Probabilistic Model for Structured Document
Mapping
Application to Automatic HTML to XML Conversion

Guillaume Wisniewski, Francis Maes, Ludovic Denoyer, and Patrick Gallinari

LIP6 — University of Paris 6
104 avenue du prsident Kennedy
75015 Paris

name.surname@lip6.fr

Abstract. We address the problem of learning automatically to map
heterogeneous semi-structured documents onto a mediated target XML
schema. We adopt a machine learning approach where the mapping be-
tween input and target documents is learned from a training corpus of
documents. We first introduce a general stochastic model of semi struc-
tured documents generation and transformation. This model relies on
the concept of meta-document which is a latent variable providing a link
between input and target documents. It allows us to learn the corre-
spondences when the input documents are expressed in a large variety
of schemas. We then detail an instance of the general model for the par-
ticular task of HTML to XML conversion. This instance is tested on
three different corpora using two different inference methods: a dynamic
programming method and an approximate LaSO-based method.

1 Introduction

With the development and growth of numerical resources, semantically rich data
tend to be encoded using semi-structured formats. In these formats, content ele-
ments are organized according to some structure, that reflects logical, syntactic
or semantic relations between them. For instance, XML and, to a lesser extent,
HTML allow us to identify elements in a document (like its title or links to
other documents) and to describe relations between those elements (e.g. we can
identify the author of a specific part of the text). Additional information such as
meta data, annotations, etc., is often added to the content description resulting
in richer descriptions.

For many applications, a key problem associated with the widespread of semi-
structured resources is heterogeneity: as documents come from different sources,
they will have different structures. For instance, in XML document collection
focused on a specific domain (like scientific articles), document will come from
different sources (e.g. each source corresponds to a journal) and will, therefore,
follow different schemas. The schema itself may unknown. For managing or ac-
cessing this collection, a correspondence between the different schemas has to

P. Perner (Ed.): MLDM 2007, LNAI 4571, pp. 854 2007.
© Springer-Verlag Berlin Heidelberg 2007

Probabilistic Model for Structured Document Mapping 855

be established. The same goes for HTML data on the Web where each site will
develop its own presentation. If one wants, for example, to develop a movie
database, information has to be extracted from each site so that heterogeneous
structures may be mapped onto a predefined mediator schema.

<table>
<tr> <cast>
<td> Korben Dallas </td> <character>
<td> ... </td> <actor> Bruce Willis </actor>
<td> <a> Bruce Willis </td> <name> Korben Dallas </name>
</tr> </character>
<tr> <character>
<td> Leelo </td> <actor> Milla Jovovich </actor>
<td> ... </td> <name> Leelo </name>
<td> <a> Milla Jovovich </td> </character>
</tr> </cast>
</table>

Fig. 1. Heterogeneity example: two documents describing the same information coming
from two different sources. Both the organization, partitioning and element order differ.

Manual correspondence between heterogeneous schemas or toward a mediated
schema is usually performed via document transformation languages, like XSLT.
However the multiplicity and the rapid growth of information sources have mo-
tivated researchers to work out ways to automate these transformations [T2].
This heterogeneity problem has been addressed only recently from a content
centric perspective for applications in information retrieval [3], legacy document
conversion [], and ontology matching [5]. Depending on the targeted applica-
tion and on the document sources considered, this semi-structured document
mapping problem will take different forms. With heterogeneous XML sources,
the correspondence between the different structures will have to handle both the
structural and content information. The mapping will provide new structures for
the input sources, this is an annotated tree conversion problem which involves
tag renaming and document elements reorganization and annotation. For the
HTML to XML conversion problem, the context is different. HTML documents
are only weakly structured and their format is presentation-oriented. The prob-
lem here will be to map this weakly structured visualization oriented format
onto a valid XML tree.

