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Abstract. Used for topology control in ad-hoc wireless networks, Power
Assignment is a family of problems, each defined by a certain connectivity
constraint (such as strong connectivity) The input consists of a directed
complete weighted graph G = (V,¢). The power of a vertex u in a di-
rected spanning subgraph H is given by pr (u) = max,yegm) c(uv). The
power of H is given by p(H) = >~ .\, pr(u), Power Assignment seeks to
minimize p(H) while H satisfies the given connectivity constraint. We
present asymptotically optimal O(logn)-approximation algorithms for
three Power Assignment problems: Min-Power Strong Connectivity, Min-
Power Symmetric Connectivity (the undirected graph having an edge uv
iff H has both wv and vu must be connected) and Min-Power Broadcast
(the input also has r € V, and H must be a r-rooted outgoing spanning

arborescence).
For Min-Power Symmetric Connectivity in the Euclidean with efficiency
case (when c(u,v) = ||lu,v||"/e(u) , where ||u,v]|| is the Euclidean dis-

tance, k is a constant between 2 and 5, and e(u) is the transmission
efficiency of node u), we present a simple constant-factor approximation
algorithm. For all three problems we give exact dynamic programming
algorithms in the Euclidean with efficiency case when the nodes lie on a
line.

In Network Lifetime, each node u has an initial battery supply b(u),
and the objective is to assign each directed subgraph H satisfying the
connectivity constraint a real variable a(H) > 0 with the objective of
maximizing ) 5 a(H) subject to > 4 pr(u)a(H) < b(u) for each node
u € V. We are the first to study Network Lifetime and give approxi-
mation algorithms based on the PTAS for packing linear programs of
Garg and Kénemann. The approximation ratio for each case of Network
Lifetime is equal to the approximation ratio of the corresponding Power
Assignment problem with non-uniform transmission efficiency.
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1 Introduction

Energy efficiency has recently become one of the most critical issues in routing
of ad-hoc networks. Unlike wired networks or cellular networks, no wired back-
bone infrastructure is installed in ad hoc wireless networks. A communication
session is achieved either through single-hop transmission or by relaying through
intermediate nodes otherwise. In this paper we consider a static ad-hoc network
model in which each node is supplied with a certain number of batteries and
an omnidirectional antenna. For the purpose of energy conservation, each node
can adjust its transmitting power, based on the distance to the receiving node
and the background noise. Our routing protocol model assumes that each node
periodically retransmit the hello-message to all its neighbors in the prescribed
transmission range.

Formally, let G = (V, E, c) be a weighted directed graph on network nodes

with a power requirement function ¢ : £ — RT defined on the edges. Given
a power assignment function p : V. — RT, a directed edge (u,v) is supported
by p if p(u) > ¢(u,v). The supported subgraph (sometimes called in the litera-
ture ”transmission graph) H of G consists of supported edges. We consider the
following network connectivity constraints (sometimes called in the literature
“topology requirements”) @ for the graph H: (1) strong connectivity, when H
is strongly connected; (2) symmetric connectivity, when the undirected graph
having an edge wv iff H has both wv and vu must be connected (3) broadcast
(resp. multicast) from a root r € V, when H contains a directed spanning tree
rooted at r (resp. directed Steiner tree for given subset of nodes rooted at r). In
this paper we start by considering the following generic optimization formulation
[112].
Power Assignment problem. Given a power requirement graph G = (V, E, ¢)
and a connectivity constraint @, find power assignment p : V — RT of the
minimum total power ) p(v) such that the supported subgraph H satisfies
the given connectivity constraint Q.

For simplicity of exposition, we use mostly the following equivalent defini-
tion of the Power Assignment problem: Given a directed spanning subgraph
H, define the power of a vertex w as py(u) = max,,cpm)c(uv) and the
power of H as p(H) = .y pu(u). To see the equivalence, note that an op-
timal power assignment supporting directed spanning subgraph H never has
p(v) > max,,epa) c(uv). Then the Power Assignment problem becomes find-
ing the directed spanning subgraph H satisfying the connectivity constraint with
minimum p(H). Specifying the connectivity constraint, we obtain the following
problems: Min-Power Strong Connectivity, Min-Power Symmetric Connectivity,
Min-Power Broadcast, and Min-Power Multicast.

