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Abstract. A (t, n) threshold signature scheme allows t or more group
members to generate signatures on behalf of a group with n members,
while any t−1 or less members cannot do the same thing. In 2001, based
on a variant of ElGamal digital signature scheme, Li et al. proposed two
(t, n) threshold signature schemes with traceable signers. One of their
schemes needs the assistance of a mutually trusted center, while the other
does not. In this paper, we present a security analysis on their schemes.
We first point out that in fact signers in their schemes are untraceable,
since anybody can convert a valid threshold signature into a new one
such that another subset of group members will be wrongly considered
as the signers of the new threshold signature for the same message. Fur-
thermore, we demonstrate an attack to show that their second threshold
signature scheme is insecure. In our attack, (n − t + 1) colluding mem-
bers can control the group secret key. Therefore, they can generate valid
threshold signature for any message without the help of other members.
Furthermore, honest members cannot detect this security flaw in the sys-
tem, since any t members can generate threshold signatures according
to the prescribed protocols.
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1 Introduction

In 1987, Desmedt first introduced the concept of group-orinted cryptography [3].
In contrast to traditional cryptosystems, in a group-oriented cryptosystem, only
several collaborative entities can perform a cryptographic operation (e.g. encryp-
tion, decryption, generation or verification of signatures.). Threshold signature
is one such system, in which only t or more group members can generate sig-
natures on behalf of a group with n members, while any t − 1 or less members
cannot do the same thing. On the other hand, to check the validity of a threshold
signature, a verifier only needs to know the unique group public key. According
to whether a verifier can trace back the signers of a threshold signature, there
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are two kinds of threshold signature schemes: with anonymous signers and with
traceable signers. According to whether a trusted center is involved, threshold
signature schemes can be classified into two types: with or without a trusted
center. A scheme without the need of a trusted center is also called a distributed
threshold signature scheme.

Based on RSA system, Desmedt and Frankel proposed the first threshold sig-
nature scheme in [4]. Gennaro et al. presented efficient threshold DSS signature
schemes and threshold RSA signature schemes in [6] and [7] respectively. Stinson
and Strobl proposed a provably secure distributed threshold Schnorr signature
scheme and used it to design implicit certificates [12]. All these schemes do not
provide the property to trace the identities of signers of a threshold signature.

In 2001, Li et al. proposed a variant of ElGamal digital signature scheme
[5,9], and then based on this ElGamal type signature scheme, they constructed
two (t, n) threshold signature schemes with traceable signers [10]: One of their
schemes needs the assistance of a mutually trusted center, while the other does
not. To show that their schemes are secure, they examined that several known
attacks cannot be mounted in their schemes. However, we find that in fact their
schemes cannot be used to trace the signers of a signature, and that their second
scheme (i.e., the distributed one) is insecure.

More specifically, in this paper we first point out that the threshold signa-
tures in their schemes are untraceable since anybody can convert a valid thresh-
old signature into a new one such that another set of group members becomes
the signers of the new threshold signature for the same message. Moreover, we
demonstrate an attack to show that in their second threshold signature scheme,
(n − t + 1) colluding members can control the group secret key. Therefore, they
can generate valid threshold signature for any message without the help of other
members. Furthermore, honest members cannot detect any security flaw in the
system, since under the assumption that the clerk is also corrupted, any t mem-
bers can generate threshold signatures according to the prescribed protocols. In
addition, we provide some countermeasures to prevent our attack.

The rest of this paper is organized as follows. Section 2 introduces Li et al.’s
modified ElGamal signature scheme on which their threshold signature schemes
are based. Section 3 reviews Li et al.’s second threshold signature scheme, and
Section 4 presents our security analysis on their schemes. The conclusion is drawn
in Section 5.

2 Modified ElGamal Signature Scheme

In this section, we review Li et al.’s modified ElGamal signature scheme [10]
that is developed from generalized ElGamal digital signature schemes [9]. Li et
al.’s threshold signature schemes are based on this modified ElGamal signature
scheme.