In this article, we consider the problem of automatically learning transforma-
tions from heterogeneous semi-structured documents onto an XML predefined
schema. We adopt a machine learning approach where the transformation is
learned directly from examples. We propose a general framework for learning
such transformations and focus then on the special case of HTML to XML con-
version. The article is organized as follows. The general framework is introduced
in Section 2l Section [details the HTML to a predefined XML schema conver-
sion problem. Experiments performed on four different corpora are described in
Section @] and related work is reviewed in Section

856 G. Wisniewski et al.

actor

character

character

Fig. 2. Toy example of a structured document transformation from HTML data to a
predefined schema describing the casting of a movie

2 A Model for Document Structure Mapping

2.1 General Framework

We consider semi-structured documents where content information (text, video,
pictures, etc.) is organized according to some schema. In the following, the terms
semi-structured and schema are used in a general sense and are not restricted
to XML. The former includes different formats like HTML, XML or PDF and
the latter denotes the document organization. We study the problem of learning
mappings from a set of heterogeneous documents onto a predefined mediated
target XML schema denoted sy (T holds for Target). The set of possible input
schema is denoted S = {s1, ..., 5/g/}. No assumption is made on the structure of
the input documents for the general model. These documents may either follow a
well-defined DTD, or may be HTML documents or even plain — unstructured —
text documents.

A straightforward approach for learning to map heterogeneous documents
onto a target schema is to learn the correspondence for each input schema. This
raises different problems: for example representative data have to be collected
for each input schema and schemas not represented in the training set cannot be
transformed. In order to bypass these limitations, we will introduce an abstract
representation of a document, called meta document, which will be used as an
intermediate representation in our document mapping framework. This abstract
representation supposedly contains the information needed for an individual to

Probabilistic Model for Structured Document Mapping 857

create the different views of a document corresponding to different schemas. This
meta document will provide a link between the different representations, it is a
variable of our model and its very definition will depend on the precise task we
are dealing with. In order to fix the ideas, let us consider an illustration of this
concept. In Figure[3 the meta document is represented as a set of relations and
content elements which may be stored into a relational database. It may then be
used for producing different projections onto different schemas. It may also be
transformed into a HTML document for an intranet, into a PDF document or
into an XML document following a specific DTD. We denote d,, the projection
of the meta document d onto schema s;.

Relationnal Set of Meta
Database of relations
movies describir_]g Document
the movie
S Generative process
A ~. 4
: \
£ 3 Structure Mapping
- \ — process o~
. rd .
- - Y
v, .
*) Xy A Different
|) projections of
HTML HTML XML
Document Document POF Document for the meta
following following Document data document

schema 1 schema 2 exchange

) & g o

Fig. 3. In this example, a company uses a Database Server to generate different views
of a same piece of information of the whole database. Each piece of database describing
a particular movie is the meta document of the movie.

The meta document d is not necessarily known — in the example of Figure 3]
one does not usually have access to the database used to generate the different
documents. Different meta documents can produce the same projection onto a
schema s;. For example, different databases can be used to generate the same
HTML document. In the proposed model, we will consider that d is a hidden
random variable. For the HTML to XML problem dealt with in Section [B] we
will propose a specific instance of d.

Our stochastic model of document view generation is described in Figure [
using a Bayesian network formalism. The meta document d is a latent variable
which provides a link between different document representations. a; is a discrete
random variable that represents the author of the projection of d onto ds, — it
identifies the specific process by which ds, is produced from d. In this model dg,
is fully defined by d and a;. In practice a; will simply identify a source. ar is
not represented in this model since the target schema is unique and predefined.

858 G. Wisniewski et al.

Authors
variables
Input
Document
Variables
Meta
document
i \
\
Example of
Evidence Y ~ Outout
introduced in the LIpL
network for the | dOUT) Document
structure . s
mapping task o

Fig. 4. The belief network representing the generative process of the different views of
a meta document

This generative model of document views will serve as a basis for introducing
the transformation model.

