
X. Zhou et al. (Eds.): APPT 2003, LNCS 2834, pp. 109–113, 2003.
© Springer-Verlag Berlin Heidelberg 2003

Overcoming Static Register Pressure for Software
Pipelining in the Itanium Architecture*

Haibo Lin, Wenlong Li, and Zhizhong Tang

Tsinghua University,
Beijing 100084, P.R. China

{linhaibo99,liwenlong00}@mails.tsinghua.edu.cn
tzz-dcs@tsinghua.edu.cn

Abstract. Software pipelining techniques have been shown to significantly
improve the performance of loop-intensive scientific programs. The Itanium
architecture contains many features to enhance parallel execution, such as
support for efficient software pipelining of loops. The drawback of software
pipelining is the high register requirements, which may lead to software
pipelining failure due to limited static general registers in Itanium. This paper
evaluates the register requirements of software-pipelined loops. It then presents
a novel register allocation scheme, which allocates stacked registers to serve as
static registers. Experimental results show that this method gains an average
2.4% improvement, and a peak 18% improvement in performance on NAS
Benchmarks.

1 Introduction

The Itanium architecture contains many features to enhance parallel execution, such
as an explicitly parallel (EPIC) instruction set, large register file, etc. It also provides
features such as register rotation [1] to support efficient software pipelining without
increasing the code size of the loop. Software pipelining [2] tries to improve the
performance of a loop by overlapping the execution of several successive iterations.
This improves the utilization of available hardware resources by increasing the
instruction level parallelism (ILP).

The drawback of aggressive scheduling techniques [3] such as software pipelining
is that they increase register requirements [4]. There have been proposals to perform
register allocation for software-pipelined loops [5]. If the number of registers required
is larger than the available number of registers, spill code has to be introduced to
reduce register usage, or software pipelining is given up.

This paper evaluates static register requirements of software-pipelined floating-
point intensive loops. A new method to software pipeline loops that require more
static general registers than those Itanium provides is also presented. It uses stacked
general register to serve as static general register, thus increasing software-pipelined
loops that require many static general registers but few rotating general registers. It
has been implemented in Open Research Compiler (ORC), and results in an average

* This work was supported by NSFC grant 60173010.

110 H. Lin, W. Li, and Z. Tang

2.4% improvement and a peak 18% improvement in performance on NAS
Benchmarks.

2 Itanium Architecture Features

Itanium provides 128 general registers, 128 floating-point registers, and 64 predicate
registers. The general registers are partitioned into two subsets. GR0-GR31 is termed
the static general register. GR32-GR127 is termed the stacked general register. The
stacked registers are made available to a program by allocating a register stack frame
consisting of a programmable number of local and output register. The floating-point
registers and predicate registers are also partitioned into two subsets respectively.
FR0-FR31 (PR0-PR15) is termed the static floating-point (predicate) register. FR32-
FR127 (PR16-PR63) is termed the rotating floating-point (predicate) register.

A fixed-size area of the floating-point and predicate register files(FR32-FR127 and
PR16-PR63), and a programmable-sized area of the general register file are defined to
rotate. The size of the rotating area in the general register file is determined by an
immediate in the alloc instruction and must be either zero or a multiple of 8, up to a
maximum of 96 registers. The lowest numbered rotating register in the general
register file is GR32.

3 Register Requirements of Software Pipelining in the Itanium
Architecture

This section evaluates static general register requirements of all the innermost loops
of the NAS Benchmarks that are suitable for software pipelining in the Itanium
architecture. These loops have been obtained with the ORC compiler. A total of 363
loops amenable for software pipelining have been used. This set includes all the
innermost loops that do not have subroutine calls or conditional exits. Loops with
conditional structures in their bodies have been IF-converted, with the result that the
loop now looks like a single basic block.

In the Itanium architecture, three kinds of variables require static general registers.
They are:

1. Dedicated variants, which require special general registers such as global pointer
(gp), memory stack pointer (sp);

2. Loop invariants, the values of which are repeatedly used by a loop at each
iteration, but never written by it;

3. Base update variants, something like induction variables. Consider the following
load instruction ld4 r1=[r2], 4. After the value consisting of 4 bytes is
read from memory starting at the address specified by the value in GR r2, the
value in GR r2 is added to 4, and the result is placed back in GR r2. The variable
in GR r2 is termed base update variant. Although the value of such a variable
varies at each iteration, the def and ref are involved in one instruction, resulting
in a live-range of 0 cycle. So we should assign it a static general register instead
of rotating general register.

Overcoming Static Register Pressure for Software Pipelining 111

Figure 1 shows the cumulative distribution of the requirements for static general
registers for all 363 loops. In general, loops have very few dedicated variants. For
instance 96% of the loops have no dedicated variants and only 5 loops have 1
dedicated variant. Loops also have few loop invariants. For instance 65% of the loops
have no loop invariants and the other loops have at most 6 invariants. Nevertheless
loops have a high number of base update variants. For instance 3 loops have more that
32 base update variants.

Taking into account of several special registers, such as global pointer (gp),
memory stack pointer (sp), reserved thread pointer (tp), and 1 or 2 register serving
other purposes, there are only 27-28 out of 32 static general registers available for
software pipelining. Since 6% of the loops require such many static general registers,
these loops will fail in software pipelining phase.

