or item-score category
has its own “score category response func-
tion,” which provides the probability that ex-
aminees at each ability level will make that
choice or obtain that particular score. At each
ability level, then, the sum of probabilities as-
sociated with the available responses or pos-
sible score points is 1. High-ability exami-
nees would have higher probabilities asso-
ciated with the highest possible scores and
lower probabilities associated with the lower
possible scores, whereas low-ability exami-
nees would have higher probabilities asso-
ciated with the lowest possible scores and
lower probabilities associated with the higher
possible scores. This is easily seen in Fig-
ure 13.4. Examinees with higher abilities are
more likely to obtain scores of 2 and 3 than
scores of 0 and 1. In practice, of course,
the CSCRFs are known (from the estima-
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Figure 13.4 Score category response functions
for the graded response model for a four-score
category item.

tion process), and the abilities are not. The
ability estimation task places examinees on
the ability scale in a way that is most con-
sistent with their responses to the items or
tasks in the test. If the assessment were an atti-
tude scale, then the scores 0 to 3 would corre-
spond to ordered categories such as “strongly
disagree,” “disagree,” “agree,” and “strongly
agree,” and the goal would be to place exam-
inees on the attitude scale in a position that is
consistent with their responses. An examinee
generally answering “strongly agree” to the
statements in the instrument would tend to be
positioned toward the higher end of the atti-
tude scale; an examinee providing a mixed set
of ratings would be positioned near the middle
of the attitude scale; and an examinee tend-
ing to disagree with the majority of the state-
ments in the instrument would be positioned
toward the lower end of the attitude scale
continuum.

Samejima’s (1969) two-parameter graded
response model also includes an item diffi-
culty threshold for each score from 1 to mi . It
is denoted bik and is at the point on the ability
scale at which the examinee has a 50% proba-
bility of obtaining a score of k or higher. In ad-
dition, the model includes an item discrimina-
tion parameter that reflects the fact that some

items are more discriminating than are others.
Samejima’s model (and variations of it) pro-
vides considerable flexibility in attempting to
fit a model to a dataset.

Figure 13.3 highlights the cumulative score
category response functions, P∗

ik(θ), for an
item with four response categories; from these
functions the item difficulty thresholds can
be discerned. Equations for this model—
as well as related IRT models for handling
polytomously scored data such as the par-
tial credit model and the generalized partial
credit model—are found in van der Linden
and Hambleton (1997). The discriminating
power of the item depicted in Figures 13.3
and 13.4 is 1.00. The item thresholds, de-
noted bi1 (i.e., −1.25), bi2 (−0.25), and bi3

(1.50), are the points on the ability scale at
which the item-score category response func-
tions designate a 50% probability of that an
examinee will obtaining scores of 1 or higher,
2 or higher, or 3, respectively. For example,
at θ = −0.25, an examinee has a 50% prob-
ability of obtaining a score of 2 or 3 (and,
by extrapolation, a 50% chance of obtaining
a score of 0 or 1). For all higher abilities the
probability of obtaining a score of 2 or 3 is
greater than 50%, and for all lower abilities
the probability of obtaining a score of 2 or 3
is less than 50%.

The generalized partial credit model
(Muraki, 1992) is another popular IRT model
for analyzing ordered, polytomously scored
data. The probability of receiving a score of k
on item i is obtained directly from the model:

Pik(θ) = e�
k
j=0 Dai (θ−bi j )

∑mi
h=0 e�

h
j=0 Dai (θ−bi j )

.

The modeling of the response process used by
examinees differs from the graded response
model but produces similar results (see, e.g.,
Fitzpatrick et al., 1996). A special case of
Muraki’s model is the partial credit model
(Masters, 1982; Masters & Wright, 1997), in
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which all the polytomously scored items are
assumed to have equal discriminating powers.

Even though it is still limited to unidimen-
sional data, Bock’s nominal response model is
more general than Samejima’s (1969) model
or Muraki’s (1992) model (see, e.g., Bock,
1972, 1997) because no ordering of the re-
sponse categories that are available for each
item or task is assumed (i.e., nominal response
data can be fit by this model). This model then
becomes useful for analyzing qualitative data
such as might arise in survey research.

Multidimensional IRT models were intro-
duced by Lord and Novick (1968), Samejima
(1974), Embretson (1984, 1997), Fischer
and Seliger (1997), McDonald (1989), and
Reckase (1997a, 1997b). All of these mod-
els can fit data that are multidimensional in
their underlying structure. Several of these
models can handle only 0-1 data, and oth-
ers can handle both binary and polytomously
scored data. Multidimensional IRT models
offer the prospect of better fitting certain types
of test data (e.g., test items that require both
verbal and quantitative skills to answer suc-
cessfully) because they consider the interrela-
tions among the items and can provide multi-
dimensional representations of both items and
examinee abilities. In the typical multidimen-
sional IRT model, a vector of ability scores
is produced for each examinee—one for each
trait or dimension included in the model. In
addition, vectors of item difficulties and item
discrimination indexes can be estimated. Mul-
tidimensional IRT models are in their infancy,
and software is limited (e.g., see Fraser &
McDonald, 1988), but research is continu-
ing and improvements in software, estimation
algorithms, and model-fit procedures can be
expected in the near future.

IRT Model Properties

When the assumptions of an item response
model can be met by test data, at least to a
reasonable degree, model item and ability

parameters have two desirable properties.
First, examinee ability is defined in relation
to the pool of items from which the test items
are drawn and does not depend on the par-
ticular sample of items selected for the test.
(This property is not present for true scores
in classical test theory. Examinee true scores
are test-dependent.) Statistical characteristics
of the particular test items administered to an
examinee are taken into account during the
process of ability estimation. Therefore, ex-
aminees can be compared to each other or to
benchmarks on the ability scale even though
they may not have taken identical or paral-
lel sets of test items. Second, item parame-
ters do not depend on the particular sample of
examinees that is used to estimate them. Ad-
justments for the nonequivalence of the ex-
aminee sample characteristics are taken into
account in the process of item parameter es-
timation. Thus it is said that IRT ability pa-
rameters are invariant or independent of the
particular choice of test items, and IRT item
parameters are invariant or independent of the
particular choice of examinees.

The property of item parameter invariance
can be observed in Figure 13.1. Notice that
the ICF in the upper part of the figure applies
equally well to examinees in the distributions
for groups A and B that are shown in the bot-
tom part of the figure. For examinees at a given
ability level, θ = 0.5, the probability of a cor-
rect response or answer to this dichotomously
scored item is the same (i.e., 0.79 in this ex-
ample) regardless of the number of exami-
nees at this ability level in each distribution.
For each ability level, there is one and only
one probability of a correct response or an-
swer. That probability does not depend on the
number of examinees in each ability group
at that ability level. In that sense, the ICF ap-
plies equally well to both groups, and the item
parameters are said to be “invariant” across
examinee groups. In contrast, classical item
parameters such as item difficulty (i.e., the
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proportion of examinees answering an item
correctly) are not invariant across examinee
groups. In the example in Figure 13.1, the test
item would be substantially more difficult in
group A than in group B. This follows because
examinees in Group A would be attempt-
ing the test item with relatively lower prob-
abilities of success than would examinees in
Group B, and therefore the classical item dif-
ficulty estimate (the proportion of examinees
answering an item correctly) would be lower
in Group A than in Group B. This property
of item parameter invariance is present in all
IRT models.

IRT models provide items and ability
scores on the same scale, and this means, for
example, that items can be selected to pro-
vide optimal measurement (minimum errors)
at ability levels of interest. IRT models also al-
low the concept of parallel test forms—which
is central to reliability estimation in the most
popular and commonly used form of the clas-
sical test model—to be replaced by a statisti-
cal method that allows for estimation of mea-
surement error at each ability level.

IRT models link examinee item responses
to ability, and they provide item statistics on
the same scale as ability, thus yielding in-
formation about where an item provides its
best measurement on the ability scale, and
about the exact relation between item perfor-
mance and ability. All of these properties are
valuable in designing tests and understanding
examinee performance on a test.

Test Characteristic Function

The test characteristic function (TCF; some-
times called the test characteristic curve, or
TCC) is the sum of the ICFs that make up a
test. Using the following equation, the TCF or
TCC can be used to predict scores of exami-
nees at given ability levels:

TCF(θ) =
n∑

i=1

Pi(θ).

If a test consists of test items that are rela-
tively more difficult than those in a typical
test, the TCF is shifted to the right on the abil-
ity scale, and examinees tend to have lower
expected scores on the test than if easier test
items are included. Thus, the TCF is help-
ful in understanding how—apart from mea-
surement error—examinees can perform dif-
ferently on two tests. According to the TCF,
examinees with a fixed ability level can be pre-
dicted to score lower on hard tests and higher
on easier tests. Examinees have one ability
level at a given point in time, but they will
have a unique true score on each sample of
test items that is selected.

IRT and classical test theory are related in
that an examinee’s expected test score at a
given ability level, determined by the TCF,
is by definition the examinee’s true score on
that set of test items. The TCF is a mathe-
matical expression that links true score on a
particular set of test items to the underlying
ability measured by the test. The TCF is also
valuable in predicting test score distributions
for both known and hypothetical ability distri-
butions and for considering the effects of test
design changes on test score distributions. For
example, for a given set of ability scores, the
expected test score distributions can be com-
pared for two or more samples of test items. A
test developer may want to know how substi-
tuting 10 easy questions for 10 hard questions
in a test will affect the test score distribution
(or expected test score distribution). This can
be studied with TCFs.

IRT Parameter Estimation,
Available Software, and Model Fit

Many methods for estimating IRT model
parameters are described in the measure-
ment literature (see, e.g., Bock & Aitkin,
1981; Hambleton & Swaminathan, 1985;
Hambleton, Swaminathan, & Rogers, 1991;
Lord, 1980; Swaminathan, 1997). Variations
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on maximum likelihood estimation (MLE)—
for example, joint MLE (JMLE), con-
ditional MLE (CMLE), and marginal MLE
(MMLE)—have been the most popular and
appear in standard IRT software packages
such as BILOG (Mislevy & Bock,
1986), MULTILOG (Thissen, 1983), and
PARSCALE (Muraki & Bock, 1993).

These estimation procedures commonly
assume that the principle of local indepen-
dence applies. This is equivalent to assum-
ing that a test measures a single trait. By the
assumption of local independence, the joint
probability of observing the response pattern
(U1, U2, . . . , Un) where (Ui ) is either 1 (a
correct response) or 0 (an incorrect response)
(in the case of the common IRT models for
handling dichotomously scored data) is

P(U1, U2, . . . , Un | θ)

= P(U1 | θ)P(U2 | θ) · · · P(Un | θ)

=
n∏

i=1

P(Ui | θ).

This principle means that examinee responses
to test items are independent of one another
and depend only on examinee ability. The ex-
tension to polytomously scored models is ac-
complished easily by substituting the appro-
priate form of the mathematical model in the
previous expression.

When the response pattern is observed,
Ui = ui , the expression for the joint proba-
bility is called the likelihood and is denoted

L(u1, u2, . . . , un | θ) =
n∏

i=1

Pui
i Q1−ui

i

where Pi = P(ui = 1 | θ) and Qi = 1 − P
(ui = 0 | θ). With MLE, the task is to find
model parameters that maximize L or some
monotonic function of L . L can be differ-
entiated with respect to the ability parame-
ter to produce an equation. If item parame-
ters are known or assumed to be known, the
differential equation can be set equal to zero

and solved for the unknown ability parame-
ter. There is one equation for each examinee.
Solving the equation for the ability parameter
is carried out using the Newton-Raphson pro-
cedure. Item parameters are not known, but
available estimates can be used instead to ob-
tain the MLE of examinee ability. The same
process is repeated for each examinee, sub-
stituting his or her response pattern into the
equation in order to obtain the corresponding
estimate of examinee ability. The basic goal
with MLE is to find the value of the unknown
ability parameter that maximizes the proba-
bility of the data for the examinee who was
observed.

A similar procedure can be used to obtain
item parameter estimates. The likelihood ex-
pression (formed for all examinees and items,
assuming their independence) is differenti-
ated with respect to the unknown parame-
ters for an item; ability estimates are assumed
to be known; and the resulting differential
equations can be solved using the available
examinee responses to the item for model
item parameter estimates. The procedure is
repeated for each item. Additional details of
this procedure can be found in books by
Hambleton and Swaminathan (1985) and Lord
(1980).

In current IRT estimation, MMLE is pre-
ferred and is incorporated into software
programs such as BILOG (Mislevy & Bock,
1986), MULTILOG (Thissen, 1983), and
PARSCALE (Muraki & Bock, 1993). The
main advantage is that the ability parameter is
removed from the likelihood equation, which
permits more satisfactory item parameter
estimates to be obtained.

Table 13.1 contains basic information
about six currently popular software pack-
ages: BILOG-W, LOGIST, LPCM-WIN 1.0,
MULTILOG, NOHARM, and PARSCALE.

The usefulness of IRT modeling of test data
depends on the extent to which model assump-
tions are met as well as the extent to which the
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chosen IRT model fits the test data. Local in-
dependence of examinee responses to items
or, equivalently, unidimensionality of the test
and nonspeededness of the test are among the
assumptions of most of the currently used IRT
models (Hambleton & Swaminathan, 1985).
Hambleton and Swaminathan classified the
types of evidence that are needed to address
the adequacy of model fit: (a) investigations
of the violation of model assumptions, such
as unidimensionality; (b) examinations of the
presence of the expected advantages of item
and ability invariance; and (c) assessments
of the IRT model’s performance in predict-
ing item and test results. In addressing fit,
researchers most frequently pursue categories
(a) and (c).

IRT models are based on strong assump-
tions, some of which are difficult to attain in
real testing situations. Researchers have de-
veloped various procedures for investigating
violations of each assumption. One widely
used method of evaluating test dimensional-
ity is to calculate the tetrachoric correlations
among the items, to submit the correlation ma-
trix to a principal components or common fac-
tors analysis, and to examine the eigenvalues
of the correlation matrix. Two general criteria
have been used for interpreting eigenvalues:
(a) The first factor should account for at least
20% of the variability, and (b) the first eigen-
value should be several times larger than the
second largest eigenvalue (see, e.g., Reckase,
1979). This analysis provides a good approx-
imation for the assessment of the dimensional
structure of test data. More up-to-date pro-
cedures are identified in van der Linden and
Hambleton (1997).

Other assumptions of some IRT models,
such as nonspeededness, minimal guessing
(with the one- and two-parameter models),
and equal discrimination (for the one-
parameter model), can be addressed by meth-
ods described in Hambleton, Swaminathan,
and Rogers (1991).

Researchers have recommended many
methods for assessing the extent to which an
IRT model fits a dataset (for a review of these
methods, see Hambleton, 1989). Examination
of the residuals and standardized residuals for
a study of model-data fit, investigations of
model robustness when all assumptions are
not fully met, and statistical tests of fit (e.g.,
chi-square) are but a few of the many methods
used in investigations of model-data fit.

Figure 13.5 displays the ICFs and residu-
als for two dichotomously scored test items.
To obtain these residuals, the ability scale is
divided into ability score intervals (a range of
12 to 15 intervals is common). In each ability
interval, the actual item performance of the
examinees in that ability interval on the test
item is plotted (often called the conditional
item proportion-correct value). The residual
is essentially the difference between actual
item-level performance and expected item-
level performance as given by the ICF. For the
item that was fit by the one-parameter model,
performance in Figure 13.5 tends to be lower
than expected in the lower ability intervals.
Performance tends to be higher than expected
in the higher ability intervals. This pattern of
performance suggests that the model misfit is
due to constraints in the one-parameter model.
If a more general model with a discrimination
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Figure 13.5 Residuals for two item characteristic
functions.
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parameter were fit to the data, a much better
fit of the item data would be possible. (If the
a parameter were increased, the slope of the
curve would increase, and the ICF’s fit to the
data from the lower- and higher-performing
examinees would be better.) For the second
item in Figure 13.5, which is fit by a three-
parameter logistic model (the curve shown by
a solid line), the residuals are small and ran-
domly distributed about the ICF. This char-
acterizes an ICF that fits the available data.
Some of the available software (e.g., BILOG)
routinely provides residual plots like those in
Figure 13.5. The concept of residuals (and of
standardized residuals) easily extends to poly-
tomously scored and multidimensional IRT
models.

Additional Special Features
of IRT Models

Another feature of IRT models is the item in-
formation function (IIF). In the case of sim-
ple logistic models, IIFs show the contribution
of particular items to the assessment of abil-
ity. The following equation defines the IIF for
logistic models applied to 0-1 data:

Ii (θ) = [P ′
i (θ)]2

Pi (θ)[1 − Pi (θ)]
.

All variables in the equation were previously
defined except P ′

i (θ), which is the expres-
sion for the slope of the ICF calculated at
each θ on the ability continuum. Items with
greater discriminating power contribute more
to measurement precision than do items with
lower discriminating power. The location of
the place on the ability scale at which infor-
mation is a maximum for an item is

θimax = bi + 1

Dai
ln

[
0.5

(
1 +

√
1 + 8ci

)]
.

With the three-parameter model, items pro-
vide their maximum information at a point

slightly higher than their difficulty (i.e.,
because of the influence of guessing, as
reflected in the c parameter). The one- and
two-parameter logistic models for analyz-
ing dichotomous response data assume that
guessing does not influence performance on
the item (i.e., ci = 0.0), so the right-hand
side of the equation reduces to bi , indicating
that items make their greatest contributions to
measurement precision near their b value on
the ability scale. Similar IIFs can be calculated
for other IRT models.

Figure 13.6 shows the IIFs for the same six
items shown in Figure 13.2. These items show
highly variable information functions. Items
such as 3, 5, and 6 are the most informative.
Item 3 would be especially useful for estimat-
ing abilities of higher-performing examinees.
In fact, item 2 would be more useful than
item 5 or item 6 for estimating the abilities
of higher-performing examinees even though
item 2 has a lower discrimination level. Items
5 and 6 would be more suitable for estimating
the abilities of lower-performing candidates.
Item 1, which has the lowest discrimination
level among the six items, provides relatively
little information at any place on the ability
scale but may still be useful when content
constraints for a test must be met. From the
perspective of measurement precision, how-
ever, item 1 is of limited value compared to
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the others. Generally, the c parameter tends
to influence the amount of information that
an item provides. Because the c parameter is
associated with guessing, the higher it is, the
less information an item provides.

Another special feature of item response
models is the test information function, which
is the sum of IIFs in a test:

I (θ) =
n∑

i=1

Ii (θ).

The test information function provides esti-
mates of the errors associated with (maximum
likelihood) ability estimation, specifically,

SE(θ) = 1√
I (θ)

.

The more information that is provided by a
test at a particular ability level, the smaller
the errors associated with ability estimation.
Figure 13.7 provides an example of both a
test information function and the correspond-
ing standard error of ability estimation at each
ability level. (The test information function
comes from one of the many state proficiency
tests being constructed today.) Information
from item and test information functions al-
lows applied researchers to design tests that
will yield desired levels of measurement pre-
cision at selected points along the ability con-
tinuum. Test information functions are also
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Figure 13.7 Test information function and cor-
responding standard errors.

important after test administration as a basis
for interpreting test scores and setting up con-
fidence bands for ability scores.

Two Applications

Item response theory models are receiving
increasing use in test design, test-item se-
lection, and computer-administered adaptive
testing. Brief descriptions of these applica-
tions follow, and interested readers may con-
sult the measurement literature for further
details (for test development, see Hambleton,
Swaminathan, & Rogers, 1991; for test score
equating, see Lord, 1980; for detection of
potentially biased test items, see Holland &
Wainer, 1993; and for computer-based test-
ing, see Wainer, 2000a).

Test Development

In test development within a classical frame-
work, items are field-tested to obtain item
statistics, item banks are established, and then
items are selected from the banks whenever a
test is needed. The test developer must con-
sider the content that each item measures as
well as the items’ features (e.g., format) and
statistics.

Test construction methods in an IRT frame-
work are more flexible (Green, Yen, & Burket,
1989; Yen, 1983). IIFs and test information
functions are used in place of item statistics
and test reliability. IIFs inform the test de-
veloper about (a) the locations on the ability
scale where items provide the most informa-
tion, and (b) the relative amounts of informa-
tion provided by the test items. A test infor-
mation function informs test developers about
the precision of measurement provided by a
test at points along the ability scale. Basically,
the more information that a test provides at an
ability level, the more precisely ability scores
can be estimated.

Unlike classical item statistics and relia-
bility, IIFs are independent of the other test
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items, so the investigator can determine the
independent contribution of each item to the
measurement precision of the test. The item
parameters (especially the discrimination pa-
rameter) determine the information offered
by each item at each ability level. An item’s
difficulty controls the location of the high-
est slope of the ICC and hence the location
where the item provides the highest infor-
mation. The explanation of the functioning
of polytomously scored items is more com-
plex, but polytomously scored items are often
two or three times more informative than are
dichotomously scored items, and they often
enhance the precision of measurement at the
extremes of the ability continuum.

The precision of ability estimates is a func-
tion of the amount of information provided
by a test at an ability level. For example, if a
test developer wants to set a passing score at
θ = −1.0, then the developer should choose
items that provide information in the region of
−1.0. That would increase measurement pre-
cision around θ = −1.0 and reduce the num-
ber of examinees that are misclassified (most
of whom would have abilities near θ = −1.0).
IRT models allow test developers to determine
the measurement precision that they want at
each ability level and, in so doing, to spec-
ify the desired test information function. Test
items can then be selected to produce the de-
sired test.

An important feature of the IIF is its addi-
tive property: The test information function is
obtained by summing up the IIFs (Lord, 1977;
Hambleton & Swaminathan, 1985). The test
developer selects items that can contribute to
the target test information at a prespecified
point or range along the ability scale. Those
items reduce errors in ability estimation at de-
sired ability levels and contribute to the test’s
content validity.

A common starting point in test develop-
ment is to specify the standard error of esti-
mation that is desired at a particular ability

range or level. For example, the test devel-
oper might wish to produce a test resulting in
standard errors of 0.33 in the interval −2.0 to
+2.0, and 0.50 outside that interval. In addi-
tion, the information function of a previous
administration of the test, for example, could
be used to specify the target test information
function. Items that contribute to the test in-
formation function at a particular ability level
of interest are selected from a pool. When
test developers select test items, they often
determine their target test information func-
tion, compute the information that each item
in the pool provides at different points along
the ability scale, and choose those items that
they believe will contribute the most infor-
mation in constructing the desired test. When
statistical as well as content and format con-
siderations are taken into account, the pro-
cess can be time-consuming and practically
exhausting, even though the basic approach is
conceptually satisfying.

Automated item selection methods that use
IRT models are beginning to receive attention
among testing practitioners (van der Linden
& Boekkooi-Timminga, 1989). The develop-
ment of powerful computers played a role in
the inception of automated test development
procedures, and many test publishers are us-
ing or considering the use of these approaches
in the future (Green, Yen & Burket, 1989;
Stocking, Swanson & Pearlman, 1990). In au-
tomated test development, mathematical op-
timization algorithms are used to select the
items that contribute most to desirable test
features, such as measurement precision, con-
tent balance, item-format balance, and the
length of the test.

Computer-Based Test Designs

Computer-based testing (CBT) is playing an
increasingly important role in assessment, and
many believe that it will revolutionize test-
ing practices (e.g., Bennett, 1998). The use
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of computers offers several practical benefits,
such as allowing examinees to schedule their
own time to take the test and providing un-
official score report information immediately
upon test completion. However, using the
computer to administer a standard paper and
pencil test—in other words, using the com-
puter as an electronic page turner (Bennett,
1998)—does not capitalize on the computer’s
potential features for improving testing prac-
tices. However, combining computer technol-
ogy with IRT models allows the power of the
computer to be more fully exploited leading to
one of the most significant practical applica-
tions of IRT—computerized adaptive testing
(CAT). In fact, many believe that CAT is the
most important application of IRT, and it was
Frederic Lord’s interest in CAT in the 1960s
that led to his pioneering IRT research in the
following decades until his retirement in 1984
(Lord, 1980).

With CAT, decreased testing time and in-
creased measurement precision result from
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Figure 13.8 Sample item selection procedure for a CAT design.
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the fact that the difficulty of the items is tai-
lored or matched to each examinee’s abil-
ity level. In CAT the examinee is generally
first presented with a middle-difficulty item. If
the examinee answers the first item correctly,
he or she receives a more difficult item next.
If the examinee answers the first item incor-
rectly, he or she receives an easier item next.
This adaptation occurs throughout the test ad-
ministration so that the next item presented
is the one that provides the most informa-
tion about the examinee’s level of ability—
subject to various constraints that are placed
on the test, such as those related to content
and item exposure. Figure 13.8 provides a dis-
play of the basic item selection procedure for
a CAT design. Because of the efficiency of a
test that targets items to the examinee’s ability
level, a CAT session is generally about 50%
shorter than one in which a paper-and-pencil
test is administered (Wainer, 2000b). Testing
time is not wasted by administering items that
provide little or no information about a given
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examinee’s ability level. Because the items are
targeted toward the individual taking the test,
the odds that the examinee will answer them
correctly are about 50 percent, and this is the
key to CAT’s efficiency and increased mea-
surement precision. These targeted items con-
tribute the most to the estimation of examinee
ability because they are the items for which
examinee performance is the least certain.

Two technical problems presented by this
testing design are (a) selecting items to target
the examinee’s ability level and (b) estimat-
ing ability levels for a group of examinees so
that individuals can be compared to each other
or to performance standards, if examinees are
taking different test items at varying difficulty
levels (Hambleton, Robin, & Xing, 2000).
Solutions to these two technical problems are
provided by four features of IRT (Hambleton
& Jones, 1993, p. 44):

1. IRT items statistics are independent of the
groups from which they were estimated.

2. Scores describing examinee proficiency
are not dependent on test difficulty.

3. IRT models provide a basis for matching
test items to ability levels.

4. IRT models do not require strict parallel
tests for assessing reliability.

These features of IRT are the key to adap-
tive testing. The invariance of item and exami-
nee parameters provides a means for compar-
ing performances of examinees who do not
see the same test items. It is thus possible to
obtain ability estimates that are independent
of the set of test items that the examinee re-
ceives. Also critical to the use of IRT in CAT
is the fact that items and ability scores are
reported on the same scale, which makes op-
timal item selection possible. That candidate
ability can be estimated independently of the
particular difficulty of the test items is espe-
cially important because in principle the diffi-
culty level of items administered to candidates

will vary. IRT models provide an easy sta-
tistical adjustment for making ability scores
comparable. As Wainer (2000b) noted, IRT
is “the glue that holds all of the different tests
together” (p. 12). In addition, the usefulness
of any particular item for a given ability level
can be determined (via a consideration of the
information function for the item), which aids
in item selection during administration of the
CAT (Hambleton, Zaal, & Pieters, 1991).

Computer-Based Test Designs and Models

CAT is but one of three major CBT designs
that are available; therefore, it is useful to
recognize the differences among them. Two
basic dimensions along which these test de-
signs differ are unit of administration (item,
testlet, or test) and flexibility of administra-
tion (adaptive or linear).

The basic unit of administration and analy-
sis may be a single test item, a testlet, or a test.
An item is a single test question, with stim-
ulus, stem, and response choices. A testlet is
a minitest, or “bundle” of items (Wainer &
Kiely, 1987). A test is a collection of items or
of testlets that has been prepared in advance
and that will be administered in a predeter-
mined order.

When a test proceeds adaptively, the se-
lection of the subsequent unit, whether it is
an item or a testlet, depends on the exami-
nee’s performance on the previous unit. The
test therefore adapts to the examinee’s profi-
ciency level. When the test proceeds linearly,
the selection of the next unit (i.e., item or test-
let) has been predetermined; it has no relation
to the examinee’s performance on the previ-
ous unit.

Next we describe three CBT designs and
briefly mention the advantages and disadvan-
tages of each.

Linear-on-the-Fly Testing. Linear on-
the-fly testing (LOFT) has a linear test design.
Therefore, although it is a computer-based
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test, it is not adaptive. As described by Folk
and Smith (1998), in LOFT a unique test form
is produced before the examinee begins test-
ing; thus, the unit of administration is the test.
The test forms can be generated randomly,
producing a unique test form for each exam-
inee that is subject to content and statistical
constraints, or a number of fixed test forms
can be assembled well in advance and then
assigned on a random basis to candidates; the
latter approach offers advantages in terms of
allowing for prior review of test forms by con-
tent experts. The benefits of LOFT include
controlling in advance the exposure of items,
thus addressing security concerns, and, in the
case of fixed test forms, allowing for a pread-
ministration review of content ordering, if de-
sired. The disadvantages of LOFT stem from
its linear nature; the design provides neither a
reduction in testing time nor an increase in
measurement precision compared to paper-
and-pencil linear tests. Although IRT can cer-
tainly be used in the preparation of the linear
tests utilized in LOFT, and although it is very
convenient for statistically equating the mul-
tiple forms of the test, it is not as critical to its
implementation as with the two designs dis-
cussed next.

Computerized Adaptive Testing. A CAT
can generally be viewed as consisting of
the following basic steps (Mills & Stocking,
1996). First, an initial test item is adminis-
tered. Depending on whether the item is an-
swered correctly or incorrectly, the next item
is either harder or easier, respectively. Once
there is at least one correct and one incorrect
response (which are needed to obtain an abil-
ity estimate), the examinee’s proficiency is es-
timated. After that time, items are selected in
accordance with the current estimated profi-
ciency level until the stopping rule (e.g., com-
pletion of some minimum number of items or
achievement of a prespecified level of mea-
surement precision) is satisfied. A diagram

of the item selection process for CAT is pre-
sented in Figure 13.8.

The unit of administration in CAT is thus
the item, and CATs are fully adaptive. Being
fully adaptive at the item level obviously
results in greater flexibility, but it may also
require greater analysis of the effects of “ran-
dom” item presentation. For example, CATs
have been criticized for their failure to take
into account context effects. Wainer and Kiely
(1987) noted that in paper-and-pencil tests,
the test form is previewed for potential con-
text effects (e.g., whether clue from an earlier
item could assist an examinee in answering
a later item). In a CAT, the test is conducted
in real time: Items are presented in any or-
der, so context effects may occur. This is one
of the reasons that researchers have investi-
gated alternatives to the CAT approach (such
as the multistage testing design, considered
in the next section). Some context effects can
be controlled via constraints placed on the se-
lection of test items, but it would be next to
impossible to control all of them in practice
because so many combinations of test items
are possible.

CAT presents additional practical chal-
lenges. The selection of items is more com-
plex than is represented in Figure 13.8.
Concerns regarding psychometrics, content
coverage, and item exposure all influence the
determination of which item is to be admin-
istered next. Psychometric considerations re-
late to the estimation of the examinee’s ability,
which is critical to subsequent item selection.
Available estimation methods include MLE as
well as Bayesian approaches such as expected
a posteriori (EAP) and maximum a posteriori
(MAP). Further information about ability esti-
mation procedures can be found in Hambleton
and Swaminathan (1985), Lord (1980), van
der Linden and Pashley (2000), and Wainer
and Mislevy (2000).

In addition to achieving a specified level
of measurement precision (or, when scores
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are used to make decisions, achieving a spec-
ified level of decision accuracy), testing pro-
grams are nearly always concerned about con-
tent considerations in the selection of items
administered to examinees. Therefore, there
is often a tension between psychometric and
content considerations in item selection. The
weighted deviations model (WDM; Stocking
& Swanson, 1993; Swanson & Stocking,
1993) sets target constraints consisting of both
psychometric properties and the matching of
content specifications. An alternative to the
WDM is optimal constrained adaptive test-
ing (van der Linden & Reese, 1998; van der
Linden, 2000). Rather than selecting only a
single item at each point in the test, a shadow
test is constructed via the CAT software in
which all remaining items are selected from
the item pool for the current ability estimate.
The shadow test meets all of the content and
statistical constraints required for the total test
and modifies them to reflect the items that
have already been administered to the candi-
date. Then, the most optimal item is selected
for administration. This process is repeated
following each administration of a test item,
and it has the advantage that at each point
when an item is selected, it is selected from
a collection of items that represents an op-
timal test for the examinee. Selecting items
sequentially, as is done in the typical CAT ad-
ministration, may not produce an optimal test
for the examinee.

Even after psychometric and content con-
siderations are addressed, however, the prob-
lem remains that any given item may be ad-
ministered so often that it is overexposed,
which could compromise test security. Items
that show the highest level of validity but
are overexposed to examinees will show less
and less validity over time. An example of
this problem occurred when a test prepara-
tion company sent examinees to take the CAT
version of the Graduate Record Examination
in order to memorize items. Because many

of the examinees were similar in ability, they
saw some of the same items. As a result, they
were able to corroborate each other’s mem-
ories and provide the company with a fairly
accurate representation of many items that ex-
aminees of similar ability levels could expect
to encounter (Davey & Nering, 1998). Be-
cause of security concerns and their impact
on validity, several approaches to controlling
item exposure have been developed. These ap-
proaches include selecting less than optimal
items (e.g., not always selecting the most dis-
criminating item to administer to examinees)
and placing restrictive limits on the propor-
tion of examinees who will be administered
particular items over prespecified intervals of
time. For further information on procedures
for controlling item exposure, see Davey and
Nering (1998), Folk and Smith (1998), and
Stocking and Lewis (2000).

Item pools for CAT should be large enough
to support all the item selection considerations
just described. High-quality items must ex-
ist for all levels of proficiency present in the
population of examinees, and enough items
must be available for any given difficulty level
so that the same items are not repeatedly ad-
ministered to examinees. This places a new
demand on item writers: namely, to write
items to specific levels of item difficulty. It
is also important to have as many highly dis-
criminating items as possible, because they
play a role in maximizing the efficiency and
precision of CATs. Similarly, because of the
shorter length of a CAT, flawed items have
an even greater consequence and thus should
be located and eliminated in order to main-
tain the integrity of the item pool for a test
(Hambleton, Zaal, & Pieters, 1991). Discus-
sion of the challenges posed by CAT in terms
of item pools, as well as some approaches that
may be used to design optimal pools, may be
found in Flaugher (2000), Mills and Steffen
(2000), and van der Linden and Veldkamp
(2000).



pashler-44093 book December 18, 2001 10:35

Item Response Theory and Applications 539

Even when item pools are sufficient to sup-
port optimal selection and administration of
items, there may be difficulties in estimating
the candidate’s ability. An aberrant response
pattern for an examinee, which may cause
problems in ability estimation, may stem from
several factors. Examinees may be respond-
ing randomly in an attempt merely to famil-
iarize themselves with the test, or they may
have advance knowledge of some items on
the test, causing them to answer those items
correctly regardless of the items’ difficulty
for their ability level (van Krimpen-Stoop &
Meijer, 2000). Such aberrant response pat-
terns may make the estimation of ability un-
stable. For that reason, person-fit measures
such as those described by van Krimpen-
Stoop and Meijer have been developed. Re-
search into this area is an important avenue
for CAT.

Other practical issues involved in the de-
velopment and administration of a CAT in-
clude the choice of an IRT model and calibra-
tion of items (Wainer & Mislevy, 2000), item
review by examinees (Mills, 1999; Wainer,
1993), and selection of a stopping rule
(Thissen & Mislevy, 2000). Overviews of
these issues, as well as others relevant to CAT,
are included in Drasgow and Olson-Buchanan
(1999), van der Linden and Glas (2000), and
Wainer (2000a).

Proficiency ScaleLow High

Stage 2
Easy (E)

Stage 2
Medium (M)

Stage 2
Hard (H)

Stage 1
(Routing Test)

Stage 3
E-E

Stage 3
E-M

Stage 3
M-E

Stage 3
M-M

Stage 3
H-M

Stage 3
H-H

Figure 13.9 Sample testlet selection procedure for MST design.

Multistage Testing. In the basic mul-
tistage testing (MST) design, the selectable
entity is the testlet or block of items, in con-
trast to a full-adaptive CAT, in which the se-
lectable entity is the item (Lord, 1980). Thus,
MST can be seen as a partially adaptive de-
sign. The minimum number of testlets is two,
and there are often more. The first testlet
is a routing testlet for determining the exam-
inee’s general ability level. The testlets then
branch, so that examinees who have received
a relatively high ability-level estimate will
get a testlet that differs from that given to ex-
aminees who have received a relatively low
ability-level estimate. Items may also branch
within a testlet: The subsequent item would be
easier for an examinee who got the first item
incorrect and more difficult for an examinee
who got the first item correct. An example
of a three-stage MST, without item branching
within the testlets, is presented in Figure 13.9.

As outlined by Folk and Smith (1998), the
MST design has several advantages, one be-
ing that the testlets can be assembled in ad-
vance. As a result, the test developer can bal-
ance content within and across the testlets,
which is more difficult with a fully adaptive
CAT. Within a testlet, items can be ordered
in terms of difficulty, if desired. In addition,
because the order of items is fixed, each exam-
inee encounters the items in the same context,
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thus decreasing any possible context effects
and accommodating set-based items in which
conditional independence cannot be assumed.
MSTs can also assist in reducing item expo-
sure, because they allow investigators to cre-
ate in advance test forms that vary the items
that are presented to examinees of a given abil-
ity level (Patsula & Hambleton, 1999).

Testlets also allow item review at least on
a limited basis (i.e., within the testlet, prior
to moving to the next testlet); this option is
appealing to examinees and is a solution to
two of the most frequent criticisms of CAT:
Examinees must answer an item before mov-
ing forward in a test (i.e., they cannot skip
an item and return to it later), and exami-
nees may not review items once they have
keyed in their answers. However, a disadvan-
tage of testlets is that they are not as psy-
chometrically efficient as CATs (Kingsbury
& Zara, 1991). MSTs have received increased
attention as fully adaptive CATs have shown
their shortcomings and practical challenges;
technical advances in MST include the de-
velopment of testlet response theory (Wainer,
Bradlow, & Du, 2000).

Automated Test Assembly

The process of constructing test forms from
item banks can benefit tremendously from the
use of computers. Automated test assembly
(ATA) refers to the procedures used to au-
tomate test construction through the use of
computer algorithms (Luecht, 1998). Utiliz-
ing the computer to meet numerous require-
ments of test form design allows the task to
proceed more quickly. The computer is able to
consider simultaneously test assembly goals
more quickly and accurately than a test de-
veloper or test development committee can,
although test developers may make minor ad-
justments to the resulting form to reflect con-
cern with “fuzzy” criteria that are harder to
specify (Luecht, 1998). Because classical test
theory lacks meaningful item parameters that

are additive in the test items, IRT is generally
the measurement model of choice for ATA
(van der Linden, 1998a, 1998b). Tests in all
three CBT designs can be constructed with
ATA.

Applications of CBT

One of the first large-scale assessments for
which a CAT was implemented was the
ASVAB, one of the largest testing programs in
the world (Sands, Waters, & McBride, 1997).
In addition to the ASVAB, other large-scale
assessments currently administered via com-
puter include the Graduate Record Exami-
nation (GRE), the Computerized Placement
Test, the Graduate Management Admissions
Test (GMAT), the Test of English as a Foreign
Language (TOEFL), and licensure and cer-
tification tests administered by the National
Council of State Boards of Nursing, the
National Board of Medical Examiners, the
National Council of Architectural Registra-
tion Boards, Microsoft, Novell, and many
more. CBT is thus becoming a major force
in educational and credentialing testing.

As Embretson and Reise (2000) noted, ap-
plications of CBT have been slower to come
to psychological testing, in part because of
the lack of software to facilitate the transi-
tion. However, two examples of areas in which
some progress has been made are personality
assessment and attitude measurement. In the
former area, Waller and Reise (1989) found
that the computerization of a personality scale
resulted in a 50% reduction in the amount
of items that needed to be administered, with
minimal loss of information. Although there
may be some resistance to the shortening of
traditionally long personality assessments, as
Reise (1999) noted attention should be di-
rected to the possibility that shorter CATs will
allow for the use of more varied item for-
mats that better represent a given personal-
ity construct (Embretson & Reise, 2000). In
the area of attitude measurement, researchers
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have found similar reductions in the length
of scales needed for a given level of mea-
surement precision. Also, the use of IRT-
based CATs—in which different item formats
may be used on the same test to estimate
easily the examinee’s point on a latent-trait
continuum—is a logical choice for increasing
the construct validity of scales that measure
attitudes. Further information about CAT ap-
plications in the area of attitude measurement
can be found in Koch, Dodd, and Fitzpatrick
(1990) and Dodd, De Ayala, and Koch (1995).
Finally, it should be noted that automated ap-
proaches to test construction such as ATA may
play an important role also in the future con-
struction of psychological assessments. The
flexibility of automatization and the ability to
handle content and statistical criteria in item
selection will be valuable to psychologists as-
sembling new versions of tests.

CHANGES IN TESTING PRACTICES

There have been many technical advances in
educational and psychological measurement
over the past several decades. IRT, a major fo-
cus of this chapter, has been one of the most
important developments because of its prac-
tical applications in CBT, differential item
functioning analyses, test development, and
other topics described previously. Sometimes
additional advances have also taken place be-
cause of a partnership with IRT. These include
expanding new item formats to target more
fully the construct of interest, for which IRT
is critical in its capability of placing scores
for examinee ability on a common report-
ing scale despite the use of several differ-
ent item formats in one test or the adminis-
tration of different items to each examinee.
Efforts toward educational reform and man-
dates for accountability in high-stakes educa-
tional assessments have also focused intense
interest in the technical adequacy of tests.

Although the validity of inferences made from
test scores has always been an important issue,
the increased use of high-stakes assessments
(e.g., those required in some states for gradua-
tion) has intensified the scrutiny under which
tests have come. This section highlights some
of the major areas in which testing practices
have evolved as a result of technical advances
and the increased focus on test use.

New Item Types

The most commonly recognized item for-
mat is that of the multiple-choice question.
Although some have criticized the multiple-
choice question for relying too heavily on the
recall of isolated facts at the expense of as-
sessing higher-order cognitive skills, others
counter that “items can be written to tap com-
plex thinking processes, reasoning, evaluation
of arguments, and the application of knowl-
edge to new situations” (Anastasi & Urbina,
1997, p. x). In addition, multiple-choice ques-
tions are popular in part because they can be
scored easily and relatively inexpensively and
because they permit greater content cover-
age in that examinees can answer them more
quickly than they can answer constructed-
response items.

Regardless of the validity of criticisms of
the multiple-choice item format, they have
served as an impetus for the development and
implementation of more varied item types. As
a result, constructed-response questions—in
which the examinee constructs or provides
an answer (in contrast to selecting it from
provided options)—have become very pop-
ular recently. In addition, increasing use of
computers in test administration has greatly
widened the types of item formats that are
available. In its infancy, CBT was utilized
mainly for its convenience in adapting tests
and providing immediate score reports.
Currently, researchers are increasingly tak-
ing advantage of the unique capabilities of
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Table 13.2 Dimensions for Item Types

Dimension Examples

Item format Selected-response items: multiple-choice, passage editing (Davey et al., 1997);
constructed-response items: text revision (Breland, 1998), essays (Educational
Testing Service, 2000; College Board, 2000).

Response action Bubble in oval on paper answer sheet; use mouse or touch screen to indicate
answer on computer; use mouse to click and drag items to different positions,
to use graphics tools, or to move among screens (National Council of Architect
Registration Boards, 2000); joysticks, trackballs, microphones, voice
recognition software.

Media inclusion Graphics; animation; video (Drasgow et al., 1999); audio for tests of language
proficiency and music knowledge, as well as a supplement to visually presented
stimuli on other assessments.

Interactivity Conflict resolution video assessment (Drasgow et al., 1999); patient care simulations
(Federation of State Medical Boards of the United States, Inc., & National Board of
Medical Examiners, 1999).

NOTE: Dimensions are those used by Parshall et al. (2000).

computers to aid in assessment. Parshall,
Davey, and Pashley (2000) provided an over-
view of several dimensions along which in-
novative item types may be described: item
format, response action, media inclusion,
and level of interactivity. Brief descriptions
of these dimensions are summarized in
Table 13.2. As noted by Parshall et al., these
dimensions are not independent and may in-
teract with each other in the format of any
given assessment.

Item Format

Items can be classified into two general for-
mats: selected-response and constructed-
response. The multiple-choice item is one
example of a selected-response format, but
there are many others. For example, Davey,
Godwin, and Mittelholtz (1997) described a
computer-based test of writing skills that uses
an innovative selected-response format. Ex-
aminees are required to edit a passage pre-
sented on the computer. When the cursor is
moved to a given place on the screen, alterna-
tives for rewriting that section are presented.
Examinees can choose revised versions of as
many parts of the passage as they choose. Fur-
thermore, examinees can either fix errors or

leave them alone, and they can introduce er-
rors into text that has none.

In a constructed-response item, an exam-
inee does not choose among responses, but
instead constructs them. In contrast to the
writing assessment just described, Breland
(1998) outlined an item format in which ex-
aminees constructed their own revisions to
the text sections containing errors. Other ex-
amples of constructed-response formats in-
clude the essay question, which requires the
examinee to construct a written response.
Essay questions may assess writing skills
(e.g., GRE Writing Assessment; Educational
Testing Service, 2000) or content knowledge
(e.g., Advanced Placement Test in Psychol-
ogy; College Board, 2000).

The new focus on constructed-response
items in educational assessment in the mid-
1980s required measurement specialists to
extend the earlier work of Samejima, Bock,
and others in order to develop IRT models that
could handle polytomous response data. This
led to the development of new IRT models,
new approaches to model parameter estima-
tion and assessment of model fit, new IRT soft-
ware such as MULTILOG and PARSCALE,
and so on.
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Response Action

The second dimension outlined by Parshall
et al. (2000) is that of response action, or
how the examinee physically responds to an
item stimulus. The most commonly recog-
nized response action may be bubbling in an
oval on an answer sheet, as with multiple-
choice items given as part of a paper-and-
pencil test. Other paper-and-pencil response
modes include writing an essay or filling in
short answers. With the introduction of CBT,
the range of available response actions be-
comes much greater. At the simplest level,
examinees can now use a mouse or touch a
screen to indicate their answers to multiple-
choice questions. Similarly, essays can now
be typed into the computer using a keyboard.
However, the computer’s capabilities allow
for the development of much more innova-
tive response modes, such as using the mouse
to click and drag items into different positions
and to move from screen to screen to access
different sources of information. One exam-
ple of the use of these innovative response
modes is the Architect Registration Exami-
nation (National Council of Architect Regis-
tration Boards, 2000). In this exam, several
vignettes are presented that require exami-
nees to demonstrate specific skills and abil-
ities. Examinees design their solutions on the
screen using graphics tools that are provided;
in addition, they move among information
screens containing, for example, design re-
quirements, building codes, and illustrations.
Turning from the mouse to other response ac-
tions, Parshall et al. noted that other input de-
vices may provide for better measurement of
different skills, such as joysticks or trackballs
for movement skills, and microphones and
voice recognition software for speaking skills.

Media Inclusion

Using computers also expands the range of
media that may be part of an assessment.

As described by Parshall et al. (2000), these
media include graphics, audio, video, and
animation. Graphics can be presented more
realistically on a computer screen than on
paper-and-pencil tests; for example, full-color
images can be shown on a fine arts or medi-
cal examination, and these images can be en-
larged or rotated as needed by the examinee.
The use of audio is a fairly obvious choice
for tests of language proficiency and music
knowledge, where this medium has previ-
ously been used as a part of paper-and-pencil
tests. Students with limited English proficien-
cies and those with reading-related special
education plans may also benefit from this
form of assessment.

Turning to the use of video in assessment,
Drasgow, Olson-Buchanan, and Moberg
(1999) described the development of a com-
puterized interactive video assessment in
which full-motion video and accompanying
audio are presented to examinees. This as-
sessment focuses on conflict resolution skills,
and the authors noted that interactive video
is a good choice for the assessment of so-
cial skills because the medium more closely
reflects the context in which social interac-
tions actually take place. They suggested that
a high-quality video and audio presentation
may effectively model real-world situations,
leading to a visceral response from an ex-
aminee that might influence his or her re-
sponse. Thus, the results may be more gener-
alizable to an actual social setting than those
obtained from a written test. Animation, an-
other medium that may be employed in test
items, may be viewed as a simpler form of
video and may be more appropriate when the
examinee’s task is to focus on several criti-
cal details instead of a larger, more complex
stimulus.

Level of Interactivity

Items may also differ along the dimension
of interactivity, which Parshall et al. (2000)
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described as the degree to which the con-
text of the item changes as the examinee pro-
ceeds through it. Some items are not interac-
tive at all, and once the examinee selects or
constructs a response, the item is complete.
In contrast, some assessments include prob-
lems that are very complex and have a high
degree of interactivity. One example is the
conflict resolution assessment just described
(Drasgow et al., 1999). Another is Step 3 of
the United States Medical Licensing Exami-
nation (Federation of State Medical Boards of
the United States, Inc., and the National Board
of Medical Examiners, 1999). In the simula-
tions that comprise this test, examinees are
presented with a clinical situation that they
must manage by determining what diagnos-
tic information to obtain and how to treat
the patient. Based on the examinee’s actions,
the computer presents information on how the
patient’s condition changes over time, which
can influence subsequent steps taken by the
examinee. These simulations thus attempt to
reflect the features of situations that physi-
cians will encounter in the real world of
patient care.

Cognitively Based Test Models

Over the past two decades, researchers have
recognized the potential benefits of com-
bining cognitive psychology principles and
psychometrics in test development (e.g., see
Glaser, 1981). Although the earliest psycho-
logical tests did reflect ties to cognitive sci-
ence, this connection became weaker as psy-
chometric developments evolved along less
theoretically based lines (Snow & Lohman,
1989). In recent years, however, increasing at-
tention has been paid to the ways in which in-
formation that is gained from research in cog-
nitive psychology can inform measurement.

Several authors have noted that most early
measurement models were focused on the
measurement of one dominant trait underly-

ing performance on a test, in the interest
of making accurate predictions for selection
purposes (Everson, 1999; Mislevy, 1993;
Snow & Lohman, 1989). Validation efforts
were similarly tied to gathering predictive va-
lidity evidence. Increasingly, however, psy-
chometric models and cognitive information-
processing models have been combined in
an attempt to broaden the usefulness of test
scores. Gains made in the conceptualization
of previously broadly viewed constructs such
as intelligence have informed these devel-
opments (Sternberg, 1985). As Mislevy ob-
served, “learners increase their competence
not by simply accumulating new facts and
skills, but by reconfiguring their knowledge
structures, by automating procedures and
chunking information to reduce memory
loads, and by developing strategies and mod-
els that tell them when and how facts and skills
are relevant. The types of observations and
the patterns in data that reflect the ways that
students think, perform, and learn cannot be
accommodated by traditional models and
methods” (pp. 19–20).

There are several new types of approaches
to model-based measurement. They share the
objective of providing greater information
about an individual’s capabilities than could
one test score that is presumed to reflect one
underlying ability on which those tested can
be ranked. Everson (1999) has classified these
new models into three general types: IRT-
based models, statistical pattern recognition
methods, and Bayesian inference networks.

Within the first class, that of IRT-based
models, the details of the approaches differ,
but in general they aim to reveal a complex
picture of an individual’s competence in a
given domain. Examples of this type of ap-
proach are the multidimensional IRT models
developed by Embretson (1984, 1985, 2000),
in which examinees’ success depends on mul-
tiple traits. An example may best serve to il-
lustrate the features of these models. Maris
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(1995) utilized Embretson’s multicomponent
latent trait model (MLTM) (Embretson &
Reise, 2000; Whitely, 1980) in a study of
synonym items; specifically, he investigated
the role that two components—generation and
evaluation—played in solving the items. With
MLTM, which uses a mathematical model
of response processes in conjunction with an
IRT model, the assumption is made that suc-
cess on an item depends on more than one
trait. Maris’s results supported the presence
of the two components, although the rela-
tive contribution of the generation compo-
nent was judged to be generally greater than
that of the evaluation component. Ability es-
timates were produced for each examinee on
both components, thus providing information
that could be used for diagnostic purposes.
In addition, the degree to which each compo-
nent contributed to the difficulty of any given
item was estimated. This example shows that
this type of model-based measurement has the
potential to inform validation efforts, assist
with diagnosis and remediation, and facili-
tate more efficient construction of test items
(Embretson, 2000).

The second class of new test models sum-
marized by Everson (1999) is that of statistical
pattern recognition methods. One example of
this type of model is the rule-space approach
that was developed and applied by Tatsuoka
(1983, 1990, 1993). Following a thorough task
analysis of the domain under consideration
(e.g., mathematics), classification spaces are
created that relate to different states of knowl-
edge and from which typical mistakes can be
inferred. Bayesian decision rules are used to
classify test takers into the different classifi-
cation spaces, and diagnostic determinations
can be made on the basis of these assignments.
For example, review of responses made to
subtraction items can reveal persistent pat-
terns of errors, such as consistently subtract-
ing the smaller absolute value from the larger
absolute value and giving the answer the

sign of the larger number (Tatsuoka, 1983).
This pattern recognition approach clearly pro-
vides more fruitful information for diagno-
sis and remediation than does simply obtain-
ing right or wrong scores for each test item.
Currently, researchers are trying to use some
of Tatsuoka’s ideas to enhance the reporting
of SAT scores in order to provide students
with useful diagnostic information for im-
proving their skills and performance on the
test at a future time.

The third type of test model described by
Everson (1999) is those using Bayesian infer-
ence networks. These models build on the sta-
tistical pattern recognition approaches just de-
scribed but extend their use to larger and more
complex assessments. As with the first two
approaches, this model must be used within
the context of a theory that governs individ-
uals’ responses to items with given charac-
teristics. Everson notes that “thus, in theory,
inference networks are able to build upon
cognitive task analyses and statistical pattern
recognition methods, extend them to draw in-
ferences about the probabilistic structure of
the student’s knowledge state, and then up-
date those ‘beliefs’ as the examinee moves
through a set of assessment tasks” (p. 122).
Further information about these Bayesian net-
works and their practical application can be
found in Mislevy (1995).

The foregoing brief descriptions of new
test models provide a glimpse at intriguing
advances that are resulting from the merg-
ing of cognitive science and psychometrics.
Glaser (1981) suggested that these coopera-
tive efforts will be necessary as test devel-
opers seek to (a) expand the potential for
assessments to help students achieve in the
educational system as opposed to merely mea-
suring their abilities, (b) develop the complex
competencies that will be needed as techno-
logical advances continue, and (c) improve
individuals’ potential to learn from future ex-
periences. These are noteworthy challenges,
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and steps toward meeting them are facilitated
by the new test models just described.

Setting Performance Standards

Tests are often used to categorize individu-
als. When tests are used in this way, perfor-
mance standards (also called cut points, cut
scores, passing scores, and achievement lev-
els) must be established along the score range.
The Standards for Educational and Psycho-
logical Testing (AERA et al., 1999) provide
three examples of how the establishment of
performance standards depends on the setting
in which the test is used, as well as its intended
purpose. For example, in an employment set-
ting standards may be set at the location that
allows for the selection of enough candidates
to meet a predetermined quota. In contrast,
within an educational setting in which stu-
dents are assigned to different types of instruc-
tion based on their test scores, performance
standards may be selected by conducting re-
search that establishes the type of instruction
that was most beneficial to certain types of
students. For example, a performance stan-
dard would be placed at the point on the test
score scale at which neither type of instruction
was clearly indicated as superior for the group
on either side of that score. More common
in educational testing is the establishment of
performance standards on achievement tests
that sort examinees into levels of accomplish-
ment in a subject areas. The levels might be
labeled “Below Basic,” “Basic,” “Proficient,”
and “Advanced.”

In a third type of setting, that of certifica-
tion and licensure, the Standards for Educa-
tional and Psychological Testing (AERA et
al., 1999) note that a performance standard
is set to distinguish between candidates who
have achieved a desired level of knowledge
and skills to practice the profession and those
who have not. In this type of environment,
as well as within other criterion-referenced

testing contexts, such as high-stakes educa-
tional testing, judgmental procedures are used
mainly to set performance standards. Scrutiny
of such standard-setting procedures and the
development of new approaches have been
stimulated in part by three trends that have
characterized large-scale testing—specifically
educational testing—in the past decade. The
first general trend is the overall increase in
the use of high-stakes tests for accountability
purposes in education, which has highlighted
the importance of sound standard-setting
procedures (Cizek, 2001). Two additional
specific trends are the increased use of
constructed-response items and the establish-
ment of multiple cut scores (Berk, 1986). As
a result, the more traditional standard-setting
procedures have been expanded for these two
uses, and additional procedures have also been
developed.

Next we describe important methodolog-
ical issues that need to be kept in mind for
all procedures as well as and criteria that
should be evaluated to judge the validity of a
given procedure. For a comprehensive histor-
ical overview of specific standard-setting pro-
cedures used over the years, see Berk (1986),
Hambleton (1980), and Livingston and Zieky
(1982). For in-depth descriptions of more re-
cent procedures, see Cizek (2001), Hambleton
(1998), and Jaeger, Mullis, Bourque, and
Shakrani (1996) for educational assessment
and Mills (1995) and Plake (1998) for creden-
tialing examinations.

A distinction has commonly been made
between standard-setting procedures that are
test-centered and those that are examinee-
centered (Cizek, 1996a, 1996b; Jaeger, 1989;
Kane, 1994). However, as assessments have
become more diverse, due in part to the in-
clusion of more varied item types, additional
dimensions have been formulated to describe
more fully the differences among the emerg-
ing standard-setting procedures. Hambleton,
Jaeger, Plake, and Mills (in press) outlined the
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following six dimensions that may be used to
differentiate standard-setting procedures.

Dimension 1: Focus of Panelists’ Judg-
ments. The panelists may be instructed to
focus on one of four types of stimuli in order
to make their judgments. The first type is tasks
or items on the assessment, including scoring
rubrics, if applicable. The second type is the
examinees themselves. The third type is ex-
aminees’ responses to the tasks or items on
the assessment. The fourth type of stimulus is
candidates’ scores on those tasks or items.

Dimension 2: Panelists’ Judgmental
Task. The second dimension is linked to the
first. Given the focus of the panelists’ judg-
ments, what is their task? First, if panelists
are focused on items, they may be asked to
estimate the performance of borderline ex-
aminees on those tasks. In the second case,
in which the focus is on examinees, panelists
may be asked to sort those examinees into
performance categories. Third, if examinee
responses are the focus, panelists may be re-
quired to classify those responses into cate-
gories or determine which are characteristic of
borderline examinees. Fourth, when panelists
focus on scored performances, they may be
asked to identify the performance categories
into which those scored work samples should
be sorted.

Dimension 3: Judgmental Process. The
judgmental process may be characterized in
several ways. Judgments may be made indi-
vidually or in a group setting. As discussed
earlier, the types of feedback that are given
may vary, and there may be a second round
of ratings after the initial round of ratings that
consists of sharing of empirical information
such as item statistics and discussion among
panel members.

Dimension 4: Composition and Size of
Panel. Panels may be composed of differ-
ent types of members, including experts or

stakeholders. The panels may be homogenous
or heterogeneous, and their sizes may vary
as well.

Dimension 5: Validation of Resulting
Passing Standards. The validity of the re-
sulting performance standards must be sup-
ported by different types of evidence.

Dimension 6: Nature of the Assessment.
An assessment may be characterized by sev-
eral features. For example, the types of items
comprising the assessment may include se-
lected response or constructed response. In
addition, the assessment may be unidimen-
sional or multidimensional. Scoring may be
compensatory or conjunctive.

These six dimensions proposed by
Hambleton et al. (in press) provide a flavor of
the many ways in which standard-setting pro-
cesses may vary. Several examples may serve
to illustrate how several of these dimensions
may play out within a given procedure. One
of the most frequently used procedures for
setting standards on educational tests is the
Angoff (1971) procedure. The focus of the
panelists’ judgments (Dimension 1) is test
items, which are first reviewed individually
and then in a group (Dimension 3) in or-
der to rate how likely panel members think
a minimally competent candidate is to answer
the item correctly (Dimension 2). Ratings for
each panelist are summed across items, and
these sums are averaged across panelists to
calculate the cut score.

A different type of panelist task can be
found in the contrasting groups procedure. In
this approach, the panelists’ focus is on exam-
inees (Dimension 1). Their charge is to iden-
tify one group of examinees whose members
are clearly above a particular standard and an-
other group whose members are clearly below
the standard (Dimension 2). The test is ad-
ministered to these groups, and the test score
distributions of the groups are then contrasted
to select the cut score. Figure 13.10 depicts
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Figure 13.10 Contrasting group standard-setting
method.
NOTE: The labeled points on the horizontal axis
indicate the intersections of adjacent score distri-
butions; initial cut scores are set at these points
(B for basic, P for proficient, and A for advanced).

Table 13.3 Summary of Criteria for Evaluating a Standard-Setting Study

Evaluation Criterion Description Sources

Procedural
“Explicitness” The degree to which the standard-setting process was van der Linden (1995)

clearly and explicitly defined before implementation.

Documentation The extent to which features of the standard-setting Cizek (1996b); Hambleton
study are reviewed and documented. (1998)

Practicality The degree to which the standard-setting task can be Kane (1994); Cizek (1996b)
visualized as being feasible (i.e., not too cognitively
challenging) for judges.

Internal
Intrajudge Determine the degree to which judges are able to van der Linden (1982);

consistency provide ratings that are consistent with the Cizek (1996b); Berk (1986)
empirical item or task difficulties.

Caution indexes Identify judges whose ratings are inconsistent with Jaeger (1988, 1991)
the majority.

Interjudge Evaluate consistency of item ratings and cut Jaeger (1991); Cizek,
consistency scores across judges. (1996b); Berk (1986)

Other measures Evaluate consistency of cut scores across item types, Kane (1995)
content areas, and cognitive processes.

External
Intersession Evaluate consistency of cut scores across Cizek (1996b);

consistency independent replications (e.g., consistency over van der Linden (1995)
two independent panels of judges using the same
standard-setting procedure).

Comparisons to Investigate the relationship between decisions Berk (1986); Giraud, Impara, &
other sources made using the test to other criteria (e.g., Buckendahl (2000); Shepard,
of information grades, performance on a similar test, Glaser, Linn, & Bohrnstedt

job performance, etc.). (1993)

Reasonableness Evaluate the extent to which the resulting cut van der Linden (1995);
of standards scores are feasible or realistic. Kane (1998)

NOTE: From Sireci, Pitoniak, Meara, & Hambleton, (2000). Adapted with permission.

score distributions for students with four dif-
ferent levels of proficiency. Initial cut-scores
are set at the three intersections of adjacent
scores.

Perhaps one of the most critical dimensions
listed by Hambleton et al. (in press) is Dimen-
sion 5, which relates to the validation of re-
sulting cut scores. Regardless of how much
time and effort is put into constructing, field-
testing, and administering an assessment, the
utility of resulting scores will be questionable
if the standard set is not valid for a given use
of the test. Numerous authors have outlined
criteria on which standard-setting procedures
may be evaluated. Table 13.3 presents some of
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these criteria, and the listed sources are useful
for further information.

Changing Conceptions of Validity

For interpretations of test scores to be mean-
ingful, evidence must be gathered to support
their validity. The recently revised Standards
for Educational and Psychological Testing
(AERA et al., 1999) note that validity is there-
fore the most fundamental issue during test
development and evaluation. The Standards
characterize validity as “the degree to which
evidence and theory support the interpreta-
tions of test scores entailed by proposed uses
of tests” (p. 9).

Although the validity of test scores has al-
ways been an important consideration, recent
trends in educational and psychological mea-
surement have increased the attention that re-
searchers are giving this critical concept. For
example, high-stakes tests are becoming more
prevalent, and with the increased visibility and
impact of these assessments comes increased
scrutiny of the validity of resulting test scores.
Many of these assessments contain relatively
new item types that are designed to assess
more fully the construct under consideration,
and exploration of the validity of these new
item formats and associated scoring rubrics is
warranted. Other tests are being administered
via a computer with IRT model-based scoring.
Clearly, with the many innovations in testing
practices, and with heightened interest and use
of the scores in hiring, graduating, selecting,
diagnosing, and so on, validity questions have
become very important.

In the 1999 Standards for Educational and
Psychological Testing, evidence supporting
the validity of test sources is seen to come
from five sources (see Table 13.4): test con-
tent, response processes, internal structure, re-
lations to other variables, and consequences
of testing. This organizational structure re-
flects a unitary conceptualization of validity

in which the construct under investigation has
assumed ultimate prominence. Over the past
few decades, this formulation has gained in-
creased support; its nature can perhaps best be
illustrated by briefly describing past concepts
of validity and contrasting them with current
notions (for informative reviews of the history,
see Messick, 1988, and Shepard, 1993).

The Standards for Educational and Psy-
chological Testing, originally published in
1954 (by AERA et al.) and 1955 (by AERA,
Committee on Test Standards) as two sep-
arate documents, were subsequently revised
and published jointly by the APA, AERA,
and NCME in 1966, 1974, 1985, and 1999.
Review of early versions of the Standards re-
veals that validation efforts were then viewed
as closely tied to the use of the test. In the 1954
document, four uses of testing are described,
and four different types of validity are given,
one for each type of use: (a) content validity,
applicable to achievement tests, in which the
test is assumed to sample performance from a
larger domain of situations or subject matter;
(b) predictive validity, relevant to tests used
to predict an individual’s performance on a
future measure; (c) concurrent validity, for
those tests used to estimate the individual’s
current status on a variable; and (d) construct
validity, for tests used to infer the extent to
which the individual can be characterized by
the trait (construct) thought to underlie test
performance. In later years, predictive valid-
ity and concurrent validity were collapsed into
one type of validity, labeled criterion-related
validity. This resulted in the common recog-
nition of three separate types of validity, also
termed the trinitarian doctrine (Guion, 1980).

In contrast, AERA et al.’s 1999 Standards
for Educational and Psychological Testing
note that “evolving conceptualizations of va-
lidity no longer speak of different types of
validity but speak instead of different lines
of validity evidence, all in service of provid-
ing information relevant to a specific intended
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Table 13.4 Sources of Validity Evidence

Source Description Examples

Test content The relationship between the (a) Conduct a job analysis to link test content
content of the test and the specifications to knowledge, skills, and
construct that the test is abilities required of practitioners to perform
intended to measure is examined. in the profession or occupation.

(b) Obtain expert judgments of the degree to
which test items represent the content domain.

Response Individual responses to test (a) Gather information from examinees about
processes items are analyzed. their strategies for answering specific items.

(b) Observe other facets of performance,
such as response times and eye movements.

Internal The extent to which the (a) Examine the dimensionality of the test.
structure relationships among test items (b) Conduct differential item functioning

are consistent with the construct (DIF) analyses to examine group differences
is reviewed. and possible test bias.

Relations to The relationship of test scores (a) Obtain convergent evidence (how test scores
other variables to variables that are external relate to other measures of similar constructs),

to the test is examined. and divergent evidence (how test scores relate
to other measures of different constructs).

(b) Examine how well test scores predict
performance on an external criterion.

Consequences Evidence related to intended (a) Examine sources of invalidity, such as
of testing and unintended consequences construct underrepresentation or construct-

of test use is reviewed. irrelevant variance, for their possible
contribution to group differences in test
scores.

(b) Examine whether benefits of the test
score uses, whatever they are, are realized.

NOTE: Sources of validity evidence and some examples were taken from the Standards for Educational and Psycho-
logical Testing (AERA et al., 1999).

interpretation of test scores. Thus, many lines
of evidence can contribute to an understand-
ing of the construct meaning of test scores”
(p. 5). The Standards now define construct
as “the concept or characteristic that a test
is designed to measure” (p. 5), for example,
(a) achievement in a given subject, (b) skill
in a particular job, or (c) psychological vari-
ables such as depression or self-esteem (p. 9).
This broadening of the term construct con-
trasts with past uses, when it indicated unob-
servable traits inferred from observations, as
implied by the 1954 limited use of the term.

AERA et al.’s 1999 Standards for Educa-
tional and Psychological Testing thus stress
that the validity of all, not just some, test
scores should be evaluated and that the con-

struct or concepts that are intended to be mea-
sured by a test must be considered. A concep-
tual framework must be formulated for the test
in order to delineate the features of the con-
struct and how it relates to other constructs and
variables. All of the different lines of validity
evidence mentioned earlier (test content, re-
sponse processes, internal structure, relations
to other variables, and consequences of test-
ing) are evaluated in the context of the con-
struct and of the proposed use of the test.
In essence, a validity argument is built in
which evidence is collected, rival hypotheses
are considered, and all information is care-
fully weighed and evaluated (see Kane, 1992,
for an explication of the features of validity
arguments).
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In addition to a reformulation of validity as
a unitary concept, emphasis has increasingly
been given to the role of the test user in ensur-
ing the appropriate uses of tests. This change
in emphasis reflects a growing awareness that
tests can have a great impact on those who
take them and on society as a whole. For ex-
ample, AERA et al.’s 1974 Standards for Edu-
cational and Psychological Testing took note
of increased concern that tests invade people’s
privacy or discriminate against certain groups
(p. 1). As a result, it was the first version to
include a separate section related to the use of
tests. Similarly, although previous versions of
the Standards referred to validity as being the
property of a test, the 1974 Standards empha-
sized that validity is tied to inferences made
from test scores. Far from being only a se-
mantic difference, this change in terminology
reflected a growing recognition that validity
is not a property attached to a test because
it leaves the test developer’s office; instead,
validity must be evaluated by the test user in
the context of the given inferences to be made
from the test scores.

Awareness of the consequences of test use
continued to grow, and AERA et al.’s 1985
Standards for Educational and Psychologi-
cal Testing included the statement that “test
users should be alert to probable unintended
consequence of test use and should attempt
to avoid actions that have unintended nega-
tive consequences” (p. 42). Consideration of
value implications and social consequences,
introduced by Messick (1980, 1989), has re-
ceived increased focus in the testing litera-
ture, and debates have arisen about its proper
role within psychometrics (see, e.g., Shepard,
1997; Popham, 1997; Linn, 1997; Mehrens,
1997). AERA et al.’s 1999 Standards reflected
this increased attention to both the intended
and unintended consequences of test use by
including it as one of the five main sources
of validity evidence, but care must be taken
to distinguish between a lack of validity that

may arise from construct-irrelevant compo-
nents and a lack of validity that may stem from
valid difference in examinee performance.

Despite the changing conceptualizations of
validity, one idea has remained constant—that
tests and test scores, used properly, can be
of immense benefit both to individuals and
to the societies in which they live and work.
Inferences drawn from test scores can only
become more useful as validity arguments,
as well as the validation activities that they
engender, draw from ever greater sources of
information.

Testing Accommodations

The issue of testing accommodations for test
takers with disabilities has become the fo-
cus of increased interest in recent years. Both
governmental and educational initiatives have
strengthened the need to give individuals with
disabilities the same testing opportunities,
and thus access to the same life experiences
in education and employment, as individ-
uals without disabilities have. Three major
pieces of legislation have provided the impe-
tus to provide disabled individuals with ac-
commodations during testing: the Rehabili-
tation Act of 1973 (Section 504, 1973), the
Americans with Disabilities Act (1990), and
the Individuals with Disabilities Educational
Act (IDEA; 1991, 1997). The Rehabilitation
Act and ADA prohibit discrimination against
individuals with disabilities that affect major
life activities such as walking, seeing, hear-
ing, speaking, learning, and working; the Re-
habilitation Act applies to programs or activi-
ties that receive federal financial assistance,
and ADA extends these protections to the
private sector. IDEA requires that students
with disabilities be provided with the same
access to public education as students with-
out disabilities have. Because of the integral
role they play in the educational system, tests
are among the services covered by IDEA;



pashler-44093 book December 18, 2001 10:35

552 Testing and Measurement

specifically, the act requires that in order to
qualify for funding, agencies must include
students with disabilities in general state and
district-wide assessments. A thorough review
of legislation related to the provision of testing
accommodations to individuals with disabili-
ties is provided by Phillips (1994).

Generally, the laws just described require
that the measurement of the abilities, skills,
aptitudes, or achievements of persons with
disabilities be conducted in such a manner
as to eliminate the disability’s interference
with the construct being assessed (Geisinger,
1994). The laws seek to ensure that other-
wise qualified persons with disabilities are
given the opportunity to demonstrate their
true strengths and that such individuals are
not discriminated against through the lack
of reasonable and appropriate testing accom-
modations.

These regulations also acknowledge, how-
ever, that the test accommodations must not
interfere with the measurement of the factors
that are being assessed. Therein lies the chal-
lenge. The recently revised Standards for Ed-
ucational and Psychological Testing (AERA
et al., 1999) note that a balance must be
struck between tailoring accommodations to
the individual test taker, taking into account
his or her particular disability, past experi-
ences, and characteristics, and ensuring that
“the test score inferences accurately reflect
the intended construct rather than any disabil-
ities and their associated characteristics ex-
traneous to the intent of the measurement”
(p. 106).

Accommodations provided to test takers
depend, of course, on the disability involved.
The composition of the pool of examinees
with disabilities has changed over the years.
Many of the earliest testing accommodations
were provided to examinees with physical
impairments, hearing impairments, or visual
impairments. For example, examinees with
visual impairments might be given a test in

Braille; examinees with hearing impairments
may receive a written copy of administration
directions that are usually read aloud; and
examinees with physical impairments might
use the services of an amanuensis (scribe) to
record answers.

In recent years, however, greater atten-
tion has been paid to accommodations pro-
vided for examinees with cognitive disabili-
ties such as learning disabilities and to how
these accommodations affect the validity of
test results (Phillips, 1994). In fact, learning
disabilities now account for the largest per-
centage of those examinees provided with
accommodations (Camara, 1998). The ac-
commodations often approved for students
with learning disabilities in large-scale as-
sessments are extra time, readers, scribes,
and the use of word processors. The provi-
sion of extra time is intended to compensate
for the information-processing deficits of stu-
dents with learning disabilities, as is the use
of a reader. Scribes and word processors are
aimed at compensating for the deficits that
most students with learning disabilities have
in writing skills (MacArthur, 1996; Raskind
& Higgins, 1998).

Researchers have studied the issue of how
well large-scale testing programs are able to
strike this balance. One examination of the
impact of providing accommodations is con-
tained in a comprehensive series of studies
conducted by Educational Testing Service,
the College Board, and the Graduate Record
Examinations Board, which was published
in Willingham et al. (1988). These studies
revealed that in many cases, the provision of
testing accommodations does not appear to
change the meaning of the test score; that is,
the construct targeted for assessment appears
to be unchanged by the testing accommoda-
tion. However, the research did raise ques-
tions about the results obtained for individu-
als with learning disabilities, in that their later
academic success was slightly overpredicted
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by their test scores. Other research has sup-
ported these same concerns (e.g., Camara,
1998), and it appears that the common prac-
tice of providing individuals with learning dis-
abilities with extra testing time may be one
of the causes of this problem. Because learn-
ing disabilities are the most frequent condi-
tion for which accommodations are provided
in large-scale testing programs, it is also in
this area that several legal cases have ad-
dressed the characteristics and needs of this
population. However, the judgments rendered
have not been consistent, and they raise even
more questions about the role that testing
accommodations should play in the assess-
ment of individuals with learning disabilities.
The area of testing accommodations is a com-
plex one. For a more complete overview of the
issues involved, of research findings, and of
relevant court cases, see Pitoniak and Royer
(in press).

Further research into the use of testing ac-
commodations is certainly warranted. How-
ever, this research is complicated by the
presence of two factors. First, given the het-
erogeneous nature of disabilities, particularly
learning disabilities, the results of any given
research study may not be generalizable to
other examinees. Second, the sample sizes of
examinees with disabilities are typically too
small to allow definitive conclusions.

These difficulties in conducting adequate
research poses an additional dilemma for test-
ing organizations: Test takers’ rights to confi-
dentiality must be balanced with an acknowl-
edgment that enough research may not have
been conducted to ensure that the test score
obtained by that person means the same thing
as one obtained without accommodations. As
a result, the test scores may have to be flagged
as having been obtained under nonstandard
conditions. Standard 10.11 (see AERA et al.,
1999) acknowledges the conflict between in-
dicating when interpretation of test scores
should be made with caution and when an

examinee’s privacy must be maintained in or-
der to prohibit discrimination: “when there
is credible evidence of score comparability
across regular and modified administrations,
no flag should be attached to a score. When
such evidence is lacking, specific information
about the nature of the modification should
be provided, if permitted by law, to assist
test users properly to interpret and act on test
scores” (p. 108). The provision of testing ac-
commodations, and the decision of whether to
flag these scores, is clearly an issue that will
continue to receive attention.

The increased use of computers in testing
may also provide for new and different ways
to offer examinees with disabilities appropri-
ate accommodations while ensuring that the
construct being assessed is not changed by
the modifications provided. However, this av-
enue is not without challenges (see Bennett,
1999). The provision of testing accommoda-
tions for examinees with disabling conditions
will certainly continue to be an important is-
sue for consideration by measurement spe-
cialists, psychologists, educators, and the le-
gal system in the years ahead.

CONCLUSIONS

Over the 30 years since the publication of Lord
and Novick’s (1968) classic text on test theory,
the measurement field has changed substan-
tially. Multiple-choice items are being supple-
mented with, if not replaced by, performance-
based assessments. With this change, more
polytomous response data are available for
analyzing and providing additional informa-
tion about examinees; computers are being
used in place of paper-and-pencil administra-
tions; new test designs are becoming avail-
able; and assessing for competence is more
often the focus of testing than is assess-
ing to determine relative standing. In addi-
tion, methodological advances are making
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it possible to identify potentially biased test
items routinely (see Holland & Wainer, 1993)
and to move to more cognitively based test
design (see, e.g., Embretson & Reise, 2000;
Sheehan & Mislevy, 1990). In this chapter we
have attempted to describe some of the impor-
tant technical advances as well as how they are
being addressed with new theories of testing
and measurement practices. At the same time,
hard choices had to be made about the ma-
terial to include in this chapter. Missing are
all of the major developments in generaliz-
ability theory and applications of it (see, e.g.,
Brennan, 1992), and major areas of item re-
sponse theory have been omitted (see, e.g.,
van der Linden & Hambleton, 1997). Also
missing are details of specific IRT techni-
cal problems such as parameter estimation.
IRT software and goodness-of-fit have
only been touched upon (see, for example,
Embretson & Reise, 2000; Hambleton et al.,
1991), and major advances in merging cogni-
tive psychology and psychometrics have been
only briefly mentioned. At the same time,
we hope that the material that has been in-
cluded in the chapter will provide readers
with a good overview of recent advances and
that the references will facilitate follow-up
study.
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CHAPTER 14

Personality and Individual Differences

STEPHEN A. PETRILL AND NATHAN BRODY

Experimental psychologists create variability
by manipulating the environment. Individual
difference psychologists study variability that
occurs naturally. A measure of a variable may
contain several independent sources of vari-
ance. The experimental psychologist seeks to
eliminate the influences of confounded vari-
ables that may be present in the natural envi-
ronment by experimental manipulations. The
individual difference psychologist uses sta-
tistical methodologies to partition sources of
variance in a measure and to analyze the
contributions of several sources of variance
to relationships among measures.

Our chapter deals with five broad top-
ics: (a) the analysis of relationships among
one or more measures of the same or related
constructs; (b) continuity and change in con-
structs over time; (c) relationships among
constructs and the use of exploratory and
confirmatory methods of analysis to con-
struct taxonomies and to infer causal re-
lationships among constructs; (d) cases in
which constructs are structurally invariant
within groups and structurally variant be-
tween groups; and (e) cross-domain relation-
ships in which we consider methodologies
that are appropriate for relating constructs
derived from different domains. We consider
relationships between individual difference
constructs and constructs derived from bio-
logical, genetic, and cognitive experimental

psychology. At several places we indicate the
way in which theoretical assumptions struc-
ture methodological approaches.

FROM MEASURES TO CONSTRUCTS

In this section we consider relationships be-
tween measures and individual differences
constructs. We begin with the simplest case
in which constructs are inferred by the re-
lationships among similar items. Then we
consider the more complex case in which dif-
ferent kinds of measures are used to infer the
values of constructs. Here, we consider the
case in which aggregates are formed across
measures to infer the value of the same con-
struct. We also consider cases in which the
differences among measures are informative.
Our discussion of inferences based on differ-
ent measures is structured by a consideration
of the extent to which personality traits exhibit
cross-situational consistency.

Repeated Measures of the Same Construct

A single item or measure of a construct
is likely to contain at least two sources of
variance—construct-relevant variance and
error variance. Assume that a psychologist
wishes to measure an individual’s tendency to
experience positive or negative mood states.

563
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It is possible to ask a person if he or she feels
happy. Such a single measure of behavior may
provide insight into a person’s state at the mo-
ment when it is being reported, but it may not
provide a particularly accurate index of the
individual’s overall propensity to experience
positive mood states. Many sources of vari-
ance may contribute to single scores. Some
of these are not germane to the construct of
a disposition to report positive mood states.
The person answering the question may have
misinterpreted what is being asked. The re-
sponse to the question may be influenced by
transitory mood states that are not character-
istic of the usual way in which a person re-
sponds to such questions. In order to obtain
a measure that is a more accurate index of
the construct, it is necessary to study the co-
variance between a single measure and other
related measures. For example, it would be
possible to obtain measures of mood on a
second occasion. Epstein (1977) obtained
self-report measures of positive and negative
moods repeatedly from the same subjects. He
found that these measures were positively re-
lated to each other—the correlations between
single measures were close to .2. Epstein also
found that an aggregate index based on several
independent reports of mood states correlated
with a second aggregate index of reports of
mood states close to .8. The study indicates
that single measures of behavior are unlikely
to be accurate indexes of the construct that
they assess.

The increased accuracy of measurement
obtained by aggregating single measures oc-
curs when all of the individual measures are
positively correlated with each other. As long
as this condition is met, an aggregate in-
dex of several measures will provide an in-
creasingly accurate index of that which is
common to all of the individual measures as
the number of positively correlated individ-
ual items increases. The degree to which the
final aggregated index is an accurate index
(i.e., is saturated with true-score variance

resulting from the commonalities among its
constituents) is a function of the number of
independent indexes that enter into the ag-
gregate and of the average correlation of the
indexes. The Spearman-Brown prophecy for-
mula may be used to estimate the value of
the hypothetical correlation between the com-
mon element present in all of the items as
a function of the number of items and the
average correlation among the items. Cron-
bach’s (1951) coefficient alpha may be used
to derive an index of the reliability of items
based on the average correlation among the
items.

It is possible to derive methodological
injunctions from the formal relationships
defined by indexes of internal consistency
reliability. Relationships among independent
measures of the same construct should be
examined in order to ascertain if all of the
individual items are positively correlated with
each other. Applied to the construction of per-
sonality tests, this procedure is an essential
aspect of item analysis and permits one to de-
cide whether to retain or eliminate an item in
the test. Each item retained in a test should
have a positive correlation with the aggregate
score obtained from the combination of all of
the remaining items. It is not necessary for the
item to have a statistically significant positive
correlation with the aggregate.

This analysis also underscores the impor-
tance of the number of individual measures
that form an aggregate. It is desirable to in-
crease the number of items and the number of
individual measures in order to obtain more
accurate measures of a construct.

In recent years, another approach, called
Item Response Theory (IRT; see Embretson,
1995), has been used to examine the links be-
tween individual items, item difficulty, and
aggregate scores. In contrast to classical test
theory, which assumes that all items are a
function of “true score” variance and error,
IRT posits that the probability of obtaining a
score on a given item is also dependent on
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the difficulty of the item. IRT models allow
for more precise models of missing data, dis-
crimination, and guessing and lead to the con-
struction of shorter tests and multiple forms of
the same test. These models have begun to be
used more widely in intelligence and person-
ality research (see Embretson & Hershberger,
1999) and offer enormous potential for the
development of more precise measurement
models of these constructs.

Correlations among Aggregated Indexes
of the Same Construct

An aggregated index of positively correlated
items assumed to be a measure of a con-
struct provides little or no evidence of valid-
ity. An analysis of the internal consistency of
items may provide information about the ex-
tent to which the items measure something in
common. Such information is not indicative
of whether the aggregated index is an ade-
quate index of a construct. In order to ascer-
tain whether an aggregated index is valid (i.e.,
whether it is an index of the construct that it is
assumed to measure), it is usually necessary
to examine relationships that exist among di-
verse indexes.

We will illustrate the way in which diverse
indexes that are related to each other may be
used to derive measures of personality traits.
Personality constructs are often construed as
latent traits. They are hypothetical proper-
ties of persons that consist of dispositions to
respond in particular ways. Appropriate elic-
iting conditions are required for their mani-
festation. In this respect they are analogous
to such physical properties as solubility—a
property of a substance that is not invariably
manifested by the substance. Substances may
or may not be in a dissolved state; they enter
into the state if they are placed in a suitable
medium (e.g., water). Likewise, the disposi-
tion to behave in an extraverted manner may
or may not be manifested by a person in a
particular situation. Although the appropriate

eliciting circumstances for latent dispositions
may not be completely specified, it is assumed
that there exists a set of circumstances (situa-
tions) that serve as appropriate eliciting condi-
tions for a personality disposition. In order to
establish the validity of a particular measure
of a latent trait, one must examine relation-
ships among a diverse set of manifestations
of the trait. An important issue in personal-
ity research is the extent to which behavioral
tendencies are consistent across different sit-
uations. Such traits as Conscientiousness or
Extraversion are expressed in various situa-
tions, implying that there are positive corre-
lations in behavioral tendencies that exhibit
cross-situational generality.

In 1968 Mischel argued that there was rel-
atively little evidence for the cross-situational
consistency of traits. He noted that corre-
lations between measures of individual dif-
ferences in behavior in one situation rarely
correlated in excess of .3 with measures of
trait-related behavior in other situations. He
argued that trait variance rarely accounts for
more than 9% of the variance in behavior.
The ubiquitous tendency to describe individ-
uals in terms of generalized trait dispositions
may be viewed as a linguistically derived
error. Mischel noted that individuals were
likely to behave in similar ways in the same
situations but were unlikely to behave in sim-
ilar ways in different situations. There are
appropriate methodologies available to inves-
tigate the generality of cross-situational con-
sistencies in behavior. The use of self-report
ratings and peer ratings of personality dispo-
sitions is not, in and of itself, an appropriate
methodology for addressing this issue. It is
necessary to obtain appropriate behavioral in-
dexes in several different situations in order to
investigate this problem. There is a tendency
to behave in a consistent manner in the same
situation—an assumption that is accepted by
virtually all personality researchers. If this
is correct, it should be possible to aggregate
several observations of behavior in the same
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situation to obtain an index that more closely
corresponds to the true-score value of a per-
son’s behavioral tendency in a particular situ-
ation. Composite indexes for each of several
behavioral observations, as well as the corre-
lations among the indexes, may be obtained.
Cross-situational generalities of dispositions
would be demonstrated if the correlations are
all positive.

Moscowitz (1982) studied the cross-
situational generality of the trait of domi-
nance. She observed 56 children in a nursery
school for eight weeks using a time-sampling
procedure that allowed her to note whether
a child exhibited any one of five behaviors
that were indicative of dominance. That is,
she developed a theoretical analysis of dom-
inance as a construct that implied that any
one of five different behaviors might be in-
dicative of a tendency to be dominant. These
behaviors were assessed in a free play situ-
ation or in a situation in which the activity
was constrained by a teacher’s directive. She
also noted whether the person with whom the
child interacted was a male or female, an adult
or another child. Moscowitz obtained aggre-
gate indexes of each child’s dominance be-
haviors in each of these settings. She found
that the five different indexes of dominance
were related to each other: An optimal com-
bination of any set of four could be used to
predict the excluded fifth with an average cor-
relation of .66. She also found that tendencies
to exhibit dominant behavior in one setting
were predictive of tendencies to exhibit dom-
inance behavior in other settings: The aver-
age correlation across targets of interaction
was .62. Thus, children who were dominant
toward same-sex peers tended to be domi-
nant toward opposite-sex peers and toward
male and female adults. Dominance exhibited
cross-situational consistency. Moscowitz and
Schwarz (1982) also found that the correla-
tion between teachers’ ratings of dominant be-
haviors and behavioral indexes of dominance
was .59.

Moscowitz’s (1982) study illustrates the
importance of assessing constructs using mul-
tiple behavioral indexes. Dominance behavior
in a particular setting was based on a com-
posite index of repeated observations of five
different behavioral manifestations of domi-
nance. The use of a composite index in each
setting contributed to the demonstration of
cross-situational consistency of behavior.

The Moscowitz (1982) study demons-
trates that it is possible to obtain behavioral
indexes of individual differences in a par-
ticular setting that are predictive of individ-
ual differences in behavioral tendencies in
other settings. It should be noted that the ex-
tent of cross-situational consistency demon-
strated in this study is limited by the use of
one behavioral setting. Children were not ob-
served in their home or in settings outside
of the context of the nursery school. The
methodology employed in this investigation
is subject to practical limitations. It is dif-
ficult to obtain behavioral indexes relevant
to personality in a wide variety of natural
settings. Research in personality may be con-
trasted with research in intelligence that em-
ploys a similar methodology. It is relatively
easy to assess a person’s intellectual skills
in a particular domain. For example, it is
possible to obtain a measure of a person’s
vocabulary using a test that contains a rela-
tively small number of items. Similarly, there
are tests of an individual’s ability to perform
a variety of cognitive tasks, including tests
of memory, spatial reasoning, and numeri-
cal skills, among others. Many studies in the
literature involve the administration of a di-
verse battery of intellectual tasks to individ-
uals. As long as the tests are administered
to individuals who do not exhibit extreme
restriction in range of talent for intellectual
abilities, the correlations among all of the dif-
ferent tasks are invariably positive. Individu-
als who excel in one type of intellectual task
are likely to excel in another type of task
even if the tasks, on the surface, appear to
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be relatively diverse with respect to the con-
tents and processes required for solution. The
cross-situational consistency of intellectual
behaviors has been replicated in thousands of
investigations. There is only a handful of
studies indicating cross-situational consisten-
cies of personality dispositions. The differ-
ence is attributable in part to differences in the
difficulty of obtaining reliable indexes of in-
tellectual performance and personality dispo-
sitions. The difficulty is practical rather than
theoretical. Individual differences in diverse
intellectual abilities may be examined in a
single test session. The assessment of the
cross-situational consistency of personality
dispositions requires the observation of be-
havior in diverse natural settings. Such ob-
servations are time-consuming. The use of
peer ratings and self-reports circumvents the
practical difficulty of arranging observations
in several natural settings. Of course, such
measures are not informative about the actual
level of cross-situational consistency that is
present.
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Figure 14.1 Individual profiles of verbal aggression across five types of psychological situations based
on two measurement occasions.
SOURCE: Based on Shoda, Michel, and Wright (1994).

Systematic Analysis of Noncorrelated
Indexes

The use of cross-situational aggregates is ap-
propriate when examining cross-situational
consistency. Some personality researchers as-
sume that understanding an individual’s pro-
file of behavioral responses across situations
may provide a meaningful level of analysis.
Mischel and his colleagues developed appro-
priate methodologies. Shoda, Mischel, and
Wright (1994; see also Mischel & Shoda,
1994) obtained measures of aggressive be-
havior for children attending a summer camp.
They obtained behavioral indexes of the ten-
dency to express verbal or physical aggres-
sive behavior in five interpersonal situations:
a peer initiating positive contact; a peer teas-
ing, provoking, or threatening the child; an
adult praising the child; an adult warning
the child; and an adult punishing the child.
They obtained test-retest correlations for chil-
dren’s aggressive tendencies in these vari-
ous situations. Some children behaved consis-
tently, but some did not. Figure 14.1 presents
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examples of profile similarities for different
children with respect to the expression of ver-
bal aggression in different eliciting situations.
Note that children differ with respect to their
tendencies to exhibit consistent profiles of re-
sponses and differ with respect to the elicit-
ing situations that trigger verbal aggression.
Child 1, for example, quite consistently ex-
hibits verbal aggression in response to adult
punishment but rarely responds with verbal
aggression to peers. Child 2, in contrast, con-
sistently exhibits verbal aggression to peers
who approach.

The Shoda et al. (1994) study indicates that
certain characteristic individual patterns of re-
sponse to particular situations may be over-
looked in studies that focus on the generality
of behavior in different situations.

The kinds of data collected by Moscowitz
(1982) and Shoda et al. (1994) are compara-
ble. The differences in the analyses arise from
different theoretical assumptions about per-
sonality. Moscowitz is committed to a trait
theory in which consistency across situations
is used to infer general personality disposi-
tions. In contrast, Shoda et al. believe that
personality is best understood by examining
the ways in which a person expresses a dis-
position in a particular situation. Thus, the
methodologies used to analyze the data are
defined by different theoretical assumptions
about personality dispositions.

Theoretically Derived Interactions

The Shoda et al. (1994) study attempts to
discover individual differences in behavioral
consistencies by using an exploratory pro-
cedure. It is also possible to design studies that
use general psychological laws to derive pre-
dictions of interactions between personality
and situations. Feather (1961) used a general
theory of goal-setting behavior developed by
Atkinson (1957) to derive predictions about
individual differences in tendencies to per-

sist in tasks at which individuals encountered
repeated failures. Atkinson’s theory assumes
that goal-setting behavior is determined by
two motivational tendencies: the positive ap-
proach motivation that leads individuals to try
to succeed at a task that involves competition
against a standard of excellence (e.g., an ath-
letic competition) and the aversive avoidance
motivation that leads individuals to avoid fail-
ure at the same task. The theory implies that
individuals who tend to seek success will be
most highly motivated when the difficulty of
the task is intermediate. In contrast, individu-
als who are primarily motivated by an avoid-
ance of failure will tend to seek either very
easy or very difficult tasks.

Feather (1961) used this theory to derive
predictions about persistence following fail-
ure at a task. Individuals who seek success
and repeatedly fail at a task that they believed
would be easy will find the task to be of in-
creasing interest and will tend to persist on
this task. By contrast, individuals who seek
to avoid failure will find the task increasingly
aversive and will fail to persist. Individuals
who seek success and repeatedly fail at a task
that they believed would be difficult will find
the task to be of decreasing interest and will
be less likely to persist. Individuals who are
motivated to avoid failure will find such a task
decreasingly aversive and will, therefore, tend
to persist.

Feather (1961) assumed that individuals
who scored high on a projective measure of
need achievement and low on a paper-and-
pencil measure of test anxiety were higher in
success motivation than in failure motivation.
Individuals who demonstrated the opposite
pattern were higher in failure motivation than
in success motivation. Therefore, he predicted
that the former individuals would persist on a
task initially thought to be easy and would
fail to persist on a task that they thought to
be difficult following repeated failure on the
task. The latter individuals would show the
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opposite pattern of results. Feather obtained
results consistent with these predictions. This
experiment illustrates how researchers can
use a theory to derive predictions about the
ways in which individuals with different per-
sonality dispositions will respond in different
situations.

Both the Feather (1961) and Shoda et al.
(1994) studies deal with the ways in which
personality dispositions are expressed in dif-
ferent situations. They differ in that the Shoda
et al. study employs an exploratory approach
whereas Feather uses a hypothetical model to
derive predictions about the ways in which
different classes of individuals will respond
to different situations.

Cross-Method Analyses

We have examined the issue of cross-
situational generality of constructs. Constructs
may also exhibit consistency across different
methods of measurement. Any single method
of measuring a construct is imperfect. A com-
mon methodological assumption of person-
ality research has been that all methods of
measuring personality have specific method
variance. For example, self-reports about per-
sonality might be influenced by a tendency to
describe oneself in a socially desirable way.
Therefore, it is often necessary to measure
the same construct of personality using dif-
ferent methods (e.g., self-report, peer report,
behavioral observation) in order to obtain a
measure of the construct that is not unduly
influenced by method-specific variance. The
method-specific variance associated with any
one method of measuring a trait is unlikely
to be correlated with method-specific sources
of variance associated with alternative meth-
ods of measuring the trait. An aggregate index
based on different methods of measuring a
trait is likely to contain more true-score trait
variance than is a measure derived from any
single method.

The multitrait-multimethod matrix (Camp-
bell & Fiske, 1959) can be used to assess
construct validity. Its use can be illustrated
by the analysis of the relationship of per-
sonality traits assessed by the methods of
peer ratings and self-report. It is possible to
measure five personality traits (Extraversion,
Agreeableness, Conscientiousness, Neuroti-
cism, and Openness to Experience) using
these two methods. A correlation matrix is
formed in which the row variables consti-
tute the five traits assessed by self-reports and
the column variables constitute the five traits
assessed by peer ratings. Validity is demon-
strated when different methods of measuring
the same construct are positively correlated
and when different constructs assessed by
the same method are not correlated. McCrae
and Costa (1990) indicated that self-reports
and peer ratings of the same personality trait
tend to be positively correlated (r around .5).
On the other hand, different constructs mea-
sured by the same method have near-zero
correlations.

CONTINUITY AND CHANGE IN
CONSTRUCTS OVER TIME

In this section we consider the continuity and
change of personality. One way to study devel-
opment is to examine the stability of individ-
ual difference measures across time. Again,
we begin with the simplest case in which one
examines a single measure of personality at
different times. We also describe analyses of
change. Finally, we consider cohort effects.

Relationships among Single Measures
Obtained at Different Times

The simplest methodology available for as-
certaining the consistency of a personality
construct over time is to obtain test-retest cor-
relations for a particular measure. McCrae and
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Costa (1990) obtained test-retest correlations
using a longitudinal design for self-report
measures of five different personality traits:
Extraversion, Conscientiousness, Agreeable-
ness, Neuroticism, and Openness to Experi-
ence. They obtained test-retest correlations
for different time intervals and found that the
test-retest correlations for 6-year time inter-
vals were comparable to the test-retest cor-
relations for 12-year intervals. The correla-
tions were close to .8. They also obtained
measures of short-term test-retest correla-
tions that may be used to estimate the reli-
ability of the test. In order to evaluate test-
retest consistency over long periods of time,
it is necessary to relate long-term consistency
to short-term consistency. Short-term varia-
tion in measurement is treated as error vari-
ance. This error variance then sets the upper
bound of long-term correlations. The correla-
tions for age differences of 6 and 12 years
may be disattenuated (corrected for unreli-
ability) by dividing the correlation by the
square root of the product of the reliabili-
ties of the variables that are being correlated.
The disattenuated correlations provide esti-
mates of the true-score test-retest consistency
of the self-report trait measures. The disat-
tenuated correlations are above .90. The dis-
attenuated correlation for Extraversion was
.97, implying that self-report measures for this
trait are invariant over relatively long peri-
ods of the adult life span. The methodolog-
ical implication of this analysis is widely ap-
plicable. Disattenuated correlations may be
more accurate indexes of the true relation-
ship between constructs than are obtained
correlations. Low correlations between mea-
sures may occur because the constructs that
they putatively measure are not strongly re-
lated or because the measures are imperfect
indexes of the constructs that they are as-
sumed to measure. Most theoretical investi-
gations benefit from the use of disattenuated
correlations.

In another example, Funder, Block, and
Block (1983) observed the behavior of 4-year-
old children in two situations. In one situation
children were presented with an attractive toy
and were told that they could have it at the
end of the experimental session. The toy was
in plain sight while the children were asked to
perform another task. Funder et al. obtained
measures of the extent to which children were
distracted by the presence of the toy. In an-
other situation, children were shown an attrac-
tive toy and were told that they should not play
with it. The experimenter left the room and
observed the child’s behavior, and the child’s
tendency to play with the toy was noted.
Funder et al. formed a composite behavioral
index of “ego control,” or the tendency to
be distracted by a toy or to play with a toy
in violation of the experimenter’s instructions
based on aggregating scores in the two situa-
tions that they investigated. They related this
index to ratings of ego control based on inter-
views of their subjects that psychologists con-
ducted at different ages in a longitudinal study.
They obtained a correlation of .31 between
ratings for males obtained at age 4 years and
the composite behavioral index obtained at the
same age. Funder et al. obtained a correlation
between ratings of ego control for males at
age 11 years and the composite behavioral in-
dex obtained at age 4 of .43. A comparison
of the correlation from measures obtained at
the same age with the time-lagged correlation
provides an index of the degree of stability
of the underlying personality dimension as-
sessed by these different measures. Because
the time-lagged correlation is equivalent to
the contemporaneous correlation, it is pos-
sible to infer that the underlying personality
characteristic assessed by these different mea-
sures is invariant between age 4 and age 11.
This inference is based on the assumption
that the contemporaneous correlation based
on data obtained when the children were
age 4 is a measure of the extent to which
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the behavioral measure and the psycholo-
gist’s ratings are indexes of a common latent
personality trait. The common trait may be
considered a latent trait or a hypothetical con-
struct that accounts for the correlation for
these methodologically distinct ways of mea-
suring the same construct (e.g., behavioral re-
sponses at age 4 and psychologist’s ratings
based on interviews with the subjects). Be-
cause the contemporaneous and time-lagged
correlations are comparable, it is possible to
argue that the latent trait assessed at age 4
is comparable to the latent trait assessed at
age 11.

Methodologically distinct measures of the
same construct are especially useful in at-
tempts to relate behavior in early childhood
or infancy to characteristics exhibited in older
children or adults. The indexes that are appro-
priate to assess common dimensions of per-
sonality vary with age: Aggression in children
aged 2 years is not assessed in the same way as
is aggression in adults. Columbo (1993) sum-
marized a series of studies relating measures
of infant information processing to childhood
measures of intelligence. Standard IQ tests
such as the Wechsler Preschool and Primary
Scale of Intelligence (see Kaufman, 2000) test
or the Stanford Binet Intelligence Scale IV
(Thorndike, Hagen, & Sattler, 1986) cannot be
administered to preverbal children. Attempts
to study the continuity of intelligence start-
ing with the first year of life can only be per-
formed using measures of intellectual ability
that are different in content and form from
those used to assess intelligence in older in-
dividuals. Columbo summarized studies re-
lating measures of infant novelty preference
and fixation times in a habituation paradigm in
which individuals were repeatedly presented
with the same stimulus to performance on
tests of intelligence administered to children
between 2 and 7 years of age. The infant mea-
sures were administered prior to age 1 as early
as the neonatal period and often during the

first 6 months of life. Fixation times in ha-
bituation had a mean correlation with child-
hood IQ of .46. These results indicate that
there is some degree of consistency in intel-
ligence from the neonatal period through early
childhood. These results also indicate that cer-
tain methodologies are available for study-
ing continuities in behavior from childhood
to adulthood even when the adult behavior
has no obvious childhood counterpart. What
may be continuous over the life span is a dis-
position to respond to the world in common
ways, though manifested in different ways at
different points in a person’s life. The method-
ology for such investigations is contingent on
the development of appropriate theoretical in-
sights. That is, one must develop a theoret-
ical analysis that explains why a construct
may manifest itself in very different ways.
Thus, although the discovery of this relation-
ship between infant and child cognition was
serendipitous, subsequent research requires
one to construct a theory that predicts the ways
in which a latent trait may be manifested in
different ways at different times in a person’s
life.

The analysis of relationships between in-
dexes of a construct obtained at different ages
can be quantitatively assessed by a considera-
tion of disattenuated correlations that correct
for unreliability of measurement. The disat-
tenuated correlation between infant measures
and childhood IQ is .76. This correlation is an
estimate of the true relationship between the
variables after accounting for unreliability of
measurement.

The magnitude of the difference between
obtained and disattenuated correlations is a
function of the reliability of the measures.
If measures are unreliable, then disattenuated
correlations will be substantially higher than
obtained correlations. Whether one should
focus on observed or disattenuated correla-
tions depends on the way in which correla-
tions are used. For example, if one wishes to
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predict childhood IQ from measures of infant
habituation, the accuracy of prediction would
best be judged by using an observed corre-
lation. On the other hand, if one wishes to
address a theoretical question about the con-
tinuity of intelligence from infancy to early
childhood, one would be interested in the dis-
attenuated correlations.

Systematic Sources of Variance in
Change Scores

In the typical longitudinal investigation, test-
retest correlations between various indexes of
personality are used to assess the continuity
of personality characteristics. It is also possi-
ble to study systematic change in personality
characteristics over time. Block and Robins
(1993) studied change in self-esteem between
ages 14 and 23. At age 14 Block and Robins
obtained measures of self-esteem from their
subjects. In addition, each of the subjects in
their study was assigned personality ratings
by psychologists as a result of a comprehen-
sive personality assessment. Self-esteem mea-
sures were obtained from the same subjects at
age 23. Block and Robins obtained a mea-
sure of change in self-esteem. They corre-
lated change scores with personality ratings.
For both male and female subjects they found
that change scores were inversely correlated
with personality ratings that were indicative of
Neuroticism or poor adjustment. These results
suggest that self-report measures of self-
esteem changed to reflect personality char-
acteristics that were present at age 14. The
psychologists who assessed the personali-
ties of the subjects in this investigation were
able to ascertain characteristics of these sub-
jects that may very well not have been
understood by the subjects themselves. Self-
esteem measures and measures of Neuroti-
cism are highly correlated (see McCrae &
Costa, 1990). The subjects may not have

developed a clear sense of their neurotic ten-
dencies at age 14. Over the next 9 years
they may have had additional opportunities
to understand their personality. Subjects who
were well adjusted at age 14 experienced
increases in self-esteem; those who were
poorly adjusted experienced declines in self-
esteem. Thus, the change in self-reports may
be viewed as being determined by personality
characteristics present at an earlier age. In this
instance, individuals may have changed in a
way that increased the relationship between
their self-reports and their actual personality
characteristics.

