
this print for content only—size & color not accurate 7.5 x 9.25 spine = 0.84375" 448 page count

Fouché
Langit

SECOND
EDITION

THE EXPERT’S VOICE® IN SQL SERVER

SECOND EDITION

CYAN
MAGENTA

YELLOW
BLACK
PANTONE 123 C

Guy Fouché and Lynn Langit

Companion
eBook

Available

Create business intelligence using PowerPivot,
SSAS, SSIS, SSRS, and other BI tools

BOOKS FOR PROFESSIONALS BY PROFESSIONALS®

Foundations of SQL Server 2008
R2 Business Intelligence
Foundations of SQL Server 2008 R2 Business Intelligence introduces the exciting
gamut of business intelligence tools included with SQL Server 2008. Microsoft
has designed SQL Server 2008 R2 to be more than just a database. It’s a com-
plete business intelligence (BI) platform. The database is at the core, and
surrounding the database are tools for data mining, modeling, reporting, ana-
lyzing, charting, and integration with other, enterprise-level software packages.
Here is just some of what you can do:

• Create dimensional- and fact-based OLAP schemas
• Extract, transform, and load with Integration Services
• Mine for business intelligence using Analysis Services
• Create and deliver reports via Reporting Services
• Implement PowerPivot for self-service BI

SQL Server 2008 puts an incredible amount of BI functionality at your dis-
posal. But how do you take advantage of it? That’s what this book is all about.
Authors Guy Fouché and Lynn Langit show how to implement end-to-end BI
solutions using SQL Server Analysis Services (SSAS), SQL Server Integration
Services (SSIS), SQL Server Reporting Services (SSRS), and other tools in the
Microsoft BI toolkit. You’ll learn about all-new features such as PowerPivot
and Report Builder 3.0. Are you charged with responsibility for deliver-
ing results that drive business success? Foundations of SQL Server 2008 R2
Business Intelligence is the book to help you master the powerful BI suite that
Microsoft has placed at your disposal.

US $49.99

Shelve in:
Databases / MS SQL Server

User level:
Beginning–Advanced

Guy Fouché, Author of

Pro SQL Server 2008
Analysis Services

THE APRESS ROADMAP

Pro
SharePoint 2010

Business Intelligence Solutions

Pro
SQL Server 2008
Reporting Services

PowerPivot Solutions for
Business Intelligence

using Excel and SharePoint

Foundations of
SQL Server 2008 R2
Business Intelligence

Beginning
Microsoft Excel 2010

www.apress.com

Companion eBook

See last page for details
on $10 eBook version

ISBN 978-1-4302-3324-4

9 781430 233244

5499 9
Foundations of
SQL Server 2008 R2 BI

Foundations of
SQL Server 2008 R2
Business Intelligence

Covers

Release 2!

For your convenience Apress has placed some of the front
matter material after the index. Please use the Bookmarks

and Contents at a Glance links to access them.

iv

Contents at a Glance

Contents ... v

About the Authors ... xiii
About the Technical Reviewer ... xiv

Acknowledgments .. xv

■Chapter 1: What Is Business Intelligence? .. 1
■Chapter 2: OLAP Modeling Concepts ... 25
■Chapter 3: Introducing OLAP Modeling with SSAS .. 53
■Chapter 4: Intermediate OLAP Modeling with SSAS .. 83
■Chapter 5: Advanced OLAP Modeling with SSAS .. 107
■Chapter 6: Cube Storage and Aggregation .. 131
■Chapter 7: Introducing SSIS .. 161
■Chapter 8: Intermediate SSIS .. 187
■Chapter 9: Advanced SSIS ... 237
■Chapter 10: Reporting Tools .. 271
■Chapter 11: Data Mining with Excel .. 301
■Chapter 12: Introducing PowerPivot ... 329
■Chapter 13: Introduction to MDX ... 347
■Chapter 14: Introduction to Data Mining ... 369
■Appendix: The HIERARCHYID Datatype .. 403
Index ... 407

C H A P T E R 1

■ ■ ■

1

What Is Business Intelligence?

This chapter presents a blueprint for understanding the exciting potential of SQL Server 2008 R2’s
Business Intelligence (BI) technologies to meet your company’s crucial business needs. It describes
tools, techniques, and high-level implementation concepts for BI.

This chapter covers

• Defining business intelligence

• Understanding BI from an end-user perspective

• Understanding the business problems BI addresses

Just What Is Business Intelligence?
Business intelligence (BI) is defined in many ways. Often, vendors will craft the definition of BI to show
their tools in the best possible light. We like to look at BI as a an approach to presenting business data in
ways that allows executives to query and manipulate that data to gain business insight needed to make
the decisions needed to run the day-to-day business in a (hopefully!) profitable manner.

BI data is displayed in a fashion that is appropriate to each type of user; that is, analysts will be able
to drill into detailed data; executives will see timely summaries, and middle managers will see data
presented at the level of detail that they need to make good business decisions. BI uses cubes, rather
than tables, to store information and presents information via reports. The reports can be presented to
end users in a variety of formats: Windows applications, web applications, and Microsoft BI client tools,
such as Excel, PowerPivot, or SQL Reporting Services.

Figure 1–1 shows a sample of a typical BI physical configuration. You’ll note that Figure 1–1 shows a
staging database server and a separate BI server. Although it is possible to place all components of BI on
a single physical server, the configuration shown in the figure is the most typical for the small-to-
medium BI projects that we’ve worked on. You may also need to include more servers in your project,
depending on scalability and availability requirements. You’ll learn more about these concepts in
Chapter 15.

CHAPTER 1 ■ WHAT IS BUSINESS INTELLIGENCE?

2

Figure 1–1. An enterprise BI configuration

In addition to the term business intelligence, several other terms are commonly used in discussing
the technologies depicted in Figure 1–1:

Data warehouse: A data warehouse is an enterprise data repository that houses a single, unified
version of business data. Data warehouses are also used to hold an aggregated, or rolled-up and
read-only view, of an organization’s data; sometimes this structure includes client query tools.

■Tip Data warehousing is not new. The most often-quoted spokespeople from the world of data warehousing
theory are Bill Inmon and Ralph Kimball. Both have written many articles and books and have very popular web

sites talking about their experiences with data warehousing solutions using products from many vendors.

To read more about Ralph Kimball’s ideas on data warehouse design modeling, go to
http://www.ralphkimball.com. We prefer Kimball’s approach to modeling and have had good success

implementing Kimball’s methods in production BI projects.

Data mart: A defined subset of a data warehouse, a data mart (see Figure 1–2) may represent one
business unit (for example, marketing), or a business subject area (for example, loss mitigation)
from a greater whole (that is, the entire organization).

CHAPTER 1 ■ WHAT IS BUSINESS INTELLIGENCE?

3

Figure 1–2. Data marts are subsets of enterprise data warehouses and are often defined by time, location,

or department.

Cube: A storage structure used by classic data warehousing products in place of many (often
normalized) tables. Rather than using tables with rows and columns, cubes use dimensions and
measures (or facts). Also, cubes will usually present data that is aggregated (usually summed), rather
than presenting each individual item (or row). The structure of a cube is often described this way:
cubes present a summarized, aggregated view of enterprise data, as opposed to normalized table
sources that present detailed data. Cubes are populated with a read-only copy of source (or
production) data. In some cases, cubes contain a complete copy of production data; in other cases,
cubes contain subsets of source data. The data is moved from source systems to the destination
cubes via extract, transform, and load (ETL) processes. We will discuss cube dimensions and facts in
greater detail in Chapter 2.

■Note Another name for a cube or set of cubes is an online analytical processing (OLAP) system. When working on BI

projects, you may hear the terms data warehouse, cube, OLAP, and DSS used interchangeably. Another group of

terms you’ll hear associated with OLAP are MOLAP, HOLAP, and ROLAP. These terms refer to the method of
storing the data and metadata associated with a SSAS cube. The acronyms stand for multidimensional OLAP,

hybrid OLAP, or relational OLAP. Storage methods are covered in detail in Chapter 6.

Decision support system (DSS): This term’s broad definition can mean anything from a read-only
copy of an online transaction processing (OLTP) database to a group of OLAP cubes or even a
mixture of both. If the data source consists only of an OLTP database, this store is usually highly
normalized. One of the challenges of using an OLTP store as a source for a DSS is the difficulty in
writing queries that execute quickly and with little overhead on the source system. This challenge is
due to the level of database normalization. The more normalized the OLTP source, the more joins
that must be performed on the query. Executing queries that use many joins places significant
overhead on the OLTP store. Also, the locking behavior of OLTP databases is such that large read
queries can cause significant contention (and thus waiting) for resources by end users. Yet another
complexity is the need to properly index the tables in each query. This book is focused on using the
more efficient BI store (or OLAP cube) as a source for a DSS system.

CHAPTER 1 ■ WHAT IS BUSINESS INTELLIGENCE?

4

NORMALIZATION VS. DENORMALIZATION

What’s the difference between normalization and denormalization? Although entire books have been
written on the topic, the definitions are really quite simple. Normalization means reducing duplicate data by
using keys or IDs to relate rows of information from one table to another, for example, customers and their
orders. Denormalization means the opposite, which is deliberately duplicating data in one or more
structures. Normalization improves the efficiency of inserting, updating, or deleting data. The fewer places
the data has to be updated, the more efficient the update and the greater the data integrity.
Denormalization improves the efficiency of reading or selecting data and reduces the number of tables the
data engine has to access or the number of calculations it has to perform to provide information.

Defining BI Using Microsoft’s Tools
Microsoft entered the BI market when it released OLAP Services with SQL Server 7.0. It was a quiet entry,
and Microsoft didn’t gain much traction until its second BI product release, SQL Server 2000 Analysis
Services. Since its first market entry, Microsoft has taken the approach that BI should not be for the few
(business analysts and possibly executives) but for everyone in the organization. This is a key
differentiator from competing BI product suites. One implementation of this differentiation is
Microsoft’s focus on integrating support for SSAS into its Office products—specifically Excel. Excel can
be used as a SSAS client at a much lower cost than third-party client tools. The tools and products
Microsoft has designed to support BI have been targeted very broadly. In typical Microsoft fashion,
they’ve attempted to broaden the BI usage base with each release.

If you’re completely new to BI, it’s important for you to consider the possibilities of BI in the widest
possible manner when beginning your project. This means planning for the largest possible set of end-
user types, that is, analysts, executive managers, middle managers, and all other types of end users in
your organization. You must consider (and ask your project supporters and subject matter experts
[SMEs]) which types of end-user groups need to see what type of information and in what formats
(tabular, chart, and so on).

If you have experience with another vendor’s BI product (for example, Cognos, Informatica, or
Essbase), you may find yourself rethinking some assumptions based on use of those products because
Microsoft’s BI tools are not copies of anything already on the market. Although some common
functionality exists between Microsoft and non-Microsoft BI tools, there is also a large set of
functionality that is either completely new or implemented differently than non-Microsoft BI products.
This consideration is particularly important if you are migrating to Microsoft’s BI from a non-Microsoft
BI vendor. We’ve seen several Microsoft BI production solutions that were needlessly delayed due to lack
of understanding of this issue. Whether you are migrating or entirely new to BI, you’ll need to start by
considering the products and technologies that can be used in a Microsoft BI solution.

CHAPTER 1 ■ WHAT IS BUSINESS INTELLIGENCE?

5

What Microsoft Products Are Involved?
At the time of this writing, the most current Microsoft products that support BI (commonly referred to as
the Microsoft BI stack) are the following:

SQL Server 2008 R2: This is the preferred staging and source location for BI solutions. Data can
actually be retrieved from a variety of data stores, such as Oracle, DB2, and Teradata. SQL Server
Integration Services (SSIS) is used to perform the ETL of source data into the data warehouse, and
most BI solutions will include at least one SQL Server installation. Another key component in many
BI solutions is SQL Server Reporting Services (SSRS). When working with SQL Server to perform
OLAP administrative tasks, you will use the management interface, which is called SQL Server
Management Studio (SSMS).

SQL Server Analysis Services (SSAS): SSAS provides multidimensional storage for the data used in
cubes for your data warehouse. SSAS also provides processing and management for those cubes.
This product may or may not run on the same physical server as SQL Server 2008 R2. We will detail
how to set up cubes in upcoming chapters. Figure 1–3 shows the primary tool—Business
Intelligence Development Studio (BIDS) —that you’ll use to develop cubes for Analysis Services.
You’ll note that BIDS opens in a Visual Studio (VS) environment. A full VS installation is not required
to develop cubes for SSAS. If you do not have VS on your development machine, when you install
SSAS, BIDS will install as a stand-alone component. If you do have VS on your development
machine, BIDS will install as a component (really a set of templates) into your existing VS instance.

Figure 1–3. You use the Business Intelligence Development Studio (BIDS) to implement BI solutions.

CHAPTER 1 ■ WHAT IS BUSINESS INTELLIGENCE?

6

Data mining using SSAS: This component allows you to create data mining structures. These
structures include data mining models. Data mining models are objects that contain source data
(either relational or multidimensional) that have been processed using a particular type of data
mining algorithm. These algorithms either classify (group) only or classify and predict one or more
column values. Although data mining was available in Analysis Services 2000, Microsoft has
significantly enhanced the capabilities of this tool. For example, in the Analysis Services 2000 release
there were only two data mining algorithms available, in the 2008 R2 release there are nine data
mining algorithms. We will provide an overview of data mining in general and the capabilities
available in SSAS for implementing data mining in Chapter 14.

SQL Server Integration Services (SSIS): This toolset is a key component in most BI solutions that is
used to import, cleanse, and validate data prior to making the data available to data warehouses,
data marts, and SSAS for reporting purposes. It is typical to use data from many disparate sources
(relational databases, flat files, XML, and so on) as source data to a data warehouse. For this reason,
a sophisticated toolset like SSIS is used to facilitate the complex data loads that are common to BI
solutions. As stated earlier, this functionality is often called ETL (extract, transform, and load) in a BI
solution. We will discuss the use of SSIS in later chapters.

SQL Server Reporting Services (SSRS): Microsoft has made significant enhancements in the most
current version of SSRS to make using this tool an attractive part of a BI solution. One important
feature is the visual query designer for SSAS cubes, which facilitates rapid report creation by
reducing the need to write manual queries against cube data. The new Report Builder, version 3.0,
includes the Report Part Gallery, and enhancements to the Report Manager and Report Viewer
components. We will discuss reporting clients, including SSRS, in Chapter 10.

Excel: Many companies already own the Microsoft Office suite, so using Excel as a BI client is often
attractive for its low cost and relatively low training curve. We will compare various client solutions
in Chapter 10.

PowerPivot: PowerPivot is an exciting new addition to Microsoft’s BI tool belt. This new Excel 2010
component enables you to perform data analysis and data mining from your workstation.
PowerPivot allows you to work with large amounts of data, perform your analysis, and share your
results with others in your company. We will introduce PowerPivot to you in Chapter 12.

SharePoint: This is an optional component to your BI solution. SharePoint is Microsoft’s workgroup
collaboration and web publishing server. Most easily used in conjunction with SSRS, using the freely
available SSRS web parts, SharePoint can expand the reach of your BI solution. As mentioned
previously, we will detail options using different BI clients in Chapter 10.

■Note A web part is a pluggable UI showing some bit of content. It is installed globally in the SharePoint portal

server web site and can be added to a portal page by any user with appropriate permissions.

Visio: This Microsoft modeling tool for BI projects is optional as well; you can use any tool that you
are comfortable using. Sections in Chapter 2 that concern modeling for OLAP include sample Visio
diagrams. As with other products in the Office suite, Microsoft has increased the BI integration
capabilities with Visio.
Key feature differences between SSAS editions (Standard, Enterprise, and so on) are discussed

throughout the entire book. These differences are significant and affect many aspects of your BI solution
design, such as the number of servers, number and type of software licenses, and server configuration.
You may be thinking at this point, “Wow, that’s a big list. Am I required to buy (or upgrade to) all of those

CHAPTER 1 ■ WHAT IS BUSINESS INTELLIGENCE?

7

Microsoft products to implement a BI solution for my company?” The answer is no; the only server that
is required is SSAS. Many companies also provide tools that can be used in a Microsoft BI solution.
Although we will occasionally refer to some third-party products in this book, we will primarily focus on
using Microsoft’s products and tools to build a BI solution.

BI Languages
An additional consideration is that you will use at least three languages when working with SSAS. The
first, which is the primary query language for cubes, is not the same language used to work with SQL
Server data (T-SQL). The query language for SSAS is called Multidimensional Expressions (MDX). SSAS
also includes the capability to build data mining structures. To query the data in these structures, you’ll
use yet another language—Data Mining Extensions (DMX). Finally, Microsoft introduces an
administrative scripting language in SSAS—XML for Analysis (XMLA). Here’s a brief description of each
language.

MDX: This is the language used to query OLAP cubes. Although this language is officially an open
standard, and some vendors outside of Microsoft have chosen to adopt parts of it into their BI
products, the reality is that very few developers are proficient in MDX. A mitigating factor is that the
need for you to manually write MDX in a BI solution can be relatively small—not nearly as much T-
SQL as you would manually write for a typical OLTP database. Retaining developers who have at
least a basic knowledge of MDX is an important consideration in planning a BI project. MDX is
introduced in Chapter 13. Figure 1–4 shows a simple example of an MDX query in SQL Server
Management Studio (SSMS).

DMX: This is the language used to query data mining structures (which contain data mining
models). Although this language is officially an open standard, and some vendors outside of
Microsoft have chosen to adopt parts of it into their BI products, the reality is that very few
developers are proficient in DMX. A mitigating factor is that the need for DMX in a BI solution is
relatively small (again, not nearly as much T-SQL as you would manually write for a typical OLTP
database). Also, Microsoft’s data mining interface is heavily wizard driven, more than creating cubes
(which is saying something!). Retaining developers who have at least a basic knowledge of DMX is
an important consideration in planning a BI project that will include a large amount of data mining.
DMX is introduced briefly in Chapter 14.

XMLA: This is the language used to perform administrative tasks in SSAS. Here are some examples
of XMLA tasks: viewing metadata, copying, backing up databases, and so on. Although this language
is officially an open standard, and some vendors outside of Microsoft have chosen to adopt parts of
it into their BI products, the reality is that very few developers are proficient in XMLA. A mitigating
factor is that Microsoft has made generating XMLA scripts simple. In SSMS, when connected to
SSAS, you can right-click any SSAS object to generate XMLA scripts using the GUI interface. XMLA is
introduced in Chapter 15.

CHAPTER 1 ■ WHAT IS BUSINESS INTELLIGENCE?

8

Figure 1–4. The MDX query language is used to retrieve data from SSAS cubes. Although MDX has a SQL-

like structure, MDX is far more difficult to master because of the complexity of the SSAS source data

structures—cubes.

Because we’ve covered so many acronyms is this section, and we’ll be referring to these products by
their acronym going forward in this book, a quick list is provided in Figure 1–5.

CHAPTER 1 ■ WHAT IS BUSINESS INTELLIGENCE?

9

Figure 1–5. For your convenience, the various BI acronyms used in this book are listed here.

Understanding BI from an End User’s Perspective
You may be wondering where to start at this point. Your starting point depends on the extent of
involvement you and your company have had with BI technologies. Usually you will either be
completely new to BI, new to SSAS, new to Microsoft’s BI (that is, you are using another vendor’s
products to support BI). If BI is new to you and your company, a great place to start is with the end user’s
perspective of a BI solution. To do this, you will use the simplest possible client tool for SSAS—an Excel
pivot table. This is a great way to familiarize not only yourself but also other members of your team and
your executive sponsors about basic BI concepts. Although using Excel may seem like a strange way to
showcase a suite of products as powerful as Microsoft’s BI toolset, our experience has shown over and
over that this simple approach is quite powerful.

There are two ways to implement the initial setup. Which you choose will depend on the amount of
time you have to prepare and the sophistication level of your audience. The first approach is to create a
cube using the sample database (AdventureWorksDW 2008 R2) that Microsoft provides with SSAS.
Detailed steps for using the first approach are provided later in this chapter. The second approach is to
take a very small subset of data from your company and use it for a demonstration or personal study. If
you want to use your own data, you’ll probably have to read a bit more of this book to be able to set up a
basic cube using your own data.

The rest of this chapter will get you up and running with the included sample. At this point, we are
going to focus simply on clicks, that is, “click here to do this.” We are not yet focusing on the reasons
behind those clicks. The rest of the chapters will explain in detail just what all this clicking actually does
and why you click where you are.

CHAPTER 1 ■ WHAT IS BUSINESS INTELLIGENCE?

10

Building the First Sample—Using AdventureWorks
To use the SQL Server AdventureWorksDW 2008 R2 sample database as the basis for building an SSAS
cube, you’ll need to have at least one machine with SQL Server 2008 R2 and SSAS installed on it. The
AdventureWorksDW 2008 R2 sample database is available from CodePlex, at
http://msftdbprodsamples.codeplex.com. On this page, navigate to the SQL Server 2008 R2 product
sample databases. The product sample database page contains a download link for the AdventureWorks
examples, as well as download links to view prerequisites and step-by-step installation instructions.
While installing, make note of the edition of SQL Server 2008 R2 that you are using (you can use the
Developer, Standard, or Enterprise editions), because you’ll need to know the particular edition when
you install the sample cube files.

To create the sample cube, you will use the sample AdventureWorks Analysis Services project. The
sample consists of a set of physical files that contains metadata that SSAS uses to structure the sample
Adventure Works cube. As mentioned earlier, you’ll work with these sample files in BIDS. The sample is
available in the Standard and the Enterprise editions; select the sample file from the directory that
matches the edition that you have installed. There are feature differences between the two editions,
which you will learn about in detail as you work through the available features in this book.

■Note The Developer edition has an identical feature set to the Enterprise edition (for the purposes of your
development, demonstration, or personal review). If you have installed the Developer edition, select the sample

from the Enterprise edition folder.

Deploying the Standard Edition Version of the Sample Cube
To deploy the Standard edition of the sample cube, follow these steps:

1. Open the SQL Server Business Intelligence Development Studio (BIDS) from
the Start menu.

2. From the BIDS menu, click File ➤ Open Project/Solution.

Browse to C:\Program Files\Microsoft SQL
Server\100\Tools\Samples\AdventureWorks 2008R2 Analysis Services
Project\standard, select the file Adventure Works.sln, and click Open (see
Figure 1–6).

CHAPTER 1 ■ WHAT IS BUSINESS INTELLIGENCE?

11

Figure 1–6. To install the SSAS sample cube, select the folder with the edition name that matches the

edition of SSAS that you have installed, and then double-click AdventureWorks.sln to open the solution in

BIDS.

3. Set the connection string to the server name where you deployed
AdventureWorksDW by right-clicking the Adventure Works.ds data source in
Solution Explorer, and choosing Open. Click the Edit button on the General tab
in the Data Source Designer dialog box to change the connection string, shown
in Figure 1–7.

CHAPTER 1 ■ WHAT IS BUSINESS INTELLIGENCE?

12

Figure 1–7. When deploying the sample, be sure to verify that the connection string information is correct

for your particular installation.

■Note If you are using the Enterprise edition, you can follow these steps as well. Simply select the files from the

sample Enterprise folder from the path listed next.

CHAPTER 1 ■ WHAT IS BUSINESS INTELLIGENCE?

13

4. Be sure to test the connection as well. You do this by clicking the Test
Connection button on the bottom of the Connection Manager dialog box, as
shown in Figure 1–8.

Figure 1–8. You’ll want to test the connection to the sample database, AdventureWorksDW2008R2, as you

work through setting up the sample SSAS database.

CHAPTER 1 ■ WHAT IS BUSINESS INTELLIGENCE?

14

5. Right-click the name of the project (Adventure Works DW 2008 SE) in Solution
Explorer, and click Properties from the context menu. You must verify the name
of the Analysis Services instance that you intend to deploy the sample project
to. The default is localhost. If you are using localhost, you do not need to
change this setting. You can also use a named server instance, as shown in
Figure 1–9. In that case, in the project’s Properties Pages dialog box, click
Deployment, and set the target sever name to the computer name and instance
name separated by a backslash character where you have deployed SSAS (see
Figure 1–9). Click OK to accept your entry.

Figure 1–9. Before deploying the sample SSAS project, right-click the solution name in BIDS, and click

Properties. In the properties sheet, verify the SSAS instance name.

6. From Solution Explorer, right-click the Adventure Works DW 2008 SE project
name, and click Deploy. This will process the cube metadata locally and deploy
those files to the Analysis Services instance you configured in the previous step.

After clicking Deploy, wait for the “deployment succeeded” message to appear at the bottom right of
the BIDS window. This can take five minutes or more depending on the resources available to complete
the processing. If the deployment fails (which will be indicated with a large red X in the interface, read
the messages in the Process Database dialog box to help you to determine the cause or causes of the
failure. The most common error is incorrectly configured connection strings.

Now, you are ready to take a look at the sample cube using the built-in browser in BIDS. This
browser looks much like a pivot table so that you, as a cube developer, can review your work prior to
allowing end users to connect to the cube using client BI tools. Most client tools contain some type of

CHAPTER 1 ■ WHAT IS BUSINESS INTELLIGENCE?

15

pivot table component, so the included browser in BIDS is a useful tool for you. To view the sample cube
using the built-in cube browser in BIDS, perform the following steps:

1. In Solution Explorer, expand the Cubes folder, and double-click the Adventure
Works cube to open the BIDS cube designer work area (see Figure 1–10).

Figure 1–10. To view the sample cube in BIDS, double-click the cube name in Solution Explorer.

2. In the cube designer work area (which appears in the center section) of BIDS, on
the AdventureWorks main tab, click the Browser tab as shown in Figure 1–11.

Figure 1–11. The cube designer interface has ten tabs. To browse a cube, you click on the Browser tab. The

cube must have been successfully deployed to the server to browse it.

3. Now, you can drag and drop items from the cube (dimensions and facts) onto
the viewing area. This is very similar to using a pivot table client to view a cube.
The functionality is similar, by design, to BI client tools such as Excel pivot
tables. However, the Browser tab, like all of BIDS, is designed for cube designers
and not for end users.

CHAPTER 1 ■ WHAT IS BUSINESS INTELLIGENCE?

16

■Note You may be wondering what the dimensions and facts (or measures) are that you see onscreen? We will
review these concepts in more detail in Chapter 2. However, as an introduction, you can think of facts as important
business values (for example daily sales amount or daily sales quantity), and dimensions as attributes (or detailed

information) related to the facts (for example, which customers made which purchases, which employees made

which sales, and so on).

Spend some time in the BIDS browser interface exploring; drag and drop different items onto the
display surface and around the display surface. Also, try right-clicking the design surface to find many
interesting built-in options to display the information differently.

You can use Figure 1–12 as a starting point. The Order Count measure is displayed in the data area,
the Calendar Year hierarchy from the Date dimension is displayed on the columns axis, the Country
hierarchy from the Geography dimension is displayed on rows, the Employee Department attribute from
the Employees dimension is displayed as a filter, and the Product Model Categories hierarchy from the
Product dimension is set to filter the browser results to include only measure values where the Product
Model Category is equal to Bikes.

■Tip To remove any measures or dimensions from the browse area, click the item you want to remove, and drag

it back over the tree listing of available objects.

Figure 1–12 is a view of the sample Adventure Works cube. Note that you can place dimension
members and hierarchies on the rows, columns, or filter axis and that you can view measures in the area
labeled Drop Total or Detail Fields Here.

CHAPTER 1 ■ WHAT IS BUSINESS INTELLIGENCE?

17

Figure 1–12. The BIDS cube browser uses a pivot table interface to allow you to view the cube that you

have built (or, in this case, simply deployed) using the BIDS cube designer.

■Note If you are wondering whether you can view sample data mining models in BIDS, the answer is yes. The
AdventureWorks samples include data mining structures. Each structure contains one or more data mining
models. Each mining model has one or more viewers available in BIDS. Data mining is a deep topic, so we’ll spend

all of Chapter 14 discussing the mining model types and BIDS interfaces. We discuss Excel support of SSAS

mining structures in Chapter 11.

How to Connect to the Sample Cube Using Excel
Now that you’ve set up and deployed the sample cubes, you will probably want to experience an end
user’s perspective. An easy way to do this is with a pivot table in Excel:

1. Open Excel.

2. Choose Data ➤ From Other Sources ➤ From Analysis Services.

CHAPTER 1 ■ WHAT IS BUSINESS INTELLIGENCE?

18

3. In the Data Connection Wizard, enter your SSAS Server name, and click Next, as
shown in Figure 1–13.

Figure 1–13. Connecting to an SSAS cube in Excel using the Data Connection Wizard

4. Next, select the Adventure Works DW 2008R2 SE database, choose the
Adventure Works cube, and click Next, as shown in Figure 1–14.

CHAPTER 1 ■ WHAT IS BUSINESS INTELLIGENCE?

19

Figure 1–14. Choosing a database and cube using the Data Connection Wizard

5. Review the final wizard dialog, and click Finish.

6. In the Import Data dialog, select PivotTable Report as your data view, and place
your data into the existing worksheet with the formula =Sheet1!A1, and click
OK.

7. From the PivotTable Field List, drag the items that you want to show in your
pivot table to the Drag Fields area. Figure 1–15 shows an example using
Calendar Year as the Column Label, Country as the Row Label, and Customer
Count as Values.

CHAPTER 1 ■ WHAT IS BUSINESS INTELLIGENCE?

20

Figure 1–15. An example pivot table using Calendar Year, Country, and Customer Count

CHAPTER 1 ■ WHAT IS BUSINESS INTELLIGENCE?

21

Understanding BI Through the Sample
Now that your pivot table is set up, what exactly are you trying to understand by working with it? How is
a pivot table that gets its data from a SSAS cube different from any other Excel pivot table? Here is a list
of some of the most important BI (or OLAP) concepts:

• BI is comprehensive and flexible. A single, correctly designed cube can actually
contain all of an organization’s data, and importantly, this cube will present that
data to end users consistently. To better understand this concept, you should try
working with the AdventureWorks sample cube as displayed using the Excel pivot
table to see that multiple types of measures (both Internet and Retail Sales) have
been combined into one structure. Most, but not all, dimensions apply to both
groups of measures. For example, there is no relationship between the Employee
dimension and any of the measures in the Internet Sales group because there are
no employees involved in these types of sales. Cube modeling is now flexible
enough to allow you to reflect business reality in a single cube. In previous
versions of SSAS and in other vendor’s products, you would’ve been forced to
make compromises such as creating multiple cubes or being limited by structural
requirements. This lack of flexibility in the past often translated into limitation
and complexity in the client tools as well.

• BI is accessible (intuitive for all end users to view and manipulate). To better
understand this aspect of BI, try demonstrating the pivot table based on the SSAS
sample cube to others in your organization. They will usually quickly understand
and be impressed (some will even get excited!) as they begin to see the potential
reach for BI solutions in your company. Pivot table interfaces reflect the way
many users think about data; they answer the question, “what are the measures
(or numbers) and what attributes (or factors) created these numbers?”

Some users may request a simpler interface than a pivot table (that is, a type of
canned report). Microsoft provides client tools, such as SSRS, which facilitate that
type of implementation. It is important for you to balance this type of request,
which entails manual report writing by you, versus the benefits available to end
users who can use pivot tables. In my experience, most BI solutions include a
pivot table training component for those end users who haven’t worked much
with pivot tables before.

• BI is fast to query. After the initial setup, queries can easily run 1,000% faster in an
OLAP database than in an OLTP database. Your sample won’t necessarily
demonstrate the speed of query in and of itself. However, it is helpful to
understand that the SSAS server is highly optimized to provide a far superior query
experience because the SSAS engine itself is actually designed to quickly fetch or
calculate aggregated values. We will dive into the details of this topic in Chapter 6.

• BI is simple to query. End users simply drag items into and around the pivot area;
developers write very little query code manually. It is important to understand
that SSAS clients (like Excel) automatically generate MDX queries when users drag
and drop dimensions and measures onto the design surfaces. This is a
tremendous advantage as compared to traditional OLTP reporting solutions
where T-SQL developers must manually write all of the queries.

CHAPTER 1 ■ WHAT IS BUSINESS INTELLIGENCE?

22

• BI provides accurate, near real-time, summarized information. This will improve
the quality of business decisions. Also with some of the new features available in
SSAS, most particularly Proactive Caching, cubes can have latency that is only a
number of minutes or even seconds. Configuring real-time cubes will also be
discussed in Chapter 6. Also, by drilling down, users who need to see the detail
(that is, the numbers behind the numbers) can do so. Drilldown is, of course,
implemented in pivot tables via the simple “+” interface that is available for all
(summed) aggregations in the AdventureWorks sample cube.

• BI improves ROI by allowing more end users to make more efficient use of
enterprise information so many companies have all the information they need.
The problem is that the information is not accessible in formats that are useful for
the people in the company to use as a basis for decision making in a timely way.

It’s really just that simple; OLAP (or BI) solutions simply give businesses a significant competitive
advantage by making more information available to more end users so that those users can make better
decisions in a more timely way. What’s so exciting about BI is that Microsoft has made it possible for
many companies who couldn’t previously afford to implement any type of BI solution to be able to play
in this space by including all of the core BI tools and technologies needed to implement cubes in the box
with SQL Server. As previously stated, it is important to understand which features require the
Enterprise edition of SQL Server or Analysis Services. We will review feature difference by edition in
detail throughout this book.

In addition to broadening BI’s reach by including some BI features in both the Standard and
Enterprise editions of SQL Server, Microsoft is also providing some much needed competition at the
enterprise level by including some extremely powerful BI features in the Enterprise editions of SQL
Server and SSAS. We’ll talk more about that at the end of this chapter.

Understanding the Business Problems That BI Addresses
As you learn more about SSAS capabilities, you can begin to match some of the strengths of the BI
toolset available in SQL Server (and companion BI Microsoft products) to current challenges you and
your company may be facing when working with your enterprise data. We call these challenges pain
points and list some OLAP (or BI) solutions to commonly seen challenges in Table 1–1.

CHAPTER 1 ■ WHAT IS BUSINESS INTELLIGENCE?

23

Table 1–1. List of Business Pain Points and OLAP Solutions

 Pain Point OLAP Solutions

Slow-to-execute queries Use cubes that are optimized for read-only queries to return
query results faster than OLTP systems because of the efficiency
of the SSAS engine to aggregate data.

General system slowdowns Greatly reduce locking overhead from OLTP source systems.
OLAP systems use optimized, multi-dimensional storage that do
not use locks, except during processing.

Manual query writing Allow end users to click to query (click and drag on a pivot
table), which eliminates the wait time associated with
traditional T-SQL, where end users must usually request
reports, which results in developers manually writing queries
against OLTP systems.

Disparate data sources Combine data into central repositories or cubes using ETL
packages that can be automated to run on a regular basis.

Invalid/inconsistent report data Invalid reports are often based on data that has been cleaned
and validated (prior to cube load) using the ETL toolset available
in SSIS. Cubes provide a consistent and unified view of
enterprise data all across the enterprise.

Data is not available to all users Data is designed to be accessed by all business users.

Too much data Use data mining (along with the other tools, that is, cubes,
available in SSAS) to find patterns in large amounts of data
automatically. SSAS now contains nine different data mining
algorithms to help you group, correlate, and predict data values.

Reasons to Switch to Microsoft’s BI Tools
In addition to providing a great suite of tools for companies that are just getting started with BI,
Microsoft’s latest release of BI tools also targets companies that are using other vendors’ BI products by
providing a raft of enterprise features in its data warehousing products. Many of these features are
available only in the Enterprise edition of the various BI products, that is, Analysis Services, Integration
Services, and Reporting Services.

Here’s a list of BI–specific features that require the Enterprise edition of SQL Server:

• Advanced business analytics

• Proactive caching

• Advanced data management

• Write back

CHAPTER 1 ■ WHAT IS BUSINESS INTELLIGENCE?

24

• Advanced data mining tuning

• Advanced SSIS transforms

• Text mining support

Also, Microsoft has built its BI tools so that they will integrate with other vendors’products. It is
quite common, for example, to use SSAS to create cubes from Oracle or DB2 data sources. Another
example is to use SSRS with a mainframe or an Informix source data. Microsoft is aggressively adding
support for interoperability across the entire suite of BI tools. Another compelling aspect of Microsoft’s
BI offering is the inclusion of intelligent wizards and GUI tools that allow you to get up and running
quickly and easily. The catch, however, is that the use of these tools and wizards is heavily dependent on
your understanding and implementation of basic OLAP modeling concepts. We will look at that topic in
the next chapter.

Summary
This chapter introduced basic data warehousing terms and concepts, including OLAP, BI, dimensions,
and facts. We also reviewed the process and procedures you use to quickly set up a sample SSAS cube
using BIDS. You worked with the AdventureWorks sample and connected to it with an Excel pivot table
to give you a quick view of an OLAP solution from an end user’s perspective. In the next chapter, we’ll
dig deeper into OLAP concepts and explore basic modeling for cubes.

C H A P T E R 2

■ ■ ■

25

OLAP Modeling Concepts

You’ve got executive support and a great BI team assembled. You’ve diligently set up standards and
practices. The development environment is set up (and secured!), and your team is ready to start
designing your solution. What is the next step? It all starts with a star—a star schema, that is.

Properly designed OLAP schemas are the foundation of all successful BI projects built using SQL
Server Analysis Services (SSAS). With star schemas as a starting point, you or your ETL gurus can begin
the data mapping process, and you or your report writers can begin to create report prototypes. This
chapter will explain design models for OLAP schemas—stars, snowflakes, and more—all of which are the
basis for OLAP cubes. Modeling for data mining is not covered here because it is discussed in Chapter 14,
“Introduction to Data Mining.”

This chapter covers the following topics:

• Modeling OLAP source schemas: stars, snowflakes, and other types

• Understanding dimensional modeling, including modeling for changing
dimensions

• Understanding fact (or measure) and cube modeling

• A quick introduction to other types of modeling, such as KPIs, Actions, and
Translations

Modeling OLAP Source Schemas—Stars
Learning about OLAP modeling always starts with a thorough review of the “classic” OLAP source model:
the star schema. The next section reviews the concepts behind star schema modeling in detail.

Before we start however, let’s take a minute to discuss an even more fundamental idea for your BI
project. Is a star schema strictly required? The technical answer to this question is “no” because
Microsoft purposely does not require you to base OLAP cubes off of only data that is in a star schema
format. In other words, you can create cubes based off of OLTP (or normalized relational data).

However, and this is a big however, it is critical for you to understand star schema modeling and to
attempt to provide SSAS with data that is as close to this format as possible. The reason for this is that,
although Microsoft has included flexibility in SSAS, that flexibility is really designed for those of you who
intend to create cubes manually. Particularly if you are new to BI (using OLAP cubes), you’ll probably
want to build your first project by taking advantage of the included wizards and tools in BIDS. These
time savers are designed to work using traditional star schema source data. When you become more
experienced, you will probably find yourself enjoying the flexibility to go “outside the star” and then will
build some parts of your BI solution manually.

CHAPTER 2 ■ OLAP MODELING CONCEPTS

26

Understanding the Star Schema
A star schema consists of at least one fact table and a number of dimension tables. These tables are
relational database tables, often stored in SQL Server. The star schema source tables are not required to
be stored in SQL Server. In fact, many OLAP solutions use other relational database management system
(RDBMS) platforms, including Oracle, DB2, and others, to hold source star data.

A star schema fact table consists of at least two types of columns: keys and measures. Keys are
foreign key (FK) values that relate rows in the fact table to rows in the dimension tables. Facts (which
may also be called measures) are numeric values—usually, but not always, additive—that express the
business metrics. An example of this is a sales amount (fact) for a particular product, sold on a particular
day, by a particular employee (keys).

Fact tables can also contain columns that are neither keys nor facts. These columns are the basis for
a special type of dimension called a degenerate dimension. For example, in the fact table in Figure 2–1,
the SalesOrderNumber column provides information about each row, but it is neither a key nor a fact.
Often, degenerate dimensions are used as a track-back, or pointer, to data in the source system.

Figure 2–1 also shows a typical fact table structure: the first columns are all named xxxKey and of
datatype int. These columns are the FK values. They provide the relationship to the dimension tables
and are said to “give context or meaning to” the facts. In Figure 2–1, the columns that will be translated
into measures in the cube start with the OrderQuantity column. Note the datatypes for the measure
columns. You may be surprised to see the use of the SQL Server money datatype. If a fact column
represents a monetary value, then it is preferred to use the money datatype in the fact table because some
Multidimensional Expressions (MDX) functions are dependent on this datatype.

■Note Facts or measures, what’s the difference? Technically, facts are individual values stored in rows in the fact
table, and measures are those values as stored and displayed in an OLAP cube. The terms are commonly used

interchangeably in OLAP literature.

Another important consideration when modeling your fact tables is to keep the tables as narrow as
possible. The reason for this is that a star schema fact table generally contains a much larger number of
rows than any one-dimensional table. So fact tables represent your most significant storage space
concern in an OLAP solution. It is especially important for you to justify every column added to any fact
table in your star schemas against your project’s business requirements.

CHAPTER 2 ■ OLAP MODELING CONCEPTS

27

Figure 2–1. Fact tables consist of keys and facts (or measures) and, sometimes, additional columns, like

SalesOrderNumber, which provide additional information. The keys are FKs to the dimension table rows.

Measures are usually, but not always, additive numeric values.

Understanding a Dimension Table
As mentioned previously, the dimension table rows provide meaning to the rows in the fact table. Each
dimension table describes a particular business entity or aspect of the fact table entries. Typical
dimension tables include time, geography, customers, and products. Dimension tables should consist of
three types of columns. The first is a newly generated primary key (PK) for each row in the dimension
table. The second is the original PK from the source system, and the third group consists of any number
of additional columns that further describe the business entity.

Keys
Dimension tables are not strictly required to contain two types of keys. You could actually create
dimension tables using only the original PK; however, this practice is not recommended. One reason to
generate a new unique dimension key is that it is common to load data into dimensions from disparate
data sources (for example, a SQL Server table and an Excel spreadsheet). Without generating new keys,
you would have no guarantee of having a unique identifier for each row.

As mentioned previously, you should model for two types of keys (or identifiers) in dimensional
source data. The first is the original PK, which is the key from the source system. This is also sometimes
called the business key. In addition to this key, it is a best practice to generate a new, unique key during

CHAPTER 2 ■ OLAP MODELING CONCEPTS

28

the extract, transform, and load (ETL) process of the dimension table. The new key is called a surrogate
key.

Even if you are retrieving source data from a single source database initially, it is an important best
practice to add this new surrogate key on loading the dimension table. The reason is that business
conditions can quickly change—you may find yourself having to modify a production cube to add data
from another source for many reasons (business merger, acquisition, competitor data, and so on). You
should always use surrogate keys when building dimension tables.

You’ll note that the DimCustomer dimension table shown in Figure 2–2 contains both the original
identifier, called CustomerAlternateKey, and a new unique identifier called CustomerKey.

Figure 2–2. Dimension tables contain denormalized source data. Dimensions give context and meaning to

the facts in the fact table. It is typical for dimension tables to contain columns for many types of attributes.

CHAPTER 2 ■ OLAP MODELING CONCEPTS

29

Attributes
You may be surprised to see the large number of columns in the DimCustomer table. The denormalized
style of modeling is completely opposite of that which you were probably taught when learning database
modeling for OLTP systems. That’s actually the point—OLAP modeling is quite different from modeling
for OLTP!

Your SSAS cube can contain tens, hundreds, or even thousands of attributes to describe the
business entities. The attributes are built from the source columns in the dimension source table or
tables. Although most limits to the quantity of dimensional attributes that you can associate to a
particular business entity have been removed in SSAS, you do want to base the inclusion of columns in
your dimension tables on business needs. In our real-world experience, this value is usually between 10
and 50 attributes per dimension.

Unlike erring on the conservative side (as we recommend you do when modeling the fact table)—
that is, if in doubt, leave it out—when you are modeling dimensions, we recommend the opposite
approach. If there is a possibility that a particular attribute will be of interest to a set of your end users,
then add it to your dimension. It is trivial to include, rename, or even exclude attributes when building
your cube. Unless you anticipate that your dimension will be huge, having for example, more than a
million members (which sometimes can be found in a dimension for customers, for example), then
being “inclusive” in dimensional modeling is preferred.

There are additional options to OLAP modeling (that is, using table types other than fact tables and
star dimension tables), which we will discuss later in this chapter, but the basic concept is simply a fact
table and some related dimension tables. Figure 2–3 shows a conceptual star schema; note that we’ve
modeled the dimensions keys in the preferred way in this diagram, that is, using original and new (or
surrogate) keys.

CHAPTER 2 ■ OLAP MODELING CONCEPTS

30

Figure 2–3. A star schema consists of at least one fact table and many dimension tables. The dimension

table rows are related to the fact table rows by surrogate keys.

Why Create Star Schemas?
As discussed earlier, the simplest answer is that star schemas work best in the BIDS development
environment for SSAS. Although it is possible to create a cube from OLTP (or normalized) source data,
the results will not be optimal without a large amount of manual work on your part, and we do not
recommend this practice. Also, flawed data in source systems is commonly discovered during the life
cycle of a BI project. Usually at least some source data needs to be part of a data cleansing and validation
process. This is performed during the ETL phase of your project. Again, we’ve seen many a BI project “go
astray” because source data was assumed to be “perfect” and found, upon investigation, to be far from
that.

Beginning with the 2005 release of SSAS, Microsoft improved the flexibility of source structures for
cubes. This means you start with a series of star schemas and then make adjustments to your model to
allow for business situations that fall outside of a strict star schema model. One example of this is the
ability to base a single cube on multiple fact tables. Figure 2–4 shows an example of using two fact tables
in an OLAP schema. This type of modeling is usually done because some, but not all, dimensions relate
to some, but not all, facts. You’ll see an example of this shortly.

CHAPTER 2 ■ OLAP MODELING CONCEPTS

31

Figure 2–4. SSAS cubes can use more than one fact table as part of the source data, which results in greater

flexibility in cube building.

CHAPTER 2 ■ OLAP MODELING CONCEPTS

32

As will be discussed later in this chapter, there is flexibility in SSAS that allows you to model and
implement in your OLAP cube which reflect many common business scenarios and which are not part of
star schemas. Just one example of this is the need to allow null values to be loaded into a dimension or
fact table and to define a translation of those nulls into a value that was understandable by end users, for
example, “unknown.” This flexibility is not so broad however, as to eliminate the need to do standard
OLAP modeling entirely.

The SSAS Dimension Usage tab in the cube designer in BIDS allows you to define the grain of each
relationship between the rows in the various fact tables to the rows in the dimension tables. This
improved flexibility now results in most BI solutions being based on a single, large (or even huge) cube
(or view of enterprise data). This type of modeling reflects the business need to have a single, unified
version of relevant business data. This cube presents the data in whatever level of detail is meaningful
for the particular end user; that is, it can be summarized, or detailed, or any combination of both. This
ability to create one view of the (business) truth is one of the most compelling features of SSAS.

To drill into the Dimension Usage tab, look at Figure 2–5. Here the Employee dimension has no
relationship with the Internet Sales facts (because no employees are involved in Internet sales) but does
have a relationship with the Reseller Sales facts (because employees are involved in reseller sales). Also,
the Customer dimension has no relationship with the Reseller Sales facts because customers are not
resellers, but the Customer dimension does have a relationship with the Internet Sales facts (because
customers do make Internet purchases). Dimensions common to both fact tables are products and time
(due date, order date, and ship date). Note that the time dimension has three aliases. Multiple aliases for
a single dimension are called role-playing dimensions. We’ll discuss this type of dimension in more
detail in Chapter 5, “Advanced OLAP Modeling with SSAS.”

Figure 2–5. The Dimension Usage grid in SSAS allows you to associate more than one fact table with a

single cube, to set the level of granularity for each dimension, and to choose not to associate specific

dimensions with specific fact tables.

CHAPTER 2 ■ OLAP MODELING CONCEPTS

33

When creating a cube, the SSAS New Cube wizard attempts to detect the relationships between
dimension and fact table rows and populates the Dimension Usage grid with its best guesses by
examining the source column names. You should review (and update if needed) the results to exactly
match your particular business scenarios.

Effectively Creating Star Schema Models Using Grain Statements
So, if the star schema is all-important, what’s the best way for you to quickly and accurately create this
model? In our experience, if you begin with the end in mind, you’ll arrive at the best result in the quickest
fashion. The end is a series of grain statements. So what exactly does this mean? To determine (or
validate) grain statements, you can ask the following questions:

• What are the key metrics for your business? Some examples for a company that
sells products include sales amount, sales quantity, gross profit, net profit,
expenses, and so on.

• By what factors do you evaluate those key metrics? For example, do you evaluate
sales amount by customer, by employee, by store, by date, by “what”?

• By what level of granularity do you evaluate each factor? For example, do you
evaluate sales amount by day or by hour? Do you evaluate customers by store or
by region?

Effective OLAP modelers use the grain statements gathered during the requirements phase of the
project. It is critical that both subject matter experts (SMEs) and business decision makers validate each
of the grain statements prior to beginning the modeling phase. We use a sign-off procedure to ensure
that appropriate validation of grain statements has taken place.

Here are some examples of simple grain statements:

• We want to see sales amount and sales quantity by day, by product, by employee,
and by store location.

• We want to see average score and quantity of courses taken, by course, by day, by
student, by manager, by curriculum, and by curriculum type.

• We want to see a count of offenders by location, by offense type, by month, and by
arresting officer.

■Caution You might be tempted to skip entirely or to move too quickly through the requirements
gathering/modeling phases of your BI project to get to the “real work” of actually building the cube in BIDS. We’ve
seen this mistake repeated many, many times in the real world. The results are, at best, longer-than-needed

development cycles, particularly in cases where people try to build cubes directly off of relational source (or

slightly modified) data, or, at worst, projects have to be restarted from scratch. Don’t make this costly mistake!

As you can see by my examples, BI solutions can be used by a broad variety of organizations. In our
experience, although the “show me sales by day” model is the most typical, it’s not the only situation in
which BI can prove useful. Some other interesting projects we’ve worked on included using OLAP cubes
to improve decision support for the following business scenarios:

CHAPTER 2 ■ OLAP MODELING CONCEPTS

34

• Improve detection of foster care families not meeting all state requirements (SSAS
data mining was also used in this scenario)

• Provide a flexible, fast query system to look up university course credits that are
transferable to other universities

• Improve food costs and labor costs for a restaurant by viewing and acting on both
trends and exception conditions

• Track the use and effectiveness of a set of online training programs by improving
the timeliness and flexibility of available reports

When considering why and where you might implement SSAS in your enterprise, it is important to
think broadly across the organization; that is, you should consider which groups would benefit from an
aggregated view of their (and possibly other groups’) data. It is Microsoft’s position, and we agree, that
any organization with stored data can benefit from using BI implemented on SSAS OLAP cubes.

Tools for Creating Your OLAP Model
Our Microsoft modeling tool of choice for designing star schemas is Visio Enterprise Edition. It’s easy to
use, readily available, and can be used to quickly generate the T-SQL data definition language (DDL)
source statements so that your design for star schemas can be rapidly materialized on your development
server.

You’ll usually start your design with dimension tables because much of the dimension data will be
common to multiple grain statements. In the example we’ve provided in Figure 2–6, you can see that the
relatively few tables are highly denormalized (meaning they contain many columns with redundant
data; for example in StudentDim, the region, area, and bigArea columns).

Contrast this type of design with OLTP source systems, and you’ll begin to understand the
importance of the modeling phase in an OLAP project. In Figure 2–6, each dimension source table,
except two (OfferingDim and SurveyDim), is the basis of a single cube dimension; for example, StudentDim
is the basis of the Student dimension, InstructorDim is the basis of the Instructor dimension, and so on.
These are all examples of star dimensions. OfferingDim and SurveyDim have a PK/FK relationship
between the rows. They are the basis for a snowflake (or multitable sourced) dimension. You’ll learn
more about snowflake dimensions later in this chapter.

Also notice in Figure 2–6 that each table has two identity (or key) fields: a NewID and an OldID. This is
modeled in the preferred method discussed earlier in this chapter.

Figure 2–7 shows the fact tables for the same project. You can see that there are nearly as many fact
tables as dimension tables in this particular model example. This isn’t necessarily common in OLAP
model design; more commonly, you’ll use 1 to 5 fact tables with 5 to 15 dimension tables, or more of
both types. This model is used to illustrate reasons for using multiple fact tables; for example, some
Session types have facts by day, whereas other Session types have facts by hour.

CHAPTER 2 ■ OLAP MODELING CONCEPTS

35

Figure 2–6. This model shows mostly star-type (or single table) dimensions. There is one snowflake-type

(or multitable) dimension: SurveyDim and OfferingDim.

CHAPTER 2 ■ OLAP MODELING CONCEPTS

36

Figure 2–7. This model shows five fact tables that will be used in a single cube.

■Tip Because your project is now in the development phase, any and all documents, including your Visio (.vsd)

models, must be under source control if multiple people will be working on the OLAP models.

As mentioned previously, although we’ve used Visio for modeling in all of our projects, if you are
comfortable with a different database modeling tool, such as ERWIN or ER/Studio, by all means, use it.
The primary requirements for your modeling tool is that it generates a visual representation along with
DDL code, so anything you are comfortable using for OLTP can be used for OLAP modeling as well.

As in relational modeling, OLAP modeling is an iterative process. When you start, you’ll simply
create the skeleton tables for your star schema by providing table names, keys, and a couple of essential

CHAPTER 2 ■ OLAP MODELING CONCEPTS

37

column names (such as first name, last name for customer). As you continue to work on your design, you
will refine the model by adding detail.

Because it is so critical, look back at the conceptual diagram of an OLAP star schema, shown earlier
in Figure 2–3, one more time. Remember that this is the structure that you are trying to emulate. The
closer you can get your models to true stars, the more quickly and smoothly the rest of the entire BI
project will run.

Also remember the importance of using the customer’s business terminology when naming objects
in your model. When you name your tables and columns per the captured taxonomy, the your model
will be understood, validated, and translated into cubes more quickly and easily by everyone working on
your project.

Modeling Source Schemas—Snowflakes and Other
Variations
As mentioned previously, SSAS has increased the flexibility of source schema usage to more easily
accommodate the most common business requirements that aren’t easily modeled using star schemas.
This section discusses some of those new or improved options.

Understanding the Snowflake Schema
A snowflake is a type of source schema used for dimensional modeling. Simply put, it means basing a
dimension on more than one source relational table. The most common case is to use two source tables.
However, if more than two tables are used as the basis of a snowflake dimension, there must be a key
relationship between each of the tables containing the dimension information.

Note in the example in Figure 2–8 that the Customer dimension has a GeographyKey attribute in it.
This allows for the snowflake relationship between the the Geography and the Customer dimensions to be
detected by the New Cube wizard in BIDS. The Dimension Usage section of SSAS usually reflects the
snowflake relationship, which you have modeled when you initially create the cube using the New Cube
wizard (as long as the key columns have the same names across all related tables). If necessary, you can
manually adjust any relationships after the cube has been created using tools provided in BIDS.

As shown previously in this chapter, Figure 2–9 again shows the Dimension Usage grid. This time,
we are going to drill down a bit deeper into using it. To adjust, or verify any relationship, click the Build
button (the small grey square with the three dots on it) on the dimension name at the intersection of the
dimension and fact tables. We’ll start by looking at a “regular” or star dimension by clicking the Build
button at the intersection of the Product dimension and Internet Sales facts.

CHAPTER 2 ■ OLAP MODELING CONCEPTS

38

Figure 2–8. The customer dimension uses two tables as its sources: Customer and Geography. The rows in

the tables are related by the GeographyKey field.

CHAPTER 2 ■ OLAP MODELING CONCEPTS

39

Figure 2–9. The Dimension Usage grid is the starting point for defining the nature of the relationships

between the dimension and fact tables. This includes defining the level of granularity of each relationship.

Clicking the Build button opens the Define Relationship dialog box in which you can confirm that
the relationship that BIDS detected during cube build is correct. If the relationship has been incorrectly
defined, you can adjust it here. In Figure 2–10, you can see that a Regular (or star) relationship has been
correctly detected in the Select Relationship Type drop-down list—you validate this by verifying that the
correct identifying key columns have been detected by BIDS when the cube was initially created. In this
example, using the ProductKey from the Product dimension (as PK) and Internet Sales fact tables (as FK)
reflects the intent of the OLAP design.

CHAPTER 2 ■ OLAP MODELING CONCEPTS

40

Figure 2–10. The most typical relationship type between the dimension and fact tables is the Regular (or

star) type. This means there is a zero or one-to-many relationship between the rows in the fact table and

the dimension table, based on the listed key.

For a snowflake (or referenced) dimension, you review or refine the relationship between the related
dimension tables in the Define Relationship dialog box as shown in Figure 2–11. Note that the dialog box
changes to reflect the modeling needs; that is, you must select the intermediate dimension table and
define the relationship between the two dimension tables by selecting the appropriate key columns.

■Note You will generally leave the Materialize check box checked (the default setting) for snowflake dimensions.

This causes the value of the link between the fact table and the reference dimension for each row to be stored in

SSAS and improves dimension query performance.

CHAPTER 2 ■ OLAP MODELING CONCEPTS

41

Figure 2–11. Another possible relationship type between the dimension and fact tables is the Referenced

type. This means that there is a one-to-many relationship between the rows in the fact table and the

dimension table and includes an additional table, still based on the listed key. This is also called a

snowflake dimension.

Knowing When to Use Snowflakes
Because snowflakes add overhead to cube processing time and to query processing time, you should
only use them when the business needs justify their use. They add overhead because the data must be
joined at the time of process or query, rather than simply retrieved. The most typical business situation
that warrants the use of a snowflake dimension design is one that would reduce the size of the
dimension table by removing one or more attributes that are not commonly used to a separate
dimension table. An example of this would be a customer dimension with an attribute (or some
attributes that are used for a small percentage of the customer records).

An example of this might be a table of nonessential customer data, such as a URL of a customer’s
web site in a business scenario where very few of your customers actually have their own web sites. By
creating a separate but related table, you significantly reduce the size of the customer dimension table.
Another situation that may warrant the use of a snowflake design is one in which the update behavior of
particular dimensional attributes varies; that is a certain set of dimensional attributes should have their
values overwritten if updated values become part of the source data, whereas a different set should have
new records written for each update (maintaining change history). Although it is possible to combine
different types of update behavior depending on the complexity of the dimension, it may be preferred to
separate these attributes into different source tables so that the update mechanisms can be simpler.

CHAPTER 2 ■ OLAP MODELING CONCEPTS

42

■Tip In the real world, we’ve often seen inexperienced OLAP modelers overuse snowflakes. It is important to
remember that the primary goal of the star schema is to denormalize the source data for read efficiency. Any
normalization, such as a snowflakes dimension, should relate directly to business needs. As this is opposite of

OLTP modeling, it’s often difficult to fight the urge to normalize. Our experience is that less than 15% of

dimensions need to be presented as snowflakes.

Considering Other Possible Variations
With SSAS, there are several new techniques that OLAP modelers can use. These include Many-to-Many
dimensions, Data Mining dimensions, and more. These (and other) more advanced modeling
techniques are discussed in Chapter 8, “Intermediate SSIS,” and Chapter 14, “Introduction to Data
Mining.”

Choosing Whether to Use Views Against the Relational Data
Sources
At this point, you may be thinking that this OLAP modeling seems like a great deal of work, so why not
just create views against the OLTP source (or sources) to get the same result? Although you technically
could do this, as previously mentioned, our experience has been that seldom are the relational source or
sources “clean” enough to directly model against. The most typical situation is that first the OLAP model
is created and validated, and then cleaned and validated data is loaded into the newly created OLAP
model via ETL processes. Most organizations’ data simply isn’t prepared to allow for direct OLAP query
against OLTP source data.

One area where relational views are sometimes used in OLAP projects is as data sources for ETL.
That is, in environments where OLAP models and ETL engineers are not allowed direct access to data
sources, it is common for them to access the various data sources via views created by DBAs. Also the
time involved to write the queries to be used in the relational views may be substantial.

Understanding Unified Dimensional Modeling
The Unified Dimensional Model (UDM) is one of the key features of Analysis Services. In addition to
removing the requirement that each dimension’s hierarchies (or rollups) must be defined only at time of
creation, Microsoft has simplified dimensional modeling by basing all dimensions on attributes. Simply
put, each column from the source dimension table is (by default) an attribute for that dimensional item.

A hierarchy in SSAS is a grouping mechanism, and serves two purposes. The first is largely a
convenience for end users. This type of hierarchy is called a browse (or navigational) hierarchy. The
second type is called a natural hierarchy and will be discussed in greater detail in Chapter 3,
“Introducing OLAP Modeling with SSAS.” Natural hierarchies can change how aggregations (or
precalculated intersections of facts) are created. Also, all dimensional information is public, or sharable
across all cubes.

CHAPTER 2 ■ OLAP MODELING CONCEPTS

43

Using the UDM
Understanding the “how” of modeling dimensional data, including understanding dimensions, levels,
members, and hierarchies, it’s best to start with some definitions (see Table 2–1) and a couple of
examples. Figure 2–12 shows the Dimension Structure work area in BIDS.

Table 2–1. List of OLAP Terms

Term Definition Example

Dimension Entity and all attributes related to that entity Customers

Hierarchy Grouping of attribute values for an entity Customers by Geography

Member Instance of entity, including attributes ID=50, Name = Langit…

Level Name of rollup position in hierarchy State Level

Key Primary identifier, two types: surrogate (or new)
and original

NewID = 1, OldID = 101

Figure 2–12. The Dimension Structure work area in BIDS allows you to view and edit dimension

information.

The most important initial OLAP modeling consideration is to make every attempt to denormalize
all source data related to a particular entity. As previously stated, the preferred source design for OLAP is
the star schema, which means that each dimension’s source data is put into a single table. Typically,
these tables are very wide, that is, having a large number of columns, and not especially deep, that is not
having a large number of rows.

An example of this might be a product dimension. Your company may sell only a couple hundred
different types of products; however, you may retain many, many attributes about each product. Some
examples could include package size, package color, introduction date, and so on. There can be

CHAPTER 2 ■ OLAP MODELING CONCEPTS

44

exceptions to the general “wide, but not deep” modeling rule. The most common is for the customer’s
dimension. If it is a business requirement to capture all customers for all time, and if your organization
services a very large customer base, then it could be the case that your customer dimension source table
could have millions of rows. Analysis Services only loads dimension members being viewed by your
client tool into memory. This allows you to be inclusive in the design of dimensions, that is, more
(attributes) is usually better.

After you’ve created the appropriate source dimension table or tables and populated them with
data, SSAS will retrieve information out of these tables during cube and dimension processing. SSAS
then uses a SELECT DISTINCT statement to retrieve members from each column. If you use the cube
wizard to build your cube, Analysis Services will attempt to locate natural hierarchies in the data. A
dimensional hierarchy is data that has a one-to-many relationship between data in different columns. A
typical example of this is a customer’s table with attributes relating to the customer’s address. City, state,
and country are detected during cube creation by the wizard and associated into a hierarchy with three
levels. If SSAS detects natural hierarchies during the running of the New Cube wizard, it will name each
level in the hierarchy using the column names from the dimension source tables. You can easily update
these names during subsequent cube development.

When end users browse cube data, they can look at the facts or measures by any attribute value in
any dimension by default. This could result in hundreds, thousands, or even millions of data members at
each level in a dimension. Without hierarchies, this information could be overwhelming in volume and
not especially meaningful when end users try to view the data. These hierarchies are used to aggregate
the view of information so that it is more meaningful and useful for end users of the cube. Figure 2–13
shows a common hierarchy, customers by geography. Another way to understand hierarchies is to think
of them as summaries. For this particular example, you can look at the information in your cube at the
level of the particular location or summarized to the level of all locations in a particular city, all locations
in a particular province, or all locations in a particular country.

