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Preface

This book comprises the second volume in what is planned to be a

three-volume series describing battery-management systems. The

first volume focused on deriving mathematical sets of equations or

models that describe how battery cells work, inside and out. This sec-

ond volume applies equivalent-circuit style models to solve problems

in battery management and control. The third volume will show how

physics-based models also can be used to solve problems in battery

management and control, leading to better results. The intent of the

series is not to be encyclopedic; rather, it is to put forward only the

current best practices, with sufficient fundamental background to

understand them thoroughly.

This particular volume is organized in the following way:

• Chapter 1 introduces the requirements of a battery-management

system. These include sensing, control, protection, state and health

estimation, and communications.

• Chapter 2 reviews equivalent-circuit models of lithium-ion cells

and shows how to use them to simulate the response of a battery

pack to an input stimulus.

• Chapter 3 investigates battery-cell state estimation. Nonlinear

Kalman filters are shown to give very good estimates, along with

dynamic error bounds that enable confident use of the estimates

when computing battery-pack energy and power.

• Chapter 4 looks at state-of-health estimation. A simple method

can be used to estimate cell resistance, but we find that it is more

difficult to estimate cell total capacity. A regression technique

based on total-least squares provides optimal unbiased results.

• Chapter 5 discusses cell balancing. It considers factors that lead to

imbalance, some questions that must be addressed when design-

ing a balancer, and some circuit options for balancing cells.

• Chapter 6 explores computation of power limits where terminal-

voltage constraints are applied. The simple method from Chap. 1

is extended to work with a full equivalent-circuit cell model.

ix
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x battery management systems: volume ii, equivalent-circuit methods

• Finally, Chap. 7 exposes the fundamental flaw with voltage-based

power-limit estimates and introduces physics-based methods that

can be used alongside a circuit model to give better limits.

The intended audience for this material is someone with an under-

graduate degree in engineering—principally electrical or mechanical.

The reader does not need to be intimately familiar with all the con-

cepts from Volume I of this series to be able to benefit from the topics

in this volume. However, the deeper understanding that can be devel-

oped by studying Volume I will add richness to the study, and will

aid understanding some concepts explored in Chaps. 2, 4, and 7 of

this book that would otherwise be quite opaque.

The content in this book has been taught multiple times to stu-

dents of diverse backgrounds in ECE5720: Battery Management Sys-

tems at the University of Colorado Colorado Springs. Lecture notes

and lecture videos are available at http://mocha-java.uccs.edu/

ECE5720/index.html. As the lecture videos sometimes explain the

concepts of this book in a somewhat different way, the additional

perspective may be an advantage to the learner.

I am greatly indebted to a number of my colleagues and students

who have supported and assisted me over the years in understand-

ing and developing the theory and methods presented in this work.

First, I would like to acknowledge Dr. Daniel Rivers, founding CEO

of Compact Power, Inc. (now, LGCPI), who introduced me to this

field in the first place. Without his support and encouragement, I

never would have studied battery management, and this book would

not exist. I would also like to thank Dr. Saeed Siavoshani for inviting

me to participate as an instructor in an SAE Hybrid-Electric-Vehicle

Academy some years ago. Much of the material of this book was

first developed to present at that academy; it was then expanded to

become the Battery Management Systems course just mentioned, and

now it has matured to book form. Among my students, I owe a spe-

cial debt of gratitude to Mr. Lukas Aldrich and Mr. Kirk Stetzel for

critiquing the content and helping with many of the examples, and to

Mr. Alfred Randall and Mr. Roger Perkins for their work on reduced-

order models of cell degradation that are presented in Chap. 7. My

colleague and friend Dr. M. Scott Trimboli has also been a great en-

courager of this work, as he was with Volume I.

Despite my best intentions, there are certain to be errors and con-

fusing statements in this book. Please feel free to send me corrections

and suggestions for improvements.
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1 IEEE Standard 1491 defines a battery
monitoring system as “A permanently
installed system for measuring, stor-
ing, and reporting battery operating
parameters.”

1

Battery-Management-System

Requirements

This book investigates the proper management of battery packs, a

task that requires both hardware (electronics) and software (computer

program) components. The hardware elements incorporate electronic

circuits to ensure the safety of the battery pack and its operator and

to make measurements that include battery-cell voltages, electrical

current, and temperature. The software portions monitor and coordi-

nate the activities of the battery pack.

While we look at both hardware and software aspects in this book,

we devote most of our attention to software methods or algorithms.

These implement mathematical calculations that use measured data

to estimate and summarize battery-pack present operational status

and to predict its near-future performance limits. And, although

most of the approaches that we will discuss can be applied to battery

packs comprising cells of any chemistry, we will focus on applica-

tions involving lithium-ion battery cells.

A survey of the relevant literature uncovers many different meth-

ods for different aspects of battery management. We will explore

some simple methods to introduce many of the key concepts but

will devote most of our study to some more complex but also more

accurate and robust approaches, which we prefer. However, we rec-

ognize that an implementation of a more complex algorithm requires

more processing power—and hence a greater cost—than a simpler

counterpart, so these algorithms are best suited to applications in-

volving mission-critical systems or large battery packs comprising

many battery cells where a substantial investment must be protected.

The methods and algorithms we discuss would typically be imple-

mented by a battery-management system or BMS.1 A BMS is an embed-

ded system; that is, purpose-built electronics plus processing to enable

a specific application. For example, Fig. 1.1 shows the electronics por-

1
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2 battery management systems: volume ii, equivalent-circuit methods

Figure 1.1: An example BMS.

tion of a prototype BMS being developed for research purposes at the

University of Colorado Colorado Springs.

The primary purposes of a battery-management system are:

• First and foremost, to protect the safety of the operator of the

battery-powered system. The BMS must detect unsafe operating

conditions and respond. This may demand disconnecting and

isolating the battery pack from the load, warning the operator by

some display or alert, and so forth.

• Second, to protect cells of the battery pack from damage in abuse

or failure cases. This may involve active intervention under soft-

ware control, or specialized electronics that can detect failures and

isolate the failing components from the rest of the battery pack

and from the load it powers.

• Third, to prolong the life of the battery under normal operating

cases. The BMS does so by coordinating with the controller of the

load it powers, advising it of dynamic limits on power that can

be sourced or sunk over some short future interval that ensures

that the battery pack will not be overcharged or overdischarged.

It also controls the thermal-management system, ensuring that

the battery pack is kept within its design operational-temperature

range.

• Fourth, to maintain the battery pack in a state in which it can

fulfill its functional design requirements. Thus, for example, it

will not allow a battery pack to become so far discharged that it

cannot deliver its rated discharge power, nor will it allow the pack

to become so highly charged that it cannot receive its rated charge

power at any point in time.

There is a cost associated with advanced methods of battery man-

agement, so not all applications implement all features. This cost

adds to the purchase price of the battery pack, so the battery-management

algorithms must provide tangible value. A good rule of thumb says

“your battery is ‘cheap enough’ if you can’t remember the last time

you replaced it.” The idea is that replacing the inexpensive battery in

something like a television remote control is not financially painful,

so spending more money on an advanced remote control that makes

more efficient use of the battery is probably not worth it. However,

mission-critical and large battery packs represent a greater invest-

ment and motivate better battery management. If you are required

to replace an expensive battery prematurely, or if you are unable to

complete your mission due to battery failure because of poor man-

agement, you will remember it for a very long time! Another way of
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1. battery-management-system requirements 3

Figure 1.2: Vehicles having electrified
drivetrain. From top to bottom: Toyota
Prius, Ford C-MAX Energi, Chevy Volt,
and Tesla Model S.
(All photos carry Creative-Commons
“Attribution 2.0 Generic (CC BY 2.0)”
license, and were taken by Soknet
Soknet, Kyle Harris, Kārlis Dambrāns,
and Niels de Wit, respectively. Cropped
from originals downloaded from
Flickr.com.)

looking at this is to consider the cost of the battery pack in relation

to the cost of a battery-pack failure. The cost of battery failure for a

television remote control is not large; however, the cost of battery-

pack failure for a mission-critical or large battery installation can be

very high. Consequently, as this book focuses on advanced methods

for management and control of battery packs, it is most relevant for

applications where the cost of battery-pack failure is high and where

the added cost can be justified, although the methods that we discuss

are quite general.

An important application category considers vehicles having

electric-drivetrain components. These vehicular applications include

the following generic subcategories:

Hybrid-electric vehicles (HEVs). These vehicles have motive power

provided by an electric motor plus at least one other source (e.g., a

gasoline engine). A battery pack stores a small amount of energy, and

the battery–motor combination is used primarily for power boost

when the vehicle must accelerate, or as a power sink when the vehi-

cle must decelerate. This enables the gasoline engine to operate at

a more constant operational point comprising a combination of rev-

olutions per minute (RPM) and torque, which can be more efficient

and can also allow the vehicle to achieve the same overall peak per-

formance requirements with a smaller engine. HEVs have essentially

zero all-electric vehicle range and are never plugged in to recharge

their battery pack; instead, the gasoline engine recharges the battery

when extra power is available. An example HEV is the Toyota Prius,

shown in the top frame of Fig. 1.2.

Plug-in hybrid-electric vehicles (PHEVs). These vehicles are similar

to HEVs but have a somewhat larger battery pack and motor. They

can operate in electric-only mode under some operating conditions,

typically at lower speeds such as for residential or city driving. Con-

sequently, they have some all-electric range, often on the order of 10

to 20 miles. The vehicle can be “plugged in” to the utilities grid to

recharge the battery pack. Subsequently, the vehicle operates first in

a charge-depletion mode where the majority of the traction power is

taken from the battery and not from the gasoline engine. When the

battery charge is depleted to some minimum allowed level, the vehi-

cle then switches to a charge-sustaining mode where it operates just

like a standard HEV. An example PHEV is the Ford C-MAX Energi,

which is shown in the second frame in Fig. 1.2.

Extended-range electric vehicles (E-REV). E-REVs are similar to

PHEVs but have somewhat larger battery pack and motor. They

can operate in electric-only mode under nearly all operating condi-

tions so long as battery power is available. Their all-electric range is

also greater, often on the order of 35 or more miles. As with a PHEV,
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4 battery management systems: volume ii, equivalent-circuit methods

they may be plugged in to charge their battery pack and they oper-

ate in charge-depletion and charge-sustaining modes. Since many

commuters do not drive more than 35 miles in a day, they will rarely

exceed the all-electric range of the vehicle and so the car will op-

erate essentially as an electric vehicle for them. But if they ever do

need to drive a distance farther than the battery energy alone allows,

“extended range” is provided by the gasoline engine. An example E-

REV is the Chevy Volt, which is shown in the third frame in Fig. 1.2.

Electric vehicles (EVs), also known as battery-electric vehicles (BEVs).

For these vehicles, the battery–motor combination provides the only

source of motive power. There is no gasoline engine. Consequently,

the vehicle design is much simpler than for any of the flavors of hy-

brid, but the vehicle range is limited by the amount of useable energy

that can be stored by the battery. The size of the battery pack then

becomes a critical design variable that is factored into the economic

optimizations performed when designing the vehicle. Some com-

mercial EVs have range of less than 100 miles, but others have range

more than 300 miles between recharges. An example EV is the Tesla

Model S, which is shown in the bottom frame in Fig. 1.2.

All of these vehicle types employ battery packs that are “large,”

“high voltage,” and “high current.” There are some distinctions in

design, which we will detail when necessary. However, the com-

monalities of their battery systems are more significant than their

differences; so when distinctions aren’t important, we refer to any

member of the class of vehicles having electric-drivetrain components

as xEV. As xEVs represent a very important category of application

requiring large battery packs, many of the examples presented in this

book will be described in terms of an xEV implementation.

However, we do note that there are other significant and growing

application domains requiring large battery packs. These include

some that support and supplement the standard utilities electrical

grid. For example, a large battery bank may be used for grid-storage

of energy when opportunistic generation exceeds demand, such as

from a solar or wind farm. The stored energy can be supplied back

to the grid at a later time when the primary generation power is un-

available. Or, a battery pack may be used for grid-backup to provide

energy to a load during grid power outages. For example, large, mo-

bile grid-backup systems can be installed in the trailer of a semitruck

and driven to neighborhoods to restore power temporarily during an

emergency or during scheduled grid maintenance. Also, large battery

packs are becoming more common in frequency regulation applications,

where the battery pack operates as small-scale grid storage to make

use of short-term surplus generation to charge the pack and in turn
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1. battery-management-system requirements 5

2 There is an evolving discussion regard-
ing what dc voltage range is considered
to be safe and what is considered to
be hazardous. The 2012 edition of the
NFPA 70E: Standard for Electrical Safety
in the Workplace listed a dc shock hazard
limit of 50 V dc, but this was raised
to 100 V dc in the 2015 edition. Many
designers still adhere to the 50 V limit
to minimize risk.

provide short-term power to the grid when insufficient generation is

available.

These applications—and others—are very different externally, and

do place some different requirements on the battery-management-

system design. However, they all tend to share the same kinds of

algorithmic requirements, which is the primary focus of this book.

Therefore, most of what is presented herein will be of interest to any

battery-pack controls designer.

1.1 Battery-pack topology

Electrical power is computed as electric current multiplied by voltage:

that is, p = iv. Therefore, high-power battery packs must deliver

either high current, high voltage, or both. To achieve a design re-

quirement on maximum power, the battery-pack engineer must make

decisions regarding the topology of the pack. What should be its

voltage range and peak current?

The chemistry of an individual cell fixes its voltage range; so for

high-voltage packs we must connect multiple cells in series. The

pack voltage is then the sum of the individual cell voltages. Roughly

speaking (i.e., if all cell voltages are assumed equal), we have that

vpack = Ns × vcell, where the battery-pack topology wires Ns cells in

series.

Cell construction places limits on the maximum current that the

cell is designed to sustain; so for high-current packs we must wire

cells in parallel. The pack current is then the sum of the currents

going through the individual cells that are wired in parallel. Roughly

speaking (i.e., if all of these currents are assumed equal), we have

that ipack = Np × icell, where the battery-pack topology wires Np cells

in parallel.

The tradeoff regarding how many cells to wire in parallel versus

in series in order to achieve a battery-pack maximum-power design

requirement is generally determined by economic and safety factors.

Groups of cells termed modules are usually designed to have maxi-

mum voltage less than 50 V for safety,2 and battery-pack total voltage

is generally kept to less than 600 V because power electronics that

operate at higher voltages are presently very expensive. Within these

voltage ranges, when designing to meet a power-demand require-

ment, higher voltages tend to be preferred over higher currents to

minimize resistive power losses in both the wiring that is internal

to the battery pack and to the load (computed as i2
pack × R). This

also allows using wire having smaller diameter (and lower cost) as

power loss scales with the square of current versus only linearly with

resistance.
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6 battery management systems: volume ii, equivalent-circuit methods
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Figure 1.3: Two different approaches to
modularizing 300 cells in a high-power
battery pack: PCM versus SCM.

3 If all cells are identical, then these two
battery packs provide the same energy,
power, and so forth. However, if there
are differences between the cells, the
packs can operate in quite different
ways. We explore this more in Chap. 2,
where we see how to simulate battery
packs having different topologies.

Battery-pack design is often modular. That is, a design is first cre-

ated and optimized for a module comprising a small group of cells;

then, modules are connected in series and/or parallel to achieve the

overall battery-pack design objectives. This allows reusing a fixed-

module design for many different possible application scenarios and

minimizes nonrecurring engineering (NRE) costs.

Modules may be constructed with any number of cells wired in

series and parallel, and we will explore some of the tradeoffs in

Chap. 2. Here, we note only that two extreme cases are shown in

Fig. 1.3. The parallel-cell-module (PCM) approach wires cells in parallel

to make modules, then wires modules in series to create a battery

pack. The battery pack drawn in the top of the figure configures 300

cells by wiring three cells in parallel to make a PCM, and then wiring

100 PCMs in series to make the pack. The series-cell-module (SCM)

approach instead wires cells in series to make modules, then wires

modules in parallel to make a battery pack. The battery pack drawn

in the bottom of the figure configures the same 300 cells by wiring

100 cells in series to make an SCM, and then wiring three SCMs in

parallel to make the pack.3

We can design battery packs and battery-management system for

either approach. Most often, however, we use something in between

these extremes. For example, a 3P6S module has eighteen cells con-

figured with three cells wired in parallel and six cells in series. The

module power and energy are then both approximately eighteen

times that of a single cell (but not exactly, as we shall discover later).
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1. battery-management-system requirements 7
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Figure 1.4: The context of the BMS
inside the battery pack.

1.2 BMS design requirements

The BMS is interconnected with all major components in the battery

pack, as illustrated in Fig. 1.4. These include the battery stack, com-

prising all of the cells, the sensing and control electronics, and at least

some part of the thermal-management system.

The electronics may be implemented as a single monolithic design,

or there may be separate elements having different functionality dis-

tributed throughout the battery pack. As an example, the drawing

shows cell-voltage and temperature-sensing elements as distinct from

pack sensing and control and from overall supervisory battery man-

agement, all within the confines of an overall battery pack, which is

drawn as the yellow shaded box. In an xEV, the battery-load control

computer is the overall vehicle controller; in other applications, the

corresponding controller would be interfaced.

Regardless of electronics topology or battery application, BMS

functional requirements can be broken down into five overall cate-

gories:

1. Sensing and high-voltage control: The BMS must measure cell volt-

ages, module temperatures, and battery-pack current. It must also

detect isolation faults and control the contactors and the thermal-

management system.

2. Protection: It must include electronics and logic to protect the op-

erator of the battery-powered system and the battery pack itself

against overcharge, overdischarge, overcurrent, cell short circuits,

and extreme temperatures.

3. Interface: The BMS must communicate regularly with the applica-

tion that the battery pack powers, reporting available energy and

power and other indicators of battery-pack status. Further, it must

record unusual error or abuse events in permanent memory for

technician diagnostics via occasional on-demand download.

4. Performance management: It must be able to estimate state of charge
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8 battery management systems: volume ii, equivalent-circuit methods

4 If cells are wired in parallel, they will
share the same terminal voltage, and
so voltages of parallel cells cannot be
distinguished. We could more correctly
say something like “all voltages of
individual parallel groups of cells must
be measured.”

5 See, for example, Andrea, D., Battery
Management Systems for Large Lithium
Ion Battery Packs, Artech House, 2010,
which has quite a bit more detail on
this topic, and on BMS electronics
design in general.

(SOC) for all the cells of the battery pack, compute battery-pack

available energy and power limits, and balance cells in the battery

pack.

5. Diagnostics: Finally, it must be able to estimate state-of-health

(SOH), including detecting abuse, and may be required to estimate

state-of-life (SOL) of the battery cells and pack.

In this chapter, we present a high-level overview of these five require-

ments. Later chapters will develop performance-management and

diagnostic topics in detail. In particular, Chaps. 3 through 7 focus

on SOC estimation, SOH estimation, balancing, and power-limits

estimation in more depth.

As we proceed through the remainder of this chapter, the section

titles will refer to requirement numbers from the above list. For exam-

ple, all section titles beginning with “Requirement 1” have to do with

sensing and high-voltage control, and so forth.

1.3 Requirement 1a. Battery-pack sensing: Voltage

In a battery pack comprising lithium-ion cells, all individual cell

voltages must be measured.4 Cell terminal voltage can provide a

measure of the relative balance of cells in the battery pack, and is a

critical input to most SOC and SOH estimation algorithms.

Out-of-bounds cell voltage is also an indicator of a number of seri-

ous lifetime and safety issues. For example, overcharging a lithium-

ion cell can initiate unwanted internal chemical side reactions that de-

grade the cell. Overdischarging can precipitate a sequence of events

leading to a cell short-circuiting. In extreme cases, either of these

can cause thermal runaway, where heat generated by side reaction or

short circuit accelerates the failure mechanisms via natural positive

feedback, ultimately resulting in a battery fire and/or explosion. Due

to various reasons discussed in Chap. 5, we cannot assume that all

cells automatically have the same voltage, and so we cannot skip

measuring any voltage in a lithium-ion battery pack.

A number of silicon vendors have come to the aid of the BMS

electronics designer by designing integrated-circuit (IC) “chipsets”

that can assist with cell-voltage measurement.5 These are low-cost

devices with little or no general-purpose processing capabilities on-

chip. They implement the difficult task of measuring analog voltages

with high accuracy, high common-mode rejection, and fast response

in high-electromagnetic-interference (EMI), high-temperature, and

high-vibration environments, such as encountered in a vehicular

application. A single IC can be used to measure the voltages of a
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1. battery-management-system requirements 9
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Figure 1.5: An example IC for battery-
stack voltage measurements.
(Figure used with permission of Linear
Technology Corporation.)

number of cells connected in series, and two ICs can often be placed

in parallel for redundant fault-tolerant designs.

One example is the popular LTC6803 part, designed in Colorado

Springs by Linear Technology Corporation. A functional block dia-

gram of this IC is shown in Fig. 1.5. A single LTC6803 can monitor

the voltages of up to 12 cells wired in series in a module. An internal

analog multiplexer connects cells to a 12-bit delta-sigma analog-to-

digital converter, and a single “read” command can trigger the mea-

surements of all 12 voltages in rapid sequence. Up to 10 ICs can be

daisy-chained together to monitor up to 120 cells in a battery pack

and electrically isolated communications are built into the design.

It supports either internal (slow) or external (faster) dissipative cell-

balancing circuitry and up to four temperature measurements per

module (in addition to the internal IC die temperature). It can be

powered by the module of cells itself or from an external source.

When selecting a voltage-monitoring IC for a BMS electronics de-

sign, some of its specifications to consider and compare to design

requirements for the battery pack include how many cells can each

IC monitor? How many cells in total can be monitored? Does the IC

support either passive or active balancing? What is the measurement

resolution and accuracy? How many temperature measurements

will it support? How many wires are required to communicate be-

tween ICs (if multiple ICs are required in a design)? And, what is the

chipset availability and per-cell cost?

1.4 Requirement 1b. Battery-pack sensing: Temperature

As we have already explored in detail in Volume I of this series,

lithium-ion cell dynamics are strong functions of temperature. For

example, resistance increases and chemical processes tend to slow

down at cold temperatures. So, we must know cell temperature to

be able to predict near-future cell performance. Further, degradation

mechanisms are also temperature-dependent: generally, high temper-

atures accelerate degradation rates, although charging a battery pack

at low temperatures can also lead to premature failure via lithium-

plating. Also, a BMS must be able to sense temperature to control the

thermal-management system to maintain battery-pack temperatures

in a safe region.

Ideally, we would measure each cell’s internal temperature. How-

ever, cells are not (mass-)produced with temperature sensors built in,

so we must rely on measurements of cell external temperatures. In ad-

dition, as there is an expense per sensor, we would like to minimize

the total number of sensors required. With an accurate pack ther-

mal model, we can place a limited number of temperature sensors
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10 battery management systems: volume ii, equivalent-circuit methods

R1

Rthermistor

−

+

v

vthermistor

Figure 1.6: Voltage-divider circuit.

external to one or more cells per module and then estimate internal

temperatures of all cells. This is usually sufficient.

But, how do we measure temperature? To measure any simple

physical quantity electronically, we must first represent that quantity

as a voltage signal and then measure the voltage via an analog-to-

digital converter circuit. There are two primary approaches to doing

so to measure temperature.

The first is to use a thermocouple, which is a device comprising two

dissimilar metals in contact with each other that acts as a miniature

battery. A very small voltage is produced when the temperature of

the thermocouple is different from a reference temperature at an-

other part of the measurement circuit, and this voltage depends on

magnitude of the temperature difference. The thermocouple voltage

can be amplified and measured and temperature can be computed

from this measurement. A design challenge when using thermocou-

ples is that the reference temperature must be independently known

or measured, which probably makes thermocouples best suited for

laboratory testing and not for production BMS designs.

The second method uses a thermistor, and is probably better-

suited for use in commercial products. All resistors have value that

varies somewhat with temperature but are usually designed to min-

imize this variation. A thermistor, on the other hand, is designed

to maximize and to capitalize on temperature variation. Negative-

temperature-coefficient (NTC) thermistors have resistance that varies

inversely with temperature, and positive-temperature-coefficient

(PTC) thermistors have resistance that varies directly with temper-

ature. If we can measure thermistor resistance, we can then infer

temperature.

To measure resistance, we can use a voltage-divider circuit, such

as shown in Fig. 1.6. In the circuit, the top resistor R1 has resistance

that does not vary appreciably with temperature, but the lower re-

sistor Rthermistor has value that is designed to vary significantly with

temperature. We compute overall current as

i =
v

R1 + Rthermistor
.

Then, we note that the measured voltage is vthermistor = iRthermistor or

vthermistor =
Rthermistor

R1 + Rthermistor
v.

The value of R1 is designed to limit power loss through the mea-

surement circuit but at the same time provide a useful measurement

range for vthermistor.

If we measure vthermistor and know the circuit-design parameters,

Plett, Gregory. Battery Management Systems, Volume II: Equivalent-Circuit Methods, Artech House, 2015. ProQuest Ebook Central,
         http://ebookcentral.proquest.com/lib/ybp-ebookcentral/detail.action?docID=4821265.
Created from ybp-ebookcentral on 2020-03-27 11:56:42.

C
op

yr
ig

ht
 ©

 2
01

5.
 A

rte
ch

 H
ou

se
. A

ll 
rig

ht
s 

re
se

rv
ed

.
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Figure 1.8: Sensing current with a
current shunt.

we can compute

Rthermistor =
vthermistor

v − vthermisor
R1. (1.1)

The thermistor data sheet will give an expression relating Rthermistor

to temperature. For example, a representative relationship computes

Rthermistor = R0 exp

(
β

(
1

273.15+ T
− 1

273.15+ T0

))
, (1.2)

where the temperature being measured is denoted as T and nominal

resistance at reference temperature T0 is denoted as R0; temperatures

are converted from celsius to kelvin by adding 273.15, and β is a de-

vice parameter. The top frame of Fig. 1.7 plots thermistor resistance

for an NTC device having R0 = 100 kΩ at T0 = 25 ◦C and β = 4282.

If this device were placed in the lower leg of a voltage divider hav-

ing a 5 V source and R1 = 100 kΩ, we would measure the thermistor

voltage vthermistor as a function of temperature that is plotted in the

middle frame of Fig. 1.7. We can then compute thermistor resistance

via Eq. (1.1) and temperature via solving Eq. (1.2) for that value of

resistance. For efficient computation in an embedded BMS, the over-

all relationship between measured voltage and temperature can be

precomputed and stored in a lookup table (LUT). The result for this

example is plotted in the bottom frame of Fig. 1.7.

1.5 Requirement 1c. Battery-pack sensing: Current

A BMS must measure battery-pack current. In part, this is to detect

and log abuse conditions and to ensure safety. However, battery

current is also a critical input to most SOC and SOH estimation algo-

rithms.

There are two basic electronics elements that can be used in a

circuit to sense current: current-shunts and Hall-effect sensors.

A current-shunt is a low-value (e.g., 0.1 mΩ) high-precision resistor

placed in series with the battery pack, usually at the negative ter-

minal. The voltage drop vshunt across the shunt resistance Rshunt is

measured using a standard analog-to-digital converter, and current

is computed as i = vshunt/Rshunt. Since the shunt resistance must

be small (to avoid large power losses due to i2Rshunt heating), the

voltage drop across the shunt will be small as well. So, the voltage

is usually amplified before sensing and the calculation for current is

adjusted accordingly.

Fig. 1.8 shows a photograph of a current shunt (top frame) and

a block diagram for current sensing using a current shunt (bottom

frame). Examining the current shunt itself in more detail, note that
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12 battery management systems: volume ii, equivalent-circuit methods

6 This scheme is called a Kelvin con-
nection and enables four-wire voltage
measurement. Since essentially zero
current is drawn by the voltage-sensing
electronics, there is negligible volt-
age drop across the resistance of the
smaller terminals, and current can be
calculated as stated earlier. However,
if one were to (mistakenly) connect
the voltage-sensing wires to the larger
screw terminals, the voltage drop of
the large battery-pack current passing
through the uncalibrated resistance of
the large screw terminals would sig-
nificantly degrade the accuracy of the
current calculation.
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Figure 1.9: Sensing current with a
Hall-effect sensor.

there are four connection terminals. The large terminals on the top

of the device are for connecting to the main battery-pack current-

carrying wires: one side is connected to the negative terminal of the

battery stack, and the other side is connected to the output negative

terminal of the battery pack. The entire pack current then passes

through the parallel plates that form the calibrated resistance in the

center of the shunt, between these large terminals. Specifically, the

resistance between the two smaller screw terminals is calibrated, and

the sensing leads are connected to these smaller terminals.6

The primary advantage of current shunts (over Hall-effect sensors,

described next) is that they have no offset at zero current, regardless

of temperature. This is of vital importance if one is updating an

SOC estimate by integrating current into and out of a battery pack

(this is known as coulomb counting). However, the amplification and

measurement electronics can still introduce an offset, which must

then be calibrated out of every measurement.

A disadvantage when using current shunts is that they must usu-

ally be electrically isolated from the main BMS circuitry (e.g., in an

automotive application, the BMS is powered via an external 12 V sup-

ply that must be isolated from the high-voltage battery). This, plus

amplification circuitry, adds complexity to the design. The resistance

of the current shunt also changes with temperature, so temperature

should be measured and resistance calibrated. In addition, the shunt

itself introduces some energy losses, and the heat that is generated

must be dissipated via the thermal management system.

If a coil is wrapped around a primary current-carrying conductor,

the electromagnetic field produced by the conductor induces a sec-

ondary current in the coil. Hall-effect sensors measure this induced

current to infer the primary current. Fig. 1.9 shows a photograph of

a Hall-effect sensor (top frame) and a block diagram for current sens-

ing using a Hall-effect sensor (bottom frame). The main battery-pack

current-carrying wire passes through the oval opening in the center

of the sensor—no direct electrical connection is made between the

sensor and the high-voltage battery pack. This yields the distinct ad-

vantage that Hall-effect sensors are automatically isolated electrically

from the high-voltage battery and so no special isolation circuitry is

needed.

However, because Hall-effect sensors operate based on electromag-

netic principles, magnetic hysteresis is inherent in the device. Feed-

back signal-conditioning circuitry can be devised to guard against

this hysteresis, and some sensors come prepackaged with such cir-

cuitry. Even so, Hall-effect sensors suffer from at least some measure-

ment offset at zero current, which drifts over time and which changes
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1. battery-management-system requirements 13

7 Incidentally, the figure also shows
that a fuse is usually inserted in middle
of the battery stack. If the fuse is
blown for some reason, this limits the
maximum voltage encountered by the
service technician to at most half of the
overall battery-stack voltage.

with temperature. Even if this offset is “zeroed out” in software (by

subtracting an initial measurement) at some initial temperature dur-

ing a BMS startup routine (when it is known that zero current is

flowing since contactors are not yet closed), this ad hoc calibration

does not correct for time- and temperature-varying drift in the bias.

As the bias plays havoc with a number of BMS algorithms, some kind

of compensation is necessary. For example, if the BMS ever knows for

certain that zero current is flowing, the bias can be “zeroed out” at

those times. Some HEV applications allow for this.

1.6 Requirement 1d: High-voltage contactor control

For safety reasons, as described in more detail in Sect. 1.7, high-

voltage battery packs are designed to be isolated electrically from

chassis ground. If someone were to touch chassis ground with one

hand and either terminal of the battery pack with the other, the elec-

trical isolation should be sufficient such that he or she is completely

safe. This will not be true if there is an isolation fault or ground fault,

which is why we investigate how to detect such faults in Sect. 1.7.

For similar safety concerns, the battery pack internal high-voltage

bus is completely disconnected from the load at both battery-pack

external terminals when not in use. This requires two high-current

capable relays known as contactors. Contactors used in battery packs

are normally-open devices, so if the BMS loses power for any reason,

the terminals of the contactor are de-energized and the battery pack

is disconnected from the load.

Battery loads are often capacitive. For example, in a vehicle appli-

cation, the motor-driving circuitry requires large capacitors to filter

the transients caused by switching power to the motor-drive coils.

This causes a complication during the startup sequence that connects

the battery pack to its load. Supposing that the capacitive load is in a

discharged state, if both contactors were to be closed simultaneously,

a huge spike of current would attempt to flow instantly, potentially

welding the contactors closed or blowing a fuse.

So, a third precharge contactor is used. The overall startup pro-

cess is depicted in Fig. 1.10. In frame (a), the pack is initially dis-

connected from the load. All contactors are open and the thick red

lines—indicating the power path—extend from the battery stack only

to the internal side of the contactors.7 The negative contactor is ac-

tivated first, as illustrated in frame (b), where the thick blue lines

indicate the low-voltage signal paths being activated. This connects

the “−” terminal of the battery stack to the “−” terminal of the load.

Next, the precharge contactor is activated (frame (c)). The precharge

resistor limits current flow and allows the battery pack to charge up
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14 battery management systems: volume ii, equivalent-circuit methods
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Figure 1.10: Startup sequence for
connecting a battery pack to its load.
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1. battery-management-system requirements 15

8 Measuring battery-stack and bus
voltages requires high-impedance
voltage dividers and isolation circuitry.
Bus voltage can instead be inferred
from stack voltage and pack current:
when pack current approaches zero,
we can conclude that bus voltage has
approached stack voltage.

9 Recall the discussion from footnote 2
on what dc voltages are considered
hazardous.

10 These are documented in Federal Mo-
tor Vehicle Safety Standard FMVSS 305

and Society of Automotive Engineers
standard SAE J1766.

the capacitive load at a controlled and safe rate. Often, the precharge-

resistor temperature is monitored—if it becomes too high the load

may have a short-circuit fault: The startup process is aborted and the

pack is disconnected from the load. Similarly, the bus and battery-

stack voltages are monitored. If these voltages don’t converge to the

same neighborhood after a specified interval, the load may have a

short-circuit fault: The pack disconnects.8

Assuming that bus and battery-stack voltages have become “close

enough” “quickly enough,” the BMS then closes the positive contac-

tor (frame (d)). This connects the “+” terminal of the battery stack

to the “+” terminal of the load. The load is now connected directly

to the battery stack through a low-resistance path. The precharge

contactor is then opened (frame (e)).

The procedure to follow when the battery pack is being shut down

is not as clear. Since the capacitive load and the battery voltage have

already come into equilibrium, the danger of contactor fusing/weld-

ing is not as severe. As long as the inductance of the load is small,

simply opening the main contactors is probably sufficient. (If not,

the startup procedure could be used in reverse to drain the inductive

energy prior to complete disconnect of the battery pack.)

1.7 Requirement 1e. Isolation sensing

In a standard automobile, the negative terminal of the 12 V lead-acid

battery is connected directly to the vehicle frame or chassis. This saves

money on wiring as only the positive voltage requires separate wires

to distribute power throughout the vehicle. It also does not pose a

significant safety risk as it is unlikely that 12 V across a person’s body

would cause harm.9

However, if someone were to touch both terminals of a high-

voltage battery pack, injury or even death could occur. Therefore,

battery-pack designers must take great care to minimize the likeli-

hood of this happening. So, all wiring is fully insulated and at no

point in the circuit is either high-voltage battery terminal connected

to the highly exposed vehicle chassis.

This greatly enhances safety. However, if the vehicle were to be in-

volved in an accident, or if vibration or any other kind of wear breaks

through the insulation on the high-voltage wiring, it is possible that

one of the terminals of the battery pack could come into contact with

the vehicle chassis through a low-resistance path. This then poses

a safety hazard, which we must detect in order to warn the vehicle

operator of the danger.

The Federal Motor Carrier Safety Administration dictates a proce-

dure for detecting loss of isolation.10 The premise is that it should be
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16 battery management systems: volume ii, equivalent-circuit methods

v1 v2R1 R2

Chassis

Figure 1.11: Step 1 of measuring isola-
tion.

11 Note the polarity of the voltmeters—
both v1 and v2 are positive.

v1

v2

R1

R2

Chassis

Figure 1.12: Step 1 of measuring isola-
tion, redrawn.

R0v′2R1 R2

Chassis

Figure 1.13: Step 2 of measuring isola-
tion if fault is on the negative side.

safe for someone to touch either terminal of the battery pack and the

chassis ground at the same time. The metric states that isolation is

considered sufficient if less than 2 mA of current flows when connect-

ing chassis ground to either the positive or negative terminal of the

battery pack via a direct short circuit.

We derive this procedure with reference to Fig. 1.11. The battery

pack should not be connected in any way to the chassis. In the cir-

cuit, both R1 and R2 should be infinite. However, it is possible that

isolation has been lost. In that case, either R1 or R2 will become less

than infinite. We call the lesser of R1 and R2 the isolation resistance

Ri, and it is our primary objective here to determine thus resistance.

According to the safety criterion, Ri must be greater than vb/0.002 A

or Ri > 500vb, where vb is the battery voltage.

For the BMS to sense whether the pack is sufficiently isolated from

the chassis, it must somehow determine Ri. To do so, we measure

v1 and v2 using a high-impedance analog-to-digital measurement

circuit, itself having impedance greater than 10 MΩ.11 Inserting the

sensor to make these measurements breaks strict isolation, but the

high impedance of the sensor ensures that it will not violate the 2 mA

current limit by itself.

Redrawing the circuit in Fig. 1.12, we see that R1 and R2 form

a voltage divider across the total battery voltage. As we wish to

find the smaller of the two resistances we solve for R1 if v2 > v1;

otherwise we solve for R2. Note also that the current through both

resistors in this circuit must be equal in order to satisfy Kirchhoff’s

current law. So, v1/R1 = v2/R2. We will use this identity shortly.

1.7.1 Potential isolation fault on negative side: Find R1

If there is a fault on the negative side of the battery pack, then v2 >

v1. So, if we measure v2 > v1, we wish to solve for R1 and then check

to see whether it is sufficiently large to avoid an isolation fault.

To find R1, we insert a known (large) resistance R0 between the

positive terminal of the battery and chassis ground via a transistor

switch, as shown in Fig. 1.13. This again breaks strict isolation, but

not enough to worry about if R0 is “big enough” (i.e., R0 ≫ 500Vb).

We now measure v′2. By Kirchhoff’s current law, the sum of cur-

rents through R0 and R2 must equal the current through R1, so

vb − v′2
R1

=
v′2
R2

+
v′2
R0

.

Substituting vb = v1 + v2 and R2 = R1(v2/v1) gives

(v1 + v2)− v′2
R1

=
v′2
R2

+
v′2
R0
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1. battery-management-system requirements 17

R0 v′1 R1 R2

Chassis

Figure 1.14: Step 2 of measuring isola-
tion if fault is on the positive side.

=
v′2(v1/v2)

R1
+

v′2
R0

.

Finally, solving for R1, we find

(v1 + v2)− v′2 − v′2(v1/v2)

R1
=

v′2
R0

R1 =
R0

v′2
(v1 + v2 − v′2 − v′2(v1/v2))

R1 =
R0

v′2

(
1 +

v1

v2

) (
v2 − v′2

)
. (1.3)

In summary, if v2 > v1, there is a possible isolation fault on the

negative side of the battery. We then measure v′2 and compute Ri =

R1 from v1, v2, and v′2 using Eq. (1.3). Isolation is deemed sufficient if

Ri > 500vb.

1.7.2 Potential isolation fault on positive side: Find R2

The procedure is similar if v1 > v2, except that now we want to find

Ri = R2. We insert a known large resistance R0 between the negative

terminal of the battery and chassis ground using a transistor switch,

as shown in Fig. 1.14, and measure v′1.

Again, by Kirchhoff’s current law,

vb − v′1
R2

=
v′1
R1

+
v′1
R0

.

Substituting vb = v1 + v2 and R1 = R2(v1/v2) gives

v1 + v2 − v′1
R2

=
v′1(v2/v1)

R2
+

v′1
R0

v1 + v2 − v′1 − v′1(v2/v1)

R2
=

v′1
R0

.

Solving for R2, we find

R2 =
R0

v′1
(v1 + v2 − v′1 − v′1(v2/v1))

R2 =
R0

v′1

(
1 +

v2

v1

) (
v1 − v′1

)
. (1.4)

In summary, if the potential isolation fault is on the positive side

of the battery, we measure v1, v2, and v′1, and compute Ri = R2 using

Eq. (1.4). Isolation is deemed sufficient if Ri > 500vb.

It is always wise to design with fault-tolerance and built-in test

circuitry in mind. In the case of the isolation-sense requirement, we

can test the function of the circuitry without changing the circuit
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18 battery management systems: volume ii, equivalent-circuit methods

12 See, for example, Santhanagopolan,
S., Smith, K., Neubauer, J., Kim, G-H,
Keyser, M., and Pesaran, A., Design
and Analysis of Large Lithium-Ion Battery
Systems, Artech House, 2015, which
has much more in-depth discussion of
battery-pack thermal requirements.

13 A good rule of thumb is “if you are
comfortable at a certain temperature,
the battery pack is also ‘comfortable’ at
that temperature.”

design from what we have discussed already. We simply activate the

transistor switches to insert resistance R0 between both battery-pack

terminals and chassis ground at the same time. We measure v′1 and

v′2: they should both be equal to vb/2 to within the tolerance of the

resistors used for R0.

1.8 Requirement 1f. Thermal control

In this book, we do not go into detailed thermal management and

control strategies. However, they are very important aspects of BMS

design as they address some significant battery-pack longevity and

safety concerns.12

In general, lithium-ion cells last longest if they are maintained in

a temperature band from about 10 ◦C to 40 ◦C.13 Some of the degra-

dation mechanisms that are accelerated by temperature effects are

discussed qualitatively in Chap. 4.

As we saw in Volume I of this series, models of heat generation

in a battery cell can be complicated. However, irreversible and joule

heating terms tend to dominate (especially over short timescales with

random-looking input current), so heat generation can be crudely

approximated as i2R where i is cell current and R is a thermal resis-

tance. Therefore, when the battery pack is sourcing or sinking a large

amount of current per cell, heat generation is high.

In an EV, while the total battery-pack current is high, the relative

C-rate per cell is low as the battery pack must have high total capac-

ity for acceptable vehicle driving range. Internal heat generation is

also therefore low. So, air cooling may be sufficient.

However, in an HEV, C-rates are high. Therefore, liquid cooling

may be necessary. In any xEV application, careful coupled thermal/

electrical simulation and analysis of battery-pack operation should be

conducted in the design phase to determine the correct size and type

of thermal management system.

While it is common (even universal) for a thermal-management

system to be required to cool cells, it is rare for one to consider heat-

ing cells. Even if a vehicle were started when the ambient tempera-

ture is quite low, the i2R self-heating tends to bring the battery pack

to a reasonable operating temperature fairly quickly. Some plug-in

vehicles, however, do heat a too-cold battery pack using grid power

while plugged in, but to do so using the pack’s own power when not

plugged in would deplete the available energy and therefore driving

range, so there is little reason to do so.
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1. battery-management-system requirements 19

14 If a single cell goes into thermal
runaway, there may be no way to stop
it if, for instance, there is an internal
short in the cell caused by a impurity
in the cell material. Opening the main
contactor may not stop the event.
However, the overall battery-pack
design should be such that thermal
runaway in one cell will not cascade to
other cells and such that all gases are
vented. This objective can be achieved
by mechanically isolating cells. A clever
fusing approach can also help: see Kim,
G-H, Smith, K, Ireland, J, and Pesaran,
A., “Fail-safe design for large capacity
lithium-ion battery systems,” Journal of
Power Sources, 210, 2012, pp. 243–253.
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1.9 Requirement 2. Protection

Referring back to the list of BMS design requirements enumerated in

Sect. 1.2, we have now completed our discussion of Requirement 1:

Sensing and high-voltage control. We now quickly consider Require-

ment 2: Protection.

Energy storage in any form is potentially hazardous. If energy

were to be released in an uncontrolled way, there could be catas-

trophic consequences. Because of long experience, we have grown

accustomed to the risks associated with gasoline-powered vehicles,

and understand very well how to minimize the likelihood and impact

of those hazards.

We are still learning how to control the risks associated with en-

ergy storage in high-capacity battery packs. The electronics and

software of the BMS are integral parts of an overall risk-management

strategy. They must provide monitoring and control to protect cells

from out-of-tolerance ambient operating conditions, and to protect

the user from consequences of a battery failure. There are large chal-

lenges involved. For example, if a cell develops an internal short

circuit, hundreds of amperes can develop in microseconds. Therefore,

protection circuitry must act very quickly to isolate the fault; other-

wise, the cell may go into thermal runaway, resulting in a battery-

pack fire or explosion. Safety management for high-capacity battery

packs is a developing field, as conventional methods using circuit

elements such as fuses tend to act too slowly, and new devices and

methodologies are needed.14

In a battery pack, protection must address the following unde-

sirable events or conditions: Excessive current during charging or

discharging, short circuit, overvoltage or undervoltage, high ambient

temperature or overheating, loss of isolation, and abuse. Whenever

possible, fallback protection paths should be implemented.

For example, consider Fig. 1.15, which illustrates one way to think

about designing protection mechanisms for a battery pack where cur-

rent and temperature are the input variables. In the figure, the area

shaded red corresponds to the cell-manufacturer-specified operating

region where cells will most likely be subject to permanent damage.

Anywhere else is considered to be “okay,” but we need a margin of

error in the design; hence, we generally design protection to limit the

cell’s operating conditions to smaller “safe” region, shown in green.

Safety devices are then specified to constrain cells to the safe region

leaving a safety margin, shown in white. Note that to traverse from

the green region to the red region, two protection systems must fail.

This redundancy helps provide a robust protection scheme.

Fig. 1.16 is a similar diagram for a preliminary protection design
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Figure 1.16: Designing current/temper-
ature protection.

15 Fault-detection and reaction strategies
are outside the principal scope of this
book. Some references that include a
deeper discussion of these topics in-
clude: Weicker, P., A Systems Approach to
Lithium-Ion Battery Management, Artech
House, 2014, and Santhanagopolan,
S., Smith, K., Neubauer, J., Kim, G-H,
Keyser, M., and Pesaran, A., Design
and Analysis of Large Lithium-Ion Battery
Systems, Artech House, 2015.

where voltage and temperature are the input variables. In some cases,

it is possible to cross only one boundary to move from the safe zone

to the failure zone. To complete the design, additional protection

elements should be added.

Examples of protection devices include thermal fuses (which open

the contactor when temperature is above some limiting temperature),

conventional fuses (which sever an electrical connection if too much

current flows for too long, but may not operate quickly enough for

some kinds of faults), and electronic fault detection. For the latter,

the BMS continuously senses voltage, current, and temperature and

takes design-specified action if a fault is detected. In Fig. 1.16 we also

notice that the plug-in charger can independently monitor battery-

pack voltage when the pack is being charged and automatically stop

charging if it detects that the overall battery-pack voltage is too high.

Similarly, the load controller can monitor voltage and stop utilizing

the battery pack if the voltage becomes out of bounds.15

1.10 Requirement 3a. Charger control

BMS requirement 3 considers communications interfacing between

the battery management system and the application being powered

by the battery pack. In an xEV, that application is the vehicle itself,

which is managed via the vehicle control computer (which fills the

role of the battery-load control computer in Fig. 1.4).

The first communication interface we consider is to the battery-

pack charger. Battery packs in xEV can receive charge in two ways.

All xEV packs experience random charging, where charge is delivered

in unpredictable patterns; for example, via energy recovery because

of regenerative braking. The BMS controls the maximum allowed

level of random charging by continuously informing the vehicle of

the present operating charge-power limit that can be supported by

the battery pack. This is discussed more in Chap. 6. In addition,

EV, PHEV, and E-REV have plug-in modes so can support plug-in

charging. This is a carefully regulated process where charge power is

provided from the electric utilities grid, and much finer control over

the charging protocol can be implemented. Often, some sequence of

constant-power steps (of decreasing magnitude) are applied until the

battery pack is considered to be fully charged. Battery-pack equal-

ization, as studied in Chap. 5, is also frequently performed during

plug-in charging.

The speed with which a modern battery pack can be charged

depends far less on the battery itself than it does on the utility ser-

vice feeding the charger. A quick back-of-envelope example should

illustrate this. Consider a small passenger vehicle: depending on
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1. battery-management-system requirements 21

aerodynamics and so forth, the rate of energy usage is on the order

of 200 Wh mile−1 to 300 Wh mile−1. For a 300-mile range, the battery

pack must have between 60 kWh to 90 kWh useable capacity. If we

were to charge this battery pack in 3 min, roughly the time required

to fill a passenger-vehicle gasoline tank, the utilities service would

need to provide power at a rate of 1.8 MW, continuously! Current

mass-produced battery technologies cannot withstand such a fast

charge but neither can residential utilities.

Approaching the problem from the opposite point of view, con-

sider a standard domestic service of 110 V at 15 A, or about 1.5 kW.

This is typical of most residential wall outlets. At this rate, it would

take between 40 h and 60 h to fully charge the battery pack, which is

not acceptable. However, consider an upgraded domestic service of

220 V at 30 A, or 6.6 kW. This is typical of an outlet to supply an elec-

tric stove or an electric clothes dryer. At this rate, it would take be-

tween 10 h and 15 h to fully charge the battery pack. This is actually

quite a good compromise for daily driving, as the car is rarely driven

its full range and often has overnight to recharge. So-called “fast

charge” would be needed only on extended-length trips of greater

distance than the vehicle range, and while stopping 10 or 15 min to

charge a vehicle battery pack is longer than the wait with which the

consumer is accustomed, it is still within reasonable limits if required

only infrequently.

1.11 Requirement 3b. Communication via CAN bus

The second topic we consider under the heading of communications

is the protocol used for the communications. This will, of course,

vary with the application, but automotive applications use the control-

area network (CAN) protocol almost exclusively for on-board vehicle

messaging. CAN is designed to provide robust communications in

the very harsh automotive operating environments with high levels

of electrical noise.

CAN has an electrical specification and a packet protocol. Elec-

trically, it comprises a differential two-wire serial bus designed to

network intelligent sensors and actuators. Messaging can operate

at two rates: high-priority messages are sent at a higher baud rate,

while low-priority messages are sent at a lower rate. High-rate mes-

saging is used for critical operations such as engine management,

vehicle stability, and motion control, while low-rate messaging is

used for simple switching and control of lighting, windows, mirror

adjustments, and instrument displays, etc.

The communication protocol defines the following: The method of

addressing the devices connected to the bus; transmission speed and
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Figure 1.17: A CAN 2.0 data frame.

16 Fortunately, many automotive-grade
microcontrollers have built-in CAN
communications hardware that take
care of the details involving the proto-
col, leaving the BMS designer free to
design messages and responses to meet
the requirements of the application.

priority settings; transmission sequence; error detection and handling;

and control signals. Data frames, such as illustrated in Fig. 1.17, are

transmitted sequentially over the bus. In the frame, there is a 1-bit

start-of-frame (SOF) marker, an 11- or 29-bit address for the intended

recipient of the message, a 1-bit remote-transmit request (RTR) flag

indicating whether this is a data frame or a remote frame, a 6-bit

control field, up to eight bytes of message to be transmitted, a 16-bit

cyclical-redundancy-check (CRC) for transmission error detection, a

2-bit acknowledgment (ACK) field, and a 7-bit end-of-frame (EOF)

marker.16

1.12 Requirement 3c. Log book function

A third requirement that we list under the communication category

is to provide a log-book function as well as a means of accessing

these data. For warranty and diagnostic purposes, the BMS must

store a log of atypical and abuse events. This log should include a

record of the type of abuse (e.g., out-of-tolerance voltage, current,

or temperature) and the duration and magnitude of the abuse. At

a minimum, a vehicle technician should be able to gain access to

this log for vehicle-diagnostics, warranty, and post-crash analysis

purposes.

It is also necessary to be able to store persistent diagnostics regard-

ing, for example, the number of charge/discharge cycles completed,

the battery-state and SOH (battery-model parameter values) esti-

mates for every cell at the end of each driving cycle, and more. These

data are stored in a history chip (e.g., flash memory).

1.13 Requirement 4a. State of charge estimation

Referring back to Sect. 1.2, BMS design requirement 4 has to do with

performance management. Under this umbrella, we introduce SOC,

energy, and power estimation in this chapter. Later, in Chaps. 3 and 6,

we will explore some of these in much greater depth.
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1. battery-management-system requirements 23

17 For a gasoline-powered vehicle, an
(approximate) energy sensor does
exist. A float in the gasoline tank
measures the remaining fuel, which is
proportional to available energy. Sadly,
there is no such “charge float” for a
battery cell.

1.13.1 What needs to be estimated and why?

Different applications impose different battery-pack performance-

management priorities. To function reliably, xEVs need to have con-

tinuous updates for the estimates of two fundamental battery quan-

tities: How much energy is available in the battery pack and how

much power is available in the immediate future.

An estimate of energy is most important for EV. Energy is an abil-

ity to do work and is a total quantity measured in Wh or kWh. En-

ergy is a fundamental input to vehicle range calculations—it tells you

how far you can drive.

An estimate of power is most important for HEV. Power is the rate

at which energy can be moved from the battery pack to the wheels

(or vice versa) without exceeding cell or electronics design limits and

is an instantaneous quantity p = iv in W or kW. Power tells you

whether you can accelerate or accept braking charge.

Estimates of both energy and power are important for E-REV/PHEV.

The energy estimate is used when calculating remaining range in

charge-depletion mode, and the power-limit estimate is used to bal-

ance engine and motor demand during charge-sustaining mode.

Ideally, we would like to be able to measure available energy and

power directly and then report these values to the vehicle computer.

Unfortunately, no such sensor exists.17 Instead, we must compute

estimates of available energy and power using more basic quantities

as inputs to the computation.

To be able to compute energy, we must know (at least) the present

value of all cell states of charge z
(i)
k and total capacities Q

(i)
k , where

subscript k denotes the present time index and superscript (i) de-

notes the ith cell in the battery pack. To compute power, we must

know (at least) all cell states of charge and resistances R
(i)
k . This is

illustrated in the right-hand-side of Fig. 1.18.

v
(i)
k

ik

T
(i)
k

estimators
based

Model-

Q
(i)
k

z
(i)
k

R(i)
k

calculations
Pack

Energy

Power

Figure 1.18: The data-flow diagram for
estimating available energy and power.

However, we cannot measure these parameters directly, either;

we must estimate them as well. Available inputs to this estimation

process include all cell voltages v
(i)
k , pack current ik, and cell tempera-

tures T
(i)
k .

In Chaps. 3 and 4, we will see that there are both good and poor

methods to produce state and parameter estimates from these mea-
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cs,max

θ100%

θ0%

Figure 1.19: Relationship between
negative-electrode average lithium
concentration and cell SOC.

surable quantities. The poor methods are generally simpler to under-

stand, code, and validate, but yield less accurate results. The impact

of this can be very costly. For example, if you “floor” the accelerator

pedal to pull out of your lane and pass a semitruck, and if the poor

battery-controls algorithm has indicated to the vehicle that ample

battery power is available, the vehicle will rely heavily on the battery

pack to enable this acceleration. If the battery pack then discovers

that some voltage or current limit has been exceeded because its

power estimate was inaccurate, some kind of corrective action must

be taken. The battery pack may decide to decrease allowed power

abruptly, leading to customer perception of poor drivability (you

certainly didn’t pass the semi truck, and you may not even have sur-

vived the event if another vehicle was oncoming). Or, the battery

pack may decide to allow the overcharge or overdischarge event in

order to protect the safety of the driver, but this will degrade the bat-

tery cells prematurely. Most often, battery packs are overdesigned

in the first place to compensate for uncertainty in the state of charge,

energy, and power estimates.

All three of these consequences of a poor battery-controls algo-

rithm have a cost in dollars, battery-pack weight and/or volume.

The fundamental underlying premise of this book is that investing in good

battery management and control algorithms—and electronics capable of im-

plementing them—can reduce pack size and return a considerable overall net

savings. For this reason, our focus is on the best available algorithms

even though some of these are fairly complex.

1.13.2 What really is state of charge (SOC)?

We consider SOC estimation in detail in Chap. 3. However, it is help-

ful to have a good intuitive understanding of what this term means

before we get to that point.

SOC is a concept that we explored in Volume I of this series in

the contexts of both equivalent-circuit and physics-based battery-

cell models. Physically, we recall that charging a cell moves lithium

from the positive-electrode solid particles to the negative-electrode

particles, and discharge does the opposite. Electrochemically, cell

SOC is then positively related to the average concentration of lithium

in the negative-electrode solid particles (and negatively related to

the average concentration of lithium in the positive-electrode solid

particles).

For simplicity, we consider the negative electrode only and de-

fine the present average lithium concentration stoichiometry as

the ratio of the average lithium concentration to the maximum

possible lithium concentration in the electrode materials, or θk =
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18 Note, that total capacity Q(i)
k is a

measure of the number of locations in
the electrode structure between θ0% and
θ100% that could hold lithium. It is not a
function of temperature, rate, etc., as we
will discuss further in Chap. 4.

Figure 1.20: Illustrating that “battery-
pack SOC” is a concept that does not
make physical sense.

cs,avg,k/cs,max at time index k. Based on cell-manufacturer-specified

design limits, this stoichiometry is intended to remain between

fixed values θ0% and θ100%. Then, an equation for cell SOC is: zk =

(θk − θ0%)/(θ100% − θ0%).

Since we cannot measure θk or cs,avg,k directly, it is reasonable to

wonder whether there exists a coupling between immeasurable SOC

and measurable cell voltage. Perhaps we can infer SOC by measuring

voltage? However, note that cell voltage depends on temperature and

electrode particle surface concentrations but SOC depends on particle

average concentrations. Surface and average concentrations will not

generally be the same. Further, changing temperature changes cell

voltage but not average concentrations so does not change SOC; rest-

ing a cell changes its voltage but not average concentrations so does

not change SOC; and history of cell usage changes steady-state sur-

face concentration versus average concentration (hysteresis), which

makes determining SOC using only voltage problematic.

SOC changes only because of passage of current, either charging

or discharging the cell via an external circuit or self-discharge within

the cell. However, voltage changes both for these reasons and a num-

ber of others. We will find voltage useful as an indirect indicator of

SOC but not as a direct measurement of SOC.

Then, how about inferring state of charge via measurements of

current? We know from Volume I that SOC for cell i at time index k is

related to its initial value and to cell current ik via

z
(i)
k = z

(i)
0 −

i−1

∑
j=0

1

Q
(j)
k

η
(j)
k ik, (1.5)

where cell current is positive on discharge and negative on charge,

η
(i)
k is cell coulombic efficiency (which is usually very close to but

slightly less than unity), and Q
(i)
k is the cell total capacity in ampere

seconds (coulombs).18 Estimating SOC via this relationship is called

coulomb counting. While Eq. (1.5) is correct, we will see in Chap. 3 that

SOC estimation via coulomb counting has some serious limitations.

We make one final point in this section concerning the idea of

“battery-pack SOC.” Consider Fig. 1.20, which shows a simple two-

cell battery pack with the lower cell having SOC equal to 100 % and

the upper cell having SOC equal to 0 %. How should we define the

“battery-pack SOC”?

We might define “battery-pack SOC” to be 0 % because we cannot

discharge without overdischarging the top cell. However, a value of

0 % implies that we can charge the battery pack, and we know that

we cannot do so without overcharging the lower cell. Therefore, a

definition of 0 % is not meaningful.

Or, we might define “battery-pack SOC” to be 100 % because we
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Figure 1.21: OCV versus SOC relation-
ships for six cells.

19 The only temperature dependence
is via the small temperature-based
variation in the open-circuit voltage
versus state of charge relationship.

cannot charge without overcharging the bottom cell. However, that

implies that we can discharge the battery pack, which we cannot do

without overdischarging the top cell. Therefore, a definition of 100 %

is not meaningful either.

Instead, we might define “battery-pack SOC” to be the average of

the two, 50 %. This may be worst of all because it implies that we can

both charge and discharge the battery pack. All of these definitions

are deficient for the simple reason that “battery-pack SOC” is an

ill-defined term and should not be used.

Of course, this example is extreme, but it does point out a need

for cell balancing, which we will explore in Chap. 5. It also brings up

the question regarding why “battery-pack SOC” might even be some-

thing we desire to know. One possible reason is for SOC setpoint

control in HEV: the average of all cell SOCs will work well for this if

the battery pack is reasonably well balanced (but we should call this

a “battery-pack-average SOC” and not a “battery-pack SOC”). A sec-

ond application is as an input to a dashboard fuel gauge. However,

the real issue is not SOC but available energy, so the gauge should be

an indicator of total energy instead.

1.14 Requirement 4b. Energy estimation

1.14.1 Cell total energy estimation

Cell total energy is equal to

e
(i)
k = Q

(i)
k

∫ z
(i)
k

zmin

OCV(ξ) dξ,

where OCV(·) is the cell’s open-circuit-voltage (OCV) relationship

as a function of SOC. For example, Fig. 1.21 plots the OCV versus

SOC relationship for six different lithium-ion cell chemistries. The

integral computes the area under the OCV curve between the mini-

mum permitted SOC and the present cell SOC. If Q
(i)
k is measured in

ampere-hours, then e
(i)
k is measured in watt-hours.

The integral can be precomputed for different upper integration

limits and stored in a lookup table for efficient implementation in

real time. Or, if a slight inaccuracy can be permitted, we can approxi-

mate cell energy as

e
(i)
k ≈ Q

(i)
k vnom

(
z
(i)
k − zmin

)
, (1.6)

where vnom is the nominal cell voltage.

Note that cell total energy is not a function of discharge rate, nor

is it a strong function of temperature.19 However, it is impossible to

get all the of the total energy out of the battery pack at high rates and
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zlow

zmin

Figure 1.22: Illustrating the calculation
of battery-pack total energy.

−

−

+

+R

OCV(z(i)k )

v
(i)
k

Figure 1.23: Crude equivalent-circuit
model of a cell.

cold temperatures without violating design voltage limits on the cell,

which is why we need power estimates as well.

1.14.2 Battery-pack total energy estimation

To compute battery-pack total energy (as opposed to individual cell

total energy, which we have just seen), we must take into consider-

ation that cells may have different present SOCs and different total

capacities. So, with reference to Fig. 1.22, we undertake a thought ex-

periment asking, “How many ampere-hours may be discharged from

the battery pack before the first cell reaches the lower SOC design

limit zmin?” We can calculate this as

Qdis
k = min

i

(
Q

(i)
k

(
z
(i)
k − zmin

))
.

If Qdis
k ampere-hours were discharged from the battery pack, only

one cell would reach the lower SOC design limit; the general expres-

sion for the SOC that would be attained by any cell is

z
(i)
low,k = z

(i)
k −

Qdis
k

Q
(i)
k

.

Then, we can compute the total energy removed from the battery

pack as the sum of the energy removed from each cell:

epack,k = ∑
i

Q
(i)
k

∫ z
(i)
k

z
(i)
low,k

OCV(ξ) dξ.

Again, we note that integrated OCV can be stored in a lookup table

for instant computation in a real-time implementation.

1.15 Requirement 4c. Power estimation

1.15.1 Cell power estimation

Charging or discharging a cell at a high power level will accelerate

cell degradation and lead to premature battery-pack failure. There-

fore, power limits are computed to provide reasonable estimates

of how much power is available over the next ∆T seconds without

causing premature degradation to the battery pack. For now, we will

preview a simple approach to computing power estimates to enforce

design limits on cell voltage, known as the Hybrid Pulse Power Charac-

terization (HPPC) method. In Chaps. 6 and 7, we will talk about more

advanced methods.

Here, we assume the simplified equivalent-circuit model of a cell

shown in Fig. 1.23. For this model, we have that

v
(i)
k = OCV(z(i)

k )− ikR
(i)
k ,
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or

ik =
OCV(z(i)

k )− v
(i)
k

R
(i)
k

.

To compute a power estimate, we first assume that we are concerned

only with keeping the terminal voltage between vmin and vmax. Then,

discharge power is computed by clamping the cell terminal voltage to

vmin:

p
(i)
dis,k = v

(i)
k ik = vmin

OCV(z(i)
k )− vmin

R
(i)
k

.

For this prediction to be reasonable, the value of R
(i)
k should not

be chosen equal to the instantaneous resistance R0 from a more com-

prehensive equivalent-circuit model. Instead, the voltage drop ikR
(i)
k

should be representative of the total voltage drop that would be ob-

served over ∆T seconds if a constant-current pulse were applied.

A laboratory cell test such as the one illustrated in Fig. 1.24 should

be performed. In the figure, the cell has been allowed to rest for 10

seconds, then a constant-current discharge pulse is applied for ∆T

seconds (∆T = 10 s in this example), then the cell voltage is allowed

to recover and a constant-current charge pulse is applied for ∆T

seconds. We measure ∆Vdis as the rest voltage minus the minimum

voltage during the constant-current discharge, and ∆Vchg as the rest

voltage minus the maximum voltage during the constant-current

charge. Then, we compute (positive) effective discharge and charge

resistances as

R
(i)
dis,∆T =

∣∣∣∣∣
∆v

(i)
dis

idis

∣∣∣∣∣ , and R
(i)
chg,∆T =

∣∣∣∣∣∣

∆v
(i)
chg

ichg

∣∣∣∣∣∣
.

So, to compute cell discharge power, we set R
(i)
k = R

(i)
dis,∆T and

clamp v
(i)
k = vmin. Then,

p
(i)
dis = vmin

OCV(z(i)
k )− vmin

R
(i)
dis,∆T

. (1.7)

Similarly, to compute cell charge power, we set R
(i)
k = R

(i)
chg,∆T and

clamp v
(i)
k = vmax. Then,

p
(i)
chg = vmax

OCV(z(i)
k )− vmax

R
(i)
chg,∆T

. (1.8)

Note that this quantity is negative.

The power estimates produced by this method are fairly poor

because of the underlying crude cell model and the implicit assump-

tions that the cell is at rest before power is demanded. Hence, it is
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Figure 1.24: Determining the resistances
Rdis,∆T and Rchg,∆T via a lab test.

common to derate the estimate by some constant multiplicative factor

less than 1 to produce a more conservative estimate. Accuracy can be

improved somewhat if the pulse testing is run at multiple cell SOC

and temperature setpoints, and thus different Rdis,∆T and Rchg,∆T

values are used for different operational conditions.

1.15.2 Battery-pack power estimation

Assuming that the battery pack comprises cells wired in series,

battery-pack power is computed by multiplying the minimum ab-

solute cell power by the number of series-connected cells:

pdis = Ns min
i

p
(i)
dis

pchg = Ns max
i

p
(i)
chg.

Note that we must use “max” instead of “min” when computing

battery-pack charge power since charge power is negative.

1.16 Requirement 5. Diagnostics

The fifth category of battery-management-system requirements, per

Sect. 1.2, is to compute diagnostics and report a SOH estimate for the

battery pack. SOH estimation generically refers to a process whereby

cell-model internal parameters are estimated and tracked as the cell

ages and SOH is somehow a measure of the changes to these param-

eter values. While there is no universally agreed-upon definition

of SOH, it is common to estimate two measurable indicators of ag-

ing: cell present total capacity and series resistance. Over the service

life of a battery pack, capacity generally decreases between 20 % to

30 %, and resistance generally increases between 50 % to 100 %. Ca-

pacity change is also known as capacity fade, and resistance change

is also known as power fade (as we have seen, resistance is an impor-

tant factor in the power calculation). Therefore, estimating R
(i)
k and

Q
(i)
k as the pack operates will give indicators of life. We study this in

Chap. 4.

1.17 Where to from here?

The focus of the rest of the book is on how to estimate the battery in-

ternal status from simple voltage–current–temperature measurements

and how to control battery operation for an optimal tradeoff between

life and performance. These topics are organized as follows:

• All future discussion requires a more detailed understanding of

how battery packs operate and how to represent that mathemati-
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30 battery management systems: volume ii, equivalent-circuit methods

cally. So, our next step is to review some helpful battery-cell mod-

els from the Volume I text and see how to use them to simulate

battery packs. This is the principal topic of Chap. 2.

• In Chap. 3, we will see how to use these models together with

measurements of voltage, current, and temperature to estimate

the internal state of all battery cells. We are particularly concerned

with estimating SOC. There are some simple but poor ways to do

this which we quickly survey. Most of our attention is focused on

some higher-performance methods using nonlinear Kalman filters,

with thought given to robustness and computational efficiency.

• In Chap. 4, we study how to estimate battery SOH. This is summa-

rized primarily by the resistance increase and capacity decrease of

the cells in the battery pack. We will discover that there are some

straightforward ways to estimate resistance but that estimating

total capacity well must be done very carefully.

• In Chap. 5, we look at the need for cell balancing (or equalization)

and a number of different approaches to implement balancing.

Design tradeoffs are considered.

• In Chap. 6, we examine methods for estimating available power

when battery-cell voltage is the primary limiting concern. We

study a simple but common static approach first, and then explore

a more accurate dynamic algorithm.

• In Chap. 7, we discuss the essential problems with voltage-based

power-limits computation and sketch out some ideas for more

advanced power-limits calculations. (Detailed discussion is a topic

of Vol. III of this series.)

Before proceeding we also note that many (or even most) of the

methods we talk about for battery-state estimation and controls are

patented and owned by xEV-related companies. This is true even of

methods commonly found in the literature—most have been devel-

oped by companies for their own use. This fact strongly motivates

research to develop methods that are sufficiently different from those

that have been patented so that they may be implemented freely (or,

so that you may patent them!). But, it also means that you may not

use these methods commercially without license from the patent

owner.
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2

Simulating Battery Packs

2.1 Modeling battery cells

An important function of a battery management system is to com-

pute estimates of a number of fundamental quantities including:

SOC, SOH, available power, and available energy. The best methods

to produce these estimates require high-fidelity but computationally

simple mathematical sets of equations or models of cell input/output

(current/voltage) dynamics. We believe that future applications will

also require insight into cell internal electrochemical dynamics (e.g.,

to predict and minimize aging by understanding and controlling the

internal degradation mechanisms).

There are two fundamentally different kinds of models that can be

used by these estimation tasks. Both are able to describe the opera-

tion of lithium-ion battery cells in some regards.

Equivalent-circuit models (ECMs): ECMs represent the operation of

a lithium-ion cell by proposing an electrical circuit as an analog

to cell behaviors. Data collected from cells via lab tests are used

to optimize circuit-element parameter values so that the current/

voltage behaviors of the model closely match that of the true cell.

Because ECMs amount to an empirical fit of data collected from

a cell to a model structure comprising electronic circuit compo-

nents, they share the same features of other types of curve fit. For

example, ECMs tend to make good predictions when interpolating

among the data seen when creating the model. This happens when

the cell is exercised with profiles of current that are similar to

those used to fit the parameter values. On the other hand, ECMs

do not tend to extrapolate well. If the cell is being operated very

differently from the lab-test scenario, its predictions should not

be trusted. An ECM can predict input/output (current/voltage)

behavior only; it cannot predict internal electrochemical states. But,

ECMs yield fast and robust simulations.

31
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Figure 2.1: The enhanced self-correcting
(ESC) circuit model.

Physics-based models (PBMs) : PBMs derive equations that model cell

operation starting from first-principles physical laws that describe

the response of internal cell electrochemical variables to an input-

current stimulus. Cell voltage can then be computed from these

internal electrochemical variables if desired. PBMs can predict over

a wide range of operating conditions and can predict the internal

electrochemical state of the cell (as is useful for aging prediction).

However, these models are often expressed as coupled partial-

differential equations (PDEs), which yield slow simulations that can

have robustness and convergence issues.

Volume I in this series studied both types of models in depth. Fur-

ther, it showed how to compute a reduced-order PBM of similar com-

plexity to an ECM that combines the advantages of both approaches.

Until now, we have explored modeling and simulation of lithium-

ion battery cells only. We have not considered simulations of battery

packs, which comprise many cells wired together in series and par-

allel combinations. As preparation for learning how to manage a

battery pack, it is important then to understand how battery packs

behave, as distinct from how battery cells behave on their own. Since

the battery pack responds to the load to which it is connected, this

also requires understanding how the battery-pack load operates.

This chapter develops methods to simulate battery packs and an

EV load. Before we explore these topics, we first review the ECM

and PBM. The majority of this book will use the ECM as its basis;

however, we will require some concepts from the PBM in Chap. 7

when we consider optimal power-limits estimation.

2.2 Modeling approach 1: Empirical

The input/output (current/voltage) behaviors of a lithium-ion cell

can appear very simple and are often well approximated by an equiv-

alent circuit. That is, an electronic circuit—comprising a voltage

source, resistors, capacitors and so forth—is used as an analog to pre-

dict the behavior of a physical lithium-ion cell. While the cell does

not itself contain these electronic components internally, its voltage

response to an input-current stimulus is similar to one that would be

produced by the circuit model for the same input current. As most

control-systems engineers have more familiarity with circuit design

than they do with electrochemistry, equivalent-circuit type models

are used extensively (almost exclusively) as the basis for real-time

control algorithms in commercial battery packs.

Fig. 2.1 shows, as an example, the so-called enhanced self-correcting

(ESC) equivalent-circuit cell model. In the example circuit, the cell’s

SOC-dependent open-circuit voltage is drawn as a dependent voltage
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2. simulating battery packs 33

1 The derivation of these equations is
covered in detail in Vol. I.

source, “hyst” is a nonlinear hysteresis element, and R0 is the cell’s

ohmic resistance. A single resistor–capacitor pair is drawn to model

diffusion voltages; however, additional resistor–capacitor parallel cir-

cuits could be added to improve model fidelity. This model structure

was originally termed enhanced because it contains some description

of hysteresis voltages to differentiate it from earlier models that did

not. It is called self-correcting because the voltage converges to the

correct value on both rest and constant-current input events. Even

if the transient behavior of the model is imprecise, the model can be

relied upon to yield reasonable voltage predictions after some time

has elapsed.

In the model, the constants R0, R1, C1, and so forth are termed

parameters. The circuit elements described by these parameters are

analogs to physical properties of diffusion processes when consid-

ered collectively but do not individually describe something physical.

Therefore, we cannot measure values for the constants using labora-

tory test methods that isolate a particular physical property. Instead,

when the model is being created, values of R0, C1, and R1 are ad-

justed using an optimization procedure to make model predictions

agree as well as possible to measured cell-test data. This process is

known as system identification. The optimized parameter values are

typically a function of state of charge and temperature.

The equations forming the ESC model comprise the following

terms:1

State of charge. State of charge at discrete-time index k is denoted as

zk. It evolves over time according to

zk+1 = zk − ηkik∆t/Q, (2.1)

where ηk is the unitless cell coulombic efficiency at time k, ik is the

input current at time k, ∆t is the sample period, and Q is the cell

total capacity. SOC is unitless, so if ik is measured in amperes and

∆t is measured in seconds, then Q must be expressed in ampere-

seconds. Or, if ∆t is measured in hours, then Q must have units of

ampere-hours.

Diffusion-resistor current. Current through the resistor R1 in the

resistor–capacitor network at discrete-time index k is denoted

as iR1,k and evolves as

iR1,k+1 = exp
(

−∆t
R1C1

)
iR1,k +

(
1 − exp

(
−∆t
R1C1

))
ik. (2.2)

This term models the slow time constants of diffusion processes

occurring within the cell.

Hysteresis voltage. A simple hysteresis model proposes that hysteresis
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34 battery management systems: volume ii, equivalent-circuit methods

2 This term is not always incorporated
in the models in this book, but it is gen-
erally simple to add if it is important to
the particular cell being modeled.

3 Boldfaced lowercase characters are
used in this book to denote quantities
that may be vectors and boldfaced
uppercase characters are used to denote
quantities that may be matrices.

hk at discrete-time index k evolves according to

hk+1 = exp
(
−
∣∣∣ ηkikγ∆t

Q

∣∣∣
)

hk +
(

exp
(
−
∣∣∣ ηkikγ∆t

Q

∣∣∣
)
− 1
)

sgn(ik).

(2.3)

In this equation, the unitless constant γ adjusts how quickly the

hysteresis state changes with a change in cell SOC and sgn(·) is 1

if its input is positive, −1 if its input is negative, and 0 otherwise.

The sample period and total capacity must have the same com-

patible units as in Eq. (2.1). Note that Eq. (2.3) does not capture

observed hysteresis behavior as well as one might like but it is the

best simple model of which we are aware.

We can somewhat extend this model (which describes slow

changes in hysteresis as cell state of charge changes) by adding a

term that describes an instantaneous change in hysteresis voltage

when the sign of current changes.2 To do so, we must define a

state that contains memory of the previous sign of nonzero current

sk =

⎧
⎨

⎩
sgn(ik), |ik| > 0;

sk−1, otherwise.

The model is extended easily to contain more than a single parallel

resistor–capacitor pair. We do so by defining a vector valued exten-

sion to Eq. (2.2) as3

iR,k+1 =

⎡

⎢⎢⎢⎣

exp
(

−∆t
R1C1

)
0 · · ·

0 exp
(

−∆t
R2C2

)

...
. . .

⎤

⎥⎥⎥⎦

︸ ︷︷ ︸
ARC

iR,k +

⎡

⎢⎢⎢⎣

(
1− exp

(
−∆t
R1C1

))

(
1− exp

(
−∆t
R2C2

))

...

⎤

⎥⎥⎥⎦

︸ ︷︷ ︸
BRC

ik.

Then, if we also define AHk
= exp

(
−
∣∣∣ ηkikγ∆t

Q

∣∣∣
)

, we can combine all

of the above relationships into a matrix–vector relationship:

⎡

⎢⎣
zk+1

iR,k+1

hk+1

⎤

⎥⎦ =

⎡

⎢⎣
1 0 0

0 ARC 0

0 0 AHk

⎤

⎥⎦

︸ ︷︷ ︸
A(ik)

⎡

⎢⎣
zk

iR,k

hk

⎤

⎥⎦+

⎡

⎢⎣
− ηk∆t

Q ik

BRCik

(AHk
− 1) sgn(ik)

⎤

⎥⎦ .

︸ ︷︷ ︸
fn(ik)

We can condense notation even further if we define

xk =

⎡

⎢⎣
zk

iRk

hk

⎤

⎥⎦ .

Then, we have

xk+1 = A(ik)xk + fn(ik). (2.4)
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2. simulating battery packs 35

4 This description is a very abbrevi-
ated summary of the entire process
described in detail in Vol. I.

5 MATLAB is a registered trademark
of The MathWorks. From now on, this
product will be referred to simply as
MATLAB.

This is the ESC state equation, and describes all dynamic effects.

The ESC output equation computes voltage vk at discrete-time in-

dex k as

vk = OCV(zk) + Mhk + M0sk −∑
i

RiiRi,k − R0ik, (2.5)

where OCV(zk) is the OCV as a function of SOC, M is the maximum

absolute analog hysteresis voltage at this temperature, M0 is the

instantaneous hysteresis voltage, and R0 is the pure ohmic resistance

of the cell.

We can define C =
[

0, −R1, −R2, . . . M
]

and D = −R0 to

arrive at

vk = OCV(zk) + M0sk + Cxk + Dik.

So, we conclude that the ESC model looks similar to—but not identi-

cal to—a linear state-space system of the form

xk+1 = Akxk + Bkik

yk = Ckxk + Dkik.

The dependencies of Ak and Bk on ik and the dependence of voltage

on the OCV and instantaneous hysteresis terms make the equations

nonlinear. Still, this nonlinear state-space form is conducive to apply-

ing control-systems concepts, which we do in the following chapters.

Fig. 2.2 illustrates the process for determining parameter values for

an ESC cell model.4 Two different laboratory tests are executed. The

OCV test first fully charges a cell to arrive at a known initial SOC of

100 % before the main test begins. It then slowly discharges and then

slowly recharges the cell. Roughly speaking, the OCV is the average

of the discharge and charge voltages at every SOC.

test
OCV

data
Test

data
Test

test
Dynamic

relationship
OCV

model
ESC cell

processOCV.m

processDynamic.m

Figure 2.2: Procedure for determining
parameters of an ESC cell model.

The dynamic test exercises the cell using a profile of current versus

time that is similar to what would be expected in an application. The

unknown parameters of the model are adapted to make the model

predictions match the measured voltage as closely as possible for

this input stimulus. In Vol. I of this series, MATLAB® codes were

provided to accomplish the OCV processing (processOCV.m) and the

dynamic parameter fitting (processDynamic.m).5 You can download
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36 battery management systems: volume ii, equivalent-circuit methods

6 This was the primary focus of Vol. I.
We review the main results here, but
refer the reader back to that volume for
complete understanding of where these
equations originate and what all the
terms really mean.

7 The equations presented in this sec-
tion are for a continuum-scale model,
which describes behavior in the neigh-
borhood of a spatial location using a
volume average of an underlying mi-
croscale model. We assume a simplified
one-dimensional geometry where all
electrode solid particles are spherical.

them from http://mocha-java.uccs.edu/BMS1/CH2/ESCtoolbox.zip.

Fig. 2.3 illustrates the process for simulating a cell’s response to

an input-current stimulus. The model parameters are loaded and

the initial state values (z0, h0, and iR,0) are set. Then, simCell.m it-

eratively evaluates the model equations Eqs. (2.4) and (2.5) for each

value in the input-current vector, and produces a vector of predicted

cell voltages.

Cell current

Initial state

ESC cell model

simCell.m voltage
Predicted

Figure 2.3: Procedure for simulating an
ESC cell model.

2.3 Modeling approach 2: Physics-based

A fundamentally different approach can be taken to model battery

cells by deriving equations—starting from first-principles physics

relationships—that describe the electrochemical processes that oc-

cur inside the cell.6 This type of model describes all internal cell

processes using coupled partial-differential equations.

With reference to Fig. 2.4, which illustrates the primary compo-

nents of a cell, the following internal electrochemical variables are of

interest:7

• The concentration of lithium cs(x, r, t) in the solid active materials

that comprise each electrode at spatial location x across the cell

and at radial location r within a particle, and especially at the

solid–electrolyte boundary at the surface of the solid: cs,e(x, t).

• The electric potential in the solid, φs(x, t).

• The flux density (normalized rate of lithium movement) between

solid and electrolyte, j(x, t). The electrode variables cs,e(x, t),

Negative electrode Positive electrode

C
u

rr
en

t
co

ll
ec

to
r

C
u

rr
en

t
co

ll
ec

to
r

S
ep

ar
at

o
r

x
r

Figure 2.4: Illustration of cross-section
of a cell, used by continuum physics-
based models.
(Reproduced from Fig. 1 of Stetzel,
K., Aldrich, L., Trimboli, M.S., and
Plett, G., “Electrochemical State and
Internal Variables Estimation using a
Reduced-Order Physics-Based Model
of a Lithium-Ion Cell and an Extended
Kalman Filter,” Journal of Power Sources,
278, 2015, pp. 490–505.)
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2. simulating battery packs 37

8 The ∇ · (argument) notation denotes
a divergence operation and describes
the net rate of flux of the quantity in its
argument away from the point in space
being modeled. Again, this notation is
described in detail in Vol. I.