Caspi and Herbener (1990) studied person-
ality change in married couples in an 11-year
longitudinal study. They obtained personal-
ity ratings for the couples at both time pe-
riods. They assigned the couples to one of
three groups depending on their degree of
similarity in initial personality ratings. They
found that change in personality was inversely
related to the degree of similarity of the
couples’ initial personality ratings. The test-
retest correlations for personality were pos-
itively related to the similarity of spouses’
personalities. The direction of change in per-
sonality was not predictable from knowl-
edge of a spouse’s ratings—only the absolute
magnitude of change. The studies by Block
and Robins (1993) and Caspi and Herbener
both point to the importance of investigating
change as well as continuity in personality.
Just as it is inappropriate to assume that lack
of correlation across situations is merely er-
ror, so too it is inappropriate to assume that
the differences in personality characteristics
across time are not systematic.

Cohort Effects

It is possible to study changes over the life
span using cross-sectional designs in which
individuals of different ages are tested at the
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same time. Conducting longitudinal studies
encompassing large periods of the life span
is difficult. Cross-sectional analyses of age
differences are confounded with cohort ef-
fects. Individuals of different ages tested at the
same time will of necessity differ in time of
birth. It is difficult to separate age and cohort
effects.

Cohort effects may be studied by admin-
istering the same test to representative sam-
ples of individuals who are assessed at the
same age at different times. Three funda-
mental methodological requirements must be
met in any study of cohort effects. First, the
samples or populations studied must be com-
parable. For example, an analysis of cohort
changes in the Scholastic Aptitude Test (SAT)
is complicated by changes in the composition
of the sample of individuals who take the test;
for example, there has been an increase in the
number of individuals who take the test over
time. It is possible that more individuals who
are likely to score low on the test have been
taking the test in recent years. Changes in test
scores may be attributable to cohort effects on
the sample of test takers. Second, the test that
is administered should remain constant over
time. If easy items are excluded and difficult
items are added, changes in test scores over
time may reflect changes in the composition
of the test rather than cohort changes in the
construct measured by the test. In the case
of cohort changes in intelligence, data series
exist in which the identical test is adminis-
tered in the same way to comparable sam-
ples. Third, the relationship between a mea-
sure and the construct that is assessed by that
measure must remain invariant. Consider a
hypothetical example. There may be cohort
effects in the tendency to admit that one is de-
pressed. Measures of depression may demon-
strate increases not because of a change in the
construct assessed by various self-reports of
depression but in the relationship between the

self-report and the underlying construct that is
assessed by the measure. More recent cohorts
of individuals may be more inclined to admit
to being depressed than cohorts of individu-
als born in an earlier period. Cohort changes
on a particular index of a construct may be
indeterminate with respect to whether the co-
hort changes constitute changes in the con-
struct that is putatively assessed by the index.
In order to address this issue, it is necessary
to examine the network of laws and relations
that provide evidence for the validity of the
index as a measure of the construct. Consider
a hypothetical example. Assume that there is
a biological theory of depression. If the the-
ory is correct and if a particular self-report
measure is a valid measure of depression,
then there should be a relationship between
the self-report measure and one or more bio-
logical indexes of depression specified by the
theory. Assume that evidence exists that sup-
ports this prediction for several different co-
horts. This evidence would provide evidence
in support of the assumption that the index of
depression has equivalent construct validity
for different cohorts. The construct validity
of the index can be ascertained by examin-
ing the hypothetical set of all the laws and
relationships that are related to the theory of
the construct. This network of laws and rela-
tionships is sometimes called the nomological
network. The demonstration of cohort effects
based on changes in one or more indexes of
a construct requires one to demonstrate that
the indexes for different cohorts exhibit com-
parable construct validity—that is, that they
exhibit cohort invariance with respect to their
nomological networks. Research on cohort ef-
fects cannot be interpreted without attention
to theoretical assumptions about the meaning
of the constructs.

The clearest evidence of cohort effects in
the study of individual differences is con-
tained in a series of investigations of changes
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in intelligence reported by Flynn (1998; see
also Neisser, 1998). The most convincing data
derive from studies of European countries that
require universal assessment of potential mil-
itary recruits. These studies provide data for
the entire male population of testable individ-
uals who are administered the same tests at
the same age each year. These data as well
as other data obtained from other sources in
other countries indicate that scores on tests
of intelligence have been increasing in most
technologically advanced countries for sev-
eral decades. Cross-sectional studies of per-
formance on tests of intelligence reported
dramatic declines in intelligence for individ-
uals of different ages taking the same test at
the same time (see Schaie & Strother, 1968,
for an early analysis of this issue). Some
of these declines were attributable to cohort
effects.

RELATIONS AMONG CONSTRUCTS

We have discussed methodologies that may
be used to study the relationship between dif-
ferent indexes of the same construct. We have
not considered studies of the relationships that
exist among constructs. Researchers have ex-
amined the analysis of relationships among
constructs as a basis for the construction of
taxonomies. There are many investigations in
which a battery of measures is given to a
group of subjects. One goal of such investi-
gations is to determine whether the measures
are related to each other. Many personality
measures assumed to measure the same con-
struct are uncorrelated. Measures with dif-
ferent names may be substantially correlated
with each other. John (1990) described the
existence of a large set of measures with
different or related names as constituting a
Tower of Babel. One goal of studying relation-
ships among measures is to discover which

measures are highly related and which are
independent.

Exploratory Factor Analysis

Exploratory factor analysis may be used to
study relationships among measures of differ-
ent constructs. The method begins by obtain-
ing a correlation matrix in which each mea-
sure is correlated with every other measure.
The goal of the analysis involves determining
the minimal number of hypothetical factors
that account for the covariance in the matrix.

Although the emergence of windows-
based statistical programs has made it quite
simple to run exploratory factor analyses, sev-
eral important issues are often overlooked (see
Bollen, 1989, for a more thorough discus-
sion). Most importantly, a factor analysis is
only as good as the measures that go into the
analysis. Individual measures with skewed or
kurtotic variance will reduce the values of cor-
relations, possibly resulting in unclear factor
solutions. Low covariance among measures
will also lead to unclear factor analytic results.

Beyond the quality of the data, it is impor-
tant to decide on the following before con-
ducting one’s factor analysis:

1. Definition of the factor solution. Factors
can be determined through a number of
methods. One way is to conduct an anal-
ysis in which the factor solution is not
rotated. In this analysis the goal is to
derive the smallest set of factors neces-
sary to account for the largest amount of
variance in the measures. Although these
factors account for much of the total vari-
ance in the individual measures, the indi-
vidual measures themselves may correlate
moderately with the factor. Higher factor
loadings may be obtained through the use
of factor solutions based on orthogonal
rotations (the factors are hypothesized to
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be uncorrelated) or oblique rotations (the
factors may be correlated).

2. Determining the number of factors. Ex-
ploratory factor analysis does not provide
inferential tests of significance. Thus, it is
important to decide beforehand what cri-
teria will be used to determine whether a
factor is meaningful. Although there are
many criteria (e.g., eigenvalue, scree plot,
etc.), they have a common goal: to deter-
mine whether factors retained in the solu-
tion account for significant sources of vari-
ance in the matrix.

3. Examination of factor loadings. It is nec-
essary to decide the minimal factor load-
ing that is required for a measure to load
meaningfully on a factor. Factor loadings
are hypothetical correlations. They are es-
timates of the degree to which a variable
covaries with the factor. In interpreting the
meaning of a factor, one should be aware of
the magnitude of the loadings of variables
that collectively define the factor. A load-
ing of .7 indicates that 49% of the variance
in the variable loads on the factor, whereas
a loading of .3 indicates that 9% of the
variance in the variable is shared with the
factor. Although both variables may meet
a criterion of minimal loading on a fac-
tor, the interpretation of the factor should
consider differences in the magnitude of
the loadings of individual variables on the
factor. Additionally, in a multifactorial so-
lution, individual measures should not load
on all factors. Instead, individual measures
should load on certain theoretically mean-
ingful factors.

The end result of the factor analysis is a fac-
tor matrix in which the loading of each test in
the battery is noted. Tests may load on more
than one factor, suggesting that variance on
the test is determined by more than one fac-
tor. A factor analysis permits a decomposition

of the covariance between a test and all other
tests in a battery by separate components of
variance associated with each of the factors.
An individual’s performance on the test bat-
tery may be described in terms of scores on the
factors that account for the covariance among
the tests in the battery.

Factor structures may be replicated by
comparing the similarity of factor loadings
obtained in different investigations of compa-
rable test batteries. The attempt to ascertain
whether two factors obtained in different in-
vestigations are related can be based on an
informal examination of the pattern of load-
ings of variables on the factors. There are also
more formal methods of testing the similarity
between factors derived from separate inves-
tigations (see Stevens, 1986). These methods
are usually preferable to informal methods be-
cause they lead to quantitative indexes that
may be used to gauge the degree of identity
of factors.

Application to Personality

Factor analytic investigations have led to
progress in the construction of taxonomies in
personality and intelligence. Considerable ev-
idence exists for five factors in the domain
of personality: Extraversion, Agreeableness,
Conscientiousness, Neuroticism, and Open-
ness to Experience (John, 1990). Analyses of
both self-report ratings and peer ratings of
personality dimensions have quite typically
led to a five-factor solution of the correlation
matrix. The solution exhibits some degree of
cross-cultural and cross-linguistic replicabil-
ity. Analyses of ratings in several different
languages obtained in several different coun-
tries have led to comparable factor structures
in which each of the “Big Five” is defined
by traits that have comparable factor load-
ings. Some trait characteristics have signifi-
cant loadings on a single factor; for example,
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talkativeness is a trait that has high ratings on
Extraversion and may be considered a marker
variable for that factor. A marker variable for
a factor is a variable that has a high loading
on the factor, which implies that scores on the
variable may be used to estimate scores on
the factor. In one review of 15 factor analy-
ses of trait ratings based on both self-report
and peer ratings obtained from German- and
English-speaking subjects, talkativeness had
an average loading on Extraversion of .76 and
no loading in excess of .03 on any other fac-
tor. Affectionate versus Reserved had a mean
loading of .61 on Extraversion and a mean
loading of .44 on Agreeableness (Johnson &
Ostendorf, 1993). These loadings imply that
affectionate ratings are determined, to differ-
ent degrees, by both Extraversion and Agree-
ableness. The Big Five factors are usually
uncorrelated, which implies that a person’s
scores on the tests that define any one of these
factors tend to be unrelated to scores on tests
that define other factors.

The Big Five has come to be a measure of
criterion validity for new measures of person-
ality. If a measure is substantially correlated
with the Big Five, it does not provide substan-
tially new variance to the study of personal-
ity. On the other hand, a measure that does
not relate to the Big Five may contribute new
variance to the study of personality.

Application to Intelligence

Although the appropriate taxonomy of intel-
lectual abilities has been a vexed topic in the
history of intelligence (Brody, 2000), consid-
erable progress in the resolution of different
views about the structure of intellect has been
attained as a result of the contributions of
Carroll (1993). Carroll reanalyzed over 400
correlation matrices of relationships among
different measures of cognitive ability. The
analyses included the total set of usable ma-
trices available at the time of the analysis.

Carroll’s integration of the corpus of factor an-
alytic investigations led to the development of
a three-stratum hierarchical model. The third
and most general stratum contains a single
general factor: Spearman’s g. This factor usu-
ally accounts for approximately 50% of the
covariance in the matrix. The second stratum
contains eight second-order factors arrayed in
terms of their relationship to g. The two fac-
tors with the highest g loadings at this stratum
are Gf (fluid ability, a factor related to ab-
stract reasoning) and Gc (crystallized ability,
a factor related to verbal ability). Each of the
second-stratum abilities is related to several
first-stratum factors.

Carroll’s analyses are based on Schmid and
Leiman (1957) orthogonalizations of the fac-
tor structure. In a traditional multilevel facto-
rial solution, measures load only on the first-
order factors. In a Schmid-Leiman analysis,
the individual measures load on both first- and
all higher-order factors. This permits the de-
composition of the variance on a particular
ability measure by a consideration of the con-
tributions of separate factors at each stratum
of the taxonomy. It is also possible to describe
the abilities of an individual by his or her score
on each of the factors at each of the strata of
the taxonomy. Figure 14.2 presents Carroll’s
three-stratum taxonomy.

The existence of taxonomies permits one
to decompose the variance in a particular mea-
sure into orthogonal components. A correla-
tion between a measure of intelligence and
another variable may be attributable to any
one of several components of variance that
are present in the measure of intelligence.
For example, it is known that measures of
intelligence are correlated with performance
on a number of relatively simple experimen-
tal tasks, such as two-choice reaction time
(the correlation is negative). The correla-
tion between a measure of intelligence and
performance on a measure of reaction time
may be attributable to any of the orthogonal
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components of variance that are assumed to
contribute to the variance of scores on a test
of intelligence. A similar ambiguity in the in-
terpretation of correlations between measures
exists in the area of personality. Blended vari-
ables load on more than one personality di-
mension in the Big Five taxonomy. The cor-
relation between a blended variable and some
other measure may be attributable in different
degrees to the independent sources of vari-
ance that contribute to scores on the measure
of a blended trait. For example, the correla-
tion between the blended scale “affectionate”
and some other variable may be due to Ex-
traversion and/or Agreeableness. These ob-
servations lead to a number of critical method-
ological injunctions that derive from the use
of individual-difference taxonomies. It is use-
ful to decompose the variance in any par-
ticular individual-difference measure and to
discover its location in the taxonomic struc-
ture to which it may belong. Such a proce-
dure enables the researcher to discover the
extent to which the covariance between mea-
sures is attributable to the contributions of sev-
eral independent sources of variance present
in the measures. It is problematic to assume
that a particular measure is uncorrelated with
sources of variance present in standard tax-
onomies. Each measure may be a measure of
many different things. Such individuals will
be inclined to ascertain the extent to which
sources of variance contained within a mea-
sure are related to well-defined, taxonomi-
cally structured variables.

From Exploratory to Confirmatory
Analysis of Relationships

In order to decompose the sources of vari-
ance, researchers can conduct analyses of re-
lationships among variables using confirma-
tory rather than exploratory procedures. These
procedures enable the researcher to test var-
ious models of the relationships that exist

among variables and to select from among
classes of models those that provide an op-
timal fit to the obtained data.

Confirmatory analyses test competing the-
oretical models. The development of confir-
matory models creates an unusually strong re-
lationship between theory and method. These
methods stress that good methodology re-
quires good theory (see Bollen, 1989, for an
introduction to confirmatory analysis). Com-
peting models are composed of a set of equa-
tions that are used to estimate the covariance
among a set of variables. The estimated co-
variances are then compared to the actual mea-
sured covariance. The model that best esti-
mates the measured covariance is deemed the
best-fitting model.

Several important issues must be dealt with
before initiating a confirmatory analysis. The
availability of powerful statistical programs
that conduct confirmatory analysis may be
a seductive influence on researchers. Insuf-
ficient exploration of alternative methods of
analysis within a confirmatory model and in-
sufficient comparison with other statistical
methods may yield results that are not opti-
mal. When initiating a confirmatory analysis,
the researcher should pay particular attention
to the following:

1. Deriving theoretically meaningful models.
The principal advantage of confirmatory
methods is that they allow for the explicit
testing of competing models. Thus, it is
important to derive a set of theoretically
meaningful models so that the best-fitting
model emerges out of a set of plausible
alternatives.

2. Deriving identifiable models. In addition to
deriving models that are theoretically pos-
sible, it is also important to derive mod-
els that are analyzable. In a confirmatory
analysis the researcher uses a set of equa-
tions to estimate the covariance among
a set of variables. These equations are
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composed of parameter estimates that are
analogous (although not identical) to re-
gression weights or factor loadings in an
exploratory analysis. In certain circum-
stances (e.g., too many parameters given
the number of variables in the analysis)
some models cannot be identified. The
equations do not result in unique param-
eter estimates.

3. Determining which data to use. Confirma-
tory analysis can be conducted on corre-
lations, covariances, and raw data. Most
analyses have employed covariances. Re-
cent analyses have examined raw data.
This procedure leads to a more system-
atic analysis of missing data. Confirma-
tory analysis of correlations is not recom-
mended.

4. Determining starting values and the fit
procedure. In confirmatory analysis start-
ing values for each parameter are subjected
to a goodness-of-fit procedure to derive a
set of final parameter estimates that yield
an estimated covariance matrix that is as
similar as possible to the actual covariance
matrix. It is desirable to explore different
initial starting values. It is possible that
different final solutions will emerge from
different starting values. Additionally, al-
ternative minimization procedures should
be employed (e.g., least squares, maximum
likelihood, etc.) because they may affect
the final solution as well.

5. Determining goodness of fit. Once a set of
identifiable models has been derived, it is
then necessary to describe the manner in
which the best-fitting model will be deter-
mined. Chi-square tests are often used, but
other fit indexes are also frequently used
(see Bollen, 1989).

6. Testing competing models. Once the fit of
each model has been determined, a chi-
square difference test can be used to test
the comparative fit of the various compet-

ing models. The model with the smallest
number of parameters with the best fit is
determined to be the best-fitting and most
parsimonious model.

7. Testing parameter estimates. Competing
models can be used also to test the signif-
icance of particular parameter estimates.
Two confirmatory solutions are compared,
one with a parameter and one without the
parameter. If the model without the param-
eter fits significantly worse, then that pa-
rameter is judged to be significant. Another
way to test parameter estimates is by cal-
culating confidence intervals for each pa-
rameter (see Neale, 2000).

The controversy surrounding Carroll’s
(1993) taxonomy provides an excellent ex-
ample of how confirmatory factor analysis has
been used to test competing theories. Carroll’s
exploratory analyses indicate that cognitive
abilities include a higher-order general intel-
ligence factor. Gustafsson (1999) proposed
a criticism of the third-stratum g factor in
Carroll’s taxonomy. He noted that Carroll’s
analyses were based on exploratory factor
analyses with rotations of models to various
criteria of best fit.

Gustafsson (1999) performed a confirma-
tory factor analysis on a comprehensive bat-
tery of tests of ability. He attempted to test
whether a battery of cognitive abilities is best
fit by a model that hypothesizes a general
factor. In order to test the importance of g,
he formed competing models that postulated
the existence or absence of g. He found that
he was able to fit a model in which the second-
order fluid ability factor was perfectly corre-
lated with the general factor. He concluded,
therefore, that there was no need to postulate
a higher-order g factor to explain the relation-
ships among cognitive abilities.

Both Gustafsson (1999) and Horn (1985)
accept the distinction between Gf and Gc as
fundamental. They are inclined to accept the
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Three-Week
Adjustment

Self-Esteem

Optimism

Control

Self-Efficacy

Depression

�.27*

�.68** .63*

�.29*
�.49

Note:   *p � .05, **p � .01

.24

.26

Immediate
Adjustment

Figure 14.3 Control, self-efficacy, and adjustment following abortion.
SOURCE: Based on Cozzarelli (1993).

validity of additional second-stratum factors
as well. They both object to the notion that
there is a separate g factor that is independent
of Gf and Gc.

In response, Carroll (1997) reported a set
of additional analyses using confirmatory fac-
tor analyses. After testing alternative models,
the best-fitting model was one that included a
third-order general factor. Carroll then exam-
ined the loadings in this best-fitting model and
found that all variables loaded on g. In addi-
tion, there were variables that had substantial
loadings on g that had near-zero loadings on
the fluid ability factor. Thus, the confirmatory
analysis indicated that g and Gf were not iden-
tical. For further details of Carroll’s analyses
demonstrating the way in which confirmatory
analyses may be used to test competing mod-
els, see Carroll (1997).

Correlation and Causality

It is possible to study relationships among
measures to construct models indicating the
way in which several different variables com-
bine to influence outcome variables. Path
models are used for this purpose. For exam-
ple, Cozzarelli (1993) studied the influence of
personality characteristics (Self-esteem, Op-
timism, Perceived control, and Depression)
and self-efficacy beliefs about the ability to
cope with an abortion on adjustment to the
experience of having an abortion immediately

following the abortion and three weeks af-
ter the abortion. She performed a path analy-
sis of the influence of these related variables.
Figure 14.3 presents her final path model. The
figure indicates that two of the personality
variables, Control and Depression, are related
to self-efficacy beliefs. Self-efficacy beliefs
are strongly related to the immediate adjust-
ment to the experience of abortion. Further-
more, immediate adjustment is the strongest
influence on adjustment three weeks after the
abortion. Her path model indicates that per-
sonality characteristics do not have a direct
influence on the adjustment to the experience
of an abortion three weeks after its occurrence.
Personality variables influence adjustment in-
directly, and primarily in terms of their in-
fluence on self-efficacy. This study illustrates
how researchers can use a path model to con-
struct a causal analysis of the way in which
variables combine to influence a dependent
variable.

Cozzarelli’s (1993) model illustrates how
researchers can use path models to infer causal
relationships. Because the measures are ar-
rayed in time, the final measure in the anal-
ysis (3-week adjustment) cannot possibly in-
fluence the other variables. Thus, it must be
a dependent variable. The variables on the
left of the diagram (e.g., control and depres-
sion) are assumed to be enduring personal
characteristics. Self-efficacy is assumed to be
a variable that is based on a belief that is
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itself variable. Enduring personal character-
istics may influence self-efficacy, but self-
efficacy is unlikely to influence an endur-
ing personal characteristic. Thus, the model
examines the influence of enduring personal
characteristics on self-efficacy but does not
examine the influence of self-efficacy on
enduring personal characteristics. These the-
oretical assumptions provide a way of exam-
ining causal relationships among the variables
that are considered by partitioning the covari-
ance between variables into a direct unmedi-
ated influence and an indirect influence. The
analysis provides evidence for a causal influ-
ence of self-efficacy on adjustment to abortion
that is independent of the other variables con-
sidered in the analysis.

Like confirmatory analysis, path models
require the use of explicit theories that define
appropriate sequences of relationships among
variables. They require an explicit integration
of theory and method.

GROUP DIFFERENCES

Individual difference psychologists are of-
ten interested in differences among various
groups of individuals. There are many con-
temporary analyses of gender and ethnic dif-
ferences, but there are many other potential
ways in which groups may be formed. For ex-
ample, researchers may compare individuals
who do or do not share some common ex-
perience, such as the death of a parent prior
to adolescence. Group comparisons may ac-
count for systematic variance in psychologi-
cal characteristics. It is possible to distinguish
three ways in which groups may differ in psy-
chological characteristics.

Mean Differences

Groups may differ in their mean score on a
measure. Meta-analysis (see Chap. 10, this
volume) is used to examine group differences

on a particular characteristic. Meta-analyses
involve the calculation of an effect-size mea-
sure usually defined as a mean difference di-
vided by the standard deviation of the mea-
sure. Systematic searches of the literature
are accomplished by entering appropriate key
words relevant to a comparison of two groups
on some measure. An effect-size measure is
calculated for each sample, and the mean ef-
fect size over samples is obtained. The mean
effect size provides an estimate of the magni-
tude of group differences on some variable. It
is possible to perform additional analyses on
effect-size data. Systematic variance in effect
sizes may be examined as a function of vari-
ables of interest to the investigator. The choice
of independent variables in meta-analyses can
be quite varied and can include consideration
of indexes of the methodological adequacy
of different investigations, additional individ-
ual difference variables that may affect effect
sizes, and the type of publication from which
the effect-size measures were derived. Meta-
analyses provide a comprehensive method for
systematically ascertaining the outcomes of
all of the literature relevant to the determina-
tion of the magnitude of mean differences on
a measure.

Many meta-analyses of gender differences
in psychological characteristics have been
conducted (see Hoyenga & Hoyenga, 1993).
For example, Eagly (1987) performed a meta-
analysis comparing male and female perfor-
mance on ability to judge the meaning of
nonverbal behaviors. She found that the mean
effect size for female-to-male performance on
this ability was .43.

Variance Differences

Group differences may occur on any parame-
ter of the distribution of scores on some vari-
able. Differences may exist in skew, variance,
or means of distributions as well as in the
overall shape of a distribution. Hedges and
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Newell (1995) performed a meta-analysis of
gender differences in scores on tests of in-
telligence. They found very little evidence of
mean gender differences in performance on
composite measures of intelligence, but they
did obtain evidence of a variance difference:
Males are marginally more variable on tests
than are females. Variance differences lead to
differences in the frequency of occurrence of
extreme scores in a distribution. Males are
more likely than females to have very high
(and very low) scores on various measures
of ability. The Johns Hopkins talent search
for adolescents with unusually high scores
on mathematical ability uses the SAT quan-
titative aptitude test. The test is administered
to 7th-grade students. Benbow (1988) found
that males were approximately 13 times more
likely than females to have scores above 700
on this test. Note that at this age there is little
or no mean difference in scores on measures
of mathematical knowledge and ability. The
large male-to-female ratio of adolescents at-
taining this relatively high cutoff score is pri-
marily attributable to differences in variance.

Correlational Differences

Group differences in means and variances are
not usually informative with respect to the
construct equivalence of different individual
difference measures. Groups may differ with
respect to the relationships that exist among
different measures. Differences in covariance
matrices may be informative with respect to
the invariance of psychological laws for mem-
bers of different groups.

Group Equivalence

Rowe, Vazsonyi, and Flannery (1994) ana-
lyzed several covariance matrices reporting
relationships among variables related to aca-
demic achievement and juvenile delinquency
for large samples of African-American and
White subjects. For each study they obtained
covariance matrices separately for their two

racial groupings and obtained a measure of
similarity of the matrices. They then divided
their samples into two randomly selected
within-race groups. They found that differ-
ences in the covariance matrices within ran-
domly selected groups of individuals belong-
ing to the same racial group were of the same
order of magnitude as were differences be-
tween covariance matrices obtained from dif-
ferent racial groups. Thus, the between-race
group differences in these investigations may
be attributable to random error. The analyses
imply that one may reasonably assume that
the outcomes investigated were determined by
influences that were cross-racially invariant.
Rowe et al. noted that investigators of racial
differences often assume that the processes
that determine the outcomes being investi-
gated are likely to be different for members of
different racial groups. They believe that re-
searchers should begin with the parsimonious
assumption that the processes that they study
are racially invariant. Researchers should pro-
ceed to the more complex assumption that the
processes are racially distinct only after an ex-
amination of the covariance matrices indicates
that they are racially distinct.

The method used to study racial differ-
ences in covariance matrices may be used
to study any group difference. It is useful
to form two randomly chosen subsets of a
group to study random variations in the total
set of relationships that are obtained within
a group. These differences may be com-
pared with between-group differences to as-
certain whether group invariance of relation-
ships is present.

Group Nonequivalence

Covariance matrices may vary systematically
as a function of one or more parameters.
Using the Wechsler Adult Intelligence Scale–
Revised (WAIS-R) and the Wechsler Intelli-
gence Scale for Children–Revised (WISC-R),
Detterman and Daniel (1989) obtained mean
correlations for subtests for individuals who
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Figure 14.4 Average correlation of WAIS-R and
WISC-R subtests by ability level.
SOURCE: Based on Detterman and Daniel (1989).

differed in their scores on the Vocabulary
subtest. They used the large standardization
sample for the Wechsler to divide their sub-
jects into five groups based on their perfor-
mance on the Vocabulary subtest. They then
calculated the mean correlation for the cor-
relations among the remaining subtests on
the Wechsler for each of the five groups
of subjects. Figure 14.4 presents their data.
The results summarized in the figure indicate
that the mean correlation obtained for these
groups tends to be a monotonically decreasing
function of performance on the Vocabulary
subtest. These results are compatible with the
assumption that the g variance in tests of intel-
ligence is inversely related to the mean level
of intelligence.

The Detterman and Daniel (1989) study
provides evidence of a relationship between
scores and changes in a single property of
a covariance matrix. Hoyenga and Hoyenga
(1993) summarized studies of depression in
male and female subjects. Table 14.1 presents
a summary of some of the principal differ-
ences in characteristics of depression in male
and female subjects. The table indicates that
depression is expressed in quite different ways
in males and females. The pattern of results
is complex and does not lend itself readily
to a simple and compelling theoretical expla-
nation. Nevertheless, the results do lead to
a compelling methodologically relevant con-

clusion. The meaning of a particular construct
may be different for individuals belonging to
different groups. Psychological laws and re-
lationships are not necessarily invariant for
members of different groups. Results such as
these complicate the attempt to integrate indi-
vidual difference psychology with the search
for laws that are invariant for all humans (or
even all mammalian species), which is of-
ten taken as the ultimate goal of experimental
psychology.

Group differences can extend to the level
of item analyses, and various techniques are
available for examining item characteristics.
Item analyses are used in the construction of
tests. In tests of ability, items are analyzed
with respect to their difficulty level in order
to ascertain the relationship between perfor-
mance on a particular item and performance
on a test overall. Freedle and Kostin (1997)
analyzed 20 analogy items on the SAT Verbal
Ability test. They contrasted the performance
of individuals belonging to either the Black or
White group of test takers on these items in
an effort to ascertain whether the items func-
tioned in a comparable manner for individuals
belonging to these two groups. They obtained
an index of differential item functioning (DIF
score) for each item by contrasting the per-
formance of the Black and White individuals
on each of these items. A positive DIF score
indicated that the item was more difficult for
White subjects than for Black subjects with
the same total score on the test. They also
assigned an overall difficulty score to each
item by noting the percentage of individuals
who obtained the correct response on an item.
The correlation between the DIF score and
the difficulty score for the items was .49, in-
dicating that difficult items were more diffi-
cult for White subjects than for Black subjects
with the same overall score on the test. Black
subjects tended to perform better on difficult
items and worse on easy items. Individuals
belonging to different groups may respond in
different ways to the same items.
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Table 14.1 Sex Differences in the Structure of Depressive Syndrome in Females and Males

The sexes differ not only in overall frequency but also in symptom patterns displayed within the various
depressive syndromes:

1. Clinically depressed females more often report excessive eating and weight gain as a symptom (loss of appetite
and weight loss are the most common eating symptoms in both sexes).

2. In nonselected populations, females are more likely to report that they eat when they become depressed; women
also are more likely to report crying, becoming irritable, and confronting their feelings; males are more likely
to report becoming aggressive and engaging in sexual activity.

3. Factor structure of depression scales is different for males and females, both in nonselected populations and
among depressed subjects.

4. Working females are more likely to go to health services, and males are more likely simply to miss work when
depressed.

5. The personality factors that differentiate depressed males from depressed females are the same as those that
differentiate nondepressed males from nondepressed females.

6. Psychomotor agitation (nervous activity) seems to be more common in female depressives; retardation (inac-
tivity) may be relatively more common in males.

7. Among depressed college students (rating-scale measures), males are more socially withdrawn, express more
motivational and cognitive problems, use drugs, and have somatic symptoms (e.g., aches and pains); women
have greater lack of confidence, lack of concern over what happens to them, more self blame, more crying spells,
and irritability, and are more hurt by criticism.

8. Depression is associated with decreased instrumentality (as measured by sex-role scales), but this may be an
effect rather than a precursor of depression.

9. When under stress, college student females report feeling more depressed and anxious than males do, and
females say that they are more likely to express their feelings; males become more active in response to stress;
stress from school or from intimate relationships depressed personal self-esteem only in females.

10. Age of onset of bipolar and unipolar syndromes is the same for both sexes, although female/male ratios for
bipolar onset may be greatest from ages 30 to 75.

11. Incidence of depression before puberty is the same in both sexes; female incidence of depressive episodes
increases at puberty.

12. Males are more likely to commit suicide; females are more likely to make nonfatal suicide attempts.

SOURCE: Adapted from Hoyenga and Hoyenga (1993).

Individual differences in response to a
common task may be understood by assum-
ing that individuals have different parametric
values on a model that is assumed to apply to
all individuals. Alternatively, it may be nec-
essary to assume that the theories or models
required to explain behavior in a particular sit-
uation are not invariant for different individu-
als. Sternberg and Weil (1980) contrasted two
different models that could be used for the so-
lution of deductive logic problems, one based
on linguistic analyses and the other based on
spatial reasoning. By examining the pattern
of solution latencies for problems that were
assumed to vary in difficulty as a function of
whether an individual used a spatial or a lin-

guistic method of solution, they were able to
classify their subjects by the type of solution
pattern that they used. They correlated solu-
tion latencies with individual differences in
verbal and spatial ability measures for these
two types of subjects. For subjects who re-
lied on a linguistic model of solution, verbal
and spatial ability scores correlated with so-
lution latencies −.76 and −.29, respectively.
The comparable correlations for subjects who
were assumed to use spatial solutions for the
problems were −.08 and −.60. These results
indicate that the relationship between an abil-
ity measure and performance on this task is
dependent on the nature of the methods that
are used to solve the task. This experiment
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also indicates that in order to understand the
way in which individual differences influence
performance on a task, it may be necessary to
understand the nature of the processes elicited
by the task. These processes may not be in-
variant for different individuals. Appropriate
methodology for this type of investigation re-
quires the use of a theory that explains be-
havior in a particular situation. Sternberg and
Weil relied on two competing theories of the
solution of deductive logic problems.

CROSS-DOMAIN RELATIONSHIPS

Often, scientific progress is made when re-
searchers study the relationships between
methods and theories that develop in what are
initially disparate areas of investigation. For
example, it is common in scientific research
to attempt to relate constructs derived from
one scientific domain to constructs that are de-
rived from another domain that is assumed to
be more elementary. Thus, chemical concepts
may be related to physical concepts in the
study of physical chemistry; biological con-
cepts may be related to chemical concepts in
the study of biochemistry; and psychological
concepts may be related to biological concepts
in the study of biological psychology. Indi-
vidual difference psychologists have tried to
relate their constructs to constructs that derive
from experimental psychology and from bio-
logical psychology. We briefly consider cross-
domain relationships among individual differ-
ence parameters and constructs derived from
biology, genetics, and cognitive-experimental
psychology.

Psychometric Intelligence and
Cognitive-Experimental Psychology

Psychologists who investigate intelligence us-
ing psychometric methods assume that they

are studying individual differences in cog-
nitive functioning. Given this assumption, it
would seem reasonable to attempt to relate the
constructs derived from such investigations
to those developed by cognitive-experimental
psychologists. It is possible to distinguish two
methodologies with somewhat different em-
phases that are used in the attempt to relate
tests of intelligence to laboratory-based mea-
sures of cognitive processes.

Theoretical Parameters

Hunt, Lunneborg, and Lewis (1975) related
individual differences in verbal ability to mea-
sures derived from a task used by Posner, Bois,
Eichelman, and Taylor (1969). Posner et al.
obtained reaction times to same and differ-
ent judgments for letter pairs that were phys-
ically identical (AA) or semantically identi-
cal (Aa). The time taken to perform the latter
judgment exceeded the time taken to perform
the former judgment. The difference in reac-
tion times in these two tasks may be taken
as an index of the speed with which an indi-
vidual is able to access semantic information.
These difference scores are inversely related
to measures of verbal ability. The Hunt et al.
investigation attempts to integrate cognitive-
experimental psychology with individual dif-
ference analyses of abilities by relating indi-
vidual differences to measures derived from
the experimental analysis of cognition. This
approach has encountered one major diffi-
culty. The parameters of greatest interest to
the experimental psychologist are often not
those that are most highly related to indi-
vidual differences. For example, McGue and
Bouchard (1989) obtained a correlation be-
tween differences in semantic and physical
judgment reaction times and scores on a ver-
bal ability factor of −.27. The correlation be-
tween the sum of the reaction times for these
two tasks and scores on the verbal ability fac-
tor was −.49. The sum of the reaction times
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for both tasks, a parameter of little interest to
the cognitive-experimental psychologist, ac-
counts for almost three times as much variance
in verbal ability than the theoretically mean-
ingful parameter related to the speed of ac-
cess to semantic information. Investigators of
the relationship between parameters derived
from the experimental investigation of behav-
ior and individual difference characteristics
should be alert to the possibility that theoreti-
cally meaningful parameters may not have the
strongest relationship with the individual dif-
ference measure. Cross-domain integration is
difficult and in some instances may require
theoretical modifications in each of the do-
mains being related.

Cognitive Composites

A second methodology attempts to discover
one or more core information-processing abil-
ities that have a substantial relationship to
general intelligence. Deary (1999) used three
different measures of discrimination. One
measure was a visual inspection time task
(see Deary & Stough, 1996). Subjects are pre-
sented with two parallel vertical lines that
clearly differ in length. This stimulus is fol-
lowed by a stimulus of two heavy lines of the
same length that occlude the initial stimulus
and serve as backward masks for the initial
stimuli. The duration of the presentation of the
initial stimulus prior to the onset of the mask-
ing stimulus is manipulated, and a threshold of
the minimal inspection time required to attain
some predetermined accuracy of judgment of
the stimulus is obtained. A substantial body of
research indicates that inspection time is in-
versely related to measures of nonverbal intel-
lectual ability (see Deary and Stough, 1996).
Deary (1999) obtained visual inspection times
and measures of performance in two other
tasks requiring subjects to make judgments
of stimuli that were briefly presented. In these
additional tasks, subjects were presented with

an array of 49 rectangular black stimuli on a
white background. In one version of this task
a single stimulus was moved. In another ver-
sion a new stimulus was added to the array.
The inspection time for the original array was
varied, and thresholds were obtained for the
minimal amount of time required for inspec-
tion in order to enable participants to indicate
accurately which stimulus had been added to
the array or which stimulus had changed loca-
tions in the array. Although all three tasks in-
volve the ability to rapidly notice distinctions
among visually presented stimuli, the atten-
tional processes that are required to perform
the initial inspection time task involving line
lengths appear to be different from those re-
quired to perform the tasks involving arrays of
rectangular stimuli. The former task requires
focused attention, and the latter tasks require
diffuse attentional processes. Deary (1999) re-
lated performance on these tasks to perfor-
mance on psychometric measures of nonver-
bal reasoning ability. Confirmatory analyses
indicated that the covariances between each
of the cognitive tasks and his composite non-
verbal intelligence measure were completely
overlapping. This analysis implies that each of
the cognitive tasks measures a latent trait—
perhaps a trait related to the speed of vi-
sual information processing—that is related
to measures of nonverbal intelligence. The
correlation between the latent trait based on
the composite of the three visual tasks and
the composite index of nonverbal intelligence
was .66.

Deary’s (1999) analysis illustrates one
method of validating latent traits. The ev-
idence for a latent trait derives from three
desiderata: (a) The indexes that combine to
form the trait are positively correlated; (b) the
covariance between each of them and an ex-
ternal criterion is overlapping; and (c) the
composite index correlates with the exter-
nal criterion more substantially than with its
constituents.
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Personality to Neurophysiology

There have also been attempts to relate mea-
sures of personality to neurophysiological
measures. Kagan and Snidman (1999) argued
that about 20% of all healthy infants are born
with a behavioral tendency to show aversion to
novel social situations as measured by video-
taped observation. One third of these children
are likely to show signs of intense social anx-
iety by early adulthood. These children are
also likely to display a number of physiolog-
ical characteristics associated with increased
arousal, such as increased sympathetic car-
diovascular response and increases in brain
activity in the right frontal area and limbic
area (Kagan, Reznick, & Snidman, 1999). The
research of Kagan and his colleagues is in-
structive because it uses observational and
physiological measurements to bring together
multiple measurements of the same underly-
ing construct across time. The broad scope of
this research not only increases the validity of
Kagan’s construct of behavioral inhibition
but also begins to unravel the physiological
pathways by which behavioral tendencies are
expressed in more general personality char-
acteristics. The search for cross-domain re-
lationships is guided by the development of
explicit theories. Kagan’s theory integrates
constructs derived from behavioral observa-
tions of individual differences with constructs
derived from theoretical analyses of brain
functioning.

Behavioral Genetics

Another particularly active area of contempo-
rary cross-domain investigation involves the
attempt to integrate the study of individual
differences with concepts derived from genet-
ics. Behavioral genetic techniques permit one
to study genetic and environmental influences
on psychological characteristics (called phe-
notypes when the characteristics are treated as

dependent variables in a behavioral genetic
investigation) as well as genetic and envi-
ronmental influences on relationships among
phenotypes. In addition, new developments in
molecular genetics have led to a search for
specific DNA markers related to individual
difference characteristics.

Asserting that individual differences must
result from genetic or environmental influ-
ences, or both, is a truism. Behavioral genetic
methodologies may be used to ascertain the
contributions of several distinct genetic and
environmental components of variance to the
phenotype. The integration of behavioral ge-
netic concepts with the study of individual
difference measures provides a particularly
apt demonstration of the usefulness of cross-
domain integration.

Twin and adoption studies may be used to
study genetic and environmental influences on
phenotypic measures. In contemporary quan-
titative genetic methods, genetic and envi-
ronmental influences are estimated through
confirmatory models. One can test a model
in which identical twins and fraternal twins
possess the same correlation. If this model
is rejected relative to a model that posits
greater monozygotic (MZ) resemblance, then
it is appropriate to infer that there are ge-
netic influences on that trait. It is also pos-
sible to test for the effects of common rearing
(called the shared environment). If adoptive
siblings reared in the same family are cor-
related on some phenotypic measure, then
shared environmental influences are impli-
cated. Thus, by examining differences in cor-
relations among family members who vary in
their genetic and environmental similarity, it is
possible to estimate the importance of genetic
and environmental influences on a particular
characteristic.

Petrill, Thompson, and Detterman (1995)
provides an illustrative example. The study
examined the genetic and environmental in-
fluences found in six elementary cognitive
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tasks hypothesized to relate to general
intelligence. We describe one such task, Stim-
ulus Discrimination. The covariance among
identical and fraternal twins was compared
using several competing models.

1. Nonshared Environment Only (E) = no
correlation among twins on Stimulus
Discrimination.

2. Nonshared Environment + Shared Envi-
ronment (EC) = identical twins were hy-
pothesized to be no more similar in Stim-
ulus Discrimination than fraternal twins
because of shared environmental influ-
ences. Nonshared environment is also hy-
pothesized because twins’ correlations are
below 1.0.

3. Nonshared Environment + Additive Ge-
netic (EH) = identical twins are hypoth-
esized to be twice as similar to each
other than are fraternal twins on Stimulus
Discrimination.

4. Nonshared Environment + Shared Envi-
ronment + Additive Genetic (ECH) =
identical twins are hypothesized to be more
similar than fraternal twins, but less than
twice as similar to each other, presum-
ably due to the influence of the shared
environment.

5. Nonshared Environment + Additive Ge-
netic + Nonadditive Genetic (EDH) =
identical twins are more than twice as sim-
ilar to each other than are fraternal twins,
presumably due to the influence of nonad-
ditive (e.g., dominance) genetic factors.

The covariances for Stimulus Discrimina-
tion for identical and fraternal twins were then
examined using the ECH model. This model
fit the data (chi-square = 2.53, df = 3, p =
.47). This model also yielded estimates of
heritability = .50, shared environment = .12,
and nonshared environment = .38. To test the
statistical significance of these estimates, the
other four submodels were then tested against

the ECH model. If the submodel fit the data
significantly worse than did the ECH model,
then it was assumed that the parameter dropped
in the submodel was necessary. The E and EC
models fit the data significantly worse than
did the ECH model, suggesting that additive
genetic influences are important. Conversely,
the EH and EDH models did not result in a
significant decrease in fit, suggesting that the
shared environment and nonadditive genetics
were not important to model fit. As stated ear-
lier, the statistical significance of h2, c2, and e2

can also be tested using confidence intervals
(Neale, 2000).

The substantive results derived from be-
havioral genetic analyses of various personal-
ity measures have led to a number of method-
ological innovations in the study of individual
differences. Twin studies of personality phe-
notypes usually obtain MZ correlations close
to .5 and dizygotic (DZ) correlations that are
equal to or less than half the value of MZ cor-
relations (Loehlin, 1992). These results lead
to three substantive conclusions: First, per-
sonality traits are heritable; MZ correlations
are larger than DZ correlations. Second, non-
shared environmental influences that lead in-
dividuals reared in the same family to differ
from one another contribute to individual dif-
ferences in phenotypic measures of person-
ality. MZ twins reared in the same family
who are genetically identical differ in per-
sonality phenotypes. These differences imply
that personality phenotypes are influenced
by nonshared environmental events. Third,
shared family influences on personality phe-
notypes are close to zero. Phenotypic variabil-
ity attributable to genetic influences and to
nonshared environmental influences accounts
for most of the variance in personality phe-
notypes. If shared environmental influences
were important determinants of personality
characteristics, DZ twin correlations would
be larger than half the size of MZ correla-
tions, but they are not. Family studies provide
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additional evidence for the absence of strong,
shared environmental influences on personal-
ity. Siblings are not similar in personality, and
children are not similar to their parents on var-
ious measures of personality (Ahern, Johnson,
Wilson, McClearn, & Vandenburg, 1982).

Nonshared environmental influences can-
not be studied using the traditional designs
in which children reared in different families
are compared to one another. In order to study
nonshared environmental influences, it is nec-
essary to study two or more children reared
in the same family. Studies of MZ twin dif-
ferences are a useful methodology for study-
ing nonshared environmental influences. Vari-
ables that are shown to predict differences in
characteristics of MZ twin pairs reared to-
gether provide direct evidence for nonshared
environmental influences that are totally inde-
pendent of genotypes. Evidence for the exis-
tence of nonshared environmental influences
is obtained by noting relationships between
sibling differences and differences in environ-
mental experiences. Dunn and Plomin (1990)
developed a measure designed to survey dif-
ferences in the environmental experiences of
siblings reared in the same family.

In addition to signaling the importance
of studying the nonshared environment, be-
havioral genetic findings have methodolog-
ical implications for studies attempting to
understand environmental influences on
personality. Many “environmental” measures
may be heritable; consider, for example, di-
vorce and television watching. McGue and
Lykken (1992) studied the heritability of di-
vorce. They found that MZ twins were more
likely to be concordant for divorce than were
DZ twins. Plomin et al. (1990) obtained a
measure of the amount of time spent watch-
ing television for a sample of adopted chil-
dren. They found that television watching was
predicted by the television-watching habits of
both the adopted and biological parents of the
children. Studies of the influence of television

watching or the influence of divorce on chil-
dren are difficult to interpret because the inde-
pendent variables (divorce, television watch-
ing) combine both environmental and genetic
influences. The effects of these variables on
a dependent variable may be attributable to
either genetic or environmental influences or
to some mixture of these two kinds of influ-
ences. They cannot, in the standard design that
is not genetically informative, be construed
as a direct influence of an environmental
variable.

Similar problems occur in various studies
of socialization experiences. Consider a study
of the amount of time that parents read to chil-
dren. The amount of time that a parent reads to
a child may be influenced by genetic charac-
teristics of the parent; it may be attributable to
a direct genetic link between parent and child
and may have little or nothing to do with the
experience of being read to. It is also possible
that genetic characteristics of children may in-
fluence the amount of time that parents read to
them. The experience of being read to in this
case may not be a significant influence on the
outcome variable; it is merely a variable that
is confounded with the genetic influences that
are causally related to the outcome variable.

There are several appropriate methodolo-
gies available that enable the investigator to
separate the influences of genetic and envi-
ronmental events on the covariance between
independent and dependent variables. The ap-
propriate designs are genetically informative
and may include some variant of adoption and
twin designs. For example, it is possible to
study genetic contributions to the covariance
between variables in a twin study by correlat-
ing the score of a twin on one variable with
the score of his or her cotwin on the sec-
ond variable. Comparisons of the correlations
across twin pairs for MZ and DZ twins may
be used to ascertain whether genetic and envi-
ronmental components of variance contribute
to the covariance between the variables. For
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example, Plomin and Bergeman (1991) re-
ported an analysis of the family experiences
of adult twins on the Moos Family Environ-
mental Scale, and they related this measure
to measures of Extraversion and Neuroticism.
They found that self-report indexes of the fam-
ily environment were heritable. The correla-
tion for MZ twins was higher than that for DZ
twins. The correlation between self-reports of
family environments and personality charac-
teristics was primarily attributable to common
genetic influences on both the family environ-
ment measure and the personality measures.
In a recent comprehensive study of children
reared in the same family who differed in their
degree of genetic resemblance, Reiss et al.
(1995) found that it was difficult to obtain ev-
idence for the influence of either shared or
nonshared environmental events on person-
ality. Individuals reared in the same family
reported both experiences that were similar
to those of their siblings and experiences that
were different from those of their siblings. Ge-
netic covariance analyses indicated that the
experiences that influenced personality were
often heritable and that the covariances be-
tween the measures of environmental events
and of personality were often mediated by
common genetic influences. Without the use
of genetically informed designs, it is difficult
to know whether the influence of an event
is an environmental influence or a genetic
influence.

Behavioral genetic research contributes to
an understanding of issues addressed by in-
dividual difference psychologists. It is also
the case that methodological issues that are
addressed in individual difference research
contribute to the development of methodolog-
ically sophisticated research designs in behav-
ioral genetics.

We have indicated that measures of person-
ality constructs derived from different meth-
ods of measurement may be more valid than
those based on a single method of measure-

ment. Most of the behavioral genetic studies
of adult personality have relied on self-report
measures of personality. Behavioral genetic
studies that use different methods of measure-
ment to obtain composite indexes of personal-
ity (heteromethod measures) should provide
better estimates of the magnitude of genetic
and environmental influences on personality
dispositions than could studies based solely
on self-report phenotypes. Several studies of
heteromethod composites obtain substantially
higher heritability than comparable studies
of the heritability of self-report measures of
personality dispositions. (Heritability is a sta-
tistical concept defined as the proportion of
variance in a phenotype in a particular popu-
lation that is attributable to genetic variation
present in the members of that population.)
For example, Heath, Neale, Kessler, Eaves,
and Kendler (1992) obtained self-report mea-
sures of Neuroticism and Extraversion from
twins and ratings of these characteristics by
cotwins. Composite indexes based on both
sources of information about these traits had
heritabilities of .73 and .63 for Extraversion
and Neuroticism, respectively. These values
were approximately 50% higher than those
obtained from analyses based solely on self-
report data. Kendler, Neale, Kessler, Heath,
and Eaves (1993) obtained self-report mea-
sures of depression and psychiatric ratings of
depression one year later from a large sample
of female twins. The heritability of depres-
sion based on either of their single methods
of measurement was close to .4. The heritabil-
ity of their combined index of depression was
.70. An important methodological implication
may be derived from these results. Person-
ality dispositions are hypothetical constructs
that are not equivalent to any single method
used to measure the construct. Heteromethod,
hetero-occasion indexes that attempt to as-
sess dispositions comprehensively provide
better estimates of the true-score value of the
disposition. The heritability of a phenotypic
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measure of a construct is not equivalent to the
heritability of the construct.

Longitudinal Behavioral Genetics

Behavioral genetic analyses using longitudi-
nal data can provide information about con-
tinuity and change in individual difference
characteristics. Longitudinal consistency and
change in individual difference characteris-
tics may be attributable either to genetic
or environmental influences. Plomin, Fulker,
Corley, and DeFries (1997) repeatedly ad-
ministered tests of intelligence from age 1
to age 16 to adopted children participating
in the Colorado Adoption Project. They ob-
tained correlations between the intelligence
test scores of the adopted children’s biolog-
ical parents and of their children adopted
shortly after birth. These correlations may be
contrasted with the correlations between the
adopted children’s intelligence and the intel-
ligence of their adopted parents. Plomin et al.
also used a control group of parents rearing
their biological children who were from the
same community and whose social class
background was comparable to that of the
adoptive and biological parents in the study.
Figure 14.5 presents the correlations in intel-

A
ve

ra
ge

d 
Pa

re
nt

-O
ff

sp
ri

ng
 C

or
re

la
tio

n

Age of Child

1.0

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

�0.1
2 4 6 8 10 12 14 16

Control
Adoptive

Figure 14.5 Parent-offspring correlations be-
tween parents’ IQ scores and children’s IQ scores.
SOURCE: Based on Plomin et al. (1997).

ligence between parent and child from age 1
to age 16. An examination of the figure indi-
cates that the correlations between biological
parents and their adopted children increases
as the children become older even though the
parents have no contact with the children. Cor-
relations between the intelligence test scores
of adopted parents and their adopted chil-
dren do not increase and remain close to zero.
Plomin et al. also found that the relationships
between the intelligence scores of biological
parents and their children were quite similar
for parents who reared their biological chil-
dren and for biological parents who did not.
Their results indicate that relationships be-
tween the intelligence of parents and chil-
dren are primarily determined by the genes
that they share rather than by the influence
of a shared environment. In addition, the cor-
relations between biological parents and their
children tend to be a monotonically increasing
function of age. These data imply that the her-
itability of intelligence tends to increase from
early childhood through late adolescence.
These data also imply that the determinants
of the phenotypic measure of intelligence are
not invariant over the early life span of an in-
dividual. Furthermore, these data imply that
changes in phenotypic measures of intelli-
gence over this period are those that are likely
to increase the congruence between pheno-
type and genotype. Thus, these data are infor-
mative with respect to the ways in which ge-
netic and environmental influences contribute
to change and continuity in intelligence. Ge-
netic influences are not invariant over the life
span. Longitudinal studies are needed to as-
certain changing influences of genotypes on
phenotypes over time.

Behavioral Genetic Analyses
of Taxonomic Relationships

Several methods may be used to assess ge-
netic and environmental influences on the
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relationship between measures. Twin data
may be used for this purpose. A correlation
may be obtained between the score of a twin
on one measure and the score of his or her
cotwin on a second measure. If the correla-
tion between measures is higher for MZ twins
than for DZ twins, it is possible to infer that
the relationship between the measures is ge-
netically influenced. These methods may be
used to analyze individual difference tax-
onomies. McCrae, Jang, Livesley, Riemann,
and Angleitner (in press) used a large sam-
ple of German and Canadian twins to study
genetic covariances among the scales that are
used to measure the Big Five. They also de-
rived measures of shared environmental co-
variances among the scales and measures of
nonshared environmental covariances. They
conducted a factor analysis of these covari-
ance matrices and found that the factor struc-
tures of genetic covariance matrices were
highly congruent with the factor structures
derived from conventional factor analyses of
these scales. By contrast, the factor analyses
of shared environmental covariances and non-
shared environmental covariances did not ob-
tain factors that were congruent with the con-
ventional phenotypic factor analyses of these
scales. The use of this methodology permits an
understanding of the origins of the taxonomic
structure of personality. Items that load on the
same factor may do so because they share a
common genetic origin.

Petrill (in press) reviewed studies of the ge-
netic and environmental covariances among
different measures of intellectual ability. His
analyses indicate that genetic influences
account for most of the phenotypic covari-
ance between different measures of intel-
lectual ability. These analyses provide an
explanation of the origins of the g factor in
the domain of intelligence. Various measures
of intellectual ability correlate positively be-
cause they are subject to common genetic
influences.

The studies just reviewed indicate that ge-
netically informed designs can provide infor-
mation about the foundations of taxonomic
structures of personality and intelligence. The
use of genetic covariance matrices derived
from genetically informed designs provides
a general methodology for studying cross-
domain relationships. It should be apparent
that analyzing taxonomic relationships using
genetically informed designs is not directed
solely toward the attempt to uncover the ge-
netic foundations of taxonomic relationships.
It is rather a general methodology that is de-
signed to test the contributions of different en-
vironmental and genetic components of vari-
ance to the structure of relationships among
different variables.

Genetic and Environmental Interactions

Behavioral genetic analyses may be used to
provide information about interactions be-
tween genetic and environmental influences.
Adoption studies may be used for this pur-
pose. Relationships between biological par-
ents and their children who were adopted
provide evidence of additive genetic influ-
ences (i.e., those that contribute to phenotypic
similarity for individuals who are genetically
similar). Relationships between adoptive par-
ents and their children provide evidence of
the influence of shared family environments
on phenotypes. Capron and Duyme (1989)
studied the influence of social class back-
ground on intelligence. They studied adopted
children whose biological parents exhibited
large differences in social class who were
subsequently adopted by parents who dif-
fered in social class. Their results suggest
that the adopted child’s IQ is related both to
the biological parents’ social class and to the
adopted parents’ social class. There are two
main effects in this study. The effects com-
bine additively, and there is no evidence of an
interaction.
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Rowe, Jacobson, and Van den Oord (1999)
used sibling and twin data to obtain infor-
mation about the influence of parents’ edu-
cational backgrounds on their children’s IQ.
They obtained correlations for full siblings
and half siblings reared in the same family.
They also obtained twin data for their sam-
ple. The twin and sibling correlations were
used to derive measures of the heritability of
scores on a measure of intelligence for chil-
dren whose parents differed in the amount of
education that they had received. They found
that the heritability of intelligence was rel-
atively invariant for individuals whose par-
ents had received moderate to high levels of
education. The heritability of intelligence of
children whose parents had little or no for-
mal education (i.e., they had not completed
elementary school) exhibited near-zero her-
itability. These data provide evidence for a
genetic X environmental interaction in the
determinants of intelligence. These data also
provide additional evidence that the determi-
nants of individual differences are not neces-
sarily invariant for individuals belonging to
different groups. Genetic and environmental
influences may differ for individuals in dif-
ferent social settings. Generalizations about
genetic and environmental influences derived
from samples occupying a particular social
position may not be valid for individuals
whose environmental exposures differ be-
cause of different social positions. Both the
Rowe et al. study and the Capron and Duyme
study provide data that permits a test of the
presence of genetic X environmental interac-
tion. The studies reach opposite conclusions
and provide evidence for an issue considered
in the discussion of group differences. Stud-
ies of individual differences may or may not
obtain results that are invariant for different
groups of individuals. Invariance (or its ab-
sence) is not a useful general assumption in
the study of individual differences. It should
be empirically investigated.

Molecular Genetics

Using molecular genetic approaches to iden-
tify DNA markers associated with person-
ality is another example of cross-domain
integration. Initially, the search for genetic ef-
fects on complex behavior assumed a major
gene model in which the presence of a sin-
gle gene was both necessary and sufficient to
produce a disorder. More recently, researchers
have hypothesized that quantitative traits such
as Sociability, or Neuroticism, or intelligence
are influenced by a number of genes. Each
gene may account for a small proportion of
phenotypic variance (Plomin & Caspi, 1999;
Plomin, Owen, & McGuffin, 1994).

The majority of the molecular genetic stud-
ies examining personality have employed an
allelic association methodology. First, the per-
sonality traits of unrelated individuals are
measured, and DNA is extracted. Differences
in personality are then correlated with al-
lelic differences in DNA markers. If this co-
variance is significant, then an association
between a DNA marker and personality is
present. This covariance is often called a
quantitative trait locus (QTL). Differences in
the allelic frequency at a particular locus on
the genome have an impact on the quantita-
tively distributed trait being studied.

Molecular genetic studies of personality
routinely examine hundreds if not thousands
of markers. As the number of markers in-
creases, the number of markers that are likely
to be discovered increases. Some of these
“discoveries” may be attributable to type I
statistical errors. Molecular genetic studies
are heavily dependent on replication, both
within and across research sites. Chorney et
al. (1998) examined allelic frequency between
37 DNA markers located on the short arm
of Chromosome 6 and general intelligence.
From this analysis, one marker—insulin-like
growth factor 2 (IGF2R)—was found to be as-
sociated with high versus average intelligence
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groups. Chorney et al. were able to replicate
these results in an independent sample. More
recently, markers on chromosome 4 have been
shown to be associated with general cogni-
tive ability in the same sample (Fisher et al.,
1999).

An association between Novelty Seeking
and Dopamine Receptor D4 (DRD4) was re-
ported in two separate studies (Cloninger,
Adolfsson, & Svrakic, 1996). In the first study,
Ebstein et al. (1996) found that DRD4 ac-
counted for 6% of the variance in Novelty
Seeking. In an independent study, Benjamin
et al. (1996) reported a significant associa-
tion between DRD4 and a measure of nov-
elty seeking. These results have since been
replicated and extended (e.g., Okuyama et al.,
1999; Tomitaka et al., 1999). Additionally,
DRD4 has been associated with other out-
comes associated with novelty seeking, such
as heroin use (Kotler et al., 1997; Li et al.,
1997). These positive results are offset by
studies that have failed to replicate the as-
sociation between DRD4 and novelty seek-
ing. Some of these studies have shown effects
in the expected direction (e.g., Jönsson et al.,
1997); others show no trends (e.g., Gebhardt
et al., 1997; Gelernter et al., 1997; Pogue-
Geil, Ferrell, Deka, Debski, & Manuck, 1998;
Vandenbergh, Zonderman, Wang, Uhl, &
Costa, 1997).

Although the profusion of mixed results
makes interpretation of these data difficult, it
is important to remember that the search for
DNA markers involves making thousands of
statistical analyses on very small effects. Dif-
ferences in sampling and measurement have
an important impact on the replication of
molecular genetic results. Individual genetic
influences are likely to have very small ef-
fects and to function in a nonlinear interactive
manner.

The number of molecular genetic studies
on complex human behavior is rapidly in-
creasing. In the not-too-distant future many

researchers will routinely use DNA markers
as a tool in their research. This is already hap-
pening in the study of Alzheimer’s disease.
Corder et al. (1993) found an association be-
tween apolipoprotein E (APOE-4), a gene on
Chromosome 19, and late-onset Alzheimer’s
disease. Since that time, many new stud-
ies of Alzheimer’s disease that routinely use
APOE-4 have been published.

How will this impact the personality re-
searcher (see Plomin & Caspi, 1999, for a
discussion of this issue)? We can only specu-
late. We assume that at some point in the fu-
ture a number of markers will be discovered
that will be related to personality and intelli-
gence. One obvious consequence of this dis-
covery will be the attempt to understand the
way in which genes influence phenotypes. At
one level, this analysis will lead to the de-
velopment of hypotheses about the biolog-
ical basis of personality. Indeed, biological
hypotheses may be used to direct the search
process for individual genes that are related
to psychological phenotypes. We can imagine
the development of an interdisciplinary study
of personality that will combine traditional
studies of personality, molecular genetics, and
biological psychology.

Although the integration of psychological
and biological concepts appears to be an ob-
vious consequence of the discovery of the
molecular genetic foundations of individual
differences, it may not be the only important
consequence of this discovery. The study of
behavioral genetics has led to a new under-
standing of the environment. The central role
of nonshared environmental influences and
the study of differences in the experiences
of siblings reared together are methodolog-
ical consequences of research in behavioral
genetics. Developments in molecular genetics
may enable the individual difference psychol-
ogist to study the environment in new ways.
We have no generally valid way of studying
discrepancies between phenotypes and geno-
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types because we can only infer the value
of the latter characteristic by observations of
the former. If it were possible to ascertain in-
dependently the value of a genotype without
examining a phenotype, it would then become
possible to study discrepancies between phe-
notypes and genotypes. If a person has a geno-
type that predisposes him or her to the devel-
opment of a particular phenotype and if the
person does not manifest that phenotype, it
should be possible to examine the specific en-
vironmental events that may have contributed
to the difference between the phenotype and
a genotype.

At present only one methodology per-
mits researchers to study differences between
genotypes and phenotypes: the study of differ-
ences in MZ twin pairs. It has been difficult
to ascertain the specific environmental events
that contribute to such differences among in-
dividuals who are genetically identical. For
example, we know that the concordance rate
for schizophrenia in MZ twins is .46, and
we know that MZ twins who are discordant
for schizophrenia are at equal risk of having
children who are schizophrenic (Gottesman
& Bertelsen, 1989). These results imply that
genotypes that predispose individuals to the
development of schizophrenia may not lead to
a phenotypic outcome of schizophrenia. The
precise environmental events that contribute
to the discordance between genotypes that
predispose an individual to schizophrenia and
to the development of the characteristic are
unknown. Advances in molecular genetics
may enable researchers to investigate the envi-
ronmental events that contribute to discrepan-
cies between phenotype and genotype in new
ways.

The anticipation of discoveries in molec-
ular genetics has led to one current method-
ology. Many behavioral geneticists who are
not conducting molecular genetic investiga-
tions obtain blood samples or buckle smears
from their subjects. These samples are stored

for future use. If and when more is known
about the molecular genetics of individual dif-
ferences, these samples may be analyzed in or-
der to relate previous findings to more recent
molecular genetic discoveries. This method-
ology should be widely applicable. Many in-
dividual difference researchers may want to
obtain buckle smears for future analysis in or-
der to relate contemporary findings to future
developments in molecular genetics. The pro-
cedure is neither costly nor invasive. The data
obtained in this way are easily stored. The
use of this methodology enables researchers
to relate their ongoing investigations to fu-
ture developments in the study of individual
differences.

A CONCLUDING COMMENT

Spearman (1904) was the first psychologist
to examine a matrix of correlations and to at-
tempt to ascertain the latent traits that might
contribute to the covariances among several
measures. In a companion paper to his em-
pirical study of the relationship between ex-
perimental indexes related to intelligence that
was published in the same issue of the Amer-
ican Journal of Psychology, Spearman noted
that observed correlations may provide inad-
equate indexes of the true relationships be-
tween measures. He introduced the correction
for attenuation as a way of modifying the ob-
tained correlation to provide a more accurate
index of the relationship between latent traits.
Spearman’s insights defined the central issue
in the diverse methodologies used in the study
of individual differences. The measures we
use presumably reflect some more general dis-
positional tendency of persons. These dispo-
sitional tendencies or latent traits are always
imperfectly indexed by any particular mea-
sure. The various methodologies that are used
are designed to permit the researcher to make
inferences about hypothetical constructs that
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are never identical with the measures that are
used to infer their values.

Spearman (1904) relied on a theoretical in-
sight to interpret the structure of relationships
he observed. If all of his correlations were
positive, diverse indexes of intelligence must
measure something that is common to all pos-
sible measures of intelligence. Contemporary
research also requires a clear integration of
theory and observations in order to reach ap-
propriate conclusions about individual differ-
ences. Cross-domain integration is based on
using theoretical constructs in both domains.
For example, behavioral genetic analyses of
personality constructs are based on theoreti-
cal assumptions about differences in the ge-
netic similarities of MZ and DZ twins. The
use of different indexes of the same construct
to form composite measures of latent traits
is based on a theoretical understanding of the
meaning of a construct. Path analyses and con-
firmatory analyses create an unprecedented
integration of theory and methodology. Al-
though methodologies may on occasion influ-
ence theories, we believe that the more funda-
mental and enduring influence is from theory
to methodology. Good methodology requires
good theory.
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CHAPTER 15

Electrophysiology of Attention

RISTO NÄÄTÄNEN, KIMMO ALHO, AND ERICH SCHRÖGER

INTRODUCTION: PSYCHOLOGICAL
THEORIES OF ATTENTION AND
THEIR TESTING BY USING
EVENT-RELATED POTENTIALS

Kahneman and Treisman (1984), in their ex-
cellent review on the behavioral-attention re-
search, divide this research into two main
categories: studies of selective attention and
divided attention. According to the authors,
selective-attention research was directed
mainly to issues involving resistance to dis-
traction and to determining the locus in the
processing chain beyond which relevant and
irrelevant stimuli are differently treated,
whereas divided-attention research sought the
limits of performance and the extent to which
different tasks can be combined without loss.
A further important difference was that
selective-attention studies dealt almost exclu-
sively with perceptual performance, whereas
perceptual-motor tasks were often employed
in studies of divided attention (Näätänen
1988). The early studies on selective atten-
tion exposed their subjects to high perceptual
load, and usually a large difference in perfor-
mance was established between selective- and
divided-attention instructions. These results,
mainly obtained in the dichotic-listening
paradigm introduced by Cherry (1953), gave
rise to the early-selection theories of selec-
tive attention (Broadbent, 1958, 1970, 1971).

Physically different (e.g., in the locus of ori-
gin or in pitch) types of concurrent stimu-
lus streams were described as arriving via
separate “channels,” of which any one could
be chosen for attention. Further, according
to these theories, stimuli arriving via the at-
tended channel were accepted for further pro-
cessing, whereas the processing of the other
stimuli was terminated at an early stage; thus
they received no, or only very little, semantic
processing.

It was soon noticed, however, that there
was in fact more unattended-channel process-
ing than was previously thought. For instance,
subjects often became aware of their own
names occurring in the to-be-ignored message
in selective-dichotic listening (Moray, 1959).
Such findings, referred to as the “break-
through of the unattended,” gave rise to the
late-selection theories of attention (Deutsch
& Deutsch, 1963; Norman, 1968), which
proposed that even unattended stimuli are
fully processed and reach long-term memory
(LTM) and that the role of attention only was
to control for access to response. Thus the
late-selection theories assumed much more
automaticity of information processing than
did the early-selection theories.

In the 1970s a shift in the predominant
paradigm occurred in attention research, and
the selective-set paradigm became the leader
(Kahneman & Treisman, 1984). Its two

601
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most popular versions were studies of search
(Schneider & Shiffrin, 1977; Shiffrin &
Schneider, 1977) and of the costs and benefits
of attention or expectations (Posner, 1978).
Both types of studies tended to view the hu-
man subject to a large extent as an auto-
matic processor, but this might, according
to Kahneman and Treisman, result from the
fact that performances investigated under the
selective-set paradigm are considerably eas-
ier than those of the previously predominant
filtering paradigm. This may explain why
results from the selective-set paradigm natu-
rally favor views proposing much automatic-
ity and late selection in information process-
ing. Indeed, after reviewing a large number
of studies, Kahneman and Treisman con-
cluded that there is, in fact, no compelling
evidence for completely automatic perceptual
processing: “All these results are surprising
within a framework that describes informa-
tion processing in terms of automatic access
to nodes in LTM. Processing that might be ex-
pected to be automatic was . . . shown to de-
pend on attention” (Kahneman & Treisman,
p. 54).

Consequently, it is evident that the issue
of the degree of automaticity is central in the
field, as the greater the extent to which infor-
mation processing is automatic, the less there
is to be explained by attention. Kahneman and
Treisman (1984) distinguished three levels of
automaticity:

1. Strong automaticity. An act of perceptual
processing is neither facilitated by focus-
ing attention to a stimulus, nor impaired by
diverting attention from it.

2. Partial automaticity. An act is normally
completed even when attention is diverted
from the stimulus, but can be facilitated by
attention.

3. Occasional automaticity. An act generally
requires attention but can sometimes be
completed without it.

The extent and quality of automatic process-
ing is very hard to determine reliably with
behavioral means, for such measurements
necessarily are indirect and “off-line,” and
therefore usually quite inaccurate. Further-
more, these measurements tend to call the
subject’s attention to stimuli whose automatic
processing should be the object of the study,
which of course contaminates the measure-
ment results. In contrast, neurophysiological
activity underlying stimulus processing oc-
curring in the absence of attention (i.e., auto-
matically) can be studied without this contam-
ination by recording event-related potentials
(ERPs) of the brain that are elicited by the to-
be-ignored stimuli. Therefore, ERPs may pro-
vide a data basis for making inferences with
regard to the extent and quality of automatic
processing. Moreover, when ERPs to ac-
cepted and rejected stimuli are compared with
one another, they may also elucidate the mech-
anisms of attentional stimulus selection and
rejection. Such comparisons can, for example,
provide the earliest moment in time at which
the neurophysiological processes elicited by
attended and unattended stimuli start to de-
part from each other. Such data naturally are
of prime importance particularly in deciding
between the early- and late-selection theories.

In this chapter, we first examine ERP work
on auditory attention, starting with studies
aimed at determining the extent and quality
of the processing that occurs in the absence of
attention, in order to provide a baseline against
which the effects of attention can be evaluated.

ATTENTION IN THE AUDITORY
MODALITY

Auditory Processing in the
Absence of Attention

When a sound is presented, it elicits in the
human auditory system an afferent activation



pashler-44093 book December 18, 2001 10:39

Attention in the Auditory Modality 603

pattern that carries specific stimulus informa-
tion toward higher mechanisms. This pattern
travels through the ascending auditory path-
way, rapidly changing in time as new afferent
neurons are activated while previously acti-
vated ones return to their preactivated state.
Before the sound-initiated afferent activation
pattern reaches the primary auditory cortex,
a complex set of subcortical processes is ac-
tivated, carrying information on sensory fea-
tures of the sound, such as its frequency (see,
e.g., Greenberg, Marsh, Brown, & Smith,
1987; Horst, Javel, & Farley, 1986) and spatial
locus of origin (Masterton, 1992).

In the subcortical part of the ascending
auditory pathway, the excitability of the neu-
rons fully recovers almost immediately after
the afferent volley passes through, making
these neurons ready for the next stimulus. This
is indicated by the rate-of-presentation ef-
fects on the sound-induced electric potentials
originating from the neuronal populations of
the ascending auditory pathway. These ERPs
are products of the synchronous activation of
large neuronal populations time-locked to the
eliciting stimulus event. Because the ampli-
tude of ERPs is typically much smaller than
that of the other ongoing electric activity of the
brain, very many responses usually have to be
averaged to delineate an ERP from the rest of
the electroencephalogram (EEG). The aver-
aging procedure is illustrated in Figure 15.1.

Brainstem auditory evoked potentials1

(BAEPs; Jewett, 1970) are a sequence of re-
sponses originating from the brainstem to a
discrete acoustic stimulus, typically recorded
as the electric potential difference between an
electrode placed on the vertex and another at-
tached to the earlobe or the mastoid. BAEPs
are generated in structures ranging from the

1Traditionally, obligatory short-latency electric re-
sponses evoked by sensory stimulation are labeled EPs,
whereas later components usually associated with com-
plex psychological processes are termed ERPs.

Figure 15.1 The averaging procedure.
NOTE: Top trace: Vertex (Cz electrode) potential of
one subject averaged over trials 17–32 in a visual
choice-reaction time (choice-RT) task in which S1

denotes a warning stimulus and S2 an imperative
stimulus, either an H requiring a left-hand press
or an X requiring a right-hand press. The S1-S2 in-
terval was 1 s. Lower traces: Single vertex records
resulting in the averaged potential presented by the
upper trace. Negativity at the vertex relative to a
reference electrode at the left ear is represented by
an upward deflection.
SOURCE: From Gaillard and Näätänen (1973).
Copyright © 1973 by the North-Holland Publi-
shing Company. Reprinted with permission.

[Image not available in this electronic edition.]
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auditory (8th) nerve to the thalamus within the
first 10 ms from stimulus onset (for a review,
see Legatt, Arezzo, & Vaughan, 1988). They
show no significant peak-latency changes as
a function of the stimulus rate with rates be-
low 10 Hz (Picton, Stapells, & Campbell,
1981), which indicates an almost instanta-
neous recovery of the excitability of the neu-
ronal circuits generating these responses. Fur-
thermore, Picton et al. (1981) found that the
peak amplitude of wave V, the predominant
aspect of the BAEP, remains relatively stable
when the stimulus-onset asynchrony (SOA)
exceeds 30 ms. In addition, BAEPs appear to
manifest no overall decrement over time; their
amplitudes are not reduced during stimulus
sequences lasting as long as even 1 hr (Salamy
& McKean, 1977). Also, BAEPs recorded
in sleep are similar to those obtained during
wakefulness except for their prolonged laten-
cies due to decreased body temperature during
sleep (Marshall & Donchin, 1981).

The primary auditory cortex is reached by
the afferent volley in about 10 ms from stim-
ulus onset, judging from the elicitation of
the earliest sound-initiated electric response,
a small surface-negative potential wave, in
the human auditory cortex. This initial cor-
tical potential deflection is followed by two
more prominent waves, a positivity at 15 ms
and a further negativity at 19 ms (Vaughan
& Arezzo, 1988). These waves—recorded
with intracranial electrodes near Heschl’s
gyrus, and thus the primary auditory cortex,
by Celesia and Puletti (1971) and Celesia
(1976)—correspond in their timing to the
scalp-recorded deflections No, Po, and Na,
the earliest potential deflections belonging to
the wave complex called the auditory middle-
latency response (MLR; Picton et al., 1974).
The MLR refers to the sequence of fast cor-
tical electric responses measurable from the
scalp within approximately 10 ms to 40 ms
from stimulus onset, the ensuing slower po-
tentials being termed the long-latency re-

sponses (LLRs). The individual deflections
are denoted by their polarity (N and P for neg-
ative and positive, respectively, and usually
measured at the vertex) and a unique letter
(MLRs) or number (LLRs). Figure 15.2 illus-
trates the auditory ERP in three different time
scales.

The first LLRs are a positive reponse P1
peaking at about 50 ms and a major nega-
tive response N1 peaking at about 100 ms
from stimulus onset; the latter has played a
particularly important role in electrophysio-
logical studies of selective attention, to be re-
viewed later. The N1 wave represents no uni-
tary stimulus-evoked process originating from
a localized set of neuronal elements but rather
is a product of several simultaneously active
neuronal generators. Besides the auditory cor-
tical source (the supratemporal component
peaking at about 100 ms from stimulus onset;
Vaughan & Ritter, 1970; for a further distinc-
tion between the N1 subcomponents gener-
ated in the supratemporal plane, see Loveless,
Levänen, Jousmäki, Sams, & Hari, 1996;
Lü, Williamson, & Kaufman, 1992; Sams,
Hari, Rif, & Knuutila, 1993), the N1 wave
receives contributions from the lateral tempo-
ral lobe and perhaps also from the frontal lobe
(for a review, see Näätänen & Picton, 1987;
see also Alcaini, Giard, Thevenet, & Pernier,
1994; Giard et al., 1994b; Halgren et al.,
1995a, 1995b; Richer, Alain, Achim, Bouvier,
& Saint-Hilaire, 1989; Scherg, Vajsar, &
Picton, 1989).

The building blocks of the ERP are called
components. An ERP component is defined
as “the contribution to the recorded waveform
of a particular generator process” (Näätänen
& Picton, 1987, p. 376). Because of the over-
lap of the N1 subcomponents (the components
summed in the observed N1 wave), it is not
easy to measure separately the one originat-
ing from the supratemporal plane. However,
by measuring the N1 from the mastoid re-
gion, one gets an undistorted estimate of the
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Figure 15.2 The brainstem (top), middle-latency (middle), and long-latency (bottom) deflections of
the auditory ERP (recorded between the vertex and the right mastoid) to a 60-dB sensation level (SL)
click stimulus presented to the right ear at a rate of 1 per s.
NOTE: Relative negativity at the vertex is represented by an upward deflection. Note the different time
scales and amplitude calibrations. Each tracing represents the average of 1,024 individual responses.
SOURCE: From Picton (1980). Copyright © 1980 by Wiley. Reprinted with permission.

supratemporal subcomponents because only
this N1 subcomponent reverses its polarity
(i.e., appears as a positive deflection) at the
mastoids when the common reference elec-
trode is attached to the nose. (Electric brain
potentials are measured as the voltage be-
tween two scalp locations. The term com-
mon reference denotes the electrode relative to
which the potentials picked up by other elec-
trodes are measured.) This polarity reversal of
the supratemporal N1 subcomponent is due to
the fact that the pyramidal neurons, the major
cortical source of ERPs, are oriented approx-
imately vertically in the supratemporal plane
and therefore generate electric fields with
opposite polarities at recording sites above
the supratemporal plane (e.g., at the central
midline areas of the scalp) and below the
supratemporal plane (e.g., at the mastoids),

whereas the voltage is approximately 0 µV at
the level of the supratemporal plane (e.g., at
the nose).

Another means of obtaining a reliable es-
timate of the supratemporal N1 component
is to measure the magnetoencephalographic
(MEG; the measurement of magnetic field
changes resulting from electric brain activity)
equivalent of the supratemporal N1 compo-
nent, the N1m. Because of the physical prop-
erties of the magnetic fields and the orien-
tation of the pyramidal cells in the human
supratemporal auditory cortex generating
them, MEG recordings from sensors placed
over the scalp covering the supratemporal area
of the brain reveal the electromagnetic activ-
ity of the auditory cortex with only a mini-
mal amount of contribution from other areas
(for reviews, see Hari, 1990; Näätänen,
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Ilmoniemi, & Alho, 1994). However, mag-
netic measurements do not pick up the radial
component of the electric brain activity (i.e.,
electric changes with a direction perpendic-
ular to the surface of the scalp). Therefore,
a part of the supratemporal N1 component is
absent from MEG recordings, as all supratem-
poral pyramidal neurons are not oriented ex-
actly tangentially to the skull (cf. Scherg et al.,
1989).

There is evidence for the presence of
stimulus-specific sensory information in the
neuronal circuits generating the supratem-
poral N1. For example, the N1m shows a
tonotopic organization in the human auditory
cortex such that when sound frequency is in-
creased, the estimated locus of origin of the
N1m moves deeper, indicating that at least
partially different neuronal elements of the
N1m respond to tones of different frequencies
(Hari & Mäkelä, 1986; Pantev et al., 1988;
Romani, Williamson, & Kaufman, 1982).
These data therefore suggest that some of the
neuronal populations generating the supra-
temporal N1 (N1m) have narrow receptive
fields with regard to stimulus frequency, thus
being capable of precise stimulus encoding.

Electric data, too, implicate the involve-
ment of stimulus-specific neuronal circuits in
N1 generation. For example, consistent with
the MEG data just reviewed, the N1 scalp to-
pography varies with stimulus frequency; the
topography for higher tones is anterior to that
for lower tones (Bertrand, Perrin, Echallier,
& Pernier, 1988; Näätänen, Teder, Alho, &
Lavikainen, 1992; Woods, Alho, & Algazi,
1991).

However, a good deal of the neuronal ele-
ments underlying the supratemporal N1 have
a wide receptive field (i.e., respond to a large
variety of different sounds), therefore being
incapable of encoding stimulus features to
an accuracy strictly preserving the individual-
ity of a stimulus (Näätänen, 1990; Näätänen
& Picton, 1987). Consistent with this, Hari

et al. (1987) have shown that very differ-
ent sounds elicit an N1m originating from
the same or approximately the same cere-
bral locus. Furthermore, the supratemporal-
N1 refractoriness (lasting at least 10 s for the
N1m, according to Hari et al., 1987; see,
however, Lü et al., 1992) is widely gener-
alized; that is, even the responses to stimuli
that are very different from the repeated stim-
ulus are strongly attenuated (Butler, 1968;
Näätänen et al., 1988). These and other con-
verging results (for a review, see Näätänen &
Picton, 1987) suggest that the major part of
the supratemporal N1 neuronal elements is
involved in transient detection, which pro-
vides information about stimulus onsets and,
for stimuli of longer durations, also about off-
sets (see Näätänen 1992; Näätänen & Picton,
1987; Parasuraman & Beatty, 1980), rather
than about specific stimulus features. Thus,
the activation of these neurons is probably as-
sociated with attention switch to the outcome
of the preceding preattentive (i.e., subjectively
unnoticed) processing of the same stimulus
(Näätänen, 1986, 1990, 1992). More recently,
however, Giard et al. (1994b) described a
frontal N1 subcomponent that, according to
them, might be a better candidate than the
auditory-cortex-generated N1 subcomponent
for this attention-switching function.

All the ERP components just discussed are
called exogenous or obligatory components
because they are elicited even in the absence of
attention (although, as discussed later, some
of these components might be modulated by
attention). Therefore, one might ask whether
these ERPs permit some conclusions regard-
ing the quantity and quality of the unattended-
channel processing. Unfortunately, the an-
swer is negative: Even though many of
the exogenous components are not at all
affected—or only to a quite modest extent—
by attention, this does not imply that the sen-
sory processing of unattended stimuli would
not be affected by the withdrawal of attention
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from them. This is because the relationship of
all these ERP components to sensory informa-
tion extracted by the auditory system from the
stimulus is unclear; these components usually
serve only as an index of stimulus detection,
not as an index of the accuracy of processing
and discrimination of different auditory stim-
ulus features (Näätänen & Winkler, 1999).

Fortunately, there is one component in
the ERP that is highly informative about
the actual processing of unattended input.
This component is the mismatch negativ-
ity (MMN), isolated from the so-called N2
wave or the N2-P3a wave complex (Ford,
Roth, & Kopell, 1976; Snyder & Hillyard,
1976; Squires, Squires, & Hillyard, 1975) by
Näätänen, Gaillard, and Mäntysalo (1978).
The MMN data suggest, as is reviewed later,
that physical sound features of even unat-
tended stimuli might be fully processed at
least under most attention conditions.

The MMN, elicited when some regular-
ity in auditory stimulation is violated by a
change (deviant stimulus), can be best ob-
served when the subject’s attention is directed
away from this stimulus sequence. Otherwise,
deviant stimuli elicit, besides the MMN, an-
other negative component partially overlap-
ping the MMN, the N2b (Fitzgerald & Picton,
1983, Näätänen, Simpson, & Loveless,
1982; Sams, Alho, & Näätänen, 1984; Sams,
Paavilainen, Alho, & Näätänen, 1985b; for a
review, see Näätänen & Gaillard, 1983). The
MMN can be best evaluated from the differ-
ence wave obtained by subtracting the ERP
of the standard (repetitive) stimulus from that
of the deviant stimulus. Figure 15.3 illustrates
an MMN elicited by small frequency changes.
A problem, of course, is posed by the possi-
ble effects of stimulus change (activating new
afferent elements) on the generator processes
of the exogenous N1 and P2 components. For-
tunately, these effects are usually quite small
when stimulus change is not large. Further-
more, they occur at the same latency as the

Figure 15.3 The mismatch negativity (MMN).
NOTE: Top: Grand-average ERPs to standard stim-
uli of 1000 Hz (thin line) and deviant stimuli
(thick line) of 1004, 1008, 1016, and 1032 Hz. In
each block, 80% of stimuli were standard stimuli
and 20% were deviant stimuli in a random order
(one type in a block). Bottom: The corresponding
difference waveforms obtained by subtracting the
standard-stimulus ERP from the deviant-stimulus
ERP.
SOURCE: From Sams, Paavilainen, Alho, and
Näätänen (1985b). Copyright © 1985 by Elsevier
Science Publishers, Ireland. Reprinted with per-
mission.

respective components in response to the stan-
dard stimulus (Näätänen & Picton, 1987). For
further issues and details of MMN measure-
ment, see Schröger (1998).

[Image not available in this electronic edition.]
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Figure 15.4 Grand-average ERP from 4 different electrodes along the midline to standard stimuli of
80 dB SPL (thin lines) and to deviant stimuli of lower intensities (thick lines) as indicated on the left.
NOTE: Weaker-intensity deviants elicit larger and earlier mismatch negativities (MMN).
SOURCE: From Näätänen, Paavilainen, Alho, Reinikainen, and Sams (1989). Copyright © 1989 by
Elsevier Science Publishers, Ireland. Reprinted with permission.

That a stimulus change is essential in
MMN elicitation is illustrated in Figure 15.4.
In this experiment (Näätänen, Paavilainen,
Alho, Reinikainen, & Sams, 1989), the stan-
dard stimulus was of an intensity of 80 dB
SPL, and in different blocks the deviant stim-
ulus (p = 0.1) was of an intensity of 57, 70,
77 (intensity decrements), and 83, 90, or 95
(intensity increments) dB SPL. The subject
was instructed to read a book and ignore
the sequence of auditory stimuli presented at
short constant intervals. The response to the
77-dB stimulus shows two consecutive nega-
tive waves, of which the earlier may be inter-
preted as the (supratemporal) N1 component
and the later as the MMN. When the intensity
of the deviant stimulus is further reduced, the
MMN becomes larger and earlier, overlapping
the N1.

The increase of the response amplitude
when stimulus energy is decreased can be at-
tributed only to the increased difference be-
tween the deviant and standard stimuli; that
is, the MMN is a response to the relation
(difference) between the present stimulus and
the previous stimuli rather than to the present
stimulus per se. If we deliver deviant stimuli
in their temporal positions but omit the inter-
vening standards, then no MMN is elicited
(Figure 15.5). This means that, unlike for
N1, which responds mainly to stimulus onsets
and offsets, MMN elicitation requires stimu-
lus change; that is, the MMN can be used as
a probe in studying the properties of the neu-
ral sensory-memory traces formed by sound
stimuli.

The MMN can be elicited also by other
types of changes in auditory stimulation; in

[Image not available in this electronic edition.]
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Figure 15.5 Frontal (Fz electrode) and vertex (Cz
electrode) ERPs of two subjects to 80-dB standard
stimuli (thin lines), 57-dB deviant stimuli (thick
lines), and to identical 57-dB stimuli (dashed lines)
when presented with no standards (without chang-
ing the ISIs between the 57-dB stimuli).
SOURCE: From Näätänen, Paavilainen, Alho,
Reinikainen, and Sams (1989). Copyright © 1989
by Elsevier Science Publishers, Ireland. Reprinted
with permission.

fact, it can be elicited by any discriminable
change in acoustic input. Furthermore, nu-
merous studies (e.g., Lang et al., 1990; for a
review, see Näätänen, 2001) established that
the MMN provides an index of the percep-
tual discrimination accuracy such that if an
MMN is elicited when one stimulus is used
as the standard and the other as the deviant,
then the two stimuli can be behaviorally dis-
criminated (Kraus et al., 1996; Amenedo &
Escera, 2000). Consequently, the MMN can
serve as an objective measure of perceptual
discrimination and thus of the accuracy of the
processing of the different features of auditory
stimulation.

Therefore, several studies have used the
MMN in evaluating the accuracy of sensory

processing in the unattended channel. For
example, Sams et al. (1985b) showed that
an MMN is elicited by occasional frequency
changes in a repetitive train of auditory stim-
uli even when the subject is attending to vi-
sual stimuli (Figure 15.3). Furthermore, Alho,
Woods, Algazi, and Näätänen (1992) found
that the MMN to slightly higher-pitched de-
viant tones in an auditory stimulus sequence
was of very similar amplitude during easy and
difficult visual discrimination tasks that de-
manded very different amounts of attention.
However, this MMN was larger in amplitude
when subjects attended to auditory stimuli
than when they attended to visual stimuli (see
also Woods, Alho, & Algazi, 1992). In addi-
tion, Trejo et al. (1995) found that the MMN
amplitude for a frequency change in a bin-
aurally presented repetitive tone was consid-
erably larger when subjects attended to this
tone sequence than when they attended to a
concurrent narrative. However, a number of
dichotic studies with an instruction to attend
to stimuli in a designated ear found MMNs
of very similar amplitudes to occasional fre-
quency changes in both the attended and
unattended ears (Alho, Sams, Paavilainen,
Reinikainen, & Näätänen, 1989; Näätänen,
Paavilainen, Tiitinen, Jiang, & Alho, 1993;
Paavilainen, Tiitinen, Alho, & Näätänen,
1993; see Figure 15.6).

In contrast, in the dichotic studies of
Woldorff, Hackley, and Hillyard (1991) and
Näätänen et al. (1993), the MMN elicited by
occasional decrements in the intensity of unat-
tended sounds was considerably attenuated in
amplitude (but was not totally abolished) rel-
ative to that for attended sounds. Moreover,
more recently, Woldorff, Hillyard, Gallen,
Hampson, and Bloom (1998) demonstrated
the attenuation of the intensity-reduction
MMNm (the magnetic equivalent of the
supratemporal component of the MMN) by
the withdrawal of attention from this stimulus
channel under dichotic-listening conditions.

[Image not available in this electronic edition.]
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Figure 15.6 Grand-average difference waves from 4 different electrodes along the midline showing the
MMN to the target (continuous lines) and nontarget (broken lines) infrequent stimuli in selective dichotic
listening.
NOTE: Frequent (80%) 75-dB (SPL) and infrequent (20%) 60-dB (SPL) tones were presented in random
order to the left and right ears. The subject’s task was to count silently the number of infrequent tones
(targets) delivered to the designated ear. The difference waves were obtained by subtracting the ERP to
the standard tones from that to the infrequent tones delivered to the same ear.
SOURCE: From Alho, Sams, Paavilainen, Reinikainen, and Näätänen (1989). Copyright © 1989 by the
Society for Psychophysiological Research, Inc. Reprinted with permission.

Nevertheless, not one of the studies conducted
to date casts any doubt on MMN elicitation
even by a slight sound change in the absence of
attention. Perhaps the strongest evidence for
the automaticity of the MMN was, however,
provided by an MMN recorded in comatose
patients to changes in frequency (Kane, Curry,
Butler, & Gummins, 1993; Kane et al., 1996)
and duration (Fischer et al., 1999; Morlet,
Bouchet, & Fischer, 2000).

Woldorff et al. (1991, 1998), however, in-
terpreted their MMNm amplitude reduction
for the unattended channel in terms of at-
tenuated sensory processing in the absence
of attention. Questioning this interpretation,
Näätänen (1991) suggested that it would be
important to determine whether attention af-
fects only the MMN amplitude or also the
threshold of the MMN-generator activation.
If this threshold is not affected (as is the
case if MMN is not abolished by the with-
drawal of attention, even for slight stimu-
lus changes), then an attentional reduction
of the MMN amplitude cannot be taken, ac-
cording to him, as suggesting that the pro-
cessing of sensory information is deteriorated

in the unattended channel, because even a
very weak MMN-generator process impli-
cates differential antecedent processing (and
encoding to sensory memory) of the stan-
dard and deviant stimuli (i.e., apparently the
full sensory processing in the unattended
channel).

In conclusion, ERPs have opened an un-
precedented view to auditory sensory process-
ing in the absence of attention, suggesting
that the accuracy of sensory processing is not
decreased by the withdrawal of attention, at
least under most attention conditions. These
data further show that not even consciousness
is needed for sensory discrimination (at least
of sounds widely differing from each other),
judging from MMNs recorded from comatose
patients.

Involuntary Attention to Auditory Stimuli

The Mismatch Negativity and Involuntary
Attention Switching

As already reviewed, the MMN is elicited by
deviant auditory stimuli or events occurring

[Image not available in this electronic edition.]
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among regularly repeating stimuli or events
even when the listener’s attention is directed
elsewhere (Näätänen, Gaillard, & Mäntysalo,
1978; for recent reviews, see Näätänen &
Alho, 1997; Näätänen & Winkler, 1999;
Schröger, 1997). It appears that this gener-
ator process has a central initiating role in the
orienting response to changes in the acous-
tic environment (Sokolov, 1975; Sokolov,
Spinks, Lyytinen, & Näätänen, in press). This
is supported by results showing that responses
of the autonomic nervous system (ANS)
associated with involuntary orienting of at-
tention (heart-rate deceleration and the skin-
conductance response) tend to be elicited by
MMN-eliciting stimulus changes (Lyytinen
et al., 1992). Furthermore, MMNs, and es-
pecially those to wider stimulus changes, are
often accompanied by a positive P3a compo-
nent (Figure 15.3; for a combined ERP and
MEG study, see Alho et al., 1998) that was
proposed by Squires et al. (1975) as being
an ERP sign of the involuntary orienting of
attention.

In addition to changes in ongoing audi-
tory stimulation, sound onsets, and especially
those after a relatively long silent period, may
involuntarily capture our attention. As shown
in Figure 15.5, such sounds do not elicit an
MMN but evoke an N1 deflection, which is
considerably larger in amplitude than that
elicited by sounds appearing at faster rates
(see also Hari et al., 1982; Näätänen & Picton,
1987; Korzyukov et al., 1999; Kropotov et al.,
2000). Moreover, the N1 is also markedly en-
hanced in response to MMN-eliciting, widely
deviant sounds, for instance, by tones devi-
ating by an octave from the repeating tones
(Scherg et al., 1989) or by complex novel
sounds (e.g., Alho et al., 1998; Escera et al.,
1998; see Figure 15.7) occurring in a sequence
of repetitive tones. The N1 enhancement to
such widely deviant sounds is probably ex-
plained by the fact that these sounds acti-
vate frequency-specific, auditory-cortex neu-

ron populations that are in a nonrefractory
state because they were not activated by the
preceding sounds (Butler, 1968). The large N1
to sounds occurring after a longer silent pe-
riod is enhanced partly for the same reason
(Korzyukov et al., 1999), although this N1
also appears to get contributions from
modality-nonspecific generators outside the
auditory cortex (Alcaini et al., 1994; Hari
et al., 1982; Näätänen & Picton, 1987). Be-
cause of the feature-specific (e.g., frequency-
specific) refractoriness of the N1—as well as
the dependence of the N1 amplitude on the
time from the previous stimulus onset, stim-
ulus energy and rise time, and, to some ex-
tent, on some other stimulus features (e.g.,
frequency and location) it is highly impor-
tant that the researcher does not assume that
a negative ERP response to a deviant sound is
caused solely by the MMN unless contribu-
tions from the N1 generators can be ruled out.
In his model of auditory attention, Näätänen
(1990) proposed that the auditory N1 reflects
involuntary attention to the onsets of any
events, especially new ones, in the acoustic
environment. This proposal is supported by
findings that novel sounds that elicit a large N1
also elicit a large P3a (Figure 15.7), indicat-
ing their attention-catching nature (see, e.g.,
Alho et al., 1998; Escera et al., 1998; Woods,
1990). An experimental technique for disen-
tangling the refractoriness effects (N1) from
the memory-comparison effects (the genuine
MMN) has been proposed by Schröger and
Wolff (1996) for the location MMN and by Ja-
cobsen and Schröger (2001) for the frequency
MMN. The basic idea is that the state of re-
fractoriness is controlled in a separate control
block that must be conducted in addition to
the oddball block consisting of frequent stan-
dard stimuli and infrequent deviant stimuli.
The probability of each stimulus in the con-
trol block equals the probability of the deviant
stimulus in the oddball block. If p for the de-
viant stimulus is 0.10 in the oddball block,
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Figure 15.7 Grand-average (10 subjects) ERP difference waves at different scalp locations obtained
by subtracting the ERP to repeating standard tones from those to slightly higher, deviant tones and to
complex, novel sounds that infrequently replaced the standard tone.
NOTE: The auditory stimuli were presented to subjects concentrating on watching a silent movie. The
difference waves for deviant tones show a mismatch negativity (MMN) that is largest over the frontal
scalp, followed by a small positive P3a response, whereas the difference waves for novel sounds show a
negative response, caused by the MMN and the enhanced N1 to these sounds, followed by a large positive
P3a response.
SOURCE: From Escera et al. (1998). © 1998 by the Massachusetts Institute of Technology.

then 10 different stimuli are presented (each
with p = 0.10) in the control block. Further-
more, two of these stimuli are identical to the
deviant and standard stimuli of the oddball
block, whereas the others should be physi-
cally more distant from the deviant stimulus
than are the standard and deviant stimuli of
the oddball block from each other. With this

protocol, the state of refractoriness cannot be
higher for the control stimulus (which is phys-
ically identical to the deviant stimulus of the
oddball block) than that for the deviant stim-
ulus in the oddball block. Then the deviant-
control difference wave yields the minimum
genuine MMN effect (cf. Näätänen & Alho,
1997).

[Image not available in this electronic edition.]
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Measurements of Event-Related Brain
Potentials and Behavior in the Attention-
Switching-to-Stimulus-Change Paradigm

A number of recent studies have been aimed
at determining the role of the MMN in the
initiation of involuntary attention switching
apparently indexed by the P3a. In a paradigm
recently developed by Escera et al. (1998),
subjects are instructed to discriminate be-
tween visually presented odd and even num-
bers, or between numbers and letters, and
to press the corresponding response button
as fast and accurately as possible. Further,
a task-irrelevant auditory stimulus is deliv-
ered shortly before each visual stimulus (e.g.,
300 ms from onset to onset). In most cases,
this auditory stimulus is a repetitive stan-
dard tone that is, however, infrequently re-
placed by a slightly higher deviant tone or
by a widely deviant novel sound (e.g., tele-
phone ringing, thunder, or the starting of a
car engine). In such conditions, the reaction
time (RT) to the visual stimuli following de-
viant tones and novel sounds was prolonged
by about 5 ms and 20 ms, respectively, rela-
tive to the RT to the visual stimuli preceded
by a standard tone (Alho et al., 1997; Escera
et al., 1998; Jääskeläinen et al., 1996). The hit
rate (HR), in turn, was similar after both the
standard tones and the novel sounds but de-
creased by about 2% after the occurrence of a
deviant tone. This decrease resulted from an
increased number of wrong button presses in
the visual choice RT task. The ERPs recorded
by Escera et al. (1998) showed an MMN to
the deviant tones followed by a small P3a.
Novel sounds, in turn, elicited an MMN and
a large P3a in addition to an enhanced N1.
The authors interpreted their results as sup-
porting the proposed roles of N1 and MMN
generators in initiating involuntary attention
switching.

However, the distracting effects of the de-
viant tones and novel sounds on the visual task
performance reported by Escera et al. (1998)

and Jääskeläinen et al. (1996) might not in-
dicate truly involuntary attention switching
from the visual task to auditory stimuli; per-
haps subjects covertly attended to the task-
irrelevant auditory stimuli, which may then
have served as warning cues for the subse-
quent task-relevant visual stimulus (although
the type of visual stimulus could not be pre-
dicted from the type of auditory stimulus).
This was indicated by the shorter RT in the
main experimental condition of Escera et al.
(1998) compared with the RT in their control
condition, in which the task-relevant visual
stimuli were presented alone (i.e., without the
preceding auditory stimuli).

In another related study (Alho et al., 1997),
attempts were made to withdraw attention
from the task-irrelevant auditory stimuli (ei-
ther a standard tone or a deviant tone; no novel
sounds were presented) by presenting simul-
taneously with each tone a visual warning
stimulus that informed the subject of whether
this trial would be a “go” trial (i.e., a visual
task stimulus requiring discrimination and re-
sponding will follow) or a “no-go” trial (i.e.,
no visual task stimulus will follow). Thus, in
this experiment the auditory stimulus did not
predict the occurrence of a subsequent task-
relevant visual stimulus, whereas the coincid-
ing visual warning stimulus did. Therefore, it
is unlikely that subjects covertly attended to
the auditory stimuli that gave no support for
the visual task. The deviant tones nevertheless
elicited an MMN and had distracting effects
on the visual task similar to those found by
Escera et al. (1998) and Jääskeläinen et al.
(1996). Moreover, the deviant tones were fol-
lowed by the attenuation of the occipital N1
deflection in response to the succeeding vi-
sual task stimuli, presumably indicating that
less attention was paid to these visual stim-
uli than when they were preceded by stan-
dard tones (cf. Mangun and Hillyard, 1991).
These results support the involuntary nature
of the engagement of attention by the deviant
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and novel sounds also in the related studies
of Escera et al. (1998) and Jääskeläinen et al.
(1996).

Distraction effects caused by MMN-
eliciting sound changes were also found in
dichotic selective-attention tasks. The dis-
crimination of the target sounds in the to-be-
attended ear (channel) tended to be deteri-
orated when they were preceded by deviant
or novel sounds in this or in the opposite ear
(Schröger, 1996; Woods, 1992; Woods et al.,
1993b).

Performance in an auditory discrimination
task may also be distracted by task-irrelevant
changes in the target sound itself. Schröger
and Wolff (1998a, 1998b) instructed their sub-
jects to discriminate the duration of tones
that equiprobably was either short (200 ms)
or long (400 ms). The tones were either of
the standard frequency (600 Hz) or, with a
low probability, of a slightly higher frequency
(650 Hz), the tone frequency having no task
relevance. It was found that the duration-
discrimination RT was longer to the deviant-
than to the standard-frequency tones. In addi-
tion, the deviant-frequency tones elicited an
MMN followed by a P3a. Schröger and Wolff
(1998b) and Schröger, Giard, & Wolff (2000)
observed that the ERP responses to frequency
changes in this stimulus paradigm differen-
tially depended on the allocation of attention.
In one condition in which the tones were not
at all to be attended, the relatively small fre-
quency changes elicited an MMN but no P3a,
whereas in another condition, the MMN to
similar, task-irrelevant frequency changes that
occurred in tones whose duration was to be
discriminated (and thus the tones were to be
attended) by the listeners was followed by a
prominent P3a.

In the studies of Schröger and his col-
leagues just reviewed, the P3a to frequency
changes was followed by a fronto-centrally
distributed negativity at 400 ms to 600 ms
from deviant-tone onset. This negativity was

observed when subjects performed a tone-
duration discrimination task, but not when fre-
quency deviations were task-relevant or when
the tones were to be ignored. Therefore, this
negativity, named the reorienting negativity
(RON), was proposed to reflect the reorient-
ing of attention toward the task-relevant as-
pects of stimulation after a distracting event
(Schröger & Wolff, 1998b).