In addition to the hierarchies that are detected during cube build; you can manually create
hierarchies in the cube very quickly and easily. The manual building of both navigations and natural
dimensional hierarchies is covered in Chapter 3, “Introducing OLAP Modeling with SSAS.”

There are a couple of other new features in SSAS dimensions that you should consider when you are
in the modeling phase of your BI project. These features include the ability to set the default member for
each attribute in a dimension, the ability to convert nulls to a value (usually unknown or 0), and the ability
to allow duplicate names to be displayed. You should model for these features based on business
requirements, so you should capture the business requirements for defaults, unknowns, and duplicates
for each dimension and all of its attributes during the modeling phase of your project.

CHAPTER 2 ■ OLAP MODELING CONCEPTS

45

Figure 2–13. The Dimension Designer in SSAS includes a Browser tab that lets you review the structure of

the dimension by hierarchy (if hierarchies exist) prior to building your cube. If there are no hierarchies,

you’ll simply be shown all of the data members in the dimension.

The Slowly Changing Dimension (SCD)
The next consideration for you when modeling dimensional data is to review business requirements for
the dimension data. You are looking for the desired outcome when dimension member data is updated
or deleted.In OLAP modeling, inserting new dimension members is not considered a change. The only
two cases you must be concerned with here are updates and deletes. This type of modeling is called
slowly changing dimension (SCD) modeling.

The first question to ask of your SMEs is “What do you want to happen when dimension members
no longer have fact data associated with them?” In our experience, most clients prefer to have dimension
members marked as “not active” at this point, rather than deleted. In some cases, it has been a business
requirement to add the date of deactivation as well.

CHAPTER 2 ■ OLAP MODELING CONCEPTS

46

The next case to consider is the business requirements for dimension member value updates. The
most common scenario is names of people, that is, customers, employees, and so on. The question to
ask here is “What do you want to happen when an employee changes his or her name (for example,
women getting married)?”

Table 2–2 shows the four different possibilities in modeling, depending on the answer to the
preceding question.

Table 2–2. Possible SCD Modeling Options

Requirement Description

Last change wins Overwrite with any change; do not retain original value.

Retain some history Retain a fixed number of previous values.

Retain all history Retain all previous values.

Type 1, 2, 3 SCD Solutions
The table of requirements for dimension member changes (Table 2–2) is the basis for you to model the
source tables using standard SCD type behavior modeling. This standard is implemented across a broad
variety of OLAP products, including SSIS packages for ETL. In this case, we are thinking about SSIS
packages that implement updates and deletes to dimension values.

Review the requirements and note that some dimension members will allow changes. You will need
to translate those requirements to one of these standard solutions.

• Type 1 means overwriting previous dimension member values, which is
sometimes also called last change wins. This type is called a Changing Attribute in
the SSIS Slowly Changing Dimension wizard.

• Type 2 means adding a new record (or row value) when the dimension member
value changes. This type is called a Historical Attribute in the SSIS Slowly
Changing Dimension wizard.

• Type 3 means adding additional attributes (or column values) when the dimension
member value changes. This type is not supported in the SSIS Slowly Changing
Dimension wizard.

Another important reason to use this standard modeling approach is that SSIS (and several other
OLAP products) supports these terms and concepts in the new SCD data flow transformation task object.
This is important because, although you’ll probably manually process updates or deletes to dimensional
attribute member values during development, after you move to production, you’ll want to automate
this process. Using the new SSIS transformation (with its associated configuration wizard) is a quick and
easy way to move this type of process to a SSIS package. The key configuration wizard page for this SSIS
transformation is shown in Figure 2–14. SSIS packages are designed to automate ETL processes across
your BI project.

CHAPTER 2 ■ OLAP MODELING CONCEPTS

47

Figure 2–14. The Slowly Changing Dimension Wizard in SSIS helps you manage the data in this type of

dimension.

The Rapidly Changing Dimension (RCD)
The rapidly changing dimension (RCD) is a dimension whose member values change constantly.
Constantly is the operative word here. This should be a very small subset of your dimensional data. To
work with this type of dimension, you will probably vary the storage location, rather than implementing
any particular design in the OLAP model itself.

RCD data storage models are covered in more detail in Chapter 6, “Cube Storage and Aggregation”
(with the rest of the discussion about overall cube data storage). An example of this type of dimension is

CHAPTER 2 ■ OLAP MODELING CONCEPTS

48

in a fast food restaurant chain, where the employee dimension may need to reflect very high staff
turnover. The employee dimension is modeled as an RCD.

Writeback Dimension
Another advanced capability of dimensions is writeback. Writeback is the ability for authorized end
users to update the data members in a dimension: insert, update, or delete. In our experience, only a
very small number of business scenarios warrant enabling writeback for particular cube dimensions. If
you are considering enabling writeback, verify that it is acceptable given any regulatory requirements,
such as SOX, HIPAA, and so on, in your particular business environment.

There are some restrictions if you want to enable writeback. The first restriction is that the
dimension must be based on a single table, meaning it must use a star schema modeling format. The
second restriction is that writeback dimensions are only supported in the Enterprise Edition of Analysis
Services. Finally, writeback security must be specifically enabled at the user level. This is covered in
more detail in Chapter 15, “SSAS Administration.”

Understanding Fact (Measure) Modeling
One key and core part of your BI solution is the business facts that you choose to include. As mentioned
previously, facts are also called measures. Measures are the key metrics by which you ascertain the
success of your business. Some examples include daily sales amount, product sales quantity, net profit,
and so on. Clearly selecting the appropriate facts is a critical consideration in your model.

An Example
 If you have been thorough in the business requirements gathering phase of your BI project, modeling
facts should be simple. In most cases, facts are numeric and are aggregated by summing the facts across
all levels of all dimensions. There are, however, exceptions to this rule. An example of the most typical
case is a cube that captures sales activity as shown in Figure 2–15 from the AdventureWorks 2008 R2
sample.

Figure 2–15 shows all of the measures, the measure group (which is simply a folder that has the
same name as the source fact table), the data type, and the aggregation type from the cube design tab in
BIDS. You may notice that several measures use Sum as their aggregation type. There are two Count
measures shown in the figure. Sum is the default type of aggregation in SSAS.

The built-in aggregation types available for use in SSAS are listed in Table 2–3. Note that the table
lists the Type of measure. This is a descriptor of the aggregation behavior. Additive means to roll up the
one ultimate total. Semiadditive means to roll up to a total for each level, but not cumulatively, and is
applicable only over a time dimension. Nonadditive means to not roll up, that is, only shows that
particular value. Also note that semiadditive measures require the Enterprise Edition of SSAS.

CHAPTER 2 ■ OLAP MODELING CONCEPTS

49

Figure 2–15. The Measures window (grid view) in BIDS allows you to view and alter properties of

measures used in your cube.

Table 2–3. Aggregation Functions Available in SSAS

Aggregation Type

Sum Additive

Count, Min, Max Semiadditive

FirstChild, LastChild Semiadditive

AverageOfChildren Semiadditive

FirstNonEmpty, LastNonEmpty Semiadditive

ByAccount Semiadditive

DistinctCount, None Nonadditive

CHAPTER 2 ■ OLAP MODELING CONCEPTS

50

■Note ByAccount aggregation refers to an aggregation that calculates according to the aggregation function
assigned to the account type for a member in an account dimension. An account dimension is simply a dimension
that is derived from a single, relational table with an account column. The data value in this column is used by

SSAS to map the types of accounts to well-known account types (for example, assets, balances, and so on) so that
you replicate the functionality of a balance sheet in your cube. SSAS uses these mappings to apply the appropriate
aggregation functions to the accounts. If no account type dimension exists in the measure group, ByAccount is

treated as the None aggregation function.

Calculated Measure vs. Derived Measure
A final consideration for measures is that you can elect to derive measure values on load of data into the
cube. This type of measure is called a derived measure because it is derived, or created, when the cube is
loaded, rather than simply retrieved using a SELECT statement from the source fact table(s). Creating
derived measures is done via a statement (T-SQL for SQL Server) that is understood by the source
database. We do not advocate using derived measures because the overhead of creating them slows
cube processing times.

Rather than incurring the overhead of deriving measures during cube loads, an alternative way to
create the measure value is to calculate and store the measure value during the ETL process, which is
used to load the (relational) fact table, rather than in the SSAS cube. That way, the value can simply be
retrieved (rather than calculated) during the cube load process.

In addition to derived measures, SSAS supports calculated measures. Calculated measure values are
calculated at query time by SSAS. Calculated measures execute based on queries that you write against
the OLAP cube data. These queries are written in the language required for querying SSAS cubes, which
is Multidimensional Expressions (MDX). We will review the process for creating calculated measures in
Chapter 13, “Introduction to MDX.”

Other Types of Modeling
SSAS supports additional capabilities that may affect the final modeling of your cube source schemas. In
our experience, most clients start with the concepts presented in this chapter, load some sample data to
validate both the data and the modeling concepts, and then add the more advanced capabilities.

Data Mining
Data mining capabilities have been enhanced with each version of SSAS, due to the growing number and
increasing sophistication of data mining algorithms. Data mining is the ability to use predefined
algorithms to detect patterns in the data. Interestingly, SSAS’s data mining capabilities can be used with
either OLTP or OLAP source data. Data mining is covered in more detail in Chapter 14, “Introduction to
Data Mining.”

CHAPTER 2 ■ OLAP MODELING CONCEPTS

51

Key Performance Indicators
A key performance indicator (KPI) is a method (usually displayed in an end-user tool visually) of showing
one or more key business metrics: the current state, comparison to goal, trend over time, and other
information. KPIs are usually shown via graphics, such as, red, yellow, or green traffic lights; up arrows
or down arrows; and so on. You’ll learn about the planning and implementation of SSAS KPIs in Chapter
4, “Intermediate OLAP Modeling with SSAS.”

Actions, Perspectives, Translations
SSAS actions give the end users the ability to right-click a cell of the cube and to perform some type of
defined action, such as passing the value of the selected cell into an external application as a parameter
value and then launching that application. Perspectives are similar conceptually to relational views. They
allow you to create named subsets of your cube data for the convenience of your end users. Translations
give OLAP modelers a quick and easy way to present localized cube metadata to end users. All of these
capabilities are also covered in Chapter 4, “Intermediate OLAP Modeling with SSAS.”

Source Control and Other Documentation Standards
Already in the OLAP modeling phase, your BI project will contain many files of many different types.
While you are in the modeling phase, the files will probably mostly consist of Visio diagrams, Excel
spreadsheets, and Word documents. It is very important to establish a methodology for versioning and
source control early in your project. When you move to the prototyping and developing phase, the
number and types of files will increase exponentially.

You can use any tool that works for you and your team: Rational ClearCase, Perforce, Visual Source
Safe (VSS), Visual Studio Team System, SharePoint Document Libraries, or versioning via Office. The
important point is that you must establish a system that all of your BI team members are committed to
using early in your BI project lifecycle. Also it’s important to use the right tool for the right job; for
example, SharePoint Document Libraries are designed to support versioning of requirements
documents (which are typically written using Word, Excel, and so on), whereas VSS is designed to
support source control for OLAP code files, which you’ll create later in your project’s lifecycle.

Another important consideration is naming conventions. Unlike OLTP (or relational) database
design, there are very few common naming standards in the world of OLAP design. I suggest that you
author, publish, and distribute written naming guidelines to all members of your BI team during the
requirements gathering phase of your project. These naming guidelines should include suggested
formats for the following items at minimum: cubes, dimensions, levels, attributes, star schema fact and
dimension tables, SSIS packages, SSRS reports, SharePoint pages, and dashboards.

Summary
This chapter covered the basic modeling concepts and techniques for cubes in a BI project. You saw how
grain statements can be used for a high-level validation of your modeling work. You learned how best to
determine what types of dimensions (fixed, SCD, or RCD) and facts (stored, calculated, or derived) will
be the basis for your cubes. We also discussed the concept of hierarchies of dimensional information. If
you are new to BI, you’ve got some “unlearning” to do. OLAP modeling is very dissimilar to OLTP
modeling, mostly because of the all-prevalent concept in OLAP of deliberate denormalization.

In the next chapter, we’ll introduce you to OLAP modeling with SSAS. In addition, you will discover
more about measures and dimensions. Finally, you will build your first cube!

C H A P T E R 3

■ ■ ■

53

Introducing OLAP Modeling with

SSAS

Now that you’ve been introduced to OLAP modeling concepts, let’s take a look at OLAP modeling with
SQL Server Analysis Services (SSAS). In this chapter, you will continue to discover OLAP modeling
concepts and techniques using SSAS, and you will build your first cube. It is quite common to prototype
cubes built on subsets of enterprise data quickly in a BI project. As with any other type of development,
you can expect cube development to be iterative. Generally, extract, transform, and load (ETL)
development runs somewhat concurrently to these cube iterations, assuming that you have the
resources to commit to both of these processes.

This chapter assumes you have a couple of populated star schemas in SQL Server to work with. The
data in the samples are, of course, very clean. This is not to ignore the real-world situation of data
cleansing, validation, and transformation; rather, it allows you to focus on cube building using the many
features available in SSAS. So, you’ll use the handy AdventureWorks 2008R2 sample that is part of the
SQL Server sample databases as a source for building your first cube. If you haven’t yet installed the
sample database, refer to the explanation in “Building the First Sample—Using AdventureWorks” in
Chapter 1. This chapter will cover the following topics:

• Using SSAS in BIDS, and understanding the development environment

• Creating data sources and Data Source View objects

• Creating cubes using the UDM and the Cube Build Wizard

• Refining dimensions and measures in BIDS

Using BIDS to Build a Cube
In this section, you will use the Business Intelligence Development Studio (BIDS) to create SSAS cubes.
This environment is also used to create SSAS data mining structures and models (which are covered in
Chapter 14) and SQL Server Reporting Services reports and report models (covered in Chapter 10).
To start your work, open BIDS, and select File ➤ New ➤Project. Select the Analysis Services Project
template under the “Visual Studio installed templates” heading, as shown in Figure 3–1.

CHAPTER 3 ■ INTRODUCING OLAP MODELING WITH SSAS

54

Figure 3–1. The New Project dialog box in BIDS allows you to select project templates to create a new

Analysis Services solution or to import an SSAS database.

In Solution Explorer, you’ll note several new folders or nodes. Each node is designed to hold a
different type of item or file. The first node, Data Sources, will contain connections that can be used in
multiple packages. A data source stores server, database, and security information. Data Source Views
(DSVs), shown in the second node, are defined against one of your data sources. These views, which are
analogous to database views, allow you to create calculated columns and define relationships between
tables in the DSV. DSVs are an important feature for SSAS designers who want to make usability
improvements against the star schema. In some situations, SSAS designers will not have permissions to
create objects (such as views) in source star schema databases.

Some of the enhancements that can be made via DSVs are as follows:

• Rename tables or columns to create more end-user friendly names.

• Add calculated columns, which can include column concatenations, or other
manipulations that the source database understands (in our case, using T-SQL).

• Remove columns that are not needed for the UDM.

• Add derived measures to the fact table, much like calculated columns for the
dimension tables (in our case using T-SQL).

CHAPTER 3 ■ INTRODUCING OLAP MODELING WITH SSAS

55

To create a data source, right-click the Data Sources folder in Solution Explorer, and select New
Data Source. Click Next in the Welcome dialog. On the “Select how to define the connection” dialog,
click New, and the Connection Manager will be displayed. In the Connection Manager, enter your server
name and authentication method. Choose AdventureWorksDW2008R2 as the database to connect to.
The completed dialog should resemble Figure 3–2.

Figure 3–2. Use the Connection Manager to set the properties of a connection.

CHAPTER 3 ■ INTRODUCING OLAP MODELING WITH SSAS

56

Once you have completed setting your connection’s properties, click OK. The final dialog in this
wizard will display your data connection’s name, and the properties you set. Click the Finish button to
confirm your settings. Finally, complete the wizard by naming your data source Adventure Works
DW2008R2 and clicking Finish. Figure 3–3 shows the confirmation dialog.

Figure 3–3. Use this dialog of the Data Source Wizard to confirm your connection settings.

Creating a DSV is similar to creating a data source. To create a DSV, right-click the Data Source
Views folder in Solution Explorer, and select New Data Source View. Click Next in the Welcome dialog.
The Select a Data Source dialog will contain the data source you just created. Select this data source, and
click Next. In the Select Tables and Views dialog, select the following tables from the “Available objects”

CHAPTER 3 ■ INTRODUCING OLAP MODELING WITH SSAS

57

area, and place them into the Included objects: area, using the right-facing arow button or by drag-and-
drop:

• DimCustomer

• DimDate

• DimEmployee

• DimGeography

• DimProduct

• DimProductCategory

• DimProductSubcategory

• FactInternetSales

• FactResellerSales

Figure 3–4 displays the nine tables that you will be using to create your first cube. When you are
finished making your table choices, click Next. Complete the wizard by naming your data source view
Adventure Works DW2008R2 and clicking Finish.

CHAPTER 3 ■ INTRODUCING OLAP MODELING WITH SSAS

58

Figure 3–4. Use the Select Tables and Views dialog to include tables and views in your data source view.

After some processing, BIDS will display your tables and their relationships as an entity relationship
diagram (ERD) in the main area of the Design tab. Figure 3–5 shows the Design tab, with your tables
displayed in the main area.

CHAPTER 3 ■ INTRODUCING OLAP MODELING WITH SSAS

59

Figure 3–5. Use the Design tab to view the tables that belong to your data source view. You’ll use the DSV to

build your cube.

You can explore the data in the tables and views in your DSV by right-clicking any table in the DSV
window and clicking Explore Data. You’ll then be presented with four different ways to look at the
source data: via a table, a pivot table, a chart, or a pivot chart. This feature can be helpful in the
development of a useful DSV as a basis for your cube, because it allows you to easily and quickly explore
the data in a variety of output formats. You can quickly validate data values by examining the data in
tabular and charted output formats.

To interact with your employee source data using the familiar Office PivotTable interface, explore
Employee, and click the Pivot Table tab. Use the PivotTable Field List to add Marital Status to the Row
Field area, then add Status to the Column Field area. Next, drop BaseRate in the Totals or Detail Fields
area. Finally, add Gender to the Filter Field area, and filter on the value F. Figure 3–6 shows the pivot table
option for the DimEmployee table.

CHAPTER 3 ■ INTRODUCING OLAP MODELING WITH SSAS

60

Figure 3–6. Using the Explore Data feature of the DSV in BIDS can help you make intelligent decisions

about refining the DSV for your cube.

CHAPTER 3 ■ INTRODUCING OLAP MODELING WITH SSAS

61

NAME MATCHING

An interesting option available in the DSV is displayed only if foreign key (FK) relationships do not exist in
the underlying data source. This is the NameMatchingCriteria property, which allows you to specify
whether you prefer to have Analysis Services generate relationships between columns in the source tables
of the DSV automatically.

 Same name as primary key
 Same name as destination table name
 Destination table name and primary key name

The three options to pick from are listed:

Defining Your First Cube
After creating at least one data source and at least one DSV, you are ready to define your first cube. The
Cube Wizard will help you define cubes quickly and correctly. You can (and usually will) make many
refinements to OLAP cubes generated using the wizard after the initial run of the wizard.

Also, this flexible and useful wizard includes the capability to go back at any point, so if you are not
happy with the results of a particular page, you can click Back, adjust input parameters, and then
proceed again. It is also the only way to create a new cube in BIDS. To access the Cube Wizard, right-
click the Cubes folder in Solution Explorer, and click New Cube. Click Next in the Welcome dialog.
Choose “Use existing tables” as your creation method, and click Next. The wizard will now ask you to
select your measures; choose FactInternetSales and cFatResellerSales, and click Next.

The Select Measures dialog is where you choose which facts you want to aggregate in your cube. As
it is not meaningful to aggregate your primary or foreign keys, deselect each of these. Revision Number is
an example of a nonkey fact that is an attribute and not a measure. Deselect Revision Number and
Revision Number – Fact Reseller Sales as well. For your first cube, your selected measures should
look like Figure 3–7.

CHAPTER 3 ■ INTRODUCING OLAP MODELING WITH SSAS

62

Figure 3–7. Use the Select Measures dialog to choose the measures that belong in your cube.

CHAPTER 3 ■ INTRODUCING OLAP MODELING WITH SSAS

63

Once you have chosen your measures, click Next to continue. On the Select New Dimensions dialog
that appears next, deselect Fact Internet Sales and Fact Reseller Sales. Click Next to continue. Finally,
review your selections in the preview area, name your cube Adventure Works DW2008R2, and click Finish
to complete the Cube Wizard. When the wizard completes, the Cube Structure tab will open, displaying
your data source view, your measures and dimensions. The Cube Structure tab for your newly created
cube is shown in Figure 3–8.

Figure 3–8. The Cube Structure tab shows the data source view, as well as the measures and dimensions

for a cube.

Table 3–1 lists each of the steps you performed in the Cube Wizard, the information presented by
BIDS, and the action that you took.

CHAPTER 3 ■ INTRODUCING OLAP MODELING WITH SSAS

64

Table 3–1. Steps you performed using the Cube Wizard in BIDS

Wizard Step Actions by BIDS Actions by You

Select creation method -- Select the “Use existing tables”
radio button.

Select measure group tables Detects and displays data source
views and measure group tables

Select Adventure Works
DW2008R2 and each fact table.

Select measures Detects and displays candidate
measures from the Fact tables
you selected in the preceding
step

Deselect attributes that will
not be aggregated.

Select new dimensions Detects and displays candidate
dimension tables

Deselect the fact tables.

Completing the wizard Displays a suggested name for
the cube and its contents

Name the cube Adventure
Works DW2008R2.

Adding Dimension Attributes
Now that your cube is defined, it is time to work with your dimensions by adding attributes. In this
section, you will use BIDS to add attributes to the Date dimension. To begin, open the dimension
designer for the Date dimension by double-clicking Dim Date in Dimensions folder of your project. Next,
drag and drop the CalendarYear and MonthNumberOfYear fields from the Data Source View pane to the
Attributes pane. Figure 3–9 shows the Dimension Structure tab, with the Date dimension and the
attributes you have chosen.

CHAPTER 3 ■ INTRODUCING OLAP MODELING WITH SSAS

65

Figure 3–9. The Dimension Structure tab, showing the Date dimension and your chosen attributes

Now that you have created the date attributes for your first cube, let’s move on to the Product
dimension. Open the Product dimension in the dimension designer, and take note of the three tables in
the data source view. You will use these very soon to create your first hierarchy. For now, add the
following fields to the Attributes pane: Color, EnglishProductCategoryName,
EnglishProductSubcategoryName, and EnglishProductName. Figure 3–10 shows the Product dimension
with four added attributes.

CHAPTER 3 ■ INTRODUCING OLAP MODELING WITH SSAS

66

Figure 3–10. The Dimension Structure tab, showing the Product dimension tables and your chosen

attributes

Defining Hierarchies
Hierarchies play an important role in your cube development. They add usability to your cube from an
end-user perspective—they enable users to navigate and filter the cube. The Product dimension is an
example of a natural hierarchy. It is easy to visualize that a product belongs to a product subcategory,
which, in turn, belongs to a product category.

To create the product hierarchy, open the Product dimension in the dimension designer. Begin by
dragging the English Product Category Name attribute into the Hierarchies pane. When you do this,
BIDS will create a hierarchy object, with English Product Category Name highlighted and an extra row
named <new level>. Next, drag and drop the English Product Subcategory Name attribute to the <new
level> row, followed by the English Product Name attribute. Figure 3–11 shows the completed Product
dimension. You can safely ignore the warning icon displayed in the hierarchy for now. The “Creating
Attribute Relationships” section later in this chapter will cover this warning in more detail.

CHAPTER 3 ■ INTRODUCING OLAP MODELING WITH SSAS

67

Figure 3–11. The Dimension Structure tab, showing the Product dimension attributes and hierarchy

Building Your First Cube
Let’s review what you’ve completed in preparation for understanding how you can further edit and
refine your cube in BIDS. To browse your cube, you’ll have to build and deploy it first. During the build
step, the cube metadata is validated (if there are errors in the metadata, they will be reported to you and
the cube will fail to build), and then it is written (called “deployed” in this interface) to the Analysis
Services directories so that it can be used by query tools. The tool in BIDS for querying the cube is called
the Cube Browser. Until you build and deploy your cube, you will not be able to view the cube results in
BIDS. To build the cube you just created (which makes the metadata files that you’ve generated in BIDS
available to SSAS), in the Solution Explorer view, right-click the cube, and click Process. BIDS will post a
message that the server content appears to be out of date. Click Yes to build and deploy this project for
the first time. The Process Cube dialog box appears, as shown in Figure 3–12. The details of processing
are covered in Chapter 6, so for now, just click Run.

CHAPTER 3 ■ INTRODUCING OLAP MODELING WITH SSAS

68

Figure 3–12. To browse your cube in the BIDS cube browser, you must first process and deploy it.

After you’ve clicked Run, BIDS shows a detailed cube-processing dialog box, which shows each step
and the progress status. You are looking for a “Process succeeded.” message in the status area of this
dialog box, as shown in Figure 3–13.

CHAPTER 3 ■ INTRODUCING OLAP MODELING WITH SSAS

69

Figure 3–13. The Process Progress dialog box in BIDS displays detailed information about each step in the

cube process task.

After you see this message, click Close to dismiss the Process Progress dialog; then click Close on the
Process Cube dialog. To view your cube, select the Browser tab. This opens the familiar pivot table
interface. Figure 3–14 displays the Sales Amount measure with the Calendar Year hierarchy on the rows
pivot table axis, the Product Category hierarchy on the columns axis, and a filter to show only sales
results for the All-Purpose Bike Stand and HL Road Tire products. Your browse results may look different
from Figure 3–14, of course, depending on which values from the metadata browser you’ve chosen to
add to the (cube) Browser area.

CHAPTER 3 ■ INTRODUCING OLAP MODELING WITH SSAS

70

Figure 3–14. Browsing your first cube using BIDS, you can see the cube from an end-user perspective.

Refining Your Cube
You can do many, many tasks to refine a cube that you’ve built using the BIDS wizard. In this chapter,
we’ll look at some simple and common cube refinements, including enhancing measures, dimensions,
and the cube itself.

You’ll learn the BIDS development interface as you proceed with these refinements. Although the
environment is a GUI, it is complex; often, half the battle when working with BIDS is getting to the
correct location in the development interface!

Reviewing Measures
A common and simple task when refining your cube is changing the display format of the measures. To
do this, you just double-click the cube name (under the cubes folder in Solution Explorer) to open that
cube in the BIDS cube design interface. This will load the cube metadata into a series of tabbed
interfaces, with the Cube Structure tab open by default. In the Measures panel on the left, right-click the
measure that you want to format, and then click Properties. On the bottom right of the BIDS design
surface, the property pane will be set to that particular measure. Click the selection list for the
FormatString property, and select the format type that you need. The property view is shown in Figure
3–15. Among the values you can select:

CHAPTER 3 ■ INTRODUCING OLAP MODELING WITH SSAS

71

• Standard

• Currency

• Percent

• Short Date

• Long Date

• 0

• #,##0.00;-#,##0.00

• $#,##0.00;($#,##0.00)#,##0.00 %;-#,##0.00 %

• M/d/yyyy

• dddd, MMMM dd, yyyy

Another interesting use of measure properties in this same interface is to create a derived measure.
A derived measure is based on a calculation that is “passed through” to the data source for the cube on
process. In our case, this would be a T-SQL expression. You enter the expression in the
MeasureExpression property in the Properties window for the measure you want to create.

You may choose to do this because the measure may not exist in the source data. Although this is a
very flexible option to create additional measures, you should evaluate the overhead that creating a
derived measure adds to cube-processing time. You can do this by reviewing the detailed output from
the cube-processing window (discussed earlier in this chapter), paying particular attention to the
amount of time taken to perform the derivation step.

CHAPTER 3 ■ INTRODUCING OLAP MODELING WITH SSAS

72

Figure 3–15. You can easily format a measure using the Properties windows in BIDS.

■Note As mentioned previously, although it’s relatively easy to add derived measures to a cube, we don’t often
use them in production solutions. We prefer to calculate and store most required measures during the ETL

process. If there are measures used by a small number of end users, we prefer to use the resources of SSAS to
produce these. This type of measure is called a calculated measure, and it is calculated at query time. We’ll talk

more about calculated measures in Chapter 13, “Introduction to MDX.”

CHAPTER 3 ■ INTRODUCING OLAP MODELING WITH SSAS

73

Reviewing Dimensions: Attributes
The next step in refining your cube is reviewing the attributes in each dimension that the Cube Wizard
created for you. Many times, your end users will not need or want to see all of this information, and
because these attributes will be visible to end users, removing unnecessary attributes is a good thing to
do. It is a common development practice to remove attributes that are not needed. Refer to the business
taxonomy and original documentation you created during the planning phase of your project at this
time so that you include only required attributes. Your cube needs to be comprehensive but also usable.
Reviewing business requirements will help you get the correct balance. Also, removing unneeded
attributes will improve cube processing time and query time. It is also very important to rename
attributes to reflect the business language that you captured during the modeling phase. As mentioned
previously, your use of business taxonomies dramatically improves cube usability.

To edit the attribute values, names, or properties for a particular dimension, in the lower-left pane
(Dimensions) of the Cube Structure tab, click the plus sign next to the dimension you want to edit, and
then click the “edit the dimension” link. You will now be working in the dimension editor area of BIDS
with the particular dimension you just selected opened in its own editor. The dimension editor surface
contains different sections than the cube editor. The dimension editor tabs are Dimension Structure,
Attribute Relationships, Translations, and Browser, as shown in Figure 3–16.

Figure 3–16. You can use the Dimension Structure tab in BIDS to make structural changes to dimension

members. These changes can include renaming, deleting, or adding attributes. Changes also include

creating or refining dimensional hierarchies.

CHAPTER 3 ■ INTRODUCING OLAP MODELING WITH SSAS

74

■Tip The default value for each dimensional attribute is the first member loaded into the dimension. A simple change

you can make to improve dimension usability is to set the default attribute value that will appear in the end-user client

tools for key attributes to a more meaningful value. To do this, with the dimension open in the Dimension Structure tab in

BIDS, right-click the attribute, and then click Properties. In the Properties window, click the text box next to the

DefaultMember property to activate the Build button (gray icon with three dots), and then click on that Build button to

open the “Set Default Member - Attribute Name” dialog box. In this dialog box (see Figure 3–17), you can select a

default value or write an MDX expression.

Figure 3–17. You can use the Set Default Member dialog box to change the default value for individual

dimension attributes in BIDS. This can improve dimension (and cube) usability.

CHAPTER 3 ■ INTRODUCING OLAP MODELING WITH SSAS

75

Reviewing Dimensions: Hierarchies
In Chapter 2, we discussed the concept of a dimensional hierarchy as being a rollup of attributes. By
default, BIDS creates only one rollup to an All member. Sometimes during the initial cube build, BIDS
will detect additional hierarchies. During the execution of the Cube Wizard, BIDS will present you with a
page in the wizard so that you can review (and make simple changes to) any hierarchies that it has
detected.

SSAS uses a couple of types of hierarchies. The first type is called a natural hierarchy because the
source data reflects a one-to-many relationship between the data in one or more columns from the
source table. An example of a natural hierarchy is a geography hierarchy, which is built from a
Geography source table with a State column and a City column, where each state contains many cities.
Usually, when you build your cube in BIDS, SSAS will correctly detect natural hierarchies in the source
data and will build hierarchies (using the source column names as level names) in the resulting
dimension. You can modify (or create) these types of hierarchies manually as well.

An example of a natural hierarchy that we’ve had to commonly create in production BI solutions is
one or more additional time hierarchies. These are used to reflect different business calendars, such as
fiscal, 4-5-4 (retail), manufacturing, and so on.

Another type of hierarchy is a navigational hierarchy. As the name indicates, these are groupings for
one purpose only—navigation. The source data has no particular relationship between the data in the
hierarchy levels. An example using the Customer dimension could be a hierarchy with the State attribute
listed above the Gender attribute. You will have to manually create any navigational hierarchies as part of
your cube-refinement process. Navigational hierarchies improve cube usability and are easy to add,
modify, and delete. All hierarchies associated with a dimension are displayed in the Hierarchies and
Levels section of the Dimension Structure tab in BIDS. BIDS does not distinguish between natural
hierarchies and navigational hierarchies in the design interface.

To create a new hierarchy or to modify an existing one, select and drag one or more attributes from
the Attributes section of the Dimension Structure tab to the Hierarchies and Levels section. You can also
rearrange the levels in a hierarchy by dragging the attributes above or below one another in the
hierarchies that you’ve created.

Another design consideration for natural hierarchies only is whether or not you want to configure
attribute relationships that reflect the one-to-many nature of the relationship between the data in the
hierarchy levels. BIDS allows you to configure this but does not set up these relationships automatically.
You may want to add this information to natural hierarchies to improve query-processing performance,
improve dimension-processing performance, and save disk space. If you create these relationships, SSAS
will build internal indexes to make these three tasks more efficient. If you do not create these
relationships, then, for example, a query for all customers in the United States would have to touch each
fact, rather than traverse a more efficient index.

■Caution If you are going to add these relationships, they must be correct in the data—that is, the data
associated must truly have a one-to-many relationship. If it does not, your cube may fail to process, or if it does
process, your results may be incorrect. Sometimes BIDS marks incorrectly created attribute relationships as an

error by adding a red line under the error data, but BIDS does not catch all possible error conditions.

CHAPTER 3 ■ INTRODUCING OLAP MODELING WITH SSAS

76

Creating Attribute Relationships
With the release of SQL Server 2008, Microsoft added the Attribute Relationships tab to the Dimension
Designer. In this section, you will explore the Attribute Relationship Diagram using the Date dimension.
To enhance the Date dimension, and work with attribute relationships, follow these steps:

1. Open the Date dimension in BIDS.

2. Update the Date dimension, by adding or removing attributes, until Calendar
Year, Date Key, Day Number Of Year, and Month Number Of Year are the only
four attributes remaining.

3. Create a date hierarchy in the hierarchy panel, using Calendar Year, Month
Number Of Year, and Day Number Of Year. After completing this step, your
Dimension designer should look like Figure 3–18.

Figure 3–18. In the Date dimension attributes and hierarchy, the blue squiggle under the Hierarchy

heading is a warning that attribute relationships are missing.

4. Click the Attribute Relationships tab, which will display the Attribute
Relationship Diagram. SSAS takes a first pass in creating our hierarchy and
creates a set of default relationships, as shown in Figure 3–19.

CHAPTER 3 ■ INTRODUCING OLAP MODELING WITH SSAS

77

Figure 3–19. The Attribute Relationships tab, with SSAS default relationships displayed.

5. Recalling the previous section, creating these attribute relationships will
indicate to the SSAS engine how the hierarchy path actually lies, and which
indices SSAS should create. Start by dragging and dropping the Month Number
Of Year onto the Calendar Year.

6. Next, drag and drop the Day Number of Year onto the Month Number Of Year. You
have now completed defining your parent-child relationships for the Date
dimension. Your Attribute Relationship Diagram should now look like Figure 3–20.

CHAPTER 3 ■ INTRODUCING OLAP MODELING WITH SSAS

78

Figure 3–20. The Attribute Relationships tab, with your newly designed relationships displayed. Attribute

relationships in hierarchies improve query-processing time and dimension-processing time.

Other Parts of the Dimension Structure Tab
The right pane, Data Source View, allows you to explore the data in the source table or tables from the
DSV for this dimension using the same techniques discussed previously (that is, Explore Data, and so
on). If you want to modify the table data, for example, by adding a calculated column, then you must
edit the DSV in the DSV designer, rather than by using the DSV section of the dimension editor. The DSV
section of the Dimension Structure tab is read only.

Similar to the cube browser, the dimension work area also has a Browser tab, so that you can view
the dimension, its hierarchies, and its attributes for verification purposes. The other tab available in the
dimension work area is Translations, which allows you to supply values for the dimension hierarchy,
level, or attribute names that are localized for whatever languages your end users prefer.

CHAPTER 3 ■ INTRODUCING OLAP MODELING WITH SSAS

79

Dimension Properties
As with measures, you can also set properties for dimensions, attributes, hierarchies, and levels by
clicking the object you want to configure and setting the property using the Properties window in the
lower-right corner of the BIDS work area.

An interesting dimension property is UnknownMember. This is set for an entire dimension and allows
you to specify whether or not unknown member values will be visible in the cube. Also, you can specify a
caption, for example, “Unknown” for any unknown members. The Properties window for a dimension is
shown in Figure 3–21. One of the reasons this window is so interesting is that SSAS provides you with
more flexibility in terms of loading nulls. As you will discover later, you may now configure dimensions
to allow nulls and ask that those values be translated to unknowns. This reflects a real-world difficulty of
providing perfectly clean data (that is, without null values) to SSAS. We’ll talk more about the
configuration in Chapter 6, where we’ll discuss error handling in more detail.

Figure 3–21. The Properties window for a dimension allows you to set advanced properties, including the

new UnknownMember property. This property is set for the entire dimension only.

CHAPTER 3 ■ INTRODUCING OLAP MODELING WITH SSAS

80

It is also common to set properties for attributes or hierarchies using the Properties window. The
following are some of the commonly changed settings:

• Default Member: This property allows you to set the attribute member value,
which will be displayed by default for all end users. The dialog box to configure
this was shown earlier. You can also set default members for end users in different
security groups, for example, the TexasManagers group can see the Texas state
member of a Geography dimension, and so on.

• Order By: This property allows you to set the order in which the members will be
displayed. The default value is by attribute name.

• Allow Duplicate Names: This property allows you to control whether or not
duplicate names will be displayed.

• Member Names Unique: This property allows you to notify BIDS that all members
for a particular level of a particular dimension are unique. The default value of
false causes BIDS to issue SELECT DISTINCT to load the dimension data. If this
setting is set to true, BIDS will simply SELECT all members of a dimension at that
level. Changing this setting’s value to true will reduce dimension-processing
times.

Offline vs. Online Mode in BIDS
There are two modes of working with SSAS databases (which contain one or more OLAP cubes) in BIDS:
offline and online. When you initially create an SSAS database, you will always be working in offline
mode. This means you are creating cube and dimension metadata using the wizards and GUI interface
in BIDS. This metadata is saved in file formats proprietary to BIDS and SSAS. The metadata you’ve
created while working offline is not yet deployed to SSAS; you must process the particular structure you
are working with to deploy those metadata files to SSAS.

One advantage of working in offline mode in BIDS is that you can make changes to SSAS metadata
without affecting end users who are currently connected to your production cube(s). Another advantage
is that multiple OLAP designers can work on parts of a solution without affecting end users.

After you’ve successfully deployed your cube, you may subsequently choose to work offline or
online. To work online, you open BIDS, click File ➤ Open ➤ Analysis Services Database, click the SSAS
server and database name in the Connect to Database dialog box, and then click OK. If you are working
online, any change you make to the metadata is immediately reflected in the production server. There is
no deploy option available on the project, cube, or dimension menus in Solution Explorer. Also, the title
bar of BIDS shows the name of the SSAS database and then names of the SSAS server, for example,
Adventure Works DW 2008R2(YourServerName), to reflect the fact that you are working online. For the
majority of this book, we will use online mode in BIDS.

To work offline after you’ve successfully deployed your cube, open BIDS, click File ➤ Open ➤
Project/Solution, or simply double-click the solution file (<Projectname>.sln). The title bar in BIDS
shows only the SSAS database name to reflect that you are working offline. In offline mode, after you
save changes, you must still deploy the changes to SSAS.

CHAPTER 3 ■ INTRODUCING OLAP MODELING WITH SSAS

81

■Caution If you have multiple OLAP developers working offline, you must establish source control procedures
outside of BIDS using whatever method works best for you. This could include Visual Source Safe (VSS), Visual
Studio Team System (VSTS), SharePoint Portal Server (SPS), and so on. The product you use depends of the type

of information you want to place under source control. VSS and VSTS are designed to control code files, and SPS is
designed to control specification documents.

The need for external source control when using offline development in BIDS results from the default deployment

behavior in BIDS. The default deployment gives you only a single, overly generic message if there are conflicts
between the existing metadata on SSAS and new metadata from BIDS. On deployment, BIDS will overwrite
anything and everything on SSAS to reflect the entire contents of what is being deployed from BIDS. In other

words, BIDS does not produce a list of changes on deployment; it simply overwrites everything.

Other Types of Modeling
SSAS supports many additional capabilities that may affect the final modeling of your cube. These
include KPIs, calculations, actions, perspectives, and more. These topics (and more) will be covered in
Chapters 4, 5, and 13.

Summary
This chapter covered the processes for creating your first cube. We discussed DSVs in detail, covering
their purpose and the options for refining your schema in BIDS. Next, we walked through the Cube
Wizard, and then we built our first cube quickly and easily. After that, we refined the measures and
dimensions of our cube to make it more efficient and usable.

There’s quite a bit more you can do to add features and business value to OLAP cubes. In Chapters 4
and 5, we’ll cover the more advanced cube-modeling techniques. In Chapter 6, we’ll review the
processes involved in physical cube storage.

C H A P T E R 4

■ ■ ■

83

Intermediate OLAP Modeling with

SSAS

After you’ve mastered basic OLAP modeling and the use of SSAS, the next area to investigate is using
some of the intermediate and advanced capabilities of SSAS. This chapter’s examples continue to build
on the AdventureWorks 2008 R2 sample. The assumption is that you’ve built a basic cube using the
sample database and now want to further enhance your cube. This chapter will cover the following
topics:

• Adding key performance indicators (KPIs)

• Reviewing perspectives

• Understanding translations for currency localization

• Covering Actions: regular, drillthrough, and reporting actions

Adding Key Performance Indicators (KPIs)
A KPI is an object that helps cube users to quickly check the status of the most important business
metrics. Although you will set up KPIs to return results as numbers, that is, 1 is good, 0 is ok, and –1 is
bad, you’ll generally display these results as graphics (such as a traffic light graphics with red, yellow, or
green selected or different colors or types of arrows). The returned number values aren’t as compelling
and immediate as the graphics to most end users. SSAS has built-in support to display several types of
graphics instead of the numbers. There is also a built-in KPI designer and browser in SSAS. You can use
the KPI browser to view the results as the end users will see them (as long as the user’s particular client
application supports the display of KPI graphics).

Excel and SharePoint Server support the display of SSAS KPIs using the associated graphics defined
in SSAS. The KPI view is a tab in the cube designer work area in BIDS (see Figure 4–1).

CHAPTER 4 ■ INTERMEDIATE OLAP MODELING WITH SSAS

84

Figure 4–1. SSAS supports the creation of server-based KPIs; BIDS includes a KPI browser.

Implementing KPIs in SSAS
A KPI typically consists of the following four items: Value, Goal, Status, and Trend. KPIs come in two
flavors; the three-state KPI, and the five-state KPI. The 3-state KPI communicates the status or trend of
your KPI as Good, OK, or Bad. A five-state KPI adds two additional values for rising and falling.

KPI definitions are created using MDX, and defined for a particular measure in a measure group. A
measure group is, as the name would indicate, a grouping of one or more measures in a cube. The
AdventureWorks cube includes a variety of measure groups, examples being Internet Sales and Reseller
Sales.

■Note Multidimensional Expressions (MDX) is one of the “native” languages used in the SSAS environment
(others include XMLA and DMX). MDX is to SSAS as T-SQL is to SQL Server, which means that it is the query
language for Microsoft’s implementation of OLAP (cubes). Chapter 13 provides a more complete introduction to the

MDX language.

Here are definitions for the four most typically used items in KPIs:

• Value: MDX statement that returns the actual value of the metric.

• Goal: MDX statement that returns the target value of the metric.

• Status: MDX statement that returns Value – Goal. For a three-state KPI, these are
defined as 1 (good), 0 (OK), or –1 (bad). When returning a five-state KPI, these are
defined as 1 (good), .50 (rising), 0 (ok), –.50 (risk), or –1 (bad).

CHAPTER 4 ■ INTERMEDIATE OLAP MODELING WITH SSAS

85

• Trend: MDX statement that returns Value – Goal over time. For a three-state KPI,
these are defined as 1 (good), 0 (OK), or –1 (bad). When returning a 5-state KPI,
these are defined as 1 (good), .50 (rising), 0 (OK), –.50 (risk), or –1 (bad).

You can also nest KPIs, that is, create parent and child KPIs. If you do this, you can then assign a
Weight value to the nested KPI, which shows the child’s percentage of contribution to the parent KPI
value. For example, in a growth ratio percentage for a department of a store, nested (or child) KPIs can
be used for each department’s growth ratio percentage, rolling up to the parent KPI that can reflect
growth ratio percentage for an entire store.

The AdventureWorks sample ships with several sample KPIs, one of which is shown in Figure 4–2.
The MDX statement to define the Value and Goal properties is straightforward. You can see in Figure 4–2
that SSAS includes some MDX functions specific to KPIs. These functions are used to create the Status
value for the example KPI. The MDX functions KPIValue and KPIGoal are simply aliases for the MDX
statements defined earlier for those properties. Note the use of the MDX IIF function. IIF is analogous
to the Immediate If construct in several programming languages. IIF evaluates the expression passed as
the first parameter, and if True, returns the second parameter. Otherwise, IIF will return the third
parameter. The MDX statement in Figure 4–2 will return 1 (good) if Customer Profitability exceeds its
goal and –1 (bad) if it does not.

Figure 4–2. The AdventureWorks sample cube includes a KPI called Customer Profitability. Note the use of

MDX to define the key properties of the KPI.

CHAPTER 4 ■ INTERMEDIATE OLAP MODELING WITH SSAS

86

KPIs were first introduced with SSAS 2005. Microsoft included a large number of sample KPIs in the
AdventureWorks sample cube, which represent a sampling of the most common business scenarios for
KPIs. Figure 4–3 shows a partial view of the KPI templates provided.

Figure 4–3. Microsoft provides a large number of templates for KPIs in the AdventureWorks sample cube.

These samples represent some commonly monitored business metrics.

CHAPTER 4 ■ INTERMEDIATE OLAP MODELING WITH SSAS

87

If you examine these samples, you’ll note that they are easy to customize for your particular
environment. First, they are generously commented, and second, they are set up as MDX templates. This
means they have double chevrons (<< and >>) surrounding replaceable parameters. One section of the
templates that warrants a bit more explanation is the Trend expression. Figure 4–4 shows the template
for the Customer Retention Rate KPI template as an example of this.

Value, Goal, and Status expressions are self-explanatory. The Trend expression uses the MDX
function ParallelPeriod to get a value from the same part of a different time period, such as “this fiscal
week last year,” to support the trend. ParallelPeriod is one of hundreds of built-in MDX functions.
CurrentMember, which returns properties such as Name and Value for the currently selected member, is
another built-in function used for the calculation of the Trend value.

■Tip MDX color-codes built-in functions brown in all code windows in SSAS. Also, basic IntelliSense is enabled.

So you can type a function followed by an opening parenthesis, and SSAS will display a tooltip with the function

arguments.

The ParallelPeriod function returns a value from a prior period in the same relative position in the
time dimensional hierarchy as the specified value. The three arguments are dimension level (for
example, DimTime.CalendarTime.Years), a numeric value to say how many periods back the parallel
period should be, and a specific value or member (for example, DimTime.CalendarTime.CurrentMember).

CHAPTER 4 ■ INTERMEDIATE OLAP MODELING WITH SSAS

88

Figure 4–4. The KPI template for Customer Retention Rate uses the MDX ParallelPeriod function to

calculate the Trend value.

CHAPTER 4 ■ INTERMEDIATE OLAP MODELING WITH SSAS

89

Implementing KPIs in SSMS
New to SQL Server is the ability to create KPIs directly within the SQL Server Management Studio
(SSMS). Using the familiar CREATE / DROP syntax, a KPI can now be managed via script in the same way as
a table or view. To create a KPI in SSMS, connect to your Analysis Services server and create a new MDX
query. Once your new query pane appears, select Adventure Works from the Cube drop-down list.
Figure 4–5 shows a blank MDX query, with the Adventure Works cube selected and its corresponding
measure groups.

Figure 4–5. A blank MDX query, with selected cube and measure groups displayed.

Creating a KPI with MDX is accomplished by using the Create KPI statement. Your KPI will be
defined using Value, Goal, Status, and Trend expressions, just as in the previous section through the GUI.
When building your KPIs in SSMS, you can use existing measures or create your own using the Create
Member statement. In this section, you will create a new Gross Profit Margin KPI in the Adventure Works
cube. To accomplish this, you will also need two new calculated members, Gross Profit Margin Prior
Period and Gross Profit Margin Change, to support the Gross Profit Margin KPI.

Create the Gross Profit Margin Prior Period by entering and executing the following MDX:

Create Member [Adventure Works].[Measures].[Gross Profit Margin Prior Period]
As
IIf(([Measures].[Gross Profit Margin], [Date].[Fiscal].PrevMember),
 ([Measures].[Gross Profit Margin], [Date].[Fiscal].PrevMember), 0);

CHAPTER 4 ■ INTERMEDIATE OLAP MODELING WITH SSAS

90

Note the use of PrevMember in the above MDX. The PrevMember function returns the previous
member that is at the same level as the member in your expression. In other words, if you are viewing a
fiscal month, PrevMember will be the prior fiscal month; if you’re looking at a fiscal year, PrevMember will
be the prior fiscal year.

The next calculated member you need to create is Gross Profit Margin Change, which will simply
calculate the period-over-period change in gross profit margin. Create this member by entering and
executing the following MDX:

Create Member [Adventure Works].[Measures].[Gross Profit Margin Change]
As
IIf([Measures].[Gross Profit Margin Prior Period],
 ([Gross Profit Margin] - [Gross Profit Margin Prior Period]) / [Gross Profit Margin Prior
Period], 0);

Now that you have your two calculated measures, it’s time to create the KPI. The following MDX will
create a new KPI named Gross Profit Margin KPI.

Create KPI [Adventure Works].[Gross Profit Margin KPI]
As
[Measures].[Gross Profit Margin Change],
Goal = .05,
Status =
 Case
 When KPIValue("Gross Profit Margin KPI") >= KPIGoal("Gross Profit Margin KPI") Then 1
 When KPIValue("Gross Profit Margin KPI") > 0 And
 KPIValue("Gross Profit Margin KPI") < KPIGoal("Gross Profit Margin KPI") Then 0
 Else - 1
End,
Status_Graphic = 'Gauge',
Caption = 'Gross Profit Margin Change',
Display_Folder = 'KPIs';

The Gross Profit Margin KPI creates a performance goal for gross profit margin of 5 percent. The
status of this KPI is good when the goal is exceeded, and OK when gross profit margin rises but does not
exceed the 5 percent goal. Finally, the status is flagged a bad when gross profit margin falls. Note the use
of the Display_Folder property; this gives you the abilibty to organize your KPIs. When you are finished,
you can use the following Drop Member and Drop KPI statements to remove these items from the
Adventure Works cube.

Drop KPI [Adventure Works].[Gross Profit Margin KPI];
Drop Member [Adventure Works].[Gross Profit Margin Prior Period];
Drop Member [Adventure Works].[Gross Profit Margin Change];

CHAPTER 4 ■ INTERMEDIATE OLAP MODELING WITH SSAS

91

Using Perspectives and Translations
Perspectives and translations are two features that are supported only in the Enterprise Edition of SSAS.
They allow you to create custom views of a cube. Perspectives allow you to create view-like subsets, and
translations allow you to associate alternate metadata labels for cube, dimension, and other object
names (such as KPIs).

Perspectives
A perspective is a named MDX query that appears to the end user as if it were a separate cube. Much like
a view in a relational database, perspectives are simply subsets of a the features of a cube. When
deciding whether to use perspectives, consider the following:

• Perspectives are only supported in the Enterprise and Developer Editions of SSAS.

• If you chose to use perspectives, then your client applications must support them.

• Perspectives are best used when the base cube has a complex structure and
simplification would improve usability.

Perspectives are simple to create using BIDS. While working in the cube designer area, you will see a
tab devoted to Perspectives. To create a new Perspective, right-click anywhere on that design surface
and then click New Perspective. Figure 4–6 shows that you can choose to include, or not include, the
following items from a cube:

• Measure groups or individual measures

• Entire dimensions or individual dimension members (hierarchies and/or
attributes)

• KPIs

• Custom MDX calculations defined on areas of the cube, including calculated
members, named sets, and MDX scripts

The built-in cube browser in BIDS supports browsing cube perspectives, so you can verify that the
perspective you’ve created matches the business needs of your particular scenario. Although an MDX
query is being generated in BIDS when you create a perspective, there is no way for you to directly edit
the MDX statement when using BIDS.

■Note Unlike relational views, a cube perspective is not a security mechanism. All security permissions defined
on the base cube are enforced when any end user browses the cube via a perspective. As stated previously, the

primary purpose of a perspective is to provide a simplified view of the base cube to different types of end users.

CHAPTER 4 ■ INTERMEDIATE OLAP MODELING WITH SSAS

92

Figure 4–6. SSAS perspectives allow you to quickly and easily create simplified views of your base cube.

Translations
A translation is a view of cube information in a different language. It’s a view of cube metadata (which
you can also think of as the row, column, and filter labels of a pivot table client for an OLAP cube) in the
language that you select when defining the Translation.

CHAPTER 4 ■ INTERMEDIATE OLAP MODELING WITH SSAS

93

As with perspectives, translations are simple to create in BIDS. While in the cube work area, you
click the Translations tab, and right-click anywhere on the design surface to add a new translation. After
the translation has been created, client applications that connect to the cube will display the cube
metadata in the language that has been defined in the locale settings in the operating system’s Control
Panel. Translations, like perspectives, require the Enterprise or Developer Edition of Analysis Services.

■Note If the cube does not contain a translation for an end user’s particular locale, the default

language/translation view is presented to that user.

Figure 4–7 shows a Spanish translation for the sample cube. Note that in this view, you can only add
translations for a dimension name, not for dimensional attributes, hierarchies, and levels.

Figure 4–7. Creating translations of cube metadata in BIDS allows you to easily localize the metadata for

your cube.

CHAPTER 4 ■ INTERMEDIATE OLAP MODELING WITH SSAS

94

The only complexity with defining translations is that you define only cube metadata (that is,
measure names, dimension names, KPI names, and so on) translations using the preceding process.
This can include defining the localized name of the dimensions.

To define localized names for dimensional attribute values (for example, in the Sales Reasons
dimension, some of the attribute values are manufacturer, on promotion, and so on), you first open the
dimension and then add a translation for that dimensional hierarchy, level, or attribute (or other value,
such as for the All member and the Unknown member) in the dimension work area. The BIDS cube and
dimension browsers allow you to view your cube and dimension translations. You do this by selecting
the particular language from the drop-down list at the top of the browser page.

Localizing Measure Values
Another consideration when localizing a cube is to express the value of measures (usually currency or
dates) as localized values. If your business scenario requires this type of localization, you will most
generally create custom MDX queries to translate and format these values for a particular user. To
localize date values, you still must do this manually; however, SSAS offers the Add Business Intelligence
feature for currency localization. This feature is accessed via a wizard in BIDS to make localization via
MDX scripts much simpler.

■Note Before you run the Add Business Intelligence Wizard to generate an MDX script for implementing currency
conversion in BIDS, you must set up three required prerequisites: at least one currency dimension, at least one
time dimension, and at least one rate measure group. For more specifics on the required structures of those

dimensions, see the SQL BOL topic, “Currency Conversions (Analysis Services - Multidimensional Data).” The

Adventure Works sample meets these three prerequisites.

To access the Add Business Intelligence Wizard, you click the Cube menu in BIDS. Clicking Next on
Add Business Intelligence launches the first page of the wizard (see Figure 4–8), which lists possible
enhancements for the cube. The choices offered vary depending on whether you are working in the cube
design or a dimension design window.

CHAPTER 4 ■ INTERMEDIATE OLAP MODELING WITH SSAS

95

Figure 4–8. The Business Intelligence Wizard in BIDS allows you to quickly and easily localize cube

currency values by taking you through several steps of a wizard. This will generate an MDX script and

make structural changes to your cube to support currency localization.

In the Set Currency Conversion options page of the wizard (see Figure 4–9), you are asked to make
three choices. First, you’ll have to select the measure group that contains the exchange rates, then the
pivot (or translating) currency, and finally the method you’ve used to define the exchange rate. You’ll
define later in the wizard exactly how the translation between source currency (or currencies) and
destination currency (or currencies) will be performed.

CHAPTER 4 ■ INTERMEDIATE OLAP MODELING WITH SSAS

96

Figure 4–9. Using the Business Intelligence Wizard allows you to localize currency values in your cube.

In the Select Members page of the wizard, select the Sales Amount measure, which will also
populate the Exchange Rate Measures column with Internet Sales Amount. Your Select Members page
will now resemble Figure 4–10.

CHAPTER 4 ■ INTERMEDIATE OLAP MODELING WITH SSAS

97

Figure 4–10. In the Select Members page, you define which measure values you want to convert to

localized currency values.

Click Next, and you are in the most interesting part of this wizard. Here, you are presented with
three options for performing the currency localization by selecting a cardinality option: many-to-many,
many-to-one, or one-to-many. Although there is a description of each option on the wizard page, the
options are summarized here:

CHAPTER 4 ■ INTERMEDIATE OLAP MODELING WITH SSAS

98

• Many-to-many: The source currencies are stored as local currencies, translated to
the pivot currency, and then translated into one or more reporting currencies at
reporting time. For example, you could translate currency EUR, JPY, and GBP,
using the pivot currency, USD, into multiple destination currencies CNY, MXN,
INR.

• Many-to-one: The source currencies are stored as local currencies and then
translated to the pivot currency at reporting time. All sources use the pivot
currency as the reporting currency. For example, you could translate currency
EUR, JPY, and GBP all into USD.

• One-to-many: The source currency is stored as the pivot currency and then
translated into one or more reporting currencies. For example, you could store
values as USD in your fact table and then translate those USD values into multiple
destination currencies.

Figure 4–11 shows the Select Conversion Type Wizard page where you make this selection.

Figure 4–11. An important step in the Business Intelligence Wizard is selecting the cardinality option.

CHAPTER 4 ■ INTERMEDIATE OLAP MODELING WITH SSAS

99

After you select the “Many-to-many” cardinality, you have two more choices in this wizard. You
must identify whether a column in the fact table or an attribute value in a dimension should be used to
identify local currency values. Choose “Identifiers in the fact table”, followed by Source Currency Code
from the drop-down list. Click Next. The last step is to select your reporting (or destination) currencies;
choose the Euro (EUR) and the British Pound (GBP). Click Next again. The wizard now has enough
information to generate a MDX script to execute your currency calculation. You can see this script in the
final step of the wizard (see Figure 4–12).

Figure 4–12. The BIDS Business Intelligence Wizard allows you to generate a sophisticated MDX script by

answering a series of questions in the wizard pages.

The Business Intelligence Wizard is a powerful tool. As we continue to explore advanced cube
modeling in Chapter 5, we will review other capabilities built into the wizard.

CHAPTER 4 ■ INTERMEDIATE OLAP MODELING WITH SSAS

100

Using Actions
An action is an activity that an end user can perform by right-clicking either cube metadata (a row or
column label) or cube data (a measure value). Actions are added to SSAS cubes and targeted at a
particular section, that is, an entire dimension, a particular hierarchy, a particular measure group, and
so on.The ability to use cube actions is completely dependent on the type of client application your BI
solution uses. For example, Excel 2007/2010 supports several actions, including URL, reporting, and
drillthrough actions.

Creating Actions in SSAS
Actions are created in BIDS using the cube designer work area (Actions tab) by completing the property
values and writing MDX scripts. As with many other advanced cube-design techniques, the samples that
ship with SSAS include several examples of actions.

After you’ve verified that your particular client applications support SSAS cube actions, you can
select one to add from the following action types:

• (Regular) Action: Allows end users to right-click either cube metadata or cube
data and to perform an activity by passing the value of the cell clicked to one of the
following action types: DataSet, Proprietary, Rowset, Statement, or URL. What is
returned to the end user depends on which action type has been set up in BIDS. If
the action is a URL action, a web page is returned. Rowset actions return rowsets
to the client, DataSet actions return datasets, and statement actions allow the
execution of an OLE DB statement. Figure 4–13 shows the syntax for a URL action.

CHAPTER 4 ■ INTERMEDIATE OLAP MODELING WITH SSAS

101

Figure 4–13. URL Actions allow end users to launch Web pages by right-clicking cube metadata or data in

their end-user tool environment.

CHAPTER 4 ■ INTERMEDIATE OLAP MODELING WITH SSAS

102

■Note For (regular) actions and reporting actions, you must determine the value of the target type and target
object properties. As their names suggest, these properties determine where in the cube these custom actions will
be available to end users. In Figure 4–13, end users must be viewing the [Geography].[City] attribute to be able

to use the CityMap URL Action.

• Drillthrough Action: Allows end users to see detailed information “behind” the
value of a measure; that is, for this discount amount, what are the values of the
underlying dimensional attributes? This is shown in Figure 4–14 using the cube
browser. Unlike (regular) actions and reporting actions, creating drillthrough
actions requires that you specify a target measure group. Figure 4–15 shows an
example of the syntax used to create a Drillthrough Action targeted at the Reseller
Sales measure group.

Figure 4–14. Drillthrough Actions allow end users to see the detai” behind the measure value for a

particular measure.

CHAPTER 4 ■ INTERMEDIATE OLAP MODELING WITH SSAS

103

Figure 4–15. Drillthrough actions are targeted at particular measure groups rather than attributes or

hierarchies.

• Reporting Action: Allows end users to right-click a value and will pass the value of
the location clicked as a parameter to SSRS. Activating the action causes SSRS to
launch using the custom URL, which includes the cell value and other properties
(for example, the format of the report: HTML, Excel, or PDF). Figure 4–16 shows
an example of the syntax used to create a reporting action. In the Invocation drop-
down list in the Additional Properties section, you can specify whether the defined
action should be started by the end user (the Interactive option) by right-clicking
the client interface pivot table cell, or should be implemented automatically (the
On Open option) when the end user opens the OLAP client application. The third
option, Batch, allows developers to associate a particular command with a SSAS
Action.

CHAPTER 4 ■ INTERMEDIATE OLAP MODELING WITH SSAS

104

Figure 4–16. Reporting actions allow end users to launch SSRS from their SSAS client applications by

right-clicking a cell of interest. A custom URL is generated and passed to SSRS.

Creating Actions in SSMS
Creating an action in SSMS is very similar to creating a KPI, which you did earlier in this chapter. In this
section, you will create a Google URL action sample. The Google Resellar Search action will load
Internet Explorer and pass the reseller name as a parameter to www.Google.com. Take note of the
Invocation clause, which, when set to Interactive, relies on your end user to execute the action in the

CHAPTER 4 ■ INTERMEDIATE OLAP MODELING WITH SSAS

105

client application. To begin, create a new MDX query for the Adventure Works cube; then enter and
execute the following MDX:

Create Action [Adventure Works].[Google Reseller Search]
For
 [Reseller] Members
 As
 'http://www.google.com/search?q=' + Reseller.CurrentMember.Name,
 Type = URL,
 Invocation = Interactive,
 Application = 'IE',
 Description = 'Google this Reseller';

To drop your action when you are completed working with it, simply enter and execute the
following MDX:

Drop Action [Adventure Works].[Google Reseller Search];

Summary
This chapter covered the processes for adding more power to your cube. We reviewed the processes for
adding KPIs, translations, perspectives, and actions. Remember that several of these features require the
Enterprise Edition of SSAS (and the Enterprise AdventureWorks 2008 R2 samples) as noted in this
chapter. The other critical consideration with these features is to verify that all end-user client
applications support whatever features you want to add to your cube.

In Chapter 5, we’ll delve even deeper into the complexities of SSAS cube modeling. We’ll discuss
several features, such as the use of multiple fact tables and advanced dimension types (including many-
to-many dimensions). We’ll also take a more detailed look at the Business Intelligence Wizard.

