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Abstract. The achromatic number of a graph is the largest number of
colors needed to legally color the vertices of the graph so that adjacent
vertices get different colors and for every pair of distinct colors c1, c2

there exists at least one edge whose endpoints are colored by c1, c2. We
give a greedy O(n4/5) ratio approximation for the problem of finding the
achromatic number of a bipartite graph with n vertices. The previous
best known ratio was n · log log n/ log n [12]. We also establish the first
non-constant hardness of approximation ratio for the achromatic num-
ber problem; in particular, this hardness result also gives the first such
result for bipartite graphs. We show that unless NP has a randomized
quasi-polynomial algorithm, it is not possible to approximate achromatic
number on bipartite graph within a factor of (ln n)1/4−ε. The methods
used for proving the hardness result build upon the combination of one-
round, two-provers techniques and zero-knowledge techniques inspired
by Feige et.al. [6].

1 Introduction

A proper coloring of a graph G(V,E) is an assignment of colors to V such that
adjacent vertices are assigned different colors. It follows that each color class
(i.e. the subset of vertices assigned the same color) is an independent set. A
k-coloring is one that uses k colors. A coloring is said to be complete if for every
pair of distinct colors, there exist two adjacent vertices which are assigned these
two colors. The achromatic number ψ∗(G) of a graph G is the largest number k
such that G has a complete k-coloring.

A large body of work has been devoted to studying the achromatic number
problem which has applications in clustering and network design (see the sur-
veys by Edwards [4] and by Hughes and MacGillivray [11]). Yannakakis and
Gavril [15] proved that the achromatic number problem is NP-hard. Farber
et.al. [5] show that the problem is NP-hard on bipartite graphs. Bodlaender [1]
established that the problem is NP-hard on graphs that are simultaneously co-
graphs and interval graphs. Cairnie and Edwards [2] show that the problem is
NP-hard on trees.
� Research supported in part under grant no. 9903240 awarded by the National Science

Foundation.

G. Di Battista and U. Zwick (Eds.): ESA 2003, LNCS 2832, pp. 385–396, 2003.
c© Springer-Verlag Berlin Heidelberg 2003

Verwendete Distiller 5.0.x Joboptions
Dieser Report wurde automatisch mit Hilfe der Adobe Acrobat Distiller Erweiterung "Distiller Secrets v1.0.5" der IMPRESSED GmbH erstellt.
Sie koennen diese Startup-Datei für die Distiller Versionen 4.0.5 und 5.0.x kostenlos unter http://www.impressed.de herunterladen.

ALLGEMEIN ----------------------------------------
Dateioptionen:
     Kompatibilität: PDF 1.3
     Für schnelle Web-Anzeige optimieren: Nein
     Piktogramme einbetten: Nein
     Seiten automatisch drehen: Nein
     Seiten von: 1
     Seiten bis: Alle Seiten
     Bund: Links
     Auflösung: [ 2400 2400 ] dpi
     Papierformat: [ 595.276 824.882 ] Punkt

KOMPRIMIERUNG ----------------------------------------
Farbbilder:
     Downsampling: Ja
     Berechnungsmethode: Bikubische Neuberechnung
     Downsample-Auflösung: 300 dpi
     Downsampling für Bilder über: 450 dpi
     Komprimieren: Ja
     Automatische Bestimmung der Komprimierungsart: Ja
     JPEG-Qualität: Maximal
     Bitanzahl pro Pixel: Wie Original Bit
Graustufenbilder:
     Downsampling: Ja
     Berechnungsmethode: Bikubische Neuberechnung
     Downsample-Auflösung: 300 dpi
     Downsampling für Bilder über: 450 dpi
     Komprimieren: Ja
     Automatische Bestimmung der Komprimierungsart: Ja
     JPEG-Qualität: Maximal
     Bitanzahl pro Pixel: Wie Original Bit
Schwarzweiß-Bilder:
     Downsampling: Ja
     Berechnungsmethode: Bikubische Neuberechnung
     Downsample-Auflösung: 2400 dpi
     Downsampling für Bilder über: 3600 dpi
     Komprimieren: Ja
     Komprimierungsart: CCITT
     CCITT-Gruppe: 4
     Graustufen glätten: Nein

     Text und Vektorgrafiken komprimieren: Ja

SCHRIFTEN ----------------------------------------
     Alle Schriften einbetten: Ja
     Untergruppen aller eingebetteten Schriften: Nein
     Wenn Einbetten fehlschlägt: Abbrechen
Einbetten:
     Immer einbetten: [ /Courier-BoldOblique /Helvetica-BoldOblique /Courier /Helvetica-Bold /Times-Bold /Courier-Bold /Helvetica /Times-BoldItalic /Times-Roman /ZapfDingbats /Times-Italic /Helvetica-Oblique /Courier-Oblique /Symbol ]
     Nie einbetten: [ ]

