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Abstract. We have presented in this paper an ants based clustering al-
gorithm which is inspired from the self-assembling behavior observed in
real ants. These ants progressively become connected to an initial point
called the support and then successively to other connected ants. The
artificial ants that we have defined similarly build a tree where each ant
represents a node/data. Ants use the similarities between the data in
order to decide where to connect. We have tested our method on numer-
ical databases (either artificial, real, and from the CE.R.LE.S.). We show
that AntTree improves the clustering process compared to the Kmeans
algorithm and to AntClass, a previous approach for data clustering with
artificial ants.

1 Introduction

Natural systems have evolved in order to solve many problems that can be related
to the data clustering problem. For instance, different species have developed
social behaviors to tackle the problem of gathering objects or individuals, like
in brood sorting or cemetery organization in real ants [3]. Therefore, several
studies involve ants behavior and data clustering [9] [7][4] [11]. We are interested
in this paper in showing how to adapt a new biological model to this clustering
problem where the data must be hierarchically organized in a tree. This model
is based on the ability of ants to build live structures with their bodies [§].
Each ant represents a data and is initially placed on a fixed point, i.e. the root
of the tree that we will call the support in the following. The behavior of an
ant consists in moving on already connected ants and in connecting itself at a
convenient location in the tree. This behavior is directed by the local structure
of the tree and by the similarity between data represented by ants. When all
ants are connected, the resulting tree can be interpreted as a partitioning of the
data in order to solve a clustering problem [6].
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The remainder of this paper is organized as follows: in section 2] we give an
overview of the underlying biological model. In section [3, we present the details
of the AntTree algorithm. Its properties and comparative results are given in
section [4l In section [§, we finally draw some conclusions and describe future
evolutions of this method, like its use in Web portal automatic construction.

2 Self-Assembly Behavior in Real Ants

Ants are able to build mechanical structures by a self-assembling behavior. Bi-
ologists observe for instance the formation of drops of ants [I2], or the building
of chains of ants [8]. These types of self-assembly behaviors have been observed
with Linepithema humiles Argentina ants and African ants of gender Oecophylla
longinoda. The goal of drop structures built by L. humiles is today still obscure.
This ability has been recently experimentally demonstrated [I2]: ants fix them-
selves by mean of their tarsus. The drop can sometimes fall down. For Oecophylia
longinoda ants, it can be observed that two types of chains are built: on the one
hand chains of ants fixed with their tarsus are used to cross an empty space,
and on the other hand, chains of ants hung by their mandibles and their petioles
to build their nest [8]. In both cases, these structures disaggregate after a given
time.

Our computer model especially uses the following principles of the ants self-
assembly behavior: ants start building the structure from a fixed support (stem,
leaf,...) and they may move on the structure in order to become connected. All
positions can be reached but for instance in the case of chains, ants preferably
fix themselves at the end of the chain because they are attracted by gravity or
by the object to reach. Most of the ants which are connected to the structure
can not move anymore. In the case of a chain of ants, this corresponds to ants
placed in the middle of the chain. A small proportion of connected ants may
easily become disconnected from the structure, like for instance the ants placed
at the end of a chain. Therefore one may observe a growth but also a decreasing
of the structure.

In general, the motivation for using bio-inspired clustering techniques is
twofold: they can avoid local minima thanks to their probabilistic behavior and
they may produce high quality results without any prior knowledge of data
structure (such as the number of clusters or an initial partition). In this work,
in addition to these motivations, we are especially interested in showing that
this new biological model may be a promising technique for achieving tree-based
clustering. One should also notice that ants have been used to build specific kind
of trees in [I] but with an ACO algorithm.

3 The Proposed Algorithm: AntTree

3.1 Global Principles

To obtain a partitioning of the data[6], we build a tree where nodes represent
data and where edges remain to be discovered. Each data can be described
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Fig. 1. Representing connected and moving ants (a), and an ant’s neighborhood (b)

by any representation language provided that there exists a similarity measure
Sim(4, j) between two data (d;,d;), i € [1,N], j € [1, N]. This function must
return values in [0, 1] where 0 means that d; and d; are totally different and
1 means that they are identical. The main principles of our algorithm called
AntTree are the following (see figurel(a)): the root of the tree (the support) is
represented by a node ag. Ants gradually become connected to this initial node,
and then successively to the ants fixed to this node, and so on until all ants
are attached to the structure (AntTree stopping criterion). Ants move over the
other connected ants and decide where to connect to the structure according
to the value returned by Sim(i,j) and according to the local neighborhood of
the moving ants. We consider that each ant a;,7 € [1, N] has one outgoing link
and no more than L. incoming links (the structure is a tree with maximum
degree of Lyax). We define for each ant a; a similarity threshold Tsiy (a;) and
a dissimilarity threshold Thigssim(a;) that will be locally updated by a;. These
thresholds will be used to determine whether the data d; represented by a; is
sufficiently similar or sufficiently dissimilar with an other data represented by
an other ant.

During the building of the structure, each ant a; will be either moving on
the tree or will be connected to the tree. In the first case, we denote by apos
the ant (or the support) over which a; is located (and moving). a; is completely
free to move on the support or toward another ant within the neighborhood of
Gpos- This neighborhood is defined by all ants connected to apes, considering
that edges are undirected (see figure[ll(b)). At each step, an ant a; is selected in
a sorted list of ants (we will explain how this list is sorted in section 4.3) and
will connect itself or move according to the similarity with its neighborhood.
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3.2 Ants Local Behavior

The first ant is straight connected to the support ag. Next, for each ant a;, two
cases need to be considered. The first case is when a; is on the support. Let a®
denotes the ant which is the most similar to a; among the ants already connected
to the support. If a; is similar enough to a™ according to its similarity threshold
(i.e. Sim(a;, a™) > Tsim(a;)), then a; is moved toward a™ in order to be possibly
clustered in the same sub-tree, i.e. the same cluster. Else (i.e. a; is not similar
enough to a'), if a; is dissimilar enough to a* (i.e. Sim(a;,a™) < Tpissim(ai)),
then it is connected to the support. This means that we create a new sub-tree,
where ants will be as much dissimilar as possible to the ants in the other sub-
trees connected to ag. If no incoming links are available for ag, then a; is moved
toward a™. Finally, if a; is not similar or dissimilar enough to a™, we update its
thresholds with Tsim (az) — Tsim (az) 0.9 and TDiSSim(ai) + Thissim (az) +0.01. a;
becomes more tolerant and increases its probability to be connected the next time
it will be considered (in the meantime, other ants will have changed the tree). We
have experimentally chosen the values 0.9 and 0.01 because they provide good
results. The similarity threshold must be decreased with a higher rate than the
dissimilarity threshold is increased because of the distribution of similarities.

The second case is when a; is on an other ant denoted by a,.s (at also
denotes the ant which is the most similar to a; among the ants connected to
Apos). If there is a free incoming link for apes and if a; is similar enough to apes
(i.e. Sim(as, @pos) > Tsim(a;)) and dissimilar enough to ants connected to apos
(i.e. Sim(ai,a™) < Tpissim(a;)), then a; is connected to a,.s. In this case, a;
represents the root of a new sub-tree/sub-cluster below aps. Its dissimilarity
with other ants directly connected to ay.s is such that sub-clusters of ap,s will
be well ”separated” from each others (while being similar to apes). Else, a; is
randomly moved toward a neighbor node of a,,s and its thresholds are updated
in the same way as in the previous case. So, a; will move in the tree to find a
better location where to be connected. The algorithm ends when all ants are
connected.

4 Results

4.1 Testing Methodology

We have used databases in which data are represented with numerical attributes
and one class label. Some databases are artificial and have been generated with
gaussian and uniform laws (Artl,..., Art8). Other databases (Iris, Wine, Glass,
Pima, Soybean and Thyroid) are taken from the the Machine Learning Reposi-
tory [2] and correspond to standard benchmarks. Finally, we have used the data
from the CE.R.LE.S. that concern the healthy human skin domain [5]. For all
these data, there exits a class label which is not given to the clustering methods
but which we use for evaluation purposes. This is done by comparing the real
partitioning of the data with the obtained one. We use a clustering error measure
FEc which evaluates the proportion of misclassified couples of data: for all couples
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Fig. 2. Interpreting the tree as ”flat” clusters (a) and tree visual and interactive ex-
ploration using for instance hyperbolic zooming (b)

(di,d;), increase the error Ec¢ if d; and d; have been clustered in the same class
(while being in different real classes) or if the two data have been separated
(while they belong to the same real class). We use an Euclidean distance as a
similarity measure (data are previously normalized between 0 and 1).