2.2 Structure Mapping Formalism

We will denote s;,,(q) the input schema and d;,, ,, the projection of d onto this
schema. The author of the transformation of d into s;,,(qy denoted a;,,(q) may be
known or unknown depending on the structure mapping problem. For example,
if we want to transform different known Websites into XML documents, the
author (the Website) is a known information. Usually there is no information
available about the meta document d and only a projection of d will be available.
Within this framework, we formalize the mapping problem as follows: given
a document ds,, ,, and an author a;,,(4), find the mapping which maximizes the
probability of generating a document in the target schema. Formally one could
write:
dp = argmax P(d'|ds,, . > Gin(a)) (1)
d' €sr
In order to solve equation [l we use the document view model of Figure @ Let
us write the joint probability for the whole Bayesian Network:

El El
P(d,dg,, oo ds o)y dagy a1, ooy ays)) = P(d) [[Pai) [[P(ds,|d, ai) P(ds |d)
=1 =1

(2)

Probabilistic Model for Structured Document Mapping 859

Since we only have access to a projection of the document d onto schema
Sin(d), we will integrate out all unknown variables, leading to:

S| S|
P(dsy,ds, 0y tin@) =y, P(d)][] Plai) [P(ds]d, ai) P(ds, |d)
i=1 i=1

d
{ak}k;ﬂn(d)
{ds; }jzin(a)

Here the summation over d consists in integrating over all possible instances
of the hidden variable d. From this expression, we obtain the final expression for
the right term of Equation [Tk

P<dST |dsin(d)) ain(d)) X Z P(d)P(dST ‘d)P(dSm(d) |d7 ain(d)) (4)
d

The structure mapping problem consists in solving the following equation:

dep = aflgmaxz P(d)P(d'|d)P(ds,,, ., |d, ain(a)) (5)
'esT P

Here P(d’'|d) corresponds to the probability of generating a document into
the target schema using the meta document d and P(ds,,, |d; @in(ay) is the
probability of generating document dj,, , according to a;,(g). Note that the
meta document variable trick allows us to model the processing of heterogeneous
databases without having to learn one distinct classifier for each input schema.

Solving equation [l involves summing over all possible meta-documents d
and scoring each possible output d’. In order to efficiently compute the target
document probability, we will have to make different simplifying assumptions
about the stochastic generation processes corresponding to P(dsm(O |d, @in(a))
and P(ds,|d). These assumptions will depend on the task and on the type of
structure mapping problem. In the following, we will detail these assumptions
and the model instance for the HTML to XML conversion task.

3 Model Instance for HTML to XML Conversion

We now focus on learning mappings from heterogeneous HTML sources to a pre-
defined XML schema. In this specific HTML to XML conversion task, we consider
one possible input schema (HTML) denoted s;x and different possible authors
(for example, "IMDB” and ” Allocine” fir the movie corpus - see part Experi-
ments). We will make two assumptions: the first one concerningP(ds, , |d, aq,1n)
and the second one concerning P(d’|d).

3.1 Meta Document Assumption

Tags in HTML documents are mainly used for the rendering of the document
and as such do not provide useful information for the transformation. The latter

860 G. Wisniewski et al.

will be essentially based on the content elements of the HTML document. Since
tag names and attributes only bring few relevant information in the case of
HTML, in the following, the input for the transformation will be the sequence of
the document content elements. This assumption models a deterministic process
where a meta document d is built from d;y only keeping the sequence of text
segments of the input document.

Formally, for the model described in Section Bl a meta document d will be a
sequence of text segments denoted d = (d', ..., d!¥). Let (d}y,, dlﬁ\’,Nl) denote
the sequence of segment extracted from dy, the probability P(ds, |d, aq,1n) is
defined as follow:

0if (dY, ..., ddl) # (b, ..., d"
P(dsuv|d7 ad,IN) = { 1 z}ls(ew’heré) 7& (IN> ’ IN) (6)

3.2 Target Document Model

We now introduce a target document model which will be used for mapping a
meta document representation onto a target schema. Under the above hypoth-
esis, this amounts at inferring the probability of XML trees from a sequence of
text segments. This model extends a series of document models already proposed
for the classification and clustering of XML documents ([6], [7]).

Let Na, = (n1,....,n|n,,|) denote the set of labeled nodes for an XML docu-
ment dr and ¢; denote the content of node n;. If n; is a leaf node of dr then ¢;
will be the content of the leaf, if n; is an internal node of dr, ¢; will be the content
of all the leaf nodes descendant of n;. Let Ly, denote the set of leaves of dr, and
let d = (d*,,d") be a meta document, we have P(dr|d) = P(dr|d",,d").

