
GraSeq : A Novel Approximate Mining Approach
of Sequential Patterns over Data Stream

Haifeng Li and Hong Chen

School of Information, Renmin University, Beijing, 100872, P.R. China
mydlhf@126.com,
chong@ruc.edu.cn

Abstract. Sequential patterns mining is an important data mining ap-
proach with broad applications. Traditional mining algorithms on
database were not adapted to data stream. Recently, some approximate
sequential pattern mining algorithms over data stream were presented
which solved some problems except the one of wasting too many sys-
tem resources in processing long sequences. According to observation
and proof, a novel approximate sequential pattern mining algorithm is
proposed named GraSeq. GraSeq uses directed weighted graph structure
and stores the synopsis of sequences with only one scan of data stream;
furthermore, a subsequences matching method is mentioned to reduce
the cost of long sequences’ processing and a conception validnode is in-
troduced to improve the accuracy of mining results. Our experimental
results demonstrate that this algorithm is effective and efficient.

Keywords: sequential pattern, data stream, directed weighted graph.

1 Introduction

A sequential pattern is a subsequence that appears frequently in the sequence
database. The sequential patterns mining has shown its importance in many
applications include business analysis, web mining, security, and bio-sequences
analysis. For instance, a website wants to make users find their favorite contents
conveniently, so they will get users’ visit orders from web log. These visit orders
should be seen as sequences and could be mined to sequential patterns so that
the website’s structure is improved according to these sequential patterns.

Before data stream appears, almost all of sequence pattern mining algorithms
use the accurate matching method which waste a lot of system resources, and
moreover, the results have to be got by multiple scans. There are two main kinds
of accurate matching algorithms so far.

The first kinds are the appriori-like algorithms such as GSP [1] and SPADE
[2], which need to create the candidate set and use multiple scans over database.

The second kinds are the projection-based algorithms such as PrefixSpan[3],
FreeSpan[4] and SPAM [5], which avoid the process of creating candidate set and
extend the local frequent itemsets to long sequential patterns according to the
projection of sequential patterns.

R. Alhajj et al. (Eds.): ADMA 2007, LNAI 4632, pp. 401–411, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

402 H. Li and H. Chen

Data Stream is fast, unlimited, dynamic and continuous, so data can’t be
wholly stored in memory and can’t be scanned for multiple times. Furthermore,
the mining results always bring noises from data stream, so traditional min-
ing methods are absolutely not adapted to data stream. The adaptation and
approximation will be mainly considered in this environment. Two kinds of ap-
proximate sequential patterns mining methods have been developed: One is block
data processing method, another is tuple processing method.

ApproxMap [6] uses the block data processing method, it clusters data stream
into a series of blocks according to the similarity among sequences, and then
compresses the similar sequences with multiple alignment method to reduce
memory usage. The minimum support threshold is set to ignore the items which
are not frequent so that noise is filtered. Finally the compression results are
stored within a tree to make query convenient. ApproxMap can’t get the real-
time results because it can’t compute until a group of data has arrived.

Hoong Hyuk Chang proposed an algorithm names eISeq [7] that uses the tuple
data processing method. eISeq regards data stream as continuous transaction
tuples and processes each tuple at once when it comes so that the real-time
results are achieved. Five steps are in this algorithm: parameter update, count
update, sequence insertion, sequential patterns selection and data pruning. eISeq
computes the sequential patterns efficiently, but on the other hand, it wastes
many time in scanning the tree to decide whether a new sequence can be inserted
into the monitor tree, and also eISeq can’t process long sequences because the
longer a sequence is, the more system resources to create all its subsequences is
used. For example, if 〈a1, · · · , a20〉 is a sequence, there are (220 −1) subsequences
in total must be created. It is obviously difficult to compute and store all these
subsequences.

In this paper, a novel sequential patterns mining algorithm names GraSeq
is presented which uses the directed weighted graph structure so that memory
usage is reduced a lot. GraSeq increasingly stores the whole information of the
coming data from data stream. In this algorithm, a new subsequences matching
method is proposed to create graph, and some relational data rules are intro-
duced to filter most of the redundancy data. GraSeq has four steps to finish
mining task:

1. Subsequences generating, Without creating all subsequences, only 1-
subsequences set and 2-subsequences set of each sequence are created.