φs(x, t), and j(x, t) are defined only at x locations corresponding to

spatial locations in either the negative or positive electrodes. They

are not defined in the separator region as no solid active materials

are present in that region.

• The concentration of lithium ce(x, t) in the electrolyte at spatial

location x, and

• The electric potential in the electrolyte, φe(x, t). The cell-scale

variables ce(x, t) and φe(x, t) are defined at all x locations spanning

the cell since the electrolyte permeates the electrode and separator

regions.

The time-varying values for these five electrochemical variables can

be found by solving four coupled continuum-scale partial-differential

equations and one algebraic equation (along with associated bound-

ary conditions). To determine the concentration of lithium in the

spherically symmetric solid electrode particles, we solve the model

radial-diffusion equation

∂

∂t
cs =

Ds

r2

∂

∂r

(
r2 ∂cs

∂r

)
,

where Ds is the solid diffusivity. Charge balance in the solid active-

material particles is modeled with aid of the solid-potential variable

φs as

∇ · (σeff∇φs) = asFj,

where σeff is the effective electronic conductivity of the electrode ma-

terials in the porous electrode and as is the specific interfacial surface

area of the electrode active materials.8 Mass balance of lithium in the

electrolyte is captured by

∂(εece)
∂t

= ∇ · (De,eff∇ce) + as(1 − t0
+)j,

where εe is the porosity of the electrode, De,eff is the effective dif-

fusivity of the electrolyte and t0
+ is the transference number of the

positively charged lithium ion with respect to the solvent in the elec-

trolyte. Charge balance in the electrolyte is modeled by

∇ · (κeff∇φe + κD,eff∇ ln ce) + asFj = 0,

where κeff is the ionic conductivity of the electrolyte and κD,eff is the

ionic conductivity multiplied by a conversion factor. Finally, the rate

of reaction at the surface of the particles is captured by the Butler–

Volmer equation

j = k0ce
1−α(cs,max− cs,e)

1−αcs,e
α
{

exp

(
(1 − α)F

RT
η

)
− exp

(
− αF

RT
η

)}
,
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38 battery management systems: volume ii, equivalent-circuit methods

9 In simulations, we have found that
the second assumption is quite good.
The first assumption is less good, but
nonlinear corrections help improve
linear predictions.

where η = (φs − φe) − Uocp(cs,e) − FRfilm j, k0 is the reaction-rate

constant and α is the asymmetric charge-transfer coefficient. Cell

voltage is captured by the difference in solid potentials at the two

current-collector locations.

These equations can be solved via simulation at any point in time

and space to determine values for the five coupled electrochemical

variables. However, these simulations require considerable proces-

sor resources and experience shows that some partial-differential-

equation simulators can be fragile—they can have a difficult time

converging to consistent solutions, especially when there are large

abrupt changes in the cell input current.

Therefore, we desire to find methods that can create discrete-time

reduced-order models (ROMs) based on the PDEs such that the ROMs

are computationally simple and robust. In Volume I we did so via

making two basic assumptions:9

1. We assumed linear behavior: We linearized nonlinear equations

using Taylor series;

2. We assumed that the reaction current j(x, t) was decoupled from

(not a function of) the electrolyte concentration ce(x, t).

This allowed us to create Laplace-domain transfer functions from

the linearized equations. We then used a method called the discrete-

time realization algorithm (DRA) to create a discrete-time state-space

model. The process for creating the ROM is illustrated in Fig. 2.5.

The PDEs are linearized and mathematical manipulations are done

to create transfer functions for the variables of interest in terms of

the cell’s physical constants. Values for these constants are found via

laboratory tests and system-identification procedures and are then

merged into the transfer functions. The DRA operates on the transfer

functions to produce a linearized discrete-time state-space model.

The steps of the DRA involve 1) converting the frequency responses

into impulse responses; 2) converting the impulse responses into step

responses; 3) converting the step responses into discrete-time unit-

pulse responses; and 4) converting these unit-pulse responses into

the final reduced-order state-space model form. The entire process is

automatic and involves only common signal-processing and linear-

algebra steps. No nonlinear optimization or curve fitting steps are

needed.

The ROM must be created only once. However, as it is defined

only in the neighborhood of a single temperature and state of charge

linearization setpoint, multiple ROMs must be blended together in

operation to represent the cell’s behavior accurately over the entire

functional range of the cell. The process for using the ROM in an

application is shown in Fig. 2.6. As with the ECM, the fundamental
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Linear SS

DRA
Execute

ID/tests
System

parameters
Physics

Step 1:

H(s) to h(t)

Step 2:

h(t) to hstep(t)

Step 3:

hstep(t) to h[n]

Step 4: h[n] to

Â, B̂, Ĉ, D̂

Figure 2.5: Process for creating a
reduced-order physics-based model.

inputs are the cell input current, an initial state, and the model struc-

tures. However, simulating the physics-based ROM has some addi-

tional steps. Four ROMs surrounding the present temperature/SOC

operational point are blended to make a time-varying state-space

model. One iteration of this model is simulated each simulated time

step, producing linearized predictions of internal electrochemical cell

variables. Nonlinear corrections are applied to these variables, pro-

ducing high-fidelity predictions of cell electrochemical variables and

cell voltage. Then, the process repeats until all values in the input-

current profile have been considered.

current
Input

state
Initial

physics variables
Linearized

parameters
Physics

corrections
Make nonlinear

cell voltage
variables and
Internal cell

Data Computational processLegend:

models
linear SS
Multiple

model
Make blended

blended model
Simulate

SOC

Figure 2.6: Process for simulating a
physics-based ROM.

Battery management and control algorithms require either ECMs

or PBMs of the cells that they manage. The majority of this book de-

scribes methods for battery management based on ECMs. However,

Chap. 7 introduces some potential benefits to using PBMs. A planned

third volume in this series will focus on battery management and

control using physics-based models and the benefits that can accrue

from doing so.
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10 The National Renewable Energy
Laboratories (NREL) has developed
a MATLAB/Simulink HEV simulator
called ADVISOR, which is now open
source. It can be downloaded from
http://sourceforge.net/projects/

adv-vehicle-sim/files/ADVISOR/.
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Figure 2.7: Commonly encountered
drive-cycle profiles.

2.4 Simulating an EV

When designing battery packs, it is important to be able to simulate

the operation of the pack before proceeding too far down the design

path. This helps to ensure that the pack will be able to meet all per-

formance requirements before a large investment in electronic and

mechanical design has been made.

Simulating a battery pack requires that we also have very good

models of the battery-pack load. And, while large battery packs may

be used in a variety of applications, here we consider the requirement

for energy storage in xEVs as an illustrative example.

To predict battery demand from an xEV, we must simulate the ve-

hicle over a number of real-world operating scenarios to determine

profiles of power or current versus time required from the pack. HEV

simulations are extremely complex because the internal-combustion

engine, multispeed transmission, and hybrid blending control algo-

rithms need to be modeled accurately for useful simulation results.10

However, simulations of pure EVs (and PHEVs or E-REVs operating

in electric-only charge-depletion mode) are fairly straightforward

because there is no need to simulate an internal-combustion engine.

Further, a single fixed-ratio transmission is used, and there is no

blending of power sources. We consider this kind of simulation here

as an example of how to determine a battery-pack load profile.

To simulate an EV, two things are needed: an accurate description

of the vehicle itself and knowledge of the task the vehicle is required

to accomplish. The vehicle description includes all factors needed for

a dynamic simulation, including battery-cell characteristics, battery-

module characteristics, battery-pack characteristics, motor and in-

verter (motor-driving power electronics) characteristics, drivetrain

characteristics, and so forth. The vehicle task is characterized by a

drive-cycle profile: a function or table specifying desired vehicle speed

versus time.

Fig. 2.7 illustrates four commonly encountered drive-cycle pro-

files. The urban dynamometer driving schedule (UDDS) profile is rep-

resentative of city driving. It was originally defined by the Environ-

mental Protection Agency (EPA) as a dynamometer test for internal-

combustion vehicles to determine city-driving fuel efficiency but has

been adopted by the EV community as a measure of electrical effi-

ciency for urban driving as well. Likewise, the highway fuel-efficiency

test (HW-FET) was originally intended to measure highway fuel ef-

ficiency, but is now also used to gauge EV performance in highway

driving. Many other driving profiles exist—one needs only a GPS

receiver that can record speed versus time in order to create custom
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2. simulating battery packs 41

11 These drive-cycle profiles are included
in the archive that can be downloaded
from the URL given in footnote 14.

12 Vehicle modeling equations are from
T. Gillespie, “Fundamentals of Vehicle
Dynamics,” Society of Automotive
Engineers Inc, 1992.

drive-cycle profiles tailored for a specific application. For example,

the New York City cycle (NYCC) is representative of bus or taxicab

driving in New York City; the US06 drive-cycle profile is represen-

tative of mixed highway and urban driving (it was recorded by the

National Renewable Energy Laboratories on U.S. highway 6 near

Golden, CO).11

All drive-cycle profiles are simulated using the same basic equa-

tions by the process illustrated in Fig. 2.8 and as described in detail

in the following pages. The approach is to compute, on a sample-by-

sample basis, desired accelerations to match the desired speed profile,

therefore desired road forces, therefore desired motor torques and

power values. These desired torques and power values are restricted

by the specifications of the motor chosen for the vehicle, and thus

achievable torques and power values may be of lesser magnitude.

Achievable torques are computed, and from them achieved road

force, acceleration, and speed (this will not always match the desired

speed).

speed
Desired

acceleration
Desired

force
Desired

torque
Desired

speed
Actual

acceleration
Actual

force
Actual

torque
Limited

power
Motor

power
Battery

SOC
Battery

Figure 2.8: Simulation strategy.

The battery pack may be cosimulated with the motor and drive-

train to impose its own constraints on achievable performance. Here,

however, we simplify analysis by assuming that the battery is always

able to deliver the demanded power to the load. Battery power is

computed based on motor power and battery average SOC is up-

dated. Over the course of the driving profile, the battery average SOC

is depleted a certain amount, and the projected range of the vehicle is

extrapolated from this data.

2.5 Equations for vehicle dynamics

Our first step in creating an EV simulator is to derive equations of

EV dynamics in more detail.12 We begin by calculating the desired

vehicle acceleration as

desired acceleration [m s−2] =

(desired speed [m s−1]− actual speed [m s−1])/(∆t [s]), (2.6)

where ∆t is the sampling period of the drive cycle. We then compute

the net desired acceleration force that the motor must produce at the
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42 battery management systems: volume ii, equivalent-circuit methods

road surface:

desired acceleration force [N] =

equivalent mass [kg]× desired acceleration [m s−2]. (2.7)

In this equation, the equivalent mass combines the maximum vehicle

mass and the translational equivalent mass of the rotating inertias

equivalent mass [kg] =

maximum vehicle mass [kg] + rotating equivalent mass [kg] (2.8)

where

rotating equivalent mass [kg] =

((motor inertia [kg m2] + gearbox inertia [kg m2])× N2

+ number of wheels × wheel inertia [kg m2])/(wheel radius [m])2,

(2.9)

and where we assume a fixed gearbox ratio

N = (motor RPM)/(wheel RPM)

and measure the gearbox inertia at the motor side of the gearbox, not

at the output side. Also, for most accurate results, the wheel radius is

assumed to be that of the rolling wheel; that is, it takes into account

the slight flattening of the tire because of load.

In addition to the force delivered by the motor, various other

forces act on the vehicle. Aerodynamic drag is modeled as

aerodynamic force [N] =
1

2
(air density ρ [kg m−3])×

(aerodynamic frontal area [m2])×
(drag coefficient Cd [unitless])× (prior actual speed [m s−1])2, (2.10)

where the aerodynamic frontal area is the equivalent area experi-

enced by the drag forces. Rolling drag is modeled as a kinetic friction

force:

rolling force [N] = (rolling friction coefficient Cr [unitless])×
(max. vehicle mass [kg])× (acceleration of gravity [9.81 m s−2]).

(2.11)

Note that the rolling force is computed to be zero if the prior actual

speed is 0. The force of gravity either assists or impedes progress due

to a road grade and is modeled as

grade force [N] = (maximum vehicle mass [kg])×
(acceleration of gravity [9.81 m s−2])× sin(grade angle [rad]) (2.12)
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2. simulating battery packs 43
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Figure 2.9: Operating characteristics of
an example AC induction motor.

13 Regeneration or regen is the process
of recovering energy by using the
motor as part of the braking system in
place of friction brakes. This recovered
energy is stored in the battery pack.
The times when regen events will occur,
and the magnitudes of the events are
not predictable, which is a challenge
for BMS design that is handled by
imposing charge-power limits on the
load, as discussed in Chap. 6.

where grade angle is the present (or average) slope of the road (a

positive angle represents an incline; a negative angle represents a

decline). Finally, we model the possibility of a constant friction force

(e.g., from sticking brake pads) as

brake drag [N] = constant road force input by user.

We can now compute the demand torque at the motor to achieve

the demanded acceleration for this time step:

demanded motor torque [N m] = (desired acceleration force [N] +

aerodynamic force [N] + rolling force [N] + grade force [N]+

brake drag [N])× wheel radius [m]/N[unitless]. (2.13)

This completes the feed-forward steps illustrated in the blue boxes in

Fig. 2.8.

It may not be possible for the vehicle’s motor to produce this de-

manded torque. So, we must consider the motor’s limitations in the

simulation. Here, we will assume that the vehicle employs an AC

induction motor, which has torque versus speed operational charac-

teristics that are well modeled using the type of relationship plotted

in Fig. 2.9.

At low speeds, the motor can deliver any torque up to a constant

maximum rated torque. At speeds higher than the motor’s rated

RPM, the torque is limited but the motor is able to deliver up to a

constant maximum power (where power is the product of torque

and speed). In all cases, the motor speed must be kept below the

maximum RPM.

In the simulation, then, demanded torque must be compared to

the maximum available motor torque based on the prior motor RPM.

When positive torque (acceleration) is demanded, if prior actual mo-

tor speed is less than rated motor speed then the maximum available

torque is the rated maximum available torque; otherwise, the max-

imum available torque is computed as (rated maximum available

torque [N m]) × (rated motor speed [RPM]) / (prior actual motor

speed [RPM]).

When negative torque (deceleration) is demanded, torque demand

is split between friction brakes (assumed infinitely powerful) and the

motor. Energy recovered from the motor replaces energy depleted

from the battery (less inefficiency losses) in a regeneration event.13 The

maximum motor torque available for regeneration (in an unsigned

sense) is calculated as a “regen fraction” times the rated maximum

available torque. Finally, the limited torque at the motor is the lesser

of the demanded motor torque and the maximum available torque (in

an unsigned sense).
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44 battery management systems: volume ii, equivalent-circuit methods

Now that the motor torque limits have been established, we can

compute the actual acceleration force that is available, the actual ac-

celeration, and the actual speed. Starting with the actual acceleration

force,

actual acceleration force [N] = limited torque at motor [N m]×
N [unitless]/wheel radius [m]− aerodynamic force [N]−
rolling force [N]− grade force [N]− brake drag [N] (2.14)

actual acceleration [m s−2] =

actual acceleration force [N]/equivalent mass [kg]. (2.15)

The actual acceleration as just calculated may cause the motor to

spin at a higher angular velocity than its maximum RPM. Therefore,

we cannot compute actual speed as simply as follows:

actual speed [m s−1] = prior actual speed [m s−1]+

actual acceleration [m s−2]× ∆t [s].

Instead, we must compute a motor RPM first, then limit that RPM,

and then compute the actual vehicle speed:

test speed [m s−1] = prior actual speed [m s−1]+

actual acceleration [m s−2]× ∆t [s] (2.16)

motor speed [RPM] = test speed [m s−1]× N[unitless]×
60 [s min−1]/(2π × wheel radius [m]). (2.17)

Motor speed is limited by the maximum rated motor speed to make a

limited motor speed. Finally, actual vehicle speed is computed as

actual speed [m s−1] = limited motor speed [RPM]× 2π ×
wheel radius [m]/(60 [s min−1]× N[unitless]). (2.18)

The full circuit from desired to actual speed in Fig. 2.8—including

both the blue and green boxes—has now been described.

The equations developed so far show whether the vehicle is able

to develop the accelerations required to follow a specific drive-cycle

profile. They assume that sufficient battery power is available to

supply the motor demand at every time step.

To determine vehicle range based on battery capacity, the battery

pack must be cosimulated with the vehicle. At the beginning of the

simulation, the battery is initialized to be fully charged. As the sim-

ulation executes, the vehicle draws energy from the battery pack,

reducing the remaining energy level. At some point, vehicle demand
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2. simulating battery packs 45

will cause the SOC or voltage of a cell in the battery pack to drop be-

low some minimum design threshold. At that point, we consider the

vehicle to have driven its maximum range.

To cosimulate the battery pack, we first compute instantaneous

power required by the motor:

motor power [kW] = 2π [rad revolution−1]×
(

motor speed [RPM] + previous motor speed [RPM]

2

)
×

limited torque at motor [N m]/(60 [s min−1]× 1,000 [W kW−1]).

(2.19)

If motor power is positive, then battery power is calculated as

battery power [kW] = overhead power [kW] +

motor power [kW]/drivetrain efficiency [unitless], (2.20)

where the overhead power is the constant power drain from other

vehicle systems, such as air conditioners, “infotainment” systems and

so forth. If motor power is negative (during a regeneration event),

battery power is calculated as

battery power [kW] = overhead power [kW] +

motor power [kW]× drivetrain efficiency [unitless]. (2.21)

We know how to make very precise battery-cell models. However,

for now we will simply assume a constant battery voltage (a poor

assumption, but sufficient for first-order approximate results). Then,

battery current [A] = battery power [kW]× 1,000 [W kW−1]/

battery nominal voltage [V]. (2.22)

Battery SOC is updated as

battery SOC [%] = prior battery SOC [%]− battery current [A]×
∆t [s]/(3,600 [s hr−1]× battery capacity [A hr])× 100 [%]. (2.23)

Finally, driving range is extrapolated from the drive-cycle calcula-

tions:

range [miles] = total distance of simulated drive cycle [miles]×
(max. rated battery SOC [%]− min. rated battery SOC [%])/

(SOC at beginning [%]− SOC at end of drive cycle [%]).

This equation assumes that the vehicle repeats the same drive-cycle

profile until the battery-pack energy is exhausted. If this repetition is
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46 battery management systems: volume ii, equivalent-circuit methods

14 This code is available at http://
mocha-java.uccs.edu/BMS2/CH2/EVsim.

zip.

not realistic, then a longer drive-cycle profile should be used as input,

where this profile is sufficiently long that it is not repeated before the

battery-pack energy is exhausted, and where the speed versus time

data tabulated in the profile are more representative of the expected

vehicle operational environment.

By running simulations with distinct drive-cycle profiles as input,

we can learn what to expect for vehicle range under these different

scenarios. As previously mentioned, custom profiles can be created

by driving a specific route and logging GPS data, so this simulation

mechanism is quite general.

2.6 EV simulation code

While an EV simulator could be written in any computer language,

for purpose of illustration we now present some MATLAB code

that implements these model equations. This code is divided into

two functions: setupSimVehicle.m is an example of how to set up

the parameter values that describe the vehicle and the drive cycle,

and simVehicle.m is the code that executes the equations we’ve just

derived to accomplish the simulation. These two functions are de-

scribed in the following subsections.14

2.6.1 setupSimVehicle.m

The setupSimVehicle.m function defines the parameters of the bat-

tery cell, module, and pack, and the parameters of the motor, wheels,

and drivetrain. The parameter values are stored in structures, com-

bined to make a vehicle description, and are later used when sim-

ulating the vehicle. The values in the example code are a rough de-

scription of a first-generation General Motors’ Chevy Volt operating

in pure-electric charge-depletion mode, based on public information

(and speculation) prior to vehicle release. They are fairly reasonable

parameter values, but are certainly not exact, nor are they verified for

this vehicle.

The setupSimVehicle.m function is somewhat lengthy, so we do

not present it as a monolithic block. Rather, we describe its operation

section by section. To reproduce the code in MATLAB, one would

need to reassemble the sections into a single function and save it to

the file setupSimVehicle.m.

The file begins by defining the function and a list of data files

containing drive-cycle profiles to be simulated:

function results = setupSimVehicle

files = {'nycc.txt','udds.txt','us06.txt','hwfet.txt'};
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2. simulating battery packs 47

Next, a data structure named cell is initialized via the setupCell

function (to be defined later):

% set up the Chevy Volt:

% set up cell: capacity [Ah], mass [g], (vmax, vnom, vmin) [V]

cell = setupCell(15,450,4.2,3.8,3.0);

In this example, we are defining a battery cell that has capacity 15 Ah,

mass 450 g, maximum operational voltage 4.2 V, nominal voltage

3.8 V, and minimum operational voltage 3.0 V.

Next, we define a battery module in terms of this cell:

% set up module: number of cells in parallel, number of cells in

% series, overhead of module by fraction of total cells' mass

module = setupModule(3,8,0.08,cell);

In this case, the module comprises three cells wired in parallel and

eight cells wired in series. The module’s mass is equal to the mass of

the cells plus 8 % overhead for packaging, electronics, and so forth.

The module uses cells described by the structure cell, which has

already been defined.

Next, we define the battery pack in terms of this module:

% set up pack: number of modules in series, overhead of pack by

% fraction of total modules' mass, (full SOC, empty SOC) [%],

% efficiency for the pack

pack = setupPack(12,0.1,75,25,0.96,module);

In this example, the battery pack comprises 12 modules wired in

series. The pack mass is equal to the mass of all modules combined

plus 10 % overhead for packaging, electronics, cooling, and so forth.

The pack design allows cell SOC to range from 75 % when “fully

charged” to 25 % when “empty” (i.e., when switching from charge-

depletion to charge-sustaining mode). The energy efficiency of the

pack is 96 % and the pack comprises modules defined by the module

variable.

With the battery pack now defined, we turn our attention to other

aspects of the drivetrain. We next set up a structure that contains the

motor parameters:

% set up motor: max torque "Lmax" [Nm], (RPMrated, RPMmax) [RPM],

% efficiency, inertia [kg/m2]

motor = setupMotor(275,4000,12000,0.95,0.2);

This motor provides maximum torque 275 Nm, has rated RPM of

4,000 RPM and has maximum RPM of 12,000 RPM. The motor’s effi-

ciency is 95 % and it has inertia of 0.2 kg m−2.

The data structure containing information about the wheels is set

up next:

% set up wheel: radius [m], inertia [kg/m2], rollCoef

wheel = setupWheel(0.35,8,0.0111);

This wheel has rolling (flattened) radius of 0.35 m, inertia of 8 kg m−2

and rolling coefficient of Cr = 0.0111.
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48 battery management systems: volume ii, equivalent-circuit methods

The drivetrain combines information from the pack, motor, and

wheels:

% set up drivetrain: inverter efficiency, fractional regen torque

% limit, gear ratio, gear inertia [kg/m2], gear efficiency for this

% pack, motor, and wheel

drivetrain = setupDrivetrain(0.94,0.9,12,0.05,0.97,pack,motor,wheel);

In addition, we specify the inverter efficiency to be 94 %, the regenera-

tion torque fraction to be 90 %, the fixed gear ratio to be 12:1, the gear

inertia to be 0.05 kg m−2, and the gearing efficiency to be 97 %.

Finally, we set up a data structure defining the entire vehicle:

% set up vehicle: # wheels, roadForce [N], Cd, frontal area [m2],

% mass [kg], payload [kg], overhead power [W] for this drivetrain

vehicle = setupVehicle(4,0,0.22,1.84,1425,75,200,drivetrain);

The vehicle has four wheels, a constant road force (brake drag) of 0 N,

a drag coefficient Cd = 0.22, an aerodynamic frontal cross-sectional

area of 1.84 m2, a mass of 1425 kg, a payload capacity of 75 kg, and

draws a constant overhead power of 200 W.

With the vehicle set up, we simulate the four drive-cycle profiles

and display some results:

fprintf('\n\nStarting sims...\n');

for theCycle = 1:length(files),

cycle = dlmread(files{theCycle},'\t',2,0);

results = simVehicle(vehicle,cycle,0.3);

range = (vehicle.drivetrain.pack.socFull - ...

vehicle.drivetrain.pack.socEmpty) /...

(vehicle.drivetrain.pack.socFull - ...

results.batterySOC(end)) * ...

results.distance(end);

fprintf('Cycle = %s, range = %6.1f [km]\n',files{theCycle},range);

end

First, each drive-cycle profile is read from a tab-delimited text file

(first column is time in seconds; second column is desired speed in

mph). Then, the simVehicle.m function is invoked to simulate the

vehicle (with a constant 0.3 % road grade). Finally, the vehicle range

is extrapolated from the simulation.

The file setupSimVehicle.m is not yet complete. It contains some

functions that compose the data structures for cell, module, pack, and

so forth, that are nested inside the main setupSimVehicle function.

We look at these briefly before proceeding to discuss simVehicle.m.

First, setupCell creates a cell data structure from its input parame-

ters:

function cell = setupCell(capacity,mass,vmax,vnom,vmin)

cell.capacity = capacity; % ampere hours

cell.mass = mass; % grams

cell.vmax = vmax; % volts

cell.vnom = vnom; % volts

cell.vmin = vmin; % volts

cell.energy = vnom * capacity; % Watt-hours

cell.specificEnergy = 1000 * cell.capacity * cell.vnom/ ...
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2. simulating battery packs 49

cell.mass; % Wh/kg

end

Most of these operations simply copy the input values into the cor-

responding structure fields. However, two auxiliary calculations

compute the cell nominal energy and specific energy.

Similarly, setupModule is a nested function that defines the fields

of the module structure:

function module = setupModule(numParallel,numSeries,overhead,cell)

module.numParallel = numParallel;

module.numSeries = numSeries;

module.overhead = overhead;

module.cell = cell;

module.numCells = numParallel * numSeries;

module.capacity = numParallel * cell.capacity;

module.mass = module.numCells * cell.mass/(1-overhead)/1000; % kg

module.energy = module.numCells * cell.energy/1000; % kWh

module.specificEnergy = 1000 * module.energy / module.mass; % Wh/kg

end

Besides directly assigning the input variables to their respective fields

in the output structure, the function computes the total number of

cells per module, the total module capacity in ampere-hours, the

module mass, nominal energy, and specific energy.

The pack, motor, wheel, drivetrain, and vehicle structures are

defined in a similar fashion using the following functions nested

inside the setupSimVehicle function. The setupPack function com-

putes auxiliary variables for total number of cells in the pack, pack

mass, total energy capacity, specific energy, and battery-pack voltage

ranges:

function pack = setupPack(numSeries,overhead,socFull,socEmpty,...

efficiency,module)

pack.numSeries = numSeries;

pack.overhead = overhead;

pack.module = module;

pack.socFull = socFull;

pack.socEmpty = socEmpty; % unitless

pack.efficiency = efficiency; % unitless, captures I*I*R losses

pack.numCells = module.numCells * numSeries;

pack.mass = module.mass * numSeries * 1/(1 - overhead); % kg

pack.energy = module.energy * numSeries; % kWh

pack.specificEnergy = 1000 * pack.energy / pack.mass; % Wh/kg

pack.vmax = numSeries*module.numSeries*module.cell.vmax;

pack.vnom = numSeries*module.numSeries*module.cell.vnom;

pack.vmin = numSeries*module.numSeries*module.cell.vmin;

end

The setupMotor function sets the output fields in the motor struc-

ture, and computes motor maximum power. The setupWheel function

simply sets output fields in the wheel structure:

function motor = setupMotor(Lmax,RPMrated,RPMmax,efficiency,inertia)

motor.Lmax = Lmax; % N-m

motor.RPMrated = RPMrated;

motor.RPMmax = RPMmax;
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50 battery management systems: volume ii, equivalent-circuit methods

motor.efficiency = efficiency;

motor.inertia = inertia; %kg-m2

motor.maxPower = 2*pi*Lmax*RPMrated/60000; % kW

end

function wheel = setupWheel(radius,inertia,rollCoef)

wheel.radius = radius; % m

wheel.inertia = inertia; % km-m2

wheel.rollCoef = rollCoef;

end

The setupDrivetrain function stores data in the fields of the

drivetrain structure, including a computation of drivetrain effi-

ciency:

function drivetrain = setupDrivetrain(inverterEfficiency,regenTorque,...

gearRatio,gearInertia,gearEfficiency,pack,motor,wheel)

drivetrain.inverterEfficiency = inverterEfficiency;

% regen torque is fraction of braking power that is used to charge

% battery; e.g., value of 0.9 means 90% of braking power contributes

% to charging battery; 10% lost to heat in friction brakes

drivetrain.regenTorque = regenTorque;

drivetrain.pack = pack;

drivetrain.motor = motor;

drivetrain.wheel = wheel;

drivetrain.gearRatio = gearRatio;

drivetrain.gearInertia = gearInertia; % kg-m2, measured on motor side

drivetrain.gearEfficiency = gearEfficiency;

drivetrain.efficiency = pack.efficiency * inverterEfficiency * ...

motor.efficiency * gearEfficiency;

end

Finally, setupVehicle creates the vehicle structure containing all

drivetrain data including some computed mass variables—including

rotating mass via Eq. (2.9) and vehicle equivalent mass via Eq. (2.8)—

and the vehicle maximum speed:

function vehicle = setupVehicle(wheels,roadForce,Cd,A,mass,payload,...

overheadPwr,drivetrain)

vehicle.drivetrain = drivetrain;

vehicle.wheels = wheels; % number of them

vehicle.roadForce = roadForce; % N

vehicle.Cd = Cd; % drag coeff

vehicle.A = A; % frontal area, m2

vehicle.mass = mass; % kg

vehicle.payload = payload; % kg

vehicle.overheadPwr = overheadPwr; % W

vehicle.curbMass = mass + drivetrain.pack.mass;

vehicle.maxMass = vehicle.curbMass + payload;

vehicle.rotMass = ((drivetrain.motor.inertia + ...

drivetrain.gearInertia) * ...

drivetrain.gearRatio^2 + ...

drivetrain.wheel.inertia*wheels)/...

drivetrain.wheel.radius^2;

vehicle.equivMass = vehicle.maxMass + vehicle.rotMass;

vehicle.maxSpeed = 2 * pi * drivetrain.wheel.radius * ...

drivetrain.motor.RPMmax * 60 / ...

(1000 * drivetrain.gearRatio); % km/h

end

end
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2. simulating battery packs 51

Note that the final “end” closes out the setupSimVehicle function.

All of the other functions are defined as nested inside this overall

function.

2.6.2 simVehicle.m

The equations that simulate the vehicle are implemented in the

simVehicle.m function, which simulates a drive-cycle profile and

returns a structure called results that contains comprehensive simu-

lation outcomes.

The function begins with

% results = simVehicle(vehicle,cycle,grade)

% - simulate a vehicle defined by "vehicle", perhaps created using

% setupSimVehicle.m

% - cycle is Nx2, where first column is time in seconds and second

% column is desired speed in miles per hour

% - grade is road grade in percent - either a constant grade for all

% time, or a different grade value for every point in time

function results = simVehicle(vehicle,cycle,grade)

rho = 1.225; % air density, kg/m3

results.vehicle = vehicle;

results.cycle = cycle; % time in s, desired speed in miles/hour

results.time = cycle(:,1); % s

results.desSpeedKPH = cycle(:,2) * 1.609344; % convert to km/h

results.desSpeed = min(vehicle.maxSpeed,...

results.desSpeedKPH*1000/3600); % m/s

First, air density (at sea level) is defined, and then the function input

variables are copied into the results data structure.

If a scalar is provided as the road grade, that scalar is replicated

for all time samples in the simulation. Otherwise, the vector input

grade defines a different road grade for every time sample in the

drive cycle. In either case, the grade is converted from percent into a

radian angle:

if isscalar(grade),

results.grade = repmat(atan(grade/100),size(results.time)); % rad

else

results.grade = atan(grade/100); % rad

end

Next, fields in the results data structure are preallocated and set

to 0. This is done to reserve memory before the simulation begins, so

that MATLAB is not constantly growing vectors inside of the simula-

tion loop (which is a very slow operation):

% pre-allocate storage for fields of "results" data structure

zeroInit = zeros(size(results.desSpeed));

results.desAccel = zeroInit; % m/s2

results.desAccelForce = zeroInit; % N

results.aeroForce = zeroInit; % N

results.rollGradeForce = zeroInit; % N

results.demandTorque = zeroInit; % N-m

results.maxTorque = zeroInit; % N-m

results.limitRegen = zeroInit; % N-m
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52 battery management systems: volume ii, equivalent-circuit methods

results.limitTorque = zeroInit; % N-m

results.motorTorque = zeroInit; % N-m

results.demandPower = zeroInit; % kW

results.limitPower = zeroInit; % kW

results.batteryDemand = zeroInit; % kW

results.current = zeroInit; % A

results.batterySOC = zeroInit; % 0..100

results.actualAccelForce = zeroInit; % N

results.actualAccel = zeroInit; % m/s2

results.motorSpeed = zeroInit; % RPM

results.actualSpeed = zeroInit; % m/s

results.actualSpeedKPH = zeroInit; % km/h

results.distance = zeroInit; % km

Now, the main simulation loop begins. After initializing some

variables defining the “previous” state before the simulation began,

the equations of Sect. 2.5 are evaluated, and results are stored for

future analysis:

prevSpeed = 0; prevMotorSpeed = 0; prevDistance = 0;

prevSOC = vehicle.drivetrain.pack.socFull;

prevTime = 2*results.time(1) - results.time(2); % for even sampling

for k = 1:length(results.desSpeed),

results.desAccel(k) = (results.desSpeed(k) - prevSpeed)/ ...

(results.time(k) - prevTime);

results.desAccelForce(k) = vehicle.equivMass * results.desAccel(k);

results.aeroForce(k) = 0.5 * rho * vehicle.Cd * vehicle.A * ...

prevSpeed^2;

results.rollGradeForce(k) = vehicle.maxMass * 9.81 * ...

sin(results.grade(k));

if abs(prevSpeed) > 0,

results.rollGradeForce(k) = results.rollGradeForce(k) + ...

vehicle.drivetrain.wheel.rollCoef * vehicle.maxMass * 9.81;

end

results.demandTorque(k) = (results.desAccelForce(k) + ...

results.aeroForce(k) + ...

results.rollGradeForce(k) + ...

vehicle.roadForce) * ...

vehicle.drivetrain.wheel.radius / ...

vehicle.drivetrain.gearRatio;

In this section, Eq. (2.6) is evaluated to compute the desired accel-

eration, Eq. (2.7) computes the desired acceleration force, Eq. (2.10)

computes the aerodynamic force, Eq. (2.12) computes the grade force,

Eq. (2.11) computes the rolling force, and Eq. (2.13) computes the

total demanded torque.

The total demanded torque is now limited based on motor charac-

teristics:

if prevMotorSpeed < vehicle.drivetrain.motor.RPMrated,

results.maxTorque(k) = vehicle.drivetrain.motor.Lmax;

else

results.maxTorque(k) = vehicle.drivetrain.motor.Lmax * ...

vehicle.drivetrain.motor.RPMrated / prevMotorSpeed;

end

results.limitRegen(k) = min(results.maxTorque(k),...

vehicle.drivetrain.regenTorque * ...

vehicle.drivetrain.motor.Lmax);

results.limitTorque(k) = min(results.demandTorque(k),...
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2. simulating battery packs 53

results.maxTorque(k));

if results.limitTorque(k) > 0,

results.motorTorque(k) = results.limitTorque(k);

else

results.motorTorque(k) = max(-results.limitRegen(k),...

results.limitTorque(k));

end

We can now compute the actual acceleration force via Eq. (2.14),

the actual acceleration via Eq. (2.15), the actual motor speed via

Eqs. (2.16) and (2.17), and the actual vehicle speed via Eq. (2.18):

results.actualAccelForce(k) = results.limitTorque(k) * ...

vehicle.drivetrain.gearRatio / ...

vehicle.drivetrain.wheel.radius - ...

results.aeroForce(k) - ...

results.rollGradeForce(k) - ...

vehicle.roadForce;

results.actualAccel(k) = results.actualAccelForce(k) / ...

vehicle.equivMass;

results.motorSpeed(k) = min(vehicle.drivetrain.motor.RPMmax,...

vehicle.drivetrain.gearRatio * ...

(prevSpeed + results.actualAccel(k) * ...

(results.time(k) - prevTime)) * 60 / ...

(2*pi*vehicle.drivetrain.wheel.radius));

results.actualSpeed(k) = results.motorSpeed(k) * ...

2*pi*vehicle.drivetrain.wheel.radius / ...

(60 * vehicle.drivetrain.gearRatio);

results.actualSpeedKPH(k) = results.actualSpeed(k) * 3600/1000;

results.distance(k) = prevDistance + ...

results.actualSpeedKPH(k)/3600;

The total distance traveled to date via this drive cycle is also com-

puted.

Next, the power demand by the motor is computed via Eq. (2.19).

This is converted to a battery demanded power via either Eq. (2.20)

or Eq. (2.21) for the discharge and regen cases, respectively. This is

converted to a battery current via Eq. (2.22) and then to a change

in battery (average) SOC via Eq. (2.23). Finally, some intermediate

results are saved to variables for the next iteration of the program

loop:

if results.limitTorque(k) > 0,

results.motorPower(k) = results.limitTorque(k);

else

results.motorPower(k) = max(results.limitTorque(k),...

-results.limitRegen(k));

end % "motorPower" == motor torque until next line...

results.motorPower(k) = results.motorPower(k) * 2*pi / 60000 * ...

(prevMotorSpeed + results.motorSpeed(k))/2;

results.limitPower(k) = max(-vehicle.drivetrain.motor.maxPower,...

min(vehicle.drivetrain.motor.maxPower,...

results.motorPower(k)));

results.batteryDemand(k) = vehicle.overheadPwr/1000;

if results.limitPower(k) > 0,

results.batteryDemand(k) = results.batteryDemand(k) + ...

results.limitPower(k)/vehicle.drivetrain.efficiency;

else
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Figure 2.10: Some example results
computed by the EV simulator.

results.batteryDemand(k) = results.batteryDemand(k) + ...

results.limitPower(k)*vehicle.drivetrain.efficiency;

end

results.current(k) = results.batteryDemand(k)*1000/...

vehicle.drivetrain.pack.vnom;

results.batterySOC(k) = prevSOC - results.current(k) * ...

(results.time(k) - prevTime) / ...

(36*vehicle.drivetrain.pack.module.capacity);

prevTime = results.time(k);

prevSpeed = results.actualSpeed(k);

prevMotorSpeed = results.motorSpeed(k);

prevSOC = results.batterySOC(k);

prevDistance = results.distance(k);

end

When the simulation has looped over all input data, the results data

structure is returned to the calling program for further analysis and

display.

2.7 EV simulation results

There are many opportunities for visualization and analysis of vehi-

cle performance with this simulator by examining the data stored in

the results structure. Some of these are displayed in Fig. 2.10.

The top frame of the figure shows battery power demand versus

time for the US06 drive-cycle profile, using the default parameters

in the simulation code. The second frame shows the battery current

demand. Note that this is computed from the power demand by as-

suming a constant nominal voltage: a more accurate result could be

achieved if a more accurate cell model were used, such as the ESC

model reviewed earlier in this chapter. The third frame shows a his-

togram of demanded motor power. This kind of information is useful

when selecting a motor for an EV application and for determining

cooling requirements for the motor. Finally, the bottom frame shows

a scatter plot of torque versus speed operational points visited by

the US06 drive-cycle profile. We note that only one point falls on the

motor limited boundary (denoted as black lines), so we conclude that

this motor is well sized for this application.

This is just one example of how to simulate a battery-pack load.

This is exactly, in fact, how the profiles of current versus time were

computed for the UDDS drive-cycle profile used throughout Vol-

ume I to exercise battery cells in the laboratory and to demonstrate

simulation results of model performance.

For any other battery application that is different from the EV ap-

plication, we would either need to measure actual battery demand

versus time, or we would need to develop a simulator for that appli-

cation that could be used to predict battery power demand versus

Plett, Gregory. Battery Management Systems, Volume II: Equivalent-Circuit Methods, Artech House, 2015. ProQuest Ebook Central,
         http://ebookcentral.proquest.com/lib/ybp-ebookcentral/detail.action?docID=4821265.
Created from ybp-ebookcentral on 2020-03-27 11:56:42.

C
op

yr
ig

ht
 ©

 2
01

5.
 A

rte
ch

 H
ou

se
. A

ll 
rig

ht
s 

re
se

rv
ed

.



2. simulating battery packs 55

time to be able to simulate the performance of the battery pack under

those conditions.

2.8 Simulating constant power and voltage

We have now completed our discussion of simulating an example

battery-pack load and return to the task of simulating the battery

pack itself. This will ultimately involve simulating multiple intercon-

nected battery cells. We already know how to simulate a single cell’s

voltage response to an input-current profile as the battery-cell models

that we have developed all have model input equal to applied cell

electrical current. However, the EV simulator example we have just

examined has demonstrated that demanded battery-cell power could

also be considered a cell-model input. Other applications require that

battery-cell voltage be the input and battery-cell current be the output.

Fortunately, both of these new scenarios can be accommodated

easily by the ESC cell model, with no structural changes and minimal

additional computation. We see how this is done in the next two

subsections.

2.8.1 Constant-power simulation

To see how to simulate a cell where the input is equal to power

and the output is equal to voltage, we first restate the ESC model

of Eqs. (2.4) and (2.5):

xk = A(ik−1)xk−1 + fn(ik−1) (2.24)

vk = OCV(xk) + hysteresis(xk)− diffusion(xk)︸ ︷︷ ︸
not a function of instantaneous current

−R0ik. (2.25)

In Eq. (2.24), we make the important observation that the present

state xk is not a function of the present input current ik; rather, it is

a function of all prior input-current values ik−1, ik−2, and so forth.

Therefore, all terms in the voltage equation Eq. (2.25) that are based

on the present state are similarly independent of the present instanta-

neous value of input current. The only term in the voltage calculation

that depends on present current is the ohmic voltage drop −R0ik.

Therefore, we can say that at any point in time, cell voltage com-

prises a “fixed” part, which does not depend on the present cell

current, and a “variable” part, −R0ik, which does depend on present

cell current. Of course, the fixed part changes from time sample to

time sample as the state changes, but it is indeed fixed for any given

time sample in that it is not a function of the present input current.

To simplify our notation, we then define the fixed part to be vf ,k and

so we have vk = vf ,k − R0ik.
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56 battery management systems: volume ii, equivalent-circuit methods

Our desire is for the cell to deliver a specified power at its termi-

nals. We now have the ability to compute the input current required

to deliver this desired power. Since power is equal to the product of

terminal voltage and cell current, we can write

pk = vkik

= (vf ,k − R0ik)ik.

We can rearrange these terms to obtain

R0i2
k − vf ,kik + pk = 0.

This quadratic equation can be solved at every sample time to deter-

mine the value of cell input current that will meet the power demand

ik =
vf ,k ±

√
v2

f ,k − 4R0 pk

2R0
.

Which sign on the radical must we use? Both choices cause the

cell-model simulation to produce the required power, but one turns

out to require a negative cell voltage to do so. Because cell voltage

must remain positive, the sign of the radical must be negative.

In summary, to achieve a profile of desired power versus time

we may use the existing ESC cell model with input equal to applied

cell current. At every time step we simply compute the required cell

input current to be

ik =
vf ,k −

√
v2

f ,k − 4R0 pk

2R0
.

We then update the state and output equations of the model (this

is needed to update vf ,k for the next time step) and repeat for every

sample of desired power versus time.

2.8.2 Constant-voltage simulation

With this background, constant-voltage simulation is very straightfor-

ward. Every time step, we must determine ik such that

vk = vf ,k − R0ik.

Therefore,

ik =
vf ,k − vk

R0
.

2.8.3 Example requiring constant current, power, and voltage

Now that we know how to simulate a cell when demanded power is

the input, we might revisit the EV simulator to incorporate a more
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2. simulating battery packs 57

15 The constant-voltage segment is often
omitted when charging a battery pack
(as opposed to charging single cells).
Instead, several constant-current or
constant-power segments are performed
in sequence, with decreasing input
power, until the pack has achieved some
desired level of charge.

16 This code segment uses helper
function getParamESC.m from the
ESC model toolbox, available at
http://mocha-java.uccs.edu/BMS1/

CH2/ESCtoolbox.zip.

accurate cell model to obtain higher-fidelity results. (We leave this as

an exercise for the reader.) Another application for which constant-

power and constant-voltage requirements naturally arise is during

the process of charging a cell.

There are two common approaches to charging a battery cell:

1. Constant-current/constant-voltage (CC/CV). A constant charge cur-

rent is applied to the cell until the cell reaches some predeter-

mined maximum voltage. The cell’s terminal voltage is then held

at this maximum value until charging current becomes negligibly

small.

2. Constant-power/constant-voltage (CP/CV). A constant charge power

is applied to the cell until the cell reaches some predetermined

maximum voltage. The cell’s terminal voltage is then held at this

maximum value until charging power (or current) becomes negligi-

bly small.

The CC/CV mode is often used in laboratory tests of cells, but

CP/CV is more commonly used in xEV chargers.15 Both approaches

may be simulated given what we now know about constant-current,

constant-power, and constant-voltage simulations.

We will examine their behavior in an example where we consider

charging a battery cell from 50 % to 100 % SOC (corresponding to a

rest voltage of 4.15 V). The code begins by loading an ESC cell model

from a data file, extracting operating parameters, and initializing

storage for results.16

% --------------------------------------------------------------------

% simCharge: Simulate CC/CV and CP/CV charging of a battery cell

% --------------------------------------------------------------------

clear all; close all; clc;

load cellModel; % creates var. "model" with cell parameter values

% Get ESC model parameters

maxtime = 3001; T = 25; % Simulation run time, temperature

q = getParamESC('QParam',T,model); % total capacity

rc = exp(-1./abs(getParamESC('RCParam',T,model))); % time constant

r = (getParamESC('RParam',T,model)); % diffusion resistance

m = getParamESC('MParam',T,model); % hysteresis max voltage

g = getParamESC('GParam',T,model); % hysteresis rate gamma

r0 = getParamESC('R0Param',T,model); % series resistance

maxV = 4.15; % maximum cell voltage of 4.15 V

% Initialize simulation storage and state variables

storez = zeros([maxtime 1]); % create storage for SOC

storev = zeros([maxtime 1]); % create storage for voltage

storei = zeros([maxtime 1]); % create storage for current

storep = zeros([maxtime 1]); % create storage for power

z = 0.5; irc = 0; h = -1; % initialize to 50% SOC, resting

We first simulate a CC/CV charge process. The code loops through

maxtime iterations, updating the state and voltage predictions every

time step. Cell current is computed every iteration to achieve a con-
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Figure 2.11: CC/CV and CP/CV
charging.

stant voltage but is limited to the maximum absolute value of 9 A to

enforce the CC/CV operation.

% First, simulate CC/CV

CC = 9; % constant absolute current of 9 A in CC/CV charge

for k = 1:maxtime,

v = OCVfromSOCtemp(z,T,model) + m*h - r*irc; % fixed voltage

ik = (v - maxV)/r0; % compute test ik to achieve maxV

ik = max(-CC,ik); % but limit current to no more than CC in mag.

z = z - (1/3600)*ik/q; % Update cell SOC

irc = rc*irc + (1-rc)*ik; % Update resistor currents

fac = exp(-abs(g.*ik)./(3600*q));

h = fac.*h + (fac-1).*sign(ik); % Update hysteresis voltages

storez(k) = z; % Store SOC for later plotting

storev(k) = v - ik*r0;

storei(k) = ik; % store current for later plotting

storep(k) = ik*storev(k);

end % for k

time = 0:maxtime -1;

figure(1); clf; plot(time,100*storez); hold on

figure(2); clf; plot(time,storev); hold on

figure(3); clf; plot(time,storei); hold on

figure(4); clf; plot(time,storep); hold on

Next, we simulate the CP/CV charge process. The code is very

similar, except that within every iteration we first compute the volt-

age that would be achieved by a constant-power time step. If that

results in voltage that exceeds the design voltage, we instead com-

pute current for a constant-voltage time step.

% Now, simulate CP/CV

z = 0.5; irc = 0; h = -1; % initialize to 50% SOC, resting

CP = 35; % constant absolute power limit of 30 W in CP/CV charge

for k = 1:maxtime,

v = OCVfromSOCtemp(z,T,model) + m*h - r*irc; % fixed voltage

% try CP first

ik = (v - sqrt(v^2 - 4*r0*(-CP)))/(2*r0);

if v - ik*r0 > maxV, % too much!

ik = (v - maxV)/r0; % do CV instead

end

z = z - (1/3600)*ik/q; % Update cell SOC

irc = rc*irc + (1-rc)*ik; % Update resistor currents

fac = exp(-abs(g.*ik)./(3600*q));

h = fac.*h + (fac-1).*sign(ik); % Update hysteresis voltages

storez(k) = z; % Store SOC for later plotting

storev(k) = v - ik*r0;

storei(k) = ik; % store current for later plotting

storep(k) = ik*storev(k);

end % for k

figure(1); plot(time,100*storez,'g--')

figure(2); plot(time,storev,'g--')

figure(3); plot(time,storei,'g--')

figure(4); plot(time,storep,'g--')
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2. simulating battery packs 59

Results of this simulation are shown in Fig. 2.11. In the constant-

current part of the CC/CV simulation, a 1C charge rate is held con-

stant and cell voltage responds to this input stimulus. Because volt-

age is increasing and current is kept constant, charge power increases

in magnitude over this interval. SOC increases linearly. When voltage

reaches the maximum value of 4.15 V, the simulation switches to a

constant-voltage mode. The voltage is maintained constant at 4.15 V

and, in response, the magnitude of the current continually decreases

as the diffusion dynamics reach a steady-state value. SOC converges

over this interval to 100 % and charge-power magnitude decreases.

In the constant-power part of the CP/CV simulation, a 35 W mag-

nitude charge power is chosen to be similar to the CC/CV scenario.

This applied power is held constant and cell voltage again responds

to this stimulus. Since voltage is increasing but power is constant,

charge current decreases in magnitude over this interval. The change

in SOC is slower than the linear change in the CC/CV scenario for

this chosen power level. When voltage reaches the maximum value

of 4.15 V, the simulation switches to a constant-voltage mode. The

voltage is maintained constant at 4.15 V and, in response, the magni-

tude of the charge power (and hence also charge current) continually

decreases as the diffusion dynamics reach a steady-state value. SOC

converges over this interval to 100 %.

2.9 Simulating battery packs

At last we arrive at the stated purpose of this chapter—to discuss

how to simulate battery packs! To simulate battery-cell behavior, the

ESC model voltage equation Eq. (2.5) is evaluated and the model

state equation Eq. (2.4) is updated once per sample interval. Sim-

ulating battery packs must somehow involve simulating multiple

interconnected battery cells.

2.9.1 Series-connected cells

Simulating a battery pack comprising cells that are connected only in

series is straightforward as all cells must experience the same input

current (by Kirchhoff’s current law). If all cells have identical initial

state and parameter values, then all cells have exactly the same state

and voltage for all time, so we need to simulate only one cell (the

others will have identical state and voltage).

In general, however, cells have different initial state and parameter

values. Thus to simulate a general series-connected set of cells we

must simulate all cells’ individual dynamics by keeping independent
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60 battery management systems: volume ii, equivalent-circuit methods

17 This would be the case for situations
where capacities and resistances of cells
are not the same in each parallel path,
such as when cells have different states
of health, and especially if there is a
failure in one of the paths.

PCM

Figure 2.12: Schematic of a battery pack
where modules comprise multiple cells
wired in parallel.

state and model information for every cell, updating each cell’s state

and voltage computation once per sample interval.

When computing the battery-pack voltage, we then simply sum

the individual cell voltages. Additionally, we can include an intercell

interconnect resistance term when computing pack voltage, to arrive at

the overall equation

vpack,k =

(
Ns

∑
j=1

vj,k

)

− NsRinterconnectik, (2.26)

where vj,k is the voltage of cell j at time instant k. The interconnect

resistance models external resistance of cell tabs and connections

between cells in a battery pack.

2.9.2 Packs comprising parallel-connected cell modules

Series-connected packs are common for low-energy high-power ap-

plications such as HEV. High-energy applications, however, often

have cells and even entire subpacks that are connected in parallel. We

previewed this concept in Chap. 1, where we considered modules

comprising Np cells connected in parallel (cf. the PCM approach in

Fig. 1.3).

If all cells in a PCM are identical in every respect, simulation is

straightforward. Only one cell in each PCM must be simulated and

its input current is equal to ik/Np. Pack voltage is computed using

Eq. (2.26).

However, if cells in a PCM are not identical, the pack input current

is not divided evenly among all cells in the PCM, and each cell in the

PCM must be simulated individually.17 But how?

To see how to simulate a battery pack comprising PCMs, we refer

to Fig. 2.12. In the figure, each blue rectangle delineates one battery

cell. As discussed in conjunction with Eq. (2.25), each cell’s voltage

can be modeled as having a fixed part that does not depend on the

present cell current, and a variable part that does depend on present

cell current. Fig. 2.12 symbolizes the fixed part as a voltage source

and the variable part as a resistance in each cell. Therefore the volt-

age source in the figure is not only OCV but also includes present

hysteresis and diffusion voltages.

By Kirchhoff’s voltage law, all terminal voltages of cells connected

in parallel must be equal; by Kirchhoff’s current law, the sum of

currents through all cells connected in parallel must equal the total

battery-pack current. We define current through cell j of a PCM at

time k as ij,k, its fixed voltage as v f j,k, the PCM overall voltage as vk,

and the resistance of the jth cell as R0,j. Then, Ohm’s law applied
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2. simulating battery packs 61

SC
M

SC
M

Figure 2.13: Collapsed schematic of a
battery pack where modules comprise
multiple cells wired in series.

across each cell’s resistance gives cell current as

ij,k =
v f j,k − vk

R0,j
, (2.27)

which could be computed if we were able to find vk.

We arrive at the total battery-pack current by summing all parallel

cell currents

ik =
Np

∑
j=1

v f j,k

R0,j
− vk

Np

∑
j=1

1

R0,j
.

By rearranging, we can solve for the PCM voltage

vk =
∑

Np

j=1
v f j,k

R0,j
− ik

∑
Np

j=1
1

R0,j

. (2.28)

To summarize, we first evaluate Eq. (2.28) to determine the PCM

terminal voltage. Then, we compute the individual cell currents

using Eq. (2.27). Once we have the independent cell currents ij,k,

we can update the cell-model state associated with each cell. Pack

voltage is computed by summing all PCM voltages and interconnect

voltage drops in much the same way as is done in Eq. (2.26).

2.9.3 Packs comprising series-connected cell modules

When simulating packs comprising series-connected modules, the

approach is very similar to how we simulate PCM. Referring again

to Fig. 1.3, each module in an SCM comprises multiple cells wired

in series. Each cell has a voltage with a fixed and variable part. Us-

ing elementary circuit analysis, we can lump together all individual

fixed parts in an SCM as a single voltage source that sums the sepa-

rate fixed voltages, and we can lump together all individual variable

parts in the SCM as a single resistance that sums all separate cell

equivalent-series resistances. Each SCM can then be modeled as a sin-

gle high-voltage high-resistance cell. When the SCMs are connected

in parallel to create a battery pack, the overall pack has schematic as

shown in the lower portion of Fig. 2.13.

If we denote the total lumped fixed voltage of SCM j by v f j,k and

the total lumped resistance by R0,j, then our prior analysis allows us

to compute overall battery-pack voltage as

vk =
∑

Np

j=1
v f j,k

R0,j
− ik

∑
Np

j=1
1

R0,j

. (2.29)

The individual SCM currents are then found as

ij,k = (v f j,k − vk)/R0,j. (2.30)
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62 battery management systems: volume ii, equivalent-circuit methods

18 This code may be downloaded from
http://mocha-java.uccs.edu/CH2/

PCMSCM.zip.

With these currents now known, we can update the state of every cell

in the battery pack.

2.10 PCM simulation code

Before concluding this chapter, we present some MATLAB code to

simulate PCMs and SCMs, and some simulation results.18 The PCM-

simulation code begins with some comments and definitions. It also

loads the ESC cell-model structure model from the file cellModel.mat

to define some default cell parameter values.

% ------------------------------------------------------------------------

% simPCM: Simulate parallel-connected-module packs (cells are connected in

% parallel to make modules; these modules are connected in series to make

% packs).

%

% The parameters for each cell may be different (e.g., capacity,

% resistance, etc.)

% ------------------------------------------------------------------------

clear all; close all; clc;

% Initialize some pack configuration parameters

load cellModel; % creates var. "model" with ESC cell parameter values

Any kind of simulation scenario could be considered. In the ex-

amples to be presented in Sect. 2.11, we simulate a battery pack com-

prising three cells in parallel and three cells in series. The simulation

nominally begins with all cells fully rested at 25 % SOC. The simula-

tion then predicts performance over one full hour of pack operation

where the pack is repeatedly charged until the cell having highest

state of charge reaches a maximum design SOC limit; the pack is then

discharged until the cell having lowest SOC reaches a minimum SOC

design limit. The pack rests after 2,700 s. The following code segment

defines initial variables to this simulation.

% Initialize some simulation configuration parameters...

Ns = 3; % Number of PCMs connected in series to make a pack

Np = 3; % Number of cells connected in parallel in each PCM

maxtime = 3600; % Simulation run time in simulated seconds

t0 = 2700; % Pack rests after time t0

storez = zeros([maxtime Ns Np]); % create storage for SOC

storei = zeros([maxtime Ns Np]); % create storage for current

% Initialize states for every battery-pack cell ESC cell model

z = 0.25*ones(Ns,Np);

irc = zeros(Ns,Np);

h = zeros(Ns,Np);

The next code segment loads the default parameter values from

the structure model. Note that the simulation considers a constant cell

temperature of 25 ◦C and defines a 125 µΩ interconnect resistance per

cell tab.

% Default initialization for cells within the pack
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2. simulating battery packs 63

q = getParamESC('QParam',25,model)*ones(Ns,Np);

rc = exp(-1./abs(getParamESC('RCParam',25,model)))'*ones(Ns,Np);

r = (getParamESC('RParam',25,model))';

m = getParamESC('MParam',25,model)*ones(Ns,Np);

g = getParamESC('GParam',25,model)*ones(Ns,Np);

r0 = getParamESC('R0Param',25,model)*ones(Ns,Np);

rt = 0.000125; % 125 microOhm interconnect resistance for each cell tab

At this point, all cells have identical parameters. The next section

introduces different kinds of cell variability so that we can explore

how the battery pack responds to them. In the following, the code

is configured to overwrite initial SOC for every cell with a random

value between 30 % and 70 %, to overwrite total capacity for each cell

with a random value between 4.5 Ah and 5.5 Ah, and to overwrite

resistance with a random value between 5 mΩ and 25 mΩ. To disable

any of these random initializations, simply replace the corresponding

“if true ” statement with “if false.”

% Modified initialization for cell variability

% Set individual random "initial SOC" values

if true, % set to "if true," to execute, or "if false," to skip this code

z=0.30+0.40*rand([Ns Np]); % rand. init. SOC for ea. cell

end

% Set individual random cell-capacity values

if true, % set to "if true," to execute, or "if false," to skip this code

q=4.5+rand([Ns Np]); % random capacity for ea. cell

end

% Set individual random cell-resistance relationships

if true, % set to "if true," to execute, or "if false," to skip this code

r0 = 0.005+0.020*rand(Ns,Np);

end

r0 = r0 + 2*rt; % add tab resistance to cell resistance

One important capability of a battery-pack simulator that would

be difficult and possibly unsafe to reproduce in a physical battery

pack is the ability to simulate fault scenarios. These capabilities are

disabled in the code below, but can be enabled by uncommenting the

indicated lines in the following segment. An open-circuit fault can

be simulated by setting a cell’s r0 value to Inf (infinity), and a short-

circuit fault can be simulated by setting a cell’s SOC to NaN (“not a

number”). In the example below, a short-circuit cell has no dynamics

beyond a series resistance of value Rsc.

% Add faults to pack: cells faulted open- and short-circuit

% To delete a PCM (open-circuit fault), set a resistance to Inf

% r0(1,1) = Inf; % for example...

% To delete a cell (short-circuit fault), set its SOC to NaN

% z(1,2) = NaN; % for example, delete cell 2 in PCM 1

Rsc = 0.0025; % Resistance value to use for cell whose SOC < 0%

The cells are now configured. We get ready to simulate by comput-

ing the approximate 10C rate of the battery pack at which the cells
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64 battery management systems: volume ii, equivalent-circuit methods

will be cycled in the simulation (this is not a very realistic rate, but it

does give some qualitative results in a short simulation).

% Get ready to simulate... first compute pack capacity in Ah

totalCap = min(sum(q,2)); % pack capacity = minimum module capacity

I = 10*totalCap; % cycle at 10C... not realistic, faster simulation

The simulation now begins. All the battery-pack variables are

stored in individual matrices having Ns rows and Np columns. The

Ns × Np matrix v containing the fixed part of each cell’s voltage is

computed as open-circuit voltage plus hysteresis minus the diffu-

sion voltages. The Ns PCM terminal voltages V are then computed

using Eq. (2.28) and the Ns × Np PCM individual cell currents ik

are computed using Eq. (2.27). Every cell’s state is then updated

(note that if any state of charge somehow becomes less than zero,

that cell is converted to a short-circuit fault). If the minimum state of

charge is less than 5 %, then the simulation switches from discharge

to charge; if the maximum SOC is greater than 95 %, then the simula-

tion switches from charge to discharge. If the 2,700 s activity period

has been exceeded, the cell rests. Finally, all cell states of charge and

input current are stored for later analysis and visualization.

% Okay... now to simulate pack performance using ESC cell model.

for k = 1:maxtime,

v = OCVfromSOCtemp(z,25,model); % get OCV for each cell: Ns * Np matrix

v = v + m.*h - r.*irc; % add in hysteresis and diffusion voltages

r0(isnan(z)) = Rsc; % short-circuit fault has "short-circuit" resistance

V = (sum(v./r0,2) - I)./sum(1./r0,2);

ik = (v-repmat(V,1,Np))./r0;

z = z - (1/3600)*ik./q; % Update each cell SOC

z(z<0) = NaN; % set over-discharged cells to short-circuit fault

irc = rc.*irc + (1-rc).*ik; % Update diffusion currents

Ah = exp(-abs(g.*ik)./(3600*q));

h = Ah.*h + (Ah-1).*sign(ik); % Update hysteresis voltages

if min(z(:)) < 0.05, I = -abs(I); end % stop discharging

if max(z(:)) > 0.95, I = abs(I); end % stop charging

if k>t0, I = 0; end % rest

storez(k,:,:) = z; % Store SOC for later plotting

storei(k,:,:) = ik; % store current for later plotting

end % for k

2.11 Example PCM results

Every time the code in Sect. 2.10 is executed, the results differ due

to the random cell parameter values. Fig. 2.14 shows individual cell

states of charge versus time, and current versus time for one repre-

sentative simulation as corresponding colored lines. We see that cell

states of charge in a PCM can be quite different during cycling due to

the different capacities and resistances, but that they converge to the

same value during rest. That is, there is an automatic self-balancing

mechanism due to the parallel electrical connection of the cells com-

prising a PCM.
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Figure 2.14: Representative state of
charge and current profiles produced by
the PCM simulator.

We also see that the current experienced by individual cells in

a PCM can be quite different from each other due to the varying

resistances. Also, cell current is not necessarily zero when applied

battery-pack current is zero. This is because the cells may have un-

equal states of charge, causing circulating balancing currents because

of the parallel electrical connections of cells within a PCM.

Fig. 2.15 plots average cell SOC in each PCM, and the maximum of

the averaged SOCs minus the minimum of the averaged SOCs. The

first plot shows that while there is self-balancing within a PCM due

to the parallel electrical connection of the cells, there is no balancing

among the set of PCMs. The second plot reinforces this observation

by showing that the divergence in state of charge does not decay

to zero. It can increase or decrease temporarily during cycling as

cells differentially absorb the load, but in steady state the individual

PCMs do not converge to the same global average SOC level.
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2.12 SCM simulation code

The code from Sect. 2.10 can be modified in a straightforward way

to simulate a battery pack comprising series-connected cell mod-

ules rather than parallel-connected cell modules. The only revision

needed is to the main simulation loop. Now, Eq. (2.29) is evaluated to

produce the (scalar) battery-pack voltage V. Then, Eq. (2.30) is used

to determine the Np distinct SCM currents ik. These currents are

then replicated for every cell in every SCM to make the final Ns × Np

matrix of currents ik. The rest of the code is unchanged.

% ------------------------------------------------------------------

% Okay... now to simulate pack performance using ESC cell model.

% ------------------------------------------------------------------

for k = 1:maxtime,

v = OCVfromSOCtemp(z,25,model); % get OCV for each cell: Ns * Np matrix

v = v + m.*h - r.*irc; % add in hysteresis and diffusion voltages

r0(isnan(z)) = Rsc; % s-c fault has "short-circuit" resistance

V = (sum(sum(v,1)./sum(r0,1),2)-I)./sum(1./sum(r0,1),2); % Bus V

ik = (sum(v,1)-repmat(V,1,Np))./sum(r0,1); % 1 * Np cell currents

ik = repmat(ik,Ns,1);

z = z - (1/3600)*ik./q; % Update each cell SOC

z(z<0) = NaN; % set over-discharged cells to short-circuit fault

irc = rc.*irc + (1-rc).*ik; % Update diffusion currents

Ah = exp(-abs(g.*ik)./(3600*q));

h = Ah.*h + (Ah-1).*sign(ik); % Update hysteresis voltages

if min(z(:)) < 0.05, I = -abs(I); end % stop discharging

if max(z(:)) > 0.95, I = abs(I); end % stop charging

if k>t0, I = 0; end % rest

storez(k,:,:) = z; % Store SOC for later plotting

storei(k,:,:) = ik; % store current for later plotting

end % for k

2.13 Example SCM results

Every time the code in Sect. 2.12 is executed, the results vary due

to the random cell parameter values. Fig. 2.16 shows individual

cell states of charge versus time as different colored lines, and cor-

responding current versus time for one representative simulation

where each SCM had eight cells connected in series and the pack

comprised three SCMs connected in parallel. We see that current ex-
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2. simulating battery packs 67

perienced by all cells within any given SCM is the same due to the

series connection, but that cells in different SCMs experience different

current. We notice that cells in an SCM do not self-balance since they

are not electrically connected in parallel. The overall bus voltage of

the three SCMs is the same, but that does not force individual cell

voltages to be the same.
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Figure 2.16: Representative state of
charge and current profiles produced by
the PCM simulator.

2.14 Where to from here?

We have now reviewed two types of battery-cell models: the em-

pirical equivalent-circuit model and the physics-based model. Our

focus in this book is on applying the empirical model to define algo-

rithms to meet the controls requirements of a battery-management

system. A planned Volume III in this series will show how to apply

the physics-based models to solve battery-management problems.

To be able to simulate the performance of a battery pack under

realistic conditions, it is important to understand how to model the

load connected to the battery pack. In this chapter, we have derived

equations for an electric-vehicle load and have seen simulation results
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68 battery management systems: volume ii, equivalent-circuit methods

that, in part, include profiles of battery-pack power or current versus

time that can be used as input to a battery-pack simulation.

Further, as a battery pack comprises many cells—possibly con-

figured in parallel and/or series—we have seen that it is possible

and even vital to be able to simulate every cell in the battery pack to

ensure that no cell goes outside of operational design limits as the

battery pack operates. Even cells connected electrically in parallel,

which we know have identical terminal voltage due to Kirchhoff’s

voltage law, can actually exhibit very different internal behaviors

during transient operation.

With this review and background, we are now prepared to embark

on the first major new topic of this book: learning how to estimate

the dynamic values of the internal state vector of every cell in a bat-

tery pack as it operates. As this vector includes state of charge as one

of its components, this process will be key to any state of charge esti-

mation task. However, we will see that it is also possible to estimate

all other model states, and will find in Chap. 6 that these states can

be helpful when computing aggressive but safe power limits for the

battery pack.
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3

Battery-State Estimation

The primary focus of this book is on developing equivalent-circuit-

based algorithms for battery management. These algorithms are

invoked repeatedly within the main battery-management system

control loop, as illustrated in Fig. 3.1.

When the battery-management application is launched, the dif-

ferent algorithms are initialized. In an automotive application, this

occurs when the driver turns the key to the “on” position and may

require making some initial measurements, loading saved parameter

values from a nonvolatile memory, performing safety checks, and/or

closing the contactors.

After initialization, the BMS enters its main control loop, which

executes at a regular frequency. First, the battery-pack current, cell

voltages, and temperatures are measured. Then, the state of every

battery cell is estimated, which includes computing an estimate of

SOC. Next, a health estimate for every cell is updated. Cells hav-

ing unequal SOCs may be balanced at this point, and battery-pack

energy and power limits are calculated and transmitted to the load-

management system.

Finally, when the application is terminated, the contactors are Figure 3.1: The battery-management-
system main algorithm control loop.
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1 For a good survey, see S. Piller, M.
Perrin, and A. Jossen, “Methods for
state of charge determination and their
applications,” Journal of Power Sources,
96(1), 2001, pp. 113–120.

opened and data representing the current battery-pack state are

saved to nonvolatile memory to be reloaded and used the next time

the battery pack is needed.

Fig. 3.1 can be seen as a roadmap for the bulk of this book. Chap. 1

has already considered the measurement requirements of a battery-

management system. This chapter explores the task of battery-state

estimation using these measurements and an equivalent-circuit

model of the battery-pack cells. Chap. 4 focuses on the challenges

of state-of-health estimation for the cells in the battery pack. Chap. 5

discusses balancing, and Chaps. 6 and 7 investigate different ap-

proaches to computing battery-pack power limits.

3.1 SOC estimation

The algorithms of a battery-management system are required to

estimate quantities that describe the present battery pack condition,

but which may not be measured directly. Some of these, such as

cell SOC, diffusion currents, and hysteresis states vary relatively

quickly, with significant changes possible over the course of seconds

or minutes. Others tend to vary slowly, if at all. For example, cell

capacities and resistances might change only a few percent in value

over years of battery-pack use.

We refer to the quickly changing quantities as the states of the cells,

and to the slowly changing quantities as the parameters of the cell

model. In the ESC cell model, elements of xk are the model states;

quantities such as total capacity, diffusion capacitance and resistance,

equivalent-series resistance and so forth are the parameters. This

chapter considers battery-cell state estimation and Chap. 4 investi-

gates estimation of select battery-cell parameter values.

An important element of the battery-model state vector is the cell’s

SOC zk. A SOC estimate is required as input to balancing strategies

and to both energy and power calculations. While there can be con-

siderable value in estimating the entire battery-model state vector, we

focus first on estimating SOC only.

Recall that SOC is something like a dashboard fuel gauge that re-

ports a value between “empty” (0 %) and “full” (100 %). While there

exist sensors that can measure a gasoline level in a tank accurately,

there are (presently) no sensors available to measure SOC. So we

must somehow combine measured current, voltage, temperature, and

knowledge from a cell model to calculate estimates of SOC.

There are some simple methods that give poor estimates, and

more complex methods that give very good estimates.1 Complexity

has a cost: more engineering time is required to develop and validate

the better methods, and a more capable BMS processor is required to
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3. battery-state estimation 71

cs,max

θ100%

θ0%

Figure 3.2: Relationship between
negative-electrode average lithium
concentration and cell SOC.
(Duplicated from Fig. 1.19.)

execute them. However, accurate SOC estimates also provide numer-

ous benefits:

Longevity: If the gasoline tank in a standard vehicle is overfilled or

runs empty, the tank itself is not damaged. However, overcharging

or overdischarging a battery cell may cause permanent damage

and result in a reduced lifetime. An accurate SOC estimate is

necessary to guarantee that the battery pack is never overcharged

or overdischarged.

Performance: Without a good SOC estimator, one must be overly

conservative when using the battery pack to avoid overcharge or

overdischarge due to trusting the poor estimate. With a good esti-

mate, especially one that is accompanied by a reliable confidence

interval on its value, we can safely and aggressively use the entire

pack capacity.

Reliability: Poor estimators behave differently for different battery-

pack usage profiles. A good SOC estimator is consistent and

dependable for any profile, enhancing overall power-system re-

liability.

Density: Accurate state of charge and battery-state information allow

the battery pack to be used aggressively within its design limits, so

the pack does not need to be overengineered. This allows smaller,

lighter battery packs.

Economy: Smaller battery systems cost less. Reliable battery systems

incur lower levels of warranty-servicing costs.

These benefits often outweigh the added cost of implementing an

advanced SOC-estimation algorithm.

3.2 A careful definition of state of charge

Chap. 1 introduced an electrochemical definition of SOC. With refer-

ence to Fig. 3.2, we define the present average lithium concentration

stoichiometry as θk = cs,avg,k/cs,max at time index k. This stoichiome-

try is intended to remain between θ0% and θ100%, although it is possi-

ble to violate these limits in an overdischarge or overcharge situation.

Cell SOC zk is then computed as

zk =
θk − θ0%

θ100% − θ0%
.

The issue addressed here is that there is (presently) no direct way to

measure the concentrations that would allow us to calculate the sto-

ichiometries and from them the SOC. So, we must infer or estimate

SOC using only measurements of cell terminal voltage, current, and

temperature.

Plett, Gregory. Battery Management Systems, Volume II: Equivalent-Circuit Methods, Artech House, 2015. ProQuest Ebook Central,
         http://ebookcentral.proquest.com/lib/ybp-ebookcentral/detail.action?docID=4821265.
Created from ybp-ebookcentral on 2020-03-27 11:56:42.

C
op

yr
ig

ht
 ©

 2
01

5.
 A

rte
ch

 H
ou

se
. A

ll 
rig

ht
s 

re
se

rv
ed

.



72 battery management systems: volume ii, equivalent-circuit methods

2 In this book, the term capacity refers
to a charge capacity, not an energy
capacity. This is the more relevant
concept for our study since the inputs
to our battery-cell models are the cell
current; that is, a rate-of-change of
charge.

We have already noticed that while cell open-circuit voltage is

closely related to state of charge, the terminal voltage under load is

a poor predictor of open-circuit voltage unless the cell is in electro-

chemical equilibrium (and hysteresis is negligible).

This brings up two problems. The first is, how do we estimate

SOC in the first place? We will see a number of answers to this prob-

lem in this chapter. The second is, how can we know the true state of

charge against which to evaluate our estimators?

To address the second problem, we introduce some careful defini-

tions that will ultimately motivate procedures to calibrate laboratory

results so that the truth values can be known.

definition: A cell is fully charged when its open-circuit voltage

reaches vh(T), a manufacturer-specified voltage that may be a

function of temperature T. For example, vh(25 ◦C) = 4.2 V for

some lithium-manganese-oxide chemistries and vh(25 ◦C) = 3.6 V

for some lithium-iron-phosphate chemistries.

A common method to bring a cell to a fully charged state is to

execute a constant-current charge profile until the terminal voltage

is equal to vh(T) followed by a constant-voltage profile until the

charging current becomes infinitesimal. This can be done readily

in a laboratory setting, allowing calibration of a dataset at the

beginning of a test. We define the SOC of a fully charged cell to be

100 %.

definition: A cell is fully discharged when its open-circuit-voltage

reaches vl(T), a manufacturer specified voltage that may be a

function of temperature. For example, vl(25 ◦C) = 3.0 V for some

lithium-manganese-oxide chemistries and vl(25 ◦C) = 2.0 V for

some lithium-iron-phosphate chemistries.

A cell may be fully discharged by executing a constant-current

discharge profile until its terminal voltage is equal to vl(T) fol-

lowed by a constant-voltage profile until the discharge current

becomes infinitesimal. Again, this can be done readily in a labora-

tory setting, allowing calibration of a dataset at the end of a test.

We define the SOC of a fully discharged cell to be 0 %.

definition: The total capacity Q of a cell is the quantity of charge

removed from a cell as it is brought from a fully charged state to

a fully discharged state.2 While the SI unit for charge is coulombs

(C), it is more common in practice to use units of ampere-hours

(Ah) or milliampere-hours (mAh) to measure the total capacity

of a battery cell. The total capacity of a cell is a parameter of our

models but is not strictly a fixed quantity: it generally decays

slowly over time as the cell ages (we will discuss this further in

Chap. 4).
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3. battery-state estimation 73

definition: The discharge capacity Q[rate] of a cell is the quantity

of charge removed from a cell as it is discharged at a constant

rate from a fully charged state until its loaded terminal voltage

reaches vl(T). Because the discharge capacity is determined based

on loaded terminal voltage rather than open-circuit voltage, it is

strongly dependent on the cell’s internal resistance, which itself is

a function of rate and temperature. Hence, the discharge capacity

of a cell is rate-dependent and temperature-dependent, while the

total capacity is not.

Because of the resistive ik × R0 drop, discharge capacity is less than

total capacity unless the discharge rate is infinitesimal. Likewise,

the SOC of the cell is nonzero when the terminal voltage reaches

vl(T) at a noninfinitesimal rate. The discharge capacity of a cell

at a particular rate and temperature is not a fixed quantity: it also

generally decays slowly over time as the cell ages.

definition: The nominal capacity Qnom of a cell is a manufacturer-

specified quantity that indicates the amount of charge that the cell

is rated to hold. Its value tends to be determined by the antici-

pated application of the cell: for long-duration batteries, it is often

the C/8-rate discharge capacity Q0.125C, for UPS applications, it is

often the 4C-rate discharge capacity Q4C, and for automotive, it is

usually close to the 1C-rate discharge capacity Q1C of a particular

manufactured lot of cells at room temperature, 25 ◦C. The nominal

capacity is a constant value. Because the nominal capacity is repre-

sentative of a manufactured lot of cells and the discharge capacity

is representative of a single individual cell, Qnom ̸= Q1C in general,

even at beginning of life. Also, because Qnom is representative of a

discharge capacity and not of a total capacity, Qnom ̸= Q.

definition: The residual capacity of a cell is the quantity of charge

that would be removed from a cell if it were brought from its

present state to a fully discharged state.

definition: The SOC of a cell is the ratio of its residual capacity to

its total capacity.

These definitions are consistent with the continuous-time and discrete-

time relationships presented earlier:

z(t) = z(0)− 1

Q

∫ t

0
η(t)i(t) dt, and zk+1 = zk − ηkik∆t/Q. (3.1)

True SOC may then be calibrated in a laboratory setting using

high-accuracy sensing and the following approach. First, before a test

is run, the cell is fully charged to 100 % SOC. This is often done at

a controlled room temperature (25 ◦C). Then, ambient temperature

is modified to the test temperature and the cell is allowed to soak

at the test temperature until thermal equilibrium of cell internal
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74 battery management systems: volume ii, equivalent-circuit methods

temperature is achieved. The desired test procedure is executed and

net accumulated discharge ampere-hours are recorded continuously

as the test runs. The temperature is then returned to 25 ◦C and the

cell temperature is allowed to equilibrate. Finally, the cell is fully

discharged. From these data, we can determine total capacity Q via

the total net ampere-hours discharged and cell SOC at every point

via Eq. (3.1), if we assume that η = 1. If η ̸= 1, then a full charge and

discharge can be performed either prior to or subsequent to the main

test to estimate its value; in this case

η =
total capacity measured while discharging

total capacity measured while charging
.

3.3 Some approaches to estimate SOC

This procedure can work well in a laboratory setting but is not feasi-

ble to implement in an embedded application since we cannot afford

highly calibrated sensors, nor can we perform this complex process

of calibrating cell starting and ending states without interfering with

the primary mission of the battery pack application. So, how do we

estimate state of charge in practice? In this section, we consider meth-

ods that are based primarily on voltage measurements, a method

that is based primarily on current measurements, and a more general

approach that uses both voltage and current measurements together

with an accurate cell model.

3.3.1 Poor, voltage-based methods to estimate SOC

Based on the ESC cell model, we know that a cell’s terminal voltage

is a function of its SOC via:

vk = OCV(zk) + Mhk + M0sk −∑
i

RiiRi
− ikR0.

If the cell is at rest and hysteresis is ignored, then we have the very

simple relationship vk ≈ OCV(zk).

By now, we are accustomed to computing open-circuit voltage

as a function of SOC, perhaps using a lookup table. Now, to solve

vk ≈ OCV(zk) for SOC as a function of OCV, we need to perform

the inverse operation. To see what this result looks like, consider

the OCV versus SOC relationships that are plotted for six different

lithium-ion cells in Fig. 1.21. These can be inverted by simply inter-

changing plot axes to produce the plots of SOC versus OCV shown

in Fig. 3.3. These inverse relationships, again, can be tabulated for

later use so that output values can be computed via table lookup.

For example, in the figure an OCV of 3.5 V corresponds to an SOC of
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Figure 3.4: Voltage-based estimate of
SOC.

around 4 % for three of the cells, 9 % for one of the cells, and 99 % for

two of the cells. We denote this inverse-table lookup to compute zk

from vk as zk = OCV−1(vk).

Approximating state of charge via table lookup using the present

terminal voltage is truly accurate only when the cell is resting and

when hysteresis is negligible; however, it is nonetheless a very sim-

ple operation. It is tempting to apply this method even when the

cell is under load to find an approximate state of charge from the

loaded terminal voltage. However, doing so gives very poor results.

It misses the effects of hysteresis, diffusion voltages, and ikR0 losses.

Further, the wide, flat areas of the OCV relationship in Fig. 1.21 trans-

late into steep segments in Fig. 3.3, which dilute the accuracy of the

estimate. For example, for the two lithium-iron-phosphate cells in

the figure, an open-circuit voltage of 3.3 V corresponds to a state of

charge of 42 %. However, changing this voltage by as little as 10 mV

in either direction results in states-of-charge of 32 % and 66 %. That is,

a relatively small ±10 mV error in computing the OCV produces an

enormous 34 % range of error in the estimated SOC.

For reasonable values of current and cell resistances, the magni-

tude of the ohmic voltage term alone can be much more than 10 mV.

However, this term is also the easiest to compute. So, we can mod-

ify the prior overly simplistic state of charge estimation scheme to

compensate for the ohmic voltage

vk ≈ OCV(zk)− ikR0

vk + ikR0 ≈ OCV(zk)

zk ≈ OCV−1(vk + ikR0). (3.2)

This produces better results, but still misses the effects of hystere-

sis and diffusion voltages. Fig. 3.4 shows an example of using this im-

proved voltage-based estimate on a cell having an SOC versus OCV

relationship similar to the red line in Fig. 3.3. The cell is subjected to

a highly dynamic current profile and voltage is recorded. At every

time step, Eq. (3.2) is executed to estimate SOC. This is plotted as the

blue line in Fig. 3.4. The data labeled “True SOC” are computed by

using the laboratory method described at the end of Sect. 3.2.