Modeling all structural relations from the target tree would involve a very
large probabilistic space for random variable dr. In our model, simplifying as-
sumptions are made so that structure and content information is represented
using the local context of each node of the document. These assumptions have
already been successfully tested on the categorization and clustering tasks. We
will assume that the label of a node only depends on its content, its left sibling (if
any) and its father (if any). With these assumptions, we can writd] (see Figure[dl
for the corresponding belief network):

P(drld',....d")y = T P(ald) J[P(nile,sib(n), father(n;)) (7)

ni€Lap n;€Nap,

where n; is the label of node i (the XML tag), father(n;) and sib(n;) correspond
to the label of the father node and the label of the left sibling node of n;. Remind
that ¢; is the union of all the content information of children of n;.

! In order to simplify the equation, we don’t write P(ci|c;, ck, ...) for the internal nodes.
The content of internal nodes are built by a deterministic process so the probability
P(cilcj, ¢k, -..) is considered to be equal to 1.

Probabilistic Model for Structured Document Mapping 861

» 4
Structure nodes of
n5 v n6 document dour
> «
c7 Content of nodes
vv /" of document dour
» = v 4
4 N2 \)
[n1 y) n3 « N4 Text segments of
« hd > - meta document
c5 c6 \
4 <+ ’ LEGEND
[@il] [c2 c3 Eed)
v v v v

Fig. 5. The belief network representing the dependencies between dr and the sequence
of text segments of the meta-document d. The stochastic process modeled here considers
that the input content elements dt generate the content leaf nodes ¢;. The label n; of
node i depends on its left sibling, its father and its content.

We make the additional assumption that the leaf content in dp is exactly the
sequence of elements in d (i.e P(¢;|d") =0 if ¢; # diﬁ which leads to:

X u 0 if (d, ..., d!¥) # (c1, ..., ca)
P(dr|d,....d") = I P(nilei, sib(n;), father(n;)) otherwise (8)

niENdT

Learning the model: In order to learn the probabilities P(n;|c;, sib(ni), father
(n;)), we have used a maximum entropy framework [8]. The label for each node
is chosen by estimating the probability:

Wn'ch stb(n;), father(n;
Plofs,siblng). ather(ng) = ™ (o Froswtnosanereo)) g

Zci,sib(ni),father(ni)

where Z., sib(n,), father(n;) 18 @ normalizing factor, Fe, sip(n,), father(n;) 15 @ vector
representation of the context of node n;, W, is the vector of parameters to be
learned and (-,-) is the scalar product. In this model, we will learn one set of
parameters W, for each possible node label a using a Maximum Entropy method.
For the iterative parameter estimation of the Maximum Entropy exponential
models, we use one of the quasi Newton methods, namely the Limited Memory
BFGS method, which is observed to be more effective than the Generalized
Tterative Scaling (GIS) and Improved Iterative Scaling (IIS) for NLP and IE
tasks [9].

2 This assumption corresponds to the idea that we don’t want to modify the content
of the source document in order to generate the target document.

862 G. Wisniewski et al.

3.3 Final HTML to XML Model

Once the W, are learned from a training set, the mapping onto the target schema
is finally obtained by solving:

Aspinar = argmax
dr such as
(d*,.....d"N=(c1,....c1q))

H exXp (<an Fci,sib(ni),father(ni)>) (10)

ni€Nay. Zci, ,sib(n;), father(n;)

In order to solve this equation, we have used two methods:

1. The first one is based on dynamic programming (DP) (see [10], [I1]) and
provides an exact solution to Equation[l Its complexity is O(n3.V') (see [10]
for more details) — where n is the sequence size of d and V' is the number of
possible internal node labels - which may be prohibitive for large documents.

2. The second one is based on the LaSO algorithm described in Section E]) [12].
It allows us to compute an approximation of the maximum in a complexity
of O(|Ny.,|-V.n) where |Ng, | is the number of node of |ds|.