2. Sequence insertionandupdate. Inthis step,1-subsequencesand2-subsequences
of each sequence are inserted into graph as vertices and edges if they do not exist
in graph, whereas the weight of vertices and edges are updated.

3. Sequential pattern mining. Users can traverse the directed weighted graph to
acquire approximate sequential patterns with setting the minimum support
threshold.

4. Data pruning. When system resources are not enough to support the running
of GraSeq, some data will be erased according to given rules.

The main contributes of this paper are shown as follows: Firstly, a new directed
weighted graph structure is presented to stored the synopsis of the sequences

GraSeq : A Novel Approximate Mining Approach 403

of data stream; Secondly, in allusion to the characteristic of directed weighted
graph, a new approximate sequential pattern mining method is proposed where
a sequence is regarded as sequential pattern when all the 1-subsequences and
2-subsequences of which are frequent; Finally, to reduce the cost of system re-
sources, a non-reclusive depth first search algorithm is introduced.

The rest of paper is organized as follows. Section 2 introduces the preliminaries
of this algorithm and section 3 describes the data structure and implementation
of GraSeq in detail. In section 4, a series of experiments are finished to show the
performance of the proposed method. Finally, section 6 concludes this paper.

2 Preliminaries

Sequential pattern mining is the constraint of frequent patterns mining in data
item’s order which is presented in [8] firstly in 1995. There is a detailed descrip-
tion of sequential patterns definition:

An itemset is a non-empty set of items. Let I = {i1, · · · , il} be a set of items.
An itemset X = {ij1 , · · · , ijk

} is a subset of I. Conventionally, itemset X =
{ij1 , · · · , ijk

} is also written as {xj1 , · · · , xjk
}. A sequence S = 〈X1, · · · , Xn〉 is

an ordered list of itemsets. A sequence database SDB is a multi-set of sequences.
A sequence S1 = 〈X1, · · · , Xn〉 is a subsequence of sequence S2 = 〈Y1, · · · , Ym〉,

and S2 is a super-sequence of S1, if n ≤ m and there exist integers 1 ≤ i1 <
· · · < in ≤ m such that Xj ⊆ Yij (1 ≤ j ≤ n).

Given a sequence database SDB, the support of a sequence P, denoted as
sup(P), is the number of sequences in SDB that are super-sequences of P. Con-
ventionally, a sequence P is called a sequential pattern if sup(P) ≥ Smin, where
Smin is a user-specified minimum support threshold.

In this paper, directed weighted graph is the data structure whose vertices
denote itemsets and edges denotes order between itemsets. Some definitions are
given as follows:

Definition 1. For a sequence S = 〈s1, · · · , sn〉(n ≥ 1), a 1-subsequence of S is
ossi = 〈si〉(1 ≤ i ≤ n), which denotes a vertex in graph. A 1-subsequence set of
S is OA = {ossi|i = 1 · · ·n}.

Definition 2. For a sequence S = 〈s1, · · · , sn〉(n ≥ 2), a 2-subsequence of S is
tssi = 〈si, sj〉(1 ≤ i < j ≤ n), which denotes an edge in graph. A 2-subsequence
set of S is TA = {tssi|i = 1 · · ·n − 1}.

Definition 3. For a 2-subsequence tssi = 〈si, sj〉(i = 1 · · ·n−1, j = i+1 · · ·n),
si is parent of sj and sj is child of si.

In data stream, a sequence support achieves its maximum value when all its
subsequences happen in as many transactions as possible, so the support of a
sequence must be not higher than the ones of all its subsequences.

