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Abstract. We present efficient distributed algorithms for computing 2-
hop neighborhoods in Ad Hoc Wireless Networks. The knowledge of the
2-hop neighborhood is assumed in many protocols and algorithms for
routing, clustering, and distributed channel assignment, but no efficient
distributed algorithms for computing the 2-hop neighborhoods were pre-
viously published.
The problem is nontrivial, as the graphs induced by ad-hoc wireless net-
works can be dense. We employ the broadcast nature of the wireless
networks to obtain a distributed algorithm in which every node gains
knowledge of its 2-hop neighborhood using a total of O(n) messages,
where n is the total number of nodes in the network, and each message
has O(log n) bits, which we assume is enough to encode the ID and
the geographic position of a node. Our algorithm operates in an asyn-
chronous environment, and makes use of the geographic position of the
nodes.
A more complicated algorithm achieves the same communication bounds
when geographical positions are not available, but nodes are capable of
evaluating the distance to neighboring nodes or the angle of signal arrival.
We also discuss updating the knowledge of 2-hop neighborhoods when
nodes join or leave the network.

1 Introduction

Wireless ad hoc networks can be flexibly and quickly deployed for many ap-
plications such as automated battlefield, search and rescue, and disaster relief.
Unlike wired networks or cellular networks, no physical backbone infrastructure
is installed in wireless ad hoc networks. A communication session is achieved
either through a single-hop radio transmission if the communication parties are
close enough, or through relaying by intermediate nodes otherwise.

In this paper, we assume that all nodes in a wireless ad hoc network are
distributed in a two-dimensional plane and have an equal maximum transmission
range of one unit. The topology of such wireless ad hoc network can be modeled
as a unit-disk graph, or UDG (see [11] for many interesting properties of unit-
disk graphs), a geometric graph in which there is a link between two nodes if
and only if their distance is at most one.

The 1-hop neighborhood of a node v (denoted by N1(v)) is simply the set
of nodes adjacent to it in the UDG. We use N2(v) to denote the set of nodes
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of the UDG 2-hops away from v. The 2-hop neighborhood of v is the bipartite
graph with node set N1(v) ∪ N2(v) in which all the links of the UDG with one
endpoint in N1(v) and the other endpoint in N2(v) are included.

Knowledge of the 2-hop neighborhoods is assumed in many distributed al-
gorithm and protocols such as constructing structures [24,6], improved routing
[20], broadcasting [9], and channel assignment [3]. The clusters used for chan-
nel control typically have diameter at most two [19]. The knowledge of the set
of 2-hop neighbors is helpful in frequency assignment to avoid secondary inter-
ference. Also distributed algorithms for L(2, 1)-Labeling ([12,8,10]) can use the
information about 2-hop neighborhoods stored by every node. Knowledge of the
2-hop neighborhood can be used for efficient computation of multipoint relays,
used for example in [14].

Our distributed algorithms operate in an asynchronous environment, and we
use the number of messages as the measure of the efficiency of the algorithm. In
our model a message can hold the ID of a node, the geographical position of a
node, and O(log n) bits, where n is the total number of nodes in the network.
Concentrating on the number and the length of the messages is justified by
the limited resources available to wireless nodes. We assume nodes have O(n)
memory available.

In this model, computing the set of 1-hop neighbors with O(n) messages
is trivial: every node broadcasts a message announcing its ID. One can easily
compute the 2-hop neighborhood with O(n) messages of size ∆ log n each, where
∆ is the maximum number of 1-hop neighnors. But we insist on messages of
size O(log n) each, and therefore, as UDGs can be dense, computing the 2-hop
neighborhood is not trivial.

The broadcast nature of the communication in ad hoc wireless networks is
however very useful when computing local information. To our knowledge no
distributed algorithm for computing 2-hop neighborhoods has been previously
proposed and analyzed.

First we assume that each static wireless node knows its position information,
either through a low-power Global Position System (GPS) receiver or through
some other ways. Then to construct the 2-hop neighborhoods it is enough to
know the IDs and positions of the 1-hop and 2-hop neighbors. With these as-
sumptions, we present a simple distributed algorithm which allows every node to
compute the positions of its 2-hop neighbors. The total number of O(log n)-bit
messages of the algorithm is O(n).