C H A P T E R 5

■ ■ ■

107

Advanced OLAP Modeling with

SSAS

In this chapter, we’ll continue to use the AdventureWorks DW 2008 sample to cover the modeling
techniques available to you in SSAS. The chapter will cover the following topics:

• Using multiple fact tables in a single cube

• Modeling nonstar dimension types, including many-to-many (using intermediate
fact tables), fact (degenerate), role-playing, and writeback performing advanced
dimension modeling, including modeling for either slowly or rapidly changing
dimensions and adding custom error handling

• Using the Business Intelligence Wizard for cubes and dimensions to easily enable
writeback, semiadditive measures, account/time/dimension intelligence, unary
operators, custom member formulas, and attribute ordering.

Multiple Fact Tables in a Single Cube
Beginning with SSAS 2005, SSAS is no longer limited to basing your cube on a single source fact table.
Since a single cube can now be based on multiple fact tables, OLAP modeling with SSAS more closely
aligns with the way most customers want to view their enterprise data. Much of the work to incorporate
multiple fact tables into one enterprise cube needs to be done during the OLAP modeling phase of your
project. Conceptually, you can think of this modeling as multiple star schemas, where multiple fact
tables reuse the “points” of the stars (or the dimensions). Figure 5–1 illustrates this concept.

CHAPTER 5 ■ ADVANCED OLAP MODELING WITH SSAS

108

Figure 5–1. You can visualize using multiple fact tables by thinking of multiple star schemas with shared

“points” or dimensions.

This type of modeling provides your end users with a true enterprise view of as much business data
as needs to be added to a single, all-encompassing cube. From a logical modeling perspective, it makes
sense to begin with the single cube model for all BI projects. One factor that could cause you to
implement more than one cube has to do with management and administration, namely physical
implementation. Cube partitions are used to divide cube-processing times and other management tasks,
such as security. If you are working with the Enterprise Edition of SSAS, you can create physical
partitions for your cube to better manage administration. However, the Standard Edition of SSAS, which
has more limited data warehousing features, cannot create any type of physical cube partitions. The
mechanics of doing this will be covered in Chapter 6, “Cube Storage and Aggregation.”

When using multiple fact tables in your cube, an important consideration is to what level of
granularity you plan to load the rows in each fact table. For example, your company might plan to
measure both sales facts (such as sales amount, sales quantity, and so on) and marketing facts (such as
promotion cost, promotion audience size, and so on). The sales facts may need to be loaded to the day
level of the time dimension in one fact table, and the marketing facts may only need to be loaded to the
month level from that same dimension in another fact table. Both of these fact tables can be part of the
same cube.

The Dimension Usage tab of the cube designer work area in BIDS is the place where you adjust the
granularity of relationship between the dimensions and measure groups. A measure group is a container
for one of more measures in a cube. Figure 5–2 shows the AdventureWorks sample cube and whether
relationships between various dimensions and measure groups exist for the cube being viewed.

CHAPTER 5 ■ ADVANCED OLAP MODELING WITH SSAS

109

Figure 5–2. The Dimension Usage tab shows the relationship between dimensions and meaure groups for

the sample AdventureWorks cube. Blank (gray) rectangles indicate that there is no relationship between a

particular dimension and measure group.

To examine the granularity of a particular relationship, you click the white rectangle that forms the
intersection between the measure group and the dimension. A small gray Build button (with three dots)
becomes available on the intersection rectangle. Click the Build button to open the dialog box that
allows you to view (or adjust) the type and level of relationship between the Dimension and Measure
Group. You’ll note that certain dimensions have no relationship to certain fact tables (the intersection is
an empty grey rectangle).

In addition to being able to include multiple fact tables in your cube as the basis for measure groups
(which contain measures), there is another reason to include more than one fact table in your cube.
Interestingly, this last type of fact table does not provide additional measures for the cube; rather, it’s
used for a new type of dimensional modeling called a many-to-many dimension. This is covered in
greater detail in the “Modeling Nonstar Dimensions” section later in this chapter.

Nulls
The OLAP community harbors differing opinions about whether or not it is appropriate to load null data
into the fact (or dimension) tables of a cube. One of the places you can configure null value handling (for
measure groups that intersect with regular [or star] dimensions only) is in the Dimension Usage tab of
the cube designer in BIDS (refer to Figure 5–2). To do so, click the Build button on the white rectangle at
the intersection of the dimension and fact table that you want to customize. This opens the Define
Relationship dialog box, shown in Figure 5–3.

CHAPTER 5 ■ ADVANCED OLAP MODELING WITH SSAS

110

Figure 5–3. The Define Relationship dialog box Advanced option allows you to customize null processing

behavior for a particular dimension and fact table.

■Tip As a general rule, you should refrain from loading nulls into dimensions and measures, because null values
are usually not meaningful to end users. It is typical to test for null values (and to either reject data with null values
as error data or to convert the null values to either a number, usually zero, or to a string, for example, “unknown”)
and to convert null values to data values during the ETL process of your BI project. This approach is preferred to

loading null values into your SSAS cube, because nulls can cause erroneous or unexpected results with MDX

aggregate functions.

Clicking the Advanced button in the Define Relationship dialog box takes you to the Measure Group
Bindings dialog box (see Figure 5–4). Here, you can set the null-processing behavior to one of the
following settings by clicking the Null Processing column value in the Relationship section. Each setting
is described here:

• Automatic: Converts the null value to zero (for numbers) or an empty string (for
strings); the default setting.

• Preserve: Keeps the null value.

CHAPTER 5 ■ ADVANCED OLAP MODELING WITH SSAS

111

• Error: Raises a null key error; the setting of the NullKeyNotAllowed property for the
measure controls the result. This setting cannot be used with measures.

• Unknown Member: Generates an unknown member and raises a null conversion
error; the setting of the NullKeyConvertedToUnknown property controls the result.
This setting cannot be used with columns associated with measures.

Figure 5–4. Clicking the Null Processing value in the Relationship section of the Measure Group Bindings

dialog box allows you to customize null processing behavior for a particular dimension and fact table.

CHAPTER 5 ■ ADVANCED OLAP MODELING WITH SSAS

112

■Note To set the NullKeyNotAllowed and NullKeyConvertedToUnknown properties in the BIDS Process
Dimension (or cube) dialog box, you click the Change Settings button on the Dimension Key Errors tab. Dimension-

and cube-processing options are discussed in more detail in Chapter 6.

Nonstar Dimensions
You will probably be able to model the majority of your dimensions using the standard star schema. As
SSAS gives you the flexibility to model cube measures by basing them on multiple source fact tables, it
also gives you the ability to model dimensions in configurations other than simple star schemas. The
types supported are listed briefly here and explained more fully in the following sections:

• Snowflake: This dimension is based on more than one table. This is called a
referenced dimension in BIDS.

• Degenerate: This dimension is based on a column value from one of the fact tables,
rather than using a dimension table. This is called a fact dimension in BIDS.

• Parent-child: This dimension is based on a hierarchy derived from a self-
referencing relationship within a single dimension table. This is modeled using a
regular dimension type in BIDS.

• Many-to-Many: This dimension is based on two source tables with an
intermediate fact table that establishes the many-to-many relationship between
the dimension row values. This is called a many-to-many dimension in BIDS.

• Role playing: This dimension relates rows in its table to rows in the fact table
multiple times. This is most commonly done for the time dimension. An example
would be relating fact rows via an order date, a sales date, and a delivery date. This
is modeled as a regular dimension in BIDS.

• Writeback: This dimension allows authorized end users to update or make
changes to the dimensional attribute values but not the dimensional structure,
that is, the dimension name, hierarchy structure, level names, and so on. This
option requires the Enterprise Edition of SSAS.

• Mining Model: This dimension is based on a SSAS Data Mining model (covered in
Chapter 14).

Now that you have an overview of the types of dimensions available, the following sections provide
examples of when and how to use each type of dimension.

Snowflake Dimensions
Snowflake dimensions use more than one source table. There must be a key relationship between the
rows in each table. For example, a Product dimension might use separate Subcategory and Category
source tables. Snowflake dimensions add to cube-processing times, so there should be a business reason
to use them—the most compelling of which is when you are modeling an entity for which you have a
huge number of rows and discrete attributes by subtype. An example of this could be a products
dimension with product category-specific attributes. In other words, product category 1 has a discrete

CHAPTER 5 ■ ADVANCED OLAP MODELING WITH SSAS

113

group of attributes; product category 2 has a different group of attributes; product category 3 has yet
another group of attributes, and so on.

For example, if your business scenario is to model product sales for a discount chain, you might
need to model these three product categories: makeup, paint, and shoes. The makeup category may
have attributes such as “skin type” or “product base type,” which are not meaningful to the other
product categories. If you used a star design for this example, you could create a needlessly large
dimension due to the amount of nulls in the star schema’s source dimension table or tables.

Referenced dimensions, like all dimension types, are configured in the BIDS cube designer in the
Dimension Usage tab. To configure the relationship between the rows in a particular dimension and fact
table, click the gray rectangle that intersects the dimension and fact table. Then, click the Build button
(the icon with three dots) to open the Define Relationship dialog box. For a snowflake, you select
Referenced dimension from the Select relationship type drop-down list. The Geography Dimension in
the AdventureWorks sample provides an example of a snowflake dimension as shown in Figure 5–5.

Figure 5–5. The Define Relationship dialog box in BIDS allows you to set up snowflake (or referenced) and

many other types of dimensions.

■Tip Leaving the default Materialize check box checked is recommended. This speeds up queries by requesting
that SSAS store the value of the link between the dimensional tables and fact table as MOLAP metadata (meaning

that the metadata is stored on SSAS in a multidimensional format) when the cube or dimension is processed.

CHAPTER 5 ■ ADVANCED OLAP MODELING WITH SSAS

114

Degenerate Dimensions
Degenerate dimensions (called fact dimensions in BIDS) use a column in the fact table as a source, as
opposed to an actual dimension table. For example, a Sales Order Detail dimension might have an
attribute called PO Number. Defining a dimension-to-fact relationship using BIDS follows the same
procedure listed in the previous section, “Snowflake Dimensions.” After you’ve accessed the Define
Relationship dialog box, you then select the Fact relationship type. Figure 5–6 shows an example from
AdventureWorks.

Figure 5–6. Select the Fact relationship type to create a relationship between a dimension based on a

column in the fact table and the fact table itself. This type of dimension is also called a degenerate

dimension.

When you are modeling this type of dimension, you should carefully consider the percentage of end
users that will need to browse the attributes included in any fact dimension. These values add to the size
of your fact table and can, in turn, add to cube-processing times. This may also result in slower queries.
Degenerate dimensions, used as a track-back to a system of record, can aid end users that use multiple
systems in their daily work. However, if your analysis determines that this attribute belongs in a
dimension, create a separate dimension source table and a regular dimension for this type of
information.

CHAPTER 5 ■ ADVANCED OLAP MODELING WITH SSAS

115

Parent-Child Dimensions
Parent-child dimensions are derived from a single source table. This table must have a primary key and a
foreign key that allows a self-join to be performed on this same table. An example from AdventureWorks
cube is the employee table. This type of dimension is used to create a self-referencing, ragged hierarchy.
Another way to think of this is a hierarchy that does not necessarily have a larger number of leaf-level
members below its parent level, or in the case of the employee table, some employees are managers, or
have direct reports, and some are not. Parent-child dimensions are called Regular dimensions in the
Define Relationship dialog box. An example using the employee table is shown in Figure 5–7.

Figure 5–7. Parent-child dimensions have relationships to the fact table of type Regular.

You can verify that the key relationship was correctly detected in the Data Source View (DSV) for the
cube. Using the sample, AdventureWorks, you’ll note that the employee table shows this self-referential
relationship (see Figure 5–8).

CHAPTER 5 ■ ADVANCED OLAP MODELING WITH SSAS

116

Figure 5–8. Parent-child relationships can be verified in the DSV for the cube.

Another way to verify that you’ve set up the parent-child relationship correctly is to browse the
dimension in BIDS, where the source columns will be shown as attributes. You’ll review the Usage
property for the columns listed as attributes. The three possible values are Parent, Key, and Name. In this
example, BIDS will generate an attribute named Employee with a Parent Usage, an attribute called
EmployeeKey with Key Usage, and other attributes for all other columns in the source table (with the
same name as the source columns) with a Name Usage.

Many-to-Many Dimensions
The many-to-many dimension involves two source dimension tables, plus an intermediate table, which
makes a total of at least three source tables. At least two of these tables are typical dimension tables. The
relationship between the rows in the second dimension table and the main fact table is established via
keys in those two tables.

You can think of the secondary fact table as similar to a relational junction table in OLTP modeling. An
example of this is provided in the AdventureWorks sample for the salesReason dimension. The business
case is that each Internet sale can have many sales order lines; each order line can have a sales reason. So
that each Internet sale can have many sales order lines and each order line has a sales reason, the
relationship between order lines and sales reasons is many-to-many. The first step to using many-to-many
dimensions is modeling and creating the appropriate source tables, as shown in Figures 5–9 and 5–10.

CHAPTER 5 ■ ADVANCED OLAP MODELING WITH SSAS

117

Figure 5–9. Many-to-many dimensions require two source dimension tables, plus an intermediate fact

table (that functions much like a relational junction table). One of the tables lists the dimensional

attribute value. In the AdventureWorks example, this is the SalesReason table.

CHAPTER 5 ■ ADVANCED OLAP MODELING WITH SSAS

118

Figure 5–10. Many-to-many dimensions require at least three source tables. One of the tables establishes

the relationship between the dimension table attributes and the rows in the destination fact table. In the

AdventureWorks example, this is the FactInternetSalesReason table.

CHAPTER 5 ■ ADVANCED OLAP MODELING WITH SSAS

119

You can also see whether you’ve modeled the relationship correctly by reviewing the participating
tables in the DSV as shown in Figure 5–11.

Figure 5–11. You can verify that you’ve modeled the many-to-many relationship in the DSV for your cube.

The intermediate table will appear as an additional fact table in this view. A portion of the

AdventureWorks sample is shown here.

After you’ve correctly modeled the many-to-many dimension, you establish the relationship using
the Dimension Usage tab of the cube designer. While working in the Define Relationship dialog box, you
select the Many-to-Many dimension type, as shown in Figure 5–12.

CHAPTER 5 ■ ADVANCED OLAP MODELING WITH SSAS

120

Figure 5–12. After selecting the Many-to-Many relationship type in the Define Relationship dialog box, you

must select a table in the Intermediate measure group list box.

Role-Playing Dimensions
Role-playing dimensions are set up via modeling as well. A typical example from the AdventureWorks
sample (from the time dimension) is shown in Figure 5–13—the three instances of the Date dimension
in the Dimension Usage tab. Role playing means joining rows from a dimension to a fact table more
than once. The example for this case is Date, Ship Date, and Delivery Date. To do this, you join more
than one dimension based on the same source table by simply adding (or referencing) the same source
table multiple times as the basis for cube dimensions and giving each dimension a different dimension
name. In other words, you add new dimensions based on the same table multiple times. The example
from AdventureWorks is the most typical implementation of a role-playing dimension, adding a time
dimension multiple times to create different time-based dimensions.

Figure 5–13 shows the modeling of this type of dimension in the Dimension Usage tab of the cube
designer in BIDS.

CHAPTER 5 ■ ADVANCED OLAP MODELING WITH SSAS

121

Figure 5–13. Role-playing dimensions are modeled as regular dimensions in the Dimension Usage

window. You model this type of dimension by creating multiple dimensions based on the same source

table. A typical use of this is with a time dimension.

Writeback Dimensions
Writeback dimensions allow you to add, update, and delete dimension values in any dimension that is
based on a single table. Writeback values are kept in a special table that is added to your data source.
Any writebacks you perform are immediately available for viewing in your cube.

Writeback dimensions require the Enterprise Edition of SSAS. You enable writeback for a dimension
by setting the WriteEnabled property value of a dimension to True. You can also use the Business
Intelligence Wizard to enable writeback for a dimension. Figure 5–14 shows the property value interface
for a dimension to enable writeback for an entire dimension (which means all attributes at all levels).
You cannot enable writeback for any subset from a dimension, which means that you cannot enable
writeback for a particular attribute of a dimension. Writeback is an “all or nothing” option for a
particular dimension.

With writeback dimensions, you need to verify that your selected client applications support
writeback. Also, you must confirm that allowing writeback is consistent with your project’s business
requirements. Another consideration is that you must specifically grant read/write permissions to write-
enabled dimensions for those end users who will need to write to a dimension. In my experience,
writeback is not commonly enabled for BI projects. One case where it may be enabled is when a cube is
used for financial forecasting, particularly “what if” scenarios.

CHAPTER 5 ■ ADVANCED OLAP MODELING WITH SSAS

122

Figure 5–14. You can write enable dimensions by setting the WriteEnabled property of an entire dimension

to True.

■Note Writeback is not supported for certain dimensions types, including referenced dimensions, fact
dimensions, many-to-many dimensions, and linked dimensions. As previously mentioned, you can only enable

writeback for entire dimensions, not specific attributes of a dimension.

CHAPTER 5 ■ ADVANCED OLAP MODELING WITH SSAS

123

Dimensions That Change
After you’ve selected the type of dimension to be used for your particular business scenario, another
important concept is whether and how your model will support update behavior for the dimensional
attribute values. To understand how to model for updates, consider that updates in SSAS need to be
divided into two types: new values (or inserts) and changes (or updates or deletes of existing attribute
values). Allowing inserts of new values for the dimension or fact tables does not require you to use any
special modeling techniques. However, the business rules required for changes to dimensional attributes
will affect the way you model those attributes.

In Chapter 2, we introduced the topic of modeling slowly (or rapidly) changing dimensions. At this
point in your BI solution, you now have six considerations. These considerations include modeling for
the rate of change (that is, slow or rapid), and configuring error definitions (that is, “Are changes allowed
at all?” or “Are nulls allowed?”). The options and support for updating the various types of dimensions
via the SSIS slowly changing dimension transformation are listed next. The reason for this last point is
that you will probably want to automate the process of dimensional attribute updates via SSIS packages.

The considerations are as follows:

• Slowly Changing Type 1: Any submitted changes overwrite previous values. The
SSIS “slowly changing dimension transformation” calls this type changing. If you
choose this method, you may want to add a column to your dimension table
called dateLoaded, if your business requirements call for this.

• Slowly Changing Type 2: Any submitted changes will result in a new record (or
row) being added. The SSIS “slowly changing dimension transformation” calls this
type historical. The structure of your dimension tables will need columns for start
date and end date. Additionally, you can add a current or active record flag as well.

• Slowly Changing Type 3: Adding more attributes (or column values) when the
dimension member value changes. The SSIS “slowly changing dimension
transformation” does not support this type. The structure of your dimension
tables must accommodate this. This type requires a source table structure, which
includes as many columns (and corresponding date effective columns) for the
number of changes you want to capture.

• Rapidly Changing: The dimensional attributes change constantly, for example,
fast-food restaurant location employee names. In this case, you would usually
process your dimension differently altogether. If your business requirements
include a rapidly changing dimension, you can use ROLAP (or relational OLAP
storage).

This means that the dimension metadata is not copied to SSAS; rather, it is read
“live” from the star schema. This option is discussed in more detail in Chapter 6.
This type of dimension does not require any special modeling. You simply set the
storageMode property of the dimension to ROLAP. Be aware that this can result in
significantly slower query processing. This option also requires the Enterprise
Edition of SSAS.

• No changes allowed: Requests for changes are treated as errors (and are usually
logged as errors). The SSIS “update slowly changing dimension transformation”
calls this type fixed. You configure a custom error configuration to support this
business requirement. This is discussed in more detail in the next paragraph.

CHAPTER 5 ■ ADVANCED OLAP MODELING WITH SSAS

124

• Nulls allowed: If you choose to allow null values on load, then you should
establish a standard method of “handling” or renaming those null values. This is
configured via the UnknownMember dimension property. The SSIS “update slowly
changing dimension transformation” calls this type an inferred member. This
property is discussed further in subsequent paragraphs of the next section.

Error Handling for Dimension Attribute Loads
If your business needs require more granular control over error handling, you can set several properties
in the SSAS dimension editor, at the dimension level. First, let’s consider what types of errors could
occur. These could include loading nulls, loading mismatched (to the rows in the fact table) key values,
and loading duplicate key values. You should capture desired error-handling behavior for each
dimension during the requirements gathering phase of your BI project.

The first consideration when implementing those requirements is whether you’ll need to include a
custom error configuration. If you set the ErrorConfiguration property to (custom), several properties
become available for you to configure in BIDS via the dimension property sheet. These properties are
shown in Figure 5–15; all the values are the defaults, with the exception of the KeyErrorAction property
value, which we have changed from the default value of ConvertToUnknown to the optional value of
DiscardRecord for this example.

Figure 5–15. You set the behavior of key errors at the level of the entire dimension in SSAS.

CHAPTER 5 ■ ADVANCED OLAP MODELING WITH SSAS

125

Along with custom error handling, you may want to control the value of nulls loaded into a
dimension by changing the UnknownMember property of the dimension to a nondefault value for a
dimension, as shown in Figure 5–16.

Figure 5–16. The UnknownMember property of a dimension allows you to control the behavior of nulls (if

you choose to load null values into a dimension).

It is still best practice to cleanse all data prior to loading into your cube via the ETL processes (using
SSIS). Most of our clients prefer to refrain from loading nulls into both the dimension and fact tables.
However, should your business requirements be such that you load nulls, SSAS gives you many options
for working with them.

Using the Business Intelligence Wizard
After you’ve added the fact tables and dimensions to your cube and configured the properties for both,
the next option for you to consider is whether to use the Business Intelligence Wizard to add still more
sophisticated options to your BI solution. This wizard presents you with a different list of options

CHAPTER 5 ■ ADVANCED OLAP MODELING WITH SSAS

126

depending on whether you’ve opened it from the cube or from the dimension designer. The complete
list of options (for both types) is as follows:

• Add Writeback: This option, for dimensions only, requires the Enterprise Edition
of SSAS. Using this wizard simply sets the WriteEnabled property of a dimension to
True.

• Add Semiadditive Measures: This option, for cubes only, allows you to set the
aggregationFunction property for a cube measure to something other than the
default (Sum). The choices are Average of Children, By Account, Count, Distinct
Count, FirstChild, FirstNonEmpty, LastChild, LastNonEmpty, Max, Min, None, and Sum.

• Add Account Intelligence: This allows you to assign accounting types, that is,
income, expenses, and so on, to dimension attributes. Specifically, you associate
one dimension attribute with one of the following: Chart of Accounts, Account
Name, Account Number, or Account Type. The default is to set measures to be
semiadditive based on account type. The wizard will set the aggregationFunction
property to the value byAccount. The Configure Dimension Attributes page of the
wizard is shown in Figure 5–17.

Figure 5–17. In the Business Intelligence Wizard’s Add Account Intelligence Configure Dimension

Attributes page, you can associate attribute types with specific attributes.

CHAPTER 5 ■ ADVANCED OLAP MODELING WITH SSAS

127

• Add Time Intelligence: This option, for cubes only, generates an MDX script that
creates calculated members (which appear in the cube as regular measures) based
on common time-based comparisons that you’ve selected in the wizard page.

Some examples of common time-based comparisons are Quarter to Date, Three Month Moving

Average, and Year Over Year Growth. Figure 5–18 shows the list of options. Figure 5–19 shows a

sample generated MDX script.

Figure 5–18. In the Business Intelligence Wizard’s Add Time Intelligence selection, you select common

time-based scenarios and SSAS generates an MDX script for you. This script will add calculated members

to your OLAP cube.

CHAPTER 5 ■ ADVANCED OLAP MODELING WITH SSAS

128

.

Figure 5–19. In the Business Intelligence Wizard’s Add Time Intelligence selection, SSAS generates a MDX

script that creates a calculated member in the cube.

CHAPTER 5 ■ ADVANCED OLAP MODELING WITH SSAS

129

• Add Dimension Intelligence: This option allows you to associate metadata with
dimension attributes by setting the type property. For example, for the customer
dimension, you can associate a particular dimension attribute with the address
type, the city type, or the company type. Some client applications use this type
information to present information to end users in a more friendly fashion and to
assist end users in adding calculated members by using GUI tools included in
their particular client application, rather than by having to manually author MDX
scripts.

• Add Unary Operator: This cubes-only option allows you to specify a unary
operator to replace the default aggregation (which is to sum all measures) for
noncalculated hierarchy members in parent-child hierarchies. You can specify
either regular or weighted aggregations. Like the Add Account Intelligence option,
this option is often used when your business requirements include modeling to
support an organization’s balance sheets.

• Add Custom Member Formulas: This one allows you to specify a column with a
custom MDX formula that will override the default rollup. The default rollup is to
sum all measures. This sets the CustomRollupColumn property of the selected
dimensional attribute to the selected column.

• Add Attribute Ordering: For dimensions only, this option allows you to override
the default setting, “Order by member name,” to replace with “Order by key” or
“Order by name” of a different attribute in the same dimension.

• Add Currency Conversion: This one, for cubes only, allows you to add a dimension
that is used to translate one or more currencies in the fact table to one or more
new currencies. I covered the implementation of this option by reviewing the
steps in the wizard in detail in Chapter 4.

Summary
This chapter covered many advanced OLAP modeling techniques. These methods included using
multiple fact tables and various types of dimensions. SSAS has quite a bit of flexibility in its capacity to
allow for modeling scenarios that more closely match that of your actual business data. Remember that
several of these features require the Enterprise Edition of Analysis Services.

The other important consideration with these techniques is to always use business requirements as
a justification for adding the complexity that any of these new capabilities bring to your BI solution. I’ve
seen many BI solutions that were overcomplicated, which made them difficult to maintain, to
administer, and most important, to use. Favor simplicity in cube design.

In the next chapter, you’ll learn about physical storage mechanisms for cube and dimension data
and metadata. This is the world of MOLAP, HOLAP, or ROLAP—multidimensional, hybrid, or relational
OLAP. You’ll also learn about what exactly is happening when you “process” a cube or dimension.

C H A P T E R 6

■ ■ ■

131

Cube Storage and Aggregation

Now that you’ve completed your cube’s logical design, it’s time to design the physical storage
mechanisms, including file placement and aggregations.

This chapter covers the details of physical cube processing and storage, including an explanation of
the what, when, and why to use any of the three cube storage methods: MOLAP, HOLAP, or ROLAP.
These storage-type acronyms stand for Multidimensional, Hybrid, or Relational OLAP. The chapter also
explains cube aggregations—what they are and when and when not to use the default cube-processing
settings (which use no aggregations). Following is a complete list of topics for this chapter:

• Using default storage—MOLAP with no aggregations

• Designing custom aggregations

• Understanding advanced storage—MOLAP, ROLAP, and HOLAP

• Working with proactive caching

• Designing relational partitions and SSAS partitions

• Planning for rapidly changing (ROLAP) dimensions

• Selecting appropriate cube-processing options

Using the Default Storage: MOLAP
From earlier chapters, you may remember that to view structural changes to your cube, you must
process the cube in BIDS and then deploy the changes to Analysis Services. To understand what is
happening during this process, you must first be aware of what you are creating when you design and
build BI objects, such as DSVs, cubes, and dimensions using BIDS. Although you are working in a GUI
environment, commands in the XMLA SSAS metadata language are being generated behind the scenes.

XML for Analysis
XML for Analysis (XMLA) is an open-standard XML dialect that is used for client-server communications
between OLAP servers. XMLA describes its messages in a SOAP-style format designed to access
multidimensional databases that contain OLAP cubes. Visit http://www.xmla.org/ to learn more about
XMLA. Simple Object Access Protocol (SOAP) is a type of XML dialect. XMLA will sometimes also contain
Multidimensional Expressions (MDX) queries, and it is the language of cube metadata. This language
includes many methods that allow you to view or modify cube information; two examples are the
Discover and Execute methods. For an example of XMLA that uses the Create method, see Figure 6–1.

CHAPTER 6 ■ CUBE STORAGE AND AGGREGATION

132

For a complete list of XMLA methods, see the Microsoft Books Online (BOL) topic “Using XML for
Analysis in Analysis Services (XMLA)” at http://technet.microsoft.com/en-us/library/ms186654.aspx.

Figure 6–1. The metadata language of SSAS is an XML dialect called XMLA.

CHAPTER 6 ■ CUBE STORAGE AND AGGREGATION

133

■Note To generate the XMLA script for an SSAS object, you must use SSMS, not BIDS! In SSMS, connect to SSAS,

right-click the object you want to script, and select Script Dimension as ➤ Create to ➤ New Query Editor Window.

I’m opening this discussion of cube data storage with the XMLA because you need to understand
what Analysis Services considers to be data and what it considers to be metadata as you begin to plan
your cube storage options.

The simplest way to think of this is as follows: Data is the content (rows) in the fact table. Metadata
is everything else. By everything else, I mean cube definitions, dimension names, attribute names,
hierarchy names, and, most important, dimension attribute values. The following list provides some
examples from the samples available with SSAS to help explain this concept more fully:

• Data: All fact table rows from Fact Internet Sales, Fact Internet Sales Reason, and
so on. Data does not include rows from the dimension tables; those rows are
metadata and treated differently from data during dimension and cube
processing.

• Metadata: Examples include names and all attributes for the Customer dimension
called Customer, the Customer dimensional hierarchy Customer Geography, the
Customer dimension attribute Marital Status, Customer attribute values Married,
Single, or Unknown.

When you design storage for your cube, your primary concern is how to store the data (or the fact
table rows, not the dimension table rows). This is because the largest amount of data in any cube is
generally contained in the facts (or fact table rows). There can be exceptions to this in the case of huge
dimensions. We will discuss this case in more detail later in this chapter.

We’ll start our discussion of storage with data storage, and metadata storage will be covered later in
this chapter. For data storage, you have three choices at the topmost level:

• MOLAP: Multidimensional OLAP stores a copy of the facts in your SSAS cube. This
is not a one-for-one storage option. Owing to efficient storage mechanisms used
for cubes, the resultant storage is approximately 10–20 percent the size of the
original data; that is, if you have 1GB in your fact table, plan for around 200MB
storage on SSAS. However efficient your system, when you chose MOLAP, be
aware that you are choosing to make a copy of all source data.

• HOLAP: Hybrid OLAP does not make a copy of the facts in SSAS. It reads this
information from the star schema source.

• ROLAP: Relational OLAP does not make a copy of the facts on SSAS. It reads this
information from the star schema source.

Aggregations
The other major consideration is the quantity of and the storage of aggregations. An aggregation is a
calculated, stored intersection of fact values. An aggregation is calculated at a level higher than the
granularity of your fact table. In other words, if the grain of your fact table holds sales amounts for each
product sold on each day by each employee, one possible aggregation would be to sum, and store, the
daily facts at the week level. In this scenario, SSAS will use calculated aggregations to quickly return sales
amounts for each product, for each employee, by year. If there are aggregations at the week level, SSAS

CHAPTER 6 ■ CUBE STORAGE AND AGGREGATION

134

will use these as a starting point to calculate the needed yearly results and will not read each value from
the day level.

An important difference between OLAP aggregations and materialized indexes on calculated
columns in a relational database such as SQL Server is that the SSAS can use aggregations from any level
in response to a query. The result is that full cube aggregation is never needed to optimize queries. In
fact, overaggregation of OLAP cubes is a common design mistake. Baseline values for aggregation are
defined a bit later in this section.

The storage type you select impacts where aggregations are stored. MOLAP, by default, creates no
aggregations. Should you choose to add aggregations, they will be stored in the native SSAS format in
your SSAS cube with the fact data. For HOLAP, only aggregations—not fact data—will be stored in your
SSAS cube. For ROLAP, aggregations will be written back to the relational database. Figure 6–2 shows a
conceptual rendering of a ROLAP aggregation table as part of a star schema. Note that the order of the
column names reflect the positions in the hierarchy that are being aggregated and the type of
aggregation performed.

Figure 6–2. ROLAP storage creates and stores aggregations in the star schema source relational database. A

side benefit of this storage is that these aggregations can be queried using T-SQL.

CHAPTER 6 ■ CUBE STORAGE AND AGGREGATION

135

■Note MOLAP is your only storage option if you are working with the Standard Edition of SSAS. If you are working

with the Enterprise Edition of SSAS, you may choose MOLAP, HOLAP, or ROLAP storage.

MOLAP as Default in SSAS
So, which type of storage is best? Why is MOLAP, with 0 percent, aggregations the default mechanism? In
our experience, MOLAP is most often chosen because it provides efficient storage and the fastest query
results. Although the default level of aggregations is 0 percent, most of our customers choose to add at
least some aggregations to their production cubes. The reason for doing this is that SSAS is optimized to
quickly and easily add aggregations during cube and dimension processing, and the improvement in
query results usually offsets the overhead in processing time and cube storage file sizes. We will drill into
this topic a bit more deeply in the next section as well.

MOLAP is the storage default because the SSAS query engine is highly optimized for calculating
aggregates on large quantities of data; the SSAS engine is more like Excel’s calculation engine than that
of SQL Server. Relational database engines, such as SQL Server, are designed to fetch subsets of data
efficiently, not necessarily to perform the complex aggregations required for MOLAP. For many
customers, MOLAP with 0 percent aggregations, or some small amount such as 20 percent, will produce
queries that run quickly enough for all of their end users.

Adding Aggregations
Why is it so important to add the correct amount of aggregations to your cube(s)? As stated previously, it
may not be. It’s important to remember that some SSAS cubes do not require aggregations to function
acceptably. Similar to the the idea that tiny OLTP tables need no relational indexes, if your cube is quite
small (under 1GB) and if you have a small number of end users (100 or fewer), you probably won’t have
to add any aggregations at all.

Unlike adding indexes to a relational database, which can be time consuming if manually done,
adding aggregations to an SSAS cube can be done pretty quickly via a couple of wizards (or tools) in
BIDS. There are a couple of considerations when adding aggregations to a cube: aggregations increase
cube processing times, and aggregations increase the storage space required for the cube on disk.

There are three tools that you can use in designing appropriate aggregations. Two—the Aggregation
Design Wizard and the Usage-Based Optimization Wizard—are specifically for aggregation design. The
third that we talk about is the SQL Server Profiler, which you can creatively apply as an aggregation
design aid.

The Aggregation Design Wizard
 The first tool is the Aggregation Design Wizard. You access the wizard by clicking the Aggregations tab in
the Cube Designer in BIDS and then clicking the Design Aggregations button, highlighted in Figure 6–3.

CHAPTER 6 ■ CUBE STORAGE AND AGGREGATION

136

Figure 6–3. The Aggregation Design Wizard will assist you with intelligent aggregation design for your

cube.

In the first dialog box of the wizard, you review the assigned aggregation settings for your
dimensions attributes. For each attribute, the wizard gives you four possible settings:

• Default: The aggregation designer chooses a default rule to apply. When using the
default setting, key attributes will be used in all aggregations, and other attributes
will be evaluated using the Unrestricted setting. We recommend using this setting.

• Full: Choosing this setting will include this attribute in all aggregations. We do not
recommend using this setting, as it can make your cube extremely large.

• None: Choosing this setting will exclude this attribute from all aggregations.

• Unrestricted: Choosing this setting puts no restriction on the designer when
evaluating an attribute.

Finally, you can click the Set All to Default button to set all aggregations to Default. Figure 6–4 shows
the Review Aggregation Usage dialog.

CHAPTER 6 ■ CUBE STORAGE AND AGGREGATION

137

Figure 6–4. Use the Review Aggregation Usage dialog to define aggregation levels for your cube.

After finalizing your choices in the Review Aggregation Usage dialog, click Next to proceed to the Specify
Object Counts dialog. In the Specify Object Counts dialog, you are asked to provide a count of the rows
in the fact table, or you can ask SSAS to count the rows for you. Click Count to have SSAS obtain your
record counts, and click Next. The Set Aggregation Options dialog will present you with four options for
aggregation design:

• Estimated storage reaches: SSAS designs aggregations up to the size limit you input
here (in megabytes or gigabytes) for storage of the resulting aggregations on disk.

• Performance gain reaches: SSAS designs aggregations up to this threshold that you
input as a percentage increase in query performance speed.

CHAPTER 6 ■ CUBE STORAGE AND AGGREGATION

138

• I click stop: The wizard stops adding aggregations when you click stop.

• Do not design: The wizard does not design any aggregations.

Select the “Performance gain reaches” option in the wizard, and enter 20% as your gain value. Click
Start to begin processing. When processing completes, the Set Aggregation Options dialog will look like
Figure 6–5.

Figure 6–5. The Set Aggregation Options dialog, displaying the number of aggregations designed by the

wizard.

Click Next; enter AdventureWorksAggregations in the Name input area, and click Finish.

CHAPTER 6 ■ CUBE STORAGE AND AGGREGATION

139

As discussed earlier, there is no need to aggregate an SSAS cube 100 percent, because SSAS can use
intermediate aggregations to answer queries. As a general rule of thumb, aggregating more than 50
percent is usually detrimental, as doing so increases cube-processing times and storage space without
positively impacting query response times. Another consideration is that when the wizard completes its
recommendations, you can choose whether to process the cube using those recommendations
immediately, or to save the results for later processing.

The Usage-Based Optimization Wizard
The second tool you can use to more granularly define aggregations—the Usage-Based Optimization
Wizard—is available by clicking the Usage Based Optimization button on the toolbar, next to the Design
Aggregations button you used in the previous section. This wizard works by saving actual queries sent to
the SSAS database. The saved queries are based on parameter values that you specify, such as start and
end time, user name, and so on. The wizard then figures out which aggregations will best improve the
performance of the queries that are run and which fall within the configured parameters. Because query
performance is determined as much by the selected (and filtered) queries coming from your client
applications as it is by the data. This makes effective use of the Usage-Based Optimization Wizard a very
intelligent approach, because you are causing SSAS to create aggregations specifically for the particular
queries, rather than just using the blanket approach of the Aggregation Design Wizard.

You must configure three SSAS properties prior to running the wizard. The first is
QueryLogConnectionString. You set this value to the database connection string where you want to store
the query log table. The data stored in this table will be retrieved by the Usage-Based Optimization
Wizard (this process is similar to the usage of a trace table by the database tuning advisor for OLTP
relational index optimization). To set the QueryLogConnectionString property, right-click the SSAS
instance in SSMS, and then click Properties.

The second property is CreateQueryLogTable. Set this to True to have SSAS create a table that will log
queries. This table will be used to provide queries to the wizard. This process is similar to using a trace
table to provide queries to SQL Profiler for relational database query tuning. You can optionally change
the default name of the query log table for the database you previously defined. This value is set to
OlapQueryLog by default.

The third property to set is QueryLogSampling. The default is to only capture one out of ten queries.
You will probably want to set this to 1 for your sampling purposes, so that every query within the defined
parameter set is captured. Figure 6–6 shows the properties window for SSAS inside of SSMS where you
can set all of these properties.

CHAPTER 6 ■ CUBE STORAGE AND AGGREGATION

140

Figure 6–6. You must capture queries by setting the database connection string property for the

QueryLogConnectionString value and setting the CreateQueryLogTable switch to True before you can use

the Usage-Based Optimization Wizard in SSMS.

To run the wizard, click the Usage Based Optimization button. After you start the wizard, you ask
SSAS to design aggregations based on any combination of the following parameter values: beginning
date, ending date, specific user, and quantity of queries by percentage to total. Figure 6–7 shows a
sample list of queries. In the wizard, you select the queries you want SSAS to design aggregations for.

CHAPTER 6 ■ CUBE STORAGE AND AGGREGATION

141

Figure 6–7. The Usage-Based Optimization Wizard allows you to select which queries you want SSAS to

design aggregations for.

The SQL Server Profiler as an Aggregation Design Aid
Another interesting tool that you can use to design aggregations more intelligently is SQL Server Profiler.
You may be familiar with SQL Server Profiler’s capability to capture whatever traffic and information
that you set in the trace definition for OTLP databases, but you may not be aware that you can use SQL
Server Profiler to capture activity on Analysis Services. This allows you to easily see which MDX queries
are taking up the most resources on the server.

One method of query tuning is to add aggregations, while another method of improving query
performance is to rewrite the query in a more optimal way. Although this is possible, it is done much less
often in the world of SSAS (than, for instance, rewriting T-SQL queries for SQL Server) because of the
inherent complexity of MDX. Using SQL Server Profiler to identify those queries placing the heaviest
load on the server will help you effectively target your tuning efforts, which more often involve adding
aggregations than rewriting the MDX queries, for those queries that need it the most.

Chapter 13 is devoted to introducing MDX syntax. Figure 6–8 shows output from SQL Server Profiler
while tracing SSAS activity.

CHAPTER 6 ■ CUBE STORAGE AND AGGREGATION

142

Figure 6–8. Profiler allows you to trace activities for SSAS. This can assist you with identifying long-

running queries as candidates for aggregations.

Using Advanced Storage
In this section, we will look further into SSAS storage. These storage settings help you to balance query
performance with data latency. In earlier sections, you learned that using MOLAP will provide the best
query performance. Now, we will look into the other two storage settings, HOLAP and ROLAP. For both
storage types, source data is not copied to your cube. While HOLAP aggregations are stored in SSAS,
ROLAP aggregations are built and stored in your database.

Understanding ROLAP
ROLAP is often used for rapidly changing dimensions (RCDs), and huge dimensions (also called monster
dimensions). As an example, let’s say that you are modeling a dimension that contains employee
information for a fast-food restaurant chain. The chain has very high employee turnover, as is typical in
the fast-food industry. However, a business requirement is to be able to retrieve the most current
employee name from the employee dimension at all times with no latency. This type of requirement
may lead you to choose a ROLAP dimension.

Another example is if you have a huge number of members in a dimension. A business example is
that you are modeling the customer dimension for an international shipping company. It is a business
requirement to have the name of every customer for all time included in your cube. This may mean that
you must include millions, or eventually even billions, of customer names in the dimension. The storage
limits for SQL Server tables (maximum number of rows) is still much larger than those in SSAS
dimensions.

CHAPTER 6 ■ CUBE STORAGE AND AGGREGATION

143

Despite the fact that you may have business situations that warrant the consideration of ROLAP
dimensions, you should test to make sure that your infrastructure will provide adequate performance
given the anticipated load. If you are considering ROLAP dimensions, be sure to test with production
level of data before you deploy this configuration into a production environment.

Understanding HOLAP
In Hybrid OLAP (HOLAP), your aggregations are stored in SSAS, while your source data remains in you
RDMBS. HOLAP takes advantage of MOLAP query performance, lowers cube processing times, and
reduces cube size. HOLAP storage has lower latency than MOLAP. However, queries needing to drill
through to source data will perform poorer than MOLAP queries, since this detail data is not in your
cube. Also, HOLAP storage requires the largest percentage of aggregations. If a good deal of your analysis
is based on aggregations only, HOLAP may just be worth a try.

Considering Non-MOLAP Storage
Storing cube data and metadata in MOLAP results in the best query performance, so why use any other
type of storage? Most typically, you will only be interested in these options if your cube is relatively large,
250GB or greater, for example, or if storage space is problematic. Another reason to consider ROLAP or
HOLAP storage is if cube-processing times are excessive for your particular business needs. Also huge
dimensions sometimes warrant the use of ROLAP storage—huge being defined as those dimensions
containing millions of members. A final consideration for nondefault storage is the business case, which
requires real-time information. Be diligent in understanding requirements for this last situation. Using
Proactive Caching (described more fully in the upcoming section of the same title) allows for near real-
time results—latency of seconds in some cases—without the performance hit that pure ROLAP causes.
Most prefer the improved query performance of MOLAP and are willing to trade a bit of latency to get
that level of performance.

Although you can change the storage type for an entire cube, it is more common to change the
physical storage design for a portion of the cube. In SSAS, a portion of a cube is called a partition.
Creating partitions in a cube requires the Enterprise Edition of SSAS. A SSAS partition is a logical division
of a cube. A partition can be based on a particular fact table that is part of a cube, or it can be based on a
portion of a fact table. For example, a fact table could be partitioned by month. In the SSAS interface, the
terms partition and measure group are often used interchangeably. This is a bit of a misnomer because
even cubes with a single (default) partition can have more than one measure group associated with that
partition. In other words, there is not necessarily a one-to-one ratio between a measure group and a
partition.

To create a partition in BIDS, you click the partition tab on the cube design surface, and then click
the New Partition… link on the design surface as shown in Figure 6–9. You are asked to select which
Measure Group and Partition (Fact Table) Source you want to partition in the wizard. The Partition
Source is a DSV in the SSAS database. Alternatively, you can enter a table name in the “Filter tables” text
box and click the Find Tables button to restrict the source to a particular source table. This dialog box is
shown in Figure 6–10.

CHAPTER 6 ■ CUBE STORAGE AND AGGREGATION

144

Figure 6–9. To vary the cube storage by a subset of the cube, you must first create partitions in BIDS.

Figure 6–10. The Partition Wizard asks for information about which measure group you want to

partition.

CHAPTER 6 ■ CUBE STORAGE AND AGGREGATION

145

Whether you want to implement some type of nondefault storage for the entire cube or for one of
the partitions in a cube, the procedure is identical. In the BIDS cube designer, you click the Storage
Settings link on the Partitions tab. This displays a wizard that you can adjust either by sliding the slider
bar or by setting custom storage options. Figure 6–11 shows the default setting, MOLAP.

Figure 6–11. To adjust the default storage setting of MOLAP for a cube or for a partition (which is

associated with a particular measure group in SSAS), you access the Measure Group Storage Settings

dialog box using the Partitions tab of the cube browser in BIDS.

Although the slider provides a brief explanation of the other settings, you probably need a fuller
explanation to effectively select something other than the default. Note that a new feature called
Proactive Caching is enabled for all storage modes other than the default MOLAP mode. Proactive
Caching is covered in the next section of this chapter. Here’s a list of the impact of changing the default
setting in the Storage Settings dialog box.

CHAPTER 6 ■ CUBE STORAGE AND AGGREGATION

146

• MOLAP (default): Source data is copied from the star schema fact tables to SSAS as
MOLAP data; source metadata (which includes cube and dimension structure and
dimension data) and aggregations are copied (for dimension data) or generated
(for all other metadata and aggregations) and then are stored in MOLAP format on
SSAS. Proactive caching is not used.

• MOLAP (nondefault): Source data is copied; metadata and aggregations are stored
in MOLAP format on SSAS, and proactive caching is enabled. This includes
Scheduled-, Automatic-, Medium-, and Low-latency MOLAP.

• HOLAP: Source data is not copied; metadata and aggregations are stored in
MOLAP format in SSAS. Proactive caching is enabled.

• ROLAP: For a cube, source data is not copied; metadata is stored in MOLAP format
on SSAS, and aggregations are stored in the star schema database. For a
dimension, metadata is not copied but is simply read from the star schema
database table(s), and proactive caching is enabled.

Handling Huge Dimensions
Like so many of the advanced storage features, ROLAP dimensions require the Enterprise Edition of
Analysis Services. You would use ROLAP typically only for dimensions with millions of members; an
example might be the customer dimension. This means that the dimensional attribute values will not be
copied to and stored on SSAS; rather, they will be retrieved directly from the relational source table or
tables. To set a dimension as a ROLAP dimension, go to the Properties window for that dimension, and
change the StorageMode property from the default MOLAP to ROLAP, as shown in Figure 6–12.

CHAPTER 6 ■ CUBE STORAGE AND AGGREGATION

147

Figure 6–12. You can change the default dimension storage mode from MOLAP to ROLAP if your business

scenario warrants it. This is usually done for very large dimensions, that is, millions of members.

CHAPTER 6 ■ CUBE STORAGE AND AGGREGATION

148

Summarizing OLAP Storage Options
If you are working with the Standard Edition of SSAS, the only consideration for you is whether or not to
add aggregations to your cube because non-MOLAP storage and cube partitions are enterprise-only
features. In our experience, for cubes of 100GB or less, it is often prudent to add aggregations to the 20 to
30 percent query-improvement level. If particular queries are problematic, you can use the Usage-Based
Optimization Wizard to capture them and have SSAS add aggregations specifically for those queries. The
procedure for this was described in the “Adding Aggregations” section earlier in this chapter.

If you are working with the Enterprise Edition of SSAS, you have several choices in terms of cube
storage and aggregation:

• Should I use partitions? If your cubes are 250GB or larger, you’ll probably want to
partition them by either months, quarters, or years (assuming your time
granularity is by the day and not the hour or minute).

• Should I add aggregations? If you are considering partitioning your cubes because
they are large, you should also consider customizing the amount of aggregations
based on the size of partition and frequency of query. In addition to the tools
reviewed previously, you may also choose to use SQL Profiler to track activity on
your cubes at a more granular level so that you can aggregate appropriately.

• Should I use MOLAP, ROLAP, or HOLAP? Generally, you’ll use something other
than MOLAP only if you choose to use partitions. Typically, current data
(partitioned on some time value, for example, months) is stored as MOLAP with a
relatively high level of aggregation (25–30 percent), with older data partitions
stored as HOLAP or ROLAP with a lower level of aggregation.

Table 6–1 summarizes storage information.

Table 6–1. Storage Options for SSAS Cubes

Type Data (Facts) Metadata Aggregations Reason

MOLAP cube* SSAS (copied) SSAS SSAS Default/fastest query**

HOLAP*** cube Not copied SSAS SSAS Good for archive partitions

ROLAP*** cube Not copied SSAS Written to SQL Good for storage issues

ROLAP***
dimension

Not copied Not
copied

Written to SQL Real-time dimensions

* Cube or cube partition

** SSAS Standard Edition supports only MOLAP storage with the default number of partitions per cube (1).

*** Requires the Enterprise Edition of SSAS

If you are using the Enterprise Edition of SSAS, you have one additional storage configuration to
consider: Proactive Caching.

CHAPTER 6 ■ CUBE STORAGE AND AGGREGATION

149

Using Proactive Caching
Proactive caching enables your end users to access your BI data with all the speed and power of SSAS but
without the typical latency (often one business day) between the OLTP source and OLAP data.
Configuring proactive caching is the method by which you manage the MOLAP cache.

The MOLAP cache is an in-memory storage location created automatically by SSAS. The cache
includes fact and dimension data and occasionally aggregations. This information is placed in the cache
area after MDX queries are executed against the SSAS cubes. Figure 6–13 shows a conceptual rendering
of the MOLAP cache.

Figure 6–13. Proactive caching settings allow you to manage the update/rebuild frequency of the MOLAP

cache for your cube or partition(s).

Note that proactive caching happen in near (but not exactly) real time. The nearer to real time, the
more overhead is added to the system. That’s why SSAS has six different options for you to choose from
when configuring proactive caching using the measure group processing tool. You can achieve still more
finely grained control using the Custom Options dialog box in this section and even more control by
configuring the property section for any particular measure group. Also, remember that you can only
configure storage and caching settings at the level of the partition, or subset of the measure group or fact
table, if you have already set up partitions in your solution.

CHAPTER 6 ■ CUBE STORAGE AND AGGREGATION

150

■Note Proactive caching is not for every BI solution. Using it effectively requires you to either read your OLTP data
directly as the source for your cube, or you read a cached copy of your data. Another option, if your source data is
stored in SQL Server, is to read your OLTP data using Snapshot isolation level. To use these options, your source

data must be very clean. If you need to do cleansing, validation, and/or consolidation during ETL processing,

proactive caching is not the best choice for your solution.

Let’s start with a more complete explanation of the choices available in the Measure Group Storage
Settings dialog box, as they relate to proactive caching settings. The first choice you’ll make is whether to
use MOLAP, HOLAP, or ROLAP data storage for your cube. In most cases, due to the superior query
performance, you’ll select some version of MOLAP. The proactive caching configuration choices for
MOLAP are as follows:

• Scheduled MOLAP: In this setting, the MOLAP cache is updated per a schedule
(whether the source data changes or not); the default is once daily. This sets the
rebuild interval to one day.

• Automatic MOLAP: In this setting, the cache is updated whenever the source data
changes. It configures the silence interval to 0 seconds and sets no silence override
interval.

• Medium-latency MOLAP: In this setting, the outdated caches are dropped
periodically (the default is a latency period of 4 hours). The cache is updated when
data changes (defaults are a 10-second silence interval and a 10-minute silence
override interval).

• Low-latency MOLAP: In this setting, outdated caches are dropped periodically (the
default is a latency period of 30 minutes). The cache is updated when data
changes (defaults are a 10-second silence interval and a 10-minute silence
override interval).

■Tip To understand the “silence interval” property, think of this question: how long should the cache wait to
refresh itself if there are no changes to the source data? To understand the “silence override interval” property

think of this question: what is the maximum amount of time after a notification (of source data being updated) is

received that the cache should wait to start rebuilding itself?

If you select HOLAP or ROLAP, the proactive caching settings are as follows:

• HOLAP: In this setting, outdated caches are dropped immediately (configures the
latency period to 0 seconds). The cache is updated when data changes (defaults
are a silence interval of 0 seconds and no silence override interval).

CHAPTER 6 ■ CUBE STORAGE AND AGGREGATION

151

• ROLAP: In this setting, the cube is always in ROLAP mode, and all updates to the
source data are immediately reflected in the query results. The latency period is
set to 0 seconds.

Selecting the Options button on this same property sheet allows you to manually adjust the cache
settings, options, and notification values, as shown in Figure 6–14.

Figure 6–14. The custom settings for proactive caching include the General and Notifications tabs of the

Storage Settings dialog box in the Partitions tab of BIDS. Here you can more granularly adjust the cache

and notification settings.

Fine-Tuning Proactive Caching
You can fine-tune proactive caching settings for a particular measure group. Managing your proactive
cache settings allows you to specify cache properties, such as how often to rebuild the cache and how
often to drop an outdated cache. Table 7-2 provides a summary of the settings available.

CHAPTER 6 ■ CUBE STORAGE AND AGGREGATION

152

Table 7-2. Proactive Caching Settings

Setting Choices Description

Aggregation Storage Regular; MOLAP only Applies to partitions only

Enabled True; False Turns proactive caching on or off

ForceRebuildInterval Time value Maximum time increment to
rebuild the cache whether the
source data has changed or not;
default is –1, which equals
infinity

Latency Time value Maximum time to wait to rebuild
cube; default is –1, which equals
infinity

OnlineMode Immediate; OnCacheComplete Tells whether new cache will be
available immediately or only
after it’s been completely rebuilt

SilenceInterval Time value Maximum time the source data
has no transactions before the
cache is rebuilt; default is –1,
which equals infinity

SilenceOverrideInterval Time value Maximum time to wait after a
data change notification in the
source data to rebuild the cache;
overrides SilenceInterval value;
default is –1, which equals
infinity

Setting Notifications for Proactive Caching
You can adjust the notification settings, regarding data changes in the base OLTP store, by using the
Notifications tab of the Storage Options dialog box. Notification Services allows clients to subscribe to
interesting events and receive notification of changes. There are three types of notifications possible
using this dialog box:

• SQL Server: For this option, you’ll need to specify tracking tables in the relational
source database. This option uses trace events and requires that the service
account for SSAS has database owner (dbo) permissions on the SQL database that
contains the tracking table.

• Client Initiated: As for SQL Server, you’ll need to specify tracking tables in the
relational source database. This is used when notification of changes will be sent
from a client application to SSAS.

CHAPTER 6 ■ CUBE STORAGE AND AGGREGATION

153

• Scheduled Polling: For this option, you’ll need to specify the polling interval time
value and whether you want to enable incremental updates and add at least one
polling query. Each polling query or queries is also associated with a particular
tracking table.

■Tip Notification Services includes an adaptor for SSAS. Using this adapter, a custom client application could
subscribe to an interesting event by specifying a custom MDX query (which would include the data to be

inspected, the frequency of polling, and the notification scheme). For example, a plant manager could request

notification if the number of defects per hour on an assembly line had risen above a specified level.

Deciding Between OLTP and OLAP Partitioning
If you are working with the Enterprise Edition of SQL Server, you now have the ability to do relational
table partitioning in your star schema source tables. This strategy can complement cube partitioning
you implement using SSAS, or you can choose to partition only on the relational side. The consideration
then becomes which type of partitioning is appropriate for your BI solution?

Relational Table Partitioning in SQL Server
Table partitioning is the ability to position data from the same table on in different filegroups, often in
different physical locations (disks), while that data appears to continue to originate from the same
logical table from the end-user’s perspective. This simplifies management of very large databases
(VLDBs), and in particular, management of very large tables. The large tables that we are concerned
about here are, of course, fact tables.

Fact tables commonly contain millions or tens of millions of rows. In fact, support for these huge
fact tables is one of the reasons that the BIGINT datatype, which can house over four billion rows, was
introduced in SQL Server 2000. Relational table partitioning can simplify administrative tasks and
general management of these, often large or even huge, data sources. An example of this is that backups
can be performed much more efficiently on table partitions, rather than on entire fact tables.

Although relational table partitioning is relatively simple, several steps are involved in
implementing it. Here’s a conceptual overview of the technique:

1. Identify the tables that are the best candidates for partitioning. For OLAP
projects, as mentioned, these will generally be the fact tables.

2. Identify the value (or column) to be used for partitioning, usually a date field; a
unique constraint must be implemented on this column of the tables that will
participate in partitioning.

3. Implement the physical architecture needed to support partitioning, that is,
install the physical disks.

4. Create filegroups in the database for each of the new physical disks or arrays.

5. Create secondary database files (.ndf files), for the SQL Server database where
the tables to be partitioned are contained, and associate these .ndf files with
the filegroups you created in Step 4.

CHAPTER 6 ■ CUBE STORAGE AND AGGREGATION

154

6. Create a partition function. This creates the buckets to distribute the sections of
the table into. This is often done by date range, that is, from xxx to yyy date
(most often monthly or annually).

7. Create a partition scheme. This associates the buckets you created previously to
a list of filegroups, in which there is one filegroup for each time period (that is,
each month or year).

8. Create the table, usually the fact table, based on the partition scheme that you
created earlier. This splits the table into the buckets you’ve created.

OLAP Partition Configurations
One other consideration in the world of partitions returns us to SSAS cube partitions. With the
Enterprise Edition of SSAS, it is possible to define cube partitions as local (the default) or remote. A local
partition is one in which the data is stored in the same database as the definition. A remote partition is
one in which the data is stored in a database separate from that containing the definition of the
partition.

The primary reason to consider using remote partitions is to do a kind of load balancing in the SSAS
environment. You would use remote partitions to implement load-balancing situations where your
primary SSAS server was stressed due to (usually) a large number of users executing complex queries. By
using remote partitions, you can split the processing work across multiple physical servers. Additional
considerations with remote partitions include the following:

• Remote partitions: These partitions can use MOLAP, HOLAP, or ROLAP storage.
They can also use proactive caching. Remote partitions store information on the
remote server.

• Remote MOLAP: Data and aggregations for the remote partition are stored on the
remote server.

• Remote HOLAP: Aggregations for the remote partition are stored on the remote
server; data is read from the OLTP source.

• Remote ROLAP: Nothing is stored on the remote server; both data and
aggregations are read from the OLAP source.

Choosing Cube and Dimension Processing Options
Now that we’ve covered storage, aggregations, partitions, and caching, we are ready to review cube and
dimensions processing option types. Dimensions must be completely and correctly processed either
prior to or at the beginning of a cube process. The best way to understand this is to remember that
dimensional data is the metadata or the structure of the cube itself, so the metadata must be available
before the data can be loaded into the cube.

During development, you will most often do a full process on your cube whenever you need to view
the results of a change that you’ve made. This option completely erases and rebuilds all data and
metadata. For some customers, this simple method of updating the cube can be used in production as
well. A full process is, of course, a complete overwrite on rebuild. This is only practical for the very
smallest cubes—a couple of gigabytes in size maximum.

In the majority of cases, you will choose the more granular processing options after moving your
cube to a production environment. The first consideration is the ability to separate processing of

CHAPTER 6 ■ CUBE STORAGE AND AGGREGATION

155

dimensions from the cube. In this chapter, we’ll review the steps for processing using BIDS. In Chapter
8, we’ll discuss automating these cube and dimension refreshes using SSIS tasks and workflows.

To process a cube, right-click the cube name in the Solution Explorer in BIDS, and select Process.
You’ll see the dialog box shown in Figure 6–15.

Figure 6–15. To process a cube, right-click the cube name in BIDS, click Process, and select the process type

and options in the dialog box.

CHAPTER 6 ■ CUBE STORAGE AND AGGREGATION

156

The following is a more complete explanation of the available selections for process options for both
cubes and dimensions than what’s offered in the dialog. Some options are only available for cubes or for
dimensions as noted in the list:

• Process Default: SSAS detects the current state of the cube or dimension and then
does whatever type of processing (full or incremental) is needed to return the cube
or dimension to a completely processed state.

• Process Full: SSAS completely reprocesses the cube or dimension. For a cube, this
will include all the objects contained within it, for example, dimensions. Full
process is required when a structural change has been made to a cube or
dimension. For a dimension, one example would be when an attribute hierarchy is
added, deleted, or renamed.

• Process Data: SSAS processes data only and does not build any aggregations or
indexes. SSAS indexes are not the same as relational indexes; SSAS indexes are
generated and used by SSAS internally during the aggregation process.

• Unprocess: SSAS drops the data in the cube or dimension. If there are any lower-
level dependent objects, for example, dimensions in a cube, those objects are
dropped as well. This option is often used during the development phase of a BI
project to quickly clear out erroneous results.

• Process Index: SSAS creates or rebuilds indexes for all processed partitions. This
option results in no operation on unprocessed objects.

• Process Structure (cubes only): SSAS processes the cubes and any contained
dimensions but does not process any mining models.

• Process Incremental (cubes only): SSAS adds newly available fact data and
processes only the affected partitions. This is the most common option used in
day-to-day production.

• Process Update (dimensions only): SSAS forces an update of dimension attribute
values. This value is to dimension processing as the incremental value is to cube
processing; that is, Process Update adds new members for dimensions just as
Process Incremental adds new facts for cubes.

■Note Aggregation processing behavior in dimensions depends on the AttributeRelationship RelationshipType

property. If this property is set to the default value (Rigid), aggregations are incrementally updated on incremental

process of the cube or update of the dimension. If it is set to the optional (or nondefault) value (Flexible), aggregations

are fully reprocessed for cube/dimension incremental updates. Also, if you set the dimension processing mode for a

dimension to lazyAggregations, flexible aggregations are reprocessed as a background task, and end users can

browse the cube while this processing is occurring.

An optimization step you can take to reduce processing times for your dimensions is to turn off the
AttributeHierarchyOptimized property for dimensional attributes that are only viewed infrequently by
end users. To adjust the AttributeHierarchyOptimizedState property, you’ll open the Properties dialog
box for the particular DimensionalAttribute and set the property value to NotOptimized. Figure 6–16

CHAPTER 6 ■ CUBE STORAGE AND AGGREGATION

157

shows the property sheet for the Education attribute in the Customer dimension. Setting the value to
NotOptimized causes SSAS to not create supplementary indexes (usually created by default) for this
particular attribute on dimension or cube process. This can result in slower query times, so change this
setting only for rarely browsed attributes.

Figure 6–16. You can improve dimension processing times by adjusting the

AttributeHierarchyOptimizedState property of rarely browsed DimensionalAttributes.

CHAPTER 6 ■ CUBE STORAGE AND AGGREGATION

158

■Tip To identify infrequently queried attributes, you could either use a capture of queries from SQL Server Profiler or

read the content of the LogTable after running the Query Optimization Wizard.

The final consideration when processing cubes and dimensions is whether you’ll need to adjust any
of the processing options. You access these options using the Change Settings button in the Process
Cube dialog box. Here, you have two tabs to work with. In the first tab, Processing Options, you can set
the following values:

• Parallel or Sequential processing: If parallel, maximum number of parallel tasks

• One or separate transactions: For sequential processing

• Writeback table: Use existing or create new

• Process dependent objects: Off or on

The second tab, Dimension Key Errors, allows you to configure the behavior of errors during processing.
You can either use the default error configuration or set a custom error configuration. When using a custom
error configuration, you can specify the Key Error Action, the Processing Error Limit, the behavior to result for
reaching Specific Error Conditions (Key Not Found, Duplicate Key, Null Key Converted to Unknown, or Null
Key Not Allowed), and the Error Log Path location. Figure 6–17 displays a sample.