Although the Power Assignment problem formulation is quite relevant to
the power-efficient routing it disregards possibly different number of batteries
initially available to different nodes and, more importantly, the possibility of
dynamic readjustment of the power assignment. In this paper we introduce a
new power assignment formulation with a more relevant objective of maximizing
the time period the network connectivity constraint is satisfied.
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Formally, we assume that each node v € V is initially equipped with a battery
supply b(v) which is reduced by amount of ¢ - p(v) for each time period ¢ during
which v is assigned power p(v). A power schedule PT is a set of pairs (p;, t;), i =
1,...,m, of power assignments p; : V — R™ and time periods ¢; during which
the power assignment p; is used. We say that the power schedule PT is feasible
if the total amount of energy used by each node v during the entire schedule PT
does not exceed its initial battery supply b(v), i.e., > v, t; - p;(v) < b(v).
Network Lifetime problem. Given a power requirement graph G = (V, E, ¢),
a battery supply b : V — RT and a connectivity constraint @, find a feasible
power schedule PT = {(p1,t1), ..., (pn,tm)} of the maximum total time Y .~ ¢;
such that for each power assignment p;, the supported subgraph H satisfies the
given connectivity constraint Q.

Using the equivalent formulation, Network Life problem becomes the fol-
lowing linear programming problem: each directed subgraph H satisfying the
connectivity constraint is assigned a real variable a(H) > 0 with the objec-
tive of maximizing ), a(H) subject to >, pr(u)a(H) < b(u) for each node
u € V. We note that an solution with only |V| non-zero variables a/(H) exists,
show that Network Life is NP-hard under several connectivity constraints, and
give the first approximation algorithms for Network Life based on the PTAS for
packing linear programs of Garg and Kénemann [3].

The related problem considered by Cardei et al [4] has uniform unadjustable
power assignments with the objective to maximize number of disjoint dominating
sets in a graph. The drawback of this formulation is that dominating sets are
required to be disjoint while dropping this requirement will give better solution
for the original problem. S. Slijepcevic and M. Potkonjak [5] and Cardei and
Du [4] discuss the construction of disjoint set covers with the goal of extending
the lifetime of wireless sensor networks. The sets are disks given by the sensor
unadjustable range, and the elements to be covered are a fixed set of targets.
A similar problem but in a different model has been studied by Zussman and
Segall [6]. They assume that the most of energy consumption of wireless networks
comes from routing the traffic, rather than routing control massages. They look
for the best traffic flow routes for a given set of traffic demands using concurrent
flow approaches [7] for the case when nodes do not have adjustable ranges.

Besides the general case of the given power requirements graph G, we
consider the following important special cases : (1) symmetric case, where
c(u,v) = ¢(v,u); 2) Euclidean case, where c(u,v) = d(u,v)"*, where d(u,v) the
Euclidean distance between v and v and x is the signal attenuation exponent,
which is assumed to be in between 2 and 5 and is the same for all pairs of nodes;
(3) single line case, which is the subcase of Euclidean case when all nodes lie on
a single line.

We also consider the following very important way of generating an asym-
metric power requirement graph G’ from a given symmetric power requirement
graph G. Let e : V — R* be the transmission efficiency defined on nodes of G,
then power requirements with non-uniform transmission efficiency G’ = (V, E, ¢)
are defined as ¢'(u,v) = c¢(u,v)/e(w). This definition is motivated by possible
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co-existence of heterogenous nodes and by our solution method for Network
Lifetime. We also consider the three special cases above with non-uniform trans-
mission efficiency, while the asymmetric power requirements case is not changed
by the addition of non-uniform transmission efficiency.

Table 1. Table of upper bounds (UB) and lower bounds (LB) on the Power Assignment
complexity. New results are bold. Marked by * are the folklore results, while references
preceded by ** indicate the result is implicit in the respective papers.