��

���

���

���

���

����

� �� �� �� ��
�	
��
����
������
�

�
��
��
��
�
�
�

���������

���������
����

�����	�����

������

Fig. 1. Cumulative distribution of variants requiring static general registers. Each point (x,y) of
the graph represents the percentage y of loops having less than x registers

4 Stacked Register Allocation

General registers GR32-GR127 form a register stack that is automatically managed
across procedure calls and returns. Each procedure frame on the register stack is
divided into two dynamically sized regions, one for input parameters and local
variables, and one for output parameters. The hardware makes no distinction between
input and local registers. On a procedure call, the registers are automatically renamed
by the hardware so that the caller’s output registers form the base of the callee’s new
register stack frame. On return, the registers are restored to the previous state, so that
the input and local registers are preserved across the call.

A subset of the registers in the procedure frame may be designated as rotating
registers. The rotating register region always starts with GR32, and may be any
multiple of 8 registers in number, up to a maximum of 96 rotating register. The
renaming is under control of the Register Rename Base (RRB). If the rotating
registers include any or all of the output register, software must be careful when using
the output registers for passing parameters, since a non-zero RRB will change the
virtual register numbers that are part of the output region. In general, software should
either ensure that the rotating region does not overlap the output region, or that the
RRB is cleared to zero before setting output parameter registers.

112 H. Lin, W. Li, and Z. Tang

Since the rotating general register requirements of software pipelining are not very
high, there are often some unused general registers in the register stack. We propose a
novel register allocation scheme for software pipelining called Stacked Register
Allocation (SRA). SRA tries to allocate these registers to variants needing static
general registers. Actually, SRA allocates stacked non-rotating registers right on top
of stacked rotating registers, and put the rest of the register stack frame to higher
register regions. SRA realizes dynamic partition between static general registers and
rotating general registers to some extent (SRA can not reduce the number of static
general registers to less than 32). It improves the utilization efficiency of general
registers, and results in more software-pipelined loops. Fig. 2 shows register stack
usage model before and after SRA.

←������������	
����	
��→�
�

←�����������
	��→� �
�

��	��
�
��	
����

���	�����

��������

��
	��
������� ��	�����������

(a)

←������������	
����	
��→� �
�

←�����������
	��→� �

��	��
�
��	
����

���	�����

��	
����

�������	�����

������

����
	��
�������

��	
����

�������

(b)

Fig. 2. Register stack usage model: (a) before SRA, (b) after SRA

5 Experimental Results

We have implemented SRA in the ORC compiler for Itanium. In this section, we
compare the results of using this technique and original implementation in ORC on
the NAS suite of benchmark programs, that is, the speedup of our method. These
results were obtained by running the benchmarks with -O3 level optimization. Profile
feedback and Inter-Procedural Analysis (IPA) were not used.

Provided with 32 physical general registers, the number of loops that fail in
software pipelining caused by non-enough static general registers range from 0 to 11.
These loops are all pipelined after SRA is applied. It is reasonable that the number of
un-pipelined loops increases when the number of available general registers
decreases. SRA can solve the problem of software pipelining failure even in the
context of 24 general registers.

Figure 3 shows the percentage improvements of SRA in execution times on an
Itanium 733 MHz machine. SRA results in an average 2.4% improvement and a peak
18% improvement in performance with 32 general registers. This result is rather
exciting because only 6% of loops are optimized. When the number of available
general registers reduces to 24, SRA gains an average speedup of 3.1%.

Overcoming Static Register Pressure for Software Pipelining 113

���

���

�

���

���

�� �� �� �� �� 	
 �
� ��

�

��
��
�

���	
��
��

�
�
�
�
�
�
�

������

������

Fig. 3. Performance of SRA. SRA-32 and SRA-24 refer to the number of available static
general registers of 32 and 24 respectively

6 Conclusion

In this paper we have evaluated the static general register requirements of software-
pipelined loops of NAS Benchmarks on Itanium architecture. We have also shown
that some loops with high static general register requirements fail in software
pipelining phase. A new method is presented to increase software-pipelined loops on
Itanium architecture. It allocates free general registers from register stack for loops
that require more static general registers than those Itanium provides. The
experimental results show significant improvements in the execution time of NAS
Benchmarks.

References

1. Dehnert J. C., Hsu P. Y., Bratt J. P.: Overlapped Loop Support in the Cydra 5. Proceedings
of ASPLOS’89. (1989) 26–38

2. Allan V. H., Jones R. B., Lee R. M., Allan S. J.: Software Pipelining. ACM Computing
Surveys. 27 (1995) 367–432

3. Huff R. A.: Lifetime-sensitive modulo scheduling. Proceedings of PLDI'93. (1993) 58–267
4. Llosa J.: Reducing the Impact of Register Pressure on Software Pipelining. PhD thesis.

Universitat Politècnica de Catalunya (1996)
5. Rau B. R., Lee M., Tirumalai P., Schlansker P.: Register allocation for software pipelined

loops. Proceedings of PLDI'92. (1992) 283–299

	Introduction
	Itanium Architecture Features
	Register Requirements of Software Pipelining in the Itanium Architecture
	Stacked Register Allocation
	Experimental Results
	Conclusion