Figure 6–17. The Dimension Key Errors tab in the Change Settings dialog box of the Process Cube dialog

box allows you to specify custom error behavior responses when processing a cube.

CHAPTER 6 ■ CUBE STORAGE AND AGGREGATION

159

Although you have probably been processing test cubes for awhile prior to reading this chapter,
you’ve probably gained a bit more insight into what actually happens when you run the process action.
Figure 6–18 shows the output from the Process Cube dialog box. You can also direct this process
information to a log file. In production, you would normally automate the cube/dimension processing
via SSIS packages, using the cube- or dimension-processing tasks.

Figure 6–18. The Process Progress dialog box allows you to review the progress and duration of each step

involved in processing a cube or a dimension.

Summary
This chapter covered the processes for designing physical storage for your cube. You learned about the
capabilities of the three core storage modes—MOLAP, HOLAP, and ROLAP—and about aggregation
design and partitioning. Remember that several of these features require the Enterprise Edition of SSAS,
as noted for each feature in the text of this chapter.

The most important consideration for physical cube storage design is to get the correct balance
between performance and manageability. Many customers are satisfied with MOLAP for their entire
cubes, with just a bit of added custom-designed aggregations.

CHAPTER 6 ■ CUBE STORAGE AND AGGREGATION

160

In the next chapter, we’ll venture into the world of SSIS. You’ll learn how to design basic SSIS
packages, and in the process, you’ll learn to use the BIDS interface for SSIS. The discussion will include
the use of control flow tasks and data transformations.

C H A P T E R 7

■ ■ ■

161

Introducing SSIS

Now that you’ve captured the business requirements and are working on creating a basic OLAP design,
the next task in creating your BI solution is to map the data from the source system(s) to your OLAP
model. In larger BI projects, it is common for different people (or teams) to be working on an OLAP
design and an ETL design concurrently.

Data maps are used as a basis for beginning your ETL design. As mentioned in Chapter 1, ETL
stands for “extract, transform, and load.” It is important that you don’t underestimate the amount of
work involved in this portion of your project. A large part of the project work in a BI solution commonly
consists of ETL process design, execution, and debugging. The SQL Server ETL toolset is called SQL
Server Integration Services (SSIS).

Understanding ETL
ETL, in a BI project context, is the process of preparing all source data for use in an OLAP cube. The rich
SSIS toolset can also be used for other types of data movement, for example, data consolidations and
migrations. In this book we will focus on the BI project use of SSIS, which is extracting, transforming,
and loading data from one or more source systems into an OLAP model. This process may also involve
the use of an intermediate staging server that contains a staging database with staging tables. The use of
a staging server and database is usually driven by the complexity and messiness of the source data. For
example, in a recent project we worked on, there were 16 data sources, each with its own unique
validation issues. The ETL project contained intermediate staging tables for each data source. Another
consideration is whether or not the source data is contained in a relational structure. If a project will be
using a large number of nonrelational source files, .csv, .txt, .xml, and so on, a staging server and
database are often used as part of the ETL process.

Creating a Plan
The first part of the BI ETL process is to create a documented plan for your project’s ETL. You will often
create a high-level overview diagram like the one shown in Figure 7–1, which shows the data sources you
will include in your project. When creating your data diagram, you should first make a list of all possible
data sources for your project. A typical mistake is to not include all data sources in this selection. Your
source data will most probably include one or more relational databases; however, you should not
restrict yourself to relational data only. It is very common to use data from a variety of sources in the
organization. These sources can include relational databases, flat-file databases, Excel spreadsheets,
XML files, text files, Active Directory, ERP systems, and output from a mainframe.

You may also add detail to this diagram. Detail can include load window times (between which
times you may extract data) and type of access, for example, FTP for files.

CHAPTER 7 ■ INTRODUCING SSIS

162

Figure 7–1. An example of an ETL data diagram

Creating a Data Map
After you’ve created a complete list of your data sources for extract by creating a high-level diagram and
a complementary and more detailed list containing extraction information such as load windows,
authentication type, transfer protocol, and so on in something like Excel, then the next step is to design a
detailed data map. To do this, you will begin to map the data sources more specifically to the data
destination locations. The destinations are based on the OLAP star schemas that you’ve already created
and may include map-through staging tables, if you’ve chosen to use them. As you continue your design
documentation, you will add more detail to the information captured in this diagram. The outcome of
this process is called a data map.

CHAPTER 7 ■ INTRODUCING SSIS

163

The use of a staging server, although not a requirement for the use of Analysis Services, is a common
practice. In addition to choosing to add this dedicated server due to data load complexity, another
consideration is that you can offload work from the production OLTP server and consolidate ETL
processes onto one physical machine. You may not have a one-to-one match for some of the tables or
the table fields at this point. At this early stage, you are beginning to match source data with destination
data. Later, you will identify SSIS transformations and map from source to destination all the way to the
column level for each table of each data source. An example of a portion of an early data map is shown in
Figure 7–2. Within the three sections in this figure—sources, transformations, and destinations—boxes
represent items that will need to be mapped; that is, there is an .xls source for customers, and that .xls
source will need a concatenation transformation and will be sent to the DimCustomer table destination.

You will commonly work with subject matter experts (SMEs) to make corrections in your OLAP star
schema based on new information discovered during the ETL mapping process. You might also need to
work with SMEs concerning nonintuitive source information, such as obscure column names in source
tables or data that must be translated from a numeric to a text value to be meaningful. Sometimes, this
will result in your OLAP star schema design changing, and sometimes, this will also result in the
inclusion of more source data than was originally planned for. All stakeholders should approve any
significant changes to the scope of your BI solution. These changes may also cause budget and resources
to be adjusted for your BI project.

CHAPTER 7 ■ INTRODUCING SSIS

164

Figure 7–2. You should create a high-level mapping of data sources to destinations, including partial

transformation information during the early stages of creating your BI project data map.

Refining a Data Map
The next step in your ETL-mapping process is to create a more detailed data map. We’ve used Excel for
this in past BI projects. Your goal here is to add as much detail as possible to your data map prior to
starting development of SSIS packages. Figure 7–3 is an example of a more detailed data map,

CHAPTER 7 ■ INTRODUCING SSIS

165

sometimes referred to as Source to Target. Note the addition of all columns in the destination table and a
partial mapping of sources to destinations at the column level. Strive to be as complete as possible in
your data map prior to starting actual SSIS package development.

Figure 7–3. More detailed data mapping, showing a single destination table, with source data listed for

each column

Adding a Staging Server
In Figure 7–1, the physical implementation of a BI solution shows a separate physical server as a staging
server. Although this separate physical server is not required for all BI solutions, you should consider the
factors that might cause you to add this server to your solution. Although you can easily install both SQL
Server, which includes SSIS and SSAS, on the same physical server, there are many good reasons for
separating these two products. In most production BI solutions that we’ve implemented, separating SSIS
and SSAS has been selected as the final production configuration. By using two servers for SSIS and
SSAS, you are separating two key components of your BI solutions: the ETL processes and the cube
processing/hosting environments. In doing this, you are creating a configuration that is easier to
maintain, performance tune, and scale than using one server for both types of functionality.

Although the two-server configuration is the one we’ve most commonly used in production, it is
perfectly valid to install both SSIS and SSAS on the same physical server for development or testing. Of
course, it is always preferred to duplicate the production environment in the testing and development
areas, but the reality for many of my customers is that their resource constraints necessitate simpler
solutions in testing and development.

After you decide the appropriate physical configuration given your particular requirements and
constraints, and have a relatively complete data map, you are ready to begin the actual ETL process
development for your BI project. You will usually use SQL Server SSIS to do this. If your source data is
exceptionally clean, it is theoretically possible to use a simpler method, such as T-SQL statements (if all
source data was contained in SQL Server), rather than SSIS packages to perform the ETL portion of your
BI project. This is theoretical because although a couple of customers have suggested this simplified
approach, we’ve not found a business environment yet that was sufficiently disciplined to provide data
that was clean enough to be directly used in a BI project.

CHAPTER 7 ■ INTRODUCING SSIS

166

Creating a Basic SSIS Package
SSIS packages contain four fundamental parts: control flow, data flow, error handlers, and
configurations. Although you can design packages with these four fundamental parts in BIDS, we’re not
going to start there just yet; rather, you’ll use the included Import and Export Wizard to design your first
package. There are three reasons for doing this: simple data movement is quicker; wizard-designed
packages can serve as templates or starting points for other packages, and the wizard encapsulates quite
a bit of functionality.

■Note This section has you accessing the Import and Export Wizard from within SSMS. You can also access the
Import/Export Wizard from inside of BIDS by opting to create an Integration Services Project, right-clicking the SSIS

packages folder in the Solution Explorer window, and choosing SSIS Import and Export Wizard.

To access the wizard, right-click your AdventureWorks2008R2 database in the Object Explorer window in
SSMS, and click Tasks ➤ Import Data, or click Tasks ➤ Export Data. This will start the wizard. After you
click Next on the Welcome dialog, you will see the Choose a Data Source dialog, shown in Figure 7–4.

CHAPTER 7 ■ INTRODUCING SSIS

167

Figure 7–4. Choosing a data source is the first step in using the SQL Server Import and Export Wizard for

SSIS.

The next step is choosing a destination for your data. For this basic package, choose tempdb as your
destination database.The wizard can work with SQL Server and non-SQL sources and destinations. After
you’ve selected both source and destination, you’ll need to choose one of two options: “Copy data from

CHAPTER 7 ■ INTRODUCING SSIS

168

one or more tables or views” or “Write a query to specify the data to transfer” (which copies some subset
of data to your selected destination), as shown in Figure 7–5.

Figure 7–5. In this step of the Import and Export Wizard, you select from one of the two shown options.

Select the first option, and click Next. In the Select Source Tables and Views dialog, choose the
[Person].[AddressType] table. The wizard will allow selecting one or more tables or views from the

CHAPTER 7 ■ INTRODUCING SSIS

169

source location. The default is to copy the object metadata (or structure) and data to the destination
location in the same format as the source. You can adjust this, however, by clicking the Edit Mappings
button. If you do this, you can skip importing selected columns by setting the Destination column value
to <ignore>. This is shown for the column named rowguid in Figure 7–6.

Figure 7–6. In this step of the wizard, you can set the package to skip or ignore selected columns.

After you click OK and Next, the wizard allows you to run the import (or export) process that you’ve
configured immediately, and (optionally) to save it as a SSIS package. You can select from two locations
if you want to save your package: SQL server or the file system.

If you store your package on SQL server, you will have to specify a server name and authentication
credentials. The package will be stored in the MSDB database on the server you selected. If you select
storage on the file system, you must supply a path. The package will be stored at the selected location as
a file with a .dtsx extension. Although not required, the preferred method is to store your packages on a
SQL Server instance in MSDB, so that you can more easily attend to administrative tasks, such as
performing backups, and scheduling execution. At this point, you want to uncheck “Run immediately”,
check Save SSIS Package, and click Next to load the Save SSIS Package dialog, as shown in Figure 7–7.

CHAPTER 7 ■ INTRODUCING SSIS

170

Figure 7–7. In the final step of the wizard, you can save and store the package on SQL Server.

Give your package a name and description, and click Next to save your package. Finally, click Finish
to complete the wizard.

If you want to run your package, you can run it directly from SSMS. To run your package from SSMS,
click Connect ➤ Integration Services in Object Explorer. After you’ve successfully connected, you’ll see
the package in the menu tree by navigationg to Stored Packages ➤ MSDB. Right-click your package

CHAPTER 7 ■ INTRODUCING SSIS

171

name, and choose Run Package. In the Execute Package Utility dialog, you can configure several runtime
properties, including error log locations and connection information for the package, as shown in Figure
7–8.

Figure 7–8. In SSMS, you can set many runtime properties of a package.

One reason to use the Import and Export Wizard in SSMS rather than using BIDS to create simple
packages is to quickly create prototype packages (templates as well) that you can later edit using BIDS.

Building Basic SSIS Packages
As with other types of BI design, such as cubes, you’ll open BIDS to begin creating an SSIS package. BIDS
functionality is accessed via a set of included BI template types that are available inside of the Visual
Studio (VS) interface. BI objects are created using the BIDS templates, including templates to create

CHAPTER 7 ■ INTRODUCING SSIS

172

SSAS databases (cubes, dimensions, and data mining structures and models), SSIS projects (SSIS
packages), and SSRS reports and report models. Templates consist of starter folders and files that are
specific to the project type selected. To start working in BIDS, you open it from the Start menu, click File
➤ New ➤ Project, and then select the appropriate project type from the templates of type Business
Intelligence. Solutions are containers for projects, and projects are containers for files and folders.

Developing SSIS Packages
As with designing your first cube, developing SSIS packages requires that you use BIDS to create a new
project. In this case, you’ll select a project from the BI category and of type Integration Services Project.
After you do that, you’ll see the development environment shown in Figure 7–9.

Figure 7–9. SSIS packages are authored using BIDS with a project type of Integration Services Project.

The first section you’ll use in BIDS is the Solution Explorer. This shows the name of the project and
is, in essence, a container for multiple .dtsx packages. Projects are a natural way to group packages
together for doing the ETL processes for a particular BI project (or SSAS database, which will typically
contain one or more OLAP cubes).

The nodes, or folders, below the project name are provided in Table 7–1.

CHAPTER 7 ■ INTRODUCING SSIS

173

Table 7–1. List of Folders in BIDS for SSIS Package Template

Folder Purpose

Data Sources Contains connections used in one or more packages (global connections)

Data Source Views Contains abstractions against one or more data sources

SSIS Packages Contains SSIS packages (.dtsx files)

Miscellaneous Contains other file types, that is, .txt, .xml, and so on

If you wanted to edit a package that you had created in SQL SSMS using the Import and Export
Wizard, you could import it into BIDS by right-clicking the SSIS Packages folder in Solution Explorer and
choosing Add Existing Package. In the Package location drop-down list in the Add Copy of Existing
Package dialog, you choose SSIS Package Store (see Figure 7–10).

Figure 7–10. In the Add Copy of Existing Package dialog, you select the import package from whatever SSIS

Package Store location you’ve originally stored your package(s) in to be able to edit packages created in

SSMS using the Import and Export Wizard.

CHAPTER 7 ■ INTRODUCING SSIS

174

Designing SSIS Packages
Now, you are ready to design your first SSIS package. Using your detailed data map, you should have
information about the source, destination, and potential transformations documented. This will be the
basis for your package design. For BI projects, best practice is to design one or more packages per
destination table and not design individual packages that load data into multiple tables. By following
this simple guideline, and ideally documenting it as a standard for your ETL team, you’ll be reducing the
effort involved in updating and maintaining your SSIS packages over the lifetime of the BI solution.

For our first example, you’ll create a simple package that extracts data from a single source location
and loads it into a staging (or intermediate) table in your star schema database. The first thing to
consider is how you’ll connect to the data sources.

Configuring Connections
Although it is possible to define connections only within each package, you will most often reuse
connections across multiple packages within the same project. To create a new connection, right-click
the Data Sources folder in the Solution Explorer, and choose New Data Source to open the Data Source
Wizard. In this wizard, you can either reuse a previously defined connection for any other SSIS package
designed on your computer, or you can create a new connection. Click Next at the Welcome dialog and
then click New in the “Select how to define the connection” dialog to open the Connection Manager,
shown in Figure 7–11.

CHAPTER 7 ■ INTRODUCING SSIS

175

Figure 7–11. In the Connection Manager dialog in BIDS, you configure reusable connections. The All

button on the left allows you to set advanced connection properties, such as connection timeout values.

The next step is to associate this global connection with the specific package that you are working
on. To do this, right-click the bottom-center area of the package design surface in BIDS titled
Connection Managers; a menu of connection types appears, as shown in Figure 7–12. Click New

CHAPTER 7 ■ INTRODUCING SSIS

176

Connection from Data Source, and select the connection name that you previously created. You will
now be able to associate this connection with tasks in your particular package.

Figure 7–12. Menu of data source types to select from.

To add a connection specific to the particular package that you are designing and not globally
available to all packages in your current project, right-click in the Connection Managers area, click the
context menu item that reflects the provider (that is, OLE DB, ADO.NET, and so on), and then configure
the connection as per your requirements. Figure 7–12 shows the complete list of available providers in a
default installation of SSIS. You can see and work with this list by selecting New Connection from the
context-sensitive menu that is available after you right-click in the Connection Managers design area for
SSIS packages in BIDS.

Adding Control Flow Tasks
Your next step in package design is to select one or more control flow items from the toolbox and drag
them to the Control Flow design surface section. The Control Flow surface is a workflow manager for
your SSIS packages. The control flow design surface allows you to compartmentalize a package by
separating different types of tasks and data flows. Individual data flows can separate data movement and
transformations by unit of work or line of business. Figure 7–13 shows the toolbox for the control flow
items. You can see by looking at the names of the items in Figure 7–13 that control flow refers to items
that perform some sort of action (most all of the task names are self-explanatory). Books Online (BOL)

CHAPTER 7 ■ INTRODUCING SSIS

177

offers explanations of the functionality associated with each item. We will review some of the more
complex control flow tasks in Chapter 8, “Intermediate SSIS,” and Chapter 9, “Advanced SSIS.”

Figure 7–13. The Control Flow Items section in the BIDS toolbox displays a variety of stock tasks to use in

your SSIS packages.

CHAPTER 7 ■ INTRODUCING SSIS

178

For your first package, you will use just two of the tasks from this toolbox: Data Flow Task and Send
Mail Task. Drag each of the items to the center work area, or designer surface, in BIDS, placing the Data
Flow Task just above the Send Mail Task. Click the Data Flow Task, and drag the green line from the Data
Flow Task to the Send Mail Task until the two tasks are connected. You’ll notice that the Send Mail Task
has a red warning icon on it. If you pass your mouse over the error icon, a tooltip will tell you that the
“SMTP server is not specified,” so the task cannot execute. To review the cause of this error, right-click
the task and select Edit.Next, select Mail from the left-hand pane and you’ll be presented with the Send
Mail Task Editor configuration dialog, an example of which is shown in Figure 7–14.

So far, you’ve created a package that will complete some kind of data movement or flow and will
send an email via SMTP on successful completion of that data flow task (after you add the SMTP server
location information). For the purposes of this quick discussion, we aren’t going to complete that
configuration. The next step in the design of this pseudo-package is to configure the data flow itself.

Figure 7–14. The Send Mail Task Editor dialog box requires you to configure a SMTP connection and to

supply from and to information.

CHAPTER 7 ■ INTRODUCING SSIS

179

Configuring Data Flow Tasks
To begin configuring your Data Flow Task, double-click the Data Flow Task on the Control Flow design
surface. This will take you to the Data Flow design surface for that particular Data Flow Task (see Figure
7–15).

Figure 7–15. The Data Flow work area in BIDS allows you to visually configure a data flow for a particular

Data Flow Task in the control flow area of your SSIS package.

You will usually select at least one data source, one transformation, and one destination from the
toolbox. You do not need to add any transformations to a data flow; that is, you can simply add a data
source and a data destination. Figure 7–16 shows all data sources and data destinations from the BIDS
toolbox.

Figure 7–16. Data Flow Sources and Data Flow Destinations from the toolbox in BIDS reflect a variety of

interoperability between different types of data sources and data destinations in SSIS packages.

CHAPTER 7 ■ INTRODUCING SSIS

180

For this particular example, you’ll simply drag on an OLE DB Source and an OLE DB Destination. To
configure each OLE DB item, right-click and choose Edit. Next, associate your OLE DB Source with the
existing AdventureWorks connection, and choose DimEmployee as your source table. After you’ve
completed this step, drag the green arrow from the OLE DB Source to the OLE DB Destination. Open
your OLE DB Destination, and click New to create a new destination table. Click OK in the Create Table
dialog to instruct SSIS to create a [OLE DB Destination] table, and set it as the data flow destination.
Finally, click Mappings in the left-hand pane to have SSIS automatically map source to destination
columns by name, and click OK. In this case, no transformations were added between the source and
destination. Although atypical in the real world, this example demonstrates the simplest possible data
flow, and is shown in Figure 7–17.

■Tip When should you use an ADO NET source (or destination) and when should you use an OLE DB source (or
destination)? Use an ADO NET when consuming or providing data to any .NET data provider. Use an OLE DB source

(or destination) when consuming or providing data to any OLE DB provider.

Figure 7–17. Configure data flows by using data sources and destinations in the DataFlow work area of

SSIS.

To test your first package, right-click the package name in Solution Explorer, and choose Execute
Package. BIDS not only allows you to execute packages but it shows execution status by changing the
color of the source and destination items (as well as any transformations—this item type is not shown in
this example): yellow for executing, green for success, and red for failure. Row counts are also shown on

CHAPTER 7 ■ INTRODUCING SSIS

181

the designer surface. In addition to this, SSIS contains a variety of debugging techniques. We’ll discuss
these in detail in Chapter 9. Figure 7–18 shows the result of a successful execution of this sample
package.

Figure 7–18. BIDS allows you to execute your SSIS packages, and the design environment indicates data

flow status and row count on the design surface.

CHAPTER 7 ■ INTRODUCING SSIS

182

Adding Transformations to the Data Flow
Using your data map, you’ll want to use one or more of the supplied data transformations in your
package. Figure 7–19 shows the possible options.

Figure 7–19. SSIS has a large array of Data Flow Transformation components to select from.

CHAPTER 7 ■ INTRODUCING SSIS

183

To enhance your basic package, add two transformations to the data flow: Derived Column and
Sort. Continue by removing the data flow path (green line) between OLE DB Source and OLE DB
Destination. Click your OLE DB Source, and drag the green data flow path (success path) to the Derived
Column transformation.

Configure the Derived Column transformation by right-clicking the transformation on the design
surface, and choosing Edit. The Derived Column dialog box appears in which you can create the new
column using SSIS expression syntax. For more information about the capabilities of SSIS expression
syntax, see the BOL topic “Syntax (SSIS).” You’ll note that all columns and variables available in the data
flow are shown in the Derived Column Transformation Editor dialog box. Also, there is a function
reference. To create the new column, complete the expression field. For this transformation, enter
FullName as the Derived Column Name, FirstName + " " + LastName as the Expression, and click OK.
These entries simply concatenated the FirstName and LastName columns, as shown in Figure 7–20.

Figure 7–20. The Derived Column Transformation Editor dialog box allows you to create new columns in

data flow using expressions that the data source can understand.

CHAPTER 7 ■ INTRODUCING SSIS

184

Next, drag the success data flow path from your Derived Column to your Sort. Open the Sort, and
check EmployeeKey from the Available Input Columns, then click OK. Finally, connect Sort to OLE DB
Destination. Your package should now resemble Figure 7–21.

Figure 7–21. Adding some basic transforms to the data flow.

When you execute the package, the Progress tab becomes available in the SSIS designer. The
Progress pane shows very detailed information about the execution of each task and step in the package.
As shown in Figure 7–22, the level of detail can be very helpful in understanding the overhead involved
with package execution.

CHAPTER 7 ■ INTRODUCING SSIS

185

Figure 7–22. The Progress tab in the SSIS designer shows you detailed information about the overhead

involved with executing each step and task of an SSIS package.

CHAPTER 7 ■ INTRODUCING SSIS

186

Summary
Are you beginning to understand the power of SSIS? This component of SQL Server is incredibly flexible
and important to all BI solutions. We’ve covered only the basics of using the tools available (either in
SSMS, with, the SQL Server Import and Export Wizard or in BIDS, with the SSIS Integration Services
project type template) to create SSIS packages that will be the workhorses of your ETL processes for BI.

We’ve really just scratched the surface of what is possible with SSIS. In Chapters 8 and 9, we’ll
explore the data flow transformations and control flow tasks in greater depth. Also, you’ll learn about
error handling, debugging, and best practices for SSIS design in BI projects.

C H A P T E R 8

■ ■ ■

187

Intermediate SSIS

By now, you’ve translated your business requirements into an SSAS cube. The next task in implementing
your BI project is to execute an ETL solution from your detailed data map. As discussed in Chapter 7,
data maps are used as a basis for beginning ETL design. In our experience, a good deal of the initial work
on a BI project consists of ETL process design, development, and debugging. We assume that you’ve
completed your data map and created a simple package or two using the Import and Export Wizard or
by using the SSIS package template in BIDS. In this chapter, we’ll cover the following topics:

• Considering common ETL package-design practices

• Understanding control flow tasks

• Understanding data flow transformations

• Using the Dynamic Configuration Wizard and property expressions

Common ETL Package-Design Practices
Whether you start with the blank SSIS package project-type template in BIDS, or by using the Import
and Export Wizard to create simple starter packages, your ETL solution may ultimately consist of many
SSIS packages. Before you begin implementing any packages, you should take a bit of time to plan your
ETL approach and high-level package design principles. The following list of common ETL practices is
offered as a guide, based on our collective experience architecting and building enterprise BI systems:
Create one set of packages for inserts and a different set for updates. Name the packages according to
function.

• Create a minimum of one package for each dimension and fact table per action
type (insert or update), for example, insertCustomerDim and updateCustomerDim.

• If you have a large number of data sources, consider creating one package per data
source per dimension per action type. For example, one BI project we recently
worked on had 16 data sources. Our naming convention was something like this:
insertCustomerDimFromCust1_xls and insertCustomerDimFromClient2_xls.

• Use self-documenting naming conventions throughout each package. That is,
apply common-sense names not only to package names but also to all items
contained in packages (tasks, steps, and so on). Also, you can put notes on the
design surfaces using the annotation capability in BIDS. This is a step that will pay
for itself many times over; each time new ETL developers need to work on a
package, they can read your notes, instead of e-mailing you or coming to your
office to ask you questions. This is sounding better and better already, isn’t it?

CHAPTER 8 ■ INTERMEDIATE SSIS

188

• Avoid hard-coded connection strings, user names/passwords, file paths,
computer names, and so on in all packages using dynamic configuration (which
will be explained in detail later in this chapter). This is critical to creating packages
that can easily run in development, test, and production environments.

• If source data need significant cleansing, validation, and/or consolidation, use an
interim staging database in your ETL process. Disk space is usually cheaper than
additional RAM or CPUs.

• Break complex processing down into discrete steps for finer-grained control over
performance and debugging. For very complex scenarios, use multiple packages,
as simpler packages are easier to work with.

• Consider that some capabilities of SSIS are available in the Enterprise Edition of
SQL Server only. We will note these features in this chapter’s text as they are
discussed.

• Consider that mastering SSIS’s rich toolset takes a significant amount of time. Be
careful when estimating your first ETL efforts. They will likely take longer than you
expect.

Creating an SSIS Package from Scratch
In this chapter, we’ll work either from scratch or from the samples available with SQL Server. As with
designing your first cube, developing SSIS packages requires that you use BIDS to create a new project.

Creating the Package Itself
To get started, in BIDS, select a project of type Business Intelligence Projects via File ➤ New ➤ Project
and then a template of Integration Services Project. Leave your project name as Integration Services
Project1, pick a directory location, and then click OK to create the project. After you do that, you’ll see
the development environment shown in Figure 8–1.

CHAPTER 8 ■ INTERMEDIATE SSIS

189

Figure 8–1. You author SSIS packages using BIDS with a project template type of Integration Services

Project

We’ll review each section of the designer now. First, to the left is the toolbox. The items displayed
depend on which section you are working on in the SSIS package designer area (center). If you are
working with the Control Flow, Event Handlers, or Package Explorer tabs, the toolbox will display the
Control Flow Items; if you are working with the Data Flow tab, the Toolbox will display the Data Flow
transformations. We’ll be discussing both the control flow task and the data flow transformation types in
greater detail later in this chapter.

■Tip If you’re feeling overwhelmed by all the different windows in BIDS and wondering how you’re going to keep
track of them all, relax! If you press Ctrl+Tab within BIDS, you’ll get a list of all the open documents and a list of all
the BIDS windows, and you can select the desired window by using the arrow keys. This technique should be a

huge time-saver for you.

You may also choose to display variables associated with a package by clicking the SSIS item on the
top menu bar and then clicking Variables. The Variables window will display in the same location as the
toolbox by default, as shown in Figure 8–2. In this section, you can view and add variables to the package
as well. It is also important to remember that variable names are case-sensitive in SSIS.

CHAPTER 8 ■ INTERMEDIATE SSIS

190

In Figure 8–2, the icon next to the last variable (TestVar) is blue to indicate that the variable is user
defined. One common source of frustration for new SSIS developers is variable scope. Variables with a
scope of Package are visible to all data flows, and other containers. The Scope column can prove quite
helpful when debugging your SSIS packages. The other variables that are listed in Figure 8–2 are created
automatically when you create a new SSIS package using that template in BIDS, and they are colored gray.

Figure 8–2. You can view variables associated with SSIS packages in BIDS by clicking the SSIS menu and

then clicking Variables. You can also add variables via this interface.

CHAPTER 8 ■ INTERMEDIATE SSIS

191

When working with the Control Flow, Data Flow, or Event Handlers tabs, the BIDS designer will
display the Connection Managers work area at the bottom of the screen. The Connection Managers area
displays an icon for each connection used in the package. You can add new connections by right-
clicking in this area, selecting the connection type from the menu, and configuring the connection.

On the right side of the BIDS SSIS package designer interface is Solution Explorer. When you open
the SSIS template, you are actually working with a Visual Studio project template. SSIS projects in Visual
Studio are containers for multiple files, in this case, multiple .dtsx files or packages and related files, like
data sources (or connections) and data source views (DSV). Projects allow the information in them to be
shared between files in the same project. In the case of SSIS, the most common items to be shared are
represented as folders in the Solution Explorer tree.

On the bottom right (by default) of the BIDS interface is the properties area. As you saw with SSAS
projects, you can select a particular item from the drop-down list in the property area, or you can simply
click the item you want to set the properties for on the design surface. After you’ve selected the
appropriate item, the properties for that item will appear. Read-only properties are greyed out; the other
properies are configurable.

The last part of the SSIS interface is the SSIS menu, which contains the following items:

• Logging: This item allows you to create package logs in up to five different
destination types (such as file, SQL Server, and so on). These logs capture runtime
events that are enabled for logging. This option is covered in more detail in
Chapter 9, “Advanced SSIS.”

• Package Configurations: This starts the Package Configuration Wizard. This wizard
allows you to dynamically configure various package properties. The
implementation of this wizard is covered in more detail in the “Using the Dynamic
Package Configuration Wizard” section of this chapter.

• Digital Signing: This option allows you to associate a certificate with your SSIS
package. Signing a package will allow you to prevent it from running if its contents
have been altered.

• Variables: With this option, you can display the package variables window on top
of the toolbox by default. It allows you to view package variables and add variables
as needed.

• Work Offline: This one allows you to work in a disconnected fashion. The default is
to work in connected mode so that connections to data sources and DSVs can be
used to retrieve metadata (for example, source table column names and data
types) that is used to populate SSIS tasks.

• Log Events: Use this option to display the Log Events window over the top of the
toolbox by default, as shown in Figure 8–3.

Figure 8–3. The Log Events window is displayed in BIDS after you open it from the SSIS menu. It shows

information about events you’ve chosen to capture for a particular SSIS package.

CHAPTER 8 ■ INTERMEDIATE SSIS

192

• New Connection: This one allows you to create a new connection for use in the
package. These connections can be based on data sources (global to the project)
or can be local to the specific package that you are working on. All connections
will appear in the Connection Mangers window at the bottom center of the design
area after you add and configure them.

• View: The final option allows you to switch between tabs in the SSIS designer, that
is, Control Flow, Data Flow, and so on.

When you execute a package in BIDS, by clicking the green triangle on the toolbar or by right-
clicking the .dtsx file in Solution Explorer and then clicking Execute Package, an additional tab becomes
available in the BIDS designer. The new tab is called Progress and will show you step-by-step execution
results. A sample is shown in Figure 8–4.

Figure 8–4. The Progress tab is displayed in BIDS after you execute an SSIS package. It shows detailed

execution information for the package.

CHAPTER 8 ■ INTERMEDIATE SSIS

193

Now that we’ve reviewed the BIDS design environment, you’re ready to create your first SSIS
package by designing it from scratch, rather than by running the Import and Export Wizard as we did in
Chapter 7. To understand what is now possible with SSIS, you should consider an SSIS package to be an
executable file that will perform a data workflow. You can combine the traditional ETL data for BI
projects with many other types of tasks to create the type of customized data workflow that best suits
your particular business needs.

Another important point to consider is that neither the data sources nor the data destinations need
to be any version of SQL Server. SSIS can connect to anything for which there is a supplied provider.
There are many provider types supplied with SSIS, and the list continues to grow with each release. With
all this power, you may be wondering where to start. All data workflows need to connect to something,
so the logical starting point is configuring connections.

Configuring Connections
Although it is possible to define connections only within each package, as a matter of convenience, you
will most often find yourself reusing connections across multiple packages. To create a new connection
in this way, right-click the Data Sources folder in the Solution Explorer window for your project, and
choose New Data Source. After you do this, click Next , and you’ll see a Data Source Wizard dialog box in
which you can either reuse a previously defined connection or create a new one. The “Create a data
source based on an existing or new connection” option in the “Select how to define the connection”
dialog box is shown in Figure 8–5.

CHAPTER 8 ■ INTERMEDIATE SSIS

194

Figure 8–5. In the “Select how to define the connection” dialog box in BIDS, you configure reusable

connection based on existing connections, other objects, or new information.

The next step is to associate this global connection with the specific package that you are working
on. To do this, right-click the bottom center Connection Managers pane, click New Connection from
Data Source, and select the connection name that you previously created. To review the broad variety of
data source types that can be used in SSIS packages, right-click inside the Connection Managers pane,
and choose New Connection. Figure 8–6 shows the list of Connection Manager types that are available to
you.

CHAPTER 8 ■ INTERMEDIATE SSIS

195

Figure 8–6. When you right-click in the Connection Managers pane, and select New Connection, you are

presented with a wide variety of data source types to select from.

Interestingly, different types of connections are available when you right-click the Connection
Managers area of the SSIS design surface versus those that are available if you right-click the Data
Sources folder in the Solution Explorer list. Figure 8–6 shows the connection types available for you from
the former area. Generally these include more file-based types, such as FLATFILE, EXCEL,
MULTIFLATFILE, and so on.

CHAPTER 8 ■ INTERMEDIATE SSIS

196

The top-level types of connections available for you from the latter area are .NET Providers, .NET
Providers for OLE DB, and Native OLE DB providers. These types are more relational in nature, that is,
they’re intended for use with SQL, Oracle, and so on. You can see the list of specific providers when you
expand each of these three folder types; for example, the .NET Providers include SqlClient Data Provider,
OracleClient Data Provider, and Odbc Data Provider.

Using Data Source Views (DSVs)
Another type of component shared across packages is a data source view (DSV). DSVs in the SSIS
designer function identically to the way they work in the SSAS designer. As with SSAS, you use and
customize DSVs when you do not have permissions to create views or other types of abstractions, such
as calculated columns, in the underlying data source. An option available to you when creating DSVs is
the ability to restrict the view to a particular schema in the source database. This option supports the
capability in SQL Server to group objects in a relational database together by schema. If you are not
familiar with the concept, you can think of schemas like folders on the file system. The Advanced Data
Source View Options dialog box is shown in Figure 8–7.

Figure 8–7. When you create a DSV, you can restrict the view to a particular schema in the source database

via this dialog box.

Another useful aspect of using DSVs while working in BIDS is the ability to explore the data
contained in the view. To do this, you just right-click any table in the DSV work area. As was mentioned
in Chapter 3, you can then view a subset of the data as a table, chart, pivot table, or pivot chart. This can
help you better understand the type and quality of the source data before you start creating your SSIS
package. Again, you’ll find this capability most helpful when you are not permitted to directly query the
source data.

Although using shared objects can be useful for your ETL solution development, you do not have to
use shared data sources or DSVs to create an SSIS package. This differs from the process of creating a
SSAS cube, where both a shared data source and a shared DSV are required.

CHAPTER 8 ■ INTERMEDIATE SSIS

197

Reviewing the Included Samples Packages
Now that we’ve completed our tour of the BIDS environment and the common areas, we’ll start working
through the sample packages. These packages are located by default at C:\Program Files\Microsoft SQL
Server\100\Samples\Integration Services\Package Samples. We’ll use these packages as a platform to
build our understanding of two of the core parts of the SSIS design interface: using the control flow tasks
and data flow transformation.
The first package we’ll start with is the Execute SQL Statements in Loop sample. To open this package in
BIDS, navigate to the ExecuteSQLStatementsInLoop Sample folder and double-click the
ExecuteSqlStatementsInLoop.sln file. This opens the SSIS solution in BIDS. Next, double-click
ExecuteSQLStatementsInLoop.dtsx under the SSIS Packages node in Solution Explorer. This opens the
package to the Control Flow design surface and is shown in Figure 8–8.

Figure 8–8. The first sample package we are going to work with is called Execute SQL Statements in Loop.

This package is a good example of using the control flow Foreach loop container.

CHAPTER 8 ■ INTERMEDIATE SSIS

198

Adding Control Flow Tasks
Your next step in package design will be to select one or more control flow items from the toolbox and
drag them to the Control Flow design surface section. Figure 8–9 shows the task types available via the
toolbox for the control flow items.

Figure 8–9. The Control Flow Items Toolbox in BIDS allows you to add different types of control flow tasks

to your SSIS package.

CHAPTER 8 ■ INTERMEDIATE SSIS

199

To help you best understand all of these tasks, we’ll group them into types. We’ll also refer to our
sample package for this discussion. The task type groups for the control flow tasks are as follows:

• Containers: Allows you to group one or more tasks inside of it. These include the
For loop, the Foreach loop, and the Sequence containers. There is also a container
object called TaskHost that is designed to encapsulate a single task. The TaskHost
object is not visible in the Control Flow toolbox and its properties are set by the
task it contains. For more information, see the BOL topics “TaskHost Container”
and “TaskHost Class.” You also have the ability to group tasks together. This
grouping of tasks places grouped tasks inside of a container-like Group object.

• SQL Server: Allows you to work with SQL Server objects, including the Bulk Insert,
Execute SQL, Transfer Database, Transfer Error Message, Transfer Jobs, Transfer
Logins, Transfer Master Stored Procedures, and Transfer SQL Server objects tasks.

• Data Preparation: Allows you to work with the local file system, including the File
System, FTP, Web Service, Data Profiling, and XML tasks.

• Workflow Tasks: Allows you to execute other processes, including Execute
Package, Message Queue, WMI Data Reader, WMI Event Watcher, and Send Mail
tasks.

• Script: Allows you to execute some type of script, which include the ActiveX Script
and Script tasks. ActiveX Script tasks are deprecated and are included for
backward compatibility with DTS.

• SSAS: Allows you to perform some sort of processing on SSAS objects, including
the SSAS Execute DDL, SSAS Processing, and Data Mining query tasks.

You can also extend the set of control flow tasks or data flow transformations available in BIDS by
downloading, purchasing, or developing your own SSIS tasks and then installing them into the BIDS
environment. You install new components by right-clicking the toolbox, and then clicking Choose Items.
This brings up the Choose Toolbox Items dialog box, which allows you to add a toolbox item, as shown
in Figure 8–10.

CHAPTER 8 ■ INTERMEDIATE SSIS

200

Figure 8–10. You can install new components that you download, purchase, or create into the BIDS SSIS

control flow or data flow transformations by right-clicking the Toolbox and then clicking Choose Items.

Now that we’ve grouped the control flow tasks by type, let’s dig in a bit deeper to the capabilities of
the tasks most frequently used in BI ETL solutions.

Container Tasks
Container tasks allow you to group and iterate over contained tasks. They include the For loop, Foreach
loop, and Sequence tasks in the Control Flow toolbox. You also have the option to simply group multiple
child tasks together by selecting the tasks on the design surface, right-clicking, and then choosing Group.
This type of an object looks like an SSIS container, and shows up on the SSIS design surface as a
collapsible rectangle with other tasks inside of, however, it is really more like a code region in Visual
Studio in that it allows you to collapse complex sections of packages, thereby making them more
human-readable.

To use a Foreach container task, you must configure the properties of the enumerator by right-
clicking the task on the design surface, and choosing Edit. You can select from these choices of Foreach
enumerators: File, Item, ADO, ADO.NET, From Variable, NodeList, and SMO. When you do so, you’ll see
the Foresach Loop Editor dialog box shown in Figure 8–11.

CHAPTER 8 ■ INTERMEDIATE SSIS

201

Figure 8–11. Using the Foreach loop container task requires that you configure the enumerator.

■Note SMO (SQL Management Objects) is the management object model used in SQL Server.

SQL Tasks
The next group of tasks allows your SSIS package to execute a SQL statement. The most commonly used
is the Execute SQL task. In our sample package, shown earlier in Figure 8–8, the execute SQL task will
create tables based on information contained in a SQL script file.

The script file is configured in the property sheet for this task as shown in Figure 8–12. Note also that
this task will iterate because in the example package, it’s nested in a Foreach loop container. Another

CHAPTER 8 ■ INTERMEDIATE SSIS

202

consideration with Execute SQL tasks is the ability to associate parameters with a query. This is
configured in the same dialog box.

Figure 8–12. In the configuration dialog box for the Execute SQL task, you can associate the SQL query

with a connection to a file (which tells the task to get the SQL to execute from the file contents) by

configuring the SQLSourceType property to “File connection”.

The next most common type of SQL control flow task used in ETL solutions is the data flow task. The
Data Flow task is shown as a task rectangle on the Control Flow area in Figure 8–8 (shown previously);
for our example, this has been named Extract – Clean – Load Data. In SSIS, the data flow task detail is
exposed via the Data Flow window. To get there, double-click the Data Flow task on the Control Flow
design surface. You’ll then be taken to the Data Flow work area for that particular data flow task, as
shown in Figure 8–13.

CHAPTER 8 ■ INTERMEDIATE SSIS

203

Figure 8–13. The Data Flow work area in BIDS allows you to visually configure a data flow for a particular

data flow task from the control flow area of your SSIS package.

Once in the Data Flow area, you can configure the data flow by using source and destination
components, as well as the tranformation components available in the Data Flow toolbox. You’ll learn
more about the procedures for doing this in the “Understanding Data Flow Transformations” section
later in this chapter. For now, however, you may be interested in what the Data Flow area looks like for
our particular sample package; Figure 8–14 shows the Data Flow area.

Figure 8–14. The Data Flow work area for the ExecuteSQLStatementsInLoop sample package shown in

Figure 8–8.

CHAPTER 8 ■ INTERMEDIATE SSIS

204

Another commonly used SQL/file system control flow task is Bulk Insert. We’ve listed this task in both
categories because it executes a SQL BULK INSERT statement to move text data from the file system into a
SQL Server table.

File System Tasks
The XML task supports the industry direction to move away from .txt or .csv files, towards structured
.xml files. The samples include a ProcessXMLData.dtsx package that shows the use of this task. To open
this package, navigate to the sample files, and open the .sln file with the same name. Open the package
in BIDS by double-clicking it, and you’ll see two XML tasks on the control flow design surface.

To configure the XML task, right-click it, choose Edit, and select the type of operation you want to
perform. The selection you make here changes the dialog box to add/remove additional configurable
supporting properties. Here are your choices:

• Validate: Allows you to specify that the package should validate an XML document
against an XML schema document (XSD) or XML document type definition (DTD).

• XSLT: Allows you to specify that the package should perform an XSLT
transformation against the configured XML document.

• XPath: Allows you to specify that the package should run an XPath query and then
do some sort of evaluation against the named section of the configured XML
document.

• Merge: Allows you to specify that the package should merge two XML documents.

• Diff: Allows you to specify that the package should compare two XML documents
and return some result based on the comparison, that is, fail on difference, return
a DiffGram, and so on. A DiffGram is an XML format that identifies current and
original versions of data elements.

• Patch: Allows you to specify that the package should apply a DiffGram to a
configured XML document, with the result being a combined, new XML
document.

Figure 8–15 shows the configuration dialog box for the XML task with the XPath operation type
selected.

CHAPTER 8 ■ INTERMEDIATE SSIS

205

Figure 8–15. The XML task has different types of XML operations for you to select from when configuring

this task. This example shows the configuration values for the XPath option.

Operating System Tasks
This type of task is where you will find the two Windows Management Instrumentation (WMI) tasks:
WMI Data Reader and the WMI Event Watcher. Both of these tasks allow you to add the ability for your
SSIS package to listen for values associated with the operating system—for example, hot fixes installed or
events that have fired—and then continue on with the control flow of the SSIS package based on the
results of this listening. WMI uses a query language that is similar to T-SQL, which is called the WMI
Query Language (WQL).

To use either of these tasks, you must add a connection of type WMI to your package. Then you
associate that connection with whichever type of WMI task you are working with. To configure the

CHAPTER 8 ■ INTERMEDIATE SSIS

206

properties of a WMI task, you right-click it. The most important property is the WMI Query. BOL has
several examples.

■Tip If you do use the WMI tasks, there are some tools that can help you to quickly author WQL queries. A freely
downloadable WMI query builder is available at

http://www.microsoft.com/downloads/details.aspx?FamilyID=2cc30a64-ea15-4661-8da4-

55bbc145c30e&DisplayLang=en.

The Message Queue (MSMQ) task is also available in this category. It allows you to configure your
SSIS package to send or receive particular messages in a Microsoft Message Queue.

Script Tasks
If you choose to add any script to the control flow area of your package, you now have two choices
regarding the language. The ActiveX Script task, which uses VBScript, is still available. As mentioned
previously, be aware that the ActiveX Script task is included for backward compatibility and will be
removed in a future version of SQL Server. Your second choice is the ability to add scripts using Visual
Basic 2008 or Visual C# 2008. To do this, you add a Script task to the Control Flow area. You then
configure the task by right-clicking the icon on the design surface, and choosing Edit. In the Script Task
Editor dialog box, click the Script option on the left, and then click the Edit Script button on the bottom
right. This opens the Microsoft Visual Studio 2008 Tools for Applications (VSTA) scripting window. Here,
you can write your script with full IntelliSense. You also can set breakpoints to assist you with script
debugging. You do this by clicking in the margin (grey area) to the left of the line of script where you
want to break. A sample script is shown in Figure 8–16, using the sample package Sync Partitions.dtsx,
which is in the SyncAdvWorksPartitions sample solution.

CHAPTER 8 ■ INTERMEDIATE SSIS

207

Figure 8–16. The script task allows you to write scripts using VB or C#. The text editor gives you full

IntelliSense capabilities.

Remote Tasks
A remote task requires that you set up a connection manager of type HTTP. It also requires a local copy
of a WSDL file to define the programmatic interface of the web service to be called. After you’ve met
these two prerequisites, you can execute any permitted web service method as part of the control flow
for your SSIS package.

Another task available in this category is the FTP task. This task allows you to configure your
package to send or receive files via FTP. It also allows you to copy or move files on the remote server or
local file system, or to create or delete files and folders.

SSAS Tasks
One of the most important sets of control flow tasks in the toolset for your BI project is, of course, the set
of tasks that affect SSAS objects. We’ll review Analysis Services Execute DDL task and the Analysis
Services Processing task here. The Execute DDL task allows you to add the ability for the control flow in
your package to create, alter, or drop cubes and dimensions. There are a couple of interesting
considerations when configuring this new task type. The first is that two languages are used:

• Analysis Services Scripting Language (ASSL): This language is used to define the
particular instance of the object type that your want to affect, that is, the
dimension named CustomerDim in the cube named AdventureWorks, and so on.

CHAPTER 8 ■ INTERMEDIATE SSIS

208

• XML for Analysis (XMLA): This language sends the action commands, that is,
create, alter, or drop, to SSAS. It does this via its execute method. The supported
commands are listed in BOL under the topic “Command Element (XMLA).” Some
example commands are alter, create, drop, insert, and process.

An example of using this new task type for a BI project is included with SSIS samples. Open the
SyncAdvWorksPartitions solution from the samples, and then open the Sync Partitions package. The
control flow for this package is shown in Figure 8–17.

Figure 8–17. The sample package Sync Partitions shows an example of using the Analysis Services Execute

DDL task to loop through the partitions and take actions appropriately.

The Execute DDL task will be one of your workhorses, especially after you move the solution into
production, because you will normally want to automate the processing of cubes, dimensions, and
mining models. In our experience, it is most typical to run an update-type of process on a nightly basis.
This package would include success logging and failure notification. Figure 8–18 shows the
configuration options for the Analysis Services Processing task.

CHAPTER 8 ■ INTERMEDIATE SSIS

209

Figure 8–18. The SSAS Processing task mirrors the functionality of cube and dimension processing you

have access to via the SSAS template in BIDS. In SSIS, of course, you can incorporate this task into any sort

of workflow that suits your business needs.

After you’ve selected your particular control flow tasks, then you’ll want to configure the particular
workflow for these tasks. You do this by configuring the precedence constraints. These are shown on the
design surface as colored lines (by default green) between control flow tasks or components.

Precedence Constraints
Precedence constraints link executables, containers, and tasks in packages into a control flow and
specify conditions that determine whether control flow tasks or event handlers run. There are three
types of constraints: Success (shown with a green line), Failure (shown with a red line), or Completion
(shown with a blue line). To add a Success constraint between components, click the green arrow on the
design surface from the source component and drag it to the destination component. Figure 8–19 shows

CHAPTER 8 ■ INTERMEDIATE SSIS

210

an example of two Control Flow components that must run successfully for the subsequent destination
Control Flow component to run.

Figure 8–19. Success constraints, indicated by green lines with arrows, allow you to establish workflow

paths in your SSIS packages.

The default condition when multiple constraint lines go to the same destination task is a logical AND.
That means that all source components must execute successfully for the destination component to be
allowed to execute. You can change this to a logical OR by selecting all constraint lines and then right-
clicking Properties. If you then change the default setting of the LogicalAnd property from True to False,
the behavior will be such that if any of the source components successfully execute, then the destination
component will execute. This is shown on the design surface with dotted constraint lines in Figure 8–20.

CHAPTER 8 ■ INTERMEDIATE SSIS

211

Figure 8–20. Dotted success constraint lines indicate a logical OR condition.

Using Expressions with Precedence Constraints
SSIS also allows you to associate expressions with constraints. One way to do this is to right-click the
particular constraint line of interest, and click Edit. This will open the Precedence Constraint Editor
dialog, which is shown with its default values in Figure 8–21.

CHAPTER 8 ■ INTERMEDIATE SSIS

212

Figure 8–21. One way to alter the behavior of a precedence constraint is to right-click it and add or change

the appropriate information. Note that you can add expressions to the evaluation path. You can also use

the Properties window to change these values.

When combining expressions with constraints, you have these options in the “Evaluation
operation” drop-down list:

• Constraint: This default option adds only a constraint, no expression.

• Expression: This adds only an expression, no constraint.

• Expression and Constraint: This adds both an expression and a constraint, both of
which must evaluate to True to allow the destination component to execute.

• Expression or Constraint: This adds both an expression and a constraint, either of
which must evaluate to True to allow the destination component to execute.

If you choose any of the previous three “Expression” options from the “Evaluation operation” drop-
down list, the Expression text box and Test button will become available, as shown in Figure 8–22.

CHAPTER 8 ■ INTERMEDIATE SSIS

213

Figure 8–22. You can associate expressions with precedence constraints by configuring the Precedence

Constraint Editor dialog box.

Finally, if you include an expression in a precedence constraint, BIDS will place an icon on the
design surface of the control flow next to the affected precedence constraint, and the tooltip on the icon
will display the configured expression, as shown in Figure 8–23. Now that we’ve reviewed control flows
tasks and precedence constraints in detail, the next step is to dive in to the details of the data flow
sources, destinations, and, most importantly, transformations.

CHAPTER 8 ■ INTERMEDIATE SSIS

214

Figure 8–23. Expressions that are associated with constraints will be indicated by a small icon labeled “fx”

next to the affected constraint line.

Understanding Data Flow Transformations
The Data Flow work area is where you will perform the bulk of your ETL activities. Here, you will read
data sources, manipulate data by using transformations, and write your transformed data to a
destination. An SSIS package can contain multiple data flows. This feature allows you to segregate your
ETL tasks, for example, by business or subject area. Double-clicking a Data Flow task in the Control Flow
area will take you to the Data Flow window for that particular task (shown previously in Figure 8–14).

Data Sources
To begin work in the Data Flow area, you will select at least one data flow source component. Usually,
you will select at least one data flow transformation and at least one data flow destination. Figure 8–24
shows all data sources and all data destinations from the BIDS toolbox.

CHAPTER 8 ■ INTERMEDIATE SSIS

215

Some data source types to keep in mind while you build your SSIS packages are DataReader, Raw
File, and XML; some destination types are DataReader, Dimension Processing, RawFile, Recordset, and
SQL Mobile. The Raw File Source type is used to retrieve raw data that was previously written by the SSIS
Raw File destination. It works more quickly on this type of file than using the Flat File or OLE DB Source
options. You could use this source as the intermediate step in processing to more quickly move data that
would be undergoing subsequent additional transformations within a package.

Figure 8–24. Data Flow Sources and Data Flow Destinations from the toolbox in BIDS reflect a wide

variety of interoperability in SSIS packages.

The XML Source option allows you to use an XML file with or without an associated XSD schema as
a source. The schema can be inline, a separate file, or generated by the task itself. XSD schemas are used
to validate the format of the contents of XML files. All of these options are configured by right-clicking
the task and working with the XML source editor property page, as shown in Figure 8–25.

CHAPTER 8 ■ INTERMEDIATE SSIS

216

Figure 8–25. You can associate an XSD schema with an XML file as a source for your data flow by using the

XML Source Editor.

Data Flow Destinations
As with Data Flow Sources, this section provides more explanation for some of the Data Flow
Destination types that are used in BI scenarios. The first one to consider is the Dimension Processing
destination. This allows you to map and insert the results of a data flow into an SSAS cube dimension.
You’ll note that you can select the Processing Method that meets your business requirements: Full, Add
(Incremental), or Update. On the Mappings page, you map the source to destination columns. Finally,
on the Advanced page, you set the error configuration behavior, for example, key error behavior. This
last page is identical to the Advanced Processing options page available for cube and dimension
processing in BIDS. The property sheet for this destination is shown in Figure 8–26.

CHAPTER 8 ■ INTERMEDIATE SSIS

217

Figure 8–26. BIDS allows you to configure dimension processing, using a subset of available processing

types, as a data flow destination.

The Partition Processing data flow destination presents you with a similar subset of partition
processing options: Add (incremental), Full, or Data only. If your business scenario calls for a more
granular type of partition processing (such as process index), you’d use the control flow Analysis
Services Processing task.

Transformation Types
After you’ve added and configured your data sources and data destinations, you’ll usually then add one
or more data transformations to your SSIS package. Figure 8–27 shows the transformations available in
BIDS.

CHAPTER 8 ■ INTERMEDIATE SSIS

218

Figure 8–27. SQL Server SSIS has multiple data flow transformation types to select from.

CHAPTER 8 ■ INTERMEDIATE SSIS

219

An SSIS data flow transformation is a type of component that takes some source data, applies a type
of change to any defined subset of the source data, and then makes the changed data available for
output to whatever configured data flow destinations your business requirements necessitate. A great
way to begin to understand the types of data flow transformations available for use in SSIS packages is to
simply open the BIDS toolbox while working in the Data Flow tab for any SSIS package and pass your
mouse over each transformation. When you do this, a tooltip with a brief explanation will pop up over
each transformation.

If you are using the Enterprise Edition of SQL Server, you have a mind-boggling array of data
transformations to use in your SSIS packages. As with control flow tasks, you can best understand what
these transformations do by grouping them into categories. The following lists the transformation
groups by priority order; the first group transformation types are the most commonly used in ETL
projects.

• Row: Allows you to update data or create new data. These include Copy Column,
Data Conversion, Derived Column, and Import/Export Column transformations.

• Rowset: This type allows you to create new rowsets. These include Aggregate, Sort,
Row Sampling, Percentage Sampling, and Pivot/Unpivot transformations.

• Split/Join: This type allows you to perform splits, joins, and lookups on your data.
These include Conditional Split, Lookup, Multicast, Merge, Merge Join, and Union
All transformations.

• Audit: This type allows you to count rows and create auditing data. These include
Audit and Row Count transformations.

• Business Intelligence: This type is specific to SSAS object processing. These include
the Data Mining Query, and the Slowly Changing Dimension transformations.

• Enterprise Edition: This type is available only in the Enterprise Edition of SQL
Server. These include the Fuzzy Grouping, Fuzzy Lookup, Term Extraction, and
Term Lookup transformations.

As with the control flow tasks, you can extend the transformations available in the data flow
transformations by downloading, purchasing, or creating your own components and then installing
them in the BIDS interface.

Adding Data Transformations
The sample package CalculatedColumns.dtsx shows examples of the Aggregate, Derived Column, and
Sort data flow transformations. The Aggregate transform allows you to easily perform aggregations of
types GroupBy, Count, Count Distinct, Sum, Average, Minimum, or Maximum against your data flow by
simply configuring the aggregate dialog box. The Data Flow work area for the Calculated Columns SSIS
sample package is shown in Figure 8–28.

The “Add transformation” group contains some of the data flow transformation types that are most
often used in BI projects: Copy Column, Import Column, and Union All. All of these transformations are
self-explanatory.

The transformation group also contains the Merge and Merge Join transformations. The Merge Join
transformation allows you to configure your SSIS package to perform a left, right, or full join on two
sorted inputs with matching metadata. While configuring this transform, you must also specify Null
handling behavior.

CHAPTER 8 ■ INTERMEDIATE SSIS

220

Figure 8–28. The Data Flow work area in BIDS allows you to visually configure a data flow for a particular

data flow transformation in your SSIS package. This example shows the use of the Aggregate, Derived

Column, and Sort data flow transformations.

CHAPTER 8 ■ INTERMEDIATE SSIS

221

Split Data Transformations
Another handy component is the Derived Column transformation. This is also shown in the
CalculatedColumns.dtsx data flow sample. Figure 8–29 shows the dialog box where you configure the
new column. In this work area, you can use the SSIS expression language.

■Note For more information about SSIS expression syntax, see the BOL topic “Syntax (SSIS).”

Figure 8–29. The Derived Column Transformation Editor in BIDS allows you to write expressions to create

derived columns in your SSIS package.

You use the SSIS expression in your statement to derive the new column or columns. The dialog box
includes a function reference for your convenience. It also includes the list of all available columns in the
data flow as well a list of all of the package variables.

The Conditional Split transformation shown in ExecuteSQLStatementsInLoop.dtsx is yet another
helpful tool for you. The Conditional Split transformation routes rows to different destinations
depending on the content of the data using a CASE-like decision structure. The transformation evaluates
expressions and, based on the results, directs particular data rows to the specified outputs. The data flow
for this package is shown in Figure 8–30, and the Conditional Split dialog box is shown in Figure 8–31.

CHAPTER 8 ■ INTERMEDIATE SSIS

222

Figure 8–30. The sample package ExecuteSQLStatemenstInLoop.dtsx shows off the Conditional Split data

flow transformation type.

CHAPTER 8 ■ INTERMEDIATE SSIS

223

Figure 8–31. The Conditional Split Transformation Editor dialog box allows you to specify the split

conditions via expressions.

Translate Data Transformations
The Lookup and Union transformations are showcased in the complex sample DataCleaning.dtsx. The
Lookup transformation performs lookups by joining data in source columns with columns in a reference
table.

CHAPTER 8 ■ INTERMEDIATE SSIS

224

The Fuzzy Lookup transformation is contrasted to the regular Lookup transformation because it
uses fuzzy matching. The Lookup transformation returns either an exact match or nothing from the
reference table. The Fuzzy Lookup transformation uses fuzzy matching to return one or more close
matches from the reference table.

■Tip A Fuzzy Lookup transformation frequently follows a Lookup transformation in a package data flow (as is

shown in the sample package). First, the Lookup transformation tries to find an exact match. If it fails, the Fuzzy

Lookup transformation provides close matches from the reference table.

The Data Cleansing sample is the most complex of the samples. It includes not only the two
transformations mentioned previously but also uses many others, including the very powerful Fuzzy
Lookup and Fuzzy Grouping. The fuzzy transformation types require the Enterprise Edition of SQL
Server. This sample is also a very good example of using annotations on the design surface to make SSIS
packages self-documenting. Figure 8–32 shows the data flow for this package.

CHAPTER 8 ■ INTERMEDIATE SSIS

225

Figure 8–32. The DataCleansing sample SSIS package uses the most complex data flow sequence of the

samples included with SQL Server. It includes the following data transformation types: Lookup, Derived

CHAPTER 8 ■ INTERMEDIATE SSIS

226

Column, Union, Conditional Split, Fuzzy Lookup, and Fuzzy Grouping. It is also a good example of

documenting functionality on the design surface via annotations.

The Lookup transformation has some configurable capabilities via the Advanced property sheet.
The new functionality allows you to more granularly control the overhead associated with the
performance of the lookup activity. You configure this on the Advanced tab of the Lookup
Transformation Editor dialog box. The Advanced tab is shown in Figure 8–33.

■Tip Lookup transformations are case-sensitive. You can use UPPER or LOWER T-SQL functions to convert lookup

source data to the correct case prior to using them in a Lookup transformation.

Figure 8–33. The advanced tab of the Lookup Transformation Editor allows you to configure additional

settings on it. This allows you greater control over the performance overhead generated by this

transformation.

CHAPTER 8 ■ INTERMEDIATE SSIS

227

SSAS Data Transformations
An interesting SSIS sample package showcases the Audit transformation from the SSAS transformation
category. This package also demonstrates a common BI scenario: tracking data lineage. Lineage is a
formal way for saying that your business requirements include the need to track package execution
history. The CaptureDataLineage.dtsx package includes an Audit transformation. Part of the Audit
Transformation Editor dialog box is shown in Figure 8–34.

Figure 8–34. The Audit data flow transformation allows you to capture lineage or package execution

information easily for logging.

Slowly Changing Dimension Transformation
The Slowly Changing Dimension (SCD) transformation is probably the most important data
transformation in the toolbox for BI solutions. Using it properly requires that you understand the
concepts behind changing dimensions (type 1, 2, or 3) and what structures are required to support them.
When using this transformation type, you’ll have to configure several options via the Slowly Changing
Dimension Wizard. To open the wizard, you select a Slowly Changing Dimension transformation, drag it
onto the data flow SSIS design surface, right-click the transformation, and then click Edit. The first
choice for you to make in the wizard is to select the Business key from the Key Type column of the
source table as shown in Figure 8–35.

CHAPTER 8 ■ INTERMEDIATE SSIS

228

Figure 8–35. When using the Slowly Changing Dimension data flow transformations, the first step is to

select the source table and its Business key.

The next step is to configure the change type for each attribute in the table. The choices are Fixed
Attribute (Do not overwrite, treat as error), Changing Attribute (Overwrite, no history), or Historical
Attribute (write new record and mark previous values as outdated).

This corresponds to SCD Type 1 for maintaining the records current state and SCD Type 2 for
maintaining historical records. SCD Type 3, which adds an additional dimension attribute for each
change, is not supported by this transformation type. These options are shown in Figure 8–36.

CHAPTER 8 ■ INTERMEDIATE SSIS

229

Figure 8–36. When using the SCD data flow transformation, the second step is to configure the change type

for each attribute of the dimension table.

The next step is to configure the optional behavior for fixed attributes and changing attributes.
These options, which include failing the transformation if changes are detected in a fixed attribute
and/or cascading changes to all affected records for attributes marked as changing type, are shown in
Figure 8–37.

CHAPTER 8 ■ INTERMEDIATE SSIS

230

Figure 8–37. When using the SCD data flow transformation, the third step is to configure the optional

behavior for fixed and changing attributes.