We see that the estimates produced using even this improved

method are very noisy. It is possible to filter the results to reduce the

noise, but filtering adds group delay (a time lag) to the estimates that

must then be accounted for. Alternatively, if we knew the diffusion-

current state and the hysteresis state of the cell, we could modify

Eq. (3.2) to be

zk ≈ OCV−1(vk − Mhk − M0sk + ∑
i

RiiRi
+ ikR0).
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76 battery management systems: volume ii, equivalent-circuit methods

However, we don’t have a very good way of knowing these values

open-loop, so this approach appears to be a dead end.

In summary, using voltage as the primary estimator of state of

charge, perhaps with an ikR0 correction, produces very noisy esti-

mates that are not useful by themselves. However, in Chap. 4 we will

find a use for Eq. (3.2) to stabilize a method for simultaneous SOC

and SOH estimation. For now, we turn to looking at current-based

methods for estimating state of charge instead.

3.3.2 Poor, current-based method to estimate SOC

To use current as the primary estimator of state of charge, we recall

that

zk = z0 −
∆t

Q

k−1

∑
j=0

ηjij. (3.3)

This equation is, in fact, precise. It measures the amount of charge

added to or removed from the cell, normalizes this net amount by

total capacity, and updates the state of charge based on this net flow

of charge.

If we use this relationship as the basis of an estimator, we are said

to be coulomb counting. However, we must recognize that what is

implemented in practice is really

ẑk = ẑ0 −
∆t

Q̂

k−1

∑
j=0

η̂jimeas,j, (3.4)

where the hat decoration “ˆ” on a variable indicates an estimate of

the value of that variable and where

imeas,j = itrue,j + inoise,j + ibias,j + inonlin,j − iself-discharge,j − ileakage,j.

(3.5)

In Eq. (3.4), ẑ0 is the estimate of initial SOC. If this estimate is in-

correct, there is no feedback mechanism (e.g., based on voltage) to

correct this error over time. All else being ideal, the SOC estimation

error over time is fixed at the constant value equal to the error in the

ẑ0 estimate.

However, not all else is ideal. We don’t know the cell total capacity

exactly, so must estimate that as well, approximating Q ≈ Q̂. Neither

do we know the coulombic efficiency ηj exactly, so we must approx-

imate its value with η̂j. Both of these approximations contribute to

SOC estimation error.

Perhaps most importantly, we don’t know the exact current expe-

rienced by the cell. We approximate the true cell current in Eq. (3.3)

with the measured battery-pack current in Eq. (3.5). This measured
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3. battery-state estimation 77

current does contain the true cell current itrue,j, but it also includes

random measurement noise inoise,j, measurement dc bias ibias,j, and

nonlinear errors inonlin,j introduced by the measurement circuit. Fur-

ther, the measurement does not reflect the self-discharge current of

the cell iself-discharge,j, nor does it measure how much current ileakage,j

is being drawn from the cell to power the electronic circuitry that

monitors its performance.

Eq. (3.4) integrates these errors over time. The noise and nonlin-

ear errors might be considered to have zero mean and so would not

affect the expected value of the state of charge estimate. They do,

however, cause the uncertainty of the estimate to grow continually.

The bias, self-discharge, and leakage errors do not have zero mean

so they will cause the state of charge estimate to degrade continu-

ally, and uncertainty in the measurement error will also cause the

uncertainty of the SOC estimate to grow.

So, we conclude that coulomb counting is a risky method to use

to estimate SOC. It can be acceptable for short periods of operation

when initial conditions are well known. Alternatively, if the applica-

tion has frequent excursions into voltage regions where the SOC can

be estimated reasonably well from measured voltage, the coulomb

count can be reset at these points using Eq. (3.2), which tends to

make it more reliable.

Coulomb counting, with some kind of reset mechanism, is some-

times the only viable option for estimating SOC. In Fig. 3.3, we saw

that the two cells having lithium-iron-phosphate chemistries have

voltage curves that yield almost no information on SOC around 3.3 V.

However, the other cells do contain significant state of charge infor-

mation in their OCV, so there should be benefit in somehow combin-

ing information from both the current sensor and voltage sensor. We

explore this idea next.

3.3.3 Model-based state estimation

An alternative to a voltage-only method or a current-only method is

to combine the approaches somehow. We can do so by using a model

of cell input/output (current/voltage) behaviors, within a model-based

estimation approach. The resulting method will be able to estimate

SOC and all other internal states of the model as well, which yields

some additional benefits that we explore in Chap. 6.

The model-based estimation approach is illustrated in Fig. 3.5.

The top branch of the diagram shows the operation of the actual cell,

which we denote as the “true system.” The input to the cell is the

electrical current that it experiences and the output from the cell is

its terminal-voltage response. Inside the cell, there is a true SOC and
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78 battery management systems: volume ii, equivalent-circuit methods

a true set of diffusion currents and hysteresis voltages (assuming

that our model of the cell makes physical sense). However, these

quantities are not measurable, which is why we must estimate their

values.

Input

noise
Process

noise
Sensor

State

State est.

True system

System model

output
Measured

output
Predicted

Figure 3.5: The model-based estimation
approach.

Complicating the issue is the fact that our current-sensor mea-

surements and our voltage-sensor measurements are both noisy. We

model the uncertainty in current as a process noise. This unknown

and unmeasurable component to cell current does in fact cause the

cell’s state to change, but we cannot predict the change it effects as

we don’t know the variation between true and measured current. We

model the uncertainty in the voltage as a sensor noise. This sensor

noise does not affect the true state, but its presence does mean that

we cannot place full trust in the accuracy of the voltage measure-

ment.

Model-based estimation realizes that we cannot measure the true

system’s state, so instead we first measure the input to the true sys-

tem (the current), and propagate that same input through a model of

the system, as shown in the bottom branch of Fig. 3.5. Because our

model is implemented in software, the state vector for the model is

simply a computer variable and we can do with it whatever we like.

We can store it, print it, or use it for other computations. The state-

estimate variable in the model is a surrogate for a measurement of

the true state.

As described so far, the model-based approach is identical to

coulomb counting; however, we’re not finished. In the model-based

approach, we continue by predicting the system output (the voltage)

based on our state estimate and the measured system input. This pre-

dicted output is compared to the measured output. If the two are the

same, we have confirmation that the model’s state estimate is good.

If the two are very different, we have an indicator that the model’s

state estimate is poor. So, the difference between the predicted and

measured output can be used in a feedback mechanism to update

the model’s state estimate. This incorporation of feedback is the vital

step to making a good state estimate that is missing from coulomb

counting.
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3. battery-state estimation 79

3 One example is: Simon, D., Optimal
State Estimation: Kalman, H∞ and Nonlin-
ear Approaches, Wiley Interscience, 2006,
but there are many other excellent texts
on the subject.

4 For one example, see
http://mocha-java.uccs.edu/ECE5550/.

We must be very careful, however, when applying the feedback.

The voltage-prediction error can be due to a number of factors. These

include: state-estimation error (which we would like to correct), mea-

surement errors (due to sensor noise), and modeling errors (because

our model is not a perfect representation of the true cell dynamics).

We must compute our state-estimate update carefully to account for

these sources of error.

Under some specific conditions, the Kalman filter is an algorithm

that computes a provably optimal state estimate despite these un-

certainties. The Kalman filter is a special case of a general solution

framework known as sequential probabilistic inference. We will look at

the linear Kalman filter and some of its variants throughout the re-

mainder of this chapter. But, to do so, we must first explore the more

general problem of sequential probabilistic inference, which we do

next.

From this point in the chapter, the mathematical level increases.

Not every BMS engineer needs to understand every detail. In general,

what follows is good background for the BMS hardware engineer to

be able to understand sensing requirements, and it is helpful for the

BMS software engineer to be able to understand how to interface the

main BMS code to the algorithm code. However, we believe that it is

essential for the BMS algorithm engineer to study and understand

the remainder of this chapter in detail. Real-world implementations

of Kalman filters almost always require some modifications to the

generic steps presented here to make them work better in an en-

vironment where the assumptions made when deriving the filter

equations are violated. This is why we take time to derive the steps

of the Kalman filter in this book instead of simply listing them. The

algorithm designer must know where the equations come from and

what they mean in order to modify them or augment them to work in

a practical application.

The derivations of the Kalman filter in this chapter are self-contained;

however, the reader who is unfamiliar with this topic may wish to

consult other references to get a broader perspective.3 An Internet

search will also uncover online courses (including notes and videos

of lectures) on the subject of Kalman filtering in general, which may

be helpful.4

3.3.4 Sequential probabilistic inference

We start by assuming a general, possibly nonlinear, state-space model

of a system whose state we would like to estimate:

xk = f (xk−1, uk−1, wk−1) (3.6)

yk = h(xk, uk, vk), (3.7)
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80 battery management systems: volume ii, equivalent-circuit methods

5 The literature seems split as to
whether the system’s output should
be denoted as either yk or zk. However,
because we are already using zk to refer
to the cell’s SOC, we will refer to the
output as yk in this book.

where uk is a known (deterministic or measured) input signal, xk is

the model state vector, wk is an unknown and unmeasurable process-

noise random input signal, and vk is an unknown and unmeasurable

sensor-noise random input signal. The output from the system is

yk. In the case of the ESC cell model, uk is the measured cell input

current imeas,k, and yk is the measured cell voltage.

Notice that we no longer use vk to denote voltage, since the name

vk now describes sensor noise. This can be confusing, but we make

the switch at this point to be compatible with the majority of the

Kalman-filter literature.5 Note also that yk is not cell voltage; rather,

it is a noisy measurement of cell voltage. The distinction is important.

The functions f (·) and h(·) compute the state and output equa-

tions of the model, respectively. We note that they may be time-

varying, but we generally omit the time dependency from the no-

tation for ease of understanding. The ESC-model state equation in

Eq. (2.4) will later be modified with the inclusion of wk to form f (·),
and the ESC-model output equation in Eq. (2.5) will be modified with

the inclusion of vk to form h(·).
The sequential-probabilistic-inference problem seeks to find an effi-

cient recursive estimate of the present state xk of the dynamic system

using knowledge of all inputs and measurements of all outputs up

until time k. For compact notation, we define Uk to be this set of in-

puts and Yk to be this set of outputs. Mathematically, we can write

these continuously growing sets as

Uk = {u0, u1, · · · , uk} (3.8)

Yk = {y0, y1, · · · , yk}. (3.9)

The solution will be sequential in the sense that it implements a recur-

sion that computes the new estimate based on the prior estimate and

on the new information measured at this time step; hence, a sequence

of steps provides a sequence of estimates. The solution is probabilis-

tic in the sense that it must take into account the randomness of the

process noise and the sensor noise when computing the estimates.

Fig. 3.6 illustrates the operation of the system under consider-

ation in a way that is helpful to gain insight into the sequential-

probabilistic-inference solution. The true system has a state vector

whose values evolve over time. This evolution is partially determin-

istic, via the known uk input, but it is also partially random via the

unknown process-noise input wk. Therefore, we must model the state

at a particular point in time as a vector random variable, and the state

sequence as a vector random process. The uncertainty when moving

from state xk−1 to xk due to process noise wk−1 is modeled by the

conditional probability density function fX|X(xk | xk−1).

The state is unmeasurable, but we are able to observe the noisy
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3. battery-state estimation 81

xk−2 xk−1 xk

yk−2 yk−1 yk

fY!X(yk | xk)

fX !X(xk | xk−1)

Observed

Unobserved

Figure 3.6: The sequential-probabilistic-
inference concept.

6 Note that we use capital letters such as
X for the names of RVs, and lowercase
letters such as x for the values that
these variables might take on.

system outputs yk. These observations allow us some insight into

what is happening in the true system. Based on the observations and

our model, we estimate the state. However, these measurements

are not a deterministic function of the state. Uncertainty due to

sensor noise vk is modeled by the conditional probability density

function fY|X(yk | xk). Due to the uncertainty of the process-noise

and sensor-noise randomness, we will never to be able to compute

the state exactly. Instead, we must make estimates of the state that

will always have some error. Thus, we will find value in having an

associated state-estimation confidence interval computed by the

estimator in addition to the estimate itself. This allows the other

battery-management-system algorithms that use the estimates pro-

duced by the sequential-probabilistic-inference solution to know how

aggressively the estimates may be used.

The randomness of process noise and sensor noise have naturally

brought up subjects in probability, random variables, and random

processes. We assume that the reader has some background in these

topics but will now review the most important concepts.

3.4 Review of random processes

3.4.1 Random variables

By definition, noise is not deterministic: it is random in some sense.

So, to discuss the impact of noise on system dynamics, we must un-

derstand how to work with numeric quantities whose values change

at least to some degree every time we repeat the identical experiment.

Such quantities are known as random variables (RVs). We cannot pre-

dict beforehand exactly what we will get each time we measure or

sample the random variable, but we are able to characterize the rel-

ative likelihood of different outcomes by the RV’s probability density

function (pdf).

The pdf of random variable X is denoted as fX(x) and represents

the relative likelihood that a measurement of X will result in the

value x.6 Even though the precise value of X is unknown until we

make a measurement, we often do have some knowledge about which
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82 battery management systems: volume ii, equivalent-circuit methods

7 These properties are direct conse-
quences of the axioms of probability
applied to a continuous random vari-
able.

outcomes are more likely and which outcomes are less likely to occur.

Thus, the pdf is somehow a description of what we do know about

what the uncertain X will be. Values of x for which fX(x) is large are

those we believe are more likely to be observed than values of x for

which fX(x) is small.

To be more precise, a pdf can be any function for which the follow-

ing three properties are true.7

1. A pdf can never take on negative values. Therefore, fX(x) ≥ 0 for

all x.

2. The probability that X will take on a value that is less than or

equal to x0 is written as Pr(X ≤ x0) and is evaluated using its pdf

as

Pr(X ≤ x0) =
∫ x0

−∞
fX(x) dx.

This is easily generalized to find the probability that X is in a finite

range as

Pr(x1 < X ≤ x2) = Pr(X ≤ x2)− Pr(X ≤ x1)

=
∫ x2

−∞
fX(x) dx −

∫ x1

−∞
fX(x) dx

=
∫ x2

x+1

fX(x) dx.

As long as fX(x) does not contain Dirac delta (impulse) functions,

this probability is the same as Pr(x1 ≤ X ≤ x2) and can be evalu-

ated as
∫ x2

x1
fX(x) dx. If the pdf has a Dirac delta function exactly

at x1, then we must be careful to integrate from a point just to the

right of x1—denoted as x+1 —up to x2 instead. So, assuming that

the pdf does not contain Dirac delta functions and that fX(x) is

continuous in the neighborhood of x0, we can come up with an

intuitive understanding of the meaning of fX(x) by evaluating

Pr(x0 ≤ X ≤ x0 + dx) =
∫ x0+dx

x0

fX(x) dx

= fX(x0) dx

for infinitesimal dx. Therefore, strictly speaking, we cannot say

that fX(x0) is the probability that X = x0 since the probability that

continuous random variable X takes on any particular real value

out of the infinite set of possible real values is zero. However, we

can say that it is proportional to the probability that X will take on

a value in a small neighborhood of x0. Most correctly, we state that

fX(x) is the relative likelihood that X will take on value x0.

3. Every experiment must result in some real value. Therefore, we

have

Pr(−∞ ≤ X ≤ ∞) =
∫ ∞

−∞
fX(x) dx = 1.
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3. battery-state estimation 83

This normalizing equation states that the area under fX(x) must

be one.

Applying the mathematical abstraction of fX(x) to a real prob-

lem is sometimes very challenging. What should we use as the pdf of

process noise for our battery-cell model? How about the pdf of sen-

sor noise? We find that, apart from simple contrived textbook-style

examples, it is often difficult to determine the pdf fX(x) of a real-life

random variable with any accuracy. Instead, we use approximations

to capture the dominant behavior. To do so, we will need to define

some key characteristics of fX(x).

The expected value or mean of RV X can be written either as x̄ or

E[X], and is defined as

x̄ = E[X] =
∫ ∞

−∞
x fX(x) dx.

This definition can be extended to find the expected value of any

function g(X) of X as

E[g(X)] =
∫ ∞

−∞
g(x) fX(x) dx.

A very important property of expectation is that it is linear. There-

fore, we can write things like

E[aX + b] = E[aX] + E[b] = ax̄ + b,

if a and b are constants. Similarly, the first moment of X about its

mean is

E[X − x̄] = E[X]− x̄

= x̄ − x̄

= 0,

where the first line is true because x̄ is a deterministic constant com-

puted from the deterministic function fX(x) and so can come outside

of the expectation operation. The linearity of expectation makes it a

much nicer quantity to work with than the pdf itself. We will find

that we very rarely need to consider the pdf functional form of an RV

after this review section.

The variance of an RV is its second central moment around the

mean. We define

var(X) = E[(X − x̄)2]

=
∫ ∞

−∞
(x − x̄)2 fX(x) dx

=
∫ ∞

−∞
(x2 − 2x̄x + x̄2) fX(x) dx
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8 Be very careful to note that E[X2] ̸=
(E[X])2 because the X2 operation is not
linear.

x̄
Figure 3.7: Five different Gaussian pdfs,
all having mean x̄, but with different
variances.

= E[X2]− 2x̄E[X] + x̄2

= E[X2]− 2x̄x̄ + x̄2

= E[X2]− x̄2,

or is equal to the mean-square minus the square-mean.8 Related

to the variance, we define the standard deviation of RV X as σX =√
var(X). The standard deviation of X has the same units as X itself,

so it is possible to write things like x̄ ± 3σX, as we shall need to do in

the future.

While the mean of an RV captures in a single value the center of

the random outcomes (since E[X − x̄] = 0), the variance of a random

variable captures the spread or range of random outcomes that we

might expect to see. This can be argued via Chebychev’s inequality,

which states (for positive ε)

Pr(|X − x̄| ≥ ε) ≤ var(X)
ε2

.

If the variance of X is small compared to ε, then the probability that

X will be further than ε from its mean is small. Conversely, the prob-

ability that X will be closer than ε to its mean is large. This implies

that probability is concentrated around the mean, and that var(X) is

a relative measure of the spread of the pdf around the mean.

That is, variance informs us of how uncertain we are about the

value that an RV will take on. Low variance means that we can pre-

dict the value of the RV with very narrow error bounds; high vari-

ance means that our prediction will have wide error bounds. The

mean and variance together allow us to predict the value of an RV

and to state how certain we are of that prediction.

Thus, expectation and variance capture two key features of the

actual pdf. While higher-order moments are available, we won’t use

them in this book.

The most important pdf for the applications examined this book

is the Gaussian or normal distribution. (We will see why this is the

case when we consider the central limit theorem on page 90.) Several

Gaussian pdfs having mean x̄ and a number of different variances are

shown in Fig. 3.7.

The pdf of a Gaussian random variable X having mean x̄ and

variance σ2
X is defined as

fX(x) =
1√

2πσX

exp

(

− (x − x̄)2

2σ2
X

)

. (3.10)

By evaluating this equation, or by examining Fig. 3.7, we see that the

pdf is symmetric about x̄, has peak proportional to 1/σX located at
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3. battery-state estimation 85

9 The symbol N is a common notation
and stands for “Normal.” However,
while we use this notation, we will refer
to such RVs as Gaussian in this book.

x = x̄, and has relative width proportional to σX. As a short form for

this pdf, we often write

X ∼ N (x̄, σ2
X).

In this notation, the “∼” symbol means “is distributed as” and

N (a, b) denotes a Gaussian pdf with mean a and variance b.9 There-

fore, we read this notation as “Random variable X is distributed as a

Gaussian having mean x̄ and variance σ2
X.”

The Gaussian pdf is not easy to integrate, but other properties

make it very nice to work with as we shall see. Integration tables are

available, and many engineering software toolboxes have Gaussian

integration built in. For our purposes, it is sufficient to know that

Pr(x̄ − σX ≤ X ≤ x̄ + σX) = 0.683

Pr(x̄ − 2σX ≤ X ≤ x̄ + 2σX) = 0.955

Pr(x̄ − 3σX ≤ X ≤ x̄ + 3σX) = 0.997.

Therefore, we can say that a ±3σX interval centered at x̄ will almost

certainly contain the observed measurement. Again, this confirms

that a narrow distribution with small σX will have a sharp peak and

we have high confidence when predicting X, and that a wide distribu-

tion results in poor knowledge in what to expect for X.

3.4.2 Vector RVs

With very little change in what we’ve seen, we can extend the RV

paradigm to describe jointly a collection of multiple related RVs

using a single vector RV. Suppose that we have scalar RVs X1 that

might take on value x1, X2 that might take on value x2, and so forth

up to Xn, which might take on value xn. We can write random vector

X and sample vector x0 as

X =

⎡

⎢⎢⎢⎢⎣

X1

X2
...

Xn

⎤

⎥⎥⎥⎥⎦
, x0 =

⎡

⎢⎢⎢⎢⎣

x1

x2
...

xn

⎤

⎥⎥⎥⎥⎦
.

Random vector X is described by a joint probability density function

fX(x), which computes a scalar output for every vector input X.

Joint pdfs have properties analogous to those of pdfs of scalar RVs.

Namely:

1. The joint pdf is always nonnegative: fX(x) ≥ 0 for all vectors x.

Note that fX(x0) is a short form for

fX(X1 = x1, X2 = x2, · · · , Xn = xn)

where the commas can be read as “and at the same time.”
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86 battery management systems: volume ii, equivalent-circuit methods

2. The probability Pr(X ≤ x0)—which means that within the vector

X we have X1 ≤ x1 and at the same time X2 ≤ x2 and at the same

time. . . Xn ≤ xn—can be written as

Pr(X ≤ x0) =
∫ x1

−∞

∫ x2

−∞
· · ·

∫ xn

−∞
fX(x) dx1 dx2 · · · dxn.

3. Similarly, the pdf is normalized by the constraint that every experi-

ment must result in some real vector. Therefore, we have
∫ ∞

−∞

∫ ∞

−∞
· · ·

∫ ∞

−∞
fX(x) dx1 dx2 · · · dxn = 1.

From these results, we can deduce that fX(x0) is the relative likeli-

hood that X = x0.

We compute the expected value of random vector X in much the

same way as we did for scalar RVs,

x̄ = E[X ] =
∫ ∞

−∞

∫ ∞

−∞
· · ·

∫ ∞

−∞
x fX(x) dx1 dx2 · · · dxn.

This operation is linear, as we found before.

However, we cannot compute variance in exactly the same way

as before, because the operation X2 does not make sense for vectors.

We must decide whether the correct generalization of X2 is XTX (an

inner product) or XXT (an outer product). It turns out that the outer

product is much more useful. Accordingly, we define the square

correlation matrix for random vector X to be

ΣX = E[XXT]

=
∫ ∞

−∞

∫ ∞

−∞
. . .
∫ ∞

−∞
xxT fX(x) dx1 dx2 · · · dxn.

We also define X̃ = X − x̄ to be the variation in X about its mean x̄.

The correlation of this variation gives us the square covariance matrix

for random vector X as

ΣX̃ = E[(X̃)(X̃)T]

= E[(X − x̄)(X − x̄)T]

=
∫ ∞

−∞

∫ ∞

−∞
· · ·

∫ ∞

−∞
(x − x̄)(x − x̄)T fX(x) dx1 dx2 · · · dxn.

Covariance is the generalization of variance, applied to a random

vector. The covariance matrix ΣX̃ is symmetric and positive-semi-

definite (psd). This means that all its eigenvalues are nonnegative

and that we can write

yT
ΣX̃ y ≥ 0

for any vector y having same dimension as X. Notice that covariance

and correlation are identical for zero-mean random vectors.
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3. battery-state estimation 87

Figure 3.8: A two-dimensional Gaussian
pdf.

10 In this formulation, computing the
matrix inverse Σ

−1
X̃

requires positive-
definite ΣX̃ . It is possible to generalize
this definition further to allow for any
valid covariance matrix—that is, for any
positive-semidefinite ΣX̃—but we will
not focus on that here.

The entries of the covariance matrix have specific meaning. The

diagonal elements—those having row index i and identical column

index i—are equal to the variances of the scalar RV Xi. That is,

(ΣX̃)ii = σ2
Xi

.

The off-diagonal elements—those having different row index i and

column index j—are related to the product of the standard deviations

of Xi and Xj via

(ΣX̃)ij = ρijσXi
σXj

= (ΣX̃)ji,

where the correlation coefficient ρij is a measure of linear dependence

between Xi and Xj. The magnitude of the correlation coefficient is

bounded, |ρij| ≤ 1. When ρij = 0, there is no linear dependence

between Xi and Xj, meaning that knowledge of the specific value of

either one of these RVs gives us no greater ability to predict the other

using a linear relationship than we already have from the joint pdf.

When ρij = 1, Xj can be computed exactly from Xi using a linear

equation where the slope of this equation is positive; when ρij = −1,

Xj can be computed exactly from Xi using a linear equation where

the slope of this equation is negative. Nonzero values of −1 < ρij < 1

indicate that a linear relationship can be of some value in predicting

one of the quantities from the other, but that the prediction will not

be perfect—there will still be random error between the prediction

and the truth.

There are infinite variety of pdfs for random vectors. However, we

will need only the multivariable Gaussian pdf for topics we consider

in this book. Similar to the scalar random-variable case, we say X ∼
N (x̄, ΣX̃), which means that “random vector X is distributed as a

multivariable Gaussian having mean x̄ and covariance ΣX̃ .” The

proper generalization from the scalar pdf of Eq. (3.10) to a vector pdf

is

fX(x) =
1

(2π)n/2
∣∣ΣX̃

∣∣1/2
exp

(
−1

2
(x − x̄)T

Σ
−1
X̃

(x − x̄)

)
, (3.11)

where |ΣX̃ | = det(ΣX̃).
10 The reader can verify that Eq. (3.10) is a

degenerate form of Eq. (3.11) when vector X has only a single compo-

nent.

3.4.3 Properties of jointly distributed RVs

There are limited analysis opportunities available when considering a

single scalar RV, but there is a richness to the kinds of understanding

that can come from considering multiple RVs jointly. Some of this

can be summarized by determining whether certain properties are
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88 battery management systems: volume ii, equivalent-circuit methods

11 The marginal probability fX2
(x2) may

be calculated from the joint pdf as

fX2
(x2) =

∫ ∞

−∞
fX(x1, x2)dx1.

For each x2, we integrate out the effect
of X1.

true of a specific set of RVs. Since we will make extensive use of

these properties, we address the most important ones here.

Jointly distributed RVs are said to be independent if and only if the

joint pdf can be written as

fX(x1, x2, . . . , xn) = fX1
(x1) fX2

(x2) · · · fXn(xn)

where the marginal pdf fXk
(xk) is the pdf of scalar RV Xk considered

by itself. That is, if the joint pdf of X can be written as a product of

the marginal pdfs, then the elements of X are independent, and if

the elements of X are independent, then the joint pdf of X can be

written as a product of the marginal pdfs. This property is not true

for the majority of pdfs. However, if it is true for a specific pdf, the

implication is that the particular value of the RV Xi has no impact on

what values we could obtain for any of the other RVs Xj in X. When

RVs in X are independent, there is no linear or nonlinear dependence

between Xi and Xj, meaning that knowledge of the specific value of

either one of these RVs gives no greater ability to predict the other

using any kind of linear or nonlinear relationship than we already

have directly from the joint pdf.

Jointly distributed RVs Xi and Xj are said to be uncorrelated if their

second moments are finite and

cov(Xi, Xj) = E[(Xi − x̄i)(Xj − x̄j)] = 0,

for i ̸= j. If we consider the covariance matrix ΣX̃ of X, we realize

that cov(Xi, Xj) = (ΣX̃)i,j. Thus if two RVs are uncorrelated, we must

have that ρij = 0. If all RVs within random vector X are uncorrelated,

then ΣX̃ is a diagonal matrix. Based on our previous discussion, we

recognize that if two RVs are uncorrelated, then there is no linear

dependence between them and that knowledge of the specific value

of either one of the RVs gives no greater ability to predict the other

using any kind of linear relationship than we already have directly

from the joint pdf.

The condition for jointly distributed RVs to be independent is

much stronger than for them to be uncorrelated. So, if two RVs are

independent, then they are also uncorrelated. However, if they are

uncorrelated they are not necessarily independent. One very im-

portant exception is when jointly distributed RVs have a Gaussian

distribution. It turns out that uncorrelated Gaussian RVs are also

independent. This is a very special case.

When considering the interactions between multiple RVs, we can

also define a conditional pdf 11

fX1|X2
(x1 | x2) =

fX(x1, x2)
fX2

(x2)
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3. battery-state estimation 89

12 This wouldn’t even make sense
because it would integrate to 2 and
violate the conditions for a valid pdf.

as the relative likelihood that X1 = x1 given that we know X2 = x2.

The question that is being addressed by a conditional pdf is this: if

we have two jointly distributed RVs and we somehow obtain informa-

tion as to the value of one of them, does that change the probability

distribution of what we would expect of the other, which is still un-

known? If the two RVs are independent, then we have

fX1|X2
(x1 | x2) =

fX1
(x1) fX2

(x2)

fX2
(x2)

= fX1
(x1),

which is the prior marginal distribution for X1. In this case, know-

ing the value of X2 gives no additional insight into what we would

expect X1 to be. However, if the two RVs are not independent, then

knowing the value for X2 does give some additional insight, which we

can leverage when predicting a value for X1.

Likewise, we can define conditional expectation for jointly dis-

tributed random vectors X and Y as

E[X | Y = y] =
∫ ∞

−∞

∫ ∞

−∞
· · ·

∫ ∞

−∞
x fX|Y (x | y) dx1 dx2 · · · dxn, (3.12)

which computes what to expect for the value of X given that we

know Y = y. This is somewhat different from E[X | Y ]. That is,

m = E[X | Y = y] gives us a deterministic constant vector of values

based on the specific knowledge that Y = y. On the other hand

M = E[X | Y ] uses the same definition with an unspecified Y and

gives us a deterministic function of random variable Y . This function

computes the random variable M, which states what to expect for X

if we were to measure a specific value Y = y. Because E[X | Y ] is an

RV, we can take its expectation via the rule of iterated expectation and

find that

E
[
E
[
X | Y

]]
= E

[
X
]
. (3.13)

At this point it is impossible to overemphasize the importance

of conditional expectation. Sequential probabilistic inference is an

algorithm to compute the expected present value of the system’s state

vector given all past and present output measurements, E[xk | Yk].

We will be making extensive use of expectations and conditional

expectations in the remainder of this book.

When we perform mathematical operations on one or more RVs,

the result is itself a random variable. One important example is the

seemingly simple operation that computes

Y = X1 + X2.

Generally speaking, it is quite difficult to find the pdf of Y—it is not

simply the summation of the pdfs of X1 and X2.12 If X1 and X2 are
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90 battery management systems: volume ii, equivalent-circuit methods

independent, then the result is somewhat simpler: the pdf of Y is

the convolution of the pdfs of X1 and X2. This is still a challenging

mathematical operation to perform, but not nearly as difficult as

solving the general case for dependent RVs.

Something very interesting happens when we add together a lot

of RVs that are mutually independent and identically distributed,

with each individual variable having finite mean and variance. Then,

the summation Y will be approximately normally distributed, and

the approximation improves as the number of summed RVs gets

large. This result is known as the central limit theorem and is the main

reason why a Kalman filter makes any sense at all. To completely

specify the distribution of Y, we need only find the expected value

of the summation—which is the summation of the expected values

of the individual vectors being summed—and the covariance matrix

of the summation—which is the summation of the covariances of the

individual vectors, under the assumed conditions.

Since the state of our dynamic system adds up the effects of lots

of independent random inputs in the process-noise signal wk, it is

reasonable to assume that the distribution of the state tends to the

normal distribution via the central limit theorem. So, we will assume

that the state xk of the system is a normally distributed random vec-

tor. We will also ultimately assume that the process noise wk is a

normally distributed random vector, that the sensor noise vk is a nor-

mally distributed random vector, and that wk and vk are uncorrelated

with each other. Even when these assumptions are broken in practice,

the Kalman filter often works quite well.

For a more general function of the RVs within random vector X

that produces random vector Y , a useful result allows us to compute

the pdf of Y from the pdf of X. Let Y = g(X) and assume that the

inverse function exists such that X = g−1(Y). If g(·) and g−1(·) are

continuously differentiable, then

fY (y) = fX(g−1(y))

∥∥∥∥

∣∣∣∣
∂g−1(y)

∂y

∣∣∣∣

∥∥∥∥ , (3.14)

where the notation ∥|·|∥ means to take the absolute value of the deter-

minant of the matrix argument.

An important example is the case where Y = AX + B where A

is a constant nonsingular matrix, B is a constant vector, and X ∼
N (x̄, ΣX̃). We can rewrite this expression to solve for X as

X = A−1Y − A−1B,

which gives us g−1(y) = A−1y − A−1B. Then, the Jacobian matrix

∂g−1(y)/∂y = A−1.
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3. battery-state estimation 91

To find the pdf of Y , we begin with the known pdf for X, which is

fX(x) =
1

(2π)n/2|ΣX̃ |1/2
exp

[
−1

2
(x − x̄)T

Σ
−1
X̃

(x − x̄)

]
.

Therefore, substituting into Eq. (3.14),

fY (y) =

∥∥∥|A−1|
∥∥∥

(2π)n/2|ΣX̃ |1/2
exp

[
−1

2
(A−1(y − B)− x̄)T

Σ
−1
X̃

(A−1(y − B)− x̄)

]
.

Recognizing that |A−1| = 1/|A|, that |A| = |AT|, and that ȳ = Ax̄ + B,

fY (y) =
1

(2π)n/2(|A||ΣX̃ ||A
T|)1/2

exp

[
−1

2
(y − ȳ)T(A−1)T

Σ
−1
X̃

A−1(y − ȳ)

]
.

In addition, we note that

ΣỸ = E[(Y − ȳ)(Y − ȳ)T]

= E[(AX + B − Ax̄ − B)(AX + B − Ax̄ − B)T]

= E[(AX̃)(X̃
T

AT)]

= AΣX̃ AT .

Therefore,

fY (y) =
1

(2π)n/2|ΣỸ |1/2
exp

[
−1

2
(y − ȳ)T

Σ
−1
Ỹ

(y − ȳ)

]
.

Examining this result, we recognize that it is the pdf of a multivari-

able Gaussian. That is, Y ∼ N (Ax̄ + B, AΣX̃ AT).

This is an extremely important result. It shows us that linear func-

tions of Gaussian random vectors yield a resulting Gaussian random

vector. And because the pdf of a Gaussian random vector is uniquely

defined by the vector’s mean and covariance matrix, which can be

found using expectations, we will never need to work with the pdf of

the Gaussian itself in the future. That should be reassuring!

For example, let X and W be uncorrelated vector RVs, A and B

be constant matrices, and C be a constant vector. If X ∼ N (x̄, ΣX̃)

and W ∼ N (w̄, ΣW̃ ), then we know that Z = AX + BW + C is

also Gaussian because it is a linear combination of Gaussians. The

pdf of Z is then completely determined if we can find its mean and

covariance. First, the mean is

E[Z] = z̄ = Ax̄ + Bw̄ + C.

The covariance is

ΣZ̃ = E[(Z − z̄)(Z − z̄)T]

= E[(AX + BW + C − Ax̄ − Bw̄ − C)
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Figure 3.9: Correlated, nonzero-mean
Gaussian random vectors.

× (AX + BW + C − Ax̄ − Bw̄ − C)T]

= E[(AX̃ + BW̃)(AX̃ + BW̃)T]

= E[A(X̃)(X̃)T AT + A(X̃)(W̃)TBT + B(W̃)(X̃)T AT

+ B(W̃)(W̃)T BT]

= AΣX̃ AT + BΣW̃ BT ,

where the last line holds due to X and W being uncorrelated, hence

(for example) E[(X̃)(W̃)T] = E[X̃ ]E[(W̃)T] = 0, because E[X̃] =

E[X − x̄] = 0. As the final result for this example, we conclude that Z

is a Gaussian random vector and Z ∼ N (z̄, ΣZ̃).

Another valuable example considers creation of correlated Gaus-

sian random vectors from uncorrelated Gaussian random vectors.

For example, MATLAB’s randn.m returns Gaussian random vectors

X ∼ N (0, I) having zero mean and covariance matrix equal to the

identity matrix of the appropriate size. Sometimes, we would like

to generate Gaussian random vectors Y ∼ N (ȳ, ΣỸ) in a computer

program. We can do so via the expression y = ȳ + Ax where A is a

square matrix such that AAT = ΣỸ . Using either of the two previous

examples, we have that E[Y ] = E[ȳ + Ax] = ȳ since X is zero mean,

and that ΣỸ = AΣX̃ AT , which gives the desired result since ΣX̃ = I.

To compute the A matrix for this application, we can use one of

two different matrix-factoring algorithms. For symmetric positive-

definite ΣỸ , the Cholesky decomposition computes AAT = ΣỸ , where

A is a square lower-triangular matrix. In MATLAB, the chol.m com-

mand computes the Cholesky decomposition, but we must be careful

to invoke it with the 'lower' optional argument. The following code

produces the data in Fig. 3.9.

ybar = [1; 2]; covar = [2, 0.75; 0.75, 1];

A = chol(covar,'lower');

for k = 1:5000,

x = randn([2, 1]);

y = ybar + A*x;

plot(y(1),y(2),'.'); hold on

end

An alternate approach, which must be used when ΣỸ is only positive-

semi-definite, is to use the LDL decomposition, which computes

LDLT = ΣỸ , where L is a square lower-triangular matrix and D is

a diagonal matrix. In MATLAB, the prior example changes to

ybar = [1; 2]; covar = [2, 0.75; 0.75, 1];

[L,D] = ldl(covar);

for k = 1:5000,

x = randn([2, 1]);

y = ybar + (L*sqrt(D))*x;

plot(y(1),y(2),'.'); hold on

end
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3. battery-state estimation 93

13 This latter result means that the
correlations are not a function of the
absolute time indices k1 and k2. Instead,
they are functions only of the interval
length k2 − k1 between the indices.
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Figure 3.10: Examples of uncorrelated
and correlated random processes.

3.4.4 Vector random (stochastic) processes

A random variable is a scalar quantity. A random vector is a collec-

tion of RVs. A random process or stochastic process is a family of RVs

or random vectors indexed by a parameter set. In our case, that pa-

rameter set is time. For example, we might refer to a random process

Xk for generic time index k. The value of the random process at any

specific time k = m is a random variable or vector Xm.

We will usually assume that the random processes we encounter

are stationary. This means that the behavior has reached a steady-

state where the pdfs (and therefore any derived statistics) of the

random vectors making up the random process are time-shift invari-

ant. Therefore, for example, E[Xk] = x̄ for all k and E[Xk1
XT

k2
] =

ΣXk1
,Xk2

= ΣX,k2−k1
.13

Random processes have some properties that are similar to those

of random vectors. For example, we define the autocorrelation function

for a random process to be

ΣXk1
,Xk2

= E[Xk1
XT

k2
].

If the random process is stationary, then

ΣXk ,Xk+τ
= E[XkXT

k+τ] = ΣX,τ,

for all k. The autocorrelation function provides a measure of correla-

tion between elements of the process having time displacement equal

to τ.

We also define the autocovariance function

ΣX̃k1
,X̃k2

= E[(Xk1
− E[Xk1

])(Xk2
− E[Xk2

])T ].

If the process is stationary,

ΣX̃k ,X̃k+τ
= E[(Xk − E[Xk])(Xk+τ − E[Xk+τ])

T ] = ΣX̃,τ

for all k.

The autocovariance always has maximum value at τ = 0, where

it is equal to the covariance matrix of the underlying random vectors

Xk making up the process. If the autocovariance is large for some

time shift τ ̸= 0, two samples of the random process separated

in time by τ have a high correlation and a linear relationship can

make a good prediction of one of these quantities using a measured

value of the other. If the autocovariance is zero, there is no linear

relationship between the samples for that value of and so one cannot

be predicted from the other using a linear relationship with any more

accuracy than if the other were completely unknown.

We can use these properties to define white noise as a stationary

random process having zero mean and autocorrelation function
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94 battery management systems: volume ii, equivalent-circuit methods

ΣX,τ = SX δτ , where δτ is the discrete-time Dirac delta function.

Therefore, the process is uncorrelated in time. Fig. 3.10 shows ex-

amples of white noise and correlated random processes. Values of a

white-noise process are completely unpredictable from past samples

of the same process, but it is possible to predict the value of a corre-

lated random process with some accuracy given only past samples

from the same process.

A white-noise process whose underlying pdf at every point in time

is Gaussian is termed a white Gaussian noise process. When deriving

the sequential-probabilistic-inference solution, we will assume that

the noise inputs to the dynamic system are such white Gaussian

noise processes.

We have already justified the Gaussian assumption via the cen-

tral limit theorem. However, this new restriction of whiteness might

appear to be overly limiting. Fortunately it is one that can be fixed

easily if the random input to the true system is not, in fact, white. We

can cascade our system model with a second linear system that is

used to shape the noise as desired, as shown in Fig. 3.11. Therefore,

we can drive our system G(z) with noise that has desired characteris-

tics by introducing a shaping filter H(z) that itself is driven by white

noise. The combined system GH(z) behaves as if G(z) had a shaped-

noise input, but GH(z) itself is driven by white noise. The model

GH(z) is then used inside the sequential-probabilistic-inference solu-

tion rather than G(z) itself.

White
noise wk

Shaped
noise w1,k

White
noise w2,k

yk

yk ykG(z)G(z)

G(z)H(z)
w1,k

Shaped

Previous picture New picture Figure 3.11: Modeling a correlated-
noise input via a shaping filter.

This analysis augments the original system model with filter states.

Suppose that the original system has G(z) with nonwhite input w1,k

xk+1 = Axk + Bww1,k

yk = Cxk.

We introduce a shaping filter H(z) with fictitious white input w2,k

that produces shaped-noise output w1,k

xs,k+1 = Asxs,k + Bsw2,k

w1,k = Csxs,k.

Then, we combine both models into a single system GH(z) by aug-
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3. battery-state estimation 95

menting the state vector

[
xk+1

xs,k+1

]

=

[
A BwCs

0 As

] [
xk

xs,k

]

+

[
0

Bs

]

w2,k

yk =
[

C 0
] [ xk

xs,k

]

.

This augmented system, which is the one used in sequential prob-

abilistic inference, is simply a higher-order system driven by white

noise.

Before concluding this section we make a remark concerning

notation. Until now, we have always used capital letters to denote

random variables and vectors. So, as the state of a dynamic system

driven by a random process is itself a random vector, we could de-

note it by Xk. However, it is more common to retain the standard

notation xk and understand from the context that we are discussing a

random vector. In the remainder of this book, xk is to be understood

as a random vector sampled from a stochastic process.

3.5 Sequential probabilistic inference

With this background, we are ready to derive the sequential-probabilistic-

inference solution. Before we do, however, we need to introduce

some new notation. So, in the following,

• A superscript “−” indicates a predicted quantity based only on past

measurements.

• A superscript “+” indicates an estimated quantity based on both

past and present measurements. So, technically, an estimated quan-

tity is different from a predicted quantity.

• The hat decoration “ˆ” on a variable indicates either a predicted or

an estimated value of that variable. For example, x̂−k indicates the

predicted value of xk and x̂+k indicates the estimated value of xk,

both at time step k.

• The tilde decoration “˜” on a variable indicates an error; that is,

the difference between a true and predicted or estimated quantity.

For example, x̃−k = xk − x̂−k and x̃+k = xk − x̂+k .

• Consistent with our discussion of random vectors, the symbol “Σ”

is used to denote the correlation between the two arguments in its

subscript (autocorrelation if only one is given). For example,

Σxy = E[xyT] and Σx = E[xxT].
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96 battery management systems: volume ii, equivalent-circuit methods

14 We will see that the deterministic
known values of Uk are factored
into this result as well, but we do not
condition on them since they are not
RVs.

• Further, the correlation of mean-subtracted quantities gives covari-

ance

Σx̃ỹ = E[x̃ỹT]

= E[(x − E[x])(y − E[y])T].

The sequential-probabilistic-inference problem attempts to find a

state estimate that minimizes the mean-squared error between the true

state and the estimated state, given measurements of the input and

output from time zero until the present time. Recall from Eqs. (3.8)

and (3.9) that we denote the set of all known inputs up until time k

by Uk and the set of all measurements of the output up until time

k by Yk. The elements of Uk are not RVs since they are assumed to

be measured perfectly (any imperfections in the input measurement

are modeled by the process noise wk). However, the output measure-

ments are RVs since they are corrupted by measurement noise vk.

Therefore, we write the minimum-mean-squared-error (MMSE) state

estimate as the argument vector of values that minimizes the ex-

pected norm squared of the error, given all measurements up to and

including the present time step:14

x̂MMSE
k (Yk) = arg min

x̂+k

(
E
[ ∥∥xk − x̂+k

∥∥2
2
| Yk

])

= arg min
x̂+k

(
E
[
(xk − x̂+k )

T(xk − x̂+k ) | Yk

])

= arg min
x̂+k

(
E
[
xT

k xk − 2xT
k x̂+k + (x̂+k )

T x̂+k | Yk
])

.

We solve for x̂+k by differentiating the cost function that we wish to

minimize with respect to this estimate and setting the result to 0:

0 =
d

dx̂+k
E
[
xT

k xk − 2xT
k x̂+k + (x̂+k )

T x̂+k | Yk

]
.

To do so, note the following identities from vector calculus (for

generic vectors X and Y and matrix A),

d

dX
Y TX = Y ,

d

dX
XTY = Y , and

d

dX
XT AX = (A + AT)X.

Further, if the A matrix is symmetric, we have

d

dX
XT AX = 2AX.

Then, because the derivative operation is linear, we can take the

derivative inside the expectation to find

0 = E
[
− 2(xk − x̂+k ) | Yk

]
= 2x̂+k − 2E

[
xk | Yk

]

x̂+k = E
[
xk | Yk

]
, (3.15)
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3. battery-state estimation 97

15 Error is always computed as “truth
minus prediction” or “truth minus
estimate.”

where we have also made use of the fact that dxk/dx̂+k = 0 because

the true system state is not a function of the state estimate. The final

result says that the MMSE state estimator is the conditional expecta-

tion of the value of the true state given all measurements up to and

including the present time.

In general, it is very difficult to evaluate Eq. (3.15). We would need

to know all joint probability density functions of all variables (which

grow in dimension as time proceeds, due to the growth in Yk). Then,

we would need to compute or approximate the multidimensional

integral of Eq. (3.12). Particle filters attempt to approximate this result

directly, at great computational expense. Thankfully, unless the prob-

lem being addressed is very nonlinear, particle filters are probably

not necessary to achieve adequate state estimates.

Instead, we proceed by making the assumption that all RVs in

our system have a Gaussian distribution. This assumption can be ar-

gued from the central limit theorem, assuming that states and noises

arise from linear combinations of independent identically distributed

noise samples (plus deterministic inputs, which serve only to shift

the mean of the uncertainty). The Gaussian assumption breaks down

in practice when nonlinear combinations of states and noises are com-

puted, which will be the case for our battery-cell models. Nonethe-

less, we will see that the simplifying assumptions that we make lead

to an algorithm that still gives very good results.

When we make the Gaussian assumption, we can develop a very

efficient algorithm for computing x̂+k = E
[
xk | Yk

]
that involves two

steps that are executed repeatedly. First, at every time step k, we com-

pute a prediction x̂−k = E[xk | Yk−1] of the state using prior measure-

ments. Then, we correct the prediction with an update that includes

the present measurement yk to find the estimate x̂+k = E[xk | Yk].

The prediction and correction operations require retaining knowledge

of results from only the prior step, so memory storage is finite and

the computational requirements for every iteration are the same. This

makes the resulting algorithm very well suited for implementation on

an embedded system such as a BMS.

To proceed with the derivation, we define prediction error x̃−k =

xk − x̂−k .15 Notice that we cannot compute this error in practice, since

the truth value is not known. If it were known, we would not need

an estimator! However, we can prove statistical relationships using

this definition of prediction error that result in an algorithm for esti-

mating the truth using only measurable values.

We also define the measurement innovation as ỹk = yk − ŷk where

ŷk = E
[
yk | Yk−1

]
. Because ŷk is what we predict the measure-

ment value to be, the difference between the measurement yk and

the prediction ŷk is a surprise to us. We expect ỹk to be 0. But, if it
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98 battery management systems: volume ii, equivalent-circuit methods

is not, then there is new information in ỹk that we should be able to

use somehow to modify our state prediction to make an improved

estimate. The ỹk term is called the innovation because of this new

information it contains.

We can show that both x̃−k and ỹk have 0 mean using the method

of iterated expectation (cf. Eq. (3.13)):

E
[
x̃−k
]
= E

[
xk − x̂−k

]

= E
[
xk

]
− E

[
E
[
xk | Yk−1

]]

= E
[
xk

]
− E

[
xk

]
= 0

E
[
ỹk

]
= E

[
yk − ŷk

]

= E
[
yk

]
− E

[
E
[
yk | Yk−1

]]

= E
[
yk

]
− E

[
yk

]
= 0.

Note also that x̃−k is uncorrelated with past measurements as they

have been incorporated into x̂−k already:

E
[
x̃−k | Yk−1

]
= E

[
xk − x̂−k | Yk−1

]

= E
[
xk − E

[
xk | Yk−1

]
| Yk−1

]

= E
[
xk | Yk−1

]
− E

[
xk | Yk−1

]

= 0 = E
[
x̃−k
]
.

We derive the recursive correction mechanism by examining the

quantity E[x̃−k | Yk] in two different ways. First, we write

E
[
x̃−k | Yk

]
= E

[
xk − E

[
xk | Yk−1

]
| Yk

]

= E
[
xk | Yk

]
︸ ︷︷ ︸

x̂+k

−E
[
x̂−k | Yk

]
︸ ︷︷ ︸

x̂−k

.

This is true because the operation E
[
xk | Yk−1

]
in the first line results

in the deterministic quantity x̂−k . Because the expected value of a

constant is that constant, the additional conditioning on Yk in the

second line does nothing. Second, we can also write

E
[
x̃−k | Yk

]
= E

[
x̃−k | Yk−1, yk

]
= E

[
x̃−k | yk

]

because x̃−k is uncorrelated with past measurements.

Putting these two results together, we have the sequential-probabilistic-

inference solution

x̂+k = x̂−k + E
[
x̃−k | yk

]
.

That is, first we predict x̂−k , and then we apply a correction based on

the present measured value yk, which is a predict/correct sequence

of steps, as promised.
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3. battery-state estimation 99

But, what is E
[
x̃−k | yk

]
? In about a page of math, we can show

that when two generic random vectors x and y are jointly Gaussian

distributed,

E
[
x | y

]
= E

[
x
]
+ Σx̃ỹΣ

−1
ỹ

(
y − E

[
y
])

.

In our case, “x” is x̃−k and “y” is yk. Noting that yk = ỹk + ŷk, we

have

E
[
x̃−k | yk

]
= E

[
x̃−k
]
+ Σ

−
x̃ỹ,kΣ

−1
ỹ,k

(
yk − E

[
yk

])

= E
[
x̃−k
]
+ Σ

−
x̃ỹ,kΣ

−1
ỹ,k

(
ỹk + ŷk − E

[
ỹk + ŷk

])

= 0 + Σ
−
x̃ỹ,kΣ

−1
ỹ,k

(
ỹk + ŷk − (0 + ŷk)

)

= Σ
−
x̃ỹ,kΣ

−1
ỹ,k︸ ︷︷ ︸

Lk

ỹk,

where we have defined the update gain vector Lk = Σ
−
x̃ỹ,kΣ

−1
ỹ,k .

Putting all of the pieces together, we get the general update equa-

tion

x̂+k = x̂−k + Lkỹk.

The final result of the sequential-probabilistic-inference solution is the

state estimate x̂+k , which has covariance matrix Σ
+
x̃,k = E

[
(x̃+k )(x̃+k )

T
]

that can be used to determine confidence intervals on the estimate.

To evaluate this matrix, we first write

x̃+k = xk −
(

x̂−k + Lkỹk

)

= x̃−k − Lkỹk.

Then,

Σ
+
x̃,k = E

[
(x̃−k − Lkỹk)(x̃−k − Lkỹk)

T]

= E
[
(x̃−k )(x̃−k )

T − Lkỹk(x̃−k )
T − x̃−k (ỹk)

TLT
k + Lkỹk(ỹk)

T LT
k

]

= Σ
−
x̃,k − LkΣỹ,kLT

k ,

where we recognize that E[ỹk(x̃−k )
T] = Σỹ,kLT

k and that E[x̃−k (ỹk)
T] =

LkΣỹ,k.

3.5.1 The six-step process

To summarize, the output of the generic Gaussian sequential-probabilistic-

inference recursive solution has two components:

1. The state estimate. At the end of every iteration, we have computed

our best guess of the present state value, which is x̂+k .

2. The covariance estimate. The covariance matrix Σ
+
x̃,k gives the uncer-

tainty of x̂+k and can be used to compute confidence intervals or

error bounds on the estimate.
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100 battery management systems: volume ii, equivalent-circuit methods

These two quantities together allow us to state that we have high

confidence that the truth lies within x̂+k ± 3 diag
(√

Σ
+
x̃,k

)
. These

two computations and all supporting definitions are summarized in

Table 3.1 and in the Appendix Table on p. 161.

The generic Gaussian sequential probabilistic inference recursion computes

x̂+k = x̂−k + Lk

(
yk − ŷk

)
= x̂−k + Lk ỹk

Σ
+
x̃,k = Σ

−
x̃,k − LkΣỹ,kLT

k ,

where

x̂−k = E
[
xk | Yk−1

]
Σ
−
x̃,k=E

[
(xk − x̂−k )(xk − x̂−k )

T] = E
[
(x̃−k )(x̃−k )

T]

x̂+k = E
[
xk | Yk

]
Σ
+
x̃,k=E

[
(xk − x̂+k )(xk − x̂+k )

T
]
= E

[
(x̃+k )(x̃+k )

T
]

ŷk = E
[
yk | Yk−1

]
Σỹ,k=E

[
(yk − ŷk)(yk − ŷk)

T] = E
[
(ỹk)(ỹk)

T]

Lk = E
[
(xk − x̂−k )(yk − ŷk)

T]
Σ
−1
ỹ,k=Σ

−
x̃ỹ,kΣ

−1
ỹ,k .

Note that this is a linear recursion, even if the system is nonlinear.

Table 3.1: The generic Gaussian
sequential-probabilistic-inference
recursive solution.

When considering how to implement a generic Gaussian sequential-

probabilistic-inference solution, it is helpful to divide the calculations

into two main steps (prediction and correction), each having three

substeps. This overall six-step process forms the pattern for the lin-

ear Kalman filter, the extended Kalman filter, and the sigma-point

Kalman filter to be developed later in this chapter.

General step 1a: State-prediction time update.

Each time step, we compute an updated prediction of the present

value of xk based on prior information (i.e., before the measure-

ment is taken at time index k) and the system model of Eq. (3.6)

x̂−k = E
[
xk | Yk−1

]

= E
[

f (xk−1, uk−1, wk−1) | Yk−1
]
. (3.16)

General step 1b: Error-covariance time update.

We determine the predicted state-estimate error covariance matrix

Σ
−
x̃,k based on prior information and the system model. That is, we

compute

Σ
−
x̃,k = E

[
(x̃−k )(x̃−k )

T], (3.17)

where x̃−k = xk − x̂−k .
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3. battery-state estimation 101

General step 1c: Predict system output yk.

We predict the system’s output using prior information and the

model from Eq. (3.7):

ŷk = E
[
yk | Yk−1

]

= E
[
h(xk, uk, vk) | Yk−1

]
. (3.18)

General step 2a: Estimator gain matrix Lk.

We compute the estimator gain matrix Lk by evaluating

Lk = Σ
−
x̃ỹ,kΣ

−1
ỹ,k . (3.19)

General step 2b: State-estimate measurement update.

We compute the posterior (i.e., after the measurement is taken)

state estimate by updating the prediction using the gain vector Lk

and the innovation yk − ŷk

x̂+k = x̂−k + Lk(yk − ŷk). (3.20)

General step 2c: Error-covariance measurement update.

Finally, we determine the posterior state-estimate error covariance

matrix. That is, we compute

Σ
+
x̃,k = Σ

−
x̃,k − LkΣỹ,kLT

k . (3.21)

These six steps are summarized in Fig. 3.12. Once all six steps have

been executed, the estimator then waits until the next sample interval,

updates k, and proceeds to step 1a.

3.6 The linear Kalman filter

3.6.1 Deriving the linear Kalman filter

In this section, we take the general Gaussian sequential-probabilistic-

inference solution and apply it to the specific case where the system

dynamics are linear. Linear systems have the desirable property that

all random-variable pdfs do in fact remain Gaussian if the stochastic

inputs are Gaussian so the assumptions made in deriving the filter

steps hold exactly.

The linear Kalman filter assumes that the system being modeled

can be represented in state-space form as

xk = Ak−1xk−1 + Bk−1uk−1 + wk−1

yk = Ckxk + Dkuk + vk.
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102 battery management systems: volume ii, equivalent-circuit methods

P
re

d
ic

ti
o

n
C

o
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o
n

Step 1a: State prediction time update:

Step 1b: Error covariance time update:

Step 1c: Predict system output:

Step 2a: Estimator gain matrix:

Step 2b: State estimate measurement update:

Step 2c: Covariance estimate measurement update:

x̂−k = E
[
xk | Yk−1

]
= E

[
f (xk−1, uk−1, wk−1) | Yk−1

]
.

Σ
−
x̃,k = E

[
(x̃−k )(x̃−k )

T
]
= E

[
(xk − x̂−k )(xk − x̂−k )

T].

ŷk = E
[
yk | Yk−1

]
= E

[
h(xk, uk, vk) | Yk−1

]
.

Lk = Σ
−
x̃ỹ,kΣ

−1
ỹ,k.

x̂+k = x̂−k + Lk(yk − ŷk).

Σ
+
x̃,k = Σ

−
x̃,k − LkΣỹ,kLT

k .

Figure 3.12: The six steps of generic
Gaussian probabilistic inference.

We assume that wk and vk are mutually uncorrelated white Gaussian

noise processes, with zero mean and covariance matrices having

known value:

E[wnwT
k ] =

⎧
⎨

⎩
Σw̃, n = k;

0, n ̸= k;
E[vnvT

k ] =

⎧
⎨

⎩
Σṽ, n = k;

0, n ̸= k,

and E[wkxT
0 ] = 0 for all k > 0. The assumptions on the noise pro-

cesses wk and vk and on the linearity of system dynamics are rarely

met in practice, but the consensus of the literature and of practice is

that the method still works very well.

We now apply the general solution to the linear case and derive

the linear Kalman filter. An attempt to aid intuition is also given as

we proceed.

KF step 1a: State-prediction time update.

Starting with Eq. (3.16), we compute the predicted state using the

assumed linear model.

x̂−k = E
[

f (xk−1, uk−1, wk−1) | Yk−1

]

= E
[
Ak−1xk−1 + Bk−1uk−1 + wk−1 | Yk−1

]

= E
[
Ak−1xk−1 | Yk−1

]
+ E

[
Bk−1uk−1 | Yk−1

]
+ E

[
wk−1 | Yk−1

]

= Ak−1x̂+k−1 + Bk−1uk−1,

by the linearity of expectation, noting that wk−1 is zero-mean.

intuition: When predicting the present state given only past mea-

surements, the best we can do is to use the most recent state esti-

mate and system model, propagating the state’s mean forward in

time.
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3. battery-state estimation 103

KF step 1b: Error-covariance time update.

To compute the prediction-error covariance, we first note that the

prediction error is defined as x̃−k = xk − x̂−k . So,

x̃−k = xk − x̂−k
= (Ak−1xk−1 + Bk−1uk−1 + wk−1)− (Ak−1x̂+k−1 + Bk−1uk−1)

= Ak−1x̃+k−1 + wk−1.

Therefore, from Eq. (3.17), the covariance of the prediction error is

Σ
−
x̃k

= E
[
(x̃−k )(x̃−k )

T]

= E
[
(Ak−1x̃+k−1 + wk−1)(Ak−1 x̃+k−1 + wk−1)

T]

= E
[
Ak−1x̃+k−1(x̃+k−1)

T AT
k−1 + wk−1(x̃+k−1)

T AT
k−1

+ Ak−1x̃+k−1wT
k−1 + wk−1wT

k−1

]

= Ak−1Σ
+
x̃,k−1AT

k−1 + Σw̃.

The cross-terms containing wk−1(x̃+k−1)
T and x̃+k−1wT

k−1 drop out of

the final result since the zero-mean white process noise wk−1 is not

correlated with the state estimation error at time k − 1. That is,

E
[
wk−1(x̃+k−1)

T] = E
[
wk−1

]
︸ ︷︷ ︸

0

E
[
(x̃+k−1)

T] = 0

E
[
x̃+k−1wT

k−1

]
= E

[
x̃+k−1

]
E
[
wT

k−1

]
︸ ︷︷ ︸

0

= 0.

intuition: When estimating the error covariance of the state pre-

diction, the best we can do is to use the most recent covariance

estimate and propagate it forward in time. For stable systems, the

Ak−1Σ
+
x̃,k−1AT

k−1 term is contractive, meaning that the uncertainty

gets smaller. The state of a deterministic stable system always con-

verges to a known trajectory regardless of the initial condition. As

time goes on, this term tells us that we tend to get more and more

certain of the state estimate. On the other hand, Σw̃ adds to the

covariance. Unmeasured random input wk adds uncertainty to our

estimate because it perturbs the trajectory away from the known

trajectory computed based only on uk.

KF step 1c: Predict system output yk.

We predict the system output via Eq. (3.18) as

ŷk = E
[
h(xk, uk, vk) | Yk−1

]

= E
[
Ckxk + Dkuk + vk | Yk−1

]

= E
[
Ckxk | Yk−1

]
+ E

[
Dkuk | Yk−1

]
+ E

[
vk | Yk−1]

= Ck x̂−k + Dkuk,

because vk is zero-mean.
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104 battery management systems: volume ii, equivalent-circuit methods

intuition: ŷk is our best guess of the system output given only past

measurements. The best we can do is to predict the output using

the output equation of the system model and our best guess of the

system state at the present time.

KF step 2a: Estimator (Kalman) gain matrix.

To compute the Kalman gain matrix Lk = Σ
−
x̃ỹ,kΣ

−1
ỹ,k from Eq. (3.19),

we first need to compute several covariance matrices. We start

with Σỹ,k by noting that

ỹk = yk − ŷk

= (Ckxk + Dkuk + vk)−
(
Ck x̂−k + Dkuk

)

= Ck x̃−k + vk.

Therefore,

Σỹ,k = E
[
(Ck x̃−k + vk)(Ck x̃−k + vk)

T]

= E
[
Ck x̃−k (x̃−k )

TCT
k + vk(x̃−k )

TCT
k + Ck x̃−k vT

k + vkvT
k

]

= CkΣ
−
x̃,kCT

k + Σṽ.

Again, the cross-terms are zero since zero-mean white sensor noise

vk is uncorrelated with x̃−k . Similarly,

E[x̃−k ỹT
k ] = E

[
x̃−k (Ck x̃−k + vk)

T]

= E
[
x̃−k (x̃−k )

TCT
k + x̃−k vT

k

]

= Σ
−
x̃,kCT

k .

Combining these two results, we have an expression for the

Kalman gain

Lk = Σ
−
x̃,kCT

k [CkΣ
−
x̃,kCT

k + Σṽ]
−1.

intuition: The computation of Lk is the most critical aspect of

Kalman filtering that distinguishes it from a number of other state-

estimation methods.

The primary reason for calculating covariance matrices in the

Kalman-filter steps is to be able to compute Lk. These covariance

matrices must be updated every time step because Lk is time-

varying. It adapts to give the best correction to the predicted state

to form an optimal MMSE state estimate based on all measure-

ments.

Recall that we use Lk in the equation x̂+k = x̂−k + Lk(yk − ŷk). The

first component to Lk, Σ
−
x̃ỹ,k, indicates relative need for correction

to x̂k and how well individual states within x̂k are coupled to the

measurements.
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3. battery-state estimation 105

We see this clearly in Σ
−
x̃ỹ,k = Σ

−
x̃,kCT

k . The Σ
−
x̃,k component tells

us about state uncertainty at the present time, which we hope to

reduce as much as possible. A large entry in Σ
−
x̃,k means that the

corresponding state is very uncertain and therefore would benefit

from a large update. A small entry in Σ
−
x̃,k means that the corre-

sponding state is very well known already and does not need as

large an update. The CT
k term gives the coupling between state

and output. Entries that are zero indicate that a particular state

has no direct influence on a particular output and therefore an

output prediction error should not update that state directly. En-

tries that are large indicate that a particular state is highly coupled

to an output so has a large contribution to any measured output

prediction error; therefore, that state would benefit from a large

update.

The second component to Lk, Σỹ, tells us how certain we are that

the measurement is reliable. If Σỹ is large in some sense, we want

small, slow updates. If Σỹ is small, we want big updates. This

explains why we divide the Kalman gain matrix by Σỹ.

The form of Σỹ can also be explained. The CkΣ
−
x̃ CT

k part indicates

how error in the state contributes to error in the output estimate.

The Σṽ term indicates the uncertainty in the sensor reading due to

sensor noise. Since sensor noise is assumed to be independent of

the state, the uncertainty in ỹk = yk − ŷk is computed by adding

the uncertainty in yk to the uncertainty in ŷk.

KF step 2b: State-estimate measurement update.

This step computes the posterior state estimate by updating the

prior state prediction using the estimator gain and the output

prediction error yk − ŷk via Eq. (3.20),

x̂+k = x̂−k + Lk(yk − ŷk).

intuition: The variable ŷk is what we expect the measurement to be,

based on our state prediction at the moment.

Therefore, yk − ŷk is what is unexpected or new in the measure-

ment. We call this term the innovation. The innovation can result

either from a bad system model, state error, or sensor noise. So,

we want to use this new information to update the state but must

be careful to weight it according to the value of the information

it contains. Lk is the optimal blending factor, as we have already

discussed.

KF step 2c: Error-covariance measurement update.

Finally, we update the error covariance matrix via Eq. (3.21),

Σ
+
x̃,k = Σ

−
x̃,k − LkΣỹ,kLT

k .
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106 battery management systems: volume ii, equivalent-circuit methods

intuition: The measurement update has decreased our uncertainty

in the state estimate.

The update to the state-prediction error covariance LkΣỹ,kLT
k is also

a positive-semi-definite form. Because we are subtracting this from

the predicted-state covariance matrix, the resulting estimated-state

covariance is “lower” in some sense than the premeasurement

covariance.

If a measurement is missed for some reason, then we simply skip

steps 2a–c for that iteration. That is, we set Lk = 0, x̂+k = x̂−k , and

Σ
+
x̃,k = Σ

−
x̃,k. Finally, repeating from before, recall that the estimator

output comprises the state estimate x̂+k and error covariance estimate

Σ
+
x̃,k. That is, we have high confidence that the truth lies within x̂+k ±

3 diag
(√

Σ
+
x̃,k

)
.

3.6.2 Visualizing the linear Kalman filter

The Kalman-filter equations are summarized in the Appendix on

p. 162 and naturally form the recursion drawn in Fig. 3.13. The filter

is initialized with our best guess as to the the values of the present

initial state and covariance. Then, the three prediction steps are ex-

ecuted, followed by the three correction steps. The filter then waits

until the next sample time, increments the time index k, and repeats.

The operations are quite straightforward to perform on a digital com-

puter, as we will see.

1a

Initialization

1b

1c

Prediction

2c

2b

2a

Correction

Next time sample: increment k

Meas. Meas.

x̂+0 , Σ
+
x̃,0

x̂−k = Ak−1 x̂+k−1 + Bk−1uk−1

Σ
−
x̃,k = Ak−1Σ

+
x̃,k−1AT

k−1+Σw̃

ŷk = Ck x̂−k + Dkuk Lk = Σ
−
x̃,kCT

k [CkΣ
−
x̃,kCT

k +Σṽ]−1

x̂+k = x̂−k + Lk(yk − ŷk)

Σ
+
x̃,k = Σ

−
x̃,k − LkΣỹ,kLT

k

yk
uk

Figure 3.13: Visualizing the Kalman-
filter recursion.

Note that while the expectation operations in the generic sequential-

probabilistic-inference solution in Table 3.1 are uncomputable with-

out complicated integrals of pdfs, all equations in Fig. 3.13 can be

evaluated using data available at that time step and simple ma-
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3. battery-state estimation 107
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Figure 3.14: Linearizing the OCV
relationship.

16 The factor of 3,600 converts ampere-
hours to coulombs for an assumed
∆t = 1 s.

trix/vector operations. The Kalman-filter derivation has evaluated

the expectations analytically to give a practical algorithm.

We would like to implement the Kalman-filter steps for a battery-

cell model to be able to estimate the internal state of the model. How-

ever, note that our cell models are nonlinear, so we cannot apply the

(linear) Kalman-filter steps to them directly. Instead, we will need to

develop nonlinear versions of the Gaussian sequential-probabilistic-

inference steps. We will do so in Sects. 3.7 and 3.10.

For the time being, though, we wish to gain experience and intu-

ition with Kalman-filter methods. To demonstrate the Kalman-filter

steps, we will use a crude linearized battery-cell model. First, with

reference to Fig. 3.14, we note that the OCV versus SOC relation-

ship for any of the four lithium-ion chemistries illustrated can be

approximated roughly by the straight-line function drawn as the

black dashed line in the figure:

OCV(zk) ≈ 3.5+ 0.7zk.

Then, omitting diffusion currents and hysteresis states from the ESC

cell model, we write the approximate relationship16

zk+1 = 1 · zk −
1

3,600 · Q
ik

voltk = 3.5 + 0.7 × zk − R0ik.

This model still is not linear (it is affine) because of the additive

value 3.5 in the output equation. This is easily remedied by creating

a debiased synthetic measurement yk = voltk − 3.5, and using the

model

zk+1 = 1 · zk −
1

3,600 · Q
ik + wk

yk = 0.7 × zk − R0ik + vk,

where we have added process-noise and sensor-noise terms wk and

vk to the equations as well.

Comparing this set of equations to the standard linear state-space

model, we see that we are defining the model state xk to be equal to

SOC zk and model input uk to be battery-cell current ik. For the sake

of example, we will will use Q = 10,000/3,600 and R0 = 0.01. This

yields a state-space description with A = 1, B = −1 × 10−4, C = 0.7,

and D = −0.01. We also model Σw̃ = 10−5, and Σṽ = 0.1.

For the sake of example, we assume an initial cell SOC of 50 % and

no initial uncertainty, so x̂+0 = 0.5 and Σ+
x̃,0 = 0. We then manually

calculate all terms for two iterations of the filter.
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108 battery management systems: volume ii, equivalent-circuit methods

17 Note that the generic equations on the
left-hand side of each box use bolded
characters since vectors or matrices
might be involved. However, in this
specific example, all quantities are
scalars, so the right-hand side of each
box uses normal font.
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Figure 3.15: Linear Kalman filter in
action.

Kalman-filter iteration 1

For the first iteration, we assume that i0 = 1, i1 = 0.5 and volt1 = 3.85.

We compute the following, where the left-hand side of each box

shows the generic equation being solved, and the right-hand side

shows the numeric substitutions and results:17

x̂−k = Ak−1 x̂+k−1 + Bk−1uk−1

Σ
−
x̃,k = Ak−1Σ

+
x̃,k−1AT

k−1 + Σw̃

ŷk = Ck x̂−k + Dkuk

Lk = Σ
−
x̃,kCT

k [CkΣ
−
x̃,kCT

k +Σṽ]−1

x̂+k = x̂−k + Lk(yk − ŷk)

Σ
+
x̃,k = Σ

−
x̃,k − LkΣỹ,kLT

k

x̂−1 = 1 × 0.5 − 10−4 × 1 = 0.4999

Σ−
x̃,1 = 1 × 0 × 1 + 10−5 = 10−5

ŷ1 = 0.7 × 0.4999 − 0.01 × 0.5 = 0.34493

L1 = 10−5 × 0.7[0.72 × 10−5 + 0.1]−1

= 6.99966×10−5

(where yk = 3.85 − 3.5)
x̂+1 = 0.4999 + 6.99966×10−5(0.35−0.34493)

= 0.4999004

Σ+
x̃,1 = 10−5 − (6.99966 × 10−5)2(0.1000049)

= 9.9995×10−6

The output of this iteration gives ẑ1 = 0.4999 ± 3
√

9.9995× 10−6 =

0.4999± 0.0094866.

Kalman-filter iteration 2

For the second iteration, we recall that i1 = 0.5, and further specify

that i2 = 0.25 and volt2 = 3.84.

x̂−k = Ak−1 x̂+k−1 + Bk−1uk−1

Σ
−
x̃,k = Ak−1Σ

+
x̃,k−1AT

k−1 + Σw̃

ŷk = Ck x̂−k + Dkuk

Lk = Σ
−
x̃,kCT

k [CkΣ
−
x̃,kCT

k +Σṽ]−1

x̂+k = x̂−k + Lk(yk − ŷk)

Σ
+
x̃,k = Σ

−
x̃,k − LkΣỹ,kLT

k

x̂−1 = 0.4999004 − 10−4 × 0.5 = 0.49985

Σ−
x̃,2 = 9.9995×10−6+10−5 = 1.99995×10−5

ŷ2 = 0.7×0.49985 − 0.01 × 0.25 = 0.347395

L2 = 1.99995×10−5 × 0.7[1.99995×10−5×
0.72 + 0.1]−1 = 0.00013998

(where yk = 3.84 − 3.5)
x̂+2 = 0.49985 + 0.00013998(0.34 − 0.347395)

= 0.499849

Σ+
x̃,2 = 1.99995×10−5 − 0.000139982×

0.100009799755 = 1.99976×10−5

The output of this iteration gives ẑ2 = 0.4998± 3
√

1.99976× 10−5 =

0.4998± 0.013416.

Clearly, it is cumbersome to evaluate these steps by hand. How-

ever, it is quite straightforward to write computer code to implement

them. We shall see how to do so in the next section. In the mean-

time, Fig. 3.15 shows a sample of the Kalman filter operating for the

assumed model of this example. The results labeled “Truth” came

from a simulation of the model equations, not from physical measure-

ments from a real battery cell.

The figure shows us a few things. For example, we see that the

estimated state never converges to the true state. This is because of

Plett, Gregory. Battery Management Systems, Volume II: Equivalent-Circuit Methods, Artech House, 2015. ProQuest Ebook Central,
         http://ebookcentral.proquest.com/lib/ybp-ebookcentral/detail.action?docID=4821265.
Created from ybp-ebookcentral on 2020-03-27 11:56:42.

C
op

yr
ig

ht
 ©

 2
01

5.
 A

rte
ch

 H
ou

se
. A

ll 
rig

ht
s 

re
se

rv
ed

.



3. battery-state estimation 109

the process noise, which is always affecting the true state in ways that

cannot be uniquely determined without knowing the exact values

of wk. However, the Kalman-filter state estimate does converge to

the neighborhood of the true state, and the covariance of the state

estimate allows us to place error bounds on the estimate.

The covariance is initialized to zero. Every time step, the predic-

tion causes uncertainty to increase (due to the unknown changes to

the state due to process noise) and the correction causes uncertainty

to decrease (due to more certainty obtained from the output measure-

ment). The graphic below shows the first few steps of this process.

Σ−
x̃,1 = 1×10−5 Σ−

x̃,2 = 1.99995×10−5 Σ−
x̃,3 = 2.99976×10−5

Σ+
x̃,0 = 0 Σ+

x̃,1 = 9.99951×10−6 Σ+
x̃,2 = 1.99976×10−5 Σ+

x̃,3 = 2.99931×10−5

Note that for this example covariance (uncertainty) converges to a

steady-state solution, but it takes time. The lower frame of Fig. 3.15

shows the prediction-error and estimation-error covariances as a

function of iteration. The steady-state prediction-error covariance

was 1.434 × 10−3, and the final estimation-error covariance was

1.424 × 10−3. Estimation-error bounds are then ±11.3 % for 99.7 %

confidence (using 3-sigma bounds). So, in this example, the Kalman

filter does not perform especially well since Σṽ is quite large. How-

ever, we know that these are the best-possible results for the simu-

lated conditions because we know that the Kalman filter is the opti-

mal MMSE estimator.

3.6.3 MATLAB code for the linear Kalman filter steps

It is straightforward to convert the Kalman filter steps to MATLAB.

However, great care must be taken to ensure that all k and k + 1

indices (and so forth) are kept synchronized. In the example code,

below, we cosimulate the system equations to produce uk and yk and

we implement a Kalman filter on these input/output data. In a real

application, we would measure uk and yk instead.

The first portion of the code initializes simulation variables and

reserves room to store results for plotting:

% Initialize simulation variables

SigmaW = 1e-5; % Process-noise covariance

SigmaV = 0.1; % Sensor-noise covariance

A = 1; B = -1e-4; % State-equation matrices

C = 0.7; D = -0.01; % Output-equation matrices

maxIter = 1000; % Number of simulation time steps

xtrue = 0.5; % Initialize true system initial state

xhat = 0.5; % Initialize Kalman filter initial estimate

SigmaX = 0; % Initialize Kalman filter covariance
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110 battery management systems: volume ii, equivalent-circuit methods

u = 1; % Initial driving input, u[0]

% Reserve storage for variables we might want to plot/evaluate

xstore = zeros(maxIter+1,length(xtrue)); xstore(1,:) = xtrue;

xhatstore = zeros(maxIter,length(xhat));

SigmaXstore = zeros(maxIter,length(xhat)^2);

In a BMS implementation, we do not need to store all state values.

Instead, we would keep only the most recent value. In this code we

store the results only to make it possible to plot the Kalman-filter

performance after the simulation concludes.

In the next section of the code, we execute the six Kalman-filter

steps. These are straightforward implementations of the model equa-

tions. Note that in a BMS implementation, we would measure uk

and yk directly. In the simulation, however, we must come up with

reasonable simulated values to use instead.

for k = 1:maxIter,

% KF Step 1a: State-prediction time update

xhat = A*xhat + B*u; % use prior value of "u"

% KF Step 1b: Error-covariance time update

SigmaX = A*SigmaX*A' + SigmaW;

% [Implied operation of system in background, with

% input signal u, and output signal z]

switch k,

case 1, u = 0.5; % to match earlier example

case 2, u = 0.25; % to match earlier example

otherwise, u = randn(1); % just some interesting input

end

w = chol(SigmaW,'lower')*randn(length(xtrue)); % rand. process noise

v = chol(SigmaV,'lower')*randn(length(C*xtrue)); % rand. sensor noise

switch k,

case 1, ytrue = 3.85 - 3.5; % to match example

case 2, ytrue = 3.84 - 3.5; % to match example

otherwise, ytrue = C*xtrue + D*u + v; % based on present x and u

end

xtrue = A*xtrue + B*u + w; % future x is based on present u

% KF Step 1c: Estimate system output

yhat = C*xhat + D*u;

% KF Step 2a: Compute Kalman gain matrix

SigmaY = C*SigmaX*C' + SigmaV;

L = SigmaX*C'/SigmaY;

% KF Step 2b: State-estimate measurement update

xhat = xhat + L*(ytrue - yhat);

% KF Step 2c: Error-covariance measurement update

SigmaX = SigmaX - L*SigmaY*L';

% [Store information for evaluation/plotting purposes]

xstore(k+1,:) = xtrue;

xhatstore(k,:) = xhat;

SigmaXstore(k,:) = SigmaX(:);

end;
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3. battery-state estimation 111

Finally, we might wish to plot some results. The following code

segment plots the true state, estimated state, errors, and error bounds:

figure(1); clf;

plot(0:maxIter-1,xstore(1:maxIter),'k-',0:maxIter-1,xhatstore,'b--', ...

0:maxIter-1,xhatstore+3*sqrt(SigmaXstore),'m-.',...

0:maxIter-1,xhatstore-3*sqrt(SigmaXstore),'m-.'); grid;

legend('True','Estimate','Bounds','location','northeast');

title('Kalman filter example');

xlabel('Iteration'); ylabel('State');

figure(2); clf;

plot(0:maxIter-1,xstore(1:maxIter)-xhatstore,'b-',0:maxIter-1, ...

3*sqrt(SigmaXstore),'m--',0:maxIter-1,-3*sqrt(SigmaXstore),'m--');

grid; legend('Error','Bounds','location','northeast');

title('Error with bounds');

xlabel('Iteration'); ylabel('Estimation error');

While this example is written in MATLAB, implementing a Kalman

filter in another language is no more challenging except that we

would need to write additional custom code to perform the matrix

operations that are built in to MATLAB.

3.6.4 Improving numeric robustness

Within the filter, the covariance matrices Σ
−
x̃,k and Σ

+
x̃,k must remain

symmetric and positive definite (all eigenvalues must be strictly posi-

tive). It is possible for both conditions to be violated due to roundoff

errors in a computer implementation. We wish to find ways to limit

or to eliminate these problems.

Covariance matrices can become asymmetric or non-positive-

definite only when they are updated; that is, in either the time-

update or measurement-update equations of the filter. Searching for

the source of the potential problem, we consider first the time-update

equation:

Σ
−
x̃,k = AΣ

+
x̃,k−1AT + Σw̃.

Because we are adding two positive-definite quantities together, the

result must be positive definite. A suitable implementation of the

products of the matrices will avoid loss of symmetry in the final

result. So, this equation is not the source of the problem.

Consider next the measurement-update equation:

Σ
+
x̃,k = Σ

−
x̃,k − LkΣỹ,kLT

k .

Theoretically, the result is always positive definite, but due to the sub-

traction operation it is possible for round-off errors in an implemen-

tation to result in a non-positive-definite solution. A better solution is

to use the Joseph-form covariance update,

Σ
+
x̃,k = [I − LkCk] Σ

−
x̃,k [I − LkCk]

T + LkΣṽLT
k . (3.22)
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112 battery management systems: volume ii, equivalent-circuit methods

18 Higham, N.J., “Computing a Nearest
Symmetric Positive Semidefinite Ma-
trix,” Linear Algebra and its Applications,
103, 1998, pp. 103–118.

19 One example is: Simon, D., Optimal
State Estimation: Kalman, H∞ and Nonlin-
ear Approaches, Wiley Interscience, 2006,
but there are many others.