FARBE(N) ----------------------------------------
Farbmanagement:
     Farbumrechnungsmethode: Farbe nicht ändern
     Methode: Standard
Geräteabhängige Daten:
     Einstellungen für Überdrucken beibehalten: Ja
     Unterfarbreduktion und Schwarzaufbau beibehalten: Ja
     Transferfunktionen: Anwenden
     Rastereinstellungen beibehalten: Ja

ERWEITERT ----------------------------------------
Optionen:
     Prolog/Epilog verwenden: Ja
     PostScript-Datei darf Einstellungen überschreiben: Ja
     Level 2 copypage-Semantik beibehalten: Ja
     Portable Job Ticket in PDF-Datei speichern: Nein
     Illustrator-Überdruckmodus: Ja
     Farbverläufe zu weichen Nuancen konvertieren: Ja
     ASCII-Format: Nein
Document Structuring Conventions (DSC):
     DSC-Kommentare verarbeiten: Ja
     DSC-Warnungen protokollieren: Nein
     Für EPS-Dateien Seitengröße ändern und Grafiken zentrieren: Ja
     EPS-Info von DSC beibehalten: Ja
     OPI-Kommentare beibehalten: Nein
     Dokumentinfo von DSC beibehalten: Ja

ANDERE ----------------------------------------
     Distiller-Kern Version: 5000
     ZIP-Komprimierung verwenden: Ja
     Optimierungen deaktivieren: Nein
     Bildspeicher: 524288 Byte
     Farbbilder glätten: Nein
     Graustufenbilder glätten: Nein
     Bilder (< 257 Farben) in indizierten Farbraum konvertieren: Ja
     sRGB ICC-Profil: sRGB IEC61966-2.1

ENDE DES REPORTS ----------------------------------------

IMPRESSED GmbH
Bahrenfelder Chaussee 49
22761 Hamburg, Germany
Tel. +49 40 897189-0
Fax +49 40 897189-71
Email: info@impressed.de
Web: www.impressed.de

Adobe Acrobat Distiller 5.0.x Joboption Datei
<<
     /ColorSettingsFile ()
     /AntiAliasMonoImages false
     /CannotEmbedFontPolicy /Error
     /ParseDSCComments true
     /DoThumbnails false
     /CompressPages true
     /CalRGBProfile (sRGB IEC61966-2.1)
     /MaxSubsetPct 100
     /EncodeColorImages true
     /GrayImageFilter /DCTEncode
     /Optimize false
     /ParseDSCCommentsForDocInfo true
     /EmitDSCWarnings false
     /CalGrayProfile ()
     /NeverEmbed [ ]
     /GrayImageDownsampleThreshold 1.5
     /UsePrologue true
     /GrayImageDict << /QFactor 0.9 /Blend 1 /HSamples [ 2 1 1 2 ] /VSamples [ 2 1 1 2 ] >>
     /AutoFilterColorImages true
     /sRGBProfile (sRGB IEC61966-2.1)
     /ColorImageDepth -1
     /PreserveOverprintSettings true
     /AutoRotatePages /None
     /UCRandBGInfo /Preserve
     /EmbedAllFonts true
     /CompatibilityLevel 1.3
     /StartPage 1
     /AntiAliasColorImages false
     /CreateJobTicket false
     /ConvertImagesToIndexed true
     /ColorImageDownsampleType /Bicubic
     /ColorImageDownsampleThreshold 1.5
     /MonoImageDownsampleType /Bicubic
     /DetectBlends true
     /GrayImageDownsampleType /Bicubic
     /PreserveEPSInfo true
     /GrayACSImageDict << /VSamples [ 1 1 1 1 ] /QFactor 0.15 /Blend 1 /HSamples [ 1 1 1 1 ] /ColorTransform 1 >>
     /ColorACSImageDict << /VSamples [ 1 1 1 1 ] /QFactor 0.15 /Blend 1 /HSamples [ 1 1 1 1 ] /ColorTransform 1 >>
     /PreserveCopyPage true
     /EncodeMonoImages true
     /ColorConversionStrategy /LeaveColorUnchanged
     /PreserveOPIComments false
     /AntiAliasGrayImages false
     /GrayImageDepth -1
     /ColorImageResolution 300
     /EndPage -1
     /AutoPositionEPSFiles true
     /MonoImageDepth -1
     /TransferFunctionInfo /Apply
     /EncodeGrayImages true
     /DownsampleGrayImages true
     /DownsampleMonoImages true
     /DownsampleColorImages true
     /MonoImageDownsampleThreshold 1.5
     /MonoImageDict << /K -1 >>
     /Binding /Left
     /CalCMYKProfile (U.S. Web Coated (SWOP) v2)
     /MonoImageResolution 2400
     /AutoFilterGrayImages true
     /AlwaysEmbed [ /Courier-BoldOblique /Helvetica-BoldOblique /Courier /Helvetica-Bold /Times-Bold /Courier-Bold /Helvetica /Times-BoldItalic /Times-Roman /ZapfDingbats /Times-Italic /Helvetica-Oblique /Courier-Oblique /Symbol ]
     /ImageMemory 524288
     /SubsetFonts false
     /DefaultRenderingIntent /Default
     /OPM 1
     /MonoImageFilter /CCITTFaxEncode
     /GrayImageResolution 300
     /ColorImageFilter /DCTEncode
     /PreserveHalftoneInfo true
     /ColorImageDict << /QFactor 0.9 /Blend 1 /HSamples [ 2 1 1 2 ] /VSamples [ 2 1 1 2 ] >>
     /ASCII85EncodePages false
     /LockDistillerParams false
>> setdistillerparams
<<
     /PageSize [ 595.276 841.890 ]
     /HWResolution [ 2400 2400 ]
>> setpagedevice