4 Experiments

4.1 LaSO-Based Model

LaSO is an original method proposed by [12] that describes a general way to make
approximate inference in structure mapping problems. This method is especially
useful in cases, like ours, in which dynamic programming is too time-consuming.
It relies on the observation that inference can be described as a search process
and that it is possible to make it faster by learning an adapted heuristic function
and using it in a heuristic search algorithm: this method proposed to consider
the learning problem and the decoding problem in an integrated manner.

As we show in the next part, LaSo can be applied very easily to our model
and allows us to obtain reasonably good results with a lower inference time but
a larger training time.

4.2 Corpora

The HTML to XML structure mapping model has been tested on four different
collections. One is the INEX’03 corpus [I3], which includes XML articles from
20 different journals and proceedings of the IEEE Computer Society. It is made
of about 12,000 documents that represent more than 7,000,000 XML elements.
The documents have an average length of 500 leaf nodes and 200 internal nodes.
There are 139 tags. This is a medium size collection according to the IR criteria,
but it is quite a large corpus for the complex structure mapping task. Each INEX
document has a corresponding HTML page extracted from the INEX Website
which is the input document.

Probabilistic Model for Structured Document Mapping 863

The second collection includes 10,000 movie descriptions extracted from the
IMDb Websitd]. Each movie was represented in both, an XML document cre-
ated from the relational database and a HTML document extracted from the
site. The target XML documents have an average length of 100 leaf nodes and
35 internal nodes labeled with 28 possible tags. The documents have a rather
regular structure compared to INEX ones: they have fewer tags and share more
structural regularities.

The third collection is a set of 39 Shakespearean plays in XML formatl] con-
verted manually to a simple HTML document. There are only a few documents
in this collection, however their average length is huge: 4100 leaf nodes and 850
internal nodes. There are 21 different tags. The main challenge of this collection
is related to the length of its documents.

The fourth collection, called Mini-Shakespeare, is the smallest one. As in [10],
we have randomly selected 60 Shakespearean scenes from the third collection.
These scenes have an average length of 85 leaf nodes and 20 internal nodes over
7 distinct tags.

Each collection was randomly split in two equal parts, one for learning and the
other for testing. Due to its complexity, dynamic programming was performed
only on documents containing less than 150 leafs — this corresponds to 2200
INEX documents, 4000 IMDb documents —, DP was not applicable at all on the
third collection.

4.3 Features and Evaluation Measures

The model uses a sparse vector representation of the context of nodes n; (Fy,, in
part 3.3). This vector includes structure and content information. Structure is
coded through a set of Boolean variables indicating the presence or absence
of a particular (sib(n;), father(n;)) pair. Content is represented by Boolean
and real variables. The former encode layout, punctuation and word presence,
while the latter represent the size of the content information (in words) and
the different word lengths. This sparse representation generates a large vector
space: depending on the corpus, there are often more than one million distinct
(structure and content) features.

Our first evaluation measure, Micro, is the percentage of correctly annotated
leaf nodes. It is similar to the word error ratio used in natural language. Since we
are dealing with unbalanced classes (e.g. INEX documents are essentially made
of paragraphs, so this tag is by far the most frequent), we also use a Macro
score for leaf nodes: the unweighted average of F1 classification scores of each
tag. Internal nodes mapping is measured with the Internal metric: it is the F1
score of correctly annotated sub-trees, where a sub-tree is correctly annotated
when its tag and its content are both correct]. The internal metric is similar to
the non-terminal error ratio used in [I0]. The Full metric is a F1 score on all

3 http://www.imdb.com

* http://metalab.unc.edu/bosak /xml/eg/shaks200.zip

5 A sub-tree is correctly annotated if its root node has the right label and if its content
is exactly the target content. This measure is sometimes called coverage.

864 G. Wisniewski et al.

Table 1. Structure mapping results on four XML collections. Four evaluation measures
are used (Experiments performed on a standard 3.2Ghz Computer.)