Eq. (3.22) may be shown to be equivalent to Eq. (3.21) mathematically

via

Σ
+
x̃,k = [I − LkCk] Σ

−
x̃,k [I − LkCk]

T + LkΣṽLT
k

= Σ
−
x̃,k − LkCkΣ

−
x̃,k − Σ

−
x̃,kCT

k LT
k + LkCkΣ

−
x̃,kCT

k LT
k + LkΣṽLT

k

= Σ
−
x̃,k − LkCkΣ

−
x̃,k − Σ

−
x̃,kCT

k LT
k + Lk

(
CkΣ

−
x̃,kCT

k + Σṽ

)
LT

k

= Σ
−
x̃,k − LkCkΣ

−
x̃,k − Σ

−
x̃,kCT

k LT
k + LkΣỹ,kLT

= Σ
−
x̃,k − LkΣỹ,kLT

k − LkΣỹ,kLT
k + LkΣỹ,kLT

= Σ
−
x̃,k − LkΣỹ,kLT

k .

However, because the subtraction occurs in a term that is effectively

squared in the Joseph-form update of Eq. (3.22), this form guarantees

a positive definite result.

If we still end up with a nonpositive-definite matrix because of

floating-point rounding error, we can replace the erroneous covari-

ance matrix by the nearest symmetric positive semidefinite matrix.18

Omitting the details, the procedure is

• Calculate singular-value decomposition: Σ = USV T .

• Compute H = VSV T.

• Replace Σ with (Σ + Σ
T + H + HT)/4.

There are still numerous improvements that may be made. We can

reduce computational requirements when there are multiple outputs

by using sequential updating, increase precision of numeric accuracy

using square-root Kalman filtering, and more. There are also nuances

in how carefully the voltage and current-sensor measurements must

be synchronized. It is beyond the scope of this book to investigate all

these details. A good textbook on Kalman filtering will go into these

topics in depth.19

3.6.5 Measurement validation gating

Sometimes the systems for which we would like a state estimate have

sensors with intermittent faults. We would like to detect faulty mea-

surements and discard them (the time-update steps of the Kalman

filter are still implemented, but the measurement-update steps are

skipped).

The Kalman filter provides an elegant theoretical means to ac-

complish this goal. Note that the measurement covariance matrix is

computed as part of Kalman-filter step 2a as

Σỹ,k = CkΣ
−
x̃,kCT

k + Σṽ.

The measurement prediction itself is also computed in step 1c as
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3. battery-state estimation 113

20 Notice that we can compute e2
k know-

ing only the innovation and the covari-
ance of the measurement, which are
already computed by the Kalman-filter
steps. We needed to introduce ξk and
Mk into this derivation only to show
that e2

k is a chi-square random variable.
We do not need to compute either ξk or
Mk in practice.

ŷk = Ck x̂−k + Dkuk, and the innovation is computed in step 2b as

ỹk = yk − ŷk.

Consider first the common situation where our system has a scalar

output. We know that σỹ,k =
√

Σỹ,k. So, if the absolute value of ỹk

is deemed to be significantly greater than σỹ,k, then either our state

estimate is very poor or we have a voltage-sensor fault. In response,

if we assume a bad measurement, then we can skip the measurement-

update steps. Alternately, if a number of measurements are discarded

in a short time interval, it may be that the sensor has truly failed,

or that the state estimate and its covariance have somehow gotten

“lost.” If the latter is true, we can help the Kalman filter reacquire by

artificially increasing the covariance estimate by multiplying Σ
+
x̃,k by a

positive constant. Both of these strategies are implemented in practice

to aid robustness of a real implementation.

If the model being used by the Kalman filter has more than one

output (as we will see in Chap. 4), then we cannot simply compare

the innovation vector directly to the covariance matrix. We can take a

somewhat different sequence of steps, which we explore here quickly.

First, for a multi-output model, we define ξk = Mkỹk, for some

known time-varying matrix Mk yet to be determined. The mean of ξk

is

E[ξk] = E[Mkỹk] = MkE[ỹk] = 0.

The covariance of ξk is

Σξ̃,k = E[MkỹkỹT
k MT

k ] = MkΣỹ,k MT
k .

Further, we know that ξk is a Gaussian random vector, since it is a

linear combination of Gaussian RVs.

Second, if we choose Mk such that MT
k Mk = Σ

−1
ỹ,k, then Mk is the

upper-triangular Cholesky factor of Σ
−1
ỹ,k . We also have ξk ∼ N (0, I)

because

Σξ̃,k = Mk

(
MT

k Mk

)−1
MT

k

= Mk M−1
k M−T

k MT
k

= I.

Third, if we further compute the normalized estimation error squared

e2
k = ξT

k ξk = ỹT
k Σ

−1
ỹ,k ỹk,

then e2
k is the sum of squares of independent N (0, 1) RVs. By defini-

tion, then, e2
k is a chi-square random variable with m degrees of freedom,

where m is the dimension of ỹk.20 Since it is a sum of squares, it is

never negative; it is also asymmetric about its mean value.
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Figure 3.16: Confidence region for a
valid measurement when model has
three outputs

If e2
k has an unusually high value, then the sensor measurement is

very unlikely. So, we might discard the measurement if e2
k is above

some threshold. But, what threshold to use? Using theory from the

field of statistics, we should keep the measurement if it is within

the high-confidence interval of the chi-squared pdf and discard it

otherwise. The confidence interval is determined by integrating the

pdf until a desired level of probability is achieved.

The pdf of a chi-square RV X having m degrees of freedom is

fX(x) =
1

2m/2Γ(m/2)
x(m/2−1)e−m/2,

which is difficult to compute, but we never need to evaluate it in real

time. Instead, we rely on using a limiting critical value precomputed

from the distribution. For example, for 1 − α confidence of a valid

measurement, we want 1 − α area below the critical point χ2
U and α

area above this point. Fig. 3.16 draws the chi-squared pdf for three

degrees of freedom and shades the 1 − α probability region for α =

0.05. Thus, if we compute a value of e2
k that is less than 7.8147, we

keep the measurement because we are 95 % confident that it is valid;

if e2
k is above 7.8147, we discard the measurement because we do not

have 95 % confidence that it is valid.

We find χ2
U by solving for the point where the inverse cumula-

tive distribution function is equal to 1 − α. In MATLAB, using the

statistics toolbox, we can write

X2U = chi2inv(1-0.05,3) % Upper critical value X2U = 7.8147

Note that the value for χ2
U needs to be computed once only, offline.

It is based on the number of measurements in the output vector and

the desired confidence level 1 − α only, neither of which changes over

time. It does not need to be recalculated as the Kalman filter executes.

For hand calculations a χ2-table is available on p. 165.

3.7 The extended Kalman filter

3.7.1 Deriving the six steps of extended Kalman filter

The Kalman filter is the optimal MMSE state estimator for linear

systems when all noises are white and Gaussian. However, the ESC

cell model is nonlinear, so the standard Kalman-filter recursion does

not apply directly.

The generic sequential-probabilistic-inference solution is still valid

for nonlinear systems described via Eqs. (3.6) and (3.7) if all random

signals are Gaussian, but the expectation operations in Table 3.1

cannot be computed exactly. Instead, one of three approximation

strategies is usually implemented in a state estimator for a nonlinear

system:
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3. battery-state estimation 115

21 For a humorous story explaining
“unscented” in the UKF name, see http:

//www.ieeeghn.org/wiki/index.php/

First-Hand:The_Unscented_Transform.

• The extended Kalman filter (EKF): This method performs analytic

linearization of the model at each point in time. There are some

problems with this approach, but it is still popular and can work

well if the system nonlinearities are mild.

• The sigma-point (also known as the unscented) Kalman filter (SPKF/

UKF): This method performs statistical/empirical linearization of

the model at each point in time. Its results are often much better

than EKF, at same computational complexity.21 It tends to give

reasonable estimates even if the nonlinearities are significant.

• Particle filters: This approach is the most accurate, but often re-

quires thousands of times more computation than either EKF or

SPKF. It does not assume Gaussian distributions in general, and

uses Monte Carlo integration techniques to find probabilities, ex-

pectations, and uncertainties. Particle filters are required if the

system has severe nonlinearities, or when the probability distri-

butions are multimodal (i.e., when the pdfs have multiple peaks,

which might correspond to a system where very different distinct

state trajectories can result in the same output measurements).

In this chapter, we present the EKF and SPKF. Particle filters are

beyond the scope of this book.

The EKF makes two simplifying assumptions when adapting the

general sequential-probabilistic-inference equations to a nonlinear

system:

1. When computing estimates of the output of a nonlinear function,

EKF assumes that the expected value of a nonlinear function of the

unknown state is equal to the same nonlinear function evaluated

at the expected value of the state. That is, it approximates

E[fn(x)] ≈ fn(E[x]).

This is not true in general. In fact, it is strictly true only when

fn(x) is linear. This is one reason that the EKF works best for

systems having only mild nonlinearities.

2. When computing covariance estimates, EKF uses a truncated

Taylor-series expansion to linearize the system equations around

the present operating point. Higher order terms from the expan-

sion are discarded. This is the second reason why EKF works best

for systems having only mild nonlinearities.

Here, we will show how to apply these approximations and assump-

tions to derive the EKF equations from the six general steps.

EKF step 1a: State-prediction time update.
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116 battery management systems: volume ii, equivalent-circuit methods

Starting with Eq. (3.16) and using EKF assumption 1, the state predic-

tion step is approximated as

x̂−k = E[ f (xk−1, uk−1, wk−1) | Yk−1]

≈ f (x̂+k−1, uk−1, w̄k−1),

where w̄k−1 = E[wk−1]. Often, w̄k−1 = 0. That is, we approximate the

expected value of the new state by assuming that it is reasonable to

propagate x̂+k−1 and w̄k−1 through the state equation.

EKF step 1b: Error-covariance time update.

The covariance-prediction step is accomplished by first making an

approximation for x̃−k :

x̃−k = xk − x̂−k
= f (xk−1, uk−1, wk−1)− f (x̂+k−1, uk−1, w̄k−1). (3.23)

By EKF assumption 2, the first term is expanded as a truncated Tay-

lor series around the prior operating condition, which is defined by

the set of values pk−1 = {x̂+k−1, uk−1, w̄k−1}:

xk ≈ f (x̂+k−1, uk−1, w̄k−1) +
d f (xk−1, uk−1, wk−1)

dxk−1

∣∣∣∣
pk−1︸ ︷︷ ︸

Defined as Âk−1

(xk−1 − x̂+k−1)

+
d f (xk−1, uk−1, wk−1)

dwk−1

∣∣∣∣
pk−1︸ ︷︷ ︸

Defined as B̂k−1

(wk−1 − w̄k−1). (3.24)

This gives x̃−k ≈ Âk−1x̃+k−1 + B̂k−1w̃k−1 when we substitute into

Eq. (3.23).

We now substitute this result for x̃−k into Eq. (3.17) to find the

prediction-error covariance

Σ
−
x̃,k = E[(x̃−k )(x̃−k )

T]

≈ E[(Âk−1 x̃+k−1 + B̂k−1w̃k−1)(Âk−1x̃+k−1 + B̂k−1w̃k−1)
T]

= Âk−1E[(x̃+k−1)(x̃+k−1)
T ]Â

T
k−1 + B̂k−1E[w̃k−1]E[(x̃+k−1)

T ]Â
T
k−1

+ Âk−1E[x̃
+
k−1]E[w̃

T
k−1]B̂

T
k−1 + B̂k−1E[w̃k−1w̃T

k−1]B̂
T
k−1

= Âk−1Σ
+
x̃,k−1Â

T
k−1 + B̂k−1Σw̃B̂

T
k−1,

where we have made use of the fact that the state prediction is uncor-

related with the process noise at the same time index, and that the

state-prediction error is zero mean.

To implement this expression, we will need to be able to evaluate

Âk−1 and B̂k−1 in Eq. (3.24). Both of these are matrix functions of
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3. battery-state estimation 117

22 The partial differential ∂ f (x, u, w)/∂x
states how much f (x, u, w) changes
when there is an infinitesimal change
to x, and when all other inputs are
kept constant. The total differen-
tial d f (x, u, w)/dx states how much
f (x, u, w) changes when there is an
infinitesimal change to x, but when the
other inputs are allowed to vary due to
the change in x if they are functions of x.
If the other inputs are not functions of
x, then the partial and total differentials
are the same, as we will see here. How-
ever, if they are functions of x, then the
two types of differential give different
results.

time, which can be determined analytically from the model’s state

equation. For example, the Âk matrix has the form

Âk =

⎡

⎢⎢⎢⎢⎢⎢⎣

d f 1(xk ,uk,wk)
dxk,1

d f 1(xk ,uk ,wk)
dxk,2

· · · d f1(xk,uk ,wk)
dxk,n

d f 2(xk ,uk,wk)
dxk,1

d f 2(xk ,uk ,wk)
dxk,2

· · · d f2(xk,uk ,wk)
dxk,n

...
...

. . .
...

d f n(xk ,uk,wk)
dxk,1

d f n(xk ,uk ,wk)
dxk,2

d f n(xk,uk ,wk)
dxk,n

⎤

⎥⎥⎥⎥⎥⎥⎦

pk

,

where xk,i is the ith member of the n-vector state xk, and f j(·) is the

jth output of the state equation.

We need to take care when considering the total differentials in

Eq. (3.24). These are not necessarily the same as partial differentials,

which are more familiar.22 To evaluate these expressions, we apply

the chain rule of total differentials to our model

d f (xk−1, uk−1, wk−1) =
∂ f (xk−1, uk−1, wk−1)

∂xk−1
dxk−1

+
∂ f (xk−1, uk−1, wk−1)

∂uk−1
duk−1

+
∂ f (xk−1, uk−1, wk−1)

∂wk−1
dwk−1.

We divide both sides of this equation by dxk−1 to find the total differ-

ential we seek:

d f (xk−1, uk−1, wk−1)
dxk−1

=
∂ f (xk−1, uk−1, wk−1)

∂xk−1

+
∂ f (xk−1, uk−1, wk−1)

∂uk−1

duk−1

dxk−1︸ ︷︷ ︸
0

+
∂ f (xk−1, uk−1, wk−1)

∂wk−1

dwk−1

dxk−1︸ ︷︷ ︸
0

=
∂ f (xk−1, uk−1, wk−1)

∂xk−1
.

The terms duk−1/dxk−1 and dwk−1/dxk−1 are zero since we can

reasonably assume that neither the present deterministic input nor

the present process noise are functions of the present system state.

So, in this case, the total differential is equal to the partial differential.

Similarly, we can find

d f (xk−1, uk−1, wk−1)
dwk−1

=
∂ f (xk−1, uk−1, wk−1)

∂wk−1
.

While the distinction between the total differential and the par-

tial differential turns out not to be noteworthy at this point, we will

Plett, Gregory. Battery Management Systems, Volume II: Equivalent-Circuit Methods, Artech House, 2015. ProQuest Ebook Central,
         http://ebookcentral.proquest.com/lib/ybp-ebookcentral/detail.action?docID=4821265.
Created from ybp-ebookcentral on 2020-03-27 11:56:42.

C
op

yr
ig

ht
 ©

 2
01

5.
 A

rte
ch

 H
ou

se
. A

ll 
rig

ht
s 

re
se

rv
ed

.



118 battery management systems: volume ii, equivalent-circuit methods

find that it is essential in Chap. 4 when we look at model parameter

estimation using EKFs.

EKF step 1c: Predict system output yk.

Starting with Eq. (3.18) and using EKF assumption 1, the system

output is approximated by

ŷk = E[h(xk, uk, vk) | Yk−1]

≈ h(x̂−k , uk, v̄k),

where v̄k = E[vk]. Often, v̄k = 0. That is, we approximate the ex-

pected value of the output by assuming that it is reasonable simply

to propagate the state prediction x̂−k and the mean sensor noise v̄k

through the output equation.

EKF step 2a: Estimator gain matrix Lk.

The output prediction error can be written as

ỹk = yk − ŷk = h(xk, uk, vk)− h(x̂−k , uk, v̄k).

To compute the estimator gain matrix using Eq. (3.19), we will need

to be able to compute covariance matrices that are based on this

prediction error. Similar to the procedure used in step 1b, we in-

voke EKF assumption 2 and approximate the error using a truncated

Taylor-series expansion of yk around the setpoint qk = {x̂−k , uk, v̄k}:

yk ≈ h(x̂−k , uk, v̄k) +
dh(xk, uk, vk)

dxk

∣∣∣∣
qk︸ ︷︷ ︸

Defined as Ĉk

(xk − x̂−k )

+
dh(xk, uk, vk)

dvk

∣∣∣∣
qk︸ ︷︷ ︸

Defined as D̂k

(vk − v̄k)

ỹk ≈ Ĉk x̃−k + D̂kṽk.

Note, much like we saw in EKF step 1b, we can show that the total

derivatives required to compute Ĉk and D̂k are equal to the partial

derivatives:

dh(xk, uk, vk)
dxk

=
∂h(xk, uk, vk)

∂xk

dh(xk, uk, vk)
dvk

=
∂h(xk, uk, vk)

∂vk
.

From this, we can compute such necessary quantities as

Σỹ,k ≈ ĈkΣ
−
x̃,kĈ

T
k + D̂kΣṽ D̂

T
k ,

Σ
−
x̃ỹ,k ≈ E[(x̃−k )(Ĉk x̃−k + D̂kṽk)

T ]

= Σ
−
x̃,kĈ

T
k .
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3. battery-state estimation 119

These terms may be combined to get the Kalman gain

Lk = Σ
−
x̃,kĈ

T
k

[
ĈkΣ

−
x̃,kĈ

T
k + D̂kΣṽ D̂

T
k

]−1
.

EKF step 2b: State-estimate measurement update.

This step computes the state estimate by updating the state predic-

tion using the estimator gain and the innovation yk − ŷk. Eq. (3.20) is

implemented with no changes

x̂+k = x̂−k + Lk(yk − ŷk).

EKF step 2c: Error-covariance measurement update.

Finally, the updated covariance is computed using Eq. (3.21) as

Σ
+
x̃,k = Σ

−
x̃,k − LkΣỹ,kLT

k .

The EKF steps are summarized in the Appendix on p. 163.

3.7.2 An EKF example, with code

Before we implement the EKF on a battery-cell model to predict

battery state, we introduce a simpler example to show an EKF imple-

mentation. We consider a nonlinear system having a scalar state and

output that are described by the following dynamics:

xk+1 = f (xk, uk, wk) =
√

5 + xk + wk

yk = h(xk, uk, vk) = x3
k + vk,

where Σw̃ = 1 and Σṽ = 2.

To implement EKF, we must first determine Âk, B̂k, Ĉk, and D̂k.

Âk =
∂ f (xk, uk, wk)

∂xk

∣∣∣∣
xk=x̂+k

=
∂
(√

5 + xk + wk

)

∂xk

∣∣∣∣∣
xk=x̂+k

=
1

2
√

5 + x̂+k

B̂k =
∂ f (xk, uk, wk)

∂wk

∣∣∣∣
wk=w̄k

=
∂
(√

5 + xk + wk

)

∂wk

∣∣∣∣∣
wk=w̄k

= 1

Ĉk =
∂h(xk, uk, vk)

∂xk

∣∣∣∣
xk=x̂−k

=
∂
(
x3

k + vk
)

∂xk

∣∣∣∣∣
xk=x̂−k

= 3(x̂−k )
2

D̂k =
∂h(xk, uk, vk)

∂vk

∣∣∣∣
vk=v̄k

=
∂
(
x3

k + vk

)

∂vk

∣∣∣∣∣
vk=v̄k

= 1.

The following is some sample code to implement an EKF. It is

intentionally written in a very similar way to the linear Kalman-

filter example of Sect. 3.6.3 to show the commonality of the two ap-

proaches. First, we initialize the true and estimated states, the initial

state-estimate uncertainty, and reserve some storage:
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120 battery management systems: volume ii, equivalent-circuit methods

% Initialize simulation variables

SigmaW = 1; % Process noise covariance

SigmaV = 2; % Sensor noise covariance

maxIter = 40;

xtrue = 2 + randn(1); % Initialize true system initial state

xhat = 2; % Initialize Kalman filter initial estimate

SigmaX = 1; % Initialize Kalman filter covariance

u = 0; % Unknown initial driving input: assume zero

% Reserve storage for variables we might want to plot/evaluate

xstore = zeros(maxIter+1,length(xtrue)); xstore(1,:) = xtrue;

xhatstore = zeros(maxIter,length(xhat));

SigmaXstore = zeros(maxIter,length(xhat)^2);

In this example, the true state is initialized to a random value with

mean 2 and variance 1. Therefore, the state estimate is initialized to 2,

and the state covariance is initialized to 1.

Next, we enter the main simulation loop. To use this code for a

different system, steps 1a and 1c must be modified with the new

system’s Âk, B̂k, Ĉk, and D̂k matrices, and with the correct f (·) and

h(·) functions.

for k = 1:maxIter,

% EKF Step 1a: State-prediction time update

% Note: You need to insert a computation of Ahat and Bhat, and

% your system's specific f(...) equation here

% For this example, x(k+1) = sqrt(5+x(k)) + w(k)

Ahat = 0.5/sqrt(5+xhat); Bhat = 1;

xhat = sqrt(5+xhat);

% EKF Step 1b: Error-covariance time update

SigmaX = Ahat*SigmaX*Ahat' + Bhat*SigmaW*Bhat';

% [Implied operation of system in background, with

% input signal u, and output signal y]

w = chol(SigmaW)'*randn(1);

v = chol(SigmaV)'*randn(1);

ytrue = xtrue^3 + v; % y is based on present x and u

xtrue = sqrt(5+xtrue) + w; % future x is based on present u

% EKF Step 1c: Estimate system output y(k)

% Note: You need to insert your system's Chat, Dhat, and h(...)

% equation here

% For this example, y(k) = x(k)^3

Chat = 3*xhat^2; Dhat = 1;

yhat = xhat^3;

% EKF Step 2a: Compute Kalman gain matrix L(k)

SigmaY = Chat*SigmaX*Chat' + Dhat*SigmaV*Dhat';

L = SigmaX*Chat'/SigmaY;

% EKF Step 2b: State-estimate measurement update

xhat = xhat + L*(ytrue - yhat);

xhat = max(-5,xhat); % don't get square root of negative xhat!

% EKF Step 2c: Error-covariance measurement update

SigmaX = SigmaX - L*SigmaY*L';

[~,S,V] = svd(SigmaX);

HH = V*S*V';
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3. battery-state estimation 121

23 Real-world implementations of
Kalman filters almost always have
some modifications to the generic six
steps to make them work better in an
environment where the assumptions
made when deriving the filter equations
are violated. This is why the six steps
are derived in this book instead of
simply listed. The algorithm designer
must know where the equations come
from and what they mean in order to
modify them or augment them to work
in a practical application.

0 10 20 30 40

0

2

4

6

8
EKF in action

Iteration

St
at

e

 

 

Truth

EKF est.

EKF bounds

0 10 20 30 40

−2

−1

0

Iteration

E
st

im
at

io
n

 e
rr

o
r

EKF error with bounds

 

 

EKF error
EKF bounds

Figure 3.17: Sample EKF estimation
results for simple problem.

SigmaX = (SigmaX + SigmaX' + HH + HH')/4; % Help to keep robust

% [Store information for evaluation/plotting purposes]

xstore(k+1,:) = xtrue; xhatstore(k,:) = xhat;

SigmaXstore(k,:) = (SigmaX(:))';

end

Notice that extra precautions are taken in steps 2b and 2c to keep

the operation of the filter robust. In step 2c, we use the method from

Sect. 3.6.4 to ensure that the covariance matrices remain symmetric

and positive semidefinite. In step 2b, we recognize that xk cannot be

less than −5 or else the square-root operation executed by step 1a in

the next filter iteration will give an imaginary result. So, we use this

side knowledge to enforce the condition that the state estimate be

larger than −5 at all times.23

Results are plotted using the same code as in Sect. 3.6.3. The plots

will be different every time the EKF is executed due to the random

initial state and noise inputs. One example is shown in Fig. 3.17. Nor-

mally, we do not know the true system state, but because the true

system is being cosimulated inside of this code, we are able to plot

that information in this figure. We see that the state estimate tracks

the true state quite well. However, the error bounds are unrealisti-

cally tight, as is shown in the bottom figure. The error should remain

within the 3σ bounds 95 % of the time; here, we see that it is very

often outside of the bounds. This is a common outcome when using

an EKF for state estimation for a system whose nonlinearities are at

least moderately high. This is a problem, as the error bounds cannot

be trusted. We will see in Sect. 3.10 that the SPKF often does a better

job of computing error bounds.

3.8 Implementing an EKF using the ESC cell model

3.8.1 Computing the EKF matrices

We are now ready to apply the generic EKF state-estimation proce-

dure to the particular problem of battery-cell state estimation using

the ESC cell model. To do so, we must be able to compute the Âk,

B̂k, Ĉk, and D̂k matrices needed by the EKF. We will proceed by first

examining the components of the state equation to find Âk and B̂k.

Suppose that the process noise models current-sensor measure-

ment error. That is, suppose that the true cell current is ik + wk, but

that we measure ik only. Also assume that we can simplify the model

with coulombic efficiency ηk = 1, and allow the adaptivity of the EKF

to handle the small error introduced by this assumption.
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122 battery management systems: volume ii, equivalent-circuit methods

Then, the SOC equation can be written as

zk+1 = zk −
∆t

Q
(ik + wk) .

The two derivatives that we need for this term are

∂zk+1

∂zk

∣∣∣∣
zk=ẑ+k

= 1, and
∂zk+1

∂wk

∣∣∣∣
wk=w̄

= −∆t

Q
,

remembering that Q is measured in ampere-seconds.

If τj = exp(−∆t/(RjCj)), then the resistor-currents state equation

can be written as

iR,k+1 =

⎡

⎢⎢⎣

τ1 0 · · ·
0 τ2
...

. . .

⎤

⎥⎥⎦

︸ ︷︷ ︸
ARC

iR,k +

⎡

⎢⎢⎣

1 − τ1

1 − τ2
...

⎤

⎥⎥⎦

︸ ︷︷ ︸
BRC

(ik + wk) .

The two derivatives can be found to be

∂iR,k+1

∂iR,k

∣∣∣∣
iR,k=î

+
R,k

= ARC, and
∂iR,k+1

∂wk

∣∣∣∣
wk=w̄

= BRC.

If we define AH,k = exp
(
−
∣∣∣ (ik+wk)γ∆t

Q

∣∣∣
)

, then hysteresis state

equation can be written as

hk+1 = AH,khk + (AH,k − 1) sgn (ik + wk) .

Taking the partial derivative with respect to the state and evaluating

it at the setpoint pk (noting that wk = w̄ is a member of the setpoint),

∂hk+1

∂hk

∣∣∣∣ hk=ĥ+
k

wk=w̄

= exp

(
−
∣∣∣∣
(ik + w̄k) γ∆t

Q

∣∣∣∣

)
= ĀH,k.

Next, we must find ∂hk+1/∂wk. However, the absolute-value and

sign functions are not differentiable at ik + wk = 0. Ignoring this

detail for now:

• If we assume that ik + wk > 0, then

∂hk+1

∂wk
= −

∣∣∣∣
γ∆t

Q

∣∣∣∣ exp

(
−
∣∣∣∣
γ∆t

Q

∣∣∣∣ |(ik + wk)|
)
(1 + hk) .

• If we assume that ik + wk < 0, then

∂hk+1

∂wk
= −

∣∣∣∣
γ∆t

Q

∣∣∣∣ exp

(
−
∣∣∣∣
γ∆t

Q

∣∣∣∣ |(ik + wk)|
)
(1 − hk) .

Overall, evaluating at the Taylor-series linearization setpoint we will

assume that the following generalization is reasonable for all ik + wk

∂hk+1

∂wk

∣∣∣∣ hk=ĥ+
k

wk=w̄

= −
∣∣∣∣
γ∆t

Q

∣∣∣∣ ĀH,k

(
1 + sgn(ik + w̄)ĥ+k

)
.
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Figure 3.18: Estimates of the variation
in OCV as a function of a change in
SOC.
24 Note that a zero-phase filter is re-
quired if the empirical derivative
relationship must be smoothed. Other-
wise, the curve will be shifted along the
state of charge axis. Zero-phase filter
design and implementation is beyond
the scope of this book.

The zero-state hysteresis equation is defined as

sk+1 =

⎧
⎨

⎩
sgn(ik + wk), |ik + wk| > 0,

sk, else.

If we consider ik + wk = 0 to be a zero-probability event, then

∂sk+1

∂sk
= 0, and

∂sk+1

∂wk
= 0.

We now look at the components that determine Ĉk and D̂k. The

ESC-model output equation is

yk = OCV(zk) + Mhk + M0sk − ∑
j

RjiRj ,k − R0ik + vk.

We no longer consider ik to have wk noise added to it (this would add

correlation between process noise and the overall noise present in the

measurement, which violates one assumption made when deriving

the Kalman filter). Thus, we have

∂yk

∂sk

∣∣∣∣ = M0,
∂yk

∂hk

∣∣∣∣ = M,
∂yk

∂iRj ,k

∣∣∣∣∣ = −Rj, and
∂yk

∂vk

∣∣∣∣ = 1.

We also require

∂yk

∂zk

∣∣∣∣
zk=ẑ−k

=
∂OCV(zk)

∂zk

∣∣∣∣
zk=ẑ−k

,

which can be approximated from OCV data as follows. If SOC is a

vector of evenly-spaced SOC points with corresponding open-circuit

voltage vector OCV, the following MATLAB code can approximate this

partial derivative.

% Find dOCV/dz at SOC = z from {SOC,OCV} data

function dOCVz = dOCVfromSOC(SOC,OCV,z)

dZ = SOC(2) - SOC(1); % Find spacing of SOC vector

dUdZ = diff(OCV)/dZ; % Scaled forward finite difference

dOCV = ([dUdZ(1) dUdZ] + [dUdZ dUdZ(end)])/2; % Avg of fwd/bkwd diffs

dOCVz = interp1(SOC,dOCV,z); % Could make more efficient than this...

Some sample evaluations of this function for six different lithium-

ion OCV relationships are shown in Fig. 3.18. There is some noise

in this empirical estimate, which could be filtered, but it’s not really

necessary to do so.24

3.8.2 A refactored implementation of the EKF

We could choose to implement the EKF for cell state estimation the

same way as we did in the example in Sect. 3.17. Instead, we refac-

tor the code to be more representative of a real BMS implementa-

tion. The new organization is consistent with the process diagramed

in Fig. 3.1.
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124 battery management systems: volume ii, equivalent-circuit methods

25 This code may be downloaded from
http://mocha-java.uccs.edu/BMS2/

CH3/ESCEKF.zip.

There are three main parts to the refactored code. There is an

initialization routine (initEKF.m), called once at startup. There is

an update routine (iterEKF.m), which is called every sample inter-

val when new measurements of cell current and cell voltage arrive.

Finally, there is the “wrapper” code, which coordinates the entire

simulation process. This wrapper code is the main BMS function, and

implements the BMS-application program loop.25

wrapper code: We start by examining the main BMS program loop.

The first part of this code loads the ESC cell model file and the dy-

namic cell-test datafile. In an implementation, we would measure

voltage and current as the BMS operated; however, in the simulation

we load data that have already been collected from a cell in a labo-

ratory. Vectors of time, current, and voltage are retrieved from the

dynamic datafile, and the time variable is modified to ensure that it

starts at zero.

% Load cell model file into structure "model"

load cellModel

% Load cell-test data. Contains variable "DYNData" of which the field

% "script1" is of interest. It has sub-fields time, current, voltage, soc.

load Cell_DYN_P5 % load dynamic data

T = 5; % test temperature = 5 degC

time = DYNData.script1.time(:); deltat = time(2)-time(1);

time = time-time(1); % start time at 0

current = DYNData.script1.current(:); % discharge > 0; charge < 0.

voltage = DYNData.script1.voltage(:);

A precomputed SOC “truth” vector soc, based on coulomb count-

ing with very accurate initialization and using lab-grade current

sensing is also loaded. This truth vector would not be available in an

implementation; here, it is used to compare against the EKF results

when making plots. Initialization continues by reserving storage for

some computed results for later plotting. This would also not be nec-

essary in an implementation, because there is no need to store past

estimates.

soc = DYNData.script1.soc(:);

% Reserve storage for computed results, for plotting

sochat = zeros(size(soc)); socbound = zeros(size(soc));

Next, we proceed with some “key on” initialization functions. We

specify values for the initial-state, process-noise and sensor-noise

covariances. Then, we invoke a function initEKF.m, which initializes

the data structure ekfData that is used by the EKF to store algorithm

data from iteration to iteration. We will discuss initEKF.m shortly.

% Covariance values

SigmaX0 = diag([1e-6 1e-8 2e-4]); % uncertainty of initial state
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3. battery-state estimation 125

26 This code would not be in an imple-
mentation: it is here only to enable
evaluation of the EKF performance on
the desktop application.

SigmaW = 2e-1; % uncertainty of current sensor, state equation

SigmaV = 2e-1; % uncertainty of voltage sensor, output equation

% Create ekfData structure and initialize variables using first

% voltage measurement and first temperature measurement

ekfData = initEKF(voltage(1),T,SigmaX0,SigmaV,SigmaW,model);

With initialization complete, we now enter the main program

loop. Because the computations take some time, we use a MATLAB

feature to open a “waitbar” window to display progress. Then, at

every time interval for which we have data, we extract the present

voltage, current, and temperature measurement from the dataset.

We then invoke the iterEKF.m function to update the state estimate

using the EKF (we will discuss this function shortly). The waitbar

is periodically updated and is closed when all the data have been

processed.

% Now, enter loop for remainder of time, where we update the EKF

% once per sample interval

hwait = waitbar(0,'Computing...');

for k = 1:length(voltage),

vk = voltage(k); % "measure" voltage

ik = current(k); % "measure" current

Tk = T; % "measure" temperature

% Update SOC (and other model states)

[sochat(k),socbound(k),ekfData] = iterEKF(vk,ik,Tk,deltat,ekfData);

% update waitbar periodically, but not too often (slow procedure)

if mod(k,1000)==0, waitbar(k/length(current),hwait); end;

end

close(hwait);

Finally, we plot some results.26 The first figure shows true SOC, its

estimate, and bounds on the estimate. The second figure shows SOC

estimation error with bounds. Root-mean-squared SOC estimation

error is also computed and printed, as is the percentage of time that

the error is outside of bounds. Ideally, both of these values would be

zero.

figure(1); clf; plot(time/60,100*sochat,time/60,100*soc); hold on

h = plot([time/60; NaN; time/60],...

[100*(sochat+socbound); NaN; 100*(sochat-socbound)]);

title('SOC estimation using EKF');

xlabel('Time (min)'); ylabel('SOC (%)');

legend('Estimate','Truth','Bounds'); grid on

fprintf('RMS SOC estimation error = %g%%\n',...

sqrt(mean((100*(soc-sochat)).^2)));

figure(2); clf; plot(time/60,100*(soc-sochat)); hold on

h = plot([time/60; NaN; time/60],[100*socbound; NaN; -100*socbound]);

title('SOC estimation errors using EKF');

xlabel('Time (min)'); ylabel('SOC error (%)'); ylim([-4 4]);

legend('Estimation error','Bounds'); grid on

ind = find(abs(soc-sochat)>socbound);

fprintf('Percent of time error outside bounds = %g%%\n',...
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126 battery management systems: volume ii, equivalent-circuit methods

length(ind)/length(soc)*100);

initialization code: We now examine initEKF.m. The purpose of

this function is to create the data structure ekfData, which is used by

the EKF to store relevant constants and variables. At the top of the

function, the state vector xhat is initialized. We assume that diffusion

currents are zero, hysteresis voltage is zero, and we look up initial

state of charge based on the OCV relationship and initial voltage v0,

assuming that the cell is in equilibrium at startup. Since the state vec-

tor can be ordered in arbitrary ways, we also define index variables

irInd, hkInd, and zkInd as indices into the state vector for diffusion

current, hysteresis, and SOC, respectively. All of these values are

stored as fields of the ekfData output structure.

function ekfData = initEKF(v0,T0,SigmaX0,SigmaV,SigmaW,model)

% Initial state description

ir0 = 0; ekfData.irInd = 1;

hk0 = 0; ekfData.hkInd = 2;

SOC0 = SOCfromOCVtemp(v0,T0,model); ekfData.zkInd = 3;

ekfData.xhat = [ir0 hk0 SOC0]'; % initial state

% Covariance values

ekfData.SigmaW = SigmaW; ekfData.SigmaV = SigmaV;

ekfData.SigmaX = SigmaX0; ekfData.SXbump = 5;

% previous value of current

ekfData.priorI = 0;

ekfData.signIk = 0;

% store model data structure too

ekfData.model = model;

end

Next, we store the known values for initial-state, process-noise, and

sensor noise covariance. The SXbump field is used with measurement-

validation gating as a factor to increase the estimated state’s covari-

ance if the filter believes that its estimate is “lost.” The (unknown)

previous value of cell input current is set to zero, and the sign of that

current is also set to zero. Finally, the ESC cell model structure is

saved to ekfData and the function returns.

iteration code: Every time cell current and voltage are sensed,

the main program loop invokes iterEKF.m, which we describe here.

First, the cell model is unpacked from the ekfData structure, and

the cell-model parameter values are computed based on the present

value of cell temperature. This must be done every iteration because

temperature might be changing. The standard getParamESC.m model

data accessor function from the ESC toolbox is used.

function [zk,zkbnd,ekfData] = iterEKF(vk,ik,Tk,deltat,ekfData)
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3. battery-state estimation 127

model = ekfData.model;

% Load the cell model parameters for the present operating temp.

Q = getParamESC('QParam',Tk,model);

G = getParamESC('GParam',Tk,model);

M = getParamESC('MParam',Tk,model);

M0 = getParamESC('M0Param',Tk,model);

RC = exp(-deltat./abs(getParamESC('RCParam',Tk,model)))';

R = getParamESC('RParam',Tk,model)';

R0 = getParamESC('R0Param',Tk,model);

eta = getParamESC('etaParam',Tk,model);

if ik<0, ik=ik*eta; end; % adjust current if charging cell

Next, EKF constants and variables are extracted from the ekfData

structure. If the present cell current is larger in magnitude than a

C/100 rate, the new sign of current is also computed.

% Get data stored in ekfData structure

SigmaX = ekfData.SigmaX; SigmaW = ekfData.SigmaW;

SigmaV = ekfData.SigmaV;

irInd = ekfData.irInd; hkInd = ekfData.hkInd;

zkInd = ekfData.zkInd;

xhat = ekfData.xhat; nx = length(xhat);

I = ekfData.priorI;

if abs(ik)>Q/100, ekfData.signIk = sign(ik); end;

signIk = ekfData.signIk;

We now begin evaluating the six EKF steps. Step 1a must compute

the Âk−1 and B̂k−1 matrices first. It also computes a B matrix, which

is used when computing the predicted state vector. Note that prior

to executing steps 1a through 1c, xhat and SigmaX refer to x̂+k−1 and

Σ
+
x̃,k−1, respectively. After these steps, xhat and SigmaX refer to x̂−k

and Σ
−
x̃,k, respectively.

% Step 1a: State-prediction time update

% First, compute Ahat[k-1], Bhat[k-1]

Ah = exp(-abs(I*G*deltat/(3600*Q))); % hysteresis factor

Bh = -abs(G*deltat/(3600*Q))*Ah*(1+sign(I)*xhat(hkInd));

Ahat = zeros(nx,nx); Bhat = zeros(nx,1);

Ahat(zkInd,zkInd) = 1; Bhat(zkInd) = -deltat/(3600*Q);

Ahat(irInd,irInd) = diag(RC); Bhat(irInd) = 1-RC(:);

B = [Bhat, 0*Bhat];

Ahat(hkInd,hkInd) = Ah; Bhat(hkInd) = Bh;

B(hkInd,2) = Ah-1;

% Next, update xhat

xhat = Ahat*xhat + B*[I; sign(I)];

% Step 1b: Error-covariance time update

% sigmaminus(k) = Ahat(k-1)*sigmaplus(k-1)*Ahat(k-1)' + ...

% Bhat(k-1)*sigmawtilde*Bhat(k-1)'

SigmaX = Ahat*SigmaX*Ahat' + Bhat*SigmaW*Bhat';

% Step 1c: Output estimate

yhat = OCVfromSOCtemp(xhat(zkInd),Tk,model) + M0*signIk + ...

M*xhat(hkInd) - R*xhat(irInd) - R0*ik;

Steps 1b and 1c are implemented in a straightforward way, making

use of the ESC toolbox function OCVfromSOCtemp.m to compute the

OCV as a function of SOC and temperature.
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128 battery management systems: volume ii, equivalent-circuit methods

In step 2a, we must compute the Ĉk and D̂k matrices first, then

Σỹ,k, and finally the Kalman gain Lk. In step 2b, we use measurement

validation gating to discard a measurement whose innovation is

larger than 10σỹ in magnitude. Limits are put on the hysteresis state

to keep it within its required bounds of hk ∈ [−1, 1], and limits are

also placed on the SOC state to keep it within zk ∈ [−0.05, 1.05].

Slight undercharge and overcharge are permitted in the estimate. In

step 2c, the state of charge covariance is multiplied by the SXbump

factor if the innovation is larger than 2σỹ in magnitude. Finally, data

are stored for the next iteration, and the function returns control to

the main program loop. Note that prior to executing step 2, xhat and

SigmaX refer to x̂−k and Σ
−
x̃,k; subsequent to step 2, they refer to x̂+k

and Σ
+
x̃,k, respectively.

% Step 2a: Estimator gain matrix

Chat = zeros(1,nx);

Chat(zkInd) = dOCVfromSOCtemp(xhat(zkInd),Tk,model);

Chat(hkInd) = M;

Chat(irInd) = -R;

Dhat = 1;

SigmaY = Chat*SigmaX*Chat' + Dhat*SigmaV*Dhat';

L = SigmaX*Chat'/SigmaY;

% Step 2b: State-estimate measurement update

r = vk - yhat; % residual. Use to check for sensor errors...

if r^2 > 100*SigmaY, L(:)=0.0; end

xhat = xhat + L*r;

xhat(hkInd) = min(1,max(-1,xhat(hkInd))); % Help maintain robustness

xhat(zkInd) = min(1.05,max(-0.05,xhat(zkInd)));

% Step 2c: Error-covariance measurement update

SigmaX = SigmaX - L*SigmaY*L';

% SigmaX-bump code

if r^2 > 4*SigmaY, % bad voltage estimate by 2 std devs, bump SigmaX

fprintf('Bumping SigmaX\n');

SigmaX(zkInd,zkInd) = SigmaX(zkInd,zkInd)*ekfData.SXbump;

end

[~,S,V] = svd(SigmaX);

HH = V*S*V';

SigmaX = (SigmaX + SigmaX' + HH + HH')/4; % Help maintain robustness

% Save data in ekfData structure for next time...

ekfData.priorI = ik;

ekfData.SigmaX = SigmaX;

ekfData.xhat = xhat;

zk = xhat(zkInd);

zkbnd = 3*sqrt(SigmaX(zkInd,zkInd));

end

The function returns the present SOC estimate zk, the 3σ bounds on

that estimate zkbnd, and the updated ekfData structure.
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Figure 3.19: Example EKF SOC estima-
tion results.

3.8.3 Example of EKF on ESC model

Fig. 3.19 shows sample results when executing this code. The dataset

that was used as input comprised 16 repetitions of a UDDS drive-

cycle profile separated by rest intervals. The cell began in a fully-

charged state and completed the test at around 3.3 % SOC.

The top frame shows that SOC tracking by the EKF in an abso-

lute sense is generally quite good. The bottom frame shows state

of charge estimation error, and is easier to interpret. For this exam-

ple, root-mean-squared (RMS) SOC estimation error was 1.53 %. The

error should always be within the bounds; however, in this example,

it was outside of bounds 35.9 % of the time. Note that this test was

performed at 5 ◦C where nonlinear hysteresis is a significant factor

in the cell voltage. Results for tests using data collected at warmer

temperatures tend to yield better estimates, and estimates tend to

stay within error bounds a greater fraction of the time. This example

is not a worst case, but it is a worse-than-typical case.

With some effort expended in adjusting the values of Σ
+
x̃,0, Σw̃, and

Σṽ, these results might be improved. If all assumptions of the EKF

were met exactly, we could arrive at an expression for Σ
+
x̃,0 based

on the initial voltage-reading uncertainty and the uncertainty of the

SOC versus OCV curve. We could derive a value for Σw̃ based on

the variance of the current-sensor reading, and for Σṽ based on the

variance of the voltage-sensor reading. However, the EKF assump-

tions are not met exactly. Therefore, such derived quantities are only

approximately helpful. They can be used as an initial guess.

Then, how do we compute Σ
+
x̃,0, Σw̃, and Σṽ for an application?

There is some literature on adaptive versions of EKF, which adjust

Σw̃ and Σṽ while the filter runs. Our experience with these methods

has been mixed. They seem to work well for some applications but

not very well for others. Instead, we have usually resorted to trial

and error. Many datasets are collected from a cell over the entire

anticipated operating range of the application. These include cold

temperatures and hot temperatures, data with calibrated current

and voltage sensors and data with biased current values and noisy

voltages, and so forth. A single set of Σ
+
x̃,0, Σw̃, and Σṽ are adapted so

that the overall estimation results for all datasets are acceptable. This

might be done by hand or in an optimization program loop. Either

way, it is a time-consuming task.
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Figure 3.20: EKF approach to comput-
ing output mean and covariance.

27 With EKF, as with SPKF later, we
assume that both the input and output
RVs have Gaussian distribution, even
though we know this is not exact when
propagating distributions through
nonlinear functions. In any case, we are
attempting to estimate the mean and
covariance of the output given only the
mean and covariance of the input.

3.9 Problems with EKF, improved with sigma-point methods

The EKF is the best known and probably the most widely used non-

linear Kalman filter. Although it has some serious flaws, these can be

remedied fairly easily by using a sigma-point approach, as we will

discuss.

The primary issue is how the EKF propagates the mean and co-

variance of a random vector through a static nonlinear function to

estimate the mean and covariance of the output random vector. The

issue is not with the general predict/correct mechanism of sequen-

tial probabilistic inference, nor is it fundamentally with propagating

a random vector from one time step to another. So, in this section,

we focus only on the propagation of these two statistics through a

nonlinear function.

Recall that the extended Kalman filter, when computing mean

estimates in Steps 1a and 1c, makes the simplification E[fn(x)] ≈
fn(E[x]). This is not true in general, and may not be even close to

true depending on “how nonlinear” the function fn(·) is. Also, in

EKF Steps 1b and 2a, a Taylor-series expansion is performed as part

of the calculation of output-variable covariance. Nonlinear terms are

dropped, resulting in a loss of accuracy.

A simple one-dimensional example illustrates these two effects.

Consider the illustration in Fig. 3.20. The horizontal axis represents

an input value to a nonlinear function, and the vertical axis repre-

sents the output value from the function. An example nonlinear

function is drawn as a red line.

If the input to this function were deterministic, we would simply

calculate the dependent output variable from this independent in-

put variable using the function formulation. Graphically, we would

locate the independent variable on the horizontal axis, draw a line

straight up until it intersected with the nonlinear function, and then

draw a line straight left until it intersected with the output axis. The

point of intersection with the output axis would give us the output

dependent-variable value.

In our case, however, the input is a random variable. We don’t

know its exact value; instead, we know its pdf, which is drawn on the

horizontal axis of the figure.27 EKF estimates the mean of the output

random variable by computing the output of the nonlinear function

when the input is equal to the mean of the input pdf. In this example,

the input random variable has mean of 1.05. This produces an output

mean estimate of around 4.4.

To compute the output variance, the EKF method linearizes the

nonlinear function in the neighborhood of the input-pdf mean. This

linearization is drawn as a dotted straight line in the figure. The
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3. battery-state estimation 131

input-pdf standard deviation is multiplied by the slope of this line

estimate to compute the output-pdf standard deviation. In this exam-

ple, the input pdf has standard deviation of 0.15 and the linearization

has slope of 7.1, giving an output-pdf standard-deviation estimate

of 1.06. The EKF estimate of the output pdf—assuming that it is

Gaussian with the computed mean of 4.4 and standard deviation of

1.06—is drawn on the vertical axis using a dotted line.

To compute near-exact estimates of the output mean and variance,

100,000 samples are randomly generated from the input pdf, and

propagated through the nonlinear function to produce output sam-

ples. The mean and standard deviation of those output samples were

5.9 and 3.06, respectively. A Gaussian pdf having those statistics is

drawn on the vertical axis as a solid blue line. We notice significant

differences between the means and variances: the EKF approach is

not producing an accurate estimate of either.

We can improve on mean and covariance propagation through the

nonlinear state and output equations using a sigma-point method.

3.9.1 Approximating statistics with sigma points

We now look at a different approach to characterizing the mean and

covariance of the output of a nonlinear function. It avoids the two

assumptions made by the EKF method and can produce much better

estimates.

In the example we have just seen, we noticed that if we randomly

generate a very large number of samples from the input pdf, propa-

gate those values through the nonlinear function, and then compute

statistics based on the results, we can arrive at good estimates of the

mean and variance of the output pdf. The sigma-point approach uses

this general idea but is able to reduce the number of samples taken

from the input pdf down to a bare minimum. Effectively, the ana-

lytic linearization of the EKF is replaced by an efficient empirical or

statistical linearization using a small number of function evaluations.

This has several advantages:

1. Derivatives do not need to be computed (which is one of the most

error-prone steps when implementing EKF), also implying

2. The original functions do not need to be differentiable, and

3. Better covariance approximations are usually achieved, relative to

EKF, allowing for better state estimation and error bounds,

4. All with comparable computational complexity to EKF.

The key to the sigma-point approach is the method by which the

samples from the input pdf are selected. If we are content to use

many samples, then this can be done randomly. However, for an
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132 battery management systems: volume ii, equivalent-circuit methods

28 Take care: MATLAB, by default,
returns an upper-triangular matrix. The
'lower' optional argument must be
used to arrive at the correct result.

efficient algorithm we must very carefully choose which samples

are used.

We denote the set of samples from the input pdf as X , and call

them the input sigma points to the nonlinear function. These sigma

points will be chosen such that the (possibly weighted) mean and

covariance of the points exactly matches the mean x̄ and covariance

Σx̃ of the input random variable to the nonlinear function.

These points are then individually passed through the nonlinear

function, resulting in a transformed set of output sigma points Y . The

mean ȳ and covariance Σỹ of the output random variable are then

approximated by the (possibly weighted) mean and covariance of

these transformed sigma points Y .

Note that the sigma points comprise a fixed small number of vec-

tors that are calculated deterministically—not like the randomly

generated points of the previous example or like particles used in

particle-filter methods. Specifically, if the input random vector x has

dimension L, mean x̄, and covariance Σx̃, then p + 1 = 2L + 1 sigma

points are generated as a set that we write as

X =
{

x̄, x̄ + γ
√

Σx̃, x̄ − γ
√

Σx̃
}

. (3.25)

The notation in Eq. (3.25) is mathematical shorthand and requires

some explanation. First, braces {·} are used to underscore the fact

that X is a set of vectors. We will find it convenient to store this set

in a compact form as a matrix, where every column of the matrix is

one of the members of the set; nonetheless, X is technically a set.

The members of X are indexed from 0 to p. The zeroth element

of X is the mean x̄ of the pdf being modeled. The next L elements

of the set are written compactly as x̄ + γ
√

Σx̃. In this notation, the

matrix square root R =
√

Σ computes a result such that Σ = RRT .

Usually, the efficient Cholesky decomposition is used, resulting in a

lower-triangular square matrix R of same dimension as Σx̃.28 In the

equation, γ is a weighting constant that can be adjusted to tune the

performance of the sigma-point method.

So, x̄ is a vector and γ
√

Σx̃ is a matrix. They are of incompatible

dimensions to be added, so the notation “x̄ + γ
√

Σx̃” makes no sense

per standard linear algebra. Instead, what the notation means is that

the vector x̄ is added to every column of γ
√

Σx̃ to produce a resulting

matrix of the same size as Σx̃. The L columns of this output matrix

comprise sigma points 1 through L in X .

Similarly, the final L sigma points of X are denoted as “x̄ − γ
√

Σx̃”

which means “subtract the columns of γ
√

Σx̃ from x̄ to make L sigma

points.” These are the elements in X indexed from L + 1 to 2L.

The weighted mean and covariance of the elements of X are equal

to the original mean and covariance of x for some {γ, α
(m)
i , α

(c)
i } if we
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3. battery-state estimation 133

compute

x̄ =
p

∑
i=0

α
(m)
i X i and Σx̃ =

p

∑
i=0

α
(c)
i (X i − x̄)(X i − x̄)T,

where X i is the ith vector member of the set X , and both α
(m)
i and

α
(c)
i are real scalars where α

(m)
i and α

(c)
i must both sum to one. The

α
(m)
i are weighting constants used when computing the mean and

the α
(c)
i are weighting constants used when computing the covariance.

They are tuning parameters of the sigma-point methods.

The various sigma-point methods differ only in the choices taken

for these weighting constants. Table 3.2 lists values used by the two

most popular methods, the unscented Kalman filter (UKF) and the

central-difference Kalman filter (CDKF). The original derivations of

these two methods were quite different but the final methods are es-

sentially identical. CDKF has only one tuning parameter h, so imple-

mentation is simpler. It also has marginally higher theoretic accuracy

when the distributions are indeed Gaussian. However, UKF has more

tuning parameters, so can be made to work better in practice when

the distributions are not Gaussian.

Method γ α
(m)
0 α

(m)
k α

(c)
0 α

(c)
k

UKF
√

L + λ λ
L+λ

1
2(L+λ)

λ
L+λ + (1 − α2 + β) 1

2(L+λ)

CDKF h h2−L
h2

1
2h2

h2−L
h2

1
2h2

Table 3.2: Constants for the sigma-
point methods. λ = α2(L + κ) − L
is a scaling parameter. Note that this
(10−2 ≤ α ≤ 1) is different from

α
(m)
k and α

(c)
k . κ is either 0 or 3 − L. β

incorporates prior information. h may
take any positive value. For Gaussian
RVs, β = 2 or h =

√
3.

Each one of the input random-variable sigma points X i in the

set X is passed through the nonlinear function f (·) to produce a

corresponding output sigma point, Y i = f (X i). Then, the output

mean and covariance are computed as well:

ȳ =
p

∑
i=0

α
(m)
i Y i and Σỹ =

p

∑
i=0

α
(c)
i (Y i − ȳ)(Y i − ȳ)T. (3.26)

Fig. 3.21 illustrates the overall process. On the top right, we start

with the mean vector and covariance matrix of the input random

variable. In the example, x̄ is a 4-vector and Σx̃ is a 4 × 4 matrix.

From these inputs, we create 2L + 1 = 9 sigma points, which are

stored compactly as the columns of a 4 × 9 matrix. The zeroth sigma

point is equal to x̄ so is drawn with the same shading. The next L

sigma points are equal to the columns of γ
√

Σx̃ added to x̄. Since√
Σx̃ is lower triangular, all values above the diagonal are zero, and

so the result when adding it to x̄ differs from x̄ only in the lower-

triangular region. This is why the elements above the diagonal in
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Figure 3.21: Visualizing the sigma-point
approach.
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Figure 3.22: One-dimensional example
revisited, using a sigma-point approach.

the figure are drawn using the same shading as x̄, but the lower-

triangular elements are drawn with the same shading as Σx̃. The final

L columns are computed as x̄ − γ
√

Σx̃ and stored in a similar way.

Next, each of the sigma points X i in the set X is individually

passed through the nonlinear function to produce a corresponding

output sigma point Y i. These output sigma points form the set Y

and are collected together in a matrix for convenient storage. In

the figure, we have emphasized that the function output need not

have the same dimension as the function input. In this case, input 4-

vectors produce output 3-vectors. Despite the different dimension of

the output, the weighting constants α
(m)
i , α

(c)
i , and γ, as well as num-

ber of sigma points p + 1 = 2L + 1 are inherited from the dimension

of the input x.

Finally, the output statistics ȳ and Σỹ are computed from the

sigma points in Y using Eq. (3.26). In this case, the mean is a 3-vector

and the covariance is a 3 × 3 matrix. Note also that the elements cor-

responding to Y are drawn using a similar color scheme to those of

X , but with a different shade to emphasize that they are different

quantities.

Before introducing the SPKF algorithm, we revisit the one-

dimensional example in Fig. 3.20, now considering a sigma-point

approach. In this example, the dimension of x is 1, so we require

2L + 1 = 3 sigma points to represent the input random variable.

These are shown in Fig. 3.22 as black squares on the horizontal axis.

As expected, one sigma point is equal to the input pdf mean, and the

other two are equally spaced above and below the mean.

These three sigma points are passed through the nonlinear func-

tion, to compute three output sigma points, which are shown on the
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3. battery-state estimation 135

vertical axis (two of the output sigma points are very close to equal,

so look to be coincident in the figure). The output mean is estimated

using Eq. (3.26) to be 5.9, and the output standard deviation is esti-

mated to be 3.80. A Gaussian pdf having these statistics is plotted on

the vertical axis as a green dashed line. We see that this pdf is much

closer to the truth than the prior estimate from the EKF approach.

Will the sigma-point method always be so much better than the an-

alytic linearization used by EKF? The answer depends on the degree

of nonlinearity of the state and output equations—the more nonlinear

the equations, the better SPKF should be with respect to EKF.

3.10 The SPKF

3.10.1 Deriving the six steps of SPKF

We now return to the state-estimation problem and apply the sigma-

point approach to propagating statistics through a nonlinear function.

We follow the six steps of sequential probabilistic inference, as before.

SPKF step 1a: State-prediction time update.

For step 1a, we wish to approximate

x̂−k = E
[

f (xk−1, uk−1, wk−1) | Yk−1

]

using a sigma-point approach. The general procedure is to represent

the input randomness by sigma points, propagate those sigma points

through f (·), and then compute x̂−k as the average of the output

sigma points.

One complication that was not present when considering the static

nonlinearity of Sect. 3.9.1 is that there are multiple sources of ran-

domness in the dynamic problem: the state, process noise, and sensor

noise are all random vectors. To use a sigma-point method, we must

combine all the randomness in a single random vector.

So, we define an augmented random state vector xa
k that combines

these random factors at time index k

xa
k =

⎡

⎢⎣
xk

wk

vk+1

⎤

⎥⎦ , and Σ
a
x̃k

=

⎡

⎢⎣
Σx̃,k 0 0

0 Σw̃ 0

0 0 Σṽ

⎤

⎥⎦ .

This augmented vector is used in the estimation process as described

below.

For step 1a, we first form the augmented posterior state estimate

and augmented posterior state-estimation-error covariance matrix for
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136 battery management systems: volume ii, equivalent-circuit methods

the previous time interval

x̂a,+
k−1 =

⎡

⎢⎣
x̂+k−1

w̄

v̄

⎤

⎥⎦ , and Σ
a,+
x̃,k−1 =

⎡

⎢⎣
Σ
+
x̃,k−1 0 0

0 Σw̃ 0

0 0 Σṽ

⎤

⎥⎦ .

These factors are used to generate the p + 1 augmented sigma

points

X a,+
k−1 =

{
x̂a,+

k−1, x̂a,+
k−1 + γ

√
Σ

a,+
x̃,k−1, x̂a,+

k−1 − γ
√

Σ
a,+
x̃,k−1

}
.

As before, these can be organized into a convenient matrix form, as

depicted in Fig. 3.23. The figure shows the augmented state vector

as three colored regions (the figure is drawn for the case where the

process noise is a 2-vector and the sensor noise is a 1-vector). The

augmented covariance matrix shows the block-diagonal structure,

with white regions representing zero. The structure of the covari-

ance matrix leads to a structure in the augmented sigma points, as

illustrated in the depiction of X a,+
k−1.

X a,+
k−1

x̂a,+
k−1x̂a,+

k−1 Σ
a,+
x̃,k−1

Σ
+
x̃,k−1

Σw̃

Σṽ

x̂+k−1

w̄

v̄

andmake
augmented

sigma

points

x̂a,+
k−1+γ

√
Σ

a,+
x̃,k−1 x̂a,+

k−1−γ
√

Σ
a,+
x̃,k−1

Figure 3.23: SPKF step 1a: Creating
augmented sigma points.Once we have formed the sigma points, we split them into three

parts, as depicted in Fig. 3.24. The top rows of X a,+
k−1 describe the

randomness of the state estimate and are collectively denoted as the

set X x,+
k−1; the middle rows describe the randomness of the process

noise and are denoted as the set X w,+
k−1; the bottom rows represent

the randomness of the process noise and are denoted as the set X v,+
k−1.

We can further think of the ith element of each of these sets as X x,+
k−1,i,

X w,+
k−1,i, and X v,+

k−1,i, respectively.

Now, we use the sigma-point approach to predict the present value

of the state by propagating sigma points that represent the prior

randomness through the state function f (·). This is illustrated in

Fig. 3.25. We evaluate the state equation using all pairs of X x,+
k−1,i and

X w,+
k−1,i, yielding the state-prediction sigma points X x,−

k,i . That is, we

compute X x,−
k,i = f (X x,+

k−1,i, uk−1,X w,+
k−1,i).
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3. battery-state estimation 137

X a,+
k−1

X x,+
k−1

X w,+
k−1

X v,+
k

,−

Figure 3.24: Splitting the augmented
sigma points into their three constituent
parts.

w̄

X x,+
k−1

X w,+
k−1

uk−1

state eqn: X x,−
k,i = f (X x,+

k−1,i, uk−1,X w,+
k−1,i)

ith sigma
point

X x,−
k

Figure 3.25: Predicting the present state
using sigma points representing prior
randomness.

Finally, the state prediction is computed as the weighted average

of these sigma points:

x̂−k = E
[

f (xk−1, uk−1, wk−1) | Yk−1

]
≈

p

∑
i=0

α
(m)
i f (X x,+

k−1,i, uk−1,X w,+
k−1,i)

=
p

∑
i=0

α
(m)
i X x,−

k,i .

This operation can be computed efficiently as a matrix multiply, as

illustrated in Fig. 3.26. If α(m) is a vector comprising all the α
(m)
i

values and X x,−
k is stored in matrix form, then x̂−k = X x,−

k α(m).

SPKF step 1b: Error-covariance time update.

We wish to approximate Σ
−
x̃,k = E[(x̃−k )(x̃−k )

T] using a sigma-point

method. Most of the hard work has already been done, since we have

already found sigma points that describe the state prediction. First,
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138 battery management systems: volume ii, equivalent-circuit methods

X x,−
k

x̂−k

α
(m)
0

α(m)
1

...

α
(m)
p

Figure 3.26: State prediction as a matrix
multiply.

we compute

X̃
x,−
k,i = X x,−

k,i − x̂−k

for every sigma point i. We then compute the covariance matrix as

the weighted sum

Σ
−
x̃,k =

p

∑
i=0

α
(c)
i

(
X̃

x,−
k,i

)(
X̃

x,−
k,i

)T
.

If α(c) is a vector comprising all the α
(c)
i values and X̃

x,−
k is stored in

matrix form, then this summation can be computed using a matrix

product as

Σ
−
x̃,k =

(
X̃

x,−
k

)
diag

(
α(c)

) (
X̃

x,−
k

)T
,

as is illustrated in Fig. 3.27. This compact notation makes program-

ming this step in MATLAB very straightforward, although there are a

lot of multiply-by-zero operations that can be avoided if hand-coding

for efficiency in a language like C.

X̃
x,−
k

α
(c)
0

α
(c)
1

. . .
. . .

. . .

α
(c)
p

Σ
−
x̃,k

Figure 3.27: State-prediction error
covariance calculation as a matrix
multiply.SPKF step 1c: Predict system output yk.

In this step, we wish to approximate ŷk = E
[
h(xk, uk, vk) | Yk−1

]
. To

do so, we will take the sigma points that represent the randomness in

xk and vk and propagate them through the output equation h(·). The

weighted mean of the output sigma points will comprise the output

prediction.
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3. battery-state estimation 139

First, we compute the points Y k,i = h(X x,−
k,i , uk,X v,+

k,i ), as illus-

trated in Fig. 3.28. The output estimate is then

ŷk = E
[
h(xk, uk, vk) | Yk−1

]
≈

p

∑
i=0

α
(m)
i h(X x,−

k,i , uk,X v,+
k,i )

=
p

∑
i=0

α
(m)
i Y k,i.

This can be computed with a simple matrix multiplication, as we did

when calculating x̂−k at the end of step 1a.

augmented

X v,+
k

ith sigma
point

output eqn: Y k,i = h(X x,−
k,i , uk,X v,+

k,i )

uk

X x,−
k

Y k

Figure 3.28: Computing the output
prediction sigma points.

SPKF step 2a: Estimator gain matrix Lk.

To compute the estimator gain matrix, we must first compute the

required covariance matrices:

Σỹ,k =
p

∑
i=0

α
(c)
i

(
Y k,i − ŷk

)(
Y k,i − ŷk

)T

Σ
−
x̃ỹ,k =

p

∑
i=0

α
(c)
i

(
X x,−

k,i − x̂−k
)(
Y k,i − ŷk

)T
.

These depend on the sigma-point matrices X x,−
k and Y k, already

computed in steps 1b and 1c, as well as x̂−k and ŷk, already computed

in steps 1a and 1c. The summations can be performed using matrix

multiplies, as we did in step 1b.

Then, once these covariance matrices are available, we simply

compute Lk = Σ
−
x̃ỹ,kΣ

−1
ỹ,k .

SPKF step 2b: State-estimate measurement update.

The state estimate is computed as

x̂+k = x̂−k + Lk(yk − ŷk).
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140 battery management systems: volume ii, equivalent-circuit methods

All necessary quantities have already been computed.

SPKF step 2c: Error-covariance measurement update.

The final step is calculated directly from the optimal formulation

Σ
+
x̃,k = Σ

−
x̃,k − LkΣỹ,kLT

k .

All necessary quantities have already been computed. The SPKF

steps are summarized in the Appendix on p. 164.

3.10.2 An SPKF example, with code

As our first example of the SPKF method, consider again the scenario

used to illustrate EKF in Sect. 3.7.2. We implement the SPKF in MAT-

LAB in much the same structure as we implemented the EKF. First,

we define some constants and reserve storage:

% Define size of variables in model

Nx = 1; % state = 1x1 scalar

Nxa = 3; % augmented state has also w(k) and v(k) contributions

Ny = 1; % output = 1x1 scalar

% Some constants for the SPKF algorithm. Use standard values for

% cases with Gaussian noises. (These are the weighting matrices

% comprising the values of alpha(c) and alpha(m) organized in a

% way to make later computation efficient).

h = sqrt(3);

alpha1 = (h*h-Nxa)/(h*h); alpha2 = 1/(2*h*h);

alpham = [alpha1; repmat(alpha2,[2*Nxa 1])]; % mean weights

alphac = alpham; % covariance weights

% Initialize simulation variables

SigmaW = 1; % Process noise covariance

SigmaV = 2; % Sensor noise covariance

maxIter = 40;

xtrue = 2 + randn(1); % Initialize true system initial state

xhat = 2; % Initialize Kalman filter initial estimate

SigmaX = 1; % Initialize Kalman filter covariance

% Reserve storage for variables we might want to plot/evaluate

xstore = zeros(maxIter+1,length(xtrue)); xstore(1,:) = xtrue;

xhatstore = zeros(maxIter,length(xhat));

SigmaXstore = zeros(maxIter,length(xhat)^2);

In this code Nx is the number of states, Nxa is the number of elements

in the augmented state vector, and Ny is the number of outputs. The

example uses the CDKF tuning parameters from Table 3.2 with tun-

ing constant h =
√

3. The alpham and alphac vectors stores the α(m)

and α(c) values, respectively, which happen to be the same in this

simulation.

We now enter the main program loop:

for k = 1:maxIter,

% SPKF Step 1a: State-estimate time update

% 1a-i: Calculate augmented state estimate, including ...
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3. battery-state estimation 141

29 This would be far more clear using
MATLAB’s built-in repmat function.
However, repmat is not very efficient
and the strange code presented here is
many times faster.

xhata = [xhat; 0; 0]; % process and sensor noise mean

% 1a-ii: Get desired Cholesky factor

Sigmaxa = blkdiag(SigmaX,SigmaW,SigmaV);

sSigmaxa = chol(Sigmaxa,'lower');

% 1a-iii: Calculate sigma points (strange indexing of xhat to avoid

% "repmat" call, which is very inefficient in Matlab)

% Note: xhata(:,ones([1 N])) creates an Nxa * N matrix where every

% column is a copy of xhata.

X = xhata(:,ones([1 2*Nxa+1])) + h*[zeros([Nxa 1]), ...

sSigmaxa, -sSigmaxa];

% 1a-iv: Calculate state equation for every element

% Hard-code equation here for efficiency

Xx = sqrt(5+X(1,:)) + X(2,:);

xhat = Xx*alpham;

% SPKF Step 1b: Covariance of prediction

Xs = Xx - xhat(:,ones([1 2*Nxa+1]));

SigmaX = Xs*diag(alphac)*Xs';

% [Implied operation of system in background, with

% input signal u, and output signal y]

w = chol(SigmaW)'*randn(1);

v = chol(SigmaV)'*randn(1);

ytrue = xtrue^3 + v; % y is based on present x and u

xtrue = sqrt(5+xtrue) + w; % future x is based on present u

% SPKF Step 1c: Create output estimate

% Hard-code equation here for efficiency

Y = Xx.^3 + X(3,:);

yhat = Y*alpham;

% SPKF Step 2a: Estimator gain matrix

Ys = Y - yhat*ones([1 2*Nxa+1]);

SigmaXY = Xs*diag(alphac)*Ys';

SigmaY = Ys*diag(alphac)*Ys';

Lx= SigmaXY/SigmaY;

% SPKF Step 2b: State-estimate measurement update

xhat = xhat + Lx*(ytrue-yhat); % update prediction to estimate

% SPKF Step 2c: Error-covariance meas. update

SigmaX = SigmaX - Lx*SigmaY*Lx';

% [Store information for evaluation/plotting purposes]

xstore(k+1,:) = xtrue;

xhatstore(k,:) = xhat;

SigmaXstore(k,:) = (SigmaX(:))';

end

For the most part, this code implements the six SPKF steps in a

straightforward way. However, there are some strange-looking MAT-

LAB lines when tiling a matrix by repeating a vector multiple times

horizontally, as documented in the first instance in step 1a-iii.29

For a simple example, if we write

x1 = [1;2;3];

x2 = x1(:,[1 1 1]);
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Figure 3.29: Simple SPKF example
results.

this results in

x2 =

⎡

⎢⎣
1 1 1

2 2 2

3 3 3

⎤

⎥⎦ .

The line x2 = x1(:,[1 1 1]) means, “compute x2 by taking x1, all

rows and column 1, then append x1, all rows and column 1, then

append x1, all rows and column 1.” Similarly, xhata(:,ones([1 2*

Nxa+1])) replicates the xhata vector two times Nxa plus one times

horizontally.

Fig. 3.29 displays results from running the SPKF. These results are

for the same model, covariance-matrix tuning, and input/output data

used by the EKF in Sect. 3.7.2. The top frame of Fig. 3.29 compares

the SPKF estimates to the truth, and the lower frame shows SPKF

and EKF errors along with error bounds. The SPKF estimates are, on

the whole, better. Also, the SPKF estimation-error bounds are more

reliable than the EKF bounds, which is a great improvement.

3.11 Implementing SPKF using the ESC cell model

When implementing the SPKF on the ESC cell model, we refactor

the code—much like we did in Sect. 3.8.2—to be more representative

of the organization required in a battery-management-system main

program loop. Because SPKF does not require derivatives, we don’t

need to spend time discussing how to adapt the SPKF approach to

the ESC cell model. Rather, we proceed with a straightforward imple-

mentation. As in Sect. 3.8.2, the code is divided into a wrapper func-

tion that simulates the main program loop, an initialization function

initSPKF.m, and an iteration function iterSPKF.m. The wrapper func-

tion for SPKF is the same as for EKF (except that it calls the SPKF

initialization and iteration functions instead of the EKF versions).

The SPKF initialization code is presented below. When compar-

ing to the corresponding EKF code, there should be no surprises.

The main differences have to do with needing to initialize the SPKF

tuning parameters γ, α(m), and α(c) and constants defining vector

lengths for the augmented state vector. Also, since the Cholesky de-

composition is a computationally intensive operation relative to the

other SPKF computations, we precompute the Cholesky factor of the

process-noise and sensor-noise covariances so that we don’t need to

do so every iteration:

function spkfData = initSPKF(v0,T0,SigmaX0,SigmaV,SigmaW,model)

% Initial state description

ir0 = 0; spkfData.irInd = 1;

hk0 = 0; spkfData.hkInd = 2;

SOC0 = SOCfromOCVtemp(v0,T0,model); spkfData.zkInd = 3;

Plett, Gregory. Battery Management Systems, Volume II: Equivalent-Circuit Methods, Artech House, 2015. ProQuest Ebook Central,
         http://ebookcentral.proquest.com/lib/ybp-ebookcentral/detail.action?docID=4821265.
Created from ybp-ebookcentral on 2020-03-28 12:07:34.

C
op

yr
ig

ht
 ©

 2
01

5.
 A

rt
ec

h 
H

ou
se

. A
ll 

rig
ht

s 
re

se
rv

ed
.



3. battery-state estimation 143

spkfData.xhat = [ir0 hk0 SOC0]'; % initial state

% Covariance values

spkfData.SigmaX = SigmaX0;

spkfData.SigmaV = SigmaV;

spkfData.SigmaW = SigmaW;

spkfData.Snoise = chol(blkdiag(SigmaW, SigmaV),'lower');

spkfData.SXbump = 5;

% SPKF specific parameters

Nx = length(spkfData.xhat); spkfData.Nx = Nx; % state-vector length

Ny = 1; spkfData.Ny = Ny; % measurement-vector length

Nu = 1; spkfData.Nu = Nu; % input-vector length

Nw = size(SigmaW,1); spkfData.Nw = Nw; % process-noise-vector length

Nv = size(SigmaV,1); spkfData.Nv = Nv; % sensor-noise-vector length

Na = Nx+Nw+Nv; spkfData.Na = Na; % augmented-state-vector length

h = sqrt(3); spkfData.h = h; % SPKF/CDKF tuning factor

alpha1 = (h*h-Na)/(h*h); % weighting factors when computing mean

alpha2 = 1/(2*h*h); % and covariance

spkfData.alpham = [alpha1; alpha2*ones(2*Na,1)]; % mean

spkfData.alphac = spkfData.alpham; % covar

% previous value of current

spkfData.priorI = 0;

spkfData.signIk = 0;

% store model data structure too

spkfData.model = model;

end

The SPKF iteration code also follows the same pattern as the EKF

version, so we do not spend too much time discussing it. First, con-

stants and variables are unpacked from the spkfData structure:

function [zk,zkbnd,spkfData] = iterSPKF(vk,ik,Tk,deltat,spkfData)

model = spkfData.model;

% Load the cell model parameters

Q = getParamESC('QParam',Tk,model);

G = getParamESC('GParam',Tk,model);

M = getParamESC('MParam',Tk,model);

M0 = getParamESC('M0Param',Tk,model);

RC = exp(-deltat./abs(getParamESC('RCParam',Tk,model)))';

R = getParamESC('RParam',Tk,model)';

R0 = getParamESC('R0Param',Tk,model);

eta = getParamESC('etaParam',Tk,model);

if ik<0, ik=ik*eta; end;

% Get data stored in spkfData structure

irInd = spkfData.irInd;

hkInd = spkfData.hkInd;

zkInd = spkfData.zkInd;

xhat = spkfData.xhat;

SigmaX = spkfData.SigmaX;

% Get SPKF specific parameters

Snoise = spkfData.Snoise;

Nx = spkfData.Nx;

Nw = spkfData.Nw;

Nv = spkfData.Nv;

Plett, Gregory. Battery Management Systems, Volume II: Equivalent-Circuit Methods, Artech House, 2015. ProQuest Ebook Central,
         http://ebookcentral.proquest.com/lib/ybp-ebookcentral/detail.action?docID=4821265.
Created from ybp-ebookcentral on 2020-03-28 12:07:34.

C
op

yr
ig

ht
 ©

 2
01

5.
 A

rt
ec

h 
H

ou
se

. A
ll 

rig
ht

s 
re

se
rv

ed
.



144 battery management systems: volume ii, equivalent-circuit methods

Na = spkfData.Na;

alpham = spkfData.alpham;

alphac = spkfData.alphac;

% Dynamic variables relating to input current

I = spkfData.priorI;

if abs(ik)>Q/100, spkfData.signIk = sign(ik); end;

signIk = spkfData.signIk;

SPKF step 1a involves creating the augmented sigma points repre-

senting the prior estimate and associated noises. First, the augmented

state-estimate vector xhata is created from the prior estimate xhat.

Next, we create the Cholesky factor of the prior estimation-error co-

variance SigmaX. If SigmaX is not positive definite—it should be, but

numeric imprecision can sometimes make SigmaX negative definite—

then the optional return argument p from the chol.m function will

indicate an error. If we encounter such an error, we must make some

reasonable attempt to recover. In this case, we replace SigmaX with a

diagonal matrix having elements equal to the absolute values of the

diagonal of the original SigmaX. This forces positive semi-definiteness.

Then, we compute the Cholesky factor as the square root of this

matrix, enforcing that each diagonal element be at least as large as

SigmaW:

% Step 1a: State-estimate time update

% - Create xhatminus augmented SigmaX points

% - Extract xhatminus state SigmaX points

% - Compute weighted average xhatminus(k)

% Step 1a-1: Create augmented xhat and SigmaX

xhata = [xhat; zeros([Nw+Nv 1])];

[sigmaXa,p] = chol(SigmaX,'lower');

if p>0,

fprintf('Cholesky error. Recovering...\n');

theAbsDiag = abs(diag(SigmaX));

sigmaXa = diag(max(SQRT(theAbsDiag),SQRT(spkfData.SigmaW)));

end

sigmaXa= blkdiag(real(sigmaXa),Snoise);

% NOTE: sigmaXa is lower-triangular

% Step 1a-2: Calculate SigmaX points (strange indexing of xhata to

% avoid "repmat" call, which is very inefficient in MATLAB)

Xa = xhata(:,ones([1 2*Na+1])) + ...

spkfData.h*[zeros([Na 1]), sigmaXa, -sigmaXa];

The remaining steps of the iteration should look very familiar,

compared to our prior SPKF example. The biggest difference is that

the model state and output equations are not embedded inline but

are separated out as independent functions stateEqn and outputEqn.

These functions are nested inside of iterSPKF.m, so they share the

same variable space, and will be discussed shortly. Note the code

added in step 2b after the state-estimate update to ensure that the

hysteresis and SOC states remain within prescribed limits:

% Step 1a-3: Time update from last iteration until now
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3. battery-state estimation 145

% stateEqn(xold,current,xnoise)

Xx = stateEqn(Xa(1:Nx,:),I,Xa(Nx+1:Nx+Nw,:));

xhat = Xx*alpham;

% Step 1b: Error-covariance time update

% - Compute weighted covariance sigmaminus(k)

% (strange indexing of xhat to avoid "repmat" call)

Xs = Xx - xhat(:,ones([1 2*Na+1]));

SigmaX = Xs*diag(alphac)*Xs';

% Step 1c: Output estimate

% - Compute weighted output estimate yhat(k)

I = ik; yk = vk;

Y = outputEqn(Xx,I,Xa(Nx+Nw+1:end,:),Tk,model);

yhat = Y*alpham;

% Step 2a: Estimator gain matrix

Ys = Y - yhat(:,ones([1 2*Na+1]));

SigmaXY = Xs*diag(alphac)*Ys';

SigmaY = Ys*diag(alphac)*Ys';

L = SigmaXY/SigmaY;

% Step 2b: State-estimate measurement update

r = yk - yhat; % residual. Use to check for sensor errors...

if r^2 > 100*SigmaY, L(:,1)=0.0; end

xhat = xhat + L*r;

xhat(hkInd) = min(1,max(-1,xhat(hkInd)));

xhat(zkInd) = min(1.05,max(-0.05,xhat(zkInd)));

% Step 2c: Error-covariance measurement update

SigmaX = SigmaX - L*SigmaY*L';

[~,S,V] = svd(SigmaX);

HH = V*S*V';

SigmaX = (SigmaX + SigmaX' + HH + HH')/4; % Help maintain robustness

% Q-bump code

if r^2>4*SigmaY, % bad voltage estimate by 2-SigmaX, bump Q

fprintf('Bumping sigmax\n');

SigmaX(zkInd,zkInd) = SigmaX(zkInd,zkInd)*spkfData.SXbump;

end

% Save data in spkfData structure for next time...

spkfData.priorI = ik;

spkfData.SigmaX = SigmaX;

spkfData.xhat = xhat;

zk = xhat(zkInd);

zkbnd = 3*sqrt(SigmaX(zkInd,zkInd));

The state equation is implemented in its own nested function.

The inputs to this function are xold, current, and xnoise, where

xold comprises the sigma points X x,+
k−1, xnoise comprises the sigma

points X w,+
k−1, and current is the prior measured input current. Using

efficient MATLAB matrix and vector operations, all output sigma

points are computed simultaneously from the input sigma points,

without requiring program loops:

% Calculate new states for all of the old state vectors in xold.

function xnew = stateEqn(xold,current,xnoise)

current = current + xnoise; % noise adds to current

xnew = 0*xold; % create space for xnew
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Figure 3.30: SPKF SOC estimates,
compared to equivalent EKF estimates.

xnew(irInd,:) = RC*xold(irInd,:) + (1-RC)*current;

Ah = exp(-abs(current*G*deltat/(3600*Q))); % hysteresis factor

xnew(hkInd,:) = Ah.*xold(hkInd,:) + (Ah-1).*sign(current);

xnew(zkInd,:) = xold(zkInd,:) - current/3600/Q;

xnew(hkInd,:) = min(1,max(-1,xnew(hkInd,:)));

xnew(zkInd,:) = min(1.05,max(-0.05,xnew(zkInd,:)));

end

Similarly, the nested output equation function uses input xhat

equal to X x,−
k , current equal to present measured current, and

ynoise equal to X v,+
k . The output sigma points Y k are computed

simultaneously using efficient MATLAB matrix and vector opera-

tions:

% Calculate cell output voltage for all of state vectors in xhat

function yhat = outputEqn(xhat,current,ynoise,T,model)

yhat = OCVfromSOCtemp(xhat(zkInd,:),T,model);

yhat = yhat + M*xhat(hkInd,:) + M0*signIk;

yhat = yhat - R*xhat(irInd,:) - R0*current + ynoise(1,:);

end

% "Safe" square root

function X = SQRT(x)

X = sqrt(max(0,x));

end

end

Finally, the SQRT function computes a square root that guarantees

a real result even if the input has become negative due to numeric

imprecision.