The Cerebral Network of Involuntary
Attention to Sounds

As the research reviewed in the previous sec-
tion indicates, the neural generators of the
MMN are involved in initiating (“calling for”;
Öhman, 1979, 1992) an attention switch to
sound change, and those of the P3a in the ac-
tual resulting involuntary switching of atten-
tion to sounds. Therefore, studies clarifying
the MMN and P3a generator sources might
help to determine the neural network of in-
voluntary attention to auditory stimuli. The
primary generators of the MMN have been
located in the auditory cortex by the source
modeling of the MMN (Giard et al., 1995;
Scherg et al., 1989) and by recording the MEG
counterpart of the MMN, that is, the MMNm
(Figure 15.8; see also Alho et al., 1998; Hari
et al., 1984; Levänen et al., 1996; Sams et al.,
1985a; Tiitinen et al., 1993a; for a review,
see Alho, 1995). However, the MMN also re-
ceives a contribution from the frontal-lobe ac-
tivity, as indicated by the scalp current density
(SCD) mapping of the MMN scalp distribu-
tion (Figure 15.9; see also Deouell et al., 1998;
Levänen et al., 1996; Rinne et al., 2000). This
supports the MMN generator process’s as-
sumed role in involuntary attention switching,
for one of the important frontal-lobe functions
is to control the direction of attention (e.g.,
Fuster, 1989; Knight, 1991; Stuss & Benson,
1986). Furthermore, evidence for the involve-
ment of the frontal cortex in the MMN gen-
eration is provided by results showing that
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Figure 15.8 The MMNm.
Left panel, top left: MEG responses over the right hemisphere of one subject to repeating standard
tones and to slightly higher infrequent deviant tones delivered to the left ear while the subject was
concentrating on a reading task. The responses shown were recorded by one sensor within the thick square
below. Left panel, top right: the magnetic counterpart of the mismatch negativity (MMNm) to deviant
tones is indicated by the difference wave obtained by subtracting the response to standard tones from
that to deviant tones. Left panel, bottom: The corresponding difference waves from different recording
sites over the right hemisphere. Each square shows signals from two orthogonal planar gradiometers
that record the largest signal above the cortical generator source. Middle panel: Magnetic field maps
for the N1m (the MEG counterpart of the N1 ERP response) to the standard tones and for the MMNm
to the deviant tones. The arrows indicate the N1m and MMNm sources modeled with equivalent current
dipoles (ECDs). The gray area indicates magnetic flux into the head and the white area the flux out
of the head. Right panel: Locations of the estimated N1m and MMNm sources in the right auditory
cortex.
SOURCE: Adapted from Huotilainen et al. (1993).

Figure 15.9 Isopotential (SP) map showing the scalp distribution of the mismatch negativity (MMN)
to small frequency changes in unattended tones delivered to the right ear during attention to the left-ear
tones (left), and the corresponding scalp-current density (SCD) map (right).
NOTE: The SP map (negative polarity indicated by shading) shows that the MMN is maximal over the right
frontal scalp. The SCD map shows a pattern of sources (white area) and sinks (shaded area) indicating
MMN generators in the left and right auditory cortices. In addition, the SCD map suggests a frontal
MMN generator predominantly in the right hemisphere.
SOURCE: Adapted from Giard et al. (1990).
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lesions of dorsolateral prefrontal cortex atten-
uate the MMN amplitude (Alain et al. 1998;
Alho et al., 1994c).

The fronto-central scalp distribution of the
P3a distinguishes it from the parietally maxi-
mal P3b (Ford et al., 1976; Squires et al., 1975;
Knight & Scabini, 1998; Woods, 1990), the
later component of the P3 (P300) deflection
typically elicited by target stimuli to be dis-
criminated by the subject (Sutton et al., 1965).
Alho et al. (1998) located the source of the
MEG counterpart of the P3a response to de-
viant tones and novel sounds in the auditory
cortex in the vicinity of the MMNm source.
This accords with the intracranial recordings
of the P3a activity in the superior temporal
cortex (Halgren et al., 1995a; Kropotov et al.,
1995). Furthermore, Escera et al. (1998) ob-
served that the early portion of the P3a elicited
by novel sounds reaches its maximal ampli-
tude over the central midline areas and in-
verts its polarity at the mastoid electrode sites
below the auditory cortex (with nose refer-
ence), whereas the later P3a portion has a
more frontal scalp distribution and does not
invert polarity (Figure 15.9). Judging from its
latency, the earlier, centrally distributed part
of the P3a, that reversing its polarity below the
auditory cortex (consistent with a generator
there), might be explained by the supratem-
poral P3a subcomponent observed by Alho
et al. (1998) in their MEG recordings. The
later and more frontally distributed portion of
the P3a, in turn, might originate from the pre-
frontal cortex (see also Friedman & Simpson,
1994; Friedman et al., 1993; Mecklinger &
Ullsperger, 1995). This interpretation is sup-
ported by results showing attenuated P3a re-
sponses to novel sounds in patients with dor-
solateral prefrontal lesions (Knight, 1984) and
by direct recordings from the prefrontal cor-
tices of epileptic patients (Baudena, Halgren,
Heit, & Clarke, 1995).

In conclusion, the source localizations of
the MMN and P3a indicate that both the audi-

tory and frontal cortices are involved in initiat-
ing involuntary attention to auditory stimulus
changes and in the consequent switching of
attention. However, the lesion and intracra-
nial P3a data suggest that several additional
areas are also involved in the actual attention
switching; because according to these data,
the P3a is generated by a network of brain ar-
eas including—in addition to the auditory and
prefrontal cortices—the parietal cortex, the
temporo-parietal junction, the parahippocam-
pal gyrus, the anterior cingulate gyrus, and
the hippocampus (Alain et al., 1989; Baudena
et al., 1995; Halgren et al., 1995a, 1995b;
Knight et al., 1989; Kropotov et al., 1995;
Knight, 1996).

As just reviewed, in some studies the P3a
was followed by the RON response, sug-
gested as reflecting the reorienting of atten-
tion back to the current task after a distracting
event (Schröger and Wolff, 1998b). The SCD
maps for the RON suggest bilateral frontal
generators and thus the involvement of the
frontal lobes also in the reorienting of atten-
tion (Schröger et al., 2000).

Selective Attention to Auditory Stimuli

N1 Effect or Processing Negativity

Hillyard, Hink, Schwent, & Picton (1973)
were the first to demonstrate a reliable effect
of selective attention on the amplitude of the
N1 deflection of the ERP elicited by auditory
stimuli. They presented tone pips with very
short, random (100–800 ms) interstimulus in-
tervals (ISIs) in a random order to the left and
right ears. Subjects were instructed to attend to
either left- or right-ear tones and to discrim-
inate slightly higher ones among the repeti-
tive, standard tones delivered to the attended
ear. The effect of attention was measured as
a difference between the ERPs to the same
standard stimuli when they were attended (but
required no overt response) and when they
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were not attended. Therefore, the attention ef-
fect on the standard-tone ERPs could not be
explained by physical stimulus differences or
by differences in response-related brain activ-
ity between the attended and unattended stim-
uli. Moreover, because of the random stimu-
lus order, the effect of attention on the N1
amplitude could not be explained by differ-
ences in the arousal level at the time of the
delivery of the attended and unattended stim-
uli. Previous results interpreted as showing
selective-attention effects on ERPs failed to
do this reliably because the non-random stim-
ulus sequences applied gave subjects a pos-
sibility to predict, at least above the chance
level, the occurrence of the to-be-attended
stimulus, leading to an increased cortical ex-
citability at the time of the delivery of these
stimuli (Näätänen, 1970a, 1970b; for a review,
see Näätänen, 1975). Importantly, the “attend
right ear” and “attend left ear” tasks used by
Hillyard et al. (1973) were similarly difficult,
guaranteeing that the differences in the ERPs
between these two conditions were not caused
by differences in the subjects’ general arousal
levels during the tasks.

Hillyard et al. (1973) interpreted the larger
N1 amplitude to attended tones than to the
same tones when unattended in terms of the
selective tonic facilitation of the input to the
attended ear. They further proposed that this
selective facilitation, appearing as early as
60 ms to 70 ms from stimulus onset, might
underlie the early stimulus-set mode of selec-
tive attention proposed by Broadbent (1958,
1970). Näätänen and his collegues (Näätänen,
1975; Näätänen et al., 1978; Näätänen &
Michie, 1979), however, suggested that de-
spite its early latency, this effect was not due
to an attentional modulation of any exoge-
nous or obligatory N1 component but rather to
an endogenous attention-related negative ERP
component whose early portion overlapped
with the N1 components. Consistent with this,
Näätänen et al.’s (1978) ERP effect of selec-

tive attention obtained in the Hillyard et al.
(1973) type of dichotic paradigm, but with
a constant, 800-ms ISI, appeared as a slow,
endogenous negative ERP component, con-
tinuing for several hundreds of milliseconds,
which they termed the processing negativity
(PN; Figure 15.10). Rather than being a mod-
ulation of any exogenous ERP component, the
PN, recorded over the vertex and both the left
and right temporal cortices, was a new compo-
nent that emerged only when the stimulus was

Figure 15.10 Grand-average ERPs at frontal
(Fz), central (Cz), and parietal (Pz) midline scalp
sites to left-ear (L) and right-ear (R) tones when at-
tended and when the tones in the opposite ear were
attended. The ERPs to attended tones are negatively
displaced relative to the ERPs to unattended tones
as the result of the processing negativity (hatched
area) elicited by the attended tones.
SOURCE: Adapted from Näätänen and Michie
(1979).
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attended. This displacement was observed es-
pecially after 150 ms and therefore did not sig-
nificantly affect the measured N1 amplitudes.

Hillyard and Näätänen, with their respec-
tive colleagues, interpreted the attention effect
on the auditory ERP at the N1 latency differ-
ently, with very different implications for the
nature of the brain processes underlying selec-
tive attention. If selective attention to auditory
stimuli enhances an exogenous ERP response
such as the N1, as suggested by Hillyard
et al. (1973), then attention would be mani-
fested by a tonic facilitation of the whole input
channel rather than by an active discrimina-
tion and recognition of each individual stim-
ulus, and could be explained by an amplifi-
cation of the afferent neural activity caused
by the attended stimuli. Such theories were
termed gain theories by Näätänen (1986).
However, if attended stimuli do not elicit en-
hanced exogenous ERP components but, as
proposed by Näätänen et al. (1978), elicit in-
stead a separate attention-specific endogenous
PN that overlaps with the exogenous com-
ponents, including the N1, then this would
suggest that attentional stimulus selection is
based on the comparison of each sensory input
against some memory representation (“tem-
plate”) of the stimulus to be attended, with
the PN being generated by this comparison
process (Näätänen, 1982, 1990, 1992). Unlike
the gain theories, such as that of Hillyard et al.
(1973), this stimulus-comparison theory per-
mits unattended-stimulus representations that
are not attenuated by the absence of attention
(cf. the MMN studies discussed earlier in this
chapter).

The two different explanations for why
the N1 deflection is larger to the attended
sounds than to the unattended sounds, given
by Hillyard and colleagues and by Näätänen
and colleagues and leading to very different
implications on the mechanisms of auditory
selective attention, illustrate the importance
of carefully studying the component structure

of any ERP effect before making any theo-
retical conclusions from it. Because of the
importance of this issue, several subsequent
studies have aimed at determining whether all
attention effects at the N1 latency range are
in fact due to an overlap by an endogenous
PN, or whether some exogenous N1 com-
ponent, at least under certain conditions, is
enhanced by selective attention. These stud-
ies typically used dichotic paradigms with a
very fast stimulus rate (e.g., 3 stimuli per s)
and difficult target discrimination in order to
force subjects to focus maximally their at-
tention on the to-be-attended stimuli, as sug-
gested by Hillyard et al. (1973). In such condi-
tions, the timing of the attention effect on the
ERP, revealed by the ERP difference wave ob-
tained by subtracting the ERP to unattended
stimuli from the ERP to the same stimuli
when attended, is very similar to the tim-
ing of the N1 elicited by unattended stimuli
(Figure 15.11; see also Woldorff & Hillyard,
1991; Teder, Alho, Reinikainen, & Näätänen,
1993a; Alho et al., 1994a). The scalp distri-
bution of this attention effect, however, was
anterior to, and more symmetrical than, that
of the N1, which typically shows larger ampli-
tudes over the hemisphere contralateral to the
stimulated ear than over the hemisphere ipsi-
lateral to the stimulated ear (Alho et al., 1994a;
Woods & Clayworth, 1987). This does not,
however, rule out the possibility that atten-
tion enhances some subcomponent of the N1
(Hackley, 1993; Woldorff & Hillyard, 1991).

Näätänen et al. (1992) compared the to-
pographies of the N1 and the attention effect at
the N1 latency for high-pitched (6000 Hz) and
low-pitched (300 Hz) tones. Whereas unat-
tended high tones elicited an N1 with its am-
plitude maximum clearly anterior to that for
the low tones (reflecting the tonotopic organi-
zation of the auditory cortex; see also Romani
et al., 1982; Tiitinen et al., 1993a; Woods,
Alho, & Algazi, 1993a), no topographic dif-
ference was observed between the attention
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Figure 15.11 Grand-average ERPs at the central midline scalp site (Cz) to attended (solid line) and
unattended (dashed line) tones delivered to the left (300 Hz) and right ear (6000 Hz) in a selective dichotic-
listening study. Note the negative N1 deflection peaking at about 120 ms from stimulus onset. Bottom: Dif-
ference waves obtained by subtracting the ERPs to unattended tones from those to attended tones. These
difference waves show an early effect of attention peaking at about 120 ms and a later effect peaking after
300 ms.
SOURCE: Adapted from Näätänen et al. (1992).

effects for the high and low tones, suggesting a
dissociation between the N1 and the attention
effect. In contrast, Alcaini, Giard, & Perrin
(1995), using SCD analysis, found that a
part of the attention effect followed the N1
topography (see also Woods et al., 1993a).
Alho et al. (1994a) made a similar observa-
tion but found also that, unlike the N1, the
tonotopically distributed attention effect was
not larger over the hemisphere contralateral to
the stimulated ear. Therefore, this tonotopic
attention effect might not emerge from the
tonotopically organized N1 generator struc-
ture but rather from some tonotopically or-
ganized part of the PN generator. Hence, in
this case the auditory cortex would contain, in
addition to the tonotopically organized gen-
erators of the exogenous responses, a tono-
topically organized selective-attention system
(cf. Näätänen, 1982).

Näätänen et al. (1992) observed also that
the N1 to unattended 300-Hz tones was much
larger in amplitude than was the N1 to unat-
tended 6000-Hz tones (see also Alho et al.,

1994a). In contrast, the attention effects at the
N1 latency were of very similar sizes for the
two tones, further dissociating the attention
effect from the enhancement of the exogenous
N1 (Figure 15.11). However, no difference
between the locations of the supratemporal
generators of the MEG counterparts of the at-
tention effect and of the exogenous N1 was
observed in several studies with fast stimu-
lus rates (Kaufman & Williamson, 1987; Rif,
Hari, Hämäläinen, & Sams, 1991; Woldorff
et al., 1993). This in turn supports the view that
selective attention enhances the supratempo-
ral N1 generator process, although even a per-
fect overlap of two generators, as estimated on
the basis of MEG recordings, does not neces-
sarily mean that they are identical.

Thus, at least a major portion of the
selective-attention effect at the N1 latency ap-
pears to be caused by an overlapping PN,
which may begin surprisingly early with very
high stimulus rate, apparently indexing very
rapid stimulus selection (Näätänen & Michie,
1979). However, the possibility that the
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supratemporal N1, or some of its subcom-
ponents, is modulated by selective attention
in some highly focused (fast-rate) conditions
cannot be excluded. It should be noted, how-
ever, that although studies using very fast
stimulation rates and large physical differ-
ences between the attended and unattended
sounds have reported that the auditory N1 is
enhanced by attention (e.g., Hillyard et al.,
1973; Woldorff & Hillyard, 1991; Woldorff
et al., 1993), the PN is also observed in con-
ditions with considerably slower stimulation
rates (e.g., Näätänen et al., 1978; Näätänen
et al. 1981) and very small physical sepa-
rations between the attended and unattended
sounds (Alho et al., 1987a; Alho, Paavilainen,
Reinikainen, & Näätänen, 1986; Alho,
Töttölä, Reinikainen, Sams, & Näätänen,
1987b). The PN therefore appears to be a gen-
eral index of auditory stimulus selection in a
large variety of selective-listening conditions
(see also Alho, 1992).

The existence of two selective-attention
mechanisms, one causing the enhancement of
the N1 and the other generating the PN, was
proposed by Hansen and Hillyard (1980), who
varied the magnitude of the pitch difference
between the attended and unattended sounds.
Their ERP attention effect, which they called
the Nd, referring to the negative difference
between ERPs to attended and unattended
sounds, appeared to be composed of two com-
ponents (see also Figure 15.11): (a) an early,
centrally distributed Nd component peaking
at about 100 ms from sound onset and caused,
according to the authors, by an enhancement
of the exogeneous N1, and (b) a later Nd that
was somewhat more frontally distributed than
the early Nd and appeared as a slower, PN type
of component.

Very Early Attention Effects

A number of studies have aimed at demon-
strating that selective attention could affect
auditory processing even before the sensory

input arrives at the auditory cortex. Some of
these results were interpreted as suggesting
effects of attention on the BAEPs, but be-
cause of failures to replicate these findings
(Woldorff and Hillyard, 1991) and of sev-
eral methodological problems (see Connolly,
Aubry, McGillivary, & Scott, 1989; Näätänen,
1990, 1992), one must conclude that there
is no convincing evidence for such effects.
Attention directed to stimuli delivered to a
designated ear has even been reported to en-
hance evoked otoacoustic emissions (EOAEs)
to these stimuli (Giard et al., 1994a), sug-
gesting effects of spatial attention on auditory
processing as early as at the level of the
cochlear receptors. However, despite their
several attempts, Michie, LePage, Solowij,
Haller, and Terry (1996) could not replicate
this finding.

A very early attention effect, one preced-
ing the N1, was also found by Woldorff,
Hansen, and Hillyard (1987; see also Woldorff
& Hillyard, 1991). In their selective dichotic-
listening study with a very fast stimulus rate,
this effect appeared at 20 ms to 50 ms after
stimulus onset as a positive displacement of
the ERP to attended stimuli in relation to the
same stimuli when unattended. A subsequent
MEG study suggested that this P20-50 ef-
fect is generated in the supratemporal cortex
(Woldorff et al., 1993).

In contrast, in their spatial-attention study
with stimuli delivered from different loud-
speakers, McCallum, Curry, Cooper, Pocock,
& Papakostopoulous (1983) found at the same
latency range a negative displacement of the
ERP to sounds from the attended direction in
relation to those from the unattended direc-
tion. This very early attention effect in the
auditory free-field situation might be caused
by a very early onset of the PN under such
conditions. This is supported by the PN on-
set at about 40 ms from stimulus onset ob-
served by Teder et al. (1993b), who recorded
ERPs to words (starting with /k/) occurring in
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attended and unattended speech passages de-
livered through loudspeakers located on op-
posite sides of the subject.

However, when concurrent attended and
unattended auditory inputs consist of speech,
then a very early PN-like attention effect may
be observed even when the attended and unat-
tended messages are delivered through head-
phones to the opposite ears, as shown by
Woods, Hillyard, & Hansen (1984). They re-
ported a PN-like attention effect starting as
early as at the latency of 50 ms in ERPs to
probe words “a” and “but” embedded into the
attended message in relation to the ERPs to
the same words occurring in the unattended
message. Moreover, Tiitinen et al. (1993b)
observed that the 40-Hz (gamma-band) tran-
sient oscillatory response lasting for 100 ms
to 150 ms evoked by stimulus onsets in the
attended ear is enhanced relative to that in the
opposite ear. Thus, there might be several dif-
ferent kinds of ERP attention effects preced-
ing the N1 deflection, of which at least some—
especially those observed during selective at-
tention to speech—appear to be caused by an
early onset of attention-related endogenous
brain activity and therefore can be identified
as PNs.

Multidimensional Selection
of Auditory Stimuli

In an ERP study on multidimensional stimu-
lus selection during selective listening,
Hansen and Hillyard (1983) defined their rel-
evant sounds on two physical dimensions:
The to-be-attended tones had a certain lo-
cation and pitch, whereas the to-be ignored
tones differed from them in location, pitch,
or both (see also Alho, Sams, Paavilainen,
Reinikainen, & Näätänen, 1989; Michie et al.,
1993; Woods, Alho, & Algazi, 1994). The
difficulty of discrimination was varied from
“Easy” to “Hard” on each dimension by vary-
ing the physical separation between the at-

tended and unattended tones along this di-
mension. Comparison of the ERPs to the at-
tended tones with the ERPs to the ignored
tones differing from the attended ones on the
“Easy” dimension showed a large Nd with an
early onset, whereas the comparison of the
ERPs to the to-be-attended tones satisfying
both the “Easy” and the “Hard” dimensions
with the ERPs to the to-be-ignored tones sat-
isfying the “Easy” but not the “Hard” dimen-
sion revealed a low-amplitude, late-onset (at
150–200 ms) Nd, suggesting that rejection of
the to-be-ignored tones on the “Hard” dimen-
sion took longer than rejection of them on
the “Easy” dimension (regardless of which di-
mension was “Hard” and which was “Easy”).
In contrast, if the to-be-ignored tone failed
to satisfy the “Easy” dimension, then the
processing of the “Hard” dimension was also
terminated early or did not occur at all, as
suggested by the lack of any Nd between the
ERPs to tones satisfying the “Hard” dimen-
sion and to those not satisfying this dimension
when both tones failed to satisfy the “Easy”
dimension.

In quite similar two-dimensional selective-
listening conditions, Woods et al. (1994) ob-
served a difference in scalp distribution be-
tween the location- and pitch-specific Nd
effects derived by subtracting the ERP to unat-
tended tones differing from the attended tones
both in pitch and location from the ERPs to
unattended tones sharing either pitch or lo-
cation with the attended tones. The pitch-
specific Nd was more frontally distributed
than was the location-specific Nd, suggest-
ing that the pitch and location selections are
carried out by different neuronal mechanisms,
each of them generating a feature-specific PN.
Moreover, the subtraction of the sum of these
pitch- and location-specific Nd effects from
the Nd obtained for the to-be-attended tones
(both pitch and location relevant) suggested
that a part of the Nd to the to-be-attended tones
is related to conjoining the relevant stimulus
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features during the selection of these stimuli
on the pitch and location dimensions.

The Attentional-Trace Theory

Näätänen (1982, 1990, 1992) proposed that
the PN is generated by the selection of at-
tended stimuli for further processing in a grad-
ual matching process to which each sound
is subjected during selective listening. In this
matching process, each sound would be com-
pared with an attentional trace, an actively
maintained representation of the physical fea-
tures of the attended stimuli (e.g., their pitch,
location, or both; see also Alho et al., 1989).
Sounds matching with the trace would be pro-
cessed further, whereas the others would be
rejected. Furthermore, the timing of this rejec-
tion would depend on how widely the stimulus
differs from the attended stimulus on the crit-
ical dimensions; more different, and therefore
more discriminable, stimuli would be rejected
earlier, and thus the PN generated by them
would terminate earlier.

Importantly, the attentional-trace model
implies that the Nd wave (Hansen & Hillyard,
1980)—obtained by subtracting the ERP to
unattended stimuli from the ERP to attended
stimuli (Figure 15.11)—does not reveal the to-
tal PN elicited by the selection of the attended
stimuli. This is because, as already mentioned,
the unattended stimuli also elicit some PN
that is larger in amplitude and longer in du-
ration for smaller differences between the to-
be-ignored and the to-be-attended stimuli, as
shown by a number of studies (Alho et al.,
1986, 1987a, 1987b; Hari et al., 1989; Michie
et al., 1993). This is schematically illustrated
in Figure 15.12.

Some results, however, suggest that the
later phase of the difference wave between the
ERPs to the same stimuli when attended and
when unattended might be caused partly by an
endogenous positive ERP component elicited
by unattended stimuli rather than solely by
PN that is larger to the attended than to the

unattended stimuli (Alho et al., 1987b, 1994b;
Michie et al., 1993). This rejection positiv-
ity was proposed as possibly being related
to the active suppression of unattended stim-
uli after they were found not to correspond
to the stimulus represented by the attentional
trace, that is, after the termination of the PN
to these sounds (Alho et al., 1987b). How-
ever, when the effects of attention on brain
activity are interpreted as being caused either
by the more extensive processing of attended
stimuli or by the suppressed processing of
unattended stimuli, a problem arises with re-
gard to the proper baseline condition. For ex-
ample, in their control condition, Alho et al.
(1994b) recorded ERPs to to-be-ignored au-
ditory stimuli presented while their subjects
concentrated on a visual task. These auditory
ERPs were then used as the baseline for es-
timating the amount of the PN elicited in an-
other condition by attended sounds delivered
to one ear and the amount of the rejection
positivity in response to unattended sounds
delivered to the opposite ear. However, it is
possible that the amount of the assumed re-
jection positivity to the unattended-ear sounds
was overestimated, for subjects might have
covertly attended to sounds even during the vi-
sual task, which would, presumably, have re-
sulted in some PN to the to-be-ignored sounds
even during the visual task.

The attentional trace is, according to
Näätänen’s (1982, 1990, 1992) theory, formed
by rehearsing the sensory-memory represen-
tation of the attended stimulus and would
therefore depend both on the sensory rein-
forcement provided by the attended sounds
and on the active rehearsal of the trace. The
attentional trace’s dependence on sensory in-
put was shown by results indicating that no
PN is elicited by the first two to three stimuli
in the very beginning of the selective-listening
task (Hansen and Hillyard, 1988) or when the
to-be-attended sounds are delivered with very
long intervals (Alho et al., 1990).
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Figure 15.12 A schematic illustration of the ERP and its different components elicited in a condition
in which the listener’s task is to attend selectively to one of two frequently occurring tones differing in
pitch, the pitch difference being either large, medium, or small.
NOTE: Top row: ERPs to the relevant (solid lines) and irrelevant (dashed lines) tones. Second
row: The corresponding negative difference (Nd) waves obtained by subtracting the ERP to irrel-
evant, to-be-ignored tones from that to relevant, to-be-attended tones. The latency of the Nd onset
increases and the Nd amplitude decreases with diminishing pitch separation. Third row: These effects
on the Nd are due to the prolongation and increase of the processing negativity (PN) to irrelevant tones
(dashed lines) with diminishing pitch difference, whereas the PN to relevant stimuli (solid lines) is sim-
ilar in all conditions. Bottom row: Attenuation of the exogenous N1 and P2 components (identical for
the relevant and irrelevant tones) with a diminishing pitch difference between the two tones, due to
the increasing overlap of frequency-specific auditory-cortex neuron populations activated by them. The
ERPs shown in the top row are composed of the summation of these exogenous components with the
corresponding PNs shown on the third row.
SOURCE: From Alho et al. (1987b). © 1987. Reproduced with permission from Elsevier Science.

As already discussed, and as shown in Fig-
ure 15.11, the early attention effect commenc-
ing at the latency of the N1, or sometimes
even earlier, is typically followed by a later
negative component (usually peaking at 300–
400 ms from stimulus onset). This later PN,
having a frontally dominant scalp distribu-
tion (e.g., Alho et al., 1994a; Giard, Perrin,

Pernier, & Peronnet, 1988; Hansen & Hill-
yard, 1980; Näätänen et al., 1992; Näätänen
& Michie, 1979; Teder et al., 1993a; Woods
& Clayworth, 1987), might be related ei-
ther to the further processing of attended
sounds after their initial selection or to the
rehearsal and maintenance of the attentional
trace (Näätänen, 1982, 1990, 1992).

[Image not available in this electronic edition.]
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The Cerebral Network of Selective Listening

As reviewed earlier, perhaps the strongest
evidence that the N1 component is genuinely
enhanced by selective attention was provided
by the MEG studies indicating that the same,
or at least largely overlapping, source in the
auditory cortex on the superior temporal plane
generates the N1 and the attention effect
at the N1 latency (Kaufman & Williamson,
1987; Rif et al., 1991; Woldorff et al., 1993).
However, other MEG studies (Arthur, Lewis,
Medvick, & Flynn, 1991; Hari et al., 1989)
showed that even slower, PN-like attention-
related responses are generated in the superior
temporal cortex. In accordance with the MEG
results of Kaufman and Williamson (1987),
Rif et al. (1991), and Woldorff et al. (1993),
the SCD analyses of the scalp-potential maps
suggested that the auditory cortices’ contribu-
tion to the attention effects at the N1 latency
range could not be separated from the N1
source by these analyses (Giard et al., 1988;
Alcaini et al., 1995). These SCD analyses fur-
ther suggested that the later PN component is
generated in the frontal lobes.

The importance of the role of the frontal-
lobe functions in attention is indicated by
attentional deficits typically accompanying
frontal lesions (Stuss & Benson, 1986). For
example, in their selective dichotic-listening
study, Knight, Hillyard, Woods, and Neville
(1981; see also Woods & Knight, 1986) ob-
served an attenuated PN, relative to that in
healthy control subjects, in patients with uni-
lateral lesions of the dorsolateral prefrontal
cortex. This effect involved both the early
and late phases of the PN. Moreover, the
unilateral lesions attenuated the PN compo-
nents over both the affected and intact hemi-
spheres. Therefore, the lesions probably in-
volved no PN generator directly, but rather
caused the PN attenuation indirectly, presum-
ably by affecting the prefrontal areas modu-
lating the activity of the PN generators located
elsewhere.

Even the temporal and parietal areas ap-
pear to be involved in the neural circuitry
underlying the later PN component. Woods,
Knight, and Scabini (1993b), recording the
ERPs of patients with unilateral lesions of
the parietal or temporo-parietal cortices in a
selective dichotic-listening condition, found
that both patient groups had attenuated ampli-
tudes of the later portion (at latencies longer
than 150 ms) of the PN compared with those
of healthy controls. In contrast, these le-
sions did not affect the early attention effect
(at 50–100 ms), although attenuated exoge-
nous N1 components were observed in pa-
tients with temporo-parietal lesions. The un-
affected early attention effect in these patients
supports the view that this early effect is gen-
erated by a source separable from the exoge-
neous N1 generators.

Other methods of functional brain re-
search, such as positron-emission tomogra-
phy (PET) and functional magnetic reso-
nance imaging (fMRI), both of which measure
hemodynamic brain activity, may give impor-
tant converging evidence for locating the brain
mechanisms of auditory selective attention by
means of ERP and MEG recordings. Although
it should be borne in mind that the relation-
ship between electrophysiological and hemo-
dynamic brain responses is not yet exactly
understood, the hemodynamic and electro-
physiological measures of attentional brain
activity may be made more comparable by
using similar experimental paradigms in these
studies.

In their recent PET study, Alho et al. (1999)
used dichotic tone stimulation and selective-
attention tasks similar to those administered
in ERP studies. As in the ERP study of Alho
et al. (1994b; see above), Alho et al. (1999)
instructed their subjects to attend to the tone
sequence delivered to a designated ear in or-
der to discriminate slightly higher ones among
these tones, whereas in the control condi-
tion they were instructed to ignore both tone
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sequences and to attend to visual stimuli (pre-
sented in each condition). The stimulus rate
in each of the three sequences was very high:
on average 6 stimuli per second in order to
facilitate selective attention (Hillyard et al.
1973). It was found that selective listening in-
creased brain activity, measured as changes
in the regional cerebral blood flow (rCBF),
bilaterally in the auditory cortices (see also
O’Leary et al. 1996, 1997; Tzourio et al.,
1997; Zatorre, Mondor, & Evans, 1999). Fur-
thermore, this attention effect was more pro-
nounced in the auditory cortex of the hemi-
sphere contralateral to the ear to which the
attended tones were delivered, which was in-
terpreted as indicating the selective tuning of
the auditory cortices during selective listen-
ing. In addition, selective listening enhanced
the rCBF in the prefrontal cortex bilaterally
and in the right parietal cortex, as also found
in other PET studies (Tzourio et al., 1997;
Zatorre et al., 1999). The right parietal cor-
tex’s importance in directing auditory at-
tention is also indicated by the neglect of
sounds in the left hemispace by patients with
right parietal lesions (Heilman & Valenstein,
1972). Consequently, Alho et al.’s (1999) PET
results are in accordance with the electrophys-
iological results in healthy subjects and in pa-
tients with local brain lesions, reviewed ear-
lier, in that they show the involvement of the
temporal, parietal, and prefrontal cortical ar-
eas in auditory selective attention.

ATTENTION IN THE VISUAL
MODALITY

As in the auditory modality, a great diversity
of processing also takes place in the visual
modality in the absence of attention. Present-
ing a stimulus in the visual field evokes a series
of neural processes in the brain that can partly
be recorded by the EEG and MEG techniques
and that depend on the physical characteris-

tics of the stimulus, such as its location, color,
or spatial frequency (Regan, 1989). The dif-
ferent features of the stimulus are registered
independently and in parallel across the visual
field. Attention is needed in order to select
some of this information for further process-
ing (James, 1890), but it is also assumed that
attention is required for accurately “gluing”
these features into unitary perceptual objects
(Treisman & Gelade, 1980).

Electrophysiological measures have been
used to investigate the neural substrates of the
perception of various types of visual stimu-
lation, such as visual motion (e.g., Ahlfors
et al., 1999; Probst, Plendl, Paulus, Wist,
& Scherg, 1993) or faces (e.g., Halgren,
Raij, Marinkovic, Jousmäki, & Hari, 2000;
Linkenkaer-Hansen et al., 1998). For exam-
ple, there is electrophysiological evidence for
category-specific face, letter-string, and num-
ber “modules” with different neural gener-
ators (Allison, McCarthy, Nobre, Puce, &
Belger, 1994; Allison, Puce, Spencer, &
McCarthy, 1999). One fundamental question
is how attention modulates the processing in
these modules and elsewhere along the visual
pathway. It was shown, for example, that some
of the face-specific ERP deflections are prone
to top-down influences, whereas others are not
(Puce, Allison, & McCarthy, 1999).

Before discussing the electrophysiologi-
cal effects of attention in vision, one might
ask whether there exists a visual analogue of
the auditory MMN described earlier. Nega-
tive deflections in the ERPs elicited by in-
frequent (“deviant”) stimuli relative to those
elicited by frequent (“standard”) stimuli have
been reported in the visual modality as well
(Alho et al., 1992; Berti & Schröger, 2001;
Czigler & Csibra, 1990; Heslenfeld, 1998;
Nordby, Brønnick, & Hugdahl, 1996; Nyman
et al., 1990; Tales, Newton, Troscianko, &
Butler, 1999; Woods et al., 1992). The
deviance-related negative deflections ob-
tained in these studies reveal a posterior or
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occipital distribution, suggesting that they are
generated in visual areas. For example, Tales
et al. (1999) recorded ERPs elicited by target
stimuli in the center of the visual field, and
by frequent standard and infrequent deviant
stimuli presented outside the focus of atten-
tion, in the peripheral field. Deviant stimuli
evoked a larger negative potential than did
standard stimuli, and this potential was dis-
tributed over the supplementary visual areas
of the occipital and posterior temporal cortex
at 250 ms to 400 ms from stimulus onset. Un-
like in the auditory modality, however, it is
still debated whether these effects are really
based on memory comparison and whether
they reveal the same degree of automaticity
as does the auditory MMN (cf. Kenemans &
Verbaten, 2000).

The electrophysiology of selective atten-
tion in vision has been studied in different
types of conditions using different techniques.
An issue of central importance involves the
earliest stages of visual information process-
ing that can be influenced by attention. For
example, it has been asked whether process-
ing as early as at the level of striate cortex
may be prone to attentional effects. Another
issue involves the comparison of the effects
of selective attention between different crite-
ria used in information selection. Researchers
have, for example, studied whether attentional
selection based on different stimulus dimen-
sions such as spatial location, color, spatial
frequency, orientation, form, or the direction
of movement yields spatiotemporal ERP ef-
fects that differ from one another. Moreover,
attention can be voluntarily oriented, via the
subject’s intention, to a particular subset of
information impinging on his or her visual
system, but it may also be involuntarily cap-
tured by particular features in the stimulation.
Some researchers have, for example, asked
whether the voluntary and reflexive (involun-
tary) forms of attention share the same neural
locus.

In addition, attention can be focused for
a longer period on a particular stimulus fea-
ture (sustained attention), but it can also be
quickly shifted to different features between
the successive trials (transient attention). Sev-
eral studies have investigated the effects of
sustained versus transient attention.

Other important issues involve the influ-
ence of the task demands on attentional ef-
fects and the nature of the selection mech-
anism producing measurable effects. As for
the latter, the question of whether attentional
selection is based more on the suppression of
irrelevant information or on the facilitation of
relevant information has been asked.

Furthermore, the effects of the orienting of
attention were distinguished from those of at-
tention on the processing of stimuli occurring
in the focus of attention. For example, elec-
trophysiological measures have been used to
study the orienting of attention after a cue indi-
cated the to-be-attended stimulus feature but
before the next target stimulus was presented.
In the next section we review some of the most
important ERP studies on visual attention.

Visuo-Spatial Attention

Sustained Attention

Due mainly to the spatiotopic organization of
the visual system, selection according to spa-
tial location may be regarded as the primary
form of selection in vision (e.g., Treisman &
Gelade, 1980; van der Heijden, 1993). This
notion is also supported by the fact that the
electrophysiological effects of visuospatial
attention have a shorter latency than do those
for the other features such as color or form.
However, these studies have not yet settled
whether there is attentional modulation of
subcortical visual processing in humans or
whether the first electrophysiological effects
of selective attention start at the cortical level.
Some findings (Oakley & Eason, 1990; Eason,
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Oakley, & Flowers, 1983) suggest that when
subjects are instructed to attend to a speci-
fied location in a given visual field and to ig-
nore stimuli presented in the opposite field, the
amplitudes of the visually evoked responses
falling within the range of 40 ms to 70 ms
depend on whether the location of the evok-
ing stimulus was being attended or not. How-
ever, a further study (Mangun, Hansen &
Hillyard, 1986) failed to confirm these re-
sults, and even at the level of the primary vi-
sual cortex, no reliable ERP effects of spatial
attention were found. Furthermore, in Clark
and Hillyard’s (1996) study, the initial affer-
ent response evoked by visual stimuli in V1
(i.e., the C1), with an onset latency of about
50 ms to 55 ms (Clark, Fan, & Hillyard, 1995),
did not vary as a function of spatial attention.
These authors flashed circular checkerboards
in a random order to left and right locations
in the visual field while subjects maintained
the central fixation and attended to one visual
field.

As with the electrophysiological studies
of auditory attention discussed earlier in this
chapter, it is important to compare the re-
sults of electrophysiological visual-attention
studies with those obtained with other brain-
research methods. Using a novel optical-
imaging technique, Gratton (1997) confirmed
the absence of attentional modulation in
the striate cortex suggested by the visual
ERP studies. The event-related optical signal
(EROS) is based on localized changes in the
optical properties—probably changes in the
scattering of near-infrared photons—that ac-
company neural activity. Presented with fre-
quent squares and infrequent rectangles 2◦

from the left and right of fixation, subjects
had to attend to the left or right hemifield and
press a button for infrequent rectangles on the
attended side. Although the EROS was sensi-
tive at the striate cortex (Brodmann area 17)
to whether a stimulus was frequent or infre-
quent, its strength did not depend on whether

the stimulus was presented to the attended or
unattended side.

The absence of ERP or EROS effects in
the primary visual cortex, however, does not
imply that V1 is not involved in visuospatial
attention. This was shown by a recent com-
bined ERP and fMRI study (Martı́nez et al.,
1999). Again, the absence of the effect of vi-
suospatial attention on the initial sensory pro-
cessing in V1 was confirmed by the ERPs, but
the fMRI data revealed increased neural activ-
ity in the striate cortex with spatial attention.
The authors attempted to resolve this conflict
by suggesting that the attention effect on the
fMRI in the striate cortex reflects a delayed
re-entrant feedback from higher visual areas
back into V1 or a sustained top-down biasing
of neurons during attention, which does not
modulate stimulus-evoked responses, at least
not to the extent that such effects could be
detected with ERPs.

The first exogenous ERP component to
be established firmly as being modulated
by visuospatial attention is the P1 starting
at about 70 ms to 90 ms from stimulus on-
set (e.g., Clark & Hillyard, 1996; Eason,
1981; Hillyard & Münte, 1984; Johannes,
Münte, Heinze, & Mangun, 1995; Mangun
& Hillyard, 1990a, 1990b; Wijers, Lange,
Mulder, & Mulder, 1997; for a review, see
Hillyard, Vogel, & Luck, 1998). A typical
paradigm with the corresponding ERP effects
is illustrated in Figure 15.13.

The SCD analyses and dipole-source mod-
eling of ERPs, together with fMRI or PET
measures, suggest that this attentional mod-
ulation of the P1 is generated in the ventro-
lateral and dorsal extrastriate cortex (Clark &
Hillyard, 1996; Gomez, Clark, Fan, Luck, &
Hillyard, 1994; Heinze et al., 1994; Johannes
et al., 1995; Mangun, Hillyard, & Luck, 1993;
Martı́nez et al., 1999; Woldorff et al., 1997).
These attention effects on the dorsal extrastri-
ate cortex (area V3 and the anterior regions
of the middle occipital gyrus) start at 70 ms
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Attention and Event-Related Potentials

Figure 15.13 Selective-attention effects on the visual ERP in a typical spatial-attention task.
NOTE: Stimuli (illustrated on top) were bars flashed on a video screen in random order to locations 5
degrees to the left or right of fixation (+) with short, irregular ISIs. The subject was instructed to attend
to the bars at one location and to press a button upon detection of an occasional, slightly shorter bar
(target) at this location. In the middle, the scalp topography of the P1 is shown. In the bottom, ERPs to
left flashes when attended (dot-dash lines) and ignored (attend right; solid lines) are shown.
Source: From Mangun and Hillyard (1990a).

[Image not available in this electronic edition.]
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to 75 ms poststimulus. Because these early
P1 generator effects are confined to stimuli
presented to the lower visual field, it seems
likely that they occur in the retinotopically
organized extrastriate cortex. The generators
of the later, ventrolateral P1 attention effect,
occurring between 100 ms and 140 ms post-
stimulus, are located at areas V4v and poste-
rior fusiform gyrus (Brodmann area 19).

Eimer (1997b) developed a slightly differ-
ent visuospatial attention paradigm to deter-
mine the locus of the attention effect. Most
stimuli appeared in a regular clockwise or
counterclockwise order in one of the four vi-
sual quadrants, but some were separated from
the expected location by one or both visual
meridians. Subjects had to respond to oc-
casional target stimuli regardless of whether
they were presented in this quadrant. As in-
dicated by the RT benefits to targets pre-
sented in the to-be-expected visual quadrant
relative to targets presented in an unexpected
quadrant, subjects moved their focus of atten-
tion according to the expected location of the
forthcoming stimulus. The ERPs elicited by
stimuli from the lower visual field in the range
of 70 ms to 80 ms were of the opposite po-
larity (positive) to those elicited by stimuli in
the upper visual field. This effect is due to the
fact that the visual cortex is folded within the
calcarine fissure so that stimuli from the lower
and upper visual fields are projected to the op-
positely oriented cortical areas within the up-
per and lower banks of the calcarine fissure.
Interestingly, this component, called NP80,
was not affected by attention, whereas the P1
and N1 showed the typical attention effects.

The control of eye movements is of spe-
cial importance in such studies. In addition
to a conservative cutoff value of ±25 µV
for the horizontal electrooculogram (EOG),
Eimer (1997b) included in the final analy-
sis only those subjects in whom the averaged
EOG did not exceed 2 µV in the direction of
the next expected stimulus position.

Johannes et al. (1995) and Wijers et al.
(1997) were able to show that manipulations
of the luminance of stimuli that affect the la-
tency and amplitude of the P1 did affect the pa-
rameters of the P1 attention effect correspond-
ingly. This supports the hypothesis that these
attention effects indeed involve the exogenous
components and thus reflect enhanced sen-
sory input from a stimulus appearing in the at-
tended location of the visual field (Mangun &
Hillyard, 1990a, 1990b). On the other hand,
Clark and Hillyard (1996) found that the SCD
topographies of the P1 were shifted by at-
tention, suggesting that additional, attention-
dependent neurons were also activated (Fig-
ure 15.14).

The subsequent ERP effects of spatial at-
tention consist of enhanced negativities in
the N1 and N2 ranges (Figures 15.13 and
15.14). The locus of the attention effect on
these later components is less clear because
their generator structures are more compli-
cated. For example, the N1 consists of several
subcomponents arising from spatially dis-
tinct generators, including sources in occipito-
parietal, occipital, and frontal areas (Gomez
et al., 1994; Johannes et al., 1995). However,
attempts at localizing the N1 attention ef-
fect gave rise to the assumption that attention
modulates different N1 generators (Clark &
Hillyard, 1996). The ventral pathway connect-
ing V1 and V2 with V3 and V4 and with
the posterior and anterior areas of the infer-
otemporal cortex (IT) is engaged with the
identification and discrimination of visual ob-
jects, whereas the dorsal pathway connecting
V1 and V2 with the posterior parietal cor-
tex is concerned with the spatial aspects of
object perception (Ungerleider & Mishkin,
1982). Several authors suggest that the P1
attention effect is caused mainly by a mod-
ulation of the sensory flow in the ventral
visual processing stream, whereas the N1
attention effect primarily reflects attentional
control over the dorsal projection to the
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Figure 15.14 SCD maps of visual-evoked potential maps in different latency ranges: C1 (60–85 ms),
P1, P115ot (100–120 ms), N140f (140–170 ms), N180ot (170–190 ms).
NOTE: Maps are collapsed across ERPs to left- and right-field stimuli and averaged such that the right side
of each head icon represents the scalp sites contralateral to the visual field and the left side the ipsilateral
sites. Arrows indicate foci associated with the labeled components. Columns represent distributions
of components in the Attend (At) and Unattend (Un) conditions and of the Difference waves (Diff).
Topographical SCD maps show where the current flows in and out of the scalp, helping one in estimating
the number of generators and their orientation.
Source: From Clarke and Hillyard (1996).

parietal lobe (Harter & Aine, 1984; Mangun,
1995).

Transient Attention

In most visuospatial-attention studies, atten-
tion had to be focused on one location for
a longer period while stimuli were randomly
presented at this location and at to-be-ignored
locations. However, visuospatial attention
may often be characterized as an active, dy-
namic process in which attention is tran-
siently shifted between different locations
(Posner, 1980). Therefore, electrophysiolog-
ical research of spatial attention has recently
started to investigate also transient attention
in which different locations are cued on a
trial-by-trial basis (Anllo-Vento, 1995; Eimer,
1993, 1994a, 1994b, 1995, 1996a, 1997b,
1999; Harter, Miller, Price, LaLonde, &

Keyes, 1989; Mangun & Hillyard, 1991). In
these studies, the to-be-attended location was
indicated by a symbolic cue, an arrow point-
ing to the right or left, or by a direct cue
(a lateralized stimulus occurring at the to-
be-attended location). Mangun and Hillyard
(1991) recorded ERPs to lateralized flashes
delivered to visual-field locations correctly or
falsely precued by a central arrow. In simple-
RT and choice-RT tasks, valid stimuli caused
amplitude enhancement of the early, sensory-
evoked P1 (90–130 ms poststimulus); the sub-
sequent N1 (150–200 ms) was enhanced for
validly cued stimuli in the choice-RT task con-
dition only. Because these ERP effects were
accompanied by RT advantages to validly
cued stimuli, Mangun and Hillyard proposed
that they reflected information that under-
lay perceptual judgments. However, Eimer

[Image not available in this electronic edition.]
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(1993) showed that such RT cuing effects can
be obtained even without the corresponding
P1 and N1 modulations, suggesting that these
RT attention effects may also reflect later pro-
cessing stages.

The occurrence of the P1 and N1 effects
also depends on the type of trial-by-trial cuing
paradigm that is used. Eimer (1994b) varied
the response relevance of stimuli at uncued
locations. A central arrow cue pointing to the
left or right was presented for 200 ms; 700 ms
after the offset of the cue, the stimulus (the
letter “W” or “M”), lateralized by ±6◦, was
presented for 100 ms. Subjects had to make
a choice reaction to this stimulus (stimulus-
response mapping being counterbalanced). In
75% of the trials the stimulus was presented
at the cued location, and in 25% of the tri-
als the stimulus was presented contralaterally
to the cued location. In one condition, sub-
jects had to respond to all stimuli regardless
of whether they occurred at a cued location.
Although there were RT benefits in validly
cued trials, no statistically significant P1 and
N1 effects occurred. In the other condition,
subjects had to respond to validly cued stim-
uli only, and then the P1 and N1 amplitudes
were enhanced by cue validity (apparently be-
cause attention could be focused on one loca-
tion, with the other location being completely
task-irrelevant).

In the trial-by-trial cuing paradigms, Eimer
(1993, 1994a, 1994b, 1995, 1996a, 1997b)
reported additional ERP effects of visuospa-
tial attention consisting of a negative en-
hancement of the ERPs elicited by the stim-
uli at the attended location relative to those
elicited by the stimuli at the unattended loca-
tion, with a parietally distributed first peak at
around 160 ms poststimulus (Nd1) and a sec-
ond, more broadly distributed peak between
200 ms and 400 ms (Nd2). These effects were
obtained both in the classical Posner-type cu-
ing tasks, in which invalidly cued stimuli may
also require a response, and in modified cuing

paradigms, in which only validly cued stim-
uli are to be responded, the amplitudes being
larger in the latter case. These effects can also
be obtained with lateralized cues and even in
conditions in which the cue is not spatially in-
formative with respect to the location of the
forthcoming target stimulus (Eimer, 1994a).

Interestingly, very similar Nd1 and Nd2
effects were obtained in the auditory modal-
ity when a visual arrow cue indicated the lo-
cation of a forthcoming auditory target (e.g.,
Schröger, 1993; Schröger & Eimer, 1993,
1997; cf. Figure 15.15). Like the visual Nd
effects, the auditory Nd effects can also be
obtained with lateralized auditory cues even
when they are not informative with respect
to the location of the forthcoming target
(Schröger & Eimer, 1996). Eimer (1998) sug-
gested that the visual and auditory Nd1 re-
flect spatially selective activity within the pos-
terior parietal cortex and, further, that they
may reveal the presence of an attentional
gradient centered around the cued location
(cf. LaBerge, 1995). In turn, the Nd2 can be
assumed, according to Eimer, to reflect an
attentional influence on the later stages of pro-
cessing, such as the differential processing of
attended and unattended information within
inferotemporal cortex or response selection
occurring after stimulus identification.

Costs and Benefits in Attentional Effects

As with the attentional effects on the au-
ditory ERPs (discussed earlier), one might
ask whether in the visuospatial-attention stud-
ies, the electrophysiological effects revealed
by the attend-minus-unattend ERP difference
waves are due to impoverished processing of
stimuli at unattended locations or to facil-
itated processing of stimuli at attended lo-
cations. Several studies have aimed at clar-
ifying this issue. In their sustained-attention
experiment, Mangun and Buck (1998) pre-
sented flash stimuli equiprobably to the left
and right visual hemifields. In three blocked,
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covert-attention conditions, subjects were in-
structed to divide their attention equally be-
tween the left and right hemifield locations,
to bias their attention toward the left loca-
tion, or to bias it toward the right location. The
RT was significantly faster for targets occur-
ring where more attention was allocated (ben-
efits) and slower to targets occurring where
less attention was allocated (costs), relative to
the divided-attention condition. The P1 (100–
140 ms) over the lateral occipital scalp re-
gions showed attentional benefits, whereas
there was no amplitude modulation of the oc-
cipital N1 (125–180 ms) with attention. Be-
tween 200 ms and 500 ms in latency, a later
positive deflection showed both attentional
costs and benefits. The authors proposed that
the RT benefits of spatial attention might arise
as the result of modulations of visual informa-
tion processing in the extrastriate visual cor-
tex. Hence, these results suggest that sustained
attention may cause both the suppression and
the facilitation of visual processing.

This issue was also investigated in
transient-attention conditions. Luck et al.
(1994) presented an arrow cue followed by
a luminance-increment target that in turn was
followed by a pattern mask. The arrow cue in-
dicated the location of the target-mask com-
plex correctly (valid trials) in most of the trials
but incorrectly (invalid trials) in some of the
trials. Further, in some trials all possible target
locations were cued, and the target-mask com-
plex occurred equiprobably at each of those
locations (neutral trials). The P1 was reduced
in invalid trials relative to neutral and valid
trials, whereas the N1 was enhanced in valid
trials relative to neutral and invalid trials. This
dissociation of suppression and enhancement
suggests that they arise from independent at-
tentional mechanisms.

In another transient-attention experiment,
Eimer (1996a) used single arrow cues that
validly or invalidly indicated the location of
forthcoming target stimuli as well as dou-

ble arrows that were spatially uninformative,
neutral cues. There was no P1 attention ef-
fect but rather a small N1 attention effect
that was dominant over the hemisphere ipsi-
lateral to the attended location and consisted
of increased N1 amplitudes in valid trials as
compared with neutral and invalid trials (i.e.,
of benefits in the processing of stimuli at
attended locations). Eimer also investigated
costs and benefits in the subsequent Nd ef-
fects and found that the Nd1 effect consisted
mainly of costs in invalid trials relative to neu-
tral and valid trials and that the Nd2 consisted
of both costs and benefits (with costs being
larger than benefits), suggesting that differ-
ent mechanisms are involved in attentional
selection.

Covert Orienting

Most visuospatial-attention studies have in-
vestigated the effects of attention that was al-
ready oriented in space rather than the pro-
cess of orienting attention itself. Only some
ERP studies on attentional effects in the cue-
target interval have been interested in the ori-
enting of attention per se (Harter et al., 1989;
Hopf & Mangun, 2000; Nobre, Sebestyen, &
Miniussi, 2000; Yamaguchi, Tsuchiya, &
Kobayashi, 1994, 1995, 1998). In one of these
studies, Harter et al.’s (1989) arrow cues indi-
cated to their subjects (children of 6–9 years)
the location at which targets had to be de-
tected. Right-cue versus left-cue ERP com-
parisons revealed a negative deflection over
the hemisphere contralateral to the attention-
directing cue between 200 ms and 400 ms rel-
ative to cue onset, termed the early directing-
attention negativity (EDAN). A second effect,
one between 500 ms and 700 ms after cue on-
set, consisted of a positivity over the hemi-
sphere contralateral to the attention-directing
cue (the late directing-attention positivity, or
LDAP).

Yamaguchi et al. (1994) used arrow cues
that predicted the location of the target after
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a variable cue-target interval with a validity
of 80%, the remaining 20% being invalidly
cued trials. They found enhanced negativities
in the range of 240 ms to 380 ms relative to cue
onset over the lateral posterior leads contralat-
eral to the attention-directing cue. In addition,
there were also later effects (380–440 ms) that
again consisted of enhanced negative deflec-
tions contralateral to the direction of the at-
tentional shift.

Hopf and Mangun (2000), in turn, pre-
sented central arrow cues instructing their
subjects to attend covertly to either a left-field
or right-field location in order to compare two
simultaneously presented target stimuli with
one another. On half of the trials targets were
presented to the cued location, whereas in the
other half they occurred at the opposite visual-
field location. An initial component over the
occipito-parietal electrode sites, occurring at
200–400 ms after cue onset and resembling
EDAN, was consistent with an early involve-
ment of the posterior-parietal cortex in direct-
ing attention. A second negative component
over the lateral-prefrontal cortex in the range
of 300 ms to 500 ms was consistent with
the presumed function of prefrontal cortex in
the voluntary control and maintenance of at-
tention. A subsequent late positive deflection
in the range of 400 ms to 850 ms, narrowly
focused over the occipito-temporal electrode
sites, was most plausibly related to the activa-
tion of parts of the ventral extrastriate cortex.
The authors suggested that voluntarily orient-
ing visual attention in space leads to top-down
modulations in the cortical excitability of ven-
tral extrastriate regions, initiated by posterior-
parietal cortical structures and mediated by
lateral-prefrontal cortical structures.

Nobre et al. (2000) used foveal symbolic
cues with physical appearance that could be
decoupled from the cuing properties (unlike
the studies employing arrow cues). Again, the
earliest effects, starting at 160 ms after cue on-
set, consisted of enhanced negative potentials

over the posterior scalp contralateral to the
cued location. Later effects occurred over the
right anterior scalp sites, where activity as-
sociated with shifts of attention to the right
visual field elicited enlarged positive poten-
tials. This posterior-anterior progression of
the ERP effects suggests contributions from
several brain areas and processes in directing
spatial attention.

Overt Orienting

The electrophysiology of visuospatial atten-
tion has not been engaged only with the
so-called covert orienting (Posner, 1978) oc-
curring without eye movements. There exists
a close coupling between the focusing of at-
tention and the saccadic eye movements (e.g.,
Chelazzi et al., 1995; Deubel & Schneider,
1996). Wauschkuhn et al. (1998) investigated
the relation between shifting visual attention
and saccade preparation. Their subjects had to
make saccades to either a saliently colored or
a gray circle, simultaneously presented in the
opposite visual hemifields. In one condition a
saccade had to be made to the location of the
relevant circle, whereas in another condition
it had to be made to a predefined location de-
pending on the color of the circle but not on
its location. ERP measurements were targeted
on the lateralized activity contralateral to ei-
ther the side of the relevant stimulus or the
direction of the saccade. Three components
of lateralization were found: (a) activity con-
tralateral to the relevant stimulus regardless
of the saccade direction, peaking at 250 ms
after stimulus onset and being largest above
the lateral parietal sites; (b) activity contralat-
eral to the relevant stimulus if the stimulus
was also the target of the saccade, largest in
amplitude at 330 ms to 480 ms after stimulus
onset, widespread over the scalp but with a fo-
cus again above the lateral parietal sites; and
(c) activity contralateral to the saccade direc-
tion, beginning at about 100 ms before the sac-
cade, largest above mesial parietal sites, with
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some task-dependent fronto-central contribu-
tion. The authors interpreted the first compo-
nent as reflecting the shifting of attention to
the relevant stimulus, the second component
as reflecting the enhancement of the atten-
tional shift if the relevant stimulus was also
the saccade target, and the third component
as reflecting the triggering signal for the sac-
cade execution.

Recently, Verleger, Vollmer, Waushkuhn,
van der Lubbe, and Wascher (2000) studied
event-related lateralizations following an ar-
row that in turn was followed by a stimulus
to which subjects had to perform a manual re-
sponse or a saccade. Due to the distribution
of the lateralizations and to their similar am-
plitudes in both conditions, the authors sug-
gested that the event-related lateralizations re-
flect the activity of the lateral premotor cortex
encoding the spatial properties of arrows for
action.

The Time Course of Attentional Facilitation

The repetitive flickering of a visual stimu-
lus at a rate of 8 Hz to 30 Hz evokes the
steady-state visual evoked potential (SSVEP;
cf. Morgan, Hansen, & Hillyard, 1996). This
oscillatory response has the same fundamen-
tal frequency as the driving stimulus and has a
focal origin in the contralateral cortex (Müller
et al., 1998a). It has been used to investigate
the temporal dynamics of attentional switch-
ing. Müller, Teder-Sälejärvi, and Hillyard’s
(1998b) subjects were presented with flick-
ering LED displays in the left and right visual
fields with different flicker frequencies for
the left and right sides (Figure 15.16). At 1.3 s
after flicker onset, a central cue indicated the
to-be-attended side on which the subject was
to report unpredictable color changes. The
variations of the SSVEP amplitude over time
revealed enhanced neural activity in the vi-
sual cortex during the latency range of 600 ms
to 800 ms after the attention-directing cue.
The combined recording of the SSVEP and

the transient ERP revealed significant corre-
lations between the N1, N2, and the SSVEP
attention effects but not between the P1, P3,
and the SSVEP attention effects, suggesting
that the SSVEP and the ERP reflect partially
overlapping attentional mechanisms that fa-
cilitate the discriminative processing of stim-
uli at attended locations (Müller & Hillyard,
2000).

Eimer (2000) studied differences in the
time course of attentional orienting triggered
by salient peripheral events (exogenous ori-
enting, involuntary attention switch) and by
central symbolic precues (endogenous orient-
ing, voluntary attention switch). He recorded
ERPs in response to letter stimuli following
spatially informative central symbolic stim-
uli that served as a cue for a voluntary at-
tention switch or to peripheral direct precues
that caused an involuntary attention switch
after a cue-target interval of either 200 ms
or 700 ms. Stimuli at cued (attended) loca-
tions elicited an enhanced negativity relative
to stimuli at uncued locations. With short in-
tervals, these effects started at around 150 ms
from stimulus onset for the peripheral cues
but were delayed by about 100 ms for the cen-
tral cues. This latency difference is assumed
to reflect fast exogenous orienting elicited by
peripheral, but not by central, cues. Beyond
200 ms poststimulus, attentional negativities
were larger with long intervals than with short
ones for both cue types, which was probably
related to the gradual buildup of the endoge-
nous orienting triggered by spatially predic-
tive events.

Voluntary versus Reflexive Orienting

Eimer’s (2000) finding that the ERP effects
of voluntary, endogenous attentional orient-
ing (directed via symbolic cues) and those
of involuntary, exogenous attentional orient-
ing (triggered via lateralized direct cues)
were very similar suggested that similar pro-
cesses may underlie voluntary and reflexive
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Figure 15.16 Schematic diagram of stimulus array and steady-state visual evoked potentials (SSVEP)
from one subject shown for the attended (bold line) and unattended (thin line) conditions recorded from
the contralateral occipito-temporal sites TO2 and TO1.
NOTE: The flicker rates were 20.8 Hz for the left stimulus array and 27.8 Hz for the right one. The
4 possible color configurations are shown for each row, with all 5 LEDs being red in the standard
configuration. Target and non-target color changes (two LEDs changed to green) occurred in a random
order on both sides with stimulus-onset asynchrony of 400–700 ms. The oval in the middle represents
the fixation point. Attention increased the amplitude of the SSVEPs showing the frequency of the driving
stimulus 600–800 ms after the attention-directing cue.
SOURCE: From Müller et al. (1998b), Nature Neuroscience. © 1998, Nature Publishing Group.

orienting. This hypothesis was tested by
Hopfinger and Mangun (1998), whose targets
were preceded by a flash (cue) that was un-
informative with regard to the target location
and thus did not cause voluntary spatial ori-
enting. Targets at both the cued and uncued lo-
cations elicited the P1, but it had an enhanced
amplitude for cued locations, though with a
scalp distribution similar to that of the P1
for uncued locations, suggesting that involun-
tary orienting causes attentional modulations
of the P1 that are similar to those caused by
voluntary orienting.

Attentional Selection According to Other
Stimulus Attributes

Feature Processing

As already mentioned, spatial attention does
not enhance exogenous components in all cir-
cumstances but may rather result in the emer-
gence of a slow, PN type of negativity (e.g.,
Harter, Aine, & Schroeder, 1982; Hillyard &
Münte, 1984; Wijers, Lamain, Slopsema,
Mulder, & Mulder, 1989). This appears to be
the case when the spatial separation between
the loci of origin of relevant and irrelevant

[Image not available in this electronic edition.]
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stimuli is not large (Hillyard & Münte, 1984).
ERP studies of visual selective attention based
on differences between relevant and irrelevant
stimuli other than those in the spatial locus
of origin, such as color (Wijers et al., 1989),
orientation (Kenemans, Kok, & Smulders,
1993; Rugg, Milner, Lines, & Phalp, 1987),
shape (Harter et al., 1982), or spatial fre-
quency (Harter & Previc, 1978; Heslenfeld,
Kenemans, Kok, & Molenaar, 1997), usu-
ally revealed attentional effects in the range
of 150 ms to 300 ms, including “selection
negativities” and “selection positivities” (cf.
Harter & Aine, 1984, Michie et al., 1999).
For example, Harter and Previc (1978) pre-
sented checkerboards of varying sizes while
subjects had to respond to a particular check
size only. The attention effect on the SSVEP
started at around 160 ms from stimulus onset.
In another study, Kenemans et al. (1993) asked
their subjects to push a button in response
to a given conjunction of spatial frequency
and orientation (target) and to ignore the con-
junctions sharing with the target only fre-
quency (frequency-relevant), only orientation
(orientation-relevant), or neither (irrelevant).
The differences between ERPs to frequency-
relevant and frequency-irrelevant stimuli were
identified as the frontal selection positivity
(Fz; 150–200 ms), the occipital selection neg-
ativity (Oz; 200 ms), and the vertex N2b
(200–250 ms). For the orientation-relevant
stimuli, the selection negativity and the N2b
were also found, but the frontal selection
positivity was elicited only when the spatial
frequency was relevant as well. There was
no support for the hypothesis that the atten-
tional modulation of ERPs reflects the differ-
ential enhancement of the activity in stimulus-
specific pathways.

Interestingly, in a recent study by Anllo-
Vento, Luck, and Hillyard (1998), an ERP
effect of color attention consisting of an en-
hanced positivity started as early as 100 ms
from stimulus onset and peaked at 130 ms

(PD130). They presented randomized se-
quences of checkerboards consisting of iso-
luminant red or blue checks superimposed on
a gray background. Subjects were required to
attend to the red or blue checks in separate
blocks of trials and to press a button each time
they detected a dimmer stimulus of the at-
tended color. The C1, with an onset latency of
50 ms, was sensitive to stimulus color but was
unaffected by the attentional manipulation.
The inverse dipole modeling of the PD130
effect suggested a source in the region of the
dorsal extrastriate area 18 (Figure 15.17). The
authors could not settle whether this PD130
color-attention effect reflects the same selec-
tion processes as does the visuospatial atten-
tion P1 effect. The subsequent selection neg-
ativity with an onset at 160 ms had a source in
inferior occipito-temporal cortex (Brodmann
area 19), consistent with the results of a pre-
vious study (Buchner, Weyen, Frackowiak,
Romaya, & Zeki, 1994) suggesting effects of
color attention on V4.

Hierarchical Processing

Several studies investigated the timing of the
sequential, parallel, and contingent stages of
visual processing. For example, Anllo-Vento
and Hillyard’s (1996) results supported the
early-selection theories of attention that stip-
ulate attentional control over the initial pro-
cessing of stimulus features (gain theories;
Näätänen, 1986). The authors presented pairs
of adjacent colored squares that were sequen-
tially flashed to produce an illusory percep-
tion of movement. Subjects’ tasks consisted
of attending selectively to stimuli in one vi-
sual field and detecting slower moving tar-
gets that contained the critical value of the
attended feature, be it color or movement
direction.

As expected, attention to location was re-
flected by the modulation of the early P1
and N1, whereas the selection of the relevant
stimulus feature was associated with a later
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Standard Stimuli Color Attention Effect

Figure 15.17 Topographical voltage and SCD maps for different color-attention effects.
NOTE: Effects of selection according to color start at around 100 ms after stimulus onset.
SOURCE: From Anllo-Vento et al. (1998).

selection or processing negativity. The ERP
indexes of feature selection, elicited only by
stimuli at the attended location, had distinc-
tive scalp distributions for features mediated
by ventral (color) and dorsal (motion) corti-
cal areas. The ERP indexes of target selection
were also contingent on the prior selection of
location but initially did not depend on the
selection of the relevant feature.

Smid, Jakob, and Heinze (1999) investi-
gated attention to one conjunction of color,
global shape, and local shape while the other
conjunctions of these attributes had to be
ignored. Attending to color and shape pro-
duced a frontal selection positivity (FSP),
a central negativity (N2b), and a posterior
selection negativity. These results suggested
that the processes underlying the selection
negativity and the N2b perform independent
within-dimension selections, whereas the pro-
cess underlying the FSP carries out hierarchi-
cal between-dimension selections. At poste-

rior leads, the manipulation of discriminabil-
ity changed the ERPs to the relevant stimuli
but not those to the irrelevant stimuli, sug-
gesting that the selection negativity does not
involve the selection process itself but rather a
cognitive process initiated after the selection
is finished.

Visual Search

Electrophysiological research of visual atten-
tion has also involved visual search tasks.
For example, Luck and Hillyard (1994) pre-
sented stimulus arrays containing eight iden-
tical items (homogeneous arrays) or seven
identical items and one deviant item (pop-
out arrays). In different experiments, differ-
ent classes of stimulus arrays were desig-
nated as targets, and the remaining stim-
ulus arrays were designated as nontargets.
Target pop-outs elicited enlarged anterior P2,
posterior N2, occipital P3, and parietal P3
waves. The enlarged posterior N2 contained a
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contralateral subcomponent (N2pc) that ex-
hibited a focus over the occipital cortex in
the SCD maps. These results are consistent
with the guided-search models in which preat-
tentive stimulus information is used to guide
attention to task-relevant stimuli. The N2pc
is believed to reflect an attentional filter that
suppresses the processing of interfering dis-
tractors during object identification (Girelli &
Luck, 1997; Luck & Hillyard, 1994). How-
ever, Eimer (1996b) showed that this com-
ponent is also elicited when targets are pre-
sented together with just one nontarget item,
suggesting that it may reflect the attentional
selection of task-relevant stimuli in multiele-
ment displays.

Texture Segmentation

A phenomenon related to visual search is
visual texture segmentation, which charac-
terizes the ability to detect a deviation or
discontinuity in an otherwise homogeneous
field. In texture-segmentation tasks, large dis-
plays are presented that either consist of
the same texture elements only (e.g., lines
with a certain orientation) or contain a small
region of different texture elements (e.g.,
lines with a different orientation) embedded
within the larger, homogeneous region. Sub-
jects in texture-segmentation tasks are usu-
ally asked to discriminate between these two
cases, that is, between homogeneous tex-
tures and inhomogeneous textures containing
a target. Under some circumstances, the de-
tection of an embedded irregularity occurs ef-
fortlessly and preattentively; the discontinu-
ity seems to pop out from the homogeneous
background. Some studies investigated tex-
ture segmentation with electrophysiological
measures. Bach and Meigen (1992), for exam-
ple, found a segmentation-specific negativity
in the VEP between 161 and 225 ms after stim-
ulus onset. Saarinen, Vanni, and Hari (1998),
using MEG techniques, found activity in the
right occipito-temporal area during a pop-out

task that was also present (though reduced)
in a passive viewing condition. Very recently,
Schubö, Meinecke, and Schröger (2001) in-
vestigated the role of attention in texture seg-
mentation by varying the task relevance of
the texture stimuli. Subjects had to either dis-
criminate homogeneous or inhomogeneous
textures or perform a different primary task
of varying complexity. Two components were
found to be sensitive to texture segmenta-
tion, a posterior N2 and a positivity within
the P3 time interval. Both components were
observed also when texture segmentation was
task-irrelevant. However, although the poste-
rior N2 was not affected by the complexity of
the primary task and thus showed some de-
gree of automaticity, the P3 depended on the
attentional resources left over by the primary
task (cf. also Schlaghecken, Meinecke, &
Schröger, 2001).

Binding

As stated earlier, attention may function not
only in the selection of stimulus information
but also in the integration of the process-
ing in different brain areas involved in build-
ing a coherent percept (Treisman & Gelade,
1980). It has been assumed that the rhyth-
mic synchronization of neural discharges in
the gamma band (around 40 Hz) may provide
the necessary spatial and temporal links for
this binding process (e.g., Abeles, 1982). Sev-
eral authors proposed that one particular type
of gamma activity—the so-called induced
gamma activity reflecting oscillations that are
not time-locked to the stimulus—may under-
lie the construction of object representations
that are driven by sensory input or internal,
top-down processes in humans (for reviews,
see Müller, Elliott, Herrmann, & Mecklinger,
in press; Tallon-Baudry & Bertrand, 1999).
It has, for example, been demonstrated that
directing attention modulates the gamma-
band power (Gruber, Müller, Keil, & Elbert,
1999).
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Electrophysiology of visual attention has
revealed a diversity of effects of attentional
selection located at different levels in terms
of the time scale, of the brain regions in-
volved, and of the underlying mechanisms.
The research reviewed in this chapter suggests
that there is no uniform causal mechanism of
visual-attentional selection (cf. Allport, 1993)
but rather a complex network of different pro-
cesses, depending on the type of stimulation,
the task demands, and the state of the subject.
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J., & Näätänen, R. (1999). Electromagnetic re-
sponses of the human auditory cortex generated
by sensory-memory based processing of tone
frequency changes. Neuroscience Letters, 276,
169–172.

Kraus, N., McGee, T., Carrell, T. D., Zecker, S. G.,
Nicol, T. G., & Koch, D. B. (1996). Auditory
neurophysiologic responses and discrimination
deficits in children with learning problems.
Science, 273, 971–973.

Kropotov, J. D., Alho, K., Näätänen, R.,
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I., & Näätänen, R. (1990). Pitch discrimination
performance and auditory event-related poten-
tials. In C. H. M. Brunia, A. W. K. Gaillard, A.
Kok, G. Mulder, & M. N.Verbaten (Eds.), Psy-
chophysiological brain research (pp. 294–298).
Tilburg, Netherlands: Tilburg University Press.

Levänen, S., Ahonen, A., Hari, R., McEvoy, L., &
Sams, M. (1996). Deviant auditory stimuli acti-
vate human left and right auditory cortex differ-
ently. Cerebral Cortex, 6, 288–296.

Linkenkaer-Hansen, K., Palva, J. M., Sams, M.,
Hietanen, J. K., Aronen, H. J., & Ilmoniemi, R. J.

(1998). Face-selective processing in human ex-
trastriate cortex around 120 ms after stimulus on-
set revealed by magneto- and electroencephalog-
raphy. Neuroscience Letters, 253, 147–150.

Legatt, A. D., Arezzo, J. C., & Vaughan, H. G., Jr.
(1988). The anatomic and physiologic bases of
brain stem auditory evoked potentials. Neurol-
ogy Clinics, 6, 681–704.

Loveless, N., Levänen, S., Jousmäki, V., Sams,
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Näätänen, R., Sams, M., Alho, K., Paavilainen, P.,
Reinikainen, K., & Sokolov, E. N. (1988). Fre-
quency and location specificity of the human
vertex N1 wave. Electroencephalography and
Clinical Neurophysiology, 69, 523–531.
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CHAPTER 16

Single versus Multiple Systems
of Learning and Memory

F. GREGORY ASHBY AND SHAWN W. ELL

One of the most hotly debated current issues
in psychology and neuroscience is whether
human learning and memory are mediated
by a single processing system or by multi-
ple qualitatively distinct systems. Although
it is now generally accepted that there are
multiple memory systems (Cohen & Squire,
1980; Corkin, 1965; Gaffan, 1974; Hirsh,
1974; Klein, Cosmides, Tooby, & Chance, in
press; Mishkin, Malamut, & Bachevalier,
1984; O’Keefe & Nadel, 1978; Schacter,
1987; Squire, 1992; Zola-Morgan, Squire, &
Mishkin, 1982), this issue is far from resolved
in the case of learning and other cognitive pro-
cesses. Even so, arguments for multiple sys-
tems have been made in such diverse fields
as reasoning (Sloman, 1996), motor learn-
ing (Willingham, Nissen, & Bullemer, 1989),
discrimination learning (Kendler & Kendler,
1962), function learning (Hayes & Broadbent,
1988), and category learning (Ashby,
Alfonso-Reese, Turken, & Waldron, 1998;
Brooks, 1978; Erickson & Kruschke, 1998).
Interestingly, many of these papers have hy-
pothesized at least two similar systems:
(a) an explicit, rule-based system that is tied
to language function and conscious aware-
ness, and (b) an implicit system that may
not have access to conscious awareness. In
many cases, there has been resistance to these

proposals, and a number of researchers have
responded with papers arguing that single-
system models can account for many of the
phenomena that have been used to support
the notion of multiple systems (Nosofsky &
Johansen, 2000; Nosofsky & Zaki, 1998;
Poldrack, Selco, Field, & Cohen, 1999).

This chapter explores the debate between
single and multiple systems. The focus is
on the methodologies that have been pro-
posed for testing between these two posi-
tions. Thus, rather than attempting to re-
solve the debate by arguing for one posi-
tion or another, our goals are to answer the
following questions: (a) What constitutes a
separate system? (b) What is the appropri-
ate way to resolve this debate empirically?
(c) What are the best empirical methodolo-
gies for testing between single and multiple
systems? Many of the different areas currently
engaged in the debate over single versus mul-
tiple systems use similar methodologies to
test between these two opposing arguments,
and as just mentioned, they have all postu-
lated similar explicit and implicit systems.
For this reason, a detailed study of the de-
bate in one area will most likely benefit the
other areas as well. Thus, in the last major
section, as a model of this debate, we focus
on the question of whether human category
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learning is mediated by single or multiple
systems.

WHAT IS A SYSTEM?

Before one can examine methods for test-
ing between single and multiple systems, one
must first decide what is meant by a separate
system. This question turns out to be as dif-
ficult as any that we examine in this chapter.
This is because all tasks in which we are inter-
ested are performed somewhere in the brain,
and at one level the brain is part of a single sys-
tem (e.g., the central nervous system). At the
other extreme, a strong argument can be made
that each single cell, or even each single ion
channel, forms its own system. So there is a
continuum of levels, from macroscopic to mi-
croscopic, at which a system could be defined.
It seems clear, however, that the level cho-
sen should match the task in question. Thus, a
more macroscopic system is required to learn
a new category of automobiles than to detect
a sine-wave grating of a certain orientation.
In the latter case, one could reasonably ask
whether a column of cells in visual cortex de-
fines the system, whereas in the former case
this is clearly too reductionistic.

Given that an appropriate level and task are
selected, what criteria should we use to decide
whether some model postulates one or more
systems? Suppose we have a model with two
modules S1 and S2. The question is whether
S1 and S2 define separate systems, or whether
they should be viewed as two components of
a single system. We believe that no single cri-
terion can be used to answer this question.
Instead, we propose a hierarchy of criteria—
from the mathematical to the psychological to
the neurobiological. Two modules that meet
all these criteria are clearly separate systems.
Modules that meet none of the criteria clearly
do not constitute separate systems, and mod-
ules that meet some but not all of the criteria

are in some ambiguous gray region along the
single system–multiple system continuum.

Suppose that the model for S1 is charac-
terized by a set of parameters denoted by the
vector θ1 and that the model for S2 is character-
ized by the parameters θ2. For any specific set
of numerical values of θ1 and θ2, the models of
S1 and S2, respectively, each predict a certain
probability distribution of the relevant depen-
dent variable, whatever that might be. Denote
these probability distributions by f1(x | θ1)

and f2(x | θ2), respectively. As the numeri-
cal values of θ1 and θ2 change, these pre-
dicted probability distributions also change.
Therefore, let { f1(x | θ1)} and { f2(x | θ2)} de-
note the set of all possible probability density
functions that can be generated from the S1

and S2 models, respectively (i.e., any numer-
ical change in θ1 or θ2 creates a new member
of these sets). Then a mathematical criterion
for S1 and S2 to be separate systems is that
{ f1(x | θ1)} and { f2(x | θ2)} are not identical,
and that neither is a subset of the other. In other
words, the models of S1 and S2 are not math-
ematically equivalent, and one is not a special
case of the other—that is, they each make at
least some unique predictions. If the models
were completely mathematically equivalent,
so that no experiment could ever be run that
could produce data that might differentiate the
two, then it is difficult to see how they could
qualify as separate systems.

Note that an implicit assumption of this
definition is that S1 and S2 each make pre-
dictions about observable behavior (because
they each predict some probability distribu-
tion on the relevant dependent variable). This
itself is a stringent requirement that eliminates
many possible models. For example, signal
detection theory postulates separate sensory
and decision processes, each described by its
own parameter (d ′ and XC , respectively). But
either process, by itself, is incapable of mak-
ing predictions about behavior. Instead, the
two subsystems are assumed always to work
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together to produce a behavioral response.
As such, standard signal detection theory is
a single-system theory, even though it postu-
lates functionally separate sensory and deci-
sional subsystems.

At the psychological level, to qualify as
separate systems, S1 and S2 should postulate
that different psychological processes are re-
quired to complete the task in question suc-
cessfully. For example, a multiple-systems
account of category learning might postulate
separate prototype abstraction and rule-based
systems, but a model that proposed two dif-
ferent prototype abstraction processes might
be better described as a single-system model.
This criterion would also apply the single sys-
tem label to a theory that postulated two sep-
arate signal detection systems, one, for ex-
ample, with a more efficient sensory process
and the other with a more efficient decision
process. This is because both systems would
postulate similar (but not identical) sensory
and decision processes that are active on all
trials.

At the neurobiological level, separate sys-
tems should be mediated by separate neural
structures or pathways. In most cases, there
will be widespread agreement within the field
of neurobiology about whether a pair of struc-
tures is part of the same or different systems,
so this criterion should usually be straightfor-
ward to test. Within cognitive psychology this
should be the gold standard for establishing
the existence of separate systems. It is highly
likely that if the neurobiological condition is
met, then the psychological and mathemati-
cal conditions will also be met. However, it
is very easy to find examples in which the
reverse implication fails. For example, one
could easily construct two different exemplar-
based category-learning models that are math-
ematically identifiable (i.e., the mathemati-
cal condition is met) but postulate the same
process of accessing category exemplars and
computing their similarity to the presented

stimulus, and therefore are also mediated by
the same neural structures and pathways.

Just as the theoretical criteria for the exis-
tence of separate systems can be formulated
at several different levels of analysis, so too
is it vitally important to appeal to converg-
ing operations when testing empirically be-
tween single and multiple systems of learning
and memory. It is extremely unlikely that any
single experiment will yield data that defini-
tively decide the question of whether there
are single or multiple systems in any specific
area of learning or memory. For any single
set of data that purportedly supports the exis-
tence of multiple systems, for example, it is
highly likely that a clever researcher will be
able to construct a single-system model that
can account for those data. Thus, it is vital
when evaluating any new model, whether it
postulate single or multiple systems, that data
are considered from many different experi-
mental paradigms. Ideally, such data would
come from several different levels of analysis,
including behavioral neuroscience and tradi-
tional cognitive psychology, as well as cogni-
tive neuroscience and neuropsychology.

SPECIFIC METHODOLOGICAL
TESTS OF SINGLE VERSUS
MULTIPLE SYSTEMS

A formal investigation of the efficacy of vari-
ous methods for testing between single and
multiple systems of learning and memory
requires more structure than our previous dis-
cussions. Consider an experiment with several
different conditions in which the dependent
variable on condition i is denoted by the ran-
dom variable Xi . Denote the probability den-
sity function (PDF) of Xi in condition i by
gi (x). As concrete examples, X1 and X2 might
be the response times (RTs) from an experi-
ment with two different conditions that load
on different putative memory systems, or they
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might be the number of trials required to reach
some criterion accuracy level in this same
experiment. In the former case, gi (x) might
be the RT distribution produced by a single
subject in condition i , but in the latter case
gi (x) would be the trials-to-criterion distribu-
tion across a group of subjects who all partic-
ipated in condition i (i.e., because each sub-
ject produces many RTs but only one value
for trials-to-criterion in each condition).

Next consider an organism with two sepa-
rate memory systems, either of which might
be sufficient to complete the experimental task
by itself. Let XAi and XBi denote the value of
the dependent variable on trials when condi-
tion i is completed by systems A and B, re-
spectively, and let fA(x | i) and fB(x | i) de-
note their respective PDFs. The PDF gi (x) is
the distribution of observable data values, so
it can always be estimated directly. As we will
see, however, whether the PDFs fA(x | i) and
fB(x | i) can be estimated directly depends on
the model that we assume.

In this section, we consider three differ-
ent types of multiple systems models. In the
strong model, the observer uses only system
A in experimental condition 1, and only sys-
tem B in experimental condition 2. Thus,

g1(x) = fA(x | 1) and g2(x) = fB(x | 2).

(1)

The assumption that different systems are
used in the two tasks has been called selec-
tive influence in the literature on single ver-
sus multiple systems (Dunn & Kirsner, 1988),
after a similar assumption in the RT literature
that was identified by Sternberg (1969). Al-
most all of the formal analysis of methodolo-
gies that purport to test between single and
multiple systems (e.g., double dissociations)
are based on this strong model.

In practice, however, it seems possible that
both systems may contribute to performance
in both conditions, with the relative contri-
butions of systems A and B varying from

condition 1 to condition 2. For example, ex-
plicit memory systems may contribute to per-
formance on putative implicit memory tasks
(and vice versa). There are two obvious mod-
els of how this division of labor might pro-
ceed. In the mixture model, the observable re-
sponse is determined by a single system on
each trial, but memory system A determines
the response on some trials and memory sys-
tem B determines the response on the remain-
ing trials. Let pi denote the probability that
memory system A determines the response in
condition i . Then the mixture model predicts
that the observable PDF is a probability mix-
ture of the two component PDFs; that is,

gi (x) = pi fA(x | i)+(1− pi ) fB(x | i). (2)

The third possibility that we consider is that
both systems contribute to the observable re-
sponse on every trial. In fact, in the averaging
model the observable dependent variable is a
weighted average of the outputs of the two
component systems. In particular,

Xi = ri XAi + (1 − ri )XBi , (3)

where 0 ≤ ri ≤ 1 is the weight given memory
system A in condition i. The observable PDF
is found from a generalization of the so-called
convolution integral:

gi (x)

= 1

ri (1 − ri )

∫ ∞

−∞
f

(
x − w

ri
,

w

1 − ri

∣∣∣∣ i

)
dw,

(4)

where f (xA, xB | i) is the joint PDF of XAi

and XBi .
Equations (2) and (3) are in a similar form,

but mathematically their behavior is very dif-
ferent. For example, suppose systems A and
B can both complete task i , but that system A
is much better adapted to performing this task
than is system B. Then fA(x | i) and fB(x | i)
will have very different means. In the mixture
model, this will be obvious because on trials
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when the observer uses system A, RT will be
short, whereas RT will be long on trials when
the observer uses system B. In fact, if the A
and B means are far enough apart, then the
observable PDF, gi (x), will be bimodal. How-
ever, in the averaging model the observer does
the same thing on every trial, and as a result
RT will always be of intermediate value, and
gi (x) will therefore be unimodal. For these
reasons, mixture models will generally be eas-
ier to discriminate from single-system models
than will averaging models, which like single-
system models assume that observers do the
same thing on all trials.

The Fixed-Point Property
of Binary Mixtures

An obvious signature of a mixture model
would be a bimodal PDF (in the case of bi-
nary mixtures). Unfortunately, mixture mod-
els will produce unimodal PDFs unless the
component distributions are far apart. Thus,
it is important to find some other less obvi-
ous signature left by mixture models. A solu-
tion to this problem was discovered more than
30 years ago.

The issue of whether choice RT was me-
diated by a mixture model or by a single-
system model achieved intense scrutiny dur-
ing the 1960s and 1970s (e.g., Falmagne,
1968; Falmagne & Theios, 1969; Lupker &
Theios, 1977; Townsend & Ashby, 1983;
Yellott, 1969, 1971). The interest was gener-
ated by Yellott’s (1969) proposal that some
proportion of responses in speeded-choice
tasks were simple guesses, and thus the ob-
servable RTs were a mixture of fast guesses
and slower times from trials when complete
processing occurred. In response Falmagne
proposed a clever test of mixture models that
he called the fixed-point property. Consider
a special case of Equation (2) in which the
mixture probability pi varies across the ex-
perimental conditions (i.e., varies with i), but

g i(x
)
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Figure 16.1 Examples of probability density
functions that satisfy the fixed-point property.

the component system PDFs do not; that is,

fA(x | i) = fA(x) and

fB(x | i) = fB(x), for all values of i .

In each experimental condition, all that we
can estimate, of course, is the observable PDF,
gi (x). The fixed-point property of binary mix-
tures states that all such mixtures must inter-
sect at the same time point, if they intersect at
all (Falmagne, 1968).

Figure 16.1 shows examples of gi (x) when
the component PDFs, fA(x) and fB(x), are
each normal distributions with equal variance,
and the mixture probability pi varies across
conditions from 0.2 to 0.8. Note that the result-
ing PDFs (which are not themselves normal)
all intersect at the point x = 0.5. Although it is
mathematically possible that a single-system
model could coincidentally mimic this result,
such a possibility seems highly unlikely, so a
set of empirical PDFs that satisfy the fixed-
point property should be taken as strong evi-
dence of multiple systems. On the other hand,
the converse result is much weaker. There
are many reasons why the mixture model
might fail to display the fixed-point prop-
erty, so data in which the fixed-point property
fails do not constitute strong evidence against
the mixture model. For example, it might
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Figure 16.2 Example of category structures to which the fixed-point property might be applied.
NOTE: a) A memorization strategy may be employed to learn this structure with few exemplars. However,
as the numbers of exemplars increases (in b and c), it seems more likely that an abstract rule may be
applied.

be the case that the component PDFs change
across conditions, in addition to the mixture
probability pi .

The fixed-point property has not been used
to test for single versus multiple systems of
learning or memory, but there is no reason,
in principle, why it could not. For exam-
ple, consider the category structures shown in
Figure 16.2. Suppose a researcher believes
that learning of these structures will depend
heavily on memorization when there are only
a few exemplars per category, but that as the
number of exemplars is increased, observers
begin learning and applying a more abstract
rule. This dual-system hypothesis could be
tested via the fixed-point property. For ex-
ample, consider the stimulus labeled T in

Figure 16.2. Note that this stimulus appears in
every condition. Suppose that the conditions
are ordered so that the smallest categories are
learned first and more exemplars are succes-
sively added (so that the order is Figure 16.2a,
16.2b, 16.2c). In each condition, enough data
are collected to estimate the RT distribution
for stimulus T. If the theory is right, then in
Figure 16.2a the RT distribution for stimulus
T will be determined primarily by a memo-
rization strategy, and in Figure 16.2c by ap-
plying an abstract rule. If during the transition
the observer intermixes trials in which the re-
sponse to stimulus T is generated by these
two systems, then the stimulus-T RT distri-
butions across conditions should satisfy the
fixed-point property.
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In this case, dual systems are supported if
the observable RT PDFs all intersect at the
same point. Unfortunately, however, it is dif-
ficult to draw any strong conclusions if they
do not satisfy the fixed-point property. Recall
that a condition necessary for the fixed-point
property to hold is that fA(x | i) = fA(x) and
fB(x | i) = fB(x)—in other words, the com-
ponent system PDFs for the time to categorize
stimulus T are the same in all three conditions
shown in Figure 16.2. This is a strong assump-
tion that could fail for a variety of reasons. For
example, the rule-based system might use a
slightly different rule in the three conditions.
There is much evidence that categorization
RT is strongly affected by the distance from
the stimulus to the category boundary (Ashby,
Boynton, & Lee, 1994; Maddox, Ashby, &
Gottlob, 1998), so if the boundary (i.e., rule)
changes, then the distance between T and the
boundary will change, and so will the time
it takes the rule-based system to categorize
stimulus T. Similarly, it may be that the mem-
orization system slows down when the num-
ber of exemplars that must be memorized in-
creases. This would cause the PDF from the
memorization system to change (i.e., move to
the right) as more stimuli are added from one
condition to the next.

Double Dissociations

The most widely used current method for es-
tablishing that there are multiple systems of
learning or memory is to find a double disso-
ciation between two tasks that load differently
on the two systems. Many such examples ex-
ist. To name one, several studies have found
that rats with lesions of the tail of the caudate
nucleus are impaired in visual discrimination
learning but not in spatial learning, whereas
rats with lesions to the fornix (the output struc-
ture of the hippocampus) show the opposite
pattern—namely, they are impaired in spatial
learning but are normal in visual discrimi-

Visual Discrimination
Learning

Trials to
Criterion

Caudate Lesion

Fornix Lesion

Spatial
Learning

Figure 16.3 Hypothetical results showing a dou-
ble dissociation between visual discrimination
learning and spatial learning for two different types
of lesions (tail of the caudate nucleus or fornix).

nation learning (McDonald & White, 1994;
Packard, Hirsch, & White, 1989; Packard &
McGaugh, 1992). An example of the pattern
of results one would expect in such a situation
is given in Figure 16.3. Note that the depen-
dent variable is trials-to-criterion.

Several properties of the Figure 16.3 re-
sults are necessary for them to qualify as a
double dissociation (a term first coined by
Teuber, 1955). First, the interaction must be of
the cross-over type. A noncrossover interac-
tion does not qualify as a double dissociation,
no matter what its level of statistical signif-
icance. This is because it is relatively easy
for single-system models to account for non-
crossover interactions (this is demonstrated
later). Second, the cross-over interaction must
come from measuring the same dependent
variable in two different tasks. Thus, a cross-
over interaction by itself is not sufficient to
qualify as a double dissociation. Again, this is
because it is straightforward for single-system
models to account for cross-over interactions
in 2 × 2 designs when only one task is used
and different dependent variables are mea-
sured (more detail on this is provided later
in this section).

A third condition, which is not strictly nec-
essary but greatly strengthens the argument
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that a double dissociation supports multiple
systems, is that the two groups in the experi-
ment each are representative of some homoge-
neous population. In the Figure 16.3 example,
the same results would be assumed to hold for
any group of rats that received these same le-
sions. McCloskey (1993), in particular, has
forcefully argued this point. Of the phrase
“homogeneous population,” both words are
important. For example, McCloskey showed
that spurious conclusions are possible (or per-
haps likely) if each group contains a mixture
of observers with different types of lesions.
This requirement of homogeneity makes the
interpretation of a double dissociation espe-
cially problematic if each group comprises hu-
mans who have suffered some particular type
of lesion. Because human lesions are gener-
ally the result of accident or stroke, no two
are alike. For example, they are often unilat-
eral and do not respect the neuroanatomical
boundaries established by Broadman (1909)
and others. From this perspective, neurode-
generative disease groups (e.g., Parkinson’s
disease) are probably better candidates for
double dissociation studies, but even in
Parkinson’s disease there is widespread indi-
vidual difference in the neuroanatomical locus
and extent of damage (e.g., van Domburg &
ten Donkelaar, 1991). For this reason, it is
important that, whenever possible, any double
dissociations reported in humans are repli-
cated in nonhuman animals under more con-
trolled conditions.

The term “population” in the phrase “ho-
mogeneous population” is equally important.
For example, suppose one of our groups is
normal, healthy, adult humans, and that a sin-
gle neuropsychological patient is discovered
who, when defined as the second group, pro-
duces data that satisfy a double dissociation.
Several researchers have emphasized the dan-
gers in attempting to make inferences from
such data (e.g., Shallice, 1988; Van Orden,
Pennington, & Stone, 2001). For example,

because we have no data from this particular
patient before his or her neurological trauma,
we do not know whether the patient would
have produced these idiosyncratic data be-
fore the trauma, and thus, whether the peculiar
data are the result of the neurological damage.
When one samples from any variable popula-
tion, eventually an extreme outlier is encoun-
tered that might not be representative of any
existing population.

Another popular argument against the
logic of double dissociation is that it leads to
the conclusion that there are too many func-
tionally separate systems (e.g., Van Orden
et al., 2001). For example, consider two tasks:
Both are yes/no detection tasks in which the
signal is a sine wave grating and the noise
is a uniform field. In the first task, however,
the frequency of the signal grating is f1 de-
grees, and in the second task the signal has
frequency f2 degrees. Our two groups are an-
imals with lesions to specific spatial frequency
columns in primary visual cortex. Group 1 has
a lesion to columns sensitive to spatial fre-
quencies centered at f1 degrees, and Group 2
has a lesion to columns sensitive to frequen-
cies centered at f2 degrees. This experiment
should produce a double dissociation, so the
standard conclusion would be that there are
separate systems for the detection of grat-
ings of f1 and f2 degrees. Furthermore, if
we repeat this experiment with other frequen-
cies, we will have to conclude that a num-
ber of other such systems also exist. In a
sense, our logic is correct because visual psy-
chophysiologists often treat different cortical
columns (or hypercolumns) as separate (mini)
systems. On the other hand, from the perspec-
tive of cognitive psychology this conclusion
seems too reductionistic. Cognitive psycholo-
gists might be satisfied to learn, for example,
only that there are separate systems for spatial
frequency and orientation perception. At this
point, any more detail would just overwhelm
theory development.
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From a practical perspective, the problems
arise in our hypothetical detection experiment
because the two tasks are so similar.1 Ac-
cording to standard signal detection theory,
they require the same sensory and decision
processes. Therefore, a practical solution to
the problem is to use current theory regard-
ing the function of the postulated systems to
aid in selecting the tasks to be used in the
double-dissociation experiment. In particular,
two tasks should be used only if there is cur-
rent theoretical debate over whether they are
mediated by one or more separate systems.

In the remainder of this section, we for-
mally examine the validity of claims that
a double dissociation is strong evidence for
multiple systems. We assume throughout this
discussion that the double dissociation was
produced in an experiment that satisfies all
of the guidelines just described above (and
avoids the pitfalls).

To begin, consider the strong multiple-
systems model described in Equation (1).
Suppose that system A is based in the hip-
pocampus (e.g., the fornix) and specializes
in spatial memory tasks and that system B
is based in the caudate nucleus and special-
izes in visual discrimination tasks. Denote the
PDF of system A in the spatial memory task
when the fornix is lesioned by f ′

A(x | S), and
the PDF of system B in the visual discrimi-
nation task when the caudate is lesioned by
f ′
B(x | V ). Such lesions will impair the two

systems. We can document this by assuming
that lesions affect the entire PDFs. Specifi-
cally, we assume that the performance of sys-
tem A in the normal and lesioned groups is
related via

P(XA ≤ x)≥ P(X′
A ≤ x), for all values of x .

(5)

1In fact, one might easily argue that they are so similar
that they should be considered the same task, a conclusion
that would violate our earlier condition that two different
tasks are needed to test for a double dissociation.

These two functions are called the cumu-
lative probability distribution functions, de-
noted by FA(x) and F ′

A(x), respectively, so
Equation (5) is equivalent to

FA(x) ≥ F ′
A(x), for all x . (6)

Similarly, we assume

FB(x) ≥ F ′
B(x), for all x . (7)

Note that the orderings specified by Equa-
tions (6) and (7) guarantee that the means will
also be ordered (although in the reverse direc-
tion; i.e., lesions will increase mean trials-to-
criterion). Figure 16.4a presents hypothetical
cumulative distribution functions (left) and
the relative ordering of the means (right) pre-
dicted by Equations (6) and (7).

Let GIJ(x) denote the cumulative distribu-
tion function of trials-to-criterion for group
J (J = F or C for fornix or caudate lesions)
in task I (I = S or V for spatial memory or
visual discrimination). We assume that this
function provides a complete description of
the dependent variable of interest (e.g., trials-
to-criterion).

In the strong multiple-systems model, the
observable cumulative distribution functions
in the four conditions are the following:

Spatial Memory Task

Fornix Lesion GSF(x) = F ′
A(x | S)

Caudate Lesion GSC(x) = FA(x | S)

Visual DiscriminationTask

Fornix Lesion GVF(x) = FB(x | V )

Caudate Lesion GVC(x) = F ′
B(x | V )

Equations (6) and (7) guarantee that this
model produces the cross-over double dis-
sociation. Figure 16.4b presents a graphical
example of these orderings.

Next, consider what a single-system model
predicts in this experiment. Even if the same
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Figure 16.4 Cumulative distribution functions (left) and means (right) in four conditions of a hypo-
thetical experiment.
NOTE: a) Orderings induced by Equations (6) and (7). b) Predictions of the strong multiple-systems
model. c) Predictions for a single-system model that satisfies Equation (8); that is, fornix lesions are
more detrimental than are caudate lesions.

system is used on every trial of all conditions,
that system might not be equally suited to the
two types of tasks, and the two types of lesions
might not inflict the same amount of damage
to the system. With these caveats in mind, sin-
gle system models predict the following:

Spatial Memory Task

Fornix Lesion GSF(x) = F ′
F (x | S)

Caudate Lesion GSC(x) = F ′
C(x | S)

Visual DiscriminationTask

Fornix Lesion GVF(x) = F ′
F (x | V )

Caudate Lesion GVC(x) = F ′
C(x | V )

where the subscripts F and C refer to the
fornix and caudate, respectively. Now, if the
fornix lesion causes more damage to the sys-
tem than does the caudate lesion, then we as-
sume that the ability of the system to perform
in any task is poorer with fornix lesions than
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with caudate lesions. Thus,

F ′
C(x | S) ≥ F ′

F (x | S) and

F ′
C(x | V ) ≥ F ′

F (x | V ), for all x. (8)

Similarly, if the caudate lesion causes more
damage, then

F ′
F (x | S) ≥ F ′

C(x | S) and

F ′
F (x | V ) ≥ F ′

C(x | V ), for all x. (9)

In either case, there is no crossover inter-
action and, therefore, no double dissociation
(see Figure 16.4c for an example of the Equa-
tion [8] predictions).

There are several points worth noting here.
First, even if Equation (8) or (9) holds, an
interaction is possible in the single system
model—only a cross-over interaction is pre-
cluded. Additive effects (i.e., no interaction)
would occur only if the deleterious effect of
the more damaging lesion was exactly the
same in both tasks. This might occur, but there
is no reason to expect it.

Second, this analysis makes it clear that a
single system model can predict a double dis-
sociation if Equations (8) and (9) both fail—
that is, if the deficit is more severe with the
first lesion in one task and with the second
lesion in the other task. For example, single
system models predict a double dissociation
if

F ′
C(x | S) ≥ F ′

F (x | S) and

F ′
F (x | V ) ≥ F ′

C(x | V ), for all x. (10)

This point was noted by Dunn and Kirsner
(1988), who called Equation (10) a negative
relation between the tasks. With lesion data
it is difficult to imagine how this might occur
in a true single-system model. One possibil-
ity, though, is that the single system is com-
posed of several subsystems, one of which is
knocked out by fornix lesions and another by
caudate lesions. A double dissociation could
result if the subsystem damaged by the fornix

lesion were more important in the spatial
memory task and if the subsystem damaged
by the caudate lesion were more important
in the visual discrimination task. There are
several problems with this scenario, however.
First, if the subsystems are arranged in series,
with the output of one serving as the input for
the other, then it is not clear whether a dou-
ble dissociation would result. Damage to the
upstream subsystem would cause poor perfor-
mance on both tasks because the input to the
downstream, undamaged subsystem would be
corrupted. On the other hand, damage to the
downstream subsystem would affect perfor-
mance only on one task, because the input and
processing in the upstream subsystem would
be unaffected by such a lesion. Thus, the only
way that the double dissociation is guaranteed
is if the two subsystems operate in parallel.
Such a parallel system, however, shares many
properties with multiple systems, so it is un-
clear whether its existence should be taken as
support for a single system.

If different dependent variables are used
for the two groups, then it becomes easy
for single-system models to predict crossover
double dissociations. For example, consider
the hypothetical categorization RT data shown
in Figure 16.5a. In this experiment, subjects
must decide whether each presented stimu-
lus is a member of category A. Figure 16.5a
shows mean RT for “A” and “not A” responses
as a function of the similarity between the
stimulus and the category A prototype. These
data are easily predicted by a single-system
model that assumes subjects compute the sim-
ilarity of the stimulus to the category A proto-
type and then compare this similarity to a cri-
terion. Similarities above the criterion elicit an
“A” response, and similarities below the cri-
terion elicit a “not A” response. Such a model
predicts the Figure 16.5a data if the time to
determine whether the similarity is above or
below criterion decreases with the magnitude
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RT

Not A
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Similarity to Prototype

(a)
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Not A

A

Distance to Category Bound

(b)

Figure 16.5 Hypothetical categorization RT data.
NOTE: a) Mean RT plotted as a function of similarity to prototype in an A-not-A task. b) Data from the
same experiment plotted as a function of distance to category bound.

of the difference between the similarity and
the criterion. Clearly, in such a case it would
be a mistake to infer from Figure 16.5a that
there are separate systems on “A” and “not A”
trials.

From the perspective of double dissocia-
tion logic, there are several problems with the
Figure 16.5a example. First, there are neither
two groups nor two tasks. Instead, the Fig-
ure 16.5a data are from one group of subjects
in one task. Second, data from two different
types of response are plotted in Figure 16.5:
RT for “A” responses and RT for “not A”
responses. Note that this contrasts with the
double dissociation shown in Figure 16.3, in
which the response is the same in all condi-
tions. In Figure 16.5a, data from one exper-
imental condition are divided into two cat-
egories (according to the response given).
Then a variable is constructed (similarity-
to-prototype) that subdivides these two
categories in such a way that a cross-over
interaction occurs. It is important to note,
however, that other variables could be defined
that subdivide the categories differently, and
for which the interaction might disappear. For
example, the same data are replotted in Fig-
ure 16.5b against the variable “psychological
distance to category bound.”

If performance in some task is mediated
by a single system, then it is natural that there
may exist negative relations between differ-
ent kinds of responses or between different
dependent variables (e.g., speed vs. accuracy).
Clearly, it would be a mistake to apply double-
dissociation logic to a cross-over interaction
in such a case.

These analyses provide a rigorous justifi-
cation for the practice of inferring multiple
systems when double dissociations are found,
but only under a fairly limited set of circum-
stances (e.g., different tasks, same response,
separate homogeneous populations). On the
other hand, the only multiple-systems model
that we have considered so far is the strong
model that assumes selective influence—that
is, that the observer uses separate systems in
the two tasks under study. Perhaps a more
plausible multiple-systems alternative is that
the observer uses both systems in both condi-
tions, but that the two tasks load differently on
the two systems and the observable response is
determined either by only one of the systems
on any given trial or by a weighted average
of the two system outputs. In other words, it
is of interest to consider the conditions under
which the mixture and averaging models pre-
dict a double dissociation. To our knowledge,
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this question has not previously been inves-
tigated.