386 G. Kortsarz and S. Shende

Given the intractability of solving the problem optimally (assuming, of
course, that P �= NP), the natural approach is to seek a guaranteed approxi-
mation to the achromatic number. An approximation algorithm with ratio α ≥ 1
for the achromatic number problem is an algorithm takes as input a graph G
and produces a a complete coloring of G with at least ψ∗(G)/α colors in time
polynomial in the size of G. Let n denote the number of vertices in graph G. We
will use the notation ψ∗ for ψ∗(G) when G is clear from the context.

Chaudhary and Vishwanathan [3] gave the first sublinear approximation al-
gorithm for the problem, with an approximation ratio O(n/

√
log n). Kortsarz

and Krauthgamer [12] improve this ratio slightly to O(n · log log n/ log n). It has
been conjectured [3] that the achromatic number problem on general graphs can
be approximated within a ratio of O(

√
ψ∗). The conjecture is partially proved

in [3] with an algorithm that gives a O(
√
ψ∗) = O(n7/20) ratio approximation

for graphs with girth (length of the shortest simple cycle) at least 7. Krysta and
Loryś [13] give an algorithm with approximation ratio O(

√
ψ∗) = O(n3/8) for

graphs with girth at least 6. In [12], the conjecture is proved for graphs of girth
5 with an algorithm giving an O(

√
ψ∗) ratio approximation for such graphs. In

terms of n, the best ratio known for graphs of girth 5 is O(n1/3) (see [12]).
From the direction of lower bounds on approximability, the first (and only

known) hardness of approximation result for general graphs was given in [12],
specifically that the problem admits no 2 − ε ratio approximation algorithm,
unless P=NP. It could be that no n1−ε ratio approximation algorithm (for any
constant ε > 0) is possible for general graphs (unless, say, P=NP). An Ω(n1−ε)
inapproximability result does exist for the maximum independent set problem [8]
and the achromatic number problem and the maximum independent set problem
are, after all, closely related.

On another negative note, consider the minimum maximal independent set
problem. A possible “greedy” approach for finding an achromatic partition is to
iteratively remove from the graph maximal independent sets of small size (max-
imality here is with respect to containment). However, the problem of finding a
minimum maximal independent set cannot be approximated within ratio n1−ε

for any ε > 0, unless P=NP [7].
To summarize, large girth (i.e. girth greater than 4) is known to be a sufficient

condition for a relatively low ratio approximation to exist. It is not known if the
absence of triangles helps in finding a good ratio approximation algorithm for
the problem. All the current results thus point naturally to the next frontier:
the family of bipartite graphs.

1.1 Our Results

We give a combinatorial greedy approximation algorithm for the achromatic
number problem on bipartite graphs achieving a ratio of O(n4/5) and hence
breaking the Õ(n) barrier (the upper bound for general graphs [12]). We also
give a hardness result that is both the first non-constant lower bound on approx-
imation for the problem on general graphs, and the first lower bound on approx-
imation for bipartite graphs. We prove that unless NP ⊆ RTIME(npolylog n),
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the problem does not admit an (lnn)1/4−ε ratio approximation, for any constant
ε > 0.

This improves the hardness result of 2 on general graphs [12]. Note that
the result in [12] constructs a graph with large cliques, which therefore is not
bipartite. The best previous hardness result for bipartite graphs was only the
NP-hardness result [5].

2 Preliminaries

We say that a vertex v is adjacent to a set of vertices U if v is adjacent to at
least one vertex in U . Otherwise, v is independent of U . Subsets U and W are
adjacent if for some u ∈ U and w ∈W , the graph has the edge (u,w). U covers
W if every vertex w ∈W is adjacent to U . We note that in a complete coloring of
G, every pair of distinct color classes are adjacent to each other. For any subset
U of vertices, let G[U ] be the subgraph of G induced by U . A partial complete
coloring of G is a complete coloring of some induced subgraph G[U ], namely, a
coloring of U such that all color classes are pairwise adjacent. Lemmas 1 and 2
below are well known [3,4,13,14]:

Lemma 1. A partial complete coloring can be extended greedily to a complete
coloring of the entire graph.