System parameters:

– p: a large prime number such that (p − 1)/2 is also a prime number;
– g: a primitive element of the finite field GF (p);
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– H(·): a one-way hash function;
– xu: the secret key of a user U ;
– yu: the related public key of the user U where yu = gxu mod p.

Signature Generation. To sign a message m, a user U randomly chooses a
number k ∈ [1, p − 1] and computes:

r = gk mod p. (1)

and then solves the following equation for s:

rs = (r + H(m))k + xu mod p − 1. (2)

The signature on the message m is (r, s).

Signature Verification. To verify a signature (r, s) on a message m, one checks
whether the following equality holds:

grs ≡ rr+H(m)yu mod p. (3)

3 Review of Li et al.’s Threshold Signature Schemes

In [10], Li et al. proposed two (t, n) threshold signature schemes with traceable
signers: The first one needs a mutually trusted center while the second one does
not. However, the methods of tracing back in these two schemes are the same. In
this section we only review their second scheme which does not need a trusted
center.

Their second scheme consists of seven parts: system parameter setup, group
public key generation, individual signature generation, individual signature ver-
ification, threshold signature generation, threshold signature verification, and
signer identification.

Part 1. System parameter setup

The following public system parameters are agreed by all group members.

– p, q: two large prime numbers such that q|(p − 1);
– g: a generator of order q in finite field GF (p);
– H(·): a one-way hash function.

Part 2. Group public key generation

Let Ui, i ∈ A = {1, 2, · · · , n}, be n group members in the system. For simplic-
ity, we say A is the set of all group members, and similarly we denote a subset
of group members by B, where B ⊂ A. To generate the group public key, each
member Ui (i ∈ A) randomly selects his secret key xi and a public identity IDi.
Then, he publishes his public key yi = gxi mod p. When all yi’s (i ∈ A) are
available, the group public key y is set by

y =
∏

i∈A

yi mod p.
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Now, each group member uses Shamir’s (t, n−1) secret sharing scheme [11] to
distribute his secret key to other n−1 members. That is, member Ui first selects
a random (t − 1)-degree polynomial fi(X) with fi(0) = xi mod q, sends the
secret shadow fi(IDj) mod q to each member Uj privately, and then publishes
the related public key yij = gfi(IDj) mod p as public information, where j ∈ A
and j �= i.

Part 3. Individual signature generation

When any t members of group A want to generate a signature for a message
m, each member Ui, i ∈ B (B ⊆ A and |B| = t), selects a random integer
ki ∈ [1, q − 1], computes and broadcasts ri = gki mod p. After all ri’s are
available, the following value R is calculated:

R =
∏

i∈B

ri mod p.

Using his secret key xi, secret shadows fj(IDi) mod q (j ∈ A \ B) and ki,
the group member Ui computes si from the following equation:

siR = (R + H(m))ki + xi +
∑

j∈A\B

fj(IDi) · CBi mod q. (4)

In the above equation, CBi is the Lagrange interpolating coefficient given by

CBi =
∏

k∈B\{i}

IDk

IDk − IDi
mod q. (5)

Finally, each member Ui (i ∈ B) sends his individual signature (ri, si) to a
designated clerk.

Part 4. Individual signature verification

On receiving the individual signature (ri, si) for message m from member Ui,
the clerk uses public information yi and yij (j ∈ A \ B) to verify the validity of
(ri, si) by

gsiR ≡ r
R+H(m)
i yi

( ∏

j∈A\B

yji

)CBi mod p. (6)

If the above equation holds, the individual signature (ri, si) from Ui is valid.
At the same time, the clerk uses t pairs of public values (IDi, yi) (i ∈ B) to
construct a Lagrange polynomial function h(Y ) as follows:

h(Y ) =
∑

i∈B

(
IDi

∏

j∈B\{i}

Y − yj

yi − yj

)
mod q. (7)

Later, the function h(Y ) will be used to trace the signers who signed the
threshold signature for m.
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Part 5. Threshold signature generation

After t individual signatures are received and validated, the threshold signa-
ture (R, S) for the message m is computed by

R =
∏

i∈B

ri mod p, and S =
∑

i∈B

si mod q. (8)

Part 6. Threshold signature verification

Any outsider can use the group public key y to check the validity of a thresh-
old signature (R, S) for a message m by

gSR ≡ RR+H(m)y mod p. (9)

If the above equation holds, the threshold signature (R, S) is valid. Otherwise,
it is invalid.