[ Complexity of the Power Assignment problem |

[power requirements] asymmetric [ Euclideanteff. ] symmetric |
Conn. Constraints UB LB UB LB UB LB
Strong Conn. 3+ 2In (n-1)| SCH |3 4+ 2 In (n-1)|NPH 2 [89] MAX-SNP*
Broadcast 2 + 21In (n-1)] SCH |2 + 2 In (n-1)|NPH|2 F 2 In (n-1)| SCH [11/]
Multicast DST* DSTH DST* NPH| O(Inn)** [12] [SCH** [L1I1]
Symmetric Conn. (2 + 2 In (n-1)| SCH 11.73 NPH 2 + e [13] MAX-SNPH*

We present most of our new results on Power Assignment in Table[l], together
with some of the existing results. For a more comprehensive survey of existing
results, we refer to [I5]. We omit the case of a single line — then all enlisted
problems can be solved exactly in polynomial time. More precise, without effi-
ciency, the algorithms were folklore or appeared in [9], and with efficiency we
claim polynomial time algorithms.

SCH is used to mean as hard as Set Cover; based on the Feige [16] result
there is no polynomial-time algorithm with approximation ratio (1 — €)Inn for
any € > 0 unles P = NP. DST means that the problem reduces (approximation-
preserving) to Directed Steiner Tree and DSTH means Directed Steiner Tree re-
duces (approximation-preserving) to the problem given by the cell. Best known
approximation ratio for Directed Steiner Tree is O(n¢) for any € > 0 and find-
ing a poly-logarithmic approximation ratio remains a major open problem in
approximation algorithms.

Liang [22] considered some asymmetric power requirements and presented,
among other results, the straightforward approximation-preserving reduction
(which we consider folklore, and is implicit, for example, in [12]) of Min-Power
Broadcast and Min-Power Multicast to Directed Steiner Tree. We improve the
approximation ratio for Min-Power Broadcast to 2+21n(n—1). Min-Power Sym-
metric Connectivity and Min-Power Strong Connectivity were not considered be-
fore with asymmetric power requirements. For Min-Power Broadcast with sym-
metric power requirements we improve the approximation ratio from 10.8 Inn of
[12] to 24+21n(n—1). We remark that the method of [12] also works for Multicast
with symmetric power requirements, giving a O(lnn) approximation ratio, while
with asymmetric power requirements, the problem appears to be harder - it is
DSTH to be precise.

The rest of the paper is organized as follows. In Section 21 we use methods
designed for Node Weighted Steiner Trees to give O(Inn) approximation algo-
rithms for Min-Power Broadcast, and Min-Power Strong Connectivity, all with
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asymmetric power requirements (Min-Power Symmetric Connectivity is omitted
due to space limitations). In Section [3 we give constant-factor approximations
for symmetric connectivity in the Euclidean with efficiency case. Section [ deals
with the Network Lifetime problem. Section [l lists extensions of this work and
some remaining open problems for Power Assignment. Due to space limitations
we omit our results on lower bounds on the approximation complexity of the
Power Assignment problem and dynamic programming algorithms for the case
of a single line with efficiency.

2 Algorithms for Asymmetric Power Requirements

In this section we assume the power requirements are asymmetric and arbitrary.
We present the algorithm for Min-Power Broadcast with an asymptotically opti-
mal 2(1+1n(n—1)) approximation ratio, where n is the cardinality of the vertex
set. The algorithm is greedy and we adopt the technique used for Node Weighted
Steiner Trees by [I7], which in turn is using an analysis of the greedy set cover al-
gorithm different than the standard one of Chvatal [18]. The algorithm attempts
to reduce the ”size” of the problem by greedily adding structures.