Proposition 1. For a sequence S = 〈s1, · · · , sn〉(n ≥ 2), C(S) is support thresh-
old of S and Cmax(S) is maximum support threshold of S, the approximate
estimate formula of Cmax(S) is shown as follows:

404 H. Li and H. Chen

Cmax(S) = min({C(a)|a ⊆ S ∧ |a| = n − 1}) . (1)

Theorem 1. For a sequence S = 〈s1, · · · , sn〉(n ≥ 1), the approximate estimate
formula of Cmax(S) is shown as follows:

Cmax(S) = {
C(S) |S| = 1
min({C(a)|a ⊆ S ∧ |a| = 1}) |S| = 2
min({C(a)|a ⊆ S ∧ |a| = 2}) |S| > 2

(2)

Proof. For a sequence S = 〈s1, · · · , sn〉(n ≥ 1), the results are obvious as n ≤ 2.
When n > 2 , if Cmax(S) = min({C(a)|a ⊆ S ∧ |a| = n − 1}), then Cmax(Sn) =
min(Cmax(Sn−1)), and also Cmax(Sn−1) = min(Cmax(Sn−2)), · · · , Cmax(S3) =
min(Cmax(S2)), so Cmax(Sn) = min(min(· · ·Cmax(S2) · · ·)) = min(Cmax(S2)).
Then,when n > 2,Cmax(S) = min({C(a)|a ⊆ S ∧ |a| = 2}),proof done.

3 GraSeq Method

From Theorem 1 we can find that if the support of all the 1-subsequences and 2-
subsequences of one sequence S are acquired, the approximate support of this se-
quence S is acquired too. In other words, if the support of all the 1-subsequences
and 2-subsequences of a sequence is higher than the minimum support threshold,
the support of this sequence is higher than the minimum support threshold,and
it means this sequence is frequent. So the main task in this paper is to store all
the information of 1-subsequences and 2-subsequences of all sequences, and this
guarantees the mining is almost valid. Users can traverse the graph to find all
frequent sequences as sequential patterns on condition that their 1-subsequences
and 2-subsequences are frequent.

Fig. 1. Data structure of graph

3.1 Data Structure and Meaning

GraSeq uses directed weighted graph structure to share data information. Each
vertex in graph denotes one itemset of sequence, and each edge denotes the order
of two different itemsets. Each vertex is a 3-tuple 〈nid, itm, ch〉, in which nid is

GraSeq : A Novel Approximate Mining Approach 405

the identification of vertex which is fixed to make it possible for quick visit; itm
denotes the main information of vertex which is a collection of 3-tuple 〈va, wt, ut〉
, where va is the real value of the vertex, wt is the weight of the vertex and ut
is the latest update time stamp of the vertex; ch is a pointer to the children of
vertex named childrenlist . The element in childrenlist is a 2-tuple 〈cid, lwt〉, cid
is the identification of each child vertex and lwt denotes the edge weight between
current vertex and its child vertex.Figure 1 shows the data structure of graph.

Example 1. After a series of sequences {〈a, c〉 , 〈a, d〉 , 〈a, b, c〉 , 〈a, b〉 , 〈b, c〉 ,
〈b, d〉 , 〈a, b, d〉} have arrived, the data storage in memory is shown in figure 2.

Fig. 2. Example of data storage in memory

3.2 Algorithm Description

GraSeq includes 4 steps to deal with each sequence: subsequences generating,
sequence insertion and update, sequential patterns mining and data pruning.
First two steps are graph establishment phase, step three is data mining phase,
and they are parallel in running.

3.2.1 Subsequences Generating
In this section, the 1-subsequences set and 2-subsequences set are created from a
sequence. For example, a sequence 〈a, c, d, e〉 has 1-subsequences set {〈a〉, 〈c〉, 〈d〉,
〈e〉} and 2-subsequences set {〈a, c〉, 〈a, d〉, 〈a, e〉, 〈c, d〉, 〈c, e〉, 〈d, e〉}. From defi-
nition 1 and definition 2, it is clear to see that a n-sequence has only n 1-
subsequences and

∑n
i=1 i 2-subsequences. The count is much smaller than that

of all subsequences 2n − 1 when sequence is longer.