Collection Method Micro Macro Internal Full Learning time Testing time

INEX DP 79.6% 47.5% 51.5% 70.5% 30 min ~ 4 days
LaSO 75.8% 42.9% 53.1% 67.5% > 1 week 3h20min
Movie DP 95.3% 91.2% 77.1% 90.4% 20 min ~ 2 days

LaSO 90.5% 88.6% 86.8% 89.6% > 1 week 1h15min
Shakespeare LaSO 95.3% 78.0% 77.0% 92.2% =~ 5 days 30 min

Mini-shakespeare DP 98.7% 95.7% 94.7% 97.9% 2 min ~ 1 hour
LaSO 89.4% 83.9% 63.2% 84.4% 20 min 1 min
100 . o . ——y
LTI T By
80 - %]
*
E 60 | i
: .
5 40| INEX LaSO —+ \ i
=] NEX Vitert H
Movie LaSO -
Movie Viterbi
20 | Mini-Shakespeare LaSO - .. |
._-.l
0 . -

0 20 40 €0 80 100
Minimum Full Score
Fig. 6. Percent of documents with more than x% Full score for different values x.

We can for example see that the DP method maps correctly more than 80% of the
Mini-Shakespeare with a full score included in range [95%, 100%)].

built tree components. This is a common measure in the natural language field
(under the name of F1I parsing score). As a document typically contains more
leaf nodes than internal nodes, this measure advantages the leaf score and does
not fully inform about the quality of the built tree. These results are shown on
Table[ll We also provide the percentage of documents from the test corpus with
a Full score greater than than x% (see Figure [@]).

4.4 Results

The DP method shows higher scores for leaf nodes classifications than the ap-
proximated method based on the LaSO algorithm. For example, with the Movie
collection, DP achieves a Micro score of 95.3% whereas LaSO is limited to a score

Probabilistic Model for Structured Document Mapping 865

of 90.5%. However, this performance increase has a cost: testing with exact DP
inference has a high complexity and may take several days for a collection like
INEX, which is unrealistic in practice. It is then limited to short documents.
LaSO makes inference fast and practicable for large documents. However, learn-
ing is time-consuming. Convergence was not achieved after one week learning
on the two real size collections (Movie and INEX). Due to the small number
of examples, the huge quantity of features, and the lack of regularization tech-
niques, LaSO also suffers from over-fitting when applied to the Mini-Shakespeare
collection.

Best internal scores are achieved by LaSO. This is because LaSO is a top-down
parsing method, whereas DP is a bottom-up one. Intuitively, top-down methods
may work better on top elements of the trees whereas bottom-up methods are
best on bottom elements (leaf nodes).

5 Related Work

In the database community automatic or semi-automatic data integration —
known as schema matching — has been a major concern for many years. A recent
taxonomy and review of these approaches can be found in [5]. [I4] describes one
of the most complete approach which can handle both ontologies, SQL and XML
data.

The matching task is formulated as a supervised multi-label classification
problem. While many ideas of the database community can be helpful, their
corpora are completely different from the textual corpora used in the IR com-
munity: all documents — even XML ones — keep an attribute-value structure
like for relational database and are thus much smaller and more regular than for
textual documents; textual data hardly appears in those corpora. With database
corpora, finding the label of a piece of information is enough to build the corre-
sponding tree because each element usually appears once in the tree structure.

Document structure mapping, also shares similarities with the information
extraction task, which aims at automatically extracting instances of specified
classes and/or relations from raw text and more recently from HTML pages.
Recent works in this field [T5] have also highlighted the need to consider structure
information and relations between extracted fields.

The document model proposed here is related to other ML models of the lit-
erature. Different authors ([I6], [I0]) have proposed to use natural language for-
malisms like probabilistic context free grammars (PCFG) to describe the internal
structure of documents. Early experiments [I1] showed that the complexity of
tree building algorithms is so high that they cannot be used on large corpora
like INEX. Our specific XML model makes the same kind of independence as-
sumptions as Hierarchical HMMs ([I7]) do. The work closest to ours is [10].
They address the HTML to XML document conversion problem. They make use
of PCFGs for parsing text segments sequences of and of a maximum entropy
classifier for assigning tags to segments.