The next step is to configure the storage location for historical attribute values. These options are
shown in Figure 8–38.

Figure 8–38. When using the SCD data flow transformation, the fourth step is to configure the storage

location and values for historical attributes.

CHAPTER 8 ■ INTERMEDIATE SSIS

231

The next step is to configure the behavior for inferred dimension members. These options are
shown in Figure 8–39. The SCD wizard is an incredibly powerful and useful tool. It has been designed to
help you quickly implement the most common SCD scenarios from your particular BI solution’s
requirements.

Figure 8–39. When using the SCD data flow transformation, the fifth step is to configure the behavior for

inferred members via the options in the wizard.

Sample Data Transformations
The Percentage Sampling, Row Count, and Row Sampling transformations included in this group are
pretty straightforward to use. They all allow you to sample or to count and to send output, if sampling, to
a configured destination. You configure the number (or percentage) of rows to be sampled, and you can
also configure a random seed value via the property sheet.

These transformations can be particularly useful in BI projects because you may be working with
huge volumes of data. Using transformations from the Sample data group can help you to quickly (that
is, with very little overhead) get a view of what you are working with.

Run Command Data Transformations
The new script component transformation requires a bit of explanation. Why the need for an additional
script component transformation in the data flow transformations area? You’ll see that the key to
understanding the difference between the Script task and the script component is to be found by looking
at the first dialog box that you must configure when using the script component. In this dialog box
shown in Figure 8–40, you must select whether the component will be used to associate a script with a
data flow source, destination, or transformation.

CHAPTER 8 ■ INTERMEDIATE SSIS

232

Because the Script Component output becomes part of the data flow, rather than the more general
output of the more general control flow Script task, there are several syntax differences when writing
your scripts between these two transformations. For a more detailed discussion, see the BOL topic
“Comparing the Script Task and the Script Component.”

Figure 8–40. The Script Component data flow transformation requires that you associate the VB.NET

script with a data flow source, destination, or transformation.

Enterprise Edition–Only Data Transformations
The Fuzzy Logic, Fuzzy Grouping, Term Extraction, and Term Lookup transformations are only available
in the Enterprise Edition of SQL Server. Both types of fuzzy transformations are shown in the sample
package named DataCleaning.dtsx. The data flow for this package was shown earlier, in Figure 8–32.

CHAPTER 8 ■ INTERMEDIATE SSIS

233

■Note What does “fuzzy” mean? In a word, “inexact.” The difference between a typical database lookup and a
fuzzy lookup is that the database lookup is Boolean; that is, there is a match to a string, to a portion of a string, or
no match at all. Fuzzy lookups and groupings use a much more sophisticated algorithm that finds a candidate

match. The result is that lookups and groupings will be more flexible, inclusive, and ultimately useful.

Term Extraction tasks and Lookup tasks use the same powerful fuzzy type of logic in your package’s
data flow. The Advanced property sheet for the Term Extract transform type allows you to even more
finely configure the type of term you are looking for, that is, whether it’s a noun or not. Your input will
impact the algorithm because different linguistic pattern matching is used for different parts of speech.
For example, nouns are searched for both in singular and plural format; verbs are searched for using all
possible declensions. Figure 8–41 shows the Advanced property sheet for the Term Extraction
transformation.

A primary consideration when using the wide variety of transformations now available in BIDS is
the execution overhead and complexity that you are adding to your package. Execution overhead
includes stressing processors, memory, and IO. The components most affected depend on the type of
transformations, quantity of data, and other factors. You can use the Windows System Monitor Counter
Object SQLServer:SSIS Pipeline and its associated 12 counters to help to determine whether and where
you may have bottlenecks.

As with SSAS advanced cube design options, advanced transforms, such as Fuzzy Lookup, should
only be used when business needs call for them, and they should always be tested with production levels
of data to ensure that production systems can process the required loads given the resources that they
have available.

CHAPTER 8 ■ INTERMEDIATE SSIS

234

Figure 8–41. The Term Extraction Transformation Editor allows you to more granularly configure this

transformation. In the Score type section, TFIDF refers to “Term Frequency and Inverse Document

Frequency”.

Using the Dynamic Package Configuration Wizard
An important, and practical, consideration when implementing SSIS packages is creating packages that
can easily be moved from a development environment to a production environment. As stated in the
“General ETL Package-Design Best Practices” section of this chapter, this means that many package
values, such as connection string, should never be hard-coded into a package. The Package
Configuration Wizard will help you accomplish this goal.

To access this wizard, you choose SSIS ➤ Package Configurations from the BIDS menu bar. Once in
the wizard, you can set most properties of an SSIS package via a number of dynamic methods. Figure 8–
42 shows the wizard’s interface for selecting the property you want to configure dynamically.

CHAPTER 8 ■ INTERMEDIATE SSIS

235

Figure 8–42. The Package Configuration Wizard allows you to set SSIS package properties dynamically by

showing you a hierarchical view of all objects (such as Connection Managers, Properties, Variables, and

Executables) contained in the package.

The wizard provides you with a number of options to set whatever properties you are working with
dynamically. An example of a property that you may choose to use this functionality to configure could
be the connection strings values for data sources or destinations. The sources for property values can
originate from any of these options: XML configuration file, Environmental Variable, Registry Entry,
Parent Package Variable, or SQL Server.

CHAPTER 8 ■ INTERMEDIATE SSIS

236

Assigning SSIS Expressions
In some ways, I’ve saved the best for last; SSIS has the ability to configure expressions for nearly every
control flow task type property value. You learned earlier in this chapter that SSIS expressions could be
used in conjunction with control flow precedence constraints; they can also be used with particular
control flow tasks. So why are expressions associated with tasks or components so wonderful? These
expressions can be assigned to most any read/write property in the entire SSIS package, which, in effect,
enables dynamic update of the associated property at runtime. Figure 8–43 shows the interface for
expression definition using the Execute SQL control flow task.

Figure 8–43. The Expressions section of control flow tasks allows you to dynamically set read/write

property values.

One common use of property expressions is to allow for dynamic update of a connection string
using a value that is stored in a variable. Expressions can be added to a package, task, event handler,
connection manager, log provider, or (as discussed earlier in this chapter) precedence constraint. Event
handlers and log providers are covered in Chapter 9, “Advanced SSIS.”

Summary
SSIS provides you with an incredible degree of flexibility and power when implementing your ETL
solution. This chapter covered the foundations of using the tools available in BIDS to create the SSIS
packages that will be the workhorses of your ETL processes for BI. You learned more about common
objects—data sources and DSVs—and then explored connection managers. The heart of this chapter
covered the core of the ETL toolset—control flow task and data flow transformations. You also learned
about using the Dynamic Package Configuration Wizard.

Believe it or not, there is still much more to learn about creating data workflows using SSIS. In
Chapter 9, we’ll explore debugging, error handling, event handling, logging, and using transactions in
SSIS packages in BI projects.

C H A P T E R 9

■ ■ ■

237

Advanced SSIS

We just completed an extensive tour of SSIS, including most all of the design surfaces in BIDS. What else
could we possibly have to cover in the SSIS area? Actually there is still a great deal more to learn. The
focus of this chapter is on using BIDS to make your packages even more useful by adding or using
features that will improve your ability to reuse, deploy, and debug them. Also, we’ll look at error
handling and some new SSIS features.

In this chapter, we’ll cover the following topics:

• Understanding package execution—viewers and BIDS

• Debugging—breakpoints, watch windows, and more

• Logging—new log providers and error handling

• Deploying packages

• Setting runtime properties

• Defining security

• Placing checkpoints

• Using transactions

• Data profiling

Understanding Package Execution
The BIDS environment is not only conducive to implementing elegant data workflow packages but it
also has a large number of features that allow you to understand the implications of package execution.

The most basic of these tools are the Package Explorer view, the package Progress window view, and
the design surface itself. When you execute packages in BIDS, all of these areas dynamically reflect a
large amount of important information about each step in the package as it executes. The Package
Explorer view shown in Figure 9–1 lists all the objects associated with the DataCleaning sample package.

CHAPTER 9 ■ ADVANCED SSIS

238

Figure 9–1. The Package Explorer view shows a complete list of objects in a particular package. Objects are

categorized and grouped into folders by type of object.

The next areas for you to work with to get more insight into the execution overhead associated with
your package are the Control Flow work area and Data Flow work area. As you execute your package by
clicking the green triangle on the toolbar (or by right-clicking the package file in Solution Explorer and
then clicking Execute Package), each task item on the Control Flow and transformation on the Data Flow
work areas changes color to indicate status: yellow for executing, red for failure, and green for success.
Also the Data Flow area shows the number of rows output by each transformation (see Figure 9–2).

■Note You cannot make any changes to the package while it is executing. To alter the package, you must stop

the execution by clicking the Stop Debugging button (the small, square, blue button on the top toolbar).

CHAPTER 9 ■ ADVANCED SSIS

239

Another informational indicator available to you in BIDS is the Progress window. When you start a
package executing, the Progress tab will become available at the top of the SSIS design area. This
window shows you detailed information about the runtime details associated with executing each step
of your package. Events, warnings, and errors are included in this information. A typical Progress
window is shown in Figure 9–3.

Figure 9–2. As you execute SSIS packages in BIDS, you can view the progress of each task on the Control

Flow design surface and each transformation on the Data Flow design surface. BIDS will also report the

number of rows output for each transformation on the design surface.

CHAPTER 9 ■ ADVANCED SSIS

240

Figure 9–3. The Progress window reports detailed information about the execution of each task. It also

reports events, warnings and errors.

CHAPTER 9 ■ ADVANCED SSIS

241

Data Viewers
A data viewer is a visual tool that will help you understand your data flow. Data viewers can be added to
one or more paths in your package’s data flow. To add a data viewer, you right-click a data flow path
arrow (which is represented as a green line) that connects any data flow transformations. You then click
Data Viewers. You can insert multiple data viewers into any one section of your data flow. Each data
viewer can have its own configuration settings.

In the configuration settings, you select one or more columns from the data flow to include based
on the type of viewer you’ve selected. Figure 9–4 shows a configuration that uses four possible data
viewer types: Grid, Histogram, Scatter Plot, and Column Chart.

Figure 9–4. The Data Flow Path Editor allows you to add multiple data viewers to a data flow. You can

add Grid, Histogram, Scatter Plot, or Column Chart data viewers.

After you’ve added a data viewer to a particular data flow, BIDS indicates this on the Data Flow
design surface by placing a small table-shaped icon (with glasses) next to the data flow path arrow where
the data flow has been configured, as shown in Figure 9–5.

CHAPTER 9 ■ ADVANCED SSIS

242

Figure 9–5. After you’ve added a data viewer to a data flow of an SSIS package, the package will show the

small table-shaped icon (with glasses) next to the data flow path arrow where the data flow has been

configured.

After you’ve added a data viewer, when you execute the package in BIDS, package execution will
halt or break to display the data viewer. The associated data will be shown in a pop-up window. You can
then manually continue package execution by clicking the small green triangle on the data viewer
window. This process is a type of visual debugging. You can also detach and/or copy the data in the
window to the clipboard. The transformation status execution will be paused (the components will be
colored yellow) until you manually allow the package to continue by clicking the green triangle on the
data viewer window. The data grid type data viewer for an executing package is shown in Figure 9–6.

CHAPTER 9 ■ ADVANCED SSIS

243

Figure 9–6. Executing a package with an associated data grid data viewer allows you to review the data as

it flows through the pipeline.

Debugging SSIS Packages
You’ve already seen the first type of debugging now available in SSIS—using data viewers to debug data
flows. An SSIS package breakpoint adds the ability for a package or an individual component to be
paused when a certain condition (or event) fires. Additionally, you can configure breakpoints to fire
when a certain condition fires at a precise number of times.

To add a breakpoint to a package, right-click the control flow design window and then click Edit
Breakpoints. To add a breakpoint to a particular task, right-click the task and then click Edit Breakpoints.
Breakpoints are set on one or more break conditions. A break condition is the name for an SSIS event.
Figure 9–7 shows the list of available SSIS events.

CHAPTER 9 ■ ADVANCED SSIS

244

Figure 9–7. Setting breakpoints on a package or task for one or more break conditions.

For each break condition, you may also specify the Hit Count Type (choose from Always, Hit Count
Equals, Hit Count Greater Than or Equal To, Hit Count Multiple) and/or Hit Count Value. After you’ve
added your breakpoints, you can execute your package in BIDS and use all of the “classic” debugging
tools of the Watch and Locals windows.

After you configure a breakpoint for a particular component, BIDS will add a red dot to that
component on the design surface. When you execute a package that contains components with
breakpoints configured, your package will show that the particular component has stopped at the
configured breakpoint by adding a yellow arrow to the inside of the red dot that is placed on that
component. Figure 9–8 shows the design surface for a task in break mode.

CHAPTER 9 ■ ADVANCED SSIS

245

Figure 9–8. When an executing package halts at a breakpoint, the red dot shows a yellow arrow inside it to

indicate that the package is in break mode and has halted at this task.

While in break mode, you can choose Debug ➤ Windows ➤ Breakpoints from the BIDS main menu
to open a debug window to see even more information about your executing package. Figure 9–9 shows
an example of the output available in the Locals window, which shows the current values of local
variables for a particular task of a running package.

Figure 9–9. Viewing the Locals window for a particular task.

You can also add breakpoints to any script you write using the Control Flow Script task as well as by
using the Data Flow Script component. You do this by right-clicking in the left (grey) margin next to the
line of code where you want the application to break in the Script Design window. These debugging
capabilities improve your productivity when implementing an ETL solution for your BI project,
particularly as your SSIS packages increase in complexity. Also, if you use any scripts inside of your
packages, you’ll particularly appreciate the ability to work with breakpoints.

Most BI projects also require extensive attention to logging and error handling; both of these
subjects are covered in the next section in detail.

Logging Execution Results
To access execution logging in SSIS, you choose SSIS ➤ Logging from the main BIDS menu, or you right-
click the package design surface work area and then click Logging. You’ll then be working with the
Configure SSIS Logs dialog box. Your execution logging options include selecting which control flow task
execution outputs you want to log and which log providers you want to use for logging. The log providers
determine the method for logging and the destination for the log information. You have a choice of five
different stock log providers. Figure 9–10 shows the Configure SSIS Logs dialog box and the five

CHAPTER 9 ■ ADVANCED SSIS

246

destination options: a SQL Server table, a SQL Profiler trace file, a text file, the Windows event log, or an
XML file.

Figure 9–10. You can add log providers for your package execution logs in the Configure SSIS Logs dialog

box. You also select which control tasks and which event outputs you want to capture.

After you’ve selected the control flow tasks and log locations, you then use the Details tab of the
dialog box, as shown in Figure 9–11, to select the particular events that you are interested in logging.
Figure 9–11 shows the selection of events you have to pick from. Note that Figure 9–11 shows one of the
most commonly selected logging events, OnTaskFailed.

After logging is enabled, executing the package in BIDS generates all of the configured logs for you
and allows you to view the logged information in the Log Events window. To view this window, choose
SSIS ➤ Log Events. The Log Events window will open over the toolbox window by default. Figure 9–12
shows an example of this window for an executing package.

3

CHAPTER 9 ■ ADVANCED SSIS

247

Figure 9–11. In the Details tab of the Configure SSIS Logs dialog box, you select the events that you are

interested in capturing in your logs.

Figure 9–12. You can view the logged events in an executing package in BIDS.

CHAPTER 9 ■ ADVANCED SSIS

248

■Tip To see more detail about any listed event in the Log Events window, just double-click the event to open a details

window in BIDS.

Our favorite log provider is the SQL Server Profiler log provider. It outputs to a SQL Server Profiler
trace file, which you can open (the file type is .trc) in Profiler; just double-click the file. Once inside
Profiler, you can view the file and, importantly, further analyze the file using the associated tools, such as
the Database Engine Tuning Advisor (DETA).

For example, you could use the SQL Server Profiler Log Provider in an SSIS package to save events to
a trace file. You can subsequently use that trace file as input to DETA. You could expect to see results
from the DETA, including optimizing SSIS data flows by adding, removing, or changing indexes on SQL
Server source or destination data, for example. Figure 9–13 shows a log trace file opened in Profiler. Of
course, tools like DETA are designed to work only with SQL Server source and destination data.

Figure 9–13. A SQL Server Profiler trace (or .trc) file

Whatever your business requirements for logging execution results in your SSIS packages, SSIS has
the flexibility to meet your needs. At this point, we need to remind you about the data flow Audit task. It
is quite common in BI solutions for SSIS logging to include requirements regarding logging data lineage.
The Audit transformation discussed in Chapter 8 allows you to capture selected types of information
during the execution of your SSIS package.

Error Handling
By default, one error is permitted in an SSIS package or control flow task. If this default is reached, either
the control flow task or the entire package will halt execution and return failure. You also can configure
several additional properties that control the error behavior. Following is a list and brief explanation (all
are shown in Figure 9–14 in the task Properties dialog box as well) of each of these six properties:

• FailPackageOnFailure: This means to fail the entire package on the first task or
transformation failure.

• FailParentOnFailure: This means to fail the parent package or task if this task (the
child package or task) fails.

• ForcedExecutionValue: This means return the actual result of the
ForceExecutionValue for the package (if that value has been set to True).

• ForcedExecutionValueType: This is the data type of the ForcedExecutionValue
property.

CHAPTER 9 ■ ADVANCED SSIS

249

• ForceExecutionResult: This means to force a container or task to return a specific
result: Success, Failure, or Completion.

• ForceExecutionValue: This means to force, or always try to, execute the package;
the default is False.

Figure 9–14. By configuring the MaximumErrorCount and other properties that affect error handling, you

have enhanced control over error-handling results in your SSIS packages.

CHAPTER 9 ■ ADVANCED SSIS

250

In additon to specifying how you want a package’s or a particular control flow task’s errors handled,
you also can configure error handling for most data flows. This is done by right-clicking the data source
or destination icon on the Data Flow design surface, clicking Edit on the shortcut menu, and then
clicking Error Output in the left pane of the dialog box. This custom configuration is available for OLE
DB, Excel, flat file, and XML data flow sources.

This selection brings up a dialog box (see Figure 9–15) that allows you to configure error output for
each column in the data flow source or destination item. For each column, you have three choices for
errors or truncations (truncations mean conversions that could result in data loss due to narrowing of
the destination data type, for example, using a ten-character string source and a two-character string
destination): Ignore Failure, Redirect Row, and Fail Component. Following are more complete
descriptions of each option:

• Ignore Failure: The error (or truncation) is ignored, and the row is sent to the
output of the transformation or source.

• Redirect Row: The error (or truncation) row is sent to the error output of the
source, transformation, or destination.

• Fail Component: The data flow task will fail whenever an error or a truncation
occurs. Fail Component is the default value.

Figure 9–15. The error output dialog box of several data flow source and destination types allows you to

specify the error behavior of your package at the level of individual column errors.

CHAPTER 9 ■ ADVANCED SSIS

251

In addition to configuring logging and error handling, you can add control flows in response to
various event handlers firing in your packges via the BIDS interface. We’ll cover the details of doing this
in the next section.

Event Handlers
SSIS includes an easy method for you to use from inside BIDS that allows you to add custom control
flows to your SSIS packages as a result of package or control flow task events firing. To do this, click the
Event Handlers tab of the SSIS BIDS designer. You’ll see the Executable and Event handler drop-down
lists. In the Executable list, select either the entire package or a specific control flow task. In the Event
handler list, select the particular event for which you want to design a control flow. An example of
creating a simple control flow for a data flow task using the OnProgress event is shown in Figure 9–16.

Figure 9–16. The Event Handlers tab of the SSIS designer allows you to easily create control flows that are

associated with a particular event handler for the entire package or for a particular event handler for a

control flow task.

After you’ve created a control flow for a particular event handler, that event name text is shown in
bold on the drop-down list called “Event handler” on the right side of the BIDS design surface. The most
commonly used event handlers are OnError and OnTaskFailed. The events available in the SSIS event
handler design area are as follows:

• OnError is raised by an executable when an error occurs.

• OnExecStatusChanged is raised by an executable when its execution status changes.

• OnInfomation is raised during validation or execution of an executable and
displays only information, not errors or warnings.

• OnPostExecute is raised by an executable after it has completed running.

• OnPostValidate is raised by an executable after it has completed validation.

CHAPTER 9 ■ ADVANCED SSIS

252

• OnPreExecute is raised by an executable before it runs.

• OnPreValidate is raised by an executable when its validation starts.

• OnProgress is raised by an executable when it makes measurable progress.

• OnQueryCancel is raised by an executable to decide whether it should stop.

• OnTaskFailed is raised by a task when it fails.

• OnVariableValueChanged is raised by an executable when the value of an
associated variable changes.

• OnWarning is raised by an executable when a warning runs.

As with many other aspects of SSIS, you can also create event handlers programatically. BOL has
complete descriptions and sample code if you want to explore this possibility.

Deploying SSIS Packages
When you’ve completed implementing your SSIS package (or packages) in BIDS, you’ll next want to
deploy the package to a testing and, eventually, into a production environment. To start this process,
you must first validate the SSIS packages you’ve created in BIDS by working with the SSIS project menu.
When you right-click the SSIS project name in the Solution Explorer, the options available are Build and
Rebuild. What exactly do these options do?

First, you need to understand what exactly you are creating in the SSIS designer. Although you are
working visually, you are creating an executable file. The code that you are writing when you create an
SSIS package is a dialect of XML. If you want to view this XML, right-click any .dtsx package in the
Solution Explorer and then click View Code. You’ll see something similar to Figure 9–17.

CHAPTER 9 ■ ADVANCED SSIS

253

Figure 9–17. You are actually creating XML metadata when you visually design .dtsx packages using the

SSIS template in BIDS.

Note that you’re validating either the entire output or the changed output of each XML file for each
.dtsx package against the associated specialized XSD schema when you select the Build or Rebuild
option in Solution Explorer. If there are validation errors, BIDS will show them to you in the Error List
pane so that you can resolve those errors prior to package deployment. After your package or packages
have been built successfully, your next step is to deploy them to a testing or production server. Let’s look
at a couple of different options for deploying your packages.

SSIS Package Deployment Options
Although you could deploy and run your SSIS packages manually, you’ll rarely manage and execute your
SSIS packages this way unless you are in a development and testing environment. Rather, you’ll likely
prefer to automate and run your packages in most production BI environments.

BIDS includes a Package Installation Wizard that can simplify deployment of your SSIS packages. To
deploy your package using the SSIS Package Installation Wizard, you first set the package properties by
right-clicking the SSIS project name in the Solution Explorer and selecting Properties. Set the
CreateDeploymentUtility property to True, and then build your project. This will create an SSIS manifest
file at the location configured in the DeploymentOutputPath property, as shown in Figure 9–18.

CHAPTER 9 ■ ADVANCED SSIS

254

Figure 9–18. Configure the CreateDeploymentUtiltiy property to generate an SSIS manifest file.

Next, you locate the manifest file, which has the name format of
<ProjectName>.SSISDeploymentManifest and contains your package metadata in an XML format.
Double-click your manifest file to launch the Package Installation Wizard. Using the wizard, you can
select whether to have your packages deployed to the file system or SQL Server. You can also optionally
validate packages after installation. The Deploy SSIS Packages section of the Package Installation Wizard
is shown in Figure 9–19. If you choose to validate your package, a Package Validation section in the
wizard will list invalid or inefficient task configurations in your package.

CHAPTER 9 ■ ADVANCED SSIS

255

Figure 9–19. You can select the destination for installation for your SSIS packages using the Package

Installation Wizard.

Another option for package deployment is to use the command-line tool dtutil.exe to copy, move,
delete, or take other actions on your SSIS package. You will often choose this option in production
because you can script SSIS package deployment with this tool. The syntax for this command is shown
in Figure 9–20.

Still another option for deployment is to simply import the packages into the desired location. You
do this using SSMS by right-clicking the node in the SSIS tree (file, MSDB, and so on) and then clicking
Import Package. Figure 9–21 in the next section shows the SSMS SSIS interface.

After you’ve deployed your packages to one of the three possible locations—SQL Server MSDB
(Multisource Database), default file system, or specified location on the file system—you have a couple
of choices about how you’ll run them.

CHAPTER 9 ■ ADVANCED SSIS

256

Figure 9–20. The command-line tool dtutil.exe allows you to script actions on your SSIS packages.

SSIS Package Execution Options
A first option for package execution is to use SSMS. This method of SSIS package execution is primarily
used for development and testing. The second and third options are to use either a GUI package
execution tool (dtexecui.exe), which runs outside of SSMS, or to use a command-line tool, which also
runs outside of SSMS (dtexec.exe). The latter two are the preferred methods in production
environments.

To run SSIS packages from within SSMS, you’ll first connect to SSIS from the SSMS Object Explorer.
Once connected, you can view a list of packages grouped by storage location and then configure
execution properties for any package you want to execute. You can then right-click any package and
choose Run Package to execute it via the Execute Package Utility. Figure 9–21 shows a connection to SSIS
in SSMS. Note that you can view packages in two locations: File System or MSDB nodes in Object
Explorer. The Execute Package Utility contains a large number of configurable runtime properties for

CHAPTER 9 ■ ADVANCED SSIS

257

your packages. For example, Figure 9–22 shows the reporting options for packages. The reporting
options include selecting the level of verbosity for logging console events and the type of information to
capture in console logs.

Figure 9–21. You can view SSIS packages grouped by storage location, configure execution properties, and

execute packages after connecting to SSIS in SSMS.

CHAPTER 9 ■ ADVANCED SSIS

258

Figure 9–22. The Execute Package Utility dialog box in SSMS allows you to configure many types of

reporting events and logs for each executing package.

Continuing with another example, Figure 9–23 shows the “Log providers” configuration area. In
production, business requirements often drive logging requirements for your production SSIS packages.
Sometimes, this will be more formal than others; that is, you may be subject to regulatory requirements,
such as SOX or HIPAA.

After you’ve executed the associated package as least once, one way to view the logs that you have
configured in the procedure described previously is to right-click the top node (SSIS) in SSMS and then
click View Logs. You’ll see the output similar to what is shown in Figure 9–24.

CHAPTER 9 ■ ADVANCED SSIS

259

Figure 9–23. By using the logging section of the Execute Package Utility dialog box, you can associate one

or more log providers with the package.

Figure 9–24. You can view any logs that you’ve configured via the Execute Package Utility in SSMS.

As you may have noticed, you can configure additional runtime package properties by using the
Execute Package Utility dialog box. In production systems, the most commonly configured properties
belong to the Connection Managers, Reporting, and Logging categories of the Execute Package Utility
properties.

CHAPTER 9 ■ ADVANCED SSIS

260

■Tip After you move your BI solution to production, it is typical to execute SSIS packages by using scripts. These
scripts are most often run in the context of dtexec.exe. You can run these scripts from the command line, or you
can use SQL Server Agent jobs to schedule these executables. In production, you’ll often use dtexec.exe (rather

than the SSMS GUI), because you can more easily automate package execution via scripts using the command-

line tool.

Of course, another important consideration with deployment of packages is security. We’ll look at
the SSIS security model in a bit more depth in the next section of this chapter.

SSIS Package Security
The security options you have to consider for your SSIS packages depend on where you choose to store
them. You have three options: within a SQL Server instance in the MSDB database, in the default
location on the file system, or in a named location on the file system. Choosing to store your packages in
MSDB is the most typical scenario for production solutions. In this case, you can use the built-in SQL
Server security roles to limit access to your packages:

• db_dtsadmin: This role has full administrative rights on all SSIS packages stored in
MSDB.

• db_dtsltduser: This role can view, execute, change, or export only its own
packages and can import any packages.

• db_dtsoperator: This role can view, execute, and export packages.

You could, of course, also create custom roles for the MSDB if your business requirements call for
more granular levels of control over packages.

If you choose to store packages as .dtsx files on the file system, you will assign NTFS permissions to
those storage locations. Another consideration when assigning NTFS permissions is assigning
appropriate permissions to external files used by SSIS packages. Some examples of possible external files
that could be used by SSIS packages are listed here:

• Data source files: Excel, Text, XML

• Configuration files: XML, Text, SQL scripts

• Package execution log files: Text, XML, trace files

Another aspect of securing your SSIS packages involves configuring the ProtectionLevel property of
the package. Here, you’ll specify whether sensitive data should be protected by encryption or whether
the sensitive data should be removed before saving the package by choosing one of the following
options:

• DontSaveSensitive: Removes any data that is tagged as “sensitive” from the
package when it is saved. When the package is opened, after having been saved
with this protection level, the end user must provide the values for the properties
that were marked sensitive.

CHAPTER 9 ■ ADVANCED SSIS

261

• EncryptSensitiveWithUserKey: Encrypts sensitive package data with a key from the
user profile. Only the same user with the same profile can run the package. This is
the default option for SSIS packages.

• EncryptSensitiveWithPassword: Encrypts sensitive package data with a user-
supplied password. To run the package, the end user must supply the password.

• EncryptAllWithPassword: Encrypts all package data with a user-supplied
password. To run the package, the end user must supply the password.

• EncryptAllWithKey: Encrypts all package data with a key from the user profile.
Only the same user with the same profile can run the package.

• ServerStorage: Protects the package based on SQL server database roles. This
option is only available for packages stored in MSDB.

■Note You cannot control which property values are considered sensitive. SSIS sensitive information includes the
password portion of connection strings, some XML node information, and certain other properties; according to

BOL, “The marking of variables (as sensitive) is controlled by Integration Services.”

Although you set the initial package protection level when designing the package in BIDS, you can
update this setting after the package has been deployed. Some of the ProtectionLevel options require
that you associate a password with your package. You do this by configuring the PackagePassword
property.

The final security option you can consider is whether you need to guarantee the integrity of
packages, or to more formally prevent tampering with the contents of packages. If this is a requirement
for your project, you’ll sign your packages with certificates. This option requires associating a certificate
that has been created for code-signing purposes with your package. To do this in BIDS, you choose SSIS
➤ Digital Signing, and then click the Sign button. A Select Certificate dialog box appears. You select the
appropriate certificate and click OK twice.

Placing Checkpoints
Checkpointing refers to placing a marker, or checkpoint, in the control flow so that, if a package fails, you
can restart the package from the point of failure. Execution information is saved into a checkpoint file.
Figure 9–25 shows this property option. If you choose to use checkpointing in SSIS packages, you’ll want
to include this capability in the initial package design of all affected packages.

CHAPTER 9 ■ ADVANCED SSIS

262

Figure 9–25. To enable checkpointing in a package, you must set the CheckpointUsage property to either

IfExists or Always and then set three other properties.

To implement checkpointing in your SSIS package, you must configure four properties:

• CheckpointUsage: This must be set to IfExists or Always.

• CheckpointFileName: This is the path to the checkpoint file.

• SaveCheckpoints: This must be set to True to enable package checkpoints.

• FailPackageOnFailure: This must set to True to enable package checkpoints.

■Caution Checkpointing only allows package restart for failures that occur during the execution of control flow

tasks. You must implement other error-handling and recovery methods to recover from data flow transformation

failures. Also, if the checkpoint file is deleted or altered, it cannot be used for recovery.

One method of recovering from data flow task failures is to use transactions. We’ll give you a brief
introduction to this advanced technique in the next section.

Using Transactions in SSIS Packages
SSIS packages support the grouping of tasks into transactions by using one of two methods. You can
either use the Distributed Transaction Coordinator (DTC), or you can use the transactions that are built
in to your relational database management system (RDMS), such as SQL Server or Oracle. The primary
factor to consider is the span of the tasks.

If your business needs call for transactions that must go across multiple data sources or
connections, you must use DTC transactions. To use DTC transactions, you must ensure that the DTC
service is installed and running. You then configure the transaction option at a package or task level by
setting the TransactionOption property to either Required or Supported. You’ll also use sequence
containers within SSIS as transactional boundaries.

If all of your transactions will take place within the same RDMS, such as SQL Server, you can use
RDMS-native transactions. For our example, we’ll discuss SQL Server transactions.

The TransactionOption property for an SSIS package is shown in Figure 9–26. You also may
configure the IsolationLevel property for the transaction. The IsolationLevel property setting affects
the locking behavior of the involved data sources during the execution of the transaction.

CHAPTER 9 ■ ADVANCED SSIS

263

Figure 9–26. If your SSIS package needs to support transactions at the task or package level, you configure

the TransactionOption property value to either Required or Supported for the task or the package.

CHAPTER 9 ■ ADVANCED SSIS

264

■Note You can also configure the TransactionOption property to the value NotSupported to specifically exclude

a component from participating in a package transaction.

If you want to use native SQL transactions in your SSIS packge, all tasks participating in the
transaction must be configured to use the same Connection Manager. Then, you must configure the
RetainSameConnection property of that Connection Manager to the value True, and finally use the T-SQL
Begin Transaction syntax within your package. The T-SQL transaction syntax should include a Begin
Transaction and a Commit Transaction statement at minimum. It will typically also include at least one
Rollback Transaction statement as well; this code is often encapsulated in a T-SQL stored procedure
called from an SSIS Execute SQL Task control flow task inside of the particular SSIS package of interest.

Data Profiling
Data profiling is used to help ensure data quality throughout an enterprise. By profiling your data, you
can measure the volume and types of inconsistencies your data contains. Data profiles can contain a
variety of measurements, including counts, distinct values, missing values, and possible relationships
with other data points. If you are integrating data from multiple, disparate systems, data profiling will
probably be an important part of your process.

Creating a Data Profile
To begin, create a new package named DataProfile.dtsx, and place a Data Profiling Task onto the
Control Flow design area. Next, double-click on the task to open the Data Profiling Task Editor. In the
Destination drop-down, select “New File connection”. This will open the File Connection Manager
Editor. In the “Usage type” drop-down list, choose “Create file,” and in the “File” drop-down, use
DataProfilerResults.xml to hold your results. Figure 9–27 displays the completed Data Profiling Task
Editor.

CHAPTER 9 ■ ADVANCED SSIS

265

Figure 9–27. The Data Profiling Task Editor, showing completed Destination entries

Now that you have a destination defined for the profile output, click the Quick Profile button to
open the Single Table Quick Profile Form. Using this dialog, you will choose a table to profile, and select
the types of profiles to generate. The first item you need to complete is to create a new connection, by
clicking the New button, and using the Connection Manager dialog to connect to your existing
AdventureWorks2008R2 database. Next, select [HumanResources].[Employee] from the “Table or View”
drop-down. The “Compute”: check-boxes will have five selections by default, and you will create your
profile using these defaults. The profiles you can run via the single table dialog are:

• Column Null Ratio Profile: This profile returns the percentage of NULL values in a
column.

• Column Statistics Profile: This profile returns minimum, maximum, average, and
standard deviation for a column.

CHAPTER 9 ■ ADVANCED SSIS

266

• Column Value Distribution Profile: This profile returns distinct column values,
and the percentage of the population that each one represents.

• Column Length Distribution Profile: This profile returns the distinct lengths of
column values, and the percentage of the population that each one represents.

• Column Pattern Profile: This profile uses regular expressions to find invalid, or
misformatted, column values.

• Candidate Key Profile: This profile finds candidate keys, and any duplicates that
exist within the candidate key.

• Functional Dependency Profile: This profile finds data dependencies between
columns, and any mismatches that exist within the dependent columns.

The Single Table Quick Profile Form is now complete and should resemble Figure 9–28.

Figure 9–28. The Single Table Quick Profile Form, showing completed profile entries

CHAPTER 9 ■ ADVANCED SSIS

267

Click OK accept the profile form and return to the Data Profiling Task Editor, which is now
populated with your Profile Type choices. The Profile Requests are shown in Figure 9–29.

Figure 9–29. The Data Profiling Task Editor, showing the Profile Requests to be executed

Click OK once again, to accept your profile requests and return to BIDS. Your profile of the Employee
table is now setup and ready to execute. Go for it!

Viewing a Data Profile
When the package finishes, your data will be profiled and ready for review. To view your profiles in their
raw XML format, locate and open the DataProfilerResults.xml created by your package in Internet
Explorer. A portion of the XML created by the Data Profiling task is shown in Figure 9–30.

CHAPTER 9 ■ ADVANCED SSIS

268

Figure 9–30. A portion of the XML data created by the Data Profiling task

The Data Profile Viewer is a small, stand-alone application that ships with SQL Server to facilitate
viewing the XML data created by the profiling task. It is usually located at C:\Program Files\Microsoft
SQL Server\100\DTS\Binn\DataProfileViewer.exe. The first steps to viewing a data profile are to launch
the viewer and open the XML data you want to review. Next, use the tree structure in the Profiles (Table
View) pane to navigate to Tables ➤ [HumanResources].[Employee] ➤ Candidate Key Profiles. Finally, in
the Candidate Key Profiles pane, select BirthDate under Key Columns. Figure 9–31 shows the Data
Profile Viewer with BirthDate selected, and the Key Violations pane populated with duplicates.

CHAPTER 9 ■ ADVANCED SSIS

269

Figure 9–31. The Data Profile Viewer, with the BirthDate candidate key displayed.

Figure 9–31 shows that, while LoginID is unique in our Employee data with a Key Strength of 100%,
BirthDate may not be the best choice based on the displayed Key Violations. Another profile, Column
Value Distribution Profiles, with Gender selected, is shown in Figure 9–32.

Figure 9–32. The Data Profile Viewer, with distinct column values by gender displayed.

CHAPTER 9 ■ ADVANCED SSIS

270

In Figure 9–32, you can see that there are two distinct values for Gender, and 71% of employees in the
Employee table have a value of M.

Summary
We’ve now completed our tour of SSIS. From simple tasks, like using the Import/Export Wizard to
quickly move data between a source and a destination, to complex transactional data workflows, SSIS
really does it all. SSIS is an invaluable tool for implementing BI solutions.

In the next chapter, we will begin our exploration of reporting tools. Our first stops will be SQL
Server Reporting Services (SSRS) and Report Builder 3.0.

C H A P T E R 10

■ ■ ■

271

Reporting Tools

This chapter will cover the ins and outs of selecting, designing, and implementing one or more reporting
clients for your BI solution. The focus of the chapter will be on using Microsoft clients. The selection of
an appropriate set of client tools can make or break your BI solution. Ideally, you will select your client
strategy near the beginning of your project, as support (or lack of) for various SSAS features in the
selected client tools is an important design consideration. Given that backdrop, this is what we’ll discuss
in the chapter:

• Using Excel pivot tables

• Using SQL Server Reporting Services (SSRS)

• Building your first SSRS report

• Producing reports with Report Builder

In addition, you have the option to work with Office 2010. Because of the amount of functionality
included in Office, Chapter 11 is devoted to BI integration in Office 2010 applications.

Using Excel Pivot Tables and Pivot Charts
The simplest choice for reporting is to use an Excel pivot table or pivot chart. These tools offer a good
deal of flexibility for creating tabular reports and chart graphics from SSAS. Pivot tables make an easier
task of analyzing and filtering your company’s data, while pivot charts can create professional
visualizations of your prepared pivot tables.

Creating a Pivot Table
A pivot table simplifies the work necessary to create a summarized view of your data. Pivot tables do not
require formulas and can make relationships in your data more apparent. Pivot tables can be used to ask
questions such as “Who are our best customers?” or “What are our biggest selling products?” To create a
pivot table, you need three things: a row field, a column field, and a data field. A row field will summarize
data for each distinct row item, for example, customers. A column field will control the width of your
pivot table, for example, months or years. Finally, the data field, which will appear in the body of the
pivot table, is the data point that your pivot table will summarize.

In this section, you will create a pivot table using the Adventure Works cube. When completed, your
pivot table will display customer counts, by country, across time. To create this pivot table in Excel,
follow these steps:

CHAPTER 10 ■ REPORTING TOOLS

272

1. Open Excel.

2. Choose Data ➤ From Other Sources ➤ From Analysis Services.

3. In the Data Connection Wizard, enter your SSAS “Server name”, and click Next,
as shown in Figure 10–1.

Figure 10–1. Connecting to an SSAS cube in Excel using the Data Connection Wizard

4. Next, select the Adventure Works DW 2008R2 SE database, choose Adventure
Works cube, and click Next, as shown in Figure 10–2.

CHAPTER 10 ■ REPORTING TOOLS

273

Figure 10–2. Choosing a database and cube using the Data Connection Wizard

5. Review the final wizard dialog, and click Finish.

6. In the Import Data dialog, select PivotTable Report as your data view, and place
your data into the existing worksheet with the formula =Sheet1!A1. Click OK.

7. From the PivotTable Field List, drag the items that you want to show in your
PivotTable to the Drag Field area. Figure 10–3 shows an example using
Calendar Year as the column label, Country as the row label, and Customer
Count for the values.

CHAPTER 10 ■ REPORTING TOOLS

274

Figure 10–3. A PivotTable using Calendar Year, Country, and Customer Count

Creating a Pivot Chart
A pivot chart enhances Excel’s pivot table functionality, giving you the tools to create charts directly
from your pivot tables. Excel contains a variety of chart types, including the standard column, bar, line,
and pie.

In this section, you will add a pivot chart to the worksheet you finished in the last section. To add a
pivot chart to this worksheet, follow these steps:

1. Choose Options ➤ PivotChart from the PivotTable Tools menu area.

2. Choose Stacked Column in 3D (top row, fifth from left) from the Column pane.

3. Click OK. Figure 10–4 displays the current worksheet, with your newly created
pivot chart added.

CHAPTER 10 ■ REPORTING TOOLS

275

Figure 10–4. Your pivot chart, created in the same worksheet as your pivot table

Publishing Your Workbook
You also have the option to save your pivot table or chart as a web page. This allows your end users to
review the resulting pivot chart using a standard web browser. To publish your pivot chart, choose File
➤ Save As. In the Save As dialog box, choose Single File Web Page from the “Save as type” drop-down
list. Name your file CustomerCountByCountry.mht, and click Save. Figure 10–5 shows your worksheet in
Internet Explorer.

CHAPTER 10 ■ REPORTING TOOLS

276

Figure 10–5. The Customer Count By Country workbook displayed in Internet Explorer

Using SQL Server Reporting Services
SQL Server Reporting Services (SSRS) is an enterprise-capable reporting solution for all types of data
sources, including relational, multidimensional, XML and text. This section mostly focuses on using
SSRS as a reporting client for SSAS cube data. However, before we do that, let’s discuss SSRS in general.

SSRS Components
SSRS consists of the following default components:

• Report Manager: This is the access and management tool that provides web-based
report functionality and the default user interface for the results of the web
service. End users access an ASP.NET web application, which is also called Report
Manager, by navigating to the (default) URL:
http://localhost/Reports/Pages/Folder.aspx.

CHAPTER 10 ■ REPORTING TOOLS

277

• Report Server Web Service: This required component is one of the areas where the
core real-time, on-demand report and model processing is done within SSRS.

• Scheduling and Delivery Processor: This component handles background
scheduling tasks, such as scheduled report generation and delivery.

■Note You can develop alternate user interfaces, such as web and Windows forms, by connecting to published
reports hosted on the report server or by writing your own .NET applications, which call the report server web

service APIs.

• Report Designer: This is a design tool that runs in BIDS, which is a shell integrated
with Visual Studio, or as a separate application. BIDS is the default development
environment for report queries, layout, and structures. You can use other report
development tools to author reports, including Report Builder, discussed later in
this section.

SSRS Reporting Samples
Several SSRS reports are included with the SQL Server samples. These are located, by default, at
C:\Program Files\Microsoft SQL Server\100\Samples\Reporting Services\Report
Samples\AdventureWorks Sample Reports. The included samples contain not only sample reports but
also nteresting samples of other functionality, such as SSRS management and custom delivery and
authentication. The default location for all SSRS sample code is C:\Program Files\Microsoft SQL
Server\100\Samples\Reporting Services.

Building Your First SSRS Report
In this section, you will learn the steps involved in building a report by building one from scratch with
the sample AdventureWorks cube as a data source. To build a report against an SSAS cube for SSRS, you
open BIDS and choose File ➤ New ➤ Project. In the New Project dialog box, you’ll select the Business
Intelligence Projects project type. You have three template types to choose from when building reports:
Report Server Project Wizard, Report Server Project, or Report Model Project. For this discussion, we’ll
use the Report Server Project Wizard template, as shown in Figure 10–6.

CHAPTER 10 ■ REPORTING TOOLS

278

Figure 10–6. To create a report, you open BIDS and select one of the three types of report templates.

After you select this template type, enter a project name, location, and solution name. Click OK. The
wizard presents you with a series of dialog boxes.

Running the Report Server Project Wizard
After the welcome screen, the Select the Data Source dialog will appear; there, you are asked to configure
a data source. Although this process is similar to configuring a data source in SSAS, there are some
important differences. One of these differences is the option to create the data sources as shared, or
global to the entire report solution. It is a best practice to create shared data sources, because you’ll
spend less time creating connections (that is, you can just reuse the global one you’ve created for
multiple reports), and you can easily update any of the values (that is, the connection string information)
in the data source, which will affect every report in the project.

You can either type the desired connection string directly into the Connection String list box, or you
can use the Edit or Credentials buttons to quickly generate a connection string based on your input
values. Figure 10–7 shows the completed data source dialog.

■Note If you click the Credentials button, the only available connection type is Use Windows Authentication
(Integrated Security). The other choices—“Use a specific username”, “Prompt for credentials”, and so on—are

grayed out and not available for connections to SSAS using SSRS.

CHAPTER 10 ■ REPORTING TOOLS

279

Figure 10–7. In the Select the Data Source dialog box, you configure the connection to SSAS.

Click Next to advance to the Design the Query dialog. The next step is to write the MDX query to
retrieve the values from your cube.

Designing the Query
The Report Wizard has a built-in visual query designer, which you access by clicking the Query Builder
button. Query Designer, shown in Figure 10–8, is much like the cube browser in BIDS. To generate an

CHAPTER 10 ■ REPORTING TOOLS

280

MDX query, you simply drag and drop items from the Metadata panel onto the design areas. This built-
in visual MDX query designer greatly reduces the amount of manual query writing you’ll need to do to
build a reporting solution for SSAS, which gives you the ability to generate reports much more quickly.

Figure 10–8. The SSRS Report Wizard for SSAS includes a built-in visual MDX query builder that greatly

reduces the need for you to manually write MDX queries.

The visual query designer has two modes of operation: design and native query. It opens in design
mode. This means that you drag and drop items from the Metadata viewer to the blank windows on the
right to generate a MDX query. If you want to manually write (or use) an MDX query, click the Design
Mode button (the last button on the toolbar) to switch to native query mode. Then, you can type MDX
natively in the Query Designer interface in combination with dragging and dropping items from the
Metadata browser.

Figure 10–9 shows a drag-and-drop query. Note that you can enable parameters in your report
interface by simply checking the box in the filter section at the top of the query design work area. These
parameters can be presented in the user interface as a blank text box or a drop-down list (showing a list
you provide or one that is generated based on another query) that shows a default value. Multiple query

CHAPTER 10 ■ REPORTING TOOLS

281

parameter values can be selected as defaults and can be passed by the end user by making multiple
selections in the drop-down list.

Figure 10–9. The simplest way to create a MDX query in Query Designer is to drag and drop items from the

Metadata viewer to the design surface. Note that you can enable parameters by simply checking the box

under the Parameters column at the top of the design surface.

You can also create and add MDX-calculated members while in visual design mode by right-clicking
the Calculated Members area at the lower-left of the design surface and selecting New Calculated
Member. The Calculated Member Builder dialog box appears, so you can write the MDX for the
calculated member (see Figure 10–10). Normally, you will generate, rather than manually author, the
MDX.

Remember that the calculated members you are creating here are specific to the particular report
that you are creating. In other words, they are visible only to that report. You can think of this type of
calculated member as local. This differs from creating calculated members as objects for a particular
cube using the cube designer (Calculations tab) in BIDS; calculated members created in the cube can be
considered global.

CHAPTER 10 ■ REPORTING TOOLS

282

Figure 10–10. You can add calculated members to your report by using the Calculated Member Builder.

CHAPTER 10 ■ REPORTING TOOLS

283

■Tip To generate, rather than manually write, the MDX calculated member expression, you can drag and drop
measures, dimensions, and so on from the Metadata area of the Calculated Member Builder dialog box to the

Expression area. You can also drag or double-click Functions to add them to the expression that you are building.

Figure 10–11 shows the same query as was generated in Figure 10–9, now rendered in the Query
Builder so that the MDX statement is visible. You can edit this query by simply typing directly into the
interface. Note also that the Metadata viewer includes the MDX Functions and Templates libraries. As in
BIDS and SSMS, you can also generate the MDX query by selecting and then dragging and dropping
Metadata items, Functions, or Templates into the MDX work area.

Figure 10–11. You can switch from visual design to native MDX query mode in the Query Designer by

clicking the Design Mode button (the last button) on the toolbar.

When you are working in native query mode, two additional buttons become available on the
toolbar: Query Parameters (fifth button from the right) and Prepare Query (fourth button from the right).
When you click the Query Parameters button, the Query Parameters dialog box, allowing you to visually
configure the query parameters, becomes available (see Figure 10–12). Here, you can specify parameter
names; associate those names to dimensions, attributes, or hierarchies (using the Hierarchy section);
allow multiple values; and set a default value.

CHAPTER 10 ■ REPORTING TOOLS

284

Figure 10–12. When working in native MDX query mode in the Query Builder, you can use the Query

Parameters dialog box to view and adjust the query parameters as needed.

The Prepare Query button acts much like the parse (blue checkmark) button in SSMS T-SQL query
mode; that is, when you click it, the query syntax is checked, and any errors are returned to you via a
pop-up window. The one item that is lacking in this view is also similar to a missing feature in the
graphical and text-based (SQL) query designers—IntelliSense.

The next few dialog boxes of the wizard ask you a series of questions about the visual design of the
report. This process is very similar to other visual report design wizards, particulary Access’s. For this
report, select Tabular from the Select the Report Type dialog, and click Next From the Design the Table
dialog, simply select Next. The Choose the Table Style dialog will have the Slate theme selected by
default; use this theme by clicking Next. Finally, click Next in the Choose the Deployment Location
dialog, name your report “Internet Sales per Year”, and click Finish to complete the Report Wizard.

Previewing and Designing Your Report
After you’ve run through the wizard, you will have two work areas to continue to work with your report:
the Preview and Design tabs. The Preview tab for the “Internet Sales per Year” report is shown in Figure
10–13.

CHAPTER 10 ■ REPORTING TOOLS

285

Figure 10–13. The Report Design interface includes a Preview tab so that you can review the report you’ve

created as you continue to enhance the design.

If you want to alter your query, first select the Design tab, and ensure that the Report Data pane is
visible. The Report Data pane can be opened by clicking View and selecting Report Data. Next, right-
click the Dataset you want to edit in the Report Data pane, and select Query to load the Query Designer,
where you can make changes to the MDX query either by dragging and dropping items from the
Metadata view (using visual design mode) or by a combination of typing MDX and dragging items from
the Metadata, Functions, or Templates tabs (using native MDX query mode). Of course, if the changes
you make to the MDX query invalidate the report layout, for example, if you remove an item from the On
Columns clause of the MDX query, you would also have to update your report by using the Layout tab to
remove that information from the report layout.

You can associate more than one query with a report. To do this, you right-click the Datasets node
in the Report Data pane, and select Add Dataset. Associating more than one query with a report is
commonly done to populate parameter lists with dynamic values.

After you’re satisfied with the values retrieved by your MDX query (or queries), you may want to
modify the layout of your report. To do so, click the Design tab in the report designer. While there, you
may place the available data fields onto the available design surfaces. The example uses a simple table.
Your choices are Table, Matrix, Chart, List, or Subreport. We added a total amount by right-clicking the
Internet Sales Amount data cell and choosing Add Total. Next, type TOTAL in the Calendar Year cell to the
left of your Internet Sales Amount total. Note that the sum() function was automatically applied to the
field value, as shown in Figure 10–14.

CHAPTER 10 ■ REPORTING TOOLS

286

Figure 10–14. The Internet Sales per Year report, as seen on the Design tab

Another area you may want to work in while designing your report is the Report Parameters
Properties dialog. To work with parameter properties, right-click a parameter in the Parameters node of
the Report Data pane, and select Parameter Properties. You can then further configure the parameters
per the values available in the dialog box; for example, you can allow null values, blank values,
multiselects; or populate a drop-down list with values from the cube (see Figure 10–15).

CHAPTER 10 ■ REPORTING TOOLS

287

Figure 10–15. The Report Parameter Properties dialog box allows you to configure a parameter for your

report.

Publishing Your Report
When you’re satisfied with your report, you can now deploy it to the Report Server web service. To do
this, first right-click the name of your solution in the Solution Explorer window, and select Properties to
open the Property Pages dialog for your solution. Next, verify that the TargetServerURL address is
correct for your particular installation of SSRS. The example shown in Figure 10–16 will deploy your
project to http://localhost/ReportServer.

CHAPTER 10 ■ REPORTING TOOLS

288

Figure 10–16. Be sure to verify the TargetServerURL location on the Report Project Property Pages prior to

attempting to deploy your reporting project.

The StartItem property lists the first report that you created in the project. Note that the file name
ends in .rdl. This is the XML dialect Report Definition Language (RDL), which the Report Designer
generates in Visual Studio. When you build or deploy a report or report project, the .rdl syntax is
validated against a specialized type of XML Schema document (XSD). Be aware that .rdl and .rds files are
not compiled during this process.

You can actually see, and manually edit, the RDL being generated in Visual Studio by right-clicking
any report in Solution Explorer and choosing View Code. You will want to avoid editing the .rdl files
manually whenever possible, because it is easy to make a mistake that will invalidate the entire file. Be
sure to back up an .rdl file before editing it manually. Remember that RDL, being an XML dialect, is
both case sensitive and more sensitive to whitespace than some other formats. A portion of the RDL for a
report is shown in Figure 10–17.

CHAPTER 10 ■ REPORTING TOOLS

289

Figure 10–17. To view or edit the RDL associated with a report, right-click the report, and click View Code.

If you have made errors in configuring your report, those errors may appear when you attempt to
deploy the project. Any design-time errors will be shown in BIDS at the bottom on your work area in the
Error List window. These errors result when you create a configuration that is invalid for the schema, for
example, binding a field in a table using the Layout tab with an expression that contained invalid syntax.
You can also create report configurations that result in runtime errors (these are most often due to
incorrect data source connection string information). You will discover these types of errors when you
attempt to view the report you’ve created in BIDS by using the Preview tab. BIDS displays a description
of the runtime error on the Preview design surface.

q

CHAPTER 10 ■ REPORTING TOOLS

290

After you’ve successfully deployed your report, you can then view it using the Report Manager Web
interface installed with SSRS, or you can use the web service APIs to create your own customized user
interface if the included Report Manager Web site doesn’t meet your business requirements. Your end
users can also use the available drop-down list on that web site to render the report in formats other
than the default HTML. These formats include .xls, .pdf, .csv, and .xml. Also, you can configure
security and other runtime settings (for example, execution and caching behavior) via Report Manager.
Figure 10–18 shows a sample report rendered in Report Manager.

Figure 10–18. You can use Report Manager to present your SSAS reports to end users.

Another method of producing reports from SSAS cube data sources using SSRS is to use the new
Report Builder interface—more about that in the next section.

Producing Reports with Report Builder
The Report Builder tool included with SSRS is a Windows application that you, or authorized users, can
launch directly from Report Manager. Report Builder provides you (or authorized end users) with a
simplified interface for report development. Using Report Builder is an alternative to creating report
definitions using BIDS or Visual Studio.

Creating a Report Model
Before you launch Report Builder, you must first create a report model. A report model is a specific type
of an XSD schema called Semantic Model Definition Language (SMDL), which is generated for SSAS
cubes by clicking a button in Report Manager. An SMDL model is a way to describe the underlying
database in business terms, so the end user does not need to know about tables, relationships,
measures, dimensions, and the like.

CHAPTER 10 ■ REPORTING TOOLS

291

There is only one way to create a report model for SSAS (unlike for models run against SQL Server
data, where you have multiple methods of creating a report model)—using the GUI interfaces and tools.
You do this by generating the schema from inside Report Manager. First, you must navigate to the data
source properties for the SSAS connection in Report Manager. Once there, you click the Generate Model
button on the toolbar at the top of the page to create a model that can be used by the Report Builder.
This interface is shown in Figure 10–19.

Figure 10–19. To create a Report Model from an SSAS data source, you navigate to the properties of the

data source and then click Generate Model.

CHAPTER 10 ■ REPORTING TOOLS

292

After you’ve created a model, you can \ launch the Report Builder application by clicking the Report
Builder button on the Report Manager toolbar. The button is associated with this URL by default:
http://localhost/reportserver/reportbuilder/reportbuilder.application. You could, of course,
access this URL by embedding the link in your own custom client application as well. After you click the
link and agree to run the application, the application downloads from SSRS and launches. You must
have permissions to run this application as well. For more information about the required permissions,
see the BOL topic “How to Configure Report Builder Access”.

Creating a Dataset
The first step in using the Report Builder is to select the report model source that you want to use as a
basis for your report. Begin by selecting New Dataset and choosing “Browse other data sources”.
Navigate to the Data Sources directory, and open the AdventureWorksSample model you created in the
last section. Click Create, followed by OK in the Choose Perspective dialog.

The next choice is which entity you want to use as the basis for your dataset. Report Builder reports
are built around the concept of displaying a single entity and some or all of its related attributes (or
fields). So, what’s an entity? An entity, according to Books Online, is “a logical collection of model items,
including source fields, roles, folders and expressions, presented in familiar business terms.” For SSAS
Report Builder models, entities are created for each dimension and for most fact tables. Another way to
think of an entity is as a particular business object, such as customer, product, or marketing campaign.

To continue working toward building a report using Report Builder, you select an entity and then
select the desired field from the available (associated) fields (or attributes) list, which is shown in the
Fields box. To use a particular entity, you need to drag it to the design surface. After you drag an entity to
the design surface, then the available entities displayed are restricted to the particular selected entity
and all child entities associated with it. If you want to reset the Entities list back to the original (master)
set, you simply drag all items off of the report design surface. Figure 10–20 shows the Entities and Fields
selection list boxes in the Report Builder.

CHAPTER 10 ■ REPORTING TOOLS

293

Figure 10–20. To configure your report, you drag an entity from the Entities list to the report design

surface. You then drag associated fields (or attributes) to the design surface.

Use the Entities and Fields panes to place Calendar Year and Internet Sales in the drag-and-drop
column fields area of the designer. When finished, save your dataset as InternetSales.

Creating a Report
Now that you’ve created a dataset, you can use the InternetSales dataset as the basis for a new report.
To begin, click the radial menu, and click New to open the New Report or Dataset dialog. Next, select
Table or Matrix Wizard. In the New Table or Matrix dialog, select “Choose an existing dataset”, and
browse to the InternetSales dataset you saved in the last section. Ensure that InternetSales is selected,
and click Next. In the Arrange Fields dialog, drag and drop Internet_Sales_Amount into the Values area,
and Calendar_Year into the Row groups area. Click Next . Confirm that the “Show subtotals and grand
totals” check box is checked in the “Choose the layout” dialog, and click Next. Finally, select Slate in the
Styles pane, and click Finish. Figure 10–21 shows the Report Builder GUI with your new report
definition.

CHAPTER 10 ■ REPORTING TOOLS

294

Figure 10–21. The SQL Server Report Builder GUI

You may also add filters to your report. Add a filter to your report by expanding the Dataset node in
the Report Data pane, and expanding InternetSales. Right-click the Calendar_Year field, and select
Field Properties. In the Dataset Properites dialog, select Filters to reveal the “Change filters” pane. Next,
add and configure filter conditions that are appropriate for your business scenario.

Figure 10–22 shows the dialog box you use to add filters to your report, with 2005 selected as a
calendar year filter. It’s interesting to see that the filters are generated from your “natural language”
inputs. This is yet another time-saving feature built into this product. The idea is that business users can
quickly and easily generate filters using natural langauge rather than having T-SQL or MDX
programmers writing code.

CHAPTER 10 ■ REPORTING TOOLS

295

Figure 10–22. The Filter Data dialog box allows you to add filters to your report.

After filtering your report data, you may want to sort it as well. To sort your report data, right-click a
column header, and select Tablix Properties, followed by Sorting. The Sorting dialog box is shown in
Figure 10–23. Use it to add a sort on Calendar_Year in the same manner that you added the filter.

CHAPTER 10 ■ REPORTING TOOLS

296

Figure 10–23. The Sorting dialog box allows you to sort the data displayed in your report.

You may also add a calculated field to your report by right-clicking your InternetSales dataset, and
choosing Add Calculated Field. Click the Add button, select Calculated Field to add a row for your
calculation, and click the “fx” button. The Expression dialog box appears; it lists the currently available
entities and fields and a subset of functions that are appropriate to the particular selection, along with a
description and example, as shown in Figure 10–24.

CHAPTER 10 ■ REPORTING TOOLS

297

Figure 10–24. The Expression dialog box allows you to add a calculated field to your report.

The last area for you to configure prior to running your report is accessed by right-clicking outside
the report page area and selecting Report Properties. In the Report Properties dialog box, you can
configure other properties, including Page Setup, Code, References, and Variables. Figure 10–25 shows
the Report Properties dialog box.

CHAPTER 10 ■ REPORTING TOOLS

298

Figure 10–25. The Report Properties dialog box allows you to set a number of options for your report.

After you’ve configured your report, you may view it by clicking the Run button on the toolbar. If
you want to create a report that will be viewable after this session (by you and anyone else to whom you
grant permission) using Report Builder, you may save the report definition to the report server (provided
you have the appropriate permissions). When you click the Radial menu and select Save, you are
prompted to name your report and are directed to the http://localhost/ReportServer location by
default; Figure 10–26 shows this dialog box. Any report that you build and save can be accessed using
Report Manager.

CHAPTER 10 ■ REPORTING TOOLS

299

Figure 10–26. You have the option to save your report definition to the report server.

Report Builder is a great tool for you to build RDL reports against your SSAS cubes. Third-party
vendor RDL generators are also available. An important consideration for your BI project is the
determination of which tools will be used to create reports and which end users will be involved in
report writing.

Summary
In this chapter, we reviewed capabilities of currently available client tools for SSAS. These included Excel
pivot tables, pivot charts, SSRS, Report Manager, and the Report Builder. In the next chapter of the book,
we’ll discuss BI connectivity and reporting using Office 2010.

m

C H A P T E R 11

■ ■ ■

301

Data Mining with Excel

This chapter explores data mining with Excel, using both Excel workbooks and SSAS as data sources.
Excel data mining is accomplished using the SQL Server 2008 Data Mining Add-in. Excel 2010 is a
significant part of Microsoft’s BI offering, and it provides you with an affordable and powerful end user
client toolset. By offering such a rich feature set at such an attractive price, it is Microsoft’s intent to
make BI available to a larger percentage of your end user groups, rather than just the analyst
community.

■Note This chapter, along with Chapters 12 and 14, present an introduction to data mining and PowerPivot.
Chapter 12 delves into the combined use of Excel and PowerPivot. Chapter 14 is an introduction to the methods

and uses of data mining.

Exploring Excel 2010
The first significant enhancement Microsoft has made in Excel is a concerted effort to improve the end
user client SSAS experience by improving the pivot table interface. The primary focus is to make pivot
tables and charts more intuitive to set up and use, so that more of your end users will be able to quickly
become productive using pivot tables.

The Excel Ribbon
Let’s begin by taking a look at the new menu system. This menu redesign is called the ribbon. Figure 11–
1 shows the first half of the Excel ribbon for the Data tab. You’ll notice that this tab contains a group that
allows you to manage connections to any data source to which you are making a connection. These
connections include connecting from Excel to SSAS.

CHAPTER 11 ■ DATA MINING WITH EXCEL

302

Figure 11–1. The left half of the Data tab in Excel

Another type of ribbon in Excel gives your end users quicker access to the pivot table menu items.
This type of menu is called a contextual tabset, and it appears in the ribbon when an end user selects any
area of an active pivot table by clicking it. The right half of the contextual tabset for pivot tables is shown
in Figure 11–2.