Lemma 2. Consider v, an arbitrary vertex in G, and let G\v denote the graph
resulting from removing v and its incident edges from G. Then, ψ∗(G) − 1 ≤
ψ∗(G \ v) ≤ ψ∗(G).

A collection M of edges in a graph G is called a matching if no two edges in
M have a common endpoint. The matching M is called semi-independent if the
edges (and their endpoints) in M can be indexed as M = {(x1, y1), . . . , (xk, yk)}
such that both X = {x1, . . . , xk} and Y = {y1, . . . , yk} are independent sets,
and for all j > i, it holds that xi is not adjacent to yj . As a special case, if xi

is not adjacent to yj for all i, j, then the matching is said to be independent. A
semi-independent matching can be used to obtain a partial complete coloring,
as demonstrated in the next lemma; a weaker version, based on an independent
matching, is used in [3].

Lemma 3. [14] Given a semi-independent matching of size
(

t
2

)
in a graph, a

partial complete t-coloring of the graph (i.e. with t color classes) can be computed
efficiently.

Now, consider a presentation of a bipartite graph G(U, V,E) with indepen-
dent sets U and V forming the bipartition, and with edges in E connecting U
and V . Assume that U has no isolated (degree 0) vertices. If ∆(V ), the largest
degree of a vertex in V , is suitably small, then by repeatedly removing a star
formed by the current largest degree vertex in V and its neighbors in U , we
can obtain a collection of at least |U |/∆(V ) stars. By picking a single edge out
of every star, we get a semi-independent matching of size at least |U |/∆(V ).
Applying Lemmas 1 and 3, we get the following result.
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Lemma 4. Let G(U, V,E) be a bipartite graph with no isolated vertices in U .
Then, the star removal algorithm produces an achromatic partition of size at
least Ω(

√|U |/∆(V )).

Hell and Miller [9,10] define the following equivalence relation (called the
reducing congruence) on the vertex set of G (see also [4,11]). Two vertices in G
are equivalent if and only if they have the same set of neighbors in the graph.
We denote by S(v,G), the subset of vertices that are equivalent to v under the
reducing congruence for G; we omit G when it is clear from the context. Assume
that the vertices of G are indexed so that S(v1), . . . , S(vq) denote the equivalence
classes of vertices, where q is the number of distinct equivalence classes. Note
that two equivalent vertices cannot be adjacent to each other in G, so S(vi)
forms an independent set in G. The equivalence graph (also called the reduced
graph) of G, denoted G∗, is a graph whose vertices are the equivalence classes
S(vi) (1 ≤ i ≤ q) and whose edges connect S(vi), S(vj) whenever the set S(vi)
is adjacent to the set S(vj).

Lemma 5. [12] A partial complete coloring of G∗ can be extended to a complete
coloring of G. Hence, ψ∗(G) ≥ ψ∗(G∗).

Theorem 1. [12] Let G be a bipartite graph with q equivalence classes of ver-
tices. Then, there is an efficient algorithm to compute an achromatic partition of
G of size at least min{ψ∗/q,

√
ψ∗}. Thus, the achromatic number of a bipartite

graph can be approximated within a ratio of O(max{q,√ψ∗}).
Let the reduced degree d∗(v,G) be the degree of the vertex S(v) in the reduced

graph G∗; equivalently, this is the maximum number of pairwise non-equivalent
neighbors of v. Then, we have:
Lemma 6. Let v, w be a pair of vertices of G such that S(v) �= S(w) and
d∗(w) ≥ d∗(v). Then there is a vertex z adjacent to w but not to v.

Proof. Assume that every neighbor of w is also a neighbor of v. Since d∗(w) ≥
d∗(v), it follows that v and w have exactly the same set of neighbors contradicting
S(w) �= S(v). ��

3 The Approximation Algorithm

Let ψ∗(G) denote the maximum number of parts in an achromatic partition
of a graph G (we omit G in the notation when the graph is clear from the
context). We may assume that ψ∗ is known, e.g. by exhaustively searching over
the n possible values or by using binary search. Throughout, an algorithm is
considered efficient if it runs in polynomial time. Let G(U, V,E) be a bipartite
graph, and consider subsets U

′ ⊆ U and V
′ ⊆ V . The (bipartite) subgraph

induced by U
′

and V
′

is denoted by G[U
′
, V

′
] where the (implicit) edge set is

the restriction of E to edges between U
′
and V

′
.

Our approach is to iteratively construct an achromatic partition of an induced
subgraph of G[U, V ]. Towards this end, we greedily remove a small, independent
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set of vertices Ai in each iteration while also deleting some other vertices and
edges. The invariant maintained by the algorithm is that Ai always has a U -
vertex and the subset of U vertices that survive the iteration is covered by Ai.
This ensures that the collection A = {Ai : i ≥ 1}, forms a partial complete
coloring of G.