We begin with the mixture model. Let
pS and pV denote the probability that the
hippocampal-based system is used on any
given trial of the spatial memory task and
the visual discrimination task, respectively.
We assume that observers are more likely
to use the hippocampal system in the spatial
memory task and the caudate system in the
visual discrimination task. This means that
pS > 1/2 > pV . As before, we assume that
the effect of the lesions is as described in
Equations (6) and (7). Under these assump-
tions, the cumulative distribution functions in
each condition are given by the following:

Spatial Memory Task

Fornix Lesion

GSF(x) = pS F ′
A(x | S) + (1 − pS)FB(x | S)

Caudate Lesion

GSC(x) = pS FA(x | S) + (1 − pS)F ′
B(x | S)

Visual Discrimination Task

Fornix Lesion

GVF(x) = pV F ′
A(x | V ) + (1 − pV )FB(x | V )

Caudate Lesion

GVC(x) = pV FA(x | V ) + (1 − pV )F ′
B(x | V )

It is not difficult to show2 that this mixture
model predicts a (crossover) double dissocia-
tion if and only if for all values of x ,

pS

1 − pS
>

FB(x | S) − F ′
B(x | S)

FA(x | S) − F ′
A(x | S)

, (11)

and

1 − pV

pV
>

FA(x | V ) − F ′
A(x | V )

FB(x | V ) − F ′
B(x | V )

. (12)

2If the caudate group performs better than the fornix
group in the spatial memory task, then pS FA(x | S) +
(1 − pS)F ′

B(x | S) > pS F ′
A(x | S) + (1 − pS)FB(x | S),

for all x , which implies that pS[FA(x | S)− F ′
A(x | S)] >

(1 − pS)[FB(x | S) − F ′
B(x | S)], for all x . Equation (11)

follows readily from this result. Equation (12) follows in
a similar fashion from the result that a double dissocia-
tion requires the fornix group to perform better than the
caudate group in the visual discrimination task.

Because pS > 1/2 >pV , the left side is greater
than 1 in both equations. By Equations (6)
and (7), the numerator and denominator
of the right-hand side are positive in both
equations. Thus, the mixture model predicts
a double dissociation any time the effects
of the lesions are the same on the two sys-
tems. If they are not (e.g., if the caudate le-
sion more effectively impairs the caudate-
based system than the fornix lesion impairs
the hippocampal-based system), then whether
the mixture model predicts a double disso-
ciation depends on the mixture probabilities
pS and pV . If the experimenter is effective at
finding two tasks that each load heavily on
different systems, then pS will be near 1 and
pV will be near 0, and the left side of Equa-
tions (11) and (12) will both be large. In this
case, a double dissociation will occur even if
there are large differences in the efficacy of
the various lesions. Thus, with the mixture
model of multiple systems, a double dissocia-
tion is not guaranteed, but it should generally
be possible to find tasks and conditions (e.g.,
lesions) that produce one.

The predictions of the averaging model are
qualitatively similar to those of the mixture
model if we shift our focus from the cumula-
tive distribution functions, FA(x) and FB(x),
to the means E(XAi ) and E(XBi ) (e.g., this
allows us to avoid dealing with the convolu-
tion integral of Equation (4)). Let rS and rV

denote the weights given the hippocampal-
based system on any given trial of the spa-
tial memory task and the visual discrimination
task, respectively. We assume that observers
weight the hippocampal system more heavily
in the spatial memory task and the caudate sys-
tem more heavily in the visual discrimination
task. Thus rS > 1/2 > rV . As before, we as-
sume that the lesions impair performance; that
is, because the dependent variable is trials-
to-criterion, this means that E ′

A(X) > EA(X)

and E ′
B(X) > EB(X). Under these assump-

tions, the observable means in each condition
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are given by the following:

Spatial Memory Task

Fornix Lesion

ESF(X) = rS E ′
A(X | S) + (1 − rS)EB(X | S)

Caudate Lesion

ESC(X) = rS EA(X | S) + (1 − rS)E ′
B(X | S)

Visual Discrimination Task

Fornix Lesion

EVF(X) = rV E ′
A(X | V ) + (1 − rV )EB(X | V )

Caudate Lesion

EVC(X) = rV EA(X | V ) + (1 − rV )E ′
B(X | V ).

Note the similarity to the structure of the cu-
mulative distribution functions in the mixture
model. As a result, the averaging model pre-
dicts a double dissociation if

rS

1 − rS
>

E ′
B(X | S) − EB(X | S)

E ′
A(X | S) − EA(X | S)

, (13)

and

1 − rV

rV
>

E ′
A(X | V ) − EA(X | V )

E ′
B(X | V ) − EB(X | V )

. (14)

The conclusions are therefore similar to those
in the case of the mixture model. The averag-
ing model predicts a double dissociation if the
effects of the two lesions are approximately
equal. If one lesion is more severe than the
other, then a double dissociation can still be
predicted if the two tasks load heavily on dif-
ferent systems.

We believe that this analysis provides
strong theoretical justification for the current
practice of interpreting a double dissociation
as evidence of multiple systems. However,
we have also noted some important and se-
vere limitations on this methodology. For ex-
ample, it is essential that the observed in-
teraction be of the cross-over type—not just
any interaction that achieves statistical sig-
nificance. Also, the same dependent variable
should be measured in two different tasks
that sample from separate populations of ho-
mogeneous subjects. It is also important to

note that there is an asymmetry in interpret-
ing double-dissociation results. Whereas the
existence of a double dissociation (under the
appropriate experimental conditions) is strong
evidence for multiple systems, the failure to
find a double dissociation must be interpreted
more cautiously, because there are several rea-
sonably plausible ways in which multiple-
systems models could produce this null re-
sult (e.g., see our discussion of the mixture
model).

Single Dissociations

Although other definitions are possible, we
operationally define a single dissociation as
an interaction of the type described in the last
section for which there is no crossover. As
already mentioned, in the absence of extenu-
ating circumstances, it is difficult or impossi-
ble to draw strong conclusions about whether
such data were produced by single or multi-
ple systems. As we have seen, in many cases it
is straightforward for single-system models to
predict single dissociations. Even so, there are
certain special circumstances in which single
dissociation data have been used to argue for
multiple systems.

Perhaps the most common argument that
a single dissociation signals multiple systems
has been in cases in which two groups per-
form equally on one task but one of these
groups is impaired on a second task rela-
tive to the other group. For example, amnesic
patients perform poorly on explicit mem-
ory tests but often are relatively normal on
a variety of tests of implicit memory (e.g.,
Warrington & Weiskrantz, 1970). It is dan-
gerous, however, to infer simply from this re-
sult that there are separate explicit and im-
plicit memory systems. For example, there
have been several formal demonstrations that
certain single-system models can account for
such data (e.g., Nosofsky, 1988; Nosofsky &
Zaki, 1998). In addition, recently it has been
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argued that even garden-variety single-system
models can account for single dissociations of
this type if the explicit memory tests are more
reliable than are the implicit tests (Buchner &
Wippich, 2000; Meier & Perrig, 2000).

These arguments generally assume no a
priori knowledge about the nature of the tasks
that are used. When such knowledge is con-
sidered, stronger tests are sometimes possi-
ble. One such attempt employs what has been
called the logic of opposition to test for uncon-
scious learning (Higham, Vokey, & Pritchard,
2000; Jacoby, 1991). Consider a categoriza-
tion task with two categories, denoted A and
B. To begin, subjects are trained to identify
members of these two categories. There are
two different test conditions. In the control
condition, subjects are shown a series of stim-
uli and are asked to respond “Yes” to each
stimulus that belongs to Category A or B and
to respond “No” to stimuli that are in neither
category. In the opposition condition, subjects
respond “Yes” only if the stimulus belongs to
Category A. If it belongs to Category B or
to neither category, then the correct response
is “No.” The key test is to compare the ac-
curacy rates in the opposition condition for
these two kinds of stimuli (i.e., those in Cat-
egory B and those in neither category). The
idea is that if responding is based solely on
conscious learning, then the accuracy rates to
these two kinds of stimuli should be equal,
but unconscious learning could cause Cate-
gory B exemplars to become associated with
the notion that these stimuli are valid cate-
gory members, thereby causing more “Yes”
responses to Category B exemplars than to
stimuli in neither category. This logic, which
is not without controversy (Redington, 2000),
takes advantage of our knowledge that sub-
jects were trained on Category B exemplars
but not on the stimuli in neither category.

Another possible use of a priori knowledge
is to focus on the relative difficulty of the two
tasks. For example, consider the two tasks de-
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Figure 16.6 Performance operating characteris-
tics of two tasks.

scribed by the performance operating curves
shown in Figure 16.6. When full resources
are available, Task 1 is easier to learn than is
Task 2 (i.e., criterion performance is achieved
in fewer trials for Task 1 than for Task 2). As
resources are withdrawn, performance natu-
rally declines in both tasks, although at differ-
ent rates. A small to moderate decline in the
available resources is more deleterious to the
more difficult Task 2 (e.g., when Rb resources
are available for both tasks). However, as per-
formance on Task 2 nears floor (i.e., worst
possible performance), Task 1 performance
begins to narrow the gap until eventually per-
formance on both tasks is equally bad. The
point marked RC in Figure 16.6 denotes the
critical level of resources in which the rate
of decline on Task 1 first exceeds the rate of
decline on Task 2.

Now, suppose Tasks 1 and 2 are both
learned by the same system, and consider an
experiment with two conditions. In one, ob-
servers learn the two tasks with full resources
available. This condition produces data points
denoted by the closed circles in Figure 16.6.
In the second condition, observers learn the
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tasks with reduced resources. This could be
accomplished either by requiring observers
to perform a simultaneous dual task, or per-
haps through instruction (e.g., by forcing a
quick response). As long as the observer has
available RC or more resources in this latter
condition, single-system models predict that
the reduced-resources condition will cause
more problems in the more difficult Task 2.
For example, with resources equal to RB, the
reduced-resources condition produces data
points denoted by the closed squares in Fig-
ure 16.6. The only potential problem with this
prediction is if the observer had available less
than RC resources for the learning task in the
reduced-resources condition. This possibility
should be easy to avoid, however, by ensur-
ing that performance on Task 2 is well below
ceiling.

Next, consider predictions in this experi-
ment if the observer uses different systems
to learn Tasks 1 and 2, and for some rea-
son the experimental intervention to reduce
resources works more effectively on the sys-
tem that learns Task 1. In this case, the greater
interference will be with Task 1—a result that
is problematic for single system models.

This was the strategy of a recent experi-
ment reported by Waldron and Ashby (2001).
Participants in this study learned simple and
complex category structures under typical
single-task conditions and when performing
a simultaneous numerical Stroop task. In the
simple categorization tasks, each set of con-
trasting categories was separated by a uni-
dimensional, explicit rule that was easy to
describe verbally. An example is shown in
Figure 16.7 for the rule “respond A if the
background color is blue, and respond B if
the background color is yellow.” On the other
hand, the complex tasks required integrating
information from three stimulus dimensions
and resulted in implicit rules that were dif-
ficult to verbalize. An example is shown in
Figure 16.8. Ashby et al. (1998) hypothesized

Figure 16.7 Category structure of a rule-based
category-learning task.
NOTE: The optimal explicit rule is the following:
Respond A if the background color is blue (de-
picted as light gray), and respond B if the back-
ground color is yellow (depicted as dark gray).

that learning in such tasks will be dominated
by different systems—in particular, that the
simple categories would be learned by an ex-
plicit, rule-based system that depends heav-
ily on frontal cortical structures, whereas the
complex categories would be learned primar-
ily by an implicit, procedural learning system

Figure 16.8 Category structure of an
information-integration category-learning task
with only a few exemplars in each category.
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that depends heavily on subcortical structures.
Stroop tasks are known to activate frontal cor-
tex (Bench et al., 1993), so it was hypothesized
that the concurrent Stroop task would interfere
with the explicit system more strongly than
with the implicit system. In support of this
prediction, the concurrent Stroop task dramat-
ically impaired learning of the simple explicit
rules but did not significantly delay learning
of the complex implicit rules. These results
support the hypothesis that category learning
is mediated by multiple learning systems.

Mapping Hypothesized Systems
onto Known Neural Structures

Testing between single and multiple systems
of learning and memory will always be more
difficult when the putative systems are hy-
pothetical constructs with no known neural
basis. For example, the Waldron and Ashby
(2001) dual-task study was more effective be-
cause it had earlier been hypothesized that
the putative explicit system relied on frontal
cortical structures much more strongly than
did the implicit system. Given this and the
neuroimaging evidence that Stroop tasks ac-
tivate frontal cortex (Bench et al., 1993), it
becomes much easier to argue that if there are
multiple systems, then the concurrent Stroop
task should interfere more strongly with the
learning of the simpler, rule-based category
structures.

In general, the memory literature has en-
thusiastically adopted this constraint. Most of
the memory systems that have been proposed
have become associated with a distinct neu-
ral basis. For example, cognitive neuroscience
models of working memory focus on pre-
frontal cortex (e.g., Fuster, 1989; Goldman-
Rakic, 1987, 1995); declarative memory
models focus on the hippocampus and other
medial temporal lobe structures (e.g., Gloor,
1997; Gluck & Myers, 1997; McClelland,
McNaughton, & O’Reilly, 1995; Polster,

Nadel, & Schacter, 1991; Squire & Alvarez,
1995); procedural memory models focus on
the basal ganglia (e.g., Jahanshahi, Brown,
& Marsden, 1992; Mishkin et al., 1984;
Saint-Cyr, Taylor, & Lang, 1988; Willingham
et al., 1989); and models of the perceptual
representation system focus on visual cortex
(Curran & Schacter, 1996; Schacter, 1994;
Tulving & Schacter, 1990).

CATEGORY LEARNING AS A MODEL
OF THE SINGLE VERSUS MULTIPLE
SYSTEMS DEBATE

Category learning is a good example of an
area in which the debate over single versus
multiple systems is currently being waged.
The issues that have arisen in the category-
learning literature are similar to issues dis-
cussed in other areas that are wrestling with
this same debate. This is partly because sim-
ilar methodologies are used in the differ-
ent areas to test between single and multi-
ple systems, and partly because the different
subdisciplines engaged in this debate—motor
learning, discrimination learning, function
learning, category learning, and reasoning—
have all postulated similar explicit and im-
plicit systems. Thus, there is a very real pos-
sibility that if there are multiple systems of
category learning, then these same (or highly
similar) systems might also mediate other
types of learning. For this reason, this sec-
tion examines the debate over whether there
are single or multiple systems of category
learning.

Within the field of categorization, the de-
bate over whether there is one or more than
one learning system is just beginning. There
have been no attempts to test the fixed-point
property, and empirical demonstrations of
double dissociations are rare. Nevertheless,
there have been some encouraging attempts to
map category-learning systems onto distinct
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neural structures and pathways, and as men-
tioned earlier, there has been at least one
attempt to test for multiple systems by ex-
ploiting a known a priori ordering of task
difficulty. Even so, in the case of category
learning the debate over single versus multiple
systems is far from resolved. Not only is there
insufficient empirical evidence to decide this
issue, but there is still strong theoretical dis-
agreement as well. Although there have been
a number of recent articles arguing for mul-
tiple category-learning systems (Ashby et al.,
1998; Erickson & Kruschke, 1998; Pickering,
1997; Waldron & Ashby, 2001), there have
also been recent papers arguing for a sin-
gle system (e.g., Nosofsky & Johansen, 2000;
Nosofsky & Zaki, 1998).

Category-Learning Theories

As one might expect, the early theories of
category learning all assumed a single sys-
tem. There were a number of such theories,
but four of these have been especially im-
portant. Rule-based theories assume that peo-
ple categorize by applying a series of ex-
plicit logical rules (e.g., Bruner, Goodnow,
& Austin, 1956; Murphy & Medin, 1985;
Smith & Medin, 1981). Various researchers
have described this as a systematic process
of hypothesis testing (e.g., Bruner et al.,
1956) or theory construction and testing (e.g.,
Murphy & Medin, 1985). Rule-based theo-
ries are derived from the so-called classical
theory of categorization, which dates back to
Aristotle, although in psychology it was pop-
ularized by Hull (1920). The classical theory
assumes that categorization is a process of
testing whether each stimulus possesses the
necessary and sufficient features for category
membership (Bruner et al., 1956). Much of
the work on rule-based theories has been con-
ducted in psycholinguistics (Fodor, Bever, &
Garrett, 1974; Miller & Johnson-Laird, 1976)
and in psychological studies of concept for-

mation (e.g., Bourne, 1966; Bruner et al.,
1956).

Prototype theory assumes that the category
representation is dominated by the prototype,
or most typical member, and that categoriza-
tion is a process of comparing the similarity of
the stimulus to the prototype of each relevant
category (Homa, Sterling, & Trepel, 1981;
Posner & Keele, 1968, 1970; Reed, 1972;
Rosch, 1973, 1977; Smith & Minda, 2000).
In its most extreme form, the prototype is
the category representation, but in its weaker
forms the category representation includes in-
formation about other exemplars (Busemeyer,
Dewey, & Medin, 1984; Homa, Dunbar, &
Nohre, 1991; Shin & Nosofsky, 1992).

Exemplar theory assumes that people com-
pute the similarity of the stimulus to the mem-
ory representation of every exemplar of all
relevant categories and select a response on
the basis of these similarity computations
(Brooks, 1978; Estes, 1986a; Hintzman, 1986;
Medin & Schaffer, 1978; Nosofsky, 1986).
The assumption that the similarity compu-
tations include every exemplar of the rele-
vant categories is often regarded as intuitively
unreasonable. For example, Myung (1994) ar-
gued that “it is hard to imagine that a 70-year-
old fisherman would remember every instance
of fish that he has seen when attempting to
categorize an object as a fish” (p. 348). Even
if the exemplar representations are not con-
sciously retrieved, a massive amount of acti-
vation is assumed by exemplar theory. Nev-
ertheless, exemplar models have been used to
account for asymptotic categorization perfor-
mance from tasks in which the categories (a)
were linearly or nonlinearly separable (Medin
& Schwanenflugel, 1981; Nosofsky, 1986,
1987, 1989), (b) differed in base rate (Medin
& Edelson, 1988), (c) contained correlated or
uncorrelated features (Medin, Alton, Edelson,
& Freko, 1982), (d) could be distinguished us-
ing a simple verbal rule (or a conjunction of
simple rules; Nosofsky, Clark, & Shin, 1989),
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and (e) contained differing exemplar frequen-
cies (Nosofsky, 1988).

Finally, decision bound theory (also called
general recognition theory) assumes that there
is trial-by-trial variability in the perceptual in-
formation associated with each stimulus, so
the perceptual effects of a stimulus are most
appropriately represented by a multivariate
probability distribution (usually a multivari-
ate normal distribution). During categoriza-
tion, the observer is assumed to learn to assign
responses to different regions of the percep-
tual space. When presented with a stimulus,
the observer determines which region the per-
ceptual effect is in and emits the associated
response. The decision bound is the partition
between competing response regions (Ashby,
1992; Ashby & Gott, 1988; Ashby & Lee,
1991, 1992; Ashby & Maddox, 1990, 1992,
1993; Ashby & Townsend, 1986; Maddox &
Ashby, 1993). Thus, decision bound theory
assumes that although exemplar information
may be available, it is not used to make a cate-
gorization response. Instead, only a response
label is retrieved.

Three Different Category-Learning Tasks

Each of these theories has intuitive appeal, es-
pecially in some types of categorization tasks.
For example, rule-based theories seem espe-
cially compelling when the rule that best sep-
arates the contrasting categories (i.e., the opti-
mal rule) is easy to describe verbally (Ashby
et al., 1998), and an exemplar-based mem-
orization strategy seems ideal when the con-
trasting categories have only a few highly dis-
tinct exemplars. Not surprisingly, proponents
of the various theories have frequently col-
lected data in exactly those tasks for which
their pet theories seem best suited. If there is
only one category learning system, then this
strategy is fine. However, if there are multi-
ple systems, then the different tasks that have
been used might load differently on the dif-

ferent systems. In this case, two researchers
arguing that their data best support their own
theory might both be correct. As we will see
later, neuropsychological and neuroimaging
evidence supports this prediction. Therefore,
before we examine the debate over single ver-
sus multiple systems within the categoriza-
tion literature, we take some time to describe
three different types of categorization tasks
that each seem ideally suited to the specific
psychological processes hypothesized by the
different theories.

As mentioned, rule-based theories seem
most compelling in tasks in which the rule that
best separates the contrasting categories (i.e.,
the optimal rule) is easy to describe verbally
(Ashby et al., 1998). As a result, observers
can learn the category structures via an ex-
plicit process of hypothesis testing (Bruner
et al., 1956) or theory construction and test-
ing (Murphy & Medin, 1985). Figure 16.7
shows the stimuli and category structure of
a recent rule-based task that used eight exem-
plars per category (Waldron & Ashby, 2001).
The categorization stimuli were colored geo-
metric figures presented on a colored back-
ground. The stimuli varied on four binary-
valued dimensions: background color (blue
or yellow; depicted as light or dark gray, re-
spectively), embedded symbol color (red or
green; depicted as black or white, respec-
tively), symbol numerosity (1 or 2), and sym-
bol shape (square or circle). This yielded a
total of 16 possible stimuli. To create rule-
based category structures, one dimension is
selected arbitrarily to be relevant. The two
values on that dimension are then assigned
to the two contrasting categories. At the end
of training, observers are able to describe the
rule they used in rule-based tasks quite accu-
rately. Most categorization tasks used in stud-
ies that have argued for rule-based learning
have been designed in a similar fashion (e.g.,
Bruner et al., 1956; Salatas & Bourne, 1974),
as are virtually all categorization tasks used
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in neuropsychological assessment, including
the well-known Wisconsin Card Sorting Test
(WCST; e.g., Grant & Berg, 1948; Kolb &
Whishaw, 1990).

Information-integration tasks are those in
which accuracy is maximized only if infor-
mation from two or more stimulus compo-
nents (or dimensions) must be integrated at
some predecisional stage (Ashby & Gott,
1988; Shaw, 1982). A conjunction rule (e.g.,
respond A if the stimulus is small on di-
mension x and small on dimension y) is a
rule-based task rather than an information-
integration task because separate decisions
are first made about each dimension (e.g.,
small or large) and then the outcome of these
decisions is combined (integration is not pre-
decisional). In many cases, the optimal rule
in information-integration tasks is difficult or
impossible to describe verbally (Ashby et al.,
1998). That people readily learn such category
structures seems problematic for rule-based
theories, but not for prototype, exemplar,
or decision bound theories. The neuropsy-
chological data reviewed later suggest that
performance in such tasks is qualitatively
different depending on the size of the cate-
gories; in particular, when a category contains
only a few highly distinct exemplars, memo-
rization is feasible. However, when the rele-
vant categories contain many exemplars (e.g.,
hundreds), memorization is less efficient. An
exemplar strategy seems especially plausible
when the categories contain only a few highly
distinct exemplars. Not surprisingly, most
articles arguing for exemplar-based category
learning have used such designs (e.g., Estes,
1994; Medin & Schaffer, 1978; Nosofsky,
1986; Smith & Minda, 2000).

Figure 16.8 shows the stimuli and category
structure of a recent information-integration
task that used only eight exemplars per cate-
gory (Waldron & Ashby, 2001). The catego-
rization stimuli were the same as those in Fig-
ure 16.7. To create these category structures,

one dimension was arbitrarily selected to be
irrelevant. For example, in Figure 16.8 the ir-
relevant dimension is symbol shape. Next, one
level on each relevant dimension was arbitrar-
ily assigned a value of +1, and the other level
was assigned a value of 0. In Figure 16.8 a
background color of blue (depicted as light
gray), a symbol color of green (depicted as
white), and a symbol number of 2 were all
assigned a value of +1. Finally, the category
assignments were determined by the follow-
ing rule:

The stimulus belongs to Category A if the
sum of values on the relevant dimensions >

1.5;

Otherwise it belongs to Category B.

This rule is readily learned by healthy young
adults, but even after achieving perfect per-
formance, they can virtually never accurately
describe the rule they used.

When there are many exemplars in each
category, memorization strategies, which are
necessarily exemplar-based, become more
difficult to implement. In these situations,
it seems especially plausible that observers
learn to associate category labels with regions
of perceptual space (as predicted by decision
bound theory). Figure 16.9 shows the cate-
gory structure of an information-integration
categorization task in which there are hun-
dreds of exemplars in each category (devel-
oped by Ashby & Gott, 1988). In this experi-
ment, each stimulus is a line that varies across
trials in length and orientation. Each cross in
Figure 16.9 denotes the length and orientation
of an exemplar in Category A, and each dot
denotes the length and orientation of an exem-
plar in Category B. The categories overlap, so
perfect accuracy is impossible in this exam-
ple. Even so, the quadratic curve is the bound-
ary that maximizes response accuracy. This
curve is difficult to describe verbally, so this
is an information-integration task. Many of
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Figure 16.9 Category structure of an information-
integration category-learning task with many ex-
emplars per category.
NOTE: Each stimulus is a line that varies across
trials in length and orientation. Every black plus
sign depicts the length and orientation of a line in
Category A, and every gray dot depicts the length
and orientation of a line in Category B. The
quadratic curve is the boundary that maximizes
accuracy.

the studies supporting decision bound theory
have used this randomization design (Ashby
& Gott, 1988; Ashby & Maddox, 1990, 1992;
Maddox & Ashby, 1993).

A prototype abstraction process does not
work well in the Figure 16.9 experiment be-
cause prototype theory always predicts lin-
ear decision bounds (Ashby & Gott, 1988),
and there is much data showing that quadratic
bounds give a much better account of the re-
sulting data than do linear bounds (Ashby &
Maddox, 1992). A prototype abstraction pro-
cess seems most plausible in prototype dis-
tortion tasks in which each category is created
by first defining a category prototype and then
creating the category members by randomly
distorting these prototypes. In the most pop-
ular version of prototype distortion tasks, the
category exemplars are random dot patterns

Figure 16.10 Some exemplars from a prototype
distortion category-learning task with random dot
patterns.

(Posner & Keele, 1968, 1970). An example
of the random dot pattern task is shown in
Figure 16.10. To begin, many stimuli are cre-
ated by randomly placing a number of dots
on the display. One of these stimuli is then
chosen as the prototype for Category A. The
others become stimuli not belonging to Cate-
gory A. The other Category A exemplars are
then created by randomly perturbing the posi-
tion of each dot in the Category A prototype.
Categories created from these random dot pat-
terns have been especially popular with pro-
totype theorists (e.g., Homa, Cross, Cornell,
Goldman, & Schwartz, 1973; Homa & Cul-
tice, 1984; Homa et al., 1981; Posner & Keele,
1968, 1970).

Explicit versus Implicit
Category Learning

As mentioned previously, many of the cur-
rent theories that postulate multiple category-
learning systems propose separate explicit
and implicit subsystems. The literature on
multiple memory systems also frequently uses
the terms explicit and implicit, but usually
in a slightly different fashion. Therefore, be-
fore proceeding further, we briefly discuss
the existing criteria that are used to deter-
mine whether category learning is explicit or
implicit.
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There is widespread agreement, within
both the category-learning and memory liter-
atures, that explicit processing requires con-
scious awareness (e.g., Ashby et al., 1998;
Cohen & Squire, 1980). The disagreements
relate more to how implicit processing is
defined. Many memory theorists adopt the
strong criteria that a memory is implicit only
if there is no conscious awareness of its details
and there is no knowledge that a memory has
even been stored (e.g., Schacter, 1987). In a
typical categorization task (e.g., any of those
described in the last section) these criteria are
impossible to meet when trial-by-trial feed-
back is provided (as it usually is). When an
observer receives feedback that a response is
correct, this alone makes it obvious that learn-
ing has occurred, even if there is no internal
access to the system that is mediating this
learning. Thus, in category learning, a weaker
criterion for implicit learning is typically used
in which the observer is required only to have
no conscious access to the nature of the learn-
ing, even though he or she would be expected
to know that some learning had occurred.

The stronger criteria for implicit process-
ing that have been adopted in much of the
memory literature could be applied in un-
supervised category-learning tasks, in which
no trial-by-trial feedback of any kind is pro-
vided. In the typical unsupervised task, ob-
servers are told the number of contrasting
categories and are asked to assign stimuli to
these categories but are never told whether
a particular response is correct or incorrect.
Free sorting is a similar but more unstruc-
tured task in which participants are not told
the number of contrasting categories (e.g.,
Ashby & Maddox, 1998). Although unsu-
pervised and free-sorting tasks are ideal for
using the stricter criteria to test for implicit
learning, so far the only learning that has
been demonstrated in such tasks is explicit
(Ashby, Queller, & Berretty, 1999; Medin,
Wattenmaker, & Hampson, 1997).

One danger with equating explicit process-
ing with conscious awareness is that this shifts
the debate from how to define “explicit” to
how to define “conscious awareness.” Ashby
et al. (1998) suggested that one pragmatic
solution to this problem is to define opera-
tionally a categorization rule as explicit if it
is easy to describe verbally. By this criterion,
the rule that separates the categories in Fig-
ure 16.7 is explicit, whereas the rules best
separating the categories in Figures 16.8 and
16.9 are implicit. This definition works well in
most cases, but it seems unlikely that verbal-
izability should be a requirement for explicit
reasoning. For example, the insight displayed
by Köhler’s (1925) famous apes seems an ob-
vious example of explicit reasoning in the ab-
sence of language. Ultimately, then, a the-
oretically motivated criterion for conscious
awareness is needed.

One way to develop a theory of conscious
awareness is by exploiting the relationship
between awareness and working memory. For
example, the contents of working memory are
clearly accessible to conscious awareness. In
fact, because of its close association to execu-
tive attention, a strong argument can be made
that the contents of working memory define
our conscious awareness. When we say that
we are consciously aware of some object or
event, we mean that our executive attention
has been directed to that stimulus. Its rep-
resentation in our working memory gives it
a moment-to-moment permanence. Working
memory makes it possible to link events in
the immediate past with those in the present,
and it allows us to anticipate events in the near
future. All of these are defining properties of
conscious awareness.

The association between working memory
and the prefrontal cortex makes it possible
to formulate cognitive neuroscience models
of consciousness. The most influential such
model was developed by Francis Crick and
Christof Koch (Crick & Koch, 1990, 1995,
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1998). The Crick-Koch hypothesis states that
one can have conscious awareness only of ac-
tivity in brain areas that project directly to
the prefrontal cortex.3 Primary visual cortex
(area V1) does not project directly to the pre-
frontal cortex, so the Crick-Koch hypothesis
asserts that we cannot be consciously aware of
activity in V1. Crick and Koch (1995, 1998)
described evidence in support of this predic-
tion. Of course, many other brain regions also
do not project directly to the prefrontal cor-
tex. For example, the basal ganglia do not
project directly to the prefrontal cortex (i.e.,
they first project through the thalamus), so
the Crick-Koch hypothesis predicts that we
are not aware of activity within the basal
ganglia. Memory theorists believe that the
basal ganglia mediate procedural memories
(Jahanshahi et al., 1992; Mishkin et al., 1984;
Saint-Cyr et al., 1988; Willingham et al.,
1989), so the Crick-Koch hypothesis provides
an explanation of why we do not seem to be
aware of procedural (e.g., motor) learning.

Category Learning and Memory

The notion that there may be multiple cate-
gory learning systems goes back at least to
1978, when Brooks hypothesized that cate-
gory learning is mediated by separate “de-
liberate, verbal, analytic control processes
and implicit, intuitive, nonanalytic processes”
(p. 207). Nevertheless, most quantitative ac-
counts of category learning have assumed
the existence of a single system (e.g., Estes,
1986a; Hintzman, 1986; Kruschke, 1992;
Medin & Schaffer, 1978; Nosofsky, 1986).
Recently, however, quantitative models that
assume multiple category learning systems

3Crick and Koch (1998) did not take the strong position
that working memory is necessary for conscious aware-
ness. Even so, they did argue that some short-term mem-
ory store is required. However, they left open the possi-
bility that an extremely transient iconic memory might
be sufficient.

have been developed (e.g., Ashby et al., 1998;
Erickson & Kruschke, 1998). For example,
Ashby et al. (1998) proposed a formal neu-
ropsychological theory of multiple category
learning systems called COVIS (competition
between verbal and implicit systems), which
assumes separate explicit (rule-based) and im-
plicit (procedural learning-based) systems. In
response to these multiple-systems proposals,
Nosofsky and Zaki (1998) and Nosofsky and
Johansen (2000) argued that single-system
(exemplar) models can account for many of
the phenomena that have been used to sup-
port the notion of multiple systems.

Another way to study category learning
systems is to emphasize the relationship be-
tween category learning and memory. Of
course, every category-learning system re-
quires memory. In fact, one could charac-
terize category learning as the process of
establishing some durable record (i.e., a mem-
ory) of the structure of the relevant categories,
or possibly of a rule for correctly assign-
ing new stimuli to one of the categories. Be-
cause much is now known about the neurobi-
ology of memory, this might be a way to learn
quickly about the neurobiology of category
learning.

Each of the multiple memory systems that
have been proposed is thought to have a
distinct neural basis. Cognitive neuroscience
models of working memory focus on pre-
frontal cortex (e.g., Fuster, 1989; Goldman-
Rakic, 1987, 1995); declarative memory
models focus on the hippocampus and other
medial temporal lobe structures (e.g., Gloor,
1997; Gluck & Myers, 1997; McClelland
et al., 1995; Polster et al., 1991; Squire &
Alvarez, 1995); procedural memory models
focus on the basal ganglia (Jahanshahi et al.,
1992; Mishkin et al., 1984; Saint-Cyr et al.,
1988; Willingham et al., 1989); and models of
the perceptual representation system focus on
visual cortex (e.g., Curran & Schacter, 1997;
Schacter, 1994).
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In addition, each of the category-learning
theories just described maps in a natural way
onto a different one of these memory sys-
tems. To learn and apply explicit rules, one
must construct and maintain them in working
memory. Executive attention is also required
to select and switch among alternative rules.
Thus, rule-based theories depend on work-
ing memory. Exemplar theory assumes that
people store and access detailed representa-
tions of specific exemplars that they have seen.
The declarative memory system seems tailor
made for this type of memory encoding and
storage. Indeed, it has specifically been pro-
posed that medial temporal lobe structures
(i.e., the hippocampus) mediate the encod-
ing and consolidation of exemplar memories
(Pickering, 1997). On the other hand, declar-
ative memory retrieval is typically thought
to occur with conscious awareness (e.g.,
Cohen & Squire, 1980), whereas exemplar
theorists are careful to assume that activation
of the exemplar memories does not require
awareness (e.g., Nosofsky, 1986; Nosofsky &
Alfonso-Reese, 1999; Nosofsky & Zaki,
1998).

Decision bound theory assumes that peo-
ple learn to associate abstract response pro-
grams (e.g., response labels) with groups of
similar stimuli (Ashby & Waldron, 1999).
Thus, the stored memories are of stimulus-
response associations, rather than of rules or
previously seen exemplars. This is a form of
procedural memory (Ashby et al., 1998).

The prototype abstraction process assumed
by prototype theory is perhaps the most dif-
ficult to map onto existing accounts of mem-
ory. The memory of a prototype is durable,
so working memory by itself is insufficient.
Prototype theorists also have been clear that
the prototype might not correspond exactly
to any previously seen exemplar, which rules
out simple declarative memory. Finally, pro-
totypes are not tied to responses in any direct
way, so procedural memory can also be ruled

out. Although it is not clear that such a result
is necessary, we present evidence later that
prototype abstraction depends, at least some-
times, on perceptual learning and, as a re-
sult, on the perceptual representation memory
system.

It is important to point out that even if
multiple memory systems participate in cat-
egory learning, this does not necessarily im-
ply that there are multiple category-learning
systems. For example, it is logically possi-
ble that a single category-learning system ac-
cesses different memory systems in different
category-learning tasks. Such a model could
predict double or triple dissociations across
tasks. As mentioned in the last major section,
however, such a model also shares many prop-
erties with a multiple-systems perspective. As
such, it would probably lie somewhere in
the middle of the continuum between pure
single-system and pure multiple-system mod-
els. In our view, it would be counterproductive
to place a sharp boundary on this continuum
in an attempt to produce a criterion that clas-
sifies every model as postulating either single
or multiple systems. Instead, the goal in all
areas of learning and memory should be to
understand how humans perform this vitally
important skill. In the case of category learn-
ing, understanding what memory systems are
involved is an important first step in this
process.

A good example of this blurring between
single and multiple systems can be seen with
prototype abstraction. If this process is me-
diated by a perceptual representation system
that depends on perceptual learning in vi-
sual cortex, then it is not clear that proto-
type abstraction would meet our criteria as a
separate system. When the stimuli are visual
in nature, then any category-learning system
must receive input from the visual system. If
some category-learning system X depends on
input from the brain region mediating pro-
totype abstraction, then system X and the
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Table 16.1 Performance of Various Neuropsychological Populations on Four Types of
Category-Learning Tasks

Task

Information-Integration
Neuropsychological Prototype
Group Rule-Based Many Exemplars Few Exemplars Distortion

Frontal Lobe Lesions Impaired ? Normal ?
Parkinson’s Disease Impaired Impaired Impaired Normal
Huntington’s Disease Impaired Impaired Impaired Normal
Medial Temporal Lobe Normal Normal Late Training Normal

Amnesia Deficit

prototype abstraction system would not be
mediated by separate neural pathways—a
criterion that we earlier decided was a nec-
essary condition for separate systems. For
example, under this scenario a double dis-
sociation between system X and the proto-
type system should be impossible. Damage to
the neural structures downstream from visual
cortex that mediate system X should induce
deficits in category-learning tasks mediated
by system X, but not in prototype abstraction
tasks. On the other hand, damage to visual cor-
tex should impair all types of visual category
learning. Thus, if prototype abstraction is me-
diated within visual cortex, then any group im-
paired in prototype abstraction should also be
impaired on all other category-learning tasks.
In addition, it should be extremely difficult,
or impossible, to find neuropsychological pa-
tient groups that are impaired in prototype ab-
straction, but not in other types of category
learning. As we will see shortly, this latter
prediction is supported by current neuropsy-
chological category-learning data.

Under the assumption that the category-
learning tasks just described differentially
load on different memory systems, then the-
oretically it should be possible to find neu-
ropsychological populations that establish at
least a triple dissociation across the tasks.
Ashby and Ell (2001) reviewed the current
neuropsychological category-learning data to
test this prediction. Presently, there is exten-

sive category learning data on only a few neu-
ropsychological populations. The best data
come from four different groups: (a) pa-
tients with frontal lobe lesions, (b) patients
with medial temporal lobe amnesia, and two
types of patients suffering from a disease of
the basal ganglia: either (c) Parkinson’s or
(d) Huntington’s disease. Table 16.1 sum-
marizes the performance of these groups on
the three different types of category learning
tasks.

Note first that Table 16.1 does not es-
tablish a triple dissociation. At best, one
could argue from the table only for a double
dissociation—between frontal lobe patients
and medial temporal lobe amnesiacs on rule-
based tasks and information-integration tasks
with few exemplars per category. Specifically,
frontal patients are impaired on rule-based
tasks (e.g., the WCST; Kolb & Whishaw,
1990) but medial temporal lobe amnesiacs
are normal (e.g., Janowsky, Kritchevsky, &
Squire, 1989; Leng & Parkin, 1988). At the
same time, the available data on information-
integration tasks with few exemplars per cat-
egory indicates that frontal patients are nor-
mal (Knowlton, Mangels, & Squire, 1996) but
medial temporal lobe amnesiacs are impaired
(i.e., they show a late-training deficit; that is,
they learn normally during the first 50 trials
or so, but thereafter show impaired learning
relative to age-matched controls; Knowlton,
Squire, & Gluck, 1994). Therefore, the
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neuropsychological data support the hypoth-
esis that at least two memory systems par-
ticipate in category learning. Of course, until
more data are collected on the information-
integration tasks, this conclusion must be con-
sidered tentative.

Note also that Table 16.1 supports the pre-
diction that it should be difficult to find patient
groups that are impaired in the prototype dis-
tortion task but not in the other types of tasks.
We know of no data on the performance of
frontal lobe patients in prototype distortion
tasks, but if learning in these tasks is medi-
ated within visual cortex, then frontal patients
should not be impaired in prototype distortion
tasks.

If three or more memory systems partic-
ipate in category learning, then why does
Table 16.1 not document a triple dissocia-
tion? There are several reasons why a triple
dissociation might not be observed even if
multiple memory systems are involved. First,
Table 16.1 is incomplete. There are several
cells with no known data. For example, we
know of no data on the performance of frontal
patients in information-integration tasks with
many exemplars per category. Conclusions in
some other cells are based on very little data.
As mentioned earlier, this is the case for
the late-training deficit reported for medial
temporal lobe amnesiacs in information-
integration tasks with few exemplars per cat-
egory. Second, even with unlimited data in
each cell, there is no guarantee that these
four patient groups are appropriate for estab-
lishing a triple dissociation. The groups in-
cluded in Table 16.1 were selected because
they are the groups for which there is the
most current data, rather than for some theo-
retical purpose. For example, the ideal groups
might each have focal damage to a different
memory system. This condition is surely not
met for the Table 16.1 groups. For example,
Parkinson’s and Huntington’s diseases affect
similar structures (i.e., the basal ganglia). Of

course, to select groups that satisfy this con-
dition requires specific hypotheses about the
neural structures and pathways that mediate
the putatively separate systems. There are two
ways to generate such hypotheses. One is to
use Table 16.1 and recent neuroimaging re-
sults to make such inferences, and another is
to examine current neuropsychological theo-
ries of multiple systems in category learning.
We follow these two approaches in the next
section.

The Neurobiological Bases
of Category Learning

Patients with frontal or basal ganglia dys-
function are impaired in rule-based tasks
(e.g., Brown & Marsden, 1988; Cools, van
den Bercken, Horstink, van Spaendonck, &
Berger, 1984; Kolb & Whishaw, 1990;
Robinson, Heaton, Lehman, & Stilson, 1980),
but patients with medial temporal lobe dam-
age are normal in this type of category-
learning task (e.g., Janowsky et al., 1989;
Leng & Parkin, 1988). Thus, an obvious first
hypothesis is that the prefrontal cortex and
the basal ganglia participate in this type of
learning but the medial temporal lobes do not.
Converging evidence for the hypothesis that
these are important structures in rule-based
category learning comes from several sources.
First, a functional magnetic resonance imag-
ing (fMRI) study of a rule-based task similar
to the Wisconsin Card Sorting Test showed
activation (among other regions) in the right
dorsal-lateral prefrontal cortex, the anterior
cingulate, and the right caudate nucleus (i.e.,
head; Rao et al., 1997). Second, many stud-
ies have implicated these structures as key
components of executive attention (Posner &
Petersen, 1990) and working memory (e.g.,
Fuster, 1989; Goldman-Rakic, 1987), both of
which are likely to be critically important to
the explicit processes of rule formation and
testing that are assumed to mediate rule-based
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category learning. Third, a recent neuroimag-
ing study identified the (dorsal) anterior cin-
gulate as the site of hypothesis generation in
a rule-based category-learning task (Elliott &
Dolan, 1998). Fourth, lesion studies in rats
implicate the dorsal caudate nucleus in rule
switching (Winocur & Eskes, 1998).

Next, note that in information integra-
tion tasks with large categories, only patients
with basal ganglia dysfunction are known
to be impaired (Filoteo, Maddox, & Davis,
2001a; Maddox & Filoteo, 2001). In particu-
lar, medial temporal lobe patients are normal
(Filoteo, Maddox, & Davis, 2001b). There-
fore, a first hypothesis should be that the basal
ganglia are critical in this task but that the me-
dial temporal lobes are not. If the number of
exemplars per category is reduced in this task
to a small number (e.g., 4 to 8), then medial
temporal lobe amnesiacs show late training
deficits; that is, they learn normally during
the first 50 trials or so but thereafter show im-
paired learning relative to age-matched con-
trols (Knowlton et al., 1994). An obvious pos-
sibility, in this case, is that normal observers
begin memorizing responses to at least a few
of the more distinctive stimuli—a strategy
that is not available to the medial temporal
lobe amnesiacs, and which is either not help-
ful or impossible when the categories con-
tain many exemplars. Because patients with
basal ganglia dysfunction are also impaired
with small categories requiring information
integration (Knowlton, Mangels, et al., 1996;
Knowlton, Squire, et al., 1996), a first hy-
pothesis should be that learning in such tasks
depends on the basal ganglia and on medial
temporal lobe structures. The hypothesis that
the basal ganglia are active in information-
integration tasks was supported by Poldrack,
Prabhakaran, et al. (1999), who used fMRI
to measure neural activation at four differ-
ent time points of learning in a probabilis-
tic version of the information-integration task
with few exemplars per category. They re-

ported learning related changes within pre-
frontal cortex and in the tail of the right cau-
date nucleus. Interestingly, they also reported
a simultaneous suppression of activity within
the medial temporal lobes. Thus, the available
neuroimaging data predict that the deficits of
basal ganglia disease patients in information-
integration tasks may arise from dysfunction
in the tail of the caudate nucleus.

Finally, not one of these four patient groups
is impaired on the prototype distortion tasks,
which suggests that learning on these tasks
does not depend on an intact medial temporal
lobe or basal ganglia (Knowlton, Ramus,
& Squire, 1992; Knowlton, Squire, et al.,
1996; Kolodny, 1994; Meulemans, Peigneux,
& Van der Linden, 1998). As mentioned ear-
lier, it has been suggested that learning might
depend instead on the perceptual representa-
tion memory system—through a perceptual
learning process (Knowlton, Squire, et al.,
1996). In the random dot pattern experiments,
this makes sense because all category A exem-
plars are created by randomly perturbing the
positions of the dots that form the category A
prototype (see Figure 16.9). Thus, if there are
cells in visual cortex that respond strongly to
the category A prototype, they are also likely
to respond to the other category A exemplars,
and perceptual learning will increase their re-
sponse. If this occurs, the observer could per-
form well in this task by responding “yes”
to any stimulus that elicits a strong feeling of
visual familiarity. Recent fMRI studies of sub-
jects in prototype distortion tasks show learn-
ing related changes in visual cortex (Reber,
Stark, & Squire, 1998), and are thus consis-
tent with this hypothesis.

Table 16.2 summarizes the neural implica-
tions of the current neuropsychological and
neuroimaging data. Note that the table is con-
sistent with current theories about the neu-
robiological bases of memory—in particular,
that the basal ganglia are important in proce-
dural memory and that the medial temporal
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Table 16.2 Brain Regions that Current Neuropsychological Data Implicate in the Various Category
Learning Tasks

Task

Information-Integration

Many Few Prototype
Brain Region Rule-Based Exemplars Exemplars Distortion

Prefrontal Cortex X
Visual Cortex X
Basal Ganglia X X X
Medial Temporal Lobe X

lobes are critical for declarative memory. De-
spite the arguments and evidence in support
of the Table 16.2 conclusions, however, much
more work is needed before the table can be
considered more than speculative.

The Explicit System

Several recent neurospsychological theories
agree with some of the same conclusions
drawn in Table 16.2. For example, Fig-
ure 16.11 describes a recent neurobiological
model of the explicit system (Ashby et al.,
1998, Ashby, Isen, & Turken, 1999). The key
structures are the anterior cingulate, the pre-
frontal cortex, and the head of the caudate
nucleus. Figure 16.11 shows the model dur-
ing a trial of the rule-based category learning
task illustrated in Figure 16.7. Various salient
explicit rules reverberate in working mem-
ory loops between prefrontal cortex (PFC)
and thalamus (Alexander, DeLong, & Strick,
1986). In Figure 16.11, one such loop main-
tains the representation of a rule focusing on
the shape of the symbols, and one loop main-
tains a rule focusing on symbol number. An
excitatory projection from the PFC to the head
of the caudate nucleus prevents the globus pal-
lidus from interrupting these loops. The ante-
rior cingulate selects new explicit rules to load
into working memory, and the head of the cau-
date nucleus mediates the switch from one ac-
tive loop to another (facilitated by dopamine

projections from the ventral tegmental area
and the substantia nigra).

The Figure 16.11 model is consistent with
the neuroimaging data described in the pre-
vious section, and it accounts for the rule-
based category-learning deficits described in

ACC

PFC

Thal

GP

VTA/SN

Cau

number

shape

…

Figure 16.11 A model of the explicit category-
learning system.
NOTE: Black projections are excitatory; gray
projections are inhibitory; and dashed projec-
tions are dopaminergic. PFC = prefrontal cortex;
ACC = anterior cingulate cortex; Thal = thalamus;
GP = globus pallidus; Cau = caudate nucleus;
VTA = ventral tegmental area; SN = substantia
nigra.
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Table 16.1. First, of course, it is obvious that
the model predicts that patients with lesions of
the prefrontal cortex will be impaired on rule-
based category learning tasks. It also predicts
that the deficits seen in Parkinson’s disease
are due to dysfunction in the head of the cau-
date nucleus. Postmortem autopsy reveals that
damage to the head of the caudate is especially
severe in Parkinson’s disease (van Domburg
& ten Donkelaar, 1991), so the model predicts
that this group should show widespread and
profound deficits on rule-based categoriza-
tion tasks. The neuropsychological evidence
strongly supports this prediction (e.g., on the
WCST; Brown & Marsden, 1988; Cools et al.,
1984). In fact, the model described in Fig-
ure 16.11 predicts that because of its recipro-
cal connection to the prefrontal cortex, many
of the well documented “frontal-like” symp-
toms of Parkinson’s disease might actually be
due to damage in the head of the caudate nu-
cleus.

The Procedural Learning System

Figure 16.12 shows the circuit of a putative
procedural memory-based category-learning
system (proposed by Ashby et al., 1998;
Ashby & Waldron, 1999). The key structure
in this model is the caudate nucleus, a ma-
jor input structure within the basal ganglia.
In primates, all of extrastriate visual cortex
projects directly to the tail of the caudate
nucleus, with about 10,000 visual cortical
cells converging on each caudate cell
(Wilson, 1995). Cells in the tail of the cau-
date (i.e., medium spiny cells) then project to
prefrontal and premotor cortex (via the globus
pallidus and thalamus; e.g., Alexander et al.,
1986). The model assumes that through a pro-
cedural learning process, each caudate unit
learns to associate a category label, or perhaps
an abstract motor program, with a large group
of visual cortical cells (i.e., all that project
to it). This learning is thought to be facili-
tated by a reward-mediated dopamine signal

Premotor and
Motor Cortex Visual

Areas

PFC Cau Th

SN
GP

Figure 16.12 A procedural-memory-based
category-learning system.
NOTE: Excitatory projections end in solid circles;
inhibitory projections end in open circles; and
dopaminergic projections are dashed. PFC =
prefrontal cortex; Cau = caudate nucleus; GP =
globus pallidus; Th = thalamus.

from the substantia nigra (pars compacta; e.g.,
Wickens, 1993).

Lesions of the tail of the caudate, in both
rats and monkeys, impair the animal’s abil-
ity to associate one motor response with one
visual stimulus and a different response with
some other stimulus (e.g., vertical vs. hori-
zontal lines; McDonald & White, 1993, 1994;
Packard et al., 1989; Packard & McGaugh,
1992). For example, in one study, rats with le-
sions in the tail of the caudate could not learn
to discriminate between safe and unsafe plat-
forms in the Morris water maze when the safe
platform was marked with horizontal lines and
the unsafe platform was marked with vertical
lines (Packard & McGaugh, 1992). The same
animals learned normally, however, when the
cues signaling which platform was safe were
spatial. Because the tail of the caudate nu-
cleus is not a classic visual area, it is unlikely
that these animals have an impaired ability
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to perceive the stimuli. Rather, it seems more
likely that their deficit is in learning the ap-
propriate stimulus-response associations. The
Figure 16.12 model predicts that this same
type of stimulus-response association learn-
ing mediates performance in the information-
integration category learning tasks described
in Figures 16.8 and 16.9.

The Figure 16.12 model accounts for the
category learning deficits of patients with
Parkinson’s and Huntington’s disease in
information-integration tasks because both of
these populations suffer from caudate dys-
function. It also explains why frontal patients
and medial temporal lobe amnesiacs are rela-
tively normal in these tasks—that is, because
neither prefrontal cortex nor medial temporal
lobe structures play a prominent role in the
Figure 16.12 model.

The model shown in Figure 16.12 is strictly
a model of visual category learning. However,
it is feasible that a similar system exists in the
other modalities because almost all of them
also project directly to the basal ganglia, and
then indirectly to frontal cortical areas (again
via the globus pallidus and the thalamus; e.g.,
Chudler, Sugiyama, & Dong, 1995). The main
difference is in where within the basal gan-
glia they initially project. For example, audi-
tory cortex projects directly to the body of the
caudate (i.e., rather than to the tail; Arnalud,
Jeantet, Arsaut, & Demotes-Mainard, 1996).

The Perceptual Representation and Medial
Temporal Lobe Category-Learning Systems

No one has yet proposed a detailed category-
learning model that is based on the perceptual
representation memory system. However, as
noted earlier, based on work in the memory lit-
erature, it seems likely that such a category
learning system would be based in sensory
cortex (Curran & Schacter, 1996; Schacter,
1994).

In cognitive psychology, one of the most
popular and influential theories of category

learning is exemplar theory (Brooks, 1978;
Estes, 1986b; Medin & Schaffer, 1978;
Nosofsky, 1986), which assumes that cate-
gorization decisions are made by accessing
memory representations of previously seen
exemplars. Although most exemplar theorists
have not taken a strong stand about the neural
basis by which these memory representations
are encoded, those who have assume that the
medial temporal lobes are heavily involved
(e.g., Pickering, 1997). Despite the popularity
of exemplar theory within cognitive psychol-
ogy, however, the most convincing direct neu-
ropsychological evidence in support of a key
role of the medial temporal lobes in category
learning remains the late-training deficit iden-
tified in Table 16.1 (Knowlton et al., 1994).
Even so, this finding is not without contro-
versy, as a recent neuroimaging study found
suppression of medial temporal lobe activ-
ity in this same task (Poldrack, Prabhakaran,
et al., 1999). Although many neurobiological
models of hippocampal function have been
proposed, there have been only a few attempts
to apply these models to category learning
(Gluck, Oliver, & Myers, 1996; Pickering,
1997).

Summary

Although hotly debated, the question of
whether human category learning is mediated
by one or several category-learning systems
is currently unresolved. Recent neuropsycho-
logical and neuroimaging data support the hy-
pothesis that different memory systems may
participate in different types of category-
learning tasks, but current data do not allow
stronger conclusions to be drawn.

CONCLUSIONS

The debate over whether learning and mem-
ory are mediated by one or several distinct
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systems is being waged in many areas of
cognitive psychology. Although the setting
of these debates differs—from memory to
function learning to discrimination learning
to category learning—a number of common
themes tie all these debates together. First,
the methodologies that are most appropriate
for testing between single and multiple sys-
tems are the same no matter what the do-
main. For example, the fixed-point property
and double dissociations are powerful tools
that can (and should) be used in any area try-
ing to resolve this issue. Second, regardless
of the field, it is unrealistic to expect any sin-
gle study to resolve the debate over single
versus multiple system. Instead, it is imper-
ative that all available evidence be evaluated
simultaneously. For example, given three data
sets that all seemingly point toward multi-
ple systems, it is not valuable to show that
there exists three different single-system mod-
els that are each consistent with one set of
data. The important question is really whether
the single model that best accounts for all
three data sets simultaneously postulates one
or multiple systems of learning and memory.
Third, all fields engaged in the debate over sin-
gle versus multiple systems should look seri-
ously toward cognitive neuroscience as a way
to add more constraints to the existing mod-
els, and as a mechanism for building bridges
to other related areas of cognitive psychology.

In our view, however the debate is resolved,
it is likely to prove a valuable experience
for whatever field engages it. The benefit of
asking whether there are single or multiple
systems of learning and memory is that this
question organizes new research efforts, en-
courages collecting data of a qualitatively dif-
ferent nature than has been collected in the
past, and also immediately ties the field in
question to the memory literature and a va-
riety of other seemingly disparate literatures.
The one danger that must be resisted consists
of engaging in endless debate about what con-

stitutes a system. One’s definition of system
will obviously affect how the question of sin-
gle versus multiple systems is answered, but
the process of asking—and all its associated
benefits—is far more important than the an-
swer itself.
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CHAPTER 17

Infant Cognition

CAROLYN ROVEE-COLLIER AND RACHEL BARR

Infancy covers the period from birth
through 2 years of life. The beginnings of re-
search on infant cognition can be traced to
the publication of a baby diary by Preyer in
1882. Subsequently, detailed diaries that sys-
tematically documented their own children’s
behavior stimulated Morgan (1900), Baldwin
(1894/1915), Guillaume (1926/1971), Piaget
(1927/1962), and Valentine (1930) to pub-
lish independent, theoretical accounts of early
cognitive development (for review of the di-
ary method, see Wallace, Franklin, & Keegan,
1994). Even Darwin (1877) recorded ob-
servations of his own infant in a diary—
observations that formed the basis of his argu-
ment for developmental continuities between
species.

Subsequent knowledge about infant cogni-
tion can be traced to a series of methodolog-
ical advances that enabled researchers to ask
new questions. Today, researchers no longer
ask whether infants can selectively learn or
remember but ask what variables influence
these processes and what mechanisms under-

Preparation of this chapter was supported by grant
nos. MH32307 and K05-MH00902 from the National
Institute of Mental Health to the first author. We thank
Ramesh S. Bhatt, Edward H. Cornell, Alan Leslie, Amy
Needham, Peter Gerhardstein, Mark S. Strauss, and
Barbara A. Younger-Rossman, and Karen Wynn for pro-
viding figures of apparatus and stimuli and Teresa Wilcox
for granting permission to reprint.

lie them. As in the past, the answers are lim-
ited only by the ingenuity of the investigator.

GENERAL CONSIDERATIONS IN
RESEARCH WITH INFANTS

Because infants are defined as a risk popula-
tion by institutional review boards and fund-
ing agencies, the research that is proposed to
study them must meet stringent criteria. The
following factors must be considered in the
design and conduct of all studies with infants.

Recruitment and Sample Characteristics

The availability of newborns for research is re-
lated to the amount of time they spend in the
lying-in hospital after birth. Infants were typ-
ically hospitalized for 2 weeks in the 1940s
and for 4 days in the 1960s, but for only 1
to 2 days currently. Not surprisingly, studies
of early risk factors using infants in intensive
care units, whose hospitalization is longer,
have correspondingly increased. Such stud-
ies, however, must not interfere with hospi-
tal procedures or jeopardize the well being
of infants. Researchers examining the cog-
nitive impact of early risk factors must also
be alerted to the problem of comorbidity, a
term referring to the fact that variables often
appear in clusters, or covary. Mothers who
abuse drugs, for example, often smoke and
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drink; have poor prenatal care and nutrition,
fewer financial resources, and less family and
community support; are less educated; and so
forth, and measures of these associated factors
must also be obtained. Accurate and complete
information is difficult to come by later if it
was not originally recorded. Not only is it ret-
rospective or anecdotal and heavily influenced
by social demands, but also it can rarely be
cross-validated. Intervening events that influ-
ence cognitive outcomes typically go unmea-
sured as well.

Once infants have left the hospital, their
availability for study is limited by factors such
as the type of study, sample age, whether they
can be tested at home, and whether they can
be tested on evenings or weekends (which
may be necessary if both parents work). In-
fants are commonly recruited from published
birth announcements via letters that describe
the study, its significance, and the precise par-
ticipation request (avoiding the term “test”).
Follow-up telephone calls can also be made.
Infants are also obtained via birth records filed
with state departments of health or vital statis-
tics, commercial mailing lists, public notices
in apartment complexes, newspaper releases,
La Leche leagues, hospital prenatal or parent-
ing classes, pediatricians, day-care centers for
infants or siblings, preschools, orphanages,
and local play or parent groups.

Researchers cannot use convenience sam-
ples. Samples must be heterogeneous; jour-
nals and granting agencies require report-
ing of sex, racioethnic membership (census
categories), and socioeconomic status (SES).
General descriptors (e.g., “middle-class”) are
meaningless; researchers must report the
traditional components of SES: parents’ ed-
ucational statuses (highest levels attained),
occupations (converted to ranks via such
instruments as the 1989 Socioeconomic
Index of Occupations; Nakao & Treas, 1992),
and annual incomes. If necessary, the last
can be inferred from the other components.

Racioethnic, educational, and occupational
information can be obtained when the requi-
site consent form is signed. The identity of in-
dividual infants is confidential. Parents must
receive a final report of the study’s findings,
and infants usually receive a signed certificate
of participation. Parents should be reimbursed
for taxi fares and parking fees but not for their
infant’s participation.

Attrition

Infant research is characterized by high attri-
tion, and multiple sessions increase the op-
portunity for attrition even more. Before each
study, experimenters must specify criteria for
excluding infants from the final sample; later,
they must report how many were excluded and
why. Exclusion criteria often include failure
to meet a training criterion or a state criterion
(e.g., crying for a specified duration in any ses-
sion), inattention for a specified duration, fail-
ure to maintain the requisite posture, failure
to interact with the stimulus, caregiver or sib-
ling interference, illness, equipment failure,
a scheduling conflict, or baselines either too
low or too high. Visiting infants in their own
homes at times of day when caregivers think
their infants are likely to be alert and playful
and maintaining a flexible schedule will op-
timize experimental conditions and minimize
attrition.

Sensory Systems

An infant’s experience is defined by what he or
she is able to detect. Because different modal-
ities become functionally mature at different
rates, the cognitive impact of early sensory
experience will necessarily reflect these dif-
ferences. The determination of ages at which
different modalities become important has
a long and controversial history (Brackbill
& Koltsova, 1967; Peiper, 1963). On the ba-
sis of electrophysiological, anatomical, and
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behavioral data, Gottlieb (1971) concluded
that the vestibular system becomes functional
first, followed by the tactile, auditory, and vi-
sual systems—an order that is invariant across
mammalian species, irrespective of the timing
of birth. Subsequently, Alberts (1984) con-
cluded that thermal sensitivity, olfaction, and
taste precede the onset of audition.

After a sensory system has initially be-
come functional, its “psychophysical operat-
ing characteristics” continue to change, de-
creasing further in absolute and difference
thresholds; only when these characteristics
stabilize is the system considered function-
ally mature (Alberts, 1984). The adaptive
significance of stimuli in different sensory
systems also changes ontogenetically. These
factors complicate interpretations of age-
related changes in learning and cognition. The
fact that a particular stimulus can be detected
or even discriminated with some specificity,
however, does not guarantee that it will be
selectively attended or that it will participate
in the learning process. Experimenters must
therefore select stimuli sufficiently intense to
be detected and sufficiently salient to be selec-
tively attended but not so intense or salient as
to interfere with or distract from the process
that the experimenters seek to establish.

State of Arousal

An infant’s state of arousal on a sleep-wake
continuum determines not only what is de-
tected but also how a response is expressed
(for reviews, see Ashton, 1973; Brackbill &
Fitzgerald, 1969; Graham & Jackson, 1970;
Korner, 1972; Prechtl, 1965). The relative
efficacy of stimulation in different modal-
ities during waking changes differentially
during sleep (Brackbill & Fitzgerald, 1969;
Brown, 1964), as do the forms of many re-
flexes elicited by the same physical stimu-
lus (Lenard, Von Bernuth, & Prechtl, 1968).
This relation is not simple, however, because

stimulus detection is impaired when infants
are highly aroused and crying, and their state
characteristics vary widely both within and
between individuals. Brown (1964), for exam-
ple, recorded an average of 12 state changes
per hr in newborns, but the transitional prob-
abilities depended on the direction of the
change (from sleeping to waking, or vice
versa). In addition, the organization of be-
havioral states changes markedly during early
development. Particularly striking are differ-
ences between infants born prematurely or
at term (Aylward, 1981). Although sensory
thresholds of full-term infants decline steadily
over the first 4 postnatal days (Lipsitt & Levy,
1959), those of premature infants remain high;
as a result, they often startle and cry when the
intensity of stimulation is increased to a de-
tectable level.

The infant’s changing state presents a num-
ber of methodological problems. First, the
subjective intensity of a stimulus will vary
with infant state even though its physical in-
tensity remains constant. Large individual dif-
ferences in momentary state will inevitably
produce subjectively different stimulus inten-
sities for different subjects, and stimuli that
are equally detectable may produce different
responses in different infants in the same state,
depending on their developmental statuses.
In addition to affecting stimulus salience,
changes in perceived stimulus intensity affect
the rate of learning in procedures in which the
degree of stimulus specificity is critical. The
common finding that infants require more tri-
als to criterion when they are younger, for ex-
ample, may simply reflect the fact that arousal
states are more labile in younger infants.

Second, the experimental procedure per se
may induce state changes. Some state changes
may accompany and result from the learning
process, others may follow from difficulty
in performing the experimental task, and
yet others may be unlearned consequences
of repeated stimulation. Three-month-olds in
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operant conditioning studies, for example,
exhibit less fussing and heightened alertness
during contingent than during noncontingent
reinforcement (Rovee-Collier, Morrongiello,
Aron, & Kupersmidt, 1978; Siqueland, 1969).
Withdrawing reinforcement often increases
fussing and inattentiveness (Allesandri,
Sullivan, & Lewis, 1990; Blass, Ganchrow,
& Steiner, 1984; Rovee-Collier & Capatides,
1979). Papousek (1967), however, reported
that both newborns and older infants, when
confronted with either problems they could
not solve or an extinction phase, occasionally
reverted to sleep-like inhibitory states remi-
niscent of “paradoxical sleep” (Pavlov, 1927).
Increasing fussiness and inattention over
trials also plagues habituation procedures.
To ensure that their response measures do
not simply reflect increases or decreases in
arousal, experimenters must use appropriate
state controls for the amount and pattern of
stimulation, time in the experiment, and time
in relation to other factors that influence state
(e.g., feeding).

Heart-rate measures are particularly sensi-
tive to infants’ rapid state changes and can be
used in association with other response mea-
sures (e.g., visual fixation) to assess the in-
fluence of arousal state on an infant’s cogni-
tive performance. Although newborns may be
classified as alert and awake, for example, the
pattern of heart-rate responses predicts how
soon the infant will change state. Thus, only
infants who maintain an alert state for 5 min
after a series of habituation trials exhibit heart-
rate deceleration, whereas infants who remain
alert for less than 5 min or who are in a drowsy
state exhibit heart-rate acceleration (Clifton &
Nelson, 1976).

Response Repertoire

Because infants are preverbal, their cognitive
processes must be inferred from changes in
behavior. A large number of such responses,

originally described by Dennis (1934), have
now been studied with remarkable success,
and citations of classic studies or methodolog-
ical reviews are presented below. The partic-
ular responses that very young infants will
readily perform, however, are constrained by
the requirement that they channel as much en-
ergy as possible into growth. Sometime be-
tween 4 and 9 weeks of age, the physiologi-
cal mechanisms for thermoregulation become
functional; before then, infants thermoregu-
late behaviorally. During this earlier period,
experimenters should avoid studies that re-
quire high-energy responses (e.g., foot kick-
ing) that compete with behavioral thermoreg-
ulation because infants will not perform them
(for discussion, see Rovee-Collier, 1996b).

The earliest experiments with infants in-
volved changes in specific reflexes. Pavlov’s
research, for example, motivated studies of the
feeding reflexes (swallowing: Krasnogorskii,
1907; mouthing: Mateer, 1918; sucking:
Denisova & Figurin, 1929; rooting: Papousek,
1959) and associated digestive processes
(leukocytosis: Krachkovskaia, 1959; gastric
secretions: Bogen, 1907); the defensive re-
flexes (fear/escape: Watson & Rayner, 1920;
foot withdrawal: Wickens & Wickens, 1940;
eyeblink: DeLucia, 1968; pupillary dilation
and constriction: Fitzgerald, Lintz, Brackbill,
& Adams, 1967); and the orienting reflex
(OR), defined as directing the receptors to-
ward a source of environmental variation.
These include head-turning (Siqueland &
Lipsitt, 1966), visual fixation (Fantz, 1956),
and eye-opening (Siqueland, 1969).

Behaviors in a second class of responses,
general reactions, are not elicited by stimu-
lating a specific organ with a specific stimu-
lus but may reflect stimulus intensity (Peiper,
1963). Irwin (1930), for example, observed
cyclical changes in activity that seemed to
be keyed to feeding periods, and activity
change—often measured on a stabilimeter
placed under a thin mattress in a specially
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outfitted experimental crib—was used as an
index of learning either singly or in combi-
nation with other measures. (A sensitive sta-
bilimeter, calibrated for infant weight, can
detect deviations from baseline that are pro-
duced by movements as slight as a deep in-
spiration in the breathing cycle.) In a study
designed to determine whether infants could
learn a feeding schedule during the neonatal
period, for example, Marquis (1941) found
that infants’ activity increased immediately
before a scheduled feeding, but that their
learning was most apparent when the feeding
schedule was shifted. Infants lay in bassinets
that were outfitted with stabilimeters from
6:00 a.m. to 6:00 p.m. daily except during ac-
tual feedings, which lasted about 45 min. Be-
ginning at 2 days of age, one group was fed on
a 4-hr schedule and another on a 3-hr sched-
ule. Compared to the 4-hr group, the 3-hr
group was less active and showed no increase
in activity prior to a feeding. On day 9, the
3-hr group was shifted to the 4-hr schedule.
At the time they had previously been fed, their
activity increased abruptly, and 30 min be-
fore the 4-hr feeding, activity reached a level
higher than had been seen in either group.
In addition, their increase in activity was ac-
companied by fussing and crying—a behav-
ior never seen in the original 4-hr feeding
group. Marquis concluded that infants in the
3-hr group had learned to expect a feeding at
the end of 3 hr, but that their expectation was
not manifested until it was violated when the
milk was withheld at the end of that time on
day 9.

Other researchers have studied general
reactions associated with increases or de-
creases in distress (crying: Watson & Rayner,
1920; calming: Gekoski, Rovee-Collier, &
Carulli-Rabinowitz, 1983; Thoman, Korner,
& Beason-Williams, 1977) as well as psycho-
physiological responses (heart rate [HR]:
Bridger, 1961; respiration: Kasatkin &
Levikova, 1935; galvanic skin response

[GSR]: Jones, 1930; cortical evoked potential
[ERP]: Molfese & Wetzel, 1992; Nelson
& Collins, 1991; Nelson & Nugent, 1990).
Graham and Clifton (1966) hypothesized that
cardiac deceleration and cardiac acceleration
are physiological reflections of orienting (in-
formation processing) and defensive reactions
(stimulus rejection), respectively. This inter-
pretation of directional HR changes is widely
accepted in research with both human and an-
imal infants (Campbell & Ampuero, 1985).

Newborns were long thought to be inca-
pable of HR deceleration. Because their sen-
sory thresholds are higher, however, a stim-
ulus sufficiently intense to be detected also
makes them startle because of its sudden sub-
jective onset, thereby eliciting HR accelera-
tion. Experimenters now sidestep this prob-
lem by presenting the alert newborn with a
moderately intense stimulus that has a slow
rise time (e.g., a sound that is first presented
at a low volume and gradually is increased in
intensity to the target volume). If stimuli are
presented in this fashion, they will elicit HR
deceleration. Newborn HR patterns can also
be examined during sleep: A slight pinch to
the ear lobe, for example, elicits HR acceler-
ation, whereas a stroke on the cheek (a root-
ing stimulus) elicits HR deceleration (Clifton
& Nelson, 1976). Psychophysiological mea-
sures used with infants are reviewed else-
where (Atkinson, 1984; Berg & Berg, 1987;
deHaan & Nelson, 1997; Fox, 1989; Richards,
2000; Richards & Lansink, 1998).

A third class of responses includes
relatively simple motoric acts such as foot-
kicks (Rovee & Rovee, 1969), arm-pulls
(Friedlander, 1961), nonnutritive sucks
(Siqueland & DeLucia, 1969), high-
amplitude sucks (Jusczyk, 1985), mouth
movements (Blass et al., 1984), smiles
(Brackbill, 1958), vocalizations (Rheingold,
Gewirtz, & Ross, 1959), visual fixations
(Watson, 1966), panel-presses (Simmons &
Lipsitt, 1961), lever-presses (Hartshorn &
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Rovee-Collier, 1997), pillow presses (Watson
& Ramey, 1972), head-turns (Caron, 1967),
facial and manual gestures (Meltzoff &
Moore, 1977), and sphere touches
(Rheingold, Stanley, & Cooley, 1962). Re-
sponses that are recursive are suitable for
studies of operant conditioning.

Responses requiring a greater degree of
coordination have been used in studies with
older infants. These include selective reach-
ing to either a discriminative stimulus (Fagen,
1977) or a location in the dark (Goubet
& Clifton, 1998), serial touching of objects
(Mandler, Fivush, & Reznick, 1987), displac-
ing a cover over a hidden well (Diamond,
1990a, 1990b; Smith, Thelen, Titzer, &
McLin, 1999), performing an action sequence
on a series of objects (Bauer & Shore, 1987),
and touching a target on a video monitor
(Gerhardstein & Rovee-Collier, in press).

Any response that is not automatically
recorded must be accompanied by a measure
of interobserver reliability. Typically, this is
accomplished by having a second trained ob-
server, blind with respect to either the experi-
mental procedure or an infant’s group assign-
ment, independently score the responses of a
percentage of randomly selected subjects in
each group over the course of the experiment.
Some researchers report a mean or median
percentage of agreement between indepen-
dent observers as the index of interobserver
reliability. Others use a Cohen’s Kappa (κ),
which also expresses the percent agreement
but controls for chance agreements between
the two observers. To calculate a kappa, the
agreement expected by chance is subtracted
from the observed percent agreement. The de-
nominator of the equation is 1 minus chance
agreement. A kappa value less than 0.70 is
unacceptable. Still others compute a Pearson
product-moment correlation coefficient be-
tween independent pairs of observations over
trials or minutes of a session; here, coeffi-
cients less than 0.90 are considered unac-

ceptable. Although observers initially should
be trained to a criterion (e.g., r = 0.95 be-
tween the trainee and the primary observer for
three successive sessions), pretraining to an
acceptable criterion does not substitute for an
independent assessment of interobserver re-
liability during actual data collection. Both
slippage in response criteria over the course
of an experiment and experimenter bias
will compromise results. One solution is to
videotape sessions and have them scored
blind by a second observer. The experi-
menter must report, however, how discrep-
ancies between the observers’ scores were
resolved (e.g., by consensus, rescoring the
tape, a third observer, etc.). Taping sessions
requires both prior approval by the appro-
priate institutional review board and parental
consent.

Developmental Comparisons

As illustrated in Figure 17.1, infants un-
dergo radical physical and behavioral changes
over the first 18–24 months of life. As a
result, tasks that are suitable for older in-
fants are rarely suitable for younger ones.
A major challenge facing developmental re-
searchers, therefore, is to develop tasks that
are appropriate across a large age range (Barr,
Dowden, & Hayne, 1996; Hartshorn et al.,
1998b). If different tasks are used with
younger and older infants, experimenters
must ensure that they yield comparable per-
formance at overlapping ages so that differ-
ences in performance will reflect true age dif-
ferences rather than simply the paradigm shift.
In general, a common pattern of cognitive
competence emerges across age and task—
a fact highlighted in the Categorization and
Memory sections. More interesting than the
absolute age at which a particular capacity
emerges (which is task-dependent) is the gen-
eral pattern or order in which different cog-
nitive skills appear.
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Figure 17.1 From left to right, infants are 2, 3, 6, 9, 12, 15, and 18 months of age; note the dramatic
physical and behavioral differences between the youngest and oldest infant.

Researchers must also attempt to equate
potential age differences in task demands,
stimulus salience, motivation, and original
learning. For this last item, age equivalence
can be determined by calibrating task parame-
ters across ages. Younger infants, for example,
learn more slowly than older infants; there-
fore, the duration of training must be longer
for younger infants to ensure that they learn
the task. In addition, older infants process in-
formation more rapidly than younger infants,
therefore, sessions must be shortened and/or
the complexity of the visual display must be
increased for older infants so that they remain
interested in the task. Finally, experimenters
must not use verbal prompts or instructions
with infants of different ages or linguistic abil-
ity. Failure to observe any one of these pre-
cautions jeopardizes cross-age comparisons.
Although longitudinal designs are more pow-
erful than cross-sectional ones, they are con-
taminated by repeated measurements.

Social and Motivational Factors

The infancy period is also characterized by
dramatic social changes. Between 9 and
12 months of age, for example, both social ref-
erencing and stranger anxiety appear (for re-
views, see Ainsworth, Blehar, Waters, & Wall,
1978; Bretherton & Waters, 1985; Feinman,
1985). Factors related to the novelty of new
faces and voices (e.g., the experimenters) and
new settings (e.g., the laboratory) increasingly
contribute to infants’ unwillingness to engage
in experimental tasks, even when the tasks are
well within their capabilities. For many years,
social factors were largely ignored in infant re-
search (Uzgiris, 1981). Now that researchers
have begun to appreciate the varied interac-
tions that underlie infant sociocognitive de-
velopment, they have turned to more complex
and ecologically valid tasks (Deutsch, 1994;
Kuhl et al., 1997; Meltzoff & Kuhl, 1989;
Perner, Ruffman, & Leekam, 1994). Perner
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et al. (1994), for example, found that chil-
dren with older siblings passed a false belief
test earlier than children without siblings, and
Kuhl et al. (1997) have examined the devel-
opment of phonetic boundaries as a function
of the infant’s language environment.

Overview

In this chapter, we review various methods
that have been used to assess the classic exper-
imental problems in infant cognition, includ-
ing habituation, classical and operant condi-
tioning, detour learning, concept formation,
categorization, and memory processing. We
also highlight a few well-developed meth-
ods that have been used to address a number
of different issues in infant cognition. In the
learning section, for example, we describe the
basic features of the habituation and condi-
tioning procedures in some detail. In later sec-
tions of this chapter, we consider how these
procedures have been used as tools to study
a wide range of cognitive abilities, including
categorization, memory, and serial learning.
At the end of the chapter, we consider meth-
ods that have been used to address some new
problems, including infants’ understanding of
number, objecthood, and causality. Although
we did not include a separate section on per-
ception, most of the experimental methods de-
scribed here can also be applied to the study
of infant perception.

Finally, throughout the chapter, we high-
light experimental procedures that can lead to
ambiguous results and erroneous conclusions.
Researchers, for example, are warned not to
overestimate the verbal competence of very
young children when designing their studies.

INFANT LEARNING

Learning is traditionally defined as “a more
or less permanent change in a behavior which
occurs as a result of practice” (Kimble, 1961).

This definition excludes temporary changes
due to arousal, fatigue, illness, medication,
or biological rhythms and more permanent
changes associated with aging, growth, or
physiological intervention. Although this def-
inition is not met in all instances (for ex-
ample, learning can occur either in a single
trial or vicariously), it holds for the greatest
number of cases. The traditional categories
of learning—habituation, classical and instru-
mental (operant) conditioning, imitation, and
various kinds of concept learning—are con-
sidered in the following sections.

Habituation

Habituation is a form of nonassociative learn-
ing that occurs at all phyletic levels. It is de-
fined as a stimulus-specific response decre-
ment that results from repeated exposure to a
stimulus that causes the individual to orient
either toward or away from it (Wyers, Peeke,
& Herz, 1973). The term repeated implies
that a single stimulus presentation followed
by a test is not an habituation procedure; at
least two discrete stimulus presentations are
required. In addition, the response must be
an active one. If this condition is not met, as
when an infant is swaddled, in bright illumi-
nation, or under a heat lamp, then the result-
ing response decrement is called acclimati-
zation. Fatigue, sensory adaptation, circadian
rhythms, and physiological processes produce
other response decrements not attributable to
habituation.

The essential characteristics of habituation
(Thompson & Spencer, 1966) are summarized
as follows:

1. The response decrement is a negative ex-
ponential function of the number of pre-
sentations that eventually reaches asymp-
tote or zero response level.

2. Other things being equal, the more rapid
the frequency of stimulation or the weaker
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the stimulus, the more rapid and/or pro-
nounced is habituation.

3. If the stimulus is withheld, responding
tends to recover over time (spontaneous
recovery). Over repeated series of habit-
uation training and spontaneous recovery
trials, habituation is progressively more
rapid.

4. Habituation can proceed below the observ-
able baseline (sub-zero habituation). This
occurrence will subsequently be reflected
in a lower level of spontaneous recovery.

5. Presentation of another (usually strong)
stimulus results in recovery of the previous
habituated response to the original habit-
uating stimulus (dishabituation). Presum-
ably, the strong distractor disrupts the ac-
tive inhibitory process of habituation, with
the result that the response is expressed at
a higher level. By this account, habitua-
tion does not permanently eliminate a re-
sponse but only temporarily suppresses it.
The renewed responding also habituates if
the distractor is repeatedly presented.

Terminology

Researchers should take special note of some
terms that are used differently in the infancy
literature than elsewhere. Dishabituation is
the term that traditionally refers to the higher
level of response to the original habituation
stimulus after a strong, interpolated distrac-
tor (Pavlov, 1927; see item 5 in the preceding
list), whereas sensitization is the term that tra-
ditionally refers to a higher level of response
to a novel test stimulus after a series of habit-
uation trials with the original stimulus. In the
infancy literature, however, dishabituation is
used to describe a higher level of responding
to a novel test stimulus relative to one that
was preexposed; no interpolated distractor is
involved at all. Also, familiarization, a term
that traditionally describes exposure learning
or perceptual learning, is used interchange-

ably with the term habituation, despite op-
erational differences between them. Habitu-
ation is a discrete-trials procedure in which
responding decreases over repeated presen-
tations of a particular stimulus, whereas fa-
miliarization requires neither repeated stimu-
lus presentations nor a response decrement. In
the infancy literature, familiarization refers to
any procedure in which a stimulus is preex-
posed in any way prior to testing. Presumably,
the preexposure affects test performance. Re-
sponse decrements produced by familiariza-
tion are attributed to a change in the percep-
tion of the stimulus rather than to a change in
response strength to a subjectively constant
stimulus, as in habituation. In other words,
during familiarization, the response always
remains stimulus-appropriate; changes in re-
sponding reflect changes in the properties of
the subjective stimulus that elicits it.

Experimental Procedures

Independent variables typically reflect some
parameter of stimulation (intensity, rate,
number of presentations, pattern, modality,
quality, relative efficacy, salience, biological
significance) and, in the infancy literature, fre-
quently appear in conjunction with subject
variables (e.g., age, sex, state of arousal, prior
experience) or environmental variables (e.g.,
test setting). Dependent variables reflect the
relative rapidity of habituation, its extent, or
its relative permanence. These measures may
include one or more of the following: number
of trials to criterion, magnitude, duration or la-
tency of response, percent of original (or con-
trol) response, habituation slope, duration of
habituation (latency to a recovery criterion),
magnitude of recovery, and savings during
rehabituation. An important but often over-
looked consideration involves the treatment
of data when the initial level of responding to
two different stimuli differs. Because of the
lower limit of observable responding, stim-
uli that evoke an initially smaller response
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cannot produce an absolute response decre-
ment as profound as stimuli that evoke an ini-
tially greater response. Transforming the data
to reflect performance in terms of the per-
cent of the original level of responding can
actually reverse the relation between the two
habituation curves. The effect of different pa-
rameters of stimulation on habituation and is-
sues of measurement are discussed in detail
elsewhere (Graham, 1973; Olson & Sherman,
1983).

The choice of parameters will depend on
both the nature of the question being investi-
gated and the age of the infant. Slater (1995)
reviewed the specific methodological consid-
erations for studies with newborns. Exper-
imenters are cautioned to use more than a
single stimulus from a given modality when
comparing habituation across modalities, and
more than a single stimulus intensity and
intertrial interval when comparing across
ages. The latter is particularly important to
ensure that developmental differences do not
result from the choice of a parameter that is
optimal at one age but not at another. Because
stimulus salience also changes with age, a va-
riety of stimuli should be used to equate stim-
ulus differences over age and to ensure that,
at any given age, a particular outcome is not
unique to a particular stimulus (for an exten-
sive review of methodological considerations
in habituation, see Clifton & Nelson, 1976;
see also neonatal heart rate response to au-
ditory stimuli in an earlier section, Response
Repertoire).

Habituation Criterion-Setting

Researchers can present a stimulus either for
a fixed number of trials or until responding
meets a predetermined criterion. The habitu-
ation criterion is typically defined as mean re-
sponding (e.g., looking time, suck rate, mag-
nitude of startle or heart-rate change) on three
consecutive trials at a level that is 50% of
the mean response level during the first three

habituation trials. The habituation criterion
can also be specified in terms of some absolute
level of responding (e.g., less than 4 s on each
of two consecutive trials; 60 s of accumulated
looking time) or in terms of some other aspect
of the infant’s behavior (e.g., crying or falling
asleep). Each of these alternatives introduces
a selective statistical bias into the analysis and
interpretation of the data (for discussion, see
Bogartz, 1965; Dannemiller, 1984). Because
infants are likely to be looking at different
extraneous stimuli at the beginning of each
habituation trial, their looking times will also
include their latency to detect the stimulus.
To reduce variability and ensure that all in-
fants are initially fixating the same stimulus
at the outset of every trial, each stimulus pre-
sentation is typically signaled by a blinking
light adjacent to where the target will appear
(or by some other attention-getting stimulus),
and the target stimulus is not presented until
an infant is judged to be fixating the signal
(Cohen, 1972, 1973). At that point, the signal
is turned off, and the target stimulus is pre-
sented, initiating the next trial.

Once the stimulus is presented, the ex-
perimenter must decide when to terminate it.
Most experimenters use trials of a fixed dura-
tion or an infant-control procedure (Horowitz,
Paden, Bhana, & Self, 1972) in which stimu-
lus duration is contingent on the infant’s own
looking behavior. In the latter case, the stim-
ulus is typically terminated when the infant
looks away for 2 s, although terminating the
stimulus after 1 s yields the same outcome
(Colombo & Horowitz, 1985). Because the
infant-control procedure results in different
effective stimulus durations per trial for each
subject, some investigators present the visual
stimulus until a specified amount of total look-
ing time has been accumulated, irrespective of
the number of trials required to do so.

Evidence that infants who fail to complete
habituation procedures perform differently on
the completed portions than infants who do
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(Wachs & Smitherman, 1985) has raised con-
cerns about the generality of findings from ha-
bituation studies. Researchers are cautioned to
ensure that their final sample is unbiased.

A Prototypic Procedure: Visual Habituation

Looking is the most frequently measured in-
fant behavior, probably because it requires
little special instrumentation and because all
waking infants look continuously at some-
thing. In a typical visual habituation exper-
iment, the infant sits on the parent’s lap or in
an infant seat with the parent standing or sit-
ting nearby. If the stimulus is projected on a
front screen or presented on a lighted stage,
then the test room is dimly lit to increase
attention to the target, and potential distrac-
tors in the laboratory are draped with black
cloth. When a three-dimensional object in-
stead of a two-dimensional display is used, a
metronome set at 1 s facilitates accurate tim-
ing of stimulus presentations according to a
second-by-second script. In this case, exper-
imenters practice the task until they have at-
tained a reliable and accurate level of perfor-
mance (see Baillargeon, 1995).

Looking behavior (direction, duration, fre-
quency) is usually scored by one or two hid-
den experimenters looking through a one-way
window or peephole centered in the appa-
ratus. The observers are blind to an infant’s
experimental condition and cannot see the
test display. They depress hand-held buttons
that correspond to each measure and that are
connected to a computer, which computes
cumulative looking time and interobserver re-
liability. The computer also alerts the exper-
imenter via headphones or an inconspicuous
visual cue when the preprogrammed criterion
for ending a trial has been met. Alternatively,
looking behavior can be scored in an adja-
cent room from a monitor that receives a di-
rect feed from a video camera, which records
looking behavior through a peephole. When
possible, scoring from a monitor is preferred

because videotapes can be saved for further
analysis, which is not possible when behavior
is scored through a peephole. When a three-
dimensional display is used, the experimenter
usually presents the object on a table or a stage
in front of the infant (e.g., Mandler et al., 1987;
Oakes, Madole, & Cohen, 1991; Ruff, 1986).
If the object is presented on a stage, then cur-
tains are used to shield it from the infants’
view prior to the onset of the trial.

Special precautions are taken to avoid
experimenter bias or caregiver interference:
First, the parent or caregiver is either blind-
folded or instructed to look away from the
stimulus or close his/her eyes. When auditory
stimuli are used, the adult is fitted with head-
phones to mask auditory input. Second, the
adult is asked not to interact with or respond
to the infant during the test.

Looking Measures: Advantages
and Limitations

Gelman (1978) argued that looking measures
minimize the procedural aspects of a task
and allow the experimenter to focus on in-
fants’ conceptual capacities. Others argued
that traditional visual attention paradigms un-
derestimate the representational and concep-
tual abilities of young infants (Rovee-Collier
& Hayne, 1987). Yet others have made inter-
mediate claims; Spelke (1994), for example,
argued that looking is not superior to other
measures of navigation but may simply reflect
a different underlying process, and Smith et al.
(1999) argued that looking is not necessarily a
better index of infants’ spatial knowledge than
reaching. A major problem with looking mea-
sures is that we have no way of quantifying
whether looks of equal duration reflect equiv-
alent depths of concentration. In addition, we
assume that infants encode information about
a target when they look at it, but we have no
way of knowing exactly what they are encod-
ing or how rapidly they are encoding it.
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Individual differences in looking time are
reliable and have been linked to information
processing (Colombo, Mitchell, Coldren, &
Freeseman, 1991; McCall & Kagan, 1970).
Infants with shorter looking times, for ex-
ample, habituate significantly faster than
infants with longer looking times. This dif-
ference was strikingly illustrated in a study
by Colombo et al. (1991), who classified
4-month-olds as short- or long-lookers on the
basis of how long they took to reach a stan-
dard habituation criterion during an initial se-
ries of habituation trials with a single visual
stimulus. On the pretest, the mean fixation
time was 7 s for short-lookers and 38 s for
long-lookers. During the main experiment,
the researchers first exposed each infant to
a visual stimulus for an accumulated look-
ing time of 30 s, then immediately afterward
gave each infant a paired-comparison test with
two stimuli that were defined by either global
or local features. The global stimuli were
shapes constructed from identical dots that
could be differentiated only on the basis of
their overall shape; the feature stimuli were
letters of the alphabet (C, G) that could be
differentiated only by their specific features.
The amount of time infants were allowed to
view the test stimuli was systematically in-
creased from 30 to 45 s in the feature task and
systematically decreased from 30 to 15 s in
the global task. In order to fixate the novel
stimulus significantly longer than the familiar
one, long-lookers required the longest look-
ing times available in each task, and short-
lookers required the briefest looking times
available in each task. Given that most de-
velopmental studies are age-based, and that
a variety of individual differences are par-
ticularly pervasive in the infancy period, the
potential systematic contribution of individ-
ual differences must be considered in the de-
sign and analysis of experiments on infant
cognition—especially of those measuring
looking behavior.

Researchers should be aware that during
the first few postnatal months, four look-
ing phenomena are neurophysiologically con-
strained: obligatory attention, the externality
effect, biased orienting to portions of the vi-
sual field, and object tracking. One-month-
olds, for example, have difficulty disengaging
attention from a stimulus and will fixate it for
prolonged periods—the phenomenon called
obligatory attention, but newborns can fix-
ate new targets more readily. Hood (1995) at-
tributed this paradox to a higher level of phys-
iological arousal that promotes more saccadic
eye movements in the newborn. He stressed
the importance of controlling for infant state
and behavioral arousal in studies of infant vi-
sual learning and attention. Johnson (1990)
proposed that obligatory attention signals the
onset of inhibitory control over the subcortical
pathway. This phenomenon obviously limits
an infant’s ability to process competing vi-
sual stimuli or disengage attention from a cen-
tral stimulus, particularly within a brief period
(for reviews, see Hood, 1995; Johnson, 1990).

Infants younger than 2 months also ex-
hibit the externality effect (Milewski, 1976)—
a phenomenon in which infants scan until they
reach a well-defined, external boundary of a
stimulus and then they stop, failing to scan
its internal portion. As a result, they fail to
discriminate between two visual stimuli with
identical borders that are differentiated only
by their internal components. Adding move-
ment to the internal components of a stimulus,
however, facilitates scanning of them (Hood,
1995). Infants younger than 2 months also
orient more to objects presented in the tem-
poral visual field than to objects presented
in the nasal visual field (Johnson, 1990).
Finally, object tracking improves significantly
over the first few postnatal months. Before
2 months of age, tracking is characterized by
jerky saccadic movements in pursuit of the
object; older infants’ tracking is smooth and
anticipatory (for review, see Aslin, 1981).
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Adaptive Function of Habituation

From an adaptive perspective, habituation
eliminates nonessential responses to irrele-
vant stimuli, freeing the organism to respond
to others. Wyers et al. (1973), for example,
argued that because in natural settings habit-
uation occurs in the context of many stimuli,
any decrement in responding to one of them
must shift the weighting to other competing
stimuli, thereby altering response dominance.
In the laboratory, however, habituation stud-
ies typically allow only one response opportu-
nity in a very simple setting. In addition, only
one aspect of this response is typically mea-
sured. This practice precludes the opportunity
to observe other behavioral changes that ac-
company habituation.

Visual habituation studies are particularly
suited for revealing this shift in stimulus
weighting because the infant’s eyes are con-
tinuously open, and any decrease in look-
ing at one stimulus or stimulus component
must necessarily be accompanied by an in-
crease in looking at something else. An early
study by Fantz (1964) is notable in this re-
gard. He presented 2- to 6-month-olds with
pairs of complex visual stimuli for ten 60-s
trials. One member of each pair remained the
same from trial to trial, and one changed. As
infants spent less time looking at the stimulus
that remained constant over trials, they spent
more time looking at the varying stimulus,
so that total looking time was conserved. In
studies of infant categorization, objects from
the same category may be repeatedly paired
with objects from a changing category. In this
case, both stimuli change from trial to trial,
but the category membership of one member
of the stimulus pair remains constant, while
the category membership of the other varies
(e.g., Greco & Daehler, 1985). Infants tested
in this procedure might treat objects from the
varied category as novel, while habituating to
objects from the same category.

The serial-habituation procedure also re-
veals shifts in visual attention over suc-
cessive trials. This procedure is based on
Jeffrey’s (1968) hypothesis that infants pro-
cess visual information about a compound
stimulus hierarchically, habituating to the
most salient element first, then habituating to
the second most salient element, and then to
the third, and so forth. Miller, Ryan, Sinnott,
and Wilson (1976) tested this hypothesis by
obtaining initial visual preference scores for
the individual elements of a complex stimulus
during a pretest and then repeatedly exposing
infants to the compound for a fixed number
of trials. They tracked the progress of habitu-
ation to individual elements by interspersing
them throughout the habituation series. Dur-
ing posttests with the individual elements, in-
fants spent the least time fixating those el-
ements that they had most preferred during
the pretest. These data were consistent with
the hypothesis. Taken together, the findings
of Fantz (1964) and Miller et al. (1976) reveal
that habituation is more complex than sug-
gested when researchers measure decreased
responding over trials to only a single, rela-
tively simple stimulus.

Classical Conditioning

Like habituation, classical conditioning in-
volves the repetitious presentation of a
stimulus. Unlike in habituation, however, the
stimulus in classical conditioning becomes
predictive, enabling the organism to respond
in anticipation of an event instead of sim-
ply reacting to it. The habituation of the ori-
enting reflex to the CS within the CS-UCS
interval is a critical determinant of classi-
cal conditioning (Kimmel, 1973). Papousek
(1967), for example, reported that habitua-
tion of orienting to the CS usually preceded
the appearance of the first CR, and Little
(1973) found that habituation of orienting to
the offset of the CS in a trace conditioning
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procedure similarly facilitated acquisition.
The two essential components for classical
conditioning are the UCS (unconditional
stimulus), which reliably elicits a reflex with-
out any prior training (i.e., unconditionally),
and the CS (conditional stimulus), which is
within the organism’s sensory range but is
initially neutral with respect to the reflex
elicited by the UCS. When they are repeat-
edly presented in close temporal contiguity,
the CS and UCS become associated, so that
one predicts the occurrence of the other. Orig-
inally, Pavlov (1927) thought that the CS and
UCS must be contiguous, but Rescorla (1967)
found that they need only be correlated. The
correlation (contingency) can be either pos-
itive (the CS predicts that the UCS will oc-
cur) or negative (the CS predicts that the UCS
will not occur). In traditional classical con-
ditioning procedures, excitatory learning (the
extent to which subjects respond above zero
or baseline) can readily be measured, but in-
hibitory learning (the extent to which sub-
jects respond below zero or baseline) cannot.
Experimenters who wish to study inhibitory
learning must first train subjects to perform an
operant response. When the operant response
rate is high and stable, then they can introduce
the classical inhibitory procedure while the
operant behavior is ongoing. This manipula-
tion will allow the CS-UCS contingency to be
manifested as a decrease in operant response
rate (inhibitory learning) (Estes & Skinner,
1941; Little, 1973; Rescorla, 1966).

In the past, experimenters used a backward
conditioning group to control for behavioral
arousal. This group receives the same total
number and intensity of CSs and UCSs as
the experimental group, except that for this
group, the UCS precedes the CS. Because
this procedure can produce inhibitory condi-
tioning, however, researchers are encouraged
to use instead a truly random control group.
For this group, the CSs and UCSs are pro-
grammed independently; thus, they occur ran-

domly with respect to each other (zero corre-
lation) but as frequently as for the experimen-
tal group. A learning interpretation requires a
difference in responding between the experi-
mental and the control groups. Because some
researchers have obtained chance acquisition
in the random control group, however, many
experimenters use an explicitly unpaired con-
trol group for which the CS precedes the UCS
at nonoptimal intervals.

Because classical conditioning research
has traditionally focused on the feeding, de-
fensive, and orienting reflexes, we will con-
sider the procedures that have been used to
condition an exemplar of each type—sucking,
eye blinking, and head turning, respectively.

Conditioned Sucking

Because sucking on a nipple is obligatory
and readily observed, it has long been the re-
sponse of choice in learning studies with new-
borns and young infants. Although sucking
declines over the first year of life, it can be re-
instated by the contingent introduction of rein-
forcing consequences (Siqueland & DeLucia,
1969).

Lipsitt and Kaye (1964) were the first to
demonstrate classically conditioned sucking
in newborns under carefully controlled lab-
oratory conditions. They tested two groups
(n = 10 each) of 3- and 4-day-olds on a single
occasion 3 hr after their last feeding and prior
to their morning feeding. The experimental
group received a 93-dB, 23-cps tone (CS) and,
1 s later, a nonnutritive nipple in the mouth
(UCS); the paired stimuli co-terminated 14 s
later. The explicitly unpaired control group re-
ceived the CS and UCS for the same amount
of time, but the CS was presented 30 s after
the UCS was removed. Sessions consisted of
5 baseline trials (CS-alone), 20 training tri-
als (CS-UCS) with five interspersed test trials
(CS-alone every fifth trial), and 30 extinction
trials (CS-alone)—fewer if an infant failed to
respond to the CS on two consecutive trials.
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During conditioning, the number of responses
of both groups on the interpolated test trials in-
creased, but the experimental group showed a
moderate advantage. During extinction, how-
ever, sucks continued to increase in the control
group but returned to baseline in the experi-
mental group.

To ensure that increased sucking to the
tone in the control group was not merely sen-
sitization, Kaye (1967) repeated the preced-
ing experiment with four sensitization control
groups—a CS-alone group and three UCS-
alone groups. In addition, he increased the
duration of the CS and UCS by 5 s each and
counted sucks throughout the session, both
during and between CS presentations. The
findings replicated those of the previous study
and unequivocally confirmed that classical
conditioning had occurred. This time, sucking
in the experimental group increased sharply
during training and decreased to the control
level during extinction. Kaye attributed the
greater conditioning effect in his study to
the fact that his procedure increased by 33%
the opportunity for the tone and sucking to
be paired on each conditioning trial—an im-
portant factor to consider in future research
designs.

Conditioned Eye-Blinking

The eye-blink CR is the most widely stud-
ied response in the classical conditioning lit-
erature, irrespective of age or species, and
offers a particularly advantageous model for
the study of early cognition. First, its neural
circuitry has been thoroughly investigated in
other species, and the effects of damage to
the circuitry are well known, making this a
useful cognitive neural model (Woodruff-Pak
& Steinmetz, 2000a, 2000b). Second, con-
ditioned eye blinking is a classic paradigm
for the study of inhibitory development, as-
sociative learning, memory, and higher-order
cognitive functions such as learned irrele-
vance. Third, because it entails neither a dif-

ficult motor response nor a verbal response,
it can be used with very young and even
preterm infants. Finally, as a form of aversive
or fear conditioning (rather than appetitive
conditioning), it can help researchers eluci-
date how traumatic events are processed early
in life and how they impact later cognition.
Such understanding also has obvious clinical
implications.

When the UCS is a corneal air puff and
the UCR is an eye-blink, a CR that imme-
diately anticipates the UCS is a functional
avoidance response. Many of the earlier fail-
ures to document conditioned eye-blinking
in young infants undoubtedly resulted from
use of a nonoptimal interstimulus interval
(ISI) between the CS (tone) and UCS (air
puff). In fact, the optimal ISI for eye-blink
conditioning during the first month of life
is three times longer than the 500-ms ISI
that is optimal for adults (Little, 1970). By
5–6 months of age, infants can acquire a
conditioned association with a 650-ms ISI
(Ivkovich, Collins, Eckerman, Krasnegor, &
Stanton, 1999, 2000), and by adulthood, the
optimal ISI has fallen to 500 ms (Kimble,
1961).

Using the nonoptimal 500-ms ISI as the
explicitly paired control condition and a
1,500-ms ISI as the experimental condition,
Little, Lipsitt, and Rovee-Collier (1984) train-
ed supine infants with a 1,000-cps, 70-dB
tone (CS) and a 400-ms, 2.5-psi air puff
(UCS). Because of the possibility that the ef-
ficacy of the 500-ms ISI might increase with
age, they also introduced a truly random con-
trol group for each ISI condition for the groups
first trained at 30 days of age. Their device for
delivering the UCS and recording eye-blinks
is pictured in Figure 17.2. The tone was pre-
sented from a speaker positioned 30.48 cm
behind the infant’s head and lasted 1,900 ms,
overlapping and terminating with UCS termi-
nation (a delayed conditioning procedure). In
addition, respiration was recorded by means
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Figure 17.2 An eye-blink conditioning device
for infants between 0 and 4 months of age
(DeLucia, 1968). A stainless steel wire frame with
a pair of Amperex germanium photocells mounted
on two 16.76-mm pieces of Plexiglas. One photo-
cell is focused on the sclera, and the other is focused
on the lower lid. When the eye is open, ambient
light reflects equally from both surfaces, producing
no current flow. A blink reduces the light reflected
from the sclera, producing a current flow propor-
tional to the difference in light intensity on the two
photocells. The output is fed into a polygraph ad-
justed to produce a full pen deflection when the
eye is open. Secured in and projecting through the
Plexiglas is a 7.94-mm (diam) nozzle through
which a 2.5-psi air puff is delivered to the left corner
of the infant’s left eye from a distance of 2.54 cm.
The device is taped to the infant’s forehead, leaving
the eyelid unrestricted and unencumbered.

of an infant pneumobelt connected to the
polygraph.

Session 1 began with three CS-alone and
three UCS-alone trials to ensure that infants
blinked to the UCS but not to the CS. Next,
infants received 50 paired CS-UCS presen-

tations and 20 CS-alone trials interspersed
randomly among the CS-UCS trials, with the
stipulation that 10 CS-alone trials would oc-
cur in each half of the session and that no
more than 2 CS-alone trials would occur in
succession. A truly random control group,
first introduced at 30 days of age, received
70 CS (1,900 ms) and 50 UCS (400 ms) pre-
sentations in each session. Half of the UCSs
were presented randomly during a CS presen-
tation, and half were presented randomly in
the absence of a CS, with the stipulation that
their frequencies of occurrence were approx-
imately equivalent in each half of each ses-
sion. Each infant in the random control group
received a different schedule of stimulus
presentations.

Researchers should note the procedures
that were included to control for infant state:
(1) No trial began unless respiration was reg-
ular and eyes were open; (2) a minimum of
8 s elapsed between trials; (3) sessions be-
gan after an infant had awakened from a nap
and consumed approximately half the ration
of a regular feeding; (4) a pacifier was used
to maintain alertness; and (5) sessions were
conducted in a sound-attenuated room.