Figure 11–2. The contextual tab of the Excel PivotTable Tools ribbon

You can create a pivot table using SSAS source data via the ribbon menus. All menus are now
available on a tab (for creating the initial connection to SSAS) or a contextual tab (for designing the pivot
table) of the ribbon. The ribbon also simplifies access to some of the advanced SSAS features.

You can see another example of advanced SSAS feature support when you are using the Data
Connection wizard. After you specify the name of the SSAS server and database that you want to connect
to, you can then (in the next dialog box) select from a list of not only SSAS cubes but also SSAS
perspectives for that particular SSAS database, as shown in Figure 11–3.

CHAPTER 11 ■ DATA MINING WITH EXCEL

303

Figure 11–3. Associating your data connection with a specific cube or perspective

SSAS also supports cube drillthrough, and you can set the maximum number of records that can be
retrieved via drillthrough on the Connection Properties Usage tab. After you’ve successfully connected
to your SSAS instance, to quickly open the pivot table designer, you can simply click the Existing
Connections icon on the Get External Data group of the Data tab. Next, in the Existing Connections
dialog box, click the AdventureWorks item in the Connections in this workbook section, and then click
Open, as shown in Figure 11–4.

CHAPTER 11 ■ DATA MINING WITH EXCEL

304

Figure 11–4. One way to create a pivot table is by opening a connection to an SSAS database.

You are then presented with an Import Data dialog box, which is set by default to PivotTable Report.
You can also configure the Advanced properties of the connection by clicking the Properties button in
the Import Data dialog box. Click OK to complete your connection configuration, and then Excel will
open the pivot table design surface. The pivot table work area is more intuitive than previous versions,
including “hint” text on the design surface and an intelligent PivotTable Field List. This list allows the
user to drag and drop any field from the data source; for SSAS cubes, these fields will be measures,
dimensions, and KPIs. The fields can either be dragged to the pivot table design surface or to the new
descriptive boxes, called areas, below the PivotTable Field List. Figure 11–5 shows the default (blank)
pivot table design surface and the new PivotTable Field List pane.

CHAPTER 11 ■ DATA MINING WITH EXCEL

305

Figure 11–5. The pivot table design surface and PivotTable Field List improve the design experience for end

users.

CHAPTER 11 ■ DATA MINING WITH EXCEL

306

KPI Support in Excel
In addition to an intuitive design area, you’ll note that SSAS KPIs are displayed as part of the fields in the
PivotTable Field List. If you drag KPIs onto the pivot table design area, you’ll also see that the associated
icons are displayed in the pivot table. You’ll probably find yourself using KPIs in a number of business
scenarios, so be sure to include planning for KPIs in the business requirements phase of your BI project.

An example of the display of SSAS cube KPIs in an Excel workbook is shown in Figure 11–6.

Figure 11–6. You can display KPI status indicator icons in your Excel pivot tables.

Take note that the Report Filter area on the PivotTable Field List allows you to easily work with a
large number of filter fields for your report. Also, the field list has been set to show fields related to the
Internet Average Sales measure only. Because most SSAS cubes will now be built using multiple fact
tables, this ability to filter available fields based on fact names will be welcomed by end users.

In addition, Excel offers enhanced data visualizations. Although these features are not specific to
pivot tables or to BI—in other words, you can apply them to any worksheet—you will find them to be
particularly useful when working with the large result sets that can be returned from SSAS cubes. Most of
these data visualization features are found on the ribbon’s Home tab by clicking the Conditional
Formatting button.

One example of using these new data visualization features is that you can use the built-in data bars
to give a visual clue to values in your pivot table. To do so, simply select the cells from the pivot table that
you want to apply the conditional formatting to, click the Home tab, click the Conditional Formatting
button to expose the Data Bars button, and then click the color scheme you want to apply. You can also
make your own custom scheme by clicking the More Rules button at the bottom of the supplied Data
Bar Rules under the Conditional Formatting button on the Home tab of the ribbon. The result of
applying this type of conditional formatting and using the Conditional Formatting button menu is
shown in Figure 11–7.

CHAPTER 11 ■ DATA MINING WITH EXCEL

307

Figure 11–7. Using Data Bars Conditional Formatting can improve the visualization of your pivot table data.

Other types of data visualization tools included in Excel are Color Scales and Icon Sets. All of these
conditional formatting schemes can be customized quite easily. Figure 11–8 shows the application of
one of the default Icon Sets to the sample pivot table.

Figure 11–8. Applying built-in Icon Set Conditional Formatting to jazz up your pivot table

CHAPTER 11 ■ DATA MINING WITH EXCEL

308

Pivot charts offer the ability to easily add a trend line. To do this, create a column chart from your
pivot table by clicking the Pivot Chart button on the ribbon. Then right-click any of the data bars in the
chart, and click Create Trendline. The line is created, and you can access the Format Trendline dialog
box. A pivot chart with a trendline and the Format Trendline dialog box are shown in Figure 11–9.

Figure 11–9. A pivot chart showing a tread line alongside the Format Trendline dialog box

Using Excel for Data Mining
One exciting feature in Excel is the ability to work as a native client for SSAS data structures. The next few
sections will explore using Excel as a data mining client. To make this functionality available to Excel,
you first need to install the SQL Server Data Mining Add-ins. The Data Mining Add-in is available as a
download for Office 2007. However, it works with 32-bit Office 2010 as well. The add-in is accessible at
www.microsoft.com/downloads/en/details.aspx?FamilyId=896A493A-2502-4795-94AE-
E00632BA6DE7&displaylang=en.

■Note The Data Mining Add-ins add functionality to both Excel and Visio as a 32-bit version only. There is

currently no 64-bit version available. We will be reviewing the add-in functionality for Excel in this book.

CHAPTER 11 ■ DATA MINING WITH EXCEL

309

Configuring Excel as a Data Mining Client
After installing the downloaded files using the Setup wizard, run the Getting Started wizard by choosing
Getting Started from the Microsoft SQL 2008 Data Mining Add-ins program group, show in Figure 11–10.

Figure 11–10. The Data Mining Add-ins group of the Start menu

The Getting Started wizard contains a good amount of documentation on each page, making it easy
to use. Figure 11–11 shows the first page of the wizard.

Figure 11–11. The Data Mining Add-ins Getting Started wizard

CHAPTER 11 ■ DATA MINING WITH EXCEL

310

On the first page of the Getting Started wizard, select the “Use an existing instance of Microsoft SQL
Server 2008 Analysis Services that I administer” radio button, and click Next. Execute the Server
Configuration Utility by clicking the link on the second page of the Getting Started wizard. When the
“Welcome to the SQL Server 2008 Data Mining Add-in Configuration Wizard” dialog appears, click Next.
In the first step of the configuration wizard, specify the SSAS server name. In step two, specify that you
want to allow the creation of temporary mining models, as shown in Figure 11–12.

Figure 11–12. Determining your user’s ability to create temporary mining models

CHAPTER 11 ■ DATA MINING WITH EXCEL

311

In step three, create a new database called DMAddinsDB. Creation of temporary mining models
gives your users the flexibility to freely create models while allowing you to manage permissions for
these users without impacting other databases. In the last dialog box of the wizard, grant add-in users
appropriate permissions, as shown in Figure 11–13. As with the other dialog boxes in this wizard, an
explanation of the implications of the task you are performing is given on the dialog box. You should, of
course, implement security settings based on your business requirements. This usually includes, at a
minimum, restricting the ability to create permanent models to the smallest possible subset of end
users.

Figure 11–13. Setting user permissions for accessing data mining models

CHAPTER 11 ■ DATA MINING WITH EXCEL

312

As the wizard completes, it presents you with a status dialog box, showing the success (or failure)
of each of the required setup steps. If you have any failures, simply rerun the wizard. The most
common cause of failure is an incorrectly configured connection string. This status dialog box is
shown in Figure 11–14.

Figure 11–14. Confirmation of successful configuration

Using Excel as a Data Mining Client
The best way to start using Excel as a data mining client for existing SSAS data mining structures and
models is to explore the various activities available on the Data Mining tab, which is added to Excel’s
ribbon when you install the Data Mining Add-ins. Let’s start by examining how to connect to and browse
mining models. This section of the ribbon is shown in Figure 11–15.

Figure 11–15. The Data Mining tab groups: Model Usage, Management, and Connection

CHAPTER 11 ■ DATA MINING WITH EXCEL

313

The Connection group of the ribbon allows you to add, edit, delete, test, or make current one or
more connections to SSAS. Click No Connection in the Connection group to open the Analysis Services
Connections dialog, and click New. In the Connect to Analysis Services dialog that appears next, enter
your server name, and select Adventure Works DW 2008R2 as the catalog to connect to. Click OK, and
then Close to create the new connection.

Using the Manage Models button in the Management group, you can view metadata about data
mining structures and models. You can also perform administrative actions such as renaming, clearing,
and processing the structure or model. The Managing Mining Structures and Models dialog box is
shown in Figure 11–16.

Figure 11–16. The Manage Mining Structures and Models dialog

The Browse button on the Model Usage group allows you to view the mining models in the
structures of the SSAS database you’ve connected to. For example, if you view a model created using the

CHAPTER 11 ■ DATA MINING WITH EXCEL

314

Naïve Bayes algorithm, you’ll be shown the Dependency Network Viewer. The type of viewer available
depends on the type of mining model algorithm selected to build the original model.

■Note The Naïve Bayes data mining algorithm is a simple classifier of data. It is called Naïve because it gives
equal weight to all data points that contribute to a classification created by the algorithm. Naïve Bayes and the

Dependency Network Viewer are covered in more detail in Chapter 14.

When you click the Browse button, you’ll be presented with a dialog box listing all of the mining
models, arranged by algorithm type, that are associated with your particular mining structure. After you
click a particular model to select it and then click Next, you’ll be presented with the associated Mining
Model Viewer or Viewers. In the Browse window, you can manipulate the mining model using the same
techniques that you used in BIDS or SSMS. Figure 11–17 shows a sample Browse window in Excel. Note
that you have the option to copy the information in the Browse window to Excel. If you choose to copy to
Excel, the model will be rendered in a way that is “friendly” to Excel. The render method used by Excel
varies depending on the type of Mining Viewer. Figure 11–18 shows the output of saving the model
shown in Figure 11–17.

Figure 11–17. After you select a mining model to browse, Excel will display the model viewer types

associated with that particular algorithm.

CHAPTER 11 ■ DATA MINING WITH EXCEL

315

Figure 11–18. Copying the information from the Mining Model Viewer to Excel using the Copy to Excel

button

The Query button allows you to execute a DMX prediction query against a mining model. There are
two modes in which to work: basic or advanced. As with many of the other Data Mining Wizard tools, the
first page of this wizard provides an explanation of what you can accomplish by using it.

■Note Chapter 14 will give you a better understanding of this wizard’s functionality. You will learn how to

associate external data with an existing model, map columns, and create output based on these inputs.

Using data mining, you could use some competitor’s data that you’ve purchased as external data to
compare that competitor’s sales results with the results of an existing model that reflects your results for
a particular business scenario. The first page of the Query Model wizard is shown in Figure 11–19.

6

CHAPTER 11 ■ DATA MINING WITH EXCEL

316

Figure 11–19. The Query Model wizard

The first step is to select the source model. Here you are presented with the same dialog box that
you worked with when using the Browse button. After you select the source mining model, you’ll be
asked to select the input data for comparison. As stated on the first page of the Query Model wizard, you
may choose from Excel tables, Excel ranges, or SSAS data sources for this data.

Also on this dialog box of the wizard, you have the option to move to the advanced view. If you do
so, you’ll have the ability to edit the query, add DMX templates, choose a new model, select input, map
columns, or add output. This dialog box is shown in Figure 11–20.

CHAPTER 11 ■ DATA MINING WITH EXCEL

317

Figure 11–20. Using the Advanced Query Editor panes to modify a DMX query

Also in the Advanced Query Editor, you can view and modify the column mappings of the source
mining model and new data. Then you configure the Add Output dialog box to specify the type of
prediction query you want to execute. The default selection values are as follows:

Predict: This function evaluates the numeric expression specified in Numeric_Expression in another
data mining model.

PredictProbability: This function returns the probability for a specific value or state. It applies to a
scalar column and returns a scalar value.

PredictSupport: This function returns the support value (that is, relevancy ranking) for a specific
state.

■Note The ideas of specific value and state are close related. For example, a bike buyer attribute may be

predicted to have a specific value of 1. The state of this prediction is that of “Bike Buyer”.

You may also choose to display more values by selecting the Advanced button of the dialog box, as
shown in Figure 11–21.

CHAPTER 11 ■ DATA MINING WITH EXCEL

318

Figure 11–21. Adding output functions to your queries

Your final choice in the wizard is to determine where you want the output of the query placed. Your
options are to append to the input data, create a new worksheet, or place in an existing worksheet.

Using the Data Preparation Group
This section of the Data Mining ribbon is primarily designed to allow Excel users to implement data
mining techniques using Excel source data rather than SSAS data. Despite this limitation, the features
are still worth exploring as your end users will probably find this functionality useful when they are
performing data mining operations. Obviously, performing data mining operations on SSAS data
provides the advantage of a centralized set of data to work with. There may be some situations, however,
where data that is specific to a particular user (and stored in an Excel workbook) could be made more
useful by performing data mining operations on it.

Explore Data, Clean Data, and Sample Data are the three buttons on the Data Preparation group of
the Data Mining ribbon, as shown Figure 11–22.

CHAPTER 11 ■ DATA MINING WITH EXCEL

319

Figure 11–22. The Data Preparation group of the Data Mining ribbon

The first two buttons, Explore Data and Clean Data, are designed to work with Excel data only. They
use data mining concepts to allow you to view and clean your data by removing a specified number of
outliers (or exception cases) and/or by relabeling (or renaming) specified column values. Performing
one, or both, of these operations can improve the usability of a set of data by removing or minimizing
exceptions or distractions.

To use the Explore Data function, first select the table (worksheet) or data range in Excel. In the next
page of the wizard, select the column for which you want to generate a visualization. The last page of the
wizard produces a column chart by default; you may change this to a line chart by clicking that button
on the dialog box. Figure 11–23 shows some sample output from the Explore Data button. The purpose
of this view is to allow you to quickly visualize your data in a histogram format.

The Clean Data button, like Explore Data, is only designed to work with Excel data. There are two
methods of data cleansing available: removing outliers and relabeling fields. Outliers are defined in data
warehousing as exceptional cases; that is, those outside of a normal range. When you click the Clean
Data button on the ribbon and select Outliers, the wizard is launched.

You perform the same setup steps as you did using the Explore Data wizard, such as selecting source
data and so on. The difference in this wizard is in the Outliers dialog box. Here you specify the threshold
for outlier removal. This dialog box shows you a visual preview of the effect of removing a variable
number of outliers (see Figure 11–24).

CHAPTER 11 ■ DATA MINING WITH EXCEL

320

Figure 11–23. The Explore Data button allows you to quickly visualize Excel data.

Figure 11–24. Specifying thresholds for removing outliers

CHAPTER 11 ■ DATA MINING WITH EXCEL

321

The Sample Data button, unlike the other two, can be used with Excel or SSAS data. The first dialog
box of the Sample Data wizard explains the functionality of this tool and is shown in Figure 11–25.

Figure 11–25. The first dialog box of the Sample Data wizard explains the wizard’s functionality.

The Sample Data wizard allows you to sample your source data in one of three possible ways. For
Excel data only, you can split your source data into two partitions so that you can use one set for data
mining model training and the other setting for testing the validity of the mining model that you’ve
created. You can also oversample columns from the source data to “balance” selected values in an
underrepresented column to “smooth out” abnormalities in source data. If you are using either Excel or
SSAS data as a source for the Sample Data wizard, this wizard allows you to conduct random sampling.
This technique is used to reduce the size of a data set that is used for input to a data mining model. The
technique is also used to facilitate rapid prototyping because data mining models based on smaller sized
data sets process more quickly.

CHAPTER 11 ■ DATA MINING WITH EXCEL

322

In the second dialog box of this wizard, you are asked to select the Excel worksheet, data range, or
the SSAS data source. The next choice in the wizard is dependent on your previous selection. If you’ve
selected SSAS, then you’ll use the visual query designer to create the SSAS data source. After you
complete this step, you’ll be presented with the Select Sampling Type dialog box.

For SSAS queries, the only choice available is random sampling. The output of this choice is well-
documented on this dialog box, as shown in Figure 11–26. As mentioned previously, the main purpose of
this functionality is to reduce the size of an initial training sample. It is often used during the initial
proof-of-concept or early rapid prototyping phases of an SSAS project to produce a small but structurally
correct data source.

If you select Excel data as your source data for the Sample Data wizard, then all sampling types are
available via the wizard: Random sampling or Oversampling to balance data distributions options.

Figure 11–26. The Sample Data wizard showing random sampling as the only sampling method

CHAPTER 11 ■ DATA MINING WITH EXCEL

323

Using the Data Modeling Group
The next section of the Data Mining ribbon is the Data Modeling group. This group gives you access to
all of the mining model algorithms available in SSAS. Here you can implement the algorithms using
Excel as source data for your mining models. You can create temporary or permanent mining models
using these buttons.

■Note You can create temporary mining models if, in the initial configuration of the Data Mining Add-ins for
Office, you selected that option. Of course, any user who attempts to build permanent mining structures or models

must have the appropriate permissions on the SSAS server.

Each button in this group is an alias for a particular SSAS data mining algorithm. If you want to
create a structure or model using the mining algorithm names used in SSAS, use the Advanced button on
the ribbon (see Figure 11–27). The Accuracy Chart and Classification Matrix buttons will be covered in
the next section; they are part of the Accuracy and Validation section of the ribbon.

Figure 11–27. The Data Modeling section of the Data Mining ribbon

Excel has four algorithm choices using the buttons on the ribbon. You can think of these as aliases
for specific data mining algorithms available in SSAS. Here’s how the aliases map from Excel to SSAS:

• Excel Classify builds a Microsoft Decision Tree SSAS model (predicts a single value
of any type).

• Excel Estimate builds a Microsoft Decision Tree SSAS model (predicts any
continuous—numeric or datetime—value).

• Excel Cluster builds a Microsoft Clustering SSAS model (creates groupings of
related values).

• Excel Associate builds a Microsoft Association Rules SSAS model (creates
groupings of related items per a configured value—3 by default—or market
basket).

• Excel Forecast builds a Microsoft Time Series SSAS model (predicts a time-based
value).

CHAPTER 11 ■ DATA MINING WITH EXCEL

324

As with the other buttons on the ribbon, if you click any one of these buttons, the first page of the
respective wizards describes in nontechnical terms the functionality of the particular underlying
algorithm. If you, or your end users, prefer to use the SSAS data mining algorithm by the original
Microsoft name to create temporary or permanent mining models, then you can click the Advanced
button on the ribbon, and then click Create Mining Structure or Add Model to Structure. This will launch
a Mining Model wizard that is similar, but not identical, to the one available in BIDS.

For example, one difference in the Add Model to Structure dialog box is where you select the
particular algorithm. In the Excel version of the dialog box, there is a new Parameters button on the
bottom left; clicking it will allow you to configure the most common parameters for that particular
algorithm. Figure 11–28 displays the four parameters available for the Naïve Bayes algorithm mentioned
earlier in this chapter.

The SQL Server Data Mining Add-in brings the power of data mining to Excel users. Because Excel is
readily available and the Data Mining Add-ins are free, the possibilities for expanding data mining’s
reach into a broad section of end users is well within reach of most BI solutions. The point of BI projects
is to make knowledge available in a more meaningful way to more users. Excel, as a general SSAS client,
facilitates this. Its deep support for data mining simply increases the reach.

Figure 11–28. Modifying parameters for your selected algorithm

Using the Accuracy and Validation Group
After you’ve built your models, either in Excel or in BIDS, you will probably want to evaluate their
usefulness in answering the particular business questions they’ve been built to address. The Accuracy
and Validation group of the ribbon gives you access to the Mining Accuracy Chart functionality in BIDS,
which is covered in more detail in Chapter 14. This portion of the ribbon has four buttons: Accuracy
Chart, Classification Matrix, Profit Chart, and Cross-Validation (see Figure 11–29).

CHAPTER 11 ■ DATA MINING WITH EXCEL

325

Figure 11–29. The Accuracy and Validation section of the Data Mining ribbon.

As with most of the other buttons on the Data Mining ribbon, when you click the Accuracy Chart
button, a wizard opens with the first dialog box documenting in detail exactly what this wizard does
(Figire 11–30). To refresh your memory, the output here is a either a lift or a profit chart—both of which
are designed to visually display effectiveness of a particular mining model.

Figure 11–30. The Getting Started dialog box of the Accuracy Chart wizard

CHAPTER 11 ■ DATA MINING WITH EXCEL

326

The next step is to select a model. If you attempt to validate a model that was built with an algorithm
that isn’t supported for this functionality, the dialog box will warn you. For this example, we are using a
model built with the Microsoft Sequence Clustering algorithm, which is supported for use with an
Accuracy Chart.

In the next step of the wizard, you are asked to select the mining column and value to predict.
Choose a Value to predict of 1, which will create a lift chart for bike buyers (see Figure 11–31).

Figure 11–31. Selecting the mining column to predict and the value

Next, you select the source data, which can be a worksheet, data range, or SSAS data source. The
next step asks you to specify a relationship between the mining model column(s) and the table columns.
The output of the Accuracy Chart is a lift chart that is identical to using the mining Accuracy Chart
functionality in BIDS. Accuracy charts and lift charts will be explored further in Chapter 14.

The Classification Matrix button lets you to see the number of correct and incorrect predictions
made by your model in a spreadsheet format output. It functions identically to features found in BIDS.
As with the Accuracy Chart, when you click the Classification Matrix button, the wizard opens with a
very descriptive dialog box. Configuration steps are similar to those performed when using the Accuracy

CHAPTER 11 ■ DATA MINING WITH EXCEL

327

Chart. The key dialog box is called Classification Matrix, in which you select the column to predict and
specify options regarding the output (see Figure 11–32).

Figure 11–32. Configuring the format of the output

The Profit Chart button allows you to quickly and easily build a profit chart. The key dialog box of
the wizard is the Specify Profit Chart Parameters dialog box shown in Figure 11–33.

CHAPTER 11 ■ DATA MINING WITH EXCEL

328

Figure 11–33. Configuring the parameters needed to produce the profit chart

Summary
This chapter introduced you to data mining with Excel. We discussed configuring Excel for data

mining, as well as using the Data Preparation Group and the Data Modeling Group of tools. In the next
chapter, you will discover PowerPivot, Microsoft’s next-generation end-user OLAP tool.

C H A P T E R 12

■ ■ ■

329

Introducing PowerPivot

PowerPivot is an exciting add-in to Microsoft Excel that allows your users to do their own data analysis
and mining. Using PowerPivot, you can connect to a database, bring large amounts of data into Excel,
perform analysis upon that data, and push the results back up to your server for others in your
organization to view. PowerPivot’s extraordinary functionality gives you full control over your data
analysis and mining efforts.

The PowerPivot for Excel GUI
PowerPivot allows you to use Excel as a central workspace for all of your analytics. A PowerPivot
workbook can connect to a SQL Server database and use data from Excel spreadsheets. Using
PowerPivot, you can enrich your data by creating custom calculations and by defining data
relationships. PowerPivot stores data in your workbook directly, and these workbooks can contain
millions of rows of data.

The Excel add-in for PowerPivot is a free download from www.microsoft.com. The best way to find it
is to start at www.powerpivot.com/download.aspx, which has links to both the 32-bit and 64-bit versions of
the Excel add-in. Note that the 32-bit or 64-bit versions are with respect to what version of Excel you
installed, not your operating system. If you have 32-bit (x86) Excel running on 64-bit (x64) Windows 7,
use the 32-bit add-in.

■ Note To take full advantage of PowerPivot for Excel, you need Excel 2010. Excel 2010 is the first version of
Excel to allow add-ins to store custom data within a workbook. Excel 2007 can be used to open PowerPivot

workbooks.

The PowerPivot Ribbon
The Excel client adds a tab to the ribbon for PowerPivot, as shown in Figure 12–1. This is used for
managing the PowerPivot client. Think of PowerPivot as a cube running under Excel—the PowerPivot
tab gives you access to the designer, which allows you to create calculated measures from the underlying
data, add pivot tables and charts based on the PowerPivot cube to the workbook, and link in data from
tables in the workbook.

CHAPTER 12 ■ INTRODUCING POWERPIVOT

330

Figure 12–1. PowerPivot tab in Excel 2010

Clicking the PowerPivot Window button opens the PowerPivot designer, which is like a stripped-
down version of Excel focused on data. Figure 12–2 shows the PowerPivot Designer. Along the bottom
you will see multiple tables of data. You can import data from any number of sources. Out of the box,
PowerPivot supports connections to multiple data sources including SQL Server, SQL Azure, Access,
Oracle, Teradata, Excel, Text Files, and Reporting Services.

Figure 12–2. The PowerPivot Designer

CHAPTER 12 ■ INTRODUCING POWERPIVOT

331

The Measures group contains three items that allow you to manage your PowerPivot measures: New
Measure allows you to create new measures, Delete Measure will delete a measure, and you can make
any edits to your custom measures via the Measure Settings dialog. Figure 12–3 shows the Measure
Settings dialog.

Figure 12–3. The Measure Settings dialog for creating and editing measures

The Report group lists the report types available to your workbook. There are a number of report
types available (see Figure 12–4), including PivotTable and PivotChart.

CHAPTER 12 ■ INTRODUCING POWERPIVOT

332

Figure 12–4. The report types available in the Report group

The Excel Data group is where you begin to work with Excel data in PowerPivot. The Create Linked
Table selection allows you to link data created in Excel to a table in PowerPivot. Linking Excel data in this
way allows you to continue working with your Excel data while analyzing any changes in PowerPivot.

The Options group has a single selection, Settings,that will display the PowerPivot Options &
Diagnostics dialog. This is where you can find your PowerPivot version number.

The Show/Hide group contains the Field List selection. When selected, the PowerPivot Field List
pane will be visible.

Finally, the Relationship group contains the Detection selection. When selected, PowerPivot will
automatically attempt to find relationships in your data.

The PowerPivot Designer
The PowerPivot designer is the main PowerPivot work area. In this window, there are two tabs in the
designer ribbon: the Home tab and the Design tab. The Home tab is where you will add and format your
data, while the Design tab allows you to create relationships and add columns.

CHAPTER 12 ■ INTRODUCING POWERPIVOT

333

The Home tab contains the following six groups: Clipboard, Get External Data, Reports, Formatting,
Sort and Filter, and View. Figure 12–5 displays the Home tab.

Figure 12–5. The Home tab

The Clipboard group is where you will perform standard copy and paste functions. One useful
feature of the Clipboard group is that it allows you to append or replace the data you are pasting.

The Get External Data group allows you to get data into PowerPivot from a variety of sources. The
available sources include databases, Excel reports, and text files. Clicking Refresh will update your
external data.

The Reports group allows you to insert any of the available report types into an Excel workbook
using your PowerPivot data, while the Formatting group contains standard formatting items.

The Sort and Filter group is where you can sort columns in ascending or descending order. The
Clear All Filters button will clear any filters set in your data. Note that setting filters in your data works
the same way as using AutoFilter in Excel.

The View group is where you can set column widths and freeze or unfreeze columns.
The Design tab contains the following groups: Columns, Calculations, Connections, Relationships,

Properties, and Edit. Figure 12–6 displays the Design tab.

Figure 12–6. The Design tab

The Columns group allows you to add and delete columns. You can also use this group to hide
columns.

The Calculations group is where you set your preference for recalculating your PowerPivot data. You
can set this option to Manual Calculation Mode, if you would like to control when recalculation occurs,
or Automatic Calculation Mode, which will recalculate your data whenever a change causes a need for
recalculation.

The Connections group is where you edit existing data connections. You may, for example, want to
use a development or testing database. Figure 12–7 shows the Edit Connection dialog for an existing
PowerPivot data connection.

CHAPTER 12 ■ INTRODUCING POWERPIVOT

334

Figure 12–7. The Edit Connection dialog

The Relationships group contains two buttons: Create Relationship and Manage Relationships.
Create Relationship allows you to create standard one-to-one and one-to-many relationships in your
PowerPivot data. Figure 12–8 shows an example of a one-to-many relationship between
DimProductSubcategory and DimProductCategory.

CHAPTER 12 ■ INTRODUCING POWERPIVOT

335

Figure 12–8. Viewing a PowerPivot data relationship

The Properties group has a single button, Table Properties, where you to view and edit table
properties, including columns and filters. The Table Properties dialog also enables editing of the source
SQL used to import your PowerPivot data. Figure 12–9 shows the Edit Table Properties dialog.

Figure 12–9. The Edit Table Properties dialog

Finally, the Edit group contains standard Undo and Redo buttons.

CHAPTER 12 ■ INTRODUCING POWERPIVOT

336

Using PowerPivot with Adventure Works
In this section, you will explore Adventure Works using PowerPivot. You will learn how to import data
into PowerPivot and how to enrich your PowerPivot data with additional columns and calculations. After
finalizing your data set, you will post your PowerPivot data into Excel.

Importing Adventure Works Data
To set the stage for using PowerPivot, you must first open Excel. When Excel is loaded, select the
PowerPivot tab, and click PowerPivot Window. From the empty PowerPivot designer, click From
Database, and select From SQL Server. In the Table Import wizard, enter a connection name, server name,
and select AdventureWorksDW2008R2 as your SQL Server database. The completed dialog is shown in
Figure 12–10.

Figure 12–10. The Connect to a Microsoft SQL Server Database page of the Table Import Wizard dialog

CHAPTER 12 ■ INTRODUCING POWERPIVOT

337

Once you have completed your entries, test the connection using the Test Connection button, then
click Next to continue. In the Choose How to Import the Data dialog, choose “Select from a list of tables
and views to choose the data to import,” and click Next.

This will display the Select Tables and Views dialog. In this dialog, select the DimCustomer and
DimProductSubcategory tables. Next, click Select Related Tables. PowerPivot will select tables and views
in Adventure Works that are related to DimCustomer and DimProductSubcategory; it will mark five
tables as related. Next, select DimDate as a source table. Figure 12–11 shows the Select Tables and Views
dialog with eight tables selected.

Figure 12–11. The Select Tables and Views dialog with selected tables at the top

Click Finish to complete the wizard. PowerPivot will now import your data. When the import
finishes, click Close to dismiss the dialog, and return to PowerPivot. Figure 12–12 displays the
PowerPivot designer with eight tabs along the bottom, one for each table imported.

CHAPTER 12 ■ INTRODUCING POWERPIVOT

338

Figure 12–12. The PowerPivot designer after importing eight tables from Adventure Works

Enriching the Adventure Works Data
As you work with and analyze your data, you will probably need to remove uninteresting data points,
filter data to enhance your analysis, and perform custom calculations. These analysis activities are
referred to as enriching your data. In the following sections, you will first learn how to filter and sort your
PowerPivot data. You will also hide meaningless data and create a calculated column.

Sorting and Filtering
Let’s start by sorting the FactInternetSales table by OrderDateKey in descending order. To begin, select the
FactInternetSales tab, and then select the OrderDateKey column header. Clicking the drop-down in the
OrderDateKey column header will display the sorting and filter options for this column, as shown in
Figure 12–13.

CHAPTER 12 ■ INTRODUCING POWERPIVOT

339

Figure 12–13. The sort and filter dialog for the OrderDateKey column

Clicking on Sort Largest to Smallest will sort the OrderDateKey column in descending order.
PowerPivot offers several options for filtering your data, using the same dialog shown in Figure 12–13.
Clicking on the drop-down to the right of Number _Filters opens the menu shown in Figure 12–14.

Figure 12–14. The sort and filter dialog with the filter menu shown for the OrderDateKey column

CHAPTER 12 ■ INTRODUCING POWERPIVOT

340

Using the Greater Than Or Equal To menu item, filter the OrderDateKey to contain only sales that
occurred since 2008 by entering 20080101.

■ Note The various date keys in Adventure Works are integer representations of the International Date Format

(yyyy-mm-dd). Keys that give information about the underlying data are often referred to as smart keys.

After you have completed these steps, take note of the icons in the OrderDateKey column header.
The rightmost icon shows that the OrderDateKey column is sorted and filtered. If you hover over the left
icon, PowerPivot will display the relationships in which the OrderDateKey column participates.

Hiding Columns
To narrow the width of FactInternetSales and prepare for adding calculated columns, choose the Design

tab, and click Hide and Unhide. This will load the Hide and Unhide Columns dialog. Next, deselect the
following columns: PromotionKey, CurrencyKey, SalesTerritoryKey, SalesOrderNumber, SalesOrderLineNumber,

RevisionNumber, UnitPriceDiscountPct, DiscountAmount, ProductStandardCost, SalesAmount, TaxAmt, Freight,

CarrierTrackingNumber, and CustomerPONumber. Your Hide and Unhide Columns dialog should look like
Figure 12–15.

CHAPTER 12 ■ INTRODUCING POWERPIVOT

341

Figure 12–15. The Hide and Unhide Columns dialog with several columns deselected

CHAPTER 12 ■ INTRODUCING POWERPIVOT

342

Adding Calculated Columns
Creating a calculated column in PowerPivot uses Excel-like formulas that apply to an entire column.
PowerPivot uses a new language to create formulas, called Data Analysis Expressions (DAX). PowerPivot
DAX is a powerful extension to the Excel formula set. A full DAX reference is available on MSDN at
http://msdn.microsoft.com/en-es/library/ee634556.aspx.

To create a calculated column, click the Add button in the Columns group to add a new column to the
end of FactInternetSales. Double-click the Add Column column header, and enter GrossMargin for a
column name. Define this column by entering =[ExtendedAmount]-[TotalProductCost] in the formula bar,
and press Enter. PowerPivot calculates every row and then displays the results, as shown in Figure 12–16.

Figure 12–16. The GrossMargin calculated column with its formula

CHAPTER 12 ■ INTRODUCING POWERPIVOT

343

You probably noticed, by looking at the formula, that PowerPivot does not have the concept of a
“cell.” In this regard, PowerPivot operates more like a database, using column names to perform
operations.

In this section, you will add a cycle-time metric to FactInternetSales. This metric will measure the
number of days needed to fulfill an order from order date to ship date. To begin, click the Add button in
the Columns group to add a new column to the end of FactInternetSales. Double-click the Add Column
column header and enter OrderShipCycleDays for a column name.

Next, add two more columns using the same procedure, and name them OrderDate and ShipDate.
You will create OrderDate and ShipDate using two different methods: basic formatting and related data.

To convert the ship date key, which is an integer, into an actual date, you will use the Date function.
The Date function takes three integer inputs: year, month, and day. You will create the three needed
parameters by parsing the ShipDateKey into the three parts needed using the Left, Mid, and Right
functions. In the formula bar, enter the following code for the ShipDate column:

=DATE(Left(FactInternetSales[ShipDateKey],4),
Mid(FactInternetSales[ShipDateKey],5,2),
Right(FactInternetSales[ShipDateKey],2))

This formula and its results are shown in Figure 12–17.

Figure 12–17. The ShipDate calculated column with its formula

The Related function in PowerPivot works similarly to a database inner join. In PowerPivot, the
Related function accepts a fully qualified column name as its only argument. The trick to using Related
is that the parameter you pass will be the column you want to return from the related table.

In the case of OrderDate, PowerPivot maintains the relationship between FactInternetSales and
DimDate. FullDateAlternateKey is date field you want to use from DimDate, and it can be retrieved using
the following formula:

=RELATED('DimDate'[FullDateAlternateKey])

This formula and its results are shown in Figure 12–18.

CHAPTER 12 ■ INTRODUCING POWERPIVOT

344

Figure 12–18. The OrderDate calculated column with its formula

Another function type in PowerPivot is a function that returns a table. To create
OrderShipCycleDays, you will use the DatesBetween and CountRows functions. DatesBetween accepts three
parameters and returns a single-column table as a result. The CountRows function works identically to
Count in SQL, returning the number of rows in a resultset. You will use DatesBetween to create a single-
column table containing FullDateAlternateKey values from DateDim. This is accomplished using the
following code, which passes OrderDate and ShipDate to DatesBetween:

DATESBETWEEN(DimDate[FullDateAlternateKey], [OrderDate], [ShipDate])

Once DatesBetween returns its resultset, you simply pass that resultset as a parameter to CountRows,
as in the following line of code:

=COUNTROWS(DATESBETWEEN(DimDate[FullDateAlternateKey],[OrderDate],[ShipDate]))

This formula and its results are show in Figure 12–19.

Figure 12–19. The OrderShipCycleDays calculated column with its formula

CHAPTER 12 ■ INTRODUCING POWERPIVOT

345

This finishes your exploration of Adventure Works data using the PowerPivot designer. Now that
you’ve learned some PowerPivot functionality and enriched the Adventure Works data, let’s move back
to Excel.

Using PowerPivot Data in Excel
In this section, you will move your enriched PowerPivot data into Excel. Using Excel, you will then add a
slicer to your worksheet. Slicers allow you to dynamically filter your PivotTables within Excel. First,
however, you will need to get your PowerPivot data into Excel.

To create an Excel PivotTable, simply click the PivotTable button in the Reports group of the Home
tab. Next, click OK on the Create PivotTable dialog. Excel now comes to the foreground with a standard,
blank PivotTable1 and a PowerPivot Field List built from PowerPivot. Figure 12–20 displays the initial
Excel worksheet.

Figure 12–20. An Excel PivotTable and PowerPivot Field List

CHAPTER 12 ■ INTRODUCING POWERPIVOT

346

Next, fill your PivotTable with Adventure Works data. From the PowerPivot Field List, place the
EnglishProductCategoryName in Column Labels, and OrderDate (the calculated column you created
above) in Row Labels. For the Values, use SalesAmount, and the GrossMargin column you created.

The slicers will come from DimDate. Choose CalendarYear and MonthNumberOfYear from
DimDate, and place them in the Slicers Vertical pane. When you choose slicers, Excel places them next
to your PivotTable with no filters set.

To use the slicers you just created, select 2008 from the CalendarYear slicer, and 7 from the
MonthNumberOfYear slicer. Your completed PivotTable should resemble Figure 12–21.

Figure 12–21. An Excel PivotTable using slicers and enriched data from PowerPivot

Summary
This chapter gave you an introduction to the PowerPivot GUI and walked you through using the
PowerPivot tool with Adventure Works. In addition, you enriched your PowerPivot data with custom
calculations and placed these results into an Excel PivotTable. Finally, you experimented with slicers,
which allow data analysts and other end-users to dynamically filter their PivotTable data.

In Chapter 13, you will explore Microsoft’s query language for SQL Server Analysis Services (SSAS)
cubes, called Multidimensional Expressions (MDX).

C H A P T E R 13

■ ■ ■

347

Introduction to MDX

In this chapter, you’ll work with Multidimensional Expressions (MDX), which is the native query
language for SQL Server Analysis Services (SSAS). MDX is a SQL-like language used to query SSAS cubes.

Although there will be situations that will require that you write MDX expressions or queries from
scratch, the design of the BIDS interface really minimizes your need to author much of the MDX that
you’ll need for your BI projects. A large number of MDX templates, samples, and wizards are available in
BIDS and SSMS for you to use and customize.

Unlike working with relational databases where you are probably accustomed to authoring many T-
SQL scripts, when working with SSAS cubes, you need more of a reading than a writing knowledge of
MDX for typical BI projects. Given that framework, in this chapter we’ll cover the following:

• Understanding basic MDX query syntax.

• Adding calculated members, script commands, and named sets to your cubes.

• Understanding the most commonly used MDX functions.

WHY ANOTHER LANGUAGE

MDX is designed specifically to retrieve data from multi-dimensional databases. While a SQL query will
return rows and columns, an MDX query returns a cube. To retrieve data, both SQL and MDX use
SELECT/FROM/WHERE clauses in their statements. What makes MDX different from SQL is how data is
referred to.

A SQL SELECT statement refers to the column names in a table, but an MDX query refers to levels in a
hierarchy. Unlike SQL, MDX understands dimensional data, from hierarchy root to leaf level. MDX can
return specific levels in a hierarchy as well as related levels, including ancestor, descendant, and sibling
levels.

Another MDX advantage is in the area of time reporting. MDX has built-in time-handling functions,
including week-to-date, month-to-date, quarter-to-date, and year-to-date. The ParallelPeriod function
in MDX is suited to financial reporting, allowing year-over-year or other period-over-period comparisons.

MDX Query Syntax
Your journey to understanding MDX syntax begins with understanding the core terminology of Analysis
Services. We’ll review that terminology first. Next, you’ll learn about the basic syntax used in MDX

CHAPTER 13 ■ INTRODUCTION TO MDX

348

queries. Once you have a grasp of the syntax, you’ll be ready to write your first query. Then you’re on the
road to discovering business intelligence from your data.

Understanding the Core Terminology
To understand basic MDX syntax, the following are some core OLAP terms used in SSAS:

• Cube: Also called an implementation of the Unified Dimensional Model (UDM),
this is the core structure in SSAS. MDX also contains the concept of subcubes,
which, as the name suggests, are subsets of your enterprise cube. You explored the
UDM in Chapter 2.

• Dimension: In SSAS, a dimension is a collection of attributes. You can think of it as
being based on a group of columns from one or more source tables. The default
member of a dimensional attribute is the first member loaded into the dimension.
For example, for a customer’s dimension like last name attribute, the first value
would be alphabetized, so customer “Aand” would appear first by default. You can
adjust the default member for a dimensional attribute for all users of the
dimension, or you can adjust this value for members of particular SSAS security
groups.

• Hierarchy: This is an optional grouping of dimensional attributes into a rollup
grouping. Hierarchies can either be regular (or pyramid-like), which means that as
you travel downward, each lower level has progressively more members.
Hierarchies can also be ragged, which means that as you travel downward, lower
levels don’t always have more members.

An example of a ragged hierarchy can be found in some Geography dimensions.
You may have a hierarchy that consists of the following levels: All, Country, State,
and City. You may have data in your dimension source table for particular
countries that do not have any states but do contain cities.

You can create as many hierarchies of dimensional attributes as are needed to
satisfy the business requirements of your project. It is quite common to have
several hierarchies in certain dimensions, such as time, where you might have a
Calendar Time, Fiscal Time, or a 4-5-4 (retail) Time.

• Level: This is a position in the hierarchy. For example, in a time dimension, it is
typical to have a Year, Quarter, Month, and Day level. You could, of course, also
have a Half-Year level or a Week level in your particular time dimension. You can
think of levels as being based on column names from the source table or tables for
the dimension. The default level for every dimension is the top (or All) level. You
can adjust the level that appears by default—either for everyone or for members of
particular security groups.

• Data member: This is the actual dimensional data value for an attribute or the
member of a level. Another way to think of this is as a particular cell value in your
cube. For example, “July 25, 1975” is a member of the time dimension at the Day
level. As mentioned earlier, by default, the first member loaded into an attribute
value is the one that all end users will see in their dimension and cube browser.

CHAPTER 13 ■ INTRODUCTION TO MDX

349

• Measure: In the world of MDX, a measure is just another dimension. It does,
however, have the following three particular characteristics:

• The first is that the measures dimension has containers called measure
groups to associate measures of a similar type or from a particular source
fact table together. These measure groups are not levels; they are simply
display containers.

• The second characteristic is that the measures dimension is always flat; that
is, it never has any hierarchies. A couple of examples of measures would be
“Internet Gross Sales” and “Internet Freight Costs.” There is, of course, an
All level, but this has little meaning in the measures dimension and is
hidden by default.

• The third characteristic is that nearly all cube browser clients display
measures by default in an area called data, rather than on the rows,
columns, or filter areas, as other dimension data are displayed. So,
measures have a particular default display location in most pivot-table style
OLAP client applications. Also, as with other types of dimensional
attributes, the first measure created is the one that is displayed in client
applications by default. As with other attributes, this can easily be adjusted
either globally or for particular groups of end users. You should also
remember that measures originate from facts (or rows) in one or more
source fact tables. Frequently the terms measures and facts are used
interchangeably.

Figure 13–1 shows a sample dimension to help illustrate some of these terms. The dimension name
is DimDate, the hierarchy name is Calendar Date, the selected level name is the Calendar Quarter
Description level, and the selected level member is Quarter 3. Just below Quarter 3, you can also see the
Month and Day levels, with the Data Member value 2005-08-01 being the lowest level value viewable in the
figure. It’s important to understand the terms defined in this section—dimension, hierarchy, level, and
member—when beginning to write MDX queries.

Figure 13–1. The Date dimension, the Calendar Date hierarchy displayed

CHAPTER 13 ■ INTRODUCTION TO MDX

350

Learning the Basic Syntax
Your next consideration when working with MDX is to understand its basic syntax. MDX is not case

sensitive nor space sensitive. You can add comments to MDX script commands by using the -- (double
dash) to comment out single lines or the /*...*/ pair to comment out multiple lines, used at the
beginning and end of the commented section.

The SQL Server Management Studio (SSMS) has an integrated MDX query tool. To access this tool,
you connect to SSAS using SSMS, and then click the Analysis Services MDX Query button on the toolbar.
You also have access to a set of MDX query templates in SSMS. The MDX Template Explorer is opened
by clicking View on the toolbar and selecting Template Explorer. The MDX Template Explorer is shown
in Figure 13–2.

Figure 13–2. The MDX Template Explorer with commonly used MDX sample queries and expressions

■Note What is the difference between an MDX query and an MDX expression? An MDX query returns a resultset,

which is called a cellset in MDX. Cellsets are displayed in a tabular format in SSMS. An MDX expression evaluates to one

or more values. Expression templates in SSMS create objects such as calculated members, and those calculated

members are included in an MDX query as part of the template—so that you can view the result of the expression.

Calculated members will be explained in the “Defining Calculated Members” section of this chapter.

CHAPTER 13 ■ INTRODUCTION TO MDX

351

Another useful feature of the SSMS environment is the SSAS metadata browser. This allows you to
drag and drop cubes, dimensions, hierarchies, levels, or members into MDX queries or query templates.
It is nearly always quicker to drag and drop dimension, hierarchy, level, and member names to the query
surface than to type them because of the object-naming syntax requirements for MDX objects. It can be
quite tedious to type object names.

Manually typed object names can also be a source of code errors. One example of this is the use of
square brackets to qualify portions of object names. Strictly speaking, qualifiers (or square brackets)
are only required if object names contain embedded spaces or are keywords; however, every GUI tool
throughout the BI suite puts square brackets around every object name, which is, in fact, a best
coding practice. So, if you drag and drop a measure, dimensional attribute, and so on from any of the
metadata browser areas to the MDX query design area, the square brackets will always be added
automatically for you.

Another example is the peculiarity of MDX that results in object attributes sometimes being listed by
name (or string value) and, at other times, being listed by number (or ordinal position). This is
determined based on whether or not member values have been designated as unique at a particular
level in a dimensional hierarchy. Because of this, dragging and dropping objects from MDX metadata
browsers to query windows is a best practice when you are creating MDX queries or MDX expressions.
Figure 13–3 shows the SSAS metadata browser included in SSMS.

Figure 13–3. The SSAS metadata browser included in the SSMS MDX query window

CHAPTER 13 ■ INTRODUCTION TO MDX

352

Now that you’ve learned a bit about the MDX query environment, you’re probably anxious to write
your first query. Before you do, however, take a minute to explore the automatic query-writing
capabilities of the built-in cube browser (either in BIDS or SSMS). Many common queries are available
from the shortcut menu on the cube browser surface. To access the cube browser from within SSMS,
right-click any cube in the Cubes folder in Object Explorer and then click Browse.

As mentioned, SSAS requires mostly a reading (rather than writing) knowledge of MDX, so before
you jump in to the world of MDX queries, make sure you’ve exhausted the built-in capabilities of the
cube browser in SSMS, which is identical to the cube browser in the BIDS interface. In the cube browser,
you can sort, filter, and drill through cube data. A most useful shortcut menu option is Show As. It allows
you to see the selected measure in five alternate configurations; Percent of Row Total, Percent of
Column Total, Percent of Parent Row Item, Percent of Parent Column Item, and Percent of Grand
Total.

Writing Your First MDX Query
When you’re ready to write your first MDX query, the best place to start is with the MDX templates.
You’ll work in SSMS with the MDX interface. Figure 13–4 shows a simple query. You’ll start with the FROM
portion of the example. FROM most generally takes a cube name as a source. The FROM clause can also
reference a subcube; that is written in the form of a nested SELECT statement.

Next is the SELECT clause. Note the on Columns and on Rows clauses—these clauses take axis values
and are used to “flatten” the results (or cellset) into a table structure. You can include up to 128 axes in
the SELECT clause. If you include multiple hierarchies on the same axis, then the resultset will display
those results combined on whichever axis (that is, columns or rows) you’ve chosen to combine them on.
You will sometimes see queries that use the shortcut syntax on 0 (for columns) and on 1 (for rows). You
must, however, reference axis values in order; that is, if you want to use an on Rows clause, then you must
include an on Columns clause in your query.

The MDX WHERE clause slices the cube along an axis. You can visualize this slice as literally a slice (or
portion) of a cube. In the query shown in Figure 13–4, the returned measure value is being restricted to a
sum of only those Products that exist in the Product Line name that start with the letter “R.” You can
have more than one member in a slice, but each member must come from a different dimension. The
WHERE clause member illustrates the member-naming concept discussed in the previous section; that is,
the member is listed by ordinal or position in the list of attribute members that starts (at the default
ordering) or the letter “R” (&[R]) rather than by actual full name.

You may have expected the rows and columns in this query to show a list of all members in the
Customer and Delivery Date dimensions. However, what’s actually being shown is the default member
of those dimensions (which is, in this case, the All member).

■Note The default member of the measures dimension is being shown. The default member of the measures

dimension is the first measure added to the cube. You can adjust the defaultMember property of the measures

dimension to something other than the first member added to the cube, or you can include a specific member name in

your query, if that is what you want to see returned in your query.

CHAPTER 13 ■ INTRODUCTION TO MDX

353

Figure 13–4. A simple MDX query using SSMS

Now that you’ve seen a basic MDX query, let’s create queries to return a list of members, rather than
the (single) default member, from a dimension as a result of your query. To do this, you need to
understand two additional concepts: tuples and sets.

Discovering Members, Tuples, and Sets
In the “Understanding Basic MDX Query Syntax” section of this chapter, you learned that a data member
is an item in a dimension of a cube. In MDX, a member is designated by listing the position of the item in
the dimension members between square brackets with periods separating the levels in the dimensional
hierarchy. Here’s an example:
[Time].[Years].[2004].

■Tip Square brackets surrounding object names are required only for certain conditions, such as object names that

have spaces in them and object names that use reserved keywords. However, it’s common in MDX queries to put square

brackets around all object names. We suggest that you follow this guideline as a best coding practice.

A tuple is a location or a cell in a cube made up of one or more members from each involved
hierarchy. In MDX, a tuple is designated by listing the position of all involved dimension members
between parentheses, with each member separated by a comma. Here’s an example:

([Time].[Years].[2004], [Measures].[Periods To Date])

If you do not specify a complete tuple in an MDX query, the default member of the dimension will be
returned, which is why the default member of all three dimensions is returned in Figure 13–4.

CHAPTER 13 ■ INTRODUCTION TO MDX

354

A set is a defined portion or subset of a cube that consists of one or more ordered tuples from
different dimensions, surrounded by curly braces and separated by commas. Here is an example:

{([Time].[Years].[2004]), ([Product].[Product Line].&[R])}

Sets can be created by listing tuples, by using MDX set-generating functions, or by some combination of
both techniques. If you create a set by using an MDX function rather than by explicitly listing the
members, then you do not need to surround your set with curly braces. In Figure 13–5, you can see a
modified version of the original query using the MDX CHILDREN function. Note that the resultset now
displays the data members directly below the top level of the hierarchy for both the
[Customer].[Customer Geography] and [Delivery Date].[Calendar] dimensions.

Figure 13–5. This query uses the MDX CHILDREN function to display the members of a set.

SSMS includes an MDX function browser in the MDX query tool interface. This helps you to work
with the most commonly used MDX functions. Note that the function browser does not contain all MDX
functions. If you click and drag any MDX function to the MDX query surface, you’ll see the function and
any arguments that it takes. Arguments are shown between chevrons (<<and>>). Optional arguments are
enclosed in square brackets, such as [<<optional argument>>]. MDX functions are color-coded in brown
text on the MDX query surface; MDX keywords are colored blue. The SSMS function browser is shown in
Figure 13–6.

■Tip You may use IntelliSense in the query window by clicking Edit IntelliSense List Members. After you select a

function, a tooltip will pop up on the function browser with a brief description of what the function does.

CHAPTER 13 ■ INTRODUCTION TO MDX

355

Figure 13–6. The SSMS MDX query area includes an MDX function browser. When you drag the function

to the query surface, an argument list will be generated.

Although authoring and executing MDX queries in SSMS is helpful to learning MDX syntax, this is
not the most common production task you’ll use in your BI solutions. In the next section, you’ll learn
about the Calculations tab in BIDS, which is where you’ll do most of your MDX work. Here you’ll add
MDX calculated members, named sets, or script commands.

Calculated Members, Named Sets, and Script Commands
In this section, you will work with Calculated Members, Named Sets, and MDX Script Commands. Each
of these allows you to work with, and enrich your cube data in different ways. The following list gives a
brief definition of each of the features you’ll be using in this section:

• Calculated members: These are MDX expressions that are evaluated at runtime
and can be defined at any level within a hierarchy. Calculated members can also
be added to the measures dimension.

CHAPTER 13 ■ INTRODUCTION TO MDX

356

• Named set: A named set is an MDX expression that returns dimension data and is
analogous to a view in relational databases.

• MDX scripts: These are batches of MDX that can be used to populate a cube, or
part of a cube, with calculations.

Adding MDX Objects to Your Cube
To access the interface for adding MDX objects to your SSAS cube, follow these steps:

1. Open the sample AdventureWorks cube in BIDS by clicking File Open
Analysis Services Database.

2. In the Connect to Database dialog box, click your servername and database
names (AdventureWorks DW Standard [or Enterprise] Edition), and then click
OK.

3. Double-click the AdventureWorks cube in Solution Explorer.

4. Click the Calculations tab in the cube designer.

You will work with three panes in this tab: the Script Organizer, the Calculation Tools, and the
(MDX) Script Designer. The Script Organizer contains a list of script objects listed in the order they will
run in your cube. The Calculation Tools pane contains the useful metadata browser, function references,
and templates (similar to what you already worked with in SSMS). The MDX Script Designer pane has
two views: a guided GUI interface for calculated members (called Form View) and named sets, and a
native script window (called Script view) for any of the three types of MDX objects—calculated
members, named sets, and MDX script commands. Figure 13–7 shows the Script Organizer section.

Figure 13–7. The Script Organizer, as seen on the Calculations tab of the cube designer

CHAPTER 13 ■ INTRODUCTION TO MDX

357

Calculated members are very similar to calculated cells in Excel workbooks in that an expression (in
your case, an MDX expression) returns a value that can be displayed for the end user. The key difference
is that the MDX expression returns a set of members rather than a single value.

Similar to cell expressions in Excel, MDX expressions can be created by simply adding, subtracting,
and so on existing member values (or tuples). MDX functions also can be used. An example of a
calculated member expression (to determine Net Profit) that contains only existing members is

[Measures].[Gross Sales] – [Measures].[Expenses]

An example of a calculated member expression (to determine an aggregated or combined value for a
certain amount of time periods to date) that contains two MDX functions (Aggregate and PeriodToDate)
is a bit more complex.

Aggregate (PeriodsToDate([<<Target Dimension>>].[<<Target
Hierarchy>>].[<<Target Level>>],[<<Target Dimension>>].
[<<Target Hierarchy>>].CurrentMember),[Measures].[<<Target Measure>>])

Here’s how it works. The Aggregate function combines all results. The PeriodsToDate function takes
two dimensions and hierarchies as arguments. For the first argument, you must also supply the level
from the dimension that you are interested in, that is, [Time].[CalendarTime].[Quarters]. For the
second argument, you must also specify a member. Usually, you are interested in the currently viewed
member, so you just use the CurrentMember function. For the last argument, you specify which measure
you want to aggregate.

Despite the power of MDX (and a certain subset of unique MDX functions), you’ll find that some
MDX functions are actually similar to those found in Excel (for example, Sum, Mix, Max, Avg).

The Calculation Tools work area in the Calculations tab in BIDS includes an MDX Function
reference area and Metadata areas (identical to the ones found in SSMS when executing an MDX query).
It also includes a Template area. The MDX templates in BIDS are different from the ones available in
SSMS. In BIDS, the MDX templates are examples of calculated measures or named sets (rather than
MDX queries as are available in SSMS), and the BIDS templates are organized by business scenario. The
Templates tab of the Financial section of the Calculation Tools area in BIDS is shown in Figure 13–8. All
of these templates are examples of calculated measures, as indicated by the small calculator-shaped
icon next to each one.

CHAPTER 13 ■ INTRODUCTION TO MDX

358

Figure 13–8. The Calculation Tools section on the Calculations tab includes templates for calculated

measures.

To take a closer look at the MDX syntax associated with a calculated member, you can double-click
the first example in the Script Organizer section of the Calculate tab in BIDS. This will load the MDX
associated with the sample calculated measure called Internet Gross Profit into the Form View window.
You’ll see that calculated measures consist of a couple of items.

• Parent properties: This indicates in which dimension the member is to be
calculated. Most often, this will be the measures dimension. Because the
measures dimension is flat (that is, never has any hierarchies associated with it),
you’ll leave the parent member property blank in this case.

• Expression: This is the MDX expression that will be evaluated to produce the
resultset. In this case, Internet Gross Profit, you are using a simple subtract
between two other members of the measures dimension.

• Additional properties: These include formatting, empty display behavior, and
visibility. Also, you can further format by adding information to the color or font
expressions areas.

CHAPTER 13 ■ INTRODUCTION TO MDX

359

Using Calculated Measures
The most interesting question when working with calculated measures is when you should use them. To
answer that, consider the following questions:

• How frequently will this measure be accessed? If only a small subset of end users
needs access to a measure, consider using a calculated measure. Performance for
calculated measures is very good—much faster than SQL Server retrieving
calculated column information out of an OLTP store; however, be aware that
calculated measures will not be as fast as retrieving information from a stored
measure. If the majority of the end users will access a measure that is not present
in the source data, it is preferred to calculate the new measure value during the
ETL process, store it in the star schema (fact table), and load it into the cube
during cube processing.

• Am I concerned about increasing cube size? Storing additional information will add
to cube storage space time; using calculated members will not add to it.

• Am I concerned about increasing cube processing times? Storing additional
information will add to cube processing time; using calculated members will not
add to it.

• Do I need measures that do not aggregate (like averages)? Calculated measures
(unlike stored measures) do not aggregate. A common use of calculated measures
is to produce average values for a source set.

• Do I wish to add the complexity of calculating and storing measures to my ETL
processes? An alternative to creating calculated members by writing MDX
expressions is to generate the calculated values during the ETL process, store
them in the star schema, and load them into the cube.

• What is my level of proficiency with MDX? Although Microsoft does provide some
calculated member templates, the reality is that if you intend to add a large
number of calculated members, you’ll probably have to become pretty familiar
with the vagaries of MDX. It is important that you accurately assess the time you’ll
spend authoring the MDX expressions if you choose to use this approach.

We’ve found calculated members to be quick and easy to add cubes and pretty solid in the
performance department. In the BI projects we’ve been involved with, all have used at least a couple of
calculated measures, and some of the projects have used tens or even hundreds of them. Figure 13–9
shows an example of a calculated member from the sample AdventureWorks cube in the BIDS
Calculations tab, showing just the calculated member designer.

CHAPTER 13 ■ INTRODUCTION TO MDX

360

Figure 13–9. The calculated member designer

If you want to view or edit the complete MDX statement that the calculated member UI builds for
you, click the small Script View button on the toolbar just below the Calculations tab. You will then be
presented with the MDX script for not only the calculated measure that you have been working with but
also for all items listed in the Script Organizer window. Figure 13–10 shows the script for a calculated
measure.

Figure 13–10. If you click the Script View button in BIDS, you can see the MDX script for a calculated

measure.

CHAPTER 13 ■ INTRODUCTION TO MDX

361

■Tip You can use either With Member or Create Member when you are creating calculated members. The

difference is that With creates a temporary member, which only lasts for the duration of that particular MDX query, and

Create creates a durable member—one that can be viewed by any client application that supports calculated

members.

Working with Named Sets
Named sets are simply aliases for sets. Sets consist of one or more tuples that are grouped together to
define some portion of the cube. Named sets usually contain tuples from within the same dimension.
Named sets are most often used to create filters or slices for your queries. In the cube browser, you place
them on the (top) filter portion of the interface to use them as filters. A named set called Long Lead
Products is shown in Figure 13–11.

Figure 13–11. Named sets appear in a Sets folder under the dimension where they are created. To use

them in the cube browser, drag the named set to the (top) filter portion of the UI.

If you want to use your named set as a slicer (WHERE clause), you’ll have to write an MDX query.
Slicers restrict results to the set values included. We’ve included a query in SSMS using one of the named
sets defined for the AdventureWorks sample cube. You’ll note that the named set appears in the WHERE
clause of the MDX query statement as shown in Figure 13–12.

Figure 13–12. Named sets are created to be used in the WHERE (slicer) or FILTER (which returns the set

that results from filtering a set) portion of an MDX query statement.

CHAPTER 13 ■ INTRODUCTION TO MDX

362

■Note The MDX Members function returns a list of members at the level immediately below the level specified in the

query object; that is, for Product Lines, the members mountain, road, and touring are returned on the columns

axis in the sample.

Named sets are really just a convenience (like relational T-SQL views). They allow you to read a
specific subset of a cube. Using them can speed up development because they can be used multiple
times to refer to complex definitions. They are unlike relational views in that they are not security
mechanisms. To set security for specific portions of a dimension, you can use SSAS security roles.

Writing Script Commands
The third type of object that you can add to your SSAS cube via the Calculations tab in BIDS is the MDX
script command. This name isn’t really accurate, as this feature hasn’t been enabled to allow you to add
all types of MDX script commands to your cube, rather (usually) one particular type: a script using the
MDX Scope keyword.

Similar conceptually to a named set, a script with a Scope keyword allows you to define a subset of
your cube (sometimes called a subcube). Unlike a named set, this subcube is usually created so that you
can read it and also make changes (or write) to it. To enable writing by end users to any portion of the
cube, you must enable both the Writeback property and Writeback permissions for the particular portion
of the cube of interest.

■Note You can also use the MDX keywords Calculate (which creates a subset of a cube, or a subcube) or Freeze

(which locks cell values in a subcube) in an MDX script. For more information, see the BOL topics “The Basic MDX

Script” and “MDX Scripting Statements.”

There are two parts to a script command. The Scope statement creates the subcube. This function
applies whatever change you want to make to the subcube. The sample script called Sales Quota
Allocation is a good example of using script commands. Switch to the Script view on the Calculations
tab in BIDS and you’ll see two complete script commands (using both the Scope and the This keywords)
as shown in Figure 13–13.

The most common scenario for subcubes is the one shown in this example: budget allocations
based on past history and other factors. In this script, the Scope statement defines subcubes, and the
This keyword applies new values to the named members of the subcube. This example is typical of the
reason you would use MDX script commands—to facilitate budgeting “what if” scenarios.

Subcubes are convenient for these kinds of scenarios because business budgeting is typically based
on a number of factors, some past known values combined with some future predicted (or unknown)
values. These factors often need to be applied to some named subcube of your enterprise data.

CHAPTER 13 ■ INTRODUCTION TO MDX

363

Figure 13–13. The new Scope and This MDX keywords allow you to create subcubes and write changes to

the MOLAP data.