The SPKF was executed on the same data as used in the example

in Sect. 3.8.2. Results are shown in Fig. 3.30. In this example, RMS

SOC estimation error was 0.84 %, and the true SOC values were out-

side the estimation-error bounds of the filter for 10.5 % of the time.

This is a marked improvement when compared to the results from

the EKF.

However, also recall that this particular example uses data from a

cell test conducted at 5 ◦C. The nonlinear hysteresis is much more sig-

nificant at this temperature than at more typical (warmer) operating

temperatures. At warm temperatures, the EKF and SPFK tend to give

very similar performance because the cell model is not as nonlinear

then. Also notice that both types of nonlinear Kalman filter appear

to be giving poorer estimates at very low state of charge (when the

true state of charge drops below about 10 %). The biggest contribut-

ing factor to this error is most likely that the cell model describes

open-circuit voltage poorly in that range at this temperature. The

filter is relying on this poor description and it is biasing the result. If

a more accurate OCV relationship could be obtained, then both esti-

mators would work better at these low SOCs. Further, the inaccurate

error bounds are not as significant as it might first appear since most

battery-pack applications will not run the cell in that range.
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3. battery-state estimation 147

3.12 Real-world issues pertaining to sensors, initialization

Most SOC estimators can appear to work well in simulation. How-

ever, the acid test is how well they work in real-world environments.

In real applications, the estimators must be able to deal with nonideal

sensors, with sensor faults, and so forth. In this section, we look at

several real-world issues that the BMS engineer should design for,

and see how the Kalman-filtering based approaches handle these

problems very naturally.

3.12.1 Current-sensor bias

Current sensors often have a dc bias (i.e., a deterministic offset) in

their readings. The measured current is equal to the true current plus

a bias

ik = itrue
k + ibias

k .

For example, Hall-effect sensors experience hysteresis due to their

underlying dependence on magnetic circuitry, which biases the sen-

sor reading directly. Special compensation circuitry can help reduce

this bias but not eliminate it completely. Shunt current sensors do not

have a bias intrinsically, but the electronics that amplify the voltage

drop over the shunt resistor may introduce a bias to the measured re-

sult.

We can compensate for bias in software to some extent. Suppose

that we take a measurement of battery-pack current before the contac-

tors are closed. Then we know that the true current itrue
0 must be zero

and thus that the measured current must be equal to the bias current.

This bias estimate î bias
0 can be subtracted from all subsequent current

measurements to approximate the true current

itrue
k ≈ ik − î bias

0 .

However, this is only partially effective. Current-sensor bias often

drifts with time and temperature. To be able to subtract bias out

of the measured current effectively, we would need to update the

bias estimate periodically. If the application allows communication

with the load, this could be possible—the load could report back

to the BMS whenever the load current is itself zero, and the BMS

could then set the bias estimate equal to the present current-sensor

measurement.

Bias compensation of some kind is critical for most SOC estima-

tion methods. It is most important for coulomb-counting methods

which integrate the measured current. Even if the cell’s initial SOC
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148 battery management systems: volume ii, equivalent-circuit methods

and total capacity are known precisely, we have

ẑk = z0 −
∆t

Q

k−1

∑
j=0

ηk

(
itrue
k + ibias

k

)

= zk −
∆t

Q

k−1

∑
j=0

ηkibias
k

︸ ︷︷ ︸
estimation error

,

which introduces an ever-growing error in the state of charge esti-

mate.

Because Kalman filters use voltage measurements as feedback to

update the state estimate, they do not tend to be as sensitive to bias

as the coulomb-counting method. However, Kalman-filter theory

assumes that the process noise has known mean and so an unknown

current-sensor bias can still introduce permanent state of charge

estimation error when the accumulated ampere-hours of bias move

the state of charge estimate faster than the measurement updates

can correct.

The best solution would be to design sensing hardware to elim-

inate current-sensor bias but this can be done only approximately.

We can compensate in software by subtracting out a bias estimate

that was measured when we knew current was zero, as discussed

above, but this is a static estimate and not a dynamic estimate of a

drifting bias.

However, the Kalman-filter based methods provide another avenue

of compensation. We can estimate the unknown time-varying bias

dynamically, and then subtract this dynamic estimate from the mea-

sured current. Using the ESC cell model as an example, we denote

the time-varying bias estimate as ibias
k and rewrite the state equation

as

zk = zk−1 − (ik−1 − ibias
k−1 + wk−1)∆t/Q

iR,k = ARCiR,k−1 + BRC(ik−1 − ibias
k−1 + wk−1)

Ah,k = exp
(
−
∣∣∣(ik−1 − ibias

k−1 + wk−1)γ∆t/Q
∣∣∣
)

hk = Ah,khk−1 + (Ah,k − 1) sgn(ik−1 − ibias
k−1 + wk−1)

sk =

⎧
⎨

⎩
sgn(ik − ibias

k + wk), |ik − ibias
k + wk| > 0

sk−1, otherwise.

We then augment the state vector with a single bias state. We don’t

have an equation that describes the dynamics of the bias; instead, we

model it as being essentially constant but having the ability to move

via the addition of zero-mean white process noise nbias
k−1:

ibias
k = ibias

k−1 + nbias
k−1.
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3. battery-state estimation 149

This noise is different from the process noise wk that affects the re-

maining state elements and is entirely fictitious. It exists only in the

model and not in the real cell. It has very small covariance, but large

enough to allow the Kalman filter to adapt the bias state. The output

equation is also modified to include the bias:

yk = OCV(zk) + Mhk + M0sk − ∑
j

RjiRj ,k − R0(ik − ibias
k ) + vk.

To implement this in a nonlinear Kalman filter, we must realize

that the process-noise vector has been augmented. The wk part influ-

ences only the primary states, and the nbias
k part influences only the

bias state. The augmented nature of the new process noise must be

taken into account when computing the B̂k matrix for the EKF, and

when determining the augmented sigma points in the SPKF method.

The state description is augmented with the bias state in both nonlin-

ear Kalman filters.

As the Kalman filter executes, the augmented state is adapted

so that the input/output behavior of the model matches the in-

put/output behavior of the cell as closely as possible. If there is a

current-sensor bias, this will be accomplished when the bias estimate

matches the true bias. The adaptability of the Kalman filter, com-

bined with a good cell model, yields good state estimates.

3.12.2 Voltage-sensor faults

While voltage sensors can also have bias, it is less clear how to detect

and correct the problem. We never have a “true” reading that we can

use to calibrate the sensor. Voltage-sensor bias is also much less of an

issue, because the biases tend to be on the order of a millivolt or so,

and thus introduce very little state of charge estimation error.

A more common issue with voltage sensors occurs primarily when

using external specialized integrated circuits to measure module

voltages. Sometimes, communications between the primary BMS

processor and these external measurement circuits can become cor-

rupted or even lost. It is not always obvious that this has happened,

although most modern chipsets have checksums built into the com-

munications to assist with error detection, and some can even detect

an open connection to a cell and report back an error condition.

In any case, having a software backup error-detection code can

add robustness to the battery-management solution. And we have

already seen how to implement such a method. Referring back to

Sect. 3.6.5, we defined a normalized estimation error squared as

e2
k = ỹT

k Σ
−1
ỹ,k ỹk.
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Then e2
k is a chi-square RV with m degrees of freedom, where m is the

dimension of ỹk. If e2
k has an unusually high value, then the sensor

measurement is very unlikely. If ỹk > χ2
U , then the measurement

considered faulty and is discarded. Otherwise, the measurement is

kept.

3.12.3 Other sensor faults

It is not obvious how to detect temperature-sensor and current-sensor

faults. True battery-pack current can change from imin to imax in a sin-

gle sample period, so simple rate-based tests cannot be implemented

to detect a faulted sensor. The best check would probably be to use

redundant sensing—if the load has a current-sensor reading, then

compare the battery-management-system current-sensor reading to

the load’s measured value. If they are highly correlated, then both

are probably working properly. Otherwise, at least one has proba-

bly failed.

To detect temperature-sensor faults, we might consider imple-

menting a thermal model of cells or modules. This could allow us

to reduce the number of required temperature sensors by using the

model to interpolated between measured locations. It could also en-

able catching sensor faults using the same method as just described

for the voltage sensor.

3.12.4 Initialization

A real-world issue that we have not thoroughly considered until

now is, “How do we initialize the state estimate when the battery-

management system is turned on?” In the simple EKF and SPKF

examples of Sect. 3.7.2 and 3.10.2, we conveniently knew the true ex-

pected value and covariance of the state, so used that to initialize the

filter. However, we do not have the same luxury in a real application.

Proper initialization requires that the BMS has a real-time clock

that can report the duration of time that the battery pack has been

idle. If the pack has rested for a relatively long time before being

started, then we can assume that the battery cells are in electrochem-

ical equilibrium and that cell voltage is equivalent to OCV. So, we

reset the SOC estimates based on the measured OCV, we set the

diffusion currents to zero, and we keep the prior hysteresis state

(because hysteresis does not change when the cell is resting). This

is the method that was used to initialize the simulations in Sect. 3.8

and 3.11.

If the pack has been resting for a short period of time, this method

will not work well. Imagine a vehicular application where you are

late for work but desperately need your morning coffee. You race
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3. battery-state estimation 151

Figure 3.31: A trivial series-connected
battery pack.
(Duplicated from Fig. 1.20.)

into the parking lot of your favorite convenience store, jam on the

brakes, and turn off the vehicle. You race into the store, purchase

your coffee, and return to the vehicle. It’s been less than two minutes,

a personal record. You turn on your car again, and the BMS must

make a good initial SOC estimate.

The battery cells are not in steady-state. It often takes tens of

minutes or even hours to reach equilibrium. In fact, because you

had been driving aggressively and since you jammed on the brakes

as you were parking, a large regeneration pulse was sent into the

battery pack just prior to turning the vehicle off, when the battery-

management system last stored cell state estimates to nonvolatile

memory. The stored estimates may be good, but the present mea-

sured voltages will be much higher than OCV. We cannot simply

initialize the same way as if the pack were in equilibrium.

Instead, we set up and execute a simple time and measurement

update (via a simple Kalman filter) for the state equations involving

SOC and diffusion currents. Hysteresis voltages do not change, since

the pack has been resting. A single-step execution of this Kalman

filter will update the state estimate and its covariance matrix based

on the total time the battery pack has been resting.

3.13 Reduced computational complexity using bar-delta filtering

As motivation for the last major section of this chapter, we consider

again a philosophical question with very important practical implica-

tions. Consider the trivial series-connected battery pack in Fig. 3.31.

What is the battery-pack SOC? We know that the SOC cannot be 0 %

because we cannot charge the battery pack without overcharging the

lower cell. Neither can SOC be 100 % because we cannot discharge

without over-discharging the upper cell. It also cannot be the average

of the two, 50 %, because we can neither charge nor discharge. So, as

we have discussed before, “battery-pack SOC” is not a well-defined

or helpful concept, by itself.

The example considers an extreme and unlikely scenario, but

illustrates the importance of estimating the states-of-charge of all

cells in a battery pack, even in the typical case. However, doing so

introduces a real-world concern. Kalman filters are computation-

ally complex. Running one nonlinear Kalman filter for a single-cell

battery pack is okay, but running 100 nonlinear Kalman filters for a

100-cell battery pack will probably require more computation than

many battery-management systems can provide. In this section we

talk about efficient state of charge estimation for all individual cells

in a large battery pack.

The modified method that we propose is based on the observation
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152 battery management systems: volume ii, equivalent-circuit methods

30 Note, for example, that within
the pack-average state vector and
individual state vectors we have
0 ≤ mini(z

(i)
k ) ≤ z̄k ≤ maxi(z

(i)
k ) ≤ 1.

Therefore, the range of z̄k is within the
standard state of charge range.

31 This was first reported in Plett, G.,
“Efficient Battery Pack State Estimation
Using Bar-Delta Filtering,” in Proc. 24th
Electric Vehicle Symposium (EVS24),
Stavanger, Norway, 2009.

that while “battery-pack SOC” does not make sense, the concept of

“battery-pack-average SOC” is a useful one. Battery-pack-average

SOC is computed in the same way that we might think of computing

“battery-pack SOC” but we are careful to include “average” in the

name so that we think about this term in a correct way.

Since all cells in a series-connected battery pack experience the

same current, we expect their individual state of charge values to:

1) collectively move in the same direction for any given applied cur-

rent, 2) by a similar amount (but somewhat different because of un-

equal cell total capacities). We take advantage of this similarity by

creating one algorithm to determine the composite average behavior

of all cells in the battery pack, and a second algorithm to determine

the individual differences between the state of specific cells and that

composite average behavior.

We define pack-average state “x-bar” as30

x̄k =
1

Ns

Ns

∑
i=1

x
(i)
k ,

where x
(i)
k is the state of the ith cell. We can then write an individual

cell’s state vector as x
(i)
k = x̄k + ∆x

(i)
k where ∆x

(i)
k (called “delta-x”) is

the difference between the state vector of cell i and the pack-average

state vector. The method to be developed is called “bar-delta filter-

ing,” as inspired by the “x-bar” and “delta-x” naming convention.31

We use one nonlinear Kalman filter to estimate the pack-average

state, and Ns nonlinear Kalman filters to estimate the delta states.

This is illustrated in Fig. 3.32.

Battery-pack
state estimate

Cell delta
state estimate

Battery-pack current meas.

Battery-pack voltage meas.

Battery-pack temp. meas.

Cell current meas.

Cell voltage meas.

Cell temperature meas.

Battery-pack state estimate

“bar” filter estimates
pack-average state

pack-average state

“delta” filter estimates
difference between

cell state and

Figure 3.32: The bar-delta filter concept.

It may seem that we have taken a problem of complexity Ns and

have replaced it with a problem of complexity Ns + 1. However, this

is not the case—the three different types of estimator involved are not

of identical computational complexity. The bar filter is of the same

computational complexity as the individual state estimators that it

uses as a basis (e.g., perhaps SPKF running on a single cell, as de-

scribed up to this point in this chapter). However, the delta filters can
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3. battery-state estimation 153

be made very simple. Also, the delta states change much more slowly

than the average state, so the delta filters can be run less frequently,

as low as 1/Ns times the rate of the bar filter. The overall complex-

ity can be reduced from order Ns to order 1+. This is illustrated in

Fig. 3.33. Instead of Ns high-complexity nonlinear Kalman filters, the

bar-delta method uses a single high-complexity filter to estimate the

battery-pack-average state, and Ns low-complexity filters, each one

perhaps executed only once every Ns measurement intervals.

x̂
(1)
k x̂

(2)
k x̂(3)k x̂

(Ns)
k

xk ∆x
(1)
k ∆x

(2)
k ∆x

(Ns)
k

︸ ︷︷ ︸
Ns complex filters replaced by

1 complex filter and Ns simple filters

➠

Figure 3.33: Reduced complexity of the
∆̄ filter.

3.13.1 Bar-delta filtering using the ESC cell model: The bar filter

To make this discussion more concrete, we show how to implement

the method using the ESC cell model. In the implementation that

we describe here, a “bar” filter estimates the pack-average state of

charge, pack-average diffusion current(s), the pack-average hysteresis

voltage, and the current-sensor bias.

As in Sect. 3.12.1, we model current-sensor bias as

ibias
k = ibias

k−1 + nbias
k−1 ,

where nbias
k is a fictitious noise source that is included in the model

to allow SPKF to adapt the bias estimate. This current-sensor bias is

common to all cells in a series-connected battery pack, so needs to be

estimated only once (not once per cell).

We now need to find the pack-average-quantity state equations.

For example, starting with a single-cell state of charge equation, we

recall

z
(i)
k = z

(i)
k−1 − ik−1∆t/Q(i).

Summing this equation over all cells, and dividing both sides of the

equation by Ns gives

1

Ns

Ns

∑
i=1

z
(i)
k =

1

Ns

Ns

∑
i=1

z
(i)
k−1 −

ik−1∆t

Ns

Ns

∑
i=1

1

Q(i)

=
1

Ns

Ns

∑
i=1

z
(i)
k−1 −

ik−1∆t

Ns

Ns

∑
i=1

Q
(i)
inv

z̄k = z̄k−1 − ik−1∆tQ̄inv,
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154 battery management systems: volume ii, equivalent-circuit methods

where we have introduced the new concept of inverse total capac-

ity Q
(i)
inv of cell i to make the equations simpler, and where Q̄inv =

∑
Ns
i=1 Q

(i)
inv/Ns. If we are estimating all cells’ total capacities, we then

use the time-varying quantity Q̄inv,k−1. And, if we also consider the

current-bias state,

z̄k = z̄k−1 − (ik−1 − ibias
k−1)∆tQ̄inv,k−1.

Similarly, the dynamics of all pack-average states and parameters

of interest may be summarized as

z̄k = z̄k−1 − (ik−1 − ibias
k−1 + wk−1)∆tQ̄inv,k−1

īR,k = ARC īR,k + BRC(ik−1 − ibias
k−1 + wk−1)

Ah,k = exp
(
−
∣∣∣(ik−1 − ibias

k−1 + wk−1)γ∆tQ̄inv,k−1

∣∣∣
)

h̄k = Ah,kh̄k−1 + (Ah,k − 1) sgn(ik−1 − ibias
k−1 + wk−1)

s̄k =

⎧
⎨

⎩
sgn(ik − ibias

k + wk−1), |ik − ibias
k + wk−1| > 0

s̄k−1, otherwise

ibias
k = ibias

k−1 + nbias
k−1.

If we further wish to adapt estimates of the battery-pack average

series resistance and inverse capacity, we can include the states

R̄0,k = R̄0,k−1 + nR̄0
k−1

Q̄inv,k = Q̄inv,k−1 + nQ̄inv
k−1

to estimate these quantities in much the same way we estimated the

current-sensor bias, where nR̄0
k and nQ̄inv

k are fictitious noise sources

that allow the nonlinear Kalman filter to adapt the corresponding

pack-average parameters.

The bar-filter for the pack employs a nonlinear Kalman filter that

uses this model of pack-average states and the measurement equation

ȳk = OCV(z̄k) + Mh̄k + M0 s̄k − ∑
j

RjīRj,k − R̄0,k(ik − ibias
k ) + vk.

3.13.2 Bar-delta filtering using the ESC cell model: The cell delta filters

The quantities that we are most interested in estimating at the indi-

vidual cell level are state of charge, resistance, and capacity. These all

factor into determining pack available power and state-of-health esti-

mates.

We first consider the delta-filter approach to determining cell state

of charge. Note from before, ∆z
(i)
k = z

(i)
k − z̄k. Then, using prior
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3. battery-state estimation 155

equations for the dynamics of z
(i)
k and z̄k, we find:

∆z
(i)
k = z

(i)
k − z̄k

=
(
z
(i)
k−1 − (ik−1 − ibias

k−1)∆tQ
(i)
inv,k−1

)

−
(

z̄k−1 − (ik−1 − ibias
k−1)∆tQ̄inv,k−1

)

= ∆z
(i)
k−1 − (ik−1−ibias

k−1)∆t∆Q
(i)
inv,k−1,

where ∆Q
(i)
inv,k = Q

(i)
inv,k − Q̄inv,k. Because ∆Q

(i)
inv,k tends to be very

small, the delta state ∆z
(i)
k does not change quickly, and can be up-

dated at a slower rate than the pack-average SOC by accumulating

(ik−1 − ibias
k−1)∆t in between updates.

An output equation suitable for combining with this state equation

is

y
(i)
k = OCV(z̄k + ∆z

(i)
k ) + Mh̄k + M0 s̄k − ∑

j

RjīRj,k

− (R̄0,k + ∆R
(i)
0,k)(ik − ibias

k ) + vk.

To estimate ∆z
(i)
k , we could use an SPKF with these two equations.

Because it is a single-state SPKF, it is very fast.

As a preview of parameter estimation (talked about in greater

detail in Chap. 4), we can similarly make state-space models of the

delta-resistance and delta capacity states. A simple state-space model

of the delta-resistance state is

∆R
(i)
0,k = ∆R

(i)
0,k−1 + n∆R0

k−1

yk = OCV(z̄k + ∆z
(i)
k )− (R̄0,k + ∆R

(i)
0,k)(ik − ibias

k ) + v∆R0
k ,

where ∆R
(i)
0,k = R

(i)
0,k − R̄0,k and is modeled as a constant value with

a fictitious noise process n∆R0
k allowing adaptation, yk is a crude

estimate of the cell’s voltage, and v∆R0
k models estimation error. The

dynamics of the delta-resistance state are simple and linear enough to

use a single-state EKF rather than an SPKF.

To estimate cell capacity using an EKF, we model

∆Q
(i)
inv,k = ∆Q

(i)
inv,k−1 + n∆Qinv

k−1

dk = (z(i)
k − z

(i)
k−1) + (ik−1 − ibias

k−1)∆t

×
(

Q̄inv,k−1 + ∆Q
(i)
inv,k−1

)
+ ek.

The second equation is a reformulation of the state of charge state

equation such that the expected value of dk is equal to zero by con-

struction. As the EKF runs, the computation for dk in the second
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156 battery management systems: volume ii, equivalent-circuit methods

equation is compared to the known value (zero, by construction),

and the difference is used to update the inverse-capacity estimate.

Note that good estimates of present and previous states-of-charge

are required for this estimate of total capacity to work well. Here,

they come from the pack-average bar SPKF combined with the delta

cell SPKF.

The output of the delta filters is computed by combining the aver-

age battery-pack state with the battery-cell delta states produced by

the individual Kalman filters. Namely,

z
(i)
k = z̄k + ∆z

(i)
k

R
(i)
0,k = R̄0,k + ∆R

(i)
0,k

Q
(i)
k =

1

Q̄inv,k + ∆Q
(i)
inv,k

.

3.13.3 Example of bar-delta filtering, using desktop validation

We illustrate bar-delta filtering with an example, but in the process

consider the bigger issue of how one should validate a BMS algo-

rithm. There are three different levels of validation.

The most important level of validation uses a hardware prototype.

The final battery-management-system electronics plus software are

connected to a battery pack. The battery pack is connected to its

load, the entire system is exercised, and the algorithm predictions

are evaluated. This is the most significant level of validation because

it includes all real-world issues expected in a production system.

However, it is also the most expensive, and truth values for cell states

are difficult or impossible to determine post facto, even based on

recorded data. There is great value in being able to eliminate most

algorithm issues before arriving at the prototype stage.

The simplest level of validation uses only software on a desktop

computer, a process we call desktop validation. This is similar in many

ways to what we have already seen in this chapter. However, we do

not use recorded cell-test data to exercise the algorithms. Instead, we

use the ESC cell model to create synthetic test data for a wide variety

of test-case scenarios. This allows access to the truth values of all cell

and algorithm states, since the true SOCs, diffusion currents, hys-

teresis states (and so forth) are known when generating the synthetic

data. The nonlinear Kalman-filter state estimates can be compared

directly to the true cell states. This is very useful when tuning algo-

rithms but the validity of the results are limited by the accuracy of

the cell model.

An intermediate phase of validation involves hardware-in-the-loop

(HIL) validation. In this scenario, the final BMS code is executed on
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Figure 3.35: Cell current/voltage
input/output data.

the final BMS hardware. However, the input signals to the algorithms

are synthetically generated in the same way as they were for desktop

validation. This validation phase verifies that the final code in the

final hardware produces identical estimates to the desktop case for

the same scenarios.

Desktop and HIL validation strategies are illustrated in Fig. 3.34.

Both require a data generation component that creates synthetic

BMS data based on drive cycles and other initialization parameters.

Both require an algorithm simulation component that simulates the

algorithms using the synthetic data as input, based on various initial-

ization parameters. The desktop-validation method executes these

algorithms on a PC, perhaps using MATLAB. The HIL validation

method executes these algorithms on the final hardware, perhaps im-

plemented in C. Both should give identical results, and the results of

both are evaluated compared to the known truth states provided by

the data-generator system.

Evaluation

system

BMS

EvaluationData

set
algorithm
PC-based

generator

Figure 3.34: Desktop and HIL valida-
tion.

In either case, validation scenarios should include: normal opera-

tion, tests to see whether the algorithms recover from improper state

of charge initialization, tests for robustness to sensor failures (sensor

faults, sensor bias, and sensor noise), accuracy of algorithms when

temperatures change, and when new and old cells are mixed in a

battery pack. These scenarios should consider different load profiles

over the entire required operational range of the battery pack. Insight

and validation of the methods is gained via analysis and display of

outputs.

3.13.4 Examples of bar-delta accuracy and speed

As an example, we consider a desktop-validation scenario of the bar-

delta method. We simulated cycling of a four-cell battery pack with

a UDDS drive-cycle profile, a rest period, the same UDDS drive-cycle

profile, and a rest period. This profile is shown in the top frame of

Fig. 3.35. The simulated battery pack comprised cells having true

capacities of 6.5, 7.0, 7.5, and 8.0 Ah, resistances of 2.0, 2.25, 2.5,

and 2.75 mΩ, and initial SOC values of 40, 45, 50, and 55 %. The
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Figure 3.36: SOC and resistance esti-
mates using bar-delta filtering.
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Figure 3.37: Bar-delta state of charge
estimation errors.

current-sensor bias was 0.5 A. Simulated cell voltage measurements

are shown in the bottom frame of Fig. 3.35.

The bar-delta algorithms were initialized with all cells having esti-

mated capacity of 6.2 Ah, estimated resistances of 2.25 mΩ, estimated

current-sensor bias of 0 A, and initial state of charge estimates based

on initial voltages. SPKFs were used for the bar filter and the state

of charge delta filters, and extended Kalman filters were used for the

resistance and capacity-inverse delta filters.

Fig. 3.36 shows the overall bar-delta estimates of cell SOCs and

resistance, compared to the truth values known from the process

that generated the synthetic current/voltage input/output data. The

SOC estimates are quite good, and improve over time as the filter

learns the individual cell resistances and capacities and the current-

sensor bias. Similarly, while the cell resistances are initialized to very

crude estimates of the true value, these estimates improve relatively

quickly over time and converge toward the truth by the end of the

simulation.

Fig. 3.37 presents a slightly different point of view for these results.

The top frame shows the battery-pack-average state of charge esti-

mation error, plus bounds. The error is always less than about 1 %,

and is always within the SPKF’s 3σ error bounds, as desired. The

bottom frame shows the overall SOC estimation errors for all four

cells—considering the contributions of both the bar filter and the

delta filters—plus their error bounds. Again, SOC estimation error

is within about 1 % for all cells, and the errors are always within the

error bounds produced by the filters. (The overall estimation-error

variance is computed as the sum of the bar-filter variance plus the

delta-filter variance, assuming that the errors are uncorrelated. The

bounds are computed as three times the square root of the overall

estimation-error variance.)

Fig. 3.38 shows some other bar-delta estimates. The top frame

shows battery-pack-average resistance estimates, which are inten-

tionally initialized to incorrect values to show that they converge

quickly to the true values. The truth is within the error bounds of

the filter at all times, and the error bounds shrink over time as the

filter gains confidence in its estimates. The bottom frame shows that

the current-sensor-bias state also converges to the correct value over

a reasonable period of time, that the true bias is always within the

confidence interval of the estimator, and that the error bounds on

the estimate decrease over time. We also notice that the bar-delta

method produces good state estimates even during the interval when

the current-sensor bias is not well estimated, but that the filter’s esti-

mates do improve when the bias is better modeled.

Finally, we comment without showing result figures that cell capac-
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Figure 3.38: Bar-delta auxiliary state
estimates.

ity estimates evolve in a similar way to resistance estimates. However,

the time scale of adaptation is much longer since capacity is very

weakly linked to the output measurement, as we will discuss fur-

ther in Chap. 4. Abrupt changes in capacity will not be tracked very

quickly by this method; but, slow capacity fade due to normal aging

will be tracked well.

The bar-delta method was created to reduce computational com-

plexity. So, is it faster? Table 3.3 presents timing results of the method.

These were generated using SPKF and bar-delta algorithms hand-

optimized in compiled C code, run on a (now-dated, but still repre-

sentative) G4 processor. For a battery pack comprising 100 cells in se-

ries, 5.272 ms was required during each iteration to update 100 SPKFs.

This scenario is the baseline for comparison, so is assigned a speedup

value of 1.0. In contrast, a single bar filter required 0.067 ms per iter-

ation to execute. This is somewhat more than one one-hundredth of

the baseline case since the bar filter incorporated a bias-state estimate

whereas the baseline case did not and because there is some overhead

in the wrapper code that cannot be eliminated. The overall speedup

of this case is 78.7.

Next, the entire bar-delta method was implemented, with one bar

filter and 100 delta filters, where every delta filter was updated each

iteration. This scenario required 0.190 ms per iteration, for a speedup

of 27.7. Finally, a bar-delta method having one bar filter, 100 delta

filters, but where only half of the delta filters were updated each

iteration was implemented. This required 0.123 ms per iteration, for

an overall speedup of 42.9. We see that a wide variety of speedups

are possible using the bar-delta method.

3.14 Where to from here?

In this chapter, we have seen both good and bad ways to estimate

state of charge for all cells in a battery pack. Model-based methods

are preferred over some simpler but less robust methods. Kalman-

filter-based methods are optimal under a very specific set of operat-

Test description (for pack having 100 cells) CPU time

per iteration

Speedup

One SPKF per cell 5.272 ms 1.0

One bar filter only, no delta filters 0.067 ms 78.7

1 bar, 100/100 delta filters updated ea. iter. 0.190 ms 27.7

1 bar, 50/100 delta filters updated ea. iter. 0.123 ms 42.9 Table 3.3: Speedup of bar-delta method
for several scenarios
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160 battery management systems: volume ii, equivalent-circuit methods

32 For one example, see http:

//mocha-java.uccs.edu/ECE5550/.

ing conditions, but prove very robust even when the assumptions

made in the derivations are not exactly met in practice.

Two additional benefits of Kalman filtering are that the algorithm

produces confidence bounds on its estimates, and that it produces

estimates for the entire state vector of the cell model, not only state

of charge. Estimates of these additional state-vector values will be

very valuable when considering how to produce battery-pack power

estimates in Chap. 6.

There are a lot of nuances to Kalman filtering that are beyond the

scope of this chapter. However, there are also quite a number of very

good textbooks and online courses (including notes and videos of

lectures) on the subject of Kalman filtering in general. The interested

reader is referred to those for greater depth of understanding.32

Referring back to Fig. 3.1, we have now addressed the state-

estimation requirment of a BMS. Our next step is to look at state-

of-health estimation, which is a form of model-parameter estimation.

This is the main focus of Chap. 4.

3.15 Appendices: Algorithms for state estimation

The following pages have summary tables for the algorithms devel-

oped in this chapter.
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3. battery-state estimation 161

General sequential-probabilistic-inference solution

General state-space model:

xk = f (xk−1, uk−1, wk−1)

yk = h(xk, uk, vk),

where wk and vk are independent Gaussian noise processes hav-

ing covariance matrices Σw̃ and Σṽ, respectively.

Definitions: Let

x̃−k = xk − x̂−k and ỹk = yk − ŷk.

Initialization: For k = 0, set

x̂+0 =E
[
x0
]

Σ
+
x̃,0 =E

[
(x0 − x̂+0 )(x0 − x̂+0 )

T
]
.

Computation: For k = 1, 2, . . . compute:

State-prediction time update: x̂−k =E
[

f (xk−1, uk−1, wk−1) | Yk−1

]

Error-covariance time update: Σ
−
x̃,k =E

[
(x̃−k )(x̃−k )

T
]

Output estimate: ŷk =E
[
h(xk, uk, vk) | Yk−1

]

Estimator gain matrix:∗ Lk =E
[
(x̃−k )(ỹk)

T
](

E
[
(ỹk)(ỹk)

T
])−1

State-estimate meas. update: x̂+k = x̂−k + Lk

(
yk − ŷk

)

Error-covariance meas. update: Σ
+
x̃,k =Σ

−
x̃,k − LkΣỹ,kLT

k

∗If a measurement is missed for some reason, then simply skip the measure-
ment update for that iteration. That is, Lk = 0 and x̂+k = x̂−k and Σ

+
x̃,k = Σ

−
x̃,k.
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Summary of the linear Kalman filter

Linear state-space model:

xk = Ak−1xk−1 + Bk−1uk−1 + wk−1

yk =Ckxk + Dkuk + vk,

where wk and vk are independent, zero-mean, Gaussian noise

processes of covariance matrices Σw̃ and Σṽ, respectively.

Initialization: For k = 0, set

x̂+0 =E[x0]

Σ
+
x̃,0 =E

[
(x0 − x̂+0 )(x0 − x̂+0 )

T
]
.

Computation: For k = 1, 2, . . . compute:

State-prediction time update: x̂−k = Ak−1x̂+k−1 + Bk−1uk−1

Error-covariance time update: Σ
−
x̃,k = Ak−1Σ

+
x̃,k−1AT

k−1 + Σw̃

Output estimate: ŷk =Ck x̂−k + Dkuk

Estimator gain matrix:∗ Lk =Σ
−
x̃,kCT

k [CkΣ
−
x̃,kCT

k + Σṽ]−1

State-estimate meas. update: x̂+k = x̂−k + Lk
(
yk − ŷk

)

Error-covariance meas. update: Σ
+
x̃,k =Σ

−
x̃,k − LkΣỹ,kLT

k

∗If a measurement is missed for some reason, then simply skip the measure-
ment update for that iteration. That is, Lk = 0 and x̂+k = x̂−k and Σ

+
x̃,k = Σ

−
x̃,k.
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3. battery-state estimation 163

Summary of the nonlinear extended Kalman filter

Nonlinear state-space model:

xk = f (xk−1, uk−1, wk−1)

yk = h(xk, uk, vk),

where wk and vk are independent, Gaussian noise processes with

means w̄ and v̄ and covariance matrices Σw̃ and Σṽ, respectively.

Definitions:

Âk =
d f (xk,uk ,wk)

dxk

∣∣∣
xk=x̂+k

B̂k =
d f (xk ,uk ,wk)

dwk

∣∣∣
wk=w̄k

Ĉk =
dh(xk ,uk,vk)

dxk

∣∣∣
xk=x̂−k

D̂k =
dh(xk ,uk ,vk)

dvk

∣∣∣
vk=v̄k

Initialization: For k = 0, set

x̂+0 =E[x0]

Σ
+
x̃,0 =E

[
(x0 − x̂+0 )(x0 − x̂+0 )

T
]
.

Computation: For k = 1, 2, . . . compute:

State-prediction time update: x̂−k = f (x̂+k−1, uk−1, w̄k−1)

Error-covariance time update: Σ
−
x̃,k = Âk−1Σ

+
x̃,k−1Â

T
k−1 + B̂k−1Σw̃B̂

T
k−1

Output estimate: ŷk = h(x̂−k , uk, v̄k)

Estimator gain matrix:∗ Lk =Σ
−
x̃,kĈ

T
k [ĈkΣ

−
x̃,kĈ

T
k + D̂kΣṽ D̂

T
k ]

−1

State-estimate meas. update: x̂+k = x̂−k + Lk

(
yk − ŷk

)

Error -covariance meas. update: Σ
+
x̃,k =Σ

−
x̃,k − LkΣỹ,kLT

k

∗If a measurement is missed for some reason, then simply skip the measure-
ment update for that iteration. That is, Lk = 0 and x̂+k = x̂−k and Σ

+
x̃,k = Σ

−
x̃,k.
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Summary of the nonlinear sigma-point Kalman filter

Nonlinear state-space model:

xk = f (xk−1, uk−1, wk−1)

yk = h(xk, uk, vk),

where wk and vk are independent, Gaussian noise processes with

means w̄ and v̄ and covariance matrices Σw̃ and Σṽ, respectively.

Definitions: Let

xa
k =

[
xT

k , wT
k , vT

k

]T
, X a

k =
[
(X x

k )
T, (X w

k )
T, (X v

k)
T
]T

,

p= 2 × dim(xa
k).

Initialization: For k = 0, set

x̂+0 =E
[
x0
]

Σ
+
x̃,0 =E

[
(x0 − x̂+0 )(x0 − x̂+0 )

T
]

x̂a,+
0 =E

[
xa

0

]
=
[
(x̂+0 )

T , w̄, v̄
]T

Σ
a,+
x̃,0 =E

[
(xa

0 − x̂a,+
0 )(xa

0 − x̂a,+
0 )T

]

=diag
(
Σ
+
x̃,0, Σw̃, Σṽ

)
.

Computation: For k = 1, 2, . . . compute:

State-estimate time update: X a,+
k−1 =

{
x̂a,+

k−1, x̂a,+
k−1 + γ

√
Σ

a,+
x̃,k−1,

x̂a,+
k−1 − γ

√
Σ

a,+
x̃,k−1

}

X x,−
k,i = f (X x,+

k−1,i, uk−1,X w,+
k−1,i)

x̂−k =∑
p
i=0 α

(m)
i X x,−

k,i

Error-covariance time update: X̃
x,−
k,i =X x,−

k,i − x̂−k

Σ
−
x̃,k =∑

p
i=0 α

(c)
i

(
X̃

x,−
k,i

)(
X̃

x,−
k,i

)T

Output estimate: Y k,i = h(X x,−
k,i , uk,X v,+

k−1,i)

ŷk =∑
p
i=0 α

(m)
i Y k,i

Estimator gain matrix:∗ Ỹ k,i =Y k,i − ŷk

Σỹ,k =∑
p
i=0 α

(c)
i

(
Ỹ k,i

)(
Ỹ k,i

)T

Σ
−
x̃ỹ,k =∑

p
i=0 α

(c)
i

(
X̃

x,−
k,i

)(
Ỹ k,i

)T

Lk =Σ
−
x̃ỹ,kΣ

−1
ỹ,k

State-estimate meas. update: x̂+k = x̂−k + Lk

(
yk − ŷk

)

Error-covariance meas. update: Σ
+
x̃,k =Σ

−
x̃,k − LkΣỹ,kLT

k

∗If a measurement is missed for some reason, then simply skip the measure-
ment update for that iteration. That is, Lk = 0 and x̂+k = x̂−k and Σ

+
x̃,k = Σ

−
x̃,k.
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0 χ2
U(α,df)

α1 − α

Appendix: Critical Values of χ2
U(α,df)

For a chi-squared distribution with some number of degrees of free-

dom, each entry in the following table represents the critical value of

χ2
U(α,df) for a specified upper tail area α.
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1 See, for example, Kim, G-H, Smith, K,
Ireland, J, and Pesaran, A., “Fail-safe
design for large capacity lithium-ion
battery systems,” Journal of Power
Sources, 210, 2012, pp. 243–253.

4

Battery Health Estimation

4.1 Need for health estimates

Over time, cells in a battery pack will age and their performance will

degrade. They will eventually reach a point where they no longer

meet the performance requirements of the battery pack, which we

consider to be the pack’s end of life (although so-called “second-life”

applications might be able to make use of the remaining diminished

capability). Between a battery pack’s beginning of life and end of life

it is important to have knowledge regarding the present degradation

status of its cells to be able to make accurate calculations of state of

charge, available energy and available power.

In Volume I of this series, we focused on understanding ideal bat-

tery cells: cells that do not age and hence have constant model pa-

rameter values. Sadly, such cells do not exist. We now turn our atten-

tion to designing algorithms that work with normal battery cells: cells

that do age, and hence have operational characteristics that degrade.

We need to understand which parameters in the model change over

time, which of these are most significant, and how to modify our

battery-management methods to account for aging.

Note that normal aging is only one cause of cell failure. Failures

can also occur because of cell design faults, poorly controlled manu-

facturing processes or impurities in the materials used during man-

ufacture, abuse, and uncontrolled operations. Cells that have design

or manufacturing faults or are abused often appear normal for a pe-

riod of time and then fail very rapidly. The methods discussed in this

chapter cannot predict this sudden-onset failure (it remains an open

problem to do so), but there are some remediation methods that can

maximize safety even if cells fail in this way.1 Proper battery man-

agement will prevent uncontrolled operation while the BMS is active,

but has no influence over external factors or over ambient conditions
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168 battery management systems: volume ii, equivalent-circuit methods

Discharge

Charge

electrode
Negative

electrode
Positive

Figure 4.1: Ideal-cell operation.

while the BMS is inactive (e.g., physical damage during an xEV colli-

sion, or an out-of-bounds ambient temperature while the BMS and its

thermal controls are turned off).

Referring back to Fig. 3.1, which illustrates the main topics of this

book, it turns out that state estimation using an equivalent-circuit

cell model works just as well for normal battery cells as it does for

ideal battery cells so long as every cell’s model parameter values are

continuously updated to reflect the cell’s present aged characteristics.

In this chapter, we begin to examine how to estimate the cell-model

parameter values that change relatively slowly. Our focus is on under-

standing and tracking normal aging processes as well as uncontrolled

operations in the sense that overvoltage, overtemperature, and so

forth accelerate the normal degradation mechanisms. The battery

pack can still be used during the period when it is aging normally

until its end of life, but at reduced levels of performance. We do not

look at internal faults and abuse, which are usually detected using

other means (e.g., those discussed in Chap. 1) and may require shut-

ting down parts or all of the battery pack for immediate servicing in

order to prevent propagation of the failure. The BMS designer should

work closely with the battery-cell electrochemists and production

engineers to understand all of the probable failure mechanisms and

their characteristics fully to be able adapt the knowledge from this

chapter into their individual designs.

In particular, we are most interested in those quantities that reflect

a change in the performance that the battery pack can deliver. These

are indicators of battery-pack SOH. There is no universally agreed-

upon definition of SOH, but the most commonly estimated quantities

used to summarize battery pack health include the present total ca-

pacity and present equivalent series resistance of every cell. Accurate

estimates of total capacity and equivalent series resistance allow us to

compute reliable total energy and available power estimates for the

battery pack over its service lifetime.

4.1.1 Total capacity

As a battery cell ages, its total capacity Q decreases. In a lithium-ion

cell, this is due primarily to unwanted side reactions that consume

lithium that could otherwise be used during charge and discharge

of the cell, and to structural deterioration of the electrode active

materials that eliminates lithium storage sites.

Fig. 4.1 illustrates a simplified example of ideal-cell behavior. In

the figure, both the negative and positive electrodes have sixteen

sites that could hold lithium. Presently, four negative-electrode sites

and five positive-electrode sites are shown to be occupied. When the
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4. battery health estimation 169

2 This is a simplification. Neither
electrode is ever completely full or
completely empty during operation. In-
stead, a cell is considered fully charged
or fully discharged when its open-
circuit voltage reaches predetermined
maximum and minimum levels.

Discharge

Charge

electrode
Negative

electrode
Positive

reaction
Side

Figure 4.2: Capacity loss due to side
reaction.

Discharge

Charge

electrode
Negative

electrode
Positive

Figure 4.3: Capacity loss due to mate-
rial loss.

cell is fully charged, there will be nine occupied sites in the negative

electrode, and no occupied sites in the positive electrode. When the

cell is fully discharged, there will be no occupied sites in the negative

electrode, and nine occupied sites in the positive electrode.2 The

total capacity of the cell is equal to the minimum of the number of

storage sites in the negative electrode, the number of storage sites in

the positive electrode, and the amount of lithium that can be cycled.

In this example, the total capacity is the minimum of 16, 16, and 9,

which yields a total capacity of nine lithium atoms.

Continuing the example, a side reaction is an undesired chemical

process that consumes lithium while it is in transit from one electrode

to another and removes it from cycling. Most side reactions happen

while the cell is being charged. This is illustrated in Fig. 4.2, where

one lithium atom is shown being consumed by a side reaction as the

cell is being charged. The total capacity has now been reduced to

the minimum of 16, 16, and 8, which yields a total capacity of eight

lithium atoms.

Structural deterioration is something that eliminates lithium stor-

age sites from one of the electrodes, perhaps due to a collapse of part

of the crystal structure of the electrode itself. This is illustrated in

Fig. 4.3, where damage to the positive electrode is shown as a white

scar. Some lithium may be trapped in the structure such that it is

no longer free to cycle back and forth as the cell is charged and dis-

charged, so capacity is lost. In the figure, the lithium atom in the

lower-right corner of the positive electrode is trapped by the struc-

tural collapse. Structural collapse can also eliminate lithium storage

sites. In the figure, the positive electrode has only ten good storage

sites, but one of those is isolated from cycling, so there are only nine

useable storage sites. So, the total capacity is the minimum of 16, 9,

and 8, yielding a final total capacity of 8 lithium atoms.

This slow reduction in capacity is often referred to as capacity fade.

We require algorithms that track capacity fade to provide the other

battery-management-system algorithms with up-to-date estimates

of every cell’s total capacity. This knowledge is critical to be able

to calculate battery-pack available energy accurately, where total

capacity is a major contributing factor (as we saw in Sect. 1.14). If

coulomb counting is being used for SOC estimation, an accurate

estimate of total capacity is also needed; however, if Kalman filters

are being used instead, the state of charge estimates turn out to be

fairly insensitive to a poor total-capacity estimate since the built-in

feedback correction mechanism is able to compensate for moderate

errors in the total-capacity estimate. The dependence of available-

power estimates on the value of total capacity also turns out to be

minimal.
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170 battery management systems: volume ii, equivalent-circuit methods

3 Because resistance and power are so
tightly coupled, resistance rise in a cell
is commonly referred to as power fade.

4.1.2 Equivalent series resistance (ESR)

As a battery cell ages normally, its equivalent series resistance R0

increases. This is also due primarily to unwanted side reactions and

structural deterioration. The side reactions tend to form resistive

films on the surface of the active-material particles that impede the

ionic conductivity. Structural deterioration severs electronic pathways

between particles and decreases the electronic conductivity.

Having an up-to-date knowledge of equivalent-series resistance is

important because it turns out to be a major contributing factor to the

available-power calculation.3 It can be a major contributing factor to

state of charge estimation for some voltage-based methods; however,

for Kalman-filter-based methods it it is a minor factor, and it does not

affect coulomb-counting methods at all. It does not have a significant

role in available-energy estimation.

4.1.3 Other cell parameters

As the cell ages, other cell-model parameter values will change as

well. For example, while the open-circuit-potential relationships of

each electrode remain fixed by the chemistry of the crystal structures,

a cell’s overall OCV relationship can change due to shifts in the sto-

ichiometric operating windows used by each electrode that occur

when capacity is lost due to side reactions and structural deteriora-

tion. This effect tends not to be large, but may need to be tracked by

future BMS.

Other cell-model parameter values almost certainly change as

well; however, few if any present BMS make efforts to estimate the

changes. Overall, changes to the equivalent-series resistance and total

capacity have the dominant impact on BMS performance.

As we proceed in this chapter, we will first discuss in greater de-

tail the primary specific known electrochemical and structural mech-

anisms by which a lithium-ion cell can degrade. We will see that this

is a lot more complicated than the simple example just presented, but

that the dominant outcomes are still well represented by changes in

resistance and total capacity in an equivalent-circuit cell model. There

are other secondary degradation mechanisms and doubtless some

that have not yet been discovered, but so long as they manifest as

slow changes in cell resistance and total capacity, the methods of this

chapter will continue to work.

We will then explore the concept of sensitivity, leading to an un-

derstanding of how observable the changes in total capacity and

resistance are from cell input/output (current/voltage) measure-

ments. This will lead directly to a simple method that can estimate
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4 Because aging depends on the physics
of the cell, aging mechanisms of a
lithium-ion cell will be different from
those of other types of cell. We restrict
our discussion to lithium-ion cells here,
basing this section on the excellent
paper by Vetter et al., “Ageing mecha-
nisms in lithium-ion batteries,” Journal
of Power Sources, 147, 2005, 269–281.

equivalent-series resistance with a good degree of accuracy. However,

it will also show that finding a good estimate of cell total capacity is a

very challenging task.

We know that a nonlinear Kalman filter can be used to estimate

the quickly time-varying states of a cell model. It turns out that non-

linear Kalman filters can also be used to estimate the slowly time-

varying parameter values. We will investigate how to do so, and

some remedies to a common pitfall when trying to estimate the states

and parameters of a model at the same time. An advantage of this ap-

proach is that it can be used to estimate any time-varying parameter

in the cell model—not only resistance and capacity.

If we cannot afford the complexity of a Kalman-filter method and

yet desire to estimate total capacity, we might consider a regression

method. However, it turns out that methods for estimating total ca-

pacity that are based in principle on ordinary least-squares regression

will yield biased results. We spend a considerable amount of time

in this chapter seeing why this is true, and showing how to estimate

total capacity correctly using regression. We further explore how we

can know that our estimate is correct and how to compute confidence

intervals for our total-capacity estimates.

4.2 Negative-electrode aging

Lithium-ion battery-cell operational characteristics change slowly

over time as the cell ages. This aging can be captured in an equivalent-

circuit cell model by adapting the parameter values within the model

so that good predictions are made over the entire lifetime of the bat-

tery cell. However, since equivalent-circuit-model parameters do not

individually describe any of the physical electrochemical processes

taking place inside the cell, these changing parameter values do not

give any insight into why or how the aging has occurred.

To understand aging, we must consider a cell from a physics-

based perspective.4 In the next sections, we will seek to describe

aging qualitatively, as even this simplified degree of understanding

is valuable to the BMS algorithm designer. For example, it helps to

explain why manufacturers put voltage limits and current limits on

cells.

For maximum impact, we would need to be able to model aging

quantitatively as well. Two crude reduced-order quantitative cell-

degradation models are introduced in Chap. 7. These models are sim-

ple enough to be used alongside an equivalent-circuit model and can

be used to track some kinds of aging, leading to some preliminary

physics-based control methods. For more advanced controls, which

provide more accurate limits on the power available from the bat-
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Figure 4.4: Open-circuit-potential
relationships for two negative-electrode
active materials.

tery pack, one would need to combine reduced-order physics-based

degradation models with a reduced-order physics-based cell model,

such as was developed in Vol. I. This is one topic we will cover in the

planned Vol. III of this series.

In a lithium-ion cell, aging processes occur within both the nega-

tive and positive electrodes. We consider degradation in the negative

electrode first, where aging effects are seen at three scales. First, some

aging occurs at the surface of the electrode active-material particles;

that is, at the interface between the solid and the electrolyte. Second,

other aging mechanisms take place within the interior of the active-

material particles. Third, aging processes can take place within the

overall composite electrode structure, including changes to the active

materials, the conductive additives, the binder materials, the current

collectors, the porosity, and so forth. We will consider aging at these

three scales separately in the next subsections.

4.2.1 Negative electrode aging at surface of particles

Most commercial lithium-ion battery cells have negative-electrode

active materials that are comprised of a synthetic or natural graphite.

Graphite has good lithium storage capacity, can be charged and dis-

charged repeatedly, and is inexpensive and nontoxic. Most important,

perhaps, is that lithiated graphite has very low voltage with respect

to a lithium-metal reference. This is key to maximizing overall cell

voltage, since cell voltage is equal to the positive-electrode potential

minus the negative-electrode potential.

Fig. 4.4 plots the open-circuit-potential relationships for graphite

and for another candidate negative-electrode active material: lithium-

titanate-oxide (LTO). The horizontal axis is the present operating

stoichiometry of the electrode and corresponds to the value of x in

LixC6, for graphite or in Li4+3xTi5O12 for LTO. The black dot at x =

0.55 shows that the open-circuit potential of graphite is about 0.1 V

at that point. Charging a cell increases x and causes the potential to

decrease; discharging does the opposite.

While the low potential of graphite over most of its operational

range makes it highly desirable for high-voltage lithium-ion cells, it

is also the cause of the dominant degradation mechanism that takes

place inside a lithium-ion cell. This low electrical potential is outside

the electrochemical voltage stability window of the organic solvents

used in lithium-ion cell electrolytes. When the electrolyte solvents

come into contact with lithiated graphite, reductive electrolyte decom-

position takes place at the electrode/electrolyte interface. The rate
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5 LTO has high-enough potential that
this side reaction does not occur, greatly
extending life. However, it also lowers
the overall cell voltage, and hence the
cell’s energy density.
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Figure 4.5: Growth of a SEI film.
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Figure 4.6: Gas generation and cracking
due to solvent co-intercalation.

of decomposition is accelerated by lower electrode potentials, which

occur when the electrode (and the cell) are in a high SOC.5

Lithium-ion cells are constructed in a fully discharged state (all of

the lithium is in the positive electrode). The nonlithiated graphite is

then at a high-enough potential that the electrolyte-reduction reac-

tion does not occur during cell fabrication. However, when the cell is

charged for the first time, the graphite becomes lithiated and its po-

tential drops. Solvent in the electrolyte that comes into contact with

the surface of the particle is reduced and forms reaction products

that coat the surface of the electrode particle with a solid–electrolyte in-

terphase (SEI) surface film. The SEI is a passivating layer that partially

insulates the graphite from the remaining solvent in the electrolyte

and hence slows down further reaction. Hence, most of the SEI is

formed during the initial charge process of the cell, which leads to

this first charge being termed the formation process. The growth of SEI

is illustrated in Fig. 4.5.

The side-reaction that produces SEI film consumes lithium while

creating the film products. Therefore, cell total capacity decreases

due to SEI growth. The SEI film is porous enough to allow interca-

lation and deintercalation of lithium to and from the graphite, but

decreases the conductivity of ion transfer and hence increases cell

resistance. Therefore, SEI growth leads to both capacity fade and

power fade.

The exact nature of the SEI layer is complicated and not com-

pletely understood. It is suspected that numerous reaction products

form, then decompose, and then combine into more stable products.

However, we do know that once lithium is consumed by SEI growth

it is never returned to a form that enables cycling. That is, once capac-

ity is lost to grow SEI it is permanently lost.

While SEI grows fastest during the formation cycle, it continues

to build over time. Anything that exposes graphite to solvents in the

electrolyte will cause SEI growth. For example, while the SEI film

tends to impede the solvent from reaching the graphite surface, the

film has enough porosity that some solvent continues to permeate the

film and contact the surface of the particle. When this happens, more

SEI forms, and the SEI layer grows. High temperatures can lead to

reactions that break down the SEI layer, which can lead to new SEI

forming on the newly exposed graphite.

Charging at high rates can force solvent to co-intercalate into the

graphite along with lithium and so the SEI reaction can take place

inside a graphite particle. When this happens, gasses generated dur-

ing SEI formation cause expansive pressures to build up inside the

particle, which tend to crack it along internal grain boundaries or to

flake off layers (a process termed exfoliation). Both of these expose
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Lithium plating
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attack
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Figure 4.7: Acid attack, anode poison-
ing, and lithium plating.

6 For this reason, great care should
be taken when charging a lithium-
ion cell at cold temperatures. Many
manufacturers do not recommend
charging a cell at ambient temperatures
below about 0 ◦C.

7 In silicon, a very-high-capacity pos-
sible graphite replacement in future
lithium-ion cells, the volume changes
can be more than 300 %!

more fresh graphite to solvent in the electrolyte, leading to more SEI

formation. This is illustrated in Fig. 4.6.

Trace water in the electrolyte combines with ionized fluorine from

the electrolyte salt LiPF6 to form hydrofluoric acid, HF. This acid at-

tacks the SEI, thinning it and allowing more solvent to contact the

graphite, forming more SEI. The acid can also accelerate positive-

electrode degradation (as we will see in Sect. 4.3.1), leading to dis-

solved ionized metals such as manganese or cobalt in the electrolyte.

These can become part of products comprising the SEI layer when

they propagate through the separator to the negative-electrode re-

gion of the cell, a process known as anode poisoning. The SEI products

formed by these metals tend not to have high electronic conductivity

and so increase cell resistance. They can also plug pores that would

otherwise be used for lithium, preventing lithium cycling and caus-

ing capacity fade. These two mechanisms are illustrated in Fig. 4.7.

A final surface effect that we consider is that of lithium plating.

This side reaction can cause severe capacity loss and is most acute at

cold temperatures where diffusion of lithium in the solid particles

is slower.6 If charging is forced, the local particle surface overpoten-

tial can reach a level that causes lithium ions from the electrolyte to

join with electrons from the external circuit and plate solid lithium

metal on the surface of the particle (this happens when the surface

solid–electrolyte potential difference drops below 0 V). Capacity

is irreversibly lost. The lithium metal tends to further catalyze SEI

growth and forms a metallic annealing site that promotes growth of

metal dendrites, which can penetrate the separator and eventually

lead to a cell short circuit. This is also illustrated in Fig. 4.7.

4.2.2 Negative electrode aging in bulk

Charging and discharging lithium-ion cells increases and decreases

the amount of lithium present in the negative-electrode active par-

ticles. Lithiation causes stresses that tend to lead to an increase in

volume; delithiation tends to decrease volume. In graphite, this vol-

ume change is modest, usually less than 10 %.7

Over time, these volume changes can lead to cracking and split-

ting of particles along internal grain boundaries. As mentioned in

Sect. 4.2.1, solvent co-intercalation and gas formation can also split

particles. In graphite electrodes, this will cause more SEI to form on

the exposed graphite. Alternately, the volume changes can crack only

the SEI layer, which will expose more surface graphite and lead to

more SEI formation.
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8 See, for example, Y-H Chen, C-W
Wang, G. Liu, X-Y Song, V.S. Battaglia,
and A.M. Sastry, “Selection of Con-
ductive Additives in Li-Ion Battery
Cathodes, A Numerical Study,” Journal
of the Electrochemical Society, 154(10),
2007, pp. A978–986.

Current collector

Binder

Conductive additive

Active materials

Figure 4.8: Composite electrode struc-
ture.

4.2.3 Negative electrode aging in composite electrode

Within the composite negative electrode of a lithium-ion cell, con-

ductive additives such as carbon black are often added to improve

the electrode’s electronic conductivity and binders such as PVdF are

added to help maintain contact between particles. These inactive

components are not often mentioned when describing the parts of

a lithium-ion cell as they do not take part in charge and discharge

operations. However, they are critical to the proper functioning of the

cell, and a great deal of care is taken when designing a cell to arrive

at a good ratio of the inactive materials to the active materials in the

electrode.8 Fig. 4.8 illustrates the structure of the electrode, including

the binders and conductive additives that coat the particles.

When lithiating and delithiating the active materials in an elec-

trode, stresses leading to deformations can cause the binder to

fail, leading to mechanical and electronic contact loss between the

graphite particles themselves, between the particles and the cur-

rent collector, between the binder and the particles, and between the

binder and the current collector. This results in higher cell resistance

as fewer pathways are available for electrons to flow through the

electrode matrix. It can also lead to capacity loss if particles become

completely disconnected electronically from the current collectors.

Porosity of the electrode can be reduced by volume changes and

by the evolution of the SEI layer, which grows into the space nor-

mally occupied by the electrolyte. This impedes movement of lithium

ions through the electrolyte and increases cell resistance.

If a cell becomes overdischarged, the open-circuit potential of

its graphite material can increase to the point where copper in the

negative-electrode current collector corrodes, releasing Cu2+ into

the electrolyte. This has several consequences. First, there is reduced

current-collector/electrode contact, which leads to higher cell resis-

tance. Second, corrosion products that deposit on electrode particles

have poor electronic conductivity, which increases SEI film resistance

and hence overall cell resistance. Third, the corroded current collec-

tor has uneven resistance, which can lead to inhomogeneous current

and potential distributions across the cell plate area, resulting in ac-

celerated aging in parts of the cell and a preference toward lithium

plating. Finally, copper plating on the negative-electrode particles

also make metallic annealing sites that can accelerate lithium plating,

dendrite growth, and hence short circuits.

The negative-electrode degradation mechanisms are summa-

rized in Table 4.1. The entries highlighted with a bold font are con-

sidered to be the more serious. In particular, we note that some
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176 battery management systems: volume ii, equivalent-circuit methods

mechanisms primarily cause power fade while others primarily cause

capacity fade. Therefore, changes in cell resistance and total capacity

are not necessarily proportional, depending on exactly how the cell

has aged.

Cause Effect Leads to Enhanced by

Continuous low-rate
electrolyte
decomposition reaction
builds SEI

Lithium loss,
impedance rise

Capacity fade,

Power fade

High temp-
eratures,
high cell
SOC

Solvent co-interca-
lation, gas evolution
and subsequent
graphite exfoliation

Loss of active
material,
lithium loss

Capacity fade Overcharge

Decrease of accessible
surface area due to
continuous SEI growth

Impedance rise Power fade High temp-
eratures,
high cell
SOC

Changes in porosity
due to volume change
and SEI growth

Impedance
rise, larger
overpotentials

Power face High cycling
rate, high
cell SOC

Contact loss of active
material particles due
to volume changes
during cycling

Loss of active
material

Capacity fade High cycling
rate, low cell
SOC

Decomposition of
binder

Lithium loss,
loss of
mechanical
stability

Capacity fade High cell
SOC, high
temperatures

Current collector
corrosion

Larger over-
potentials and
impedance;
Inhomogeneous
distribution of
current and
potential

Power fade,

Enhances other
aging
mechanisms

Overdischarge,
low cell SOC

Metallic lithium plating
and subsequent
electrolyte
decomposition by
metallic lithium

Lithium loss
(electrolyte
loss)

Capacity fade
(power fade)

Low temp-
erature, high
charge rates,
geometric
misfits

Table 4.1: Principal aging mechanisms
in the negative electrode (adapted
from Table 1 in Vetter et al., “Ageing
Mechanisms in Lithium-Ion Batteries,”
Journal of Power Sources, 147, 2005,
269–281)
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9 See, for example, Dai, Y., Cai, L., and
White, R.E., “Capacity Fade Model for
Spinel LiMn2O4 Electrode,” Journal of
the Electrochemical Society, 160(1), 2013,
A182–A190.

4.3 Positive-electrode aging

As with the negative electrode, aging occurs in three locations in the

positive electrode: at the surface of the particles, within the active

material particles themselves, and in the bulk positive electrode. We

discuss these mechanisms in the next three subsections.

4.3.1 Positive electrode aging at surface of particles

In the positive electrode, researchers have found that a film can grow

on the surface of the active-material particles as well. In part, this is

due to a chemical reaction between the solvent in the electrolyte and

the positive-electrode active materials; however, this mechanism is

not as pronounced as it is in negative electrodes.

A bigger factor is the dissolution of metals from the electrode

crystal structures into the electrolyte and products formed from

these metals that can reprecipitate onto the particle surface as a high-

resistance film. This dissolution is accelerated by hydrofluoric acid in

the electrolyte, initiated by trace amounts of water that combine with

the LiPF6 salt.

Metal dissolution via acid attack is a primary cause of capacity

loss for lithium-manganese-oxide cells as the loss of manganese

destroys the crystal structure and eliminates lithium storage sites.9

Lithium-cobalt-oxide cells also lose capacity due to cobalt loss, but

at a slower rate. The actual mechanism depends on which oxide is

used in the positive electrode but tends to happen predominantly at

low or high cell states of charge and can be accelerated greatly by

high temperature and by any HF acid that might be dissolved in the

electrolyte.

A side effect of metal dissolution is that the ionized metals can

migrate across the separator and poison the negative-electrode, as

mentioned in Sect. 4.2.1. This increases cell resistance and lowers

total capacity.

4.3.2 Positive electrode aging in bulk

When lithium intercalates into and deintercalates out of the positive-

electrode active particles, stresses cause strains known as phase tran-

sitions that distort the shape of the crystal structure of the electrode

materials without changing the overall structure itself. Transitions

in phase are caused by the presence or absence of lithium in the stor-

age sites, leading to different local molecular forces. Some of these

phase transitions are normal and reversible, but others lead to col-

lapse of the electrode structure and rapid capacity decrease due to

the resulting loss of lithium storage sites. This is most common when
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178 battery management systems: volume ii, equivalent-circuit methods

overcharging a cell: too much lithium is removed from the positive

electrode, which causes the lithium pathways to collapse.

These cycling stresses can also lead to a phenomena known as

structural disordering where the crystal structure of the electrode mate-

rials breaks down. Chemical bonds between atoms in the crystal are

broken and then later reform to different atoms. This collapses the

tunnel-like structures that allow lithium movement, which can cause

lithium to become trapped within the crystal structure and also the

loss of lithium storage sites. Both of these effects decrease the total

capacity of the cell.

In some chemistries, phase transitions near the surface have been

observed to lead to the formation of permanent subsurface layers

that do not allow lithium to move as freely as in the unaltered crystal

structure. This increases the resistance of the cell.

Finally, particles in lithium-iron-phosphate positive electrodes have

been observed to grow over time as adjacent particles apparently

sinter together. This reduces the total surface area of the electrode,

and results in a higher cell resistance.

4.3.3 Positive electrode aging in the composite electrode

The composite positive electrode experiences degradation in the

same ways as the composite negative electrode. Over time, the binder

can decompose, the conductive additives can become oxidized, the

current collector can become corroded, and contact among particles

and between particles and the current collector can become lost due

to volume changes.

The positive-electrode degradation mechanisms are summarized

in Table 4.2. While the dominant degradation in the negative elec-

trode tends to be due to side reactions that grow the SEI layer, the

dominant mechanisms in the positive electrode tend to be those that

result in material loss. Both result in decreased cell total capacity and

increased cell resistance.

4.4 Sensitivity of voltage to R0

Having discussed the dominant aging mechanisms in a lithium-ion

cell from a qualitative point of view, we now turn our attention to the

task of estimating the present state of health of the battery cell. Based

on our observations to this point, we see that being able to estimate

the cell’s present total capacity and equivalent-series resistance will

go a long way toward a good description of the cell’s present health.

The task of estimating total capacity and resistance must some-
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4. battery health estimation 179

Cause Effect Leads to Enhanced by

Phase transitions Cracking of
active particles

Capacity fade High rates,
high/low SOC

Structural
disordering

Lithium sites
lost and lithium
trapped

Capacity fade High rates,
high/low SOC

Metal dissolution
and/or electrolyte
decomposition

Migration of
soluble species,

Capacity fade High/low SOC,
high temp-
erature

Re-precipitation
of new phases,

Power fade

Surface layer
formation

Power fade

Electrolyte
decomposition

Gas evolution High temp-
erature

Binder
decomposition

Loss of contact Power fade

Oxidation of
conductive agent

Loss of contact Power fade

Corrosion of current
collector

Loss of contact Power fade High SOC

Table 4.2: Principal aging mechanisms
at positive electrode.

how use input/output (current/voltage) data from the cell.10 As a

measure of how readily a good estimate may be made, we can then

consider the sensitivity of the cell voltage signal to changes in resis-

tance and capacity. This will give us a feel for how easy or difficult

it is to estimate these quantities and will reveal that voltage is very

sensitive to a change in resistance but very insensitive to a change

in total capacity. This result will motivate a simple way to estimate

cell resistance; however, we will need to investigate more complex

methods in order to make good total-capacity estimates.

Estimating a cell’s equivalent series resistance turns out to be

relatively simple because it is highly observable from voltage mea-

surements. To see this, consider the cell’s voltage equation,

vk = OCV(zk) + Mhk + M0sk −∑
i

RiiRi,k − ikR0.

We define the unitless sensitivity of the voltage measurement to a

change in resistance as

SR0
vk

=
R0

vk

dvk

dR0
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180 battery management systems: volume ii, equivalent-circuit methods

10 Here, we focus on passive methods
that simply monitor current and voltage
and perform computations using
these measurements but do not inject
signals into the cell. It is also possible
to modulate the input current to a
cell purposefully using sinusoidal or
pulse signals to measure indicators
of health more directly. If the battery
pack is permanently connected to the
load, the passive approach tends to be
preferred since the battery state is not
altered by the health measurement, but
if the battery pack can be disconnected
from the load for diagnostics (even
for a short period of time), the latter
approach is also a possibility. Note,
however, that the sinusoidal response
of a battery can be computed from
the discrete Fourier transform of
passively measured data so long as
the cell is persistently excited, and the
pulse responses can be measured
opportunistically when balancing
circuits are activated and deactivated,
so passive approaches are not as limited
as it might appear at first.

=
−R0

vk
ik.

A cell’s resistance is usually on the order of milliohms, and its volt-

age is usually a few volts. When multiplied by cell current ik, which

can be large, the absolute sensitivity of voltage to R0 is relatively high

(a magnitude of 0.01 would not be out of the ordinary). This implies

that it should be fairly simple to estimate resistance from the voltage

signal.

One approach to estimating R0 is to subtract voltages at two adja-

cent time samples

vk = OCV(zk) + Mhk + M0sk − ∑i RiiRi ,k − ikR0

vk−1 = OCV(zk−1) + Mhk−1 + M0sk−1 − ∑i RiiRi ,k−1 − ik−1R0

vk − vk−1 ≈ R0 (ik−1 − ik) + M0(sk − sk−1),

where we use our knowledge that that cell state of charge zk, diffu-

sion currents iRi ,k, and analog hysteresis hk change relatively slowly

compared to how quickly ik changes.

So, we can estimate

R̂0,k =
(vk − vk−1)− M0 (sk − sk−1)

ik−1 − ik
. (4.1)

However, when using this method we run into an immediate divide-

by-zero problem when ∆ik = ik−1 − ik = 0, as would happen during

a constant-current event or during cell rest. So, we skip updates to

R̂0,k when |∆ik| is small, which eliminates the divide-by-zero problem

and avoids amplification of measurement and approximation noise in

Eq. (4.1) as well.

Because of the imperfect fidelity of the ESC cell model with respect

to the true cell behavior and because of the inaccuracy introduced

via our specific approximations, the estimate of R̂0,k from Eq. (4.1)

is quite noisy. To make a better estimate of R0, we can filter the R̂0,k

signal. For example, we might implement the one-pole digital filter

R̂filt
0,k = αR̂filt

0,k−1 + (1 − α)R̂0,k, (4.2)

where 0 ≪ α < 1. This method, while very simple, tends to work

quite well. Later in this chapter we will see a second method, which

is based on nonlinear Kalman filtering, that also works well.

Another factor that merits consideration is that a cell’s resistance

is both SOC dependent and temperature dependent. If a scalar resis-

tance estimate is updated, it will adapt to model the cell resistance

at the present SOC and temperature as both of those change over

time. If an adaptive function that describes the entire relationship of

resistance versus state of charge is required instead of an adaptive

scalar, then a functional form will need to be proposed and the co-

efficients of the form will need to be adapted based on the present
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Figure 4.9: Current and voltage data
used to estimate cell resistance.

state of charge, temperature, and operating resistance. For exam-

ple, temperature dependence can often be well modeled using an

Arrhenius-inspired relationship

R0 = R0,ref exp

(
ER0,ref

R

(
1

Tref
− 1

T

))
,

where only the R0,ref and ER0,ref values need to be adapted online

to fix the temperature dependence. However, care must be taken in

crafting the adaptation algorithm if the battery pack dwells near one

temperature for an extended period of time, because adaptation can

overcorrect the predictions at that temperature and cause predictions

for resistance at other temperatures to become biased.

Temperature and SOC dependence can also be handled by mod-

eling resistance using local basis functions. Adaptation of the pa-

rameters of these basis functions will cause only local updates to the

resistance relationship and will not bias predictions of resistance at

other temperature and state of charge operating points. However, op-

erational points that are not often visited by the application will not

have their resistance updated frequently and the estimates will tend

to become out of date over time.

4.5 Code to estimate R0

In this section, we see how to implement the simple equivalent-series-

resistance estimator we have just seen in MATLAB. In the code,

we first load a datafile comprising voltage and current data mea-

sured from a cell in the laboratory. This particular cell has a known

R0 = 2.53 mΩ from the system identification procedure discussed in

Chap. 2. It is our goal to estimate this value of R0 using the simple

estimator.

%% Initialize "truth" values

R0 = 2.53e-3; % from external system ID of cell

R0_Vect = R0*ones(1,length(voltage));

%% Load data file

load('Resistance_data.mat');

For the example we consider here, the profiles of current and voltage

versus time are plotted in Fig. 4.9.

Next, we compute and plot the unfiltered resistance estimate. The

threshold on |∆ik| was chosen to be 16.5 A in this example, which

is approximately equal to the 2C rate for this cell. The code simply

loops through all data, evaluating Eq. (4.1) for each time step and

updating the resistance estimate if the threshold criterion is met:

%% Estimate R0 - unfiltered

threshold = 16.5; % Define threshold
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182 battery management systems: volume ii, equivalent-circuit methods

R0_hat = 0*R0_Vect; % Reserve memory for estimate

for k = 2:length(v)

num = voltage(k) - voltage(k-1);

den = current(k-1) - current(k);

R0_hat(k) = num / den;

if abs(den < threshold),

R0_hat(k) = R0_hat(k-1);

end

end

% Plot unfiltered R0 estimate

figure(1); plot(time/60,1000*R0_hat,time/60,1000*R0_Vect);

title('R0 estimate (unfiltered)'); grid on;

xlabel('Time (min)'); ylabel('R0 values (m\Omega)'); ylim([0 4]);

legend('Estimate','Actual','location','southeast');

Next, we filter the estimate using α = 0.999. The code loops

through all raw estimates, applies Eq. (4.2) to each point, and plots

the final results:

%% Estimate R0 - filtered version

alpha = 0.999; % define filter pole

R0_hat_filt = R0_hat; % initialize filtered estimate

for k = 2:length(voltage)

R0_hat_filt(k) = alpha*R0_hat_filt(k-1) + (1-alpha)*R0_hat(k);

end

% Plot filtered R0 estimate

figure(2); plot(time/60,1000*R0_hat_filt,time/60,1000*R0_Vect);

title('R0 estimate (filtered)'); grid on;

xlabel('time (min)'); ylabel('R0 values (m\Omega)'); ylim([0 4]);

legend('Estimate','Actual','location','southeast');

Fig. 4.10 shows some results from running this program. The top-

left frame compares the unfiltered estimate at every time step to the

true value. We see that the estimate has reasonable average value,

but that it is very noisy. The top-right frame shows a zoom into one

portion of the data segment to highlight some detail. In particular,

the places where the estimate flattens out are the result of the |∆ik|
threshold criterion not being met, which causes the estimates to

retain their prior values.

The lower-left frame shows the filtered version of the estimate

versus the truth. Because the filtered estimate is initialized to zero, it

takes some time to converge to the neighborhood of the true value

of resistance. A better initial guess of the true resistance will lead

to faster convergence of the filtered estimate. The lower-right frame

shows the unfiltered and filtered estimates compared to each other.

We see that the filter has greatly reduced the amount of noise in the

estimate. After convergence, the estimate stays within about 7.5 %

of the true value, which is very nice performance for such a simple

algorithm.
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Figure 4.10: Intermediate and final
resistance estimates.

4.6 Sensitivity of voltage to total capacity Q

Estimating total capacity well turns out to be very difficult. To see

why, consider the sensitivity of the voltage measurement to a cell’s

total capacity

SQ
vk

=
Q

vk

dvk

dQ

=
Q

vk

d

dQ

(

OCV(zk) + Mhk + M0sk −∑
i

RiiRi,,k − ikR0

)

.

While Q/vk is a reasonably large value, the term inside the paren-

thesis does not appear to contain capacity at all! To uncover the

voltage’s sensitivity to total capacity, we need to unfold the total

derivatives.

Consider the first term, which we evaluate using the chain rule of

total derivatives to be

dOCV(zk)
dQ

=
∂OCV(zk)

∂zk

dzk

dQ
.

For most cells, the slope of the open-circuit-voltage curve is very

shallow, so ∂OCV(zk)/∂zk is very small. Further, we expand the total

derivative of the SOC equation:

dzk

dQ
=

dzk−1

dQ
− ηk−1ik−1∆t

d(1/Q)
dQ

=
dzk−1

dQ
+

ηk−1ik−1∆t

Q2
.

The first term on the right-hand side of this result can be calcu-

lated recursively. It grows in magnitude when ik has the same sign
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184 battery management systems: volume ii, equivalent-circuit methods

for a considerable number of consecutive iterations and shrinks when

ik changes direction. For random ik (e.g., for a hybrid-electric-vehicle

application) it tends to be about the same order of magnitude as the

second term on the right-hand side.

The second term has Q2 in the denominator. Since Q must be

expressed in coulombs for its units to agree with the other terms of

the equation, Q2 is a very large number, making the second term

very small. So, dzk/dQ is small and overall sensitivity of voltage to

capacity through the OCV term is very small.

Similarly, the sensitivity of the voltage to capacity through the

analog hysteresis term is small (it is zero through the other terms).

As a consequence, individual voltage measurements have very little

information regarding capacity. We must somehow combine many

voltage measurements to estimate total capacity well, and it helps

if current has been generally in the same direction for most of the

period spanning those measurements. That is, a large change in SOC

over an interval makes it easier to estimate total capacity using the

data collected during that interval than does a small change in SOC.

Generally speaking, simple methods like the one used to estimate

R̂0 will not work well. So, in the remainder of this chapter, we ex-

plore two different and more complicated approaches. First, we look

at using a nonlinear Kalman filter, which can work well, and which

has the additional benefit of being able to estimate all cell-model

parameter values simultaneously as they change over time. How-

ever, these Kalman-filter-based approaches are relatively complex

and there are some algorithm stability issues that must be addressed

before the estimates can be trusted. Simpler regression techniques

can be used to estimate total capacity, but the most straightforward

ordinary least-squares approach gives biased results. So, we will also

spend considerable time exploring a total-least-squares approach,

which uses the noisy input measurements in an optimal way to pro-

duce unbiased total-capacity estimates.

4.7 Estimating parameters via Kalman filters

In Chap. 3, we saw that a Kalman filter can be used to estimate the

state of a dynamic system using noisy input/output measurements

if the model parameter values are known precisely. It turns out that

it is also possible to use a nonlinear Kalman filter to estimate the

parameters of a dynamic system’s model using noisy input/output

measurements if its state is known precisely. Because the SOH of a

battery cell is summarized by the cell-model parameter values, this

approach promises to be very useful.

Unfortunately, we do not know the state precisely. However, if we
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4. battery health estimation 185

11 The EKF presentation is based on
Plett, G., “Extended Kalman Filtering
for Battery Management Systems
of LiPB-Based HEV Battery Packs—
Part 3: State and Parameter Estimation,”
Journal of Power Sources, 134(2), 2004,
pp. 277–92, and the SPKF presentation
is based on Plett, G., “Sigma-Point
Kalman Filters for Battery Management
Systems of LiPB-Based HEV Battery
Packs—Part 2: Simultaneous State and
Parameter Estimation,” Journal of Power
Sources, 161(2), 2006, pp. 1369–84.

12 Over the first few cycles of a lithium-
ion battery cell, the total capacity often
does increase, as the electrolyte seeps
into voids it had not properly wet
during cell construction. This creates
ionic connection to parts of the cell that
were previously isolated, and adds their
capacity to the total. Also, if a cell has
been stored idle for a long period of
time, some researchers have noted that
subsequent cycling will recover some
lost capacity although the mechanism
for doing so is not clear.

13 Again, resistance has been observed
to decrease for the first few cycles of
a lithium-ion cell before it begins to
increase. This is thought to be caused
by the formation of micro-cracks on the
surface of the active particles due to
intercalation stresses exciting internal
defects in the new active materials.
These cracks increase the surface area of
the graphite that is exposed, decreasing
resistance. However, the micro-cracks
stop forming after the initial cycles, and
the general trend of cell resistance over
time is in the increasing direction.

are careful, we can also use a nonlinear Kalman filter to estimate both

the state and the parameters of the system model simultaneously

using noisy input/output measurements.

In this section, we proceed by first considering how to estimate the

parameter values of a system if its state is known. Then, we combine

the state-estimation and parameter-estimation methods to show how

to estimate both state and parameter simultaneously.11

4.7.1 A generic approach to parameter estimation

We begin by collecting the true parameters of a particular model into

the vector θ. We will use Kalman-filtering techniques to estimate the

parameter values as we did to estimate the state-vector values. There-

fore, we require a discrete-time state-space model of the dynamics of

the parameters.

By assumption, parameter values change very slowly, so we model

the present parameter vector as being equal to the prior parameter

vector plus some small perturbation rk

θk = θk−1 + rk−1. (4.3)

The small zero-mean white-noise input rk is fictitious, and is used in

Eq. (4.3) to model a forcing input for the slow drift in the parameter

values of the system. We do not ever synthesize this noise as an input

to the Kalman filter; instead, the covariance matrix Σr̃ is used to indi-

cate how quickly we believe the parameter values can change, which

causes the Kalman filter to adjust how quickly it updates parameter

value estimates.

The model of Eq. (4.3) is known as a random walk. In the absence of

feedback, it describes a path for the parameter values that comprises

a sequence of purely random steps, where the variance—and hence

the uncertainty—of θk increases linearly over time. In the model, the

parameter values are just as likely to increase as they are to decrease

in value from one time step to another.

Based on the qualitative understanding of cell degradation that we

have gained so far in this chapter, we recognize that the random walk

is probably not a good description of how cell parameter values actu-

ally change. In a random walk, a parameter value is just as likely to

increase as it is to decrease. However, if we make a bold generaliza-

tion, we can state that a real cell’s total capacity only decreases with

time; it does not increase.12 Similarly, its resistance only increases

with time; it does not decrease.13

While the random walk is not an accurate open-loop model for

how parameter values change, to model the changes more descrip-

tively would require a detailed quantitative description of how the
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186 battery management systems: volume ii, equivalent-circuit methods

14 Note that dk is usually the same
measurement as yk, but we maintain a
distinction here in case separate outputs
are used. Also, note that the noises ek

in Eq. (4.4) and vk in Eq. (4.6) often
play the same role, but are considered
distinct here.

degradation mechanisms actually work. There is very little literature

on this subject, although we do look at two such models in Chap. 7.

It turns out that even though Eq. (4.3) is not a very accurate descrip-

tion of the details of cell degradation, the feedback mechanism of the

Kalman filter will correct for the modeling errors and still make good

estimates of the model’s parameter values.

To incorporate feedback, we require a model output equation,

which must be a measurable function of the system parameters. We

use

dk = g(xk, uk, θ, ek), (4.4)

where g(·) is the output equation of the system model being identi-

fied, and ek models the sensor noise and modeling error.14 Then, the

sequence of all measurements made for parameter identification can

be written as Dk = {d0, d1, . . . , dk}.

We also slightly revise the mathematical model of system state-

vector dynamics and measurement relationship to be

xk = f (xk−1, uk−1, θ, wk−1) (4.5)

yk = h(xk, uk, θ, vk), (4.6)

which includes the parameters θ in the model explicitly. Time-invariant

numeric values required by the model may be embedded within f (·)
and h(·) and are not included in θ.

4.8 EKF parameter estimation

With the new parameter-dynamics equation Eq. (4.3), parameter-

output equation Eq. (4.4), revised state equation Eq. (4.5), and model-

output equation Eq. (4.6), we are now ready to see how to perform

parameter estimation using a nonlinear Kalman filter.