The algorithm starts iteration 7 with a directed graph H;, seen as a set of
arcs with vertex set V. The strongly connected components of H; which do not
contain the root and have no incoming arc are called unhit components. The
algorithms stops if no unhit components exists, since in this case the root can
reach every vertex in H;. Otherwise, a weighted structure which we call spider
(details below) is computed such that it achieves the biggest reduction in the
number of unhit components divided by the weight of the spider. The algorithm
then adds the spider (seen as a set of arcs) to H; to obtain H,1;. For an arc
uv € E(G), we use cost to mean ¢(uv), the power requirement of the arc.

Definition 1. A spider is a directed graph consisting of one vertex called head
and a set of directed paths (called legs), each of them from the head to a (vertices
called) feet of the spider. The definition allows legs to share vertices and arcs.
The weight of the spider S, denoted by w(S), is the mazimum cost of the arcs
leaving the head plus the sum of costs of the legs, where the cost of a leg is the
sum of the costs of its arcs without the arc leaving the head.

See Figure [l for an illustration of a spider and its weight. The weight of the
spider S can be higher than p(S) (here we assume S is a set of arcs), as the legs
of the spider can share vertices, and for those vertices the sum (as opposed to the
maximum) of the costs of outgoing arcs contributes to w(.S). From every unhit
component of H; we arbitrarily pick a vertex and we call it a representative.

Definition 2. The shrink factor sf(S) of a spider S with head h is either the
number of representatives among its feet if h is reachable (where, by convention,
a vertex is reachable from itself) from the root or if h is not reachable from any
of its feet, or the number of representatives among its feet minus one, otherwise.
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Fig.1. A spider with four legs, weight max{3,4,3,4} +6+ (1+2+5)+(3+8) =29
and power 25.

Input: A complete directed graph G = (V, E) with power requirement function c(u, v)
and a root vertex

Output: An directed spanning graph H (seen as a set of arcs, with V(H) = V) such
that in H there is a path from the root to every vertex of V.

(1) Initialize H =0

(2) While H has at least one unhit component
(2.1) Find the spider S which minimizes w(S)/(sf(S)) with respect to H
(2.2) Set H <« HUS

Fig.2. The Greedy Algorithm for Min-Power Broadcast with asymmetric power re-
quirements

Our algorithm appears in Figure[2. We describe later the detailed implemen-
tation of Step 2.1 of the algorithm. Let w(H) be the number of unhit components
of direct graph H. Due to space limitations, we omit the proof of the next lemma:

Lemma 1. For a spider S (seen as a set of arcs), u(H; US) < u(H;) — sf(9).

Fact 1 Given a spider S (seen as a set of arcs), p(H; US) < p(H;) + w(S).

Next we describe how to find the spider which minimizes its weight divided
by its shrink factor. In fact, we search for powered spiders, which besides head
h and legs have a fixed power p(h) associated with the head. The weight of the
powered spider S’, denoted by w(S”), equals p(h) plus the sum of costs of the legs
(where as before the cost of a leg is the sum of the costs of its arcs without the
arc leaving the head). Given a spider one immediately obtains a powered spider
of the same weight, while given a powered spider S’, the spider S obtained from
S’ by keeping only the edges of S’ (thus ignoring the fixed power of the head)
satisfies w(S) < w(S').
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We try all possible heads h, and all possible discrete power for the head (there
are at most n such discrete power values - precisely the values c(hu) for every
u € G, where c¢(hh) = 0 by convention). Define the children of the head to be the
vertices within its power value - where the head is also considered a child. For
each representative r;, compute the shortest path P; from a child of i to r;. If h is
not reachable from the root, partition the representatives in two sets - R1 which
cannot reach h and Ry which can reach h; otherwise let By = R and Ry = 0.
Sort Ry and Rs such that the lengths of the paths P; are in nondecreasing order.
Then the best spider with head h and the given power value can be obtained by
trying all 0 < j; < |R;] and 0 < jo < |Ro| and taking the paths P; leading to
the first j; representatives of R; and the first jo representatives of Rs.

The following lemma shows the existence of a good spider; it is a counterpart
of Lemma 4.1 and Theorem 3.1 of [I7]. Let OPT denote the value of the optimum
solution.