3.2.2 Sequence Insertion and Update
The old sequence information has weakly affection with the coming of the new
sequence. To differentiate the information of recently generated data elements
from the obsolete information of old data elements which may be no longer useful
or possibly invalid at present to make result reflect recent rule of data stream, a
decay rate d [9] is used as follows:

d = b−(1/h) (b ≥ 1, h ≥ 1) . (3)

406 H. Li and H. Chen

In this formula, b is decay-base and h is decay-base-life.
If decay-base is set to 1, frequent sequences are found as a mining result set

as in the other mining algorithms of recent sequences, on the other hand, if a
decay-base is set to be greater than 1, recently sequences are effective in mining.
To avoid fluctuation in the set of recently frequent sequences, a decay-base-life
h of a decay rate should be set to be greater than or equal to its lower bound
hLB , found as follows [9]:

hLB = �−{γ/ logb(1 − Smin)}	 . (4)

In this formula, γ is safety factor and Smin is minimum support threshold.
Sequence insertion and update are to combine all 1-subsequences and 2-

subsequences of one sequence with graph in the form of adding weight of vertices
and edges. Two steps are in this section: The first step is to add weight of ver-
tices, if a vertex corresponding one of 1-subsequences is not in graph, create
and insert this vertex into graph, the real value is 1-subsequence’s value and
the initial weight wt=1 ; otherwise update the weight wt=wt+1/d. The second
step is to add weight of edge as the same method as in step one.The optimized
algorithm of sequence insertion and update is shown as follows.

Function createGraph(seq){
create1subsequences(seq);
create2subsequences(seq);
for each item in 1-subsequences{
findVertex(item);
if(findVertex)
getId(updateVertex(item));

else
getId(addNewVertex(item));

}
for each <preItem, nextItem> in 2-subsequences{
findEdge(preItem,nextItem);
if(findEdge)
updateEdge(preItem,nextItem);

else
addNewEdge(preItem,nextItem);

}
}

3.2.3 Sequential Pattern Mining
This step is independent from previous two steps. When the graph is construct-
ing, users can provide the minimum support threshold Smin to get the sequential
patterns anytime. Sequential patterns are obtained by depth first search over the
graph. The mining process is to recursively traverse the graph with every vertex
as beginner, and finally the real-time sequential patterns are acquired in which
all the vertices are validnode.

GraSeq : A Novel Approximate Mining Approach 407

Considering the efficiency of algorithm, a non-recursive traverse method is
used. A stack named nodestack is introduced to store each validnode.

If there are no other rules in traverse, the results should be a superset of accu-
rate sequential patterns. To eliminate most of the redundant sequential patterns,
a concept validnode is introduced. For a vertex on the top of stack, if once there
is no validnode in its children, output all vertices from the bottom to the top of
stack as a sequential pattern.

Definition 4. A vertex is validnode when this vertex satisfies the follow rules
after it is pushed into stack.

1. Every vertex in stack is greater than minimum support threshold Smin.
2. There are no repeated vertices in stack.
3. If the vertices from the bottom to the top of stack are regarded as a sequence,

then every 2-subsequence of this sequence is frequent, i.e., the edge weight between
each two vertices in stack is greater than the minimum support threshold Smin.

In traverse the current vertex may be searched through its parent vertex or
ancestor vertex, the relationship between them will be recorded so that when all
the parent and ancestor of the current vertex is popped from stack, the current
vertex is surely visited. so a 32 bits binary integer sign of validnode in nodestack
is imported to avoid data lose.

Fig. 3. Example of graph

Example 2. The sequences in example 1 is used here. The minimum support
Smin is set to 2, then the graph where the weights of each vertex and edge
greater than or equal to 2 is shown in Figure 3. They are denoted in data
structure as (a → c → d → b, b → c → d, c, d), and Table 1 shows the process of
sign operation with a as beginner.

As shown in Table 1, c is firstly signed by a because a is parent of c, and a
is the first vertex in stack, so Sign(c) = 1 , here c has no children, so output
〈{〈a〉, 〈c〉} in row 3 as sequential pattern and pop c in row 4. Next b is pushed in
row 5 because it is the second child of a and also Sign(b)=1, Then c is pushed
and signed as the first child of b in row 6, now b is the second vertex in stack,
so Sign(c)=11. c is not unsigned as Sign(c)=1 until b which is one of c’s parent
is popped from stack in row 9. The same as a’s being popped.

The sequential patterns mining algorithm is shown as follows.From this algo-
rithm we can find each sequence built from the bottom to the top of stack is a
sequential pattern whose 1-subsequences and 2-subsequences are all frequent.