We proceed by first deriving the extended Kalman filter for param-

eter estimation following the same six steps of sequential-probabilistic

inference introduced in Chap. 3.

EKF step 1a: Parameter prediction time update.

The parameter prediction step finds the expected value of the param-

eter update equation Eq. (4.3), which is

θ̂
−
k = E[θk | Dk−1]

= E[θk−1 + rk−1 | Dk−1]

= θ̂
+
k−1, (4.7)

since we have assumed that the fictitious noise rk is zero mean. That

is, the predicted parameter vector for this time step is equal to the
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4. battery health estimation 187

estimated parameter vector computed at the end of the prior time

step. This result makes sense because the parameters are assumed to

be essentially constant, with very slow variation due to cell aging. We

do see, however, that the changes in parameter values due to degra-

dation will be captured only via the measurement feedback because

the prediction step in Eq. (4.7) does not forecast any degradation in

their values.

EKF step 1b: Error covariance time update.

The covariance matrix of the parameter prediction error is found by

first computing θ̃
−
k , as

θ̃
−
k = θk − θ̂

−
k

= θk−1 + rk − θ̂
+
k−1

= θ̃
+
k−1 + rk.

We then compute the desired covariance directly as

Σ
−
θ̃,k

= E[θ̃
−
k (θ̃

−
k )

T]

= E[(θ̃
+
k−1 + rk)(θ̃

+
k−1 + rk)

T]

= Σ
+
θ̃,k−1

+ Σr̃ ,

where we have assumed that the zero-mean fictitious noise is uncorre-

lated with the parameter prediction error. Therefore, mathematically,

the time-updated parameter-error covariance is equal to the covari-

ance prior to the time update, but having additional uncertainty due

to the fictitious noise that is assumed to be driving the change in

parameter values. Physically, this corresponds to the increasing un-

certainty in parameter values over time due to aging unless we can

somehow adapt the parameter values via feedback, which is what we

will do in step 2b.

EKF step 1c: Output prediction.

The measurable system output based on the parameter model is

predicted using Eq. (4.4) and EKF assumption 1 to be

d̂k = E[g(xk, uk, θ, ek) | Dk−1]

≈ g(xk, uk, θ̂
−
k , ēk).

That is, we assume that a good way to approximate the mean of the

parameter output equation is by propagating the expected parame-

ter vector θ̂
−
k and the mean estimation error through the parameter

output equation.

EKF step 2a: Estimator gain matrix.
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188 battery management systems: volume ii, equivalent-circuit methods

The output prediction error may then be written as

d̃k = dk − d̂k

= g(xk, uk, θ, ek)− g(xk, uk, θ̂
−
k , ēk).

We employ EKF assumption 2 to linearize this relationship using a

Taylor-series expansion of the first term on the left-hand side of the

equation:

dk ≈ g(xk, uk, θ̂
−
k , ēk) +

dg(xk, uk, θ, ek)
dθ

∣∣∣∣
θ=θ̂

−
k︸ ︷︷ ︸

Defined as Ĉ
θ
k

(θ− θ̂
−
k )

+
dg(xk, uk, θ, ek)

dek

∣∣∣∣
ek=ēk︸ ︷︷ ︸

Defined as D̂
θ
k

(ek − ēk).

From this, we can compute such necessary quantities as:

Σd̃,k ≈ Ĉ
θ
kΣ

−
θ̃,k
(Ĉ

θ
k)

T + D̂
θ
kΣẽ(D̂

θ
k)

T

Σ
−
θ̃d̃,k

≈ E[(θ̃
−
k )(Ĉ

θ
k θ̃

−
k + D̂

θ
k ẽk)

T ] = Σ
−
θ̃,k
(Ĉ

θ
k)

T.

These terms may be combined to compute the Kalman gain

Lθ
k = Σ

−
θ̃,k
(Ĉ

θ
k)

T[Ĉθ
kΣ

−
θ̃,k
(Ĉ

θ
k)

T + D̂
θ
kΣẽ(D̂

θ
k)

T]−1
.

Note the superscript θ used in the notation for Ĉ
θ
k , D̂

θ
k , and Lθ

k, which

is added to keep these EKF matrices for parameter estimation distinct

from their counterparts for state estimation. This will be important

later when we estimate both states and parameters simultaneously.

We must be very careful when computing Ĉ
θ
k . By the chain rule of

total differentials, we have

dg(xk, uk, θ, ek) =
∂g(xk, uk, θ, ek)

∂xk
dxk +

∂g(xk, uk, θ, ek)
∂uk

duk

+
∂g(xk, uk, θ, ek)

∂θ
dθ+

∂g(xk, uk, θ, ek)
∂ek

dek.

Dividing both sides of this equation by dθ, we find

dg(xk, uk, θ, ek)
dθ

=
∂g(xk, uk, θ, ek)

∂xk

dxk

dθ
+

∂g(xk, uk, θ, ek)
∂uk

duk

dθ︸︷︷︸
0

+
∂g(xk, uk, θ, ek)

∂θ

dθ

dθ
+

∂g(xk, uk, θ, ek)
∂ek

dek

dθ︸︷︷︸
0

=
∂g(xk, uk, θ, ek)

∂θ
+

∂g(xk, uk, θ, ek)
∂xk

dxk

dθ
.
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4. battery health estimation 189

As with state estimation, some terms drop out since the deterministic

cell input current is not a function of cell parameter values, nor is

the measurement error ek. However, by Eq. (4.5), the model state

is a function of the parameter values and so we must include the

dxk/dθ term in the expansion. This is different from what we found

for state-vector estimation in Chap. 3, and is the reason why we had

a discussion of total versus partial derivatives at the corresponding

point in the derivation of the EKF there. Here, we absolutely must

use the total derivative instead of the partial derivative, or else the

parameter estimator will not work!

We evaluate this new term recursively.

dxk

dθ
=

∂ f (xk−1, uk−1, θ, wk−1)
∂θ

+
∂ f (xk−1, uk−1, θ, wk−1)

∂xk−1

dxk−1

dθ
.

We see that dxk/dθ is a function of dxk−1/dθ, and so this relation-

ship evolves over time as the state evolves. The term dx0/dθ is ini-

tialized to zero unless side information gives a better estimate of

its value.

In summary, in order to calculate Ĉ
θ
k for any specific model struc-

ture, we require methods to calculate all of the above partial deriva-

tives for the model to find the needed total derivatives.

EKF step 2b: Parameter estimate measurement update.

The parameter estimate is computed by updating the prediction

using the estimator gain and the output prediction error dk − d̂k:

θ̂
+
k = θ̂

−
k + Lθ

k(dk − d̂k).

This step is unchanged in principle from the standard EKF.

EKF step 2c: Error covariance measurement update.

Finally, the updated parameter estimation-error covariance is com-

puted as

Σ
+
θ̃,k

= Σ
−
θ̃,k

− Lθ
kΣd̃,k(Lθ

k)
T.

EKF for parameter estimation is summarized in the Appendix on

p. 229. When starting the algorithm for the first time, we initialize

the parameter-vector estimate with our best information regarding its

value, θ̂
+
0 = E[θ0], we initialize the parameter estimation error covari-

ance matrix with our best information regarding our uncertainty in

the parameter-vector estimate

Σ
+
θ̃,0

= E
[
(θ− θ̂

+
0 )(θ− θ̂

+
0 )

T],

and we initialize dx0/dθ = 0 unless side information is available.
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190 battery management systems: volume ii, equivalent-circuit methods

4.9 SPKF parameter estimation

Given the time we invested in Chap. 3 studying sigma-point meth-

ods, it is also relatively straightforward to show how to estimate

parameter values using a sigma-point Kalman filter. As always, we

proceed by deriving the six essential steps of sequential probabilistic

inference.

SPKF step 1a: Parameter prediction time update.

The parameter prediction step is approximated as

θ̂
−
k = E[θk | Dk−1]

= E[θk−1 + rk−1 | Dk−1]

= θ̂
+
k−1.

This outcome is the same as with EKF since the dynamics of the

parameters follow a linear model.

SPKF step 1b: Error covariance time update.

Again, because of the linearity of the parameter dynamics, the error-

covariance update equation is the same as for EKF.

Σ
−
θ̃,k

= Σ
+
θ̃,k−1

+ Σr̃ .

SPKF step 1c: Predict system output dk.

To predict the system output, we first define the augmented random

vector

θa
k =

[
θk

ek

]

,

which combines the randomness of the parameter estimates and the

sensor noise. We then compute a set of p + 1 sigma points describing

this augmented random vector, which we will denote as W a,−
k :

W a,−
k =

{
θ̂

a,−
k , θ̂

a,−
k + γ

√
Σ

a,−
θ̃,k

, θ̂
a,−
k − γ

√
Σ

a,−
θ̃,k

}
.

From the augmented sigma points, the p + 1 vectors comprising

the parameters portion W θ,−
k and the p + 1 vectors comprising the

modeling error portion W e,−
k are extracted.

The output equation Eq. (4.4) is evaluated using all pairs of W θ,−
k,i

and W e,−
k,i (where the subscript i denotes that the ith vector is being

extracted from the original set), yielding the sigma points Dk,i for

time step k. That is,

Dk,i = g(xk, uk,W θ,−
k,i ,W e,−

k,i ).
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4. battery health estimation 191

Finally, the output prediction is computed as

d̂
−
k = E

[
g(xk, uk, θ, ek) | Dk−1

]

≈
p

∑
i=0

α
(m)
i g(xk, uk,W θ,−

k,i ,W e,−
k,i )

=
p

∑
i=0

α
(m)
i Dk,i.

SPKF step 2a: Estimator gain matrix Lθ
k .

To compute the estimator gain matrix, we must first compute the

required covariance matrices.

Σd̃,k =
p

∑
i=0

α
(c)
i

(
Dk,i − d̂k

)(
Dk,i − d̂k

)T

Σ
−
θ̃d̃,k

=
p

∑
i=0

α
(c)
i

(
W θ,−

k,i − θ̂
a,−
k

)(
Dk,i − d̂k

)T
.

Then, we simply compute Lθ
k = Σ

−
θ̃d̃,k

Σ
−1
d̃,k

.

SPKF step 2b: Parameter estimate measurement update.

The parameter estimate is created from the predicted parameters and

the measurement innovation using the equation from the optimal

formulation

θ̂
+
k = θ̂

−
k + Lθ

k(dk − d̂k).

SPKF step 2c: Error covariance measurement update.

Finally, the covariance of the parameter estimation error is computed

as

Σ
+
θ̃,k

= Σ
−
θ̃,k

− Lθ
kΣd̃,k(Lθ

k)
T .

SPKF for parameter estimation is summarized in the Appendix on

p. 230.

4.10 Joint and dual estimation

Having seen how to use Kalman filters to perform state estimation

and parameter estimation separately, we now turn our attention to

using nonlinear Kalman filters to perform the task of estimating both

the state and parameter vectors at the same time if the state-filter

output yk is the same as the parameter-filter output dk. There are two

approaches to doing so: joint estimation and dual estimation. These are

discussed in the next sections.
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192 battery management systems: volume ii, equivalent-circuit methods

4.10.1 Generic joint estimation

In joint estimation, the states and parameters are combined into a

single high-dimension vector, and a nonlinear Kalman filter simul-

taneously estimates the values within this augmented state vector.

Doing so has the disadvantages of large matrix operations due to

the high dimensionality of the resulting augmented model and po-

tentially poor numeric conditioning due to the vastly different time

scales of the states and parameters in the augmented state vector.

However, it is quite straightforward to implement.

To see how to do so, we first combine the state and parameter

vectors to form augmented dynamics

[
xk

θk

]

=

[
f (xk−1, uk−1, θk−1, wk−1)

θk−1 + rk−1

]

yk = h(xk, uk, θk, vk).

To simplify notation, let Xk be the augmented state, Wk be the

augmented noise, and F(·) be the augmented state equations. Then,

Xk = F(Xk−1, uk−1, Wk−1)

yk = h(Xk, uk, vk).

With this augmented discrete-time state-space model of the system

state dynamics and parameter dynamics, we simply apply a nonlin-

ear Kalman-filter method.

4.10.2 Generic dual estimation

In dual estimation, separate nonlinear Kalman filters are used for

state estimation and parameter estimation. The computational com-

plexity is smaller than for joint estimation because smaller matrices

are involved in the computations and the matrix operations may be

better conditioned numerically. However, by decoupling state from

parameters any cross-correlations between the two are lost, leading to

the possibility of poorer estimation accuracy.

The mathematical model of state dynamics again explicitly in-

cludes the parameters as the vector θk

xk = f (xk−1, uk−1, wk−1, θk−1)

yk = h(xk, uk, vk, θk−1).

Time-invariant numeric values required by the model may be embed-

ded within f (·) and h(·) and are not included in θk. We also slightly

revise the mathematical model of parameter dynamics to include the
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4. battery health estimation 193

effect of the state equation explicitly.

θk = θk−1 + rk−1

dk = h

(

f (xk−1, uk−1, w̄k−1, θk−1), uk, ek, θk−1

)

.

The interactions between the two Kalman filters are illustrated in

Fig. 4.11, where the details will become clearer in the following sub-

sections. We see from the diagram that the dual-estimation process

essentially comprises two Kalman filters running in parallel—with

KFx adapting the state and KFθ adapting parameters—with some

information exchange between the filters.

KFx

Time update

KFθ

Time update

update KFx

Measurement

update KFθ

Measurement

x̂+k−1

θ̂
+
k−1

θ̂
−
k

x̂+k

θ̂
+
k

Σ
−
x̃,k

Σ
−
θ̃,k

Σ
+
x̃,k−1

Σ
+
θ̃,k−1

yk

uk−1

uk

Figure 4.11: Interactions between the
two nonlinear Kalman filters used for
dual estimation.
(Reproduced from Fig. 8 of Plett, G.L.,
“Extended Kalman Filtering for Battery
Management Systems of LiPB-Based
HEV Battery Packs—Part 3: State and
Parameter Estimation,” Journal of Power
Sources, 134(2), 2004, pp. 277–92.)

With generic joint and dual estimation defined, we now show how

to use these approaches with EKF and SPKF.

4.10.3 Joint state and parameter estimation via EKF

Applying EKF to the joint-estimation problem is straightforward. But,

we must be careful to evaluate the recursive calculation of dF/dX

correctly when computing the Ĉk matrix. The method is summarized

in the Appendix on p. 233.

4.10.4 Dual state and parameter estimation via EKF

When implementing dual state and parameter estimation using EKF,

two EKFs are implemented with their signals mixed. Again, we need

to be careful when computing Ĉ
θ
k , which requires a total-differential

expansion to be correct:

Ĉ
θ
k =

dg(x̂−k , uk, θ)

dθ

∣∣∣∣∣
θ=θ̂

−
k

dg(x̂−k , uk, θ)

dθ
=

∂g(x̂−k , uk, θ)

∂θ
+

∂g(x̂−k , uk, θ)

∂x̂−k

dx̂−k
dθ
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194 battery management systems: volume ii, equivalent-circuit methods

dx̂−k
dθ

=
∂ f (x̂+k−1, uk−1, θ)

∂θ
+

∂ f (x̂+k−1, uk−1, θ)

∂x̂+k−1

dx̂+k−1

dθ

dx̂+k−1

dθ
=

dx̂−k−1

dθ
− Lx

k−1

dg(x̂−k−1, uk−1, θ)

dθ
.

In the notation, Lx
k is the Kalman gain for the state filter, which

is assumed not to be a function of θ. In fact, it is a weak function of

θ, but the consensus of the literature is that the dependence is weak

enough that the simplifications achieved by the assumption outweigh

any gains that might be made by a more careful analysis.

To implement this method, the three total derivatives dg/dθ,

dx̂+k−1/dθ, and dx̂−k /dθ are initialized to zero and computed re-

cursively as the filters operate. The method is summarized in the

Appendix on p. 233.

4.10.5 Joint state and parameter estimation via SPKF

Joint state and parameter estimation using sigma-point Kalman filters

uses the standard SPKF method where the state vector is augmented

with the parameters. No other changes are made. The method is

summarized in the Appendix on p. 233.

4.10.6 Dual state and parameter estimation via SPKF

Dual state and parameter estimation using SPKF, just like dual esti-

mation using EKF, uses two filters. Both employ the SPKF algorithm

and intermix signals. The method is summarized in the Appendix on

p. 234.

4.11 Robustness and speed

4.11.1 Ensuring correct convergence

Dual and joint filtering adapt the state estimate x̂+k and the parameter

estimate θ̂
+
k so that the model input/output relationship matches

the measured input/output data closely. However, there is no built-

in guarantee that the state of the model converges to anything with

physical meaning. It is possible for the state and parameter estimates

to diverge from their true values and, because of cancellations be-

tween errors caused by inaccurate state and parameter estimates, still

have good agreement with input/output measurements, at least for a

time.

When estimating the ESC cell-model state and parameter vectors,

we are concerned that the they converge to their true meaning. This

will not happen by default with the dual or joint estimation meth-
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4. battery health estimation 195

ods as described so far. Special steps must be taken to ensure that

convergence occurs.

Consider the SOC state zk inside the model state vector. We may

use a very crude cell model to derive a synthetic measurement of this

state, as we saw in Chap. 3. Specifically, we can model cell terminal

voltage as

vk ≈ OCV(zk)− R0ik.

Then, given a measurement of voltage, we can estimate SOC as

ẑk = OCV−1(vk + R0ik).

While this result is too noisy to use as the primary state of charge

estimate, it still has some nice properties. First, if current is zero and

hysteresis is negligible, then the estimate converges to the true state

of charge. Second, even if current is not zero, the estimate tends to

have very little bias: it is noisy, as we saw in Fig. 3.4, but the noise is

close to zero mean.

Therefore, by measuring the cell voltage under load vk, the cell cur-

rent ik, and having knowledge of R0 and the cell’s inverse OCV func-

tion, we can compute a noisy estimate ẑk of SOC. We then augment

the true measurement of cell voltage with this synthetic measurement

of cell SOC in the output equation of the model, which then becomes:

g(xk, uk, θ) =

[
OCV(zk) + Mhk + M0sk − ∑i RiiRi ,k − R0ik

zk

]

.

The dual or joint nonlinear Kalman filter is run using this modified

model, with the measurement used in the measurement update re-

placed by

yk =

[
cell voltage at time k

crude SOC estimate ẑk

]

.

While the errors in ẑk due to ignoring short-term hysteresis bias

and diffusion voltages prohibit it from being used as the primary

estimator of SOC, its expected long-term behavior in a dynamic

environment is accurate, and it maintains the accuracy of the state

of charge state in the dual and joint filters.

4.12 Unbiased estimate of total capacity using linear regression

The computational complexity incurred by using a nonlinear Kalman

filter to estimate all states and parameters simultaneously is relatively

high. If we require estimates of only resistance and total capacity,

this complexity is not warranted. The simple estimator of Sect. 4.4
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196 battery management systems: volume ii, equivalent-circuit methods

15 The remainder of this chapter is based
in large part on Plett, G., “Recursive
approximate weighted total least
squares estimation of battery cell total
capacity,” Journal of Power Sources,
196(4), 2011, pp. 2319–2331.

16 Note that to use this method,
coulomb counting cannot be used
as the state of charge estimator, since
this results in a degenerate equation:
we would be comparing coulomb
counts on one side of the equation with
exactly the same coulomb counts on
the other side of the equation. The state
of charge estimate must be based—at
least in part—on voltage measurements.
The Kalman-filter based methods from
Chap. 3 for state of charge estimation
have enough voltage feedback that they
work with this method.

can be used to estimate resistance. But, how can we then estimate

total capacity?

Recall from Sect. 4.6 that the sensitivity of voltage to total capacity

is low, so separating capacity information from noisy input/output

data is difficult, and the noise easily biases the results. The sensitivity

improves when SOC has changed appreciably between updates, so

we would expect that iteration-by-iteration updates to be unneces-

sary and computationally inefficient. Fortunately, capacity changes

slowly, so updating total-capacity estimates infrequently and only

after significant changes to state of charge occur is adequate.15

4.12.1 The problem with least-squares capacity estimates

For a fresh look at estimating total capacity, consider again the cell

state of charge equation, where we compute a cell’s state of charge at

time index k2 > k1 starting with an initial known state of charge at

time index k1

zk2
= zk1

− 1

Q

k2−1

∑
k=k1

ηkik.

We can rearrange the terms in this expression to get

−
k2−1

∑
k=k1

ηkik

︸ ︷︷ ︸
y

= Q
(
zk2

− zk1

)
︸ ︷︷ ︸

x

,

where the obvious linear structure of y = Qx becomes apparent. Us-

ing a regression technique, for example, we may compute estimates

of Q. We need only to find sets of values for x and y in this equation

to do so.16

The most common linear regression techniques are based on ordi-

nary least squares (OLS or simply LS). OLS assumes that the indepen-

dent variable x is known exactly but that the dependent variable y

may have some uncertainty. That is, it finds a solution to the problem

(y − ∆y) = Qx by using known values of x but only partially known

values of y to find the best Q to minimize the difference between the

line fit and the data in y. We write y − ∆y in the equation because the

true value of the dependent variable is an unknown distance ∆y away

from the known measurement y.

The issue with using standard ordinary-least-squares regression

on the total-capacity-estimation problem is that both the summed cur-

rent value y and the difference between state of charge values x have

sensor noise or estimation noise associated with them. Not only does

our coulomb count y have sensor noise, but our estimates of state

of charge are also generally imperfect, causing uncertainty on the x
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4. battery health estimation 197

variable as well. That is, the total-capacity-estimation problem is im-

plicitly of the form (y − ∆y) = Q(x − ∆x) since both the integrated

current and state of charge estimates have errors. This is a different

problem from the one solved by ordinary least squares, so using the

ordinary-least-squares solution biases the results.

The common approach to counteract this problem is to try to en-

sure that the state of charge estimates used in the regression are as

accurate as possible and then use standard least-squares estimation

anyway. For example, we might put constraints on when and how

the total capacity is estimated. We could force the cell current to be

zero for some period before the test begins and after the test ends so

that the cell is in an equilibrium state and so the SOC estimates are as

accurate as possible. This procedure eliminates to a large extent—but

not completely—the error in the x variable, and makes the regression

reasonably accurate. This method still does not handle the residual

uncertainty in x correctly: while it minimizes the error, it never to-

tally eliminates it.

A better approach is to recognize that the solution to problems

that look like (y − ∆y) = Q(x − ∆x) is to use total-least-squares regres-

sion instead of ordinary-least-squares regression. Total least squares

takes into account the uncertainties in both the x and y variables

when finding an estimate of Q. However, there are challenges when

attempting to make total-least-squares solutions computationally

efficient so that they can be implemented on a cost-effective BMS.

In the next sections, we derive the ordinary-least-squares and

total-least-squares solutions and some variants thereof to show their

similarities and differences. We will develop a computationally effi-

cient approximate total-least-squares solution that works very well to

estimate battery-cell capacity from noisy data.

4.13 Weighted ordinary least squares

Both ordinary least squares (OLS) and total least squares (TLS), as

applied to battery-cell total-capacity estimation, seek to find a con-

stant Q̂n such that y ≈ Q̂nx using n-vectors of measured data x and

y. The ith data pair, comprising xi in x and yi in y, correspond to

data collected from a cell over the ith interval of time, where xi is

the estimated change in state of charge over that interval and yi is

the accumulated ampere-hours passing through the cell during that

period.

Specifically,

xi = ẑ
k
(i)
2

− ẑ
k
(i)
1

for time interval i
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198 battery management systems: volume ii, equivalent-circuit methods

Y = Q̂x

Figure 4.12: The OLS paradigm.
(Reproduced from Fig. 1a of Plett, G.L.,
“Recursive Approximate Weighted Total
Least Squares Estimation of Battery Cell
Total Capacity,” Journal of Power Sources,
196(4), 2011, pp. 2,319–31.)

17 The cost function is named with the
symbol χ2 since it turns out to be a
chi-squared random variable: it is the
sum of the squares of uncorrelated zero-
mean unit-variance Gaussian random
variables.

yi = −
k
(i)
2 −1

∑
k=k

(i)
1

ηkik,

where k
(i)
1 is the discrete-time index of the start of the ith interval,

and k
(i)
2 is the discrete-time index of the end of the ith interval. The

data vectors x and y used to produce a capacity estimate must be at

least one sample long (n ≥ 1), but larger values of n may be used to

obtain better estimates as the uncertainties in the data can be aver-

aged out over many measurements.

The OLS approach assumes that there is no error on the xi and

models the data as y = Qx + ∆y, where ∆y is a vector of unknown

measurement errors. This is illustrated in Fig. 4.12, where the error

bars on the data points are meant to depict the uncertainties. We

assume that ∆y comprises zero-mean Gaussian random variables

with known variances σ2
yi

that may be different for every data point.

OLS attempts to find an estimate Q̂n of the true cell total capacity

Q, based on n data pairs (xi, yi), that minimizes the sum of squared

errors ∆yi. We generalize the OLS approach slightly here to allow

for finding a Q̂n that minimizes the sum of weighted squared errors,

where the weighting takes into account the uncertainty of the mea-

surement. That is, we desire to find a Q̂n that minimizes the weighted

least squares (WLS) cost function17

χ2
WLS =

n

∑
i=1

(yi − Yi)
2

σ2
yi

=
n

∑
i=1

(yi − Q̂nxi)
2

σ2
yi

.

In this equation, Yi is the final optimized mapping of the data (xi, yi)

to the line. That is, it is a point on the line Yi = Q̂nxi corresponding

to the measured data pair (xi, yi), where yi is assumed to have noise

but xi has no uncertainty.

There are a number of approaches that may be taken to solve this

problem, but one that will serve our purposes well is to differenti-

ate the cost function with respect to Q̂n and then to solve for Q̂n by

setting the partial derivative to zero. The biggest need for care is to

recognize that all the σ2
yi

inside the summation may be distinct, so we

cannot simply multiply both sides of the equation by some constant

σ2
y to eliminate it from the final result.

First, differentiating gives us

∂χ2
WLS

∂Q̂n
= −2

n

∑
i=1

xi(yi − Q̂nxi)
σ2

yi

= 0.

Then, dividing both sides of the equation by −2, splitting the summa-

tion into two separate summations, and solving for Q̂n gives

Q̂n

n

∑
i=1

x2
i

σ2
yi

=
n

∑
i=1

xiyi

σ2
yi
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4. battery health estimation 199

Q̂n =
n

∑
i=1

xiyi

σ2
yi

/
n

∑
i=1

x2
i

σ2
yi

.

If we define two new variables

c1,n =
n

∑
i=1

x2
i

σ2
yi

and c2,n =
n

∑
i=1

xiyi

σ2
yi

,

then we can write Q̂n = c2,n/c1,n.

The two quantities c1,n and c2,n may be computed recursively

to minimize storage requirements and to even out computational

requirements when updating Q̂n for large n via

c1,n = c1,n−1 + x2
n/σ2

yn

c2,n = c2,n−1 + xnyn/σ2
yn

.

The recursive approach requires an initial estimate of c1,0 and c2,0.

One possible initialization is simply to set c1,0 = c2,0 = 0. Alternately,

we can recognize that a cell with nominal capacity Qnom has that

capacity over a SOC range of 1.0. Therefore, we can initialize with a

synthetic zeroth “measurement” where x0 = 1 and y0 = Qnom. The

value for σ2
y0

can be set to the manufacturing variance of the nominal

capacity. That is, c1,0 = 1/σ2
y0

and c2,0 = Qnom/σ2
y0

.

This method may be adapted easily to allow fading memory of

past measurements. We modify the WLS cost function to place more

emphasis on recent measurements by defining the fading-memory

weighted least-squares (FMWLS) cost function as

χ2
FMWLS =

n

∑
i=1

γn−i (yi − Q̂nxi)
2

σ2
yi

,

where the forgetting factor γ is in the range 0 ≪ γ ≤ 1. If we expand

a few terms, we see that this looks like

χ2
FMWLS =

(yn − Q̂nxn)2

σ2
yn

+ γ
(yn−1 − Q̂nxn−1)

2

σ2
yn−1

+ γ2 (yn−2 − Q̂nxn−2)2

σ2
yn−2

+ · · ·

and so more recent data points have higher weighting in the cost

function than do data points collected far in the past. With this

fading-memory cost function, the solution becomes

Q̂n =
n

∑
i=1

γn−i xiyi

σ2
yi

/
n

∑
i=1

γn−i x2
i

σ2
yi

,
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200 battery management systems: volume ii, equivalent-circuit methods

Y = Q̂X

Figure 4.13: The TLS paradigm.
(Reproduced from Fig. 1b of Plett, G.L.,
“Recursive Approximate Weighted Total
Least Squares Estimation of Battery Cell
Total Capacity,” Journal of Power Sources,
196(4), 2011, pp. 2,319–31.)

which may also be computed easily in a recursive manner. To do so,

we keep track of the two running sums:

c̃1,n =
n

∑
i=1

γn−ix2
i /σ2

yi

c̃2,n =
n

∑
i=1

γn−ixiyi/σ2
yi

.

Then, the optimal total-capacity estimate is

Q̂n = c̃2,n/c̃1,n (4.8)

and the value of the cost function for this estimate can be written as

χ2
FMWLS = c̃1,nQ̂2

n − 2c̃2,nQ̂n + c̃3,n. (4.9)

When an additional data point becomes available, we update these

quantities via

c̃1,n = γc̃1,n−1 + x2
n/σ2

yn

c̃2,n = γc̃2,n−1 + xnyn/σ2
yn

.

In summary, the WLS and FMWLS solutions have a number of

nice properties:

1. They give a closed-form solution for Q̂n. Only simple operations—

multiplication, addition, and division—are required.

2. The solutions can be computed very easily in a recursive manner.

3. Fading memory can be added easily, allowing adaptation of Q̂n to

adjust for changes in true cell total capacity.

4.14 Weighted total least squares

The TLS approach assumes that there are errors on both the xi and

yi measurements and models the data as (y − ∆y) = Q(x − ∆x).

This is illustrated in Fig. 4.13, where the error bars on the data points

are meant to show the uncertainties in each dimension. We assume

that ∆x is a zero-mean Gaussian random vector with known element

variances σ2
xi

and that ∆y is a zero-mean Gaussian random vector

with known element variances σ2
yi

, where σ2
xi

is not necessarily equal

to or related to σ2
yi

, and where all of the σ2
xi

and σ2
yi

may be distinct.

TLS attempts to find an estimate Q̂n of the true cell total capacity

Q that minimizes the sum of squared errors ∆xi plus the sum of

squared errors ∆yi. We generalize that approach here slightly to

allow for finding a Q̂n that minimizes the sum of weighted squared

errors, where the weighting takes into account the uncertainty of the

measurement.
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4. battery health estimation 201

That is, we desire to find a Q̂n that minimizes the weighted total-

least-squares (WTLS) cost function

χ2
WTLS =

n

∑
i=1

(xi − Xi)
2

σ2
xi

+
(yi − Yi)

2

σ2
yi

.

In this equation, (Xi, Yi) is the final optimized mapping of the data

(xi, yi) to the line. That is, Xi and Yi are the points on the line Yi =

Q̂nXi corresponding to the noisy measured data pair (xi, yi) for the

optimized value of Q̂n. In general, xi ̸= Xi and yi ̸= Yi. As part of

the WTLS solution, we will need to find this optimal mapping from

(xi, yi) to (Xi, Yi).

Because both xi and yi have noise, we must handle this optimiza-

tion problem differently from the way we handled the WLS problem.

We augment the cost function with Lagrange multipliers λi to enforce

the constraint that Yi = Q̂nXi. This yields augmented cost function

χ2
WTLS,a =

n

∑
i=1

(xi − Xi)
2

σ2
xi

+
(yi − Yi)

2

σ2
yi

− λi(Yi − Q̂nXi).

To solve, we set the partial derivatives of χ2
WTLS,a with respect to

Xi, Yi, and λi to zero. First, taking the partial derivative with respect

to the Lagrange multipliers recovers the constraint:

∂χ2
WTLS,a

∂λi
= −(Yi − Q̂nXi) = 0

Yi = Q̂nXi. (4.10)

Next, we take the partial derivative with respect to Yi. This allows us

to solve for the Lagrange multipliers:

∂χ2
WTLS,a

∂Yi
=

−2(yi − Yi)
σ2

yi

− λi = 0

λi =
−2(yi − Yi)

σ2
yi

. (4.11)

Finally, we take the partial derivative with respect to Xi:

∂χ2
WTLS,a

∂Xi
=

−2(xi − Xi)
σ2

xi

+ λiQ̂n = 0. (4.12)

We substitute the solution for the Lagrange multiplier from Eq. (4.11)

into Eq. (4.12) and multiply both sides of the equation by σ2
yi

σ2
xi

to

simplify the form

0 = −2(xi − Xi)
σ2

xi

− 2(yi −Yi)
σ2

yi

Q̂n

= σ2
yi
(xi − Xi) + σ2

xi
(yi −Yi)Q̂n.
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202 battery management systems: volume ii, equivalent-circuit methods

Finally, we substitute the constraint Eq. (4.10) and solve for Xi:

0 = σ2
yi

xi − σ2
yi

Xi + σ2
xi

yiQ̂n − σ2
xi

XiQ̂
2
n

Xi =
xiσ

2
yi
+ Q̂nyiσ

2
xi

σ2
yi
+ Q̂2

nσ2
xi

.

With these results, we can rewrite the original WTLS cost function

in terms of measured and known quantities as

χ2
WTLS =

n

∑
i=1

(xi − Xi)
2

σ2
xi

+
(yi − Yi)

2

σ2
yi

=
n

∑
i=1

(
xi −

xiσ
2
yi
+Q̂nyiσ

2
xi

σ2
yi
+Q̂2

nσ2
xi

)2

σ2
xi

+

(
yi − Q̂n

xiσ
2
yi
+Q̂nyiσ

2
xi

σ2
yi
+Q̂2

nσ2
xi

)2

σ2
yi

=
n

∑
i=1

(
xi

(
σ2

yi
+ Q̂2

nσ2
xi

)
−
(

xiσ
2
yi
+ Q̂nyiσ

2
xi

))2

σ2
xi

(
σ2

yi
+ Q̂2

nσ2
xi

)2
+

(
yi

(
σ2

yi
+ Q̂2

nσ2
xi

)
− Q̂n

(
xiσ

2
yi
+ Q̂nyiσ

2
xi

))2

σ2
yi

(
σ2

yi
+ Q̂2

nσ2
xi

)2

=
n

∑
i=1

Q̂2
nσ4

xi

(
yi − Q̂nxi

)2

σ2
xi

(
σ2

yi
+ Q̂2

nσ2
xi

)2
+

σ4
yi

(
yi − Q̂nxi

)2

σ2
yi

(
σ2

yi
+ Q̂2

nσ2
xi

)2

=
n

∑
i=1

(yi − Q̂nxi)
2

Q̂2
nσ2

xi
+ σ2

yi

. (4.13)

To find the value of Q̂n that minimizes this cost function, we set

the partial derivative ∂χ2
WTLS/∂Q̂n = 0. After a few steps, we can find

that this is equivalent to solving for Q̂n in

∂χ2
WTLS

∂Q̂n
=

n

∑
i=1

2(Q̂nxi − yi)(Q̂nyiσ
2
xi
+ xiσ

2
yi
)

(Q̂2
nσ2

xi
+ σ2

yi
)2

= 0. (4.14)

Unfortunately, this solution has none of the nice properties of the

WLS solution. Namely,

1. There is no closed-form solution in the general case. Instead, a

numerical optimization method must be used in order to find Q̂n.

One possibility is to perform a Newton–Raphson search for Q̂n,

where several iterations of the equation

Q̂n,k = Q̂n,k−1 −
∂χ2

WTLS/∂Q̂n,k−1

∂2χ2
WTLS/∂Q̂2

n,k−1

(4.15)

are performed every time the data vectors x and y are updated

with a new data pair. That is, after n data pairs are gathered, the
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4. battery health estimation 203

total-least-squares estimate Q̂n,0 is initialized to some value. We

could use an estimate Q̂n from a weighted-least-squares solution,

or we could use the prior estimate Q̂n−1 from a weighted-total-

least-squares solution for this initialization. Then, Eq. (4.15) is

computed at time index n for k = 1 to some number of total

iterations K. Then, the final weighted-total-least-squares solution

at this time step is set to Q̂n = Q̂n,K.

The numerator of Eq. (4.15) is the Jacobian of the original cost func-

tion and is given by Eq. (4.14), if Q̂n is replaced by Q̂n,k−1. The

denominator of this update equation is the Hessian of the original

metric function, which can be found using known quantities to be

∂2χ2
WTLS

∂Q̂2
n

= 2
n

∑
i=1

(
σ4

yi
x2

i + σ4
xi
(3Q̂2

ny2
i − 2Q̂3

nxiyi)

(Q̂2
nσ2

xi
+ σ2

yi
)3

.

−
σ2

xi
σ2

yi
(3Q̂2

nx2
i − 6Q̂nxiyi + y2

i )

(Q̂2
nσ2

xi
+ σ2

yi
)3

)

. (4.16)

This result is used in the Newton–Raphson iteration of Eq. (4.15)

with Q̂n replaced by Q̂n,k−1.

This Newton–Raphson search has the property that the number

of significant figures in the solution doubles with each iteration

of the update. In practice, we find that around four iterations pro-

duce double-precision results. Also note that the metric function

χ2
WTLS is convex, which guarantees that this iterative method will

converge to the global solution.

2. There is no recursive update in the general case. This has both

storage and computational implications. To use WTLS, the entire

vector x and y must be retained, which implies increasing storage

as the number of measurements increase. Furthermore, the num-

ber of computations grows as n grows. That is, WTLS is not well

suited for an embedded-system application that must run in real

time within limited memory.

3. There is no fading memory recursive update (because there is no

recursive update). A nonrecursive fading memory weighted total least

squares (FMWTLS) cost function may be defined, however, as

χ2
FMWTLS =

n

∑
i=1

γn−i (yi − Q̂nxi)
2

Q̂2
nσ2

xi
+ σ2

yi

.

The Jacobian of this cost function is

∂χ2
FMWTLS

∂Q̂n
= 2

n

∑
i=1

γn−i
(Q̂nxi − yi)(Q̂nyiσ

2
xi
+ xiσ

2
yi
)

(Q̂2
nσ2

xi
+ σ2

yi
)2

. (4.17)
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204 battery management systems: volume ii, equivalent-circuit methods

18 The nomenclature Q(χ2 | ν) is
standard for the (complementary)
incomplete gamma function, and is not
to be confused with the symbol used
to denote true cell total capacity Q, or
with the symbol used to denote the
estimate of cell total capacity Q̂n.

The Hessian is

∂2χ2
FMWTLS

∂Q̂2
n

= 2
n

∑
i=1

γn−i

(
σ4

yi
x2

i + σ4
xi
(3Q̂2

ny2
i − 2Q̂3

nxiyi)

(Q̂2
nσ2

xi
+ σ2

yi
)3

−
σ2

xi
σ2

yi
(3Q̂2

nx2
i − 6Q̂nxiyi + y2

i )

(Q̂2
nσ2

xi
+ σ2

yi
)3

)

. (4.18)

Using the Jacobian and Hessian of this cost function, we can use a

Newton–Raphson search to find the solution to the fading-memory

cost function to find an estimate of Q.

In Sect. 4.17, we will address a special case of WTLS that gives a

closed-form solution with recursive update and fading memory. We

will then give an approximate solution to the general WTLS problem

that also has the nice characteristics of the WLS solution. Before we

do so, we first consider two important properties of both the WLS

and WTLS solutions.

4.15 Goodness of model fit

When the measurement errors ∆x and ∆y are uncorrelated and Gaus-

sian, the metric functions χ2
WLS and χ2

WTLS are chi-squared random

variables.

• χ2
WLS is a chi-squared random variable with n − 1 degrees of free-

dom because n data points yi were used in its creation and one

degree of freedom is lost when fitting Q̂n.

• χ2
WTLS is a chi-squared random variable with 2n − 1 degrees of

freedom because n data points xi and n additional data points yi

are used in its creation and one degree of freedom is lost when

fitting Q̂n.

Knowledge of the distribution and the number of degrees of freedom

can be used to determine, from the optimized values of the metric

functions, whether the model fit is reliable; that is, whether the linear

fit is a good fit to the data and whether the optimized value of Q̂n is

a good estimate of the cell’s total capacity.

The incomplete gamma function P(χ2 | ν) is defined as the proba-

bility that the observed chi-square for a correct model should be less

than a computed value χ2 for degree of freedom ν. Its complement,

Q(χ2 | ν) = 1 − P(χ2 | ν), is the probability that the observed chi-

square will exceed the value χ2 by chance even for a correct model.18

Therefore, to test for goodness of fit of a model, we must evaluate

Q(χ2 | ν) =
1

Γ(ν/2)

∫ ∞

χ2/2
e−tt(ν/2−1) dt. (4.19)

Methods for computing this function are built into many engineering

analysis programs, and C-language code is also easy to find.
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4. battery health estimation 205

19 The constant to the left of the expo-
nential in Eq. (4.20) causes the function
to integrate to 1, yielding a valid proba-
bility density function.

If the value obtained for Q(χ2 | ν) is small for some cost χ2 and

degree of freedom ν, then either the model is wrong and can be

statistically rejected, or the variances σ2
xi

or σ2
yi

are poorly known,

or the variances are not actually Gaussian. The third possibility is

common, but is also generally benign if we are willing to accept low

values of Q(χ2 | ν) as representing a valid model. It is not unusual to

accept models if Q(χ2 | ν) ! 0.001 and to reject them otherwise.

We will see that when the hypothesized model is not a good fit to

the data, the value of Q(χ2 | ν) becomes extremely small. However,

when the hypothesized model is equal to the true model generat-

ing the data, even when Q̂n is not precisely equal to Q, the value

of Q(χ2 | ν) tends to be very close to unity. We will use this infor-

mation later to show that the WLS model is not a good approach to

total-capacity estimation, whereas WTLS is much better. It could also

be used online in a battery-management system as a check for the

validity of the present total-capacity estimate.

4.16 Confidence intervals

When computing an estimate of cell total capacity Q̂n, it is also im-

portant to be able to specify the certainty of that estimate. Specifically,

we would like to estimate the variance σ2
Q̂n

of the total capacity es-

timate, with which we can compute confidence intervals such as

three-sigma bounds (Q̂n − 3σQ̂n
, Q̂n + 3σQ̂n

) within which we have

high certainty that the true value of cell total capacity Q lies.

To derive confidence limits, we must recast the least-squares type

optimization problem as a maximum-likelihood optimization prob-

lem. With the assumption that all errors are Gaussian, this is straight-

forward. If we form a vector y comprising elements yi and a vector

x comprising corresponding elements xi and a diagonal matrix Σỹ

having corresponding diagonal elements σ2
yi

, then minimizing χ2
WLS

is equivalent to maximizing the value of the multivariable Gaus-

sian pdf:

MLWLS =
1

(2π)n/2|Σỹ|1/2
exp

(
−1

2
(y − Q̂nx)T

Σ
−1
ỹ (y − Q̂nx)

)

=
1

(2π)n/2|Σỹ|1/2
exp

(
−1

2
χ2

WLS

)
, (4.20)

which is a maximum-likelihood problem. That is, minimizing χ2
WLS

yields the same Q̂n that maximizes MLWLS.19

Similarly, if we form a vector d by concatenating y and x, and a

vector d̂ by concatenating the corresponding elements Yi and Xi, and

a diagonal matrix Σd̃ having diagonal elements σ2
yi

followed by σ2
xi

,
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206 battery management systems: volume ii, equivalent-circuit methods

then minimizing χ2
WTLS is equivalent to maximizing the value of

MLWTLS =
1

(2π)n|Σd̃ |1/2
exp

(
−1

2
(d − d̂ )T

Σ
−1
d̃

(d − d̂ )

)

=
1

(2π)n|Σd̃ |1/2
exp

(
−1

2
χ2

WTLS

)
.

The maximum-likelihood formulation makes it possible to de-

termine confidence intervals on Q̂n. According to the Cramer–Rao

theorem, a tight lower bound on the variance of Q̂n is given by the

negative inverse of the second derivative of the argument of the expo-

nential function, evaluated at the Q̂n that minimizes the least-squares

cost function or maximizes the maximum-likelihood cost function.

Therefore, we have

σ2
Q̂n

≥ 2

(
∂2χ2

WLS

∂Q̂2
n

)−1

for WLS

σ2
Q̂n

≥ 2

(
∂2χ2

WTLS

∂Q̂2
n

)−1

for WTLS.

These lower bounds on the variance are often quite tight, so are rea-

sonable to be used in computing confidence intervals on our total-

capacity estimates.

The second partial derivatives (i.e., the Hessians) of the WTLS and

FMWTLS metric functions have already been described in the context

of a Newton–Raphson iteration by Eqs. (4.14) and (4.16) for WTLS

and Eqs. (4.17) and (4.18) for FMWTLS. For WLS and FMWLS, the

situation is easier. We have

∂2χ2
WLS

∂Q̂2
n

= 2
n

∑
i=1

x2
i

σ2
yi

∂2χ2
FMWLS

∂Q̂2
n

= 2
n

∑
i=1

γn−i x2
i

σ2
yi

,

which may be computed using the previously defined recursive pa-

rameters as:

∂2χ2
WLS

∂Q̂2
n

= 2c1,n

∂2χ2
FMWLS

∂Q̂2
n

= 2c̃1,n. (4.21)

We will use these results to produce confidence intervals on our

estimate in the examples in Sect. 4.20 and 4.21. Note that this method

produces lower bounds on the width of the confidence interval: it is

possible for the real bounds to be wider. Keeping this in mind, the
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4. battery health estimation 207

plots in these future sections are somewhat optimistic. However, we

will note that the confidence intervals are still uncomfortably wide in

some cases. This is unavoidable. We are computing optimal estimates

of total capacity. The wide error bounds are due to the total-capacity

estimation problem being very hard and this is the best that can

be done.

4.17 Simplified total least squares

4.17.1 TLS with proportional confidence on xi and yi

The general WTLS and FMWTLS solutions provide excellent results

but are impractical to implement in an embedded system due to ever-

growing memory and computational requirements. Therefore, we

search for cases that lead to simpler implementations. Here, we look

at an exact solution for the case when the uncertainties on the xi and

yi data points are proportional to each other for all i, which can be

implemented easily in an embedded system. With insights from this

solution we will next look at an approximate WTLS solution that also

has nice implementation properties.

If σxi = kσyi for all i, then the WTLS cost function reduces to

a generalization of the standard TLS cost function. We substitute

σxi = kσyi into χ2
WTLS and associated results to get the proportional

total-least-squares (PTLS) cost function

χ2
PTLS =

n

∑
i=1

(xi − Xi)
2

k2σ2
yi

+
(yi −Yi)

2

σ2
yi

=
n

∑
i=1

(yi − Q̂nxi)
2

(Q̂2
nk2 + 1)σ2

yi

.

Furthermore, the Jacobian of the WTLS cost function reduces (again,

via the substitution σxi = kσyi) to

∂χ2
PTLS

∂Q̂n
= 2

n

∑
i=1

(Q̂nxi − yi)(Q̂nk2yi + xi)

(Q̂2
nk2 + 1)2σ2

yi

.

This equation may be solved for an exact solution to Q̂n without

requiring iteration to do so.

We set the Jacobian to zero and collect terms

∂χ2
PTLS

∂Q̂n
= 2

n

∑
i=1

(Q̂nxi − yi)(Q̂nk2yi + xi)

(Q̂2
nk2 + 1)2σ2

yi

= 0

= Q̂2
n

n

∑
i=1

k2 xiyi

σ2
yi︸ ︷︷ ︸

a=k2c2,n

+Q̂n

n

∑
i=1

x2
i − k2y2

i

σ2
yi︸ ︷︷ ︸

b=c1,n−k2c3,n

+
n

∑
i=1

−xiyi

σ2
yi︸ ︷︷ ︸

c=−c2,n

= aQ̂2
n + bQ̂n + c = 0,
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208 battery management systems: volume ii, equivalent-circuit methods

where we have defined c3,n = ∑
n
i=1 y2

i /σ2
yi

. Note that the solution for

Q̂n can be found via the quadratic formula

Q̂n =
−b ±

√
b2 − 4ac

2a
.

Substituting the recursive quantities, we can write

Q̂n =
−(c1,n − k2c3,n)±

√
(c1,n − k2c3,n)2 + 4k2c2

2,n

2k2c2,n
. (4.22)

Which of these two solutions should we to choose for our final

total-capacity estimate? We can show using a Routh test that this

quadratic equation always has exactly one positive root and one

negative root. Because total capacity must be positive, we will choose

the positive solution to Eq. (4.22).

To see this, we compute the Routh array for this quadratic equa-

tion, which is:

Q̂2
n k2c2,n −c2,n

Q̂1
n c1,n − k2c3,n 0

Q̂0
n −c2,n 0

The Routh test examines the left column of the Routh array and

counts the number of sign changes as we traverse from the first row

to the final row. The number of roots in the open right-half complex

plane is equal to the number of sign changes that we count. For this

array, we note that the top entry must be positive since c2,n is always

positive and similarly the bottom entry must be negative. Therefore,

regardless of the sign on the middle entry, there is exactly one sign

change from positive to negative as we traverse the first column.

Consequently, there is exactly one root of the polynomial in the

right-half complex plane. The other root, therefore, must be in the

left-half plane or on the imaginary axis. By the fundamental theorem

of algebra, because the coefficients c1,n, c2,n, and c3,n are real, the

polynomial roots must either both be real or be complex conjugates.

The fact that they are in different halves of the complex plane shows

that they cannot be complex conjugates, and therefore must both be

real. So, we choose the larger root from the solution of the quadratic

equation, which corresponds to the positive root.

Recursive calculation is done via

Q̂n =
−c1,n + k2c3,n +

√
(c1,n − k2c3,n)2 + 4k2c2

2,n

2k2c2,n
,

where initialization is done by setting x0 = 1, y0 = Qnom, and

σ2
yi

to a value representing the uncertainty of the total capacity at
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4. battery health estimation 209

manufacture. Therefore,

c1,0 = 1/σ2
yi

c2,0 = Qnom/σ2
yi

c3,0 = Q2
nom/σ2

yi

and

c1,n = c1,n−1 + x2
n/σ2

yi

c2,n = c2,n−1 + xnyn/σ2
yi

c3,n = c3,n−1 + y2
n/σ2

yi
.

The Hessian, which is required to compute the uncertainty of the

estimate, may also be found in terms of the recursive parameters:

∂2χ2
PTLS

∂Q̂2
n

=
(−4k4c2)Q̂3

n + 6k4c3Q̂2
n

(Q̂2
nk2 + 1)3

+
(−6c1 + 12c2)k

2Q̂n + 2(c1 − k2c3)

(Q̂2
nk2 + 1)3

.

This can be used to predict error bounds on the estimate Q̂n. One-

sigma bounds are computed as

σQ̂n
=
√

2/(∂2χ2
PTLS/∂Q̂2

n).

Fading memory may be incorporated easily. Following the same

steps, we find that recursive calculation is done via

Q̂n =
−c̃1,n + k2 c̃3,n +

√
(c̃1,n − k2 c̃3,n)2 + 4k2 c̃2

2,n

2k2 c̃2,n
, (4.23)

where initialization is done by setting x0 = 1, y0 = Qnom, and σ2
yi

to a value representing the uncertainty of the initial total capacity.

Therefore,

c̃1,0 = 1/σ2
yi

c̃2,0 = Qnom/σ2
yi

c̃3,0 = Q2
nom/σ2

yi

and

c̃1,n = γc̃1,n−1 + x2
n/σ2

yi

c̃2,n = γc̃2,n−1 + xnyn/σ2
yi

c̃3,n = γc̃3,n−1 + y2
n/σ2

yi
.
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210 battery management systems: volume ii, equivalent-circuit methods

After some straightforward manipulations, we can obtain the

Hessian in terms of the recursive parameters c̃1 through c̃3:

∂2χ2
FMPTLS

∂Q̂2
n

=
(−4k4 c̃2)Q̂3

n + 6k4c̃3Q̂2
n

(Q̂2
nk2 + 1)3

+
(−6c̃1 + 12c̃2)k2Q̂n + 2(c̃1 − k2 c̃3)

(Q̂2
nk2 + 1)3

. (4.24)

This can be used to predict error bounds on the estimate Q̂n. One-

sigma bounds are computed as

σQ̂n
=
√

2/(∂2χ2
FMPTLS/∂Q̂2

n).

Further, the cost function for the optimizing Q̂n can be computed in

terms of the recursive parameters as

χ2
FMPTLS =

c̃1,nQ̂2
n − 2c̃2,nQ̂n + c̃3,n

Q̂2
nk2 + 1

. (4.25)

In summary, the proportional-total-least-squares solution shares the

nice properties of the WLS solution:

1. It gives a closed-form solution for Q̂n. No iteration or advanced

algorithms are required—only simple mathematical operations.

2. The solution can be computed very easily in a recursive manner.

We keep track of the three running sums c1,n, c2,n and c3,n. When

an additional data point becomes available, we update the sums

and compute an updated total-capacity estimate.

3. Fading memory is easily added.

Unfortunately, this solution does not allow σ2
xi

and σ2
yi

to be arbitrary—

they must be proportionally related by the scaling factor σxi = kσyi

for every data point. The next section describes an approximation to

PTLS that allows an arbitrary relationship.

4.18 Approximate full solution

4.18.1 Deriving the approximate weighted total-least-squares cost func-

tion

We desire an approximate solution to the WTLS problem that allows

σ2
xi

and σ2
yi

to be nonproportional and that yields a recursive solution

for feasible implementation in an embedded system. We will do so

by considering Fig. 4.14, which illustrates the geometry of the WTLS

and PTLS solutions and motivates the geometry of the approximate

solution to be developed in this section.
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4. battery health estimation 211

Y = Q̂XY = Q̂X Y = Q̂X

δxi

δyi

∆xi

∆yi

θ 90◦ − θ
(xi, yi)

(Xi, Yi)

Ri

Figure 4.14: Geometry of WTLS, PTLS,
and AWTLS.
(Reproduced from Fig. 2 of Plett, G.L.,
“Recursive Approximate Weighted Total
Least Squares Estimation of Battery Cell
Total Capacity,” Journal of Power Sources,
196(4), 2011, pp. 2,319–31.)

The left frame of the figure shows the WTLS relationship between

data point (xi, yi) and its optimized map (Xi, Yi) on Yi = Q̂nXi

when σ2
xi

and σ2
yi

are arbitrary. The data points (xi, yi) are drawn with

error bars to illustrate the uncertainties in each dimension, which are

proportional to σxi and σyi . A dotted line joins each data point (xi, yi)

to its map (Xi, Yi) on the line Yi = Q̂nXi. We see that the distance

between xi and Xi is not necessarily equal to the distance between yi

and Yi. If the quality of the xi measurement is better (poorer) than

the quality of the yi measurement, the distance to its map Xi should

be shorter (greater) than the distance from yi to its map Yi.

The middle frame shows the PTLS relationship between data point

(xi, yi) and its optimized map (Xi, Yi) on Yi = Q̂nXi when σ2
xi

and

σ2
yi

are equal. In this case, the distance between xi and Xi is equal to

the distance between yi and Yi, and the line joining data point (xi, yi)

and its map (Xi, Yi) is perpendicular to the line Yi = Q̂nXi. If σxi and

σyi are not equal but proportional, either of the x- or y-axes may be

scaled to yield transformed data points having equal variances and

hence the same idea applies.

The right frame of the figure illustrates definitions that will be

used to derive an approximate weighted total-least-squares (AWTLS)

solution. As with the PTLS solution, we enforce that the line joining

data point (xi, yi) and (Xi, Yi) be perpendicular to the line Yi = Q̂nXi.

This will result in a solution that may be solved recursively. However,

as with the WTLS solution, we weight the distance between xi and Xi

differently from the distance between yi and Yi in the optimization

cost function.

We define ∆xi be the x-distance between data point i and the line,

and ∆yi be the y-distance between data point i and the line. The

slope of the line is Q̂n = ∆yi/∆xi for all i. The angle of the line is

θ = tan−1 Q̂n. The shortest distance between the line and a given data
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212 battery management systems: volume ii, equivalent-circuit methods

point is

Ri = ∆yi cos θ = ∆yi/
√

1 + tan2 θ = ∆yi/
√

1 + Q̂2
n.

We let δxi = Ri sin θ and δyi = Ri cos θ. These are the x- and y-

components of the perpendicular distance between data point i and

the fitting line. We then weight our fitting cost function according to

these variances. Therefore, we define the approximate weighted total

least squares (AWTLS) cost function as

χ2
AWTLS =

n

∑
i=1

δx2
i

σ2
xi

+
δy2

i

σ2
yi

.

Note that sin2 θ = 1 − cos2 θ = Q̂2
n/(1 + Q̂2

n). Therefore,

δx2
i =

(
∆y2

i

1 + Q̂2
n

)(
Q̂2

n

1 + Q̂2
n

)

δy2
i =

(
∆y2

i

1 + Q̂2
n

)(
1

1 + Q̂2
n

)

.

Because ∆yi = yi − Q̂nxi, we can then write

χ2
AWTLS =

n

∑
i=1

(yi − Q̂nxi)
2

(1 + Q̂2
n)2

(
Q̂2

n

σ2
xi

+
1

σ2
yi

)

.

To verify that AWTLS is an approximation to WTLS in at least some

cases, we note that the two cost functions are equal when σxi =

σyi . However, they are not equal when σxi = kσyi , but this will be

corrected in Sect. 4.18.4.

4.18.2 Minimizing the AWTLS cost function

The Jacobian of the AWTLS cost function (found with the help of

Mathematica) is

∂χ2
AWTLS

∂Q̂n
=

2

(Q̂2
n + 1)3

n

∑
i=1

Q̂4
n

(
xiyi

σ2
xi

)

+ Q̂3
n

(
2x2

i

σ2
xi

−
x2

i

σ2
yi

−
y2

i

σ2
xi

)

+ Q̂2
n

(
3xiyi

σ2
yi

− 3xiyi

σ2
xi

)

+ Q̂n

(
x2

i − 2y2
i

σ2
yi

+
y2

i

σ2
xi

)

+

(
−xiyi

σ2
yi

)

.

We define additional recursive quantities

c4,n =
n

∑
i=1

x2
i

σ2
xi

, c5,n =
n

∑
i=1

xiyi

σ2
xi

, c6,n =
n

∑
i=1

y2
i

σ2
xi

.

This allows us to write the cost function in terms of recursively com-

puted running summations

∂χ2
AWTLS

∂Q̂n
=

2

(Q̂2
n + 1)3

(
c5Q̂4

n + (2c4 − c1 − c6)Q̂3
n

+ (3c2 − 3c5)Q̂2
n + (c1 − 2c3 + c6)Q̂n − c2

)
,
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4. battery health estimation 213

where initialization is done by setting x0 = 1, y0 = Qnom, σ2
y0

to a

representative value of the uncertainty of the total capacity, and σ2
x0

to

a representative value of the uncertainty of a difference between two

state of charge estimates.

Therefore, we initialize

c1,0 = 1/σ2
y0

c4,0 = 1/σ2
x0

c2,0 = Qnom/σ2
y0

c5,0 = Qnom/σ2
x0

c3,0 = Q2
nom/σ2

y0
c6,0 = Q2

nom/σ2
x0

,

and recursively compute

c1,n = c1,n−1 + x2
n/σ2

yn
c4,n = c4,n−1 + x2

n/σ2
xn

c2,n = c2,n−1 + xnyn/σ2
yn

c5,n = c5,n−1 + xnyn/σ2
xn

c3,n = c3,n−1 + y2
n/σ2

yn
c6,n = c6,n−1 + y2

n/σ2
xn

.

We minimize the cost function by setting its Jacobian to zero.

Therefore, any of the roots of the quartic equation

c5Q̂4
n + (2c4 − c1 − c6)Q̂3

n + (3c2 − 3c5)Q̂2
n + (c1 − 2c3 + c6)Q̂n − c2 = 0

(4.26)

is a candidate solution for Q̂n. We will discuss how to solve Eq. (4.26)

for these roots and select the optimal value in Sect. 4.18.3.

When the assumptions made in deriving AWTLS are approxi-

mately true, the Hessian yields a good value for the error bounds on

the total-capacity estimate. After some straightforward but messy

mathematics, we can find the Hessian in terms of the recursive pa-

rameters to be

∂2χ2
AWTLS

∂Q̂2
n

=
2

(Q̂2
n + 1)4

(
−2c5Q̂5

n + (3c1 − 6c4 + 3c6)Q̂4
n

+ (−12c2 + 16c5)Q̂3
n + (−8c1 + 10c3 + 6c4 − 8c6)Q̂2

n

+ (12c2 − 6c5)Q̂n + (c1 − 2c3 + c6)

)
.

Fading memory can be incorporated easily. The cost function is

χ2
FMAWTLS =

n

∑
i=1

γn−i (yi − Q̂nxi)
2

(1 + Q̂2
n)2

(
Q̂2

n

σ2
xi

+
1

σ2
yi

)

.

The Jacobian is

∂χ2
AWTLS

∂Q̂n
=

2

(Q̂2
n + 1)3

n

∑
i=1

γn−i

[

Q̂4
n

(
xiyi

σ2
xi

)

+ Q̂3
n

(
2x2

i

σ2
xi

−
x2

i

σ2
yi

−
y2

i

σ2
xi

)

+ Q̂2
n

(
3xiyi

σ2
yi

− 3xiyi

σ2
xi

)

+ Q̂n

(
x2

i − 2y2
i

σ2
yi

+
y2

i

σ2
xi

)

+

(
−xiyi

σ2
yi

)]

,
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214 battery management systems: volume ii, equivalent-circuit methods

which can be rewritten in terms of recursively computed running

summations as

∂χ2
FMAWTLS

∂Q̂n
=

2

(Q̂2
n + 1)3

(

c̃5Q̂4
n + (−c̃1 + 2c̃4 − c̃6)Q̂3

n

+ (3c̃2 − 3c̃5)Q̂2
n + (c̃1 − 2c̃3 + c̃6)Q̂n − c̃2

)

.

Initialization is done by setting x0 = 1, y0 = Qnom, σ2
y0

to a repre-

sentative value of the uncertainty of the total capacity, and σ2
x0

to a

representative value of the uncertainty of a difference between two

state of charge estimates. Therefore, we initialize

c̃1,0 = 1/σ2
y0

c̃4,0 = 1/σ2
x0

c̃2,0 = Qnom/σ2
y0

c̃5,0 = Qnom/σ2
x0

c̃3,0 = Q2
nom/σ2

y0
c̃6,0 = Q2

nom/σ2
x0

,

and recursively compute

c̃1,n = c̃1,n−1 + x2
n/σ2

yn
c̃4,n = c̃4,n−1 + x2

n/σ2
xn

c̃2,n = c̃2,n−1 + xnyn/σ2
yn

c̃5,n = c̃5,n−1 + xnyn/σ2
xn

c̃3,n = c̃3,n−1 + y2
n/σ2

yn
c̃6,n = c̃6,n−1 + y2

n/σ2
xn

.

We minimize the cost function by setting its Jacobian to zero.

Therefore, any of the roots of the quartic equation

c̃5Q̂4
n + (2c̃4 − c̃1 − c̃6)Q̂3

n + (3c̃2 − 3c̃5)Q̂2
n + (c̃1 − 2c̃3 + c̃6)Q̂n − c̃2 = 0

(4.27)

is a candidate solution for Q̂n. We will discuss how to solve for these

roots and select the optimal value in Sect. 4.18.3. The Hessian, which

may be used to compute error bounds, is

∂2χ2
FMAWTLS

∂Q̂2
n

=
2

(Q̂2
n + 1)4

(
−2c̃5Q̂5

n + (3c̃1 − 6c̃4 + 3c̃6)Q̂4
n

+ (−12c̃2 + 16c̃5)Q̂3
n + (−8c̃1 + 10c̃3 + 6c̃4 − 8c̃6)Q̂2

n

+ (12c̃2 − 6c̃5)Q̂n + (c̃1 − 2c̃3 + c̃6)

)
. (4.28)

4.18.3 Solving the quartic equation

To be able to find total capacity, we must find the roots of a quar-

tic equation, either Eq. (4.26) or (4.27). There are several methods

that could be used to do so. In the following, we consider three ap-

proaches to finding the roots of the generic quartic

x4 + ax3 + bx2 + cx + d = 0. (4.29)
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4. battery health estimation 215

20 For this reason, it is unwise to use
an iterative technique to track a single
real root as the total-capacity estimate,
because you may be tracking the wrong
root! Instead, the entire set of roots
should be solved every iteration.

21 See, for example, Bruce E. Meserve,
Fundamental Concepts of Algebra, Dover,
1982.

22 See, for example, D. Herbison-Evans,
“Solving quartics and cubics for graph-
ics,” Graphics Gems V (IBM Version),
1995, pp. 3–15.

23 See, for example, D.A. Bini, P. Boito,
Y. Eidelman, L. Gemignani, and I. Go-
hberg, “A fast implicit QR eigenvalue
algorithm for companion matrices,”
Linear Algebra and its Applications, 432,
2010, pp. 2006–2031.

First, the roots of the quartic may be found by iterative techniques.

The set of four roots of the quartic found at time step n − 1 are used

as the initial guess for the set of roots at time step n. Then, one or

more Newton–Raphson iterations are performed to refine the set of

roots for time step n. While this approach is conceptually simple,

there are some subtle difficulties that can turn into big problems. For

example, the roots may start out distinct, but over time two or more

roots may come together to make a repeated root. Or, a repeated

root may split into multiple distinct roots.20 It is possible to compute

how many real roots a polynomial has within an interval via Sturm’s

theorem,21 and to search for only those roots using a line search, but

the amount of computation required to do so is considerable.

Second, analytic solutions exist to compute the roots of a quartic

equation directly. These include Ferrari’s method, Cardano’s method,

and others. At first, it would seem that this is the best approach to

solving the quartic—all roots can be found in closed form every time.

However, it turns out that all the known methods for solving quar-

tic equations analytically have numeric instabilities.22 The methods

can be shown to be stable for only certain combinations of the signs

of {a, b, c, d} in Eq. (4.29). Further, while we know that d < 0 for

the problem we are trying to solve, we have observed positive, nega-

tive, and zero values for b. In the examples later in this chapter, we

encounter only negative values for a and c, but there is no guaran-

tee of this in the general case. In short, using a closed-form analytic

solution for the roots of the quartic is problematic, at best.

Third, it turns out that the roots of Eq. (4.29) are the eigenvalues of

either of the following companion matrices:
⎡

⎢⎢⎢⎣

−a 1 0 0

−b 0 1 0

−c 0 0 1

−d 0 0 0

⎤

⎥⎥⎥⎦
, or

⎡

⎢⎢⎢⎣

−a −b −c −d

1 0 0 0

0 1 0 0

0 0 1 0

⎤

⎥⎥⎥⎦
, or

⎡

⎢⎢⎢⎣

0 0 0 −d

1 0 0 −c

0 1 0 −b

0 0 1 −a

⎤

⎥⎥⎥⎦
, or

⎡

⎢⎢⎢⎣

0 1 0 0

0 0 1 0

0 0 0 1

−d −c −b −a

⎤

⎥⎥⎥⎦
.

While finding the eigenvalues of a general matrix is extremely diffi-

cult, it is considerably simpler to find the eigenvalues of a companion

matrix.23 This is also the most stable method numerically and is how

MATLAB finds the zeros of a polynomial using its built-in roots

command. This is probably the best approach for finding the roots of

the quartic equation.

Once the set of roots is found, however, we still need to decide

which root is the one to use as the capacity estimate. Negative and

Plett, Gregory. Battery Management Systems, Volume II: Equivalent-Circuit Methods, Artech House, 2015. ProQuest Ebook Central,
         http://ebookcentral.proquest.com/lib/ybp-ebookcentral/detail.action?docID=4821265.
Created from ybp-ebookcentral on 2020-03-28 12:07:34.

C
op

yr
ig

ht
 ©

 2
01

5.
 A

rt
ec

h 
H

ou
se

. A
ll 

rig
ht

s 
re

se
rv

ed
.



216 battery management systems: volume ii, equivalent-circuit methods

complex roots can be discarded immediately, but we have sometimes

encountered solutions with multiple positive real roots. Which is the

capacity estimate?

The only foolproof method of which we are aware is to evaluate

χ2
AWTLS at each of the positive-real candidate solutions and to retain

the one that gives the lowest computed value. Computing the cost

function may be done very readily if we rewrite it in terms of the

running summations and the total-capacity estimate. For the approxi-

mate weighted TLS solution, we have

χ2
AWTLS =

1

(Q̂2
n + 1)2

(
c4Q̂4

n − 2c5Q̂3
n + (c1 + c6)Q̂2

n − 2c2Q̂n + c3

)
.

(4.30)

Similarly, for the fading memory version, we have

χ2
FMAWTLS =

1

(Q̂2
n + 1)2

(
c̃4Q̂4

n − 2c̃5Q̂3
n + (c̃1 + c̃6)Q̂2

n − 2c̃2Q̂n + c̃3

)
.

(4.31)

4.18.4 Summary of approximate weighted total least squares

To use the AWTLS or FMAWTLS solution, we first initialize the six

recursive variables. Then, every time a data point becomes available,

we update the recursive variables and solve the quartic equation

Eq. (4.26) or (4.27) for the four possible capacity estimates. We sub-

stitute these capacity estimates back into the cost function Eq. (4.30)

or (4.31) and choose the value that gives the lowest cost.

Note that the AWTLS cost function does not equal the WTLS cost

function when σxi = kσyi . This can be remedied easily by defin-

ing scaled measurements ỹi = kyi. Then σỹi
= σxi . We invoke

the AWTLS or FMAWTLS methods to find total capacity estimate

Q̂n and Hessian Hn using input sequences composed of the origi-

nal x vector and the scaled ỹ vector (i.e., (xi, ỹi) with correspond-

ing variances (σ2
xi

, k2σ2
yi
)). The true slope estimate can be found

as Q̂n,corrected = Q̂n/k and the corrected Hessian can be found as

Hn,corrected = k2Hn. This is the method used in the simulation results

in Sect. 4.20 and 4.21, where the proportionality constant is estimated

as k = σx1/σy1 . This scaling improves results even when σyi and

σxi are not proportionally related if k is chosen to give an order of

magnitude proportionality or average proportionality between the

uncertainties of xi and yi.

In summary, these AWTLS solutions share the nice properties of

the WLS solution:

1. They give a closed-form solution for Q̂n. No iteration is required.

The only complication is the need for finding the roots of a quartic

Plett, Gregory. Battery Management Systems, Volume II: Equivalent-Circuit Methods, Artech House, 2015. ProQuest Ebook Central,
         http://ebookcentral.proquest.com/lib/ybp-ebookcentral/detail.action?docID=4821265.
Created from ybp-ebookcentral on 2020-03-28 12:07:34.

C
op

yr
ig

ht
 ©

 2
01

5.
 A

rt
ec

h 
H

ou
se

. A
ll 

rig
ht

s 
re

se
rv

ed
.



4. battery health estimation 217

polynomial, but a manageable approach to doing so has been

proposed.

2. The solution can be computed very easily in a recursive manner.

We keep track of the six running sums c1,n through c6,n. When an

additional data point becomes available, we update the sums and

compute an updated total-capacity estimate.

3. Fading memory can be added easily to allow the estimate Q̂n to

place greater emphasis on more recent measurements than on

earlier measurements, allowing adaptation of Q̂n to adjust for true

cell total capacity changes.

4. Further, this method is superior to the PTLS solution since it al-

lows individual weighting on the xi and yi data points.

4.19 Code to simulate the methods

The regressive total-capacity estimation algorithms are implemented

in the MATLAB code xLSalgos.m. The function begins with some

comments that describe its input and output arguments:

% Tests the recursive performance of the xLS algorithms on a particular

% dataset

% [Qhat,SigmaQ,Fit] = xLSalgos(measX,measY,SigmaX,SigmaY,gamma,Qnom)

% - measX = noisy z(2)-z(1)

% - measY = noisy integral(i(t)/3600 dt)

% - SigmaX = variance of X

% - SigmaY = variance of Y

% - gamma = geometric forgetting factor (gamma = 1 for perfect memory)

% - Qnom = nominal value of Q: if nonzero, used to initialize recursions

%

% - Qhat = estimate of capacity at every time step

% - column 1 = WLS - weighted, recursive

% - column 2 = WTLS - weighted, but not recursive

% - column 3 = SCTLS - scaled confidence PTLS; recursive and weighted,

% but using SigmaX(1) and SigmaY(1) only to determine

% factor by which all SigmaX and SigmaY are assumed to be

% related

% - column 4 = AWTLS - recursive and weighted

% - SigmaQ = variance of Q, computed via Hessian method (columns

% correspond to methods in the same way as for Qhat)

% - Fit = goodness of fit metric for each method (columns

% correspond to methods in the same way as for Qhat)

function [Qhat,SigmaQ,Fit]=xLSalgos(measX,measY,SigmaX,SigmaY,gamma,Qnom)

Next, memory is reserved for the function output matrices and

the proportionality constant k between σx and σy is estimated as k =

σx1/σy1 . The recursive algorithm parameters are initialized to zero.

If, however, we have known nonzero Qnom, then we can initialize to

better values. Note that uppercase “C” variables are scaled fading-

memory recursive parameters for use with AWTLS and lowercase

“c” variables are fading-memory recursive parameters for all other
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218 battery management systems: volume ii, equivalent-circuit methods

methods (except for nonrecursive WTLS). The recursive parameters

are then updated based on the current measurement.

% Reserve some memory

Qhat = zeros(length(measX),4); SigmaQ = Qhat; Fit = Qhat;

K = sqrt(SigmaX(1)/SigmaY(1));

% Initialize some variables used for the recursive methods

c1 = 0; c2 =0; c3 = 0; c4 = 0; c5 = 0; c6 = 0;

C1 = 0; C2 =0; C3 = 0; C4 = 0; C5 = 0; C6 = 0;

if Qnom ~= 0,

c1 = 1/SigmaY(1); c2 = Qnom/SigmaY(1); c3 = Qnom^2/SigmaY(1);

c4 = 1/SigmaX(1); c5 = Qnom/SigmaX(1); c6 = Qnom^2/SigmaX(1);

C1 = 1/(K^2*SigmaY(1)); C2 = K*Qnom/(K^2*SigmaY(1));

C3 = K^2*Qnom^2/(K^2*SigmaY(1));

C4 = 1/SigmaX(1); C5 = K*Qnom/SigmaX(1); C6 = K^2*Qnom^2/SigmaX(1);

end

for iter = 1:length(measX),

% Compute some variables used for the recursive methods

c1 = gamma*c1 + measX(iter)^2/SigmaY(iter);

c2 = gamma*c2 + measX(iter)*measY(iter)/SigmaY(iter);

c3 = gamma*c3 + measY(iter)^2/SigmaY(iter);

c4 = gamma*c4 + measX(iter)^2/SigmaX(iter);

c5 = gamma*c5 + measX(iter)*measY(iter)/SigmaX(iter);

c6 = gamma*c6 + measY(iter)^2/SigmaX(iter);

C1 = gamma*C1 + measX(iter)^2/(K^2*SigmaY(iter));

C2 = gamma*C2 + K*measX(iter)*measY(iter)/(K^2*SigmaY(iter));

C3 = gamma*C3 + K^2*measY(iter)^2/(K^2*SigmaY(iter));

C4 = gamma*C4 + measX(iter)^2/SigmaX(iter);

C5 = gamma*C5 + K*measX(iter)*measY(iter)/SigmaX(iter);

C6 = gamma*C6 + K^2*measY(iter)^2/SigmaX(iter);

Next, the fading-memory recursive capacity estimate using WLS

is evaluated via Eq. (4.8). Its Hessian is computed via Eq. (4.21) to

be able to evaluate the estimate’s error-bounds variable SigmaQ. The

value of the cost function χ2
FMWLS is computed using Eq. (4.9) and

used to compute goodness of fit, stored in Fit, using MATLAB’s

implementation of the complementary incomplete gamma function

and Eq. (4.19).

% Method 1: WLS

Q = c2./c1; Qhat(iter,1) = Q;

H = 2*c1; SigmaQ(iter,1) = 2/H;

J = Q.^2.*c1 -2*Q.*c2 + c3;

Fit(iter,1) = gammainc(J/2,(iter-1)/2,'upper');

The next code segment computes the present total-capacity es-

timate using the WTLS method. This method is not recursive, and

requires executing multiple Newton–Raphson search iterations to

converge toward the solution every time a new data point is mea-

sured. Each WTLS solution is initialized with the WLS estimate just

computed, and then the cost-function Jacobian and Hessian matrices

are repeatedly computed using Eq. (4.17) and (4.18). These are used

with Eq. (4.15) to converge toward the WTLS solution. The optimized
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4. battery health estimation 219

cost-function value is computed via Eq. (4.13) and used to find the

goodness of fit of the model.

% Method 2: WTLS -- not recursive

g = flipud((gamma.^(0:(iter-1)))'); % vector of forgetting factors

x = measX(1:iter); y = measY(1:iter); % all measurements until now

sx = sqrt(SigmaX(1:iter)); % all sigma-x until now

sy = sqrt(SigmaY(1:iter)); % all sigma-y until now

Q = Qhat(iter,1); % initialize WTLS with WLS total capacity estimate

for kk = 1:10, % ten Newton--Raphson iterations

jacobian = sum(g.*(2*(Ctls2*x-y).*(Ctls2*y.*sx.^2+x.*sy.^2))./...

((Ctls2^2*sx.^2+sy.^2).^2));

hessian = sum(g.*(2*sy.^4.*x.^2+sx.^4.*...

(6*Ctls2^2*y.^2-4*Ctls2^3*x.*y) - ...

sx.^2.*sy.^2.*...

(6*Ctls2^2*x.^2-12*Ctls2*x.*y+2*y.^2))./...

((Ctls2^2*sx.^2+sy.^2).^3));

Q = Q - jacobian/hessian;

end

Qhat(iter,2) = Q; % save capacity estimate

SigmaQ(iter,2) = 2/hessian; % save bounds

J = sum(g.*(y-Q*x).^2./(sx.^2*Q^2+sy.^2)); % cost-function value

Fit(iter,2) = gammainc(J/2,(2*iter-1)/2,'upper'); % goodness of fit

Next, we implement the PTLS method. The total-capacity estimate

is computed using Eq. (4.23), its Hessian via Eq. (4.24), and the result-

ing minimum cost with Eq. (4.25).

% Method 3: PTLS

Q = (-c1+K^2*c3+sqrt((c1-K^2*c3)^2+4*K^2*c2^2))/(2*K^2*c2);

Qhat(iter,3) = Q;

H = ((-4*K^4*c2)*Q^3+6*K^4*c3*Q^2+...

(-6*c1+12*c2)*K^2*Q+2*(c1-K^2*c3))/(Q^2*K^2+1)^3;

SigmaQ(iter,3) = 2/H;

J = (Q^2*c1 -2*Q*c2 + c3)/(Q^2*K^2+1);

Fit(iter,3) = gammainc(J/2,(2*iter-1)/2,'upper');

Finally, we implement the AWTLS method. We first search for

roots of the quartic equation of Eq. (4.27). We discard any that are not

positive and real. Then, we evaluate the cost function of Eq. (4.31) us-

ing the remaining candidate roots and keep the root that minimizes

the cost function. The Hessian is computed via Eq. (4.28).

% Method 4: AWTLS with pre-scaling

r = roots([C5 (-C1+2*C4-C6) (3*C2-3*C5) (C1-2*C3+C6) -C2]);

r = r(r==conj(r)); % discard complex-conjugate roots

r = r(r>0); % discard negative roots

Jr = ((1./(r.^2+1).^2).*(r.^4*C4-2*C5*r.^3+(C1+C6)*r.^2-2*C2*r+C3))';

J = min(Jr);

Q = r(Jr==J); % keep Q that minimizes cost function

H = (2/(Q^2+1)^4)*...

(-2*C5*Q^5+(3*C1-6*C4+3*C6)*Q^4+(-12*C2+16*C5)*Q^3 ...

+(-8*C1+10*C3+6*C4-8*C6)*Q^2+(12*C2-6*C5)*Q+(C1-2*C3+C6));

Qhat(iter,4) = Q/K;

SigmaQ(iter,4) = 2/H/K^2;

Fit(iter,4) = gammainc(J/2,(2*iter-1)'/2,'upper');

end

Fit = real(Fit);

return
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220 battery management systems: volume ii, equivalent-circuit methods

4.20 Example HEV simulations

In closing, we examine a number of usage scenarios to exercise the

WLS, WTLS, PTLS, and AWTLS total-capacity estimation methods

and to compare their performance. All scenarios use the fading-

memory version of the four methods, but we omit the prefix “FM”

for brevity. Unless otherwise stated, the fading-memory forgetting

factor is chosen as γ = 1.0.

We assume that the individual SOC estimates that are input to

these methods can be determined to an accuracy of σz = 0.01. This

is being very generous, since the best method of which we are aware,

SPKF, achieves only around σz = 0.01 for LMO or NMC cells and

σz = 0.03 for LFP cells in practice when Qnom is used instead of

Q in the estimator. Other methods that we have used, such as EKF,

achieve around σz = 0.02 or higher for LMO cells in practice. A nice

advantage of both EKF and SPKF is that they give dynamic estimates

of the variance of the state of charge estimate that ensure that the

values of σxi used in total-capacity estimation are accurate.

We use computer simulation rather than cell testing to validate the

algorithms because it allows us to constrain a variety of factors that

would be difficult to control in a real-time embedded system. These

include:

• The efficacy and accuracy of the SOC estimation algorithms used

to provide input to the total-capacity estimation algorithms;

• The accuracy and precision of the raw sensor measurements used

as input (including the challenges of bias errors, nonlinear errors,

and random errors, for example);

• The repeatability of the experiment; and

• The fact that total capacity of a physical cell fades over time and

the associated difficulty or even impossibility of knowing the true

value of total capacity against which to compare our results.

Therefore, we choose to use synthetic data to isolate the performance

of the total-capacity estimation algorithms themselves, when all other

factors are in some sense idealized. The xi and yi values are mathe-

matically generated, as described in the individual subsections below.

4.20.1 HEV application, scenario 1

The first sets of simulations that we present are for HEV scenarios.

From the perspective of total-capacity estimation, these applications

are characterized by the narrow window of battery-cell SOC used.

We assume that the vehicle uses a SOC range of 40 % to 60 %.