To obtain such a collection A with large cardinality, we need to avoid deleting
too many non-isolated vertices during the iterations since the decrease in achro-
matic number may be as large as the number of deleted, non-isolated vertices
(by Lemma 2, while noting that the achromatic number remains unchanged
under deletions of isolated vertices). For every i ≥ 1, consider the sequence
of induced subgraphs of G over the first (i − 1) iterations, viz. the sequence
G0 ⊃ G1 . . . ⊃ Gi−1 where Gk, 0 ≤ k < i, is the surviving subgraph at the
beginning of the (k + 1)th iteration. The algorithm uses the following notion of
safety for deletions in the ith iteration:

Definition 1. During iteration i, the deletion of some existing set of vertices
S from Gi−1 is said to be safe for Gi−1 if the number of non-isolated vertices
(including those in S) cumulatively removed from the initial subgraph G0 is at
most ψ∗(G)/4.

3.1 Formal Description of the Algorithm

We first provide a few notational abbreviations that simplify the formal descrip-
tion and are used in the subsequent analysis of the algorithm. A set is called
heavy if it contains at least n1/5 vertices. Otherwise, it is called light. Given a
subset of vertices U belonging to graph G, we denote by d∗(v, U,G) the maxi-
mum number of pairwise non-equivalent neighbors that v has in U . v is called
U-heavy if d∗(v, U,G) ≥ n1/5.

The approximation algorithm Abip described below produces an achromatic
coloring of G. It invokes the procedure Partition (whose description follows
that of Abip) twice, each time on a different induced subgraph of G. The
procedure returns a partial complete achromatic partition of its input subgraph.

Algorithm Abip.
Input: G(U, V ), a bipartite graph.

1. Let A1 = Partition(G[U, V ]), and let G[1] = G[U [1], V [1]] be the induced
subgraph that remains when the procedure halts.

2. Let A2 = Partition(G[V [1], U [1]]); note that the roles of the bipartitions are
interchanged. Let G[2] = G[U [2], V [2]] be the induced subgraph that remains
when this second application halts.

3. If either of the achromatic partitionsA1 or A2 is of size at least ψ∗/(16·n1/5),
then the corresponding partial complete coloring is extended to a complete
achromatic coloring of G which is returned as final output.

4. Otherwise, apply the algorithm of Theorem 1 on the subgraph G[2]. A partial
complete coloring is returned which can then be extended to a complete
achromatic coloring of G returned as final output.
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Procedure Partition
Input: G0(U0, V0), an induced subgraph of a bipartite graph G(U, V ).

1. if ψ∗ < 8 · n4/5, return an arbitrary achromatic partition.
2. A ← {} /* A contains the collection of Ai’s computed so far */
3. for i = 1, 2, . . . /* Iteration i */

a) if there are no light Ui−1-equivalence classes in Gi−1, then break
b) Choose a vertex u ∈ Ui−1 with smallest equivalence class size and small-

est reduced degree in Gi−1 (break ties arbitrarily).
c) Remove S(u) from Ui−1, the neighbors of u from Vi−1 and let G

′
=

G[U
′
, V

′
] be the resulting induced subgraph.

Ci ← ∅
d) while U

′ �= ∅ and there exists a U
′
-heavy vertex in V

′
do

i. Choose v with largest reduced degree d∗(v, U
′
, G

′
) in the current

graph G
′
.

ii. Add v to Ci

iii. Remove v from V
′
and its neighbors from U

′

e) Let q
′
be the number of U

′
-equivalence classes in G

′ ∗
.

f) if q
′
> n3/5, let A be the partition obtained by applying the star removal

algorithm to G
′
(see Lemma 4).

break
g) Let Di be the vertices in U

′
with light equivalence classes in G

′

h) for every heavy U
′
-equivalence class S(w) do

add an arbitrary neighbor of S(w) to Ci.
i) Ai ← S(u,Gi−1) ∪ Ci;

Let Li ⊆ Vi−1 be the set of isolated vertices in the graph G[Ui−1 \
Ai, Vi−1 \Ai]

j) if it is not safe to delete (Ai ∪Di) from Gi−1 then break
k) add Ai to A;

Remove S(u,Gi−1) and Di from Ui−1 leaving Ui

Remove Ci and Li from Vi−1 leaving Vi

Gi ← G[Ui, Vi]
4. return A

3.2 The Approximation Ratio

We now analyze the approximation ratio of Abip; detailed proofs have been
omitted due to space considerations. Our goal is to show that the approximation
ratio is bounded by O(n4/5). The analysis is conducted under the assumption
that ψ∗(G) ≥ 8 · n4/5. Otherwise, returning an arbitrary achromatic partition
(say, the original bipartition of size 2), as done in line 1 of Partition, trivially
gives an O(n4/5) ratio.