4.2 Interpreting the Results

Results can be interpreted in different and complementary ways. First, the ob-
tained tree-structured partitioning can be interpreted as a ”flat partitioning”,
with the aim for instance of comparing our approach with other "flat cluster-
ing” methods (like the Kmeans in the next section). In this case (see figure[2f(a)),
sub-trees directly connected to the support ag are interpreted as clusters. But
the tree-structured organization of the data can be useful for the interpretation
of the results, which is one of the advantages of hierarchical clustering over flat
clustering. As shown in figure 2(b), the interface allows the user to interactively
visualize the hierarchy of data using an hyperbolic display. The user may click
on data and dynamically change the display. For instance, as one goes deeper
into the tree, the classification error decreases as expected. The user may detect
sub-structures in the data, like for instance a class which is divided into several
sub-classes. This would not be possible with flat clustering.

First, we have tried to find the best strategy for data initial sorting. The
initialization step of AntTree influences the results, in particular because the
first ants (i.e. first data in the database) will be in general connected first to
the support. Since the data that we have used are generally sorted by their
class label in the databases, this may completely bias the results. So we have
sorted the data in random order, but also with more clever ordering methods:
for each data, one may measure its mean similarity with other data. This mean
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Table 1. Results obtained by AntTree for different initial order of data, averaged over
50 runs. Fc denotes the classification error and K’ the number of classes. og. and ok’
are the corresponding standard deviations.

Database AntTree AntTree AntTree

(decreasing order) | (increasing order) (random order)

FEc [GEC] K’ [O'K/] FEc [O’EC] K’ [G'K/] FEc [O’EC] K’ [G'K/] K| N
Artl 075 [0.00] 1 [0.00] |0.17 [0.00] 4 [0.00] |0.44 [0.01] 2.36 [0.08]| 4 | 400
Art2  [0.50 [0.00] 1 [0.00] |0.18 [0.00] 3 [0.00] [0.27 [0.01] 1.94 [0.03]| 2 |1000
Art3  [0.58 [0.00] 1 [0.00] [0.21 [0.00] 3 [0.00] [0.37 [0.01] 2.26 [0.08]| 4 |1100
Artd |0.43 [0.00] 3 [0.00] [0.25 [0.00] 4 [0.00] |0.27 [0.00] 3.80 [0.05]| 2 | 200
Art5  |0.36 [0.00] 2 [0.00] |0.20 [0.00] 4 [0.00] [0.36 [0.02] 3.36 [0.09]| 9 | 900
Art6  [0.53 [0.00] 1 [0.00] [0.34 [0.00] 2 [0.00] [0.53 [0.02] 1.68 [0.06]| 4 | 400
Art7 |0.54[0.00] 4 [0.00] [0.72 [0.00] 4 [0.00] |0.66 [0.00] 3.68 [0.06]| 1 | 100
Art8  |0.61 [0.00] 5 [0.00] |0.76 [0.00] 5 [0.00] [0.66 [0.01] 3.74 [0.06]| 1 |1000
Iris 0.67 [0.00] 1 [0.00] |0.24 [0.00] 4 [0.00] [0.27 [0.01] 2.36 [0.08]| 3| 150
Wine  [0.65 [0.00] 2 [0.00] |0.64 [0.00] 2 [0.00] |0.64 [0.00] 2.04 [0.04]| 3| 178
Glass  |0.71 [0.00] 3 [0.00] |0.42 [0.00] 5 [0.00] |0.67 [0.01] 2.98 [0.07]| 7| 214
Pima  [0.45 [0.00] 1 [0.00] |0.42 [0.00] 3 [0.00] [0.45 [0.00] 1.92 [0.11]| 2| 798
Soybean [0.15 [0.00] 3 [0.00] |0.08 [0.00] 4 [0.00] |0.10 [0.00] 3.90 [0.04]| 4| 47
Thyroid |0.38 [0.00] 3 [0.00] |0.24 [0.00] 3 [0.00] [0.36 [0.00] 2.76 [0.06]| 3 | 215
CERIES [0.76 [0.00] 2 [0.00] [0.33 [0.00] 4 [0.00] [0.58 [0.02] 2.30 [0.11]| 6 | 259