At all ages, the percentage of anticipa-
tory CRs increased over blocks of trials, but
only the 1,500-ms ISI groups learned the
association—the 500-ms ISI groups did not.
Although age was not a significant factor in
acquisition, the conditioning performance of
the oldest group was significantly higher than
for the youngest group. Notably, a signifi-
cantly greater percentage of CRs occurred on
CS-alone trials than within the CS-UCS in-
terval at all ages. Experimenters should note
that interspersing UCS-omission trials among
CS-UCS training trials is often the only way
to reveal a conditioned response. Because CR
latencies of infants who are immature or oth-
erwise compromised can be quite long, such
infants are often unable to respond within the
prescribed CS-UCS interval. In fact, studies
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of heart-rate conditioning regularly use a
UCS-omission procedure with newborns, pre-
mature infants, and decerebrate infants (e.g.,
Berntson, Tuber, Ronca, & Bachman, 1983;
Clifton, 1974; Tuber, Berntson, Bachman, &
Allen, 1980).

Conditioned Head-Turning

Ipsilateral head-turning is reliably elicited
in newborns by stroking the cheek near the
mouth. It is the initial member of an adap-
tive reflex chain that terminates in feeding.
For this reason, one establishes and maintains
conditioned head-turning in an infant by pro-
viding an opportunity for the infant to suck
at the end of the arc of rotation after elici-
tation of a head-turn. This procedure is in-
effective if the nipple is presented at mid-
line. Thus, Papousek (1959, 1961) reinforced
each head-turn with milk, and Siqueland and
Lipsitt (1966) reinforced each head-turn with
a 5% dextrose-water solution.

Following Papousek’s (1959, 1961) work,
Siqueland and Lipsitt (1966) sounded a buzzer
(the CS) for 2 s and then stroked the infant’s
left cheek (the UCS) while the buzzer con-
tinued to sound for another 3 s. Each left-
ward head-turn was immediately followed by
sucking from a bottle for 2 s. After ipsilateral
head-turning to the UCS stabilized, Siqueland
and Lipsitt initiated formal conditioning tri-
als. The experimental group received 30 ac-
quisition trials with 30-s intertrial intervals
on which the buzzer and stroking were fol-
lowed by dextrose, and then 12 to 30 extinc-
tion trials with the buzzer alone. The mean
percentage of trials on which head-turning
occurred to the buzzer increased during ac-
quisition and decreased during extinction.
A matched control group receiving dextrose
8–10 s after stroking showed no increase in
head-turning over trials.

In a second experiment, Siqueland and
Lipsitt established differential conditioning
by pairing a tone (S+) and stroking of one

cheek with dextrose and pairing a buzzer (S−)
and stroking of the other cheek with no dex-
trose. Ipsilateral responding to the S+ in-
creased during acquisition and decreased dur-
ing extinction. Subsequently, they introduced
a reversal procedure in which right turns fol-
lowing right-sided stimulation were initially
reinforced with dextrose in the presence of
S+ but not S−; after initial training, this con-
tingency was reversed. Initially, infants re-
sponded increasingly to S+; when the con-
tingency was reversed and became S−, they
responded to it less, and by the end of re-
versal training, they responded more to the
new S+. In the differential and reversal con-
ditioning studies, the control group received
the same total number of reinforcements as
the experimental group 8–10 s after the S+.
These are model experimental procedures that
researchers can use with infants of any age.

Instrumental and Operant Conditioning

Instrumental conditioning and its variant, op-
erant conditioning, differ from classical con-
ditioning in that the conditioned response is
not elicited by a stimulus that precedes it, but
is emitted and followed by a stimulus that
reinforces it. Instrumental conditioning is a
discrete-trials procedure in which the experi-
menter initiates the trial by presenting a cue or
problem situation, and the subject terminates
the trial by responding. The experimenter also
controls the interval between trials and the
number and distribution of reinforcers. The
typical measures of instrumental learning are
the number or percent frequency of correct
responses over trials, response latency, or re-
sponse speed. In discrete-trials procedures,
reinforcement that either is delayed longer
than 3 s (Brody, 1981; Millar, 1990; Millar &
Watson, 1979; Ramey & Ourth, 1971) or is
spatially discontiguous with the locus of re-
sponse (Millar & Schaffer, 1972, 1973) is
usually ineffective between 6 and 8 months
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of age unless a cue that indicates the locus of
reinforcement is provided (Millar, 1974).

The bulk of conditioning research with in-
fants has used operant procedures. In operant
conditioning, subjects control both the inter-
trial interval and the number of reinforcers
by responding at whatever rate they choose—
in effect, self-presenting their own “trials.”
Because there is no discrete stimulus event
from which to time response latency, exper-
imenters measure response rate (number of
responses over time). Furthermore, in operant
conditioning, the response or some compo-
nent of it must be in the infant’s repertoire
prior to training. Because the measurement
of learning requires a comparison of the rate
of response before the introduction of rein-
forcement (i.e., the baseline rate, or operant
level) with the rate of response afterward, re-
searchers are cautioned that an accurate mea-
sure of operant level is critical. Accurate mea-
sures require a baseline period sufficiently
long that infants can adapt to the experimen-
tal situation but not so long that they become
restless or distressed. If an infant’s operant
level is too high, then a response ceiling for
reinforcement effects will be reached rapidly.
If their operant level is too low, then the lesser
opportunity to reinforce it in the allotted time
will reduce the probability that the infant will
detect the correlation between the response
and its outcome.

Many operant-conditioning studies in-
volve brief sessions with only a couple of
minutes each for baseline and extinction
and only slightly longer for acquisition. Be-
cause younger infants require more time to
learn some tasks, brief acquisition periods
lessen their opportunities to learn. In fact,
any of the preceding scenarios can lead to
the erroneous conclusion that the reinforcer
is ineffective, or that an infant cannot learn.
Although conditioned responding can be mea-
sured during the initial portion of an extinc-
tion period, once infants have detected the

withdrawal of reinforcement, their arousal
(fussing) may increase.

An arousal control group must be used
to establish that the increase in responding
during acquisition is due solely to the con-
tingency and not to state changes elicited by
the reinforcing stimulation or to other factors
in the experimental situation that might in-
crease arousal (a long session duration, sati-
ation, hunger, etc.). Experimenters must also
demonstrate operant control, that is, that in-
creases in response rate are due to the contin-
gency and not to the eliciting effects of the re-
inforcing stimulation. Both concerns are best
satisfied by infants in a yoked-control group
who receive the same number of reinforce-
ments as the experimental group, but the re-
inforcement is not contingent on responding.
Finally, in studies that use a differential rein-
forcement procedure, experimenters must be
careful to selectively reinforce each infant’s
nonpreferred response or responding to the
nonpreferred stimulus, as determined during
a pretest or baseline period (see, e.g., Rovee-
Collier & Capatides, 1979). Only in this way
can subsequent differential responding be un-
equivocally attributed to the effect of differ-
ential reinforcement.

Reinforcers

Appetitive stimuli (positive reinforcers) have
been used more frequently than aversive
stimuli (negative reinforcers) to modify oper-
ant responding. Experimenters using nutritive
reinforcers cannot manipulate deprivation
level and usually have access to infants only
between feedings; in addition, their manipu-
lations are generally restricted to sugar water
or milk in small amounts that will not influ-
ence the infant’s subsequent intake. A few
researchers have studied infants immediately
prior to (Kron, 1966) or during (Papousek,
1959, 1961) a regularly scheduled feed, using
the reinforcement as part of the daily ration.
The use of nonnutritive reinforcers sidesteps
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many of these problems. These typically in-
volve the presentation or termination of an au-
ditory or visual stimulus (Butterfield & Siper-
stein, 1972; Lipsitt, Pederson, & DeLucia,
1966; Siqueland & DeLucia, 1969), although
the opportunity to engage in non-nutritive
sucking can be reinforcing too. Newborns, for
example, suck most on a standard Davol nip-
ple, next most on a blunt Davol nipple with the
elongated portion cut off, and least on a piece
of rubber tubing (Brown, 1972). If sucking
on a standard nipple is made contingent upon
tube sucking, the rate of sucking on a tube
increases; although the same contingency
does not increase the rate of blunt-nipple
sucking, the latter decreases significantly if
followed by tube sucking. These changes
are effected through decreasing or increasing
the interval of pausing between successive
sucking bursts (Brassell & Kaye, 1974).

The reinforcer and the response it influ-
ences need not be biologically related. For
example, an infant’s rate of sucking will in-
crease as readily when the sucks are fol-
lowed by his or her mother’s voice (DeCasper
& Fifer, 1980; Mills & Melhuish, 1974),
a computer-generated speech sound (Eimas,
Siqueland, Jusczyk, & Vigorito, 1971), music
(Butterfield & Siperstein, 1972), a movie
(Kalnins & Bruner, 1973), colored slides
of patterns or geometric shapes (Franks &
Berg, 1975; Milewski & Siqueland, 1975),
the movement of a crib mobile (Little, 1973),
or termination of white noise (Butterfield &
Siperstein, 1972) as when the infant’s sucks
are followed by a squirt of sugar water (Kobre
& Lipsitt, 1972; Siqueland & Lipsitt, 1966)
or milk (Sameroff, 1968; Siqueland, 1964).
Likewise, head turning is readily reinforced
by a visual pattern (Caron, 1967; Cornell
& Heth, 1979; Levison & Levison, 1967),
a novel toy (Koch, 1967, 1968), a human
jack-in-the-box (Bower, 1966, 1967), visual
access to the mother or a stranger (Koch,
1967, 1968), a nonnutritive nipple (Siqueland,

1968), or simply “being correct” (Papousek,
1967). These consequences are as effective as
a squirt of milk (Papousek, 1961) or sugar
water (Siqueland & Lipsitt, 1966). Vocal-
izations can be modified by both auditory
(Hulsebus, 1973) and visual (Ramey &
Watson, 1972) stimulation, as can vi-
sual behavior (Watson, 1969), foot-kicking
(McKirdy & Rovee, 1978), and panel-
pressing (Lipsitt et al., 1966; Simmons &
Lipsitt, 1961). The commonality among these
reinforcers is that infants can control them.
The fact that infants continue to perform old
responses or even acquire new ones while
at the same time rejecting the nominal rein-
forcers (Papousek, 1969) reveals that they are
ultimately reinforced by problem-solving.

Social reinforcers are particularly effective
in establishing and maintaining infant behav-
ior. The features that define a social stimulus
change with age. Although newborns prefer
to look at faces than at other visual stim-
uli (Hainline, 1978), the fact that their scan-
ning patterns for static faces and other two-
dimensional stimuli are identical (Maurer &
Salapatek, 1976) suggests that this preference
is not based on a social dimension. Nonethe-
less, infants discriminate among facial expres-
sions at birth (Field, Woodson, Greenberg, &
Cohen, 1982); display greater pupillary di-
lation to social than nonsocial stimuli at 1
and 4 months of age (Fitzgerald, 1968); dis-
play differential cardiac responses to mothers
and strangers by 6 weeks (Banks & Wolfson,
1967) and differential pupillary responses to
them by 12 weeks (Fitzgerald, 1968); and
smile more frequently when social reinforce-
ment is delivered by the mother than by
a stranger (Hulsebus, 1973; Wahler, 1967).
Contrast and movement, which are critical
features of the human face, influence infants’
scanning patterns (Girton, 1979; Salapatek &
Kessen, 1966) and are effective nonsocial re-
inforcers during the first 2 months (Milewski
& Siqueland, 1975). As a rule, both social
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and nonsocial reinforcers effectively modify
nonsocial behaviors at all ages, but nonsocial
reinforcers are less effective in doing so as in-
fants get older. Not only are older infants more
likely to discriminate social from nonsocial
consequences, but they also have more expe-
rience that the natural environment does not
provide such contingencies.

Over the first few postnatal months, so-
cial and nonsocial response-contingent rein-
forcers are functionally equivalent, but by
the end of the fourth month, most infants
treat social and nonsocial stimuli differ-
ently. Watson and Ramey (1972) suggested
that 2-month-old infants perceive response-
contingent mobiles as social stimuli; Caron,
Caron, Caldwell, and Weiss (1973) reported
that the eyes of others do not acquire spe-
cial significance for the infant until the fourth
month; and Dolgin and Azmitia (1985) con-
cluded that, “before 4 months, faces do not
have a special status (p. 332).” Watson (1972)
proposed that the defining feature of a social
stimulus for infants is that it responds con-
tingently to the infant. He argued that people
become important to infants during the first
3–4 months of life because they “play the
game,” that is, because they respond to the
infant contingently.

The observation that infant social behav-
iors share many characteristics with nonso-
cial behaviors that are influenced by their
reinforcing consequences led researchers to
study the effect of contingent social stimu-
lation (stimuli delivered by other humans) on
the rate or frequency of infant social behaviors
(behaviors directed toward other humans).
Rheingold et al. (1959), for example, at-
tempted to socially condition the nonfussy vo-
calizations of 12-week-olds. During a 2-day
baseline phase prior to the conditioning phase,
and again during a 2-day extinction phase
afterward, vocalizations made while the ex-
perimenter leaned over the crib and stared
impassively at the infant were tallied. Dur-

ing the 2-day conditioning phase, the exper-
imenter maintained the original posture and
expression except when administering a 1-s
reinforcement immediately after each vocal-
ization. Reinforcement consisted of a smile,
three “tsk” sounds, and a light touch to the in-
fant’s abdomen. For the first 10 infants, the
researchers gradually shifted reinforcement
from a continuous to a fixed ratio-3 schedule.
Because the intermittent schedule depressed
response rates, however, the responses of the
remaining 11 infants were continuously rein-
forced. Vocalizations increased reliably above
baseline on the first conditioning day and in-
creased even more on the second day. When
reinforcement was withdrawn, vocalizing de-
creased and returned to baseline on the sec-
ond extinction day. Despite the lack of a
noncontingent-reinforcement control group,
Rheingold et al. argued that the reliable in-
crease in responding from the first to the sec-
ond day of conditioning, and the continuing
decline in responding from the first to the sec-
ond day of extinction, were inconsistent with
interpretations based on either arousal or the
possibility that some aspect of the reinforcing
stimulus was a “releaser” of social responses.

Weisberg (1963) repeated the Rheingold
et al. (1959) study but added five control
groups: (1) a group who received noncon-
tingent social reinforcement (to control for
elicitation effects of a social stimulus); (2) a
group for whom the experimenter remained in
view but expressionless throughout the study
(to control for the effect of an unresponsive
adult on vocalization rate/min); (3) a group
with no experimenter at all (to provide a con-
tinuous baseline of nonstimulated vocaliza-
tions); (4) a group who received contingent
nonsocial reinforcement from a door chime
(delivered by an experimenter sitting in front
of the infant); and (5) noncontingent nonso-
cial reinforcement. The latter two groups were
included in the event that detectable envi-
ronmental change might increase the rate of



pashler-44093 book December 18, 2001 10:44

Infant Learning 713

vocalization (group 4) and to control for the
possibility of arousal induced by the door
chime (group 5). The experimental group
received the same reinforcement as in the
Rheingold et al. study, but the reinforcement
was timed to last for a total of 2 s.

Weisberg (1963) conducted two 10-min
sessions per day for 8 consecutive days. On
days 1 and 2, baseline rates in the absence
of the experimenter were recorded for all
infants; on days 3 and 4, all groups ex-
cept group 3 were exposed to an unrespon-
sive experimenter who was seated facing
the infant; on days 5 and 6, the contingent-
and noncontingent-reinforcement conditions
were imposed; and on days 7 and 8, the
two contingent-reinforcement groups were
shifted to an extinction procedure, while the
noncontingent-reinforcement groups contin-
ued to receive response-independent stimula-
tion. Weisberg found that, from days 3 and 4
to days 5 and 6, the group who received con-
tingent social reinforcement increased its rate
of vocalization; on days 7 and 8, the groups
did not differ. Ramey and Ourth (1971) repli-
cated this study with 6- and 9-month-olds but
reinforced vocalizations after delays of 0, 3,
or 6 s. Only the 0-s delay groups increased
vocalizations.

Subsequently, researchers questioned
whether social reinforcers actually elicit
social behaviors from infants (Bloom, 1984;
Bloom & Esposito, 1975; Hulsebus, 1973;
Sameroff & Cavanagh, 1979). Poulson (1983,
1984) settled the issue by demonstrating
social reinforcement control over social
responses in a within-subjects design. Today,
researchers control for social elicitation
by routinely including a noncontingent-
stimulation control group in their designs
or by reinforcing social responses after a
delay. This precaution is necessitated by the
fact that infants who expect social (and even
nonsocial) stimuli to behave in particular
ways often become distraught when those

expectancies are violated, as when an adult’s
face remains still and expressionless dur-
ing an extinction period (Brackbill, 1958;
Rheingold et al., 1959).

A major constraint on session length is the
rapidity with which infants satiate to the re-
inforcer. Siqueland (1968) found that slides
to which infants had been preexposed for
only 2 min were less effective than novel
slides in reinforcing high-amplitude sucks.
Similarly, 20-month-olds performed more re-
sponses when their responses were reinforced
with a series of different pictures or bright-
nesses of light than if their responses pro-
duced the same consequence on each occasion
(Weisberg & Fink, 1968). If a reinforcer is rel-
atively novel (Berlyne, 1960), then sessions
can be quite long. The lengthy and multiple
sessions (15–45 min) used in mobile conju-
gate reinforcement studies, for example, are
due partly to the relative novelty associated
with the continuous rearrangements of the
highly detailed mobile components. The re-
inforcing value of mobiles that offer a smaller
range of variation declines more rapidly.

Given the difficulty in finding compara-
ble tasks that are suitable for infants of dif-
ferent ages, we will focus on three tasks that
have been successfully used to answer a vari-
ety of experimental questions across a wide
age range—head-turning, foot-kicking, and
lever-pressing.

Head-Turning

In classical conditioning studies, head-turns
were elicited in neonates by a touch to the
face and were reinforced with milk or dextrose
(Papousek, 1959; Siqueland & Lipsitt, 1966).
By 3 months of age, head-turning is elicited by
the mother’s voice or a novel sound (Levison
& Levison, 1967) and is reinforced by visual
access to the source of the sound. As before,
reinforcement is most effective if presented at
the end of the arc of rotation (not at midline)
and is necessary to maintain head-turning. In
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a typical experimental procedure (Schneider
& Trehub, 1985), the infant sits on the parent’s
lap in a sound-attenuating booth, and the ex-
perimenter sits in the opposite corner. Both the
parent and the experimenter wear headphones
to mask all auditory signals.

When the infant is quiet and looking
straight ahead at a sticker or blinking light, a
second experimenter presents a signal through
one of two speakers that are located 45 deg to
the left and right of midline. If the infant’s
head rotates 45 deg to either side, then the ex-
perimenter opposite the infant presses one of
two buttons to indicate the direction of turn.
Turns toward the signal are followed by a 4-s
illumination and activation of a toy over the
speaker; turns away from the signal are fol-
lowed by silence for 4 s. The side position of
the signal (or S+) is counterbalanced or ran-
domized (to eliminate side biases) with the
constraint that the signal cannot appear con-
secutively on one side more than three times.
To ensure that infants are capable of perform-
ing the response, they must meet a criterion
of four successive correct responses to signals
from alternating sides. Typically, 95% of 6-
to 18-month-olds meet criterion, and 85–90%
complete 25–30 trials without fussing or cry-
ing. Infants can usually be tested for as many
as 50–60 trials in a single visit. Moreover, in-
terobserver reliability is usually excellent.

Foot-Kicking

Foot-kicking has been used in free-operant
studies of mobile conjugate reinforcement.
This procedure produces very rapid learn-
ing, possibly because two aspects of the re-
inforcer (frequency and intensity) vary and
sustain attention for long periods both within
and across sessions. Specifically in the mobile
task, when the ribbon is attached to the mo-
bile, foot-kicks move the mobile in a graded
manner that is commensurate with their rate
and vigor (conjugate reinforcement). Because
each infant essentially “shops” for his or her

own preferred momentary level of reinforc-
ing stimulation by varying the rate and vigor
of kicking, the conjugate reinforcement pro-
cedure eliminates problems associated with
equating motivation across infants and ages.
The mobile task and its upward extension, the
train task (described in the next section), have
been successfully used with infants between
2 and 24 months of age, can easily be adapted
to study different problems of infant cogni-
tion and perception, and are portable and in-
expensive. For these reasons, we will focus on
these methodologies. Although hand-waving
can be used instead of foot-kicking (Timmons,
1994), movement of the hand in front of the
face induces younger infants to suck their fin-
gers, which, like a pacifier, attenuates the very
response the experimenter seeks to study.

At 2–3 months, L-shaped mobile stands are
clamped to opposite rails of the infant’s home
crib so that both suspension bars protrude over
the infant’s upper abdomen. At 6 months, floor
microphone stands with a horizontal mobile
suspension bar welded to the top are placed on
opposite sides of the playpen, where the infant
is situated in a sling-seat. Although mobile
suspension bars must offer some resistance,
they still must also be flexible; for this reason,
one-piece plastic mobile stands should not be
used. A narrow, white satin or grosgrain rib-
bon is strung from one of the two suspension
bars to the infant’s ankle. During reinforce-
ment periods, a ribbon connects one of the
infant’s ankles to the same hook as the mo-
bile (see Figure 17.3a). It is important that the
ribbon be neither too tight nor slack. During
nonreinforcement periods, the ankle ribbon
is connected to the second mobile hook (see
Figure 17.3b). In this arrangement, the infant
can see the mobile, but his or her kicks cannot
move it. It is important that the experimenter
move the ribbon rather than the mobile from
one stand to the other because the ribbon acts
to keep the mobile from bouncing off the stand
when the infant kicks very hard or fast.
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Figure 17.3 The experimental arrangement used with 2- to 6-month-olds in the operant mobile task,
shown here with a 3-month-old. (a) Acquisition: Kicks conjugately move the mobile via an ankle ribbon
that is connected to the mobile hook. (b) Baseline, immediate retention test, long-term retention test: The
ankle ribbon and mobile are connected to different hooks, and kicks do not move the mobile.

Whenever possible, training should take
place in the infant’s home. This practice mini-
mizes attrition by allowing infants to be tested
under optimal conditions—the only novel
stimulus is what the experimenter provides,
the infant’s normal schedule is not disrupted,
and the infant is most likely to be alert and
playful. The best time to test younger infants is
after a nap, diapering, and feeding. Although
this time of day will vary across infants, it
should be relatively constant across multiple
sessions for a given infant. Allowing the care-
giver to arouse the sleeping infant when the
experimenter arrives for a scheduled session,
or allowing the caregiver to hurry feeding, will
only increase the chance of attrition. Infants
who do not receive their typical ration prior
to testing invariably become fussy. Finally, a
pacifier must not be used to calm the infant;
pacifiers actually prevent infants from learn-

ing by inhibiting activity. If the infant seems
inconsolable at the outset, the best tactic is
simply to reschedule the session.

Training sessions occur on 2 consecutive
days unless the training regimen per se is the
independent variable (Ohr, Fagen, Rovee-
Collier, Hayne, & Vander Linde, 1989;
Rovee-Collier, Evancio, & Earley, 1995). At
all ages, each training session begins with
a nonreinforcement period; in Session 1,
this period serves as a baseline phase, when
the infant’s mean rate of unlearned activity
(kicks/min or operant level) is determined.
Next follows the acquisition phase, when
kicks are conjugately reinforced (see Figure
17.3a). The acquisition phase is usually 2 to 3
times longer than the baseline period. Finally,
each session ends with another nonreinforce-
ment period; in Session 2, this period serves
as the immediate retention test, when both
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Figure 17.4 The experimental arrangement used with 6- to 18-month-olds in the operant train task,
shown here with a 6-month-old. Each lever press moves the toy train for 1-2 s during acquisition; during
baseline and all retention tests, the lever is deactivated, and presses do not move the train. Note the
complex array of toys within the train box.

the final level of learning and retention after
zero delay are measured. After a delay, the
infant receives a third, procedurally identical
session; here, the initial nonreinforcement
period serves as a long-term retention test
(see Figure 17.3b). Because the mobile is sta-
tionary during all tests, the infant will attempt
to move it by kicking robustly; and because
each nonreinforcement period is so brief, the
infant’s responding will not extinguish. After
the long-term test, the reacquisition phase
serves as a motivational control procedure
to ensure that infants who responded poorly
during the preceding test were not ill, fa-
tigued, or otherwise unable or unmotivated
to perform the response on that particular
day. Infants who fail to respond appropriately
when the contingency is reintroduced are
excluded from the final sample.

Lever-Pressing

The parameters used in the train task are iden-
tical to those used in the mobile task except

that the reinforcement is not conjugate. In-
stead, each lever-press moves the miniature
train around a circular track for only 1 s (2 s
at 6 months of age) (see Figure 17.4). As in
the mobile task, the baseline phase and all re-
tention tests occur when the lever is deacti-
vated, and infants’ responses do not move the
train. Infants between 6 and 18 months of age
are trained with one of two miniature train
sets, counterbalanced within groups. The fea-
tures common to both sets are the frame of the
train box (58 × 58 × 35 cm), the front Plex-
iglas window, a lever (30 × 12.5 cm) at the
base of the window, a light bulb (60 W, 120
v) in the upper-right inside corner of the box
that illuminates its interior, a circular track
(47.5 cm diam), and an HO-scale train (an en-
gine and three rail cars).

The wooden frames, patterns on the walls,
and railroad cars in the two sets are differ-
ent colors. Also, different toys and minia-
ture figures are positioned about the track
to make the display sufficiently “busy” that



pashler-44093 book December 18, 2001 10:44

Infant Learning 717

all ages will continue to find it interesting
over multiple sessions. During nonreinforce-
ment periods, the interior light remains on
to give infants a clear view of the inside of
the train set. During reinforcement periods,
each lever press activates the train for 1 s (2 s
at 6 months of age). Lever presses that oc-
cur while the train is in motion are registered
by the computer but do not affect the train’s
movement. Infants must release the lever and
press it again in order to activate the train
again.

The train set is placed on a table in the in-
fant’s home, and the infant sits in front of it
on the caregiver’s lap or in a high chair. The
context is defined as the particular room in
the infant’s home (kitchen, living room, bed-
room) where training and testing take place.
A laptop computer times all experimental
phases, delivers the reinforcement, and reg-
isters all microswitch operations activated by
lever presses in 10-s bins.

Despite the vast physical differences be-
tween 2- and 18-month-olds (see Figure 17.1),
the range of unlearned responding to the mo-
bile and the train (operant levels) is the same
between 2 and 18 months, irrespective of
task (Hartshorn et al., 1998b). Because both
responses are very simple and well within
the motoric competence of all ages, the rela-
tive level of learning achieved during original
training is also the same at all ages whether
infants are trained with mobiles or trains. In
addition, infants of all ages reach the same
learning criterion within just a few minutes
of the first training session and take the same
amount of time to do so. Although the rate
of responding during acquisition is slightly
lower at 2 and 3 months of age, the acqui-
sition functions at these ages are otherwise
quite comparable to those of older infants.
Although 6-month-olds lever-press at half the
rate of the older age groups, their duration of
reinforcement is twice as long—2 s instead
of 1 s. When adjusted for this factor, their

acquisition function is the same as that of
older infants.

Imitation

Simply put, imitation tasks involve a “mon-
key see, monkey do” procedure in which an
experimenter models a behavior, then gives
the infant the opportunity to reproduce it im-
mediately afterward. Sometimes, the infant is
given an opportunity to imitate the target ac-
tions both immediately and after a delay (see
the section titled “Infant Memory”). In stud-
ies with infants, the definition of imitation has
been translated methodologically into a strict
focus on experimental control.

Facial Imitation

Piaget (1962) thought that “true” facial imi-
tation did not emerge until 8–12 months of
age and that facial imitation at younger ages
was stimulus-bound and reflexive. The most
carefully controlled studies of imitation from
birth to 3 months were conducted by Melt-
zoff and Moore (1977, 1983, 1989, 1992,
1994). In their procedure, Meltzoff and Moore
first exposed the infant to a passive face in a
dimly lit room where the face (that of the ex-
perimenter) was the only thing illuminated.
To prevent infants from developing idiosyn-
cratic games with the experimenter, they did
not interact with experimenter before the ses-
sions. Each session began with a 90-s base-
line phase, when the experimenter assumed
an unresponsive or passive face, and infants’
spontaneous production of the target facial
gestures was assessed. This phase was fol-
lowed by a 90-s modeling phase, when the
experimenter demonstrated a burst of target
actions (e.g., O-shaped mouth-openings) al-
ternating with a neutral face (a pause) for 15 s
each. The target actions were repeated four
times per burst for a total of 12 demonstra-
tions during the 90-s modeling phase. Each
modeling phase was followed by a 150-s
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response period, when the experimenter re-
sumed a passive face, and the infant could
imitate the facial gesture. The experimenter
then repeated the procedure, modeling an-
other gesture. All gestures were modeled at
the same distance from the infant and at the
same temporal rate. To ensure that infants did
not imitate during a modeling phase or that
the experimenter’s facial gestures were un-
affected by the infant’s responses to them,
the experimenter gave each infant a pacifier
before each modeling phase and withdrew
it before each response period. Finally, ob-
servers who were blind to infants’ experi-
mental conditions scored all responses from
videotapes.

In their original study with 12- to 21-day-
olds, Meltzoff and Moore (1977) demon-
strated four different gestures—tongue
protrusion, an O-shaped mouth-opening ges-
ture, lip protrusion, and sequential finger
movement—using a repeated-measures de-
sign. They measured the frequency with
which infants reproduced all of the target ac-
tions during the response period immediately
after each particular gesture was demon-
strated. Reasoning that if an infant were
truly imitating the modeled gesture—mouth-
opening, for example—then he or she should
produce more mouth-openings after a demon-
stration of mouth-opening than after a demon-
stration of tongue protrusion, and so forth. An
infant’s differential responding to the demon-
strated gesture was expressed as the rate of a
given target response relative to the rate of
other responses the infant produced during
the same response period. This cross-target
comparison measure controlled for changing
levels of behavioral arousal throughout the
session as well as for any arousing effects of
the adult demonstration per se. The rate of the
infant’s target response immediately after the
demonstration relative to its rate both during
other response periods and during the base-
line phase were also calculated. Meltzoff and

Moore found that significantly more infants
responded with gestures that matched the
four modeled behaviors than one would
expect by chance.

Meltzoff and Moore (1983, 1989) sub-
sequently found that even newborns could
imitate tongue protrusion, mouth-opening,
and head-turning, and that 1- and 3-month-
olds could imitate mouth-opening and tongue
protrusion (Meltzoff & Moore, 1992). They
concluded that prior failures to eliminate
young infants’ social games and idiosyn-
cratic routines had obscured evidence of early
imitation. They also concluded that early im-
itation is neither stimulus-bound nor reflex-
ive and does not disappear by 3 months
of age.

Vocal Imitation

Meltzoff and Kuhl (1996) documented vo-
cal imitation by 12-, 16-, and 20-week-old
infants. In this kind of research, one must con-
sider developmental changes in the anatomy
of infants’ vocal cords. Methodological con-
siderations in this instance included use of a
prerecorded audiovisual taped presentation so
that adults could not respond to infants’ vocal-
izations on-line, three different vowel types,
and spectrographic analyses of infants’ vocal-
izations. The latter provided a precise measure
of developmental change.

Sensory Preconditioning

Because infants spend the better part of their
first 6 months visually inspecting the world
around them, it is likely that they learn many
of the predictive relationships in their vi-
sual surroundings during this time. They can-
not display what they have learned, however,
until given a specific opportunity to do so.
Sensory preconditioning is a preexposure phe-
nomenon in which subjects later receive an
opportunity to manifest their “silent learn-
ing” (Brogden, 1939). In this procedure, two
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discriminably different stimuli (S1, S2) are re-
peatedly exposed in close temporal or spatial
contiguity. Subsequently, infants are trained
to perform a distinctive response to one stim-
ulus (S1) and are tested with the other stimulus
(S2). If they perform the distinctive response
to S2, then they are presumed to have learned
an association between S1 and S2 when the
two stimuli were initially exposed together.
This inference requires three essential con-
trol groups—a no-change control group that
is tested with S1 (to ensure that infants actu-
ally learned the distinctive response in the first
place); a no-preexposure control group that is
tested with S2 (to ensure that infants actually
discriminate it and do not respond on the ba-
sis of simple generalization); and an unpaired
preexposure control group that is preexposed
to S1 and S2 for exactly the same amount of
time at different times of day, is later trained
with S1, and then is tested with S2 (to en-
sure that the two stimuli are equally familiar
but that no association between them could be
formed). For the researcher to conclude that
an association had been formed between S1
and S2, the no-change control group would
have to respond to S1 during the test, and the
other two control groups would have to fail to
respond to S2.

Sensory preconditioning has been reported
in infants as young as 6 months in the op-
erant mobile procedure and in the imitation
procedure. Boller (1997) exploited the fact
that at 6 months, infants’ memories are highly
context-specific. In most mobile studies, a
highly distinctive context is created by drap-
ing a distinctively colored and patterned cloth
over the sides of the playpen where infants
are trained. One day after training, infants
who learned to kick to move a particular mo-
bile in one context do not recognize the mo-
bile (i.e., do not kick above baseline) if the
context is different; yet, they kick robustly if
tested in the training context. Boller exposed
6-month-olds to two contexts hanging side-

by-side anywhere in the home (e.g., over the
back of the couch, in their crib) for a total of
60 min daily for 7 consecutive days. Begin-
ning 1 day later, she trained infants for 2 days
to kick to move a mobile in one of the preex-
posed contexts. When tested 1 day after train-
ing in the other preexposed context, infants
kicked significantly above baseline, suggest-
ing that they had formed an association be-
tween the two contexts when they had been
preexposed together. Infants in an unpaired
control group were successively exposed to
the same two contexts for a total of 30 min
each at two different times of day for 7 days,
trained in one context, and then tested in the
other. This group did not kick in the second
context even though the test mobile was the
same, and neither did a no-preexposure con-
trol group that was trained in one context and
tested with the original training mobile in the
other context. Boller found no evidence of la-
tent inhibition—a preexposure effect charac-
terized by retarded learning to a preexposed
stimulus.

Barr, Marrott, and Rovee-Collier (2001)
used a sensory preconditioning procedure to
associate two hand-puppets that they subse-
quently used with 6-month-olds in an imi-
tation task. Puppets A and B were placed
side-by-side on two hat stands in the infant’s
home in full view for a total of 60 min per
day for 1 week. One day later, the target ac-
tions were modeled six times on puppet A
(or, for half of the infants, on puppet B) for
a total of 60 s. Immediately afterward, in-
fants were allowed to imitate the target ac-
tions three times. During a 24-hr retention
test, groups of infants imitated the target ac-
tions if tested with either puppet A or B but
not with a novel puppet—puppet C. The un-
paired control group, which was successively
exposed to puppets A and B for 30 min each
in either the morning or in the afternoon, re-
spectively, did not imitate the target actions on
puppet B.
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Concept Learning

Learning-Set Formation

Using a discrete-trials procedure, Ling (1941)
conducted an elegant series of discrimination
studies that yielded some of the earliest docu-
mentation of learning-set formation—a phe-
nomenon not formally described until some
years later (Harlow, 1949). Altogether, 50 in-
fants were studied longitudinally between 6
and 15 months of age. Depending on the study,
the stimuli were two to five different yellow
forms (circle, oval, square, triangle, cross) that
were presented on a tray. The S+ was covered
with a saccharine solution (the reinforcement)
and could be grasped and removed from the
tray, but the S− was fastened down so that
infants could not remove it. In the initial ex-
periment, 18 infants received a simultaneous
two-choice discrimination between S+ (the
circle) and S− (the cross or oval) until they
responded correctly on 8 of 10 consecutive
trials. At this point, another form was intro-
duced as the S−, and so forth, until infants
had learned to select the circle over all of the
other forms. The nine infants tested on the
circle/cross discrimination reached criterion
after an average of 124 trials, whereas the
nine tested on the more difficult circle/oval
discrimination reached criterion after an aver-
age of 147 trials. In succeeding experiments,
the spatial orientation of S− was changed, the
relative size of both stimuli was varied, and
the number of stimuli used as S− was pro-
gressively increased from two to five. Finally,
the circle became the S− and remained con-
stant over trials, while the other four stimuli
were used as the S+ and varied over trials.

Over the first three experiments, all in-
fants responded to form per se, irrespective
of relative position, size, spatial position, se-
quence, or pattern complexity, indicating that
the ability to abstract the common features
of the total configuration was present even at
6 months. Changes in spatial orientation and

relative size influenced reaction time but not
the number of trials to criterion. Similarly, in-
fants in the final experiment responded differ-
entially to a single contour in a changing array
in which as many as five different geometric
forms served as the S+ at one time or an-
other. Most importantly, the number of trials
to criterion on each successive combination of
forms progressively decreased throughout the
study, irrespective of whether the initial dis-
crimination series was difficult (circle/oval)
or easy (circle/cross). Even the relatively pro-
found change associated with a discrimina-
tion reversal in the final experiment, when the
circle became S− and the other forms be-
came S+, did not disrupt infants’ discrimi-
native performance. These results suggested
that their performance was based on some
primitive kind of insight and led Ling to con-
clude, “some common general factor in the
experience begins to operate very early and
very permanently” (1941, p. 16). The rapid-
ity with which infants solved the discrimina-
tion reversal—in fewer than 100 trials—was
surprising. Ling attributed infants’ rapid im-
provement on the conceptually difficult rever-
sal problem to their learning to inhibit the for-
merly correct response.

Ling’s (1941) finding that infants devel-
oped a set to discriminate among forms and
recognized them over a series of transforma-
tions led Fagen (1977) to ask whether young
infants could form concepts or rules. To
answer this, he used an object-discrimination
learning-set task with 10-month-olds.
Learning-set formation is between-problem
learning and is rule-based, whereas simple
discrimination learning is within-problem
learning and does not require that subjects
acquire a general rule. In learning-set forma-
tion, the general rule or concept is usually
that one of two objects will always be correct
(reinforced), even though the particular object
that is correct on any given problem (i.e.,
over successive trials with a particular S+
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and S−) will change. Acquisition of this rule
is reflected in a win-stay, lose-shift response
strategy. The number of problems required
to achieve correct Trial 2 performance
is the dependent measure in learning-set
studies, whereas the number of trials to reach
criterion is the dependent measure in simple
discrimination studies.

The general procedure followed in all
learning-set studies is the same: The exper-
imenter presents two unrelated, randomly se-
lected, junk objects (randomly designated S+
and S−) for a limited number of trials (e.g.,
six) per problem, then uses another pair of
unrelated junk objects as S+ and S− for a
given number of trials on another problem,
and so forth, until subjects respond correctly
on Trial 2 irrespective of the particular stim-
uli that are presented on a given problem.
Trial 1 performance is always expected to be
at chance (50% correct). On Trial 2 and there-
after, however, subjects will pick the correct
object if they have learned the rule. Likewise,
subjects who chanced to pick the correct ob-
ject on Trial 1 will continue to respond to
it thereafter if they have acquired the rule.
If mean correct responding jumps from 50%
correct to 100% correct by Trial 2, instead
of gradually improving over successive trials,
then subjects have adopted a win-stay, lose-
shift strategy, demonstrating that they learned
the rule.

Fagen (1977) tested four infants in their
own homes twice daily for 10 days (excluding
weekends). Infants sat in a high-chair in front
of a large wooden box with a large, central
Plexiglas window on the front and a smaller
Plexiglas window on either side of the cen-
tral window. When the compartment behind
the large central window was illuminated, the
infant could view an electrically operated,
brightly colored plastic circus train moving
around a circular track, sounding a bell, and
flashing a signal light (the reinforcement). On
each trial, a single stimulus (S+, S−) was illu-

minated behind each of the smaller side win-
dows. Stimuli consisted of 240 different junk
objects, randomly organized into 120 pairs,
with one member of each pair serving as the
S+ for a given problem (side position coun-
terbalanced across trials of a given problem).
When an infant pushed a door knob (chosen
because it was too large for infants to clutch)
that was affixed directly to the window in
front of S+, the lights illuminating S+ and
S− turned off, and the light in the central box
and the reinforcement turned on for 8 s. Two s
after the central light and reinforcement went
off, the side lights went back on, illuminating
the next pair of objects to begin the next trial.

Because children usually acquire a learn-
ing set more rapidly if they first solve one or
two object discrimination problems to crite-
rion, Fagen (1977) trained infants on two ob-
ject discriminations first. In each of the first
two sessions, infants received 42 simultane-
ous discrimination trials with a single stim-
ulus pair—a procedure that facilitates subse-
quent learning-set formation in children. In
Session 1, infants met criterion in a mean of
70 trials. At the outset of the second session,
4–5 hr after Session 1, infants displayed some
forgetting but still responded reliably above
chance. The 18 learning-set sessions began in
Session 3. Each consisted of 7 six-trial prob-
lems, with a different pair of stimuli presented
in each problem to make a total of 126 six-
trial problems. Over successive learning-set
sessions, discrimination performance within
a problem progressively improved. The fam-
ily of intraproblem learning curves, averaged
over every 20 problems, assumed the clas-
sic learning-set appearance (Harlow, 1949).
Performance over all six trials of the initial
problems (1–63) was relatively flat. During
problems 64–84, Trial 2 performance first ex-
ceeded chance, and during the final third of
training (problems 85–126), Trial 2 perfor-
mance stabilized at 75% correct, and the per-
cent correct improved over succeeding trials.
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In the last half of training, Trial 2 performance
on Problem 1 was as good from session to ses-
sion, in spite of the longer retention interval, as
was problem-to-problem performance within
a session.

Although response latencies were shorter
on incorrect than on correct trials through-
out all trials, infants tended to respond impul-
sively. This, in turn, was a major factor under-
lying their failure to achieve a 100%-correct
final level of performance on Trial 2. An error-
factor analysis revealed that differential-cue
errors and position preferences also affected
Trial 2 performance. Stimulus-preservation
errors (continuing to respond to S−) influ-
enced performance during only the first half
of training, disappearing initially on long-
latency response trials and disappearing by
the end of training on short-latency response
trials. Response-shift errors (tendencies to err
more on later trials after a correct than an
incorrect Trial l response) were negligible.
A hypothesis-model analysis indicated that a
win-stay, lose-shift strategy appeared by the
end of training and was particularly promi-
nent on trials with long-latency responses.
These data unequivocally demonstrate that in-
fants can acquire general response rules based
on the abstraction of general relationships
over successively encountered problems. As
a result, later behavior is rule-guided rather
than being based solely on within-problem,
trial-and-error learning. The fact that in-
fants demonstrated a reliable improvement in
Trial 2 performance with completely novel
stimuli after only nine learning-set sessions
is evidence that infants had indeed learned
a rule.

Categorization

Fundamentally, categorization is a problem of
memory. Category information, when first en-
countered, must be retained long enough that
when a subsequent category member is en-
countered, the new information can be inte-

grated with the category information that was
encountered first. Not surprisingly, therefore,
the same factors that affect infants’ memory
performance also affect their ability to cate-
gorize. Habituation and operant mobile proce-
dures have been used to study categorization
with younger infants, whereas object manip-
ulation and object touching have been used
with older infants.

In habituation studies of categorization, in-
fants view a series of slides of different objects
from the same category, then are tested with
two new slides: one of a novel object that is a
category member and one that is not. Longer
looking at the novel noncategory member is
taken as evidence that an infant had formed a
category based on information shared by the
training objects; that is, the novel test object
that is not in the training category is presum-
ably more dissimilar to the training exemplars.
These studies have found that infants respond
categorically on the basis of redundant infor-
mation encountered over the habituation se-
ries irrespective of whether they habituate. A
study by Cornell (1974) is typical. He found
that both 19- and 23-week-olds exhibited a
decline in looking time when the same stim-
ulus (a male or female face) was repeatedly
presented for six 10-s trials. Only older in-
fants, however, exhibited a decline in look-
ing time when the same male or female face
in a different perspective was presented on
each trial. Neither age exhibited a decline in
looking time when a different male or female
face was presented. During category testing,
all infants saw a frontal view of a novel face
of the opposite gender. Older infants who re-
peatedly saw the same face during training
(Set 3) looked longer at the novel test face,
as did older infants who saw different views
of the same face (Set 2) or different faces
(Set 1). The fact that initial looking times to
male and female faces in Set 3 were equal
(as were looking times on the first trial of
the other habituation conditions) excluded the
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possibility that the male frontal view was more
salient than the female frontal view or vice
versa. Unfortunately, whether infants exposed
to Set 2 would have treated a frontal view of
a different female face as more novel than a
frontal view of a male face (or vice versa) was
not assessed.

Cohen and Strauss (1979) questioned
whether infants in Cornell’s (1974) study
might have responded to a common feature
in the different photographs of the same per-
son (e.g., the length or shape of hair) instead
of to the person’s gender. In addition, they
worried that Cornell’s subjects did not ha-
bituate, although others (e.g., Oakes et al.,
1991; Younger, 1990; Younger & Cohen,
1983, 1986) have since found the same re-
sult as Cornell. To address these concerns,
they habituated 18-, 24-, and 30-week-olds
to color photographs of a female face in one
of four side orientations (looking to the up-
per or lower right or left) and either smiling,
frowning, or looking surprised. Group 1 saw
the same photograph repeatedly; Group 2 saw
the same female in different side orientations;
and Group 3 saw different females in different
side orientations. To ensure that infants actu-
ally habituated, they trained them to a 50%
looking-time habituation criterion and then
gave them three additional habituation trials
prior to the test. All infants were tested on two
successive trials with frontal views of a famil-
iar female and a completely novel one (order
counterbalanced) wearing a neutral expres-
sion. Times spent looking at a checkerboard
pattern during pre- and posttests were com-
pared to ensure that all infants had remained
attentive throughout the session. As the mea-
sure of reliability, Cohen and Strauss reported
that “two independent observers agreed to
within 0.5 s of fixation times for over 98%
of the trials.”

All groups and ages habituated (i.e., looked
less during the three posthabituation trials
than during the first three habituation tri-

als) and did so at the same rate. During test
trials with either the same face in a novel
orientation or a different face in a different
orientation, however, only the 30-week-olds
generalized habituation (i.e., did not increase
looking time). This finding suggested that dur-
ing the habituation trials, they had abstracted
both the invariant features of a particular face
and of faces in general, respectively. In con-
trast, both 18- and 24-week-olds increased
looking time (i.e., dishabituated) in all test
conditions, suggesting that they had not ab-
stracted the invariant features of the habit-
uation stimuli over successive trials. These
results led Cohen and Strauss (1979) to con-
clude that 7.5 months is the pivotal age for
infant categorization: Before that age, infants
presumably cannot form categories, whereas
after that age, they can.

Even more sophisticated questions can
be asked using the habituation procedure,
such as whether infants abstract summary
representations (prototypes) of category in-
formation (Sherman, 1985; Strauss, 1979;
Younger, 1990; Younger & Gotlieb, 1988) or
representations of individual category exem-
plars (Greco, Hayne, & Rovee-Collier, 1990;
Medin & Schaffer, 1978). Strauss (1979), for
example, asked whether 10-month-olds could
abstract a prototypical representation of a cat-
egory and, if so, whether the prototype would
be modal (counted) or averaged (a mean).
Based on studies with adults, he hypothe-
sized that the larger the distinctions between
the individual features, the higher the prob-
ability that infants would form a modal pro-
totype. To quantify the category exemplars,
he used schematic drawings of faces from a
police Identikit, which contains sets of clear,
plastic templates, each depicting a variation
of a particular facial feature. When the tem-
plates of one value of each feature are super-
imposed, a complete face is formed. From the
five values that defined each length of face,
length of nose, width of nose, and amount of
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Table 17.1 Values of Faces Constructed from the
Police Identikit Used during Familiarization with
Category Exemplars from the Wide Condition

SOURCE: From M. S. Strauss (1979, Figure 1, p. 622).
Reprinted with permission. Copyright 1979, American
Psychological Association.

eye separation, he constructed a wide and a
narrow category. Faces in the wide category
were constructed from the extreme values
(1 and 5) of each feature (see Table 17.1),
and faces in the narrow category were con-
structed from values 2 and 4. During the
14 habituation trials, infants saw six faces
from each category (12 trials) and a face con-
structed from the intermediate value 3 (2 tri-
als). The average prototype for both the wide
and narrow conditions was face 3-3-3-3; the
modal prototypes for the wide condition were
faces 1-1-1-1 and 5-5-5-5, and for the nar-
row condition were faces 2-2-2-2 and 4-4-4-4
(see Figure 17.5).

Looking times declined over trials whether
faces were in the narrow category (where dif-
ferences in the values of recurrent features
were smaller) or the wide category (where
differences in feature values were more dis-
criminable). During testing, infants in both
conditions (wide, narrow) looked longer at
the modal face (1-1-1-1 or 5-5-5-5, 2-2-2-2 or
4-4-4-4) than at the average face (3-3-3-3),
suggesting that they had formed an average
prototype (i.e., the average face was more
familiar).

Habituation procedures mirror only a small
subset of real-world situations in which cate-
gorization occurs. Although some exemplars
of real-world categories are encountered in
close temporal succession (e.g., items on suc-
cessive pages of a mail-order catalog or on
a grocery store aisle; animals in the monkey
house in a zoo), others are successively en-
countered over periods of hr, days, or even
weeks. Moreover, infants who have seen a se-
ries of category exemplars rarely look longer
at a category member—whether an individual
exemplar or a prototype—after delays longer
than a few minutes. A major benefit of cate-
gorizing for adults, however, is its retention
advantage: Category information is remem-
bered longer (Posner & Keele, 1970). An-
other experimental method that has been used
to study infant categorization—the operant
mobile task—exploits this benefit. Both 3- and
6-month-olds can remember this task for days
or weeks. Also, whereas infants first form con-
ceptual categories at 7.5 months of age when
trained and tested in habituation procedures
(Cohen & Strauss, 1979), they form concep-
tual categories by at least at 3 months of age
when trained and tested in the mobile conju-
gate reinforcement paradigm (for review, see
Hayne, 1996).

In a typical mobile study of 3-month-
olds’ ability to categorize shapes, for exam-
ple, Hayne, Rovee-Collier, and Perris (1987)
affixed the critical category cues (A or 2)

[Table not available in this electronic edition.]
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Figure 17.5 The sets of test faces, constructed from a police Identikit, that were used with 10-month-
olds to study categorization and prototype formation (Strauss, 1979). During familiarization infants saw
faces in one of two categories (wide, narrow) that varied along five values (1–5) on each of four dimen-
sions (length of face, length of nose, width of nose, eye separation). Faces in the wide category had values
of 1, 3, and 5; faces in the narrow category had values of 2, 3, and 4 (see Table 17.1).
SOURCE: M. Strauss, Journal of Experimental Psychology: Human Learning and Memory, 5. Abstrac-
tion of prototypical information by adults and 10-month-old infants. Figure 1, p. 623. Copyright 1979,
American Psychological Association. Reprinted with permission.

directly to the side panels of a mobile com-
posed of painted yellow blocks (see Fig-
ure 17.6). These shapes were selected because
pigeon and human adult subjects scale them
identically and as polar opposites (Blough,
1982), and because pigeons respond categor-
ically to artificial classes constructed of these
same characters (Morgan, Fitch, Holman, &
Lea, 1975). In Experiment 1, Hayne et al.
asked whether infants could actually discrim-
inate the attributes that were used to differen-
tiate between the categories (different shapes)
and category exemplars (different colors). To
answer this, they trained independent groups
for three sessions with A’s or 2’s in the same

color, then tested them 24 hr later with a mo-
bile displaying the same shape in a different
color, the novel shape in the same color, or the
novel shape in a novel color. Although infants
tested with the original training mobile re-
sponded robustly, the three groups tested with
a novel mobile did not respond above base-
line, indicating that 3-month-olds could dis-
criminate if a single attribute (color, shape)
on the training mobile was different after
24 hr. We note that infants’ memory across
the first year and a half is highly specific to
the objects in the original task in both oper-
ant and imitation studies. This specificity con-
trasts sharply with their novelty preferences in

[Image not available in this electronic edition.]
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Figure 17.6 An exemplar of the A category (a
mobile composed of yellow-blocks displaying A’s
in a particular color) used with infants between 3
and 6 months, shown here during category training
with a 3-month-old. Exemplars of a second cate-
gory display 2’s of different colors. The crib rails
are draped with a red-and-blue striped cloth to cre-
ate a distinctive training context.

looking-behavior tasks. This specificity prob-
ably has a functional component: The fact that
young infants will not respond to stimuli that
are even slightly different and potentially lack
predictive value compensates for their lack of
inhibitory control. In contrast, the stimuli pre-
sented during a looking-behavior task have no
predictive value in the first place. Looking at
a novel stimulus, moreover, is less precarious
than acting on it.

In a second experiment, Hayne et al. (1987)
trained infants with a different category exem-
plar (e.g., blocks displaying A’s in a particu-
lar color) each day for 3 days and tested them
24 hr later with a novel exemplar from either
the training category (A) or a novel one (2).
Infants trained with black, green, and blue A’s
on successive days, for example, were tested
with either red A’s (a novel member of the

training category) or red 2’s (a member of the
novel category). This time, infants tested with
a novel category member responded to it, in-
dicating that they recognized it, but infants
tested with a mobile from the novel category
still did not.

Instead of testing infants with
experimenter-defined categories, Greco
et al. (1990) asked how the infants them-
selves construct a category. They collected
a number of different stimuli that might be
perceived as a mobile and tested groups of
infants with each of these 1 day after training
with mobiles displaying differently colored
A’s or 2’s (see Hayne et al., 1987). Adults
also psychophysically scaled the physical
similarity of each object to a training mobile.
Greco et al. then selected the object to which
infants did not respond and that adults had
scaled as most physically dissimilar to a
training mobile—a stained-glass-and-metal
butterfly wind chime—and asked under what
conditions might infants treat it like the prior
category exemplars. To answer this, they
provided new groups of infants with different
kinds of information about the object’s
function. Its function was either shared by the
category exemplars (e.g., it moved like the
training mobiles) or was not shared (e.g., it
rang, but the training exemplars did not). For
3 min immediately after training was over,
experimental groups saw the wind chime
moving as the training mobiles had moved,
while a control group saw the stationary wind
chime.

All groups were tested with the wind chime
1 day later. During the test, infants who had
seen the wind chime moving the day before
treated the wind chime as a category member
and kicked above their baseline rate. Infants
obviously did not respond on the basis of its
net functional similarity to the training exem-
plars because it looked entirely different from
the A and 2 training mobiles. Furthermore,
because the wind chime remained stationary
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during the test, its functional information was
not perceptible. This result means that in-
fants must have classified the wind chime as
a member of the mobile category during its
3-min moving exposure. Infants who viewed
a stationary wind chime for 3 min after train-
ing, however, did not respond above base-
line during the 24-hr test. That is, because it
did not move, the stationary wind chime was
not functionally similar to the A and 2 train-
ing mobiles; as a result, infants did not in-
clude it in the mobile category. Even infants
who were first tested 1 week after exposure
to the moving wind chime treated it as a cate-
gory member. Researchers have found that in-
fants remember category information longer
in operant than in habituation paradigms
because their successive category exemplars
are more separated in time—not because
their category training lasts longer (Merriman,
Rovee-Collier, & Wilk, 1997).

Another sophisticated question that has
been asked using both habituation and op-
erant mobile procedures is whether infants
can perceive and use correlated attributes to
categorize novel stimuli. Correlated attributes
(e.g., animals with wings usually have feath-
ers) are vital to adult categorization because

Table 17.2 Habituation and Test Stimuli for Experiment 1 Represented in Abstract Notation

novel stimuli that possess the same correlated
features can be classified as members of the
same category (e.g., bird). Younger and Cohen
(1983) habituated 4-, 7-, and 10-month-olds to
either one of two categories, each containing
four schematic animals. Animals in each cat-
egory were constructed from values 1 and 2 of
each of five attributes—body (b: giraffe, cow,
elephant); tail (t : feathered, fluffy, horse); feet
( f : web, club, hoof), ears (e: antlers, round,
human); and legs (l: two, four, six). The val-
ues of the first three attributes (b, t , f ) were
correlated (Group A: 1-1-1 or 2-2-2; Group B:
1-2-2 or 2-1-1), whereas the values of the re-
maining two attributes (e, l) occurred in all
possible combinations (see Table 17.2).

During habituation trials, each of four
slides per category was presented two times
(order block-randomized) for a total of eight
trials. Each trial began with a blinking light
above a peephole in the center of the projec-
tion screen through which the infant’s face
was videotaped; when the light was fixated,
it was terminated, and a slide was projected
40 cm to its right for 20 s. When the 20 s
timed out, the slide was turned off, and the
blinking light was turned on again, beginning
the next trial. During testing, all infants saw

[Table not available in this electronic edition.]
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12221

21112 33333

Figure 17.7 Examples of stimuli used to study
the role of correlated attributes in infant categoriza-
tion. The stimulus figures vary on five attributes:
body, tail, feet, ears, and legs. The abstract no-
tation under each figure represents the value for
each attribute. The notation 12221 represents a gi-
raffe body, fluffy tail, club feet, round ears, and
two legs; 21112 represents a cow body, feathered
tail, webbed feet, antlers, and four legs; 33333 rep-
resents an elephant body, horse tail, hoofed feet,
human ears, and six legs.
SOURCE: Younger & Cohen. Child Development,
54. Infant perception of correlations among at-
tributes. Figure 1, p. 860. Reprinted with per-
mission. Copyright 1983, Society for Research in
Child Development.

the same three stimuli—one with features that
preserved the correlation, one with the same
features but uncorrelated, and one with fea-
tures in a novel value (3; see Figure 17.7).
The correlated test stimulus for Group A was
the uncorrelated test stimulus for Group B
and vice versa (see Table 17.2). The order
of test stimuli was counterbalanced across in-
fants. Looking times were scored from a video
monitor in an adjacent room, and a second
observer later scored one-third of the video-
tapes. The correlation coefficient between the
two observers’ total fixation times per infant
was 0.98.

During testing, 10-month-olds remained
habituated to the correlated stimulus but
looked significantly longer at the novel and the
uncorrelated stimuli. Because categorization
requires that the exemplars be discriminably
different, Younger and Cohen (1983) con-
firmed in a second experiment that 10-month-
olds had indeed discriminated differences in
the two uncorrelated features—the different
kinds of ears and the different number of legs.
In a third experiment, they examined the po-
tential relationship between the ability to per-
ceive correlations among attributes and the
ability to categorize. Because infants in ha-
bituation studies first categorize at 7.5 months
(Cohen & Strauss, 1979), Younger and Cohen
tested younger infants (4- and 7-month-olds)
with the stimuli and procedures used in Ex-
periment 1, except that they added a pre- and
a posttest to check for any decrease in atten-
tiveness during the experiment. Unlike the 10-
month-olds, both younger groups remained
habituated to the correlated and uncorrelated
test stimuli but looked significantly longer
at the novel one. Because the correlated and
uncorrelated attributes were equally familiar,
younger infants apparently responded to the
test stimuli on that basis, whereas the oldest
infants had responded to the preserved corre-
lation between the features. This study and a
sequel led Younger and Cohen (1986) to con-
clude that infants are insensitive to the correla-
tions between object features before 9 months
of age and cannot use correlated features to
categorize new objects before 10 months of
age.

Using the mobile task to examine infants’
sensitivity to correlated attributes, Bhatt and
Rovee-Collier (1994) trained 3-month-olds
with a mobile displaying yellow A’s on three
red blocks (Set A) and black 2’s on three
green blocks (Set B). They tested independent
groups 24 hr later with a mobile on which a
single attribute had been switched between
sets—figure color (from yellow A’s to black
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A’s and from black 2’s to yellow 2’s), figure
shape (from A to 2 and vice versa, but the
shape on the red block remained yellow, and
the shape on the green block remained black),
or block color (the block with the yellow A’s
became green, and the block with the black
2’s became red). Thus, as in Younger and
Cohen (1983), all three attributes on the test
mobile were familiar, but the correlation be-
tween one attribute and the remaining two
(which remained correlated) was broken.

During the 24-hr delayed recognition test,
infants tested with a change in figure color,
figure shape, or block color discriminated the
feature recombination. These data revealed
that even 3-month-olds can learn “what goes
with what” and can detect when these feature
correlations have been changed, even though
all of the original, individual features are still
present at the time of testing. In a subsequent
study, Bhatt and Rovee-Collier (1996) found
that infants forgot the correlations between
different attributes at different rates. Three
days after training, testing infants with a fea-
ture recombination that broke the original cor-
relation between figure color and the other
two attributes no longer disrupted infants’ re-
sponding (i.e., they kicked significantly above
baseline, generalizing to the feature recombi-
nation). That is, infants forgot the particular
correlation in which figure color participated
within 3 days. Four days after training, feature
recombinations that broke the correlations
between both block color and figure shape
and the other two attributes also failed to dis-
rupt test responding, indicating that the cor-
relations involving those attributes had also
been forgotten. Even though infants no longer
discriminated any of the feature recombina-
tions after 4 days, introducing a single novel
attribute (block color, figure color, or figure
shape) on the test mobile completely disrupted
responding. In other words, although infants
had forgotten what goes with what within
4 days, they still had not forgotten whether

they had seen a particular test feature before.
Subsequently, Bhatt, Wilk, and Rovee-Collier
(2001), using the same type of stimuli, found
that 6-month-olds—but not 3-month-olds—
could use correlated attributes to categorize.

In categorization studies with older chil-
dren, experimenters frequently use a sorting
task in which subjects are asked to place items
that belong together into groups. Comparable
tasks that have been developed for preverbal
infants are sequential touching and object ma-
nipulation. Like the operant mobile task, chil-
dren performing both tasks interact actively
with the items—a feature that distinguishes
them from visual habituation tasks in which
infants only look passively at items. In the
sequential touching task, children are simul-
taneously presented with an array of objects
or toys from two groups. They usually touch
all of the items that belong to a single category
before touching the others (Mandler & Bauer,
1988; Mandler et al., 1987; Starkey, 1981).
The object manipulation task is like the se-
quential touching task except that the duration
for which children differentially manipulate
or examine items belonging to the same cate-
gory is measured, and objects can be presented
either successively or simultaneously (Ross,
1980; Ruff, 1984, 1986; Sugarman, 1982).
Because infants look intensely at the objects
they actively manipulate, looking measures
are usually obtained as well. In general, the
sequential touching task should not be used
with infants younger than 12 months, who of-
ten touch objects on some basis other their
category membership (e.g., salience). In con-
trast, the object manipulation task can be used
with infants as young as 6 months.

In a typical study using the sequential
touching procedure, Mandler et al. (1987)
asked whether 14- and 20-month-olds could
form categories of physically different objects
on the basis of the common spatial and tem-
poral relations in which the objects are typ-
ically encountered. To this end, they tested
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children with an array of four small kitchen
items (pan, cup, spoon, plate) and bathroom
items (toothbrush, soap, toothpaste, comb).
They placed the eight objects randomly on
a table in front of the infants and verbally
encouraged them to manipulate the objects.
Infants received a single trial without feed-
back. Every object that each infant contacted
with his or her hand (or another object) and
the order of contact was coded by the experi-
menter from videotapes. Two observers inde-
pendently scored 25% of the sessions; inter-
observer agreement was 94% for both touches
and order of touching. Both repeated touches
(excluding two touches in succession) and
only one touch per object were tallied, and
the mean number of objects from the same
category touched in succession (a “run”) was
compared to the mean run length that would be
expected by chance (1.75) if infants touched
objects randomly. The mean run length signif-
icantly exceeded chance at 20 months and did
so marginally at 14 months. Furthermore, sig-
nificantly more older than younger children
categorized.

In a typical study using the object manip-
ulation procedure, Oakes et al. (1991) famil-
iarized 6- and 10-month-olds with four differ-
ent small plastic toy trucks of different colors
over sixteen 30-s trials (block randomized).
They then tested them successively with a
novel toy truck (fire truck, cement mixer)
and one of two novel toy animals (dinosaur,
pony) for one 30-s trial each. Each trial be-
gan when the experimenter put a toy on the
table or high-chair tray in front of the infant
and rolled it back and forth while calling the
child’s name and “Look at this.” The exper-
imenter then placed the toy within reach of
the infant, who was allowed to manipulate it
while the experimenter timed the trial with
a stopwatch. Dropped toys were immediately
replaced but did not affect the timing of a trial.
When the 30 s timed out, the experimenter re-
moved the toy and immediately initiated the

next trial. Two observers coded from video-
tape how long infants looked at and examined
each object. Reliability coefficients computed
between the two sets of scores for eight ran-
domly chosen infants ranged from .94–.99 for
looking time and .82–.99 for examining.

Neither examining time nor looking time
decreased during the initial habituation phase,
but infants of both ages looked longer at the
novel toy animal and examined it longer than
either the familiar toy truck on the last habitua-
tion trial or the novel toy truck on the test trial.
These results were taken as evidence that both
ages had formed a truck category. The finding
that even 6-month-olds did so is inconsistent
with Cohen and Strauss’s (1979) conclusion
that infants younger than 7.5 months cannot
form conceptual categories, underscoring the
main point of this chapter. Namely, different
tasks yield different estimates of the earliest
age at which a given cognitive capacity ap-
pears. More interesting than the absolute age
at which a particular capacity emerges, which
is task-dependent, is the general pattern or
order in which different cognitive skills ap-
pear. This pattern should be the same across
tasks.

Detour Learning and Barrier Problems

Detour and barrier tasks are closely related
to object search tasks (see the next section).
Once infants have learned where and when a
particular object or activity is available, they
may encounter obstacles in attempting to get
it or get to it. Infants can overcome these im-
pediments either indirectly, by getting some-
one else to intervene, or directly. If the ob-
stacle is physical, for example, then the infant
might either remove it or detour around it. The
correct solution is particularly difficult when
the alternative route requires that infants ini-
tially backtrack or move away from the goal,
or when auditory or visual information spec-
ifying a direct route to the goal conflicts with
tactile or other sensory information specifying
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the presence of a barrier. When a barrier is
transparent instead of opaque, for example,
younger infants will attempt to reach through
it rather than around it (Diamond, 1981;
Lockman, 1984). Infants correctly reach
around a barrier before they correctly loco-
mote around it, however, even when they are
physically capable of both.

The procedure used by Lockman (1984) to
study the development of detour learning is
exemplary for its completeness. Beginning at
8–9 months of age, he tested infants in their
own homes every 3–4 weeks on four detour
problems in which the infants had to reach
or locomote around an opaque or transpar-
ent barrier to retrieve an object. The order of
reaching and locomotor problems was coun-
terbalanced within and across infants. Each
received three trials per problem, and testing
was continued until a given infant had solved
each problem on two of three trials for 2 con-
secutive weeks. During all trials, the care-
taker remained out of view. Infants also re-
ceived two Piagetian object-permanence tests
(Stage 4, Stage 6), adapted from the Uzgiris-
Hunt (1975) scales of infant development, af-
ter completing the four detour problems. The
Stage 4 task is a standard object-search task
in which an object is placed under a cloth,
and the infant is required to search for and
retrieve it (see the next section). The Stage 6
task requires the infant to find an object that
has undergone a series of invisible displace-
ments through several hiding places, ending
up hidden under a cover quite removed from
where the infant last saw it.

In the reaching problems, each infant sat
at a table in a booster chair facing an upright
board that was 14 cm high and 30.5 cm wide
and constructed from wood (the opaque bar-
rier) or Plexiglas (the transparent barrier). To
begin a trial, the experimenter gave an infant a
common object (e.g., pen, watch, keys). After
the infant became interested in it, the experi-
menter took it away and drew it up, over, and

behind the barrier. If the infant failed to re-
trieve the object within 1 min, then the ex-
perimenter returned it along the same path
and gave it to the infant, beginning the next
trial. The locomotor problems were procedu-
rally identical except that infants sat on the
floor facing the barrier. This time, the opaque
barrier was Masonite; to prevent infants from
climbing or looking over them, both barriers
were 75 cm high and 106 cm wide.

The results were consistent within and
across individuals. First, infants solved the
Stage 4 object concept task several weeks
(at least) before they solved any of the de-
tour problems, revealing that their failure to
solve the detour problems was not due to an
inability to understand that the object con-
tinued to exist behind the barrier after they
could no longer see it. Second, most solved
the reaching/detour problems 4–5 weeks be-
fore they solved the corresponding locomo-
tor ones. Again this was not due to infants’
inability to locomote because all were adept
crawlers even at the outset of the study, and
in follow-up experiments, Lockman (1984)
eliminated both the length of the barrier and
the infants’ positions relative to it as reasons
for their superior performance on the reaching
problems. Third, the infants solved opaque-
barrier problems an average of 4 weeks before
they solved transparent-barrier ones. By the
end of the first year, when they finally solved
the locomotor detour problems, almost half
mastered the opaque- and transparent-barrier
problems in the same session; even so, in-
fants made significantly more errors when the
barrier was transparent. Overall, infants suc-
ceeded on the opaque-barrier reaching detour
problem first and on the transparent-barrier lo-
comotor detour problem last. Fourth, infants
solved all detour problems before they solved
the Stage 6 invisible-displacement task. These
data reveal that detour learning emerges grad-
ually and systematically in different motor
systems at different rates, despite the same
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spatial knowledge and understanding of ob-
ject permanence and despite adeptness at both
reaching and crawling. Moreover, this knowl-
edge and skill alone, although necessary, are
not sufficient to enable infants to plan and ex-
ecute a detour.

A naturalistic approach to barrier prob-
lems was reported by Hendersen and Dias
(1985), who observed infants’ solutions when
obstacles of different sorts impeded their on-
going activity in their home environments.
Four infants, aged 2–12 months, were ob-
served while engaging in their normal daily
activities for sessions lasting 30–45 min each
over a 5-month period. Narrative records were
coded for ongoing activity, blocking condi-
tion (physical, social, or cognitive), the in-
fant’s response (physical, social, cognitive, or
other), the effectiveness of the response in re-
moving the obstacle, and how the response
influenced the infant’s subsequent behavior.
Infants encountered a surprising number of
obstacles—an average of one every 3 min.
Most obstacles were social (50%) and physi-
cal (38%) rather than cognitive (4%), and in-
fants tended to respond in kind, removing the
obstacles 67% of the time. On almost 90% of
these occasions, infants solved the problems
directly. Paradoxically, however, infants who
removed the obstacles resumed their prior ac-
tivities only 25% of the time. It is interest-
ing to note that obstacles were removed more
often when a parent was present. These data
suggest that problem-solving is a major com-
ponent of the infant’s daily behavior. Given
the frequency with which infants encounter
problems and solve them in complex natural
settings, it is curious that there has been so
little evidence of this in the laboratory. We en-
courage future researchers to increase both the
complexity of the experimental context and
the number of behavioral options available to
the infant.

The solution to a physical barrier prob-
lem may require a circuitous detour around

the barrier or that the infant temporarily move
away from the goal. An analog of this problem
is one in which the infant is prevented from
moving his or her body toward an unreachable
object and must obtain it by operating on some
aspect of the environment, such as a string
(Richardson, 1932) or a lever (Richardson,
1934) that brings an otherwise unattain-
able object into reach. In Richardson’s 1934
study, for example, 15 infants were examined
monthly from 7 to 12 months of age. Infants
were tested in a crib, separated by a grill bar-
rier from a toy mounted on the end of a lever
screwed to a table top. To get the toy, the infant
had to rotate the lever counterclockwise. This
could be accomplished by either pushing the
near end of the lever to the right, away from
the infant and in a direction opposite that of
the toy’s movement, or pulling the distal por-
tion of the lever to the left, toward the infant
and in the same direction as the toy movement.
The latter was the easier of the two responses,
but both were made difficult because the path
of the toy was an arc described by the lever
rather than a straight line directly toward the
infant. At age 7 months, 70% of the infants ap-
proached the lever, but less than half touched
it. The number of infants who manipulated
the lever, either effectively (rotating) or in-
effectively (tugging, scratching, poking), in-
creased over succeeding weeks, with the per-
cent producing ineffective responses peaking
at 9 months and declining thereafter. Between
10 and 12 months, almost half of the infants
were obtaining the toy on two consecutive tri-
als with no more than one erroneous move
per trial; in every instance, infants were cor-
rect after Trial 1 if not on Trial 1. Richardson
interpreted these data in terms of infants’ in-
sight into the use of tools.

Object Search

The very first experimental study of any kind
with children was an object search prob-
lem (Hunter, 1913). Although Hunter framed
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the problem as a delayed response task, he
focused on the cues that children used in
responding to an object that was not imme-
diately present at the time they performed the
response. In this task, children saw a food re-
ward hidden behind one of three doors. A light
over the door signaled the hiding location and
then was turned off. After a delay, children at-
tempted to retrieve the reward. The maximum
delay tolerated was 50 s (after 5–7 trials) at
30 months and 25 min (after 15–46 trials) at
6–8 years; interestingly, all children initially
encountered difficulty at delays of 4–6 s.

In a subsequent study, Hunter’s focus
shifted to the kinds of strategies used to bridge
the temporal delay between seeing the object
disappear at a particular location and retriev-
ing it (Hunter, 1917). He tested a preverbal in-
fant longitudinally between 13 and 16 months
of age. The infant watched the experimenter
hide an object in one of three boxes; dur-
ing the delay (timed from when the lid was
shut), the infant was distracted. The infant
tolerated a delay of 12 s at 13–15 months
and 24 s at 16 months. Using only two loca-
tions, Brody (1981) operantly trained younger
infants to touch one of two locations where
a light had cued an auditory-visual reward.
Here, the maximum delay tolerated was 0.25 s
at 8 months and 9 s at 12 and 16 months.

Note that both Brody (1981) and Hunter
(1913) used a symbol (the light) to cue the
location of reward. The use of symbols in
studies with infants and young children is a
general problem that has surfaced in many ex-
perimental studies. Using a symbol to cue the
reward, to accumulate and exchange for a re-
ward (e.g., poker chips), or simply to indicate
“correct” (e.g., a green light) dramatically in-
creases task difficulty because children must
learn that the symbol stands for the reward
before they learn the reward’s location. Errors
that are attributed to poor spatial learning may
actually reflect children’s difficulty in learn-
ing the significance of the symbol.

Infants also may possess the cognitive abil-
ity that a task requires but be unable to express
it because of the specific task demands. In
the standard delayed nonmatching-to-sample
(DNMS) task, for example, infants are shown
an object, and a screen is lowered for a brief
delay; it is then raised to reveal the origi-
nal object (the sample) adjacent to a novel
one. By displacing the novel object, the in-
fant can retrieve a reward. Infants typically fail
this task until they are 15–21 months of age,
even with delays of only 5–10 s. Yet, when
toys are used as the objects, and the reward
is the opportunity to play with the novel toy
instead of the displacement of it to find a hid-
den reward, infants can solve the DNMS task
by 6 months of age (Diamond, Churchland,
Cruess, & Kirkham, 1999)—the youngest age
at which they reliably exhibit visually guided
reaching. Under these conditions, infants can
also perform significantly above chance after
delays as long as 10 min. Infants’ DNMS per-
formance is also enhanced when the reward is
verbal praise for a correct choice. Finally, the
physical, temporal, and spatial relationships
between the well and the reward are critical
variables. If the reward is attached directly to
the underside of the well lid, so that infants
are able to associate the reward with the well
lid both physically and temporally, then they
can solve this task almost a year earlier than
they otherwise can. If there is either a physi-
cal separation (the reward is under the well lid
but is not attached to it) or a temporal separa-
tion (the reward is attached to the well lid by
a piece of string), then infants’ performance
is impaired.

The A-Not-B Task

The delayed response task was subsequently
renamed the A-not-B task by Piaget (1954).
Piaget hid his watch under a cloth cover on
the sofa (Place A), and his 9.5-month-old son
(Laurent) retrieved it. When Piaget rehid the
watch under the same cover, Laurent retrieved
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it again. Then, however, Piaget hid the watch
under a similar-looking cover (Place B) while
Laurent watched. Yet, Laurent looked in Place
A, where he had found the watch before, in-
stead of in Place B (the A-not-B error). From
this, Piaget concluded that Laurent did not
understand that objects continue to exist and
are permanent, independent of his own actions
on them.

In a typical object search study, infants sit
on a parent’s lap in front of a table containing
two identical wells (A, B) where an object can
be hidden. Typically, infants learn the hiding
task during a pretraining period, when they
are shown the toy outside Well A and are en-
couraged to reach for it immediately. The final
hiding task is then successively approximated:
First, the object is placed in the open well;
then, a lid partially covers the well; and finally,
the lid completely covers the well. Infants who
reach to the empty well are shown the object
in the other well but are not given the object.
In other pretraining procedures, the object is
hidden in a single, centrally positioned well
with a uniquely colored lid on it, and infants
are pretrained until they reach a criterion (e.g.,
responding correctly on two consecutive tri-
als) for recovering the object. Once the infant
has reached criterion, formal testing begins.

During the test trials, the experimenter
shows the infant an object (usually an attrac-
tive toy), places it in Well A as the infant
watches, and simultaneously covers both
wells. After a delay ranging from 0 to 10 s,
the infant is allowed to reach. The trial ends
when either the infant retrieves the object
or a defined interval (e.g., 15 s) elapses. On
Trial 2, the experimenter again hides the ob-
ject in Well A. On Trial 3, however, the exper-
imenter hides the object in Well B. After the
hiding well is reversed, infants often continue
to search in Well A despite having seen the
object hidden in Well B (the A-not-B error).
On all trials, the first lid to which infants
reach is recorded—a measure on which inter-

observer reliability is usually very high. In the
Smith et al. (1999) procedure, observers also
coded the parent’s behaviors to ensure that
they complied with instructions not to direct,
encourage, or correct the infant’s behavior.

If looking rather than reaching is the de-
pendent variable, even younger infants can
solve object search tasks successfully. Eight-
month-olds who were tested in a violation-
of-expectancy task, for example, remembered
the location where an object had been hidden
15 s earlier; yet 15 s is the longest delay that
16-month-olds can tolerate and still perform
the traditional object search task success-
fully (Baillargeon, DeVos, & Graber, 1989;
Baillargeon & Graber, 1988). In the looking
studies, infants saw an object on a stage at one
of two locations, and then identical screens
were placed in front of both locations, hid-
ing the object. After 15 s, infants watched
as a gloved hand retrieved the object from
behind either the screen that had originally
hidden it (the possible event) or the other one
(the impossible event). Longer looking at the
impossible event was taken as evidence that
infants remembered the location where they
had previously seen the object and were sur-
prised when it was retrieved from the other
location. These results suggest that young in-
fants do not fail the traditional object search
task because they cannot remember where an
object was hidden.

Although the A-not-B error has been
replicated numerous times (for reviews, see
Diamond, 1990b; Smith et al., 1999;
Wellman, Cross, & Bartsch, 1987), seemingly
minor changes in task parameters can reduce
or eliminate it. First, the error can be sig-
nificantly reduced by using transparent lids
(Butterworth, 1977), increasing the number of
wells (Bjork & Cummings, 1984; Cummings
& Bjork, 1983; Diamond, Cruttenden, &
Niederman, 1989), or making the lids more
distinctive (Butterworth, Jarrett, & Hicks,
1982; Wellman et al., 1987). First, when
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Smith et al. (1999) used two red lids or a red lid
and an orange lid, for example, infants’ error
rate was 80%; when they used a red lid and a
yellow lid, the error rate dropped to 60%; and
when they put distinctive stripes or faces on
the lids, the error rate fell to 22%. Smith et al.
argued that because infants rarely reach re-
peatedly in one direction and new objects are
usually distinctive, the A-not-B error proba-
bly does not occur often in everyday life.

Second, the A-not-B error does not occur
if the pretraining period is eliminated. Smith
et al. (1999) compared a no-pretraining group,
a group pretrained to reach to Well A, and a
group pretrained to reach to a single center-
line well. Only the group pretrained to reach to
Well A exhibited the A-not-B error; the other
groups did not. In fact, infants pretrained to
reach to Well A exhibited the A-not-B error
even when no object at all was hidden, if the
experimenter had waved the lid of the well
to call their attention to it. In addition, if in-
fants made even one reach to Well B through-
out the course of pretraining or training, then
they were less likely to perseverate reaching
to Well A. Because perseverative errors arise
only after repeated responding to Well A, the
error may be related to how infants are taught
to respond (for discussion, see Smith et al.,
1999).

Third, the A-not-B error does not occur
if infants are tested immediately. The de-
lay that infants can tolerate without error in-
creases gradually and continuously with age
at the rate of approximately 2 s per month,
and infants tolerate slightly longer delays if
they are tested longitudinally instead of cross-
sectionally (Diamond, 1990b). Irrespective of
the experimental design, however, decreasing
the delay eventually eliminates the A-not-B
error, and increasing it leads to random search.

Fourth, the A-not-B error is eliminated if
either the infant’s posture is changed from
sitting to standing between test trials (Smith
et al., 1999) or if a “cover of darkness” in-

stead of a cloth cover is used to hide the object
(Hood & Willatts, 1986). Hood and Willatts,
for example, showed 5-month-olds an object
at one of two locations, then turned the lights
off and removed the object. When they turned
the lights back on, infants reached more to the
side where the object had been than to the
other side. Goubet and Clifton (1998) also
tested 6.5-month-olds in the dark. The sound
of a noisy ball rolling down a tube to the left
or right side of the infant’s midline signaled
where to retrieve the ball after a delay. In-
fants who had previously practiced reaching
directionally in the light were able to reach
correctly in the dark, but infants who had
practiced reaching to midline were not. No-
tably, in the preceding studies, infants were
not required to execute a coordinated motor
sequence. These studies provide further evi-
dence that infants’ search errors do not reflect
their inability to remember an object’s prior
location.

Finally, visual orientation to location also
determines where infants reach. Smith et al.
(1999) placed a blue rod beside either Well A
or Well B, for example, and the experimenter
tapped the rod before the initial trials. If the
experimenter tapped the rod beside Well A,
then infants reached to Well A on all test tri-
als; if the experimenter tapped the rod beside
Well B, then infants reached to Well B on all
test trials. In both cases, infants disregarded
the hiding location of the object. These data
reveal that the A-not-B error also reflects the
dynamics of the test situation.

As a rule of thumb, children perform bet-
ter in more naturalistic and meaningful sit-
uations, especially when they are younger.
This rule is well-illustrated in two highly in-
novative experiments. In both, the parent was
present and participating. In the first study,
Corter, Zucker, and Galligan (1980) exploited
the fact that in everyday life, infants who can
locomote usually follow their mothers when
they leave the room (which occurs frequently)
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instead of crying. In a laboratory free-play set-
ting, they observed the behavior of 9-month-
olds after each watched the mother go out of
the test room through one of two open doors.
Mothers of infants in the experimental group
departed through different doors on Trials 1
and 2. Mothers of infants in the control group
departed though the same door on both trials.
The control group then received a third trial
on which the mothers now departed through
the other door. On Trial 1, most infants in
both groups successfully found their moth-
ers by crawling to the doorways where she
had departed. Subsequently, when the moth-
ers departed though another door, most infants
failed to find them, going instead to the doors
where they had previously found her (the
A-not-B error).

In the second study, DeLoache (1980)
tested 18- to 36-month-olds in their homes in
the context of a familiar object-search game—
hide-and-seek. Each child was told that a
small, stuffed animal (Big Bird R©) was going
to hide and that he or she should remember
where it hid so that he or she could find it
later. The child then watched the parent hide
the toy (e.g., under a pillow, behind a door,
in a cabinet). When a timer rang, the child
attempted to retrieve the toy. After 3- and 5-
min delays, younger children (18–24 months)
averaged 69% errorless retrievals, and older
children (25–30 months) averaged 84%. After
delays of 30 min, 1 hr, and overnight, younger
children averaged 80%, 69%, and 77% error-
less retrievals, respectively.

The hide-and-seek task is structurally anal-
ogous to Hunter’s (1913) original delayed re-
sponse task: In both tasks, the location of a
hidden object must be remembered for a spec-
ified period of time. To compare children’s
performances on the hide-and-seek and de-
layed response tasks, DeLoache (1980) tested
22- to 29-month-olds at home after 3–5 min.
In the delayed response task, the experimenter
hid a different small toy on each trial in one of

four metal boxes arranged in a semicircle in
the middle of the floor. Each box had a color
photograph of a common object on its lid. To
call their attention to the pictures, the chil-
dren were asked to name them; if he or she
could not name a picture, the experimenter
supplied the name. After a toy was hidden,
the experimenter started a timer and left that
area of the room with the child; when the bell
rang, they returned, and the child attempted to
find the toy. If an incorrect box was selected,
the child was allowed to search in the other
boxes until the toy was found (a correction
procedure). That is, the hide-and-seek task in-
volved the use of familiar landmarks, such as
a piece of furniture in the home, to find the
object. In contrast, the delayed response task
involved using pictures on boxes that the in-
fant had never seen before, that were the same
size and shape, and that were arranged arbi-
trarily in a circle. Most children performed
the hide-and-seek task better than the delayed
response task.

To determine whether landmarks had facil-
itated performance in the hide-and-seek task
(see also the section titled “Spatial Learn-
ing”), DeLoache (1980) repeated the hide-
and-seek and delayed response tasks but
added a hybrid task in which each hiding
box was placed next to a specific piece of
furniture (the landmark + box task). This
time, she tested children in the original
age groups (younger, older) with each child
performing all three tasks (order counterbal-
anced). Older children performed the hide-
and-seek and landmark + box tasks equiva-
lently but were worse on the delayed response
task, whereas younger children performed the
hide-and-seek task best and were worse on
the landmark + box task, with their delayed
response performance intermediate between
these. DeLoache attributed the advantage of
the hide-and-seek task to the fact that the
hiding locations used in that task were more
naturalistic—familiar parts of the natural
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environment versus unfamiliar boxes with
picture cues—and suggested that older and
younger children might use different cues or
different strategies in the no-landmark task.
These findings suggest that associative learn-
ing based on a new element—the spatial re-
lationship between two objects—selectively
benefited older infants. Spatial learning,
therefore, is considered next.

Spatial Learning

Broadly speaking, spatial learning (also
called spatial cognition) studies ask how in-
fants know where things are as they move
around in the environment. This question
is actually a combination of the questions
that were asked in studies of locomotor de-
tour learning (Lockman, 1984) and in studies
of object search (Diamond, 1990b). In typi-
cal spatial learning problems, infants orient,
reach, or locomote to one of two spatial loca-
tions where a target disappeared or was hid-
den. Not surprisingly, the same factors that
affect an infants’ performance in delayed re-
sponse, object search, and detour tasks also
affect their performance in spatial learning
tasks. As before, possessing the concept of ob-
ject permanence, although necessary, is insuf-
ficient for solving spatial learning problems.

Experimenters have focused, therefore, on
what kind of information infants use and at
what age they effectively use it. This informa-
tion includes egocentric and allocentric cues
(response cues and place cues, respectively),
location distinctiveness cues, proximal and
distal landmarks, visual tracking, and geo-
metric information in the spatial environment
(Acredolo, 1978, 1990; Acredolo & Evans,
1980; Cornell & Heth, 1979; Corter et al.,
1980; DeLoache, 1980; Hermer & Spelke,
1994; Hunter, 1913, 1917).

Cornell and Heth (1979) used a head-
turning procedure to ask when infants first
use place cues instead of response cues

to localize spatial events (Tolman, 1948;
Tolman, Ritchie, & Kalish, 1946). Their basic
paradigm resembled the object search task ex-
cept that they moved the infant instead of the
object. Infants sat on the mother’s lap in the
center of a standard laboratory room. A 1.0-m
movie screen was centered 2.0 m in front of
the infant, and another, 2.0 m behind the in-
fant; a 0.5-m × 0.7-m rear projection screen
was placed on either side. Responses were ob-
served through louvers located on one side
of each movie screen (see Figure 17.8). Each
trial began with the projection of a moving,
colored pattern on the screen in front of the in-
fant. When the infant fixated the moving pat-
tern, it was turned off, and a static (unmoving)
pattern was simultaneously projected on each
side screen for 10 s. Infants had to turn their
heads 90 deg to view a pattern, and the first
head-turn to the pattern defined a response.

Figure 17.8 The experimental arrangement in
the operant head-turning task. The experiment is
shown here with a 4-month-old, who has turned
toward the side where a novel pattern is projected;
the pattern projected on the other side is the same
on all trials. In studies of response learning versus
place learning, the mother will rotate her chair 180◦

so that the novel pattern appears on the right, re-
quiring the infant to turn in the opposite direction
to view it. A hidden observer records head turns
through the louvered panels.
SOURCE: Photo courtesy of Edward H. Cornell.

[Image not available in this electronic edition.]
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In their first experiment, infants aged 4–
12 months were randomly assigned to either
a constant or a variable group. On every train-
ing trial, the constant group saw slides of the
same pattern on the same side screen (position
counterbalanced) and of a novel pattern on
the opposite side screen. The variable group
saw the same pair of slides as the constant
group, but the old/new patterns changed sides
randomly over trials; this condition was in-
cluded to assess whether infants might detect
the novel (preferred) slide through peripheral
vision without a head-turn. After 20 training
trials, the mother rotated her chair 180 deg
so that the infant now faced the opposite
screen, the green moving pattern that infants
fixated to begin a trial was projected, and the
original procedure was repeated for 20 trans-
fer trials. For the constant group, the absolute
position of the old and new patterns was the
same; thus, if the novel slides had appeared
on an infant’s left side during training be-
fore, they appeared on the right side after ro-
tation. For the varied group, the repeated slide
now appeared on the same side on all trials,
and the novel slide appeared on the opposite
side. Learning was expressed as the percent-
age of first head-turns to the novel pattern over
blocks divided by the number of trials in a
block.

If infants in the constant group used place
cues, then they would turn toward the novel
stimulus after the rotation, but if they used
response cues, then they would turn toward
the familiar one. At all ages, head-turns to
the novel pattern increased over the initial
training trials for the constant groups but re-
mained at chance for the variable groups.
After the rotation, 4-month-olds relied on re-
sponse cues but slowly relearned to orient to
the novel stimulus and were responding at the
same level as older infants within 16–20 tri-
als. In contrast, the two older groups (8 and
12 months) used both response and place cues.
In a second experiment with 4- to 16-month-

olds, response and place cues were assessed
independently. The results revealed that in-
fants’ use of response cues did not decline
with age but remained stable; however, their
use of place cues gradually increased with
age. Cornell (1981) proposed that infants must
learn to maintain orientation to external cues
before they can use them to mark a particular
location.

Acredolo (1978) used the same basic pro-
cedure to ask infants aged 6–18 months the
same question, except that an entertaining
adult appeared for 5 s in the same side win-
dow, and a buzzer sounded 5 s before the adult
appeared. After the infant turned toward the
window on three of four consecutive trials in
anticipation of the event, the mother rotated
the infant’s chair 180 deg, and the infant re-
ceived five test trials during which the buzzer
sounded, but no adult appeared in the win-
dow. Six- to 11-month-olds and a third of the
16-month-olds relied solely on response cues,
turning in the same direction (right or left) as
they had turned before the reversal. Making
the target location more distinctive by adding
proximal cues (either a yellow star around
the target window or a blinking light around
the target window and orange stripes on that
wall) overrode infants’ reliance on response
cues at all ages except 6 months. Adding the
same cues to the opposite window and wall,
however, was ineffective until infants were
11 months old, and even then their use of less
salient landmarks was equivocal (Acredolo &
Evans, 1980; for review, see Acredolo, 1990).
Finally, Acredolo (1980) found that infants
performed a spatial learning task better in the
familiar setting of their own home than in the
laboratory.

The preceding studies demonstrated that
infants are able to use place cues (e.g., land-
marks) to locate objects or events. Hermer and
Spelke (1994) examined the cues that infants
use to reorient themselves after their posi-
tion and heading were disrupted. Eighteen- to
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24-month-olds were tested inside a 6 × 4-ft
room that was either all white with identical
red corner panels or additionally had one blue
wall. Parents hid a small toy in one corner and
then disoriented children by covering their
eyes, lifting them, spinning them at least four
times, and releasing them to face a randomly
predetermined corner. To find the toy, chil-
dren had to reorient themselves. Reorientation
could be accomplished in the white room by
using the geometric information provided by
its rectangular shape and, in the blue-walled
room, by using the geometric information plus
the landmark (the blue wall). Children com-
pleted 3–4 trials in each room, but the hiding
place remained the same. All variables (hid-
ing place, search order, the wall that was blue)
were counterbalanced across subjects.

Children searched equally often in the cor-
rect corner and in the diagonally opposite cor-
ner more than in the other two corners. More-
over, their search performance was the same
whether one wall was blue or not. Next, two
triangular solid containers of the same size but
in different patterns and colors were placed
in the target (hiding) corner and the one di-
agonally opposite it for two trials. Despite
the fact that the experimenter pointed out the
landmarks, and the parent and child played
with them, children’s search performance was
the same as before. Their failure to use the
landmarks was attributed to their tendency to
search at one of the two corners they saw im-
mediately after being released. Finally, chil-
dren were disoriented in one test condition
but not in the other. In one condition, the dis-
tinctive landmarks were again placed in diag-
onally opposite corners, the toy was hidden
in one, and children were disoriented. In the
other, the objects were placed in the center
of the room, the toy was hidden in one, and
children closed their eyes but remained ori-
ented while the objects were moved to diago-
nally opposite corners. In the first condition,
children again searched equally at the two

corners specified by the shape of the room,
unaffected by the landmarks. In the second
condition, however, infants searched more in
the correct corner that was specified by the
landmark. The authors concluded that human
infants, like adult rats but unlike adult humans,
rely on geometric cues and not on landmarks
for reorientation, even though they had suc-
cessfully used the same landmarks in another
search task. Learmonth (1998) subsequently
found that infants did, in fact, use the blue
wall as a landmark when they were tested in
a room that was twice as large.

These studies reveal that infants’ use of
landmarks is task-specific. Infants tested in
locomotor search problems are relatively im-
pervious to distinctive landmark information
about a target location until they are older,
particularly if they must reorient to a spa-
tial location in a relatively small space. On
the other hand, distinctive landmarks facili-
tate infants’ solutions of reaching and head-
turning search problems at younger ages (Cor-
nell, 1981; Smith et al., 1999). Recall that
detour problems that required reaching were
also solved by infants significantly before they
were able to solve detour problems that re-
quired locomotion in space (Lockman, 1984).

Serial Learning

Given that infants as young as 3 months can
learn the structure of a category over a suc-
cession of items, it is not surprising that they
can also detect the serial structure of a list. Re-
searchers have used a variety of experimental
techniques to study serial-order effects. Using
a visual expectancy paradigm, Smith and col-
leagues (Smith, 1984; Smith, Arehart, Haaf, &
deSaint Victor, 1989) trained 5-month-olds to
sequentially fixate four identical white doors
arranged in a quadrant, and assessed their abil-
ity to visually anticipate the next stimulus in
the sequence. On each training trial, a sig-
nal light blinked, and when infants fixated
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it, the first door opened, briefly revealing a
visual stimulus, then shut; then the second
door opened and shut, and so forth. During
the test immediately after training, the signal
light blinked, but the doors did not open. An
infant’s correct sequential eye movements to
the doors constituted the index of learning.
On the test trial immediately after training,
a significant number of infants demonstrated
sequential memory for three event locations.
Infants trained on structured sequences exhib-
ited greater response accuracy, indicative of
chunking than infants trained on unstructured
sequences (Smith, Jankowski, Brewster, &
Loboschefski, 1990). Anticipatory respond-
ing was also facilitated by ordered visual in-
formation or “scripts” (Smith, Loboschefski,
Davidson, & Dixon, 1997).

Using an eye-tracker to study infants’
eye movements, Haith, Hazan, and Goodman
(1988) exposed 3- to 4-month-olds to a series
of slides that appeared in one of two loca-
tions (right or left) and either in an alternating
sequence or randomly. When infants were ex-
posed to the alternating sequence, their reac-
tion times decreased, and they anticipatorily
shifted their eyes in the direction of the lo-
cation where the slide would appear next.
(The apparatus and procedure are described
in detail by Haith, Wentworth, and Canfield,
1993.) In a subsequent study, 3-month-olds
who were exposed to a 2-1 (LLR, RRL) and
3-1 (LLLR, RRRL) pattern produced antici-
patory eye movements, but 2-month-olds did
not (Canfield & Haith, 1991). Furthermore,
anticipatory responding decreased as a func-
tion of increasing sequence complexity. Haith
et al. (1993) reported that when the picture
in one location remained constant, 3-month-
olds responded significantly faster and made
significantly more anticipatory responses to
that side.

Serial learning has also been studied us-
ing an imitation procedure in which an ex-
perimenter models a specific sequence of

actions with a set of props and then allows
children to imitate the sequence. Their cor-
rect sequence of imitation is the measure of
serial-order learning. In general, infants’ im-
itation of a sequence of actions that can be
performed only in a specific order (i.e., an
enabling relation, such as making a rattle by
placing a ball in a container, putting a lid on
it, and shaking it) is consistently superior to
their imitation of a sequence of actions that
can be performed in any order (i.e., an arbi-
trary relation, such as dressing a teddy bear
by putting a ring on its finger, a scarf around
its neck, and a cap on its head). This result
is found regardless of whether or not the tar-
get actions and event goals are matched (Barr
& Hayne, 1996; Bauer & Shore, 1987) and
whether imitation is immediate or deferred
(Barr & Hayne, 1996). With increasing age,
infants correctly reproduce increasingly long,
ordered sequences that contain enabling rela-
tions. Thus, they can correctly reproduce fa-
miliar and novel sequences of enabling ac-
tions that contain two steps at 11 months of
age (Mandler & McDonough, 1995), three
steps at 13.5 months (Bauer & Mandler,
1992), and eight steps at 30 months (Bauer
& Fivush, 1992). There are at least two pos-
sible explanations for this finding. First, each
action in the enabling chain may provide an
effective retrieval cue for the next action in the
same sequence (Bauer, 1992, 1995). Second,
the structure of the sequence may influence
the expression of the memory once it has been
retrieved. That is, although the same amount
of information is accessible at the time of the
test, infants may recognize that enabling se-
quences demand a particular temporal order,
whereas arbitrary sequences do not (Fivush,
Kuebli, & Clubb, 1992). Given that the total
number of actions that infants recall is exactly
the same whether the event structure is en-
abling or arbitrary, we conclude that an event’s
structure, rather than the number of cues that
are required for memory retrieval, influences



pashler-44093 book December 18, 2001 10:44

Infant Learning 741

how the to-be-remembered information is or-
ganized in memory.

The serial-probe recognition task has been
used with animal and human adults (Wright,
Santiago, Sands, Kendrick, & Cook, 1985)
and preverbal infants (Cornell & Bergstrom,
1983) to study the memory processing of se-
rial lists of arbitrary items. In this task, the
subject views a list of items (slides, pictures,
etc.) and then is tested with a mix of old items
from different serial positions and new items.
The subject’s task is to indicate whether a
test stimulus was on the original list. Human
adults usually exhibit a recency effect after
very short delays and a primacy effect after
longer ones, as do adult monkeys and pigeons,
but on a progressively shorter time scale, re-
spectively (Wright et al., 1985).

Using a looking-time measure with 7-
month-olds, Cornell and Bergstrom (1983) fa-
miliarized infants with a serial list and then
tested them with an item from the familiarized
list and with one that was novel after different
delays. Longer looking at the new stimulus
was taken as evidence that infants recognized
the old one. They found that infants exhibited
both primacy and recency effects after 5 s but
only a primacy effect after 5 min.

The serial-probe recognition task has also
been used in operant studies using the mo-
bile paradigm. In the initial study, which was
actually designed to assess the spacing of
category exemplars (see the “Categorization”
section), Merriman et al. (1997) had trained
3- and 6-month-old infants with three yellow-
block mobiles, each displaying A’s or 2’s in a
different color, in a fixed order each day for
3 days. In effect, the mobiles constituted a
three-item list. On Day 4, infants were tested
with one of the training mobiles or a novel mo-
bile and indicated by kicking whether a partic-
ular mobile had been on the list (a serial-probe
recognition test). Infants recognized only the
mobile from Serial Position 1—a classic pri-
macy effect. The slope of the serial-position

curve, however, was steeper at 6 months. This
finding mirrors primacy effects that have been
obtained with animals and adults after longer
test delays.

Knowledge of serial order implies knowl-
edge of a relation between two items (i.e., 1
comes before 2, 3 comes after 2), but testing
with only a single mobile does not query the
infant about its order relative to another stim-
ulus (i.e., “Did the test stimulus come before
or after?”). To query infants explicitly about
their knowledge of serial order, Gulya, Rovee-
Collier, Galluccio, and Wilk (1998) used a
pretest cuing procedure that essentially asked
the infant, “Did the test stimulus come after
the precue or not?” This procedure was orig-
inally used by Clayton, Habibi, and Bendele
(1995). In their study, undergraduates learned
two successive 18-item word lists, each fol-
lowed by a recognition test on which each
test item was preceded either by the same item
that had preceded it on the study list or by an-
other one. Test items that were precued by the
items that had immediately preceded them on
the study list were recognized more quickly.
Therefore, immediately before the 24-hr test,
Gulya et al. (1998) precued each test mobile
for 2 or 3 min (depending on infant age) with
either a mobile from the immediately preced-
ing serial position or another mobile. The ex-
perimenter moved the precue at the same rate
that a given infant had moved it by kicking in
the last training session.

Infants who were precued with the imme-
diately preceding mobile on the list recog-
nized the test mobile, but infants who were
precued with another training mobile—even
though it was equally familiar—did not. For
example, infants recognized the test mobile
from Serial Position 2 if they were precued
with the mobile from Serial Position 1 but not
if they were precued with the mobile from
Serial Position 3. Interestingly, infants reli-
ably recognized the mobile from Serial Posi-
tion 3 if they were successively precued with
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the mobiles from both of the preceding serial
positions (1 and 2). These results confirmed
that 3- and 6-month-olds can learn the order of
items on a serial list and can recognize all list
members 24 hr later if provided with retrieval
cues that provide valid order information.

As with adults, increasing list length from
three to five mobiles impairs infants’ mem-
ory for serial order after 24 hr but does not
affect their memory for item identity (Gulya,
Sweeney, & Rovee-Collier, 1999).

INFANT MEMORY

The procedures most commonly used to study
infant memory are novelty preference (ha-
bituation, paired-comparison), long-term fa-
miliarization, visual expectancy, classical and
operant conditioning, and deferred imitation.
All of these were described previously (see
“Infant Learning”); here, the question is what
infants remember of what they have learned.

Novelty Preference

Novelty-preference procedures exploit the in-
fant’s propensity to look at a novel stimu-
lus. Practically speaking, infants would not
be able to perceive that a stimulus is novel un-
less they remembered what they had seen be-
fore. Otherwise, they would perceive a stim-
ulus that they had seen before as subjectively
novel. Theoretically, novelty-preference tests
are based on Sokolov’s (1963) model of habit-
uation of the orienting reflex, which assumes
that when a novel stimulus is encountered,
an internal representation or engram of it is
formed. The engram is not completed in a
single trial but becomes progressively fleshed
out over successive encounters. As that oc-
curs, the subject attends to the external stim-
ulus progressively less because there is pro-
gressively less new information to be gleaned
from it. Once the representation is complete

(i.e., once the external stimulus and the in-
ternal representation exactly match), subjects
no longer look at the stimulus at all. Over
time, the representation decays (i.e., forget-
ting), and subjects will again look at the stim-
ulus to the extent that it no longer matches
the internal representation. Recognition of the
previously encountered stimulus, therefore, is
inferred from the extent to which infants di-
rect attention elsewhere, looking at something
they do not remember seeing before (i.e., a
novelty preference).

Paired-Comparison Test

During a paired-comparison test, infants are
simultaneously presented with two stimuli
following a brief, single exposure to one of
them. Typically, the test immediately follows
the preexposure. The proportion of total look-
ing time that is allocated to the novel member
of the test pair (the novelty-preference score)
is subjected to a directional one-sample t test
against 0.50 (chance looking); retention of the
preexposed stimulus is inferred if the novelty-
preference score significantly exceeds 0.50. In
theory, if the internal representation of the pre-
exposed stimulus has completely dissipated,
then infants will fixate the two test stimuli
equally (i.e., they perceive the test stimuli as
equally novel). In practice, experimenters de-
termine the limit of retention by increasing
the interval between preexposure and testing
until this occurs. Olson (1976) has cautioned
that the determinants of looking on a paired-
comparison trial can include discriminabil-
ity factors (interstimulus contrasts), prefer-
ence factors (perceptual features and infant
interpretation), and response biases (position
habits, gaze-shifting criteria, state; see above)
in addition to familiarity/novelty factors.