We start by observing that the loop on line 3 in Partition could exit in one
of three mutually exclusive ways during some iteration (k+ 1) ≥ 1. We say that
Partition takes
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– exit 1 if the star removal algorithm can be applied (at line 3f) during the
iteration,

– exit 2 if just prior to the end of the iteration, it is found that the current
deletion of (Ak+1 ∪Dk+1) is not safe for Gk (at line 3j), or

– exit 3 if at the beginning of the iteration,there are no light Uk-equivalence
classes in Gk (at line 3a).

Note that the induced subgraphs Gi (i ≥ 1) form a monotone decreasing
chain so if the star removal algorithm (exit 1) is not applicable at any interme-
diate stage, then Partition will eventually take one of the latter two exits, i.e.
the procedure always terminates. We say that iteration i ≥ 1 in an execution of
Partition is successful if none of the exits are triggered during the iteration,
i.e. the procedure continues with the the next iteration. Let (k + 1) ≥ 1 be the
first unsuccessful iteration.

Lemma 7. If Partition takes exit 1 during iteration (k + 1), then the achro-
matic partition returned has size at least n1/5. As ψ∗ ≤ n, an O(n4/5)−ratio is
derived.

Proof. Consider U
′

and V
′

when exit 1 is triggered. It is easy to show that
every vertex w ∈ U

′
is adjacent to V

′
. Furthermore, the inner loop condition

(line 3d) guarantees that every vertex in V
′

is adjacent to at most n1/5 U
′
-

equivalence classes. When the star removal algorithm is applied, q
′
(the number

of U
′
-equivalence classes) is at least n3/5. From the discussion preceding Lemma

4, it is easy to see that the star removal algorithm will produce a collection of
at least

√
n3/5/n1/5 = n1/5 stars. Thus, an achromatic partition of size at least

n1/5 is returned as claimed. ��
Next, we show that if the procedure takes exit 2 during iteration (k + 1)

because an unsafe deletion was imminent, then it must be the case that k is
large and hence, that we have already computed a large achromatic partition
A = {A1, A2, . . . Ak}. To this end, we establish a sequence of claims.

Claim 1 For all i such that 1 ≤ i ≤ k, the set Ai is an independent set and is
adjacent to Aj for every j ∈ [i+1, k]. Equivalently, A is an achromatic partition
of the subgraph G[∪1≤i≤k Ai].

Proof. We first verify that at the end of a successful iteration i, the set of vertices
Ai is an independent set. By construction, the vertices retained in Ui at the end
of the iteration are all covered by Ci. The set Aj , for i < j ≤ k, contains at least
one vertex in Uj−1 ⊂ Ui. Hence there is always an edge between Ai and Aj . ��

Claim 2 For all i such that 1 ≤ i ≤ k, the size of the set (Ai ∪Di), just prior
to executing the safety check on line 3j, is bounded by 4n4/5.

Proof. By construction, Ai = S(u)∪Ci prior to executing line 3j. We know that
S(u) is a light equivalence class and hence, | S(u) |< n1/5. A vertex v ∈ Vi−1
is added to Ci either during the inner loop (line 3d) or later, if it happens to
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be adjacent to a heavy U
′
-equivalence class (line 3h). In both cases, we can

show that no more than n4/5 vertices could have been added to Ci. Together,
we have at most 3 · n4/5 being added to Ai. Now, U

′
has at most n3/5 light

equivalence classes when control reaches line 3g. Since the vertices in Di just
prior to executing the safety check are simply those belonging to such light U

′
-

equivalence classes, there are at most n1/5 · n3/5 = n4/5 vertices in Di. ��

Claim 3 If the first k iterations are successful, then the difference, ψ∗(G0) −
ψ∗(Gk), is at most 4k · n4/5.

Proof. Follows from Lemma 2 and Claim 2. ��
Lemma 8. If Partition takes exit 2 during iteration (k + 1), then the achro-
matic partition returned has size at least �ψ∗(G)/16n4/5� thus giving an O(n4/5)
ratio approximation.

Proof. Since the first k iterations were successful, it follows that for each i ∈
[1, k], it is safe to delete (Ai∪Di). However, it is unsafe to delete (Ak+1∪Dk+1)
and by Definition 1 and Claim 3, this can only happen if

4(k + 1)n4/5 > ψ∗(G)/4.

Hence A = {A1, A2, . . . Ak}, which is an achromatic partition of the sub-
graph G[∪1≤i≤k Ai] by Claim 1, has size k ≥ �ψ∗(G)/(16n4/5)�. Applying
Lemma 1, we conclude that a complete achromatic coloring of G with at least
�ψ∗(G)/(16n4/5)� colors can be computed thus giving an O(n4/5) ratio approx-
imation. ��

Finally, if Partition takes exit 3 in iteration (k + 1), then we have two
possibilities. If k ≥ �ψ∗(G)/(16n4/5)�, a sufficiently large partition has been
found and we are done. Otherwise, k < �ψ∗(G)/(16n4/5)� and we may not
necessarily have a good approximation ratio. However, note that Gk, the graph
at the beginning of iteration (k + 1), has no light Uk-equivalence classes (this
triggers the exit condition). Hence, Uk has no more than n4/5 equivalence classes
that are all heavy, since each heavy class has at least n1/5 vertices and | Uk |≤ n.

Claim 4 Assume that both applications of Partition on lines 1 and 2 of algo-
rithm Abip respectively take exit 3. Let q1 (respectively, q2) be the number of light
U [1]-equivalence classes in G[1] (respectively, the number of light U [2]-equivalence
classes in G[2]). Then, the graph G[2] has achromatic number at least ψ∗(G)/2
and at most a total of (q1 + q2) ≤ 2n4/5 equivalence classes.

Proof. Observe that the removal of vertices (along with all their incident edges)
from a graph cannot increase the number of equivalence classes: two vertices
that were equivalent before the removal, remain equivalent after. Hence, the
number of V [2] equivalence classes is at most q1 (note that the partitions are
interchanged before the second application of Partition on line 2). Thus G[2]
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has at most a total of (q1 + q2) equivalence classes. The discussion preceding the
claim shows that (q1 + q2) is bounded above by 2n4/5. Since neither application
of Partition took exit 2, the vertices deleted during both applications were
safe for deletion. Hence, the net decrease in the achromatic number is at most
2ψ∗(G)/4 = ψ∗(G)/2. ��
Theorem 2. The algorithm Abip has an approximation ratio of O(n4/5).

Proof. By Lemmas 7 and 8, if either of the two applications of Partition take
exits 1 or 2, then we are guaranteed a ratio of O(n4/5). If both applications of
Partition on lines 1 and 2 of Abip halt on exit condition 3, then an application
of the algorithm of Theorem 1 on graph G[2] (see line 4 of Abip) provides an
O(q) approximation ratio for G[2] where q is the number of equivalence classes
of G[2]. By claim 4, this achromatic coloring is a partial complete coloring of G
with ratio O(n4/5). ��

4 A Lower Bound for Bipartite Graphs

Let G(U, V,E) be a bipartite graph. A set-cover (of V ) in G is a subset S ⊆ U
such that S covers V , i.e. every vertex in V has a neighbor in S. Throughout, we
assume that the intended bipartition [U, V ] is given explicitly as part of the input,
and that every vertex in V can be covered. A set-cover packing in the bipartite
graph G(U, V,E) is a collection of pairwise-disjoint set-covers of V . The set-cover
packing problem is to find in an input bipartite graph (as above), a maximum
number of pairwise-disjoint set-covers of V . Our lower bound argument uses a
modification of a construction by Feige et.al. [6] that creates a set-cover packing
instance from an instance of an NP-complete problem. Details of the construction
are omitted due to space limitations and will appear in the full version of the
paper. The main result obtained is the following:
Theorem 3. For every ε > 0, if NP does not have a (randomized) quasi-
polynomial algorithm then the achromatic number problem on bipartite graphs
admits no approximation ratio better than (lnn)1/4−ε/16.

4.1 The Set-Cover Packing Instance [6]

Our lower bound construction uses some parts of the construction in [6]. That
paper gives a reduction from an arbitrary NP-complete problem instance I to a
set-cover packing instance1 G(U, V,E), with |U |+ |V | = n.

The idea is to use a collection of disjoint sets of vertices {Ai : 1 ≤ i ≤ q} and
{Bi : 1 ≤ i ≤ q}; all these sets have the same size N where N is a parameter.
In the construction, U = (

⋃q
i=1Ai) ∪ (

⋃q
i=1Bi). Also, the set V =

⋃
M(Ai, Bj)

with the union taken over certain pre-defined pairs (Ai, Bj) that arise from the
NP-complete instance. The set M(Ai, Bj) is called a ground-set. The reduction
uses randomization to specify the set of edges E in the bipartite graph with the
following properties:
1 The construction described here corresponds to the construction in [6] for the special

case of two provers.
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1. If I is a yes-instance of the NP-complete problem, then U can be decomposed
into N vertex-disjoint set-covers S1, . . . , SN of V . Each set-cover contains a
unique A vertex and a unique B vertex for every A,B. Each Si is an exact
cover of V in the sense that every V -vertex has a unique neighbor in Si.