Lemma 2. Given any graph H; and set of representatives obtained from H;,

w(S) OPT
there is a spider S such that 578 = 2u(Hi).

Proof. Let T be the optimum arborescence outgoing from the root and R the
set of representatives obtained from H;; |R| = w(H;). Traverse T in postorder
and whenever a vertex v is the ancestor of at least two representatives (where
by default every vertex is an ancestor of itself) define a spider with head v
and legs given by the paths of T from v to the representatives having v as
an ancestor. Remove v and its descendents from 7', and repeat. The process
stops if the number of remaining representatives is less than two. If there is one
representative left, define one last spider with the head the root and one leg to
the remaining representative. Let .S;, for 1 <1 < ¢ be the spiders so obtained.
It is immediate that w(S1) + w(S2) + ... + w(Sy) < OPT. If r(S;) is the
number of representatives in spider S;, we have that r(S1)+7(S2)+...+7(S;) =
|R|. Note that r(S;) < 2sf(S;), as except for the spider with the root as its
head (for which r(S, ) = sf(S:) 2 < r(S;) < sf(S;) + 1. We conclude that
2(sf(S1) +sf(S2) + ...+ 5f(Sy)) > |R| = u(H;). The spider with highest ratio

s,
among S;, 1 <j <gq, has 2w((s)_) < &ZT)

Theorem 1. The algorithm described in this subsection has approximation ratio
2(1+1In(n — 1)) for Min-Power Broadcast with asymmetric power requirements.

Proof. Let ¢; be the number of unhit components of H; (where Hy is the initial
graph with no edges), S; be the spider picked to be added to H;, d; = sf(S;),
and w; = w(S;).

From Lemma [Il we have: ¢;11 < ¢; — d;. Since the algorithm is greedy, by
Lemma Z’—; < 20{}#. Plugging equation the above equations into each other
and rearranging the terms , it follows that ¢4 1 < ¢; — di < ¢i(1 — 55%%)-
Assuming there are m steps, this implies that ¢,,_1 < qo ;":702(1 — So57)
Taking natural logarithm on both sides and using the inequality In(1 4+ z) < z,
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. Z7n72
we obtain that In 40— > h=0 % However, ¢n,—1 > 1 and go = n — 1 so that

20PT In(n — 1) > 27wy,

The weight of the last spider can be bounded as w,,—1 < 20PT from Lemma
Bl Finally, since APPROX < Z;::_Ol wy,, which follows from Fact [I] we have that
APPROX < 2(1+1n (n—1))OPT.

2.1 Min-Power Strong Connectivity with Asymmetric Power
Requirements

In this subsection we use the previous result to give an approximation algorithm
for Min-Power Strong Connectivity with asymmetric power requirements. Let v
be an arbitrary vertex. An optimum solution of power O PT contains an outgoing
arborescence A, rooted at v (so p(Ayyt) < OPT) and an incoming arborescence
Ay, rooted at v (so ¢(Ain) = p(Ain) < OPT).

The broadcast algorithm in the previous subsection produces an outgoing
arborescence By,; rooted at v with p(Boyt) < 2(14+1n(n—1))p(Aout). Edmonds’
algorithm produces a minimum cost arborescence B;,, rooted at v with ¢(B;;,) <
C(Ain)- Then p(Bout U an) < p(Bout) + C(Bin) < 2(1 + ln(n - 1))p(Aout) =+
c¢(Ain) < (2In(n — 1) + 3)OPT. Therefore we have

Theorem 2. There is a 21In(n—1)+3-approzimation algorithm for Strong Con-
nectivity with asymmetric power requirements.

We mention that Min-Power Unicast with asymmetric power requirements is
solved by a shortest paths computation. Min-Power Symmetric Unicast (where
the goal is to obtain the minimum power undirected path connecting two given
vertices) with asymmetric power requirements can also be solved in O(n?logn)
by a shortest paths computation in a specially constructed graph described in
Section 4 of [2]. Algorithms faster than O(n?) are not known for Min-Power
Symmetric Unicast even in the simplest Line case.