Second, we assume that position information is not available, but every two
adjacent nodes are capable of estimating their pairwise distance. Probing - low-
ering the transmission power over an interval of time - is one way which allows
the computation of pairwise distances. A detailed discussion of location sys-
tems appears in [13]. Under this assumption, we present a distributed algorithm
which allows every node to compute its 2-hop neighborhood. The total num-
ber of O(log n)-bit messages of the algorithm is O(n). The algorithm is based
on triangulation and can be immediatly updated to work when the angle-of-
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arrival information is available (an assumption justified in [18] or [15]) instead
of pairwise distances.

Our approach is based on the specific connected dominating set introduced
by Alzoubi, Wan, and Frieder [2,21]. This connected dominating set is based on
a maximal independent set (MIS), whose role in algorithms for unit-disk graphs
was discovered by Marathe et. al [16]. An MIS is a dominating set: every node
must have a 1-hop neighbor in the maximal independent set. In our algorithm,
each node uses its adjacent node(s) in the MIS to broadcast over a larger area
relevant information. Listening to the information about other nodes broadcast
by the MIS nodes enables a node to compute its 2-hop neighborhood. There is
a direct (without using a MIS) solution when node positions are available, but
it is more complicated and requires synchronization in order to achieve O(n)
messages each of size O(log n) bits.

The example in Figure 1 shows that Θ(n/ log n) time is sometimes necessary
for computing 2-hop neighborhoods (assuming one “step” allows the transmis-
sion of O(log n) bits), as the center node has to transmit Θ(n) bits to show
the existance (or non-existance) of each node on one side to the nodes on the
other side. This justifies our concentration on communication complexity, and
not time complexity. And while our algorithms use heavily the nodes in the con-
nected dominating set, the same example shows that overloading certain nodes
is sometimes unavoidable.

Fig. 1. The center node of this disk of radius 1 must send Θ(n) bits to allow the correct
computation of the 2-hop neighborhoods

We also describe a straightforward procedure of updating the 2-hop neigh-
borhoods when nodes join or leave the network. When leaving the network, the
communication cost is O(log n) bits. When joining the network, the number of
messages is bounded by a small constant times the number of nodes in the 2-hop
neighborhood of the new node.

The paper is organized as follows. The next section clarifies the notation
and explains the properties of the connected dominating set our algorithms use.
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Section 3 describe the algorithm for the situation when geographic position is
available. Section 4 describes the generalization of the algorithm to the situation
when only pairwise distance in between adjacent nodes is available. Section 5 de-
scribes the recomputation of 2-hop neighborhoods due to changes in the network
configuration. We conclude with Section 6.

2 Preliminaries

In this paper by broadcast we understand local broadcast - a packet send by a
node, and received by every other node within the transmission range.

Recently [2,21] introduced a virtual backbone of the network, and our algo-
rithms make heavy used of this virtual backbone. The next subsection quickly
reproduces their construction, and lists the important properties of the virtual
backbone.

2.1 The Virtual Backbone

The virtual backbone is a connected dominating set in the UDG. It is based
on a maximal independent set (MIS), and we call the nodes in the maximal
independent set MIS nodes. MIS nodes cannot be 1 hop away; if two MIS nodes
are two or three hops away, we call them virtually-adjacent. One or two connector
nodes are used to establish a path corresponding to a pair of virtually-adjacent
MIS nodes. A node can participate as a connector for several pairs of virtually-
adjacent MIS nodes. Only the links in between a connector node and the MIS
nodes it connects, or in between two connector nodes which together establish
the path corresponding to a pair of virtually-adjacent MIS nodes are added to
the virtual backbone.

In [2,21] it is shown how the virtual backbone (including adding the connector
nodes) can be constructed distributely with O(n) messages, where the message
size is O(log n) bits. They also show how to maintain the virtual backbone when
the topology of the network changes.