Another consideration when using the Calculations tab in BIDS to design MDX script objects is the
order you add the script objects. Script commands are evaluated and then executed in the order (top-to-
bottom) listed in the Script Organizer window. You can change the order of execution by right-clicking
any one script and then clicking Move Up or Move Down. You can also change the order of execution for
calculated members (or cells) by using the MDX keyword SOLVE_ORDER inside of the affected script
commands.

The final consideration when using the Calculations tab in BIDS to design any of the supported
MDX objects (calculated members, named sets, or MDX script commands) is that you now can debug
any portion of the resultant script. All MDX objects that you add to your OLAP cube are added by the
execution of one, ordered MDX script.

To enable debugging in this script, you must be working with the objects in the Calculations tab in
Script view. Once there, you simply click once in the gray margin next to the line of the MDX object for

CHAPTER 13 ■ INTRODUCTION TO MDX

364

which you want to set a breakpoint. An example is shown in Figure 13–14. While you are in break mode,
you can examine the value of variables, as you do in traditional debugging. Also, BIDS presents you with
a series of SSAS-specific “watch” windows, where you can execute MDX queries by dragging and
dropping items from the metadata browsers to those debugging windows.

Figure 13–14. Using the Script view in the BIDS Calculations tab, you can set breakpoints in the MDX

script associated with your cube.

Common MDX Functions
To give you a flavor for working with MDX, here is a brief list of commonly used MDX functions types,
along with any arguments for each function:

Current: This function returns the current tuple from a set. You should note that this function only
works with named sets. You can think of this function as a kind of a CurrentMember function, but one
that is specific to named sets.

DistinctCount: This function returns a count of unique, nonempty tuples in a set.

IIF: This function works similarly to IIFs (Immediate If) in other applications (Excel, for example). It
takes three arguments: an expression, a value to be returned if the expression evaluates to true, and
an alternate value to be returned if the expression evaluates to false. The IIF function is commonly
used in the Status expression for many KPIs, such as the Customer Profitability template (along
with many others). You’ll note that KPIs return either 1 (for a positive result) or -1 (for a negative
result). The Status expression section of the template, illustrating the IIF function, is shown in
Figure 13–15.

CHAPTER 13 ■ INTRODUCTION TO MDX

365

Figure 13–15. The MDX function IIF is commonly used when creating KPIs.

Filter: This function returns a subset of the listed set based on the action of a filter (which contains
a condition). Using this function makes your queries more efficient, as it reduces the amount of data
being returned. The Filter function is used in MDX queries to restrict data on one of the axes, as
shown in the following query:

With
 Set [Big Sales] As
 {[Measures].[Internet Sales Amount],
 [Measures].[Reseller Sales Amount]}

Select
 [Big Sales] On Columns,
 Filter(([Delivery Date].[Fiscal].Members),
 [Geography].[Geographies] <> 'Australia') on Rows
From
 [Adventure Works]
Where
 [Product].[Product Line].&[R]

Generate: This function has two types of functionality, which are shown in the argument lists in
Figure 13–15. The first functionality applies the second set to each member of the first set in the
argument list and then joins the resulting sets by union. The Generate function eliminates
duplicates by default but does provide you with the option of including them (by specifying the
optional “all” third argument).

CHAPTER 13 ■ INTRODUCTION TO MDX

366

The second functionality returns a concatenated string created by evaluating a string expression
over a set. You have the option, using the third argument, to specify a particular delimiter in the
results.

The Generate function is often used when creating calculated members to write MDX queries that
perform operations on multiple sets in a more concise way.

SetToArray: This function converts a set (or sets) to an array. The optional arguments are the second
set and the numeric expression. The return value, which is the datatype variant (VT_ARRAY), should
only be used as input to a user-defined function.
ParallelPeriod: This function returns a member from a prior time period (year, quarter, month,
etc.) in the same relative position as a member listed. It is often used with the MDX CurrentMember
and Parent functions. An example of this function is shown in one of the scope script commands
provided with the AdventureWorks sample. This script is shown in the following query:

 // Scope on month level in FY 2007 and onwards
 Scope
 (
 [Date].[Fiscal Year].&[2007] : Null,
 [Date].[Fiscal].[Month].Members
) ;

 // Compute weights based on reseller sales ratio in previous year
 This =
 (
 ParallelPeriod //Fetch reseller sales amount in previous year
 (
 [Date].[Fiscal].[Fiscal Year], 1,
 [Date].[Fiscal].CurrentMember
),
 [Measures].[Reseller Sales Amount]
)
 /
 (
 ParallelPeriod //Divide monthly value by quarterly value to obtain ratio
 (
 [Date].[Fiscal].[Fiscal Year], 1,
 [Date].[Fiscal].CurrentMember.Parent
),
 [Measures].[Reseller Sales Amount]
) ;

 // Allocate quarterly values to months according to weight
 This = [Measures].CurrentMember * [Date].[Fiscal].Parent ;

 End Scope ;

Aggregate: This function has been enhanced to work with DistinctCount measures, as well as with
the various semiadditive measures. Note that numeric expression is an optional argument.

Freeze: This statement (not function) locks the specified value of the current subcube to the
specified values. It is used in MDX script commands to “pin” a subcube (or exempt it from being
updated) during the execution of a script using the Scope statement and This function. In the
example shown in Figure 13–20, the Freeze statement is used to lock the current quarterly values of

CHAPTER 13 ■ INTRODUCTION TO MDX

367

the Sales Amount Quotas in a cube that uses a Scope/This statement to assign new values (weights)
to the Sales Amount Quotas at the month level. Without the Freeze statement, these updates would
aggregate up to the Quarter level, which, in this particular business scenario, would be undesirable.
The following query uses the Freeze statement:

 Freeze
 (
 [Date].[Fiscal].[Fiscal Quarter].Members,
 [Measures].[Sales Amount Quota]
) ;

Exists: This function takes one or more sets that can be filtered and returns a set of members that
exist within the other sets. The [Filtered Set of Attribute Members] named set template
illustrates the use of the Exists function.

Exists
 (
 [Promotion].[Promotion].[Promotion].Members,
 Filter
 (
 [Promotion].[Discount Percent].[Discount Percent].Members,
 [Promotion].[Discount Percent].CurrentMember.MemberValue >= .30
)
)

KPICurrentTimeMember, KPIGoal, KPIStatus, KPITrend, KPIValue, KPIWeight: These functions are
used in the KPI tab in BIDS when adding KPIs to your cube. They all basically function as aliases for
MDX (usually CASE) expressions that are defined in the KPI builder area of BIDS.

MemberValue: This function allows you to directly retrieve (or use for comparison) a value associated
with a dimension attribute (configured via the ValueColumn property). The ValueColumn page for a
dimensional attribute is found on the dimensional attribute’s properties pane.

This: This function allows you to apply an update to the MOLAP data as defined in a subcube
(usually by using the MDX keyword Scope to define the subcube).

UnknownMember: This returns the unknown member value for a level or member. Remember that you
have the ability to configure an unknown member value for an entire dimension by setting the
property values for both the UnknownMember and the UnknownMemberName.

Unorder: This function allows you to improve the efficiency of MDX queries by specifying that you
have no need for specifically ordered results. Some MDX functions use Unorder automatically (Sum,
for example). If you would like to verify whether a function you are using does this, you can open a
trace in Profiler to see the internally generated MDX query.

Summary
In this chapter, we reviewed basic MDX syntax and querying. We then discussed the core objects that
you might add to an SSAS cube: calculated members, named sets, and script commands. We next
reviewed the most commonly used MDX functions and some of the new ones as well. The last area we
covered was the new and powerful capability to associate assemblies with SSAS.

In the final chapter, we’ll explore the toolset available in SSAS for data mining.

C H A P T E R 14

■ ■ ■

369

Introduction to Data Mining

In this chapter, we’ll explore the incredibly powerful tools included with SQL Server Analysis Services
(SSAS) for use in data-mining solutions. You can begin by thinking of data mining as a terrific “value
add” to your BI solution.

Data mining in SSAS includes a number of easy-to-use wizards. These wizards contain consistently
and remarkably well-documented dialog boxes. However, data mining is a complex topic, and it’s
important to understand that this chapter is an introduction to this topic.

■Tip Microsoft’s data-mining team has a web site devoted to data mining with SQL Server, which includes tips,

notes, and samples: www.sqlserverdatamining.com.

The SSAS data-mining facilities are among the brightest of the gems in the entire BI feature set
because of the included power and the improved ease of implementation. We’ve got a great deal of
ground to cover here, and this is what we’ll discuss in the chapter:

• Defining SSAS data mining

• Reviewing data-mining structures

• Explaining the nine SSAS data-mining algorithms

• Processing mining models

• Using the data-mining language: Data Mining Extensions (DMX)

Defining SSAS Data Mining
Data mining is a set of sophisticated tools and algorithms that allow analysts and end users to solve
problems that would otherwise take huge amounts of manual effort or else would simply remain
unsolved. You can also think of data mining as a set of tools to help you enable your end users to
discover patterns and trends based on defined subsets of enterprise data. Such analysis is useful in many
types of business situations, such as predicting future values and better understanding why your
business got the past results that it did.

Using SSAS, you can create data-mining structures, which contain mining models. Mining models
represent implementations of specific data-mining algorithms. Algorithms are mathematical functions
that perform specific types of analysis on the associated data set. One example is the Microsoft Time

CHAPTER 14 ■ INTRODUCTION TO DATA MINING

370

Series algorithm. This algorithm predicts a specific value—for example, rate of sale (or quantity) of a
particular item—over time.

These mining models can be built using online analytical processing (OLAP) cubes or on relational
tables as source data. Data mining is usually (but not always) meant to be complementary to an SSAS
cube. A cube is often used to verify results: that is, “We think this happened; does the data support our
belief?” You can use mining structures (and their contained models) to discover correlations, patterns,
and other surprises in the data: that is, “what will happen?” Another common use of mining is when
businesses buy data from data-collection companies that represents competitive information (this type
of data is often called competitive data). Data mining can be used to help businesses consider what
would happen if they got into a certain type of new business, what would happen if they started doing
business in certain locations, and so on.

Some of the focus areas of SSAS data mining are as follows:

• Make data mining easier to implement. Data mining has traditionally been one of
the most challenging types of data-analysis solutions to put into operation, due to
the need to deeply understand the various algorithms involved. The tools
provided in BIDS make the creation of mining structures much easier by including
intelligently designed wizards with (mostly) self-documenting dialog boxes. Also,
importantly, there are now tools to help you verify the accuracy of your mining
model. This can help you select the most useful algorithms.

• Make it easy for end users to work with the results of mining structures in ways
that are meaningful to them. To this end, SSAS includes a broad variety of data-
mining-model viewers in BIDS, many new types of client integration (discussed in
detail later in the chapter), and an API for custom viewer development.

SSAS data-mining methods are expressed as algorithms; nine algorithms are included in SSAS 2008 R2.
In addition, the UI and object model for data mining are both powerful and easy to use.

One the most challenging parts of data mining is understanding what the various algorithms
actually do and then creating a mining structure that provides the needed data points to the appropriate
algorithm or algorithms that best support your specific business requirements. Also, some algorithms
function more effectively after you configure some of their available properties. In addition,
understanding how to best configure the algorithm properties can be challenging. We will review some
of the more important algorithm properties in this chapter. Another important consideration is how you
present the completed data-mining model results to your end users.

To help you select the most appropriate data-mining algorithm or algorithms, we’ll start by thinking
about some of the business problems that SSAS data mining can impact. Later, we’ll tie these types of
problems to particular algorithms. Here’s a partial list:

• What characteristics do your customers share? How could you group them or put
the types of customers into buckets? This type of information could be used, for
example, to improve effectiveness of marketing campaigns by targeting different
campaign types more appropriately: you could use magazine ads for customers
who read magazines, TV ads for customers who watch TV, and so on.

• What situations are abnormal for various groups? This type of analysis is
sometimes used for fraud detection. For example, purchasing behavior outside of
normal locations, stores, or total amounts might be indicative of fraud for
particular customer groups.

CHAPTER 14 ■ INTRODUCTION TO DATA MINING

371

• What product or services should be marketed or displayed next to what other
products or services? This is sometimes called market-basket analysis and can be
used in scenarios such as brick-and-mortar store shelf product placement when
you’re considering which products should be next to each other, or for web
marketing when you’re considering which ads should be placed on which product
pages.

• What will a certain value be (for example, rate of sales per week) for an item or set
of items at some point in the future, based on some values (for example, the price
of the item) that the item had in the past? An example of this would be a retailer
that adjusts the price of a key item upward or downward based on the sell-through
rate for that price point for that type of item for particular groups of stores in an
effort to control the amount of inventory of that particular item over time in each
store.

The best way to start working with SSAS data mining is to explore the models that ship with the
sample AdventureWorks solution. To do this, open the AdventureWorks sample in BIDS. Note that the
sample includes five data-mining models. We’ll use these for the basis of the data-mining discussion in
this chapter.

Figure 14–1 shows the sample data-mining containers, which are called mining structures, in the
Solution Explorer in BIDS. Each mining structure showcases using one or more mining models (with
each mining model containing a particular set of algorithms applied to source data) to impact a different
type of business problem.

Figure 14–1. The AdventureWorks solution contains five sample mining structures.

CHAPTER 14 ■ INTRODUCTION TO DATA MINING

372

Data-Mining Concepts
The Data Mining Wizard simplifies creating a mining structure in SSAS. To start the wizard, you right-
click the Mining Structures folder in Solution Explorer in BIDS, and then click New Mining Structure.
Your first choice when using the wizard is the location of the source data for the mining structure. Here,
you select either a subset of a defined data source view (DSV; which is most often based on relational
data) or a dimension from one of the cubes in the same SSAS project. Your next choice is to select one of
the nine available data-mining algorithms.

Before we start exploring the individual algorithms, we’ll first discuss general categories of data-
mining algorithms, the types of business problems those categories are designed to impact, and which
SSAS data-mining algorithms are available in which category or categories. A nice feature included in
SSAS is the ability to easily add additional mining models (using different algorithms and/or different
input columns) to the same mining structure. You may find that using more than one mining model,
and reviewing the results of each, is an effective strategy when implementing data mining as part of your
BI solution.

Here’s a list of categories or types of data-mining tasks:

• Classification: This involves predicting the value of one or more fixed variables,
based on multiple input variables (or attributes). These types of algorithms are
often used when a business has a large volume of high-quality historical data. The
included algorithm most often used to implement this technique is Microsoft
Decision Trees. The Microsoft Naïve Bayes and Microsoft Neural Network
algorithms can also be used. The Naïve Bayes algorithm is so named because it
assumes all input columns are completely independent. The Microsoft Neural
Network algorithm is often used with very large volumes of data that have very
complex relationships. With this type of source data, Microsoft Neural Network
can sometimes produce the most meaningful results of all supplied algorithms.

• Segmentation or Clustering: This involves grouping source data into categories
(sometimes also called segments or buckets) based on a set of supplied values (or
attributes). All attributes are given equal weight when determining the buckets.
These types of algorithms are often used as a starting point to better understand
the relationships between attributes in a large volume of data. Businesses also use
them to make more intelligent “like-for-like” predictions, such as this store is like
that store in these categories, and so it should perform similarly in this category.
The included algorithm most often used to implement this technique is the
Microsoft Clustering algorithm.

• Association: This involves finding correlations between variables in a set of data.
This is often called market-basket analysis. The goal of the algorithm is to find sets
of items that show correlations (usually based on rates of sale). It is used to help
businesses improve results related to cross-selling. In brick-and-mortar locations,
the results can be used to determine shelf placement of products. For virtual
businesses, the results can be used to improve click-through rates for advertising.
The included algorithm most often used to implement this technique is the
Microsoft Association algorithm.

CHAPTER 14 ■ INTRODUCTION TO DATA MINING

373

• Regression or Forecasting: This involves a process that is similar to classification:
predicting a value based on multiple input variables. The difference is that the
predictable value is a continuous number. In the case of a forecasting, the input
usually contains a time series. Businesses use regression algorithms to rate a sale
of an item based on retail price, position in store, and so on or to predict the
amount of rainfall based on humidity, air pressure, and temperature. The
included algorithm most often used to implement this technique is the Microsoft
Time Series algorithm. The Microsoft Linear and Microsoft Logistical Regression
algorithms can also be used.

• Sequence Analysis and Prediction: This involves finding patterns in a particular
subset of data. Businesses can use this type of algorithm to analyze the click-path
of end users through a commercial web site. These paths or sequences are often
analyzed over time: what items did the customer buy on the first visit? What did
the customer buy on the second visit? Sequence and association algorithms both
work with instances (called cases in the language of data mining) that contain a set
of items or states. The difference is that only sequence algorithms analyze the
state transitions (the order or time series in which cases occurred); association
algorithms consider all cases to be equal. The included algorithm most often used
to implement this technique is Microsoft Sequence Clustering.

• Deviation Analysis: This involves finding exceptional cases in the data. In the
language of data mining, these are often called outlier cases. Businesses use this
type of algorithm to detect potential fraud; one example is credit card companies
that use this technique to initiate alerts (which usually result in a phone call to the
end user, asking for verification of a purchase that’s particularly unusual due to
location, amount, and so on). The most commonly used algorithms for this type of
analysis are Microsoft Decision Trees used in combination with one or more other
algorithms (often Microsoft Clustering).

Architectural Considerations
To implement data mining in a BI solution, you need to consider your requirements in light of several
architectural concerns:

• Determine what type of business problems you want to impact.

• Review the quality of the source data. Is additional ETL warranted to clean or
validate that data? These processes may include aggregating source data,
removing nulls, and removing abnormal data points (outliers).

• What data should be included in your model? Here you select tables and columns
from relational data or dimensions, attributes, and measures from your cube. Will
any source data be from related (or nested) tables? What columns will be marked
as keys, as inputs, as predictable (more on what these terms mean later in this
chapter)?

• Which algorithms will you begin with in your data-mining structure? Remember,
it’s relatively easy to add algorithms as you continue to work with your project.

• How will you validate the results of your models? Which algorithms prove to be
most useful for presenting you with useful information regarding your particular
business scenario? Also, which algorithms prove to be most accurate? We’ll
discuss more about the tools included in BIDS to do this later in this chapter.

CHAPTER 14 ■ INTRODUCTION TO DATA MINING

374

• Who will view the results of your mining structure? What client tools will end users
use? Will custom application development be required?

• How will your mining model be maintained? How often will new data be added?

• At what intervals will the model be reverified? What metrics or baselines will be
used to “prove” the validity and usefulness of your models?

■Tip For more information about lifecycle processes for data mining, you can review a standard model for the
data-mining lifecycle. It’s called the Cross Industry Standard Process for Data Mining (Crisp-DM) method and is

described at www.crisp-dm.org.

The next step in our journey is to dig a bit deeper into the sample mining structures supplied with
the AdventureWorks cube.

Reviewing Data Mining Structures
To begin reviewing your first data-mining structure, right-click the Targeted Mailing mining model, and
select Open. The Targeted Mailing model opens to the Mining Structure tab and shows the vTargetMail
view in the data source view (DSV) pane and the mining model in the left-most pane.

Mining Structure Tab
The first tab in the work area is the Mining Structure tab. Here you can see the source data included in
your mining model (in a DSV-like format). An important difference between this view and the DSV
container in a BI project is that you can only view the source data in the mining structure view. You
cannot add calculated columns, and you have to use the original DSV defined at the level on the SSAS
database (as you do when creating a cube) to make any structural changes to the DSV used as a source
for your mining structure. If you need to add or remove columns or nested tables, you use the original
level view.

You can configure several properties for both the entire source or for individual columns in this
view. An example is the CacheMode property. Your choices are KeepTrainingCases and
ClearAfterProcessing.

■Note What is training data? In this chapter, we’ll often use this term. It means to provide the data-mining model

with sample data so that the model can “learn” from the sample cases. In SSAS, process is equivalent to train.

The latter option is often used during the early development phase of your mining project. You may
process the model, only to find that the data used needs further cleaning. In this case, you perform the
subsequent clean and then reprocess the model. Figure 14–2 shows the properties for the targeted
mailing sample.

CHAPTER 14 ■ INTRODUCTION TO DATA MINING

375

Figure 14–2. In the Mining Structure tab of BIDS, you can view the source data and add or remove

columns and nested tables.

Mining Models Tab
The next tab in the mining structure designer in BIDS is the Mining Models tab. Here you view the one
or more mining models that are included in the particular mining structure that you are editing. You can
easily add new models to your structure by right-clicking the surface and then clicking New Mining
Model. Also, you can change the source data associated with a type of mining model by creating more
than one instance of that model and ignoring one or more columns from the mining structure DSV. You
may choose to do this to test the level of impact that a particular attribute has on a mining model. The
Ignore option is shown for the Yearly Income column using the Microsoft Naïve Bayes algorithm in
Figure 14–3.

CHAPTER 14 ■ INTRODUCTION TO DATA MINING

376

Figure 14–3. Two mining models, one based on Microsoft Decision Trees and one based on Microsoft Naïve

Bayes, are included in the mining structure shown.

You can change the use of the associated (nonkey) source columns in the following ways:

• Ignore: This setting causes the model to remove the column from the model.

• Input: This setting causes the model to use that column as source data for the
model.

• Predict: This setting causes the model to use that column as both input and
output.

• PredictOnly: This setting causes the model to use that column as output only.

■Note There are specific requirements about Input and Predict columns for each type of algorithm. These are

discussed later in this chapter.

You can configure the algorithm parameters for each mining model in the mining structure by right-
clicking the mining model on the design surface and then clicking Set Algorithm Parameters. These

CHAPTER 14 ■ INTRODUCTION TO DATA MINING

377

parameters vary depending on which mining algorithm you are working with. Figure 14–4 shows the
configurable parameters for the Microsoft Decision Trees algorithm. Note that when you select one of
the properties, the configuration dialog box shows you a brief definition of the configurable property
value. Figure 14–4 also shows the definition for the COMPLEXITY_PENALTY property.

You may be surprised to see the configuration of parameters being included at this point in this
chapter, assuming that such configuration is for advanced users of data mining only. Actually, you will
find yourself exploring (and changing) many of the parameters as you begin to tinker with data mining.
The UI does a pretty good job of explaining each of them; there is also additional documentation in BOL.

Figure 14–4. BIDS allows you to do additional configuration that is specific to the algorithm type you are

working with.

As you become a more advanced user of data mining, for certain algorithms, you may choose to add
your own custom parameters (and configure their values) via this dialog box.

CHAPTER 14 ■ INTRODUCTION TO DATA MINING

378

Mining Model Viewer Tab
The next tab in the BIDS mining structure designer is Mining Model Viewer. An interesting aspect of this
tab is that each mining model algorithm includes one or more types of mining-model viewers. These
viewers are for you, as the mining-model designer, and not for end users. The purpose of the broad
variety of viewers is to help you to determine which mining-model algorithms are most useful for your
particular business scenario.

In this case, look at the included TM Decision Trees sample in AdventureWorks. This model shows
information correlated to bicycle purchasing: “number of cars owned,” “number of children at home,”
and so on.

The viewers include both graphical and text (rows and columns of data) representations of data.
Some of the viewers include multiple types of graphical views of the output of the mining-model data.
Additionally, some of the viewers include a mining legend in the properties area of the design surface.

■Tip The mining structure viewers are available in SQL Server Management Studio (SSMS). To access them,
connect to SSAS in SSMS, right-click the particular mining structure in the Object Explorer, and then click Browse.
Microsoft has also included a set of data-mining web controls (and plug-in algorithms) as part of SSAS. You can

use these to create custom applications for end users. If you choose to install the samples, you can find them at

C:\Program Files\Microsoft SQL Server\100\Samples\Analysis Services\DataMining.

For example, the Microsoft Decision Trees algorithm includes two types of viewers: the Microsoft
Tree Viewer and the Microsoft Content Viewer. The tree viewer itself has two different views of the
mining-model output: Decision Tree view and Dependency Network view.

Figure 14–5 shows a portion of the Decision Tree view for the targeted mailing sample mining
structure and the associated mining legend. It shows the most closely correlated information at the first
level: in this case, Number Cars Owned. The depth of color of each node is a visual cue to the amount of
association; darker colors indicate more association. Note that the mining legend reflects the exact
number of cases (or rows) for the particular node of the model that is selected. It also shows the
information via a probability column (percentage) and a histogram (graphical representation). In the
diagram, the selected node is Number Cars Owned = 2 so the detailed (case) data in the mining legend
reflects the selection.

CHAPTER 14 ■ INTRODUCTION TO DATA MINING

379

Figure 14–5. The Decision Tree view allows you to understand dependency relationships in your mining

model.

The other type of view for the Microsoft Decision Trees algorithm is the Dependency Network view.
This allows you to quickly visualize which data has the strongest correlation to a particular node. You
can adjust the strength of association being shown by dragging the slider on the left of the diagram up or
down.

Figure 14–6 shows the dependency network for the same mining structure you’ve been working
with. Note that the four most correlated factors for bike purchasing are yearly income, number of cars
owned, age, and region.

CHAPTER 14 ■ INTRODUCTION TO DATA MINING

380

Figure 14–6. The Dependency Network view provides you with a visual representation of closely correlated

factors. Note the legend at bottom left in the figure.

The Mining Model Viewer tab allows you to review the greatest level of detail in your mining model.
It shows the processed results in rows and columns of data. For certain mining models, this viewer
includes nested tables in the results as well.

As mentioned earlier, different algorithms have different types of associated views. For example, the
Microsoft Naïve Bayes algorithm includes the following additional viewers: Attribute Profiles, Attribute
Characteristics, and Attribute Discrimination. Figure 14–7 shows the Attribute Profiles view and includes
the mining legend (which shows the color-coded buckets of data). This is showing the distribution of
various attributes (age, commute distance, and so on) for the entire population (the complete data set),
and then for the bike buyers—indicated by a 1 value—and the nonbike buyers—indicated by a 0 value.

CHAPTER 14 ■ INTRODUCTION TO DATA MINING

381

Figure 14–7. The Attribute Profiles view for a mining model using the Microsoft Naïve Bayes algorithm

■Tip If you are new to data-mining concepts, a great way to better understand what the different included
algorithms do is to look at the output from the included sample mining structures using each of the included

views.

Mining Accuracy Chart Tab
The next tab in the BIDS designer is the Mining Accuracy Chart tab. Here you can validate (or compare)
your model against some actual data to understand how accurate your model is. You do this by using a
specific type of chart called a lift chart. This chart shows a perfect result and then compare the results of
your particular mining model to that result.

You validate the various mining models inside a mining structure so you can understand which
mining models will be most accurate (and, therefore, most useful) for understanding and impacting the
particular business problems you want to forecast, predict, cluster, classify, and so on. Figure 14–8

CHAPTER 14 ■ INTRODUCTION TO DATA MINING

382

shows the configuration of the Mining Accuracy Chart tab in BIDS, using the Specify Column Mapping
dialog.

Figure 14–8. You associate a subset of data with the training (source) data, using column mapping.

To further explain the outputs of the Mining Accuracy Chart tab, you need to understand a bit more
about lift charts and profit charts. A lift chart compares the accuracy of the predictions of each model
included in your structure to an average guess and a perfect prediction. This guess is shown in the
middle of the chart, and the perfect value is shown as a line at the top of the chart. Lift is measured by
how much your model results improve (or lifts) the predictive values above that average guess. A profit
chart displays the theoretical increase in profit that is associated with using each model.

Mining Model Prediction Tab
The next tab in the BIDS designer is the Mining Model Prediction tab. Here you can create predictions
based on the mining models that a mining structure contains. What you are actually doing is writing a
query using the native mining-model language—Data Mining Extensions (DMX)—using the designer
interface. You can use DMX to create the structure of new data-mining models, to train (or populate)
your models, and to browse, manage, and predict against them. DMX contains Data Definition
Language (DDL) statements, such as CREATE MINING STRUCTURE; Data Manipulation Language (DML)

CHAPTER 14 ■ INTRODUCTION TO DATA MINING

383

statements, such as SELECT FROM <model>; and functions and operators, such as Predict and
PredictAssociation. We will look in more detail at DMX sample statements later in this chapter.

Figure 14–9 shows the interface in BIDS for creating a data-mining prediction query. This example is
working with the DMX PredictProbability function to determine the probability of an individual (case)
becoming a bike buyer.

Figure 14–9. The BIDS interface for generating a mining-model prediction query allows you to easily

create predictive queries.

Understanding and Using the Included Data Mining
Algorithms

SQL Server ships with nine built-in data-mining algorithms. Before we start reviewing the individual
algorithms, there’s a concept that will help you understand how to select the mining algorithm that best
matches your business needs: supervision. Your options are to use a supervised or an unsupervised
algorithm. Here is the difference.

A supervised mining models require you to select both input and predictable columns. This type is
used when you not only know the values (or columns) that should serve as inputs but also when you
have determined which value you want to predict.

An unsupervised mining models require you only to select input columns. This type is used earlier in
your project when you are just trying to understand the data you are working with, rather than to predict
a specific outcome.

CHAPTER 14 ■ INTRODUCTION TO DATA MINING

384

■Note An input column is any column from source data that should be considered when executing the mining
algorithm. A predictable column is any column for which you want the algorithm to predict values. Not all

algorithms support prediction (some support only clustering or grouping data together).

When you build your models, you’re presented with an error dialog box if you don’t configure your
model per the supervision requirements for the particular algorithm you’ve selected. The unsupervised
algorithms are Microsoft Clustering, Microsoft Linear or Logistical Regression, Microsoft Sequence
Clustering, and Microsoft Time Series. The supervised algorithms are Microsoft Association Rules,
Microsoft Decision Trees, Microsoft Naïve Bayes, and Microsoft Neural Networks.

The Nine Algorithms
Following is a list of all the algorithms in descending order of most common use. The list also includes a
brief discussion of some of the more important configurable attributes for each algorithm.

• Microsoft Naïve Bayes: One of the simplest algorithms available to you in the SSAS
toolkit, so it is often used as a starting point to help you understand basic
groupings in your data. It’s called naïve because no one attribute has any higher
significance than another. Also, only discrete (distinct and not fractional) content
types can be evaluated. This model type is most often used to view and
understand data better; it’s not used as commonly to predict because of its naïve
nature. There are no configurable properties available with this algorithm when
you click the algorithm parameters property Build button in the Solution Explorer
in BIDS. The most commonly used viewer in BIDS for this type of model is the
dependency network.

■Tip The Algorithm Parameters dialog box in Solution Explorer in BIDS only shows a partial list of the configurable
properties for each algorithm. For several algorithms, it shows none at all. If you want to add a configurable
property and a value, click the Add button at the bottom of the dialog box. If you search on the name of the

particular algorithm in BOL, you can review the complete list of configurable properties for each algorithm.

CHAPTER 14 ■ INTRODUCTION TO DATA MINING

385

• Microsoft Decision Trees: Probably the most commonly used algorithm, due to its
flexibility. It works with discrete and continuous attributes (numbers that
represent some unit of measure, which can include fractions). The richness of the
included viewers makes it quite easy to understand the algorithm’s output. This
algorithm is used to both view and to predict. There are four configurable
properties with this algorithm. The most import property is COMPLEXITY_PENALTY.
By adjusting this number (usually downward), you can decrease the complexity of
your model by reducing the number of inputs to be considered and literally
reducing the size of your decision tree—that is, the number of nodes in the result
set. The most commonly used view for this algorithm is the Decision Tree view. It
allows you to view the nodes representing the most closely aligned factors
predicting the value you select, and includes supporting information that shows
detail about the values and the number of cases for each node.

• Microsoft Time Series: Used to impact a common business problem: accurate
forecasting. This algorithm is often used to predict future values, such as rates of
sale of a particular product. The configurable properties include the interesting
PERIODICITY_HINT property. Supplying a value for this setting allows you to nudge
the algorithm into a better understanding of the way the data is distributed across
time. For example, if sales vary by year, and the unit of measurement in the series
is quarters, then the periodicity is 4. The Time Series Chart view helps you
understand the output of your model by showing the predicted values over the
configured time series in an easy-to-understand graphical format. You can also
configure the number of prediction steps (the number of data points along the
time axis) and whether you want to show deviations (outliers) by using the
controls on the viewer design surface. This is shown in Figure 14–10.

CHAPTER 14 ■ INTRODUCTION TO DATA MINING

386

Figure 14–10. The Time Series chart allows you to see the selected, predicted values over the time series.

• Microsoft Clustering: Separates your data into intelligent groupings by iteratively
grouping cases into clusters that contain similar characteristics. This algorithm
can help you bucketize types of customers, for example. You can configure
CLUSTERING_METHOD using the following properties available for this algorithm:
Scalable Expectation Maximization (EM), Nonscalable (vanilla) EM, Scalable K-
means, and Nonscalable K-means. The default is scalable EM. K-type clustering is
considered hard clustering in that it creates buckets or grouping and then assigns
your data into only one bucket—there is no overlap. EM clustering takes the
opposite approach and allows overlaps; this type is sometimes called soft
clustering. After you’ve created your model, it’s important to use the associated
views to better understand the clusters that have been created. You can also
rename the clusters shown in the Cluster Diagram view as you work with the other
tabs to better understand the traits associated with a particular cluster.

CHAPTER 14 ■ INTRODUCTION TO DATA MINING

387

• Microsoft Sequence Clustering: Does the same thing as clustering, with one
important addition—it monitors the states between values. You can use this to get
a sense of page sequences customers use on your web site, for example. The State
Transitions view for this algorithm is particularly interesting. Using that tab in
BIDS, you can look at the state transitions for any selected cluster. Each square
(node) represents a state of the model, such as “water bottle.” Lines represent the
transitions between states, and each node is based on the probability of a
transition. The background color represents the frequency of the node in the
cluster. The number displayed next to the node represents the probability of
affecting the associated node. This view is shown in Figure 14–11.

Figure 14–11. The State Transitions view allows you to visualize the transitions between states for each

cluster.

The most interesting configurable property for this algorithm is the
CLUSTER_COUNT. This allows you to set the number of clusters that the algorithm
builds. As with Microsoft Clustering, by adjusting the number of clusters, you
can gain a better perspective on the data. Most often, you will reduce the
number of clusters so you can focus on the most important results-generating
clusters for your particular business scenario. The default number of clusters
generated is ten.

CHAPTER 14 ■ INTRODUCTION TO DATA MINING

388

• Microsoft Association Rules: Produces itemsets—groups of related items from the
source attribute columns. The results of this algorithm are often called market-
basket analysis. There are four configurable properties for Microsoft Association
Rules. Included in the configurable properties is the ability for you to adjust the
maximum size of the discovered itemsets (MAXIMUM_ITEMSET_SIZE). This property is
set to a value of 3 by default, which means the three items that are sold most often
together are shown as itemsets in the results views.

The most interesting view for the Association Rules algorithm is the Rules view. It
shows whatever subset groupings of itemsets per your configuration parameters;
for example, if you’ve stayed with the default value of 3 for the
MAXIMUM_ITEMSET_SIZE property, then you see groupings of up to three related
items in the associated mining-model views. Note that you can adjust the view by
setting or adjusting filters, min/max probability settings, and other properties.
This view is shown in Figure 14–12.

Figure 14–12. The Rules view for the Microsoft Association Rules algorithm

CHAPTER 14 ■ INTRODUCTION TO DATA MINING

389

• Microsoft Neural Network: By far the most powerful and complex algorithm, which
is often used when other algorithms fail to produce meaningful results. Using the
Microsoft Neural Network algorithm against large data sources should always be
well-tested using near production-level loads. This is because of the amount of
overhead needed to process these types of models. The algorithm itself uses a very
complex network called the multilayer perceptron network. This network uses
three types of objects: input, hidden, and output neurons. It has no configurable
parameters in the associated dialog box in the BIDS GUI. However, you can add
and configure parameters such as MAXIMUM_INPUT_ATTRIBUTES and
MAXIMUM_OUTPUT_ATTRIBUTES, both of which have a default value of 255. You may
choose to adjust either of these to improve both the performance and the usability
of the results of this algorithm.

For more information about the details of how this algorithm processes data and
the possible configurable parameter names and values that you may add to it, see
the BOL topic “Microsoft Neural Network Algorithm (SSAS).” Figure 14–13 shows
one of the built-in views for this algorithm, displaying the Yearly Income, Total
Children, Region, and Occupation attributes, and how they contribute to
predicting female bike buyers.

Figure 14–13. The built-in Mining Model view for the Microsoft Neural Network algorithm

CHAPTER 14 ■ INTRODUCTION TO DATA MINING

390

• Microsoft Linear Regression: A variation of the Microsoft Decision Trees algorithm
that works like classic linear regression; that is, it fits the best possible straight line
through a series of points. It has no included configurable parameters.

• Microsoft Logistic Regression: A variant of the Microsoft Neural Network algorithm
with a HIDDEN_NODE_RATIO parameter set to 0, which makes its output more like a
variant of linear regression. One example is when the dependent variable is a
dichotomy, such as success/failure. It has no included configurable parameters.

Now that we’ve reviewed the nine mining algorithms, your next step is to consider the complete set
of information that you’ll need to use to create your mining model and how exactly to implement data-
mining structures and models in BIDS.

The Data Mining Wizard
In this section, you explore the Data Mining Wizard. Using this wizard, you define new mining structures
by supplying data from relational tables or an OLAP cube. The wizard helps you build your model by
analyzing your data and recommending how each data point may be used.

To start the wizard, right-click the Mining Structures folder in Solution Explorer in BIDS, and select
New Mining Structure. As you work with the wizard’s dialog boxes to create a structure, you need to
consider these questions:

• What type of data can you include: relational (from a DSV) or multidimensional
(from a cube in your project)? For the purpose of creating a mining structure, you
can use either type of data. The wizard supports both types equally well. Your
selection of data source should be based on where the data that you need is
stored.

• For relational sources, which table is the case table (describes the main entity,
such as customers)? Which is the nested table (has information related to each
case or entity; in a many relationship, for example, sales transactions for each
customer)? Do the case and any nested tables have columns that form a
relationship between rows in the case (one: primary key) table and rows in the
nested (many: foreign key) table(s)? What other columns will you include from
both tables?

• For OLAP sources, what dimensions, attributes, and facts will you include?

• Which algorithm will you start with? Remember, you can easily add algorithms to
your mining structure after you’ve completed the wizard.

• For the included columns, which are key, input, or predictable? You can select
more than one type of column (input, predictable, and so on) for each column.
The Data Mining Wizard has built-in intelligence to help you. You can use the
Suggest button at the bottom of the dialog box; the result is shown via a dialog box
(see Figure 14–14).

CHAPTER 14 ■ INTRODUCTION TO DATA MINING

391

Figure 14–14. The Data Mining Wizard can help you select input columns for your mining structure by

showing you which columns are most related to your predicted attribute after you click the Suggest button

in the wizard’s dialog box.

• What are the content and datatypes of the columns?

In the next step of the wizard, you are presented with a dialog box that shows you the content type
and datatype of the involved columns. You can make adjustments as needed in this dialog box. There is
also a handy Detect button at lower right that you can use to help you configure the appropriate content
type (continuous or discrete) for a numeric column (see Figure 14–15). These two concepts are discussed
in greater detail in the next section of this chapter.

CHAPTER 14 ■ INTRODUCTION TO DATA MINING

392

Figure 14–15. The Detect button can help you determine the appropriate content type setting for numeric

columns: continuous or discrete.

Content and Datatypes
SSAS data-mining structures use data and content types that are specific to the Microsoft
implementation of data mining. It’s important that you understand these types when you build your
mining structures. Also, certain algorithms only support certain content types. A content type is an
additional attribute that the mining model uses to understand the behavior of the data; an example is
cyclical. Marking a source column as a cyclical content type tells the mining algorithm that the order of
the data is particular, important, and repetitive, or has a cycle to it, for example, the month numbers of
more than one year in a time table.

A datatype is the same as what you already understand datatype to mean from relational database
modeling, that is, integer, string, and so on. The difference here is that the datatypes are based on C++,
rather than the typical relational database datatypes that you are probably more familiar with. The rule
of thumb is for you to determine the datatype first and then verify (and sometimes adjust) the

CHAPTER 14 ■ INTRODUCTION TO DATA MINING

393

appropriate content type in your model. Remember that certain algorithms only support certain content
types; for example, Naïve Bayes does not support continuous content types.

Here’s a list of the content type attributes:

• Discrete: This column (or attribute type) contains values that are distinct—for
example, number of children. Another way to think about this is that there are no
fractional values. It is worth noting that marking a column as discrete does not
indicate that the order (or sequence) of the information is important. You can use
any datatype with this content type.

• Continuous: This column has values that are a set of numbers representing some
unit of measurement—for example, outstanding loan amount. These values can
be fractional. You can use the date, double, and long datatypes with this content
type.

• Discretized: This column has continuous values that are grouped into buckets.
Each bucket is considered to have a specific order and to contain discrete values.
You can use dates, doubles, longs, and text datatypes with the discretized content
type.

■Note You can adjust DiscretizationMethod (which determines how the data will be grouped: AUTOMATIC |

CLUSTERS [for numerics only; works well for any type of distribution curve] or EQUAL_AREAS [for strings; works best
for standard distribution curves]) and DiscretizationBucketCount (which specifies the number of discrete

buckets into which the data in this column should be divided) if you mark your column as Discretized.

• Key: This column is used as a unique identifier for a row. You can use date,
doubles, longs, or text for this.

• Key Sequence: This column is a type of a key; the sequence of key values is
important to your model. You can use doubles, longs, text, or dates with this
content type. By using this content type, you are identifying the importance of the
sequence (order) of the key values, in addition to noting that the values are
identifiers or keys.

• Key Time: This column, similar to a key sequence, is a type of key where the
sequence of values is important. Additionally, by marking your column with this
content type, you are indicating to your mining model that the key values run on a
time scale.

• Ordered: This column contains data in a specific order that is important for your
mining model. Also, when you mark a column with the Ordered content type,
SSAS considers that all data contained is discrete. You can use any datatype with
this content type.

• Cyclical: This column has data that is ordered and represents a set that cycles (or
repeats). It is often used with time values (months of year, for example). Data
marked as Cyclical is considered both ordered and discrete. You can use any
datatype with this content type.

CHAPTER 14 ■ INTRODUCTION TO DATA MINING

394

For your reference, we’ve pivoted the information presented in the preceding list in Table 11-1 so
that you can see which datatypes are supported by which content types. Understanding this concept is
very important to successful model building.

Table 11-1. List of Datatypes and Supported Content Types for Each One

Datatype Content Types Supported

Text Discrete, discretized, or sequence

Long Continuous, cyclical, discrete, discretized, key sequence, key time, ordered, sequence,
or time

Boolean Discrete

Double Cyclical, discrete, discretized, key sequence, key time, ordered, sequence, or time

Date Continuous, discrete, discretized, or key time

As you complete the wizard, you’re asked to name your mining structure. You have the option to
allow drillthrough for your mining structure here as well. Drillthrough in this context functions similarly
to drillthrough in a SSAS cube; that is, it gives the end users with appropriate permissions the ability to
right-click a data-mining model to see a list of the source data columns that lead to the result that they
are viewing. Remember that any columns that are included in drillthrough must be included in the
particular model; that is, end users cannot drill through to data that is part of the source start schema
but has not been included in the SSAS database.

If you select From Existing Cube as your data source for your mining model, you’re presented with
one additional dialog box before you complete the wizard. This dialog box allows you to define a
particular slice of the cube for your mining structure. Figure 14–16 shows an example of this, using the
slice “show only customers who are home owners.”

Figure 14–16. The Data Mining Wizard allows you to define slices of the source cube when you select From

Existing Cube as the data source for your mining structure.

CHAPTER 14 ■ INTRODUCTION TO DATA MINING

395

■Tip If you are creating a model based on an existing cube that contains a time series, then you need to slice the

time dimension to remove all future members, assuming those members have been loaded into your cube already.

Another difference in the wizard, if you base your mining model on an existing cube (and you use any
of these three algorithms: Microsoft Clustering, Microsoft Decision Trees, or Microsoft Association Rules),
is that in the final dialog box, you are also asked whether you want to create a new dimension in your
existing cube or create a new cube with a data-mining dimension in it. This is shown in Figure 14–17.

Figure 14–17. The Data Mining Wizard allows you to create a new dimension in your existing cube using

the information in your mining model, or you can create an entirely new cube containing the new

dimension.

CHAPTER 14 ■ INTRODUCTION TO DATA MINING

396

One interesting aspect of creating a new dimension, whether in the existing cube or in a new cube,
is that a new DSV is created representing the information in the model. Unlike most typical DSVs, this
one cannot be edited, nor can the source data (the model output) be viewed via the DSV interface.

Processing Mining Models
After you complete the design of your mining structure, you must process it. You can process some types
of included mining models individually, or you can process all models included in the particular mining
structure that you are working with.

Processing Methods
To begin, you should understand the different methods at your disposal. Processing methods for mining
structures are as follows:

• Process Full: Drops all data and metadata and completely reprocesses the selected
object.

• Default: Detects the selected object’s current state and then determines the
appropriate processing method.

• Process Structure: Populates only the mining structure but not the mining models
with source data.

• Process Clear Structure: Removes all training data from the selected object.

• Unprocess: Deletes the data in the object selected and any lower-level associated
objects.

Process methods for mining models are as follows:

• Process Full: Drops all data and metadata and completely reprocesses the selected
object.

• Default: Detects the selected object’s current state and then determines the
appropriate processing method.

• Process Unprocess: Deletes the data in the object selected and any lower-level
associated objects. After the data is deleted, it is not reloaded.

As with cube processing, you can configure error handling during processing by clicking the Change
Settings button in the Process Model (or Structure) tab dialog box.

Figure 14–18 shows you the detailed output window that is generated in BIDS when you choose to
process your mining model.

CHAPTER 14 ■ INTRODUCTION TO DATA MINING

397

Figure 14–18. The Process Progress dialog box for data-mining structures shows a detailed record of all

activities performed during mining-structure processing.

After you move to production, you should automate the processing of your mining structures. You
can easily do this by creating a SQL Server Integration Services (SSIS) package and including the Analysis
Services Processing Task. You configure the task to perform the type of processing that your business
requirements require for the particular mining structure. This task is encapsulating the XML for Analysis

(XMLA) Process command, so if you wanted to script this process using only XMLA and not SSIS, you
could do that as well. In addition to automating model-structure processing, there are a couple of other
areas of integration between data mining and SSIS. We’ll review those in the next section.

SSIS and Data Mining
Data mining by DMX query is supported in SSIS. You have one control-flow SSIS task and one data-flow
transformation to select from. The Data Mining Query Task is available in the Control Flow toolbox. The
editor for this task is shown in Figure 14–19.

CHAPTER 14 ■ INTRODUCTION TO DATA MINING

398

Figure 14–19. The new Data Mining Query Task allows you to associate a data-mining query with the

control flow of an SSIS package.

The Data Mining Query Transformation is available in the Data Flow Transformation toolbox. As
with the control-flow task, the data-flow transformation allows you to associate a data-mining query
with an SSIS package. One difference between the two objects is, of course, where they are used in your
package. One is for control flow (which connects various activities together, such as T-SQL queries, FTP,
WMI, and so on), and the other is for data flow (which impacts a specific set of data flowing through the
package by extracting, transforming, and then loading the transformed data to one or more
destinations).

An example of where the Data Mining Query Transformation can be used is a situation in which you
have a large amount of unclean data. You can use this transformation to help determine possible values
for partially dirty data by splitting this data into clusters. The dialog box for this transformation is shown
in Figure 14–20. Note that both of these objects are available only with the Enterprise Edition of SQL
Server.

CHAPTER 14 ■ INTRODUCTION TO DATA MINING

399

Figure 14–20. The new Data Mining Query Transformation allows you to associate a data-mining query

with the data flow of an SSIS package.

Working with the DMX Language
If your business requirements call for custom client development using the data-mining API, you can
begin to familiarize yourself with the DMX language by reviewing the supplied templates in SSMS. As
with creating an SSAS query, you first connect to SSAS in SSMS, display the Template Explorer, and then
click the DMX node to view and work with the included templates. Figure 14–21 shows the included
DMX templates.

They include Model Content (which allows simple querying of model data and metadata, such as
return model attributes), Model Management (which allows for administration, such as create, rename,
and export model), and Prediction Queries (which allows use of model content in conjunction with
other data using the OPENQUERY operator).

CHAPTER 14 ■ INTRODUCTION TO DATA MINING

400

Figure 14–21. The Template Explorer in SSMS provides you with three different types of DMX queries.

CHAPTER 14 ■ INTRODUCTION TO DATA MINING

401

As with Multidimensional Expressions (MDX), in our experience, you’ll seldom have to manually write a
large number of DMX queries in production BI solutions. One obvious exception to this general
guideline is, of course, if your BI project work is primarily focused on implementing data mining.
Microsoft has provided you with a large number of tools, templates, and wizards so that you can
implement DMX queries without having to take the time to master the language from scratch. Because
of this, we’ll simply review the basic DMX syntax at this time.

SSMS includes a DMX query tool. You access this tool in a fashion similar to the way you worked
with the MDX query tool: you open SSMS and click the Analysis Services DMX Query button on the
toolbar in SSMS to open a DMX query window. Figure 14–22 shows the results of a simple DMX query in
SSMS.

Figure 14–22. You can write and execute custom DMX queries in SSMS.

The query shown allows you to view metadata about a particular mining model. I built this query by
customizing one of the included DMX templates. These templates are a very good starting location for
learning DMX. As with any query language, if you are going to do extensive DMX work, you should
probably pick up a reference book on it. You should also refer to the BOL topic “Data Mining Extensions
(DMX) Reference.”

CHAPTER 14 ■ INTRODUCTION TO DATA MINING

402

■Tip To better understand what type of DMX query you might choose to implement using either of the SSIS
objects, you may want to explore the DMX language in a bit more detail. A great way to learn any new language is
to read queries generated by client tools before you begin to attempt to write queries. For data mining, you can do

this by capturing queries that data-mining client tools (including the BIDS viewers) generate using the SQL Server
capture tool—SQL Server Profiler. SSAS DMX queries can be captured using tracing with Profiler. DMX queries are

noted in the Event Subclass column (type = 1) of Profiler traces.

Summary
One of the most important considerations when determining whether (and how) to implement SSAS
data mining in your BI solution is the selection of end user or client tools. In the past, the lack of
available client tools has definitely hurt the adoption of data mining. However, that void has been filled
as of late. As of this writing, you have a few choices: you can write your own client tools, you can
purchase third-party vendor client tools, or you can use Excel.

Are you now intrigued about the possibilities of adding data mining to your BI solution? We hope so!
We covered data-mining concepts, conducted a brief tour of the BIDS data-mining UI using one of the
AdventureWorks samples, and then went on to cover building data-mining structures in more detail. We
discussed each of the supplied algorithms and looked at their content, datatypes, and other key
properties. We then discussed the practical matters of processing your mining structures and took a
quick look at SSIS integration. We ended our tour of SSAS data mining by looking at the basic syntax of
DMX.

A P P E N D I X

■ ■ ■

403

The HIERARCHYID Datatype

Microsoft introduced the HIERARCHYID datatype as part of SQL Server 2008. A HIERARCHYID instance
represents a hierarchy tree structure. Each node of a hierarchy tree can be manipulated and retrieved
from the HIERARCHYID instance. When using HIERARCHYID, access is provided via a managed set of
Common Language Runtime (CLR) data type methods that support creating, reading, updating, and
deleting (CRUD) nodes in a hierarchy. An employee dimension, usually modeled as a self-referencing
parent-child dimension, is a good candidate for HIERARCHYID .

In the following sections, you will create an employee table, add five employees to your table, and
work with the HIERARCHYID datatype to define their relationship to one another. The hierarchy
manipulation methods you will discover follow:

• GetRoot: The GetRoot method assigns or returns the root of the hierarchy.

• GetDescendant: The GetDescendant method assigns or returns a child node in the
hierarchy. It requires two nullable parameters: child1 and child2. If both child1
and child2 are Null, GetDescendant returns a child. If child1 is not Null, and
child2 is Null, GetDescendant returns a child greater than child1.

• GetAncestor: The GetAncestor method returns a HierarchyID of the nth
generation. For example, GetAncestor(1) will return child nodes, while
GetAncestor(2) will return grandchildren.

These methods are found in the SqlHierarchyID class. You will use them to position and populate
the employees table.

Creating A HIERARCHYID Table
First, create an employee containing a HIERARCHYID. The employee table will have the following
attributes: a unique record identifier, the employee’s name, the employee’s position, and the employee’s
level in the company. Create the employee table in the AdventureWorksDW2008R2 database by entering
and executing the following T-SQL code in an SSMS query:

Create Table dbo.EmployeeHierarchy
(
 EmployeeID Int Identity (1, 1) Not Null Primary Key,
 Name Varchar(50) Not Null,
 Position Varchar(50) Not Null,
 OrganizationLevel HierarchyID
);
Go

APPENDEIX ■ THE HIERARCHYID DATATYPE

404

Adding Data to the Table
Next, you will add five employees to the EmployeeHierarchy table. The employees (and their positions
within the company) will be named Jodi (CEO), Jim (CFO), Kay (COO), Bob (Manager), and Andy
(Manager). To accomplish this, enter and execute the following code:

Declare @CEO HierarchyID,
 @COO HierarchyID,
 @CLevel HierarchyID;

Select @CEO = HierarchyID::GetRoot();

Insert Into dbo.EmployeeHierarchy (Name, Position, OrganizationLevel)
Values ('Jodi', 'CEO', @CEO),
 ('Jim', 'CFO', @CEO.GetDescendant(Null, Null));

Select @CLevel = MAX(OrganizationLevel)
From dbo.EmployeeHierarchy
Where OrganizationLevel.GetAncestor(1) = @CEO;

Insert Into dbo.EmployeeHierarchy (Name, Position, OrganizationLevel)
Values ('Kay', 'COO', @CEO.GetDescendant(@CLevel, Null));

Select @COO = OrganizationLevel
From dbo.EmployeeHierarchy
Where Position = 'COO';

Insert Into dbo.EmployeeHierarchy (Name, Position, OrganizationLevel)
Values ('Bob', 'Manager', @COO.GetDescendant(Null, Null)),
 ('Andy', 'Manager', @COO.GetDescendant(Null, Null));

The preceding example, which adds your five employees, begins by declaring three variables of type
HierarchyID. Next, a Select statement uses HierarchyID::GetRoot() to create and assign a root node to
@CEO. The following Insert statement adds Jodi as CEO with the @CEO HierarchyID as her
OrganizationLevel. Inserting Jim into EmployeeHierarchy uses the GetDescendant method, with the @CEO
HierarchyID as parent, making Jim report to Jodi.

Adding Kay as your COO is a two-step process. First, you use the Select @CLevel statement with
GetAncestor(1) = @CEO to find the maximum OrganizationLevel below the CEO. Passing @CLevel to
GetDescendant in Kay’s Insert statement places Kay in your EmployeeHierarchy as a sibling of Jim. Kay
and Jim now both report to Jodi.

Finally, you add Bob and Andy as managers. Both Bob and Andy report to Kay. By setting @COO to
Kay’s OrganizationLevel and using @COO.GetDescendant, you will add both Bob and Andy as direct
reports (children) of Kay. Of course, Bob and Andy are now siblings. Figure A–1 displays an organization
chart of the hierarchy you just created.

APPENDIX ■ THE HIERARCHYID DATATYPE

405

Figure A–1. The organization chart of employees you created in EmployeeHierachy

Displaying Hierarchical Data in SSMS
You can view hierarchical data via SSMS. To view a textual representation of the EmployeeHierarchy
table, enter and execute the following code:

Select Name, Position, OrganizationLevel.ToString()
From EmployeeHierarchy;

This will list each employee, along with his or her position and a text representation of that person’s
location in the hierarchy. The ToString method returns your HierarchyID, using a single slash character
(/) to represent the root node. Looking at Bob and Andy, you can see that they are siblings and children
of Kay. Figure A–2 shows the results of the preceding query in SSMS. The third column shows each
person’s location in the hierarchy. The delimited string that you see is termed a materialized path.