Table 2. Results obtained with 10-means and AntClass algorithms

database 10-Means AntClass
Ec[og:] K'|og/] |Eclog:] K’ |[ok]

Artl  |0.18 [0.01] 8.58 [0.98]]0.15 [0.05] 4.22 [1.15]
Art2  |0.38 [0.01] 8.52 [0.96](0.41 [0.01] 12.32 [2.01]
Art3 0.31 [0.01] 8.28 [0.96]]0.35 [0.01] 14.66 [2.68]
Art4 0.32 [0.02] 6.38 [0.75]]0.29 [0.23] 1.68 [0.84]
Art5  [0.08 [0.01] 8.82 [0.91][0.08 [0.01] 11.36 [1.94]
Art6  |0.10 [0.02] 8.46 [1.08]]0.11 [0.13] 3.74 [1.38]
Art7 0.87 [0.02] 7.76 [1.03]]0.17 [0.24] 1.38 [0.60]
Art8 0.88 [0.01] 8.78 [0.83](0.92 [0.01] 13.06 [2.18]
Iris 0.18 [0.03] 7.12 [1.11]]0.19 [0.08] 3.52 [1.39]
wine  0.27 [0.01] 9.64 [0.52]|0.51 [0.11] 6.46 [2.10]
Glass 0.29 [0.02] 9.44 [0.70]|0.40 [0.06] 5.60 [2.01]
Pima 0.50 [0.01] 9.90 [0.36]]0.47 [0.02] 6.10 [1.84]
Soybean [0.13 [0.02] 8.82 [0.97](0.54 [0.17] 1.60 [0.49]
Thyroid |0.42 [0.02] 9.56 [0.57]|0.22 [0.09] 5.84 [1.33]
CERIES [0.11 [0.01] 9.38 [0.63]]0.27 [0.15] 3.40 [1.06]

similarity can be used to sort the data either in increasing/decreasing order.
With an increasing order, the first connected ants are those which are the less
similar to all the others and therefore close to their cluster and far away from the
others. With a decreasing order, the first ants to connect are the most similar to
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all the others. Thus an ant belonging to a different cluster will have more chance
to be connected than in the increasing case. The results obtained are given in
table [l It is obvious that the increasing order is more interesting regarding to
the clustering error. We have consequently adopted this strategy in the following
(with L,,q. = 10: at most 10 incoming links per ant).

We have compared AntTree with other clustering algorithms: AntClass [10]
11], a clustering algorithm inspired by a colony of artificial ants, and the Kmeans
algorithm initialized with 10 randomly generated initial partitions (the data used
for experimentation do not contain more than 10 clusters). Table 2] shows the
results obtained for the 10-means and AntClass. We can see that AntTree gives
an averaged error which is lower than AntClass for Art2, Art3, Art4d, Art8,
pima and soybean, and almost similar for Artl, glass, thyroid. Moreover, for the
majority of the databases, the number of clusters found by AntTree is closer to
the number of real classes than the number found by AntClass (10 databases
out of 15).

AntTree is also better than the 10-means method for Art2, Art3, Art4, Art7,
Art8, pima, soybean and thyroid. Moreover, the number of classes found by
AntTree is also better (14 databases out of 15) for these second results. According
to the standard deviations, we can also notice that AntTree is more precise than
AntClass and 10-means.

Averaged computational time for one run is between 1 ms (thyroid database)
and 0.5 s (Art3 composed of 1100 data). 10-means and AntClass were pro-
grammed in C, AntTree in C++ and the tests were performed on a standard PC
(PIIT 700 MHz). The averaged computational times of AntTree are relatively
low compared to the two other methods because when an ant is connected to
the tree, it will not move anymore. AntTree benefits from the fact that tree-
based method often have a low complexity (like the heap sorting algorithm for
instance).

5 Conclusion

In this paper we have described a new algorithm which is directly inspired from
the ants self-assembly behavior. We have shown how it can be applied to the
unsupervised learning problem and how it can obtain a tree-structured organiza-
tion of the data. This tree can be either visualized in a hierarchical way or it can
be interpreted as a flat partition. This method has been successfully compared
with the Kmeans and AntClass, both in terms of clustering errors, number of
classes and computational time. Those results are extremely encouraging and
the main perspective of this work is to keep on studying this promising model.
More precisely, future work will deal with the unhooking capacity of ants (like
drops of ants for the L humiles and the disaggregate of chains for Oecophylla
longinoda). Each ant will have the possibility to disconnect itself from its position
and to move on other ants that may be more similar. We are also interested in a
probabilistic approach of our algorithm: for each ant we associate a probability
of connecting which depends on its similarity with its close ants. We also want to
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automatize the initialization and the updating of the thresholds. Finally we plan
to apply this algorithm to the automatic hierarchical clustering of documents
(Web pages) for the generation of portal sites.

References

10.

11.

12.

. Shin Ando and Hitoshi Iba. Ant algorithm for construction of evolutionary tree. In

W. B. Langdon, editor, GECCO 2002: Proceedings of the Genetic and Evolutionary
Computation Conference, page 131, New York, 9-13 July 2002. Morgan Kaufmann
Publishers.

C.L. Blake and C.J. Merz. UCI repository of machine learning databases, 1998.
N-R Franks and A Sendova-Franks. Brood sorting by ants: distributing the work-
load over the work surface. Behav. Ecol. Sociobiol, 30:109-123, 1992.

S. Goss and J.-L. Deneubourg. Harvesting by a group of robots. In Varela, editor,
Proceedings of the First European Conference on Artificial Life, pages 195-204,
Sydney, Australia, 1991. Toward a Practice of Autonomous Systems.

C. Guinot, D. J.-M. Malvy, F. Morizot, M. Tenenhaus, J. Latreille, S. Lopez,
E. Tschachler, and L. Dubertret. Classification of healthy human facial skin. Text-
book of Cosmetic Dermatology Third edition (to appear), 2003.

A-K Jain and R-C Dubes. Algorithms for Clustering Data. Prentice Hall Advanced
Reference Series, 1988.

P. Kuntz, D. Snyers, and P. Layzell. A stochastic heuristic for visualising graph
clusters in a bi-dimensional space prior to partitioning. Journal of Heuritics, 5(3),
October 1999.

Arnaud Lioni, Christian Sauwens, Guy Theraulaz, and J-L. Deneubourg. The dy-
namics of chain formation in oecophylla longinoda. Journal of Insect Behavior,
14:679-696, 2001.

E.D. Lumer and B. Faieta. Diversity and adaptation in populations of clustering
ants. pages 501-508, 1994.

N. Monmarché. On data clustering with artificial ants. In A.A. Freitas, editor,
AAAI-99 & GECCO-99 Workshop on Data Mining with Evolutionary Algorithms:
Research Directions, pages 23-26, Orlando, Florida, July 18 1999.

N. Monmarché, M. Slimane, and G. Venturini. On improving clustering in numer-
ical databases with artificial ants. In D. Floreano, J.D. Nicoud, and F. Mondala,
editors, 5th European Conference on Artificial Life (ECAL’99), Lecture Notes in
Artificial Intelligence, volume 1674, pages 626—635, Swiss Federal Institute of Tech-
nology, Lausanne, Switzerland, 13-17 September 1999. Springer-Verlag.

Guy Theraulaz, E Bonabeau, Christian Sauwens, J-L Deneubourg, Arnaud Lioni,
F Libert, L Passera, and R-V Sol . Model of droplet formation and dynamics in
the argentine ant (linepithema humile mayr). Bulletin of Mathematical Biology,
63:1079-1093, 2001.



	Introduction
	Self-Assembly Behavior in Real Ants
	The Proposed Algorithm: AntTree
	Global Principles
	Ants Local Behavior

	Results
	Testing Methodology
	Interpreting the Results

	Conclusion