Part 7. Signer identification

The authors of [10] implicitly assumed that the function h(Y ) is attached to
the signature pair (R, S). Therefore, when a verifier wants to know the signers
of a threshold signature (R, S) for a message m, he uses public values (IDi, yi)
(i ∈ A) to find all signers by the following equation:

IDi
?≡ h(yi). (10)

If the above equation holds, the group member Ui is one signer of the signature
(R, S). Otherwise, he is not.

4 On the Security of Li et al.’s Schemes

In this section, we discuss the security of Li et al.’s threshold signature schemes.
We first analyze the traceability of their two schemes and point out that in fact
both of them are untraceable. Then, we demonstrate an attack on their second
threshold signature scheme which does not need a trusted center. Finally, some
improvements are also provided to prevent our attack.

4.1 On the Traceability of Li et al.’s Schemes

The methods of tracing back in their two threshold signature schemes are the
same. That is, using public values (IDi, yi) and the function h(Y ) to determine
whether Equation (10) holds. According to Equation (7), however, we know that
the function h(Y ) is determined by public values, and that there is no intrinsic
relationship between a signature pair (R, S) and h(Y ) since the same pair (R, S)
for the message m may be generated by any t group members. Therefore, given
a valid pair (R, S) for a message m, anybody can construct a function h(Y ) such
that any t members, Ui1 , · · · , Uit , could be the signers of (R, S). In addition,
even if the values of IDi and yi are known only by group members, Li et al.’s
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schemes are also untraceable since we have the following simple attack. Given
two threshold signature pairs (R, S, h(Y )) and (R′, S′, h′(Y )) for two messages
m and m′, it is easy to see that (R, S, h′(Y )) and (R′, S′, h(Y )) are also two valid
threshold signature pairs for messages m and m′, respectively.

From the above discussion, it is clear that the signer tracing method proposed
in [10] does not work. Thus, in Li et al.’s two schemes the signers of a threshold
signature are untraceable, instead of traceable.

4.2 An Attack on Li et al.’s Second Scheme

In this subsection, we demonstrate an attack on Li et al.’s second threshold
signature scheme in which n group members generate the group public key in a
distributed way. We present the details about how (n− t+1) colluding members
can cheat other (t − 1) honest members by controlling the group secret key. In
our attack, we make the following two assumptions:

– Assumption 1. Except (t − 1) honest members in the system, all other
(n − t + 1) members are dishonest and collude together.

– Assumption 2. The designated clerk is also corrupted by dishonest mem-
bers.

After our attack is presented, we will discuss why these two assumptions are
necessary and why they are reasonable in applications. For simplicity, but with-
out loss of generality, we assume that the first (t−1) members, i.e., U1, · · · , Ut−1,
are honest members and all other (n− t+1) members are dishonest. We further
assume that as the head of dishonest members, Un controls the group secret
key, while other colluding members tolerate his faults in the group public key
generation.

It is obvious that, using the group secret key, anyone of these (n − t + 1)
malicious members can forge a valid threshold signature on any message inde-
pendently. Furthermore, we demonstrate that if n ∈ B or B = {1, 2, · · · , t−1, j}
where j ∈ {t, · · · , n − 1}, then under the help of the corrupted clerk, the t
members coming from B can generate valid individual signatures and threshold
signatures. Moreover, even in the case where |B̄ ∩ {t, t + 1, · · · , n − 1}| ≥ 2, the
t members in B̄ also can generate valid threshold signatures but one malicious
member in B̄ cannot generate valid individual signatures. For example, if t = 8
and n = 10, we know that in a secure threshold signature scheme, a valid thresh-
old signature can only be generated by 8 or more group members. However, in
Li et al.’s second scheme our attack enables members U8, U9 and U10 to con-
trol the group secret key x and to cheat other seven honest members. By using
the known group secret key x, any of U8, U9 or U10 can independently generate
valid threshold signature for any message. At the same time, under the help of
the corrupted clerk, any eight out of ten members can generate valid threshold
signatures. Furthermore, except in the case where the signers consist of U8, U9
and six out of seven honest members, colluding members also can provide valid
individual signatures.