3 Min-Power Symmetric Connectivity in the
Euclidean-with-Efficiency Case

In this section we present a constant-ratio algorithm for Min-Power Symmet-
ric Connectivity when power requirements are in the Euclidean-with-efficiency
model: ¢(uv) = d(u,v)"/e(u), where d is the Euclidean distance and 2 < k < 5.

The algorithm is very simple: for any unordered pair of nodes uv define
w(u,v) = ¢(u,v) + ¢(v,u) and compute as output a minimum spanning tree M
in the resulting weighted undirected graph.

We prove the algorithm above (which we call the MST algorithm) has con-
stant approximation ratio using only the fact that d is an arbitrary metric (as
for example in the three dimensional Euclidean case).
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Fig. 3. An illustration of the transformation from 7" (the dotted lines) to T (given
by solid lines).

For any tree T, let w(T') = 3_,, ,)er w(u,v). Note that

w@) =Y > vy = max _c(v,y) = p(T).

(v,y)eT
veV y:(v,y)eT vEVy ()

Let T be an arbitrary spanning tree of G. We arbitrarily pick a root for T
For each node u with k(u) children, we sort the children vy, vs,... s Vk(u) such
that d(u,v;) > d(u,v;1+1). With a fixed parameter r > 1 (to be chosen later), we
modify T in a bottom-up manner by replacing, for each 1 <1 < k(u), each edge
(u,v;) with (v;,vi11) if d(u,v;) <7 -d(u,vi11) (see Figure B). We denote by T,
the rooted resulting tree. Our main lemma (whose proof we omit due to space
constraint) below relates the weight of T). to the power of T

Lemma 3. For any rooted tree T, w(T,) < (2” +(r+1)"+ T:il) p(T)

Note that p(MST) < w(MST) < w(T}) < (2'*”"+(r+1)ﬁ+ )p(T),

rE—1
where T is the minimum power tree.

Theorem 3. The approximation ratio of the MST algorithm is at most

K

min,~1{2% + (r + 1)" + 2=

Numerically obtained, this approximation ratio is (i) 11.73 for k = 2, achieved
at r = 1.32 (ii) 20.99 for x = 3, achieved at r = 1.15; (iii)38.49 for k = 4, achieved
at r = 1.08 (iv) 72.72 for k = 5, achieved at r = 1.05.

4 Network Lifetime

In this section we first show that the Network Lifetime problem is NP-Hard
for symmetric power requirements and each considered connectivity constraint:
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strong connectivity, symmetric connectivity and broadcast. Then we show how
the Garg-Kéneman PTAS [3] PTAS can be used for reducing Network Lifetime to
Power Assignment. In the following we drop mentioning the specific connectivity
constraint when the discussin applies to all possible connectivity constraints.

Recall that the Network Lifetime problem has as input a power requirement
graph G = (V, B, ¢) and a battery supply vector b: V — RT. A set S of directed
spanning subgraphs of G is given implicitly by the connectivity constraints. In
general, |S| is exponential in |V|. Then Network Lifetime is the following packing
linear program: Maximize ) | ;. g g subject to ) g pu(v)zy < b(v), Yo eV,
rg > 0,VH € S.

We note that an optimum vertex solution only uses |V| non-zero variables
xg. With potentially exponential number of columns, it is not surprising the
following theorem, whose proof uses an idea from [4] and is ommited due to
space limitations, holds:

Theorem 4. Even in the special case when all the nodes have the same bat-
tery supply, the Network Lifetime for Symmetric Connectivity (or Broadcast or
Strong Connectivity) problem is NP-hard in the symmetric power requirements
case.