408 H. Li and H. Chen

Table 1. The process of sign operation with vertex a as beginner

Stack Sign(a) Sign(b) Sign(c) Sign(d) Output
1 0 0 0 0
2 a 0 0 0 0
3 a,c 0 0 1 0 〈a〉, 〈c〉
4 a 0 0 1 0
5 a,b 0 1 1 0
6 a,b,c 0 1 11 0 〈a〉, 〈b〉, 〈c〉
7 a,b,d 0 1 11 10 〈a〉, 〈b〉, 〈d〉
8 a,b 0 1 11 10
9 a 0 1 1 0
10 a,d 0 1 1 1 〈a〉, 〈d〉
11 a 0 1 1 1
12 0 0 0 0

Function querySequence(Graph g){
for(each vertex in g){
if(vertex is valid){
push(vertex);
while(stack is not empty){
nextvertex = findnextValidvertex(vertex);
if(find){
push(nextvertex);
sign(nextvertex);

}else{
out(stack);
unsign(all nextvertex of vertex);
pop(topvertexofstack);

}
}

}
}

3.2.4 Data Pruning
Generally, the smaller the weight of vertex is, the greater possibility a vertex will
be erased, but in fact, some vertices with smaller weight may become frequent
in future, so data can not be erased according to weight.

And on the other hand, the effect of old data will decay follows the new data’s
coming. If a vertex is not updated for a long time, we supposed that it would not be
updatedinfuture.Datapruningistofindtheverticesthatwerenotupdatedforalong
time and erases them when system resources can’t satisfy the running of algorithm.

4 Experimental Results

A set of experiments are designed to test the performance of this algorithm.
The experiment uses synthetic supermarket business data created by the data

GraSeq : A Novel Approximate Mining Approach 409

generator (http://www.almaden.ibm.com/cs/quest) of IBM. PrefixSpan is a mul-
tiple scan algorithm and creates accurate sequential patterns, so a precision and
recall compare is based on the result of PrefixSpan. eISeq is a one scan algorithm
and creates approximate sequential patterns, and it has the best performance in
processing time and memory usage to the best of our knowledge, so it is chose as
the comparative algorithm. The machine in experiment has PIV3.2G CPU and
512M memory, C++ is the implementary language under Windows environment.

Four data sets are created named T8I10KD100K, T8I80KD100K,
T15I10KD100K and T15I80KD100K,where T is the average sequence length, I
is the count of distinct sequence itemsets and D is the number of sequences.

Figure 4 shows the memory usage of two algorithms GraSeq and eISeq in
sequences insertion and update phase over data set T8I10KD100K with Smin =
100, and figure 5 shows the memory usage over T8I80KD100K with Smin = 10.
For eISeq, another parameter significant support threshold [7] Ssig = 1. It can be
seen that on condition that significant support threshold is small, the memory
usage of eISeq obviously increases a lot. To compare two figures, it is clear to
see that GraSeq uses less memory when the count of distinct itemsets is smaller,
that is because sequence information is stored in vertex of graph, and the same
itemsets are stored in the same vertex so no redundant information are stored.

Fig. 4. Memory usage of GraSeq and
eISeq over data set T8I10KD100K

Fig. 5. Memory usage of GraSeq and
eISeq over data set T8I80KD100K

Figure 6 shows the data processing time of GraSeq and eISeq in sequences
insertion and update phase over data set T15I10KD100K with Smin = 100,
and figure 7 shows data processing time of two algorithms over T15I80KD100K
with Smin = 10. We can see that eISeq needs more time because the analysis of
sequence spends much time when average length of sequence increases.