We emphasize that the above property is important in real world, since it
allows dishonest members to cheat honest members that the system is normal
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and secure until a forged threshold signature on a message appears. Otherwise,
even if Un controls the group secret key but any t members cannot generate a
threshold signature by the prescribed protocols, honest members will soon doubt
the security and usability of the system.

The details of our attack are given as follows. The whole procedure con-
sists of three steps: member Un controlling the group private key, member Un

distributing secret shares, and dishonest members generating valid individual
signatures.

Step 1. Member Un controlling the group private key

In the group public key generation of Li et al.’s second scheme, it is not
required that all public keys yi’s should be published simultaneously. Thus,
member Un can be the last one to publish his public key yn. By choosing a
random number x as the group secret key, he first sets the group public key by
y = gx mod p. Then, when all other yi’s (i ∈ {1, · · · , n − 1}) are published, he
computes and publishes his public key yn as follows:

yn = y ·
n−1∏

i=1

y−1
i mod p.

Hence, all members in group A will take y as the group public key, since the
following equation holds:

y = yn ·
n−1∏

i=1

yi = gx mod p.

Therefore, member Un has controlled the group private key x corresponding
to y. Of course, member Un does not know his private key xn corresponding to
yn since he cannot find the discrete logarithm of yn to the base g.

Step 2. Member Un distributing secret shares

The difficulty is how member Un can distribute his secret key xn to other
members even though he does not know the value of xn. For this sake, Un does
as follows.

1. Firstly, Un assumes that he has chosen a (t − 1)-degree polynomial fn(X)
such that fn(0) = xn, where xn is the unknown but fixed number satisfying
yn = gxn mod p. At the same time, he selects (t − 1) random numbers
bi ∈ [0, q − 1], and sets fn(IDi) = bi, for each i ∈ {1, 2, · · · , t − 1}.

2. Secondly, he sends fn(IDi) privately to each member Ui, i ∈ {1, 2, · · · , t−1}.
However, Un cannot send fn(IDj) to each of his conspirators since he does
not know the value of fn(IDj) for each j ∈ {t, t+1, · · · , n− 1}. But, as Un’s
conspirators, each member Uj tolerates this fault.

3. Thirdly, Un has to publish the related public key ynj , for all j ∈ {1, 2, · · · , n−
1}. Of course, for i ∈ {1, 2, · · · , t − 1}, Un computes yni by yni = gbi mod p.
Moreover, we now explain that Un can also carry out ynj = gfn(IDj) for
each j ∈ {t, t + 1, · · · , n − 1} even though he does not know the value of
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fn(IDj). According to the Lagrange interpolating formula, the following
equation holds:

yn = gfn(0) = g
CBjj ·fn(IDj) ·

t−1∏

i=1

g
CBji·fn(IDi) mod p, ∀ j ∈ {t, t + 1, · · · , n − 1}.

In the above equation, Bj = {1, 2, · · · , t − 1, j}, CBjj is the Lagrange inter-
polating coefficient given by Equation (5), and fn(IDi) = bi. Therefore, Un

can get the value of ynj = gfn(IDj) mod p by the following equation:

ynj = (yn ·
t−1∏

i=1

g−CBji·bi)C−1
Bjj mod p, ∀j ∈ {t, t + 1, · · · , n − 1}. (11)

After all ynj (j ∈ {1, 2, · · · , n − 1}) are computed, Un publishes them. Any
member can verify that all ynj ’s are consistent since the following equation
holds:

yn ≡
∏

j∈B

y
CBj

nj mod p, ∀B ⊆ {1, 2, · · · , n − 1} and |B| = t. (12)

When Un and all other members published all yij , i, j ∈ {1, 2, · · · , n} and
i �= j, the system is set up. After that, if necessary, any dishonest member can use
the known group secret key x to forge valid threshold signature on any message
m. That is, he first chooses a random k ∈ [0, q −1] and computes R = gk mod p.
Then, he gets S from equation RS = (R+H(m))k+x mod p. It is easy to know
that such forged pair (R, S) is a valid threshold signature on message m, since it
satisfies Equation (9). Furthermore, as we have mentioned, under the help of the
corrupted clerk, dishonest members can also generate valid individual signature.
So they can cheat honest members that the system is normal and secure.