The Network Lifetime linear program above is a packing LP. In general, a
packing LP is defined as

max{c’z|Az < b,z > 0} (1)

where A, b, and ¢ have positive entries; we denote the dimensions of A as nxl. In
our case the number of columns of A is prohibitively large (exponential in number
of nodes) and we will use the (1 4 ¢)-approximation Garg-Kéneman algorithm
[B]. The algorithm assumes that the LP is implicitly given by a vector b € R"
and an algorithm which finds the column of A minimizing so-called length. The
length of column j with respect to LP in Equation (1) and non-negative vector
y is defined as length,(j) = W

We cannot directly apply the Garg-Koéneman algorithm because, as we notice
below, the problem of finding the minimum length column is NP-Hard in our
case, and we can only approximate the minimum length column. Fortunately,
it is not difficult to see that when the Garg-Kéneman (1 + €)-approximation
algorithm uses f-approximation minimum length columns it gives an (1 + €) f-
approximation solution to the packing LP () [19].

The Garg-Koéneman algorithm with f-approximate columns is presented in
Figure @l When applied to the Network Lifetime LP, it is easy to see that the
problem of finding the minimum length column, corresponds to finding the mini-
mum power assignment with transmission efficiencies inverse proportional to the
elements of vector y, i.e., for each node ¢ = 1,...,n, e(i) = 1/y;. This implies
the following general result.

! Although this complexity aspect has not been published anywhere in literature, it
involves only a trivial modification of [3] and will appear in its journal version [19].
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Input: A vector b € R", € > 0, and an f-approximation algorithm F' for the problem of
finding the minimum length column Aj(, of a packing LP {max ¢"z|Az < b,z > 0}
Output: A set of S of columns of A: {A;},;cs each supplied with the value of the
corresponding variable x;, such that z;, for j € S, are all non-zero variables in a
feasible approximate solution of the packing LP {max c’z|Az < b,z > 0}

(1) Initialize: 6 = (14¢€)((1+€)n)~ V< fori=1,...,n y(i) + ﬁ, D« né, S« 0.
(2) While D < 1
Find the column A; (j = j(y)) using the f-approximate algorithm F.

Compute p, the index of the row with the minimum : (2)
J

i b(p) b(p)

ifjegs xjeAqI(’p) else mjeijrAq’(’p)

S« Su{j}

Fori=1,...,n, y(i) « y(i) (1+eb<”> /252)): D« b7y

: Aj(p)
(3) Output {(j, — L= )}jes
logy e =5

Fig. 4. The Garg-Koneman Algorithm with f-approximate minimum length columns

Theorem 5. For a connectivity constraint and a case of the power requirements
graph, given an f-approrimation algorithm F for Power Assignment with the
given connectivity constraint and the case of the power requirements graph with
added non-uniform efficiency, there is a (1 + €)f-approximation algorithm for
the corresponding Network Lifetime problem.

The above theorem implies approximation algorithms for the Network Life-
time problem in the cases for which we developed approximation algorithms for
the Power Assignment problem with nonuniform efficiency (see Table [T).

5 Conclusions

We believe the following results hold, but their exposition will complicate this
long paper too much:

1. Min-Power Steiner Symmetric Connectivity with asymmetric power require-
ments, in which a given set of terminals must be symmetrically connected,
can also be approximated with a O(logn) ratio using a spider structure sim-
ilar to the one used for broadcast, but with a ”symmetric” weight, and a
greedy algorithm.

2. The algorithms for Node Weighted Steiner Tree of Guha and Khuller [20] can
also be adapted (but in a more complicated way, as they are more compli-
cated than [I7]) to obtain, for any € > 0, algorithms with approximation ratio
of (1.35+ €) Inn for Min-Power Symmetric Connectivity, Min-Power Steiner
Symmetric Connectivity, Min-Power Broadcast, and Min-Power Strong Con-
nectivity with asymmetric power requirements.
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We leave open the existance of efficient exact or constant factors algorithm

for Min-Power Broadcast or Min-Power Strong Connectivity in the Euclidean
with efficiency case. We also leave open the NP-Hardness of Network Life in
Euclidean cases.

Another special case is when nodes have non-uniform ”sensitivity” s(v). Even

in the Line-with-sensitivity case, when c(u,v) = ||u, v||*/s(v), we do not know
algorithms better than the general O(logn) algorithms from Section . Adding
non-uniform sensitivity to symmetric power requirements results in Power As-
signment problems as hard as set cover.
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