Figure A–2. The organization chart of employees you created in EmployeeHierachy, viewed in SSMS

Index

■ ■ ■

407

■ A
account dimension, 50
Accuracy and Validation group, in Microsoft

Excel, 324
Accuracy Chart button, 323
Accuracy Chart wizard, 325
actions, for OLAP modeling, 100–105

overview, 51
in SSAS, 100–104
in SSMS, 104

Actions tab, BIDS, 100
active record flag, 123
Add Account Intelligence option, 126
Add Attribute Ordering option, 129
Add Business Intelligence Wizard, 94
Add button, 296
Add Calculated Field option, 296
Add Copy of Existing Package dialog box, 173
Add Currency Conversion option, 129
Add Custom Member Formulas option, 129
Add Dataset option, 285
Add Dimension Intelligence option, 129
Add Existing Package option, 173
Add Model to Structure dialog box, 324
Add Output dialog box, 317
Add Semiadditive Measures option, 126
Add Time Intelligence option, 127
Add transformation group, 219
Add Unary Operator option, 129
Add Writeback option, 126

Additional properties item, 358
Advanced button

Define Relationship dialog box, 110
ribbon, 323

Advanced Data Source View Options dialog
box, 196

Advanced page, 216
Advanced Processing options page, 216
Advanced property, 226, 233
Advanced Query Editor panes, 317
Advanced tab, Lookup Transformation Editor

dialog box, 226
advantages of MDX, 347
Adventure Works

setting up BI, 10
using PowerPivot with, 336–346

adding calculated columns, 342–345
hiding columns, 340
importing data, 336–337
sorting and filtering, 338–340
using in Excel, 345–346

Adventure Works cube, 16, 271–272
aggregate dialog box, 219
Aggregate function, 357, 366
Aggregation Design Wizard, designing

aggregations using, 135–139
Aggregation Storage setting, 152
aggregationFunction property, 126
aggregations

designing, 135–142

■ INDEX

408

using Aggregation Design Wizard,
135–139

using SQL Server Profiler, 141–142
using Usage-Based Optimization

Wizard, 139–141
with MOLAP, 133–134

Aggregations tab, BIDS Cube Designer, 135
algorithms

for data mining, 384–390
defined, 369

Allow Duplicate Names property, 80
Analysis Services Execute DDL task, 207
Analysis Services Processing task, 207–208, 217
Analysis Services Scripting Language (ASSL),

207
architectural considerations, for data mining,

373–374
Arrange Fields dialog box, 293
ASSL (Analysis Services Scripting Language),

207
Association category, 372
Association Rules, Microsoft, 388
Attribute Profiles view, 381
Attribute Relationships tab, 76–78
AttributeHierarchyOptimized property, 156
AttributeHierarchyOptimizedState property,

156
AttributeRelationship RelationshipType

property, 156
attributes, for dimension tables, 29–30
Audit group, 219
Audit task, 248
Audit Transformation Editor dialog box, 227
Automatic MOLAP option, 150
Automatic option, 110
AverageOfChildren aggregation function, 49

■ B
Batch option, 103
Begin Transaction statement, 264
BI (Business Intelligence), 1–24

business problems addressed by, 22–23
concepts behind, 21–22
defined, 1–3
Microsoft tools for, 4–7

languages for, 7
overview, 5–7
reasons to use, 23

setting up, 9–20
connecting to sample cube using Excel,

17–20
deploying standard edition of sample

cube, 10–17
using AdventureWorks, 10

BIDS (Business Intelligence Development
Studio), 53–81

building cube, 67–70
defining cube, 61–64
defining hierarchies, 66–67
dimension attributes in

adding, 64–66
creating relationships for, 76–78
editing, 73–74

dimension properties, editing, 79–80
Dimension Structure tab in, 78
display format of measures, 70–72
offline vs. online mode in, 80–81

BIDS browser interface exploring, 16–17
BIDS Calculations tab, 364
BIDS cube browser, 68
BIDS window, 14
BIGINT datatype, 153
BirthDate column, 268
BOL (Books Online), 132, 176
Boolean datatype, 394
break mode, 244–245
Breakpoints option, BIDS, 245
Browse button, 313, 316
Browse window in Excel, 314
Browser tab, Process Cube dialog, 69
Build button, 37, 109, 113
built-in Icon Set Conditional Formatting, 307
Bulk Insert flow task, 204
BULK INSERT statement, SQL, 204
Business Intelligence. See BI
Business Intelligence Development Studio. See

BIDS
Business Intelligence group, 219
Business Intelligence Projects project type, 188

■ INDEX

409

Business Intelligence Wizard, for OLAP
modeling, 125–129

business key, 27
business problems, addressed by BI, 22–23
ByAccount aggregation function, 49

■ C
CacheMode property, 374
Calculated Columns SSIS sample package, 219
calculated measures

vs. derived measure, 50
in MDX, 359–361

Calculated Member Builder dialog box, 281, 283
Calculated Members area, 281
Calculated members feature, 355
CalculatedColumns.dtsx package, 219, 221
Calculation Tools section, Calculations tab, 358
Calculations group, 333
Calculations tab, 356
Calendar Date hierarchy, 349
Calendar Quarter Description level, 349
Calendar Year attribute, 76–77
Calendar Year cell, 285
Calendar Year column, 273
Calendar Year hierarchy, 16
CalendarYear field, 64
Candidate Key Profiles pane, 268
CaptureDataLineage.dtsx package, 227
case table, 390
cFatResellerSales, 61
Change filters pane, 294
Change Settings button

Dimension Key Errors tab, 112
Process Cube dialog box, 158

Changing Attribute, 46
Changing Attribute option, 228
CheckpointFileName property, 262
checkpoints, in execution of SSIS packages,

261–262
CheckpointUsage property, 262
child1 parameter, 403
child2 parameter, 403
Choose a Data Source dialog box, 166
Choose How to Import the Data dialog, 337

Choose Perspective dialog box, 292
Choose the Deployment Location dialog box,

284
Choose the layout dialog box, 293
Choose the Table Style dialog box, 284
Choose Toolbox Items dialog box, 199
City column, 75
Classification category, 372
Classification Matrix button, 323, 326
Classification Matrix dialog box, 327
Clean Data button, 319
ClearAfterProcessing, 374
Client Initiated option, Storage Options dialog

box, 152
Clipboard group, 333
CLR (Common Language Runtime), 403
Cluster Diagram view, 386
CLUSTER_COUNT property, 387
Clustering, Microsoft, 386
CLUSTERING_METHOD, 386
Color field, 65
Column Chart viewer type, 241
Column Length Distribution Profile, 266
Column Null Ratio Profile, 265
Column pane, 274
Column Pattern Profile, 266
Column Statistics Profile, 265
Column Value Distribution Profile, 266
Columns group, 333
Commit Transaction statement, 264
Common Language Runtime (CLR), 403
completing the wizard wizard step, 64
COMPLEXITY_PENALTY property, 377, 385
components, of SSRS, 276–277
concepts

behind BI, 21–22
of data mining, 372–373

Conditional Formatting button, Home tab, 306
Conditional Split dialog box, 221
Conditional Split Transformation Editor dialog

box, 223
configurations, for remote partitions, 154
Configure Dimension Attributes page, Business

Intelligence Wizard, 126
Configure SSIS Logs dialog box, 245

■ INDEX

410

Connection Manager dialog box, 265
Connection Managers area

BIDS, 176
SSIS design surface, 195

Connection Managers pane, 194
Connection Mangers window, 192
Connection String list box, 278
connections, for SSIS packages, 174–176,

193–196
Connections group, 333
Constraint option, 212
container tasks, for SSIS packages, 200–201
Containers group, 199
content types, for data mining, 392–396
contextual tab, Excel PivotTable Tools ribbon,

302
contextual tabset, 302
Continuous content type attribute, 393
Control Flow area, 202, 214
Control Flow design surface, 179, 197, 202
Control Flow tab, 191
Control Flow tasks, for SSIS packages

container tasks, 200–201
file system tasks, 204–205
operating system tasks, 205–206
overview, 176–178
precedence constraints for, 209–211
remote tasks, 207
script tasks, 206–207
SQL tasks, 201–204
SSAS tasks, 207–209
using expressions with, 211–214

Control Flow toolbox, 200
Control Flow work area, 238
Copy data from one or more tables or views

option, Import and Export Wizard, 167
Copy to Excel button, 315
Count aggregation function, 49
Count measures, 48
CountRows function, 344
Create Member, 361
Create method, 131
Create Mining Structure option, 324
Create PivotTable dialog, 345
Create Relationship button, 334

Create Table dialog box, 180
Create Trendline option, 308
CreateDeploymentUtility property, 253
CreateQueryLogTable property, 139
Credentials button, 278
CRUD (creating, reading, updating, and

deleting), 403
Cube term, 348
cubes

building, using BIDS, 67–70
defining, using BIDS, 61–64
multiple fact tables in single, and OLAP

modeling, 107–109
processing options for, 154–160

Cubes folder, 15, 352
Current function, 364
current record flag, 123
CurrentMember function, 87, 357
Custom Options dialog box, 149
Customer dimension, 32, 37, 75, 352
CustomerAlternateKey identifier, 28
CustomerCountByCountry.mht file, 275
CustomerKey identifier, 28
CustomRollupColumn property, 129
Cyclical column, 393

■ D
Data Bars button, 306
Data Bars Conditional Formatting, 307
Data Connection Wizard, 18–19, 272
data definition language (DDL), 34
Data Flow area, 203
Data Flow design surface, 179, 241, 250
Data Flow Script component, 245
Data Flow tab, 191
Data Flow tasks, for SSIS packages, 179–181,

214–219
adding transformations to, 182–186
data sources for, 214–215
destination types for, 216–217
transformation types for, 217–219

Data Flow Transformation toolbox, 398
Data Flow window, 202, 214
Data Flow work area, 202, 214, 219, 238

■ INDEX

411

Data is not available to all users pain point, 23
data mapping, for ETL design, 162–165
data mart, 2
Data member term, 348
data mining, 369–402

algorithms for, 384–390
architectural considerations for, 373–374
concepts of, 372–373
content types for, 392–396
Data Mining Wizard, 390–392
datatypes for, 392–396
defined, 369–371
with Microsoft Excel, 308–328

Accuracy and Validation group in, 324
configuring Excel as client, 309–312
Data Mining tab in, 312–318
Data Modeling group in, 323–324
Data Preparation group in, 318–322

Mining Accuracy Chart tab, 381–382
Mining Model Prediction tab, 382–383
Mining Model Viewer tab, 378–381
Mining Models tab, 375–377
and OLAP, 50
processing mining models, 396–399

methods for, 396–397
and SSIS, 397–399

using DMX language, 399
Data Mining Add-ins, 309, 323
Data Mining Extensions (DMX), 7, 399
Data Mining Query Task, 398
Data Mining Query Transformation, 399
Data Mining ribbon, 325
Data Mining tab, in Microsoft Excel, 312–318
Data mining using SSAS, 6
Data Mining Wizard, 315, 390–392, 394–395
Data Modeling group, in Microsoft Excel,

323–324
Data Preparation group, in Microsoft Excel,

318–322
Data Profile Viewer application, 268
data profiling, in SSIS, 264–270

creating data profile, 264–267
viewing data profile, 267

Data Profiling task, 267

Data Profiling Task Editor, 264, 267
Data Source Views (DSVs), 54, 115, 191, 196,

374, 396
Data Source Views folder, 56, 173
Data Source Wizard, 56, 174, 193
data sources

for Data Flow tasks, 214–215
views as, with snowflake schema, 42

Data Sources folder, Solution Explorer, 55,
173–174, 193, 195

Data tab, Excel, 302
data transformations, for SSIS packages,

219–234
enterprise edition-only transformations,

232–234
run command data transformations,

231–232
SCD, 227–231
split data transformations, 221–223
SSAS data transformations, 227
translate data transformations, 223–226

data viewers, for SSIS packages, 241–243
data warehouse, 2
Database Engine Tuning Advisor (DETA), 248
database owner (dbo), 152
DataCleaning sample package, 237
DataCleaning.dtsx package, 223, 232
DataProfile.dtsx package, 264
DataProfilerResults.xml file, 264, 267
DataSet action type, 100
Dataset node, 294
Dataset Properties dialog box, 294
Datasets node, Report Data pane, 285
datatypes

for data mining, 392–396
HIERARCHYID datatype, 403–405

adding data to table, 404–405
creating table with, 403
displaying hierarchical data in SSMS,

405
Date datatype, 394
Date dimension, 76, 349
Date function, 343
Date Key attribute, 76
dateLoaded column, 123

■ INDEX

412

DatesBetween function, 344
Day level, 349
Day Number Of Year attribute, 76–77
db_dtsadmin role, 260
db_dtsltduser role, 260
db_dtsoperator role, 260
dbo (database owner), 152
DDL (data definition language), 34
debugging, SSIS packages, 243–245
Decision support system (DSS) database, 3
Decision Tree view, 379
Decision Trees, Microsoft, 385
Default Member property, 80
Default mining models process method, 396
Default mining structures process method, 396
DefaultMember property, 74
Define Relationship dialog box, 40, 109–110,

113–115, 119
degenerate dimensions, for OLAP modeling,

114
Delivery Date dimension, 352
denormalization, 4
Dependency Network Viewer, 314
Deploy SSIS Packages section, Package

Installation Wizard, 254
deployment options, for SSIS packages,

253–255
DeploymentOutputPath property, 253
Derived Column dialog box, 183
Derived Column transformation, 183
Derived Column Transformation Editor dialog

box, 183
derived measure, vs. calculated measure, 50
Design Aggregations button, 135
design mode, 280
Design Mode button, 280
Design tab, 59, 284–285, 333, 340
Design the Query dialog box, 279
Design the Table dialog box, 284
designer, for PowerPivot for Excel, 332–335
Destination drop-down list, 264
destination types, for Data Flow tasks, 216–217
DETA (Database Engine Tuning Advisor), 248
Details tab, Configure SSIS Logs dialog box, 246
Detect button, 392

Deviation analysis category, 373
Diff option, 204
DiffGram format, 204
DimCustomer dimension, 28
DimDate dimension, 349
DimEmployee table, 59, 180
dimension attributes, in BIDS

adding, 64–66
creating relationships for, 76–78
editing, 73–74

Dimension Key Errors tab, 112, 158
Dimension Processing destination type, 216
dimension properties, in BIDS, 79–80
Dimension Structure tab, in BIDS, 64–67, 73, 78
Dimension Structure work area, BIDS, 43
dimension tables, in star schema, 27–30

attributes for, 29–30
keys for, 27–28

Dimension term, 348
Dimension Usage grid, 37
Dimension Usage section, SSAS, 37
Dimension Usage tab, cube designer work area,

108–109, 113, 119–120
dimensional hierarchy, 44
dimensions

for OLAP modeling, 112–122
degenerate dimensions, 114
dimensions that change, 123–124
error handling for, 124–125
many-to-many dimensions, 116–120
parent-child dimensions, 115–116
role-playing dimensions, 120–121
snowflake dimensions, 112–113
writeback dimensions, 121–122

processing options for, 154–160
Dimensions folder, 64
DimProductCategory, 334
DimProductSubcategory, 334, 337
Discrete content type attribute, 393
DiscretizationBucketCount, 393
DiscretizationMethod, 393
Discretized content type attribute, 393
Disparate data sources pain point, 23
display format, of measures in BIDS, 70–72

■ INDEX

413

Display_Folder property, 90
DistinctCount aggregation function, 49
DistinctCount function, 364
DistinctCount measures, 366
Distributed Transaction Coordinator (DTC),

262
DMX (Data Mining Extensions), 7, 399
DMX templates, 401
Do not design option, 138
document type definition (DTD), 204
DontSaveSensitive option, 260
Double datatype, 394
Drag Field area, 273
drag-and-drop column fields area, 293
Drillthrough Action, 102
Drop KPI statement, 90
Drop Member statement, 90
DSS (Decision support system) database, 3
DSVs (Data Source Views), 54, 115, 191, 196,

374, 396
DTC (Distributed Transaction Coordinator),

262
DTD (document type definition), 204
dtexec.exe utility, 256, 260
dtexecui.exe utility, 256
dtutil.exe utility, 256
Dynamic Package Configuration Wizard, using

in SSIS, 234–235

■ E
Edit Breakpoints button, 243
Edit button, 278
Edit Connection dialog, 333
Edit Table Properties dialog, 335
Employee attribute, 116
Employee Department attribute, 16
Employee dimension, 32
Employee option, 59
Employee table, 267, 270
EmployeeHierarchy table, 405
EmployeeKey attribute, 116
EmployeeKey column, 184
Enabled setting, 152
EncryptAllWithKey option, 261
EncryptAllWithPassword option, 261

EncryptSensitiveWithPassword option, 261
EncryptSensitiveWithUserKey option, 261
English Product Category Name attribute, 66
English Product Name attribute, 66
English Product Subcategory Name attribute,

66
EnglishProductCategoryName field, 65
EnglishProductSubcategoryName field, 65
Enterprise Edition group, 219
Entities pane, 293
EQUAL_AREAS, 393
error handling

for dimensions, 124–125
for SSIS packages, 248–251

Error List window, 289
Error option, 111
ErrorConfiguration property, 124
Estimated storage reaches option, 137
ETL (extract, transform, and load) design, using

SSIS, 161–171, 187–188
data mapping for, 162–165
plan for, 161–162
and staging servers, 165

Evaluation operation drop-down list, 212
Event handler drop-down list, 251
event handlers, for SSIS packages, 251–252
Event Handlers tab, 191, 251
Excel, Microsoft, 301–328

connecting to sample cube using, 17–20
data mining with, 308–328

Accuracy and Validation group in, 324
configuring Excel as client, 309–312
Data Mining tab in, 312–318
Data Modeling group in, 323–324
Data Preparation group in, 318–322

KPI support in, 306–308
PowerPivot for, 329–335

designer, 332–335
ribbon, 329–332

reporting with, 271–276
pivot charts, 274–275
pivot tables, 271–274
publishing workbook, 275–276

ribbon in, 301–304

■ INDEX

414

using PowerPivot data in, 345–346
Excel Associate, 323
Excel Classify, 323
Excel Cluster, 323
Excel Estimate, 323
Excel Forecast, 323
Excel PivotTable, 346
Exchange Rate Measures column, 96
Executable drop-down list, 251
Execute DDL task, 208
Execute Package option, 180
Execute Package Utility dialog box, 171, 256,

259
ExecuteSQLStatemenstInLoop.dtsx package,

221
ExecuteSQLStatementsInLoop Sample folder,

197
ExecuteSQLStatementsInLoop.dtsx file, 197,

221
ExecuteSqlStatementsInLoop.sln file, 197
execution, of SSIS packages, 237–252

options for, 256–260
using checkpoints in, 261–262

Existing Connections icon, Get External Data
group, 303

Exists function, 367
Explore Data button, 319–320
Explore Data wizard, 319
Export Data option, AdventureWorks2008R2

database, 166
Expression and Constraint option, 212
Expression area, Calculated Member Builder

dialog box, 283
Expression dialog box, 296
Expression item, 358
Expression option, 212
Expression or Constraint option, 212
Expression text box, 212
expressions

in Control Flow tasks, for precedence
constraints, 211–214

in SSIS, for properties, 236
extract, transform, and load design, using SSIS.

See ETL design, using SSIS

■ F
fact (measure) modeling, 48–50

calculated measure vs. derived measure, 50
example of, 48–49

fact dimension type, 122
fact tables, multiple in single cube, 107–109
FactInternetSales tab, 338
FactInternetSales table, 338
Fail Component option, 250
FailPackageOnFailure property, 248, 262
FailParentOnFailure property, 248
False option, ForceRebuildInterval setting, 152
Field Properties option, 294
Fields box, 292
Fields pane, 293
File Connection Manager Editor, 264
File drop-down list, 264
file system tasks, for SSIS packages, 204–205
Filter function, 365
Filter tables text box, 143
filtering, using PowerPivot with Adventure

Works, 338–340
Find Tables button, 143
FirstChild aggregation function, 49
FirstName column, 183
FirstNonEmpty aggregation function, 49
Fixed Attribute option, 228
FK (foreign key), 26
For loop, 200
ForcedExecutionValue property, 248
ForcedExecutionValueType property, 248
ForceExecutionResult property, 249
ForceExecutionValue property, 249
ForceRebuildInterval setting, 152
Foreach container task, 200
Foreach loop, 200–201
foreign key (FK), 26
Foresach Loop Editor dialog box, 200
Format Trendline dialog box, 308
FormatString property, 70
Freeze statement, 366–367
FROM clause, 352
full process option, 154
Functional Dependency Profile, 266

■ INDEX

415

functions, in MDX, 364–367
Functions tab, 285
Fuzzy Grouping transformation, 224
Fuzzy Lookup transformation, 224
fx button, 296

■ G
General system slowdowns pain point, 23
Generate function, 365–366
Generate Model button, 291
Geography dimension, 37, 348
GeographyKey attribute, Customer dimension,

37
Get External Data group, 333
GetAncestor method, 403
GetDescendant method, 403
GetRoot method, 403
Getting Started dialog box, 325
Getting Started wizard, 309
Goal property, 85
Google Resellar Search action, 104
grain statements, creating star schema using,

33–34
Greater Than Or Equal To menu item, 340
Grid viewer type, 241
Gross Profit Margin KPI, 90
GrossMargin calculated column, 342

■ H
hard clustering, 386
HIDDEN_NODE_RATIO parameter, 390
Hide and Unhide Columns dialog, 340–341
hiding columns, using PowerPivot with

Adventure Works, 340
hierarchies, defining in BIDS, 66–67
Hierarchy term, 348
HIERARCHYID datatype, 403–405

adding data to table, 404–405
creating table with, 403
displaying hierarchical data in SSMS, 405

HierarchyID::GetRoot() method, 404
Histogram viewer type, 241
Historical Attribute, 46
Historical Attribute option, 228

Hit Count Type option, 244
Hit Count Value option, 244
HOLAP (Hybrid Online Analytical Processing),

143–146
HOLAP cube type, 148
HOLAP option, 146, 150
Home tab, 333
huge dimensions, storage for, 146–147
Hybrid Online Analytical Processing (HOLAP),

143–146

■ I, J
I click stop option, 138
Ignore Failure option, 250
Ignore setting, 376
IIF function, 364
Immediate option, OnlineMode setting, 152
Import and Export Wizard, 166, 173, 187, 193
Import Data dialog box, 273
Import Data option, AdventureWorks2008R2

database, 166
Import Package button, 255
importing data, using PowerPivot with

Adventure Works, 336–337
Input setting, 376
Insert statement, 404
Instructor dimension, 34
InstructorDim table, 34
int datatype, 26
Integration Services option, Object Explorer,

170
Integration Services Project project type, 172
Interactive option, 103
InternetSales dataset, 293, 296
Invalid/inconsistent report data pain point, 23
Invocation clause, 104
Invocation drop-down list, 103
IsolationLevel property, 262

■ K
KeepTrainingCases, 374
Key column, 393
Key Columns field, 268
Key Performance Indicators. See KPIs
Key Sequence column, 393

■ INDEX

416

Key Time column, 393
Key Type column, 227
Key Violations pane, 268
KeyErrorAction property, 124
keys, for dimension tables, 27–28
KPICurrentTimeMember function, 367
KPIGoal function, 85, 367
KPIs (Key Performance Indicators)

OLAP, modeling, 83–90
in SSAS, 84–87
in SSMS, 89–90

overview, 51
support, in Microsoft Excel, 306–308

KPIStatus function, 367
KPITrend function, 367
KPIValue function, 85, 367
KPIWeight function, 367

■ L
languages, for Microsoft tools for BI, 7
language/translation view, 93
Last change wins option, 46
LastChild aggregation function, 49
LastName column, 183
LastNonEmpty aggregation function, 49
Latency setting, 152
Layout tab, 289
lazyAggregations mode, 156
Left function, 343
Level term, 348
lift chart, 381–382
Linear Regression, Microsoft, 390
linked dimension type, 122
localizing measure values, OLAP modeling,

94–99
Locals window, 244
Log Events item, 191
Log Events option, 246
Log Events window, 191, 246
Log providers configuration area, 258
logging, execution results for SSIS packages,

245–248
Logging option

BIDS, 245

SSIS menu, 191
LogicalAnd property, 210
Logistic Regression, Microsoft, 390
Long datatype, 394
Lookup transformation, 223, 226
Lookup Transformation Editor dialog box, 226
Low-latency MOLAP option, 150

■ M
Manage Models button, Management group,

313
Manage Relationships button, 334
Managing Mining Structures and Models dialog

box, 313
Manual query writing pain point, 23
Many-to-Many dimensions, for OLAP

modeling, 116–120
Many-to-many option, 98
Many-to-one option, 98
Mappings page, 216
market-basket analysis, 371–372
Materialize check box, 40
materialized path, 405
Max aggregation function, 49
MAXIMUM_INPUT_ATTRIBUTES parameter,

389
MAXIMUM_ITEMSET_SIZE property, 388
MAXIMUM_OUTPUT_ATTRIBUTES

parameter, 389
MDX (Multidimensional Expressions), 347–367

adding objects to cube, 356–358
advantages of, 347
calculated measures in, 359–361
common functions in, 364–367
named sets in, 361–362
query syntax for, 347–355

basic syntax, 350–353
and core terminology, 348–349
members, 353–355
sets, 353–355
tuples, 353–355

script commands for, 362–364
MDX CHILDREN function, 354
MDX scripts feature, 356
MDX Template Explorer, 350

■ INDEX

417

MDX work area, 283
measure (fact) modeling, 48–50

calculated measure vs. derived measure, 50
example of, 48–49

Measure Group Bindings dialog box, 110
Measure Group Storage Settings dialog box, 150
Measure Settings dialog, 331
Measure term, 349
measure values, localizing, 94–99
MeasureExpression property, 71
measures, display format of, 70–72
Medium-latency MOLAP option, 150
Member Names Unique property, 80
members, in MDX, 353–355
Members function, 362
MemberValue function, 367
Merge Join transformation, 219
Merge option, 204
Metadata area, Calculated Member Builder

dialog box, 283
Metadata browser, 280
Metadata panel, 280
Metadata tab, 285
Metadata view, 285
methods, for processing mining models,

396–397
Microsoft Association Rules, 388
Microsoft Clustering, 386
Microsoft Decision Trees, 385
Microsoft Excel. See Excel, Microsoft
Microsoft Linear Regression, 390
Microsoft Logistic Regression, 390
Microsoft Message Queue (MSMQ), 206
Microsoft Naïve Bayes, 384
Microsoft Neural Network, 389
Microsoft Sequence Clustering, 387
Microsoft Time Series, 385
Microsoft tools, for BI, 4–7

languages for, 7
overview, 5–7
reasons to use, 23

Mid function, 343
Min aggregation function, 49
Mining Accuracy Chart tab, 381–382

Mining Model Prediction tab, 382–383
Mining Model Viewer tab, 378–381
Mining Models tab, 375–377
mining structures, 371
Mining Viewer, 314
Miscellaneous folder, 173
MOLAP (default) option, 146
MOLAP (Multidimensional Online Analytical

Processing)
aggregations with, 133–134
vs. HOLAP, 143–146
is default in SSAS, 135
vs. ROLAP, 143–146
XMLA for, 131–133

MOLAP (nondefault) option, 146
MOLAP cache, 149
MOLAP cube type, 148
MOLAP only option, Aggregation Storage

setting, 152
money datatype, 26
Month level, 349
Month Number Of Year attribute, 76–77
MonthNumberOfYear field, 64
More Rules button, 306
MSDB (Multisource Database), 255
MSMQ (Microsoft Message Queue), 206
Multidimensional Expressions. See MDX
Multidimensional Online Analytical Processing.

See MOLAP
multiple fact tables, in single cube, and OLAP

modeling, 107–109
Multisource Database (MSDB), 255

■ N
Naïve Bayes, Microsoft, 384
Name property, 87
Named set feature, 356
named sets, in MDX, 361–362
NameMatchingCriteria property, 61
natural hierarchy, 75
navigational hierarchy, 75
nested table, 390
Neural Network, Microsoft, 389
New Calculated Member option, 281

■ INDEX

418

New Connection from Data Source option, 175,
194

New Connection item, 192
New Connection option, 194
New Cube wizard, BIDS, 37, 44
New Data Source option, Data Sources folder,

174
New Partition link, 143
New Project dialog box, BIDS, 54, 277
New Report or Dataset dialog box, 293
New Table or Matrix dialog box, 293
NewID field, 34
None aggregation function, 49–50
nonstar dimensions, for OLAP modeling,

112–122
degenerate dimensions, 114
many-to-many dimensions, 116–120
parent-child dimensions, 115–116
role-playing dimensions, 120–121
snowflake dimensions, 112–113
writeback dimensions, 121–122

Normalization, 4
notifications, for proactive caching, 152–153
Notifications tab, Storage Options dialog box,

152
null values, and OLAP modeling, 109–112
NullKeyConvertedToUnknown property,

111–112
NullKeyNotAllowed property, 111–112
Numeric_Expression, 317

■ O
Object Explorer, 166, 352
OfferingDim table, 34
Office PivotTable interface, 59
offline mode, vs. online mode, 80–81
OLAP (Online Analytical Processing) modeling,

25, 51–53, 81–83, 105–129
actions for, 100–105

overview, 51
in SSAS, 100–104
in SSMS, 104

data mining, 50
dimensions that change, 123–124
error handling for dimensions, 124–125

fact (measure) modeling, 48–50
calculated measure vs. derived measure,

50
example of, 48–49

KPIs, 83–90
adding in SSAS, 84–87
adding in SSMS, 89–90
overview, 51

localizing measure values, 94–99
and multiple fact tables in single cube,

107–109
nonstar dimensions for, 112–122

degenerate dimensions, 114
many-to-many dimensions, 116–120
parent-child dimensions, 115–116
role-playing dimensions, 120–121
snowflake dimensions, 112–113
writeback dimensions, 121–122

and null values, 109–112
perspectives for, 51–91
snowflake schema, 37–42

overview, 37–41
using views as data sources with, 42
variations of, 42
when to use, 41–42

and source control, 51
star schema, 25–37

creating using grain statements, 33–34
dimension tables in, 27–30
overview, 26–27
tools for creating, 34–37
when to use, 30–33

and translations, 51
translations for, 92–94
UDM, 42–48

overview, 43–44
RCD, 47–48
SCD, 45–46
writeback with, 48

using BIDS, 53–81
adding dimension attributes, 64–66
building cube, 67–70
creating attribute relationships, 76–78
defining cube, 61–64

■ INDEX

419

defining hierarchies, 66–67
Dimension Structure tab in, 78
display format of measures, 70–72
editing dimension attributes, 73–74
editing dimension properties, 79–80
offline vs. online mode in, 80–81

using Business Intelligence Wizard for,
125–129

OldID field, 34
OLTP (online transaction processing)

databases, 3
On Columns clause, 285, 352
On Open option, 103
on Rows clause, 352
OnCacheComplete option, OnlineMode

setting, 152
OnError event handler, 251
One-to-many option, 98
OnExecStatusChanged event handler, 251
OnInfomation event handler, 251
Online Analytical Processing modeling. See

OLAP modeling
online mode, vs. offline mode, 80–81
online transaction processing (OLTP)

databases, 3
OnlineMode setting, 152
OnPostExecute event handler, 251
OnPostValidate event handler, 251
OnPreExecute event handler, 252
OnPreValidate event handler, 252
OnProgress event handler, 251–252
OnQueryCancel event handler, 252
OnTaskFailed event handler, 246, 251–252
OnVariableValueChanged event handler, 252
OnWarning event handler, 252
OPENQUERY operator, 399
operating system tasks, for SSIS packages,

205–206
Options button, 151
Order By property, 80
Order Count measure, 16
OrderDateKey column, 338–339
Ordered column, 393
OrderQuantity column, 26
outlier cases, 373

Outliers dialog box, 319

■ P
Package Configuration Wizard, 191, 234
Package Configurations option

BIDS, 234
SSIS menu, 191

Package Explorer view, 237
Package Installation Wizard, 254
Package location drop-down list, Add Copy of

Existing Package dialog box, 173
package Progress window view, 237
Package Validation section, Package

Installation Wizard, 254
PackagePassword property, 261
packages, for SSIS, 171–181, 188–196

adding Control Flow tasks to, 176–178
adding transformations to, 182–186
configuring connections for, 193–196
configuring Data Flow tasks for, 179–181
connections for, 174–176
creating new, 188–193
data viewers for, 241–243
debugging SSIS packages, 243–245
deployment options for, 253–255
DSVs for, 196
error handling for, 248–251
event handlers for, 251–252
execution options for, 256–260
logging execution results, 245–248
overview of execution, 237–252
project for, 172–173
security options for, 260–261
using checkpoints in execution of, 261–262
using transactions in, 262–264

pain points, 22
ParallelPeriod function, 87, 347, 366
Parameter Properties option, 286
Parameters node, Report Data pane, 286
Parent properties item, 358
parent-child dimensions, for OLAP modeling,

115–116
parse button, 284
partition function, 154

■ INDEX

420

Partition Processing data flow destination type,
217

partitioning storage, of cubes
relational table partitioning, 153–154
remote partition configurations, 154

Partitions tab, 145
Patch option, 204
Performance gain reaches option, 137–138
PERIODICITY_HINT property, 385
PeriodsToDate function, 357
PeriodToDate function, 357
[Person].[AddressType] table, 168
perspectives

and OLAP, 51
for OLAP modeling, 91

Pivot Chart button, ribbon, 308
pivot charts, reporting with Excel, 274–275
pivot tables, reporting with Excel, 271–274
PivotTable button, Reports group, 345
PivotTable Field List, 273, 304–305
PivotTable Report data view, 273
PivotTable Tools menu area, 274
PK (primary key), 27
PowerPivot, 329–346

for Excel, 329–335
designer, 332–335
ribbon, 329–332

using with Adventure Works, 336–346
adding calculated columns, 342–345
hiding columns, 340
importing data, 336–337
sorting and filtering, 338–340
using in Excel, 345–346

PowerPivot Designer, 330, 338
PowerPivot Field List, 345
PowerPivot tab, 330
PowerPivot Window, 336
Precedence Constraint Editor dialog box, 211

precedence constraints, in Control Flow tasks
expressions in, 211–214
overview, 209–211

Predict function, 317, 383
Predict setting, 376
PredictAssociation, 383
PredictOnly setting, 376
PredictProbability function, 317, 383
PredictSupport function, 317
Prepare Query button, 283–284
Preserve option, 110
Preview design surface, 289
Preview tab, 284, 289
PrevMember function, 90
primary key (PK), 27
proactive caching, 145, 149–153

notifications for, 152–153
settings for, 151–152

Process Clear Structure mining structures
process method, 396

Process command, 397
Process Cube dialog box, 67, 69, 158–159
Process Data option, 156
Process Database dialog box, 14
Process Default option, 156
Process Dimension (or cube) dialog box, BIDS,

112
Process Full mining models process method,

396
Process Full mining structures process method,

396
Process Full option, 156
Process Incremental (cubes only) option, 156
Process Index option, 156
Process Progress dialog box, BIDS, 69
Process Structure (cubes only) option, 156
Process Structure mining structures process

method, 396
Process Unprocess mining models process

method, 396
Process Update (dimensions only) option, 156
processing mining models, 396–399

methods for, 396–397
and SSIS, 397–399

■ INDEX

421

Processing Options tab, Process Cube dialog
box, 158

Product dimension, 37, 67
Product Lines, 362
Profiles (Table View) pane, 268
profit chart, 382
Profit Chart button, 327
Progress pane, 184
Progress tab, 192, 239
Progress window, 239
projects, for SSIS packages, 172–173
properties, expressions in SSIS for, 236
Properties dialog box, 156, 248
Properties window, 72, 79
property page, XML source editor, 215
Property Pages dialog box, 287
Proprietary action type, 100
ProtectionLevel options, 261
ProtectionLevel property, 260

■ Q
Query Builder button, 279
Query Builder interface, 283
Query button, 315
Query Designer interface, 279–280, 285
Query Model wizard, 315–316
Query Optimization Wizard, 158
Query Parameters button, 283
Query Parameters dialog box, 283
query syntax, for MDX, 347–355

basic syntax, 350–353
and core terminology, 348–349
members, 353–355
sets, 353–355
tuples, 353–355

QueryLogConnectionString property, 139
QueryLogSampling property, 139
Quick Profile button, 265

■ R
rapidly changing dimensions (RCDs), for UDM,

47–48
Raw File Source type, 215

RCDs (rapidly changing dimensions), for UDM,
47–48

RDBMS (relational database management
system), 26

RDL (Report Definition Language), 288
RDMS (relational database management

system), 262
Redirect Row option, 250
referenced dimension type, 122
Regression or forecasting category, 373
Regular option, Aggregation Storage setting,

152
Related function, 343
relational database management system

(RDBMS), 26
relational database management system

(RDMS), 262
Relational Online Analytical Processing. See

ROLAP
relational table partitioning, 153–154
Relationship section, Measure Group Bindings

dialog box, 110
relationships, creating for dimension attributes,

76–78
remote partitions, configurations for, 154
remote tasks, for SSIS packages, 207
Report Builder button, Report Manager toolbar,

292
Report Builder, reporting with, 290–299

creating dataset, 292–293
creating report, 293–299
creating report model, 290–292

Report Builder tool, 298–299
Report Data pane, 285–286, 294
Report Definition Language (RDL), 288
Report Designer, 277
Report group, 331
Report Manager tool, 276, 298
Report Manager toolbar, 292
Report Manager Web interface, 290
Report Manager Web site, 290
Report Model Project template, 277
Report Parameters Properties dialog box, 286
Report Properties dialog box, 297
Report Server Project template, 277

h

■ INDEX

422

Report Server Project Wizard, 278–290
designing query, 279–284
previewing and designing report, 284–287
publishing report, 287–290

Report Server Project Wizard template, 277
Report Server Web Service, 277, 287
reporting tools, 271–299

Excel, 271–276
pivot charts, 274–275
pivot tables, 271–274
publishing workbook, 275–276

Report Builder, 290–299
creating dataset, 292–293
creating report, 293–299
creating report model, 290–292

SSRS, 276–290
components of, 276–277
samples for, 277
using Report Server Project Wizard,

278–290
Reports group, 333
Retain all history option, 46
Retain some history option, 46
RetainSameConnection property, 264
Review Aggregation Usage dialog box, 136–137
Revision Number - Fact Reseller Sales, 61
ribbon

in Microsoft Excel, 301–304
for PowerPivot for Excel, 329–332

Right function, 343
ROLAP (Relational Online Analytical

Processing)
vs. HOLAP, 143–146
vs. MOLAP, 143–146
overview, 142–143

ROLAP cube type, 148
ROLAP dimension type, 148
ROLAP mode, 151
ROLAP option, 146, 151
role-playing dimensions, for OLAP modeling,

120–121
Rollback Transaction statement, 264
Row groups area, 219, 293
rowguid column, 169
Rowset action type, 100

Rowset group, 219
Run button, 298
run command data transformations, for SSIS

packages, 231–232
Run immediately check box, 169
Run Package option, 171, 256

■ S
Sales Amount measure, 69
Sales Quota Allocation script, 362
SalesOrderNumber column, 26
sample cube

connecting to using Excel, 17–20
deploying standard edition of, 10–17

Sample Data button, 321
Sample Data wizard, 321–322
Save As dialog box, 275
Save as type drop-down list, 275
Save SSIS Package dialog box, 169
SaveCheckpoints property, 262
Scatter Plot viewer type, 241
SCD (Slowly Changing Dimension)

for SSIS packages, 227–231
for UDM, 45–46

Scheduled MOLAP option, 150
Scheduled Polling option, Storage Options

dialog box, 153
Scheduling and Delivery Processor, 277
Scope keyword, 362
Scope statement, 362, 366
script commands, for MDX, 362–364
Script Design window, 245
Script group, 199
Script Organizer, 356
Script task, 232
script tasks, for SSIS packages, 206–207
Script View button, BIDS, 360
security options, for SSIS packages, 260–261
Segmentation or clustering category, 372
Select Certificate dialog box, 261
SELECT clause, 352
select creation method wizard step, 64
SELECT DISTINCT statement, 44
SELECT FROM <model> (DML) statement, 383

■ INDEX

423

Select how to define the connection dialog box,
174, 193

select measure group tables wizard step, 64
select measures wizard step, 64
Select Members page, Add Business

Intelligence Wizard, 96
select new dimensions wizard step, 64
Select Relationship Type drop-down list, 39,

113
Select Source Tables and Views dialog box, 168
Select statement, 404
Select Tables and Views dialog, 58, 337
Select the Report Type dialog box, 284
Semantic Model Definition Language (SMDL),

290
Send Mail Task Editor configuration dialog box,

178
Sequence analysis and prediction category, 373
Sequence Clustering, Microsoft, 387
Sequence tasks, 200
ServerStorage option, 261
Set Aggregation Options dialog box, 137–138
Set All to Default button, 136
Set Currency Conversion options page, Add

Business Intelligence Wizard, 95
"Set Default Member - Attribute Name" dialog

box, 74
Set Default Member dialog box, 74
sets, in MDX, 353–355
settings, for proactive caching, 151–152
SetToArray function, 366
SharePoint, 6
SharePoint Portal Server (SPS), 81
Show subtotals and grand totals check box, 293
Sign button, 261
silence interval property, 150
silence override interval property, 150
SilenceInterval setting, 152
SilenceOverrideInterval setting, 152
Simple Object Access Protocol (SOAP), 131
single cube, multiple fact tables in, 107–109
Single File Web Page option, Save as type drop-

down list, 275
Single Table Quick Profile Form, 265–266
Slowly Changing Dimension. See SCD

Slowly Changing Dimension Wizard, 227
Slow-to-execute queries pain point, 23
SMDL (Semantic Model Definition Language),

290
SMEs (subject matter experts), 33, 163
SMO (SQL Management Objects), 201
snowflake dimensions, for OLAP modeling,

112–113
snowflake schema modeling, 37–42

overview, 37–41
using views as data sources with, 42
variations of, 42
when to use, 41–42

SOAP (Simple Object Access Protocol), 131
soft clustering, 386
Solution Explorer window, 287
SOLVE_ORDER keyword, 363
Sort and Filter group, 333
Sort transformation, 183
sorting, using PowerPivot with Adventure

Works, 338–340
Sorting dialog box, 295
source control, and OLAP, 51
Specify Object Counts dialog box, 137
Specify Profit Chart Parameters dialog box, 327
split data transformations, for SSIS packages,

221–223
Split/Join group, 219
SPS (SharePoint Portal Server), 81
SQL Management Objects (SMO), 201
SQL Server 2008 R2, 5
SQL Server Analysis Services. See SSAS
SQL Server group, 199
SQL Server Integration Services. See SSIS
SQL Server Management Studio. See SSMS
SQL Server option, Storage Options dialog box,

152
SQL Server Profiler, designing aggregations

using, 141–142
SQL Server Reporting Services. See SSRS
SQL tasks, for SSIS packages, 201–204
SqlHierarchyID class, 403
SSAS (SQL Server Analysis Services)

actions for OLAP modeling in, 100–104
adding KPIs in, 84–87

■ INDEX

424

SSAS connection, 291
SSAS cubes, 306
SSAS data sources, 316, 322
SSAS data transformations, for SSIS packages,

227
SSAS database, 304
SSAS Dimension Usage tab, BIDS cube

designer, 32
SSAS group, 199
SSAS metadata browser, 351
SSAS project, 322
SSAS queries, 322
SSAS source, 302
SSAS tasks, for SSIS packages, 207–209
SSIS (SQL Server Integration Services), 161,

186–187, 236–237, 270
Control Flow tasks, 198–214

container tasks, 200–201
file system tasks, 204–205
operating system tasks, 205–206
precedence constraints for, 209–211
remote tasks, 207
script tasks, 206–207
SQL tasks, 201–204
SSAS tasks, 207–209
using expressions with, 211–214

Data Flow tasks, 214–219
data sources for, 214–215
destination types for, 216–217
transformation types for, 217–219

data profiling in, 264–270
creating data profile, 264–267
viewing data profile, 267

data transformations, 219–234
enterprise edition-only transformations,

232–234
run command data transformations,

231–232
SCD, 227–231
split data transformations, 221–223
SSAS data transformations, 227
translate data transformations, 223–226

ETL design, 161–171, 187–188
data mapping for, 162–165
plan for, 161–162

and staging servers, 165
expressions in, for properties, 236
packages for, 171–181, 188–196

adding Control Flow tasks to, 176–178
adding transformations to, 182–186
configuring connections for, 193–196
configuring Data Flow tasks for, 179–181
connections for, 174–176
creating new, 188–193
data viewers for, 241–243
debugging SSIS packages, 243–245
deployment options for, 253–255
DSVs (data source views) for, 196
error handling for, 248–251
event handlers for, 251–252
execution options for, 256–260
logging execution results, 245–248
overview of execution, 237–252
project for, 172–173
security options for, 260–261
using checkpoints in execution of,

261–262
using transactions in, 262–264

processing mining models with, 397–399
sample packages included, 197
using Dynamic Package Configuration

Wizard in, 234–235
SSIS Import and Export Wizard option, BIDS,

166
SSIS menu, 191
SSIS Package Installation Wizard, 253
SSIS Packages folder, Solution Explorer, 173
SSIS Slowly Changing Dimension wizard, 46
SSMS (SQL Server Management Studio)

actions for OLAP modeling in, 104
adding KPIs in, 89–90
displaying hierarchical data in, 405

SSMS T-SQL query mode, 284
SSRS (SQL Server Reporting Services), 276–290

components of, 276–277
samples for, 277
using Report Server Project Wizard, 278–290

designing query, 279–284
previewing and designing report,

284–287

■ INDEX

425

publishing report, 287–290
Stacked Column in 3D option, Column pane,

274
staging servers, and ETL design, 165
star schema modeling, 25–37

creating using grain statements, 33–34
dimension tables in, 27–30

attributes for, 29–30
keys for, 27–28

overview, 26–27
tools for creating, 34–37
when to use, 30–33

State attribute, 75
State column, 75
State Transitions view, 387
Statement action type, 100
Status expression, 364
Stop Debugging button, 238
storage for cubes, 131–160

designing aggregations for, 135–142
using Aggregation Design Wizard,

135–139
using SQL Server Profiler, 141–142
using Usage-Based Optimization

Wizard, 139–141
HOLAP

vs. MOLAP, 143–146
overview, 143
vs. ROLAP, 143–146

for huge dimensions, 146–147
MOLAP, 131–135

aggregations with, 133–134
vs. HOLAP, 143–146
is default in SSAS, 135
vs. ROLAP, 143–146
XMLA for, 131–133

partitioning for, 153–154
relational table partitioning, 153–154
remote partition configurations, 154

and proactive caching, 149–153
notifications for, 152–153
settings for, 151–152

ROLAP
vs. HOLAP, 143–146
vs. MOLAP, 143–146

overview, 142–143
summary of, 148

Storage Options dialog box, 152
Storage Settings dialog box, 145
Storage Settings link, Partitions tab, 145
StorageMode property, 123, 146
Student dimension, 34
StudentDim table, 34
Styles pane, 293
subject matter experts (SMEs), 33, 163
Sum aggregation function, 48–49
surrogate key, 28
SurveyDim table, 34
Sync Partitions package, 208
Sync Partitions.dtsx package, 206
SyncAdvWorksPartitions solution, 206, 208

■ T
Table Import Wizard dialog, 336
Table or Matrix Wizard, 293
Table or View drop-down list, 265
Table Properties dialog, 335
Tablix Properties option, 295
Template Explorer, 400
Templates tab, 285
Term Extraction transformation, 233
Test button, 212
Test Connection button, 13, 337
TestVar variable, 190
TexasManagers group, 80
Text datatype, 394
Time Series, Microsoft, 385
Too much data pain point, 23
ToString method, 405
TransactionOption property, 262, 264
transactions, in SSIS packages, 262–264
transformation types, for Data Flow tasks,

217–219
transformations

for Data Flow tasks, 182–186
for SSIS packages, 219–234

enterprise edition-only transformations,
232–234

■ INDEX

426

run command data transformations,
231–232

SCD, 227–231
split data transformations, 221–223
SSAS data transformations, 227
translate data transformations, 223–226

translate data transformations, for SSIS
packages, 223–226

translations, for OLAP modeling, 51, 92–94
True option, ForceRebuildInterval setting, 152
tuples, in MDX, 353–355
Type 1 standard solution, 46
Type 2 standard solution, 46
Type 3 standard solution, 46
type property, 129

■ U
UDM (Unified Dimension Modeling), 42–48

overview, 43–44
RCD, 47–48
SCD, 45–46
writeback with, 48

Union transformation, 223
Unknown Member option, 111
UnknownMember property, 79, 124
UnknownMember value, 367
Unorder function, 367
Unprocess mining structures process method,

396
Unprocess option, 156
URL action type, 100
Usage Based Optimization button, 139–140
Usage type drop-down list, 264
Usage-Based Optimization Wizard, designing

aggregations using, 139–141
Use Windows Authentication (Integrated

Security) connection type, 278

■ V
Validate option, 204
Value property, 85, 87
Values area, 293
Variables item, 191
very large databases (VLDBs), 153

View Code option, 252, 288
View group, 333
View item, 192
views, as data sources, 42
Visual Source Safe (VSS), 51, 81
Visual Studio 2008 Tools for Applications

(VSTA), 206
Visual Studio Team System (VSTS), 81
Visual Studio (VS), 171
VLDBs (very large databases), 153
VS (Visual Studio), 171
VSS (Visual Source Safe), 51, 81
VSTA (Visual Studio 2008 Tools for

Applications), 206
VSTS (Visual Studio Team System), 81
vTargetMail view, 374

■ W
Watch window, 244
Welcome dialog box, 166, 174
WHERE clause, 352
Windows Management Instrumentation

(WMI), 205
With Member, 361
WMI (Windows Management

Instrumentation), 205
WMI Data Reader task, 205
WMI Event Watcher task, 205
WMI Query Language (WQL), 205
Work Offline item, 191
Workflow Tasks group, 199
WQL (WMI Query Language), 205
Write a query to specify the data to transfer

option, Import and Export Wizard, 168
writeback, with UDM, 48
writeback dimensions, for OLAP modeling,

121–122
Writeback property, 362
WriteEnabled property, 121, 126

■ X
XML for Analysis (XMLA), for MOLAP, 131–133
XML schema document (XSD), 204
XML Schema document (XSD), 288

■ INDEX

427

XMLA (XML for Analysis), for MOLAP
(Regular) Action, 80, 100
overview, 131–133

XPath operation type, 204
XPath option, 204
XSD (XML schema document), 204

XSD (XML Schema document), 288
XSLT option, 204
xxxKey column, 26

■ Y, Z
Yearly Income column, 375

Foundations of SQL Server
2008 R2 Business

Intelligence
Second Edition

■ ■ ■

Guy Fouché
Lynn Langit

Foundations of SQL Server 2008 R2 Business Intelligence, Second Edition

Copyright © 2011 by Guy Fouché and Lynn Langit

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any
means, electronic or mechanical, including photocopying, recording, or by any information
storage or retrieval system, without the prior written permission of the copyright owner and the
publisher.

ISBN-13 (pbk): 978-1-4302-3324-4

ISBN-13 (electronic): 978-1-4302-3325-1

Printed and bound in the United States of America 9 8 7 6 5 4 3 2 1

Trademarked names, logos, and images may appear in this book. Rather than use a trademark
symbol with every occurrence of a trademarked name, logo, or image we use the names, logos, and
images only in an editorial fashion and to the benefit of the trademark owner, with no intention of
infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if
they are not identified as such, is not to be taken as an expression of opinion as to whether or not
they are subject to proprietary rights.

President and Publisher: Paul Manning
Lead Editor: Jonathan Gennick
Technical Reviewer: Michael Coles
Editorial Board: Steve Anglin, Mark Beckner, Ewan Buckingham, Gary Cornell, Jonathan

Gennick, Jonathan Hassell, Michelle Lowman, Matthew Moodie, Jeff Olson, Jeffrey Pepper,
Frank Pohlmann, Douglas Pundick, Ben Renow-Clarke, Dominic Shakeshaft, Matt Wade,
Tom Welsh

Coordinating Editor: Anita Castro
Copy Editor: Heather Lang and Tiffany Taylor
Compositor: MacPS, LLC
Indexer: BIM Indexing & Proofreading Services
Artist: April Milne
Cover Designer: Anna Ishchenko

Distributed to the book trade worldwide by Springer Science+Business Media, LLC., 233 Spring
Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail
orders-ny@springer-sbm.com, or visit www.springeronline.com.

For information on translations, please e-mail rights@apress.com, or visit www.apress.com.

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional
use. eBook versions and licenses are also available for most titles. For more information, reference
our Special Bulk Sales–eBook Licensing web page at www.apress.com/info/bulksales.

The information in this book is distributed on an “as is” basis, without warranty. Although every
precaution has been taken in the preparation of this work, neither the author(s) nor Apress shall
have any liability to any person or entity with respect to any loss or damage caused or alleged to be
caused directly or indirectly by the information contained in this work.

To Jodi Fouché: for her poetry, being my biggest fan, and unequivocal love

—Guy Fouché

v

Contents

Contents at a Glance ... iv

About the Authors ... xiii

About the Technical Reviewer ... xiv

Acknowledgments .. xv

■Chapter 1: What Is Business Intelligence? .. 1

Just What Is Business Intelligence? .. 1

Defining BI Using Microsoft’s Tools ... 4
What Microsoft Products Are Involved? .. 5

BI Languages .. 7

Understanding BI from an End User’s Perspective .. 9
Building the First Sample—Using AdventureWorks ... 10

Deploying the Standard Edition Version of the Sample Cube ... 10

To deploy the Standard edition of the sample cube, follow these steps: ... 10

How to Connect to the Sample Cube Using Excel ... 17

Understanding BI Through the Sample .. 21

Understanding the Business Problems That BI Addresses .. 22

Reasons to Switch to Microsoft’s BI Tools ... 23

Summary .. 24

■Chapter 2: OLAP Modeling Concepts ... 25

Modeling OLAP Source Schemas—Stars .. 25
Understanding the Star Schema ... 26

Understanding a Dimension Table .. 27

Why Create Star Schemas? .. 30

Effectively Creating Star Schema Models Using Grain Statements .. 33

■ CONTENTS

vi

Tools for Creating Your OLAP Model ... 34

Modeling Source Schemas—Snowflakes and Other Variations 37
Understanding the Snowflake Schema ... 37

Knowing When to Use Snowflakes ... 41

Considering Other Possible Variations .. 42

Choosing Whether to Use Views Against the Relational Data Sources ... 42

Understanding Unified Dimensional Modeling ... 42
Using the UDM .. 43

The Slowly Changing Dimension (SCD) ... 45

Type 1, 2, 3 SCD Solutions .. 46

The Rapidly Changing Dimension (RCD) .. 47

Writeback Dimension .. 48

Understanding Fact (Measure) Modeling ... 48
An Example ... 48

Calculated Measure vs. Derived Measure ... 50

Other Types of Modeling .. 50
Data Mining ... 50

Key Performance Indicators .. 51

Actions, Perspectives, Translations .. 51

Source Control and Other Documentation Standards .. 51

Summary .. 51

■Chapter 3: Introducing OLAP Modeling with SSAS .. 53

Using BIDS to Build a Cube .. 53
Defining Your First Cube ... 61

Adding Dimension Attributes .. 64

Defining Hierarchies .. 66

Building Your First Cube .. 67

Refining Your Cube .. 70
Reviewing Measures ... 70

Reviewing Dimensions: Attributes .. 73

Reviewing Dimensions: Hierarchies .. 75

Summary .. 81

■ CONTENTS

vii

■Chapter 4: Intermediate OLAP Modeling with SSAS .. 83

Adding Key Performance Indicators (KPIs) ... 83
Implementing KPIs in SSAS .. 84

Implementing KPIs in SSMS .. 89

Using Perspectives and Translations ... 91
Perspectives .. 91

Translations .. 92

Localizing Measure Values .. 94

Using Actions ... 100
Creating Actions in SSAS .. 100

Creating Actions in SSMS ... 104

Summary .. 105

■Chapter 5: Advanced OLAP Modeling with SSAS .. 107

Multiple Fact Tables in a Single Cube .. 107

Nulls ... 109

Nonstar Dimensions ... 112
Snowflake Dimensions .. 112

Degenerate Dimensions .. 114

Parent-Child Dimensions .. 115

Many-to-Many Dimensions ... 116

Role-Playing Dimensions .. 120

Writeback Dimensions .. 121

Dimensions That Change ... 123

Error Handling for Dimension Attribute Loads ... 124

Using the Business Intelligence Wizard ... 125

Summary .. 129

■Chapter 6: Cube Storage and Aggregation .. 131

Using the Default Storage: MOLAP ... 131
XML for Analysis ... 131

Aggregations ... 133

■ CONTENTS

viii

MOLAP as Default in SSAS .. 135

Adding Aggregations .. 135
The Aggregation Design Wizard .. 135

The Usage-Based Optimization Wizard ... 139

The SQL Server Profiler as an Aggregation Design Aid ... 141

Using Advanced Storage .. 142
Understanding ROLAP ... 142

Understanding HOLAP ... 143

Considering Non-MOLAP Storage ... 143

Handling Huge Dimensions ... 146

Summarizing OLAP Storage Options ... 148

Using Proactive Caching .. 149
Fine-Tuning Proactive Caching ... 151

Setting Notifications for Proactive Caching .. 152

Deciding Between OLTP and OLAP Partitioning ... 153
Relational Table Partitioning in SQL Server .. 153

OLAP Partition Configurations ... 154

Choosing Cube and Dimension Processing Options ... 154

Summary .. 159

■Chapter 7: Introducing SSIS .. 161

Understanding ETL ... 161
Creating a Plan .. 161

Creating a Data Map ... 162

Refining a Data Map .. 164

Adding a Staging Server ... 165

Creating a Basic SSIS Package ... 166

Building Basic SSIS Packages ... 171
Developing SSIS Packages ... 172

Designing SSIS Packages ... 174

Adding Transformations to the Data Flow .. 182

Summary .. 186

■ CONTENTS

ix

■Chapter 8: Intermediate SSIS .. 187

Common ETL Package-Design Practices ... 187

Creating an SSIS Package from Scratch .. 188
Creating the Package Itself ... 188

Configuring Connections ... 193

Using Data Source Views (DSVs) ... 196

Reviewing the Included Samples Packages .. 197

Adding Control Flow Tasks ... 198
Container Tasks .. 200

SQL Tasks ... 201

File System Tasks ... 204

Operating System Tasks ... 205

Script Tasks .. 206

Remote Tasks ... 207

SSAS Tasks ... 207

Precedence Constraints .. 209

Using Expressions with Precedence Constraints .. 211

Understanding Data Flow Transformations .. 214
Data Sources ... 214

Data Flow Destinations ... 216

Transformation Types ... 217

Adding Data Transformations .. 219
Split Data Transformations ... 221

Translate Data Transformations .. 223

SSAS Data Transformations .. 227

Slowly Changing Dimension Transformation .. 227

Sample Data Transformations .. 231

Run Command Data Transformations ... 231

Enterprise Edition–Only Data Transformations ... 232

Using the Dynamic Package Configuration Wizard .. 234

Assigning SSIS Expressions ... 236

Summary .. 236

■ CONTENTS

x

■Chapter 9: Advanced SSIS 237

Understanding Package Execution 237
Data Viewers . .. 241

Debugging SSIS Packages . .. 243

Logging Execution Results .. 245

Error Handling . .. 248

Event Handlers 251

Deploying SSIS Packages . .. 252
SSIS Package Deployment Options 253

SSIS Package Execution Options . .. 256

SSIS Package Security .. 260

Placing Checkpoints .. 261

Using Transactions in SSIS Packages ... 262

Data Profiling 264
Creating a Data Profile .. 264

Viewing a Data Profile ... 267

Summary . .. 270

■Chapter 10: Reporting Tools ... 271

Using Excel Pivot Tables and Pivot Charts ... 271
Creating a Pivot Table ... 271

Creating a Pivot Chart ... 274

Publishing Your Workbook .. 275

Using SQL Server Reporting Services . .. 276
SSRS Components .. 276

SSRS Reporting Samples .. 277

Building Your First SSRS Report . .. 277
Running the Report Server Project Wizard . .. 278

Designing the Query .. 279

Previewing and Designing Your Report 284

Publishing Your Report .. 287

Producing Reports with Report Builder ... 290

■ CONTENTS

xi

Creating a Report Model ... 290

Creating a Dataset .. 292

Creating a Report .. 293

Summary .. 299

■Chapter 11: Data Mining with Excel .. 301

Exploring Excel 2010 .. 301
The Excel Ribbon ... 301

KPI Support in Excel .. 306

Using Excel for Data Mining ... 308
Configuring Excel as a Data Mining Client .. 309

Using Excel as a Data Mining Client .. 312

Using the Data Preparation Group ... 318

Using the Data Modeling Group .. 323

Using the Accuracy and Validation Group ... 324

Summary .. 328

■Chapter 12: Introducing PowerPivot ... 329

The PowerPivot for Excel GUI ... 329
The PowerPivot Ribbon ... 329

The PowerPivot Designer .. 332

Using PowerPivot with Adventure Works ... 336
Importing Adventure Works Data .. 336

Enriching the Adventure Works Data .. 338

Using PowerPivot Data in Excel .. 345

Summary .. 346

■Chapter 13: Introduction to MDX ... 347

MDX Query Syntax ... 347
Understanding the Core Terminology .. 348

Learning the Basic Syntax .. 350

Writing Your First MDX Query ... 352

Discovering Members, Tuples, and Sets ... 353

■ CONTENTS

xii

Calculated Members, Named Sets, and Script Commands ... 355
Adding MDX Objects to Your Cube .. 356

Using Calculated Measures ... 359

Working with Named Sets ... 361

Writing Script Commands ... 362

Common MDX Functions .. 364

Summary .. 367

■Chapter 14: Introduction to Data Mining ... 369

Defining SSAS Data Mining .. 369
Data-Mining Concepts ... 372

Architectural Considerations ... 373

Reviewing Data Mining Structures ... 374
Mining Structure Tab .. 374

Mining Models Tab .. 375

Mining Model Viewer Tab .. 378

Mining Accuracy Chart Tab ... 381

Mining Model Prediction Tab .. 382

Understanding and Using the Included Data Mining Algorithms 383
The Nine Algorithms .. 384

The Data Mining Wizard .. 390

Content and Datatypes .. 392

Processing Mining Models ... 396
Processing Methods .. 396

SSIS and Data Mining ... 397

Working with the DMX Language ... 399

Summary .. 402

■Appendix: The HIERARCHYID Datatype .. 403

Creating A HIERARCHYID Table .. 403

Adding Data to the Table .. 404

Displaying Hierarchical Data in SSMS ... 405

Index: .. 407

xiii

About the Authors

■ Guy Fouché is a business intelligence and decision support system consultant
in the Dallas, Texas area. Guy spends his evenings playing one of his eight
trumpets and expanding his composition skills by using the current generation of
music technologies. On the weekend, he puts as many miles as he can on his
bright green Honda 600RR sport motorcycle. Guy and his wife Jodi enjoy taking
nine-day trips in their Jeep 4×4, taking photographs and writing travelogs along
the way. You can view their photography at http://photography.fouche.ws.

■ Lynn Langit is the founder and lead architect of WebFluent, which for the past
six years has trained users and developers in building BI solutions. A holder of
numerous Microsoft certifications, including MCT, MCITP, MCDBA, MCSD.NET,
MCSE, and MSF, she also has ten years of experience in business management.
This unique background makes her particularly qualified to share her expertise in
developing successful realworld BI solutions using SQL Server 2005. Lynn has
recently joined Microsoft, working as a Developer Evangelist. She is based in the
Southern California territory. For more information, read her blog at
http://blogs.msdn.com/SoCalDevGal.

xiv

About the Technical Reviewer

■ Michael Coles is a Microsoft MVP (SQL) and consultant based in New
York City. Michael has written several articles and books on a wide
variety of SQL Server topics, including Pro SQL Server 2008 XML and the
Pro T-SQL 2008 Programmer's Guide. He can be reached at
www.sqlkings.com or www.sergeantsql.com.

xv

Acknowledgments

I’d like to offer a huge thank you to everyone at Apress who has had input into these pages!

	eBook

	Cover
	Contents at a Glance
	Contents
	About the Authors
	About the Technical Reviewer
	Acknowledgments

	What Is Business Intelligence?
	Just What Is Business Intelligence?
	Defining BI Using Microsoft’s Tools
	What Microsoft Products Are Involved?
	BI Languages

	Understanding BI from an End User’s Perspective
	Building the First Sample—Using AdventureWorks
	Deploying the Standard Edition Version of the Sample Cube
	How to Connect to the Sample Cube Using Excel

	Understanding BI Through the Sample
	Understanding the Business Problems That BI Addresses
	Reasons to Switch to Microsoft’s BI Tools
	Summary

	OLAP Modeling Concepts
	Modeling OLAP Source Schemas—Stars
	Understanding the Star Schema
	Understanding a Dimension Table
	Why Create Star Schemas?
	Effectively Creating Star Schema Models Using Grain Statements
	Tools for Creating Your OLAP Model

	Modeling Source Schemas—Snowflakes and Other Variations
	Understanding the Snowflake Schema
	Knowing When to Use Snowflakes
	Considering Other Possible Variations
	Choosing Whether to Use Views Against the Relational Data Sources

	Understanding Unified Dimensional Modeling
	Using the UDM
	The Slowly Changing Dimension (SCD)
	Type 1, 2, 3 SCD Solutions
	The Rapidly Changing Dimension (RCD)
	Writeback Dimension

	Understanding Fact (Measure) Modeling
	An Example
	Calculated Measure vs. Derived Measure

	Other Types of Modeling
	Data Mining
	Key Performance Indicators
	Actions, Perspectives, Translations

	Source Control and Other Documentation Standards
	Summary

	Introducing OLAP Modeling with SSAS
	Using BIDS to Build a Cube
	Defining Your First Cube
	Adding Dimension Attributes
	Defining Hierarchies
	Building Your First Cube

	Refining Your Cube
	Reviewing Measures
	Reviewing Dimensions: Attributes
	Reviewing Dimensions: Hierarchies

	Summary

	Intermediate OLAP Modeling with SSAS
	Adding Key Performance Indicators (KPIs)
	Implementing KPIs in SSAS
	Implementing KPIs in SSMS

	Using Perspectives and Translations
	Perspectives
	Translations
	Localizing Measure Values

	Using Actions
	Creating Actions in SSAS
	Creating Actions in SSMS

	Summary

	Advanced OLAP Modeling with SSAS
	Multiple Fact Tables in a Single Cube
	Nulls
	Nonstar Dimensions
	Snowflake Dimensions
	Degenerate Dimensions
	Parent-Child Dimensions
	Many-to-Many Dimensions
	Role-Playing Dimensions
	Writeback Dimensions

	Dimensions That Change
	Error Handling for Dimension Attribute Loads
	Using the Business Intelligence Wizard
	Summary

	Cube Storage and Aggregation
	Using the Default Storage: MOLAP
	XML for Analysis
	Aggregations
	MOLAP as Default in SSAS

	Adding Aggregations
	The Aggregation Design Wizard
	The Usage-Based Optimization Wizard
	The SQL Server Profiler as an Aggregation Design Aid

	Using Advanced Storage
	Understanding ROLAP
	Understanding HOLAP
	Considering Non-MOLAP Storage
	Handling Huge Dimensions
	Summarizing OLAP Storage Options

	Using Proactive Caching
	Fine-Tuning Proactive Caching
	Setting Notifications for Proactive Caching

	Deciding Between OLTP and OLAP Partitioning
	Relational Table Partitioning in SQL Server
	OLAP Partition Configurations

	Choosing Cube and Dimension Processing Options
	Summary

	Introducing SSIS
	Understanding ETL
	Creating a Plan
	Creating a Data Map
	Refining a Data Map
	Adding a Staging Server
	Creating a Basic SSIS Package

	Building Basic SSIS Packages
	Developing SSIS Packages
	Designing SSIS Packages

	Adding Transformations to the Data Flow
	Summary

	Intermediate SSIS
	Common ETL Package-Design Practices
	Creating an SSIS Package from Scratch
	Creating the Package Itself
	Configuring Connections
	Using Data Source Views (DSVs)

	Reviewing the Included Samples Packages
	Adding Control Flow Tasks
	Container Tasks
	SQL Tasks
	File System Tasks
	Operating System Tasks
	Script Tasks
	Remote Tasks
	SSAS Tasks
	Precedence Constraints
	Using Expressions with Precedence Constraints

	Understanding Data Flow Transformations
	Data Sources
	Data Flow Destinations
	Transformation Types

	Adding Data Transformations
	Split Data Transformations
	Translate Data Transformations
	SSAS Data Transformations
	Slowly Changing Dimension Transformation
	Sample Data Transformations
	Run Command Data Transformations
	Enterprise Edition–Only Data Transformations

	Using the Dynamic Package Configuration Wizard
	Assigning SSIS Expressions
	Summary

	Advanced SSIS
	Understanding Package Execution
	Data Viewers
	Debugging SSIS Packages
	Logging Execution Results
	Error Handling
	Event Handlers

	Deploying SSIS Packages
	SSIS Package Deployment Options
	SSIS Package Execution Options
	SSIS Package Security

	Placing Checkpoints
	Using Transactions in SSIS Packages
	Data Profiling
	Creating a Data Profile
	Viewing a Data Profile

	Summary

	Reporting Tools
	Using Excel Pivot Tables and Pivot Charts
	Creating a Pivot Table
	Creating a Pivot Chart
	Publishing Your Workbook

	Using SQL Server Reporting Services
	SSRS Components
	SSRS Reporting Samples

	Building Your First SSRS Report
	Running the Report Server Project Wizard
	Designing the Query
	Previewing and Designing Your Report
	Publishing Your Report

	Producing Reports with Report Builder
	Creating a Report Model
	Creating a Dataset
	Creating a Report

	Summary

	Data Mining with Excel
	Exploring Excel 2010
	The Excel Ribbon
	KPI Support in Excel

	Using Excel for Data Mining
	Configuring Excel as a Data Mining Client
	Using Excel as a Data Mining Client
	Using the Data Preparation Group
	Using the Data Modeling Group
	Using the Accuracy and Validation Group

	Summary

	Introducing PowerPivot
	The PowerPivot for Excel GUI
	The PowerPivot Ribbon
	The PowerPivot Designer

	Using PowerPivot with Adventure Works
	Importing Adventure Works Data
	Enriching the Adventure Works Data
	Using PowerPivot Data in Excel

	Summary

	Introduction to MDX
	MDX Query Syntax
	Understanding the Core Terminology
	Learning the Basic Syntax
	Writing Your First MDX Query
	Discovering Members, Tuples, and Sets

	Calculated Members, Named Sets, and Script Commands
	Adding MDX Objects to Your Cube
	Using Calculated Measures
	Working with Named Sets
	Writing Script Commands

	Common MDX Functions
	Summary

	Introduction to Data Mining
	Defining SSAS Data Mining
	Data-Mining Concepts
	Architectural Considerations

	Reviewing Data Mining Structures
	Mining Structure Tab
	Mining Models Tab
	Mining Model Viewer Tab
	Mining Accuracy Chart Tab
	Mining Model Prediction Tab

	Understanding and Using the Included Data Mining Algorithms
	The Nine Algorithms
	The Data Mining Wizard
	Content and Datatypes

	Processing Mining Models
	Processing Methods
	SSIS and Data Mining

	Working with the DMX Language
	Summary

	The HIERARCHYID Datatype
	Creating A HIERARCHYID Table
	Adding Data to the Table
	Displaying Hierarchical Data in SSMS

	Index
	A
	B
	C
	D
	E
	F
	G
	H

	I
, J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V

	W
	X
	Y.Z�

