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Abstract. This paper shows how to create near-optimal instances of
the Certified Write-All algorithm called AWT that was introduced by
Anderson and Woll [2]. This algorithm is the best known deterministic
algorithm that can be used to simulate n synchronous parallel processors
on n asynchronous processors. In this algorithm n processors update n
memory cells and then signal the completion of the updates. The algo-
rithm is instantiated with q permutations, where q can be chosen from
a wide range of values. When implementing a simulation on a specific
parallel system with n processors, one would like to use an instance of
the algorithm with the best possible value of q, in order to maximize the
efficiency of the simulation. This paper shows that the choice of q is crit-
ical for obtaining an instance of the AWT algorithm with near-optimal
work. For any ε > 0, and any large enough n, work of any instance of
the algorithm must be at least n1+(1−ε)

√
2 ln ln n/ ln n. Under certain con-

ditions, however, that q is about e
√

1/2 ln n ln ln n and for infinitely many
large enough n, this lower bound can be nearly attained by instances of
the algorithm with work at most n1+(1+ε)

√
2 ln ln n/ ln n. The paper also

shows a penalty for not selecting q well. When q is significantly away
from e

√
1/2 ln n ln ln n, then work of any instance of the algorithm with

this displaced q must be considerably higher than otherwise.

1 Introduction

This paper shows how to create near-optimal instances of the Certified Write-All
algorithm called AWT that was introduced by Anderson and Woll [2]. In this
algorithm n processors update n memory cells and then signal the completion
of the updates. The algorithm is instantiated with q permutations, where q can
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be chosen from a wide range of values. This paper shows that the choice of q is
critical for obtaining an instance of the AWT algorithm with near-optimal work.

Many existing parallel systems are asynchronous. However, writing correct
parallel programs on an asynchronous shared memory system is often difficult,
for example because of data races, which are difficult to detect in general. When
the instructions of a parallel program are written with the intention of being
executed on a system that is synchronous, then it is easier for a programmer to
write correct programs, because it is easier to reason about synchronous parallel
programs than asynchronous ones. Therefore, in order to improve productivity
in parallel computing, one could offer programmers illusion that their programs
run on a parallel system that is synchronous, while in fact the programs would
be simulated on an asynchronous system.

Simulations of a parallel system that is synchronous on a system that is asyn-
chronous have been studied for over a decade now (see e.g., [8,9]). Simplifying
considerably, simulations assume that there is a system with p asynchronous
processors, and the system is to simulate a program written for n synchronous
processors. The simulations use three main ideas: idempotence, load balancing,
and synchronization. Specifically, the execution of the program is divided into a
sequence of phases. A phase executes an instruction of each of the n synchronous
programs. The simulation executes a phase in two stages: first the n instructions
are executed and the results are saved to a scratch memory, only then cells of
the scratch memory are copied back to desired cells of the main memory. This
ensures that the result of the phase is the same even if multiple processors exe-
cute the same instruction in a phase, which may happen due to asynchrony. The
p processors run a load balancing algorithm to ensure that the n instructions of
the phase are executed quickly despite possibly varying speeds of the p proces-
sors. In addition, the p processors should be synchronized at every stage, so as
to ensure that the simulated program proceeds in lock-step.

One challenge in realizing the simulations is the problem of “late writers”
i.e., when a slow processor clobbers the memory of a simulation with a value
from an old phase. This problem has been addressed in various ways (see e.g.,
[3,13]). Another challenge is the development of efficient load-balancing and syn-
chronization algorithms. This challenge is abstracted as the Certified Write-All
(CWA) problem. In this problem, introduced in a slightly different form by
Kanellakis and Shvartsman [7], there are p processors, an array w with n cells
and a flag f , all initially 0, and the processors must set the n cells of w to 1, and
then set f to 1. A simulation uses an algorithm that solves the CWA problem,
and the overhead of the simulation depends on efficiency of the algorithm. The
efficiency of the algorithm is measured by work that is equal to the worst-case
total number of instructions executed by the algorithm. Hence it is desirable to
develop low-work algorithms that solve the CWA problem.

Deterministic algorithms that solve the CWA problem on an asynchronous
system can be used to create simulations that have bounded worst-case overhead.
Thus several deterministic algorithms have been studied [2,4,5,6,8,14]. The class
of algorithms for the case when p = n is especially interesting because they have
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high parallelism. When such algorithm is used in a simulation, the simulation of
a given synchronous program for p = n processors may be faster, as compared
to the simulation that uses an algorithm for p � n processors, simply because in
the former case more processors are available to simulate the program. However,
the potential of producing a faster simulation can only be realized when the
algorithm used has low work, so that not much computing resources are wasted
during any simulation phase.

The best deterministic algorithm that solves the CWA problem on an asyn-
chronous system for the case when p = n was introduced by Anderson and Woll
[2]. This algorithm is called AWT, and it generalizes the algorithm X of Buss
et al. [4]. The AWT algorithm is instantiated with a list of q permutations on
{1, . . . , q}. Anderson and Woll showed that for any ε > 0, there is q, a list of q
permutations with desired contention, and a constant cq, such that for any h > 0,
the algorithm for p = qh processors and n = p cells instantiated with the list,
has work at most cq ·n1+ε. Note that this upper bound includes a multiplicative
constant factor that is a function of q. While the result that an O(n1+ε) work
algorithm can be found is very interesting, a different search objective will occur
when a simulation is developed for a specific parallel system.

A specific parallel system will have a fixed number p of processors. It is
possible to create many instances of the AWT algorithm for these p processors
and n = p cells, that differ by the number q of permutations used to create an
instance. It is possible that work of these different instances is different. If this
is indeed the case, then it is interesting to find an instance with the lowest work,
so as to create a relatively more efficient simulation on this parallel system.

Contributions. This paper shows how to create near-optimal instances of
the AWT algorithm of Anderson and Woll. In this algorithm p processors update
n = p memory cells and then signal the completion of the updates. The algorithm
is instantiated with q permutations on {1, . . . , q}, where q can be chosen from a
wide range of values. This paper shows that the choice of q is critical for obtaining
an instance of the AWT algorithm with near-optimal work. Specifically, we show
a tight (up to an absolute constant) lower bound on work of the AWT algorithm
instantiated with a list of q permutations (appearing in Lemma 4). This lower
bound generalizes the Lemma 5.20 of Anderson and Woll by exposing a constant
that depends on q and on the contention of the list. We then combine our lower
bound with a lower bound on contention of permutations given by Lovász [11]
and Knuth [10], to show that for any ε > 0, work of any instance must be at
least n1+(1−ε)

√
2 ln ln n/ ln n, for any large enough n (appearing in Theorem 1). The

resulting bound is nearly optimal, as demonstrated by our method for creating
instances of the AWT algorithm. We show that for any ε > 0 and for any m that
is large enough, when q = �e

√
1/2 ln m ln ln m�, and h = �√2 lnm/ ln lnm�, then

there exists an instance of the AWT algorithm for p = qh processors and n = p

cells that has work at most n1+(1+ε)
√

2 ln ln n/ ln n (appearing in Theorem 2).
We also prove that there is a penalty if one selects a q that is too far away
from e

√
1/2 ln n ln ln n. For any fixed r ≥ 2, and any large enough n, work is at
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least n1+r/3·
√

2 ln ln n/ ln n, whenever the AWT algorithm is instantiated with q

permutations, such that 16 ≤ q ≤ e
√

1/2 ln n ln ln n/(r·ln ln n) or er·
√

1/2 ln n ln ln n ≤
q ≤ n (appearing in Preposition 1).

Paper organization. The reminder of the paper is organized as follows. In
Section 2, we report on some existing results on contention of permutations and
present the AWT algorithm of Anderson and Woll. In Section 3, we show our
optimization argument that leads to the development of a method for creating
near-optimal instances of the AWT algorithm. Finally, in Section 4, we conclude
with future work. Due to lack of space some proofs were omitted, and they will
appear the upcoming doctoral dissertation of the author.

2 Preliminaries

For a permutation ρ on [q] = {1, . . . , q}, ρ(v) is a left-to-right maximum [10] if
it is larger than all of its predecessors i.e., ρ(v) > ρ(1), ρ(v) > ρ(2), . . . , ρ(v) >
ρ(v−1). The contention [2] of ρ with respect to a permutation α on [q], denoted as
Cont(ρ, α), is defined as the number of left-to-right maxima in the permutation
α−1ρ that is a composition of α−1 with ρ. For a list Rq = 〈ρ1, . . . , ρq〉 of q
permutations on [q] and a permutation α on [q], the contention of Rq with
respect to α is defined as Cont(Rq, α) =

∑q
v=1 Cont(ρv, α). The contention of

the list of permutations Rq is defined as Cont(Rq) = maxα on [q]Cont(Rq, α).
Lovász [11] and Knuth [10] showed that the expectation of the number of left-

to-right maxima in a random permutation on [q] is Hq (Hq is the qth harmonic
number). This immediately implies the following lower bound on contention of
a list of q permutations on [q].

Lemma 1. [11,10] For any list Rq of q permutations on [q], Cont(Rq) ≥ qHq >
q ln q.

Anderson and Woll [2] showed that for any q there is a list of q permuta-
tions with contention 3qHq. Since Hq/ ln q tends to 1, as q tends to infinity, the
following lemma holds.

Lemma 2. [2] For any q that is large enough, there exists a list of q permuta-
tions on [q] with contention at most 4 · q ln q.

We describe the algorithm AWT of Anderson and Woll [2] that solves the
CWA problem when p = n. There are p = qh processors, h ≥ 1, and the array
w has n = p cells. The identifier of a processor is represented by a distinct
string of length h over the alphabet [q]. The algorithm is instantiated with a
list of q permutations Rq = 〈ρ1, . . . , ρq〉 on [q], and we write AWT(Rq) when
we refer to the instance of algorithm AWT for a given list of permutations Rq.
This list is available to every processor (in its local memory). Processors have
access to a shared q-ary tree called progress tree. Each node of the tree is labeled
with a string over alphabet [q]. Specifically, a string s ∈ [q]∗ that labels a node
identifies the path from the root to the node (e.g., the root is labeled with the
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AWT(Rq)
01 Traverse(h, λ)
02 set f to 1 and Halt

Traverse(i, s)
01 if i = 0 then
02 w[val(s)] := 1
03 else

04 j := qi

05 for v := 1 to q
06 a := ρj(v)
07 if bs·a = 0 then
08 Traverse(i − 1, s · a)
09 bs·a := 1

Fig. 1. The instance AWT(Rq) of an algorithm of Anderson and Woll, as executed
by a processor with identifier 〈q1 . . . qh〉. The algorithm uses a list of q permutations
Rq = 〈ρ1, . . . , ρq〉.

empty string λ, the leftmost child of the root is labeled with the string 1). For
convenience, we say node s, when we mean the node labeled with a string s.
Each node s of the tree, apart from the root, contains a completion bit , denoted
by bs, initially set to 0. Any leaf node s is canonically assigned a distinct number
val(s) ∈ {0, . . . , n − 1}.

The algorithm, shown in Figure 1, starts by each processor calling procedure
AWT(Rq). Each processor traverses the q-ary progress tree by calling a recursive
procedure Traverse(h, λ). When a processor visits a node that is the root of a
subtree of height i (the root of the progress tree has height h) the processor takes
the ith letter j of its identifier (line 04) and attempts to visit the children in
the order established by the permutation ρj . The visit to a child a ∈ [q] succeeds
only if the completion bit bs·a for this child is still 0 at the time of the attempt
(line 07). In such case, the processor recursively traverses the child subtree (line
08), and later sets to one the completion bit of the child node (line 09). When
a processor visits a leaf s, the processor performs an assignment of 1 to the cell
val(s) of the array w. After a processor has finished the recursive traversal of
the progress tree, the processor sets f to 1 and halts.

We give a technical lemma that will be used to solve a recursive equation in
the following section.

Lemma 3. Let h and q be integers, h ≥ 1, q ≥ 2, and k1 + . . . + kq = c > 0.
Consider a recursive equation W (0, r) = r, and W (i, r) = r · q +

∑q
v=1 W (i −

1, kv · r/q), when i > 0. Then for any r,

W (h, r) = r

(
q · (c/q)h − 1

c/q − 1
+ (c/q)h

)
.

3 Near-Optimal Instances of AWT

This section presents a method for creating near-optimal instances of the AWT
algorithm of Anderson and Woll. The main idea of this section is that for fixed
number p of processors and n = p cells of the array w, work of an instance
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of the AWT algorithm depends on the number of permutations used by the
instance, along with their contention. This observation has several consequences.
It turns out (not surprisingly) that work increases when contention increases,
and conversely it becomes the lowest when contention is the lowest. Here a lower
bound on contention of permutations given by Lovász [11] and Knuth [10] is very
useful, because we can bound work of any instance from below, by an expression
in which the value of contention of the list used in the instance is replaced with
the value of the lower bound on contention. Then we study how the resulting
lower bound on work depends on the number q of permutations on [q] used by
the instance. It turns out that there is a single value for q, where the bound
attains the global minimum. Consequently, we obtain a lower bound on work
that, for fixed n, is independent of both the number of permutations used and
their contention. Our bound is near-optimal. We show that if we instantiate
the AWT algorithm with about e

√
1/2 ln n ln ln n permutations that have small

enough contention, then work of the instance nearly matches the lower bound.
Such permutations exist as shown by Anderson and Woll [2]. We also show
that when we instantiate the AWT algorithm with much fewer or much more
permutations, then work of the instance must be significantly greater than the
work that can be achieved. Details of the overview follow.

We will present a tight bound on work of any instance of the AWT algorithm.
Our lower bound generalizes the Lemma 5.20 of Anderson and Woll [1]. The
bound has an explicit constant which was hidden in the analysis given in the
Lemma 5.20. The constant will play a paramount role in the analysis presented
in the reminder of the section.

Lemma 4. Work W of the AWT algorithm for p = qh processors, h ≥ 1, q ≥ 2,
and n = p cells, instantiated with a list Rq = 〈ρ1, . . . , ρq〉 of q permutations

on [q], is bounded by c
84 · n1+logq

Cont(Rq)
q ≤ W ≤ c · n1+logq

Cont(Rq)
q , where

c = 28q2

Cont(Rq) .

Proof. The idea of the lemma is to carefully account for work spent on traversing
the progress tree, and spent on writing to the array w. The lower bound will
be shown by designing an execution during which the processors will traverse
the progress tree in a specific, regular manner. This regularity will allow us to
conveniently bound from below work inside a subtree, by work done at the root
of the subtree and work done by quite large number of processors that traverse
the child subtrees in a regular manner. A similar recursive argument will be used
to derive the upper bound.

Consider any execution of the algorithm. We say that the execution is regular
at a node s (recall that s is a string from [q]∗) iff the following three conditions
hold:

(i) the r processors that ever visit the node during the execution, visit the node
at the same time,

(ii) at that time, the completion bit of any node of the subtree of height i rooted
at the node s is equal to 0,
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(iii) if a processor visits the node s, and x is the suffix of length h − i of the
identifier of the processor, then the qi processors that have x as a suffix of
their identifiers, also visit the node during the execution.

We define W (i, r) to be the largest number of basic actions that r processors
perform inside a subtree of height i, from the moment when they visit a node s
that is the root of the subtree until the moment when each of the visitors finishes
traversing the subtree, maximized across the executions that are regular at s and
during which exactly r processors visit s (if there is no such execution, we put
−∞). Note that the value of W (i, r) is well-defined, as it is independent of the
choice of a subtree of height i (any pattern of traversals that maximizes the
number of basic actions performed inside a subtree, can be applied to any other
subtree of the same height), and of the choice of the r visitors (suffixes of length
h − i do not affect traversal within the subtree). There exists an execution that
is regular at the root of the progress tree, and so the value of W (h, n) bounds
work of AWT(Rq) from below.

We will show a recursive formula that bounds W (i, r) from below. We do
it by designing an execution recursively. The execution will be regular at every
node of the progress tree. We start by letting the qh processors visit the root at
the same time. For the recursive step, assume that the execution is regular at a
node s that is the root of a subtree of height i, and that exactly r processors visit
the node. We first consider the case when s is an internal node i.e., when i > 0.
Based on the i-th letter of its identifier, each processor picks a permutation
that gives the order in which completion bits of the child nodes will be read
by the processor. Due to regularity, the r processors can be partitioned into q
collections of equal cardinality, such that for any collection j, each processor in
the collection checks the completion bits in the order given by ρj . Let for any
collection, the processors in the collection check the bits of the children of the
node in lock step (the collection behaves as a single “virtual” processor). Then,
by Lemma 2.1 of Anderson and Woll [2], there is a pattern of delays so that every
processor in some kv ≥ 1 collections succeeds in visiting the child s·v of the node
at the same time. Thus the execution is regular at any child node. The lemma
also guarantees that k1 + . . . + kq = Cont(Rq), and that these k1, . . . , kq do not
depend on the choice of the node s. Since each processor checks q completion
bits of the q children of the node, the processor executes at least q basic actions
while traversing the node. Therefore, W (i, r) ≥ rq +

∑q
v=1 W (i − 1, kv · r/q),

for i > 0. Finally, suppose that s is a leaf i.e., that i = 0. Then we let the r
processors work in lock step, and so W (0, r) ≥ r.

We can bound the value of W (h, n) using Lemma 3, the fact that h = logq n,
and that for any positive real a, alogq n = nlogq a, as follows

W (h, n) ≥ n · (Cont(Rq)/q)h

(

q · 1 − (q/Cont(Rq))
h

Cont(Rq)/q − 1
+ 1

)

= n1+logq(Cont(Rq)/q)

(

q2/Cont(Rq) · 1 − (q/Cont(Rq))
h

1 − q/Cont(Rq)
+ 1

)
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> q2/Cont(Rq) · n1+logq(Cont(Rq)/q)
(
1 − (q/Cont(Rq))

h
)

≥ 1/3 · q2/Cont(Rq) · n1+logq(Cont(Rq)/q) ,

where the last inequality holds because for all q ≥ 2, q/Cont(Rq) ≤ 2/3, and
h ≥ 1.

The argument for proving an upper bound is similar to the above argument
for proving the lower bound. The main conceptual difference is that processors
may write completion bits in different order for different internal nodes of the
progress tree. Therefore, while the coefficients k1, . . . , kq were the same for each
node during the analysis above, in the analysis of the upper bound, each internal
node s has its own coefficients ks

1, . . . , ks
q that may be different for different nodes.

The proof of the upper bound is omitted.

How does the bound from the lemma above depend on contention of the
list Rq? We should answer this question so that when we instantiate the AWT
algorithm, we know whether to choose permutations with low contention or
perhaps with high contention. The answer to the question may be not so clear at
first, because for any given q, when we take a list Rq with lower contention, then
although the exponent of n is lower, but the constant c is higher. In the lemma
below we study this tradeoff, and demonstrate that it is indeed of advantage to
choose lists of permutations with as small contention as possible.

Lemma 5. The function c �→ q2/c · nlogq c, where c > 0 and n ≥ q ≥ 2, is a
non-decreasing function of c.

The above lemma, simple as it is, is actually quite useful. In several parts
of the paper we use a list of permutations, for which we only know an upper
bound or a lower bound on contention. This lemma allows us to bound work
respectively from above or from below, even though we do not actually know
the exact value of contention of the list.

We would like to find out how the lower bound on work depends on the
choice of q. The subsequent argument shows that careful choice of the value
of q is essential, in order to guarantee low work. We begin with two technical
lemmas, the second of which bounds from below the value of a function occurring
in Lemma 4.

The lemma below shows that an expression that is a function of x must
vanish inside a “slim” interval. The key idea of the proof of the lemma is that
x2 creates in the expression a highest order summand with factor either 1/2 or
(1 + ε)/2 depending on which of the two values of x we take, while ln x creates
a summand of the same order with factor 1/2 independent of the value of x. As
a result, for the first value of x, the former “is less positive” than the later “is
negative”, while when x has the other value, then the former “is more positive”
than the later “is negative”. The proof is omitted.

Lemma 6. Let ε > 0 be any fixed constant. Then for any large enough n, the
expression x2 − x + (1 − lnx) · lnn is negative when x = x1 =

√
1/2 lnn ln lnn,

and positive when x = x2 =
√

(1 + ε)/2 lnn ln lnn.
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Lemma 7. Let ε > 0 be any fixed constant. Then for any large enough n, the
value of the function f : [ln 3, lnn] → R, defined as f(x) = ex/x · nln x/x, is
bounded from below by f(x) ≥ n(1−ε)

√
2·ln ln n/ ln n .

Proof. We shall show the lemma by reasoning about the derivative of f . We will
see that it contains two parts: one that is strictly convex, and the other that is
strictly concave. This will allow us to conveniently reason about the sign of the
derivative, and where the derivative vanishes. As a result, we will ensure that
there is only one local minimum of f in the interior of the domain. An additional
argument will ascertain that the values of f at the boundary are larger than the
minimum value attained in the interior.

Let us investigate where the derivative

∂f

∂x
= exnln x/x/x3 · (x2 − x + (1 − lnx) lnn

)

vanishes. It happens only for such x, for which the parabola x �→ x2−x “overlaps”
the logarithmic plot x �→ lnn lnx − lnn. We notice that the parabola is strictly
convex, while the logarithmic plot is strictly concave. Therefore, we conclude
that one of the three cases must happen: plots do not overlap, plots overlap at
a single point, or plots overlap at exactly two distinct points. We shall see that
the later must occur for any large enough n.

We will see that the plots overlap at exactly two points. Note that when
x = ln 3, then the value of the logarithmic plot is negative, while the value of
the parabola is positive. Hence the parabola is “above” the logarithmic plot at
the point x = ln 3 of the domain. Similarly, it is “above” the logarithmic plot
at the point x = lnn, because for this x the highest order summand for the
parabola is ln2 n, while it is only lnn ln lnn for the logarithmic plot. Finally, we
observe that when x =

√
lnn, then the plots are “swapped”: the logarithmic

plot is “above” the parabola, because for this x the highest order summand for
the parabola is lnn, while the highest order summand for the logarithmic plot
is as much as 1/2 lnn ln lnn. Therefore, for any large enough n, the plots must
cross at exactly two points in the interior of the domain.

Now we are ready to evaluate the monotonicity of f . By inspecting the sign
of the derivative, we conclude that f increases from x = ln 3 until the first
point, then it decreases until the second point, and then it increases again until
x = lnn. This holds for any large enough n.

This pattern of monotonicity allows us to bound from below the value of f
in the interior of the domain. The function f attains a local minimum at the
second point, and Lemma 6 teaches us that this point is in the range between
x1 =

√
1/2 lnn ln lnn and x2 =

√
(1 + ε)/2 lnn ln lnn. For large enough n, we

can bound the value of the local minimum from below by f1 = ex1/x2 ·nln x1/x2 .
We can further weaken this bound as

f1 = n− ln x2/ ln n+ln x1/x2+x1/ ln n ≥ n− ln x2/ ln n+1/2 ln ln n/x2+
√

1/2 ln ln n/ ln n

≥ n(1−ε)
√

2·ln ln n/ ln n ,
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where the first inequality holds because for large enough n, ln(1/2 ln lnn) is posi-
tive, while the second inequality holds because for large enough n, lnx2 ≤ ln lnn,
and 1/

√
1 + ε ≥ 1 − ε, and for large enough n,

√
1/2 ln lnn/ lnn − ln lnn/ lnn

is larger than
√

1/(2 + 2ε) ln lnn/ lnn.
Finally, we note that the values attained by f at the boundary are strictly

larger then the value attained at the second point. Indeed, f(lnn) is strictly
grater, because the function strictly increases from the second point towards
lnn. In addition, f(ln 3) is strictly grater because it is at least n1.08, while the
value attained at the second point is bounded from above by n raised to a power
that tends to 0 as n tends to ∞ (in fact it suffices to see that the exponent of n
in the bound on f1 above, tends to 0 as n tends to ∞).

This completes the argument showing a lower bound on f .

The following two theorems show that we can construct an instance of AWT
that has the exponent for n arbitrarily close to the exponent that is required,
provided that we choose the value of q carefully enough.

Theorem 1. Let ε > 0 be any fixed constant. Then for any n that is large
enough, any instance of the AWT algorithm for p = n processors and n cells has
work at least n1+(1−ε)

√
2 ln ln n/ ln n.

Proof. This theorem is proven by combining the results shown in the preceding
lemmas. Take any AWT algorithm for n cells and p = n processors instantiated
with a list Rq of q permutations on [q]. By Lemma 4, work of the instance
is bounded from below by the expression q2/(3Cont(Rq)) · n1+logq(Cont(Rq)/q).
By Lemma 5, we know that this expression does not increase when we replace
Cont(Rq) with a number that is smaller or equal to Cont(Rq). Indeed, this is
what we will do. By Lemma 1, we know that the value of Cont(Rq) is bounded
from below by q ln q. Hence work of the AWT is at least n/3 · q/ ln q ·nln ln q/ ln q .

Now we would like have a bound on this expression that does not depend on
q. This bound should be fairly tight so that we can later find an instance of the
AWT algorithm that has work close to the bound. Let us make a substitution q =
ex. We can use Lemma 7 with ε/2 to bound the expression from below as desired,
for large enough n, when q is in the range from 3 to n. What remains to be
checked is how large work must be when the AWT algorithm is instantiated with
just two permutations (i.e., when q = 2). In this case we know what contention
of any list of two permutations is at least 3, and so work is bounded from below
by n raised to a fixed power strictly greater than 1. Thus the lower bound holds
for large enough n.

The following theorem explains that the lower bound can be nearly attained.
The proof uses permutations described in Lemma 2. The proof is omitted.

Theorem 2. Let ε > 0 be any fixed constant. Then for any large enough m,
when q = �e

√
1/2 ln m ln ln m�, and h = �√2 lnm/ ln lnm�, there exists an instance

of the AWT algorithm for p = n = qh processors and n cells that has work at
most n1+(1+ε)

√
2 ln ln n/ ln n.
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The above two theorems teach us that when q is selected carefully, we can
create an instance of the AWT algorithm that is nearly optimal. A natural
question that one immediately asks is: what if q is not selected well enough?
Lemma 4 and Lemma 5 teach us that lower bound on work of an instance of the
AWT algorithm depends on the number q of permutations on [q] used by the
instance. On one extreme, if q is a constant that is at least 2, then work must
be at least n to some exponent that is greater than 1 and that is bounded away
from 1. On the other extreme, if q = n, then work must be at least n2. In the
“middle”, when q is about e

√
1/2 ln n ln ln n, then the lower bound is the weakest,

and we can almost attain it as shown in the two theorems above. Suppose that
we chose the value of q slightly away from the value e

√
1/2 ln n ln ln n. By how

much must work be increased as compared to the lowest possible value of work?
Although one can carry out a more precise analysis of the growth of a lower
bound as a function of q, we will be contented with the following result, which
already establishes a gap between the work possible to attain when q is chosen
well, and the work required when q is not chosen well. The proof is omitted.

Proposition 1. Let r ≥ 2 be any fixed constant. For any large enough n, if the
AWT algorithm is instantiated with q permutations on [q], such that 16 ≤ q ≤
e
√

1/2 ln n ln ln n/(r·ln ln n) or er·
√

1/2 ln n ln ln n ≤ q ≤ n, then its work is at least
n1+r/3·

√
2 ln ln n/ ln n.

4 Conclusions and Future Work

This paper shows how to create near-optimal instances of the Certified Write-
All algorithm called AWT for n processors and n cells. We have seen that the
choice of the number of permutation is critical for obtaining an instance of
the AWT algorithm with near-optimal work. Specifically, when the algorithm is
instantiated with about e

√
1/2 ln n ln ln n permutations, then work of the instance

can be near optimal, while when q is significantly away from e
√

1/2 ln n ln ln n, then
work of any instance of the algorithm with this displaced q must be considerably
higher than otherwise.

There are several follow-up research directions which will be interesting to
explore. Any AWT algorithm has a progress tree with internal nodes of fanout
q. One could consider generalized AWT algorithms where fanout does not need
to be uniform. Suppose that a processor that visits a node of height i, uses
a collection Ri

q(i) of q(i) permutations on [q(i)]. Now we could choose different
values of q(i) for different heights i. Does this technique enable any improvement
of work as compared to the case when q = q(1) = . . . = q(h)? What are the
best values for q(1), . . . , q(h) as a function of n? Suppose that we are given a
relative cost κ of performing a write to the cell of the array w, compared to the
cost of executing any other basic action. What is the shape of the progress tree
that minimizes work? These questions give rise to more complex optimization
problems, which would be interesting to solve.
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The author developed a result related to the study presented in this paper.
Specifically, the author showed a work-optimal deterministic algorithm for the
asynchronous CWA problem for a nontrivial number of processors p � n. An
extended abstract of this study will appear as [12], and a full version will appear
in the upcoming doctoral dissertation of the author.
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