After single sessions, maximum retention
in paired-comparison tests is on the order of
10 s at 4 months, 1 min at 6 months, and 10 min
at 9 months (Diamond, 1990a). After multi-
ple sessions, retention is much longer. Fagan
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(1970), for example, tested infants with a set
of three stimuli (e.g., A-B-C) on 3 successive
days. On each day, the familiarization stimu-
lus (e.g., A) was tested in both the right and
left positions against each of the other novel
stimuli (e.g., A-B, C-A). On succeeding days,
another stimulus in the set was the familiar-
ization stimulus, and the two remaining mem-
bers served as the novel stimuli. Infants exhib-
ited greater attention to novel test stimuli in
Session 1 only. Using a similar design, Fagan
(1971) exposed 4- to 7-month-olds to black-
and-white patterns for approximately 1 min
and found novelty preferences after 7 min. In
later studies, he found that 5- to 6-month-olds
looked longer at a novel black-and-white pat-
tern after 48 hr and at a novel facial photo-
graph after 2 weeks (Fagan, 1973).

An interpretative problem arises when in-
fants either look longer at the familiar stim-
ulus or look equally at both test stimuli. In
the first instance, some researchers have dis-
carded the Sokolov (1963) model and argued
that proportionally longer looking at the pre-
exposed stimulus also constitutes evidence of
retention because it represents nonchance at-
tention (Cohen & Gelber, 1975; Colombo &
Bundy, 1983; Hunter & Ames, 1988). In fact,
researchers should always report any signif-
icant deviation from chance, whether a nov-
elty or a familiarity preference. In the sec-
ond instance, some researchers have argued
that proportionally equivalent looking at the
novel and familiar stimuli should also be taken
as evidence of retention instead of forgetting
or a discrimination failure. The latter argu-
ment is based on evidence that infants older
than 8 weeks exhibit a novelty preference after
short delays, no preference (equal looking at
both test stimuli) after longer delays, and then
a familiarity preference after still longer de-
lays that may extend to weeks or months, even
though initial exposure times were a minute
or less. Equal looking thereafter is taken as
evidence of forgetting (Bahrick, Hernandez-

Reif, & Pickens, 1997; Bahrick & Pickens,
1995). Longer looking at a briefly exposed
stimulus after a 3-month retention interval,
however, is unlikely to represent recognition
given that 3-month-olds who are trained for
a total of 30 min over the course of 2 days
do not remember after a delay longer than
5 days (Galluccio & Rovee-Collier, 2001;
Hayne, 1990). More likely, infants’ selective
looking after long delays is mediated by an
automatic or implicit memory function akin
to that proposed by Hasher and Zacks (1979).
Similarly, Stolz and Merikle (2000), using a
within-subjects design, obtained evidence of
a conscious influence on adults’ memory per-
formance (i.e., explicit memory) after a short
delay (2 min), but this shifted to an uncon-
scious influence (i.e., implicit memory) after
a longer delay (2 weeks). Beyond this, the
four-stage model is fundamentally flawed in
two major respects. First, it accepts the null
hypothesis as support for retention in one in-
stance but not in another. Yet, the null hypoth-
esis should only be rejected—never accepted.
Second, any looking behavior during the
test—whether a novelty preference, a famil-
iarity preference, or no preference—is taken
as evidence of retention. As a result, the model
is unfalsifiable. What is unique to this account
is the predicted pattern of looking, namely,
that novelty preference may precede familiar-
ity preference.

Habituation Test

After a series of habituation trials (see “Infant
Learning” section), infants are shown a novel
and the original stimulus (order counterbal-
anced) on successive test trials. Longer look-
ing at the novel stimulus than at the original
one indicates that infants’ decrease in looking
during the habituation phase was not due to
fatigue and that the two stimuli are discrim-
inable. (Testing with novel stimuli that share
different elements with the habituation stim-
ulus is a common means of determining what
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infants can and cannot discriminate; the extent
to which infants generalize to the novel test
stimulus defines the extent to which they per-
ceive it as similar to the original one.) As the
delay increases between the final habituation
trial and testing, infants increasingly respond
to the original stimulus. At some point, their
responding returns to the level that was seen
at the outset of the habituation trials. Signif-
icantly greater responding to the novel stim-
ulus after a delay is taken as evidence that
infants still remember the original one.

To obtain the upper limit of retention, the
delay between the final habituation trial and
the retention test is increased. Presumably,
as infants forget, they will look increasingly
longer at the original stimulus; when they look
at the original stimulus as long as they looked
at it on the first habituation trial, forgetting is
said to be complete. At this time, they should
also look at the original stimulus and the novel
one equally. Because both comparisons pre-
dict no difference (i.e., the null hypothesis),
responding to the original stimulus is also
compared with their responding to it on the
final habituation trial. Usually little or no
retention is found after delays longer than
30–60 s over the first 10 months of life (e.g.,
Cohen & Gelber, 1975; but see Bomba &
Siqueland, 1983).

Some researchers have followed the initial
habituation trials with a paired-comparison
test, directly pitting two stimuli against
each other (Cornell, 1974; Pascalis, deHaan,
Nelson, & deSchonen, 1998; Weizmann,
Cohen, & Pratt, 1971). Because the two test
stimuli are presented simultaneously instead
of successively, a paired-comparison test is
thought to incur a lesser memory load than a
habituation test.

Long-Term Familiarization

Long-term familiarization procedurally re-
sembles habituation except that infants are

preexposed to a stimulus for at least 1 day
before being tested for a novelty preference
or the differential production of a target re-
sponse. During familiarization, responding
may not be measured, and no experimenter
may be present. A visual stimulus, for exam-
ple, may simply be left in the home where
the infant can view it. Bushnell, McCutcheon,
Sinclair, and Tweedlie (1984), for example,
asked mothers to expose their infants (1–
2 months old) to distinctive color and form
stimuli for 15 min each day for 2 weeks. They
gave infants a novelty-preference test with a
sequence of familiar and novel stimuli 1 day
after their last exposure. Although home-
tested infants looked longer at all novel stim-
uli, laboratory-tested infants looked longer
only at stimuli that were novel in both color
and form. These data demonstrate that after
long-term familiarization with specific visual
stimuli, even very young infants can recog-
nize them 1 day later. More importantly, the
novelty of the test setting can impair recogni-
tion. This is a recurrent finding in many areas
of infant research.

Using auditory instead of visual stimuli,
Ungerer, Brody, and Zelazo (1978) asked
mothers to repeat one of two words 60 times/
day for 13 days beginning when infants were
14 days old. Recognition was tested intermit-
tently between 22 and 29 days of age with a
tape-recording of the mother saying a famil-
iarized word and the novel one. Infants’ facial
expressions and eye/head movements differ-
entiated the training word from the novel word
by the third test. Recently, investigators using
auditory stimuli have measured event-related
potentials (ERPs)—electrophysiological cor-
relates of retention. Molfese and Wetzel
(1992), for example, familiarized 14-month-
olds in their own homes for 2 days with one
of two nonsense syllables. During laboratory
testing 1 day and 1 week later, ERPs recorded
from frontal electrodes differentiated familiar
from novel syllables.
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Visual Expectancy

This training procedure was also described
earlier (see “Infant Learning” section). In this
paradigm, infants are initially exposed to a re-
curring sequence of stimuli. Their memory for
the sequence is tested by increasing the inter-
val between the original exposure trials and
testing and assessing whether infants can still
anticipate the next stimulus in the sequence.
After training 5-month-olds to sequentially
fixate four identical doors arranged in a quad-
rant and that opened and closed successively,
for example, Smith et al. (1989) cued infants
by opening and closing the first door 1 min and
1 week later. They found that infants looked
at the remaining three locations in the correct
order after both delays.

Similarly, Arehart and Haith (1990) found
that 3-month-olds retained an alternation rule
for 4–7 days. After being exposed to either
a random or a left-right alternating sequence
of pictures, all infants were tested with a
left-right alternating sequence. Infants who
were tested with the same sequence that they
saw during training anticipatorily shifted their
eyes in the direction of where the picture
would appear next more rapidly and more of-
ten than infants who were tested with a dif-
ferent sequence. This result was subsequently
replicated with a more complex, left-left-right
sequence (Canfield & Haith, 1991).

Classical Conditioning

Retention of classical conditioning is mea-
sured as savings (more rapid reacquisition
than in Session 1) or cued recall (responding
to the CS-alone or prior to the UCS). New-
borns’ anticipatory responses when their feed-
ing schedules were shifted from 3 to 4 hr is
an example of retention that was described
earlier (Marquis, 1941). In a study explicitly
designed to measure retention, Jones (1930)
exposed a 7-month-old female to repeated

pairings of a tapping sound (CS) and an elec-
trotactual stimulus (UCS) over 5 consecutive
days. The anticipatory CR (a galvanic skin re-
flex) was established midway through Day 1.
The CR was still present 7 weeks later.

In a study described previously, Little et al.
(1984) established an eye-blink CR in a single
session with 10-, 20-, and 30-day-olds by pair-
ing a tone (CS) with an air puff (UCS) using
a 500- or 1,500-ms ISI. During a second con-
ditioning session 10 days later, all 1,500-ms
groups responded more in Session 2 than Ses-
sion 1, but only groups that were first trained
at 20 or 30 days of age performed above age-
matched controls 10 days later.

Operant Conditioning

In operant studies, retention measures are
based on the rationale that infants who lack
a verbal response can perform a motoric
response (foot-kick, lever-press) to indicate
whether they recognize a stimulus. If they do,
then they respond above baseline; otherwise,
they do not. In most studies, retention is mea-
sured prior to reacquisition during a nonrein-
forcement phase (i.e., what infants bring into
the session) rather than during reacquisition
(savings). Because the test phase is procedu-
rally identical to the baseline phase and the
immediate retention test that follows train-
ing, each infant can contribute two retention
measures—one indicates whether the infant
recognizes the stimulus at all (i.e., whether
the infant’s rate of responding during the test
exceeds the baseline rate before training) and
the other indicates how much the infant re-
members of what he or she had learned (i.e.,
how much the infant’s responding declined
since training was over). Each measure is cal-
culated as a ratio for each infant, and the two
ratios constitute the two units of analysis.

The use of individually-based measures of
relative response is important because group
means based on absolute levels of response
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before and after a retention interval are not
sensitive to individual variability in the base
rate of the target response, and group changes
in absolute responding over the retention in-
terval do not necessarily reflect individual
changes. The use of individually-based ratios
eliminates these problems. (For extended dis-
cussion of measurement problems, see Rovee-
Collier, 1996a).

The baseline ratio is the primary retention
measure and expresses each infant’s kick rate
during the long-term retention test (LRT) as
a fraction of the same infant’s baseline rate
(BASE): LRT/BASE. The resulting value in-
dexes the extent to which test performance
exceeds baseline. A mean baseline ratio sig-
nificantly greater than 1.00 indicates signif-
icant retention. The retention ratio measures
the degree of retention, expressing the infant’s
response rate during the LRT as a fraction of
that infant’s posttraining response rate during
the immediate retention test (IRT): LRT/IRT.
A mean retention ratio of 1.00 indicates that
performance has not decreased from the im-
mediate to the long-term test; a mean reten-
tion ratio significantly less than 1.00 indicates
that memory performance is significantly im-
paired. Responding is not predicted to fall sig-
nificantly below baseline after an infant has
forgotten, and forgetting implies that mem-
ory performance declines. For this reason,
the baseline and retention ratios, respectively,
are analyzed by directional (one-way), one-
sample t tests in which the denominator is
the predicted baseline or retention ratio of the
population (1.00 in both cases). If the data
are skewed (as baseline ratios are likely to be
because they have no upper limit), then they
should be transformed to natural logs (M = 0)
prior to analysis. Also prior to all analyses,
all group ratios should be subjected to a me-
dian outliers test (Tukey, 1977). If an out-
lier is found, it should be replaced with the
next highest or lowest baseline or retention
ratio in the group (Winsorized), and a degree

of freedom must be subtracted in subsequent
analyses.

The assumption underlying the use of re-
sponding during the IRT as a measure of the
final level of learning and immediate reten-
tion is that the infant has responded at the
same rate as during the final minutes of ac-
quisition. Because the IRT is a nonreinforce-
ment phase, however, it cannot be so long
that the response undergoes extinction, or so
short that the frustrating effects of reinforce-
ment withdrawal will dominate responding. In
fact, in most operant studies, responding char-
acteristically increases sharply, and then de-
creases following the withdrawal of reinforce-
ment, producing a pattern called a response
elbow. In order for the infant’s mean response
rate during the IRT to reflect veridically the
mean response rate at the end of acquisi-
tion, the entire response elbow must be cap-
tured. If the IRT is appropriately timed, then
this requirement will usually be met—but not
always.

The pattern of responding during the IRT
is also related to age: Two-month-olds may
continue to increase responding for a longer
period because they are slow to discriminate
the withdrawal of reinforcement, whereas
6-month-olds may abruptly decrease respond-
ing because they discriminate it so rapidly. If
the IRT rate is higher than at the end of acqui-
sition, then in order to exhibit retention, an
infant would have to respond during the de-
layed test at a rate higher than that at which the
infant had responded by the end of training.
Conversely, if an infant’s response rate dur-
ing the IRT drops to the baseline level, then
responding at the baseline level during the
long-term test would erroneously be credited
as perfect retention, when the infant actually
exhibited none. Under either of these condi-
tions, responding during the final minutes of
acquisition must be used as the alternative de-
nominator of the retention ratio. This choice
is less preferred because it means comparing
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responding during a period of reinforcement
(acquisition) with responding during a period
of nonreinforcement (the long-term test).

Most studies of infant long-term memory
have used the mobile task with 2- to 6-month-
olds and the train task with 6- to 18-month-
olds. In the mobile task (described earlier),
infants learn to move a particular mobile by
kicking via a ribbon strung from one ankle
to an overhead mobile suspension hook. The
critical target information is displayed either
directly on the mobile objects or on a distinc-
tive cloth context draped around the crib or
playpen. In the standardized procedure, in-
fants are trained in their own homes for 15 min
each day (10 min at 6 months) for 2 successive
days. During baseline and all retention tests
(3 min at 3 months, 2 min at 6 months), the
ribbon and the mobile are attached to different
hooks so that infants’ kicks cannot move the
mobile. The delayed recognition test usually
follows 1 or more days later during a nonrein-
forcement phase with a mobile or context that
is the same as or different from the one present
during training. The train task, also described
earlier, uses the same parameters of training
and testing as the mobile task at 6 months of
age except that reinforcement is discrete and
lasts 2 s, and the context is defined by a par-
ticular room in the house. Not surprisingly,
the retention data from the two tasks are iden-
tical. At older ages, each reinforcement lasts
1 s, and the training and test phases are only
half as long. At all ages, the lever is simply
deactivated during baseline and all retention
tests.

In the initial study of long-term reten-
tion using the mobile task, 3-month-olds were
trained for 3 consecutive days with the same
mobile (Rovee & Fagen, 1976). Twenty-
four hr later, some infants were tested for
3 min with the original mobile, and others
were tested for 3 min with a different one.
Infants tested with the original mobile kicked
significantly above baseline, but infants tested

with a different mobile did not. These data
demonstrated that infants not only recognized
their training mobiles after 24 hr, but also dis-
criminated the test mobile from the training
mobile even though they had not seen the
training mobile for 24 hr.

The mobile and train tasks yield identical
measures of retention from 6-month-olds. Not
only are the forgetting functions identical, but
so are infants’ sensitivity to cue and context
changes (Hartshorn & Rovee-Collier, 1997),
latency of responding to a memory prime
(Hildreth & Rovee-Collier, 1999), and rate
of reforgetting after priming (Sweeney,
Hildreth, & Rovee-Collier, 2000). These re-
sults established the validity of using the train
task as an upward extension of the mobile
task—thus overcoming the problem that had
plagued studies of the ontogeny of learning
and memory with infants, namely, the prob-
lem of finding a task or equivalent tasks that
could be used over the entire infancy period.

Ontogeny of Memory

The younger infants are, the more rapidly they
forget. The forgetting functions of 2- to 18-
month-olds who were trained with standard-
ized and age-calibrated parameters in the mo-
bile and train tasks indicate that the maximum
duration of retention improves monotonically
over the first 1.5 years of life (Hartshorn et al.,
1998b). These age differences in retention are
not due to age differences in operant level
or original learning—there are none (see “In-
fant Learning” section). The function in Fig-
ure 17.9 provides reference points for future
investigators who use the same tasks and pa-
rameters with special populations, the same
tasks with different parameters, or different
tasks altogether. The maximum duration of
retention in the deferred imitation task with a
hand puppet is also plotted in Figure 17.9.
Although different ages remember the op-
erant and imitation tasks for different abso-
lute durations—undoubtedly a reflection of



pashler-44093 book December 18, 2001 10:44

748 Infant Cognition

Figure 17.9 Standardized reference functions for
the maximum duration of retention (in weeks) as a
function of infant age.
NOTE: Data for each function were collected
from independent groups of infants who were
trained and tested in standardized procedures
with age-calibrated parameters. The experimental
paradigms were the operant mobile and train tasks
and the deferred imitation (puppet) task. Differ-
ences in the slopes of the two functions are due
solely to the use of different parameters.

different task parameters—the patterns of
retention are the same.

The use of standardized parameters is crit-
ical in comparing data from infants of dif-
ferent ages. The slightest changes in the pa-
rameters of training can dramatically affect
retention, and can do so differently at differ-
ent ages. If 2-month-olds are trained for three
6-min sessions instead of two 9-min sessions,
for example, they recognize the training mo-
bile for 2 weeks—the same as 6-month-olds—
instead of for only 1–2 days, even though to-
tal training time is the same in both instances
(Vander Linde, Morrongiello, & Rovee-
Collier, 1985). These data suggest that the
number of times a memory is retrieved af-
fects how long it will be remembered in the
future—a factor whose effects also differ with
age. Moreover, at all ages, future retention
will be longer if more time has elapsed since
the memory was retrieved last (Galluccio &

Rovee-Collier, 2001; Rovee-Collier, Greco-
Vigorito, & Hayne, 1993; Schmidt & Bjork,
1992; see the “Special Problems in Infant
Cognition: Time Windows” section). There-
fore, infants should be tested only once un-
less the effect of repeated testing on reten-
tion is the specific research question. If infants
must be tested repeatedly, then experimenters
should consider progressively expanding the
delay between successive tests in order to en-
sure that the difficulty of retrieval remains
equivalent over successive tests (Hartshorn,
Wilk, Muller, & Rovee-Collier, 1998c). Fi-
nally, to ensure that test performance reflects
an infant’s memory of the original experience
and not new learning that has accrued over
repeated tests, experimenters must include an
age-matched control group that is tested re-
peatedly without having received the original
experience (e.g., Rovee-Collier, Hartshorn, &
DiRubbo, 1999).

Specificity of Memory

Because only cues that are similar to what
was originally encoded can retrieve a mem-
ory, one way to ascertain the contents of in-
fants’ memories is to probe them with dif-
ferent retrieval cues and note which cues are
effective and which are not (for discussion
of this experimental approach, see Tulving,
1983, p. 251). If the memory is retrieved de-
spite the fact that the retrieval cue differs in
some way from when the memory was en-
coded, then this can be taken as evidence that
the aspect of the cue that was changed was
either not encoded or, depending on the tim-
ing of the retention test, was forgotten. The
latter can be determined by testing after a
shorter delay. For example, 3-month-olds dis-
criminate L’s from T’s after 1 hr but not after
24 hr (Adler & Rovee-Collier, 1994), and a
single + in the original training color pops
out from differently colored, + distractors
after 1 hr but not after 24 hr (Gerhardstein,
Renner, & Rovee-Collier, 1999). Conversely,
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if the memory is not retrieved when some as-
pect of the retrieval cue is changed but is re-
trieved otherwise, then that aspect is repre-
sented in the memory.

At 2–6 months of age, infants do not kick
above baseline during a 24-hr test if the test
mobile is even slightly different from what
was present during training (Hartshorn et al.,
1998b). Three-month-olds, for example, will
not recognize the original mobile 1 day later
if more than a single object on it is differ-
ent during the test (Fagen, Rovee, & Kaplan,
1976; Hayne, Greco, Earley, Griesler, &
Rovee-Collier, 1986). Likewise, they will fail
to recognize a test mobile if it displays “+”
shapes that are only 25% (Adler & Rovee-
Collier, 1994) or 33% (Gerhardstein, Adler
& Rovee-Collier, 2000) smaller or larger than
the “+” shapes displayed on the training mo-
bile 1 day earlier.

In contrast, by at least 9 months of age, in-
fants are unaffected by some cue changes only
after relatively short delays (see left panel
of Figure 17.10). At 9–12 months, infants in

Figure 17.10 The effect of cue and context changes on the memory performance of 2- to 12-month-
olds.
NOTE: Infants were tested in the operant mobile or train task after common relative retention intervals
corresponding to the first (Early), middle (Middle), and last (Late) points on the forgetting function for
each age. The Late test delay corresponds to the longest absolute delay at which infants of each age
exhibited retention (see Figure 17.9). Left panel: Infants trained with a particular cue (mobile, train set)
were tested with a different cue in the original context. Right panel: Infants trained in a particular context
were tested in a different context with the original cue. Asterisks indicate significant retention. Vertical
bars indicate ±1 SE.

conditioning studies generalize to a novel cue
after test delays of 1–14 days but not longer
(Hartshorn et al., 1998a). Similarly, in de-
ferred imitation tests at 12–14 months, infants
generalize to a cue that differs only in color
after 10 min (Barnat, Klein, & Meltzoff, 1996;
Hayne, MacDonald, & Barr, 1997) but not af-
ter 1 day (Hayne et al., 1997); at 18 months,
they generalize to cue that differs in color
after 1 day; and at 21 months, they gener-
alize to a cue that differs in color and form
after 1 day (Hayne et al., 1997). The fact that
older infants generalize to novel test cues after
short but not long delays reveals that they can
discriminate differences between the cues but
actively disregard them after short delays.

Even when infants are tested with the same
distinctive cue with which they were trained,
they may fail to recognize it in a different con-
text. This conclusion is qualified by the test
delay and the infant’s age (Hartshorn et al.,
1998a). Although 6-month-olds do not re-
spond if the context is changed 24 hr after
training, 3-, 9-, and 12-month-olds are
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affected by a context change only after rel-
atively long delays (see right panel of Fig-
ure 17.10). Experimenters should be aware
that because infants remember longer when
they are older (i.e., their forgetting func-
tions are increasingly protracted), the effect
of different variables must be compared at
equivalent points on the forgetting functions
at different ages rather than after the same ab-
solute delays at different ages. Conceivably,
infants simply need more retrieval cues—
here, provided by the context—when a mem-
ory is relatively difficult to retrieve. Alter-
natively, memory may have evolved to be
conservative: When the memory is older, the
likelihood that the retrieval context will dif-
fer from the encoding context is greater, and
retrieving it only in a context that veridi-
cally matches the encoding context may be
adaptive. Nonetheless, both cue and contex-
tual specificity can be overridden by ini-
tially training infants with more than one
cue (Hayne et al., 1987; Shields & Rovee-
Collier, 1992), in more than one context
(Amabile & Rovee-Collier, 1991; Rovee-
Collier & DuFault, 1991), or by merely ex-
posing infants to a novel mobile (Greco et al.,
1990; Rovee-Collier, Borza, Adler, & Boller,
1993) or novel context (Boller & Rovee-
Collier, 1992) after training is over. A similar
pattern of results was obtained with an object
segregation task (for review, see Needham &
Baillargeon, 2000; Needham & Modi, 1999).

Deferred Imitation

When the first opportunity to reproduce a
modeled behavior occurs after a delay, the
behavior is called deferred imitation. Piaget
(1962) first described deferred imitation in
recounting that his daughter precisely imi-
tated a temper tantrum that a peer had per-
formed 24 hr earlier. In deferred-imitation
experiments, target actions involving single
or multiple steps are demonstrated by an adult

experimenter with an unfamiliar object. Dur-
ing the demonstration, the infant is not al-
lowed to touch the object on which the actions
are performed, and the experimenter does not
verbally label the object or describe the ac-
tion. To maintain the infant’s attention during
the demonstration, however, the experimenter
may either say “Look” or call the child by
name. Two age-matched control groups estab-
lish the probability that infants will produce
the target action spontaneously, in the absence
of explicit modeling: The baseline control
group encounters the test object for the first
time during the test, and the no-demonstration
control group or adult manipulation group re-
ceives equivalent exposure to the test stimuli
and experimenter but does not see the target
actions demonstrated.

The test procedure is identical for all
groups. During the test, the experimenter po-
sitions the object(s) in front of the infant and
videotapes the infant’s behavior. Later, the be-
havior is scored from videotape by two inde-
pendent observers, one of whom is blind to
the infant’s group assignment, for a fixed pe-
riod from the time the infant first touches the
test object. The imitation score for each infant
is the sum of the number of target behaviors
produced during the test. Deferred imitation
occurred if the imitation score of the demon-
stration group significantly exceeds that of the
two control groups.

Piaget’s (1962) claim that deferred imita-
tion does not emerge before 18–24 months
of age was initially supported (e.g., McCall,
Parke, & Kavanaugh, 1977), but most of the
early studies lacked essential control groups
and/or used tasks that infants younger than
18 months could not readily perform. Using
appropriate control groups and multiple, one-
step tasks, Meltzoff (1988a) demonstrated
that 9-month-olds could defer imitation for
24 hr. In his study, the experimental group
watched an adult demonstrate three novel ac-
tions (push a hinged panel to flatten it, push
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a hidden button on a black box to make a
sound, and shake an egg to make a rattling
noise) three times each. The demonstration
for each action lasted 20 s. Three age-matched
control groups—a baseline control group and
two no-demonstration control groups—saw
no demonstration. Twenty-four hr later, all in-
fants were tested for production of the target
actions during a 20-s response period. De-
ferred imitation was scored on a scale of 0–3
(1 point for each of the three actions). The ex-
perimental group had significantly more high-
imitation scores (scores of 2–3) than did either
control group.

Subsequently, Meltzoff (1995) reported
that 14- and 16-month-olds can defer imi-
tation for 4 months. In this study, infants
watched an adult demonstrate a simple ac-
tion on each of four objects (pull apart a
dumbbell, touch his head on a panel to light
it, push collapsible stacking cups to flatten
them, and push a hidden button on a black
box to make a sound). The adult modeled
each target action three times, and infants saw
three demonstrations altogether. The baseline
control group came to the lab but saw no
demonstration. All infants were tested twice
with each object during a 20-s response pe-
riod. Naive observers, blind to an infant’s ex-
perimental condition, scored imitation from
videotapes on a scale of 0–4 (1 point per
target action imitated in either block of test
trials). At both ages, the experimental group
produced significantly more target actions
than the baseline control group did 4 months
later.

Using no-demonstration control groups,
Barr et al. (1996) studied infants’ ability to
imitate a sequence of three actions on a hand-
puppet (remove, shake, and replace a mitten)
after a 24-hr delay. The experimenter demon-
strated the actions either three or six times
each for a total of 30 s or 60 s, respectively.
Barr et al. found that the spontaneous produc-
tion of target behaviors by a no-demonstration

control group was virtually zero between 6
and 24 months of age. This result is important
because the reproduction of zero-probability
behaviors after a delay is the hallmark of de-
ferred imitation (Piaget, 1962). The develop-
mental invariance in spontaneously produced
target actions enabled the assessment of de-
velopmental differences in deferred imitation;
otherwise, comparisons across such a wide
age range would have been precluded.

Barr et al. (1996) also found that all demon-
stration groups between 6 and 24 months of
age had significantly higher imitation scores
than the corresponding no-demonstration
control groups, and that older infants in the
demonstration group produced significantly
more target behaviors than younger infants.
Significantly, even 6-month-olds could defer
imitation for 24 hr when the series of actions
was modeled on an attractive hand-puppet,
when the response period lasted 120 s, and
when the demonstration lasted 60 s. The find-
ing that only older infants could defer im-
itation for 24 hr when the response period
was 25% shorter (90 s) and the demonstration
was 50% briefer (30 s) testifies to the critical
importance of choosing optimal tasks, stim-
uli, and task parameters for studies with very
young infants.

Meltzoff and Moore (1994) have demon-
strated that even 6-week-olds can imitate the
specific facial gestures an experimenter had
modeled 1 day earlier. In their study, infants
were randomly assigned either to a base-
line control group, who always saw an adult
model a passive face, or to one of three ex-
perimental groups who saw an adult demon-
strate mouth opening, mid-tongue protrusion,
or side-tongue protrusion. Infants received
five sessions on consecutive days. In Sessions
1, 3, and 5, a 90-s modeling phase was fol-
lowed by a 90-s immediate imitation period.
In Sessions 2 and 4, infants’ memory for the
target gesture was assessed for 90 s while the
experimenter presented a passive face in all
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conditions. Overall, infants in the experimen-
tal conditions imitated the appropriate ges-
ture on Days 2 and 4. In particular, infants in
the side-tongue protrusion condition imitated
the side-tongue protrusion. Although infants
may not have imitated this gesture precisely
on their initial attempts, they gradually self-
corrected their behaviors to match the unique
gesture modeled by the experimenter 24 hr
earlier.

Deferred imitation is particularly appeal-
ing to study because it is so commonplace in
real-world settings. A particularly rich source
of imitation is television. Infants’ ability to
imitate a televised demonstration lags well
behind their ability to imitate a live demon-
stration. When the demonstration is live,
6-month-olds readily imitate an adult’s ac-
tions after a 24-hr delay (Barr et al., 1996), but
when the same demonstration is televised, in-
fants cannot imitate the same actions 1 day
later until they are 18 months old (Barr &
Hayne, 1999). By 15 months of age, how-
ever, infants can imitate some televised ac-
tions after a 24-hr delay (Barr & Hayne, 1999;
Meltzoff, 1988b). Troseth and DeLoache
(1998) observed the same phenomenon in an
object search task. Deferred-imitation proce-
dures have also been used to investigate the
effects of context and cues on memory perfor-
mance. The results are extremely consistent
with those obtained using operant procedures
(Barnat et al., 1996; Hayne, Boniface, & Barr,
2000a; Hayne et al., 1987).

Experimenters designing imitation studies
should take care to avoid introducing unsys-
tematic variations that will preclude mean-
ingful comparisons within and across labo-
ratories. Examples of problematic variations
include the following:

1. Allowing infants to control the duration
of both the baseline and test phases (e.g.,
Bauer & Shore, 1987); this practice ex-
poses different infants to the test object for

different durations and can produce an un-
derestimation of the spontaneous rate of
target behaviors.

2. Remodeling sequences for some infants
but not others; this practice produces un-
equal exposure to the sequences across
subjects (Bauer & Hertsgaard, 1993;
Bauer, Hertsgaard, & Wewerka, 1995;
Bauer & Mandler, 1992), which, in turn,
differentially affects their long-term reten-
tion of the sequences (Bauer, 1995; Bauer
et al., 1995).

3. Narrating the target actions or providing
verbal instructions and/or prompts (Bauer
et al., 1995); this practice selectively facil-
itates the imitation performance of older
and verbally competent infants, and attach-
ing verbal labels to stimuli and target
actions during demonstration and test-
ing significantly enhances long-term reten-
tion and generalization (Herbert & Hayne,
2000).

In addition, the effects of immediate imi-
tation on later retention are not fully under-
stood (for review, see Barr & Hayne, 2000).
Although imitating immediately appears to
have no major effect on later retention in
simple imitation tests (Abravanel, 1991; Barr
& Hayne, 1996; Bauer, Hertsgaard, & Dow,
1994; Meltzoff, 1995), differences do emerge
when test complexity is increased. Eighteen-
month-olds who imitated target actions on
the training puppet immediately, for example,
also imitated the target actions on a novel pup-
pet 24 hr later, but infants who did not imitate
immediately also did not imitate later on a
novel puppet (Barr & Hayne, 2000).

Reminder Procedures

The two reminder procedures, reinstatement
and reactivation, were originally developed in
studies with animal infants but have also been
used with human infants to protract retention
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for significant periods. These reminder pro-
cedures are not paradigm-specific, but they
are differentially effective depending on the
state of the memory (active, inactive) at the
time of reminding—particularly when infants
are very young.

A reinstatement is a small amount of prac-
tice or a partial repetition of the original event
that is given periodically throughout the reten-
tion interval (Campbell & Jaynes, 1966). Be-
cause reinstatements are given when the mem-
ory is active, they forestall forgetting—like
throwing a log on a dying fire. Reactivation is
a variant of reinstatement (Spear & Parsons,
1976) in which the subject is exposed to an
isolated component of the original event after
the memory has been forgotten (i.e., when it
is no longer expressed in behavior) but in ad-
vance of the long-term test. The reminder—a
memory prime—re-activates the latent or dor-
mant memory and increases its subsequent
accessibility to a retrieval cue. Whether the
memory was indeed reactivated is assessed
later during a delayed recognition test. If it
was, then infants will respond to the test cue
as they had responded to it immediately after
training was over. In natural settings, the prob-
ability is higher that, as time goes by, infants
will encounter only a fraction of a prior event
rather than the event in its entirety, as in re-
instatement. This factor may reflect a biolog-
ical adaptation after longer delays. Because
the reactivation stimulus is presented before
the response is produced and at a time when
the infant does not recognize it, reactivation
is like priming procedures that are used with
amnesic adults, who similarly cannot recog-
nize a stimulus at the time of priming (see
“Memory Dissociations”).

For many years, the effects of reinstate-
ment and reactivation reminders were thought
to be equivalent (Spear & Parsons, 1976),
and most developmental psychologists still
do not distinguish between them (e.g., Howe,
Courage, & Bryant-Brown, 1993; Hudson &

Sheffield, 1998; Mandler, 1998). Studies with
human infants, however, have shown that the
two reminders differ functionally as well as
procedurally.

Reinstatement

Although reinstatement was introduced a
decade before reactivation, fewer studies have
been conducted with human infants using re-
instatement than reactivation because visiting
an infant once to give a single reactivation
treatment at the end of the retention interval
is more economical than visiting periodically
throughout the retention interval to give mul-
tiple reinstatements. During reinstatement in
the mobile task, the ankle ribbon is connected
to the mobile hook, and infants’ kicks can
move the mobile for 2 min (6-month-olds)
or 3 min (2- and 3-month-olds). During re-
instatement in the train task, the lever is ac-
tive, and the infant has 2 min in which to re-
spond. In both of these tasks, the duration of
the reinstatement period is timed from the first
response (kick, lever-press).

Because each reinstatement entails addi-
tional training, it is considerably more ef-
fective in extending the memory than re-
activation. A single reinstatement protracts
the retention of 3-month-olds twice as long
after training as a single reactivation treat-
ment given after the same delay (Adler,
Wilk, & Rovee-Collier, 2000), and three re-
instatements protract retention longer than
three reactivations given after the same delays
(Galluccio & Rovee-Collier, 2000). In addi-
tion, a single reinstatement protracts the re-
tention of 6-month-olds more than six times
longer than a single reactivation given after
the same delay (Sweeney et al., 2000).

The greater the separation between suc-
cessive reinstatements, the more protracted
retention is. This effect was demonstrated
with infants who were trained in the stan-
dard mobile task (Galluccio & Rovee-Collier,
2001). Three-month-old infants, who forget
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the task after 5 days, were given a single
3-min reinstatement at the beginning, mid-
dle, or end of their forgetting function. A rein-
statement given 1 day after training protracted
retention for 1 additional day (6 days after
training); a reinstatement given 3 days after-
ward protracted retention for 9 additional days
(14 days after training); and a reinstatement
given 5 days afterward protracted retention for
16 additional days (21 days after training).

Reactivation

Reactivation was originally adapted for use in
the mobile task with 3-month-olds (Rovee-
Collier, Sullivan, Enright, Lucas, & Fagen,
1980; Sullivan, 1982) and has since been used
in this task as well as in other paradigms
with older infants. Effective memory primes
for infants include such diverse stimuli as the
following:

• A previously familiarized photograph in
a paired-comparison study with 5-month-
olds (Cornell, 1979)

• The distinctive training context in mo-
bile studies with 3-month-olds (Hayne &
Findlay, 1995; Rovee-Collier, Griesler, &
Earley, 1985)

• The original moving mobile or mov-
ing train in operant conditioning studies
with 2–12-month-olds (Hildreth & Rovee-
Collier, 1999; Rovee-Collier & Hayne,
1987)

• A partial (30-s) demonstration of the target
actions on a hand-puppet in deferred im-
itation and sensory preconditioning stud-
ies with 6-month-olds (Barr et al., 2001;
Vieira, Barr, & Rovee-Collier, 2000)

• The dancing hand-puppet in deferred imi-
tation studies with 18-month-olds (Barr &
Hayne, 2000)

• A demonstration of three of the six activ-
ities in which 14- and 18-month-olds had
engaged (Sheffield & Hudson, 1994)

• A video of the six activities in which
24-month-olds had engaged (Agayoff,
Sheffield, & Hudson, 1999)

• A small-scale model or photograph of a
room where 24-month-olds had performed
six activities (Agayoff et al., 1999)

As a rule, what is used as a reminder must
veridically match what is in the original mem-
ory representation, or it will not alleviate for-
getting; generalized reminders, for example,
are ineffective. For this reason, and because
the memory is forgotten at the time a re-
activation reminder is presented, reactivation
is thought to be an automatic, perceptual-
identification process.

During reactivation in the mobile task, the
infant sits in a sling-seat beneath the mo-
bile (see Figure 17.11) in order to minimize
random kicking that might be adventitiously
reinforced, although it cannot be eliminated
(Sullivan, 1982). During a reactivation treat-
ment, the end of the ribbon is not connected
to the ankle but is held by the experimenter.
The experimenter, crouching out of view at the
side of the crib, draws and releases the ribbon
in a jerky, patterned manner, moving the mo-
bile noncontingently at the rate that the same
infant had kicked to move it during each of the
final 2 min (6 months) or 3 min (2–3 months)
of acquisition. In this way, the reactivation re-
minder will phenomenologically match what
the infant saw during the final minutes of train-
ing. During reactivation in the train task, the
lever is deactivated, and the computer moves
the train noncontingently in the 2-min reacti-
vation period exactly as the same infant had
moved it by lever-pressing in the last 2 min
of acquisition. The infant is free to press the
lever during the reactivation period, just as the
infant can kick randomly during the reactiva-
tion period in the mobile task.

Although the reactivation procedure was
designed to alleviate forgetting, an individ-
ual can encounter fractional components of
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Figure 17.11 The experimental arrangement
used with 2- to 6-month-olds during a reactivation
treatment in the operant mobile task, shown here
with a 3-month-old. The end of the ribbon that is
attached to the mobile hook is held by the experi-
menter, who pulls it to move the mobile noncontin-
gently. The infant seat minimizes random activity.
The experimental arrangement during a reinstate-
ment procedure is the same as it was during origi-
nal training: The ribbon is strung from the infant’s
ankle to the mobile hook so that kicks move the
mobile.

a prior event at any time—not only after the
event is forgotten. Priming when the origi-
nal memory is still active will boost retention,
but not for as long as priming when it is in-
active. In fact, exposure to the prime when
the memory is active can actually impair re-
tention by enabling new learning that either
competes with or subtracts from what infants
learned before (Adler et al., 2000; Gordon,
1981). The same result can occur if the prime
is exposed for so long when the memory is in-
active that the memory is reactivated while the
prime continues to be exposed (Hayne, 1990).

Priming with a novel mobile for 3 min im-
mediately after training, for example, when
the memory is active, retroactively interferes
with infants’ recognition of the original mo-
bile the next day (Rossi-George & Rovee-
Collier, 1999), but this effect is temporary
and disappears within 2 days. The interference
phenomenon also occurs if infants are primed
with a novel mobile 3 days after training and
are tested the next day with the original mo-
bile (Rovee-Collier, Adler, & Borza, 1994).
As before, this phenomenon is temporary; in-
fants again recognize the training mobile 4
days later.

Between 3 and 12 months of age, a sin-
gle reactivation treatment essentially doubles
the life of the original memory, so that the
duration of the reactivated and original mem-
ories are the same (Hildreth, Wawrzyniak,
Barr, & Rovee-Collier, 1999; Rovee-Collier
et al., 1980). This equivalence is seen even
though the duration of the original memory
increases linearly over this period (Hartshorn
et al., 1998b). The latency with which a reacti-
vation reminder recovers the forgotten mem-
ory also decreases linearly over the first year
of life (Hildreth & Rovee-Collier, 1999). At
all ages, the reactivation treatment was given
1 week after infants of a given age had last
remembered the task (note that the time since
training when reactivation occurred increased
linearly with age). At 3 months of age, the
memory was recovered 24 hr after remind-
ing; at 6 months, the memory was recovered
1 hr after reminding; at 9 months, it was recov-
ered 1 min after reminding; and at 12 months,
it was recovered instantaneously.

Even at 3 months of age, however, a reac-
tivation treatment recovers a forgotten mem-
ory instantaneously if the prime is presented
closer in time to training. This effect was
demonstrated 24 hr after training in a serial-
learning study in which a precuing proce-
dure, which is procedurally identical to a
reactivation treatment, was used to recover
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forgotten order information (Gulya et al.,
1998; see Infant Learning). At 3 months, the
latency of retrieval also decreases from 24 hr
to only 4 hr if infants receive two reactiva-
tion treatments instead of one (Hayne, Gross,
Hildreth, & Rovee-Collier, 2000b). Multiple
reactivations also protract retention substan-
tially longer than one reactivation as long as
infants have forgotten the previously reacti-
vated memory before a succeeding reactiva-
tion treatment is given (Hayne, 1990).

Memory Dissociations

A number of independent variables produce
memory dissociations in adults, having a ma-
jor effect on their performance on recogni-
tion tests and no effect on their performance
on priming tests. These same variables have
the same differential impact on the memory
performance of infants on delayed recogni-
tion and reactivation (priming) tests. They
include age, the retention interval, retroac-
tive interference, the number of study tri-
als, the amount of study time, the number
of studied items, level of processing, trial
and session spacing, affect, the serial posi-
tion of list items, studied size, and the mem-
ory load (for review, see Rovee-Collier, 1997).
In adults, memory dissociations are taken as
evidence of dichotomous memory systems
(implicit and explicit, or nondeclarative and
declarative).

On the basis of evidence that implicit (non-
declarative) memory is spared by amnesia,
but explicit (declarative) memory is impaired,
these systems were assumed to emerge hier-
archically during the infancy period, with im-
plicit memory appearing at birth or shortly
thereafter and explicit memory emerging at
the end of the first year. Evidence that even
2-month-olds exhibit memory dissociations
of the same form as those exhibited by
adults, however, has shown that these memory
systems develop simultaneously from very

early in infancy (Rovee-Collier, Hayne, &
Colombo, 2001).

SPECIAL PROBLEMS IN
INFANT COGNITION

A number of experimental problems that came
to center stage at the end of the 20th century
have major significance for research on infant
cognition but do not fall clearly into one of
the preceding sections of this chapter. These
problems are considered in the following sec-
tions. Researchers exploring these problems
have exploited much of the methodology that
was described earlier in the chapter, in partic-
ular, the habituation procedure. This research
is current, and many of the procedures and
findings discussed here are hotly contested.

Objecthood: Segmentation, Number,
Individuation, and Causality

Researchers focusing on the nature of infants’
object representations have been heavily in-
fluenced by work on adult attention and par-
ticularly by the idea that visual attention is
structured by objects in space (Baillargeon,
1995; Spelke, 1994). The general method used
in these studies is a violation-of-expectancy
procedure in which the impact of informa-
tion presented during an initial familiariza-
tion phase is assessed by measuring the du-
ration of looking during the ensuing test (for
review, see Baillargeon, 1995). Hauser (2000)
described the violation-of-expectancy proce-
dure as being analogous to a magic show:
During a magic show, information that vio-
lates the laws of physics is presented and ar-
rests the viewer’s attention, which suggests
that the viewer has some knowledge of the un-
derlying principle. The same logic is applied
to human infants. The information presented
during the familiarization period presumably
sets up an expectation of a particular outcome
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(the possible outcome), and infants appear to
be surprised (i.e., they look longer) if the test
event violates that expectancy (the impossible
outcome).

The same methodological precautions that
are taken in habituation studies (see Infant
Learning) apply to studies using the violation-
of-expectancy paradigm. A problem unique
to this paradigm arises, however, if the exper-
imenter uses more than a single test trial. In
fact, the first test trial provides the only uncon-
taminated test of infants’ expectations. Each
additional test trial with the impossible event
is an occasion for learning a new expectation
or modifying the old one. By the same token,
succeeding test trials with the possible event
resemble an habituation series.

Baillargeon and colleagues, for example,
used this paradigm to examine infants’ phys-
ical reasoning, exploiting an arrested motion
event called the drawbridge event (for review,
see Baillargeon, 1995). During familiariza-
tion, a screen was rotated smoothly through
a 180-deg arc from front to back for a fixed
number of trials. During the test, a box was
placed so that it obstructed the path of the ro-
tating screen. In the impossible test event, the
screen continued to rotate unimpeded through
the same arc, whereas in the possible test
event, the rotating screen was stopped by
the box and came to a rest against it. Both
groups received two test trials; the experi-
mental group was tested with an impossible
event on one trial and with a possible event
on the other, and the control group was tested
with a possible event on both trials. Develop-
mental differences were investigated by de-
termining whether infants could discriminate
between the two events and then systemati-
cally decreasing the events’ discriminability
by increasing the difficulty of the impossi-
ble task. Initially, for example, the impossible
task was an 80% violation in the arc of rota-
tion. Reducing the degree of violation from
80% to 50% increased the difficulty of the

task. Conversely, the task was made easier by
placing a second box to act as a reference (i.e.,
a memory prompt) for the height of the unseen
box that was placed in the path of the rotating
screen.

The amount of physical information that
infants required to discriminate the two events
decreased with age. Whereas 4.5- and 6.5-
month-olds discriminated between the possi-
ble and impossible events when the violation
was 80% with the reference cue, 6.5-month-
olds discriminated an 80% violation (but not
the more difficult 50% violation) without a
reference cue, and 8.5-month-olds discrimi-
nated the 50% violation without a reference
cue. When the drawbridge event was modi-
fied during the test to reveal the screen as it
rotated through a 180-deg arc and retraced its
path, infants as young as 4.5 months discrim-
inated between the impossible and possible
events without the reference cue (for discus-
sion, see Baillargeon, 1995).

Segmentation

The question underlying segmentation stud-
ies is whether infants parse a stationary dis-
play into multiple objects or perceive it as
a single object, perhaps with multiple parts.
During an initial familiarization phase, infants
view a stationary display consisting of two
objects (e.g., a box and a cylinder) abutting
each other. Familiarization ends when infants
meet a looking criterion (e.g., looking away
for 2 s after accumulating 10 s of looking time
or looking continuously for 30 s; Needham,
1998). During the test phase, a gloved hand
appears, grasps one of the objects, and pulls
it to the left or the right (see top panel of Fig-
ure 17.12). Younger infants may receive up
to six trials; older infants receive fewer (e.g.,
two). A test trial ends when the stage curtain
is lowered after infants have again met a look-
ing criterion (e.g., looking away for 2 s after
looking continuously for 6–8 s or accumulat-
ing 60 s of looking time; Needham, 1998).
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Figure 17.12 Top panel: The move-together and move-apart events in the cylinder up condition.
(Needham & Baillargeon, 1997). In the move-apart event, the infant is familiarized with the cylin-
der and the box; during the test event, the hand grabs the cylinder, and the cylinder moves away from the
box. In the move-together event, the hand grabs the cylinder, and the cylinder and box move together.
The move-together event is expected. Bottom panel: The move-together and move-apart events in the
cylinder down condition. The move-apart event is expected.
SOURCE: Figure courtesy of Amy Needham.

During testing, half of the infants see the
object that is grasped by the gloved hand
move away from the other object (move-
apart event), and half see the two objects

move together (move-together event). If in-
fants perceive the stationary display as two
separate objects, then they will expect the ob-
jects to be capable of moving independently
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and will look longer at the unexpected event
(i.e., the objects moving together). That is,
infants’ attention will be prolonged if the mo-
tion of the objects is inconsistent with how
they segmented the stationary display during
the familiarization phase. Needham and Modi
(1999) argued that a between-subjects design
avoids cross-contamination of responses to
the two events and is more realistic: In real
life, two separate objects are not suddenly
transformed into only one object or vice versa,
which would be the case in a within-subjects
design.

Needham (1998) displayed a blue box with
white squares beside a yellow- and white-
zigzagged cylinder to 6.5- and 7.5-month-old
infants. The cylinder was curved and the
corner of the box faced the infant (com-
plex cylinder-box display). During the test
trials, 7.5-month-olds looked significantly
longer at the unexpected move-together event
than at the expected move-apart event, but
6.5-month-olds looked equally at both. When
the cylinder was straightened instead of
curved, and the side of the box faced the
infant (simplified cylinder-box display), both
4.5- and 6.5-month-olds looked significantly
longer at the unexpected move-together event
than at the expected move-apart event. To test
whether discrimination during the test phase
was actually produced during the familiariza-
tion phase, control groups received no famil-
iarization phase. Because the control groups
looked equally at both events, the author con-
cluded that the experimental groups had seg-
mented the cylinder and the box into two in-
dependent objects during the familiarization
phase.

Needham and Baillargeon (1997) dis-
played the same complex cylinder-box dis-
play to 8-month-olds. In an additional experi-
mental condition, the cylinder was suspended
in the air (cylinder up) instead of lying flat on
the stage (cylinder down) during the familiar-
ization phase (see Figure 17.12). Because the

cylinder could not be physically suspended in
the air unless it were attached to the box, when
the experimenter grasped and pulled the box,
infants should expect the two objects to move
together. During the test trials, 8-month-olds
looked significantly longer at the unexpected
move-apart event than at the expected move-
together event.

To investigate whether infants’ prior ex-
perience with a test object affects its seg-
mentation, Needham and Baillargeon (1998)
exposed 4.5-month-old infants to either the
box or the cylinder during the familiariza-
tion phase and then tested them with the com-
plex cylinder-box display in either the move-
apart or move-together event. Infants were
familiarized with the box for 5 s (accumu-
lated looking time) and with the cylinder for
a total of 5 s or 15 s. Infants looked signifi-
cantly longer at the unexpected move-together
event after either a 5-s exposure to the box or
a 15-s exposure to the cylinder. The authors
argued that infants required longer exposure
to the cylinder because it was more complex.
When 4.5-month-olds were familiarized with
the complex cylinder-box display, however,
they looked equally at the move-together and
move-apart events. When infants were famil-
iarized with the box for a total of 2 min in their
homes 24 hr prior to testing in the laboratory,
4.5-month-olds looked significantly longer at
the unexpected move-together event, but only
in the second block of trials (Trials 3–6).
These data suggest that infants were learning
during the first three test trials (for discus-
sion, see Rovee-Collier, 2001). After a 72-hr
delay, infants looked equally at both displays
(Needham & Baillargeon, 2000). Needham
and Modi (1999) concluded that 4.5-month-
olds use prior experience with an object to
determine object boundaries when a new dis-
play contains the same previously encoun-
tered object. Finally, preexposing infants to
objects that were similar to the box did not
promote object segregation (see Needham &



pashler-44093 book December 18, 2001 10:44

760 Infant Cognition

Baillargeon, 2000; Needham & Modi, 1999;
see also Specificity of Memory section). Simi-
larly, this specificity was overridden by train-
ing infants with three different exemplars
of the cue. These studies exemplify an im-
portant point: Seemingly mundane method-
ological modifications, such as changing the
orientation of the one of the objects, often
provide new insights and enable more so-
phisticated analyses than would otherwise be
possible.

Number

Piaget (1954) argued that conservation of
length and density preceded the concept of
number. Piaget presented children with two
rows of pebbles that were either spread out
or close together and asked them which row
contained more pebbles. At the outset, when
the two rows contained the same number,
4-year-olds had difficulty answering the ques-
tion. He then added or subtracted from a row
and again asked children which row contained
more pebbles. This time, they answered that
the row in which the pebbles were more spread
out contained more, regardless of whether
pebbles had actually been added to that row.
Because children aged 4 years were unsuc-
cessful on this task, Piaget did not test younger
infants. Mehler and Bever (1967) repeated the
experiment but used M&M’s candies instead
of pebbles and provided children with a non-
verbal response instead of a verbal one, telling
children, “Pick the row you want, and you
can eat all the M&M’s in that row.” Children
as young as 2.3 years consistently chose the
row containing more M&M’s, irrespective of
whether the candies were spread out. Hauser
(2000) reported similar results from a foraging
experiment with rhesus monkeys. These find-
ings suggest that Piaget’s task had required a
level of verbal skills too high to allow young
children to demonstrate their understanding of
number. Experimenters are warned that this
procedural error is not unique to studies of

number; it is one of the most common errors
in studies with very young children.

Mehler and Bever’s (1967) findings
spawned studies using nonverbal measures
with even younger infants. Wynn (1992) used
a violation-of-expectancy procedure with
5-month-olds to investigate their understand-
ing of addition and subtraction (see Fig-
ure 17.13). During a pretest, she placed
either one or two Mickey Mouse dolls on
a stage and measured infants’ looking times
to each display. Infants exhibited a baseline
preference, looking significantly longer at two
dolls than at one—a problem that arises fre-
quently in this literature. To circumvent po-
tential interpretative problems associated with
a baseline preference, Wynn elected to test
only infants who looked equally at the dis-
plays during the pretest. In the addition con-
dition, the experimenter placed one doll on
an empty stage, raised a screen to shield the
stage from the infant’s view, and then placed
a second doll behind the screen as the infant
watched. During the test, the screen was low-
ered, and independent groups saw either two
dolls (the expected or possible event) or one
doll (the unexpected or impossible event) on
the stage. In the subtraction condition, the
experimenter placed two dolls on the empty
stage, raised the screen, and then removed
one of the dolls as the infant watched. In-
fants in the subtraction condition received an
identical test except that seeing one doll was
the expected or possible event, and seeing
two dolls was the unexpected or impossible
event.

Infants in each condition looked signifi-
cantly longer at the unexpected event. Wynn
(1992) interpreted this result to mean that in-
fants had counted the number of dolls on the
stage and were surprised when their expec-
tation of seeing that number was violated.
Mehler (cited in Wynn, 1995) asked whether
infants might have been responding to dolls’
prior spatial locations instead of counting
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Figure 17.13 The addition and subtraction events used by Wynn (1992). Panel A: Familiarization for
the 1+1 task. Panel B: Test conditions for the 1+1 event, possible outcome (left) and impossible outcome
(right). Panel C: Familiarization for the 2-1 event. Panel D: Test conditions for the 2-1 event, possible
outcome (left) and impossible outcome (right).
SOURCE: Reprinted with permission from Nature, 358, Wynn, K. (1992). Addition and subtraction by
human infants. Figure 1, p. 749. Copyright (1992) Macmillan Magazines Limited.

them—that is, looking longer when the spatial
field where a doll had previously been was
now empty, or vice versa. To answer this, he
repeated the addition and subtraction condi-
tions but used a rotating stage so that the dolls
did not occupy a fixed spatial location. The
results were the same—longer looking at the
unexpected event.

Another experimental means of asking
whether infants can count is to see whether
they can discriminate different numbers of ac-

tions. Using a procedure similar to the one de-
scribed previously but this time using a hand
puppet, Wynn (1996) habituated 6-month-
olds to a two- or a three-jump sequence. In-
fants discriminated a change in the number
of jumps, looking significantly longer when
the number of jumps changed. By matching
tempo and duration, Wynn was able to con-
clude that infants had responded on the basis
of numerosity (see also Starkey, Spelke, &
Gelman, 1983).

[Image not available in this electronic edition.]
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Object Individuation

Object individuation is a refined instance of
the numerosity problem. It is defined as the
representation of the specific numerosity of
objects in a scene and is considered requi-
site for the representation of a distinct object
(Leslie, Xu, Tremoulet, & Scholl, 1998). Ob-
ject identification is defined as the reassign-
ment of an already active object representa-
tion to the appropriate object if it was en-
countered before (Leslie et al., 1998). Spelke
(1990) derived three spatiotemporal factors—
cohesion, continuity, and contact—that con-
strain infants’ object identification. Although
infants rely on spatiotemporal information for
object identification, they are commonly con-
fronted with the problem of occlusion (i.e.,
one object moves behind another). How in-
fants identify and track occluded objects and
the experimental methods designed to an-
swer these questions have been hotly debated
(Needham & Baillargeon, 2000; Xu & Carey,
2000).

A number of experiments have suggested
that infants use spatiotemporal information
to identify and track occluded objects. Using
a violation-of-expectancy procedure, Spelke
and Kestenbaum (1986) showed 4-month-
olds a cylinder continuously moving back and
forth across a stage behind two occluders,
briefly appearing in the gap between them.
During the test, when the occluders were low-
ered so that infants’ view of the whole object
was no longer obstructed, infants saw either
one cylinder (the expected event) or two cylin-
ders (the unexpected event) moving back and
forth across the stage. Infants looked signifi-
cantly longer at the two-cylinder event. Other
infants were also shown a cylinder continu-
ously moving back and forth across the stage
behind two occluders, but the cylinder never
appeared in the gap between the two occlud-
ers. Presumably, these infants would expect
to see two cylinders instead of only one when
the screen was lowered. In fact, they looked

significantly longer at the one-cylinder dis-
play (the unexpected event) during the test.
Spelke and Kestenbaum concluded that in-
fants perceived the display as containing one
occluded object when the cylinder appeared
in the gap and two occluded objects when it
did not. When a single wide screen instead
of two narrower screens was used, infants
looked equally at the one- and two-cylinder
test displays, supporting the conclusion that
spatiotemporal information associated with
the appearance or nonappearance of the object
in the gap was the basis of their discrimina-
tion (Spelke, Kestenbaum, Simons, & Wein,
1995).

Baillargeon and colleagues extended this
line of research by putting a window in ei-
ther the top or bottom of the single, wide
screen and varying the properties of the
occluded object during the familiarization
phase. Baillargeon and DeVos (1991) and
Baillargeon and Graber (1987) familiarized
3.5- and 5.5-month-olds, respectively, with
either a tall or short rabbit that moved con-
tinuously back and forth behind the occlud-
ing screen. During the test, a window was
cut in the top of the screen so that the tall
rabbit could be seen in the window, but the
short rabbit could not. Infants in both famil-
iarization groups observed a rabbit going be-
hind the screen and appearing on the other
side. Irrespective of its height, the rabbit did
not appear in the top window. Infants in the
tall-rabbit group (the unexpected or impos-
sible event) looked significantly longer than
infants in the short-rabbit group (the expected
or possible event). If, however, two tall or two
short rabbits were presented on both sides of
the screen during familiarization, then infants
looked equally at the short- and tall-rabbit
events. The authors concluded that because
infants knew there were two objects from the
outset, they did not expect the tall rabbit to ap-
pear in the gap (for an alternative explanation,
see Meltzoff & Moore, 1998).
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The preceding studies suggest that infants
use spatiotemporal information to decide how
many objects are present behind an occluder.
Performance on this task varies as a func-
tion of age (Baillargeon, 1995). Although
2.5-month-olds looked longer at a single test
object if no object had appeared in a space be-
tween two occluders, they do not look longer
if the object had appeared in the bottom win-
dow of a single occluder (a screen); 3-month-
olds looked longer if no object had appeared
in the bottom window but not if no objects had
appeared in the top window. Not until infants
are 3.5 months old does the height of the object
affect test performance, with infants looking
longer if the tall rabbit did not appear in the
top window.

Xu and Carey (1996) modified Spelke and
Kestenbaum’s (1986) original procedure to
examine whether infants use spatiotemporal
or property/kind information to individuate
the number of objects in a display. During
the four baseline trials, 10- and 12-month-
olds faced an empty stage, and a screen was
lowered to reveal either one object or two
different objects. Each baseline trial ended
when the infant looked away for 2 s. Infants
exhibited a baseline preference, looking sig-
nificantly longer at two objects than at one.
During the four familiarization trials (eight
emergences and returns), an object moved out
from behind the left screen and then moved
back, and another object moved out from be-
hind the right screen and then moved back.
The objects used during the familiarization
and test trials were a duck and a truck. Only
one procedural difference differentiated the
spatiotemporal and property/kind groups: At
the beginning of each trial for the spatiotem-
poral group, the duck and the truck were si-
multaneously presented, one object on either
side of the screen. Infants were initially tested
with either the expected event (two objects) or
the unexpected event (one object). The famil-
iarization and test phases were then repeated,

but the number of familiarization trials was
halved, and infants were tested with the other
event. The whole procedure was then repeated
with a different set of stimuli. Altogether, in-
fants were tested with two expected and two
unexpected events in a within-subjects design.

Although 10-month-olds in the spatiotem-
poral condition overcame their baseline pref-
erence and looked equally at the two displays,
10-month-olds in the property/kind condition
continued to exhibit their baseline preference
for two objects. In contrast, 12-month-olds
in both the spatiotemporal and property/kind
conditions overcame their baseline preference
for two objects and looked equally at the one-
and two-object displays during test. Unfortu-
nately, infants were not tested with a two-duck
or two-truck display, so whether they actually
monitored property/kind information or only
number information cannot be determined
(Leslie et al., 1998). Furthermore, overcoming
their baseline preference was not compelling
evidence that infants had individuated objects
on the basis of featural information.

To overcome the baseline preference prob-
lem, Leslie and colleagues used two ob-
jects during both familiarization and testing,
and to avoid cross-contamination of results,
they used a between-subjects design (for re-
view, see Leslie et al., 1998). In a typical
study, for example, infants were familiarized
with a sequential presentation of one red and
one green disk. During testing, infants saw
either two red disks (the unexpected event)
or one red disk and one green disk (the ex-
pected event). Because 12-month-olds looked
equally at both the red/green and red/red disks,
Leslie et al. concluded that they did not in-
dividuate objects on the basis of color (see
Figure 17.14).

In another condition, infants were succes-
sively familiarized with one red disk and then
with another red disk (the expected event was
one red disk). When infants were again tested
with either two red disks or one red and one
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Figure 17.14 The events used by Leslie et al. (1998). Left panel: During the familiarization phase,
the infant is shown a stage with a screen; a red circle is first removed from behind the screen and then
is returned behind the screen. Then, a green circle is removed from behind the screen and is returned
behind it. During the test, the screen is lowered to reveal either a red and a green circle (expected) or two
red circles (unexpected). Right panel: The same experiment except that a triangle and a circle are shown
during familiarization and, during the test, the screen is lowered to reveal either a triangle and a circle
(expected) or two circles (unexpected).
SOURCE: Reprinted from Trends in Cognitive Sciences, 2, Leslie, A., Xu, F., Tremoulet, P., & Scholl, B.
Indexing and the object concept: developing “what” and “where” systems. Figures 4 & 5, p. 16, Copyright
1998 with permission from Elsevier Science.

green disk, they looked longer at both dis-
plays than had infants tested with the expected
event in the previous condition. The authors
concluded that infants who saw two red disks
expected, conservatively, to see one disk and
thus looked longer at two objects, regardless
of their color. When groups were simultane-
ously presented with either a red disk and a
green disk or two red disks and were tested
with two red disks, their looking times did not
differ. Taken together, these two conditions
suggest that infants used color information to
individuate objects but not to identify objects.
Leslie et al. (1998) have also conducted this
experiment using two different shapes (cir-
cle, triangle). Although 12-month-olds looked
significantly longer if they were subsequently

tested with two circles, 6- and 9-month-olds
did not.

Wilcox and Baillargeon (1998a) overcame
the baseline preference problem by testing
infants with only one object and changing
the familiarization phase. The ball-box group
saw a ball and a box emerge successively
from opposite sides of the occluding screen
during the familiarization phase and was
tested with one ball (an unexpected or im-
possible event). The ball-ball group saw a
ball emerge separately on each side of the
screen and was also tested with one ball
(an expected or possible event). Although
11.5-month-olds looked significantly longer
at the unexpected event, 9.5-month-olds did
not. When the familiarization event was

[Image not available in this electronic edition.]
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simplified, 9.5-month-olds looked signifi-
cantly longer at the impossible event as well.
In the simplified version, the ball and box did
not reverse trajectory; instead, the box ini-
tially appeared at the left side of the screen,
then disappeared behind it, and finally the ball
emerged on the right side of the screen. When
the screen was lowered during the test, infants
saw an empty stage behind the screen with the
ball still on the right side of the stage (Wilcox
& Baillargeon, 1998a).

Wilcox and Baillargeon (1998a, 1998b;
Wilcox, 1999) argued that infants do not use
featural information to individuate objects for
a procedural reason, namely because the tasks
described above require mapping between two
events: the occlusion event seen during fa-
miliarization and the no-occlusion event seen
during the test. This process necessitates re-
trieving the representation of the occlusion
event, comparing it with the current represen-
tation of the no-occlusion event, and judging

Figure 17.15 An event-monitoring task with narrow screen/wide screen conditions that was used
in individuation studies with 4.5- to 9.5-month-old infants (Wilcox, 1999). Left panel: In the wide
screen/different shape event, a ball is placed behind the right side of the screen; then, a box emerges
from the left side and returns; finally, the ball emerges from the right side again. Right panel: The narrow
screen/different shape event, which is identical except that the screen is narrow. The ball and the box
cannot fit behind the screen at the same time and is the unexpected outcome.
SOURCE: Reprinted from Cognition, 72, Wilcox, T., Object individuation: Infants’ use of shape, size,
pattern, and color. Figure 5, p. 140, Copyright 1999 with permission from Elsevier Science.

whether these two representations are consis-
tent (Wilcox & Baillargeon, 1998a). Although
infants given unambiguous spatiotemporal in-
formation can discriminate objects on occlu-
sion tasks at ages younger than 10 months,
they cannot do so in its absence.

In contrast, during an event-monitoring
task, infants monitor an ongoing occlusion
event and discriminate inconsistencies within
that single event, and the screen is not
removed (see Figure 17.15). In the event-
monitoring task, infants are familiarized
with a ball and box emerging from behind
a wide screen (ball-box) or a ball emerging
from each side of the wide screen (ball-ball).
The ball and box are then returned to their
original locations behind the screen. During
the test, the ball and box successively emerge
from behind a wide or a narrow screen. In the
wide-screen condition, both objects—either
the ball and box or two balls—can fit behind
the screen, but in the narrow-screen condition,

[Image not available in this electronic edition.]
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they cannot. The only unexpected or impossi-
ble event is the ball-box/narrow-screen event.
Because the two balls were identical in the
ball-ball/narrow-screen event, infants should
have expected to see only one ball (the pos-
sible event). Wilcox and Baillargeon found
that infants as young as 4.5 months looked
significantly longer at the unexpected ball-
box/narrow-screen event than at any of the
other three events (ball-ball/narrow-screen,
ball-box/wide-screen, and ball-ball/wide-
screen).

To control for the possibility that infants
simply prefer to look at the narrow screen,
Wilcox and Baillargeon (1998a) also used
smaller objects that fit behind it. Both 7.5-
and 9.5-month-old infants in the ball-box and
ball-ball groups looked equally long when the
ball and box were small enough to fit behind
the narrow screen at the same time. Using the
event-monitoring task, these same researchers
also documented a developmental progres-
sion in the use of featural information to indi-
viduate objects (for review, see Wilcox, 1999).
By systematically varying the features of the
ball and box, they found that 4.5-month-olds
discriminate on the basis of size and shape in-
formation, that 7.5-month-olds can also dis-
criminate on the basis of pattern, and that, by
11.5 months, infants can use color to discrim-
inate (see also Leslie et al., 1998). Needham
(1998) observed the same developmental pro-
gression in object segregation tasks.

The preceding studies reveal some of the
ways in which researchers have overcome the
baseline preference problem and suggest that
event-monitoring tasks are most suitable for
studies of object individuation with younger
infants.

Causality

Studies of causality ask when infants can
first detect different forms of causality, and
what conditions underlie causal perception
at different ages. Three-month-olds who are

tested in the operant mobile paradigm appear
to be quite deliberate when making the mo-
bile move, and seeminqly do so intention-
ally, and 6-month-olds who are tested in a de-
ferred imitation paradigm likewise seem very
deliberate in removing the mitten from the
hand-puppet (Rovee-Collier & Hayne, 2000).
Because young infants do not possess lan-
guage, however, and because researchers can-
not be certain that even older infants who are
linguistically competent understand questions
about what causes what, conclusions about in-
fants’ understanding of causality can only be
inferred from their behavior. Attempts to an-
swer these questions have used modifications
of experimental procedures that were previ-
ously used with preschoolers to study causal
understanding.

One such procedure assesses infants’ re-
sponse to a direct-launching event in which
one object collides with another object and
moves it, as when one pool ball hits another
and sends it forward (Leslie, 1984; Leslie &
Keeble, 1987; Oakes & Cohen, 1995). In this
procedure, infants are familiarized with either
a causal (direct-launching) event or with one
of three noncausal events in which a temporal
gap (delayed launch), a spatial gap (no colli-
sion), or both (delayed launch with no colli-
sion) separate the two parts of the event. Leslie
(1984), for example, showed 7-month-old in-
fants a filmed sequence of a causal event or
one of the three types of a noncausal event.
During the causal event, an animated block
moved to the middle of the screen and collided
there with a differently colored block, which
then moved to the other side of the screen.
In the noncausal delayed-launch event, a
500-ms delay intervened between when the
first block collided with the second block and
when the second block moved to the other side
of the screen. In the noncausal no-collision
event, the first block stopped 6 cm short of
the second block, but the second block moved
immediately after the first block stopped. The
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noncausal delayed-launch/no-collision event
included both spatial and temporal delays.
Using a between-subjects design, Leslie
played the filmed sequences on a continuous
loop during each familiarization trial until the
infant looked away for 1 s, and trials continued
until infants reached a 50% looking-time cri-
terion (see “Habituation Criterion Setting”).

Leslie (1984) found that the duration of in-
fants’ looking at the test events varied with the
degree of spatial and temporal causality, with
the direct-launch event at one polar extreme
and the delayed-launch/no-collision event at
the other. Subsequently, Leslie and Keeble
(1987) familiarized infants with either the
direct-launch or the delayed-launch sequence
and tested them with a reversed film se-
quence. The direct-launching group exhibited
a significant increase in looking time relative
to the group’s final looking time during famil-
iarization, but the delayed-launch group did
not. A no-change control group that saw the
same film sequence in the same order during
the test exhibited no increase in looking time.
Because the looking time of the delayed-
launch group significantly increased relative
to that of the control group, however, Leslie
and Keeble (1987) concluded that infants
can discriminate the spatiotemporal proper-
ties of events and that causal events are more
salient than noncausal ones. They also con-
cluded that 6-month-olds are capable of causal
perception.

Oakes and Cohen (1995) rejected the pre-
ceding conclusions, arguing that the pattern of
results obtained by Leslie and Keeble might
have represented a developmental transition
in causality processing. Using videotaped pre-
sentations of real objects engaging in causal
and noncausal events with 6- and 10-month-
olds, they found no evidence of causality per-
ception before 10 months. Ten-month-olds
who were familiarized with a causal event
looked significantly longer at the noncausal
delayed-launch and no-collision test events

than at the causal test event. In contrast, in-
fants who were familiarized with either of the
noncausal events looked significantly longer
at the causal event but not at the other two
noncausal events. They took these results as
evidence that 10-month-olds can discrimi-
nate causal from noncausal events over and
above the spatial and temporal dimensions
that Leslie and Keeble had previously docu-
mented. Oakes and Cohen attributed the neg-
ative results obtained from 6-month-olds to
the complexity of the objects. Yet, Baillargeon
(1995) had found evidence of causal percep-
tion at 4 months of age when she used three-
dimensional objects. When Oakes and Cohen
used simpler, ball-like, computer-generated
objects during familiarization and testing,
7-month-olds exhibited the same pattern of
results as 10-month-olds.

These studies underscore the fact that the
choice of stimulus materials significantly in-
fluences the age at which a particular cognitive
competence may be observed. Often experi-
menters race to document the earliest age at
which a given competence is present. In doing
so, however, they must not overlook important
questions regarding the choice of paradigm,
stimuli, and parameters.

Time Windows

Individual differences abound in the real
world but are less obvious in controlled labo-
ratory settings. Although considerable atten-
tion has focused on genetic contributions to
differences between individuals, each individ-
ual’s unique history of experiences also plays
a role but until recently, defining this role in
general terms had proven elusive. The time
window construct attempts to do this by de-
scribing the conditions that permit the inte-
gration of a current event or experience with
a prior one and the consequences of such in-
tegration for future cognition (Rovee-Collier,
1995).
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A time window is a limited period, timed
from the onset of an event, within which
subsequent information will be integrated
with the memory representation of that initial
event. New information that is encountered
before a time window has opened (i.e., before
the event has occurred) or after a time window
has closed will be treated as unique and will
not be integrated with the initial event. Thus,
for example, although distributed training is
clearly superior to massed training for both
infants (Vander Linde et al., 1985) and adults
(Cohen, 1985), there is an upper limit to the
time that can elapse between successive train-
ing sessions in order for their effects to accrue
(Rovee-Collier et al., 1995).

The time window construct is based on the
fundamental assumption that information is
integrated in short-term or primary memory
when some cue in a current event retrieves the
memory of a previous event. In other words,
representations that are coactive in short-
term memory are, by definition, integrated.
Because memory retrieval is prerequisite for
a present event to be integrated with a pre-
vious one, the time window closes when the
memory representation can no longer be re-
trieved (i.e., when the prior event is forgotten).
Thus, factors that affect retention will also
affect the width of a time window (see Infant
Memory). Unlike a simple forgetting func-
tion, however, the width of a time window ex-
pands nonlinearly with successive retrievals
of the memory. Because the successively re-
trieved memory takes progressively longer to
be reforgotten, new information can be inte-
grated with it after progressively longer de-
lays. In addition, the quantitative effects of
retrieving a memory at different points within
a time window (i.e., at different points on the
forgetting function) are nonuniform: Retriev-
ing a memory at the end of the time win-
dow expands the future width of that time
window more than retrieving it at the begin-
ning or middle of the time window (Galluc-

cio & Rovee-Collier, 2001; Hartshorn et al.,
1998c). The effects of retrieving a memory
and integrating new information with it at dif-
ferent points in the time window may also
differ qualitatively. New information that is
encountered late in the time window, for ex-
ample, may facilitate retention of that in-
formation at the expense of other compo-
nents of the original memory (Rovee-Collier
et al., 1993).

Implications for Research

Although time windows are not restricted to a
particular age or stage of development, their
consequences are particularly significant dur-
ing infancy, when the knowledge base is just
being formed. As a result, their implications
should be considered in the design of studies
on infant learning and memory. Because the
width of a given time window depends on the
number of previous retrievals (e.g., either di-
rect or indirect), experimenters should deter-
mine the forgetting function for a particular
event before introducing manipulations that
might affect it—a particularly crucial factor
in studies with younger infants, who forget
more rapidly. Also, because different experi-
mental manipulations affect performance dif-
ferently after different delays (i.e., at the end
of the time window), studies that introduce a
manipulation after a single delay may obtain a
large, moderate, or small effect, or none at all,
depending on when within the time window
that manipulation occurs.

Intelligence

Early attempts to predict later intellectual per-
formance from infant performance were un-
successful because they either focused on sen-
sory and motor performance, which change
radically during the infancy period, or used
assessment and outcome tasks too simple to
reveal the impact of early risk factors on later
cognitive behavior. In studies using animal
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models of mental retardation, increasing task
complexity improved prediction (Strupp &
Levitsky, 1990). A promising avenue of re-
search on individual differences in infant
memory was initiated by Fagen and Ohr
(1990) using operant tasks (mobile, train) with
3-, 7-, and 11-month-olds. They obtained cor-
relations between 0.40 and 0.50 between in-
fants’ 1-week retention ratios and their per-
formance on standard assessment tests at 2
and 3 years. These correlations would have
probably been higher had they tested older
infants nearer the end of their respective for-
getting functions (see Hartshorn et al., 1998b),
where the range of variation is greater.

A widely used, standardized intelli-
gence test for infants, the Fagan Test of
Infant Intelligence, is based on their selec-
tive attention to novelty during a paired-
comparison test (Fagan, 1990). McCall and
Carriger (1993) concluded that novelty pref-
erence scores obtained during the first year of
life predict IQ scores between 1 and 8 years
of age. Infants’ percent novelty scores at 4
and 7 months of age, for example, predict
their scores on the Peabody Picture Vocab-
ulary Test at 3, 4, 5, and 7 years of age, with
correlations between 0.37 and 0.57 (Fagan &
Detterman, 1992; Fagan & McGrath, 1981;
Fagan & Singer, 1983). Percent novelty scores
at 5 and 7 months also correlate significantly
with Bayley Scale Scores at 2 years and with
Stanford-Binet scores at 3 years (Thompson,
Fagan, & Fuller, 1991). Investigators have
used the Fagan Test to study the effects of
early exposure to toxins (e.g., PCBs, lead,
mercury) and substances of abuse (e.g., al-
cohol, cocaine) as well the effects of infant
nutrition, iron supplements, and specialized
feeding formulas on later intellectual func-
tioning. In addition, the Fagan Test has been
used to assess the cognitive sequelae of ma-
ternal HIV infection, intraventricular hemor-
rhage, bronchopulmonary dysplasia, failure to
thrive, intrauterine growth retardation, genetic

anomalies, and various neurological abnor-
malities. Whereas measures of selective at-
tention on paired-comparison tests following
a brief familiarization period reflect how an
infant’s memory was implicitly biased by the
prior exposure, operant measures reflect an
infant’s memory of a past experience that has
been retrieved from a long-term store. Both of
these measures reveal that if an infant’s abil-
ity to attend selectively to a visual stimulus or
to retrieve a memory of a past experience is
compromised early in life, then it is likely to
be compromised later on as well.

Preattentive Processing:
The Pop-Out Effect

Adult visual processing is thought to in-
volve two stages—a preattentive stage, in
which visual information is decomposed into
its constituent parts, and a focused attention
stage, in which this information is reconsti-
tuted into an object percept. The object per-
cept is then compared with the contents of
long-term memory and if a match is struck,
the object is identified or takes on meaning.
The preattentive and focused attention stages
process “what” and “where” information,
respectively.

In visual pop-out, a unique critical feature
(Treisman, 1988) or texton (Julesz, 1984) im-
mediately and effortlessly captures attention
and perceptually stand outs from the rest of
an otherwise homogeneous display. Pop-out is
attributed to a preattentive-processing mech-
anism that extracts unique primitive features
involuntarily and in parallel across a visual
field without requiring focused attention. Fea-
tures that pop out for adults include line seg-
ments and crossings (Julesz, 1984), line ori-
entation and length (Treisman, 1988), shape
(Treisman, 1982), curvature (Wolfe, Yee,
& Friedman-Hill, 1992), angles (Treisman
& Sato, 1990), size (Sagi, 1988), luster
(Wolfe, Franzel, & Cave, 1988), and color
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Figure 17.16 The long-term retention test: The mobile with six novel (L) blocks and one familiar
pop-out stimulus (+).

(Nakayama & Silverman, 1986). The features
known to pop out for infants are line crossings
(Rovee-Collier, Hankins, & Bhatt, 1992), line
segments (Adler, Inslicht, Rovee-Collier, &
Gerhardstein, 1998; Colombo, Ryther, Frick,
& Gifford, 1995; Gerhardstein, Liu, & Rovee-
Collier, 1998), shape (Gerhardstein & Rovee-
Collier, in press), color (Catherwood, Skoien,
& Holt, 1996; Gerhardstein et al., 1999), and
three-dimensional targets (Bhatt & Bertin,
2000). The experimental procedures used to
study pop-out effects in infants are described
below.

Operant Tasks

If 3-month-olds are trained to kick to move a
mobile displaying stimuli composed of black
horizontal and vertical bars that differ only in
their spatial arrangement (T, L) or in the ad-
ditional presence of a line crossing (+), then
they discriminate L’s and T’s from +’s during
a recognition test 24 hr later. When tested with
a pop-out array after 24 hr, however, whether
3-month-olds recognize the test mobile is de-
termined by the unique target that pops out
from the surrounding distractors. If trained

with seven +’s, for example, infants respond
vigorously when tested with one + among six
L’s, despite the large number of novel L’s sur-
rounding it (Rovee-Collier et al., 1992; see
Figure 17.16). Normally, infants cannot rec-
ognize a test mobile that contains more than a
single novel object, but a single novel object
on a test mobile does not disrupt 24-hr reten-
tion. Therefore, the single, familiar training
item in the test display—despite being sur-
rounded by novel items—must have popped
out and captured infants’ attention, and in-
fants behaved as if the mobile were composed
entirely of blocks like the target. Conversely,
if trained with a mobile displaying L’s and
tested with one + among six L’s, infants be-
haved as if the mobile were composed only of
novel +’s and failed to recognize it, despite
the fact that it is surrounded by a large num-
ber of familiar training L’s. Therefore, it also
must have popped out and captured infants’
attention. As a result, they again behaved as
if the test mobile were composed entirely of
blocks like the target.

Rovee-Collier et al. (1992) used a reactiva-
tion procedure to provide convergent evidence
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of pop-out. Reactivation is a perceptual identi-
fication task in which the stimulus that is used
as a memory prime must strike a fairly veridi-
cal perceptual match with what was origi-
nally encoded. If more than a single object on
the prime is novel, then it will not reactivate
the memory after it has been forgotten. For
infants who were trained with a mobile con-
taining seven +’s, a mobile containing a sin-
gle familiar block (+) and six novel distrac-
tor blocks (L) was an effective prime, but the
same prime did not reactivate the memory of
infants trained with a mobile containing seven
L’s. For these infants, the pop-out target on the
memory prime was novel. Thus, whether the
pop-out target is familiar or novel completely
controls whether a forgotten training memory
is or is not reactivated, respectively. Paradoxi-
cally, increasing the number of familiar train-
ing blocks on the mobile prime from one to
three eliminated the pop-out effect, despite the
fact that the number of novel blocks was cor-
respondingly reduced (Bhatt, Rovee-Collier,
& Weiner, 1994).

The litmus test for parallel processing is
the demonstration that perceptual pop-out
is independent of the number of other ele-
ments (distractors) in the display. In stud-
ies with adults, the slope of reaction times
across different numbers of distractors is flat
(Treisman, 1988). The same result was ob-
tained from independent groups of infants
who were trained with a mobile displaying
seven L blocks and who were reactivated with
an L pop-out mobile containing 4–12 distrac-
tors (Rovee-Collier, Bhatt, & Chazin, 1996).
If the single pop-out target was a novel +,
however, then despite being embedded in as
many as 11 or as few as 4 training distrac-
tors, infants would not respond to the test mo-
bile. When the reactivation mobile contained
13 objects, however, the functions reversed—
but for an uninteresting reason: With so many
objects on the mobile, the single pop-out tar-
get was visually obscured by the remaining
objects (the distractors) in the display. Under

these conditions, whether the large number of
distractors was familiar or novel determined
whether the memory was or was not reacti-
vated, respectively.

Familiarization and Paired-Comparison
Tests

This procedure has also been used to exam-
ine pop-out effects in infancy (for reviews, see
Bhatt, 1997; Colombo et al., 1995; Sireteanu,
2000). Quinn and Bhatt (1998), for example,
exposed 4-month-old infants to two homoge-
neous 5 × 5 arrays of L’s, +’s, or T’s dur-
ing four successive 15-s trials, then tested
the infants on two successive 10-s paired-
comparison tests. The two test arrays were
counterbalanced for position on each test trial.
One test array contained a single novel charac-
ter amidst familiar characters, and the other ar-
ray contained a single familiar character amid
novel characters. The characters + and either
L or T were used in the pop-out condition,
and L and T only were used in the non-pop-
out condition (see Figure 17.17). If infants in
the pop-out condition experienced a pop-out
effect, then they should treat the complete ar-
ray with the single novel character as novel
even though 24 of the 25 stimuli were famil-
iar, and vice versa. That is, despite the fact
that infants of this age usually look propor-
tionally longer at a novel stimulus, they were
expected to look significantly longer at the
array containing more familiar items if the
novel item popped out. In the non-pop-out
condition, however, infants should look sig-
nificantly longer at the array containing more
novel items than familiar ones. Both results
were obtained with 3-month-old infants.

Sireteanu and colleagues (for review, see
Sireteanu, 2000) used a texture-segmentation
task in which a patch of features (e.g., a
square patch of lines oriented obliquely to the
left) was embedded in a field of distractors
(e.g., lines oriented obliquely to the right).
In this task, the space between the patch and
its surround appears as a distinctive boundary
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Figure 17.17 Top panel: The homogeneous 5×5
array used during familiarization trials with T’s.
Middle panel: The two pop-out condition arrays
shown during the paired-comparison test. On one
side is a single familiar character (T) amid novel
characters (+’s); on the other side is a single novel
character (+) amidst familiar characters (T’s).
Bottom panel: The two non-pop-out condition test
arrays. On one side is a single familiar character
(T) amid novel characters (L’s); on the other side is
a single novel character (L) amidst familiar char-
acters (T’s).
SOURCE: Figure courtesy of Ramesh S. Bhatt.

that segregates the patch from the rest of the
field. During paired-comparison tests, infants
and children of different ages simultaneously
viewed a pop-out display (either a single fea-
ture or a patch of features) and a homoge-
neous display. They found that a patch popped
out earlier in development than single feature
and that a single feature first popped out when

infants were older than they were in the mo-
bile pop-out studies described above. Mirror-
image oblique-line elements and texture dif-
ferences, however, are much more difficult
for young infants to discriminate than single
horizontal versus vertical line segments. This
discrepancy in the age at which stimuli first
pop out highlights the importance of the type
of stimulus materials that experimenters use
in investigating infant cognition, particularly
with younger infants.

Touch-Screen Procedure

This procedure was developed as a nonver-
bal task for studying visual search in toddlers.
It allows experimenters to measure reaction
times of infants as young as 12 months, substi-
tutes a motoric response for a verbal one, and
substitutes operant shaping for verbal instruc-
tions. Gerhardstein and Rovee-Collier (in
press) trained 12- to 36-month-olds to locate
and touch a target (a Barney-like cartoon char-
acter) on the screen (see Figure 17.18). The
target was presented amid a regular pattern

Figure 17.18 An 18-month-old responding to the
uniquely colored target during a feature-search test;
the target is surrounded by distractors that differ
only in color.
SOURCE: Photo courtesy of Peter Gerhardstein.

[Image not available in this electronic edition.]
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of distractors and jogged around the screen.
When the toddler touched the moving target,
a sound (“ta-da”) was triggered, and four other
animated cartoon characters danced around
the target for 1 s. These conditions remained
in effect for 17 trials (Trials 2–18), after which
the target jogged in one spot for six trials
(Trials 23–28) and then remained stationary
for the final six trials. To proceed to the test
phase, the toddler had to make three con-
secutive correct responses within 5 s of the
appearance of the target during the final six
trials. During the test phase, the single tar-
get appeared in either a feature-search or a
conjunction-search display.

In the feature-search display, distractors
that differed only in color surrounded the
unique target. In the conjunction-search dis-
play, the unique target was a conjunction of a
particular color and a particular shape and was
surrounded by distractors that were either the
same color but different in shape, or different
in color but the same in shape. Toddlers
received 32 test trials: eight trials each with 2,
4, 8, and 12 distractors presented in random
order. Specially-designed software recorded
toddlers’ latency to touch the screen, their
errors, and their correct responses. The 12-
month-olds completed only the feature-search
task; during the more difficult conjunction-
search task, they eventually lost interest when
their incorrect responses were not reinforced
during the learning phase (a problem com-
mon to many infant learning studies); infants
older than 12 months completed both tasks.

In the feature-search task, the slope of re-
action time was flat over distractor number at
all ages, but toddlers responded more rapidly
with age. A flat reaction-time slope over dis-
tractor number in pop-out studies with adults
is the defining characteristic of parallel search
(Treisman, 1988). In the conjunction-search
task, reaction time increased monotonically
with distractor number, which is the defining
characteristic of a serial (element-by-element)

search process (Treisman, 1988). The finding
that infants and toddlers perform like adults
on visual search tasks when the same measure
is used and verbal competence is not a lim-
iting factor reveals that the same attentional
processes underlie visual search in infants
and adults. This procedure can be adapted
to study other experimental problems with
preverbal toddlers and young children. Gulya
(2000), for example, used it to study the de-
velopment of serial-list learning from 3 to
20 years. A major advantage of this proce-
dure is that it eliminates the age differences
in verbal competence and motivation that
often confound developmental studies of in-
fant cognition.

CONCLUSIONS

Early research on infant cognition treated mo-
tor development, visual development, audi-
tory processing, classical conditioning, and so
forth as unrelated problems (for discussion,
see Meltzoff & Kuhl, 1989). Since then, re-
search has revealed that infant cognition is the
product of many different modalities and pro-
cesses acting together. Increasingly advanced
technology will permit researchers to reexam-
ine answers to old questions, to ask new ones,
and to extend the study of cognition to the
developing fetus.

Although the present chapter focused on
learning and memory, experimenters who
seek to pursue research on a particular prob-
lem should recognize that methodologies that
were developed to study other problems can,
depending on the ingenuity of the experi-
menter, usually be adapted to investigate it.
Speaking more broadly, all of the topics
covered here, along with their multiple and
complex relationships with other topics such
as neural, motor, perceptual, social, and
language development that were not covered,
will eventually have to be included in an
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integrative experimental analysis if we are
ever to develop a complete science of infant
cognition.
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CHAPTER 18

Aging and Cognition

PATRICK RABBITT

Demographic changes make the study of cog-
nitive aging of urgent practical interest. It is
also theoretically important because it high-
lights the inadequacy of current functional
models in mainstream cognitive psychology.
These, almost without exception, describe ar-
tificial single-steady-state systems that do not
account for individual differences in cogni-
tive competence, describe how peoples’ abil-
ities change as they grow up or grow old, or
explain how older people lose skills that they
once performed superbly well.

Individual differences in age may seem
trivially simple to define and measure in
comparison to more contentious dimensions
of individual difference, such as intelligence
(Howe, 1999). This is not so, because aging
is not merely the passage of time but rather a
complex of processes that proceed at differ-
ent rates in different people and in different
parts of the brain and central nervous sys-
tems of individual persons. This distinction
between time and process has been acknowl-
edged by a contrast between chronological
aging, indexed in calendar time, and biolog-
ical aging, indexed in terms of the progress
of changes in physiological indices of aging,
or in terms of residual life expectancy (e.g.,
Jalavisto & Nakkonen, 1963). The particu-
lar models for biological aging that we adopt
are key to methodology in cognitive gerontol-
ogy because they determine both the groups

of people that we study and the tasks on which
we compare them.

It is therefore surprising that most stud-
ies in a voluminous literature have ignored
both the theoretical necessity to relate cogni-
tive changes to biological changes in the sense
organs and central nervous system (CNS)
and the opportunity to enrich mainstream
cognitive psychology by developing better
functional models for change and for indi-
vidual differences. Most investigators have
compared small groups of younger and older
people whose biological and health status
have been established by unelaborated self-
report of adequacy, or not at all, on tasks
that were originally designed to test details
of hypothetical steady-state functional models
for attention, memory, and decision in young
adults. Biological changes are not the sole de-
terminants of cognitive status in later life, but
cognitive change in old age cannot be under-
stood unless biology is taken into account.
Models for biological or cognitive aging are
also inadequate unless they also include de-
mographic, social, and life-style factors. For
example, prolonged education, lengthy mar-
riage to an intelligent spouse, complexity of
workplace environment, higher income, and
personality factors have all been shown to
affect maintenance of cognitive functioning
in old age (e.g., Arbuckle, Gold, & Andres,
1986; Hayslip, 1988; Schaie, 1990b). Some
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useful frameworks have been proposed to ac-
count for these relationships (e.g., Schooler,
1984). However because the overwhelming
majority of studies of behavioral changes in
old age have been based on comparisons be-
tween very small groups of older and younger
people, they have found it convenient to ig-
nore these factors and so to promote a tacit
assumption that cognitive aging follows an
identical path in all individuals. This is un-
fortunate because the key finding that theo-
ries of cognitive gerontology must explain is
not that the average levels of performance of
small samples decline as they age but the strik-
ing individual differences in the trajectories of
change that individuals experience (Rabbitt,
Diggle, Holland, Smith, & McInnes, 2001).
Methodology must be guided by recognition
that because individual differences in trajec-
tories of aging are determined by the separate
and interactive effects of a very large num-
ber of different factors, the time course of
changes at the levels of individuals are usually
strikingly different from that of population
averages.

MEASURING BIOLOGICAL AGING

The passage of time affects all physiological
systems, and there is little agreement as to
which of many changes are the best markers
for processes that may be collectively termed
biological aging. Because no single marker is
adequate, investigators have used a range of
different measures of physiological function
to develop biological aging profiles for ani-
mals of different ages, or have sought relation-
ships between physiological indices that can
be included in factor analyses (e.g., Borkan &
Norris, 1980; Clark, 1960) or discrimination
analyses (e.g., Hofecker, Skalicky, Khment, &
Niedermuller, 1980) to derive composite, or
aggregated, indices of aging. The most com-
mon tool for modeling biological aging has

been the use of hierarchical linear regression
analyses to assess the relative strengths of pre-
dictors of longevity (e.g., Dundikova, Silvon,
& Dubina, 1978; Furkawa, Inoue, Kajiya &
Abe, 1975; Voitenko, & Tokar, 1983). In ap-
plied studies of human aging, biological age
has sometimes been equated to functional age
with reference to externally determined crite-
ria of capability for self-maintenance in the
community, or the ability to keep up with the
demands of particular industrial tasks (e.g.,
Dirken, 1972).

Many physiological indices are known to
predict mortality and longevity, but no sin-
gle master index, or composite factor derived
from many different indices, has yet provided
a satisfactory measure of biological age. An
early summary by Shock (1985) still fairly
represents the current situation:

There is little evidence for the existence of a
single factor that regulates the rate of aging in
different functions in a specific individual. Be-
cause of the large range in the performance of
most physiological variables among subjects of
the same chronological age, it appears that age
alone is a poor predictor of performance. Sub-
jects who perform well on physiological tests
when they are first tested, however, are more
likely to be alive ten years later than subjects
who perform poorly. (p. 723)

Because attempts to find composite indexes
of biological aging have been unrewarding, a
pragmatic solution has been to examine asso-
ciations between particular indexes of phys-
iological efficiency and particular indexes
of current cognitive status. Physiological in-
dexes are generally chosen for convenience
of measurement or because they are practi-
cally important in the everyday lives of in-
dividuals. For example, Birren, Botwinnick,
Weiss, and Morrison (1963); Birren, Butler,
Greenhouse, et al. (1963) and Heron and
Chown (1967) found modest but consistent re-
lationships between easily measured indexes
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of grip strength and sensory acuity and perfor-
mance on choice reaction time (CRT), mem-
ory, and problem-solving tasks.

Loss of leg muscle strength is one of the
most thoroughly researched indexes of bio-
logical aging because it is one of the causes
of falls, which are a particular hazard for older
people. Dean (1988) reports benchmark data
on relationships between muscle strength and
calendar age in 4,767 women aged 65 years
and older. Many other investigators such as
Lord, Clark, and Webster (1991a) and Lord,
McLean, and Stathers (1992) have replicated
these findings and also found correlations be-
tween leg muscle strength and cognitive per-
formance in later life. The variety of differ-
ent, and mutually compatible, explanations
for such relationships illustrates the complex-
ity of causal inference. One explanation is
that changes in muscle strength are due to
muscle atrophy associated with loss of fibers
and, to a lesser extent, to reduction in fiber
size (Brooks & Faulkner, 1994; Tzankoff &
Norris, 1977), and that these changes are
due to a process of de-nervation and re-
innervation of individual fibers caused by a
continuous age-related loss of motor neurons
in the spinal cord, which may reflect simi-
lar changes in the cortex (Lexell, Downham,
& Sjostrom, 1986). Another is that age-related
depletion of neurotransmitters and neurohis-
tological changes in the motor cortex and
higher motor areas of the brain reduce ef-
ficiency of innervation to muscles (e.g.,
Haarlkand, Temkin, Randahl, & Dikmen,
1994). Less directly, both muscle strength
and the CNS may be affected by nutritional
deficiencies or by cardiovascular or respi-
ratory problems that are likely to impair
brain blood supply and oxygenation (Rikli &
Busch, 1986). Causal relationships are com-
plicated to disentangle because many age re-
lated changes in muscle mimic those in dis-
use. In so far as loss of muscle strength is due
to disuse, and disuse tends to be associated

with reductions of cardiovascular and respi-
ratory function, improvements brought about
by exercise should also improve cognitive per-
formance. This partially explains findings that
older people who take regular exercise have
faster reaction times than those who do not
(e.g. Bayllor & Spirduso, 1988; Clarkson,
1978; Dustman, Ruhling, Russell, Shearer,
Bonekay, Shigeoka, Wood, & Bradford, 1984;
Kroll, & Clarkson, 1978; Sherwood & Selder,
1979). However these differences in reaction
time do not only reflect muscle efficiency be-
cause age increases the lag between stimu-
lus onset and initiation of muscle contraction
(premotor time, PMT) much more than sub-
sequent contraction time (CT) in the agonist
muscle. Age slowing of reaction time must
reflect central as well as peripheral changes
(Spirduso, 1975, 1980; Spirduso & Clifford,
1978).

Longitudinal studies of correlated changes
in cognitive function and in fitness are more
persuasive than are cross-sectional compar-
isons between groups of more and less active
elderly people. Clement (1974) found both
cross-sectional and longitudinal associations
between maintenance of grip strength and
vocabulary and Wechsler Adult Intelligence
Scale (WAIS) subtest coding performance in
later life. Clarkson-Smith and Hartley (1990),
Powell and Pohndorf (1971), and Stones and
Kozma (1988) reported positive correlations
between oxygen uptake, physical activity, and
motor and cognitive performance that provide
a sufficient explanation.

Correlations are also regularly found be-
tween simple measures of visual and auditory
acuity and levels of cognitive performance
in older samples (e.g., Birren, Botwinnick,
et al., 1963; Heron & Chown 1967; Sklar
& Edwards, 1962). Birren and Cunningham
(1985) suggested that these associations are
strong enough to make sensory acuity a use-
ful marker of the amount of individual dif-
ferences in age-related cognitive change. The
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issue of interpretation is highlighted by a
neat comparison by Granick, Kleban, and
Weiss (1976), who compared the strengths of
relationships between calendar age, hearing
threshold, and cognitive performance in 47
very healthy older men and in 38 older women
with some pathologies. Within both groups
hearing losses in the range of 125 to 8,000 cps
correlated with performance on most of the
WAIS subtests. Within the group of healthy
men these were modest, appeared for only a
few of the WAIS tests, and disappeared when
variance associated with their calendar ages
had been taken into consideration. Within the
less healthy female group correlations were
stronger, occurred for more WAIS subtests
and persisted even when age-associated vari-
ance had been removed. This suggests that
in healthy individuals “normal” hearing loss
may reflect factors that are associated with the
passage of time, such as progressive mechan-
ical damage to the cochlear hair cells, rather
than with changes in the CNS. In less healthy
groups additional hearing loss is likely to be
associated with pathologies that also affect
global CNS integrity.

Recent studies confirm relationships be-
tween hearing acuity and cognitive status in
old age (e.g., van Boxtel et al., 2000). Anstey,
Stankov, and Lord (1996) and Anstey, Lord,
and Williams (1997) found positive correla-
tions between visual and hearing acuity and
leg-muscle strength that were consistent with
the idea that age-related changes in these
indices reflect operation of a common phys-
iological cause. Both sensory and strength
measures separately and jointly predicted per-
formance on choice reaction time and
problem-solving tasks even after variance
associated with education, mood, and self-
reported general health status had been par-
tialed out.

All these studies computed only simple re-
gressions between biological indices, calen-
dar age, and cognitive performance. These are

invariably statistically significant but modest,
falling in the range R = .2 to .4 and so ac-
counting for no more than 16% of variance in
cognitive function between individuals. How-
ever Lindenberger and Potter (1998) argued
that it is more pertinent to ask what is the
proportion of the age-related variance in cog-
nitive function for which any marker can ac-
count. For example, if within a sample simple
correlations between individuals’ unadjusted
intelligence test scores and their calendar ages
are r = .45 accounting for 20.25% of vari-
ance, the point of interest is for what propor-
tion of this 20.25% of age-related variance
physiological markers can account. To do this,
Lindenberger and Potter proposed a method
of computing “shared over simple” effects in
multivariate regression analysis. The logic can
best be illustrated by the computational pro-
cedure as follows:

First we compute the R2 value for the re-
gression of age on the variable of interest
(e.g., let us suppose that this is CRT, and that
R2 = .346). Next we compute the R2 value
for the predictor of interest; let us suppose
that this is diabetes, and that the R2 = .121.
In a third step we compute the joint R2 for
age and diabetes as predictors of CRT, ob-
taining R2 = .346. To obtain the unique ef-
fect of age, we subtract the R2 for diabetes
from the joint R2 for age and diabetes (i.e.,
.346 − .121 = .225). We then compute the
shared effects of age and diabetes by sub-
tracting the unique effects of age (i.e., .225)
from the simple effect of age (i.e., .346), giv-
ing .121. The proportion of the age effect that
is accounted for by diabetes, the shared over
simple effect, is then .121 (shared effect of
age and diabetes)/.346 (simple effect of age),
which gives us .349, or an estimate of 34.9
percent. We conclude that diabetes accounts
for up to 34.9% of the observed age-related
variance in CRT.

With this method Baltes and Lindenberger
(1997), Lindenberger and Baltes (1994) and



pashler-44093 book December 18, 2001 9:37

Measuring Biological Aging 797

Li, Jordanova, and Lindenberger (1998) ob-
tained the striking result that simple measures
of visual and auditory acuity and gait can ac-
count for up to 85% to 90% of age-related
variance in scores on intelligence tests and
verbal memory tasks. They proposed three ex-
planations: that losses of sensory acuity expe-
rienced over long periods amount to sensory
deprivation that gradually leads to cognitive
decrements; that sensory decrements might
have knock-on effects on cognitive function,
and, most convincingly, as suggested by all
earlier investigators of these relationships,
that age-related changes in sensory acuity,
gait, and cognitive function reflect an age-
related physiological common cause.

Granick et al. (1976) neatly illustrated a
problem of interpretation of these striking
findings in their comparison of relationships
between hearing acuity and cognitive perfor-
mance in more and less healthy older people.
Even causally unrelated processes may have
strongly correlated temporal courses. For ex-
ample, in an imaginary country where it is the
pleasant custom to plant a tree on the natal
day of each citizen, the growth of individuals’
birth-trees would act as timekeepers, indexing
their calendar ages and so, also the progress
of all the time-dependent physiological and
CNS changes that they experience, including
those responsible for the changes in sensory
and mental abilities that occur late in their
lives. Within the population, birth-tree bulk
will, therefore, not only be a strong predictor
of both physiological and cognitive indexes in
old age but also an even stronger predictor of
age-related variance in these abilities.

Analogously to birth-trees, processes of
anatomical change can act as clocks or calen-
dars that account for substantial proportions
of age-related or, more properly, time-related
variance in other processes to which they are
causally unrelated. For instance, progressive
mechanical wear of joints impairs gait, and
loss of basilar membrane hair cells due to cu-

mulative mechanical damage from loud noise
increasingly impairs hearing. These changes
progress regularly over time and so can keep
pace with causally quite unrelated changes
in the CNS that affect cognition. Correla-
tions between the time courses of different
processes are not illuminating unless causal
relationships are shown.

It follows that some of the shared variance
between sensory and cognitive changes must
be due to temporal concurrence rather than to
common causes. Unfortunately, in any given
case, it is not easy to estimate the relative con-
tributions of these factors. Researchers may
gain some impression of the amounts of error
that occur—for example, by computing pre-
dictions of cognitive status from balance only
after the effects of age-associated variables
that affect balance, such as leg joint flexibility
and muscle-strength, have also been taken into
consideration. Researchers may also simulta-
neously examine predictions from several dif-
ferent biological markers on the assumption
that overlap in prediction of cognitive status is
more likely to reflect variance associated with
a common cause that also affects the CNS than
with temporal coincidence of changes experi-
enced over a lifetime. However, in my opin-
ion, satisfactory solutions have not yet been
found.

The common-cause hypothesis implies
that particular age-related physiological
changes jointly affect vision, hearing, gait,
and mental abilities but leaves open the ques-
tion whether these reflect pathology (but note
Granick et al., 1976). Until now, all of the ev-
idence has come from examination of vari-
ance between, rather than within, individu-
als. The fact that variance between individuals
in a population increases as they grow older
means that they must change at different rates
but does not tell us whether this is because
even ideally healthy people “age” at different
rates, or because inequalities in incidence of
pathologies inevitably increase with sample
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age. If properly understood, this issue of the
etiology of age-related changes must define
our models for cognitive gerontology and so
determine how we select groups of individu-
als for comparison.