Step 3. Dishonest members generating their individual signatures

Now, we assume t members of a subset B want to sign a message m. Ac-
cording to the individual signature generation Equation (4), Un cannot generate
valid individual signature since he does not know the value of xn. In addition, if
n /∈ B, any malicious member Uj (t ≤ j ≤ n − 1) cannot generate valid individ-
ual signature since he does not know the value of fn(IDj). However, note that if
n ∈ B, any Uj (t ≤ j ≤ n − 1) can generate his individual signature. Therefore,
under our assumption 2, we will see that the corrupted clerk can help dishonest
members to generate valid individual signatures in two cases: (1) n ∈ B and (2)
B = {1, 2, · · · , t − 1, j} where j ∈ {t, t + 1, · · · , n − 1}. In the following, we only
describe how dishonest members can generate their valid individual signatures
in case 1. As we mentioned above, in this case n ∈ B, any other (honest or
dishonest) member can generate his individual signature normally. Therefore,
we now focus on how member Un can generate his individual signature.

In Li et al.’s scheme, it is also not required that all ri’s should be published
simultaneously, thereby member Un can be the last one to publish rn. That is,
Un first selects a random number k ∈ [0, q − 1], and sets

R = gk mod p. (13)
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When all other ri’s have been broadcast, he computes and broadcasts the fol-
lowing rn:

rn = R ·
∏

i∈B/{n}
r−1
i mod p.

Consequently, each member Uj (j ∈ B/{n}) computes R by R = rn ·∏i∈B/{n} ri

mod p (= gk mod p). Then, by using Equation (4), each Uj generates and sends
his individual signature (ri, si) to the clerk. The corrupted clerk reveals the
values of all (ri, si)’s to Un. To get his individual signature on the message m,
Un first solves S from the following equation

SR = (R + H(m))k + x mod q. (14)

Next, he computes his individual signature (rn, sn) as follows.

rn = R
∏

i∈B\{n}
r−1
i mod q, and sn = S −

∑

i∈B\{n}
si mod q. (15)

Finally, Un sends (rn, sn) to the clerk so that the clerk can generate the threshold
signature (R, S) for the message m. If necessary, the clerk publishes all individ-
ual signatures (ri, si) (i ∈ B) as the evidences that all members in B indeed
generated valid individual signatures for the message m. After all (ri, si)’s have
been broadcast, each member in B can verify the validity of each pair (ri, si) by
using Equation (6). Up to this piont, Un generated his individual signature pair
(rn, sn).

The following theorem proves that the above (R, S) is a valid threshold sig-
nature for the message m, and that (rn, sn) is Un’s valid individual signature for
the message m.

Theorem 1. The above procedure that Un generates his individual signature is
successful. That is,

(1) The pair (R, S) generated by Equation (14) is a valid threshold signature
for the message m, and

(2) The pair (rn, sn) generated by Equation (15) is Un’s valid individual signa-
ture for the same message m.