Therefore, each time the total capacity estimate is updated, the true
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4. battery health estimation 221

24 This is the variance of a uniform
random variable distributed between
−q/2 and q/2, scaled by mi/3,6002

change in SOC can range from −0.2 to +0.2. We simulate this by

choosing the true value of xi to be a uniform random number se-

lected between these limits.

The HEV application is also characterized by the fact that the bat-

tery pack is never fully charged to a precisely known SOC; therefore,

each time the total capacity estimate is updated, two estimates of

SOC are required to compute xi = ẑ
(i)
k2

− ẑ
(i)
k1

. This gives an overall

σ2
x = 2σ2

z = 2(0.01)2. We simulate this by computing the measured

value of xi to be equal to the true value of xi added to a zero-mean

Gaussian random number having variance σ2
x .

We compute the true value of yi to be equal to the nominal capac-

ity of the cell Qnom multiplied by the true value of xi. Noise on the

yi measurement is assumed to comprise accumulated quantization

noises. For yi computed by summing mi measurements, taken at a 1

Hz rate, from a sensor having quantizer resolution q, the total noise is

σ2
yi
= q2mi/(12 × 3,6002).24 For HEV scenario 1, we assumed that the

maximum range of the current sensor is ±30Qnom and that a 10-bit

analog-to-digital converter is used to measure current. This leads to

q = 60Qnom/1024. We chose mi = 300 s for every measurement and a

nominal capacity of Qnom = 10 Ah.

To implement this scenario, we use the following code:

Q0 = 10; % initial true cell total capacity

slope = 0; % total capacity does not change with time

maxI = 30*Q0; % must be able to measure current up to +/- maxI

precisionI = 1024; % 10-bit precision on current sensor

Qnom = 0; % initialization for recursive variables

xmax = 0.2; % maximum change in state of charge per measurement

xmin = -xmax; % minimum change in state of charge per measurement

m = 300; % interval length between measurements

socnoise = sqrt(2)*0.01; % sigma_x

gamma = 1; % fading-memory forgetting factor (no forgetting)

plotTitle = 'HEV Scenario 1'; % for the output plot

runScenario

This code calls runScenario.m, which we now describe. The first part

of this script synthesizes random truth values for xi and yi and the

corresponding noisy values thereof. Most scenarios have a constant-

length interval, corresponding to a scalar value of the m variable;

however, if m is not a scalar, a variable-length interval is required. The

details of data generation for a variable-length interval are discussed

in Sect. 4.21.2. The second part of the script calls the xLSalgos.m

function, which has already been described, and plots results:

% runScenario.m: run a particular scenario and plot results

% Make up some data

n = 1000; % number of data points

Q = (Q0+slope*(1:n))'; % true capacity as a function of time

x = ((xmax-xmin)*rand(n,1)+xmin); % true values of "x" measurements

y = Q.*x; % true values of "y" measurements
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Figure 4.15: Simulation results for HEV
scenario 1.
(Reproduced from Fig. 3 of Plett, G.L.,
“Recursive Approximate Weighted Total
Least Squares Estimation of Battery Cell
Total Capacity,” Journal of Power Sources,
196(4), 2011, pp. 2,319–31.)

% Add in some noise to both variables.

binsize = 2*maxI/precisionI;

rn1 = ones(n,1); % ones the size of the "x" measurements

if isscalar(m), % constant number of measurements per iteration

rn2 = rn1; % ones the size of the "y" measurements

sy = binsize*sqrt(m/12)/3600*rn2; % sigma-y for each measurement

else % variable number of measurements per iteration

mu = log(m(1))+m(2)^2; % input to lognrnd command

m = 3600*lognrnd(mu,sigma,n,1); % create log-normal rand variables

sy = binsize*sqrt(m/12)/3600; % sigma-y for each measurement

end

sx = socnoise*rn1; % sigma-x for each measurement

x = x + sx.*randn(n,1); % noisy measurement of "x"

y = y + sy.*randn(n,1); % noisy measurement of "y"

% Call the xLSalgos.m function. Returned variables have format:

% - column 1 = WLS - weighted, recursive

% - column 2 = WTLS - weighted, but not recursive

% - column 3 = PTLS - recursive weighted, but using SigmaX(1) and

% SigmaY(1) only (i.e., simplified method using c0 and c1)

% - column 4 = AWTLS - recursive and weighted

[Qhat,SigmaQ,Fit] = xLSalgos(x,y,sx.^2,sy.^2,gamma,Qnom);

Qrep = repmat(Q,1,size(Qhat,2));

figure(1); clf; plot(Qhat); hold on; box on;

xlabel('Algorithm update index'); ylabel('Capacity estimate (Ah)');

title(sprintf('%s: Capacity Estimates with Error Bounds',...

plotTitle));

legend('WLS','WTLS','TLS','AWTLS','location','northeast');

plot(Qhat+3*sqrt(SigmaQ),'linewidth',0.5); % error bounds

plot(Qhat-3*sqrt(SigmaQ),'linewidth',0.5);

plot(Qhat); % overlay true capacity one more time so plots on top

plot(1:n,Q,'k:'); % plot true capacity

figure(2); clf; plot(Fit); hold on; box on;

xlabel('Algorithm update index'); ylabel('Goodness of fit');

title(sprintf('%s: Goodness of fit for each method',plotTitle))

legend('WLS','WTLS','TLS','AWTLS','location','east'); ylim([-0.02 1.02]);

The recursive parameters were initialized to zero prior to the first

data point being received. Results are presented in Fig. 4.15. The top

frame of the figure shows estimates made using the four methods

evolving over time as thick lines, and their three-sigma error bounds

computed using the Hessian method as thin lines. We see that WTLS,

PTLS, and AWTLS give identical estimates and error bounds for this

scenario and converge to the neighborhood of the true total capacity.

The WLS estimate is biased and its error bounds are (incorrectly) so

tight that they are indistinguishable from the estimate itself.

The bottom frame of the figure shows the goodness-of-fit metric

as applied to the four methods. Again, WTLS, PTLS, and AWTLS

give identical results, quickly converging to a value of 1.0 (that is,

these methods are confident that their estimate is reliable). The WLS

method returns a vanishingly small value for goodness of fit, re-
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Figure 4.16: Simulation results for HEV
scenario 2.
(Reproduced from Fig. 4 of Plett, G.L.,
“Recursive Approximate Weighted Total
Least Squares Estimation of Battery Cell
Total Capacity,” Journal of Power Sources,
196(4), 2011, pp. 2,319–31.)

flecting the fact that the method does not give a good value for its

total-capacity estimates and/or the bounds thereon.

4.20.2 HEV application, scenario 2

The second HEV scenario is identical to the first except that the recur-

sive methods are initialized with a total capacity estimate before any

measurements are received. In this case, the methods were initialized

with a nominal capacity estimate of 9.9 Ah (the true total capacity

was still 10.0 Ah).

To implement this scenario, we use the following code:

Q0 = 10; % initialize true cell total capacity

slope = 0; % total capacity does not change with time

maxI = 30*Q0; % must be able to measure current up to +/- maxI

precisionI = 1024; % 10-bit precision on current sensor

Qnom = 0.99*Q0; % initialization for recursive variables

xmax = 0.2; % maximum change in state of charge per measurement

xmin = -xmax; % minimum change in state of charge per measurement

m = 300; % interval length between measurements

socnoise = sqrt(2)*0.01; % sigma_x

gamma = 1; % fading-memory forgetting factor (no forgetting)

plotTitle = 'HEV Scenario 2'; % for the output plot

runScenario

Results from running this code are presented in Fig. 4.16. In this

scenario, PTLS and AWTLS give identical results for their estimates,

error bounds, and goodness of fit. WTLS cannot be calculated recur-

sively, so its estimate cannot be initialized; subsequently, the WTLS

results are the same as for scenario 1. Once again, WLS is inferior

to the other methods. PTLS and AWTLS give the most accurate and

most confident estimates because the ability to initialize the estimate

with a reasonable value has resulted in of tighter error bounds while

maintaining a high value for goodness of fit.

4.20.3 HEV application, scenario 3

In the third HEV scenario, we explore the ability of the algorithms

to track a moving value of total capacity. This scenario is identical to

HEV scenario 2, except that the true total capacity is changing with a

slope of −0.001 Ah per measurement update, and a fading memory

forgetting factor of γ = 0.99 is used for all methods.

To implement this scenario, we use the following code:

Q0 = 10; % initialize true cell total capacity

slope = -0.001; % true capacity changes this much every iteration

maxI = 30*Q0; % must be able to measure current up to +/- maxI

precisionI = 1024; % 10-bit precision on current sensor

Qnom = 0.99*Q0; % initialization of recursive variables

xmax = 0.2; % maximum change in state of charge per measurement

xmin = -xmax; % minimum change in state of charge per measurement

m = 300; % interval length between measurements
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Figure 4.17: Simulation results for HEV
scenario 3.
(Reproduced from Fig. 5 of Plett, G.L.,
“Recursive Approximate Weighted Total
Least Squares Estimation of Battery Cell
Total Capacity,” Journal of Power Sources,
196(4), 2011, pp. 2,319–31.)

socnoise = sqrt(2)*0.01; % sigma_x

gamma = 0.99; % fading-memory forgetting factor (slow forgetting)

plotTitle = 'HEV Scenario 3'; % for the output plot

runScenario

Results are presented in Fig. 4.17, where the true total capacity

is drawn as a dotted black line. In this example, the WLS method

appears to give good results, but its goodness of fit value is still

vanishingly small because the error bounds are unreasonably tight

and almost never surround the true value of total capacity. WTLS,

PTLS, and AWTLS are also able to track the moving value of total

capacity—PTLS and AWTLS give the best results due to the ability to

initialize their recursive parameters with reasonable values, yielding

better estimates having narrower error bounds.

4.21 Example EV simulations

4.21.1 EV application, scenario 1

The next scenarios that we consider are typical of EV and PHEV (or

E-REV) operation. These are different from the HEV application

in several respects: the battery total capacity is larger, the relative

rate of energy usage is lower, the range of SOC used by the vehicle

is larger, and the EV battery pack is sometimes fully charged to a

known setpoint.

In all cases, we consider a battery pack having total capacity of

Q = 100 Ah, and a maximum rate of ±5Q. We again assume a

10-bit current sensor, which gives q = 10Qnom/1024 and σ2
yi

=

q2mi/(12 × 36002). For the first EV scenario we assume that the

total-capacity estimate is updated on a regular basis as the vehicle

operates, with mi = 7200 s (i.e., every 2 h or about 120 mi of highway-

driven distance). We assume that the battery SOC can change by

±40 % in that interval, so the true value of xi is chosen to be a uni-

form random variable between −0.4 and +0.4. Again, noise on xi is

Gaussian with variance σ2
xi

= 2(0.01)2. The recursive methods are

initialized with an initial total-capacity estimate of 99 Ah.

To implement this scenario, we use the following code:

Q0 = 100; % initialize true cell total capacity

slope = 0; % true capacity changes this much every iteration

maxI = 5*Q0; % must be able to measure current up to +/- maxI

precisionI = 1024; % 10-bit precision on current sensor

Qnom = 0.99*Q0; % initialization of recursive variables

xmax = 0.4; % maximum change in state of charge per measurement

xmin = -xmax; % minimum change in state of charge per measurement

m = 7200; % interval length between measurements

socnoise = sqrt(2)*0.01; % sigma_x

gamma = 1; % fading-memory forgetting factor (no forgetting)

plotTitle = 'EV Scenario 1'; % for the output plot

runScenario

Plett, Gregory. Battery Management Systems, Volume II: Equivalent-Circuit Methods, Artech House, 2015. ProQuest Ebook Central,
         http://ebookcentral.proquest.com/lib/ybp-ebookcentral/detail.action?docID=4821265.
Created from ybp-ebookcentral on 2020-03-28 12:07:34.

C
op

yr
ig

ht
 ©

 2
01

5.
 A

rt
ec

h 
H

ou
se

. A
ll 

rig
ht

s 
re

se
rv

ed
.



4. battery health estimation 225

0 200 400 600 800 1000
97

98

99

100

101

102

103

Algorithm update index

C
ap

ac
it

y
 e

st
im

at
e 

(A
h

) 
 EV scenario 1: Estimates and bounds 

 

 

WLS

WTLS

TLS

AWTLS

0 200 400 600 800 1000
0

0.25

0.5

0.75

1

Algorithm update index

G
o

o
d

n
es

s 
o

f 
fi

t

EV scenario 1: Goodness of fit

 

 

WLS
WTLS
TLS
AWTLS

Figure 4.18: Simulation results for EV
scenario 1.
(Reproduced from Fig. 6 of Plett, G.L.,
“Recursive Approximate Weighted Total
Least Squares Estimation of Battery Cell
Total Capacity,” Journal of Power Sources,
196(4), 2011, pp. 2,319–31.)
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Figure 4.19: Example drive-duration
pdf.
(Reproduced from Fig. 7 of Plett, G.L.,
“Recursive Approximate Weighted Total
Least Squares Estimation of Battery Cell
Total Capacity,” Journal of Power Sources,
196(4), 2011, pp. 2,319–31.)

Representative results of this scenario are presented in Fig. 4.18.

These are very similar in most respects to the HEV scenario 2 results.

Again, WLS fails because its error bounds are far too tight, leading

to a vanishingly small goodness of fit. WTLS, PTLS, and AWTLS all

give good results, with PTLS and AWTLS giving the best results due

to lower error bounds because of the possibility of initialization.

4.21.2 EV application, scenario 2

The asymptotic quality of the total-capacity estimates is limited by

the noise on the state of charge estimation error. If this noise can

be reduced, the total-capacity estimates can become much more

accurate. The EV application allows a means to do this: whenever the

battery pack is fully charged, we have a precisely known endpoint

SOC. Therefore, either ẑk2
or ẑk1

can be known exactly for every total

capacity estimate update. This then allows us to use σ2
xi

= σ2
z =

(0.01)2, which is half that used when neither SOC end point is known

exactly.

The tradeoff is that we no longer have regular updates. Instead,

updates happen randomly, whenever the vehicle is charged. There-

fore, mi becomes a random variable. For the results presented in this

section, we treat mi as a lognormal random variable with mode 0.5 h

and standard deviation 0.6 h. This pdf is plotted in Fig. 4.19. Other

pdfs could easily be used: this one was chosen to give reasonable-

duration drive cycles that encompass a variety of driving behav-

iors and distances. Also, since a greater fraction of the battery pack

would be used for an entire drive cycle than for a regular periodic

update, we use an 80 % range of SOC, so the true value of xi is com-

puted to be a uniform random number from −0.8 to +0.8.

To implement this scenario, we use the following code:

Q0 = 100; % initialize true cell total capacity

slope = 0; % true capacity changes this much every iteration

maxI = 5*Q0; % must be able to measure current up to +/- maxI

precisionI = 1024; % 10-bit precision on current sensor

Qnom = 0.99*Q0; % initialization of recursive variables

xmax = 0.8; % maximum change in state of charge per measurement

xmin = -xmax; % minimum change in state of charge per measurement

m = [0.5, 0.6]; % mode = 0.5; sigma = 0.6 in pdf

socnoise = 0.01; % sigma_x

gamma = 1; % fading-memory forgetting factor (no forgetting)

plotTitle = 'EV Scenario 2'; % for the output plot

runScenario

Results from this scenario are presented in Fig. 4.20. WLS fails once

again. However, this time PTLS also fails because σxi ̸= kσyi due

to the variable-length drive cycles. The estimate given by PTLS is

actually quite reasonable, but the goodness of fit is very small. WTLS

gives good results, and AWTLS gives the best results (based on its
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Figure 4.20: Simulation results for EV
scenario 2.
(Reproduced from Fig. 8 of Plett, G.L.,
“Recursive Approximate Weighted Total
Least Squares Estimation of Battery Cell
Total Capacity,” Journal of Power Sources,
196(4), 2011, pp. 2,319–31.)
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Figure 4.21: Simulation results for EV
scenario 3.
(Reproduced from Fig. 9 of Plett, G.L.,
“Recursive Approximate Weighted Total
Least Squares Estimation of Battery Cell
Total Capacity,” Journal of Power Sources,
196(4), 2011, pp. 2,319–31.)

lower error bounds) because of the ability to initialize the estimate.

Note that the asymptotic three-sigma error bounds drop from about

±1 % for HEV scenario 1 to about ±0.15 % of the true total capacity

in EV scenario 2 due to having a lower value of σxi and also due to

the wider range in xi.

4.21.3 EV application, scenario 3

The final scenario that we consider is identical to EV scenario 2, ex-

cept that we simulate a changing total capacity. The slope of the total

capacity curve is chosen to be −0.01 Ah per measurement update,

and γ = 0.98 was used.

To implement this scenario, we use the following code:

Q0 = 100; % initialize true cell total capacity

slope = -0.01; % true capacity changes this much every iteration

maxI = 5*Q0; % must be able to measure current up to +/- maxI

precisionI = 1024; % 10-bit precision on current sensor

Qnom = 0.99*Q0; % initialization of recursive variables

xmax = 0.8; % maximum change in state of charge per measurement

xmin = -xmax; % minimum change in state of charge per measurement

m = [0.5, 0.6]; % mode = 0.5; sigma = 0.6 in pdf

socnoise = 0.01; % sigma_x

gamma = 0.98; % fading-memory forgetting factor (slow forgetting)

plotTitle = 'EV Scenario 3'; % for the output plot

runScenario

Representative results of this scenario are presented in Fig. 4.21.

Once again, WLS fails and PTLS is uncertain of its estimate for nearly

100 updates. However, PTLS does recover and do quite well. The

AWTLS method gives the best results.

4.22 Discussion of simulations

The simulation results have illustrated a few key properties of the

four methods we have introduced to estimate total capacity. They

confirm that noise on the state of charge estimates used as input

to the total-capacity estimator must be considered in order to esti-

mate battery-cell total capacity properly. Least squares, weighted

least squares, and other similar methods that do not consider this

noise simply fail. They give biased estimates of total capacity and

have unreliable error bounds. Methods related to total least squares,

where noises on the SOC estimates are explicitly recognized and in-

corporated in the calculations, are required for reliable total-capacity

estimation.

In principle, WTLS always gives the best results. However, we

have seen that the PTLS and AWTLS methods can give better results

in practice because they can be initialized with a nominal-capacity
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estimate. Furthermore, since PTLS and AWTLS give nice recursive

solutions, one of them should always be used instead of WTLS.

If the measurement update interval mi is constant and therefore

σxi = kσyi for all measurements, PTLS and AWTLS give identical

results. Therefore, the simpler PTLS method is preferred. However,

if σxi ̸= kσyi , the AWTLS method gives better results than PTLS

and sometimes PTLS fails. This is particularly important for the

EV application where updates to the estimate of total capacity are

done when charging the battery: these yield a greatly improved total-

capacity estimate because of the reduction in σxi due to knowing one

SOC value exactly. AWTLS always gives results at least as good as

the other methods.

The noises that contribute to σyi are assumed to be due to current-

sensor errors. In practice, these can include gain errors, bias errors,

noise errors, and nonlinear errors. We have considered only noise

errors here. Gain errors and nonlinear errors will bias all of the meth-

ods; however, we believe that the biased value of the total-capacity

estimate will be consistent with the perceived capacity of the battery

cell if the same current sensor is used to compute the battery-cell

total-capacity estimate and to monitor pack operations. Bias error can

be subtracted in a EV setting if we can assume that the coulombic effi-

ciency of the cells is η ≈ 1 by matching the discharged ampere-hours

from usage with the charged ampere-hours when charging.

The error bounds on the total-capacity estimate, even with the

optimum WTLS estimator, are larger than some might expect. This

underscores the need for a method that predicts not only the estimate

but also dynamic error bounds on the estimate, as do the ones pro-

posed in this chapter. Without dynamic error bounds, the user of the

total-capacity estimate has no idea how good or bad that estimate

is. If the estimate is used to compute battery-pack available energy,

for example, the energy estimate may be overly optimistic or overly

pessimistic, neither of which is acceptable.

4.23 Where to from here?

We have now looked at the fundamental state- and parameter-estimation

problems that must be solved by a BMS. These estimates can be fed

into energy- and power-estimation algorithms. We have already seen

some simple examples of this in Chap. 1. We will look at more ad-

vanced methods in Chaps. 6 and 7. Next, however, we look at the

somewhat simpler but still very important issue of balancing or

equalizing the cells in a battery pack.
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4.24 Appendices: Nonlinear Kalman-filter algorithms

The following pages have summary tables for the nonlinear Kalman-

filter based algorithms developed in this chapter.
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Appendix: Nonlinear EKF for parameter estimation

Nonlinear state-space model:

θk+1 = θk + rk,

dk = g(xk, uk, θk, ek).

where rk and ek are independent Gaussian noise processes with

means zero and ē, respectively, and having covariance matrices Σr̃

and Σẽ, respectively.

Definitions:

Ĉ
θ
k =

dg(xk ,uk,θ,ek)
dθ

∣∣∣
θ=θ̂

−
k

D̂
θ
k =

dg(xk,uk ,θ,ek)
dek

∣∣∣
ek=ēk

Caution: Be careful to compute Ĉ
θ
k using the recursive chain rule

described in the chapter!

Initialization: For k = 0, set

θ̂
+
0 =E[θ0]

Σ
+
θ̃,0

=E
[
(θ0 − θ̂

+
0 )(θ0 − θ̂

+
0 )

T
]
.

dx0
dθ = 0, unless side information is available.

Computation: For k = 1, 2, . . . compute:

Param.-prediction time update: θ̂
−
k = θ̂

+
k−1

Error-covariance time update: Σ
−
θ̃,k

=Σ
+
θ̃,k−1

+ Σr̃

Kalman gain matrix: Lθ
k =Σ

−
θ̃,k
(Ĉ

θ
k)

T [Ĉ
θ
kΣ

−
θ̃,k
(Ĉ

θ
k)

T

+ D̂
θ
kΣẽ(D̂

θ
k)

T]−1

Param.-estimate meas. update: θ̂
+
k = θ̂

−
k +Lθ

k[dk−g(xk, uk, θ̂
−
k , ēk)]

Error-covariance meas. update: Σ
+
θ̃,k

=Σ
−
θ̃,k

− Lθ
kΣd̃,k(Lθ

k)
T

Plett, Gregory. Battery Management Systems, Volume II: Equivalent-Circuit Methods, Artech House, 2015. ProQuest Ebook Central,
         http://ebookcentral.proquest.com/lib/ybp-ebookcentral/detail.action?docID=4821265.
Created from ybp-ebookcentral on 2020-03-28 12:07:34.

C
op

yr
ig

ht
 ©

 2
01

5.
 A

rt
ec

h 
H

ou
se

. A
ll 

rig
ht

s 
re

se
rv

ed
.



230 battery management systems: volume ii, equivalent-circuit methods

Appendix: Nonlinear SPKF for parameter estimation

Nonlinear state-space model:

θk+1 = θk + rk,

dk = h(xk, uk, θk, ek).

where rk and ek are independent Gaussian noise processes with

means zero and ē, respectively, and having covariance matrices Σr̃

and Σẽ, respectively.

Definitions: Let

θa
k =

[
θT

k , eT
k

]T
, W a

k =
[
(W θ

k)
T , (W e

k)
T
]T

, p= 2 × dim(θa
k).

Initialization: For k = 0, set

θ̂
+
0 =E

[
θ0
]

θ̂
a,+
0 =E

[
θa

0

]
=
[
(θ̂

+
0 )

T, ē
]T

Σ
+
θ̃,0

=E
[
(θ0−θ̂

+
0 )(θ0−θ̂

+
0 )

T
]

Σ
a,+
θ̃,0

=E
[
(θa

0−θ̂
a,+
0 )(θa

0−θ̂
a,+
0 )T

]

= diag
(
Σ
+
θ̃,0

, Σẽ
)
.

Computation: For k = 1, 2, . . . compute:

Parameter-prediction time update: θ̂
−
k = θ̂

+
k−1

Error-covariance time update: Σ
−
θ̃,k

= Σ
+
θ̃,k−1

+ Σr̃

Output estimate: W a,−
k =

{
θ̂

a,−
k , θ̂

a,−
k + γ

√
Σ

a,−
θ̃,k

,

θ̂
a,−
k − γ

√
Σ

a,−
θ̃,k

}

Dk,i = g(xk, uk,W θ,−
k,i ,W e,−

k,i )

d̂k = ∑
p
i=0 α

(m)
i Dk,i

Estimator gain matrix: Σd̃,k = ∑
p
i=0 α

(c)
i

(
Dk,i − d̂k

)
×

(
Dk,i − d̂k

)T

Σ
−
θ̃d̃,k

= ∑
p
i=0 α

(c)
i

(
W θ,−

k,i − θ̂
−
k

)
×

(
Dk,i − d̂k

)T

Lθ
k = Σ

−
θ̃d̃,k

Σ
−1
d̃,k

Parameter-estimate meas. update: θ̂
+
k = θ̂

−
k + Lθ

k

(
dk − d̂k

)

Error-covariance meas. update: Σ
+
θ̃,k

= Σ
−
θ̃,k

− Lθ
kΣd̃,k(Lθ

k)
T

Plett, Gregory. Battery Management Systems, Volume II: Equivalent-Circuit Methods, Artech House, 2015. ProQuest Ebook Central,
         http://ebookcentral.proquest.com/lib/ybp-ebookcentral/detail.action?docID=4821265.
Created from ybp-ebookcentral on 2020-03-28 12:07:34.

C
op

yr
ig

ht
 ©

 2
01

5.
 A

rt
ec

h 
H

ou
se

. A
ll 

rig
ht

s 
re

se
rv

ed
.



4. battery health estimation 231

Appendix: Joint EKF for state and parameter estimation

State-space model:⎡

⎣ xk

θk

⎤

⎦=

⎡

⎣ f (xk−1, uk−1, wk−1, θk−1)

θk−1 + rk−1

⎤

⎦

yk = h(xk, uk, vk, θk)

or

Xk = F(Xk−1, uk−1, Wk−1)

yk = h(Xk, uk, vk),

where wk, rk, and vk are independent, Gaussian noise pro-

cesses having means w̄, zero, and v̄, and covariance matrices

Σw̃, Σr̃ , and Σṽ, respectively. For brevity, we let Xk =
[
xT

k , θT
k

]T
,

Wk =
[
wT

k , rT
k

]T
and ΣW̃ = diag(Σw̃, Σr̃).

Definitions:

Âk =
dF(Xk,uk ,Wk)

dXk

∣∣∣
Xk=X̂+

k

B̂k =
dF(Xk,uk,Wk)

dWk

∣∣∣
Wk=W̄k

Ĉk =
dh(Xk,uk ,vk)

dXk

∣∣∣
Xk=X̂−

k

D̂k =
dh(Xk,uk ,vk)

dvk

∣∣∣
vk=v̄k

.

Initialization: For k = 0, set

X̂+
0 =E

[
X0
]

Σ
+
X̃,0

=E
[
(X0 − X̂+

0 )(X0 − X̂+
0 )

T
]

Computation: For k = 1, 2, . . . compute:

State estimate time update: X̂−
k = F(X̂+

k−1, uk−1, W̄k−1)

Error covariance time update: Σ
−
X̃,k

= Âk−1Σ
+
X̃,k−1

Â
T
k−1 + B̂k−1ΣW̃B̂

T
k−1

Output estimate: ŷk = h(X̂−
k , uk, v̄k)

Estimator gain matrix: Lk = Σ
−
X̃,k

Ĉ
T
k [ĈkΣ

−
X̃,k

Ĉ
T
k + D̂kΣṽ D̂

T
k ]

−1

State estimate meas. update: X̂+
k = x̂−k + Lk

(
yk − ŷk

)

Error covariance meas. update: Σ
+
X̃,k

= Σ
−
X̃,k

− LkΣỹ,kLT
k
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Appendix: Dual EKF for state and parameter estimation

Nonlinear state-space models:

xk+1 = f (xk, uk, θk, wk)
and

θk+1 = θk + rk,

yk = h(xk, uk, θk, vk) dk = g(xk, uk, θk, ek).

where wk, vk, rk and ek are independent Gaussian noise processes

with means w̄, v̄, zero, and ē and covariance matrices Σw̃, Σṽ, Σr̃

and Σẽ, respectively.

Definitions:

Âk =
d f (xk,uk,θ̂

−
k ,wk)

dxk

∣∣∣∣
xk=x̂+k

B̂k =
d f (xk ,uk ,θ̂

−
k ,wk)

dwk

∣∣∣∣
wk=w̄

Ĉ
x
k =

dh(xk ,uk,θ̂
−
k ,vk)

dxk

∣∣∣∣
xk=x̂−k

D̂
x
k =

dh(xk ,uk ,θ̂
−
k ,vk)

dvk

∣∣∣∣
vk=v̄

Ĉ
θ
k =

dg(x̂−k ,uk,θ,ek)
dθ

∣∣∣∣
θ=θ̂

−
k

D̂
θ
k =

dg(x̂−k ,uk,θ,ek)
dek

∣∣∣∣
ek=ē

.

Initialization: For k = 0, set

θ̂
+
0 =E[θ0], Σ

+
θ̃,0

=E
[
(θ0 − θ̂

+
0 )(θ0 − θ̂

+
0 )

T
]
,

x̂+0 =E[x0], Σ
+
x̃,0 =E

[
(x0 − x̂+0 )(x0 − x̂+0 )

T
]
.

Computation: For k = 1, 2, . . . compute:

Param.-pred. time update: θ̂
−
k = θ̂

+
k−1

Σ
−
θ̃,k

=Σ
+
θ̃,k−1

+ Σr̃

State-pred. time update: x̂−k = f (x̂+k−1, uk−1, θ̂
−
k , w̄)

Σ
−
x̃,k = Âk−1Σ

+
x̃,k−1Â

T
k−1

+ B̂k−1Σw̃B̂
T
k−1

State filter meas. update: Lx
k =Σ

−
x̃,k(Ĉ

x
k )

T
[
Ĉ

x
k Σ

−
x̃,k(Ĉ

x
k )

T +

D̂
x
k Σṽ(D̂

x
k )

T
]−1

x̂+k = x̂−k + Lx
k

[
yk − h(x̂−k , uk, θ̂

−
k , v̄)

]

Σ
+
x̃,k =Σ

−
x̃,k − Lx

k Σỹ,k(Lx
k )

T

Param.-est. meas. update: Lθ
k =Σ

−
θ̃,k
(Ĉ

θ
k)

T
[
Ĉ

θ
kΣ

−
θ̃,k
(Ĉ

θ
k)

T +

D̂
θ
kΣẽ(D̂

θ
k)

T
]−1

θ̂
+
k = θ̂

−
k + Lθ

k

[
yk − g(x̂−k , uk, θ̂

−
k , ē)

]

Σ
+
θ̃,k

=Σ
−
θ̃,k

− Lθ
kΣd̃,k(Lθ

k)
T
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4. battery health estimation 233

Appendix: Joint SPKF for state and parameter estimation

State-space model:⎡

⎣ xk

θk

⎤

⎦=

⎡

⎣ f (xk−1, uk−1, wk−1, θk−1)

θk−1 + rk−1

⎤

⎦

yk = h(xk, uk, vk, θk)

or

Xk = F(Xk−1, uk−1, Wk−1)

yk = h(Xk, uk, vk),

where wk, rk, and vk are independent, Gaussian noise pro-

cesses with means w̄, zero, and v̄, and covariance matrices Σw̃,

Σr̃ , and Σṽ, respectively. For brevity, we let Xk =
[
xT

k , θT
k

]T
,

Wk =
[
wT

k , rT
k

]T
, and ΣW̃ = diag(Σw̃, Σr̃).

Definitions: Let

Xa
k =

[
XT

k , WT
k , vT

k

]T
, X a

k =
[
(X X

k )
T, (XW

k )T, (X v
k)

T
]T

,

p= 2 × dim(Xa
k).

Initialization: For k = 0, set

X̂+
0 =E

[
X0
]

X̂a,+
0 =E

[
Xa

0

]
=
[
(X̂+

0 )
T, W̄, v̄

]T

Σ
+
X̃,0

=E
[
(X0−X̂+

0 )(X0−X̂+
0 )

T
]

Σ
a,+
X̃,0

=E
[
(Xa

0−X̂a,+
0 )(Xa

0−X̂a,+
0 )T

]

=diag
(
Σ
+
X̃,0

, ΣW̃, Σṽ
)
.

Computation: For k = 1, 2, . . . compute:

State pred. time update: X a,+
k−1 =

{
X̂a,+

k−1, X̂a,+
k−1 + γ

√
Σ

a,+
X̃,k−1

,

X̂a,+
k−1 − γ

√
Σ

a,+
X̃,k−1

}

X X,−
k,i = F(X X,+

k−1,i, uk−1,XW,+
k−1,i)

X̂−
k = ∑

p
i=0 α

(m)
i X X,−

k,i

Error covar. time update: Σ
−
X̃,k

= ∑
p
i=0 α

(c)
i

(
X X,−

k,i −X̂−
k

)(
X X,−

k,i −X̂−
k

)T

Output estimate: Y k,i = h(X X,−
k,i , uk,X v,+

k−1,i)

ŷk = ∑
p
i=0 α

(m)
i Y k,i

Estimator gain matrix: Σỹ,k = ∑
p
i=0 α

(c)
i

(
Y k,i−ŷk

)(
Y k,i−ŷk

)T

Σ
−
X̃ỹ,k

= ∑
p
i=0 α

(c)
i

(
X X,−

k,i −X̂−
k

)(
Y k,i−ŷk

)T

Lk = Σ
−
X̃ỹ,k

Σ
−1
ỹ,k

State est. meas. update: X̂+
k = X̂−

k + Lk
(
yk − ŷk

)

Error covar. meas. update: Σ
+
X̃,k

= Σ
−
X̃,k

− LkΣỹ,kLT
k
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234 battery management systems: volume ii, equivalent-circuit methods

Appendix: Dual SPKF for state and parameter estimation

Nonlinear state-space models:

xk = f (xk−1, uk−1, wk−1, θk−1)

yk = h(xk, uk, vk, θk)

and

θk = θk−1 + rk−1,

dk = h( f (xk−1, uk−1, w̄k−1, θk−1), uk, v̄k, θk−1, ek).

where wk, vk, rk and ek are independent, Gaussian noise pro-

cesses with means w̄, v̄, zero, and ē, and covariance matrices Σw̃,

Σṽ, Σr̃ and Σẽ, respectively.

Definitions:

xa
k =

[
xT

k , wT
k , vT

k

]T
, X a

k =
[
(X x

k )
T, (X w

k )
T, (X v

k)
T
]T

,

p= 2 × dim(xa
k).

Initialization: For k = 0, set

θ̂
+
0 =E[θ0], Σ

+
θ̃,0

=E
[
(θ0 − θ̂

+
0 )(θ0 − θ̂

+
0 )

T
]

x̂+0 =E[x0], x̂a,+
0 =E

[
xa

0

]
=
[
(x̂+0 )

T, w̄, v̄
]T

Σ
+
x̃,0 =E

[
(x0−x̂+0 )(x0−x̂+0 )

T
]

Σ
a,+
x̃,0 =E

[
(xa

0−x̂a,+
0 )(xa

0−x̂a,+
0 )T

]

=diag
(
Σ
+
x̃,0, Σw̃, Σṽ

)
.

Computation: For k = 1, 2, . . . compute:

Param.-pred. time update: θ̂
−
k = θ̂

+
k−1

Param.-covar. time update: Σ
−
θ̃,k

=Σ
+
θ̃,k−1

+ Σr̃

State-estimate time update:X a,+
k−1 =

{
x̂a,+

k−1, x̂a,+
k−1 + γ

√
Σ

a,+
x̃,k−1,

x̂a,+
k−1 − γ

√
Σ

a,+
x̃,k−1

}

X x,−
k,i = f (X x,+

k−1,i, uk−1,X w,+
k−1,i, θ̂

−
k )

x̂−k =∑
p
i=0 α

(m)
i X x,−

k,i

State-covar. time update: Σ
−
x̃,k =∑

p
i=0 α

(c)
i

(
X x,−

k,i −x̂−k
)(
X x,−

k,i −x̂−k
)T

Output est., param. filter: W k =
{

θ̂
−
k , θ̂

−
k + γ

√
Σ
−
θ̃,k

, θ̂
−
k − γ

√
Σ
−
θ̃,k

}

Dk,i = h( f (x̂+k−1, uk−1, w̄k−1,W k,i),

uk, v̄k,W k,i)

d̂k =∑
p
i=0 α

(m)
i Dk,i

Output est., state filter: Y k,i = h(X x,−
k,i , uk,X v,+

k−1,i, θ̂
−
k )

ŷk =∑
p
i=0 α

(m)
i Y k,i

(continued on next page. . . )
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4. battery health estimation 235

Computation (continued from prior page): For k = 1, 2, . . . compute:

State filter gain matrix: Σỹ,k =∑
p
i=0 α

(c)
i

(
Y k,i−ŷk

)(
Y k,i−ŷk

)T

Σ
−
x̃z̃,k =∑

p
i=0 α

(c)
i

(
X x,−

k,i −x̂−k
)(
Y k,i−ŷk

)T

Lx
k =Σ

−
x̃ỹ,kΣ

−1
ỹ,k

Param. filter gain matrix: Σd̃,k =∑
p
i=0 α

(c)
i

(
Dk,i−d̂k

)(
Dk,i−d̂k

)T

Σ
−
θ̃d̃,k

=∑
p
i=0 α

(c)
i

(
W k,i−θ̂

−
k

)(
Dk,i−d̂k

)T

Lθ
k =Σ

−
θ̃d̃,k

Σ
−1
d̃,k

State-est. meas. update: x̂+k = x̂−k + Lx
k

(
yk − ŷk

)

State-covar. meas. update: Σ
+
x̃,k =Σ

−
x̃,k − Lx

k Σỹ,k(Lx
k )

T

Param.-est. meas. update: θ̂
+
k = θ̂

−
k + Lθ

k

(
yk − d̂k

)

Param.-covar. meas. update: Σ
+
θ̃,k

=Σ
−
θ̃,k

− Lθ
kΣd̃,k(Lθ

k)
T
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1 Andrea, D., Battery Management
Systems for Large Lithium-Ion Battery
Packs, Artech House, 2010, p. 23.

5

Cell Balancing

Referring back to the roadmap Fig. 3.1 for the principal topics cov-

ered in this book, we recognize that we have now explored the basic

estimation tasks performed by a BMS. That is, we have seen how to

estimate cell internal state (including SOC), and cell-model parameter

values (including those indicative of SOH).

We now begin to study the control tasks required by a BMS. This

chapter focuses on the battery-pack task known by either of the terms

balancing or equalization, which has to do with modifying the level of

charge in battery-pack cells on a cell by cell basis to bring the battery

pack into balance.

For the time being, we will adopt the working definition, “A bal-

anced battery pack is one in which, at some point in its cycle, all the

cells are at exactly the same SOC.”1 There are other ways of thinking

about what the distribution of SOCs should be in a balanced battery

pack at any point of time, but this definition will be sufficient for

now.

If this balancing condition is not met, then one or more cells has

SOC that is too high and one or more cells has SOC that is too low

with respect to the balancing condition. We must somehow modify

the SOCs of specific cells individually to bring the battery pack into

balance. There are two basic approaches to doing so.

Dissipative balancing works by draining charge from cells having

too much charge with respect to the balancing condition and dis-

sipates the drained energy as heat. This type of balancing is very

commonly called passive balancing because, historically, only passive

circuit elements were used to equalize the cells. However, contempo-

rary dissipative balancing circuits use active components and controls

(i.e., they use transistor switching circuits), so we prefer the term

dissipative balancing to passive balancing.

Nondissipative balancing works by moving charge from cells having

too much charge either to cells having too little charge or to an aux-

iliary load circuit. While dissipative balancing wastes the unusable

237
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238 battery management systems: volume ii, equivalent-circuit methods

Figure 5.1: An out-of-balance series-
connected battery pack
(duplicated from Figs. 1.20 and 3.31).

Time

Weak cell

Strong cell

SO
C

Figure 5.2: Battery-pack imbalance
growing over time.

electrochemical energy stored in some cells by converting it to heat,

nondissipative balancing attempts to conserve energy by redistribut-

ing charge among cells so that more energy is available to the load,

or by directly putting it to some immediately useful purpose. This

type of balancing is commonly known as active balancing; however, as

we’ve just noted, dissipative balancing systems can use active com-

ponents. For this reason, to minimize the possibility of confusion, we

prefer the term nondissipative balancing to active balancing.

We will investigate the design of balancing methods and look at

balancing circuits later, but first we discuss why balancing is impor-

tant. Consider again the trivial battery pack drawn in Fig. 5.1. One

cell has 0 % SOC, and the other has 100 % SOC. Because current pass-

ing through the battery pack to or from the load circuit will cause

SOCs for both of these cells to move in the same direction, we can-

not discharge the pack without overdischarging one cell; nor can we

charge the pack without overcharging the other. We need somehow

to augment the main power pathway of the battery pack with auxil-

iary pathways that allow for a degree of individual cell-level control

to bring these cells back into balance.

We have seen this figure before as motivation for the need to es-

timate the individual SOCs of all cells in a battery pack, without

considering at the time how the cells could have become imbalanced

in the first place. In this chapter, we will look at some causes for im-

balance and some additional factors that one might initially think

would lead to imbalance but actually do not. Then, we discuss some

engineering choices that need to be made when designing a balanc-

ing system; we examine a number of circuit topologies that can be

used to balance cells; and we look at a method for determining how

quickly the balancing system must operate to equalize charge.

5.1 Causes of imbalance

Fig. 5.2 sketches profiles of SOC versus time for an example scenario

where a two-cell battery pack is being repeatedly discharged and

charged. The scenario begins with both cells balanced at a top design

SOC. However, by the time that the pack has been discharged until

the lesser of the two SOCs reaches a lower design limit, we see that

the SOCs of the two cells have begun to diverge. When the pack is

subsequently charged, this divergence is not corrected, and over time

the imbalance grows.

Whenever the lower SOC design limit is reached, in this example,

the cell depicted by the dashed red line has no more charge available

to deliver to the load circuit but the cell depicted by the solid blue

line still holds charge. Therefore, we refer to the first cell as being
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5. cell balancing 239

TimeStrong cell

Weak cell

SO
C

Figure 5.3: Imbalance growing during
charge.

TimeStrong cell

Weak cell

SO
C

Figure 5.4: Imbalance growing during
discharge.

“weak” and to the second cell as being “strong” in the sense that a

weak cell limits battery-pack performance. Since the strong cell can-

not actually deliver its charge to the load without overdischarging the

weak cell, there is energy stored in the battery pack that is unavail-

able for use. Over time, the imbalance will grow and the weak cell

will ultimately render the pack useless unless cells are balanced.

Imbalance is caused by anything that can make one cell’s SOC di-

verge from another’s. To see what these causes might be, we consider

the SOC relationship:

zk = z0 −
∆t

Q

k−1

∑
i=0

ηiinet,i. (5.1)

One cause of imbalance is when cells have different coulombic

efficiencies. Cells may start with the same initial SOC z0, have the

same total capacity Q, and receive the same net current inet,i. How-

ever, if they have different coulombic efficiencies ηi, then their SOCs

will diverge while charging the battery pack. This is illustrated in

Fig. 5.3. The strong cell has high coulombic efficiency and so the ma-

jority of the charge current inet,i is converted to a change in cell SOC.

The weak cell has low coulombic efficiency and so a smaller fraction

of the charge current converts to a change in the cell’s SOC. During

discharge, coulombic efficiency is assumed to be perfect for all cells,

and so the divergence caused during charging will not be neutral-

ized. Therefore, during every charge cycle, a difference in coulombic

efficiency will cause increased divergence that is not corrected later

during a discharge cycle. Over time, the battery pack can arrive at the

extreme state depicted in Fig. 5.1.

Another cause of imbalance is when cells experience different net

current from one other. That is, we need to consider carefully the

constituent parts of net current for cell i:

inet,i = iapp + iself-discharge,i + ileakage,i,

where iapp is the battery-pack load current, iself-discharge,i is the rate

of self-discharge for cell i, and ileakage,i is the current drawn from

cell i that powers the attached BMS electronic circuitry. While iapp is

the same for all cells, the self-discharge rates and leakage currents

of individual cells can be different, leading to different inet,i. This is

illustrated during a discharge profile in Fig. 5.4. The strong cell has

low self-discharge and/or low leakage current. The weak cell has

higher self-discharge and/or leakage current. While the two cells

start the profile in a balanced state, the larger net discharge current

experienced by the weak cell causes its SOC to decrease more rapidly

than that of the strong cell. When the pack is subsequently charged,
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240 battery management systems: volume ii, equivalent-circuit methods

2 The following argument assumes that
cell capacities do not change appre-
ciably in a singe cycle. If one or more
cells in a battery pack experience rapid
capacity loss between the discharge and
charge portion of a cycle (due, perhaps,
to overdischarge), then the pack will
become imbalanced. However, this will
not happen if the BMS is working as
intended.

Time

Weak cell

Strong cell

SO
C

Figure 5.5: Difference in total capacities
does not cause long-term growth in
imbalance.

the strong cell will charge more quickly than the weak cell because its

net current is not drawn down as much by self discharge and leakage,

and so the imbalance will continue to grow. Over time, the cells will

diverge completely.

Temperature is not a direct cause of imbalance; but, a gradient

of temperature across a battery pack can be a contributing factor to

imbalance. Cell parameter values are temperature-dependent, so self-

discharge rates, electronics’ performance, and coulombic efficiency

will be different for cells having different internal temperatures. This

will cause imbalance. Also, high temperatures tend to accelerate

degradation, and so a long-term temperature gradient will lead differ-

ent rates of degradation in different cells in the battery pack, which

will lead to to accelerated imbalance because of the resulting different

self-discharge rates and coulombic efficiencies among cells. Main-

taining uniform temperatures across the battery pack will help to

prolong the battery-pack life but, in general, balancing will still be

needed.

In summary, we stress that it is differences in the coulombic effi-

ciencies, self-discharge rates, or leakage currents among the cells of a

battery pack that lead to imbalance, not the absolute quantities them-

selves. If all cells are equally strong or equally weak, there will be no

growth in imbalance as the pack operates.

5.2 Not causes of imbalance

Considering the SOC Eq. (5.1), we see that cell total capacity Q plays

a role. So, it is natural to assume that cells in a battery pack having

different total capacities will cause the pack to become progressively

imbalanced. It turns out that this is not the case; instead, different

cell total capacities cause only a temporary imbalance that is cor-

rected automatically when any cell returns to its original SOC.2

This is illustrated in Fig. 5.5. Suppose that the strong cell has a

total capacity of 6 Ah and that the weak cell has a total capacity of

5 Ah. The scenario begins with both cells having equal SOC of 100 %.

Then, suppose that 5 Ah is discharged from the battery pack. The

weak cell now has zero remaining available charge but the strong cell

has residual capacity of 1 Ah. We might suppose that the the pack

has become imbalanced, but we need to continue the example before

we can make that conclusion.

We now charge the battery pack, adding 5/η Ah, where we as-

sume that the coulombic efficiencies η of both cells are equal. Then,

the 5 Ah cell will contain 5 Ah of charge and the 6 Ah cell will con-

tain 6 Ah of charge. That is, both cells will be balanced with SOC

equal to 100 %. Recalling our working definition of a balanced battery
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5. cell balancing 241

3 Available energy is the amount of
energy that can be removed from
the battery pack before a discharge
power limitation is reached. This is
different from total energy, which was
described in Sect. 1.14. Available energy
is always less than total energy unless
the discharge power specification is
0 W.

pack from footnote 1, we see that this battery pack is balanced—even

though cell total capacities are different—because all cells have equal

SOC at one point in the discharge/charge cycle (i.e., when all cells

have 100 % SOC, in this example).

But, while we can claim that the pack is balanced, technically, we

still observe that the weak cell limits its performance. When the weak

cell is fully discharged, there is still 1 Ah of unused charge stored

in the strong cell that is not available to power the load circuit with-

out over-discharging the weak cell. If we were able to move charge

continuously from the strong cell into the weak cell while discharg-

ing (and vice versa while charging), we could keep both cells’ SOCs

equal at all points in time. Nondissipative balancing circuits can be

used to do this: if these circuits operate with perfect efficiency, then

we could draw 5.5 Ah from the example battery pack instead of only

5 Ah without balancing circuitry, which is a significant improvement.

The weak cell no longer limits the battery-pack performance; rather,

it is the average over all cells that does so.

We might imagine that cells having different resistance could also

cause battery-pack imbalance. However, examining Eq. (5.1), we see

that this is not the case, because resistance is not a factor in the SOC

equation. Different cell resistances will cause cell loaded terminal

voltages to be different, but not their SOCs.

This does mean that a cell with high resistance will tend to reach

an upper or lower design voltage limit before other cells in the bat-

tery pack. While this does not cause imbalance, it does limit the avail-

able battery-pack power. This also limits the available energy which

translates directly to a limited vehicle range in xEV application.3

Therefore, just as different total capacities did not cause imbal-

ance but did limit performance, so too a cell having higher resistance

than others in the pack will limit performance. It is possible to mit-

igate this limitation by using nondissipative balancing circuitry to

intentionally bring the battery pack to an out-of-balance condition to

equalize the power that can be sourced/sunk from cells in the pack.

That is, when the battery pack is being discharged, high-resistance

cells are kept at higher SOC than low-resistance cells so that the dis-

charge power that can be sunk by all cells is equal. To do so, we solve

Eq. (1.7) for a desired set of cell SOCs to enforce equal discharge pow-

ers despite unequal discharge resistances. Similarly, when the pack

is being charged, high-resistance cells are kept at lower SOCs than

low-resistance cells so that the charge power that is available from

all cells is equal. We solve Eq. (1.8) for a desired set of cell SOCs to

enforce equal charge powers despite unequal charge resistances.
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Figure 5.6: Several strategies for choos-
ing a balancing setpoint.

5.3 Balancer design choices

When designing a balancing system, certain engineering decisions

must be made. The following subsections discuss the design ques-

tions that must be addressed but are not prescriptive. The answers

to these questions will tend to be different for distinct application

scenarios, leading to different designs.

5.3.1 What balance setpoint?

According to our working definition, all cells in a balanced battery

pack must be at the same SOC at some point in the battery-pack cy-

cle. We have seen an exception to this, where (ironically) fast nondis-

sipative balancing circuits are used when cell total capacities and

resistances differ to cause intentional imbalance to improve battery-

pack available power and energy. However, disregarding this special

case, we need to consider what that balance-point SOC should be.

Several different alternatives are illustrated in Fig. 5.6. The top

frame considers a balance setpoint at the maximum permitted cell

SOC. The example shows a four-cell battery pack, where the “strong”

cell has highest total capacity and the “weak” cell has lowest total

capacity. While the differences in capacity are not the cause of imbal-

ance, they do lead to different SOC ranges being utilized by each cell

as the battery pack is discharged and charged, as illustrated by the

extent of the corresponding shaded boxes.

The weak cell, having lowest total capacity, uses its entire SOC

range as illustrated by the magenta shaded box. The strong cell, hav-

ing highest total capacity, uses the smallest SOC range as illustrated

by the blue shaded box. The other two cells use SOC ranges inbe-

tween these extremes, as illustrated by the yellow and green shaded

boxes. Plotted versus time, the strong- and weak-cell SOCs would

evolve as is shown in Fig. 5.5. The time element is removed in Fig. 5.6

to show only the range of SOC utilization.

When the balance setpoint is set to the maximum permitted SOC,

the energy that is stored by the battery pack is maximized for a given

amount of available ampere-hours. (This is because cells having

higher SOCs produce higher voltages than cells having lower SOCs.)

The higher level of energy is good for electric vehicles and similar

applications. However, some cell aging mechanisms are accelerated at

high SOCs, which could be a disadvantage to this approach because

all cells spend time during a discharge/charge cycle at the maximum

design SOC.

We could also set the balance point to an intermediate SOC, as is

illustrated in the second frame of the figure. This decreases the total
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5. cell balancing 243

available energy slightly, but it also maximizes a pack’s ability to ac-

cept or deliver power, because most cells are kept away from extreme

SOC operating points. This setpoint strategy is good for HEV and

similar applications where available energy is not as important as

available power.

We might also consider setting the balance point to the minimum

permitted SOC, as is shown in the third frame of the figure. However,

there is little to recommend doing so. It stores the least energy of the

three approaches and all cells encounter discharge-power limits at

roughly the same time (depending on their resistances), so that any

cell could potentially limit discharge power when the pack is close

to empty. Further, while aging based on high SOC is slowed down

for the strongest cells because they spend less time at high SOCs, it

is accelerated for the weakest cell because it does spend some time

during a discharge/charge cycle at high SOC. This means that “the

strong will stay strongest and the weak will get weaker.” This kind of

divergent positive feedback will tend to cause the battery pack to age

much more quickly than it otherwise would, because battery-pack

life is limited by the longevity of its weakest cell.

If nondissipative balancing were implemented, then the balance

setpoint can be dynamic such that the entire range of every cell

is used. This is illustrated in the bottom frame of the figure. The

stronger cells experience greater total load than the weaker cells as

they differentially contribute more power to the load circuit. The

stronger cells then tend to age more quickly than the weaker cells

due to the greater stress levels placed on them. This self-regulating

negative feedback tends to cause the limiting weak cells in the bat-

tery pack to age less quickly than with dissipative balancing, and will

tend to bring the battery-pack cells to a homogeneous end-of-life con-

dition that is based on the average cell rather than the weakest cell.

Note again that the balance setpoint is a design choice. There isn’t

a one-size-fits-all answer. The controls engineer will need to consider

the benefits and costs corresponding to each alternative for every

new application.

5.3.2 When to balance?

Once we have determined a design balance setpoint, we must decide

when we will consider “turning on” balancing circuitry during the

battery usage cycle. There are three basic options.

If the battery pack is ever plugged in to the utilities grid or has

some other special charging mode, then we might consider balanc-

ing only when the battery pack is being charged. This approach can

be used for EVs, PHEVs, and E-REVs, for example. Since balancing
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244 battery management systems: volume ii, equivalent-circuit methods

is performed only when the battery pack is connected to an exter-

nal power source, any energy dissipated by balancer circuitry can

be replenished immediately from the external source, topping up

the level of charge in the pack. This maximizes the energy stored by

the battery pack that will be available for use when the pack is dis-

connected from the charger. In a vehicle application, this maximizes

vehicle range.

Alternately, we might balance continuously. That is, at every point

in time that the battery pack is being used, we calculate which cells

need to be balanced in order to meet the overall balancing objective

and we activate or deactivate the appropriate balancing circuits. This

is necessary for applications such as hybrid-electric vehicles where

the battery pack operates only in a single mode, and so there is no

additional special mode (such as plug-in charging) during which we

might consider balancing. Similarly, if we are using nondissipative

balancing with dynamic SOC setpoints for each cell, we will need

to recompute the moving setpoints and activate the appropriate

balancing circuitry continuously.

Either one of these two approaches could use a myopic or a predic-

tive perspective. Myopically, we could look only at the present state

of the cells; predictively, we could project cell states into the future.

A myopic approach to balancing while charging would be to charge

the battery pack first, and then balance it once the first cell has hit

an upper voltage or SOC limit. A predictive approach would instead

project future states of the cells and balance while the battery pack

is otherwise in use. Such an approach to balancing while charging

would be to predict the end state of all cells when the charge is com-

plete, and to balance and charge simultaneously so that all cells reach

the same desired end state at the same time, even if it is not other-

wise obvious based on the present cell states that balancing is needed.

This can shorten charging times required by the battery pack.

5.3.3 How to balance?

By this point, we have decided on a balance setpoint and when, in

general, we will consider balancing during a battery-pack usage cycle.

It remains to determine how we will decide, in real time during a

balancing interval, which balancing circuits to activate and how to

know when to stop balancing.

Taking a myopic approach, we might choose to balance based on

present cell SOC estimates. We compute estimates of SOC for all cells,

then activate balancing circuits to remove charge from cells having

SOC too high and possibly add charge to cells having SOC too low.

This is generally what we wish to do, especially in the neighborhood
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5. cell balancing 245

4 SOCs are never exactly equal at any
point when balancing for this criterion.

5 For excellent overviews, see Moore,
S.W. and Schneider, P.J. “A Review
of Cell Equalization Methods for
Lithium Ion and Lithium Polymer
Battery Systems,” No. 2001-01-0959,
SAE Technical Paper, 2001 and Daowd,
M., Omar, N., Van Den Bossche, P.,
Van Mierlo, J., “Passive and Active
Battery Balancing Comparison based
on MATLAB Simulation,” IEEE Vehicle
Power and Propulsion Conference (VPPC),
2011.

of the balance setpoint. However, if cell SOC estimates are poor, we

can sometimes balance the “wrong” cells. That is, noise in a SOC

estimate might cause us to think that the cell’s SOC is either much

higher or much lower than it actually is, and we would activate bal-

ancing circuitry that actually causes greater imbalance. So, it is best

to stop balancing when the difference between the maximum and

minimum SOC estimates fall below some SOC dispersion threshold.

This threshold is chosen relative to the expected confidence bounds

on the SOC estimates in order to avoid wasting significant amounts

of time and energy balancing the wrong cells.

Alternately, we could choose to balance based on cell voltage mea-

surements and to continue balancing until the total dispersion in

voltage measurements among all cells falls below some voltage de-

sign threshold. This method is simpler because a SOC estimator is

not needed in an implementation, but is often wasteful since voltage

is a poor indicator of cell SOC, and we will often balance the wrong

cells. It is most useful in a “charge-first then balance” strategy where

the balancing currents are the only currents experienced by the cells

during the balancing period, and so the cells are often close to their

equilibrium voltages. Since a SOC estimator is required for other

BMS tasks, voltage-based balancing does not simplify overall BMS

design and rarely makes sense.

In a more predictive sense, we could even balance based on total

available energy computed for each cell.4 To do so, we estimate how

much energy could be removed from every cell in the pack at some

specified constant-current or constant-power rate before a voltage

cutoff limit is reached. Then, charge is removed from cells having

excess available energy and possibly added to cells having lower

available energy. This process continues until the difference between

maximum and minimum available energy falls within some energy

design threshold. This can improve total available energy in a nondis-

sipative balancing system by moving charge from low-resistance cells

to high-resistance cells to bolster their SOCs, and hence their voltages.

However, it also needs an accurate cell model and state estimate for

every cell to be done well.

5.4 Circuits for balancing

There are a variety of generic electronics architectures that may be

used in a cell-balancing system.5 A taxonomy of the most common

topologies is drawn in Fig. 5.7, and we look at each in the follow-

ing subsections. The simplest architectures do not allow any control

by the BMS software, so are introduced as reference only and are

not recommended for most applications. Others may be turned on
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246 battery management systems: volume ii, equivalent-circuit methods

...

Figure 5.8: Fixed shunt resistor design.

or off globally but do not allow individual cell-level control. They

operate autonomously to balance the voltages of all cells. As men-

tioned in the prior section, this is not the ideal scenario but might be

acceptable if performed at the end of a battery-pack charge cycle (for

a balance-at-top design strategy) when the pack is otherwise resting

and therefore when voltage is a reasonable indicator of SOC. The

remaining architectures allow independent activation or deactiva-

tion of balancers for individual cells, so can be used for more general

dynamic SOC balancing.

switched
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Charge
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Cell balancing Figure 5.7: Taxonomy of cell-balancing
circuits.

5.4.1 Dissipative: Fixed shunt resistor

The simplest electronics designs are for dissipative balancing systems,

which place a resistor in parallel with every cell. This resistor is used

to drain excess charge from the cell and the energy that is removed

from the cell is dissipated as heat.

The most basic design of all is the “fixed shunt resistor design,”

illustrated in Fig. 5.8. To the left of the diagram, we see the stack of

battery cells. To the right, a fixed resistor is placed in parallel with

every cell, where all resistors are chosen to have equal value. Cells

having higher SOC will generally have higher terminal voltage and

so the discharge current passing from a cell through its connected

resistor will also be greater than the discharge currents passing from

other cells through their connected resistors. Therefore, cells having

higher SOCs will discharge more quickly than the others, thereby

bringing all cells into balance.

The genius of this design is its simplicity. No voltage monitoring,

SOC estimation, or active controls are needed. It operates entirely

autonomously. However, also note that the circuit continuously dis-

sipates charge, even when the pack is perfectly balanced. Therefore,

the resistances should be chosen with very large value to minimize

this energy loss.

Overall, a fixed shunt resistor design does not simplify a BMS de-

sign as much as it would seem at first. If lithium-ion battery cells are
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6 However, this circuit can work well for
balancing supercapacitor banks, since
a balancing setpoint of 0 V can make
sense in that application.

...

Figure 5.9: Fixed shunt resistor design,
with zener modification.

...
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Figure 5.10: Switched shunt resistor.

used, we must still monitor every cell’s voltage for safety purposes

and we must still estimate every cell’s SOC for energy and power

calculations. This circuit is probably best suited for balancing lead-

acid or nickel-metal-hydride battery packs, where some overcharge

is acceptable and so individual cell voltage monitoring is not needed,

and for applications where the battery pack is almost always in a

fully charged state such as for uninterruptible power supplies. If the

battery-pack cells are not continuously “topped up” from an external

source, then they will all discharge down to 0 V in a relatively short

period of time.6

A variation on the fixed shunt resistor design uses zener diodes to

turn balancing off automatically when cell voltage drops below some

point. This architecture is illustrated in Fig. 5.9. The zener diodes

must be sized to allow passage of full battery-pack charging current,

and their cutoff voltages are chosen to correspond to a “100 % SOC”

setpoint (e.g., about 2.2 V for a lead-acid cell). When a cell’s voltage is

above the zener setpoint, the resistor path is activated and that partic-

ular cell’s charge is depleted until its voltage drops below the zener

setpoint. This design also works best for chemistries where over-

charge is tolerable and the cell can “float.” This includes lead-acid

and some nickel-based chemistries, but not lithium-ion chemistries. It

is still limited by the fact that voltage alone is a poor indicator of SOC

when the cell is not resting, even for lead-acid and nickel-based cells.

5.4.2 Dissipative: Switched shunt resistor

A variation on the above idea, which works for lithium-ion chemistries

as well, is to replace each zener diode with a transistor that is con-

trolled by the BMS to enable or disable balancing of individual cells.

This design is illustrated in Fig. 5.10. Transistors are drawn simply as

switches; in an actual design, the type and rating of each transistor

would need to be specified, and appropriate gate biasing circuitry

would need to be added.

The electronics required to control the transistors make this ap-

proach more complicated than either of the fixed shunt resistor de-

signs; however, it allows for much greater flexibility in balancing

strategy. The BMS simply closes switches on cells that are deter-

mined to have too much charge, allowing them to drain relative to

the other cells whose balancing switches are open.

Note that the added complexity is not as big a concern as it used

to be. Modern battery-stack monitoring chips often have built-in

circuitry to control either an internal transistor switch (for slow bal-

ancing) or an external transistor switch (for faster balancing). In the

former case, all that needs to be added by the designer is an external
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Figure 5.11: Balancing via a bank of
capacitors.

resistor for every cell; the latter case additionally requires an external

transistor circuit.

The primary advantage of any of these dissipative balancing ap-

proaches, as compared with nondissipative designs, is the simplicity

(and hence, lower cost) of the circuitry involved. The drawbacks are:

• Energy that might otherwise be used productively is wasted

as heat.

• In a balance-at-top design, energy remains in some cells when the

weakest cell is completely discharged that could be utilized by the

load if a nondissipative balancing system were used instead.

• Heat is generated. The power dissipated as heat is p ≈ vnom ×
ibalance. For fast dissipative balancing, more heat is generated than

for slower balancing. This generally imposes a high-wattage re-

quirement on the balancing resistors. The quantity of heat gener-

ated by balancing can be similar to the heat generated by normal

cell operation. Therefore, dissipative balancing may increase the

cooling requirements for the battery-pack thermal-management

system, which is a significant expense.

• Battery-pack life could be shorter than that of a pack with a

nondissipative balancing design. With dissipative balancing, pack

life is determined by the weakest cell in the pack. With nondissipa-

tive balancing, pack life is determined by the average cell. Further,

nondissipative balancing can use strong cells to support weak cells,

bringing the pack to a uniform end-of-life configuration. Dissipa-

tive balancing does not have this ability.

5.4.3 Nondissipative: Multiple switched capacitors

Referring back to Fig. 5.7, nondissipative balancing circuits break

down into two general categories: some are based on the principle of

moving charge from cell-to-cell via intermediary switched capacitors;

others use switched-transformer or inductor-based designs and can

be thought of as energy converters. We look first at capacitor-based

balancing circuits.

Consider the circuit drawn in Fig. 5.11, where there is one fewer

capacitor than there are battery-pack cells. The single-pole double-

throw transistor-based switches repeatedly move back and forth

synchronously. That is, all switches are placed in the top position

for a period of time, then all are placed in the bottom position for a

period of time, and then the cycle repeats. There is no intelligence

behind the switching.

As the circuit operates, cell voltages are balanced. Consider two

neighboring cells. The higher-voltage cell charges the capacitor to
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Figure 5.12: Balancing via a single
capacitor.

7 Note that one cell’s SOC decreases by
this amount and the other cell’s SOC
increases by this amount. Therefore, the
net dispersion between cells closes at
twice this rate.

its voltage level when the switches are aligned to place the capacitor

across its terminals. Then, when the switches are aligned across

the lower-voltage cell, the capacitor discharges down to this lower

voltage. In the process, charge moves from the higher-voltage cell to

the lower-voltage cell via the capacitor.

Over the course of time, the entire battery pack can be equalized.

However, if the highest-voltage cell is on the opposite end of the

battery pack from the lowest-voltage cell, charge has to propagate

through all intermediate cells (and capacitors) before overall balance

is achieved. This can take a considerable amount of time.

5.4.4 Nondissipative: One switched capacitor

An alternate design uses a single switched capacitor with intelligent

control, such as is drawn in Fig. 5.12. The transistor switches can be

configured to place the capacitor across the terminals of any cell in

the battery pack, allowing for more direct movement of charge from

a high-voltage (or, high SOC) to a low-voltage (or, low SOC) cell.

However, a serious drawback of all capacitor-based designs is that

they rely on a voltage difference between cells in order to work. Most

types of lithium-ion cells have little variation in terminal voltage even

if their SOCs are significantly different. This tends to make balancing

using capacitor circuits very slow.

To see this, consider a first-order approximate analysis. The max-

imum energy that can be transferred from one cell to another in a

single switching operation can be calculated via the capacitor energy

equation based on the different cell voltages:

e =
1

2
C(v2

high − v2
low).

This change in energy can be related to a change in SOC via the

battery-cell energy Eq. (1.6):

e ≈ (∆z)Qvnom.

Now, suppose that vnom ≈ (vhigh + vlow)/2. Then, equating the two

energies gives:

(∆z)Q
vhigh + vlow

2
≈ 1

2
C(vhigh + vlow)(vhigh − vlow)

∆z ≈ C

Q
∆v,

where Q must be measured in coulombs for the units to agree.7

As an example of how to apply this result, consider a 10 Ah cell

(36,000 C). We would like to compute the change in SOC ∆z for a

single switching operation when ∆v = 0.1 V. We are free to select
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Control

n : 1

Figure 5.13: Switched transformer
design.
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Figure 5.14: Shared transformer design.

the capacitance value, but note that high-valued capacitors tend to

have high resistance and so will charge slowly, a fact we have not

taken into account in our simple approximations. Even if we select an

unrealistically large value of C = 1 F, we get

∆z ≈ 1

36,000
× 0.1

≈ 3 × 10−6.

That is, every time a capacitor is charged from one cell and dis-

charged into a cell having 0.1 V lower voltage, the change in the SOC

for each of the two cells is on the order of 0.0003 %. At this rate, it

will take forever to equalize! Furthermore, as the cells become closer

to balance, the value of ∆v will approach zero, and balancing will

slow down even further.

5.4.5 Nondissipative: Switched transformer

An alternative approach, which can move charge at a much greater

speed, is to use a transformer, as is illustrated in Fig. 5.13. The pri-

mary side of the transformer is connected to the overall module

or battery-pack voltage. The secondary of the transformer can be

switched to connect across any of the cells in the module.

Rapidly switching the input to the primary creates an approximate

ac waveform that is reproduced at the secondary. The primary is con-

nected across n cells, and the transformer is wound with an n : 1 ra-

tio. This causes the output voltage of the transformer to be decreased

by factor of n, but also causes the output current to be increased by

a factor of n. The diode at the secondary side ensures that charge is

only ever added and not removed from cells on the secondary side.

This method is much more efficient than dissipative balancing and

is much faster than the capacitive methods, but may be more expen-

sive due to transformer and electronics costs. Presently, a number of

silicon vendors are working to create automated control chips that

will make this design feasible for future mass-produced products.

5.4.6 Nondissipative: Shared transformer

Fig. 5.14 shows a simplified version of Fig. 5.13. The transformer

in this circuit uses a custom winding such that there are n turns of

the primary for each turn of all the secondaries. That is, the overall

battery-pack or module voltage is transformed down to a single-cell

level, and diodes ensure that energy is dumped only into cells having

too-low voltage. The control rapidly switches the primary; diodes

route the current. Balancing is automatic without sophisticated algo-

rithms.
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...

Isolated
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Isolated

dc-dc
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−

Figure 5.15: Shared-bus balancing
topology.

8 Ur Rehman, M.M., Evzelman, M.,
Hathaway, K., Zane, R., Plett, G.L.,
Smith, K., Wood, E., and Maksimović,
D., “Modular Approach for Continuous
Cell-level Balancing to Improve Per-
formance of Large Battery Packs,” in
Proc. IEEE Energy Conversion Conference
and Expo (ECCE), Pittsburg, 2014.

5.4.7 Nondissipative: Shared bus

There are significant benefits that can be accrued from nondissipative

balancing versus dissipative balancing. Nondissipative balancing is

more energy efficient; it can be much faster; individual cells can be

both charged and discharged on demand in some designs (meaning

that a single low or high cell will not seriously slow down balancing);

and time-varying balancing setpoints can be used to enable use of all

energy stored in the battery pack.

Yet, despite all of these advantages, dissipative balancers are

used in the vast majority of present fielded BMS. The reason is cost.

Switched-resistor balancers are used almost exclusively because they

are very inexpensive. Nondissipative balancers add electronics cost

for every cell, and transformer-based methods add expense for the

transformers themselves.

The final balancing architecture that we look at is relatively new

but has the potential to make nondissipative balancing cost-neutral

with respect to dissipative balancing in some applications. The cir-

cuit topology is drawn in Fig. 5.15.8 The approach uses one small

isolated dc–dc converter per cell, where the input to each converter is

connected directly to the cell and the outputs from all converters are

connected to a shared capacitive low-voltage bus.

This approach sounds more complex than a switched-resistor

dissipative system. It is. However, that does not necessarily make it

more expensive. Relative costs are difficult to evaluate fairly and are

subject to change. Moreover, and very importantly, the shared low-

voltage bus can displace other expensive system components so that

the overall architecture is financially competitive.

To see how this can be the case, we consider what the low-voltage

bus might be used for. The high-voltage bus is connected directly

to the high-voltage load. However, the low-voltage bus can be con-

nected to an auxiliary load. For an example, in xEV applications the

high-voltage battery pack and high-voltage vehicle systems are al-

ways complemented by a 12 V battery and 12 V systems. This is in

part because of the need to power legacy systems, but also due to

some subtle safety concerns relating to a requirement to be able to

distribute low power levels to parts of the vehicle without closing the

high-voltage contactors.

In present xEV, this 12 V system is run by a 12 V lead-acid battery

that is charged by a high-voltage to 12 V dc–dc converter. This high-

voltage dc–dc converter plays the same role that an alternator plays

in a standard gasoline-powered vehicle, keeping the lead-acid battery

fully charged using engine power.

The low-voltage bus in a shared-bus balancing system can be
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9 For example, in a grid-storage, grid-
backup, or frequency-regulation ap-
plication the shared bus can power a
thermal-management system, etc.

designed to operate in any reasonable voltage range. If we specify

the low-voltage bus to have nominal voltage of 12 V, then we can

entirely replace the high-voltage to 12 V dc–dc converter in present

xEV designs and we can either eliminate or significantly shrink the

12 V lead-acid battery. Essentially, a single expensive high-voltage to

12 V dc–dc converter is replaced by a lot of small dc–dc converters:

one per cell.

The savings accrued by displacing the high-voltage dc–dc con-

verter and by shrinking the lead-acid battery causes the shared-bus

balancing system to become approximately cost-neutral with respect

to switched-resistor dissipative balancing systems in xEV. However,

the shared-bus method can additionally attain all the benefits of

nondissipative balancing, which also have significant long-term mon-

etary value (that can be difficult to quantify). It is a very promising

technique, even outside of xEV, whenever a low-voltage auxiliary

load must be powered in addition to the high-voltage load.9

Balancing is performed by using the voltage of the shared bus as

an indicator of the battery-pack average of some battery-cell quantity.

That is, we don’t fix the bus voltage at exactly 12 V, but we allow it

to vary somewhat. For example, we might allow it to vary within

the standard lead-acid battery voltage range of about 11 V to 13.5 V.

Whenever charge is moved from a cell into the bus, the voltage of the

bus will tend to increase; whenever charge moves from the bus into a

cell, the voltage of the bus will tend to decrease.

We can use different mappings between some cell quantity and

bus voltage to achieve different desired tasks, including maximizing

life, maximizing the energy that can be removed from the battery

pack, and so forth. For now, consider the straightforward case where

we simply want to balance the SOCs of all cells at every point in time.

Then, define the metric function

vk = 11 + 1.5zk.

Every cell computes its own value for vk, between 11 and 13.5. It

then compares its own value to the voltage of the shared bus. If this

cell’s value of vk is below the shared-bus voltage, then its SOC is

below the battery-pack-average SOC. It draws energy from the bus

to charge the cell, raising its own SOC and hence its own value of

vk; simultaneously, the shared-bus voltage decreases because of the

charge that has been removed. Alternately, if this cell’s value of vk

is above the shared-bus voltage, the opposite process takes place. In

both cases, the cell SOC becomes closer to the battery-pack-average

SOC and the shared-bus voltage automatically changes to reflect this

fact.

No communication among cells is necessary. The analog shared-
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bus voltage is sufficient to coordinate all balancing tasks. Also, the

power requirements imposed on the dc–dc converters for cell balanc-

ing are relatively small. They do not need to process the entire power

of the battery pack as with some other designs. Instead, they need to

process only the relatively small mismatch power between cells.

As battery packs grow in size, dissipative balancing techniques

make less and less sense. The amount of power that must be dissi-

pated in the form of heat leads to very high wattage resistors and to

significant load on the battery-pack thermal-management system. As

costs of nondissipative methods come down, they are very likely to

overtake dissipative methods in fielded applications.

Before continuing, we should also mention safety concerns when

balancing. As long as the balancing circuitry is working correctly, the

methods described throughout this book can be used to monitor cell

states and ensure safety. However, it is also important to consider

what would happen if the balancing circuitry fails. Failures in dissi-

pative balancing circuits tend to be relatively benign. One or more

cells may overdischarge, which will damage the cells but not cause

a safety hazard. Failures in nondissipative balancing circuits can be

more serious. If a nondissipative balancer that is charging a cell gets

“stuck on,” then that cell may become overcharged, leading to risks

of thermal runaway. The circuitry should be designed with these

concerns in mind to provide redundant shutdown paths that can

maintain safety even if part of the circuit fails.

5.5 How quickly must I balance?

When designing a balancing system, a final decision that must be

made has to do with how quickly the balancing circuits are required

to move or remove charge. In a switched-resistor dissipative system,

this requirement enables sizing the balancing resistor that is placed

in parallel with each cell; in a nondissipative system, this will enable

design of the corresponding circuit component values.

If our primary concern is setpoint balancing for long-term balanc-

ing needs, then we must be able to balance the battery pack at least

as quickly as it can become imbalanced. If, instead, we are interested

in dynamic setpoint balancing using fast nondissipative balancing,

then we will need to be able to move charge much more quickly to

ensure that the dynamic setpoint can always be tracked.

Either way, battery-pack simulation is an excellent tool to evaluate

how quickly a battery pack can become imbalanced. The simulator

program will need to:

1. Create a virtual battery pack by drawing random numbers for the
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254 battery management systems: volume ii, equivalent-circuit methods

parameter values of all of its cells, such that the randomness of

the parameters is typical of the types and magnitudes of variation

expected in real cells;

2. Simulate this virtual battery pack over many repeated realistic

usage scenarios;

3. Gather statistics on how quickly cells become imbalanced and how

much imbalance there is as a function of time;

4. Save these statistics plus the parameter values for this random

battery pack for later use and analysis;

5. Repeat this process for numerous battery packs—enough that the

results are statistically significant.

Step 1 of this process emulates the creation of a battery pack by as-

sembling cells as they are produced by a manufacturing line. Steps 2

and 3 simulate the operation of this virtual battery pack in its applica-

tion and record results. Step 4 is careful to save the configuration of

this battery pack, so that future simulations that consider balancing

its cells don’t start fresh with new random cells but use exactly the

same cell characteristics that were used to simulate the pack in Step 2

and produce the results of Step 3.

The output of this process can tell us quite a few things, including

which cell and battery-pack characteristics are the greatest contribu-

tors to imbalance. It can be very helpful for gaining insight into the

causes and extent of imbalance in a battery pack.

Once we have simulated the battery pack without balancing, we

can load these saved data and subsequently simulate the balancing

process of the battery pack. For fixed-setpoint balancing, the amount

of time spent balancing must be less than the time taken to become

imbalanced to have a stable steady-state solution. For dynamic set-

point balancing, we must be able to move charge more quickly than

this and we would need to be able to cosimulate the imbalancing and

the balancing processes to ensure that the balancing methods can

keep up.

In the remainder of this section, we examine MATLAB code

simRandPack.m that is designed to simulate packs having random

cell characteristics, and then look at some sample results. As is our

practice by now, we will consider this script in sections that would

need to be reassembled in order to create an executable MATLAB

program.

The first code segment gives help information and sets up the

battery-pack cells’ random parameters and other simulation variables.

A battery pack comprising Ns cells is created and will be simulated

for Nc discharge/charge cycles. Each discharge cycle comprises repeti-

tions of the power versus time profile in cycleFile. The ESC-format
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5. cell balancing 255

cell model is passed as model. The randOptions vector has entries

that are set to “0” for a simulation using standard parameter val-

ues from the model structure or “1” for random values, as unpacked

below the function header. These entries will be described in more

detail in the sections where they are first used.

% --------------------------------------------------------------------

% simRandPack: Simulate battery pack having Ns cells in series for Nc

% discharge/charge cycles, where all cells in pack can have random

% parameter values (e.g., total capacity, resistance, etc.)

%

% Assumes no hysteresis in the cell model (this could be changed

% fairly easily; hysteresis makes results more difficult to interpret,

% so this assumption is okay for a first analysis, at least).

% --------------------------------------------------------------------

function packData = simRandPack(Ns,Nc,cycleFile,model,randOptions)

tOpt = randOptions(1); qOpt = randOptions(2); rOpt = randOptions(3);

sdOpt = randOptions(4); cOpt = randOptions(5); lOpt = randOptions(6);

profile = load(cycleFile); % e.g., 'uddsPower.txt'

% Create storage for all cell states after completion of each cycle

packData.storez = zeros([Ns Nc]); % create storage for final SOC

packData.storeirc = zeros([Ns Nc]);

% Initialize default states for ESC cell model

maxSOC = 0.95; % cell SOC when pack is "fully charged"

minSOC = 0.1; % cell SOC when pack is "fully discharged"

z = maxSOC*ones(Ns,1); % start fully charged

irc = zeros(Ns,1); % at rest

ik = zeros([Ns 1]); % current experienced by each cell

The output of this function is packData, which stores all cells’ ran-

dom parameters and both SOC and diffusion-resistor states after each

discharge/charge cycle.

The next section populates random variables for this battery pack.

The default temperature T for every cell is 25 ◦C but, if tOpt is set,

then every cell is assigned a random temperature uniformly dis-

tributed between 22.5 ◦C and 27.5 ◦C. An auxiliary temperature Tsd,

which will be used later for cell self-discharge calculations, is set to

a random value uniformly distributed in the range T plus or minus

5 C◦. The default leakage current is set to 10 mA, but if lOpt is set,

then every cell is assigned a random leakage current uniformly dis-

tributed between 10 mA and 12 mA:

% Set cell temperatures based on tOpt

if tOpt, % set to "1," to execute, or "0," to skip this code

T = 22.5 + 5*rand([Ns 1]);

else

T = 25*ones([Ns 1]);

end

% Set self-discharge "cell temperature"

Tsd = T - 5 + 10*rand([Ns 1]);

% Set cell module leakage current based on lOpt

if lOpt,
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256 battery management systems: volume ii, equivalent-circuit methods

leak = 0.01 + 0.002*rand([Ns 1]);

else

leak = 0.01*ones([Ns 1]);

end

The main cell simulation parameters are now retrieved from the

model data structure for each individual cell at its temperature T. In

this code, the default coulombic efficiency is set to one, and intercon-

nect resistance is set to twice the cell tab resistance, or 250 µΩ per

cell:

% Default initialization for cells within the pack

% Note that since T has Ns elements, there is one parameter value

% per cell (even if all turn out to be identical)

q = getParamESC('QParam',T,model);

rc = exp(-1./abs(getParamESC('RCParam',T,model)));

r = (getParamESC('RParam',T,model)).*(1-rc);

r0 = getParamESC('R0Param',T,model);

rt = 2*0.000125; % 125 microOhm resistance for each tab

eta = ones([Ns 1]);

If certain options in randOptions are set, then these default cell

parameters can be overwritten. In the next segment of code, cell total

capacity can be randomized uniformly between its default value

plus or minus 0.25 Ah. Cell resistance can be randomized uniformly

between its default value minus 0.5 mΩ and its default value plus

1.5 mΩ. Coulombic efficiency can be randomized uniformly between

0.997 and 0.999:

% Modified initialization for cell variability:

% Set individual random cell-capacity values

if qOpt, % set to "1," to execute, or "0," to skip this code

q=q-0.25+0.5*rand([Ns 1]); % random capacity for ea. cell

end

% Set individual random cell-resistance values

if rOpt, % set to "1," to execute, or "0," to skip this code

r0 = r0-0.0005+0.0015*rand(Ns,1);

end

r0 = r0 + rt; % add tab resistance to cell resistance

R = sum(r0,1); % overall total ohmic resistance of battery pack

% Set individual random cell-coulombic-efficiency values

if cOpt, % set to "1," to execute, or "0," to skip this code

eta = eta - 0.001 - 0.002*rand([Ns 1]);

end

The next code segment sets maximum and minimum allowed volt-

ages, initializes some simulation variables, and starts the simulation:

% Now, simulate pack performance using ESC cell model.

maxVlim = min(OCVfromSOCtemp(maxSOC,T,model));

minVlim = max(OCVfromSOCtemp(minSOC,T,model));

theCycle = 1; theState = 'discharge';

disCnt = 0; % start at beginning of profile

fprintf(' Cycle = 1, discharging... ');

while theCycle <= Nc,

v = OCVfromSOCtemp(z,T,model); % get OCV for each cell
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5. cell balancing 257

v = v - r.*irc; % add in diffusion voltages

V = sum(v); % total "fixed" voltage excluding i*R

vt = v-ik.*r0; % cell terminal voltages

The simulation is organized as a two-state state machine, which

can be in either a “discharge” or a “charge” state at any point in time.