In studying the cumulative effects of pa-
thologies and negative biological life events
(e.g., van Boxtel, Bentinck et al., 1998), peo-
ples’ ages, per se, may be irrelevant, and
researchers may compare the cognitive sta-
tus of healthy controls and patients suffer-
ing from particular pathologies, particularly
those such as hypertension and late-onset
diabetes, which become increasingly com-
mon in later life. There is excellent evidence
that if older groups are rigorously screened
for health, age differences in performance
on some tasks are markedly reduced (Houx,
1991). If most variance in cognition in older
samples can be attributed to pathology, cog-
nitive gerontology loses much of its ratio-
nale as an independent intellectual discipline
and becomes a branch of health psychol-
ogy in which patients’ ages are of interest
only inasmuch as they affect the intensity
of expression of the illnesses that they suf-
fer. A contrary position is that the process of
“natural” aging causes cognitive changes that
are additional to, and functionally indepen-
dent of, those due to a lifetime accumulation
of pathologies and traumata. This distinction
between processes of “primary,” “normal,” or
“usual” aging and the “secondary” effects of
pathologies and “biological life events” has
powerfully, though tacitly, determined models
for cognitive change and so for the methodol-
ogy of group selection.

PRIMARY AND SECONDARY AGING

A distinction between processes of primary
and secondary aging has been useful to bi-
ologists because changes such as telomeriza-
tion (Kirkwood, 1999) are arguably primary
in the sense that they occur in all members

of a species independently of their life his-
tories and may well have genetically deter-
mined courses. Evolutionary biologists find
this distinction useful at the species level.
For example, in the disposable soma theory
(Kirkwood, 1999—in our view, nomen est
omen), this has been interpreted as a dis-
tinction between endogenous inheritable
characteristics that determine the course of
evolution of a species and exogenous environ-
mental factors that may affect the life spans
of individual animals. Even here the distinc-
tion should be made cautiously. One might,
for instance, take heritable differences in im-
mune system efficiency to be a primary factor
in determining longevity. However, this pri-
mary factor acts by protecting against the sec-
ondary effects of environmental exposure to
diseases (Takata, Ishii, Suzuki, Sekiguchi, &
Iri, 1987). The boundaries of causal linkages
between primary and secondary factors are
unclear, and it seems more useful to treat them
as loose descriptors of sets of related factors in
a system of complex interactive relationships
than as either-or explanations or guides for
investigations.

The importance of the distinction between
normal or primary and secondary factors as
determinants of rates of cognitive change was
early recognized (e.g., by Busse, 1969). Nev-
ertheless, the overwhelming bulk of inves-
tigations of cognitive change in old age is
still based on cross-sectional comparisons be-
tween small groups of older and younger peo-
ple and is tacitly assumed to explore primary
age-related changes in the cognitive system,
and thus in the brain and CNS. The distinc-
tion between groups suffering from primary
and secondary changes works best if the aim
is to study the cognitive effects of patholo-
gies such as diabetes (e.g., Bent, Rabbitt, &
Metcalf, 2000) or hypertension (e.g., Hertzog,
Schaie, & Gribbin, 1978) or links between
cardiovascular efficiency and cognitive per-
formance in later life (e.g., Barrett & Watkins,
1986; Elias, Robbins, Schultz, & Pierce, 1990;
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Siegler & Nowlin, 1985; Wilkie, Eisdorfer,
& Nowlin, 1985). However, even such com-
parisons do not necessarily allow clear dis-
associations between primary and secondary
processes because the cognitive effects of par-
ticular pathologies may well vary with the
ages at which they are first contracted and thus
with their durations. It is unsafe to assume that
primary and secondary changes must neces-
sarily be of qualitatively different kinds, that
they affect different functional processes and
so different cognitive abilities, or that their
effects are entirely independent of each other.

Criteria for selecting groups to study the
effects of primary aging are much less clear
because they depend on exclusion rather than
inclusion of potentially influential factors:
“aging processes are always defined by de-
fault after effects of disease have been taken
into consideration” (Fozard, Metter, & Brant,
1990). It is possible to recruit groups that are
sufficiently large and diverse to be plausibly
representative of the population at large, to
further assume that we can obtain quantifiable
indexes for their levels on all of the secondary
factors that are likely to contribute to differ-
ences between them, and then to use post hoc
statistics to identify all of the variance that is
associated with these secondary factors in or-
der to estimate the residual variance that may
be considered, by default, to reflect pure pro-
cesses of primary aging. This is probably the
best option available, but it is important to
bear in mind that it relies on the assumption
that we have actually identified, and taken
into consideration, all important secondary
factors.

Authors of nearly all cross-sectional stud-
ies of differences in particular cognitive func-
tions such as memory, decision speed, or prob-
lem solving between small groups of different
ages take pains to state that their older groups
are “healthy.” Epidemiological statistics sug-
gest that unverified assumptions of health in
randomly or carelessly selected samples are
unsafe. For example, U.K. National Health

Service statistics show that 60% of individuals
aged 65 years and older and more than 65%
of individuals aged 75 years and older have
been diagnosed as suffering from two or more
pathologies, with a sizeable proportion having
unrecognized conditions that will manifest
themselves and begin to limit their lifestyles
within two years. Symptom-free cardiovas-
cular problems that may affect brain blood
supply for many years before they are diag-
nosed are common, and marked neurophys-
iological changes may pass undetected. For
example, Guttman et al. (1998, p. 977) re-
ported a marked decrease with age in cortical
white matter in a population that was selected
as being “optimally healthy.” Another statis-
tic that is uncomfortable for group selection
is that over 20% of a sample of 60 individu-
als aged from 60 to 82 years who had been
selected on the basis of exceptionally well-
maintained cognitive ability during a 17-year
longitudinal study and had also been screened
by detailed clinical physical examinations and
by their self-reports of the Brodman, Erdman,
and Wolff (1949) Cornell Medical Index
(CMI) nevertheless showed marked and di-
verse neurophysiological abnormalities on
brain imaging (Alan Jackson, personal com-
munication, March 2001). Even when investi-
gators have been as painstaking as possible in
their selection of older participants, it seems
likely that many or even all of them have been
affected by covert pathologies.

These points can be met in two different
ways: by showing that the screening meth-
ods used to eliminate pathology are, in fact,
adequate or that differences in health do not
matter because their effects are trivial in com-
parison with those of calendar age.

The Adequacy of Self-Reports and
of Other Health-Screening Methods

Almost all small cross-sectional studies have
depended on peoples’ unelaborated self-
reports that they are well, but the more
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painstaking have used well-validated instru-
ments such as the CMI (Brodman et al., 1949).
Unfortunately, interpretations of differences
in self-report data from older and younger
people are not straightforward. For exam-
ple, it seems a very economical and fruitful
procedure to study cognitive changes in old
age simply by asking older people to report
their experiences of difficulties that they may
have begun to experience with their everyday
lives. Many excellent instruments such as the
Short Inventory of Mental Lapses (Reason,
1993), the Cognitive Failures Questionnaire
(Broadbent, Cooper, et al., 1982), or the
Memory Failures Questionnaire (Harris &
Morris, 1984) have been shown to work well
when eliciting younger adults’ reports of their
everyday competence. Unfortunately, these
give paradoxical results when administered
to older people. Reports of memory failures
and absentmindedness in specified everyday
situations do not increase (Rabbitt & Abson,
1990) and may even significantly fall with
sample ages of between 49 and 96 years
(Reason, 1993). This is unexpected because
when very large elderly samples have been
asked which aspects of old age they find
most inconvenient, complaints of memory
failures are second only to those of arthritis
(Buchler, Pierce, Robinson, & Trier, 1967;
Guttman, 1980). The validity of self-report
memory questionnaires is questionable be-
cause individuals’ self-ratings do not pre-
dict their scores on objective laboratory tasks
(Hermann, 1982; Rabbitt & Abson, 1990).
Similarly, when older people answer health
questionnaires, although the numbers of dif-
ferent specific pathologies that they report in-
creases markedly with their ages, their sub-
jective ratings of their general health status
do not alter accordingly (McInnes & Rabbitt,
1997).

The most general explanation for such
findings is that individuals cannot make ab-
solute judgments of their own abilities or

health status but can only compare them-
selves against particular task demands or, as is
more typical, against others (Herrmann, 1982;
Rabbitt & Abson, 1990; Rabbitt, Maylor,
McInnes, & Bent, 1995). As people age, their
environments and the demands that their lives
impose on them may change more rapidly
than their abilities. Busy people in their 40s
and 50s are daily made conscious of their
lapses in contrast to able young colleagues,
but elderly retired people live in lenient en-
vironments that do not challenge even their
reduced cognitive resources. Thus, even ob-
jectively, memory failures may be more fre-
quent and more disturbing for the busy young
than for the sheltered old. Similarly, even clin-
ically significant respiratory and cardiovascu-
lar changes may be underestimated where de-
mands on physical effort are slight.

A related issue is that inventories of every-
day lapses are effective only to the extent that
they probe the particular scenarios that peo-
ple frequently encounter and in which they
have opportunities to make errors. The na-
ture, as well as the frequency of occurrence
of these difficult, error-generating scenarios
changes with age and social role. To be use-
ful, questionnaires must probe scenarios that
older people often encounter in their daily
lives. Thus, questionnaires developed for and
standardized on young adults may be inappro-
priate for the elderly. (Harris & Morris, 1984;
Rabbitt et al., 1995).

Other problems that cannot easily be
avoided by better design of questionnaires
or self-rating scales are that attention deficits
may cause older people to monitor themselves
less stringently and also, because their memo-
ries have become increasingly unreliable, they
may forget mental lapses or episodes of poor
health.

Because people can only assess their per-
formance relative to some external standard,
even if they realize that the demands that their
lives make of them have changed, they can
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only adjust for this by comparing themselves
against others in similar positions. Older peo-
ple tend to compare themselves against their
age peers rather than against the population
at large. Especially when they are among
the elite minority who are fit and motivated
enough to volunteer for psychological stud-
ies, they may, quite accurately, assess them-
selves favorably against others of their ages.
McInnes and Rabbitt (1998) found that peo-
ple’s assessments of their general states of
health on a 5-point scale vary markedly with
the standards of reference that they are asked
to use. When people were asked to compare
their health against that of their age peers, their
self-assessments declined only marginally be-
tween the ages of 49 and 96 years. This was
also the case when, as has been typical in most
investigations, no particular standard of refer-
ence was given and they were simply asked
to rate their health in general terms on a scale
from “Very Good” to “Very Poor.” In contrast,
when they were asked to rate their current
health in comparison to their health 5 years
previously, self-ratings became significantly
less positive with age. Unless questionnaires
make clear precisely what standards of com-
parison are to be used, contrasts between older
and younger people’s self-evaluations will be
misleading. There are useful discussions of
best practice in administration of health ques-
tionnaires to the elderly, and when instru-
ments are properly designed and used, they
can sensitively reveal individual variations in
health (e.g., McNair, 1979).

How Large Are the Effects of Health
on Cognitive Performance?

It is clear that there are statistically robust
differences in average levels of performance
on cognitive tasks between groups of peo-
ple who do and do not suffer from conditions
such as hypertension and cardiovascular prob-

lems (Hertzog et al., 1978), diabetes (Bent
et al., 2000), respiratory problems, and neg-
ative biological life events such as episodes
of surgery and other age-related illnesses (see
the review by Holland & Rabbitt, 1991). One
way to assess the impact of pathologies is to
use regression analyses to estimate the rel-
ative proportions of variance between indi-
viduals that are accounted for by presence or
absence of particular pathologies and by cal-
endar age. The effects of particular patholo-
gies have rarely been analyzed in this way,
but at least in one case presence or absence
of late-onset diabetes accounted for no more
than 2%, whereas calendar age accounted for
more than 16% of variance in cognitive perfor-
mance between individuals (Bent et al., 2000).
Thus, specific comparisons between groups
of patients and controls do confirm that ill-
ness reduces cognitive competence in later
life but seem to suggest that the effects of pri-
mary aging, as indexed by calendar age, are far
stronger.

In the clearest and best documented de-
fense of this position, Salthouse (1991, chap.
4) lucidly reviews the general literature and
a study of his own (Salthouse, Kausler, &
Saults, 1990), concluding that the effects of
individual differences in health have very
slight or no effects on cognitive performance
in older samples. This conclusion is impor-
tant at three different levels. Theoretically, it
suggests that the effects of primary aging are
greater than, and independent of, secondary
pathologies. Methodologically, it allows in-
vestigators to compare small groups without
the inconvenience of rigorous health screen-
ing. Politically, it establishes a platform for
the study of cognitive aging as a field of study
independent of medical models of aging that
interpret age differences as the outcome of
accelerating accumulations of pathologies as
age advances.

Lindenberger and Potter’s (1998) focus on
the age-related rather than the total variance
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associated with biological markers suggests
that it is more informative to compute how
much of the total variance in cognitive func-
tion that is associated with differences in in-
dividuals’ ages may be explained by differ-
ences in their health. McInnes and Rabbitt
(1998) used Lindenberger and Potter’s (1998)
method to compute the proportions of age-
related variance in scores on the Heim (1970)
AH4 (1) intelligence test that were predicted
by various health indexes such as self-ratings,
CMI scores, and inventories of prescribed
medications. Estimates of age-related vari-
ance associated with these increased with re-
spect to total variance, but only from 1.0% to
4.0% to about 11%. This does not compro-
mise Salthouse’s (1991) position.

However, a study by Perlmutter and
Nyquist (1990) illustrates how these appar-
ently weak relationships may be misleading.
They found that reports of both physical (r =
.36) and mental (r = .32) health problems in-
creased with age from 20 to 90 years. A robust
correlation between calendar age in this range
and WAIS intelligence test scores (r = −.78)
contrasted with much weaker correlations be-
tween health indexes and test scores that, nev-
ertheless, accounted for a small but significant
proportion of variance even after the effects
of age had been taken into consideration. The
key point was that correlations between CMI
scores and fluid intelligence were r = .112
for people aged 20 to 50 years but increased
to r = .355 for people aged 60 to 90 years.
This was because incidence of pathologies
was very low among younger adults but in-
creased significantly among the middle-aged
and elderly. This shows that the proportion
of variance between individuals that is asso-
ciated with pathologies strongly depends on
the incidence of pathologies in the samples
screened. The methodological limitations to
self-reports imply that the incidence of patho-
logical changes in the relatively small samples
examined in other health surveys of the aged

may have been much higher than their authors
supposed.

A related problem is that the cognitive ef-
fects of pathologies must increase with their
severities of expression and their durations at
time of assessment, and these factors will vary
with calendar age. We do not know of any
analyses that have been able to examine re-
lationships between the severities of expres-
sion of pathologies and the ages at which they
are suffered. The nearest approach to a solu-
tion of this problem has been to assume that
at the time when individuals are cognitively
assessed, their distances from death (survival
durations) can serve as a proxy index for the
combined effects and degrees of severity of
their current pathologies. Thus, effects of dis-
tance from death can be compared with effects
of distance of birth (calendar age) to allow
comparisons of the relative effects of primary
and secondary aging on cognitive function.

Relationships between Cognitive Function
at Assessment and Subsequent Survival
Duration: Effects of Terminal Drop

Predictions of cognitive function from sur-
vival duration, and vice versa, may seem
methodologically straightforward but, as
excellent reviews by Botwinick (1984),
Cunningham (1987), Cunningham and
Brookbank (1988), Palmore and Jefferies
(1971), and Palmore and Cleveland (1976)
show, there are many methodological
problems.

Many studies, such as those by Berkowitz
(1965), Kleemeier (1962), Lieberman (1965),
and Brown, Chobor, and Zinn (1993), have
examined only institutionalized patients.
These have consistently found that individuals
who died before a later census date had sig-
nificantly lower mean cognitive test scores on
initial assessment than did those who survived
beyond it. None of these studies documented
incidence of dementias, which cause rapid and
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marked cognitive decline and early death and
are common in institutionalized samples. In
contrast, studies of active, elderly community
residents have found slight (Cunningham &
Brookbank, 1988; Small & Backman, 1997;
Steuer, La Rue, Blum, & Jarvik, 1981) or
no (Blum, Clark, & Jarvik, 1973; White &
Cunningham, 1988) relationships between
current cognitive performance and subsequent
survival duration. Because these studies have
investigated small groups (N = 20 to 200
deceased plus survivors) over brief periods
(6 months to 5 years), data have been insuffi-
cient to determine whether different terminal
pathologies affect different mental abilities, or
how the cognitive impacts of pathologies vary
with the periods for which they have been
experienced or the ages at which they first
appeared.

The strengths of relationships between
current ability and subsequent survival vary
with the age ranges sampled. Palmore and
Cleveland (1976) pointed out that because as
a sample ages the brief survival of its mem-
bers becomes increasingly probable, one must
also enter calendar age into multivariate anal-
yses made to predict probability of survival
from current cognitive status. Those few stud-
ies that have done this find that the proportion
in variance accounted for by survival duration
is very much less than that predicted by cal-
endar age (e.g., Rabbitt et al., 2000; Small &
Backman, 1997).

A different issue is that the likelihood of
detecting changes in mental abilities before
death depends jointly on the relative difficulty
of the tests used and on the average levels of
ability of the populations studied. Very easy
tests such as the Mini Mental State Exami-
nation (Folstein, Folstein, & McHugh, 1975)
can detect individual differences in cognitive
status among frail and confused institutional-
ized elderly but not among people who still
competently manage independent lives. Even
when tests are sufficiently demanding to avoid

ceiling effects, it is possible that because par-
ticular terminal pathologies may affect some
mental abilities more than others, some tests
may be correspondingly poor predictors of
survival. As Siegler (1993) pointed out, the
best evidence that calendar age and pathol-
ogy have functionally different effects would
be that they affect different mental abilities.
Because investigators have been remarkable
for their creative ingenuity in using very dif-
ferent test batteries, evidence remains incon-
clusive. Many studies have found that tests of
verbal ability are sensitive predictors of mor-
tality (e.g., Berg, 1987; Rabbitt et al., 2001;
Siegler, McCarty, & Logue, 1982). Suedfeld
and Piedrahita (1984) found progressive de-
clines in the “integrative complexity” of let-
ters written by famous authors up to 10 years
before they died. However, some studies have
not found that vocabulary is a sensitive pre-
dictor of mortality (e.g., Botwinick, West, &
Storandt, 1978).

Verbal ability is a highly practiced crys-
tallized skill that declines little, or may even
improve until the ninth decade of life (Horn,
1982; Horn, Donaldson, & Engstrom, 1981;
Rabbitt, 1993a). This robustness of verbal
skills makes it paradoxical that they may
be exceptionally sensitive markers for sur-
vival. A possible explanation is that verbal
abilities may remain unaffected by age un-
til pathologies become so severe that death is
immanent.

It is important to distinguish evidence
that declines in vocabulary may be a marker
for immanent death from the quite differ-
ent evidence that levels of verbal ability in
youth may predict both life span and dura-
tion of the maintenance of cognitive skills in
old age. A striking epidemiological study by
Snowden et al. (1996) showed that the gram-
matical complexity and density of ideas of au-
tobiographical notes written by 93 nuns as
young novices predicted their longevity as
well as their levels of cognitive function and
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their probability of contracting Alzheimer’s
disease in old age.

This conclusion may yet turn out to be
correct, but the data are still insufficient.
For example, recent studies show that birth
weight, adequacy of infant nutrition, and
childhood health all affect very markedly
both mortality and maintenance of intellec-
tual competence in later life (Leon, 1998;
Sorensenson, 1997). Thriving in infancy and
childhood is associated with higher adult lev-
els of cognitive performance, possibly be-
cause healthy infants are more likely to belong
to relatively affluent and better-educated fam-
ilies. Differences in birth weight and health in
infancy may have determined the life histories
of Snowden et al.’s (1996) nuns long before
they wrote the autobiographical essays from
which their young adult intellectual abilities
were deduced. A different inference that may
be drawn from Snowden et al.’s (1996) data is
that continued practice at particular cognitive
skills, such as language, may preserve general
mental ability in later life. All right-minded
people, especially those who subscribe to a
robust work ethic, will find this a congenial
hypothesis and will hope that it will eventu-
ally be validated. Unfortunately, at the mo-
ment researchers know only that people who
were more able than their coevals when they
were young remained so as they grew old.

Demographic factors such as socioeco-
nomic advantage, education, and area of res-
idence all markedly affect the prevalence of
pathologies (Pincus, Callahan, & Burkhauser,
1987), mortality (Snowden, Ostwald, Kane, &
Keenan, 1989), and the prevalence of demen-
tias resulting in marked premortem cognitive
decline (Roth, 1986). Unfortunately, samples
have been too small and too homogenous to
study interactions between these variables,
and this limits our understanding of possible
primary effects of age. For example, the ef-
fects of gender have been neglected in most
investigations of terminal decline. Women

live longer than men and also tend to perform
better than men of the same age on tests of
verbal memory and on some vocabulary tests
(Rabbitt, Donlan, Watson, McInnes, & Bent,
1996). Unless overrepresentation of women in
older samples is taken into account, we may
mistakenly conclude that better verbal mem-
ory is a good marker for longer survival when,
in fact, gender is the actual determinant.

Mental abilities are impaired not only by
physical illness but also by affective states
such as anxiety and depression. Brumback’s
(1985) hypothesis that all of the cognitive
decline observed in terminally ill patients may
be caused by their understandable depres-
sion is extreme. More recent studies show
that major depression is not, in fact, a nec-
essary concomitant of severe, or even of ter-
minal, illness (e.g., Cohen-Cole & Kaufman,
1993). Current evidence is that the critical
risk factor for major depression is functional
impairment rather than disease per se (Zeiss,
Lewinshohn, & Seeley, 1996). Large studies
by La Rue, Swan, and Carmelli (1995) have
found that clinically significant levels of de-
pression reduce cognitive performance in old
age, and Rabbitt et al. (1996) have also found
that scores on depression inventories indicat-
ing mild to moderate unhappiness rather than
clinical depression are associated with lower
performance on cognitive tests. Understand-
able depression concomitant with illness and
approaching death may contribute to appar-
ent terminal drop in cognitive performance,
and this must be taken into account by in-
cluding depression inventories in assessment
batteries.

A basic methodological problem when
studies of terminal decline are used to distin-
guish the effects of primary and secondary ag-
ing is illustrated by counterintuitive evidence
that the cognitive effects of impending death
may be greater in younger than in older adults
(Cunningham & Brookbank, 1988; Riegel &
Riegel, 1972; Steuer, La Rue, Blum, & Jarvik,
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1981). This counterintuitive finding can be
explained by the fact that although nearly all
members of young samples are in excellent
health and will survive for many years after a
future census date, most members of elderly
samples suffer from one or more patholo-
gies, and all are likely to survive only a few
years after the census has closed. In elderly
samples increased blurring of differences in
health status between those who die before
census dates and those who survive beyond
census dates provides a sufficient explana-
tion for paradoxical findings of stronger rela-
tionships between cognitive performance and
survival in younger than in older adults and
also for observations that individual patholo-
gies, such as diabetes, have greater effects on
the cognitive performance of younger than
of older patients (Bent et al., 2000). Consis-
tent with the idea that increasing likelihood
of early death for all members blurs differ-
ences between survivors and nonsurvivors in
older samples is that within a group of 464
people who died within 11 years of cognitive
assessment, Rabbitt et al. (2001) found no
significant relationship between initial cogni-
tive status and subsequent survival durations
between 36 and 4,018 days.

A corollary is that differences in cognitive
performance between survivors and deceased
in younger and older samples will also de-
pend on the durations of the census periods
over which deaths are logged. Because most
young adults will live many years beyond any
arbitrary census date, in young samples the
cognitive status at initial assessment of those
who survive a subsequent point will be little
affected by the census duration sampled. In
contrast, for elderly samples, the longer the
census period, the larger the proportion of
survivors who die soon after it closes and, con-
sequently, the smaller the difference, at initial
testing, between the average cognitive scores
of those elderly who do, and those who do not,
survive.

Thus, findings that older individuals’ cur-
rent calendar ages account for much larger
proportions of variance in their cognitive per-
formance than do their probabilities of sub-
sequent survival can be misleading because
they do not take into account the fact that in-
dividual differences in survival duration mar-
kedly reduce as sample age increases.

Assumptions about the Processes of Aging
that Have Determined the Design of
Small-Scale Cross-Sectional Studies

To compare “older” and “younger” groups re-
searchers must decide on the age boundaries
that separate them. Investigators typically do
not discuss the assumptions underlying their
choices. As Robertson-Tchabo has neatly put
it, “one investigator’s middle-aged group is
another investigator’s young or elderly group”.
Such uncertain and arbitrary categorizations
ignore evidence that because detectable age-
related physiological and cognitive changes
occur by the age of 30 (Kirkwood, 1999),
processes of aging are continuous throughout
most of the life span. Sensible choices can
only be made in terms of clearly defined as-
sumptions about the form of the true trajectory
of cognitive aging. Although it is generally as-
sumed that declines in cognitive performance
with age are negatively accelerated rather than
linear, their precise forms are uncertain. Re-
cent evidence from longitudinal studies shows
that different mental abilities decline at differ-
ent rates and that for some abilities these de-
clines may be well-described by linear rather
than accelerated functions (Rabbitt, Diggle,
Holland, & McInnes, 2001). Figure 18.1 illus-
trates that assumptions about the time courses
of age-related changes are important practi-
cal issues because the form of the true trajec-
tory of change for any particular mental ability
will affect the experimental outcomes result-
ing from different choices of age boundaries
for the groups that are compared.
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Figure 18.1 The selection of appropriate age-
groups for comparisons depends on the “real” tra-
jectory of change with Age. If this is best described
by function A the linear decline would mean that
the sizes of the difference observed would depend
only on the number of years separating age groups
and not on the particular ages of the groups se-
lected. In the case of function B little or no dif-
ference would be observed if groups are younger
than 50 years but, since the function thereafter
accelerates, the size of the difference observed for
a constant age-gap would increase with the ages
of the groups compared. In the case of function C
little difference would be observed between groups
younger than 80 years.

Figure 18.1 shows that appropriate choices
of group age boundaries for detecting age-
related changes differ depending on whether
researchers assume changes to be continu-
ous and linear (Rabbitt, 1993a), continuous
and accelerating (Rabbitt et al., in press), or,
at least for some cognitive abilities, abruptly
discontinuous (e.g., Arenberg, 1974).

It is not surprising that inconsistencies be-
tween studies often reflect differences in the
age-ranges of the groups compared. Often,
this becomes apparent only in the rare cases
in which exceptionally conscientious inves-
tigators replicate their experiments using ex-
tended age ranges (e.g., Jacewicz & Hartley,
1979). The risk of assuming that only two
data points (i.e., group mean ages) will be
sufficient to detect an age trend is illustrated
by well-conducted studies in which three or

more different age groups have been com-
pared. A concrete example is a study of age
changes in efficiency at inhibiting interference
in the Stroop (1935) test by Spieler, Balota,
and Faust (1996), who found no differences
between a young-old and an old-old group, but
found that both differed from a young-adult
group. To make cross-sectional comparisons,
it is desirable always to compare at least three
different, and preferably quite widely sepa-
rated, age groups. Moreover, since appropri-
ate choices of group age boundaries will vary
with anticipated trajectories of change, and
because these latter may differ with task de-
mands, the particular assumptions that have
determined group selection must always be
articulated and justified in terms of the partic-
ular comparisons to be made.

Even tasks that make logically identical
demands may differ in difficulty and so may
show different trajectories of age-related
change. A relatively easy version of a task
may not pick up small individual differences
between young adults but will detect gross
changes between older people. A difficult ver-
sion of the same task may detect differences
early but fail to do so late in the life span
when all successive age groups perform at, or
near, chance. Such ceiling and floor effects
can readily be identified, although not all in-
vestigators have recognized them in their data.
A less obvious consequence is that the appear-
ance or absence of differences between small
groups of people of different ages will depend
on complex interactions between the true form
of the trajectory of age-related change in the
particular mental ability tested, in the num-
ber of data points (group mean scores) that
can be obtained, in the particular choice of
age boundaries made for each group, and in
the average level of difficulty of the tasks on
which participants are compared.

The sensitivity of experiments is also af-
fected by the decision of how large the groups
compared should be. On most cognitive tests,
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the degree of variability between individu-
als markedly increases with the average ages
of the groups sampled (Morse, 1993; Rabbitt
et al., in press). Neglect of age-related in-
creases in within-sample variance has two
different methodological implications. One is
that the older the groups that are sampled,
the larger they must be in order to maintain
power of statistical comparisons. Appropri-
ate choices of sample size must be guided by
power analyses that take this increased vari-
ability into account. This increase in variance
between individuals with group age is also
theoretically interesting because it must re-
flect the fact that individuals age at differ-
ent rates so that their trajectories of aging di-
verge over time (Rabbitt, 1982, 1993a). The
older the groups compared, the greater will
be the differences in the relative extents to
which their members have been affected by
the processes that we hope to study. Pres-
sure for economy of experimental designs
has blunted sensitivity to the methodolog-
ical implications of increased variance in
older samples so that there are serious doubts
about the replicability of many small cross-
sectional studies that show significant but
weak effects and about the meaningfulness
of demonstrations of very small differences
in the effects of task demands between older
and younger samples.

Methodological Precautions
in Small-Scale Cross-Sectional Studies

Matching Groups for Levels of
General Intellectual Ability

There have been many forceful pronounce-
ments on the limitations of unadjusted in-
telligence test scores (ITSs) as meaningful
indexes of intellectual differences between
people (e.g., Howe, 1999). Accepting the
points made, it remains the case that ITSs,
pragmatically, are the best current predictors

of individual differences in performance on
all of the laboratory tasks on which older
and younger adults have been compared.
Table 18.1 illustrates this with R values for
predictions of scores on some laboratory tests
from calendar ages and from unadjusted
scores on the Heim (1970) AH4 (1) in-
telligence test and the Cattell and Cattell
(1960) Culture Fair intelligence test obtained
from 4,876 individuals aged 49 to 92 years.

Table 18.1 Associations between scores on
laboratory tasks and calendar Age, and scores on a
test of fluid intelligence, the Cattell and Cattell
“Culture Fair” test. Note that variance between
individuals associated with their ages becomes
non-significant when variance associated with their
intelligence test scores is taken into consideration.

Correlation
with age
with variance
associated with
Cattell Culture

Correlation Fair Test scores
Task with Age Removed

Visual Search .34 (p = .01) .09 (ns)
Time

4 Choice RT .46 (p = .000) .11 (p = .079)

Cumulative −.39 (p = .000) −.06 (ns)
Learning of
15 words

Free Recall of −.29 (p = .01) −.10 (ns)
30 Words

Delayed Free −.33 (p = .000) −.09 (ns)
Recall of 30
words

Baddeley −.31 (p = .000) −.03 (ns)
“Doors”
Memory Test

Delayed −.19 (p = .05) −.05 (ns)
Recognition
of 20 Pictures

Embedded −.240 (p = .000) .02 (ns)
Figures Test

Digit Span −.18 (p = .046) −.08 (ns)

“Stroop Test” .39 (p = .000) .10 (p = .081)

Time for
interference
Condition.
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Predictions from age after variance associated
with differences in intelligence test scores has
been taken into consideration are also shown.

As Table 18.1 illustrates, both individuals’
ages and their ITSs predict modestly, but very
consistently, their scores on most laboratory
tasks. However, after ITSs are taken into con-
sideration, individuals’ ages make little or no
additional prediction. This means that differ-
ences in performance on laboratory tasks be-
tween groups of younger and older people are
likely to be more strongly determined by dif-
ferences in their current levels of ITSs than
by differences in their ages. In other terms,
ITSs appear to pick up all, or most, of the
age-related variance in many laboratory tasks.
Thus, if groups of older and younger people
are matched in terms of their current ITSs,
differences between them will be absent or
minimal. It might seem that an optimal solu-
tion is to match older and younger samples
in terms of the levels of the ITSs that the
older group achieved as younger adults, and
from which they have declined as they have
grown old. Fortunately, one does not need
time travel to do this. When people are young,
their scores on vocabulary tests correlate ro-
bustly with their scores on intelligence tests
that measure fluid general intellectual abili-
ties. As seen, ITSs decline but vocabulary test
scores remain stable, or may even slightly in-
crease into the late eighth or even the ninth
decade of life (Horn, 1982, 1987; Horn et al.,
1981; Rabbitt, 1993a). This means that older
peoples’ scores on vocabulary tests remain
good proxy measures for their ITSs as young
adults, so that when younger and older groups
are matched in terms of their current vocab-
ulary test scores, one may assume that the
older participants’ ITSs have declined from
the same levels as those currently attained by
their younger controls.

Many investigators have taken advantage
of this relationship and have exactly matched
their older and younger groups in terms of vo-
cabulary test scores. Unfortunately, this pro-

cedure also raises problems because it guaran-
tees that the current ITSs of the young group
are higher than those of the older group. To the
extent that all age-related changes in perfor-
mance on many, if not most, cognitive tests
can be picked up by changes in ITSs, this
raises the question whether the differences
that one finds between vocabulary-matched
age groups add more to the knowledge of cog-
nitive changes in old age than researchers al-
ready know from age changes in ITSs. Sup-
posing, with some reason, that in many cases
they do not, one might more conveniently
study age effects by comparing readily avail-
able samples of undergraduates with higher
and lower ITSs. If, on the contrary, one is inter-
ested only in age differences that are qualita-
tively different from, or quantitatively greater
than, those that can be picked up by ITSs, sim-
ple comparisons between group means cannot
make this point. To do this one must carry out
multivariate analyses to obtain separate esti-
mates of the effects of age and of ITSs on task
performance.

It must be emphasized that intelligence
tests are not uniquely informative indexes of
individual differences in cognitive function.
They are only pragmatic instruments that have
been gradually evolved to make predictions as
good as can be empirically attained of individ-
ual differences in competence over as wide a
range of real-life tasks as possible. They suc-
ceed because the problems that they incorpo-
rate make demands across a very wide range
of (putatively) different cognitive abilities
such as working memory efficiency, attention,
planning, and information processing speed.
This breadth of demands makes it unsurpris-
ing that they also predict the performance of
individuals of all ages across a wide range of
different laboratory tasks. Thus, findings that
ITSs may predict age differences in perfor-
mance as well as, or better than, calendar age
do not necessarily offer any useful theoretical
leverage to understand the functional changes
that occur as people grow older. In particular,
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as shown later, the idea that all cognitive
changes in old age are driven by declines in
a single master performance index derived
from ITSs, such as Spearman’s (1924) single
factor g f , is not a useful conclusion to draw
from data such as those shown in Table 18.1.

The everyday utility of ITSs as practical
measures of general intellectual competence
raises other methodological difficulties for
selection criteria for cross-sectional age com-
parisons. As has been seen, young adults who
have higher levels of intellectual ability also
tend to live longer and so to experience less
cognitive change over time. That is to say,
when individuals are young, their ITSs are
likely to be correlated with the rates at which
their cognitive performance changes as they
age. This may be because ITSs are associated
with protective factors associated with socio-
economic advantage or because they are asso-
ciated with intrinsic differences in longevity
and so with different rates of cognitive change,
or possibly both. Therefore, irrespective of
differences in task demands, the sizes of any
age effects observed will vary with the aver-
age levels of ITSs of the older and younger
groups compared.

Investigators sometimes, but not often, ac-
knowledge the complexity of influences that
may affect the course of aging by matching
groups in terms of influential demographic
variables such as years of education, lifetime
occupation, and socioeconomic status. These
precautions are desirable but tend to confound
effects of age, time, and period. For exam-
ple, in most developed countries duration of
education was much more strongly related
to socioeconomic status, parental education,
and other demographic factors that are also
known to affect rates of cognitive aging dur-
ing the first than during the second half of the
20th century. The difficulty of disentangling
complex relationships between the effects of
aging, period, and cohort has generated a great
deal of discussion but not, so far, a completely
satisfactory solution.

Cohort Effects

The term cohort derives from a military unit
in the Roman army, but its current usage is
a group of people who are identified by some
common characteristic. In cognitive gerontol-
ogy it most commonly refers to a group of
people of similar ages, but it can also refer to
individuals of different ages who have under-
gone similar experiences, such as war, mar-
riage, divorce, a particular illness, or a partic-
ular social environment.

Criteria for defining and matching age
cohorts are obviously problematic. As many
empirical studies have shown, people who
volunteer for laboratory studies are not repre-
sentative of national populations and tend to
be socioeconomically more advantaged, bet-
ter educated, healthier, and more highly mo-
tivated to perform well on the sometimes bor-
ing and arbitrary tasks that they are given
in psychological laboratories, as well as to
have higher levels of fluid general ability (g f)

than those who do not choose to participate
(e.g., Lachman, Lachman, & Taylor 1982).
This obviously limits the generality of the
conclusions that we can draw, but much can
be still be learned by documenting the indi-
viduals we compare as completely as possi-
ble so that we can make post hoc estimates
of the effects of factors that we cannot com-
pletely control by selection. For example, al-
though levels of health and education are
certain to be both higher and less variable
in groups of self-selected volunteers than in
the population at large, provided that sam-
ples are thoroughly documented we can es-
timate from the range of observations that we
have been able to make the sizes of the ef-
fects that might have occurred if we had ac-
cess to a truly representative sample. Statis-
tical techniques for replacing missing data so
as to simulate a demographically normal sam-
ple such as those described by Diggle, Liang,
and Zeger (1994) and Rubin (1976) also al-
low us to model virtually normal population
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samples from the actual sample that we have
recruited.

Solutions have not been found for the more
fundamental problems that arise because dif-
ferences in the average ages of groups are
neither the only nor necessarily the most im-
portant determinants of cognitive differences
between them. Groups of different ages have
been born in different historical periods and
socioeconomic circumstances and have had
very different life experiences. Cohort back-
ground and calendar age present special prob-
lems when they are used as defining char-
acteristics for groups because they are not
independent variables and cannot be manip-
ulated by assigning volunteers to aging and
nonaging conditions. For this reason inves-
tigators have been obliged to adopt quasi-
experimental designs for the study of ag-
ing and developmental effects (see Schaie,
1977). Unfortunately, as Campbell and
Stanley (1963) first pointed out, such designs
always allow the possibility of alternative ex-
planations. After nearly half a century of dis-
cussion these difficulties remain unresolved.

This chapter has discussed how outcomes
of comparisons will depend on the precise
forms of the trajectories of change to be ex-
pected on the various tests that researchers
use. The problem deepens when age groups
are viewed in a wider socio-historical context
where it becomes a serious question whether
people who are aged, say, between 40 and 49
are, actually, more similar to each other in
some important way than are people who are
aged between 50 and 59. As always, answers
are only possible in terms of some clearly
specified model of the processes that we hope
to study. If we are concerned with social at-
titudes, it may well be a good working as-
sumption, justified by external evidence, that
calendar age is not the most meaningful way
of identifying changes during the life span.
Here it may be more sensible to classify peo-
ple in terms of role-defined stages that are only

roughly associated with age, such as work-
ing life or retirement, or in terms of passages
of time defined in terms of socio-historical
periods—events or transitions such as pre-
and postwar or pre- and postdepression. In
choosing defining criteria for cohorts, it is es-
sential to accept that the attempt to answer
any particular question must prevent us from
simultaneously asking others. Failure to come
to terms with this can lead to nihilistic posi-
tions such as that taken by Gergen (1977), who
argued that a chance model of change in adult-
hood is necessary because the knowledge of
gerontologists at this point in the history of
their science is so limited that they constrain
their comparisons in entirely arbitrary ways in
order to answer questions that currently seem
relevant but that, from the point of view of fu-
ture scientists, miss central issues. This curi-
ous idea that we must indefinitely defer expla-
nation because it must currently, and perhaps
always, be provisional and incomplete seems
to reflect a radical misunderstanding of the
ways in which scientific progress continues
to be made.

Historical decades and generations may
often have less relevance if we are concerned
with biological processes, but assumptions
about the rates at which biological changes
occur will determine the fineness of the tem-
poral grain necessary to track them. Divisions
in terms of 5-year, 7-year or 20-year cycles are
all defensible in terms of particular selections
of research questions and assumptions about
rates of change of different variables. Further,
unless one assumes that rate of change is lin-
ear, there are good arguments for varying co-
hort boundaries to make comparisons across
the life span, selecting wide agebands within
those periods during which we assume that
changes occur slowly and narrow bands over
periods during which they are known to hap-
pen faster.

Obviously, researchers need not restrict
themselves to comparing cohorts at a single
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Table 18.2 Dummy data illustrating how information collected during a longitudinal study allows analysis
of birth cohort effects, of Age trended between different birth cohorts and of Period effects.

Age when Sampled in Sampled in Sampled in Sampled in Sampled in
sampled 1960 1970 1980 1990 2000

20–29 35% 39% 39% 41% 42%
30–39 38% 38% 40% 42% 43%
40–49 52% 67% 67% 68% 70%
50–59 65% 68% 73% 75% 77%
60–69 58% 59% 59% 61% 63%
70–79 44% 45% 45% 46% 49%
80–89 38% 39% 41% 43% 43%

NOTE: This “Cohort Table” uses dummy data for percentages of individuals complaining of frequent memory in
7 successive age groups sampled at the beginning of 5 successive decades (sampling years). The cross-sectional
effects of Age can be tracked down columns, the effects of Period of sampling along rows, and the longitudinal
effects of Age (Age × Period effects) along diagonals. Note that the interactions between the Ages of individuals
at successive samplings and the effects of the period, or social environment, during which they were interrogated,
are not straightforward. We might, for example, wish to test the hypothesis that increased informational complexity
of the environment between 1960 and 2000 has resulted in greater demands on memory for all groups, increasing
complaints in some, vulnerable, groups more than in others. To do this we would have to bear in mind the problems
of distinguishing the effects of Age, Period and Cohort described in the text.

time point but may make many successive
measurements on the same cohorts. This al-
lows cross-sequential comparisons that can
add analytical power to the experimental de-
sign. Table 18.2 shows dummy data for the
same age cohorts who were tested on five
successive occasions, 10 years apart. In this
table comparisons of birth cohorts (cohort
effects) can be tracked by reading down the
columns; age trends within individual cohorts
over successive time points (age effects) can
be tracked by reading down the diagonals, and
trends at each age level, as age cohorts replace
each other, (period effects) can be tracked by
reading along the rows. Such data is some-
times referred to as panel data (Glenn, 1977),
in which a range of cohorts is tested at reg-
ular intervals, and new cohorts may be re-
cruited to replace groups as they move into
older age bands. This is an example of the
way in which the maximum analytic strength
can be obtained from a longitudinal investiga-
tion. The term longitudinal study is generally
reserved for less complicated undertakings in
which the same age cohort is repeatedly as-

sessed at a number of successive time points.
The difficulties that apply to longitudinal stud-
ies also apply to cross-sectional studies, but it
is convenient to consider them in this simpler
context.

Unfortunately, cross-sequential studies
cannot answer all of the questions about age-
related changes that researchers may wish to
ask; nor can they exclude, or even identify
by posthoc analyses, the effects of all factors
that may possibly affect the conclusions that
can be drawn. This is because there is no way
to select or compare groups of people with-
out confounding the effects of age with those
of generational cohort and time of assess-
ment. Consider cross-sectional comparisons
in which groups of individuals of different
ages are compared at the same time point. This
means that they must have been born at differ-
ent times and so have lived through different
historical periods and are likely to have expe-
rienced very different socioeconomic condi-
tions such as degree of affluence and access to
education, knowledge of good health habits,
and quality of medical treatment. In short, age
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differences will be confounded with gener-
ational differences. An alternative is to test
one group when it reaches a particular age
and then wait until a second, different group
reaches the same age. Here, age group and
time of measurement are separated, but both
are confounded with cohort and generational
differences, and the factors are identifiable
as “aging cohort” and “time/cohort.” Schaie
(1965) argued that although any of these de-
signs is ambiguous when used alone, it may
be possible to distinguish age, period, and co-
hort effects if all are used and analyzed si-
multaneously. He suggested numerical deci-
sion rules based on F ratios that might be
used to decide which effects were responsi-
ble for particular observed differences. Adam
(1978) argued that these decision rules are un-
sound because it is always possible to explain
an observed difference in more than one way.
For example, a pure maturational effect that
is linear over the life span should be seen in
significant effects for cohort and time in the
cross-sequential design and for age but not
for time in the time-sequential design. How-
ever, an identical pattern of results may be
obtained if linear effects for cohort and time
of measurement are present in equal amounts
but in opposite directions. Other possible sets
of effects can also produce these results.

As Adam (1978) pointed out, in both cross-
sequential and time-sequential designs there
are possible confounds between age, period,
and cohort effects. If age, period, and cohort
are treated as continuous variables, then it will
be impossible to estimate all parameters in a
model of the form

D = a + S1A + S2P + S3C + e

where D is the dependent variable, S1A is
the partial slopes associated with age, S2P is
the slopes associated with period, S3C is the
slopes associated with cohort, and e is a ran-
dom error term. Because C = P − A, it is
impossible to attribute unique effects to all

three variables. Under the assumptions that
Schaie (1965) suggests, no mathematical ma-
nipulation of the data can disentangle these
effects.

If one could experimentally vary age, pe-
riod, and cohort, then one could estimate the
effects of any one of them on the dependent
variable by manipulating its value while hold-
ing the other two constant. This cannot be
done, and in the quasi experiments that Schaie
(1977) subsequently suggested, one can only
compare the effects of age, cohort, and period
by post hoc statistical analyses. Even so, it is
impossible to hold constant the effects of any
two of these factors, such as age and period,
and then vary the third, such as cohort. As
Adam (1978) pointed out, “Once we select a
group of a particular age in a particular year
there is only one birth cohort whose behaviour
we can observe.”

Although no good solution to these prob-
lems is yet known, the debate has provoked
very useful discussions by Adam (1978);
Baltes (1968); Baltes, Cornelius, and
Nesselroade (1979); Costa and McCrae
(1982); Glenn (1981); Maddox and Wiley
(1976); Mason, Winsborough, Mason, and
Poole (1973); Palmore, (1978); and Schaie
and Baltes (1975).

Baltes and Nesselroade (1970) realized
that Schaie’s (1965) suggestions could not
solve the problem and suggested that mean-
ingful analyses are still possible when it is
reasonable to suppose that one of these three
variables has very small effects on the depen-
dent variable and thus to ignore it in order
to analyze the effects of the remaining two.
Though very few investigators explicitly state
and defend the assumptions on which they
have based their decisions, this pragmatic so-
lution has been tacitly adopted in all of the
small-scale cross-sectional comparisons that
make up the bulk of the literature. To ignore
one of these three factors may often be the
only choice available; however, for example,
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if the effects of age and cohort on the de-
pendent variable are causally unrelated, then
omission of either of them from an analysis
risks serious misinterpretation. In this case,
the only remedy is laborious replication of
studies with new samples in order to check
that any factor that is omitted actually does not
affect the outcome. The lack of experimental
replications to test assumptions (which, in any
case, usually remain covert) is a basic weak-
ness in the literature on cognitive gerontology.

No solution to these confounds has yet
been found for cases in which empirical in-
vestigations show that none of these three fac-
tors can be safely ignored. Here researchers
must have recourse to the usual props of sci-
entific induction: replicability of experiments,
consistency of trends across experiments, and
parsimony of explanation. As Adam (1978,
p. 238) put it, “If we impose certain restric-
tions on the system, and if we look beyond
that system to other independent sources of
evidence, we can begin to establish an inter-
pretation of the data.”

Further problems remain because discus-
sions have as yet considered only a simplified
model in which the effects of age, cohort, and
period are all linear and do not interact. It is
increasingly clear that age-related changes in
cognitive performance are better described by
accelerated functions than by linear functions
(e.g., Rabbitt et al., 2001), and it is very likely
that cohort effects, such as socioeconomic ad-
vantage, and period effects, such as availabil-
ity of medical care, are markedly interactive,
rather than simply additive to the effects of
calendar age.

Models for the Time Course of Aging

The difficulties caused by failures to distin-
guish between descriptions of the process of
aging at the individual and at the population
level become clear when we consider how
to differentiate between different models for
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Figure 18.2 Illustration of how both continuous
declines and abrupt “terminal drops” in perfor-
mance of individuals in aging samples can result
in very similar changes in average levels of perfor-
mance and in increases in variance in performance
between individuals as sample age increases.

the time course of aging. In terms of limiting
cases, aging can be regarded as continuously
progressive or as abrupt and catastrophic. Fig-
ure 18.2a illustrates aging as a continuous and
accelerating process, which has the same form
for all individuals, but at different rates for
each. Here, the average trajectory of popula-
tion aging is the central tendency of a sheaf
of individual trajectories that show continu-
ous declines at different rates. Because their
aging trajectories decline at different rates,
differences between individuals will increase
with the age of the group sampled: the older
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the group, the greater will be the gap in per-
formance between its most and least able
members.

Figure 18.2b illustrates the alternative lim-
iting case of a terminal drop model in which
each person attains an early plateau of perfor-
mance that is maintained until an abrupt de-
cline that occurs soon before death. Here, in-
dividuals’ trajectories of cognitive aging will
show prolonged stability followed by rapid
decline but, because their terminal drops oc-
cur at different ages, the form of the average
of all trajectories will show continuous and
accelerating change. Variance between indi-
viduals will also increase with sample age be-
cause the older the sample, the more people
in it will be undergoing terminal declines, and
the fewer will still maintain their performance
plateaus. Thus, the models assume very dif-
ferent forms of trajectories of aging at the in-
dividual level, but they generate very similar
predictions at the population level.

These are hypothetical limiting cases. In
reality, the best-fitting description will de-
pend on the particular life circumstances of
the sample that is examined. In an under-
privileged population in which rapid death by
disease or accident sharply curtails life ex-
pectancy, individual trajectories of cognitive
change will tend to follow a pattern of termi-
nal drops rather than of continuous declines.
In affluent societies in which life expectancy
is much longer, and in which medical treat-
ment postpones death from pathology, a con-
tinuous decline model will provide a better
description. In any of these cases, single cross-
sectional comparisons between different age
groups will not distinguish whether contin-
uous decline or terminal drop models are
more appropriate. In a mixed population sam-
ple in which some individuals are underprivi-
leged and others are affluent, both patterns of
change will be present. To distinguish differ-
ences in forms of trajectories for individuals
from differences in the forms of trajectories

for populations, researchers need data from
longitudinal studies in which the same peo-
ple are repeatedly assessed over many years.
The relative advantages and limitations of
cross-sectional and longitudinal studies have
been one of the main topics of methodological
discussion.

Advantages and Difficulties of
Longitudinal Studies

Longitudinal studies avoid some of the prob-
lems with matching of control and experimen-
tal groups that beset cross-sectional investi-
gations. Participants are their own controls
in repeated-measures designs that may un-
cover interactions between the processes of
aging and other factors such as demograph-
ics, health, and socioeconomic advantage (see
Winer, 1971). Shock (1985), whose pioneer
Baltimore Aging Study is one of the largest,
longest, and best-designed yet, identified a se-
rious practical difficulty: “Few investigators
can afford to dedicate their careers to one lon-
gitudinal study, let alone a series of longitu-
dinal studies, each building on the results of
the previous one.” Longitudinal studies also
have other problems. As in cross-sectional
and cross-sequential studies, the effects of age
are always confounded with those of cohort
and period. The problems of selective recruit-
ment that affect cross-sectional comparisons
are compounded by the much heavier commit-
ments for participants that longitudinal stud-
ies demand. Problems that are not found in
cross-sectional comparisons are the effects
of progressive selective sample attrition and
of practice. Although practice and attrition
effects have long been recognized, nearly
all studies to date have ignored or mishan-
dled them and thus have underestimated their
effects.

An underused advantage of longitudinal
studies is that they allow researchers to com-
pare average changes in performance at the
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population level and at the individual level
by plotting regressions for individual partic-
ipants (e.g., Shock et al., 1984). As Shock
(1985) pointed out, the implications of the
wide differences between curves for individ-
uals have been entirely ignored:

Relatively few individuals follow the pattern
of age changes predicted from averages based
on measurements made on different subjects.
Aging is so highly individual that average
curves give only a rough approximation of the
pattern of aging followed by individuals. . . .

Longitudinal observations have shown that
the rates of change for some variables ob-
served in individual subjects did not differ
from the mean rates derived from analysis
of cross-sectional observations. On the other
hand, many individuals followed patterns of ag-
ing that could never have been identified from
cross-sectional data alone. For example many
subjects experienced periods of 5–10 years dur-
ing which their kidney function showed no sig-
nificant change, while the average curve was
declining. In a few, kidney function actually
improved over a ten year interval when aver-
age values were falling.

This chapter will repeatedly return to the fact
that changes in group-average performance on
cognitive tasks with age are often less infor-
mative than accompanying changes in vari-
ability of performance, both within and be-
tween individuals.

The general methodological framework
for designing longitudinal studies, with use-
ful discussion of calculations of statistical
power and of frequency of measurement,
have been thoroughly worked out by epi-
demiologists and insightfully discussed by
Nesselrode and Baltes (1979); Schaie (1983);
Schlesselman (1973a, 1973b); Schulsinger,
Knopf, and Mednick (1981); and many others.
Unfortunately, these guidelines do not pro-
vide ways of resolving the problems of bias
from selective enrollment that are present in
all cross-sectional studies but are exaggerated

in longitudinal studies that require volunteers
to commit time not merely on a single oc-
casion, but repeatedly over many years. Post
hoc studies of empirical data have also shown
that these selection effects are indeed substan-
tial and that they markedly bias the demo-
graphics of studies toward a preponderance
of unusually healthy, affluent, well-educated,
and highly motivated participants. Longitudi-
nal studies encounter the added problem that
they also suffer from dropout, which is not
random but selective. The frailest and least
able participants drop out earliest, leaving an
increasingly elite residue of the healthiest,
most competent, and most highly motivated
(Lachman et al., 1982).

In longitudinal studies of cognitive change,
participants must repeatedly be given identi-
cal or very similar tests, and researchers must
therefore expect that they will improve with
practice. Schaie, Labouvie, and Barrett (1973)
found that individuals in a group of volunteers
aged from 21 to 75 years who returned for
retesting were those who, on initial testing,
had scored higher on all of the 10 cognitive
variables measured. Schaie (1965), who was
also among the first to recognize the possibil-
ity of practice effects, suggested that cross-
sequential designs could identify and elim-
inate them because independent samples of
individuals born in the same period are com-
pared at different times of measurement. Be-
cause each given individual is assessed only
once means that there is a way of separating
practice effects from those of age and even of
examining age × practice, and cohort × prac-
tice interactions. The next sections present the
problems of selective dropout and practice in
turn.

Dropout Effects

An obvious cause of selective dropout in lon-
gitudinal studies is that older people are more
likely to die or become too frail to attend.
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Death not only reduces selectively the num-
bers of older participants but also alters the de-
mographics of studies in other ways because
mortality markedly differs with socioeco-
nomic advantage and because more and less
prosperous individuals also tend to die from
different causes. Thus, not only the incidence
but also the duration and steepness of the slope
of terminal declines probably varies with so-
cioeconomic class (Nagi & Stockwell, 1973).

People drop out for a variety of other rea-
sons than death. It is essential to document
the reasons that participants give for dropping
out because, as analyses by Rabbitt, Donlan,
Watson, et al. (1993) have found, individuals
who drop out because they become ill or frail
have lower levels of ability than do those who
leave because they have acquired new respon-
sibilities or employment. Unless the causes, as
well as the incidence, of dropout are taken into
consideration, comparisons of rates of cogni-
tive change in different population subgroups
may be misleading.

Although dropout effects have been widely
documented, very few analyses of longitudi-
nal changes have taken them into consider-
ation. Some investigators have tried to esti-
mate the likely impacts of selective dropout
by comparing the patterns of age trends ob-
served in cross-sectional analyses of initial
screenings of a volunteer population against
the cross-sectional and longitudinal patterns
of trends observed in later screens of the same
sample. Such studies have often found that
the age trends revealed by successive cross-
sectional comparisons are similar and have
concluded that although selective dropout
occurs, it does not necessarily alter age trends
in the data in any substantial way (e.g.,
Sliewinski & Bushke, 1999; Zelinski &
Burnight, 1997; Zelinski & Stewart, 1998).
Checking cross-sectional trends against lon-
gitudinal trends is a useful initial exploratory
step in data analysis, but it is not a complete
solution. The effects of demographic factors

on selective dropout during longitudinal stud-
ies are usually simple exaggerations of pat-
terns of initial self-selection among those vol-
unteering for entry. Older, frailer, and less
healthy individuals as well as the less able,
the less socially advantaged, and males are all
less likely to volunteer for longitudinal stud-
ies and are all more likely to drop out. It can
be argued that selective dropout simply exag-
gerates biases that are already present at the
first screening of a volunteer sample. How-
ever, although comparisons of cross-sectional
against longitudinal trends may reassure us
that average changes in ability with age have
not been greatly misrepresented by selective
dropout, they do not resolve the equally im-
portant issue that large increases in variability
between members of an aging population may
be obscured because the less-able participants
drop out earlier. Where comparisons of cross-
sectional and longitudinal trends have been
used to check whether dropout affects the pat-
terns of observed changes, the intervals over
which longitudinal data have been collected
have often been too short for the effects of se-
lective dropout over time to become marked
(e.g., in Zelinski, Gilewski, & Stewart, 1993).

Technically, it is important to distinguish
three different scenarios (Rubin, 1976):

1. The dropout process is independent of the
measurement process and thus does not
bias results.

2. The dropout process is random: It is depen-
dent on the observed measurements prior
to dropout but is independent of the mea-
surements that would have been observed
had the subject not dropped out.

3. The dropout process is informative: It is
dependent on the measurements that would
have been observed had the subject not
dropped out.

Not surprisingly, analyses made under the
informative dropout assumption are fraught
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with difficulty. Their results typically depend
on modeling assumptions that are difficult, or
impossible, to check from the observed data.
This is especially the case for the kind of un-
balanced data that arise in observational stud-
ies in which even a firm dropout time may
be very hard to identify. At the opposite ex-
treme, analyses under the assumption of com-
pletely random dropout are generally straight-
forward because no distinction need be made
between measurements that are unavailable
because of dropout and those that are unavail-
able because they were never intended to be
made. Put another way, completely random
dropout implies that the incomplete data can
simply be treated as if from an unbalanced
experimental design, with no commonality to
the times at which measurements are made on
different subjects.

The simplicity of analysis under the com-
pletely random dropout assumption is bought
at a price. If this assumption is invalid, then
so may be the resulting inferences about the
measurement process. However, if likelihood-
based methods of inference are used, valid-
ity is retained under the weaker assumption
of random dropout. This is important because
longitudinal data are typically correlated over
time. This means that even when the true
dropout process is informative, the most re-
cent observed measurements on a given sub-
ject are partially predictive of the missing
measurements after dropout. Therefore, by al-
lowing for the effects of these measurements
on dropout (which is what the random dropout
assumption implies), we can partly compen-
sate for the missing information (see, e.g.,
Scharfstein, Rotnitzky, & Robins, 1999). To
appreciate how likelihood-based methods au-
tomatically make this kind of compensation, a
simple synthetic example may be useful. Fig-
ure 18.3, derived from Diggle et al. (1994,
chap. 11) shows a simulated data set from a
model in which the mean response is constant
over time but the probability of dropout for

Dropout
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60’s
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Figure 18.3 We may assume that volunteers in
a longitudinal study drop out when they fall be-
low a particular threshold of competency. As a
study continues individuals in older groups cross
this threshold earlier than those in younger groups.
Among other effects this means that increased vari-
ance in competence between individual members
of an ageing sample is disguised.

any given subject at any given time is a de-
creasing function of that subject’s most recent
measurement. The effect is progressively to
cause the low-responding subjects to drop out,
leading to an apparent rising trend in the mean
response over time as the observed mean is
calculated from the progressively more highly
selected subpopulation of survivors. This
rising trend is what would be estimated by a
naive regression analysis of the data, which ig-
nores both the dropout process and the longi-
tudinal correlation within the data. In contrast,
a likelihood-based analysis that takes account
of the longitudinal correlation in the data cor-
rectly infers a constant mean response over
time.

An important consequence is that for lon-
gitudinal data with dropout, there is no reason
why a fitted mean response curve should track
the observed mean response trajectory of the
survivors. On the contrary, a model fitted by
likelihood-based methods under the assump-
tion of random dropouts estimates what the
mean response would have been if it had been
possible to follow up the entire study popu-
lation, whereas the observed means estimate
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the mean response conditional on not drop-
ping out before the time in question. The un-
conditional and conditional means coincide
only if the data are uncorrelated in time, or
if the dropout process is completely random.
Rabbitt et al. (in press) provide a practical
illustration of how random-effect models can
be used to estimate the forms of functions
describing age-related changes during a lon-
gitudinal study by, in effect, modeling what
trends would have been if the substantial and
selective dropout that was empirically ob-
served had not occurred.

Practice Effects

The extent to which practice effects can mask
true trends in data has recently been recog-
nized in relatively brief investigations of the
effects of surgery and anesthesia on the cog-
nitive performance of older patients. Here the
optimal methodology is to give patients the
same cognitive tests immediately before and
at short intervals after surgery. Many excellent
studies failed to find changes from presurgi-
cal performance on retests later than 3 to 11
days following surgery—a period in which
patients are still suffering from the immedi-
ate effects of their operations. It was only
when the extent and persistence of practice
effects were recognized and taken into ac-
count that it became clear that many older
patients do suffer some cognitive loss that
may persist as long as three months after
surgery (Dijkstra, van Boxtel, Houx, & Jolles,
1998; Moller et al., 1998). Brief laboratory
studies have also shown that practice effects
can interact in complex ways with the lev-
els of difficulty and with the qualitative de-
mands of the tasks on which individuals are
assessed. On some very easy tasks such as
high-compatibility CRT tasks, practice effects
are counterintuitively much greater for older
and less able individuals than for younger
and more able individuals (Rabbitt, 1993b).
However, with more difficult tasks, such as

complex video games, more able individ-
uals show much greater initial as well as
longer-sustained gains (Rabbitt, Banerji, &
Szemanski, 1989). Failure to recognize the
extent of systematic individual differences in
practice effects will lead to serious misin-
terpretations of longitudinal data. Tasks on
which older individuals show greater practice
gains will mask the true extent of age-related
decline; tasks on which younger and more
able individuals show greater practice gains
will exaggerate age-related changes; and we
may also, wrongly, conclude that more able
individuals decline more slowly as they age.
When batteries include both of these kinds of
tasks, we may be misled into assuming that
differences in apparent rates of age-related
change between tasks reflect patterns of cog-
nitive aging rather than differences in practice
effects.

Perhaps practice effects have been ne-
glected because investigators have made the
plausible assumption that they must be absent
or negligible when intervals between succes-
sive tests are as long as 1 to 10 years, and
have also assumed that they can be avoided
or minimized by retesting participants on log-
ically similar but superficially different par-
allel forms of tasks. Unfortunately, work on
training and transfer between versions of the
letter-letter substitution task have shown sig-
nificant and asymmetrical practice effects,
with more able individuals being aided, and
less able individuals being slowed on trans-
fer from one to another vocabulary of code
letters (Rabbitt, Stollery, Moore, & Han, sub-
mitted 2001). The assumption that practice
effects are negligible when assessments are
separated by many years has also been em-
pirically disproved. Rabbitt et al. (in press)
used random-effect models to identify prac-
tice effects and to estimate their relative sizes.
Over test-retest intervals of 2 to 8 years, prac-
tice effects on the Heim (1970) AH4 intel-
ligence tests were significantly greater for
older and less able participants and on average
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across all participants aged from 49 to 92 years
counteracted losses sustained over 4 years of
aging.

It must again be stressed that methodolog-
ical problems do not arise in the abstract but
derive rather from the particular models from
which arise the questions we ask. Ideally, ex-
perimental questions should arise from the
necessity to choose between equally well-
articulated models of the processes under
scrutiny. In cognitive gerontology we have,
as yet, only contrasts between loose work-
ing assumptions. The first of these is made
by applied cognitive gerontologists who, be-
cause they are obliged to ask practical ques-
tions about what older people can and can-
not do, are not so much concerned with the
functional etiology as with the entire condi-
tion of human aging and practical implica-
tions of age-related changes. These practi-
cal interests oblige them to consider changes
in competence at complex everyday activi-
ties rather than to design laboratory tasks that
are supposed to be so simple and stripped
down that they can measure the effects of sin-
gle task demands that are putatively met by
different functional processes such as those
we label with terms uneasily borrowed from
common language such as “attention,” “mem-
ory,” or “control.” Applied cognitive geron-
tologists are more concerned to understand
how changes in anatomical, physiological,
and mental competencies interact to affect
performance in everyday life than to work out
functional etiologies. If pressed for theoreti-
cal explanations that transcend the demands of
the particular systems and situations for which
they undertake to give advice, applied cogni-
tive gerontologists might suggest, as have very
distinguished applied cognitive psychologists
such as Broadbent (1971) and Sanders (1998),
that investigations of the ways in which hu-
mans cope with complex task demands lead
to better models and richer insights than does
the increasingly finicky reductionism charac-
teristic of much theoretical discussion.

In contrast, theoretical cognitive gerontol-
ogists have found no useful general princi-
ples and currently camp on either side of
what is, in my view, a false dichotomy. Some
espouse a global single-factor theory that
seems to adopt parsimony of description as
the overriding criterion for scientific expla-
nation and so start with the premise that all
age-related changes in cognitive abilities can
be understood as consequences of changes
in information processing speed (Salthouse,
1985, 1991, 1996a). As shown later, how-
ever, adoption of the psychometric construct
g f would be at least equally defensible but, in
my view, this would impoverish research for
the same reasons. The alternative position—
which is much more widely, though tac-
itly, adopted, and perhaps for that reason
less grimly defended—recognizes evidence
that neurophysiological and neuroanatomical
changes may not be uniform in extent and time
course over the entire brain and CNS, so that
it makes sense to ask whether age may affect
changes in different mental abilities at differ-
ent rates and by different amounts. This more
open-minded attitude seems to open new lines
of research rather than block them by prema-
ture proclamation of a final theoretical solu-
tion. Because it encourages investigations as
to whether aging affects some cognitive skills
earlier and more severely than it does others,
it may be caricatured as a modular theory. The
next section considers the successes and lim-
itations of these three different approaches.

METHODOLOGICAL AND
THEORETICAL CONTRIBUTIONS
OF APPLIED COGNITIVE
GERONTOLOGY TO
UNDERSTANDING COGNITIVE
AGING

To forecast demands for support in an aging
population and to suggest how services, sys-
tems, and equipment can best be adapted for
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effective use, applied cognitive gerontologists
need to investigate how the characteristics of
populations change as they age. A useful ex-
ample is a report by Melzer, McWilliams,
Brayne, Johnson, and Bond (1999) on how
increasing incidence of disabilities in a large
community resident population entails corre-
sponding demands for particular kinds of ser-
vices and support. The emphasis on disabil-
ities and the extent of social support can be
misleading. For example, Melzer et al. esti-
mate that 11% of men and 19% of women in
the United Kingdom who are aged 65 years or
older are disabled, that 38% of these are aged
85 years or older, and that a similar percent-
age is cognitively impaired. Although this is
a clear warning for investigators who rely on
random selection of small samples, it also im-
plies the happy conclusion that 89% of men
and 81% of women aged 65 years or older
do not experience any severely life-restricting
disabilities or marked cognitive impairments
before they die. The equation of increasing
age with increasing incidence of disability and
the inevitable politicization of issues of re-
source distribution are illustrated by the pro-
tocols of successive European Union initia-
tives to develop Technological Innovations for
the Disabled and Elderly (TIDE) initiatives, in
which the elderly have been implicitly catego-
rized as members of a group who suffer from
“disabilities” that require marked changes in
lifestyle and the provision of prostheses and
special help.

Melzer et al. (1999) showed that this
characterization is statistically invalid. Nev-
ertheless, the political strategy of labeling
age-related changes as disabilities forces
informative contrasts between the kinds of
disabilities suffered by younger and older
adults. Among younger adults even markedly
limiting conditions such as blindness, deaf-
ness, or loss of mobility affect only a small
minority of individuals and, in most of them,
disable particular competencies without af-

fecting others. In contrast, the disabilities in-
evitable in old age are mainly minor but are
very widespread both at the population level
where they affect everybody to a greater or
lesser extent and at the individual level where
they impair all sensory, motor, and cogni-
tive systems to some degree. Thus, for ap-
plied cognitive psychologists, the condition
of old age is defined in terms of the cumu-
lative and interactive effects of many concur-
rent different and slight sensory, motor, and
cognitive changes. For example, most par-
tially sighted people are older, but older peo-
ple are also much more likely than younger
partially sighted people to be deaf, to have re-
duced accuracy of touch discrimination that
makes it harder for them to read Braille and
to handle and discriminate between small
objects, to have problems of mobility, and,
perhaps most importantly, to have impov-
erished cognitive backup to compensate for
all these losses. Younger adults may com-
pensate remarkably for blindness by main-
taining and efficiently updating a complex
memory map of where they and other ob-
jects are located in space. Older blind people,
with increasingly inefficient working mem-
ories, find this much more difficult. Elderly
partially sighted and deaf people are also
more handicapped by their conditions be-
cause their reduced cognitive resources make
it more difficult for them to make the most
of the degraded sensory information avail-
able to them. That is to say, older peo-
ple process sensory information more slowly
(Birren, 1956 and 1959; Birren, Woods, &
Williams, 1980), with less efficient attentional
selectivity, and with less efficient backup from
prospective memory and working memory
(Craik, 1996; Craik & Jennings, 1992; Maylor
1996). Consequently, applied cognitive psy-
chologists need theoretical models for the ad-
ditive and multiplicatively interactive effects
of these minor changes. It follows that they
tend to find the speculation that all of these
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changes result from a global decline in a
single factor, such as g f or “mental speed,”
unhelpful.

Although this attitude may seem plod-
dingly pragmatic, it has uncovered phenom-
ena that theoretically more focused research
has missed. It is well known that age causes
relatively mild degradations of information
from all sensory systems (Corso, 1987). It
is less appreciated that these mild impair-
ments of sensory input have knock-on effects
on higher cognitive functions. Able young
adults who can correctly repeat aloud contin-
uous speech, whether it is presented in clear
or through noise, nevertheless better remem-
ber what has been said when it is presented
it in clear (Rabbitt, 1968a). The size of this
effect varies with individuals’ general men-
tal ability indexed by their unadjusted ITSs
and thus, implicitly, with their relative speeds
of information processing and working mem-
ory efficiency. For example, mild astigma-
tism induced by distorting lenses does not
affect the speed with which young adults
can read text but does reduce the ability of
those with lower ITSs to remember what they
have just faultlessly read aloud (Dickenson &
Rabbitt, 1991). Even slight sensory degrada-
tion increases demands on central cognitive
resources that are necessary to identify words
and to read them aloud as well as to use con-
text to understand and remember their con-
tent. Individuals with higher ITSs have cor-
respondingly higher levels of resources that
allow them both to overcome sensory degra-
dation and to comprehend and remember bet-
ter what they have read. Similarly, older peo-
ple with hearing losses of 40 dB to 60 dB
that do not impair their ability to repeat con-
tinuous speech correctly nevertheless find it
more difficult to remember what has been
said to them, and older individuals who have
higher ITSs can tolerate their hearing losses
better than those with lower ITSs (Rabbitt,
1991).

Applied cognitive gerontologists are also
forced to recognize another point missed
by theoreticians. Older people often perform
much better in their familiar environments
than might be predicted from their perfor-
mance in the laboratory. Familiar everyday
settings provide compensatory support sys-
tems for proficient performance that are ab-
sent in laboratory settings. Equally, loss of
familiar environmental support can have
catastrophic consequences. Failure to appre-
ciate growing dependency on familiar context
may prevent those who need it from seek-
ing help, or from adapting easily to appar-
ently very minor changes in life demands
(e.g., Humphrey, Gilhome-Herbst, & Farqui,
1981).

A basic lesson from applied cognitive
gerontology is that aging affects the whole
organism, and that it may be difficult, and
in practice pointless, to try to separate the
etiology and practical consequences of pri-
mary and secondary age-related changes be-
cause they interact to limit performance in
all but the most simplified laboratory tasks.
This has at least three different methodologi-
cal implications. Most obviously, older vol-
unteers will always suffer some degree of
sensory loss in contrast to their younger con-
trols. Even when researchers are satisfied that
they have selected people with apparently in-
consequential sensory losses we must try to
make sure that the stimuli used are as clearly
visible and audible as possible. This can be
hard to achieve. For example, during the
pilot stages of a protracted longitudinal study
of normal healthy people aged from 49 to
96 years (Rabbitt, Donlan, Bent, McInnes,
& Abson, 1993), variations in the acoustic
qualities of rooms used for presentations of
tape-recorded lists of words for recall re-
sulted in concomitant variations of 19% to
32% in the total numbers of errors made, and
led to marked differences in estimates of de-
clines in the numbers of memory efficiency
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with age. Until conditions were improved and
standardized, age comparisons were grossly
misleading.

A second implication is that even when
both participants and stimulus materials
have been selected with all possible care, re-
searchers must be careful not to neglect the
point that even slight peripheral losses can
be markers of marked age-related central
changes (see Baltes & Lindenberger, 1997;
Lindenberger & Baltes, 1994). A third impli-
cation derives from the obligation of applied
cognitive gerontologists to consider how the
majority of elderly people cope with the com-
plexities of their lives. To do this they must
ensure that the samples that they study are as
representative as possible of the population at
large and, especially, that they include sub-
stantial proportions of individuals with mi-
nor disabilities. In contrast, theoretical cog-
nitive gerontologists who hope to study the
cognitive effects of primary aging deliberately
exclude a substantial majority of elderly indi-
viduals who have experienced more than min-
imal sensory changes. This not only means
that samples are not normative with respect
to the population but also that deliberate se-
lection of people with few or no sensory im-
pairments will exclude those who have expe-
rienced more than minimal central changes,
whether these result from primary or from sec-
ondary causes.

In theoretical cognitive gerontology, cur-
rent models polarize into global models based
on the idea that changes in all mental abilities
and cognitive skills are driven by changes in
a single functional characteristic of the cog-
nitive system and into “modular” models that
use evidence that biological aging differen-
tially affects different brain areas and func-
tions as a starting point for investigations
into whether the different mental abilities that
these systems support may also age at differ-
ent rates.

MODELS THAT HAVE GUIDED
THEORETICAL INVESTIGATIONS
IN COGNITIVE GERONTOLOGY

Global Slowing and Single-Factor Models

Because age-related biological changes prob-
ably affect all brain systems, and therefore
all cognitive abilities, researchers are always
certain to find some commonality in the ex-
tent and time courses of changes in cog-
nitive performance. For example, increasing
cerebrovascular impairment is likely to af-
fect most of the brain and thus cause weakly
correlated changes in most cognitive abili-
ties. As a result, correlations between scores
on different tests increase with sample age
and principal-components analyses of results
from test batteries show reduced differenti-
ation (“de-differentiation”) of factor struc-
tures. This can be seen as a particular and
easily explainable example of the so-called
Detterman effect: that correlations between
levels of performance on different tests are
greater in samples with lower than in those
of higher intellectual ability. It is important to
emphasize that the claims of the global slow-
ing model go beyond this inevitability of in-
creasing associations between test scores by
proposing that regardless of what the biologi-
cal changes that drive cognitive changes may
be, they functionally express themselves by
slowing cognitive speed or information pro-
cessing speed and that this general slowing is
directly and causally responsible for, rather
than merely contributory to, all age-related
changes in all cognitive abilities, especially
memory (Salthouse, 1985, 1991, 1996a).

The gap between speculations about the
nature of the changes in brain function that
may bring about general slowing and the em-
pirical description of the behavioral changes
that ensue is illustrated by empirical findings
that the same evidence for uniform multi-
plicative scaling of mean CRTs across tasks
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with different demands and levels of difficulty
(Cerella, 1985), on which the general slowing
model of aging was originally based, are du-
plicated by slowing of CRTs by differences
in adult intelligence (Brand & Deary, 1982;
Rabbitt, 1996; Rabbitt & Maylor, 1991), by
maturation during childhood (Anderson,
1988, 1992; Hale, 1990; Kail, 1988, 1991),
by ingestion of alcohol (Rabbitt & Maylor,
1991), and by neurological damage conse-
quent on multiple sclerosis (Kail, 1997).
Although intoxication, brain trauma, diffuse
neurological damage, maturation, general in-
telligence, and senescence affect patterns of
performance across simple tasks in very simi-
lar ways, this does not allow us to assume that
they all reflect an identical functional common
cause. However, this generality of application
does not affect the validity of global slowing
as an explanatory framework for any of these
conditions because it is possible that quite dif-
ferent biological changes may produce similar
patterns of functional changes. Unfortunately,
muddles occur when researchers lose sight of
the necessary distinction between the levels
of description of behavioral data and of func-
tional process.

The ways in which we can compare how
well different individuals can perform any
tasks are surprisingly limited. Consequently,
nearly all functional models for how humans
perform tasks are based on comparisons of
how quickly people can do different things
and how many errors they make while do-
ing them. Directly measurable indexes such
as speed and accuracy may be called task per-
formance indexes to distinguish them from
hypothetical constructs in functional models
of performance that cannot directly be mea-
sured, and that have meaning only within a
framework of assumptions about processes in
the CNS. Examples of these, which we may
call hypothetical system performance charac-
teristics, are Beta, d-prime, and trace decay
rate, or, in connectionist models, unit activa-

tion threshold and system temperature, and,
in somewhat dated information processing
models, information processing rate (e.g.,
Garner, 1988; Hick, 1952).

All cognitive gerontologists hope that the
functional models in terms of which these
performance characteristics are defined will
eventually be validated against convergent
data from a third level of description; that
of biological processes in the CNS. Some
investigators propose that both measurable
task performance indexes, such as CRTs, or
system performance characteristics, such as
information processing speed, may directly
reflect particular functional characteristics of
the CNS such as synaptic conductivity or neu-
ronal conduction speed (see, e.g., Eysenck,
1986; Reed, 1993; Reed & Jensen, 1992).
To emphasize their derivation from physio-
logical measurements independently of any
behavioral data, we may call this third class
of constructs measurable neurophysiological
system performance characteristics.

These three levels of constructs must be
distinguished from a fourth that derives from
psychometric theory. Spearman (1924) found
that when large numbers of people were
given two or more different intelligence tests,
factor analyses of their scores generally
showed that most of the variance between
them could be well expressed in terms of a
single factor, which he termed general fluid
ability (g f ). We may call such entities stastis-
tically derived psychometric constructs. Con-
structs such as g f can be considered theo-
retically neutral because they can be taken
as descriptions of the extents and patterns
of abstract statistical relationships between
different empirically measured performance
indexes without any functional implications.
However, some researchers speculate that
g f can, in turn, be reified in terms of hy-
pothetical system performance characteristics
such as mental or cognitive speed (Eysenck,
1986; Jensen, 1980, 1982; Nettelbeck, 1987;
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Vernon, 1985) or even in terms of measurable
neurobiological system characteristics such as
synaptic conduction or latency of the visual
pathway (Reed & Jensen, 1992).

This taxonomy is cumbersome but may
help to keep researchers aware that terms
such as speed or slowing mean quite differ-
ent things depending on which level of de-
scription is currently being used. At the level
of task performance indexes, speed seems a
transparent construct, and differences in speed
between individuals can be measured directly
by comparing their reaction times in identical
tasks. As is shown later, this is not actually
the case, and measured speed in reaction time
experiments is not interchangeable with per-
formance operating characteristics that might
be used in models to account for differences
in speed between more or less efficient sys-
tems. These latter may be entities such as op-
erating threshold or degree of connectivity,
or may also be higher-order mathematical or
gross statistical properties such as system tem-
perature. Although changes in these perfor-
mance characteristics can determine the max-
imum externally measurable operating speed
of a system—because none of them can be ex-
pressed in terms of units of speed or of time
at this level of description—the term global
slowing model loses meaning (for an extended
discussion of these issues see Rabbitt, 1996).

Consistent with these arguments, reviews
of the mainstream literature on models for
CRTs shows that none of them incorporates
speed per se as a performance characteristic of
the functional processes that they specify (see
Laming, 1968, 1985; Luce, 1986; Ratcliff, van
Zandt, & McKoon, 1999; Townsend & Ashby,
1983). Descriptions of decision criteria can
be framed in terms of different kinds of mod-
els and therefore can be quantified and com-
pared in different ways, but temporal units are
not sensible indexes for this purpose. In sum,
although it is clear that most elderly people
respond more slowly than do most younger

adults in both simple and complex tasks, func-
tional models for how these differences come
about require much more detailed and better
considered assumptions than simply that the
functional processes by which fast decisions
are made are unaltered by age in any way ex-
cept in the sense that they all take longer to
complete.

A brief historical review may help to ex-
plain how the global slowing model has per-
sisted despite the obvious confusions that its
use entails.

A Short History of Global Slowing

Perhaps the first broad generalization in
cognitive gerontology was that age slows per-
formance on all tasks (Birren, 1965; Fozard,
Vercruyssen, Reynolds, Hancock, & Quilter,
1994; Schaie, 1989, 1990b; Siegler, 1983).
A more interesting corollary was the discov-
ery of age × task complexity interactions: As
tasks become harder, differences between the
average CRTs of older and younger groups
markedly increase (Birren, 1979; Birren et al.,
1980).

This simple insight has methodologically
nontrivial consequences. A digression may
be useful because the general understanding
of age-related changes in memory has been
weakened by the neglect of similar relation-
ships in analyses of tasks in which perfor-
mance is assessed in terms of accuracy rather
than in terms of speed. Rabbitt, Coward, and
Lowe (manuscript in preparation) plotted data
from 30 studies of age differences in recall
and recognition memory, published between
1970 and 1999, in older and younger groups
that were compared on a baseline condition
on which a particular theoretical model pre-
dicted little or no age-related change, and on
an experimental condition on which the model
predicted that older people would make more
errors. Because, at least in these cases, these
predictions were always fulfilled, the authors
of the published studies concluded that the
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functional subsystems that met the particular
task demands that distinguished the experi-
mental from the baseline conditions must be
especially vulnerable to aging. A simple lin-
ear regression with a slope of 1.4 fits the with
R2 = .73. The precise form of the function is
not of interest because the points are only that
in every study both the younger and the older
groups made more errors on the experimental
condition than on the baseline condition, that
this increase in errors was invariably greater
for the older groups, and that the propor-
tional amount of this increase (the form of the
age × task difficulty interaction) is quite simi-
lar across both baseline and experimental con-
ditions and across a variety of different task
demands.

If age has proportionately similar effects
on all conditions of all these tasks, it is hard
to argue that in any one of them the find-
ing that old people show greater increases
in errors between the control and the exper-
imental conditions occurs because they are
more sensitive to a particular qualitative task
demand than simply to an increase in task
difficulty. Even if age always had proportion-
ately greater effects on experimental condi-
tions than on baseline conditions, it would
still be necessary to further check whether
this happened only because baseline condi-
tions were so easy that both younger and older
participants showed floor effects. A more sat-
isfactory demonstration would be that a par-
ticular task demand, A, markedly increases
errors for both younger and older groups but
that a different and theoretically critical de-
mand, B, produces a smaller increase in errors
for the older group than does demand A but
nevertheless increases the difference in errors
between the younger and the older group by a
greater amount than does A. This hypothetical
situation is illustrated in Figure 18.4.

Chapman and Chapman (1973) showed
that it is methodologically crucial when study-
ing individual differences not to confuse
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Figure 18.4 The conventional methodology in
small scale studies of the effects of age on memory
has been to compare older and younger groups on
Baseline and experimental versions of particular
tasks. When, as for the lower comparison, scores
for the young group on the experimental task are
the same as or better than their scores on the base-
line task we can safely assume that the difference
observed for the Older group is not brought about
by a simple increase in task difficulty but is, rather,
due to the particular nature of the demands of the
experimental task. However when, as in the up-
per comparison, both the Younger and the Older
group perform worse on the experimental than on
the baseline task the effects of task demands are
confounded with the effects of task difficulty.

global effects of task difficulty with spe-
cific effects of task demands. This view has
recently been updated, with illustrations of
the problems that can arise and with meth-
ods to circumvent them, by Miller, Chapman,
Chapman, and Collins (1995).

The methodological implications of
age × task difficulty interactions have been
neglected in many memory experiments but
were brilliantly realized in CRT studies by
Cerella (1985), who used a methodology
first described by Brinley (1965) of plot-
ting mean CRTs obtained from older groups
against corresponding mean CRTs obtained
from younger groups in over 140 different
published experiments. Cerella found that,
across all conditions of all tasks, these Brinley
plots were well fitted by linear functions
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with slopes averaging 1.4 or 1.5. Because all
age × task complexity interactions seemed to
be expressed by the same simple constant
across qualitatively very different task de-
mands and across all levels of task difficulty,
Cerella (1985) concluded that he could find no
evidence that older people are more sensitive
to some task demands than to others.

Methodologically, this is a bleak conclu-
sion because it means that CRT measure-
ments cannot reveal whether age affects dif-
ferent cognitive subsystems to different
extents. However, note that for applied cog-
nitive gerontologists this is a very cheerful
and useful discovery. Even if Cerella’s (1985)
analyses are only approximately correct and
the data are better fitted by complex than sim-
ple linear functions, the knowledge that reg-
ular relationships exist allows researchers to
estimate older individuals’ decision times on
any task for which we have already collected
data from young adults.

Cerella’s meta-analysis (1985) followed
earlier attempts by Anders and Fozard (1973)
and by Anders, Fozard, and Lilliquist (1972)
to apply Sternberg’s (1969, 1975) decom-
position logic to discover whether age af-
fects some subprocesses more than others.
Sternberg (1969, 1975) made the strong as-
sumption that individuals’ mean CRTs repre-
sent the sum of the individual durations of a
linear entrained sequence of mutually inde-
pendent processing stages. He suggested that
by varying task demands, it was possible to in-
crease task loads on one of these stages with-
out affecting others. In this way, the form of
interactions between the effects of task load-
ings and of intersubject differences can re-
veal whether some stages are more affected
than others by states such as alcohol inges-
tion or conditions such as learning difficulties
(Sternberg, 1975).

Cerella’s (1985) findings have been repli-
cated in numerous studies that have further
found similar apparently linear Brinley func-

tions when quantiles of CRT distributions
obtained from older individuals were plotted
against those obtained from younger individ-
uals (e.g., Rabbitt & Maylor, 1991) and also
when mean reaction times were rank-ordered
from fastest to slowest in an elderly group and
in a younger group and plotted against each
other (e.g., Maylor & Rabbitt, 1994). These
ubiquitous regularities supported the idea that
if all the hypothetical processing stages or
subprocesses necessary to meet any task de-
mands are equally slowed by age, then the
effects of age are best described as global
slowing of information processing rate across
all cognitive systems. Cerella (1990) subse-
quently revised his interpretation of Brinley
plots and suggested that they are best fitted by
asymptotic rather than linear functions, but
this does not alter the idea that they repre-
sent regularities in scaling that are common
across all tasks and suggest that all process-
ing stages are slowed to the same proportional
extent. Note that it is a much more radical and
logically unwarranted step to propose, as with
Salthouse (1985), that information processing
rate is a single master performance character-
istic that underlies efficiency in all cognitive
tasks, including especially memory tasks in
which performance is measured in units of
accuracy rather than in units of speed.

The variety of conditions and states that
seem to bring about similar scaling effects of
decision times has become somewhat embar-
rassing for a general slowing theory of aging.
As noted, similar regularities are observed
for differences between individuals who have
and who have not ingested alcohol (Rabbitt
& Maylor, 1991), between individuals with
lower and higher scores on intelligence tests
(Rabbitt, 1996; Rabbitt & Maylor, 1991),
between children and adolescents of various
ages (Kail, 1988; 1991), and between indi-
viduals who suffer from multiple sclerosis
and their well controls (Kail, 1997). Zheng,
Myerson, and Hale (2000) also neatly showed
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similar regularities when rank-ordered CRTs
for the faster and slower members of a group
of young adults are plotted against each other.
Evidently, no one would wish to argue that
the neurophysiological bases of all these con-
ditions are identical. The best that can be
done is to argue that very different kinds
of changes at the neurophysiological level
may bring about differences in some vaguely
defined construct such as mental capacity
(Salthouse, 1996a, 1996b) or, perhaps, may be
mediated by some common hypothetical sys-
tem performance characteristic such as ran-
dom noise (Eysenck, 1986; Kail, 1997). Al-
though taken out of context, perhaps the best
summary statement is, again, by Zheng et al.
(2000, p. 113): “It is not generally recognized
how little examination of differences in mean
CRTs of different age groups reveals about
individuals.”

Confidence in the use of Brinley func-
tions as devices for analyzing individual dif-
ferences in reaction times has been gradually
eroded by so many different kinds of prob-
lems that it may be useful to discuss them in
order.

First, as has been strongly argued by Fisk
and Fisher (1994) Brinley functions do not,
in fact, provide useful analyses of individ-
ual differences because even markedly non-
linear computer-simulated data can be ex-
cellently fitted by simple linear functions, as
Anderson (1995) and Perfect (1994) have sep-
arately showed. Thus, the procedure of at-
tempting to fit a large number of data points
obtained from different studies with single
functions guarantees artifactual regularities,
even where the real functions may be not only
nonlinear but also mutually quite discrepant.
Note that the methodological implications of
Cerella’s (1985) findings do not depend on his
conclusion that age scaling is linear and there-
fore are not affected by his later revised find-
ings that age scaling may be better described
by a power function or by a positively accel-

erating asymptotic function (Cerella, 1990).
Whatever the true form of the age × com-
plexity scaling function may prove to be, the
key issue is whether it remains invariant across
all differences in task demands and difficulty.
Anderson’s and Perfect’s simulations make
the different and much more general point that
Brinley plots cannot provide adequate tests for
comparisons between rival models.

Second, the slopes of Brinley plots de-
rived by plotting mean CRTs for older people
against those of younger people are not inva-
riant over all kinds of task demands. Cerella
and Fozard (1984) found that slopes differ
between tasks involving verbal and nonver-
bal material, and Hale, Lima, and Myerson
(1991); Hale, Myerson, and Wagstaff (1987);
Lima, Hale, and Myerson (1991); and
Myerson, Ferraro, Hale, and Lima (1992)
confirmed and extended these results. It also
seems that age changes in speed are minimal
in other highly practiced skills such as men-
tal arithmetic and, when they are present, that
they relate to decrements in peripheral rather
than central processes (e.g., Allen, Ashcraft,
& Weber, 1992; Allen, Smith, Jerge, & Vires-
Collins, 1997; Geary, Frensch, & Wiley, 1993;
Geary & Wiley, 1991). This suggests that
practice throughout a lifetime, and perhaps
also more limited practice in laboratory situ-
ations, not only reduces the decision times of
older participants more than those of younger
participants but also reduces the slopes of age-
scaling functions across the tasks on which
they are compared. Attempts have been made
to explain such findings by suggestions that
lexical decision tasks or, by implication, other
tasks involving very highly practiced material
require fewer resources than do tasks that re-
quire unpracticed decisions with novel mate-
rial (e.g., Salthouse, 1988). David Navon wit-
tily caricatured this use of the term resource as
“A Theoretical Soupstone” to add some illu-
sion of substantive content to mere redescrip-
tions of experimental results (Navon, 1984). It
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is more fruitful to break out of this circularity
and to develop better models to describe the
functional changes that practice brings about
that make performance easier and more auto-
matic in the sense that it is faster and more
accurate and also less vulnerable to distrac-
tion from other concurrent activities (Shiffrin
& Schneider, 1977; Schneider & Detweiler,
1988, 1998) or to the effects of age (see Fisk,
Fisher, & Rogers, 1992). It seems likely that
age has less effect on the speed and accu-
racy of decisions that have become automatic
through extensive practice than on relatively
unpracticed decisions that must be made in a
controlled manner (Hasher & Zacks, 1979).
Perhaps well-articulated models for the tran-
sition from controlled to automatic perfor-
mance, such as those proposed by Schneider
(1994) and Schneider and Detweiler (1988),
may also help us to understand better the
changes in functional processes that bring
about age-related changes in the efficiency of
fast decisions. A different question is whether
Brinley functions for subsets of tasks that
make qualitatively different demands do have
reliably different slopes. An example is an
excellent meta-analysis by Verhagen and De
Meersman (1998), who compared slopes of
Brinley functions obtained from published
studies of age differences in the baseline
and the conflict condition of the Stroop test
(Stroop, 1935). Because slopes for baseline
and conflict conditions did not differ, they
concluded that there was no evidence that
older people are relatively more sensitive to
Stroop interference. However, as shown later,
comparisons of slopes are inappropriate for
this purpose.

A different way to test whether older peo-
ple find particular kinds of tasks more difficult
than others is to consider whether particular
data points obtained from some tasks are con-
sistent outliers from those plotted for other
tasks. Rabbitt (1996) gave 15 different tasks,
including the color/word Stroop test and a ver-

sion of the trails test, to groups of older people
with higher and lower scores on the Cattell and
Cattell (1960) Culture Fair intelligence test
(CCF). We might expect from the literature
that the relationship between mean CRTs for
low and high CCF scorers was excellently fit-
ted by a simple linear function. However, each
data point on this Brinley plot is, essentially, a
ratio of mean low CCF scores over mean high
CCF scores. Between tasks these ratios varied
within the wide range 1.1 to 1.5. This might
be attributed to random measurement error,
but the rank orders of these Brinley ratios for
individual tasks remained stable across repli-
cations with different groups of more and less
able people. Despite the excellent linear fits
obtained by least squares methods, ratios of
low ability CRTs to high ability CRTs were
consistently greater for some tasks than for
others. A crucial methodological point is that
a finding that these ratios were largest for
the most difficult and therefore slowest tasks
would be evidence only that the intelligence
test-score scaling function (and, by implica-
tion, also the age scaling function because
unadjusted intelligence test scores markedly
drop with age) is nonlinear. For example, a
positively accelerating function would always
produce larger ratios for the most difficult and
therefore slower tasks. In fact, the highest ra-
tios were produced by the conflict condition
of the color/word Stroop test and the trails
test, for which mean CRTs were in the mid-
dle of the range of all the tasks compared.
Even if scaling effects are better described
by asymptotic rather than by linear functions,
as Cerella (1990) suggested, reduced general
ability affects performance on two tests that
involve central executive function more than
on other slower and thus inferentially more
difficult tasks that do not.

Third, even in the very simple tasks on
which global slowing models of cognitive
aging have been based, people do not pas-
sively recognize signals and make responses
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to them but rather actively control their per-
formance to optimize both speed and accu-
racy. Consequently, their mean CRTs are not
simple indexes of the maximum transmis-
sion rate of a passive information channel
but rather of the efficiency of complex and
often conscious control processes. Schouten
and Bekker (1967) first showed that in even
the simplest possible CRT tasks, humans can
deliberately and consciously trade off speed
against accuracy. Differences in efficiency of
task control are not evident from published
comparisons because tasks have always de-
liberately been made so easy that older and
younger participants make indistinguishably
few errors and can only differ in terms of their
decision speeds. Rabbitt and Vyas (1969) sug-
gested that people actively modify their re-
action times from trial to trial to maximize
speed and minimize errors by first locating
and then learning to control their performance
in relation to the speed-error tradeoff function
that defines the area in which increased speed
costs accuracy, and that older people respond
more slowly than do younger people partly
because they are less efficient at exercising
active control of their own performance. Ex-
emplary analyses by Smith and Brewer (1995)
showed that this is indeed the case and that
even in a very easy CRT task, older and
younger participants control the speed and ac-
curacy of their performance in different ways.
Recent work by Brand (personal communica-
tion, April 2000) also found that older peo-
ple adjust to increasing task difficulty by ex-
ercising an increasingly cautious strategy, by
slowing their responses more, and also, conse-
quently, by making fewer errors than the more
impulsive young.

To understand how age changes in effi-
ciency at CRT tasks, researchers need to com-
pare not only the maximum speeds with which
people of different ages can make correct re-
sponses but also the ways in which they mon-
itor and actively control their performance.

To trade off speed effectively against accu-
racy, they must somehow discover the point
at which any increase in their speed begins
sharply to reduce their accuracy; in other
terms, they must locate their own personal
speed-error tradeoff functions. They may do
this in many functionally quite different ways.
For example, they may only be able to dis-
cover that they have responded “too fast” by
recognizing that they have just made an error
(Rabbitt, 1968b) and then use this informa-
tion to slow down on the immediately suc-
ceeding responses (Rabbitt, 1968b). Alterna-
tively, they may be able to assess continuously
even their correct responses for relative “risk-
iness.” One way in which they might do this
is by accurately judging how long correct and
incorrect responses take and by slowing down
or speeding up accordingly. Note in this case
that although the efficiency with which they
can do this will certainly determine their av-
erage speed, it will depend on the accuracy
of their time estimation, a functional limita-
tion that is quite different from their maximum
information processing rate and may have no
necessary relation to it. Another way in which
people might control their accuracy would be
to judge when they have accumulated suffi-
cient perceptual evidence about an event to
make a confident response to it. Again, al-
though their fastest correct CRTs will be lim-
ited by the maximum rate with which they can
accumulate evidence, they will also depend on
whether the criterion set for adequacy of an in-
formation sample is lax or stringent. That is,
they will be determined by a process of risk
assessment that is not necessarily determined
by, or usefully modeled, in terms of informa-
tion processing speed. A similar issue occurs
when we consider how people avoid making
unnecessarily slow responses. As interesting
results by Bunce, Warr and Cochrane (1993)
show, older people tend to produce unnec-
essarily slow responses (“blocks” or “gaps”)
more often than the young do, suggesting
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that the precision with which they can con-
trol their response speed has deteriorated.
Models for how people carry out even very
simple CRT tasks must incorporate descrip-
tions of complex processes such as self-
monitoring of performance, capability of
detection of errors, and efficiency of main-
tenance of control. The efficiency of such
control processes must determine the average
CRTs of older people, but speed is not nec-
essarily a useful construct in our functional
models for any of them.

Fourth, the most radical criticism of the use
of the slopes of Brinley functions as measures
of relative slowing is that it reflects a mis-
understanding of the mathematical proper-
ties of a family of functions, quantile-quantile
(Q-Q) plots, of which they are a subset.
Ratcliff, Spieler, and McKoon (2000) argued
that Brinley functions are special cases of
plots in which quantiles of one distribution are
plotted against those of another. The proper-
ties of Q-Q plots have been comprehensively
discussed by Thomas and Ross (1980) and re-
viewed by Chambers, Cleveland, Kleiner, and
Tukey (1983). As for all Q-Q functions, the
slopes of Brinley plots are not determined by
the mean CRTs of older and younger groups
but rather by the ratio of the standard deviation
of older groups’ response times to the standard
deviation of younger groups’ response times.
It follows that the intercepts, rather than the
slopes, of Brinley plots are the appropriate in-
dexes for relative slowing. The key questions
that models for age differences in CRTs need
to explain are why age increases the variance
of response times within individuals, and, in
the case where mean CRTs for members of
an older group are rank ordered and then plot-
ted against the corresponding means CRTs for
rank-ordered members of a younger group,
why age increases the variance between older
individuals. Ratcliff et al. commented that an
important conclusion from simulation stud-
ies is that Brinley plots provide only weak

constraints on theory, and that a variety of
different models such as the diffusion model
proposed by Ratcliff and Rouder (1998) and
Ratcliff et al. (1999), or the accumulator
model proposed by Smith and Vickers (1988),
or a variety of other models first proposed by
Laming (1968) and reviewed by Luce (1986),
will produce Brinley plots with the charac-
teristics that have been reported in empirical
studies of individual differences related to de-
pression, neurophysiological damage, inges-
tion of alcohol, differences in general intel-
lectual ability, developmental maturation, and
aging. Molenaar and van der Molen (1994)
came to very similar conclusions and offered
a framework for testing between the hypothe-
ses that cognitive changes throughout the life
span are mediated by global or local changes
in information processing rate.

This drastic reinterpretation means that the
slopes of Brinley plots reflect the relative
forms and variances of the distributions of
CRTs that older and younger groups produce
and that they cannot be used to compare the
relative effects on the mean CRTs of older
and younger people of differences in task de-
mands such as use of verbal stimuli against
nonverbal stimuli (e.g., Hale et al., 1991; Hale
et al., 1987; Lima et al., 1991; and Myerson
et al., 1992) or the baseline condition against
the interference condition of the Stroop test
(Verhagen & De Meersman, 1998). However,
it does not mean that it is inappropriate to com-
pare the rank-orders of the ratios of the means
of CRTs of older and younger groups between
sets of tasks that make different kinds of de-
mands (e.g., Rabbitt, 1996).

Fifth, Cerella’s (1985) conclusion that age
slows all subprocesses by the same propor-
tion was based on Sternberg’s (1969, 1975) as-
sumption that variations in overall mean CRTs
must reflect precisely corresponding propor-
tional variations in the times taken by each
of a series of linearly entrained subprocesses
involved in the discriminations of signals
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and the choice and production of responses
to them. Because overall mean CRTs were
scaled up by the same constant across all task
demands, he concluded that the times taken
by the different subprocesses that met these
demands must also be increased in the same
proportion. Ratcliff et al. (2000) have shown
that proportionally equivalent slowing cannot
be assumed from comparisons of slopes of
Brinley plots. Fisher and Glaser (1996) for-
mally showed that Sternberg’s (1969, 1975)
assumptions are arbitrary because ratios of
mean CRTs between consistently faster and
consistently slower groups may remain con-
stant across tasks, although times for linear se-
rially entrained processes vary markedly. This
is, of course, even more likely to be the case if
processes are not, in fact, serially entrained
but proceed partially or wholly in parallel.
For this latter class of situations, Townsend
and Ashby (1983) have formally shown that
empirical data from mean CRTs often cannot
choose between subclasses of models.

Fisher and Glaser (1996) pointed out that
because one cannot use mean CRTs to infer
whether component processes are equally af-
fected by individual differences or by task de-
mands, researchers risk making two kinds of
errors: false positives if they assume that com-
ponent processes do change in precise propor-
tion to observed mean CRTs, and false nega-
tives if they assume that they do not. In either
case differences in mean CRTs are not ana-
lytic in the ways that Sternberg (1969, 1975)
and Cerella (1985) had hoped and therefore
cannot provide evidence for proportionately
equal slowing of all subsystems involved in
discriminations between signals and choices
between responses.

These issues are later discussed where
attempts to relate localized brain changes as-
sociated with aging to differential impair-
ments of some, rather than all, cognitive skills
are reviewed. First consider other kinds of ev-
idence that have been offered as support for

the idea that global slowing of the CNS drives
age-related changes in all cognitive skills, in-
cluding those, such as memory, in which per-
formance is evaluated in terms of accuracy
rather than in speed of responses.

Other Ways of Testing
the General Slowing Hypothesis

The general slowing model was derived from
the assumption that age affects the speed of
all kinds of decisions in the same way, lagging
them by the same simple multiplicative con-
stant. As seen, this assumption is not oblig-
atory or even tenable. However, the much
stronger claim of the general slowing model is
that slowing of information processing speed
is the basic functional element that determines
age-related changes in efficiency on all cog-
nitive tasks, of whatever kind, but especially
tests of working memory, recognition, and
recall.

Note that this assertion need only be based
on analyses that are logically equivalent to
those from which Spearman (1924) concluded
that individual differences in levels of perfor-
mance across disparate tests of intelligence
could best be described in terms of a single
common factor that he termed general intel-
lectual ability, or g f . As an illustration, Miller
and Vernon (1992) found that a factor anal-
ysis of scores produced by the same group
of people on tests of short-term memory, in-
telligence, and reaction time yielded a dom-
inant principal component in which all were
represented. They take this as evidence that
Spearman’s measure of general fluid ability,
g f , can be reified in terms of information
processing speed (see also Eysenck, 1986;
Jensen, 1980, 1982; Vernon, 1985; Vernon &
Jensen, 1994). Following a similar line of rea-
soning, Salthouse (1985) gave the same bat-
teries of tests to groups of older and younger
people and found that variance associated
with age fell into a single dominant factor
that also accounted for decision speed and
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memory efficiency. Salthouse took this as evi-
dence that age-related changes in information
processing speed are functionally responsible
for age-related changes in all other cognitive
skills, including memory.

A limitation of this methodology is that
factor analyses are descriptive rather than con-
firmatory procedures and the best descriptions
of shared variance that they yield markedly
vary with the particular test scores, and indi-
viduals, to which they are applied. Rabbitt and
Yang (1996) failed to replicate Salthouse’s
(1985) results with data from very similar bat-
teries of tests given to large groups of older
and younger people. Although scores on tests
of decision speed were often represented in a
dominant factor, variance in age was best rep-
resented in a second and statistically distinct
factor that also included variance in memory
test scores.