2. In the case of a no-instance, the following properties hold:
a) The A,B property: Only the Ai ∪ Bj vertices are connected in G to

M(Ai, Bj). Comment: The next properties concern the induced sub-
graph G[(Ai ∪Bj),M(Ai, Bj)].

b) The random half property: Each a ∈ Ai and b ∈ Bj is connected in
M(Ai, Bj) to a random half of M(Ai, Bj).

c) The independence property: For every a ∈ Ai and b ∈ Bj , the
collection of neighbors of a in M(Ai, Bj) and the collection of neighbors
of b in M(Ai, Bj) are mutually independent random variables.

d) The equality or independence property: The neighbors of two ver-
tices a, a′ ∈ Ai inM(Ai, Bj) are either the same, or else their neighbors in
M(Ai, Bj) are mutually independent random variables. A similar state-
ment holds for a pair of vertices b, b′ ∈ Bj .

Thus, vertices a ∈ Ai and b ∈ Bj have, on average, |M(Ai, Bj)|/4 common
neighbors in M(Ai, Bj) because a and b are joined to two independent random
halves in M(Ai, Bj).

4.2 Our Construction

The basic idea is similar to the above construction, namely that we wish to
convert a yes instance of the NP-complete problem to a bipartite graph with
a “large” achromatic partition and a no instance to a bipartite graph with a
“small” achromatic partition. Towards this end, we extend the construction in
[6] as follows.

Construction of a yes instance: A duplication of a vertex u ∈ U involves
adding to U a new copy of u connected to the neighbors of u in V . By ap-
propriately duplicating the original vertices in U , we can make the number of
vertex-disjoint set-covers larger. Specifically, we can duplicate vertices in U to
ensure that every A and B set has |V | elements and hence, the number of set-
covers in the packing for a yes instance becomes |V | as well (recall, from the
previous discussion, that for a yes instance, each set-cover contains exactly one
A vertex and exactly one B vertex, and so |A| = |B| = |V | is the number of
set-covers in the packing).

Using some technical modifications, we can also make G regular. Hence, G
admits a perfect matching where each v ∈ U is matched to some corresponding
vertex m(v) ∈ V . Observe that for the case of a yes instance, the number of
m(v) vertices, namely, |V |, is equal to the number of set-covers in the set-cover
packing.

The idea now is to form a collection of |V | sets, one for each v ∈ U , by adding
the matched vertex m(v) to an (exact) set-cover Si. However, the resulting sets
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are not independent sets because each Si is an exact set-cover of V and hence
contains a neighbor of m(v). But this problem can be fixed by ensuring that
during the duplication process, a special copy of v is inserted; specifically, the
special copy gets all the neighbors of v except m(v) as its neighbors. With this
modification, the collection consists of independent sets which form an achro-
matic partition because each of the Si’s are exact. This implies that in the case
of a yes instance, the corresponding bipartite graph admits a size |V | complete
coloring.

Construction of a no instance: The main technical difficulty is showing that
in a case of a no-instance, the maximum size achromatic partition is “small”.
Let X1, X2, X3, . . . be the color classes in a maximum coloring in the case of a
no-instance. Consider the contribution of A,B to the solution, i.e. how many
vertices from the A and B sets belong to any Xi. Observe that in the case of
a yes instance, each color contains one vertex from every A and every B. If we
could color the graph corresponding to a no instance with ”many” colors, this
would mean that each Xi has to contain only ”few” A and ”few” B vertices.
Similarly, for a yes instance, each color contains exactly one V vertex. Therefore,
each Xi must contain only ”few” M(A,B) vertices.

Say, for example, that for every i,Xi satisfies the conditions: |Xi∩M(A,B)| =
1 and |Xi ∩ (A ∪ B)| = 1 as in a yes instance. Let v2 ∈ (Xi ∩M(A,B)) and
v1 ∈ (Xi ∩ (A ∪ B)). Observe that the random half property implies that the
edge (v1, v2) exists only with probability 1/2.

On the other hand, we note that if a coloring has close to |V | colors, events as
the one above should hold true for Ω(|V |2) pairs. since every Xi and Xj must by
definition share at least one edge. The equality or independence property ensures
that ”many” (but not all) of events such as the ones above are independent.
Therefore, it is unlikely that polynomially many such independent events can
occur simultaneously.

The above claim has its limits. If we take subsets of size, say,
√

2 log n from
A ∪ B and M(A,B) into every Xi, Xj , then the number of “edge-candidates”
between Xi and Xj is now (

√
2 log n)2 = 2 logn. Namely, each one of the log n

pairs is a possible candidate edge, so that if it is chosen by the randomized
choice, it guarantees at least one edge between Xi and Xj as required by a legal
achromatic partition. Every candidate edge exists with probability 1/2. Thus
the probability for at least one edge between Xi and Xj could be as high as
1 − 1/n2, and it is not unlikely that ”many” (like |V |2 < n2) of these events
happen simultaneously.

Note this if each Xi contains roughly
√

log n vertices from every A,B and
from every M(A,B), the number of colors in the solution could be as high as
|V |/√log n. This gives a limitation for this method (namely, we can not expect a
hardness result beyond

√
log n). In fact, the hardness result we are able to prove

is only (logn)1/4−ε due to the fact that the events described above are not really
totally independent.
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