Wan et. al. [2,21] proved that the virtual backbone is connected. Using an area
argument, [2,21] proved that within three hops of an MIS node there could be at
most 47 MIS nodes, and therefore the maximum degree of the virtual backbone
is bounded by a constant we call ∆. Please refer to Figure 2 for intuition on the
virtual backbone described above.

It was first proved in [16] that the size of any maximal independent set is
at most five times the minimum dominating set in the UDG, as in fact for any
node x can have at most five neighbors in an MIS. Alzoubi et al. [2,21] noticed
that their virtual backbone is also within a constant the size of the minimum
connected dominating set.

In addition, it is immediate that the virtual backbone of [2,21], together with
links from every node to an MIS node adjacent to it, is a hop-spanner. Precisely,
for every path in the UDG, there is a path on the virtual backbone with at most
three times as many links from an MIS node adjacent to the origin of the path
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Fig. 2. An illustration of the virtual backbone of Alzoubi, Wan, and Frieder. The solid
round nodes are the MIS node, which form a dominating set. Two virtually-adjacent
MIS nodes are connected by paths of length at most three through connector nodes -
the empty tiny circles in the figure. Nodes not in the virtual backbone are small solid
squares in the figure

to an MIS node adjacent to the destination of the path. This fact was noticed by
Alzoubi [1], and by Wang and Li [22], which also planarize the virtual backbone
while keeping all its attractive properties.

3 Geographic Position Available

In this section we describe the distributed algorithm which allows every node
to construct the list of its 2-hop neighbors, assuming every node knows its ge-
ographical position. With this information, every node can also easily compute
the links between its 1-hop and 2-hop neighbors. Our algorithm is described in
the simplest version, and we do not try to optimize the constant hidden in the
O notation.

We start from the moment the virtual backbone is already constructed, and
every node knows the ID and the position of its neighbors. The idea of the
algorithm is for every node to efficiently announce its ID and position to a
subset of nodes which includes its 2-hop neighbors.

The responsibility for announcing the ID and position of a node v is taken by
the MIS nodes adjacent to v. Each such MIS node assembles a packet containing:
< ID, position, counter >, with the ID and position of v, and a counter variable
being set to 2. The MIS node then broadcasts the packet.

A connector node is used to establish a link in between several pairs of
virtually-adjacent MIS nodes, and will not retransmit packets which do not
travel in between these pairs of MIS nodes. The connector node will rebroadcast
packets with nonzero counter originated by one of the nodes in a pair of virtually-
adjacent MIS nodes, thus making sure the packet advances towards the other
MIS node in the pair. Recall that the path in between a pair of virtually-adjacent
MIS nodes has one or two connector nodes.
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When receiving a packet of type < ID, position, counter >, an MIS node
checks whether this is the first message with this ID, and if yes decreases the
counter variable and rebroadcasts the packet.

A node listens to the packets broadcasted by all the adjacent MIS nodes (here
it is convenient to assume a MIS is adjacent to itself), and, using its internal
list of 1-hop neighbors, checks if the node announced in the packet is a 2-hop
neighbor or not - thus constructing the list of 2-hop neighbors.

Theorem 1. When finished, the algorithm described above correctly computes
the 2-hop neighborhood for every node in the network, and uses O(n) messages
of size O(log n) each.

Proof. The fact that the virtual backbone is a bounded-degree hop-spanner es-
sentially implies the correctness of the algorithm. The precise argument is as
follows. Assume nodes v and u share a neighbor x, and let v̄, ū, and x̄ be nodes
in MIS which are adjacent to v, u, and x. Then v̄ creates a packet with the ID
and position of v, and with its counter set to 2. As v̄ and x̄ are virtually-adjacent,
x̄ will receive the packet and retransmit it with counter set to 1. As x̄ and ū are
virtually-adjacent, ū will also broadcast the packet, and therefore u finds out
the ID and position of v.