Nevertheless, Salthouse’s (1985) conclu-
sions are plausible because there are good,
commonsense reasons why accuracy of recog-
nition and recall should be affected by indi-
vidual differences in information processing
rate. For example, levels of performance on
memory tests are strongly determined by the
total time allowed to study material, or the
rate at which items are presented for inspec-
tion. Obviously, the time available determines
whether and how much rehearsal is possi-
ble. Furthermore, the depth to which material
can be processed determines the accuracy
with which it can subsequently be recog-
nized or recalled (Craik & Lockhart, 1972).
When inspection times are limited, the depth
to which individuals can process material will
vary with individual differences in informa-
tion processing speed. There is direct evidence
that age decrements in memory task perfor-
mance are inversely proportional to the time
that is available to inspect the material pre-
sented (see reviews in Kausler, 1990, and par-
ticularly Canestrari, 1963; Hulicka, Sterns, &
Grossman, 1967; Monge & Hultsch, 1972;

Waugh & Barr, 1980; Witte, 1975). Within the
range of presentation rates within which older
people are inconvenienced, age differences
in memory efficiency must relate to indi-
vidual differences in information processing
rates.

Models for one aspect of memory perfor-
mance, so-called working memory, also re-
late efficiency of recall directly to informa-
tion processing speed. The evidence for this
is largely derived from experiments in which
people are given dual tasks that either do or
do not require similar kinds of decisions (see
Baddeley, 1986). It is therefore very plausi-
ble that age changes in information processing
speed should directly affect working memory
capacity (see Salthouse, 1991). The issue
is whether changes in information process-
ing rate are entirely, or only partially, re-
sponsible for concomitant changes in work-
ing memory. Jenkins, Myerson, Hale, and
Fry (1999) reported a direct test of these
relationships by giving groups of children,
young adults, and elderly people a variety
of different tests of spatial working mem-
ory, with and without secondary tasks. Sur-
prisingly, they found that there was little
evidence of change in the effects of inter-
ference. Within samples of all ages, those
who had larger memory spans were relatively
more affected by the secondary tasks. They
concluded that although there is good evi-
dence that both memory span and informa-
tion processing speed increase with develop-
mental age and decline in old age, within age
groups these performance indexes are never-
theless relatively independent of each other.
The functional relationships between these in-
dexes are, therefore, more complicated than a
simple version of a general slowing theory can
explain.

However, these results also raise an inter-
esting methodological and logical problem, as
indicated by Wickens (personal communica-
tion, May 2001). The issue of how to evaluate
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whether a secondary task has produced differ-
ent or similar changes in span from individ-
uals with larger and smaller working mem-
ory capacities rests on the kind of functional
model that we use to interpret the data. If in-
terference from a secondary task reduces the
span of a less able individual from 2 to 1,
and that of a more able individual from 10
to 8, then one might be tempted to conclude
that the more able individual with the larger
span has suffered more from interference. Rel-
ative to baseline performance, however, the
less able individual has lost 50%, and the more
able individual has lost 20%. On some func-
tional models, especially one similar to that
proposed by Baddeley (1986), the life spans
of items in working memory are determined
by the balance between the rate at which they
decay and the rate at which they can be re-
freshed by being cycled around a loop system.
In terms of such a model, a 50% loss would
indicate a much more rapid decay rate, or a
very much greater reduction in refreshment
rate than would a 20% loss. Myerson, Jenkins,
Hale, and Sliwinski (2000) have recently ac-
knowledged these difficulties and conclude
that the question of whether high span individ-
uals lose relatively more items from working
memory as a result of interference has not yet
been worked out. This is a useful reminder
that the decision whether relative or absolute
differences between older and younger peo-
ple are the more meaningful depends entirely
on the functional model in terms of which one
interprets the data. It also, incidentally, makes
the point that functional models for individ-
ual differences in working memory efficiency
require specification of two parameters, only
one of which can sensibly be discussed in
terms of speed or information processing rate.
One must also discuss the possibility of indi-
vidual differences in the rates at which traces
decay, and for this reason simple assumptions
of global changes in mental speed are inap-
propriate.

The general slowing model goes well be-
yond uncontroversial associations between
information processing speed and memory ef-
ficiency such as those discussed by Canestrari
(1963), Hulicka et al. (1967), Kausler (1990),
Monge and Hultsch (1972), Waugh and Barr
(1980), and Witte (1975) to the much stronger
claim that all of the changes in the functional
processes underlying memory efficiency that
occur with age causally follow from general
slowing of the entire cognitive system. This
implies that one must choose between two
possibilities. The first is that for people of any
age, information processing speed must be the
sole determinant of the efficiency of individ-
ual differences in all functional processes that
underlie recognition and recall (a proposition
that most memory theorists would find unac-
ceptable). The second is that although infor-
mation processing speed is not the sole deter-
minant of memory efficiency in young people,
it gradually becomes so as age advances. The
challenging task of empirically testing these
possibilities has not yet been attempted.

There is some evidence that slowing of in-
formation processing rate cannot be responsi-
ble for all of the functional changes in memory
efficiency that are observed in all individu-
als as they age. Rabbitt (1993a) found that
within a very large sample of people aged
from 40 to 92 years, intelligence test scores
modestly but significantly predicted perfor-
mance on memory tasks, but that the incidence
of persons who were outliers in the sense
that their memory test scores fell markedly
below the levels that would be predicted
from their ITSs increased with the age of the
group sampled. Nettelbeck, Rabbitt, Wilson
and Batt (1996) compared a group of these
memory-impaired outliers with controls who
had been precisely matched for age and ITSs
and whose ITSs still modestly predicted their
scores on memory tests. Within both of these
groups there were similar modest correlations
between ITSs and measures of information
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processing speed (CRTs and inspection times).
However, within the memory-impaired group,
although the association between information
processing speed and intelligence test scores
remained normal, no association between
decision speed and memory test scores was
apparent.

A disassociation between performance on
intelligence tests and on memory tests is one
of the main diagnostic criteria for amnesia
caused by focal brain damage. It is quite possi-
ble that increased incidence of memory-poor
individuals in older groups reflects increased
incidence of undiagnosed focal damage due to
cerebrovascular accidents or to other causes.
It is also possible that relatively marked de-
cline in memory function reflects increasing
tissue loss and tissue changes in prefrontal
and temporal cortex, which have been ob-
served on postmortem examinations of older
brains and, more recently, with brain imag-
ing (e.g., Albert, 1993; Haug & Eggers, 1991;
Mittenberg et al., 1989; Scheibel & Scheibel,
1975; Whelihan & Lesher, 1985). The data
do not choose between these possibilities, but
they do strongly make the point that the neu-
rophysiological changes responsible for these
cases of age-related memory impairment do
not impair memory simply because they re-
duce information processing speed. It is quite
another question how far the average declines
in scores on memory tests that are observed
in aging populations reflect an increase in the
incidence of individuals who show relatively
greater decline in memory performance than
in general fluid intellectual ability.

Salthouse (1985, 1991) also used statisti-
cal techniques other than factor analysis to
demonstrate that all age-related changes in
memory can be attributed to general slow-
ing. He gave people of different ages a mem-
ory task and a number of different tests of
information processing speed. Participants’
ages and their scores on putatively pure mea-
sures of information processing speed were
then successively entered into the regression

equation as predictors of their performance
on memory tests. He found that as increasing
numbers of scores from tests of “speed” were
entered, the proportion of variance indepen-
dently predicted by calendar age decreased
and eventually disappeared entirely. He con-
cluded that all age-related variance in memory
efficiency could be accounted for if scores
on sufficient, or on sufficiently good, mea-
sures of information processing speed have
been entered.

The logical errors in the use of multiple
regression analyses to support this partic-
ular argument have received such magiste-
rial reproof (Pedhozur, 1997) that they need
not be recapitulated here. A simpler and
more pervasive logical difficulty follows from
Weiskrantz’s (1992) observation that “there is
no such thing as a ‘pure’ test.” It is notewor-
thy that in all reported studies this process
of successively entering increasing numbers
of speed test scores to predict memory test
scores has only been successful when scores
from some version of the WAIS coding tasks
(e.g., letter-letter, letter-digit, or letter-symbol
substitution test) is entered as a measure of in-
formation processing speed. This is important
because individuals’ scores on this particular
test are known to be closely related to the effi-
ciency with which they partially learn substi-
tution codes that, as we might expect, declines
with their ages (Piccinin and Rabbitt, 1999).
Demonstrations that all age-related variance
in memory test performance can eventually
be eliminated by entry of scores from a test in
which the speed of performance is largely sup-
ported by learning efficiency does not provide
good support for the general slowing model as
applied to memory function.

Does Age Alter Speed or,
Rather, Variability of Performance?

As Ratcliff et al. (2000) have pointed out,
the correct interpretation of all of the com-
parisons that have used the slopes of Brinley
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plots as evidence for age related slowing is
that variability of performance increases with
age both within and between individuals.
Even when participants are practiced to a
point at which they no longer improve, decline
of general fluid intellectual ability is reflected
by marked increase in trial-by-trial variance in
CRTs (Rabbitt, Osman, Stollery, & Moore, in
press). Furthermore, the degree of trial-to-trial
variability in CRTs that individuals show dur-
ing single experimental sessions correlates ro-
bustly with the variability of their mean CRTs
between sessions or from day to day (Rabbitt,
1999; Rabbitt, Osman, et al., in press). This re-
lationship can be explained as a statistical in-
evitability on the premise that every response
that a person makes during any experimen-
tal session can be considered to be a random
sample from a hypothetical latent distribution
of all of the CRTs that he or she would pro-
duce if repeatedly tested over a long period
of time. The form of this latent distribution
of CRTs will, of course, reflect the form of
the actual distributions of CRTs obtained dur-
ing the experimental sessions whose sums it
represents. Thus, an individual whose CRT
distributions during individual experimental
runs have large standard errors will also, nec-
essarily, have a latent distribution with the
same large standard error. Regardless what
the particular functional mechanisms by
which CRTs are produced may be, then, it
follows as a mathematical rather than a func-
tional necessity that the standard errors of the
means of CRT distributions observed in in-
dependent experimental sessions will directly
reflect the standard error of the latent dis-
tribution from which they have been drawn.
Whatever factors may determine moment-
to-moment variability in performance during
individual experimental runs must, necessar-
ily, also determine variability in average levels
of performance from day to day and week to
week.

It is important to note that this does not
mean that moment-to-moment variability is

the only factor that determines session-to-
session and day-to-day variability. When par-
ticipants are run on several different tasks
during weekly experimental sessions, levels
of performance on each of these tasks co-
vary across sessions (Rabbitt, Osman, et al., in
press). It seems that because of factors other
than their intrinsic moment-to-moment vari-
ability, people experience relatively “good” or
“bad” days or sessions during which they per-
form relatively well or poorly on all of the
tasks that they carry out. The causes of this
additional day-to-day variability, and the ways
in which it may be affected by age, remain
topics for further research.

These findings have strong consequences
for the methodology of studying age differ-
ences. People who vary more with respect
to themselves from day to day must, for that
reason alone, also vary more with respect to
each other when their performance is sam-
pled on any single occasion. Because older
people vary more from day to day, they will
also vary more with respect to each other
when they are compared at any time point.
Therefore, as a population ages variability be-
tween its members will increase not only be-
cause of increasing divergences in their tra-
jectories of cognitive aging but also because
of age-related increases in within-individual
variability. We have seen that increasing vari-
ability between individuals in an aging pop-
ulation is a neglected finding in longitudinal
studies that raises central theoretical issues in
cognitive gerontology. It is now apparent that
in order to estimate reliably how much of this
variance is due to increasing divergence in
individual trajectories of aging, one must de-
termine the extent to which intrinsic variabil-
ity within individuals contributes to the ob-
served variability between them at any point
of comparison.

Another methodological crux is for esti-
mates of circadian variability that persists and
may even become more marked in old age,
as recent work suggests (Li, Hasher, Jones,
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Rahhal, & May, 1998). That individuals’ lev-
els of moment-to-moment and day-to-day
variability are necessarily coupled means that
estimates of the extent of circadian variability
will be unreliable unless this intrinsic source
of variability is computed and taken into con-
sideration. In particular, because between-
session variability increases with age, this will
tend increasingly to disguise any additional
effects of circadian variability on the perfor-
mance of older groups.

One theoretical implication is that, at least
as far as CRTs are concerned, variability of
performance is a stable individual charac-
teristic in that the degree of variability that
individuals show on a particular task on a par-
ticular occasion will predict the extent of vari-
ability that they will show on the same task
on other occasions. A corollary would be that
the degree of variability that individuals show
on a particular task on a particular occasion
will predict their degree of variability on dif-
ferent tasks on different occasions. Rabbitt,
Osman, et al. (in press) found that within-
session variability and between-session vari-
ability were very strongly correlated across
6 very similar CRT tasks. It remains a fur-
ther question whether the extent of variabil-
ity that individuals show on one kind of tasks
(e.g., CRT tasks) predicts the degree of vari-
ability that they show on very different kinds
of tasks (e.g., tasks involving psychophysical
judgments, memory, or maintenance of selec-
tive attention).

It may be useful to ask whether age in-
creases variability on all cognitive tasks, not
just those on which CRTs are the perfor-
mance index measured. Wearden, Wearden,
and Rabbitt (1997) found that individuals’
ages and ITSs predicted their trial-to-trial
variability on all of four different time-interval
comparison, estimation, and production tasks.
Thus, it is useful to ask whether individuals’
levels of moment-to-moment and session-to-
session variability on CRT tasks, in which

their performance is measured in units of time,
also strongly and directly predicts their vari-
ability in time estimation and interval produc-
tion tasks, memory tasks, and psychophysi-
cal judgments in which time measures are not
used.

Testing Alternative Modular Models
for Cognitive Aging

A disappointing feature of the global speed
hypothesis, and of other single-factor mod-
els such as those based on g f , is that they
are based entirely on behavioral evidence
and make little attempt to relate this evi-
dence to the particular CNS changes that oc-
cur during aging. It is interesting to work
in the opposite direction and to use the in-
creasing body of evidence on the neurophys-
iology and neuroanatomy of brain aging to
derive predictions about changes in behav-
ior. There is accumulating evidence that age-
related changes affect the frontal lobes earlier,
and more severely, than they affect other parts
of the brain. Postmortem and imaging studies
suggest that age-related loss of cortical vol-
ume is greater in the frontal lobes than in other
brain areas (Haug & Eggers, 1991; Mittenberg
et al., 1989; Whelihan & Lesher, 1985) and
that older adults show greater cell loss in
the prefrontal than in other cortical regions
(Albert, 1993; Scheibel & Scheibel, 1975).
Reductions in cerebral blood flow after the
age of 60 years have also been reported to be
greater in prefrontal than in posterior regions
(Gur, Gur, Orbist et al., 1987; Shaw et al.,
1984). Goldman-Rakic and Brown (1981)
have reported age-related region-specific de-
clines in the concentration, synthesis, and
number of receptor sites for some neurotrans-
mitters. Age-related changes in dopamine re-
ceptors have also been found in monkeys
(Arnsten, Cai, Murphy, & Goldman-Rakic,
1994). These findings encourage researchers
to investigate age-related changes on
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cognitive tasks that are known from clinical
experience to be sensitive to local damage to
the cortex, especially the frontal cortex (West,
1996). Unfortunately, all such tasks involve
comparison of decision times, so the design
and interpretation of experiments must take
scaling effects into account. The methodolog-
ical implications of this have not fully been
recognized.

The ability to inhibit irrelevant or dis-
tracting perceptual input or intrusive memo-
ries and to suppress incorrect responses has
long been linked to frontal lobe integrity. It
is natural to consider whether some cogni-
tive changes in old age may be explained
in terms of declining efficiency of inhibi-
tion (e.g., Connelly, Hasher, & Zacks, 1991;
Hasher, Quig, & May, 1997; Hasher, Stoltzfus
Zacks & Rypma, 1991; Hasher & Zacks,
1988). Among many findings consistent with
this hypothesis are that older people are more
distractible and disinhibited in verbal fluency
tasks (Birren, 1959), that they produce more
intrusions from external items in free recall
(Cohen, 1988), that they find it harder to
suppress previously generated but no longer
relevant inferences in text recall (Hamm &
Hasher, 1992), that they produce more false
positives to semantic associates of actually
presented words (Rankin & Kausler, 1979),
and that they are less able to suppress irrel-
evant information held in memory (Hartman
& Hasher, 1991). Note in this last case, how-
ever, that the suggestion that the ability to
inhibit interfering input and memories is di-
rectly related to working memory capacity is
inconsistent with Jenkins et al.’s (1999) in-
triguing finding that individuals with large
memory spans are relatively more impaired
by a secondary task than are those who have
smaller memory spans. There are also sug-
gestions that older people are less able to for-
get items on demand (Zacks, Radvansky, &
Hasher, 1996), that they find it more diffi-
cult to inhibit both well-practiced and newly

learned response patterns in order to acquire
new ones (Kausler & Hakami, 1982), and that
they are more distracted by irrelevant items
adjacent to targets in visual displays (Shaw,
1991). Unfortunately, as this extraordinarily
wide range of quite disparate uses of the term
inhibition illustrates, discussions of neuro-
psychological tests involve problems of the
appropriate definition and validity of the hy-
pothetical constructs that they are supposed
ostensively to define.

PROBLEMS OF DEFINITIONS
OF CONSTRUCTS IN DISCUSSIONS
OF FRONTAL AND EXECUTIVE
FUNCTION

Goel and Grafman (1995) point out that the
construct of inhibition has been overextended
to cover an implausibly wide range of func-
tions from suppression of very simple and au-
tomatic responses such as saccades (Walker
et al., 1998) to very complicated behaviors
such as the ability to inhibit unacceptable
or unwise social responses. The imprecision
of the common usage of the word inhibition
has encouraged misleading analogies between
very disparate functional processes (Rabbitt,
1997). On one hand, there is general agree-
ment that the term has been overextended to
cover functionally unrelated activities; on the
other hand, tasks that in research practice have
been taken to make very different demands
can all be supported by identical functional ar-
chitectures. For example, Kimberg and Farah
(1993) have formally shown that performance
on four quite distinct tasks that have been
widely regarded as measures of frontal func-
tion, including inhibition in the Stroop (1935)
paradigm, can be successfully simulated by
identical production systems that do not in-
clude any component process analogous to in-
hibition as understood in common discourse
or in the neuropsychological literature.
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A voluminous literature includes puzzl-
ingly frequent inconsistencies in age effects
on logically similar experimental paradigms
and outright failures of replication of results
from identical tasks. Some investigators have
found age deficits in verbal fluency (e.g.,
Pendleton et al., 1982; Whelihan & Lesher,
1985), but others have not (e.g., Axelrod &
Henry, 1992; Daigneault, Braun, & Whitaker,
1992). Some (Daigneault et al., 1992; Heaton,
1981; Loranger & Misiak, 1960) but not
others (Boone et al., 1990; Nelson, 1976)
have found that perseverative errors on the
Wisconsin Card Sorting Test increase with
age. In particular, some studies find that older
people have particular difficulty suppressing
irrelevant responses in the conflict condition
of the Stroop (1935) paradigm (Connelly et
al., 1991; Hasher and Zacks 1988; Hasher
et al., 1997; Kane, Hasher, Stoltzfus, Zacks,
& Connelly, 1994; Rabbitt, 1996), whereas
others do not (Salthouse, 1998; Salthouse,
Fristoe, & Rhee, 1998; Salthouse & Meinz,
1995). Many of these discrepancies are due
to definition of constructs and to the likeli-
hood that apparent differences between task
demands do not reflect real differences be-
tween the functional systems that support
them (Rabbitt, 1997). Other reasons for in-
consistencies are problems of measurement,
problems of task familiarity, problems of con-
struct validity and, finally, and probably most
basically, much-neglected problems of par-
ticipant selection. As usual, these problems
stem from the particular model for the nature
and time course of cognitive aging that one
adopts.

Problems of Measurement

A good example of problems of measure-
ment is provided by experiments using the
Stroop test in which the efficiency of inhibi-
tion of irrelevant signals and responses is in-

dexed by computing the differences between
individuals’ mean CRTs for easier and faster
baseline conditions and their mean CRTs for
more difficult and slower interference con-
ditions (Stroop, 1935). Increases in absolute
differences between mean CRTs for interfer-
ence and baseline conditions have been inter-
preted as losses in efficiency of inhibition of
intrusive information. Unfortunately, as has
been seen, pervasive age × task-difficulty in-
teractions ensure that age increases CRTs for
the harder and slower interference conditions
more than it does for easier and faster base-
line conditions, and so must also increase
the absolute difference between them. An in-
hibitory deficit can only be claimed if in-
creases in CRTs for an interference condi-
tion are disproportionately greater than for the
corresponding baseline condition. Not all in-
vestigators have taken this point into account
(e.g., Baumler, 1969; Cohn, Dustman, &
Bradford, 1984; Comalli, Wapner, & Werner,
1962; Houx, Jolles, & Vreeling, 1993; Panek,
Rush, & Slade, 1984). The methodological
problem of adjusting for across-the-board
age-scaling effects is not easy to resolve be-
cause recent analyses (Cerella, 1990) sug-
gest that scaling effects are better described
by accelerated exponential functions than by
simple linear functions. If this is so, age
will always lag CRTs for the slower inter-
ference conditions proportionally more than
CRTs for the faster baseline conditions of the
Stroop test. Until it is generally agreed that
age-scaling functions for all tasks have the
same form, and what this form may be, re-
searchers cannot carry out post hoc statisti-
cal adjustments and can only claim differen-
tial effects by comparing the same groups of
younger and older people both on some sim-
ple, and therefore fast, tasks that involve in-
hibition and on more difficult, and therefore
much slower, tasks that do not involve inhi-
bition. There is only evidence for inhibitory
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deficits if older groups show proportionately
greater slowing of faster mean CRTs for
tasks involving inhibition than of slower mean
CRTs for tasks that do not involve inhibition.
Neglect of this methodological point raises
problems for all studies that have argued for
age-related loss of inhibitory inefficiency only
from single comparisons between baseline
and conflict conditions of the same tasks.

It once seemed that an elegant way out
of the methodological difficulties introduced
by scaling effects might be to follow an ex-
cellent meta-analysis by Verhagen and De
Meersman (1998), who plotted data from pub-
lished studies of age differences on the Stroop
test to compare the slopes of Brinley functions
derived from their interference and from their
baseline conditions. Finding no differences
in slope, these authors concluded that they
had no evidence that age differences on inter-
ference conditions are greater than a general
slowing theory would predict. We must now
accept that the slopes of Brinley functions are
not appropriate measures of scaling effects for
mean CRTs and, rather, that they reflect dif-
ferences in the degrees of variability within
and between older and younger individuals
(Molenaar & van der Molen, 1994; Ratcliff
et al., 2000). It seems that explorations of
age differences in the effects of interference
and baseline conditions of the Stroop test,
as well as of other neuropsychological tests
such as the trails test, require investigations
of changes in the shapes of distributions be-
tween conditions, rather than simply com-
parisons between mean CRTs (Faust, Balota,
Spieler, & Ferraro, 1999). There is also in-
teresting recent evidence that innovative sta-
tistical analyses can reveal changes in com-
ponent subdistributions of CRTs from Stroop
interference conditions that appear to be es-
pecially sensitive to changes related to age
and the onset of dementias (Spieler et al.,
1996).

Problems with Task Reliability
and Validity

Burgess (1997, pp. 81–116) wittily described
his exasperation that, in clinical practice,
frontal tasks can generally be used only once
with any particular patient because their sen-
sitivity depends on their novelty; therefore, a
patient who fails on one frontal test may nev-
ertheless succeed on “any number” (sic) of
others. Thus, one must conclude that tests, pa-
tients, or both are inconsistent with respect to
each other (Burgess, ibid, pp. 81–116). There
may be several distinct reasons for this.

TASK NOVELTY AND AGE EFFECTS
ON NEUROPSYCHOLOGICAL TESTS:
PROBLEMS OF TEST RELIABILITY

Lowe and Rabbitt (1997) tested the same
groups of older and younger individuals twice
on the same series of 15 different tests de-
scribed by Rabbitt (1996). When these tests
were first administered, Brinley ratios for the
Stroop and trails tests were larger than they
were for any of the other tasks. However, when
tests were readministered, Brinley ratios for
the Stroop and trails test declined more than
they did for any others, and no differences in
proportional slowing between baseline and in-
terference conditions were now evident. This
is not just another illustration that the Stroop
effect is abolished by practice in people of
all ages. For both older and younger groups,
mean CRTs for the interference condition of
the Stroop test and for the switching condi-
tion of the trails test remained significantly
greater than for the corresponding baseline
conditions. The crucial point is that the dis-
proportionate age-related increase in CRTs
for the critical conditions of these tests dis-
appears well before the main effects of in-
terference are lost. This reduction of specific



pashler-44093 book December 18, 2001 9:37

840 Aging and Cognition

test sensitivity to age effects is consistent with
Burgess’s observation that frontal tests can
identify patients with well-defined frontal le-
sions only when they are novel. It also raises
problems of data interpretation because it sug-
gests that, as practice continues, localized or
modular age differences may gradually dis-
appear and that residual differences between
conditions can be increasingly well explained
by proportional slowing. Thus, inconsisten-
cies in the literature between findings of age-
related changes on the Stroop test and on other
neuropsychological tests may be explained, at
least partly, by differences in the amounts of
practice that different investigators have given
their participants or, more generally, on un-
controllable differences in the extent to which
participants may have become familiar with
similar task demands during their daily lives.
Whether age comparisons across a disparate
set of tasks provide evidence for general slow-
ing or for modular change may depend on du-
ration of practice and on often unattainable
control for task familiarity.

This raises the further problem that be-
cause older individuals’ relative sensitivity to
frontal tasks sharply reduces with practice,
these tasks are likely to rank order groups
of individuals in different ways on successive
administrations. In psychometric terms, such
tests are likely to have low test-retest reliabil-
ity. Lowe and Rabbitt (1998) analyzed data
from two batteries of neuropsychological and
other tests: the excellent CANTAB (Sahakian
& Owen, 1992) and the International Study
for Post Operative Cognitive Decrement
(ISPOCD) battery used in a large study of
cognitive impairment following surgery and
anesthesia (Moller et al., 1998). Test-retest
correlations for the frontal and executive tests
in these batteries were generally much below
levels considered acceptable in psychometric
practice and markedly lower than for other,
equally difficult nonfrontal tasks. This does
not mean that these particular frontal tests

are poorly designed or insensitive. It confirms
Burgess’s (1997) clinical observation that a
defining characteristic of frontal tests is that
they are sensitive only when they are novel.
Unfortunately, this also means that longitu-
dinal investigations using such tests may be
compromised because repeated administra-
tion reduces their sensitivity.

TASK SPECIFICITY AND
CONSTRUCT VALIDITY:
ARE PARTICULAR TESTS
SPECIFIC TO PARTICULAR
FUNCTIONAL SYSTEMS?

Basic criteria for acceptability of a test as
a measure of a hypothetical functional con-
struct, such as intelligence, are that it must
shown to be valid in at least four senses:

1. Scores on tests of a particular functional
construct must correlate with performance
in everyday situations that also provide os-
tensive definitions of that same construct.

2. Individuals’ scores on parallel versions of
the same test must correlate robustly.

3. Scores on different tests that are supposed
to assess the same functional construct
must correlate robustly.

4. Correlations between scores on different
versions of the same test, or on different
tests, should not be explainable in terms of
individual differences in the efficiency of
any functional process other than in the
particular one that they are supposed to
measure.

Frontal tests are assumed to be valid in the
first of these senses because they have be-
come recognized in clinical practice as reli-
able diagnostic markers of particular kinds of
brain injury but not others. They may also be
said to be valid in the third sense, inasmuch
as some of them often successfully diagnose
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a frontal syndrome that includes other be-
havioral deficits that they do not directly as-
sess. Unfortunately, for the most part the func-
tional properties of frontal tests have been
inferred from studies of patients who have sus-
tained focal frontal damage or from studies of
controlled lesions in primates. Costa (1988)
points out that limitations to these studies may
contribute to discrepancies between findings
of patterns of associations between scores on
particular frontal measures and particular le-
sion sites. The association of loss of a particu-
lar function to a particular locus of damage in
the brain loses sight of the point that removal
or injury of particular parts of the cortex may
cause secondary changes in regions that send
projections to or receive projections from the
damaged area. Costa (1988, p. 5) commented
that, as a result, “it is easy to find tests that
are sensitive to frontal-lobe dysfunction and
very difficult to find tests that are specific
for it!”

Many so-called frontal tests do not meet the
second and third criteria of validity. The prob-
lem stems partly from vagueness of concep-
tual boundaries. As Goldman-Rakic (1993,
p. 13) remarked, “Such a bewildering array
of behavioral deficits have been attributed to
frontal lobe injury that a common functional
denominator would appear elusive.” A less
recognized problem is that researchers still
do not have empirical evidence that paral-
lel or slightly different versions of the same
test, or different tests that are held to assess
integrity of the same functional system, are
mutually valid in the sense that they rank
order individuals in the same way. Rabbitt,
Lowe, and Shilling (2001) found that corre-
lations between scores on different measures
of frontal function are always very modest
and, in many cases, statistically unreliable
and that they cannot be replicated with dif-
ferent groups of individuals. Finally, Duncan
(1995) and Duncan, Burgess, and Emslie
(1995) reported that the modest correlations

observed between scores on some frontal tests
may be explained entirely in terms of their
mutual correlations with an extraneous func-
tional construct that they are not designed
to measure: in this case general intellectual
ability (g f ), as indexed by unadjusted scores
on the CCF. Shilling, Chetwynd, and Rabbitt
(2001, Neuropsychologia, in press) tested the
validity of the construct of inhibition as in-
dexed by the Stroop test by examining corre-
lations between participants’ scores on differ-
ent versions of the Stroop test. They found no
evidence of consistency of sensitivity to inhi-
bition (i.e., to interference conditions of these
tasks) at the individual level, except when al-
most identical versions of the Stroop task were
compared. They also found no evidence for
consistency of sensitivity across age groups,
but there was some evidence for consistency
across groups with higher and lower CCF
scores. In other words the amount of diffi-
culty that individuals experienced in coping
with the Stroop tasks was predicted by their
g f scores rather than by their ages. Similar
claims have been made that correlations be-
tween individuals’ scores on different tasks
are mediated by differences in their speeds of
processing. Neumann and DeSchepper (1992)
found that faster participants showed greater
levels of negative priming (indicating greater
inhibitory efficiency) than did slower partici-
pants, and Salthouse and Meinz (1995) found
that almost all of the age differences found
in three measures of Stroop interference were
related to individual differences in processing
speed rather than to differences in calendar
age. As Salthouse, Fristoe, and Rhee (1996)
and Phillips (1998) have remarked, many pre-
vious studies have failed to take into account
the point that age-related changes on frontal
measures may, at least to some extent, be ex-
plained by global slowing (see the earlier dis-
cussion of scaling effects).

This highlights a methodological issue for
all studies of frontal changes in old age.
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Nearly all studies of age-related differences
in frontal tasks have either matched older and
younger groups on educational attainment or
on vocabulary test scores. The rationale is that
this provides the best possible assurance that
when the older groups were younger their lev-
els of general mental ability (g f ) were com-
parable to those of the young adults against
whom they are currently compared. Because
g f scores markedly decline during the life
span, this procedure also guarantees that the
older groups will have much lower g f scores
than the younger groups. Thus, unfortunately,
pending further work, many reported age-
related differences on frontal tasks remain
cryptic unless the inevitable differences in
g f associated with age are taken into consi-
deration.

ARE DIFFERENT
NEUROPSYCHOLOGICAL TESTS
VALID IN THE SENSE THAT THEY
ASSESS THE EFFICIENCY OF THE
SAME FUNCTIONAL PROCESSES?

Reitan and Wolfson (1994) warn that many
experimental studies have concluded that
there are differences in frontal efficiency
between younger and older children (e.g.,
Dempster, 1992; Harnishfinger & Bjorkland,
1993) or between younger and elderly adults
without any independent evidence that the
particular groups compared actually differed
in frontal lobe integrity. Conclusions often
rest entirely on the logically unsafe assump-
tion that because the tasks used had previ-
ously been validated as identifying patients
with frontal brain lesions, individuals who
performed more poorly on them must, neces-
sarily, be frontally impaired. This raises the
possibility that the performance on frontal
tasks of participants who do not suffer from
focal deficits or damage will, as on most other
tasks, be well predicted by global task per-

formance indexes such as unadjusted intelli-
gence test scores or measures of information
processing speed.

Burgess (1997) suggested that this mutual
dependency of efficiency of both frontal and
nonfrontal tasks on measures of g f means that
within groups of individuals who do not have
brain damage, correlations between scores
on all tasks are equally determined by indi-
vidual differences in levels of these indexes
of global cognitive resources. By analogy it
might equally be claimed that strengths of
associations between frontal test scores are
partly, or entirely, due to their mutual de-
pendence on information processing speed. If
scores on frontal tests are determined mainly
by information processing speed then, within
groups of normal intact adults or children,
scores on frontal tasks may be found to cor-
relate as strongly with scores on nonfrontal
tasks as often and as strongly as they do
with scores on other frontal tasks that are
also predicted by g f . Furthermore, associa-
tions between frontal tasks may be completely
or mainly explained by their mutual load-
ing on g f . Burgess gave a battery of frontal
tests to a clinically normal sample of older
people and found that this was indeed the
case. He administered the same battery to a
group of patients with local frontal damage
and found that, for them, associations between
scores on frontal tests were markedly stronger
and were not abolished when variance asso-
ciated with CCF scores (g f ) was partialled
out. Burgess argued that to the extent that
frontal tests do pick out individuals who have
focal frontal deficits, those individuals who
perform poorly on one frontal task will also
be likely to perform poorly on others. The
strength of such associations between differ-
ent tasks will be as much, or more, determined
by the loci and extents of the brain damage
that they have sustained than by their levels of
general mental ability. Consequently, within
brain-damaged groups measures of g f will
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not be the main determinant of associations
between scores on tests of focal damage but
will, in contrast, continue to predict perfor-
mance on all tasks that have not been com-
promised by damage.

This result raised the possibility that if
old age increases the incidence, or the ex-
tent, of changes to the frontal cortex and as-
sociated systems, older volunteers should per-
form more like Burgess’s patients than like his
normal controls. That is, the strengths of cor-
relations between frontal test scores should
increase with the age of the population sam-
pled, and the levels of these stronger corre-
lations should be little reduced after variance
due to individual differences in general abil-
ity has been taken into consideration. Rabbitt,
Lowe, et al. (in press) tested this possibility
by analyzing data from a large battery of pu-
tatively frontal tasks, including those used by
Burgess in his study. These had been given
twice to two groups of individuals aged from
61 to 86 years, in Manchester (N = 93), and
from 63 to 87 years (N = 99), in Newcastle-
upon Tyne, in 1994 (time point 1, TP1) and
again in 1999 (time point 2, TP2; the age
range given is at second time of testing). In
both cities, samples were divided into old-
old (more than 70 years) and young-old (less
than 70 years) groups on the basis of their
ages in 1994. At TP1, for both young-old and
old-old groups in both centers, correlations
between test scores were few, modest, and
almost entirely explained by individual differ-
ences in scores on the CCF. At TP2 the young-
old groups in both centers showed the same
pattern of results, but within the Manchester
sample of old-old volunteers correlations be-
tween scores on different frontal tests had be-
come stronger and were now independent of
CCF scores. This contrast resembles that be-
tween the data on patient and control groups
described by Burgess (1997) and encourages
the hypothesis that as the older subgroup aged
still further, increasing numbers of them be-

gan to perform like Burgess’s frontal patients.
A discrepant, but usefully provocative, find-
ing was that no such change in pattern of re-
lationships between test scores occurred for
individuals in the old-old group in the New-
castle sample, who, on the basis of 11 years
of longitudinal assessment previous to 1994,
had seemed identical to their Manchester age
peers.

Because this was a longitudinal study, it
allowed a check that could not be made in
any of the cross-sectional studies described
in the literature. Some 30% of the volun-
teers who had been tested at TP1 had dropped
out of the study by TP2 because of death or
increasing frailty. This allowed investigation
into whether dropout of frail individuals af-
fects not only the average levels of scores ob-
tained but also the patterns of relationships
observed between scores on different tasks. In
both cities the TP1 scores of individuals who
had dropped out by TP2 showed the same pat-
tern of stronger correlations and robustness of
associations to the removal of variance asso-
ciated with CCF scores (g f ), as was observed
for the Manchester old-old group at TP2.

These findings strongly suggest that as a
group of people ages, increasing numbers of
them begin to experience changes that affect
frontal brain function. Until these changes oc-
cur, levels of scores—and therefore correla-
tions between scores on most tasks, including
tests of frontal function—are mainly deter-
mined by levels of general intellectual abil-
ity. If frontal tests have any validity, indi-
viduals who begin to perform poorly on one
frontal test because they have begun to suffer
from frontal changes will also tend to per-
form poorly on others. Consequently, as a
sample ages, correlations between scores on
different frontal tests will become stronger.
Because exceptionally poor performance on
frontal tests is increasingly likely to be due to
damage to specific frontal systems rather than
to changes or differences in general mental
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ability, correlations between scores on frontal
tests will not greatly reduce when variance
associated with intelligence test scores is par-
tialled out. However, it is precisely those in-
dividuals who are beginning to experience
frontal changes who are most likely to drop
out from longitudinal studies or to decline
to volunteer for cross-sectional laboratory
comparisons. Unless researchers extend their
samples beyond the “elite” survivors of older
groups, they will not only underestimate av-
erage age changes in performance on all cog-
nitive tests but also fail to observe age-related
changes in patterns of relationships between
measures that indicate differential and modu-
lar, rather than global and general, changes in
performance with age.

CONCLUSIONS

An unacknowledged but pervasive issue un-
derlying methodological problems in cog-
nitive gerontology is how observations of
behavioral and CNS changes should be inter-
preted at the population level and at the indi-
vidual level. I would argue that it is essential
at all times to make explicit which of four
possible hypotheses about the ways in which
age changes the brain we are using to inter-
pret evidence. These hypotheses represent al-
ternatives resulting from combinations of two
pairs of alternative assumptions: whether one
assumes that patterns of brain changes invari-
ably follow the same or different patterns in
all individuals and whether we assume that
patterns of local changes occur in all individ-
uals and proceed continuously, but at differ-
ent rates in different individuals, or that local
changes occur in some, but not all individuals,
but that the incidence of individuals suffering
local changes increases as a population ages.

These alternative scenarios can be further
expanded: One may assume that the same
characteristic patterns of brain changes in-

variably occur in all members of an aging
population, but that the rates at which these
changes proceed differs between individuals.
This may be termed universal, progressive,
single-pattern brain aging. One may, alter-
natively, assume that characteristic patterns
of local brain changes occur and gradually
progress in all individuals, but that differ-
ent individuals may show different patterns,
as well as different rates, of change. This
may be termed, albeit rebarbatively, universal,
progressive, multiple-pattern brain aging.
Either of these possibilities may be modi-
fied by an additional plausible assumption
that apart from local changes that may oc-
cur gradually or suddenly, and which may be
detected by changing patterns of performance
across specific neuropsychological tests, there
are also continuous global changes that affect
performance on all tests of any kind.

The permutations of possible outcomes
from these various scenarios are dauntingly
complex, but it has been naive to ignore them
for so long. In particular, note that they bring
into question the conveniently simplistic as-
sumption that two empirically separable fac-
tors are responsible for cognitive changes in
aging populations: the increasing and accel-
erating accumulation throughout a lifetime of
pathologies, biological life events (see Houx
et al., 1993), and other processes that are sup-
posed to be distinct in their etiological prove-
nance and, with less rationale, different even
in their functional effects. These processes re-
main undefined both in terms of their biologi-
cal nature and in their effects on the CNS, and
are referred to by the blanket term normal, or
usual, aging.

The contrast between normal and patho-
logical processes in old age now seems a weak
guide to further work. It implies that there
exists a subset of “superhealthy” older people
who, though their numbers sharply diminish
with the age of the population sampled, re-
main unaffected by any pathology and thus
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experience only primary brain changes. Be-
cause processes of normal or usual aging of
the CNS still lack any clear physiological de-
scription, it has been possible for them to be
taken, without evidence, to be both continuous
in their progress and global in their effects. In
the absence of evidence, this has focused at-
tention on a rare, and perhaps even mythical,
cohort of “ideally healthy” older people and
has reduced interest in the majority of peo-
ple for whom age is accompanied by an in-
creasing variety and intensity of pathologies,
including cerebrovascular changes, that can
produce localized, as well as global, changes
in intellectual competence and in the ability to
manage everyday life. The politics of an area
of research in which there is public pressure
for reassuring identification of an universally
attainable condition of “ideal aging” has con-
tributed to persistence of an unhelpful con-
centration on what is, at best, a minority of
all of the people whose various conditions
deserve the attention of researchers.

Perhaps it is also time to acknowledge that
researchers cannot hope to base models for
age-related cognitive change on behavioral
evidence alone. Among the most common
concomitants of aging in the CNS are the se-
quelae of cerebrovascular accidents or insuf-
ficiencies of cerebrovascular circulation. As
Shaw et al. (1984) pointed out, these changes
are likely to occur more often in the frontal
lobes than in other areas of the brain. Some
cerebrovascular problems will have relatively
continuous and gradual effects; others will
produce more abrupt changes; but the im-
pacts of these conditions will, in general,
occur over relatively short time spans com-
pared to changes that have been attributed
to the progress of “normal” aging. Further-
more, and perhaps most importantly, many
aging individuals will show some general im-
pairment from cerebrovascular changes but
will die before they show any easily identi-
fied focal deficits. On these grounds the ef-

fect of age-related brain changes, particularly
in the frontal lobes, is best considered as a
question of the increasing incidence, and of
the differential rates of progress, of patterns
of local deficits. It remains an open question
whether these deficits usually occur in a par-
ticular characteristic pattern or whether they
may take different patterns in different indi-
viduals. On balance it does seem probable that
they occur earlier and more often in the frontal
cortex than in other brain areas, but compre-
hensive investigations of other areas have not
yet been undertaken. In any case, it may be
more fruitful to set out to investigate the rel-
ative incidence and severity of different pat-
terns of age-related brain changes than to as-
sume naively that small samples of “healthy”
older people will include only individuals who
have not, or only those who have, experienced
either the same global changes or a particu-
lar focal change. A change of labels may, for
once, be therapeutic. If, instead of discussing
“cognitive gerontology” researchers begin to
discuss “the epidemiology of age-related cog-
nitive change,” then we may open our minds
to wider and more interesting theoretical per-
spectives of relationships between brain ag-
ing and behavior, and avail ourselves of more
realistic models and more appropriate statis-
tical and methodological tools with which to
exploit them.

Admissions that brain aging can be modu-
lar as well as global and that it may be better
described as a matter of increasing incidence
of particular kinds of changes rather than as
a continuous progression of uniform patterns
of change may trespass on well-established
vested interests in cognitive gerontology and
will certainly make the design of further stud-
ies more complicated and expensive than the
resources available to many investigators can
support. Nevertheless, it is hard to see how
progress can be made unless we study much
larger and clinically better-investigated sam-
ples. Indeed, it is dubious whether it is still
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cost-effective to pursue research in cognitive
gerontology without data from both structural
and functional brain imaging. In recompense,
acceptance of a more realistic point of view
offers the advantage that it can resolve incon-
sistencies in what is, currently, a very untidy
and tentative literature. It entails acceptance
that without direct evidence for the extent and
patterns of brain changes in old age, the con-
trasts that we have observed may depend more
on how we selected our samples, or on how
our samples have selected themselves, than
on the models that we have adopted or the
paradigms we developed to test them.
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Detection:

definition, 44
psychometric functions for,

58–60
relation to other designs, 45
uncertain bisensory, 76

Detterman effect, 822
Developmental psychology, 461
Development disorders, 139,

155–159
Deviation scores, 368–369
Diabetes, 796, 801
Die Wissenschaft der Extensiven

Grösse oder die
Ausdehnungslehre
(Grassmann), 6

Differences:
gender, 581–584
group, 581–585
racial, 582

Difference scores, 371
Difference vector, 245
Differential item functioning (DIF)

scores, 583
Differentiation drive, 396
Diffusion tensors, 184, 208–209
Dimensional analysis, 20
Disabilities:

elderly people and, 820, 823
learning, 552
testing people with, 552–553

Discriminal dispersion, 13, 101–102
Discriminal processes, 101–102
Discrimination:

algorithmic models of, 435
classification related to, 62–63
definition, 44
equal, 531
fixed, 65
mAFC, 70–71
matching-to-sample (ABX),

70–71
multiple-look design, 45, 70
object, 721
oddity, 70–71
relation to other designs, 45
roving, 65
same-different design, 45, 66–70
scaling by methods of, 97–106
stimulus, 588
two-alternative forced-choice

(2AFC), 45, 64–66
visual, 321–323, 661, 663–664

Disposable soma theory, 798
Dissociations:

in cognitive neuropsychology,
279–280

double, 661–668, 685
in functional brain imaging,

177–178
single, 668–671
triple, 679–680

Distributions, 43
ex-Gaussian, 482–483,

506–507, 509
gamma, 482–483

DNA, 587, 593–594
Dol scale of pain, 98
Domain specificity, 140
Dominance, 434, 566
Dopamine, 185, 254–255, 683, 836
Dopamine Receptor D4, 594
Doubled stimuli, 94
Drawbridge effect, 757
Dual-route cascaded (DRC)

models, 168
Dynamical systems, 237
Dyslexia:

acquired, 167, 171
DRC model simulation of, 168

deep, 155, 163, 260
phonological, 150, 163–168
surface, 150, 154–155, 163,

167–168
visual, 155

Echo planar imaging (EPI), 207
Effective connectivity, 197
Effect size, 348, 392
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Efficiency, 469
Ego control, 570
Eigenvectors, 216
Ekman’s Law, 100–101
Electroencephalographic (EEG)

data, 277
Electromyographic (EMG)

data, 277
Electrophysiology. See Event-

related potentials (ERPs)
Elemente der Psychophysik

(Fechner), 10
Elements (Euclid), 32
Eligibility traces, 247
Empirical distribution functions

(EDF), 488–489, 499, 508
Engrams, 742
Enzymes, 185
Epanechnikov kernel estimator,

479–483, 509–510
Epistemology, 93
Equinormality, 311
Equivalence techniques, 340,

381–387
Error bars, 352
Errors:

a-not-b, 733–737
in classical test model, 520
constant, 27
history of, 26–28
inevitability of, 26
kinds of, 43
mean squared (MSE), 441–444,

447, 451–452
random, 27, 453–454
response-shift, 722
standard, 356, 470
stimulus-preservation, 722
sum of squares, 441
time order, 65

Euclidean space, 105–106
Euler characteristics, 212
European Union (EU), 820
Event-related potentials

(ERPs), 182
attended/ignored tone

comparisons, 621
in attention’s absence, 602–610
in attention-switching-to-

stimulus-change paradigm,
613–614

brainstem auditory evoked
potentials (BAEPs),
603–604, 620

components of:
exogenous, 606
mismatch negativity (MMN),

607–616, 625–626

N1, 604–606, 611, 613,
616–620, 631

N2, 607
N2b, 607
obligatory, 606
P1, 604, 631
P2, 607
P3a, 607, 611–614, 616
P3b, 616
processing negativity (PN),

617–618, 620–623
reorienting negativity (RON),

614, 616
difference waves, 612
gain theories, 618
involuntary attention to sounds,

610–616
in long-term familiarization, 744
psychological theories of

attention, testing with,
601–602

selective attention and, 616–625
sound-induced, 603
in vision, 625

binding, 639
covert orienting of attention,

633–634
early directing-attention

negativity (EDAN),
633–634

feature processing, 636–637
hierarchical processing,

637–638
late directing-attention

positivity (LDAP), 633
overt orienting, 634–635
search tasks, 638–639
spatial cuing, 630–634
sustained attention,

626–630
texture segmentation, 639
time course of attentional

facilitation, 635
transient attention,

630–631, 633
voluntary vs. reflexive

orienting, 635–636
Evoked potentials, 603
Evolution, 152
Exception words, 168
Excitation:

additive, 236
inhibition and, 241–242
shunting, 236–237

Existence, 4
Expected utility theory, 16
Experiments:

blocked designs, 189–190

color-matching, 381–382
dropouts from, 815–818
with more than two

responses, 62
nonverbal, 760, 766
one-interval:

rating design, 49–52
terminology for, 44–45
yes-no design, 46–49

ratio production, 115
Extensive quantities, 6
External generality, 330
Extreme scores, 305
Eye movements, 629, 634–635

anticipatory, 740
conditioned blinking, 707–709

Factor(s):
between-subjects, 196
loadings, 575
meaningfulness of, 575
solution, 574–575
within-subject, 196

Fagan Test of Infant
Intelligence, 769

False belief tests, 700
False-memory experiments, 61
Falsifiability, 439–440
Familiarity, 61
Fast operation, 140
Fechner’s Law, 27–28, 91–92, 104,

115, 432–434
Feedback, 223, 230
Filtered backprotection, 200
Fixed effect, 417–419
Fixed-point property, 505, 659–661,

671, 685
Fletcher-Munson scale, 115–116
Flip angle, 204
Flow charts, box and arrow, 140
[11C]Flumazenil, 185
18-Fluorodeoxyglucose

(FDG), 201
Focal variables, 385
Forgetting, 344, 434, 747, 768
Foundations of Measurement

(Krantz, Luce, Suppes, and
Tversky), 7, 16–17, 19–20,
22, 28–30, 34, 36

Fourier transforms, 200–201,
206–207, 239, 502

Fregoli delusion, 170
Functional Brain Imaging:

advantages of, 187–188
anatomical connectivity, 184
animal behavioral data,

181–182
biophysics of, 209
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brain-damage patient behavioral
data, 180–181

in cognitive gerontology, 846
contrasting experimental

conditions:
correlational designs, 197
factorial designs, 196–197
parametric variation, 194–196
subtraction, 193–194, 196
techniques in, 192–193

dissociation of psychological
processes, 176

double dissociations, 177–178
experimental designs:

blocked, 189–190
individual-trial, event-related

fMRI, 190
rapid event-related fMRI,

191–192
gene expression, 185
general linear model, 210–216

assumptions underlying,
212–213

fixed-effects analysis, 215
pitfalls in use of, 213
preprocessing requirements,

213–215
random effects, 215
statistical inference from, 212

independent components
analysis, 213, 215–216

limitations of:
artifacts, 186
duty cycle, 186–187
spatial, 185–186
temporal resolution of data

acquisition, 186
mapping the brain, 175–176
normal adult behavioral data,

179–180
phrenology compared with, 176
physics:

of fMRI, 202–209
of PET, 198–202

preprocessing requirements, 213
normalization, 214–215
realignment, 214
slice timing, 214
smoothing, 214

principle components analysis,
213, 215–216

receptor binding, 184–185,
298–202

regional brain activation, 184
road map of experiment in,

188–189
statistical analysis of data,

209–216

techniques in:
blood oxygen level dependent

method (BOLD), 184,
190–191, 207–210,
212–213, 215

diffusion tensor imaging,
183–184, 208–209

hemodynamic
response-convolution
technique, 192

kinetic modeling, 185
radioactive labeling for

receptor binding, 184–185,
198–202

structural scans, 183–184
Functional connectivity, 197
Functional decomposition, 166
Functional Imaging Laboratory

website, 217
Functional Magnetic Resonance

Imaging (fMRI), 175
activations of working

memory, 178
advantages of, 187–188
anatomical connectivity, 184
auditory selective attention in

the brain, 624
biophysics of, 209
experimental designs:

blocked, 190
individual-trial,

event-related, 190
rapid event-related, 191–192

gene expression, 185
limitations of:

artifacts, 186
duty cycle, 186–187
spatial, 185–186
temporal resolution of data

acquisition, 186
physics of:

basic, 202–205
use of BOLD effect, 207–209
use in neuroimaging of,

205–207
regional brain activation, 184
statistical analysis of data, 209

general linear model, 210–216
task studies:

information-integration, 681
management of, 180
rule-based, 680

techniques:
blood oxygen level dependent

method (BOLD), 184, 190,
207–208

diffusion tensor imaging,
183–184

structural scans, 183–184
value in research of, 182–183
working memory, 195

Functional measurement theory,
327–328

Functions:
binary probability, 29
density, 30–32
slopes of, 371–272

Fundamental Statistics in
Psychology and Education
(Guilford), 354

Fusiform gyrus, 198, 629

Galilean groups, 9, 23
Gamma amino butiric acid

(GABA), 209
Garner Paradigm, 78
Gated dipole network, 248–249,

251, 253, 255, 258–259, 262
Gaussian distributions, 46, 212,

214, 482–483
Gaussian kernels, 477–479, 501,

505, 508–509
Gauss-Newton algorithms, 484
Gender:

differences, 581–584
terminal decline and, 804

Gene expression, 185
General fluid ability (g f ), 823–824,

831, 841–842
Generalizability, 447–453, 519
Generalized likelihood ratio test,

444–445
Generalized recognition theory

(GRT), 73, 82
General weight function

estimators, 475
Genetics:

analysis of taxonomic
relationships, 591–592

behavioral, 587–590
environmental interactions

and, 589, 592–593
longitudinal, 591
taxonomic relationships

analyzed with, 591–595
in cross-domain relationships,

587–595
molecular, 587, 593–595

Geometric averaging, 130
Geometry:

axiomatic, 9
Cartesian representations, 9
Euclidean, 9, 32
Finsler, 12
Riemannian, 12

Globus pallidus, 683
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Glucose, 184, 209
Glutamate, 209
Glutamine, 209
Go/no go tasks, 277
Goodness of fit, 443–447
Gradient echos, 206
Graduate Management Admissions

Test (GMAT), 519, 540
Graduate Record Exam (GRE),

519, 538, 540
Writing Assessment, 542

Grain size, 276–277
Graphics, 350–352, 543
Graphs:

bad design of, 351
software for plotting, 351
tables vs., 350

Greeks (ancient):
axiomatic method, 32
mathematics, 5

Grice inequality, 492–495
Grice model of information

accumulation, 507
Group differences constructs:

correlational differences:
group equivalence, 582
group nonequivalence,

582–583
item analysis of, 583
mean differences, 581
meta-analysis of, 581
variance differences, 581–582

Grundlagen der Geometrie
(Hilbert), 9

Handbook of Research Synthesis
(Cooper and Hedges), 411

Handy samples, 303–304
Hazard functions, 465–466,

479–483, 509–510
Hearing:

attention:
involuntary, 610–616
processing without,

602–610
selective, 616–625

cognition and acuity in, 796
long-latency response (LLR), 604
loudness measurement, 62

additive functional
measurement model,
126–127

Fletcher-Munson scale,
115–116

graphic-rating scale, 128–132
line-length calibration,

123–125
magnitude estimation, 115,

128–132

summation, 113–114
using Fechner’s law, 91–92
using JNDs, 99
using Thurstonian scaling, 101

middle-latency response
(MLR), 604

psychophysical function for
pitch, 108–109

Hebbian learning rule,
248–249, 258

The Hedonistic Neuron (Klopf), 247
Hemodynamic response function

(HRF), 210, 213
Hemoglobin, 207
Heschl’s gyrus, 604
Hide-and-seek, 736
Hippocampus:

autoassociation, 231, 247
category learning, 684
declarative memory, 671
exemplar memory, 678
P3a generated by, 616
spatial memory, 663–665,

667–668
spectral timing architecture in,

250–251
Histogram estimators, 476–477
Hit rate (HR), 613
Homogeneity:

in populations for double
dissociation experiments,
661–662

two-point, 24
Homomorphisms, 3–4, 33
Horseshoe crab, 235–236
Human Brain Function

(Frackowiak et al.), 217
Huntington’s disease,

679–680, 684
Hyperactivity, 255
Hysteresis, 237

Identifiability, 439–441
Identification, 45

multidimensional, 79–84
one-dimensional, 56–57

Identification operating
characteristics (IOC), 82

Independence:
axioms and proof of, 36–37
context, 491
decisional separability, 74, 83
defining, 8
in expected utility (EU)

model, 434
monotonicity as, 17
in multidimensional

classification, 73–74
perceptual, 73, 83

MSDA analysis for evaluation
of, 84

perceptual separability, 73, 83
serial, 312–314
stochastic, 279
testing with identification data,

73, 82–84
Independent and identically

distributed (iid)
observations, 462

Indistinguishability, 27
Individual differences, 332
Individual differences constructs:

behavioral genetics, 589–590
environmental interactions

and, 589, 592–593
taxonomic relationships

analyzed with, 591–595
continuity and change in:

cohort effects, 572–574
systematic change in

personalities, 572
test-retest correlations,

569–572
correlations among aggregated

indexes of the same,
565–567

cross-domain relationships:
cognitive composites, 586
genetics in, 587–595
personality to

neurophysiology, 587
in study of intelligence,

585–586
theoretical parameters,

585–586
cross-method analyses, 569
cross-situational generalities of

disposition, 566–568
molecular genetics, 587,

593–595
relations among:

application to intelligence,
576–578

application to personality,
575–576

confirmatory analysis of
relationships, 578–580

correlation and causality,
580–581

exploratory factor analysis,
574–575

repeated measures of the same,
563–565

systematic analysis of
noncorrelated indexes,
567–568

theoretically derived interactions,
568–569
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Individuals With Disabilities
Education Act of 1997
(U.S.A.), 551

Infant cognition:
absolute age, 698, 730
baseline preference problem,

763–766
between-subjects study

designs, 763
categorization, 698
disease and trauma affecting, 769
early studies of, 693
intelligence, 768–769
memory, 698
objecthood:

causality, 766–767
number, 760–761
object individuation, 762–766
segmentation, 757–760
violation-of-expectation

procedures, 756–757
pattern of skills development, 730
preattentive processing, 769

familiarization tasks, 771–772
operant tasks, 770–771
paired-comparison tasks,

771–772
touch-screen procedure,

772–773
reflexes:

defensive, 696
feeding, 696
orienting, 696

research criteria:
arousal state, 695–696
attrition, 694
developmental comparisons,

698–699
early risk factors, 693–694
recruitment, 693–694
response repertoire, 696–698
sample characteristics, 694
sensory systems, 694–695
social factors, 699–700

responses:
distress, 697
general reactions, 696–697
motoric acts, 697–698
reflexes, 696
in very young infants, 696

tasks:
conjunction-search, 773
event-monitoring, 765–766
feature-search, 773
nonverbal, 760, 766
operant, 770–771

time windows, 767
violation-of-expectations

procedures, 756–757, 762

Infant learning:
acclimatization, 700
age factor, 699
between-problem, 720
classical conditioning:

essential components for,
705–706

eye-blinking, 707–709
head-turning, 709
sucking, 706–707

concept learning:
a-not-b task, 733–737
categorization, 722–730, 741
detours and barriers, 730–732
learning-set formation,

720–722
object search, 732–733

definition, 700
feeding time effect on, 697
habituation:

adaptive function of, 705
categorization, 722–724
characteristics of, 700–701
criterion-setting, 702–703
dishabituation, 701
experimental procedures,

701–702
familiarization, 701
sensitization, 701
spontaneous recovery, 701
sub-zero, 701
visual, 703

head-turning tasks, 709,
713–714, 737–739

imitation:
facial, 717–718
vocal, 718

infant-control procedure, 702
instrumental conditioning,

709–710
looking measures, 703–704
operant conditioning:

definition, 710
foot-kicking, 714–716
head-turning, 713–714
lever-pressing, 716–717
reinforcers, 710–713

sensory preconditioning,
718–719

serial, 739
spatial cognition, 737–739
within-problem, 720

Infant memory:
classical conditioning, 745
deferred imitation, 750–752
dissociations, 756
long-term familiarization, 744
novelty preference tests:

habituation, 743–744

origin of, 742
paired-comparison, 742–743

operant conditioning, 745–746
ontogeny of memory,

747–748
specificity of memory,

748–750
reminder procedures, 752

reactivation, 753–756
reinstatement, 753–754

visual expectancy, 745
Infinitesimals, 11–12
Information:

property/kind, 763
spatiotemporal, 763

Information accumulation, 507
Informational encapsulation, 140
Inhibition:

excitation and, 241–242
feedback, 236
feedforward, 236, 244
lateral, 233, 237, 243, 257
nonrecurrent, 236, 244
recurrent, 236
shunting, 236–237, 243
subtracting, 236

Innateness, 140
Insulin-like growth factor 2

(IGF2R), 593
Integration psychophysics, 113
Intelligence:

class as influence on, 592–593
genetic basis of, 591–592
in infants, 768–769
information-processing abilities

and, 586
psychometric, 585
taxonomy of, 576–578
tests, 517, 571, 802, 807–809

Interaction:
cognitive-emotional models,

247–255
contrasts, 493–497
cross-over, 661
multidimensional representations

in, 45
underadditive, 285

Intercompletion times, 281
Interlevel resonant feedback, 233
Internal outcome generality, 330
International Study for Post

Operative Cognitive
Decrement (ISPOCD), 840

Interobserver reliability, 698
Interstimulus intervals (ISIs), 65,

616–617, 707–708
Intransitivity, 104
Invariance, 21–23, 314–315
[123I]Iodobenzamide, 185
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Isomorphic structures, 2–4
automorphisms, 21–23
set-theoretical predicate in,

33–34
symmetries, 21

Isotopes, positron-emitting, 199
Item identity, 742
Item response theory. See also

Testing practices:
benefits of, 518, 521
classical test models, 519–521
computer-based testing, 534

applications of, 540–541
automated test assembly

(ATA), 540–541
format of items, 542
linear-on-the-fly testing

(LOFT), 536–537
media included in, 543
multistage testing (MST),

539–540
response actions, 543
weighted deviations model

(WDM), 538
computerized adaptive testing

(CAT), 535
IRT solutions to design

problems, 536
item overexposure, 538
item pool optimality,

538–539
person-fit measures for, 539
procedure for

administering, 537
in individual differences research,

564–565
item characteristic functions

(ICF), 521–526
item parameter invariance,

526–527
models of:

choosing, 523–524
computerized adaptive testing

(CAT). (See above)
generalized partial credit,

525–526
item information function

(IIF), 532, 534
multidimensional, 526
nominal response, 526
one parameter logistic

(Rasch), 523
properties, 526–527
test information function, 532
three-parameter logistic, 523
two-parameter graded

response, 524–525
parameter estimation, 527–528
software used in, 528–530

test characteristic function, 527
test development, 533–534

Jacobian matrix, 439, 518–519
Jittering, 191–192
Joint receipt, 20
Journal of Mathematical

Psychology, 446
Judgment:

blame schema, 316–317,
320, 331

comparative, 13
Judgment decision theory, 320
Just noticeable differences (JNDs),

11–12, 60, 94, 97–100
Juvenile hyperactivity, 255

Knowledge:
of the external world, 321–323
object, 160

Kolmogorov-Smirnov statistic, 499
K space, 207

Language(s):
elementary, 34
models of understanding of,

259–260
programming, 262

Latent traits, 521, 586
Lateral geniculate body (LGB),

240–241
Latin square design, 305–306,

310–311, 319, 333
Law(s):

of comparative judgment,
101–103

Ekman’s, 100–101
of Large Numbers, 467
operant matching, 326–328
physical, 22
psychophysical, 121–123
Stevens’s power, 116

Law School Admissions Test, 519
L-DOPA, 255
Learning. See also Infant learning;

Single vs. multiple systems
of learning and memory:

associative, 232–233, 241–242,
247–248

between-problem, 720
brain areas involved in, 681–682
category, 655–656, 670–671.

(See also Categorization):
explicit vs. implicit,

675–677, 682
medial temporal lobe role

in, 684
memory and, 677–680
neurobiological bases of,

680–684

perceptual representation
memory system, 684

tasks, 673–675, 679–680
theories, 672–673

competition between verbal
and implicit systems
(COVIS), 677

component power law, 293
delayed nonmatching-to-sample

task, 733
delayed response tasks, 733, 736
disabilities, 552
error-correction rule, 258
excitatory, 706
forgetting and, 344–345
inhibitory, 706
instance theory, 291–294
match, 244
mismatch, 244
models:

connectionist, 433
exemplar-based random

walk, 293
independent race, 291–292
neural network, 226–227
probability mixture, 292

motor sequence, 246–247
multiple systems of, 655
parallel processing role in, 291
procedural, 683–684
race model inequality, 290–291
spatial, 661
supervised, 256
unconscious, 669
visual discrimination,

321–323, 661
within-problem, 720

Learning and Inference with
Schemas and Analogies
(LISA) model, 260

Least square estimation (LSE) of
parameters, 441–443,
510–511

Least squares error
minimization, 215

Least squares theory (Gauss),
26–27

Likert attitude scales, 524
Limbic system, 247
Limulus, 235–236
Linearity, 212, 370–371
Linear models, 340, 346

formulation of, 341–342
problems with, 343–345

Line-box illusion, 308
Listening. See also Attention:

selective:
attentional trace theory,

622–623
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cerebral network of, 624–625
multidimensional stimulus

selection during, 621–622
processing negativity, 616–620
very early affects, 620–621

selective-dichotic, 601, 609, 614,
617, 619

Local drift, 302
Logic:

deductive, 584
fuzzy, 437, 440–441, 454
of opposition, 669
subtraction, 193–194

Log likelihood ratio (G2) test, 443
Longitudinal studies, 811,

814–815
Looking, 703, 730

biased orienting, 704
externality effect, 704
at novelty, 742–744
object tracking, 704
obligatory attention, 704

Lorentz groups, 9, 23
Lower confidence limit (LCL)

method, 417
Luce choice model, 279, 433, 439

Magnetic moments, 202–203
Magnetoencephalography (MEG),

182, 615–616, 620
Magnitude, Stevens’ methods of,

24–26
Magnitude estimation, 115–118,

121–126, 128–129
Maple, 500
Marker variables, 576
Marriage, 320
Mass action principle of brain

functioning, 176
Matching:

cross-modal, 15
magnitude, 15

Mathematica, 234, 262, 500
Mathematical equivalence, 507
Mathematical modeling, 341.

See also Model fitting under
Data-analysis techniques

Brinley plots reinterpreted,
430–432

construction and testing of
models, 437

for continuous random
variables, 443–445

for discrete random
variables, 443

falsifiability and identifiability,
439–441

generalized likelihood ratio
test, 444–445

goodness-of-fit testing,
443–446

log likelihood ratio (G2)
test, 443

Monte Carlo approach,
445, 470

nonstatistical model testing,
445–446

null hypothesis testing,
443–445

parameter estimation,
441–443

Pearson chi-square test, 443
t tests, 445

covariance structure
modeling, 454

equivalent models, 454
Fechner’s Law, 92, 104, 115,

432–434
hierarchical modeling

approach, 453
individual differences in, 453
models:

Cerella’s linear, 431, 437–438,
442, 444, 451–452

exponential, 434
fuzzy logical (FLMP), 437,

440–441, 454
Luce choice, 279,

433, 439
Rasch model of aptitude, 454

processing assumptions,
434–437

purpose of, 429–430
Quantile-quantile (Q-Q)

analysis, 431
random error, 453–454
random number generators:

beta distribution, 455–456
binomial distribution, 456
exponential distribution, 455
normal distribution, 455
Poisson distribution, 456

regularity constraints,
432–434

selection of models, 446
Akaike information criterion

(AIC), 450, 453
Bayesian information criterion

(BIC), 450, 453
Bayesian model selection

(BMS), 450, 452–453
complexity, 448–449
cross-validation (CV),

450–453
generalizability, 447–453
goodness of fit, 447–449
maximized likelihood (ML),

447, 469, 483–484, 505

minimum description length
(MDL), 450, 452–453

Stevens’s power law, 432–433
types of models:

algebraic models, 436–437
algorithmic, 435
axiomatic, 433–434, 445
connectionist, 436
differential-process, 434–435
functional equation, 432–433
linear, 453–454

Weber’s Law, 11–12, 27–28,
98, 434

Mathematics:
aging and ability in, 827
closed-form solutions, 235
Greek achievements in, 5
prehistory of, 2

MATLAB, 234, 262, 462, 472, 479,
500, 503, 508–512

Matrices:
affine transformation, 214
covariance, 216, 582
design, 211, 215
factor, 575
Hessian, 452
Jacobian, 439
mathematical transformation, 231
multitrait-multimethod, 569

Maximum likelihood (ML), 447,
469, 483–484, 505

Maximum likelihood estimation
(MLE), 441–444, 467, 486,
510–511, 528

conditional MLE (CMLE), 528
marginal MLE (MMLE), 528

McCulloch-Pitts networks,
225–226

Mean effect size, 415
Meaning change, 315
Meaningfulness, 21–23
Mean squared error (MSE),

441–444, 447, 451–452
Measurement. See also

Representational
measurement theory:

absolute difference, 17
additive conjoint, 17–19

random, 30, 32
conjoint, 5, 113
derived, 8–9, 19
difference, 16–17
extensive, 6–7
finitary class of structures, 34
functional, 113–114
fundamental, 8–9
model-based:

Bayesian inference
networks, 545
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Measurement (Continued)
IRT-based, 544
statistical pattern

recognition, 544
physical, 6
problem of, 10–11
theory, 95
validity for psychology of, 14–15

Measures, equivalent, 52
Medians, 415, 470
Medline database, 175
Memory. See also Infant memory;

Single vs. multiple systems
of learning and memory:

algorithmic models of, 435
in amnesiacs, 668
automatic processing, 277
controlled processing, 277
declarative, 671, 677, 756
episodic, 254
exemplar, 678
explicit, 181, 743, 756
implicit, 181, 743, 756
long-term:

models of, 232, 234, 243
synapse changes in, 226
unattended stimuli, processing

of, 601–602
multiple systems, 655
nondeclarative, 756
preattentive vision and, 235–241
procedural, 671, 677–678,

683–684
processing tree models, 437
quantitative methods in study

of, 92
retrieval, random walk model,

431, 435
search, capacity limitations in,

280, 283
sequential, 740
serial-probe recognition task, 741
short-term:

models of, 233, 234, 237,
243, 257

time windows for, 768
spatial, 663–665, 667
working:

aging and, 832–833
functional brain imaging of,

178, 194–195
localizing brain activation in,

194–195
in the prefrontal cortex, 671,

676–677, 682–683
two subsystems of, 177–178

Memory Failures
Questionnaire, 800

Mental retardation, 317–318
Messy convolution, 502
Meta-Analysis:

benefits of, 395
contrast analysis, increased

recognition for, 397–398
decreased differentiation drive,

396
decreased over-emphasis on

single studies, 396
dichotomous significance

testing decision, end of, 397
intimacy between reviewer and

data, 396
omnibus test, end of, 397
reviewer’s involvement with

data, 398
use of procedures in single

studies, 398
criticisms of:

exaggeration of significance
levels, 395

heterogeneity of method and
quality, 395

information loss, 395
problems of independence, 395
sampling bias and file drawer

problem, 394–395
small effects, 395

cumulating scientific evidence,
391–392

defining research results, 392
differentiating correlations:

ralerting correlation, 409
rBESD correlation, 409
rcontrast correlation, 408–409
reffect size correlation, 409

effect size:
binomial effect size display

(BESD), 402–405
comparing r and d families,

401–402
counternull value of,

407–408
the d family, 399–402
dichotomous data, 400–401
effect sizes for comparing, 401
interpretation of, 402–405
odds ratio, 406
for the one-sample case,

399–402
physician’s aspirin study,

402–403
recording estimates of, 414
relative risk, 405–406
the r family, 399–402
risk difference, 406
significance tests and, 398

three-risk measures,
standardization of, 406–407

for the two-sample case, 401
of group differences, 581
replication, 392

contrasting views of, 394
odds against significant results

in, 393–394
successful, 393

results section of review:
binominal effect size

display, 421
central tendency, 415–416
coefficient of robustness,

421–423
confidence intervals,

418–419, 421
contrasts, 420–421
counternull, 422–423
descriptive data, 415–416
file drawer analysis, 422–423
heterogeneity tests, 419–421
inferential data, 417–421
interpretive data, 421–423
power analysis, 422–423
significance testing, 417–418
variability, 416
visual display, 415

review preparation, 409–410, 424
appendixes, 423
characteristic of studies,

413–414
criteria for inclusion, 412–413
discussion section, 423
effect size estimates, 414
independence, 413
introductions to reviews, 411
literature searches, 411–412
minimum number of

studies, 413
moderator variables, 414
quality of studies, 412–413
results section, 415–423
sensitivity analysis, 412
significance levels, 414
summarized statistics, 414

Metabolism of glucose, 184
Methylphenidate (Ritalin), 255,

306, 318–319
Metropolitan Achievement

Tests, 519
Microsoft, 540
Mimicry, 282–284, 506
Mind as software, 143
Mini Mental State Examination, 803
Minimum description length

(MDL), 450, 452–453
Minkowski metrics, 106
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Mirrored-self misidentification, 170
Mixture analysis, 505
Models. See also Mathematical

modeling:
ALSCAL, 105
analogical reasoning, 260–261
capacity, 78–79
computational, 166–167
connectionist, 166–167, 260
of data, 2
dual-route cascaded (DRC), 168
language, 259–260
linear, 340, 346

formulation of, 341–342
problems with, 343–345

nested, 443
neural-net, 166–167
range-frequency for category

scaling, 110–111
reparameterization-equivalent,

454
structural equation, 198
types of, 341
verbal, 429–430, 436
of visual word recognition, 168

Model Selection (Linhart &
Zucchini), 446

Moderators, 420–421
Monotonicity, 6, 17, 379–380
Monozygotic (MZ) resemblance in

twins, 587–590, 595
Monte Carlo approach to modeling,

445, 470
Montreal Neurological Institute

brain template, 215
Moos Family Environmental

Scale, 590
Moral judgment, 316–317
Motivation, 250
Multicomponent latent trait

(MLTM), 545
Multidimensional models,

383–385
Multinomial models, 85
Multiple analysis of covariance

(MANCOVA), 397
Multiple analysis of variance

(MANOVA), 397
Multiple discriminant function, 397
Multiple path analysis, 397
Multiple systems of learning and

memory. See Systems of
learning and memory

National Assessment of Educational
Progress (NAEP), 518

National Council of State Boards of
Nursing, 540

National Education Longitudinal
Study (NELS), 518

Near-infrared spectroscopy, 182
Necker cube, 258
Negative reinforcement, 227
Neocognitron, 227
Neural network modeling:

ACTION network, 254
adaptive resonance, 224, 233, 243
adaptive resonance theory (ART),

243, 246, 252, 256–258
autoassociation, 231, 247, 258
biologically inspired models, 231
brain state in a box (BSB) model,

231, 256, 258
categorization models:

supervised, 256
unsupervised, 256

cognitive-emotional interaction
models:

conditioning, 247–250
disruption of context

processing, 254–255
disruption of interactions,

251–254
involvement of different brain

areas, 250–255
conditioning model, 235
definition, 223–224
diversity of, 261–262
heteroassociation, 231,

247, 258
high-level cognition models, 255
history of, 224

cybernetic revolution, 225–226
learning models, 226–227

intelligent behavior models:
analog, 227
digital, 227

language understanding models,
259–260

learning models:
back propagation, 223–224,

229–231, 246, 256
multilayer perceptron, 226
Neocognitron, 227
perceptron, 226–227,

229–231
What-and-Where filter, 227

McCulloch-Pitts networks,
225–226

mental and cognitive disorder
modeling, 254–255

methodology, 234–235
motor control models:

arm movements, 244–246
individual movements,

244–246

motor sequence learning,
246–247

vector integration to endpoint
(VITE), 245

outstar, 232–234, 245
sensory process models:

lateral inhibition, 235–236
on-center off-surround, 235,

237, 241, 244
preattentive vision, 235–241
sensory coding, 241–244
shunting inhibition, 236
subtractive inhibition, 236

social psychology models, 261
trends in, 224
unsupervised, 256

Neural specificity, 140–141
Neuroimaging. See Functional

Brain Imaging
Neurology, 169, 176
Neuromodulation, 233
Neurons, 225
Neurophysiology, 587
Neuropil, 209
Neurotransmitter receptors:

astrocytes, 209
benzodiazepines, 185
dopamine, 185
muscarinic cholinergic, 185
opioids, 185
serotonin, 185

New Coke fiasco, 259
Newton-Raphson procedure, 529
Neyman-Pearson null hypothesis

testing, 461
Nictitating membrane response

(NMR), 250–251
Nodes, 224–225

bias, 254
intention, 254
memory, 254
sequence, 246
sinks, 232, 234
sources, 232, 234

Noise:
coping with, 352
generalizability for filtering of,

447–448
idiosyncratic, 436
as stimulus type, 43–45

Nomological network, 573
Nonspeededness, 531
Nontasters, 125
North Carolina, 328–329
Novell, 540
Novelty seeking, 594
Nuclear magnetic resonance

(NMR), 202, 205
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Null-hypothesis significance
testing, 340–341, 346–349

formulation of, 342–343
Neyman-Pearson, 461
in power analysis, 353–356
problems with, 343, 369–370

accepting H0, 347–348
counternull, 348–349
decision asymmetry, 347
dichotomization of “p < .05”

vs. “p > .05” results, 348
implausibility of hypothesis,

346–347
information loss from binary

decision processes, 346
p (data | H0) vs. p (H0 | data)

confusion, 349
Numbers vs. numerals, 25

Object identification, 762
Oddity design, 70–71
Odds ratio, 406
Operant control, 710
Operant theory, 326
Operation switching, 196
Opponent processing, 233,

250–251, 258
Optimal rule, 673–674
Order:

simple, 4
weak, 3, 34

Ordinal theory, 28
Ordinary differential equation

(ODE) solver, 234
Organization for Economic

Cooperation and
Development (OECD), 519

Orientation detectors, 241
Orthogonality, 216
Outliers, 416
Outstar, 232–234, 245
Oxygenation, 184, 190–191,

207–209

Pain:
dol scale, 98
perception of, 98, 128

Paired comparisons, 103–104
Paradoxical sleep, 696
Parahippocampal gyrus, 616
Parallel and serial processing:

cascaded processing, 275
complications, 273–274
definitions, 271–273
discrete vs. continuous

processing in, 274–277, 295
exponential parallel processes,

280–281

general capacity theories, 277
general class approach, 274–275
general principle approach, 294
general theory approach, 294
independent race models,

278–279
interactive race model, 291
Luce choice models, 279,

433, 439
precedent processing, 275–276
processing capacity:

bottlenecks in, 285–287
dual-task situations and

limitations of, 283–287
functional independence, 279
limitations in search of,

280–283
limited vs. unlimited,

277–287, 295
load effects and limitations in,

278–279
locus of slack method,

285, 287
resources and, 278
stochastic independence, 279
supercapacity, 291

race vs. mixtures, 291–294
resource theories, 277
selective influence assumption,

497
self-terminating models, 290
self-terminating vs. exhaustive

search, 287–289, 295
specific theory approach, 274
statistical facilitation vs.

coactivation, 290–291
Parallel distributed processing

(PDP), 226–227, 259
Parallelism, 315, 326
Parameter estimation, 441–443
Parkinson’s Disease, 255, 679–680,

683–684
Pasch’s axiom, 9
Peabody Picture Vocabulary

Test, 769
Pearson chi-square test, 443
Pearson product moment

correlation, 405, 698
Pearson rs, 361–362, 367,

369, 375
Perception:

additive-factor method in,
323–324

color contrast, 320–321
estimating differences in,

114–115
fuzzy logical model (FLMP),

437, 440–441

in infants, 766–767
knowledge of external world,

321–323
of pain, 98, 128
subliminal, 82
temporal sequence, 247
and the visual cortex, 671
visual motor, 240–241

Perceptron, 226–227, 229–231
Perceptual representation system,

671, 677
Performance abnormalities, 158
Performance curves, 385
Perseveration, 251–252
Persistence, 568
Personal design, 326–327, 332–333
Personality, 319–320

Big Five, 575–576, 592
change in, 572
cross-situation consistency in

studies of, 566–567
dispositions in differing

situations, 568–569
factor analysis in, 575–576
neurophysiological measures

and, 587
Phenotypes, 587

self-report, 590
Phenylthiourea (PTC), 125
Phrenology, 176
Physician’s aspirin study, 402–403
Physicians Health Study Research

Group, 395, 402, 404
Physics:

covariants, 23
of fMRI, 202–209
measurement theory ideas from, 1
Newtonian, 9
of PET, 198–202, 209

Pipelining, 276
Point of subjective equality

(PSE), 60
Police identikits, 724–725
Popouts, 372–374, 638, 769–773
Position effects, 303
Positivity, 6
Positron emission tomography

(PET):
activations of working memory,

178
advantages of, 187–188
auditory selective attention in the

brain, 624–625
biophysics of, 209
blocked experimental designs,

189–190
gene expression, 185
in hysterical paralysis, 163
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limitations of:
artifacts, 186
duty cycle, 186–187
spatial, 185–186
temporal resolution of data

acquisition, 186
physics of, 198–202
regional brain activation, 184
statistical analysis of data,

209–210
general linear model, 213

techniques, 183
arterial spin labeling, 208
blood oxygen level dependent

method (BOLD), 184
use in neuroimaging of, 175,

200–202
value in research of, 182–183
working memory, 194–195

Power, 305, 343, 353–356
Precedence, 272
Precession, vector, 202, 205
Present position command (PPC),

245–246
Principia (Newton), 5
Probability, 276

extensive measurement and, 7
finite, 7–8
models of, 30

Probability density function (PDF),
657–659

Program for International Student
Assessment (PISA), 519

Progressive solution, 108
Properties:

memoryless, 31
order, 31

Propranolol, 403
6-n-propylthiouracil (PROP), 125
Prosopagnosia, 149, 151–154, 157
Protagoras (Plato), 5
Psuedohomophones, 165
Psuedohomophonic nonwords, 168
Psuedomorphic nonwords, 165
Psycholinguistics, 672
Psychological matching law,

327–328
Psychological measurement,

306–308
Psychological refractory period

(PRP), 284–285
Psychology:

biological, 461
clinical, 319–320, 461
cognitive, 139–140, 154, 461,

585, 662, 685
developmental, 461
Fechner’s psychophysics, 11–12

neural network modeling role
in, 262

social, 461
Psychometric methods. See Testing

practices
Psychophysical scaling:

analysis of data in, 129–132
bisection, 94
current role of, 132
definitions, 91
direct approach, 94
by discrimination methods:

Ekman’s law, 100–101
Fechnerian scales, 97–98
JNDs in measuring sensation

magnitudes, 98–100
law of comparative judgment,

101–103
multidimensional scaling,

104–106
Thurstonian scaling, 101–104

goals of, 92
history of, 91–96
indirect approach, 94
individual difference in

magnitude estimation, 120
category-ratio scales, 123
cross-modality matching,

124–125
line-length calibrations,

123–125
magnitude matching, 125–126
master scaling, 126
stimulus and response

transformations, 121–123
individual differences in, 120
loudness measurements, 91–92
magnitude matching, 125–126
by magnitude methods, 106, 127

absolute magnitude estimation
(AME), 119–120, 129

analysis of data, 130–132
category-ratio scales, 123
cross-modality matching,

124–125
designing experiments, 129
Fletcher-Munson scale,

115–116
graphic rating scales, 128
individual differences in,

120–126
line-length calibration,

123–125
magnitude estimation,

115–118, 121–122,
128–129

magnitude production,
118–119

ratio magnitude estimation
(RME), 120, 129

ratio production, 115
regression effect, 119

master scaling, 126
method selection, 126–128
metric, 96
multidimensional scaling, 104
nonmetric, 96
paired comparison method,

103–104
by partition methods, 106

analysis of data, 130–132
category scaling, 109–113,

126–128
designing experiments, 129
equisection scaling, 107–109
estimating perceptual

difference, 114–115
functional measurement,

113–114
nonmetric scaling, 114–115
visual-analog scales, 113, 128

psychophysical law, 121–123
stimulus and response

transformations, 121–123
validation in, 96–97

Psychophysics:
inner, 91
integration:

conjoint measurement in, 113
functional measurement in, 113

outer, 91
Psychotherapy outcomes, 403–404
Publication bias, 422
Punishment, 227, 248
Pure insertion, 193–194
Purkinje cells, 251

Qualities:
primary (macroscopic), 93
secondary (microscopic), 93

Quantification, history of, 92
Quantile-quantile (Q-Q)

analysis, 431
Quantiles, 473–475
Quantitative trait locus (QTL), 593
Quantity objection, 95
Quantum theory, 10–11

Race inequality, 490–494
[11C]Raclopride, 185
Radioactive decay, 344–345
Radioactive labels (radioligands),

184–185, 198–202
Random assignment, 303
Random effects, 417–419
Random field theory, 212, 214
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Randomization tests, 311
Random number generators,

455–456
Random smoothing, 479
Random variables, 462

binomial, 491
ex-Gaussian, 463–466, 482–483
functions of:

density, 463
distribution, 463–465

Wald, 463–466
Rasch model of aptitude, 454
Rating of perceived effort (RPE),

111
Ratio(s):

baseline, 746
likelihood, 47
magnitude estimation (RME),

120, 129
production, 115
retention, 746
scale, 15, 95

Reaction time (RT), 271, 273.
See also Response times:

additive factors method, 275, 497
in attention-switching-to-

stimulus-change
paradigm, 613

choice (CRT), 795, 822–823,
825–831, 835, 838–839

connectionist approaches to, 276
discrete stage analyses of, 276
parallel processing for prediction

of increase in, 281–283
set size and, 288
subtractive method, 275

Receiver operating characteristics
(ROCs), 47–56

Receptor binding, 184–185,
198–202

Recognition, 44, 744
Redundant signals effect, 290
Reduplicative paramnesia, 170
Reentry, 223
Refractoryness, 611
Regional cerebral blood flow

(rCBF), 184, 209–210, 625
Regression effect, 119
Rehabilitation Act of 1973

(U.S.A.), 551
Reinforcement:

conjugate, 714
contingent, 696
of motor acts, 226
negative, 710
noncontingent, 696
nonsocial, 712–713
positive, 710

without punishment, 248–249
social, 711–713

Relations:
arbitrary, 740
enabling, 740

Relativity, 9
Relaxation rate constants, 204–205
Reliability, 305
Renomination, 396
Replications, 392–394
Representational measurement

theory:
Axiomatic approach:

Archimedian axioms, 35–36
elementary languages, 34
fixing ingredients for, 32–33
history of, 32
least-upper-bound axioms,

35–36
logical framework in, 32
nonaxiomatizability results,

34–35
primitive concepts, 32, 36–37
proof of independence of

axioms, 36–37
set-theoretical framework in,

32–34
theories with standard

formalization, 33
concept of, 1

empirical structures, 2
homomorphisms, 3–4
isomorphic structures, 2–4
numerical structures, 4
ordered relational structures,

3–4
simple order, 4
weak order, 3

conjoint measurement, 5
difference measurement, 16–17
fundamental problems of:

existence, 4
uniqueness, 4–5

history of measurement:
achievement testing, 12–13
axiomatic geometry, 9
derived measurement, 8–9
extensive measurement, 6–7
finite partial extensive

structures, 7
finite probability, 7–8
fundamental measurement,

8–9
invariance, 9–10
partial operations, 7
physical measurement, 6
pre-19th century, 5–6
probability, 7

quantum theory, 10–11
theory of signal

detectability, 14
Thurstone’s discriminal

dispersions, 13
units and dimensions, 8

mid-20th century:
cross-modal matching, 15
objections to psychological

measurement, 14
Steven’s response, 14–15

post-1950, 15
additive conjoint

measurement, 17–18
automorphisms, 21–22
averaging, 18
covariants, 23
difference measurement,

16–17
distribution laws, 19–20
errors, 26–28
invariance, 21–23
meaningful statistics, 21
models of Steven’s magnitude

methods, 24–26
nonadditive concatenation, 19
nonadditive representations,

18–19
qualitative density functions,

30
qualitative moments, 30
random variable

representations, 29–30
segregation law, 20–21
thresholds, 26–29
utility theory, 16

trivial automorphisms, 22–23
Representations:

additive, 17–18, 26
category, 672
continuous, 23
nonadditive, 18–19
random variable, 29–30

Resonance frequency, 204
Response:

bias, 43, 46
category scales, effected by,

110
conservative, 47
liberal, 47
nonparametric measure of, 52
predicting values, 48–49

elbow, 746
labels, 678
linearity, 308
pattern, 330
rate, 710
transformations, 121–123
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Response time(s). See reaction time:
categorization, 661
cuing effects, 630–632
decomposition:

applications of theory,
499–501

dependence of decision and
base times, 503–504

exponentially inserted stages,
501–502

general theory of, 498–499
process time estimation,

502–503
selective influence in, 497–498
test of, 511–512

estimation from data on, 466
cumulative distribution

function, 473–475
density function, 475–479
Epanechnikov kernel

estimator, 479–483,
509–510

ex-Gaussian parameters,
472–473

general weight function
estimators, 475

hazard function, 479–483,
509–510

histogram estimators, 476–477
maximum likelihood, 483–484
model fitting, 483
nonparametric functions,

473–475
parameter estimation, 469–472
properties of estimators, 467,

469
quantiles, 473–475
random smoothing, 479
splines, 479

importance of, 461
model and hypothesis testing:

decomposition, 497–504
Grice inequality, 492–495
hierarchical inference,

487–490
mixture distributions,

504–506, 659–661
orderings of distributions,

487–497
parallel channel models, 490
race inequality, 490–494
reaction time decomposition,

497–504
sequential sampling

models, 490
survivor function interaction

contrast and processing
capacity, 493–497

as random variables, 462–466
density function, 463–464
distribution function,

463–465
hazard functions, 465–466,

509–510
survivor functions, 465,

493–494
from a simple detection

experiment (table), 468
in spatial attention, 630–633

Retina, 235–236, 244
Reverberatory feedback loops, 226
Ritalin (Methylphenidate), 255,

306, 318–319
Robustness, 421–422, 470–471

Saccades, 246, 634–635, 704, 837
Salt, 125
Sample means, 352–353
Savings, 745
Scalability properties, 371
Scale types:

absolute, 14
account of classification of,

23–24
category, 109–113
category-ratio, 123
direct, 95
equisection, 107–109
Fletcher-Munson, 115–116
indirect, 95
interval, 15, 95
labeled-magnitude, 123
master, 126
metric, 96
multidimensional, 104–106
nominal, 14
nonmetric, 96, 114–115
ordinal, 14–15
rating of perceived effort

(RPE), 111
ratio, 15, 95
Thurstonian, 101–104
visual-analog, 113, 128

Scaling:
by discrimination methods,

97–106
by magnitude methods, 106,

115–126
by partition methods, 106–115

Scalp current density (SCD),
614–615

Scatter plots, 380, 383
Schizophrenia, 254–255, 595
Scholastic Aptitude Test (SAT), 573

Quantitative Aptitude Test, 582
Verbal Ability Test, 583

Scholastic Assessment Test, 519
[11C]Scopolamine, 185
Scripts, 740
Search:

by infants, 730–732
memory, 280, 283
nomothetic, 332
self-terminating vs. exhaustive,

287–289
vision, 280, 283

Seat belt usage, 328–329
Segregation, 20–21
Self-efficacy, 580–581
Semiorders, 28, 34–35
Sensations:

magnitudes of, 95
sound:

frequency, 603, 606
spatial locus of origin, 603

taste, 125–126
warmth, 117–118

Sensitivity, 43
in classification, 57–59
measures of, 46–47
predicting values, 48–49
in SDT, 84–85
in yes-no-design, 47–49

Sensitivity analysis, 412
Sensory-response function, 380
Sensory systems, 694–695
Serial order, 742
Short Inventory of Mental

Lapses, 800
Sigmoids, 229, 237
Signal detection theory (SDT):

alternative approaches, 85
classification:

bias in, 57
discrimination compared

to, 62–63
multidimensional (See below)

distribution of d ′ in, 84
false-memory experiments,

61–62
m-alternative forced-choice

(mAFC) design, 70–71, 81
matching-to-sample design

(ABX), 70–71
multidimensional classification,

71
attention, 72
attention operating

characteristics, 79
decisional separability, 74, 83
decision spaces, 72–73
divided attention, 76–78
extrinsic attention, 74–78
Garner paradigm, 78
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Signal detection theory (SDT):
(Continued)

independence testing with
identification data, 82–84

intrinsic attention, 78–79
perceptual independence,

73, 83
perceptual separability, 73, 83
selective attention, 76–78

multidimensional
identification, 79

detection and identification
simultaneously, 81–82

feature-complete identification
design, 82

models for, 80–81
multi-interval forced

choice, 81
multidimensional signal detection

analysis (MSDA), 83–84
multiple-look design, 70
oddity design, 70–71
one-dimensional identification

and classification, 56–57
perceptual identification, 437
psychometric functions, 58–60
purpose of, 43
rating design, 49

normal-distribution unequal
variance representation,
50–52

ROC curves, generation of, 50
ROC-space areas for single ROC

points, 55–56
same-different design:

differencing rule, 67–70
independent-observation

decision rule, 66–70, 82
scope of, 44–45
selective influence, 497
sensitivity in classification, 57–59
single-subject designs, 84
as single-system theory, 657
statistical issues in, 84–85
threshold theory:

high-threshold, 52–53
three-state, double-threshold

model, 53–55
Thurstonian scaling and, 101–104
trading relations in speech, 60–61
two-alternative forced-choice

design, 45
analysis, 64–65
interstimulus intervals, effects

in, 65
representation, 64
stimulus range, effects in,

65–66

when more than two
responses, 62

in yes-no design:
bias measures, 48–49
normal-distribution, equal

variance representation, 46
perfect proportions, difficulty

of, 47
receiver operating

characteristics (ROCs),
47–49

response bias measures,
46–47

sensitivity measures, 47–49
spreadsheets for calculation of

complex operations, 47–48
Signal(s):

boundary, 238
detectability theory, 14

Significance testing:
lower confidence limit (LCL)

method, 417
one-sample t test, 417
one-sample χ2(1) test, 417
Stouffer method, 417
test of proportion positive

(Z), 421
Simplex algorithms, 484
Simultaneity, 272
Simultaneous solution, 107–108
Single-dimension model,

382–385
Single positron emission

computerized tomography
(SPECT), 182

Single-subject experiments,
154–155. See also Statistics:

analysis of data in, 301
confidence interval, 304
external temporal factors, 303
reducing variability, 305
reliability, 302–303
significance test, 304–305
validity, 303
visual inspection, 304, 333

behavior modification:
aggression in retarded

children, 317–318
attention-deficit disorder,

318–319
zero serial coordination in,

313–314
design:

confounding, 303, 305–306
extrastatistical generalization,

303–304
Latin square design, 305–306,

310–311, 319, 333

linear response methodology,
307

power, 305
functions of statistics, 333–334
internal temporal factors, 303
judgment-decision, 324–326, 331

personal design with
self-estimated parameters,
326–327

methodology in, 334
generalizing across subjects,

330–331
generalizing within subjects,

330
operant matching law, 326–328
perception:

additive-factor method in,
323–324

color contrast, 320–321
knowledge of external world,

321–323
personal design, 326–327,

332–333
personality and clinical

psychology, 319
person cognition:

blame schema, 316–317,
320, 331

meaning invariance, 314–315
randomized treatment design, 308

analysis of, 310–311
benefits of, 309, 333
independence, 309
limitations of, 310
nullification of confounding

from position and carryover
effects, 309

serial observation design:
A-B-Type design, 311–312
baseline procedure, 312
serial independence, 312–314
temporal confounding,

311–312
zero serial coordination in

behavior modification,
313–314

stimulus integration:
functional measurement

theory, 308
parallelism theorem, 308
psychological measurement

theory, 306–308
time series, 328–330
value of, 301

Single value decomposition
(SVD), 216

Single vs. multiple systems of
learning and memory:
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category learning, 655–656, 671
explicit vs. implicit, 675–677
medial temporal lobe role, 684
memory and, 677–680
neurobiological bases of,

680–684
perceptual representation, 684
tasks, 673–675
theories, 672–673

debate over, 684–685
defining systems, 656–657
explicit, 676
implicit, 655, 676
methodological tests, 657

averaging model, 658
binary mixtures, 659–661
double dissociations, 661–668
mapping hypothesized

systems onto known
neural structures, 671

mixture model, 658–659
single dissociations, 668–671
strong model, 658

response time mediation by,
504–506, 659–661

rule-based, 655, 672–673,
680–681

selective influence, 658
Singular points, 24
Skills acquisition. See Learning
Skin conductance response

(SCR), 170
Sleep:

in infants, 695
paradoxical, 696

Slice timing, 214
Slopes, 371–372
Smirnov distance, 499–501, 511
Socialization, 589
Social psychology, 461
Socioeconomic Index of

Occupations, 1989, 694
Sodium Chloride (NaCl), 125
Software:

BILOG, 528–529, 532
data-plotting, 351
LOGIST, 528–529
LPCM-WIN, 528–529
MULTILOG, 528, 530, 542
NOHARM, 528, 530
object-oriented, 262
PARSCALE, 528, 530, 542
for qualitative modeling,

261–262
Solution latencies, 584
Solvability, 6, 434
Sound, 602–603

deviant, 611–613

frequency, N1 scalp topography,
606

involuntary attention to, 610–616
onsets, 611

Spatial cognition, 737–739
Spatial frequency, 239
Spatial navigation, 183
Spatial patterns, 232–233
Spearman-Brown formula,

520, 564
Spearman g, 576
Spearman ρ, 380
Special relativity, 9–10, 19
Specific language impairment

(SLI), 156, 158–159
Specific numerosity, 762
Spectral timing, 251
Speech:

categorical perception
hypothesis, 62

dyslexia, 150, 154–155
trading relations in, 60–61

Spin echoes, 206
Spiral imaging, 207
Splines, 479
Spreadsheets, 47–48
Stage fright, 370
Standard deviation, 416
Standardized odds ration

(SOR), 407
Standardized relative risk

(SRR), 407
Standardized risk difference

(SRD), 407
Standards for Educational and

Psychological Testing
(AERA, APA, and NCME),
517, 546, 549–553

Stanford Achievement Tests, 519
Stanford Binet Intelligence

Scale IV, 571
State-trace analysis, 382–385
State-trace plots, 383
Statistical advantage, 490
Statistical facilitation, 290–291
Statistical noise, 352
Statistics. See also Single-subject

experiments:
central limit theorem, 310
formal, 333
functions of, 333–334
meaningful, 21
standard, 319
standard item, 520

Steady-state visual evoked potential
(SSVEP), 635–637

Stereopsis, 237
Stevens’s power law, 432–433

Stimulus:
appetitive, 710
arrivals, 250
aversive, 710
conditional (CS), 705–706
generality, 330
integration, 307
nonsocial, 712–713
quality, 323
social, 711–713
traces, 226, 232, 247
transformations, 121–123
types:

New, 44
Noise, 43–44
Old, 44
Signal, 43

unconditional (UCS), 705–706
omission procedure, 709

Stimulus-onset asynchrony (SOA),
276, 285–287, 604

Stimulus-response mapping, 323
Stochastic transitivity, 29
Stouffer method, 417
Stroop tasks, 187, 254, 670–671,

806, 828, 837–841
Subjective expected utility

(SEU), 16, 18
Subliminal perception, 82
Substantia nigra, 683
Subtraction method, 193
Sucking, 710–711
Sufficiency null hypothesis,

367, 369
Sum of squares error, 441
Supercapacity, 291, 495
Survivor functions, 465,

493–494
Symmetry, 2, 21
Synaptic conservation, 242–243
System abnormalities, 158
Systems of learning and memory.

See Single vs. multiple
systems of learning and
memory

Talairach brain template, 215
Target position command

(TPC), 245
Task:

design in neuroimaging, 188
management, 179–180
Tower of London, 195

Tasters, 125
Technological Innovations for the

Disabled and Elderly
(TIDE), 820

Telomerization, 798
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Temporo-parietal junction, 616
Terminal drop, 802–805
Testing practices. See also Item

Response Theory:
accommodation of people with

disabilities, 551–553
classical test models, 519–521
cognitively-based test models,

544–546
Bayesian inference networks,

544–545
IRT-based, 544–545
rule-space approach, 545
statistical pattern recognition,

544–545
cohort effects and, 572–574
formats of items:

constructed-response, 542
selected-response, 542

interactivity level, 543
media included in, 543
multicomponent latent trait

(MLTM), 545
new item types in, 541–542
novelty and validity in, 839–840
performance standards,

546–549
response action, 543
in study of aging, 803
types of, 517–518
validity in, 549–550

Testlets, 536, 539–540
Test of English as a Foreign

Language (TOEFL),
519, 540

Tests:
ability/aptitude, 12–13, 517
achievement, 12–13, 517
attitude measurement, 540–541
definitions, 536
educational, 517–518, 540, 546
examinee-centered, 546
intelligence, 517, 571, 802,

807–809 (See also specific
tests)

multiple-choice, 541
null-hypothesis significance,

340–343, 346–349
parametric, 162
performance-based, 553
personality, 517, 540
psychological, 517, 540
psychometric approaches

to, 12–13
randomization, 162
test-centered, 546
types of, 517–519

Thalamus, 237, 244, 683

Theory of Signal Detection (TSD).
See Signal detection theory
(SDT)

Theta functions, 500
Third International Mathematics

and Science Study
(TIMSS/TIMSS-Repeat),
518–519

Thomson condition, 18
Thought insertion, 170
Thresholds, 26–27

algebraic theory of, 28
difference, 59
double, 53–55
high, 52–53
low, 53
meanings of, 59
probabilistic theory of, 28–29

Thurstonian scaling, 101–104
Time-difference mechanism, 250
Time-invariant systems, 212
Time series analysis, 328
Tower of London task, 195
Tracers, radioactive, 184–185,

198–202
Trading relations, 61
Transformation, 470–471
Transitivity, 104, 434
Translation consistency, 25
Translation invariance, 227, 256
Transmitter depletion mechanisms,

250, 253
Trimming, 305
True score theory, 520
Twins, 587–588, 592

Uncertainty principle
(Heisenberg), 10

Unconditioned responses (URs),
247–248

Underadditive interactions, 285
Uniqueness, 4–5

two-point, 24
United Kingdom (UK):

elderly disabled, percent of, 820
National Health Service, 799

United States Medical Licensing
Examination, 544

Units and dimensions, 8
Uselessness null hypothesis,

367, 369
Utility, 94
Utility theory, 18, 324

Validity, 305
changing concepts of, 549–551
concurrent, 549
content, 549

criterion-related, 549
empirical, 308
predictive, 549
sources of evidence for, 449–450
trinitarian doctrine of, 549

Variability:
circadian, 835–836
day-to-day, 835
in meta-analysis, 416
performance, 834–836
use in individual differences

study, 563
Variables:

blended, 578
dependent:

contrast as, 374
in habituation, 701

focal, 385
independent, 701
marker, 576
moderator, 414
random, 462

binomial, 491
continuous, 443–445
density as function of, 463
discrete, 443
distribution as function of,

463–465
ex-Gaussian, 463–466,

482–483
response time as, 462–466,

493–494, 509–510
Wald, 463–466

Variance:
analysis of (ANOVA), 189, 196,

310–316, 331, 333, 343
asymmetrical confidence

intervals computed around,
361–362

between-condition, 369
construct-relevant, 563
differences, 581–582
error, 563
homogeneity of, 364–367
kurtotic, 574
method-specific, 569
percent accounted for, 375
relative, context, 63
residual, 213

Vector associative map (VAM), 245
Verbal modeling, 429–430, 436
Video, interactive, 543
Vincentizing, 474–475
Vision:

binocular, 240
boundaries in, 238–240
color contrast, 320–321
color-matching, 381–382
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event-related potentials in,
625–639

facial recognition, 198
focal attentive processes,

277, 769
frequency-of-seeing curve, 59
in infants, 705
opponent processing, 250
pattern recognition, 227
pop-out effect, 769
preattentive processes, 235–241,

277, 769
processing by form and location,

181–182
recognizing stimuli, 149–153
search in:

capacity limitations and, 280
conjunction search, 283
feature integration theory, 283
feature search, 283
guided search theory, 283
planned comparisons used

in, 372

by recursive rejection, 283
Visual agnosia, 149, 151–154, 159
Visual inspection, 304, 333
Visual presentation of data, 340

display of data fits, 378
monotonic predictions,

379–381
quantitative predictions, 379

in meta-analytic review, 415
pictorial representations:

bad graph design, 351
data-plotting techniques, 351
graphs vs. tables, 350–351
other graphical

representations, 351–352
stem and leaf display, 415

Vitamin C example, 375–377
Voice-onset time (VOT), 60
Voxels, 192–193, 196

Washout conditions, 312
Water diffusion, 184
Weber’s law, 11–12, 27–28, 98, 434

Web theory, 18
Wechsler Adult Intelligence Scale-

Revised (WAIS-R), 582–583
Wechsler Adult Intelligence Scale

(WAIS), 795–796, 834
Wechsler Intelligence Scale for

Children-Revised
(WISC-R), 582–583

Wechsler Preschool and Primary
Scale of Intelligence, 571

Weibull, 292
What-and-Where filter, 227
Wisconsin Card Sorting Test

(WCST), 251–254, 674,
679–680, 683, 838

Women:
mapping activation of

emotional awareness
in, 197

muscle strength loss in, 795
Woodcock-Johnson

Psychoeducational
Battery, 519
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