Proof: (1) It is obvious that the pair (R, S) generated by Equation (14) satisfies
Equation (9). We now prove (2): i.e., we need to show that the pair (rn, sn) gen-
erated by Equation (15) satisfies Equation (6). This is justified by the following
equalities.

gsnR = g(S−∑
i∈B/{n} si)R mod p

= g(R+H(m))k · y ·
[ ∏

i∈B/{n}

(
r

R+H(m)
i · yi · (

∏
j∈A/B yji)CBi

)]−1

mod p

=
(
R

∏
i∈B/{n} r−1

i

)R+H(m)
· y

∏
i∈B/{n} y−1

i · (
∏

j∈A/B

∏
i∈B/{n} y−CBi

ji )

= r
R+H(m)
n · y

∏
i∈B/{n} y−1

i · ∏
j∈A/B yCBn

jn · ∏
j∈A/B(

∏
i∈B y−CBi

ji ) mod p

= r
R+H(m)
n · y

∏
i∈B/{n} y−1

i · ∏
j∈A/B yCBn

jn · ∏
j∈A/B y−1

j mod p

= r
R+H(m)
n · yn · (

∏
j∈A/B yjn)CBn mod p.
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When any Uj (j ∈ {t, t + 1, · · · , n − 1}) and t − 1 honest members want to
generate a threshold signature, Uj can generate his valid individual signature
analogously, and similar result as Theorem 1 can also be proved.

4.3 Remarks and Improvements

In this subsection, we give some remarks on our attack and the two assumptions
listed in the beginning of Section 4.2. In addition, several improvements on Li
et al.’s second scheme are provided to prevent the above attack.

We first comment that our attack is stronger in the sense that it allows
malicious members to provide valid individual signatures. Actually, in the Li
et al.’s original second scheme, only the clerk checks the validity of individual
signatures. In this case, t members in any subset B can generate valid threshold
signature as follows. A malicious member Uj in B first controls the value of R
as in the foregoing attack. He then solves S from equation SR = (R+H(m))k+
x mod q, and sends the threshold signature pair (R, S) to the corrupted clerk.

Now, we point out that the success of our attack does not depend on whether
the number of dishonest members (n − t + 1) is less than t. However, of course,
our attack has practical meanings only in the case where (n − t + 1) < t, since
the basic assumption of all threshold cryptosystems is that there are at most
(t − 1) malicious members. Therefore, our assumption 1, (n − t + 1) members
colluding together, is reasonable in application settings.

We remark that our assumption 2 is also reasonable in many applications.
In Li et al.’s second scheme, the clerk only performs some computations that
anyone can do, and the computational result, i.e. the threshold signature (R, S),
is publicly verifiable. In a practical system, it is unlikely to set the clerk as a
trusted party. Therefore, dishonest members can corrupt and make use of him
for a long time, since the clerk is a designated entity. Furthermore, a natural
invariant of Li et al.’ second scheme is to remove the clerk by requiring each
member to broadcast his individual signature (ri, si). In this case, we do not
need assumption 2 any more. At the same time, dishonest members can generate
their individual signatures by taking the same steps as in section 4.2.

From the foregoing description, we know that our attack results from the
insecurity of the group public key generation protocol in Li et al.’s second scheme.
Therefore, to avoid our attack, each member should publish his public key yi

simultaneously. One simple way is to require that all members first commit their
yi’s and then open their commitments to reveal yi’s. Another choice is to require
that each member proves his knowledge of the discrete logarithm of yi to the
base g by using interactive or non-interactive knowledge proof protocols [1,2].
The third choice is to use Gennaro et al.’s distributed key generation protocol
for discrete-log cryptosystems [8] as the group public key generation protocol.
At the same time, we know that in our attack dishonest members can use other
members’ ri’s and si’s to generate their counterparts. Therefore, all members
should first commit them before revealing their values.
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5 Conclusion

In this paper, we presented a security analysis to Li et al.’s two (n, t) threshold
signature schemes with traceable signers [10]. We first pointed out that in their
schemes the signers of a signature are in fact untraceable, since anybody can
convert a valid threshold signature into a new one for the same message. As a
result of it, another subset of group members will be wrongly identified as the
signers of the new threshold signature for the same message. Furthermore, on
their scheme without a mutually trusted center, we demonstrated an attack that
allows (n − t + 1) colluding members to control the group secret key and then
generate valid threshold signature for any message. However, honest members
cannot detect this security flaw in the system since any t members can generate
threshold signatures according to the specified protocols. Consequently, colluding
dishonest members can cheat honest members successfully. In addition, some
countermeasures are provided to prevent our attack.
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