Regarding the number of messages, we count the packets announcing the ID
and position of x. Such packets are being sent by S1, the MIS nodes adjacent
to x, and we recall that |S1| ≤ 5. They are also sent by S2, the MIS nodes
virtually-adjacent to S1, by S3, the MIS nodes virtually-adjacent to S2, and
by the connector nodes in between pairs of virtually-adjacent MIS nodes inside
S1 ∪S2, and by the connector nodes in between virtually-adjacent MIS nodes of
S2 and S3. Thus the total number of nodes retransmitting packets announcing ID
and position of x is O(∆2). As ∆, the maximum degree of the virtual backbone
is constant, the total number of messages is O(n). ��

We remark that with the counter of a packet being initially set to k (and
decreased by one whenever a MIS node retransmits), the same argument as
above implies that with O(∆k) messages every node can compute its k-hop
neighborhoods.

4 Pairwise Distances Available

In this section we assume that neighboring nodes can compute their pairwise
distance, but are not aware of their precise geographical position.

Our approach is based on the virtual backbone used before and rigid pieces,
which we define as subgraphs containing one MIS node and a subset of its neigh-
bors such that a system of coordinates can be locally established and in which
the position of every node of the rigid piece is completely defined. A theory of
geometric rigidity is well established [23]. We need only simple properties which
are easily proved below.

First we describe the distributed algorithm for computing the rigid pieces.
Before the actual construction, every node announces all the MIS nodes to which
it is adjacent, and records the information transmitted by all its neighbors.
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Every MIS node v constructs one after the other the rigid pieces in which it
participates, and ensures these pieces are disjoint with the exception of v. Each
such piece will have an ID, composed of the ID of the unique MIS which is in
the piece and an integer in between 1 and 18. Once a node is assigned to a piece
together with v, it announces in a broadcast message the ID of the rigid piece
and its coordinates with respect to the rigid piece.

Let us describe the construction of one such rigid piece. The MIS node v
always has coordinates (0, 0) with respect to the rigid piece. If all nodes adjacent
to v are in a rigid piece with v, the procedure stops. Otherwise, v selects a
neighbor x which is not in a rigid piece with v, and asks x to announce its
participation in the rigid piece and its coordinates with respect to the rigid
piece: (||xv||, 0). Every node y adjacent to both v and x and not yet in some
other rigid piece with v, computes its coordinates with respect to v and x based
on the length of the sides of the triangle xyv. Actually, while the first coordinate
of y is unique, the second one is not: only its absolute value can be computed
exactly. If the angle ŷvx is bigger than π/3, y will not participate in the rigid
piece. If the second coordinate of y is 0, then y participates in the piece and
announces its participation and its unique coordinates with respect to the rigid
piece. If the angle ŷvx is at most π/3 and the second coordinate of y is nonzero, y
announces it is willing to participate in the piece. Node v will pick only one such
y (assuming it exists), and announce that both of y’s coordinates with respect
to the rigid piece will be positive. See Figure 3 for intuition. At this moment y
announces its participation in the rigid piece and its coordinates with respect to
the rigid piece. Every node z adjacent to v, x, and y, and not yet in some other
rigid piece with v, computes its unique coordinates with respect to the rigid
piece, and announces its participation in the rigid piece and its coordinates.

The following theorem enumerates the important properties of the distributed
algorithm described above.

Theorem 2. Every non-MIS node is a member of at most five rigid pieces.
Every MIS node is a member of at most 18 rigid pieces. Computing the nodes
of a rigid piece and the coordinates with respect to the rigid piece of every node
can be done with a number of messages bounded by a constant times the number
of nodes adjacent to the MIS node in the piece. The total number of messages
(each having O(log n) bits) until every node announces every piece in which it
participates, together with its coordinates with respect to the rigid piece, is O(n).

Proof. Once we prove that a MIS node constructs at most 18 rigid pieces, the
remaining assertions of the theorem follow from the description of the algorithm.