866 G. Wisniewski et al.

6 Conclusion

We have proposed a general framework for the structure mapping task on het-
erogeneous corpora. Our model uses a meta document abstraction in order to
generate different views of the same document on different schemas and for-
mats. We have then detailed a specific application of this model for the mapping
of HTML document onto a mediated XML schema. From our knowledge, this
model is today the only one able to handle large amount of documents for the
HTML decoding task. For this problem, the meta document is a sequence of
text segments and the model will find the best XML tree in the target schema.
This model has been implemented using two inference methods: a DP exact
method and an approximate LaSO algorithm. The results show that, for both
methods, the model is able to cope with large corpora of documents. LaSO is
faster than DP and this type of method should be investigated further for the
transformation problem.

Acknowledgments

This work was supported in part by the IST Programme of the European Com-
munity, under the PASCAL Network of Excellence, IST-2002-506778. This pub-
lication only reflects the authors’ views.

References

1. Chung, C.Y., Gertz, M., Sundaresan, N.: Reverse engineering for web data: From
visual to semantic structures. In: ICDE (2002)

2. Zhang, S., Dyreson, C.: Polymorphic xml restructuring. In: IIWeb’06: Workshop
on Information Integration on the Web (2006)

3. Wisniewski, G., Gallinari, P.: From layout to semantic: a reranking model for map-
ping web documents to mediated xml representations. In: Proceedings of the 8th
RIAO International Conference on Large-Scale Semantic Access to Content (2007)

4. Chidlovskii, B., Fuselier, J.: Supervised learning for the legacy document conver-
sion. In: DocEng ’04: Proceedings of the 2004 ACM symposium on Document
engineering, New York, NY, USA, pp. 220-228. ACM Press, New York (2004)

5. Doan, A., Halevy, A.: Semantic integration research in the database community:
A brief survey. Al Magazine, Special Issue on Semantic Integration (2005)

6. Denoyer, L., Gallinari, P.: Bayesian network model for semi-structured document
classification. Information Processing and Management (2004)

7. Denoyer, L.: Xml document mining challenge. Technical report, LIP6 (2005)

8. Berger, A.L., Pietra, V.J.D., Pietra, S.A.D.: A maximum entropy approach to
natural language processing. Comput. Linguist. 22, 39-71 (1996)

9. Malouf, R.: A comparison of algorithms for maximum entropy parameter esti-
mation. In: COLING-02. proceeding of the 6th conference on Natural language
learning, Morristown, NJ, USA, pp. 1-7. Association for Computational Linguis-
tics (2002)

10. Chidlovskii, B., Fuselier, J.: A Probabilistic Learning Method for XML Annotation
of Documents. In: IJCAI (2005)

11.

12.

13.

14.

15.

16.

17.

Probabilistic Model for Structured Document Mapping 867

Denoyer, L., Wisniewski, G., Gallinari, P.: Document structure matching for
heterogeneous corpora. In: Workshop SIGIR 2004. Workshop on IR and XML,
Sheffield (2004)

Daumé III, H., Marcu, D.: Learning as search optimization: approximate large
margin methods for structured prediction. In: ICML ’05. Proceedings of the 22nd
international conference on Machine learning, New York, NY, USA, pp. 169-176.
ACM Press, New York (2005)

Fuhr, N., Govert, N., Kazai, G., Lalmas, M.: Inex: Initiative for the evaluation of
xml retrieval. In: SIGIR’02 Workshop on XML and Information Retrieval (2002)
Doan, A., Domingos, P., Halevy, A.: Learning to match the schemas of data sources:
A multistrategy approach. Mach. Learn. 50, 279-301 (2003)

McCallum, A.: Information extraction: distilling structured data from unstructured
text. Queue 3, 48-57 (2005)

Young-Lai, M., Tompa, F.W.: Stochastic grammatical inference of text database
structure. Machine Learning (2000)

Fine, S., Singer, Y., Tishby, N.: The hierarchical hidden markov model: Analysis
and applications. Machine Learning 32, 41-62 (1998)

	Probabilistic Model for Structured Document Mapping Application to Automatic HTML to XML Conversion
	Introduction
	A Model for Document Structure Mapping
	General Framework
	Structure Mapping Formalism

	Model Instance for HTML to XML Conversion
	Meta Document Assumption
	Target Document Model
	Final HTML to XML Model

	Experiments
	LaSO-Based Model
	Corpora
	Features and Evaluation Measures
	Results

	Related Work
	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