To compare the correctness of results of GraSeq and eISeq, two concepts pre-
cision and recall are introduced. For two result sets R1 and R2, define precision
and recall as follows:

Precision(R1|R2) =
|R1

⋂
R2|

|R2|
. (5)

Recall(R1|R2) =
|R1

⋂
R2|

|R1|
. (6)

410 H. Li and H. Chen

Fig. 6. Data processing time of GraSeq
and eISeq over data set T15I10KD100K

Fig. 7. Data processing time of GraSeq
and eISeq over data set T15I80KD100K

Figure 8 shows both Precision(RGraSeq|RPrefixSpan) and Precision(ReISeq |
RPrefixSpan), and figure 9 shows both Recall(RGraSeq|RPrefixSpan) and Recall
(ReISeq |RPrefixSpan) with different Smin, both figures use the same data set
T15I10KD100K. In eISeq, the significant support threshold is also set as Ssig =
1. We can find both precisions and recalls of GraSeq and eISeq are almost same
and become uniform follows the increasing minimum support threshold.

Fig. 8. Precision compare of GraSeq and
eISeq over data set T15I10KD100K

Fig. 9. Recall compare of GraSeq and
eISeq over data set T15I10KD100K

All of the above experiments show that when the average length of sequence
is greater or the count of distinct itemsets are smaller, GraSeq can save more
system resource with less lose of precision and recall than eISeq.

5 Conclusions

This paper investigates the problem of sequential patterns mining over data
stream and proposes a novel algorithm named GraSeq based on directed weighted
graph structure. GraSeq is a one scan algorithm, and it stores the synopsis of
sequences. With subsequence matching method, final approximate sequential
patterns in different minimum support threshold are obtained dynamically with
deep traverse over graph. The experiments show that GraSeq has a better per-
formance in processing time and in memory usage than eISeq with the accordant
accuracy of mining results. In this algorithm, data sharing brings less resources
usage but a little more imprecise results, more adaptive rules may further im-
prove the data correctness. Moreover, graph compression is also an interesting
topic for future research.

GraSeq : A Novel Approximate Mining Approach 411

References

1. Srikant, R., Agrawal, R.: Mining sequential patterns: Generalizations and perfor-
mance improvements. In: Apers, P.M.G., Bouzeghoub, M., Gardarin, G. (eds.)
EDBT 1996. LNCS, vol. 1057, pp. 3–17. Springer, Heidelberg (1996)

2. Zaki, M.: SPADE: An Efficient Algorithm for Mining Frequent Sequences. Machine
Learning 40, 31–60 (2001)

3. Pei, J., Han, J., Mortazavi-Asl, B., Pinto, H., Chen, Q., Dayal, U., Hsu, M.-C.: Pre-
fixSpan: Mining Sequential Patterns Efficiently by Prefix-Projected Pattern Growth.
In: ICDE’01. Proceeding of the International Conference on Data Engineering, pp.
215–224 (2001)

4. Han, J., Pei, J., Mortazavi-Asl, B., Chen, Q., Dayal, U., Hsu, M.-C.: FreeSpan:
Frequent Pattern-Projected Sequential Pattern Mining. In: KDD ’00. Proceeding of
ACM SIGKDD International Conference Knowledge Discovery in Databases, Au-
gust 2000, pp. 355–359 (2000)

5. Ayres, J., Flannick, J., Gehrke, J., Yiu, T.: Sequential pattern mining using a bitmap
representation. In: KDD’02. Proceeding of ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, July 2002, pp. 429–235 (2002)

6. Kum, H.C., Pei, J., Wang, W., Duncan, D.: Approx-MAP: Approximate Mining of
Consensus Sequential Patterns. Technical Report TR02-031, UNC-CH (2002)

7. Chang, J.H., Lee, W.S.: Efficient Mining method for Retrieving Sequential Patterns
over Online Data Streams. Journal of Information Science, 31–36 (2005)

8. Agrawal, R., Srikant, R.: Mining Sequential Patterns. In: ICDE’95. Proceedings
of the 11th International Conference on Data Engineering, March 1995, pp. 3–14
(1995)

9. Chang, J.H., Lee, W.S.: Finding recent frequent itemsets adaptively over online
data streams. In: Getoor, L., et al. (eds.) Proceedings of the 9th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, August 2003,
pp. 487–492 (2003)

	GraSeq: A Novel Approximate Mining Approach of Sequential Patterns over Data Stream
	Introduction
	Preliminaries
	$GraSeq$ Method
	Data Structure and Meaning
	Algorithm Description

	Experimental Results
	Conclusions

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