Let k be the number of rigid pieces constructed and let xi be the first nodes
selected by v when constructing the ith piece. Let yi be the node picked by v as
the first node of the rigid piece with nonzero second coordinate with respect to
the ith rigid piece, if such a node exists. If yi exists, define Ri be the sector of the
unit disk centered at v consisting of the points z with angles ẑvxi and ẑvyi at
most π/3. If yi does not exists, let Ri be the sector of the unit disk centered at v
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Fig. 3. The unnamed nodes in the figure can join the rigid piece started by v, x,
and y. In the system of coordinates used, v is the origin, x has second coordinate
0, and y has the second coordinate positive. Notice that every node in the sector
of the disk R = Ri can join the rigid piece and that R covers at least 1/6 of the
unit disk centered at v
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Fig. 4. There could be at most three sectors Rk which contain the point z: the
first given by xi and yi (which are on opposite sides of the line vz) and then
two sectors given by x′ and y′ (both above the line vz) and by x” and y” (both
under the line vz). As shown in proof of Theorem 2, a fourth sector such as the
one given by xj and yj cannot exists

consisting of the points z with angles ẑvxi at most π/3. Figure 3 again provides
intuition.

We claim that any point z belongs to at most three sectors Ri, 1 ≤ i ≤ k.
See Figure 4 for intuition. Indeed, if there are i < j with z in both Ri and Rj

and xi, yi (if yi exists), xj and yj (if yj exists) are all on the same side of vz,
then xj ∈ Ri as the angle x̂ivxj is at most π/3 and ŷivxj , if yi exists, is also at
most π/3. Therefore xj should have entered rigid component i, a contradiction.
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If both yi and yj exist, xi and yi are on different sides of vz, and xj and
yj are also on different sides of vz, then we obtain a contradiction as follow.
Assuming i < j and xi and xj are on the same side of vz (the case when xi

and yj are on the same side of vz is symmetric), we have that the angle ŷivxj is
bigger than π/3, as otherwise xj should have been taken in rigid piece i. Since
the angle x̂ivyi is at most π/3, we conclude that xi is inside the angle ẑvxj and a
symmetric argument yields that yi is inside the angle ẑvyj . Since ŷivxj is bigger
than π/3, we conclude that x̂jvyj is also bigger than π/3, a contradiction.

Thus only three sectors Ri can contain z: two with xi on one side of vz and
yi nonexistent or on the same side as xi, and one i with xi and yi on different
sides of vz.

As any Ri covers at least 1/6 of the unit disk centered at v, and any point
belongs to at most three sectors, we conclude that there are at most 18 such
sectors. This finishes the proof of Theorem 2. ��

At this moment the rigid pieces are constructed, every node has announced
its participation in the rigid pieces together with its coordinates with respect
to that piece. We now describe the second phase of the distributed algorithm,
in which every node v gives enough information to every of its 2-hop neighbors
y to determine the fact that y is a 2-hop neighbor of v and which is the set
of common neighbors. More precisely, for every rigid piece which intersects the
1-hop neighborhood of v, y will have enough information to compute which of
its neighbors from the rigid piece are adjacent to v.

Every node records all the information passed by its neighbors. In the 1-hop
neighborhood of a node v, there can be at most a constant number of rigid
pieces, as the number of MIS nodes in the 1-hop and 2-hop neighborhood of v
is bounded by 25: if we draw a disk of radius 1/2 around every MIS node, we
obtain disjoint disks of area π/4 which are included in the disk centered at v
with radius 5/2, whose area is 25π/4 (this argument is also used in [2]).

Separately for every rigid piece which intersects the 1-hop neighborhood of
v (including the rigid pieces containing v), v determines how many neighbors it
has in the rigid piece. If v has at most two neighbors in the rigid piece, it ask
all its neighbors in the rigid piece to announce they are neighbors with v.

If v has three non-coliniar neighbors in common with the rigid piece, using
the distance to these three points, v can compute its coordinates with respect
to the rigid piece. Then v asks its neighbors in MIS to announce its position
with respect to the rigid piece. This is done exactly as the announcements in
Section 3, with packets containing < nodeID, pieceID, coordinates, counter >.
Any node receiving such a message evaluates whether it has neighbors in the
rigid piece, and if yes the node computes the set of its neighbors from the rigid
piece which are adjacent to v, based on their coordinates with respect to the
rigid piece.

If v has three or more neighbors in common with a rigid piece, but they
are coliniar, v cannot exactly compute its coordinates with respect to the
rigid piece, but has exactly two possible value for its coordinates. Then v asks
its neighbors in MIS to announce both positions with a packet containing
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< nodeID, pieceID, coordinates1, coordinates2, counter >. Any node y receiv-
ing such a message evaluates if it has neighbors in the rigid piece, and if yes, as
above, it can compute two sets S1 and S2 of nodes in the rigid piece which could
be the common neighbors with v - assuming v has coordinates coordinates1 or
coordinates2 with respect to the rigid piece. At least one of S1 and S2 is a set
of colinear points, and if both are, they coincide. That set of colinear points is
the set of neighbors common to y and v in the rigid piece.

All cases are taken care of and we conclude:

Theorem 3. There is a distributed algorithm which, under the assumption that
every node can estimate the distance to every adjacent node, computes for every
node v the set of its 2-hop neighbors N2(v) and the links in between N1(v) and
N2(v) with a total of O(n) messages each of size O(log n) bits.

5 Updating the 2-Hop Neighborhoods

In this section we discuss the message complexity of updating the 2-hop neigh-
borhoods due to changes in network topology. We do not address updating the
virtual backbone as this was done in [2]. The proposed protocol is straightfor-
ward and does not use the virtual backbone. We assume geographical knowledge
is available in this section.

Before leaving the network, a node u uses its knowledge to let its 2-hop
neighborhs know the fact it is leaving as described below. First the node u
computes a maximal independent set (MIS) in the graph induced by its 2-hop
neighborhs. Then u computes at most one “connector” node for each MIS node.
As before, MIS is a dominating set, and using an area argument, has constant
size. Node u prepares an < ID, position, leaving, relay > message, with its own
ID and position, the fact that it is leaving the network, and the full list of relay
nodes. Each node, after receiving such a message, make a note that u is leaving
and updates its 2-hop neighborhood accordingly, and, if it finds itself in the list
of relay nodes, rebroadcast the message once.

When a node v joins the network, it will broadcasts its ID and position.
Every existing node which receives this message will rebroadcast the ID and
position of v. Every node y receiving such a message, will update its stored 2-hop
neighborhood to reflect the presence of v. If y is adjacent to v, it will broadcast
its ID and position. If y is a 2-hop neighbor of v, it selects a common neighbor
x and asks x to relay to v the position and ID of y. The total bit complexity of
message is O(q log n), where q is the size of the 2-hop neighborhood of v, and it
cannot be improved by more than a constant factor since v must find out the
IDs of the nodes in its 2-hop neighborhood.

6 Conclusions

The virtual backbone of Alzoubi, Wan, and Frieder [2,21] can be constructed
without any geographical knowledge: their algorithm “operates” directly on the
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unit-disk graph. We need at least the distance in between any pair of adjacent
nodes. Same arguments using rigid pieces apply when a node is able to compute
the angle in between the segments to adjacent nodes. However, without any ge-
ographical knowledge we do not know whether it is possible to compute 2-hop
neighborhoods with O(n) messages each having O(log n) bits. This observa-
tion raises the interesting question whether there are any (meaningful) problems
which have higher communication complexity on unit-disk graphs than on em-
bedded (nodes aware of their geographical position) unit-disk graphs. Note that
it is NP-Hard to recognize unit-disk graphs [7].

However, it follows from standard algebraic geometry results (page 542 of
[17] or improved bounds in [4]) that the number of labeled unit-disk graphs of n
nodes is between 2c1n log n and 2c2n log n, for constants c1 and c2 and therefore a
protocol with a total O(n log n) bits communication complexity is possible. An
O(n log n) bits communication complexity would follow from a solution to an
open problem in algebraic geometry [5]. It is worth mentioning that algebraic
geometry solutions seem to have huge running time and space complexity.

Our model does not account for messages lost because of interference. It
would be desirable to design synchronous distributed algorithms with low mes-
sage complexity and low time complexity in a model where messages are lost
either due to signal interference or due to node overloading.
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