The discharge state simulates a usage profile of power versus time

such as a drive-cycle profile in a vehicle. The charge state simulates

a plug-in charging operation. In both cases, we compute required

battery-pack current every iteration, modify it by cell characteristics,

and update every cell’s state.

While in the discharge state, we execute the profile from cycleFile

repeatedly until a lower voltage or lower SOC limit is reached. Each

time step, we retrieve the next value of power as a function of time

from the profile variable, wrapping from the end of the profile back

around to its beginning whenever we exceed the profile length. We

then compute battery-pack current from this demanded power and

modify it by the cell’s coulombic efficiency if the required current

is negative. The values in the vector ik comprise the cell currents

to be used to update the cell states before the next time step. How-

ever, if we discover that we have hit a lower voltage or SOC limit, we

abandon the computed values in ik and switch the simulation state

machine from the discharge state to the charge state:

switch( theState )

case 'discharge';

% Get instantaneous demanded pack power, repeating profile

P = profile(rem(disCnt,length(profile))+1);

% Compute demanded pack current based on unloaded voltage

I = V/(2*R) - sqrt(V^2/R^2 - 4*P/R)/2;

% Default cell current = pack current

ik = I*ones(Ns,1);

if I < 0, % If we happen to be charging this momement

ik = ik.*eta;

end

if min(z) <= minSOC || min(vt) < minVlim, % stop discharging

theState = 'charge';

chargeFactor = 1;

ik = 0*ik;

fprintf('charging... ');

end

disCnt = disCnt + 1;

In the charge state, we begin by charging the battery pack at a

6.6 kW level, representative of a domestic “level 2” xEV charging sys-

tem. We compute battery-pack current and then cell current from the

demanded power in much the same way as we did while in the dis-

charge state of the state machine. When we reach an upper voltage

limit, we divide the present charge power in half and continue charg-

ing. We repeat this process until charge power has been reduced

beyond a 6.6/32 kW rate. After that, we consider the pack to be fully

charged, store results for this completed discharge/charge cycle, and
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258 battery management systems: volume ii, equivalent-circuit methods

switch the simulation state machine back from the charge state to the

discharge state to begin the next cycle:

case 'charge';

% start charging @ 6.6kW, then taper

P = -6600/chargeFactor;

I = V/(2*R) - sqrt(V^2/R^2 - 4*P/R)/2;

I = max(-min(q),I); % limit to 1C charge rate max

ik = I*eta; % Charge coulombic eff.

if max(vt)>=maxVlim,

if chargeFactor > 32, % bail after 6.6kW/32 charge

packData.storez(:,theCycle) = z;

packData.storeirc(:,theCycle) = irc;

theState = 'discharge';

disCnt = 0;

ik = 0*ik;

theCycle = theCycle + 1;

if theCycle <= Nc,

fprintf('\n Cycle = %d, discharging... ',theCycle);

end

end

chargeFactor = chargeFactor*2;

end

otherwise

error('charge/discharge state has been corrupted')

end

By this point in the main loop, we have computed the cell cur-

rents ik demanded by the load for this time step. It remains to add

the self-discharge and leakage currents. In the following, we model

temperature-dependent self-discharge as current flowing through a

fictitious resistance in parallel with the cell, where we use the self-

discharge temperature Tsd computed earlier as the basis for cell-to-

cell variation in this resistance. We add the leakage currents, compute

new SOC and diffusion-current states, and repeat:

% Simulate self discharge via variable resistor in parallel

if sdOpt,

rsd = ((-20+0.4*Tsd).*z + (35-0.5*Tsd))*1e3;

ik = ik + vt./rsd;

end

% Simulate leakage current

ik = ik + leak;

z = z - (1/3600)*ik./q; % Update each cell SOC

irc = rc.*irc + (1-rc).*ik; % Update resistor currents

end % end while

fprintf('\n');

packData.q = q; packData.rc = rc; packData.eta = eta;

packData.r = r; packData.r0 = r0; packData.Tsd = Tsd;

packData.T = T; packData.leak = leak;

end

When all Nc discharge/charge cycles have been simulated, parame-

ters and results are stored to the packData structure, and the function

returns.

This function would generally be invoked by a wrapper script
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5. cell balancing 259

that simulates many random packs (to gather statistics). Any and all

combination(s) of random options can be selected to explore sensi-

tivity of imbalance to each cause. The packData structures can then

be stored for later analysis using balancing algorithms to see how

quickly balancing must occur.

5.6 Balancing simulation results

To illustrate some of the things we can learn from this code, we

consider seven different scenarios. Each scenario simulates 30 dis-

charge/charge cycles for each of 100 battery packs, where every

battery pack has 100 cells and 7.7 Ah nominal capacity. The first sce-

nario considered random cell temperatures with tOpt=1, but default

capacity, resistance, self-discharge, coulombic efficiency, and leak-

age current. The second scenario set tOpt=0, but considered random

capacities with qOpt=1 and default values for all other simulation

parameters. The third through sixth scenarios considered rOpt=1,

sdOpt=1, cOpt=1, and lOpt=1, respectively. Finally, the seventh sce-

nario had all randomizations turned on. Thescenario definitions are

summarized in Table 5.1.

Temperature Capacity Resistance Self-
discharge

Coulombic
efficiency

Leakage
current

Scenario 1 random standard standard off ideal uniform
Scenario 2 uniform random standard off ideal uniform
Scenario 3 uniform standard random off ideal uniform
Scenario 4 uniform standard standard on ideal uniform
Scenario 5 uniform standard standard off random uniform
Scenario 6 uniform standard standard off ideal random

Scenario 7 random random random on random random

Table 5.1: Simulation scenarios

Fig. 5.16 shows histograms for cell SOCs at the end of 30 dis-

charge/charge cycles for all cells in all battery packs. As expected,

temperature variation by itself did not cause SOC dispersion. Capac-

ity variation appears to have caused a small amount of dispersion, but

this is misleading. The simulation is initialized with all cells having

95 % SOC. However, recharge ends when a voltage limit is reached

and this occurs before any cell is charged exactly back to 95 % SOC. If

the voltage limit were removed, then all cells would reach 95 % SOC

at the same time and the pack would be perfectly balanced.

Resistance variation did not cause dispersion in SOC and self-

discharge variation caused relatively little dispersion during this

simulated period of time. However, self-discharge is a time-duration
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Figure 5.16: SOC dispersion after 30

discharge/charge cycles.

based phenomenon, and so dispersion increases when the simulation

is allowed to run longer.

The majority of imbalance is caused by nonuniform coulombic

efficiencies or leakage currents. Note that the simulated variation in

these parameter values was fairly modest. In practice, the variation

could be even higher. Therefore, we consider these to be the domi-

nant causes of imbalance.

Next, we ran simulations to see how quickly a battery pack could

be brought back into balance from an initial imbalanced state. We

started with the set of data from scenario 7 at the end of 30 dis-

charge/charge cycles, where cell SOCs had diverged to span the

interval from 55 % to 95 %. Already, we see that without balancing

the battery pack can become worthless very quickly, even though all

the cells therein are still perfectly healthy. We can also recognize that

we need to balance a little more than 1 % of pack capacity per balanc-

ing period to keep the pack in balance, since it diverged about 40 %

over 30 cycles.
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5. cell balancing 261

During the balancing phase, the pack was nominally at rest (there

was no externally applied current). Cell terminal voltages were mea-

sured once per second. The measurement added ±0.5 mV of uni-

formly distributed measurement noise to approximate system noises

and quantization errors. All cells having a measured voltage that was

at least 2 mV above the present minimum measured cell voltage were

selected for balancing using a dissipative switched-resistor strategy.

Balancing was accomplished by placing a 100 Ω resistor in parallel

with every cell selected for balancing. This causes a small amount

of discharge, lowering SOC and lowering terminal voltage for these

cells.

Four hours (14,440 s) of real time were simulated per balancing

period, where balancing decisions were made once per second.

This period is shorter than would normally be available per dis-

charge/charge operational cycle to balance a battery pack during

plug-in mode so represents an approximate worst-case scenario.

At the end of the four hours, a histogram of the SOC values for all

battery-pack cells was recored. Then, without reinitialization, addi-

tional four-hour periods were simulated, with histograms recorded at

the end of each four-hour period. Results are shown in Fig. 5.17.
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Figure 5.17: Pack balance after 30

discharge/charge cycles and a variable
number of balancing periods.

In the first five balancing periods, the top SOC were lowered from

95 % down to about 80 %, reducing the overall battery-pack SOC

dispersion from 40 % to about 25 %. The next five cycles reduced

the dispersion to about 15 %, but we also see that the lower states of

charge began to decrease: we sometimes balance the wrong cells due

to the ±0.5 mV measurement error. Balance improved slightly by 15
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262 battery management systems: volume ii, equivalent-circuit methods

balancing periods, and somewhat more by 30 balancing periods,

but by then the voltage measurement noise caused the remaining

imbalance to be permanent.

So, we can conclude that 30 balancing periods are sufficient to

balance a pack that had been exercised for 30 discharge/charge cy-

cles. Even this relatively simple dissipative switched-resistor method

can keep a battery pack in balance, if all that is desired is setpoint

balancing.

The decision regarding whether to use dissipative or nondissipa-

tive balancing is not one of capability. Dissipative balancing is able to

keep a battery pack balanced. However, there are issues of efficiency,

heat generation, and battery-pack longevity. Nondissipative methods

are more energy efficient, can extend the life of the battery-pack cells,

and do not generate as much heat. Dissipative balancing, especially

for battery packs having higher total capacity, require smaller bal-

ance resistors and higher balancing currents, which will in turn cause

greater heating. And, dissipative balancing in general will not be able

to maximize battery-pack available energy or power, or to extend life

via quick charge transfer.

5.7 Where to from here?

We have now considered, at some level of detail, all of the BMS re-

quirements outlined in Chap. 1. We have seen how to estimate SOC

and SOH for every cell in the battery pack and how to balance the

cells to keep the pack in a functional state. The SOC and SOH es-

timates can be used to compute a total energy estimate using the

simple equations in Chap. 1. However, the power-limit estimation

approach sketched in Chap. 1 needs some further elaboration. We

devote the remainder of the book to topics surrounding the computa-

tion of battery-pack power limits.
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6

Voltage-Based Power-Limit Estimation

In Sect. 1.13.1, we discussed the estimation needs of a battery man-

agement system and concluded that the two most fundamental

requirements were abilities to estimate present battery-pack total

energy and available power. Since no sensor exists to measure either

of these quantities directly, we must compute estimates of their val-

ues based on estimates of more primitive quantities that include cell

SOCs, resistance, and total capacity.

Referring back to the roadmap Fig. 3.1 that diagrams our progress

through the contents of this book, we recognize that we have now

seen various methods to estimate the state (including SOC) and

health (including total capacity and resistance) of every battery cell.

This information is sufficient to compute the total energy stored by

every cell and by the overall battery pack using the equations in

Sect. 1.14.

So, it remains to study how to compute cell and battery-pack

power limits. We previewed a simple approach to doing so in Sect. 1.15,

but now return to look at this requirement more closely.

A power limit tells us how quickly we may add energy to or remove

energy from the battery pack without violating a set of design con-

straints. In this chapter, we assume that these constraints impose

hard limits on cell terminal voltage, which is the common practice

today. We will generalize the simple approach presented in Chap. 1

and see how to apply it using a higher-fidelity equivalent-circuit

model of a cell, resulting in improved battery-pack dynamic power

limits.

The essential reason for competing power limits is to optimize a

tradeoff between the performance delivered by the battery pack and

its expected lifetime. Voltage limits are enforced by the power-limits

calculation in an attempt to prevent excessively rapid aging. How-

ever, it is important to recognize that voltage limits are a means to

an end and not the end itself. The real concern, is not directly how

263
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264 battery management systems: volume ii, equivalent-circuit methods

1 True available power does not change
very quickly, so neither should its
estimate.

large or small a cell’s voltage might be, but rather the incremental

damage that will be experienced by the cell if it is operated at high

power levels. Voltage limits are used because they are easily com-

puted, but voltage is an indirect and not very predictive indicator of

how quickly the cell will age. Thus, in Chap. 7, we will look at some

ideas for computing power limits based on model-predicted future

incremental degradation rather than by placing constraints on future

terminal voltage.

6.1 Traditional, terminal-voltage-based power limits

The power limits that are estimated by a battery management system

are communicated to the load-management system and can be used

for multiple purposes. If the load relies on the battery pack as its sole

power source, such as in an electric vehicle, then the load controller

must simply ensure that the power limits provided by the battery

management system are never violated even if this results in a loss

of performance provided by the load. If the load has multiple power

sources, such as in a hybrid-electric vehicle, then the load controller

uses the maximum limits from the battery management system as

part of its strategy to blend the capabilities of the two sources in an

intelligent way to satisfy the load requirements while optimizing

some performance criterion.

In neither of these cases is a rapidly changing instantaneous esti-

mate of available power of much use.1 A slowly changing value is

greatly preferred, to avoid requiring abrupt changes in the battery-

pack load. For load-planning purposes, a predictive estimate of

power is also better than an instantaneous estimate to allow for

scheduling over a near-future time horizon.

So, we consider the problem of computing a predictive estimate

of a constant power level available to the load over some future time

horizon of duration ∆T s. If the load draws power up to but not ex-

ceeding this computed limit for the entire ∆T s, then no battery-pack

design limits should be violated. Because the constant level of power

that can be sustained for ∆T s is less than or equal to the maximum

instantaneous sustainable power level, the predictive power estimate

is conservative in some sense, and short-term exceedances can some-

times be absorbed.

The computation and communication of power limits is done

much more frequently than once every ∆T s. This continual re-

computation of available power acts as a type of low-pass-filter op-

eration that smooths out changes in the estimates and enables the

load-management system to avoid abrupt performance loss. This

overlapping moving-window approach is illustrated in Fig. 6.1.
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6. voltage-based power-limit estimation 265

Provide power limit
valid for next ∆T s

∆T s

Continue to provide overlapping power limits

. . .

Figure 6.1: Power limits must be predic-
tive over a future time horizon ∆T.

For example, our prediction horizon might be ∆T = 10 s, and

our update rate might be 1 Hz. At time zero, we compute power

limits that must be maintained until time t = 10 s. We guarantee that

if the load draws power within these computed limits, no battery-

pack design limits will be violated. However, at time t = 1 s, we

recompute power limits that must be maintained from t = 1 s until

time t = 11 s. These limits replace those computed at time t = 0 s

and may be greater or smaller, depending on the actual battery-pack

activity during the interval between t = 0 s and t = 1 s. At t = 2 s, we

compute power limits valid from that point in time until t = 12 s, and

so forth. This predict-and-update sequence is repeated continuously

while the battery pack operates.

More formally, the problem that we address in this chapter may be

described in the following way:

a) Discharge power: Based on present battery-pack conditions, es-

timate the maximum discharge power that may be maintained

constant for ∆T seconds without violating design limits on cell

terminal voltage, SOC, or maximum design power and current.

b) Charge power: Based on present battery-pack conditions, estimate

the maximum battery charge power that may be maintained con-

stant for ∆T seconds without violating preset design limits on cell

terminal voltage, SOC, maximum design power, or current.

c) Both discharge and charge power: Any combination of (a) and (b),

where ∆T may have different values for charge and discharge.

The notation and assumptions we employ are as follows. We denote:

• The number of cells in the battery pack by N;

• Cell terminal voltage at discrete-time step k for cell number i in

the pack by v
(i)
k ; where design limits vmin ≤ v

(i)
k ≤ vmax must be

enforced for all cells;

• SOCs at time k for cell i by z
(i)
k , where we enforce zmin ≤ z

(i)
k ≤

zmax;
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Figure 6.2: Crude equivalent-circuit
model of a cell.
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Figure 6.3: Determining the resistances
Rdis,∆T and Rchg,∆T via a lab test.

• Cell power at time k for cell i by p
(i)
k , where we enforce pmin ≤

p
(i)
k ≤ pmax; and,

• Cell current at time k for cell i by i
(i)
k , where we enforce imin ≤

i
(i)
k ≤ imax.

Any particular limit (vmax, vmin, zmax, zmin, imax, imin, pmax, or pmin)

may be removed if desired by replacing its value by ±∞, as appro-

priate. Any limit may furthermore be a function of temperature and

other factors pertaining to the present battery pack operating condi-

tion. Different cells may have different limits should it be desirable.

The battery pack is assumed to comprise Ns cell modules connected

in series, where each cell module comprises Np individual cells con-

nected in parallel, with Ns ≥ 1, Np ≥ 1, and N = NsNp.

6.2 Voltage-based power limits, using a simple cell model

As previewed in Chap. 1, a standard method for estimating power

limits is one that we will refer to as the Hybrid Pulse Power Char-

acterization (HPPC) method specified by the Partnership for New

Generation Vehicles (PNGV). This method assumes the simplified

equivalent-circuit model of a cell shown in Fig. 6.2. For this model,

the instantaneous terminal voltage can be expressed as

v
(i)
k = OCV(z(i)

k )− ikR
(i)
k , (6.1)

which can be rewritten to solve for cell current as

ik =
OCV(z(i)

k )− v
(i)
k

R
(i)
k

.

To compute a power estimate, we first assume that we are con-

cerned only with keeping the terminal voltage between vmin and

vmax. Then, discharge power is computed by clamping the cell termi-

nal voltage to vmin:

p
(i)
dis,k = v

(i)
k ik = vmin

OCV(z(i)
k )− vmin

R
(i)
k

. (6.2)

As written, if R
(i)
k is set to the equivalent-series resistance R0 of

the cell, then Eq. (6.2) computes the present instantaneous available

power. To compute a power limit that applies over a future time

horizon instead, we can modify the resistance in the denominator

such that R
(i)
k > R0 to model the greater change in voltage expected

when applying an input pulse for a longer duration. But, what value

of R
(i)
k should we use?
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6. voltage-based power-limit estimation 267

2 This test should be repeated at multi-
ple SOC and temperature setpoints to
capture the influences in these factors
on the effective discharge and charge
resistances.

To answer this question, notice that Eq. (6.1) uses R
(i)
k to model

the instantaneous change in cell terminal voltage when a pulse of

current is applied to a resting cell. We can use the same equation

to predict the overall change in voltage over a time interval of ∆T

seconds if we instead choose R
(i)
k such that ikR

(i)
k is representative

of the accumulated voltage drop when a constant-current pulse is

applied to a resting cell for ∆T seconds. A laboratory cell test such

as the one illustrated in Fig. 6.3 can be performed to determine this

value. In the figure, the cell has been allowed to rest for ten seconds,

then a constant-current discharge pulse is applied for ∆T seconds

(∆T = 10 s in this example), then the cell voltage is allowed to recover

and a constant-current charge pulse is applied for ∆T seconds. We

measure ∆Vdis as the initial rest voltage minus the minimum voltage

during the constant-current discharge, and ∆Vchg as the intermediate

rest voltage minus the maximum voltage during the constant-current

charge. Then, we compute (positive) effective discharge and charge

resistances over a ∆T-second pulse duration as:2

R
(i)
dis,∆T =

∣∣∣∣∣
∆v

(i)
dis

idis

∣∣∣∣∣ , and R
(i)
chg,∆T =

∣∣∣∣∣∣

∆v
(i)
chg

ichg

∣∣∣∣∣∣
.

We assume that ∆T seconds may be represented in discrete time as

exactly k∆T sample intervals. That is, k∆T = ∆T/∆t. With the results

found to date, we can now approximate

v
(i)
k+k∆T

≈ OCV(z(i)
k )− ikR

(i)
dis,∆T

for discharge currents and

v
(i)
k+k∆T

≈ OCV(z(i)
k )− ikR

(i)
chg,∆T

for charge currents.

So, to compute maximum discharge current based on a design

lower voltage limit, we set R
(i)
k = R

(i)
dis,∆T and clamp the future volt-

age v
(i)
k+k∆T

= vmin. Then,

i
dis,volt(i)
max,k =

OCV(z(i)
k )− vmin

R
(i)
dis,∆T

.

If we are concerned only with maintaining cell voltage limits within

the interval vmin to vmax, then pack discharge power may be calcu-

lated as

pdis,volt
max,k = NsNpvmin min

i

(
i
dis,volt(i)
max,k

)
.

Similarly, to compute cell maximum absolute charge current, we

Plett, Gregory. Battery Management Systems, Volume II: Equivalent-Circuit Methods, Artech House, 2015. ProQuest Ebook Central,
         http://ebookcentral.proquest.com/lib/ybp-ebookcentral/detail.action?docID=4821265.
Created from ybp-ebookcentral on 2020-03-29 18:59:59.

C
op

yr
ig

ht
 ©

 2
01

5.
 A

rte
ch

 H
ou

se
. A

ll 
rig

ht
s 

re
se

rv
ed

.



268 battery management systems: volume ii, equivalent-circuit methods

set R
(i)
k = R

(i)
chg,∆T and clamp the future voltage v

(i)
k+k∆T

= vmax. Then,

i
chg,volt(i)
min,k =

OCV(z(i)
k )− vmax

R
(i)
chg,∆T

.

Note that charging current is nonpositive and therefore the maximum

absolute charge current is the minimum charge current in a signed

sense. Pack charge power based only on observing voltage limits is

then calculated as

p
chg,volt
min,k = NsNpvmax max

i

(
i
chg,volt(i)
min,k

)
.

6.2.1 Rate limits based on SOC, maximum current, and power

We can extend the basic HPPC method quite easily to include SOC-

based limits with a time horizon ∆T in addition to the voltage-based

limits. For a constant current ik, the SOC recurrent relationship is:

z
(i)
k+k∆T

= z
(i)
k −

η
(i)
k k∆T∆t

Q(i)
ik

= z
(i)
k −

η
(i)
k ∆T

Q(i)
ik.

We will assume that ηk = 1 for discharge and that ηk = η ≤ 1 for

charge currents.

If we have design limits such that zmin ≤ z
(i)
k ≤ zmax for all cells

in the pack, we can compute current ik to enforce these limits. Simple

algebra gives

i
dis,soc(i)
max,k =

z
(i)
k − zmin

∆T/Q(i)
(6.3)

i
chg,soc(i)
min,k =

z
(i)
k − zmax

η∆T/Q(i)
, (6.4)

by replacing future SOC z
(i)
k+k∆T

with either zmin or zmax, as appropri-

ate.

We understand very well by now that cell SOC is never known

exactly. However, if we use a nonlinear Kalman filter to estimate the

SOCs of the battery-pack cells, we additionally receive confidence

intervals on the estimates. These confidence intervals can be used

to make power estimates more conservative. For example, if we are

comfortable assuming that a 3σz confidence interval on the SOC

estimate will almost certainly contain the true SOC, then we can

revise the discharge and charge current limits to be

i
dis,soc(i)
max,k =

(
z
(i)
k − 3σ

(i)
z,k

)
− zmin

∆T/Q(i)
(6.5)
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6. voltage-based power-limit estimation 269

3 Much of the remainder of this chap-
ter is based on: Plett, G.L., “High-
Performance Battery-Pack Power Esti-
mation Using a Dynamic Cell Model,”
IEEE Transactions on Vehicular Technology,
53(5), 2004, pp. 1,586–93.

i
chg,soc(i)
min,k =

(
z
(i)
k + 3σ

(i)
z,k

)
− zmax

η∆T/Q(i)
. (6.6)

Once all cell current limits have been calculated, the pack dis-

charge and charge currents that satisfy all design constraints are

computed as:

idis
max,k = min

(
imax, min

i
i
dis,soc(i)
max,k , min

i
i
dis,volt(i)
max,k

)
(6.7)

i
chg
min,k = max

(
imin, max

i
i
chg,soc(i)
min,k , max

i
i
chg,volt(i)
min,k

)
. (6.8)

Battery-pack power may be calculated using the sum of all cell

powers, where cell powers are computed as the product of the maxi-

mum allowed cell current and predicted future voltage:

p
chg
min,k = Np max

(

Ns pmin,
Ns

∑
i=1

i
chg
min,kv

(i)
k+k∆T

)

≈ Np max

(

Ns pmin,
Ns

∑
i=1

i
chg
min,k

(

OCV(z(i)
k )− i

chg
min,kR

(i)
chg,∆T

))

;

pdis
max,k = Np min

(

Ns pmax,
Ns

∑
i=1

idis
max,kv

(i)
k+k∆T

)

≈ Np min

(

Ns pmax,
Ns

∑
i=1

idis
max,k

(

OCV(z(i)
k )− idis

max,kR
(i)
dis,∆T

))

.

6.3 Voltage-based power limits, using a full cell model

This enhanced version of the HPPC method is still limited. First, the

cell model it uses is too primitive to give precise results. Overly op-

timistic or pessimistic predictions could be generated, either posing

a safety or battery-health hazard, or being inefficient in battery use.

Second, the equations assume that the cell is in an equilibrium con-

dition prior to the application of a current pulse, which is not true

in general. To compensate for the uncertainty introduced by these

limitations, the HPPC power estimate is usually derated by multiply-

ing its value by a factor less than one. This makes the final estimate

somewhat more conservative. However, a maximum-power algorithm

that uses a better cell model can give better power-limit estimates.

We now assume a more accurate model of cell dynamics in a

discrete-time state-space form (such as the enhanced self-correcting

cell model used throughout this book):3

x
(i)
k+1 = f

(
x
(i)
k , ik

)

v
(i)
k = h

(
x
(i)
k , ik

)
.
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270 battery management systems: volume ii, equivalent-circuit methods

Then, we can use this model to predict cell voltage ∆T seconds into

the future by

v
(i)
k+k∆T

= h
(
x
(i)
k+k∆T

, ik+k∆T

)
,

where x
(i)
k+k∆T

may be found by simulating the state equation open-

loop into the future for k∆T time samples.

We assume that the input current to each cell remains constant

from time index k to k + k∆T and denote it simply as ik. We then use

a bisection search algorithm—to be explained in Sect. 6.4—to find

i
dis,volt(i)
max,k and i

chg,volt(i)
min,k by looking for the ik that causes equality in

vmin = h
(
x
(i)
k+k∆T

, ik

)
, or

0 = h
(
x
(i)
k+k∆T

, ik

)
− vmin (6.9)

to find i
dis,volt(i)
max,k , and by looking for the ik that causes equality in

vmax = h
(
x
(i)
k+k∆T

, ik

)
, or

0 = h
(
x
(i)
k+k∆T

, ik
)
− vmax (6.10)

to find i
chg,volt(i)
min,k . Once again, SOC-based current limits i

dis,soc(i)
max,k and

i
chg,soc(i)
min,k are computed using Eqs. (6.3) and (6.4), respectively, if SOC

is known exactly, or using Eqs. (6.5) and (6.6), respectively, if SOC is

being estimated using a nonlinear Kalman filter.

The bisection algorithm must compute future predicted voltage re-

peatedly for different candidate input-current levels. This calculation

can be simplified when the state equation is linear; that is, when

x
(i)
k+1 = Ax

(i)
k + Bik,

where A and B are constant matrices. This condition is true for the

ESC cell model when the input current is constant over the entire

prediction horizon. Then, we have

x
(i)
k+k∆T

= Ak∆T xk +

(
k∆T−1

∑
j=0

Ak∆T−1−j

)

︸ ︷︷ ︸
Ak∆T

Bik. (6.11)

This formulation can be used to speed calculation of future state and

future voltage within the steps required by the bisection algorithm.

Once the cell current limits are established, overall battery-pack

discharge and charge current limits are computed using Eqs. (6.7)

and (6.8). Charge power is then computed as

p
chg
min,k = Np max

(

Ns pmin,
Ns

∑
i=1

i
chg
min,kv

(i)
k+k∆T

)
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6. voltage-based power-limit estimation 271

x1 x2xmid

g(x)

Figure 6.4: An interval containing a
single zero crossing of function g(x).

= Np max

(

Ns pmin,
Ns

∑
i=1

i
chg
min,kh(x

(i)
k+k∆T

, i
chg
min,k)

)

,

and discharge power is computed as

pdis
max,k = Np min

(

Ns pmax,
Ns

∑
i=1

idis
max,kv

(i)
k+k∆T

)

= Np min

(

Ns pmax,
Ns

∑
i=1

idis
max,kh(x

(i)
k+k∆T

, idis
max,k)

)

.

To use a full equivalent-circuit cell model, then, all that remains is

to see how to determine ik to meet future cell-voltage limits. We look

at this next.

6.4 Bisection search

To compute dynamic power limits for a battery cell using a compre-

hensive cell model, we must be able to solve Eq. (6.9) for ik leading

to i
dis,volt(i)
max,k , and Eq. (6.10) for ik leading to i

chg,volt(i)
min,k . To do so, we

require a method to find a root of a nonlinear equation. Here, we use

the bisection search algorithm to do so.

Generically, the bisection search algorithm looks for a root of some

function g(x) (i.e, a value of x such that g(x) = 0) where it is known

a priori that at least one root lies in the interval x1 < root < x2.

One way of knowing that this condition is met is that the sign of

g(x1) is different from the sign of g(x2). The bisection algorithm

repeatedly shrinks the interval between x1 and x2 but maintains the

sign difference to ensure that a root always remains between the

endpoints.

Fig. 6.4 shows an example nonlinear function having a root be-

tween x1 and x2 to illustrate the bisection algorithm. In this particular

example, g(x2) > 0 and g(x1) < 0, but these signs could be reversed

and the method would still work.

The first step bisection algorithm is to evaluate the function g(·) at

the midpoint xmid = (x1 + x2)/2. Based on the sign of the evaluation,

either x1 or x2 is replaced by xmid to retain different signs on g(x1)

and g(x2). We see that the interval containing the root is halved in

width by this algorithmic step. This bisection iteration is repeated

until the interval between x1 and x2, (i.e., the resolution of the root

of g(x)) is as small as desired. If ε is the desired root resolution, the

algorithm will require at most

maximum number of iterations = ⌈log2 (|x2 − x1|/ε)⌉ (6.12)

iterations, where ⌈·⌉ rounds its argument to the next highest integer.
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272 battery management systems: volume ii, equivalent-circuit methods

A MATLAB implementation of the bisection method is listed be-

low. The inputs to the function are a function handle g, the range

limits x1 and x2 within which to search for a root, and the required

resolution res of the identified root:

% Search interval x1...x2 in fn g(.) for a root, with resolution res

function x = bisect(g,x1,x2,res)

maxIter = ceil(log2(abs(x2-x1)/res));

dx = x2 - x1; % set the search interval dx = x2 - x1

if( g(x1) >= 0 )

dx = -dx; x1 = x2; % root now b/w (x1,x1 + dx), and g(x1) < 0

end

for theIter = 1:maxIter-1

dx = 0.5 * dx; xmid = x1 + dx;

if g(xmid) <= 0,

x1 = xmid;

elseif abs(dx) <= res,

break

end

end

x = x1 + 0.5*dx; % the final bisection

end

The function first computes the maximum number of bisection steps

maxIter that will be required, using Eq. (6.12). It then computes the

present width of the root-uncertainty window, dx. The limits x1 and

x2 are examined, and interchanged if necessary to ensure that the

root lies between x1 and x1 + dx, where the constraint g(x1) < 0 is

satisfied. The function enters a loop for a maximum of maxIter-1

iterations where the interval width is repeatedly halved and x1 is

updated if necessary to maintain the constraints that the root lies be-

tween x1 and x1 + dx and g(x1) < 0. Before returning, knowing that

the root lies within the final values of x1 and x1 + dx, the function

computes its final estimate as the midpoint of this interval. The final

root-location error is then within ±dx/2.

As an example of how to use the bisect.m function, consider the

following code segment:

g = @(x) x^3;

bisect(g,-1,2,1e-5)

First, we create an anonymous function named g. This function has

input argument x, as denoted by the @(x) syntax, and computes the

cube of its input argument as its return value. Anonymous functions

are convenient when we wish to implement a simple computation

without wishing to store the computational steps in a program file

(however, as we will see later, anonymous functions are not required

when using bisect.m). The variable g has data type function_handle

in MATLAB. Then, bisect.m is invoked with the anonymous func-

tion g as its first input argument, for x1 = −1, x2 = 2, and the desired
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6. voltage-based power-limit estimation 273

root resolution being 10−5. The output root estimate is 1.9073× 10−6,

which is closer than 10−5 to the true root location of 0.

When computing cell power limits, bisection is incorporated in the

overall algorithm as follows:

• First, three simulations are performed to predict what every cell’s

voltage would be k∆T samples into the future for constant-current

inputs ik = 0, ik = imin, and ik = imax.

• If cell voltages are predicted to be between vmin and vmax for the

maximum absolute rates imin and imax, then these rates may be

used:

i
dis,volt(i)
max,k = imax and i

chg,volt(i)
min,k = imin.

Bisection is not needed.

• If the cell voltages, even during rest, are outside of the range vmin

to vmax, then the battery pack is in an unsafe condition. In this

case, we might decide to set the maximum rates to zero. The de-

fault then is

i
dis,volt(i)
max,k = 0 and i

chg,volt(i)
min,k = 0.

However, these defaults may be overridden by values that would

bring the pack back inside valid limits. For example, we may set

i
dis,volt(i)
max,k > 0 on an overcharged battery cell or i

chg,volt(i)
max,k < 0 for an

overdischarged battery cell. The current limits in this case could be

solved via bisection as in the next case.

• If the voltage is outside of limits when a maximum current is

simulated, but is within limits during rest, we know that the true

maximum rate may be found by bisecting between rate equal to

zero and its maximum value. So, bisection is performed between

current limits (imin, 0) or (0, imax).

To estimate power limits using bisection and an ESC cell model, we

need to define a bisection objective function, which will itself involve

a state and voltage prediction calculation k∆T seconds into the future.

For constant input current, the ESC cell-model state equation is linear,

with

x
(i)
k+1 = Ax

(i)
k + Bik.

To incorporate this in a bisection search, we first define anonymous

matrix functions to compute state-space A and B matrices based on

cell input current:

A = @(ik) diag([1 exp(-1/(RC)) exp(-abs(ik*Gamma/(3600*Q)))]);

B = @(ik) [-1/(3600*Q) 0; (1-exp(-1/RC)) 0; ...

0 (1-exp(-abs(ik*Gamma/(3600*Q))))];
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274 battery management systems: volume ii, equivalent-circuit methods

In this code, we assume that SOC is the top element of vector x
(i)
k , a

single diffusion-current state is in the middle of the vector, and that

the hysteresis state is last. The input to each of these anonymous

functions is the cell input current (needed in the hysteresis element

computations) and the input to the overall cell model is assumed to

be a 2-vector comprising the input current as the top element and the

sign of the input current as the bottom element. Therefore A is 3 × 3

and B is 3 × 2 in dimension.

We take advantage of linearity inside the bisection algorithm via

Eq. (6.11). Because A is diagonal, the matrix power Ak∆T is simply

the diagonal matrix comprising the scalar powers of the diagonal

elements. Similarly, the summation can be written as

k∆T−1

∑
j=0

Ak∆T−1−j =

(
k∆T−1

∑
j=0

A−j

)

Ak∆T−1 =

(
k∆T−1

∑
j=0

(
A−1

)j
)

Ak∆T−1

=
(

I − A−1
)−1 (

I − A−k∆T

)
Ak∆T−1

=
(

I − A−1
)−1 (

Ak∆T−1 − A−1
)

= (A − I)−1
(

Ak∆T − I
)

, (6.13)

if we assume that all diagonal elements of A are strictly less than 1

in magnitude. For diagonal elements of A that are equal to 1, we

instead have

k∆T−1

∑
j=0

Ak∆T−1−j = k∆T. (6.14)

This allows us to write very efficient code to simulate a cell’s state

and voltage k∆T samples into the future. Consider the following

function, simCellKDT.m:

% Simulate cell for KDT samples, with input current equal to ik, initial

% state = x0, A and B functions, temperature = T, with model parameters

% R0, R, M and the model structure "model".

function [vDT,xDT] = simCellKDT(ik,x0,A,B,KDT,T,model,R0,R,M)

Amat = A(ik); Bmat = B(ik); dA = diag(Amat);

if ik == 0,

ADT = diag([KDT, (1-dA(2)^KDT)/(1-dA(2)), KDT]);

else

ADT = diag([KDT, (1-dA(2)^KDT)/(1-dA(2)), (1-dA(3)^KDT)/(1-dA(3))]);

end

xDT = (dA).^KDT.*x0 + ADT*Bmat*[ik; sign(ik)];

vDT = OCVfromSOCtemp(xDT(1),T,model) - R*xDT(2) + M*xDT(3) - ik*R0;

end

The function first evaluates the anonymous A-matrix and B-matrix

functions for the proposed input-current level ik to compute Amat

and Bmat, respectively. The matrix Ak∆T
of Eq. (6.11) is then com-

puted as ADT using either Eq. (6.13) or (6.14), depending on whether
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6. voltage-based power-limit estimation 275

the corresponding entries of A are 1 or less than 1. (The SOC entry

is always 1 and the hysteresis-state entry is 1 when input current is

zero.) Finally, the future state is computed using Eq. (6.11) and the

future voltage is computed from the future state.

At this point, we have defined a bisection function and a function

that can predict future cell state and voltage. To complete the power-

estimation code, we require functions that connect the two.

When computing the discharge-power limit while considering

both terminal-voltage and SOC design constraints, we can use the

following code:

function g = bisectDischarge(ik,x0,A,B,KDT,T,model,R0,R,M)

[vDT,xDT] = simCellKDT(ik,x0,A,B,KDT,T,model,R0,R,M);

g = max(vmin - vDT,zmin - xDT(1)); % max must be less than zero

end

The function first simulates the cell for k∆T samples to predict future

state and voltage for the proposed level of input current ik. It then

computes a result g that can be bisected on, where MATLAB variable

vmin stores the value of vmin and zmin stores the value of zmin. Notice

that vmin - vDT must be negative for an acceptable future voltage

vDT and that zmin - xDT(1) must be negative for an acceptable fu-

ture SOC xDT(1). Therefore, the maximum of the two must also be

less than zero to enforce both conditions simultaneously. If we bi-

sect over a region x1 to x2 to find the location where g(x) = 0, we

are solving for the point where either the voltage or the SOC limit

has been attained (we don’t know which from this function, but that

information is not needed).

When computing the charge-power limit while considering both

terminal-voltage and SOC design constraints, we can use the follow-

ing function:

function g = bisectCharge(ik,x0,A,B,KDT,T,model,R0,R,M)

[vDT,xDT] = simCellKDT(ik,x0,A,B,KDT,T,model,R0,R,M);

g = min(vmax - vDT,zmax - xDT(1)); % min must be greater than zero

end

Its operation is very similar to bisectDischarge.m, except that both

vmax - vDT and zmax - xDT(1) must be positive for acceptable future

values of voltage and SOC. Therefore, by constraining their minimum

to be positive, we simultaneously satisfy both conditions.

To bisect to find maximum discharge current, we use code like:

gDis = @(x) bisectDischarge(x,x0,A,B,KDT,T,model,R0,R,M)

ilimit = bisect(gDis,0,imax,ires);

where ires is the desired resolution for the solution for battery-pack

current. To bisect to find maximum absolute charge current, we use

code like:

gChg = @(x) bisectCharge(x,x0,A,B,KDT,T,model,R0,R,M)

ilimit = bisect(gChg,imin,0,ires);
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Figure 6.5: SOCs versus time for cell
test used in example.
© 2004 IEEE. Reprinted, with per-
mission, from Fig. 5 in Plett, G.L.,
“High-Performance Battery-Pack Power
Estimation Using a Dynamic Cell
Model,” IEEE Transactions on Vehicular
Technology, 53(5), 2004, pp. 1,586–93.
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Figure 6.6: Comparison between mea-
sured and modeled cell voltage.
© 2004 IEEE. Reprinted, with permis-
sion, from Figs. 3 and 4 in Plett, G.L.,
“High-Performance Battery-Pack Power
Estimation Using a Dynamic Cell
Model,” IEEE Transactions on Vehicular
Technology, 53(5), 2004, pp. 1,586–93.

Power-limits estimation example

We close this chapter with a simulation example showing the similari-

ties and differences between the HPPC method based on a simplified

cell model and the bisection method based on the comprehensive

ESC cell model. The data used in the example were collected from a

lithium-ion cell that was subjected to a sequence of 16 UDDS drive-

cycle profiles, separated by discharge pulses and five-minute rests.

The overall profile of cell SOC versus time is plotted in Fig. 6.5. SOCs

increases by about 5 % during each UDDS drive-cycle profile, but is

brought down about 10 % during the discharge between profiles. The

entire design operating range for this cell (10 % SOC to 90 % SOC,

delineated on the figure as the region between the thin dashed lines)

is excited during the cell test.

Fig. 6.6 shows a comparison between measured cell voltage for

this test and the voltage that is predicted by an ESC cell model that

was fit to the dynamics of this particular cell. The difference between

true and estimated cell terminal voltages is very small (root-mean-

squared voltage estimation error is less than 5 mV). The top frame

shows data collected over the entire test; the lower frame shows a

zoom on one cycle to illustrate the quality of the model’s estimates.

In the discussion that follows, we will consider the power predictions

produced by the bisection method to represent the true capability of

the cell, justifying this assumption by the fidelity of the cell model’s

voltage estimates, as supported by the plots in Fig. 6.6.

For the following results, we assume that the battery pack has

Ns = 40 and Np = 1. Cells have nominal capacity of 7.5 Ah and ∆T =

10 s for both charge and discharge. Operational limits for voltage,

current, SOC, and power used by the power-limits calculations are

listed in Table 6.1. The resolution on current used in the bisection

algorithm was 0.1 A.

Parameter Minimum Maximum

Voltage vmin = 3.0 V vmax = 4.35 V

Current imin = −200 A imax = 200 A

SOC zmin = 0.1 zmax = 0.9

Power pmin = −∞ pmax = ∞ Table 6.1: Design limits for power-limit
estimation example.
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Figure 6.7: Comparison between predic-
tions of discharge power.
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Fig. 6.7 compares discharge power estimates produced by the

HPPC and bisection methods. The upper frame shows results for the

entire test, and the lower frame shows a zoom into the results for one

cycle. The overall discharge power is limited throughout most of the

test by the requirement to keep cell voltage above vmin; however, after

about 400 min, both methods are also limited at times by low cell

SOC approaching zmin.

Overall, we see that the two methods produce generally similar es-

timates. At high SOCs, the HPPC method predicts higher power than

is actually available (by as much as 9.8 %), and at mid to low SOCs,

the HPPC method underpredicts the available power. If the load con-

troller were to discharge at the rates calculated by the HPPC method,

then the cell would be overdischarged in some cases (lowering its

lifetime) and under-utilized in other cases.

The zoom in the mid-SOC region shows greater detail. In this

region, the methods produce nearly identical predictions. A notable

feature of the bisection method; however, is that it takes into account

the entire dynamics of the cell when making a prediction. The strong

discharges around times 237 and 267 minutes draw down the cell’s

diffusion voltages and hence also its terminal voltage. Consequently,

so less discharge power is available from the cell than the HPPC

method predicts, because the HPPC method considers the cell to be

in an equilibrium state when making its estimate.

The two methods are also compared with respect to charge power,

as shown in Fig. 6.8. The upper plot shows the entire dataset and

the lower plot shows a zoom into one region. The plots show predic-

tions of absolute charge power (charge power itself is computed as a

negative value).

Again, at this scale, the estimates appear to be nearly identical

over most of the test. The HPPC method sometimes overpredicts

charge power at high SOCs. It also overpredicts power at low SOCs

as it uses a fixed charge resistance that ignores the increase in charge

resistance in that region.

The zoom in the lower frame of the figure illustrates better the

differences between the predictions. Here, we see that the strong

discharges around times 237 and 267 minutes polarize the cell by

drawing cell diffusion voltages down, thus allowing for greater short-

term charging power without violating terminal-voltage limits. This

effect is not captured by the HPPC method.

6.5 Where to from here?

In this chapter we have presented two methods that can be used to

predict battery discharge and charge power. Both incorporate voltage,
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4 This is done to slow down aging, even
though the cell is perfectly capable
of delivering higher power at warm
temperatures than at cold temperatures
as its internal resistance decreases with
higher temperatures.

SOC, power, and current design constraints, and work for a user-

specified prediction horizon ∆T s. The results indicate that the two

methods produce similar results.

The bisection method requires a good cell model and significantly

more computation than the HPPC method. But, if a Kalman filter is

being used to estimate cell SOC, then the cell model will already be

present and an estimate of the state and its confidence interval will

be available for use. The bisection method produces dynamic power

estimates and is able to take advantage of recent strong discharges

to allow higher absolute short-term charge power, and is able to

take advantage of recent strong charges to allow higher short-term

discharge power.

The implicit assumption in this chapter is that power should be

computed to enforce voltage limits on a cell. This is not the essential

issue, however. Really, we desire to minimize the incremental degra-

dation that is being experienced by the cell. For example, even in

present BMSs, we usually derate the power limits at warm tempera-

tures to slow down temperature rise.4 But, this single change hardly

begins to address a detailed optimized strategy regarding how to

compute power limits based on aging.

To understand better how to compute power limits to optimize

a tradeoff between performance and life, we need to discuss how

cells age and then investigate some more advanced power-estimation

algorithms that take advantage of these aging models. This is the

topic of the next and final chapter.
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Packs, Artech House, 2010.
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gave to the Colorado Cleantech Fellows
in November, 2012.

7

Physics-Based Optimal Controls

As we approach the end of this book, we also approach the frontier

of knowledge in battery-management methods that use equivalent-

circuit models of battery cells. We have seen that the electronics as-

pects involved in the design of a BMS are important but routine. Cell

SOC is well defined, and established methods can be used to com-

pute accurate estimates of state of charge and to provide accompa-

nying confidence intervals on the estimates. Similarly, we have seen

good methods to estimate cell resistance and total capacity, yielding

SOH estimates. Cell energy calculation is straightforward and sev-

eral types of cell balancing—with varying levels of complexity and

speed—can be implemented.

Improvements can still be made to all of the above, but the present

state of the art provides adequate battery management for many

applications. There remain some questions regarding the long-term

efficacy of existing methods on aged battery packs, simply because

there are few examples of high-capacity lithium-ion battery packs

that have been fielded for a decade or more at this point. The most

significant gains that can be made in battery-management methods

are to how power-limit calculations are done, and some of these new

ideas will be introduced in this chapter.

Davide Andrea, a pioneer in lithium-ion battery management and

author of a well-respected text on the subject,1 has said: “Using cur-

rent electronics and knowledge it takes about two years and $250K to

build a custom battery management system.2” It is not a trivial task,

but it is very doable.

7.1 Minimizing degradation

Referring back to the roadmap Fig. 3.1, which monitors our progress

through the material in this book, it might seem that we are finished.

A BMS that incorporates all of the methods that we have studied will

work very well; however, it will also be overdesigned in many cases.

279
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3 Maintaining safety is the primary
concern of a BMS, as noted at the begin-
ning of Chap. 1. However, cell terminal
voltage alone is neither the fundamental
cause nor a good indicator of most
safety hazards. Rather, hazards that
are dormant during normal cell oper-
ation can become serious risks when
certain cell degradation mechanisms are
triggered. For example, overcharging
a lithium-ion cell can cause lithium
plating, which forms lithium dendrites
that can short circuit the cell and lead
to thermal runaway. Overcharging a
lead-acid cell can lead to a buildup of
explosive gasses. Both of these mecha-
nisms are caused by excessive potentials
at locations internal to the battery cell
rather than at the cell terminals, so cell
terminal voltage is only approximately
an indicator of a problem. If we model
the degradation mechanisms at critical
locations inside the cell and monitor
and control the cell to prevent them, as
proposed, then we will also avoid the
corresponding safety hazards.

The problem is with how power limits are presently calculated.

The fundamental requirement imposed when computing these limits

is that certain design maximum and minimum voltage limits must

never be violated by any cell in the battery pack.

But why? The real concern is cell degradation.3 The underlying

assumptions are that:

• If voltage limits are violated, then the cell will degrade quickly

and fail prematurely;

• If voltage limits are properly maintained, the cell will have a long

and productive life.

But, in fact, voltage limits may be violated for short periods of time

in some situations without causing rapid aging. Consider, for exam-

ple, a cell that has been rated for operation between 3.0 V and 4.2 V.

These ratings are defined by the manufacturer of the cell, and the

battery applications designer is told that the cell should never be op-

erated outside of this range. The curious BMS design engineer wants

to know why. Is 4.199 V really all that different from 4.201 V? Why is

one permitted and the other not permitted?

If we were to ask the cell’s designer if it is okay to let the cell volt-

age sometimes reach 4.25 V, the answer would be, “Yes.” Well, how

about 4.3 V? The cell designer will begin to look worried, but will

say, “Yes, for short periods of time.” How about 4.35 V? “Yes, but for

very short periods of time.” At some point in this interchange, the cell

designer will stop committing to an answer.

We learn something very important from this discussion. We

discover that an exact limit on cell terminal voltage is not itself the

criterion that the cell designer is concerned about. The manufacturer-

supplied voltage limits are instead indirect indicators of something

else. The actual causes of aging are electrochemical and mechanical

processes occurring inside of the cell, and cell terminal voltage is a

poor but measurable indicator of the state of these processes.

Statistically speaking, based on many empirical cell tests, the man-

ufacturer has determined that the cell will give a reasonable tradeoff

between performance and life if its voltage does not exceed 4.2 V.

However, under certain conditions it is perfectly fine to exceed this

value; under other conditions, unacceptably fast aging may occur

even if this value is maintained, especially for older cells whose inter-

nal dynamics have changed.

So, the real issue when computing cell power limits is not the

cell’s terminal voltage but rather the amount of aging or degradation

that is expected to occur at different power levels. Cell power limits

should really be calculated to optimize more directly a tradeoff be-
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4 See, for example, Smith, K.A. and
Wang, C.-Y., “Power and thermal
characterization of a lithium-ion battery
pack for hybrid-electric vehicles,”
Journal of Power Sources, 160, 2006,
pp. 662–673.

tween performance delivered by the cell and the rate of incremental

degradation experienced by the cell.

To be able to do this, we must be able to model degradation math-

ematically and devise model-based optimized controls to calculate

the best tradeoff. Some have suggested that if this is done correctly,

battery packs in some applications may be able to deliver more than

200 % of their voltage-limited power without compromising life.4

Alternately, the battery pack could be reduced significantly in size

and still deliver required performance. These possible cost savings

and/or performance gains are ample incentives to make a strong at-

tempt to design physics-based power limits instead of voltage-based

power limits.

7.1.1 Modeling cell degradation

In Chap. 4, we saw that much is known qualitatively about how

lithium-ion battery cells degrade. But, how about quantitatively? That

is, can we make accurate parameterized mathematical models for all

of the degradation mechanisms?

We have seen that the interactions between ideal-cell behaviors

and the different degradation mechanisms are complex. Further,

they are not presently well understood. So, at this point, we don’t

know whether we can make models of all mechanisms. Also, most

cell manufacturers include additive packages of chemicals that are part

of the cell construction that do not take part in ideal-cell operations

but instead are designed to impede degradation. These additives

are trade secrets and so are not disclosed to the BMS designer. This

makes precise modeling of the rates of degradation very difficult.

However, a factor working in our favor is that we don’t need to

model all mechanisms perfectly to have a useful result. Further, for

purposes of cell control via physics-based power-limit calculations,

we don’t need to model any mechanism that is not influenced by a

variable that we have influence over. If we model the most severe

degradation mechanisms reasonably well, then we have a chance at

designing controls that make a difference.

The literature on quantitative modeling of degradation-mechanism

modeling is quite sparse at this point. Over time, we expect that this

will improve as more electrochemical modelers become aware of the

need for such models. In this chapter, we will discuss two quantita-

tive physics-based degradation models that can be used alongside

equivalent-circuit models as part of a power-limits calculation. Other

models require knowledge of electrochemical variables that could

be generated by a reduced-order physics-based model of ideal-cell
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5 Ramadass, P., Haran, B., Gomadam,
P.M., White, R.E., and Popov, B.N., “De-
velopment of First Principles Capacity
Fade Model for Li-Ion Cells,” Journal of
the Electrochemical Society, 151(2), 2004,
pp. A196–A203.

6 Adapted from, Randall, A.V., Perkins,
R.D., Zhou, X., Plett, G.L., “Controls
Oriented Reduced Order Modeling of
SEI Layer Growth,” Journal of Power
Sources, 209, 2012, pp. 282–288.

dynamics, and will be investigated in the planned Volume III of this

series.

Here, we look first at a model of solid–electrolyte interphase for-

mation and growth. This degradation mechanism is considered to be

the most significant life-limiting mechanism in cells having graphite

negative electrodes. So, if we can impose cell controls that slow down

SEI growth, then we can extend life.

The second model we look at is of lithium plating on overcharge.

This mechanism is one that would not normally occur if we observed

the manufacturer-specified upper voltage limit on the cell, but which

can reduce a cell to inoperability in a few cycles if we are not care-

ful. Because we are now ignoring this uppervoltage limit, we must

model lithium plating and take it into account when computing cell

maximum power limits.

7.2 SEI formation and growth

Ramadass and colleagues have proposed a model that describes the

formation and growth of an SEI layer on negative-electrode solid par-

ticles during charging.5 This model assumes that solvent reduction

at the surface of the particle is the main side-reaction mechanism for

degradation.

Here, we summarize the main points from the Ramadass model

and build on that work to develop a simple recursive discrete-time

model of SEI growth and associated capacity loss and resistance rise.6

The order-reduction method uses volume averaging to create an alge-

braic zero-dimensional (0D) model of the infinite-order PDE model.

This reduced-order model (ROM) of the SEI growth mechanism is a first

step toward creating a complete coupled ROM of all dominant cell

degradation mechanisms, which could then be used in an optimal

control scheme.

7.2.1 Full-order model (FOM)

Solid–electrolyte interphase side reactions in the negative elec-

trode are considered to be one of the primary causes of cell aging

in lithium-ion cells having graphitic negative electrodes. There are

numerous reduction reactions that can lead to the deposition of solid

SEI products on the electrode surface and the details are not well

understood, being very dependent upon the composition of the elec-

trolyte solution. Ramadass et al. make the general assumption that

the side reactions consume lithium ions and solvent from the elec-

trolyte and form a surface film from compounds such as Li2CO3, LiF,

Li2O, and so forth, depending on the nature of the solvent.
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7 The concepts needed to define the
FOMs and ROMs of SEI growth depend
heavily on the theoretical topics taught
in Vol. I of this series. However, the
resulting models can be implemented
alongside an ECM of a cell without
needing a full electrochemical reduced-
order cell model.

There is significant porosity to the SEI film. Thus, it is still possible

for lithium to enter and exit the particle through the film, although

it does add an ionic resistivity Rfilm that increases cell resistance as

well. Moreover, while the film makes it more difficult for solvent to

reach the particle surface and create more SEI, the porosity is suffi-

cient for some solvent to penetrate and so the SEI layer continues to

grow slowly as solvent diffuses through the layer during charge. Fur-

ther, the intercalation of lithium into the graphite negative electrode

leads to an increase in the lattice volume, which in turn stretches the

SEI layer and causes it to fracture and to expose more of the active

material to the electrolyte, fueling the side reaction and contributing

to SEI growth.

The model proposed by Ramadass et al. does not attempt to de-

scribe all of these individual mechanisms in detail. Rather, it ho-

mogenizes all of the effects into a simplified description. The main

assumptions made when creating the model were:7

1. The main side reaction is due to the reduction of an organic sol-

vent, expressed as S + 2Li+ + 2e− → P, where “S” refers to the

solvent and “P” to the product formed in the side reaction. Spe-

cific species of solvent and product are not specified.

2. The reaction occurs only when charging the cell.

3. The products formed are a mixture of different species, resulting

in averaged mass and density constants used when describing the

formation and growth of the SEI film.

4. The side reaction is assumed to be irreversible and occurs at poten-

tial Us, which is chosen to be 0.4 V versus Li/Li+.

5. The initial resistance of the SEI layer developed during cell forma-

tion is 0.01 Ωm2.

6. There is no overcharge reaction considered (i.e., lithium plating is

not modeled).

We have removed assumption 2 in the models presented here, which

now predicts side reactions to occur while the cell is resting and—

to some extent—even during discharge. This modification seems to

enable the model to match observed calendar-life aging of battery

cells better.

The SEI growth model proposed by Ramadass is tightly coupled

with a Newman-style physics-based model of ideal-cell dynamics.

For the negative electrode, the local molar flux density of lithium

jtotal from the solid to the electrolyte is given by a sum of the interca-

lation flux density j and the side-reaction flux density js:

jtotal = j + js, (7.1)
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284 battery management systems: volume ii, equivalent-circuit methods

where the flux densities are measured in [mol m−2 s−1]. In this equa-

tion, j is computed via the Butler–Volmer electrochemical kinetic

expression

j =
i0
F

[
exp

(
(1 − α)F

RT
η

)
− exp

(
− αF

RT
η

)]
,

which is driven by the overpotential

η = φs − φe − Uocp(cs,e)− FRfilm jtotal,

where i0 [A m−2] is the intercalation exchange-current density and

Uocp(·) is the equilibrium potential in the negative electrode, evalu-

ated as a function of the solid-phase concentration at the surface of

the particle, cs,e.

The kinetics of the side reaction are described using a Tafel equation,

which assume that the side reaction is considered irreversible:

js = − i0,s

F
exp

(
−αsF

RT
ηs

)
, (7.2)

where the side-reaction overpotential is described as

ηs = φs − φe − Us − FRfilm jtotal,

where Us is the equilibrium potential of the side reaction.

Once the side reaction flux density js has been calculated, the

film thickness δfilm [m] can be calculated by solving the ordinary

differential equation
∂δfilm

∂t
= −MP

ρP
js, (7.3)

where MP [kg mol−1] is the average molecular weight of the con-

stituent compounds of the SEI layer and ρP [kg m−3] is the average

density of the constituent compounds. This allows the overall film

resistance to be calculated as

Rfilm = RSEI + δfilm/κP , (7.4)

where RSEI [Ω m2] is the initial film resistance that is produced dur-

ing the formation cycle of the cell and κP [S m−1] is the conductivity

of the SEI film.

In addition to the resistance change, there is a capacity loss caused

by the side reaction current during charge, leading to the relationship

for total-capacity change:

∂Q

∂t
=
∫ Lneg

0
as AFjs dx, (7.5)

where Lneg [m] is the thickness of the negative electrode, as [m2 m−3]

is the specific interfacial surface area of the electrode particles, and A

[m2] is the plate area of the current collector.
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7. physics-based optimal controls 285

7.2.2 Simplifying the model

To implement an optimal-control strategy, the BMS must be able

to calculate the side reaction flux density js very quickly and accu-

rately. Solving the coupled PDE equations described above (plus the

physics-based ideal-cell model) is too complicated for such a process.

The js model needs to be much faster and simpler. In this section, we

present a simpler incremental model for approximating js, Rfilm, and

Q.

To create a volume-averaged 0D ROM, we add three additional

assumptions to those of Ramadass et al.:

1. The cell is always in a quasi-equilibrium state, allowing the exchange-

current density i0 to be calculated from the cell SOC alone, neglect-

ing local variations in electrolyte and solid surface concentration.

The estimated value of js then corresponds to a suddenly applied

current pulse of magnitude iapp.

2. The intercalation and the side-reaction flux densities are uniform

over the negative electrode. This allows us to state that the total

reaction flux density jtotal is related to the applied cell current iapp

via the following relationship:

jtotal =
iapp

as AFLneg , (7.6)

where the volume of the electrode is V = ALneg.

3. The anodic and cathodic charge-transfer coefficients of the interca-

lation reaction are equal (α = 0.5).

From the above assumptions, an incremental degradation model can

be formulated as follows. First, at any point in time the lithiation

state of the negative electrode is calculated as

θ = θmin + zcell (θmax − θmin) ,

where θmax and θmin are the stoichiometric limits of negative-electrode

lithiation (i.e., the value of θ in LiθC6 when the cell is fully charged

and discharged, respectively) and zcell is a value between zero and

one that indicates the cell SOC. Then, assuming that the lithium con-

centration is uniform across the active-material particles, we compute

cs,e = cs,maxθ and therefore Uocp(cs,e) = Uocp(cs,maxθ) for the electrode

materials being used.

Ultimately, we desire to find js. We begin by rearranging Eq. (7.1)

and substituting Eq. (7.6):

j = jtotal − js

=
iapp

as AFLneg − js.
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286 battery management systems: volume ii, equivalent-circuit methods

Then, from this formulation of j and assumption 3, we can solve for

the intercalation-reaction overpotential η

j =
i0
F

[
exp

(
F

2RT
η

)
− exp

(
− F

2RT
η

)]

=
2i0
F

sinh

(
F

2RT
η

)

η =
2RT

F
asinh

(
Fj

2i0

)
.

To continue, we note the similarity between the expressions for η

and ηs to find:

η = φs − φe − Uocp(cs,e)− FRfilm jtotal

ηs = φs − φe − Us − FRfilm jtotal

= η + Uocp(cs,e)− Us

=
2RT

F
asinh

(
Fj

2i0

)
+ Uocp(cs,e)− Us.

A key observation is that the film resistance cancels from the calcu-

lation, meaning that we do not need to know its value in order to

model SEI growth.

We substitute this result into Eq. (7.2) to get

js = − i0,s

F
exp

(
−F

2RT

(
2RT

F
asinh

(
Fj

2i0

)
+ Uocp(cs,e)− Us

))

= − i0,s

F
exp

(
−F

2RT

(
2RT

F
asinh

⎛

⎝
F
(

iapp

as AFLneg − js
)

2i0

⎞

⎠+ Uocp(cs,e)− Us

))

= − i0,s

F
exp

(
F
(
Uocp(cs,e)− Us

)

2RT

)

exp

⎛

⎝asinh

⎛

⎝
−iapp

as ALneg + Fjs

2i0

⎞

⎠

⎞

⎠ .

We’ll see how to solve this equation for js shortly.

Once we have solved for js, it can then be incorporated into in-

cremental equations for film resistance and capacity loss. We as-

sume that js is constant over some small time interval ∆t, where its

value is denoted as js,k for the kth interval. We can then convert the

continuous-time film thickness relationship Eq. (7.3) to discrete time

as:

δfilm,k = δfilm,k−1 −
MP∆t

ρP
js,k−1, (7.7)

noting that the sign of js is negative. This result can be used to cal-

culate the film resistance by converting Eq. (7.4) into a discrete-time

recurrence:

Rfilm,k = Rfilm,k−1 −
MP∆t

ρPκP
js,k−1. (7.8)
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7. physics-based optimal controls 287

8 This was first reported in Plett, G.,
“Algebraic Solution for Modeling SEI
Layer Growth,” ECS Electrochemistry
Letters, 2(7), 2013, pp. A63–A65.

Similarly, we can discretize the capacity-loss Eq. (7.5):

Qk = Qk−1 + (as AFLn∆t) js,k−1. (7.9)

In summary, the proposed ROM equations are:

θ = θmin + zcell (θmax − θmin)

js,k = − i0,s

F
exp

(
F
(
Uocp(cs,e)− Us

)

2RT

)

exp

⎛

⎝asinh

⎛

⎝
−iapp

as ALneg + Fjs,k

2i0

⎞

⎠

⎞

⎠

(7.10)

Rfilm,k = Rfilm,k−1 −
MP∆t

ρPκP
js,k−1

Qk = Qk−1 + (as AFLn∆t) js,k−1.

7.2.3 Simplifying the calculation

As it is written now, Eq. (7.10) is an implicit function, meaning that

js,k is not isolated on one side of the equation. It is not immediately

clear how to solve this equation for js,k. The approach used in the

ROM proposed by Randall et al. was to use iteration. That is,

1. We begin by guessing a value for js,k (e.g., zero).

2. We substitute the value for js,k into the right-hand side of Eq. (7.10),

computing a new left-hand-side result. We set the new value for

js,k to this new left-hand-side result.

3. Then, we repeat step 2 until we observe no significant change in

the value js,k.

This method works well for this problem, and we arrive at a good

solution in fewer than 10 iterations.

However, there is also a closed-form solution for js,k, which is

more accurate and executes more quickly.8 This result is not obvious,

but can be derived relatively quickly.

First, we simplify notation by defining new temporary functions

A(θ) and B(iapp), and constant C:

js,k = − i0,s

F
exp

(
F
(
Uocp(cs,e)− Us

)

2RT

)

︸ ︷︷ ︸
A(θn)

exp

⎛

⎜⎜⎜⎜⎝
asinh

⎛

⎜⎜⎜⎜⎝

−iapp

2asi0 ALneg
︸ ︷︷ ︸

B(iapp)

+
F

2i0︸︷︷︸
C

js,k

⎞

⎟⎟⎟⎟⎠

⎞

⎟⎟⎟⎟⎠

= A(θ) exp
(
asinh

(
B(iapp) + Cjs,k

))
.

Note that the new function A(θ) is different from the current-collector

plate area having the same symbol, which should be clear from the

context, and that A(θ) < 0 and C > 0 always. Also note that the
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288 battery management systems: volume ii, equivalent-circuit methods

value of A(θ) can be precomputed and stored in a lookup table ver-

sus θ, so is not difficult to calculate in real time.

A useful identity for simplifying this further is:

exp(asinh(x)) = x +
√

x2 + 1.

So, writing A(θ) simply as A and B(iapp) simply as B, we can write

js,k = A

[
(B + Cjs,k) +

√
(B + Cjs,k)

2 + 1

]
.

This equation can be solved for js,k using standard algebraic manipu-

lations. First, we isolate the radical, and then square both sides of the

equation:

js,k

A
− B − Cjs,k =

√
(B + Cjs,k)

2 + 1

js,k(1 − CA)− AB = A
√
(B + Cjs,k)

2 + 1

(js,k(1 − CA)− AB)2 = A2 (B + Cjs,k)
2 + A2.

Then, we expand and rearrange terms

0 = A2 (B + Cjs,k)
2 + A2 − (js,k(1 − CA)− AB)2

= A2
(

B2 + 2BCjs,k + C2 j2s,k

)
+ A2

−
(

j2s,k(1 − CA)2 − 2AB(1 − CA)js,k + A2B2
)

.

Next, we collect like terms

0 =
(

A2C2 − (1 − CA)2
)

j2s,k +
(

2A2BC + 2AB(1 − CA)
)

js,k

+
(

A2B2 + A2 − A2B2
)

.

Note that (1 − CA)2 = 1 − 2CA + A2C2, so this simplifies to

0 = (2CA − 1) j2s,k + (2AB) js,k + (A2).

The key point is that this equation is in a quadratic form, so we

can solve for the roots easily using the quadratic formula:

js,k =
−2AB ±

√
4A2B2 − 4A2(2CA − 1)
2(2CA − 1)

=
AB ± A

√
B2 + (1 − 2CA)

(1 − 2CA)
.

But, which root to use? The Routh test gives us some guidance. We

form the Routh array:

j2s,k 2CA − 1, A2

js,k 2AB

1 A2
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7. physics-based optimal controls 289

9 COMSOL Multiphysics is a registered
trademark of The COMSOL Group.
From now on, this product will be
referred to simply as COMSOL.

Then, we check the number of sign changes as we traverse the

leftmost column from top to bottom. Since 2CA − 1 < 0 and A2
> 0,

we are guaranteed two sign changes regardless of the sign of 2AB,

which means that this equation always has exactly one positive real

root and one negative real root.

Physically, we know that the side-reaction flux density must be

negative (because A < 0), so we want to take the smaller root of the

quadratic solution. So, our final ROM solution for the side-reaction

flux density is to compute:

A(θ) = − i0,s

F
exp

(
F
(
Uocp(cs,e)− Us

)

2RT

)

B(iapp) =
−iapp

2asi0 ALneg

C =
F

2i0

js,k =
A(θ)B(iapp) + A(θ)

√
B(iapp)2 + (1 − 2CA(θ))

(1 − 2CA(θ))
.

7.3 SEI ROM results

The validity of this ROM depends first on the accuracy of the under-

lying PDE FOM, which we assume here to be exact. It then depends

on how closely the reduced-order approximation of js matches the

exact calculation of js.

To compare the FOMs and ROMs, we conducted a series of sim-

ulations. In each simulation, the cell was initially at rest. Then, a

sudden pulse of current was applied and the instantaneous resulting

js from the FOM was compared to the computed js from the ROM. To

simulate the FOM, we used COMSOL Multiphysics® coupled with

a MATLAB script to cycle through the series of simulations and to

analyze results.9

Specifically, each simulation considered a 1 s time interval where

the cell current iapp was modeled as a Heaviside step function that

was applied halfway through the interval. We found that the initial

0.5 s rest interval facilitated convergence of the solution by allowing

the PDE solver to adjust its initial conditions before applying the step

current. The simulation cell parameters that we used are listed in

the appendix to this chapter on pg. 310. In particular, the cell had a

1.8-Ah capacity.

For the full-order PDE simulations, applied current was varied

from 0 A to 5.4 A in steps of 0.1 A, initial cell SOC was varied from

0 % to 100 % in steps of 2 %, and temperature was varied from −35 ◦C

to 45 ◦C in steps of 20 C◦. For the reduced-order simulations, which
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290 battery management systems: volume ii, equivalent-circuit methods

Figure 7.1: Instantaneous SEI degrada-
tion rate as computed by the ROM.
(Adapted from Fig. 1 in Randall et
al., Journal of Power Sources, 209, 2012,
pp. 282–288.)
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Figure 7.2: Comparing a single FOM to
ROM simulation.
(Adapted from Fig. 2 in Randall et
al., Journal of Power Sources, 209, 2012,
pp. 282–288.)
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Figure 7.3: Relative error between FOM
and ROM.
(Adapted from Fig. 3 in Randall et
al., Journal of Power Sources, 209, 2012,
pp. 282–288.)

run much more quickly, applied current was varied over the same

range in steps of 0.05 A, initial cell SOC was varied in steps of 1 %,

and temperature was varied in steps of 10 C◦.

As one point of comparison between the FOM and ROM sim-

ulations, the set of 14,025 FOM simulations took more than eight

days to complete on an Intel i7 processor, while the set of 112,200

ROM simulations took a total of about 2.6 seconds to complete on

the same machine. The speedup, on a per-simulation basis, is more

than 2,000,000 : 1. This is the primary advantage of the ROM over the

FOM.

When comparing modeling results between the FOM and ROM,

we note that film thickness, film resistance, and capacity loss are all

deterministic functions of side-reaction flux density js. Therefore, if

we are able to compute js accurately, the other computations will be

accurate as well. So, in the following, we consider only simulation

results concerning js.

Fig. 7.1 shows js as computed by the ROM, which we now denote

as js,ROM, at different initial cell SOCs and charge-current levels. The

top frame shows results at 25 ◦C and the lower frame shows a compi-

lation of js,ROM over a range of temperatures. More negative values

correspond to worse degradation. We see two trends that match expe-

rience: degradation is worst at high SOCs and at high charge rates.

Fig. 7.2 shows results of a single FOM simulation compared to the

corresponding results from a ROM simulation.. This example was

conducted at 25 ◦C, 50 % SOC, and by applying a 1C charge pulse at

t = 0.5 s. Both the FOM and ROM solutions have a nonzero negative

side-reaction flux js even when the cell is at rest. This is due to the

fact that we have removed Ramadass’ assumption 2 of the SEI growth

model, and so also allow for the side reaction when current in the

external circuit is zero. The figure shows that the ROM matches both

the rest SEI side-reaction rate and the charge-pulse SEI side-reaction

rate of the FOM very well.

Plotted on the same scale, the FOM results are nearly indistin-

guishable from the ROM results. So, for comparison purposes, we

define a relative error between them as

js,err% =
js,FOM − js,ROM

js,FOM
× 100,

where js,FOM is chosen to be the value of js from the FOM solution

immediately after the application of the current pulse. Fig. 7.3 plots

the relative error between the PDE and ROM solutions for all 25 ◦C

simulations. Between 10 % and 90 % SOC (e.g., representative ex-

tremum operating conditions for xEV cells), the maximum relative

error was 0.44 %.

To further illustrate the performance of the ROM and to see the
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Figure 7.4: Another view of FOM
versus ROM model results.
(Adapted from Fig. 4 in Randall et
al., Journal of Power Sources, 209, 2012,
pp. 282–288.)
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dependence of SEI layer growth rate on SOC and charge rate, Fig. 7.4

plots the same results as the top frame of Fig. 7.1 in a different for-

mat. The top frame of Fig. 7.4 shows js as a function of SOC at differ-

ent charge rates (lines are plotted from 0C to 3C in steps of 0.5C). The

bottom frame shows js as a function of charge rate at different SOCs

(plotted from 0 % SOC to 100 % SOC in steps of 10 % SOC). In all

plots, the FOM result is drawn as a solid line and the ROM result is

drawn as a dashed line. In most cases, it is impossible to distinguish

between the FOM and ROM results visually.

Fig. 7.5 shows how modeling error varies with temperature. The

ROM predictions are best at high temperatures and less good at low

temperatures. Worst-case js,err% in the 10 % to 90 % SOC range varies

from 0.41 % at 45 ◦C to 0.55 % at −35 ◦C.

Next, we investigate the effect of ∆t on the results. Instead of

selecting the value for js,FOM immediately after the application of

the current pulse, js,FOM is now selected to be the PDE solution 0.5 s

seconds after the application of the current pulse, at the t = 1 s

point. Relative modeling error is plotted in Fig. 7.6. This error is once

again worst at low temperatures and low values of SOC (where the

absolute amount of degradation is small). Relative errors over 10 %

are observed in some cases, but in the ranges of SOC most important

for control, where SOC is greater than 25 %, the worst-case js,err% is

far less, varying from 0.85 % at 45 ◦C to 1.04 % at −35 ◦C.

Fig. 7.7 investigates the effect of a prolonged constant-current

charge at a 1C rate, as might be experienced when a cell is being

charged. The FOM is simulated for 3,000 s, starting with the cell

at rest at 10 % SOC, and 1D profiles of js(x) across the negative

electrode are plotted at time steps 100 s, 1,000 s, 2,000 s, and 3,000 s.

(The position variable is normalized to have value 0 at the current-

collector/electrode boundary and value 1 at the electrode/separator

boundary.) Overlaid on the plot are the average js values predicted

by the ROM at that SOC level, and the actual js values averaged over

the 1D electrode from the FOM solution. In the ROM simulation, the

SOC is updated on a second-by-second basis to achieve the present

SOC at every point, which is then used to compute the value of js
using the method explained herein. We see that the ROM is accurate

even over prolonged constant-current charge profiles, indicating that

assumption 1 of the ROM is reasonable.

Overall, the simulations show that, at least for these parameter

values, the ROM and FOM are in good agreement. Further, the ROM

predictions can be computed knowing only cell SOC, temperature,

and the present values of input current. A full physics-based model

is not needed. Therefore, the 0D ROM can be used alongside an
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Figure 7.7: Long-term modeling error.
(Adapted from Fig. 6 in Randall et
al., Journal of Power Sources, 209, 2012,
pp. 282–288.)

10 See, for example, Darling, R. and
Newman, J., “Modeling Side Reactions
in Composite LiyMn2O4 Electrodes,”
Journal of the Electrochemical Society,
145(3), 1998, pp. 990–998.

11 Arora, P., Doyle, M., and White, R.E.,
“Mathematical Modeling of the Lithium
Deposition Overcharge Reaction in
Lithium-Ion Batteries Using Carbon-
Based Negative Electrodes,” Journal of
the Electrochemical Society, 146(10), 1999,
pp. 3,543–53.

12 Adapted from, Perkins, R.D., Randall,
A.V., Zhou, X., Plett, G.L., “Controls
Oriented Reduced Order Modeling of
Lithium Deposition on Overcharge,”
Journal of Power Sources, 209, 2012,
pp. 318–325.

equivalent-circuit model in a BMS to assist in controls designs that

seek to minimize cell degradation due to SEI growth.

7.4 Lithium plating on overcharge

The success of the ROM of SEI growth to predict the performance of

a Tafel equation leads us to expect that the same approach will work

well for creating ROMs of other aging mechanisms that are modeled

in the same way.10 However, one significant mechanism has been

modeled in a somewhat different way: Arora et al. use a modified

Butler–Volmer equation instead of a Tafel equation to predict lithium

deposition or lithium plating on overcharge.11

Overcharge manifests first as a metallic lithium deposit on the

surface of the negative-electrode solid particles during charge, pre-

dominantly near the separator. Subsequently, the lithium further

combines with electrolyte material to form other compounds such as

Li2O, LiF, Li2CO3, and polyolefins. The nature of the final product is

not our major concern; rather, the issue is that lithium is irreversibly

lost. This phenomenon is an unintended side reaction that can lead

to severe capacity fade, electrolyte degradation, and a possible safety

hazard as metallic lithium dendrites are formed that can short-circuit

the cell.

Here, we briefly address creation of a ROM of Arora’s FOM.12

It does not work as well as the ROM of SEI growth, especially for

prolonged charging events, so is probably better suited for predicting

degradation in an HEV-like application where random charging is

expected. As with the SEI model, a full physics-based model of cell

behaviors is not needed as input to its calculations; rather, it can

receive all required inputs from an equivalent-circuit model of cell

behavior. However, a section in the planned Volume III of this series

will show that much better lithium-plating predictions can be made if

a physics-based cell model is used instead.

Lithium plating is not usually considered to be a dominant degra-

dation mechanism because the cell manufacturer-specified terminal-

voltage limits are designed to avoid conditions that would be con-

ducive to plating. However, cell terminal voltage is a poor indicator

of internal cell potentials—especially at cold temperatures—and so

plating can still happen: when it does, there is immediate severe

capacity loss. Further, since we are removing voltage limits in our

physics-based power calculations, we require a model of lithium

plating in order to be able to devise optimized controls to minimize

aging.
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7. physics-based optimal controls 293

7.4.1 Physics-based model of overcharge

The full-order PDE model proposed by Arora et al. made the follow-

ing assumptions:

1. The main side reaction is expressed as Li+ + e− → Li(s) and occurs

at potential Us = 0 V versus Li/Li+ during an overcharge event.

This lithium metal is expected to form first near the electrode/sep-

arator boundary where the surface overpotential tends to have the

greatest magnitude.

2. Lithium metal deposited on the negative electrode reacts quickly

with solvent or salt molecules in the vicinity, yielding Li2CO3, LiF,

or other insoluble products. A thin film of these products protects

the solid lithium from reacting with the electrolyte. Solid lithium

can still dissolve during discharge, but once lithium is consumed

in a insoluble product, it is permanently lost.

3. The insoluble products that are formed are a mixture of different

species, resulting in averaged mass and density used in the model

to describe the formation and growth of a resistive film.

4. Only the overcharge reaction is considered (e.g., SEI film growth

and other degradation mechanisms are not modeled).

The overcharge FOM is tightly coupled with a Newman-style physics-

based model of ideal-cell dynamics. Just as with the SEI model, the

local molar flux density of lithium jtotal in the negative electrode

is given by a sum of the intercalation flux density j and the side-

reaction flux density js. The intercalation flux density is expressed

using the standard Butler–Volmer equation,

j(x, t) =
i0
F

[
exp

(
(1 − α)F

RT
η(x, t)

)
− exp

(
− αF

RT
η(x, t)

)]

which is driven by the overpotential

η(x, t) = φs(x, t)− φe(x, t)− Uocp(cs,e)− FRfilm j(x, t),

where i0 is the exchange current density,

i0 = k (cs,max − cs,e)
1−α (ce)

1−α (cs,e)
α ,

and Uocp is the equilibrium potential that is evaluated as a function

of the solid phase concentration at the surface of the particle.

Arora expresses the side-reaction flux density js (i.e., the rate of

irreversible lithium loss due to lithium plating) as

js(x, t) = min

(

0,
i0,s

F

[

exp

(
(1 − αs)F

RT
ηs(x, t)

)

− exp

(

− αF

RT
ηs(x, t)

)])

,

(7.11)
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Figure 7.8: Illustrating overpotential
during charge across the negative-
electrode width.
(Adapted from Fig. 1 in Perkins et
al., Journal of Power Sources, 209, 2012,
pp. 318–325.)

where αs ̸= α in general,

ηs(x, t) = φs(x, t)− φe(x, t)− Us − FRfilm js(x, t),

and where the side-reaction exchange current density is computed

as i0,s = ks(ce)1−αs . Side reaction is semi-irreversible in the sense

that it includes an anodic rate term, but doesn’t allow overall positive

side-reaction flux.

The side reaction occurs only at spatial locations in the nega-

tive electrode where ηs(x, t) < 0. This is enforced in Eq. (7.11) by

the min(·) function, which sets js(x, t) = 0 for values of x where

ηs(x, t) ≥ 0, but to the value computed by the Butler–Volmer equa-

tion when ηs(x, t) < 0.

When charging a lithium-ion cell, the local side-reaction overpo-

tential decreases over time. It is not uniform across the electrode;

instead, the value near the separator tends to decrease more quickly

than at other places in the electrode. A typical scenario is sketched

in Fig. 7.8. In this example, plating will occur over the interval where

ηs(x, t) < 0, from x = x0 to x = Lneg. Note that this illustration shows

that the cell can be quite far away from 100 % SOC (because ηs > 0

over much of the electrode cross section) and still have plating occur

near the separator if a large enough charge-current pulse is applied

to the cell’s terminals. Therefore, SOC is only one variable of impor-

tance: ultimately, the local overpotential determines whether plating

occurs.

To make a ROM of lithium plating, our first goal is to solve for

ηs(x, t) and then from it to compute js. Subsequently, we can incor-

porate js into incremental equations describing the evolution of film

resistance and capacity loss, much as we did for SEI growth. We

will assume that js is constant over some small time interval ∆t, and

denote it as js,k for the kth interval. Then, the film-thickness, film-

resistance, and capacity-loss equations take on the same form as for

SEI growth (Eqs. (7.7) through (7.9)), but with a different input side-

reaction flus density js,k.

7.5 Plating ROM results

When creating a ROM of this FOM of lithium deposition on over-

charge, we quickly encounter a major difference between the Ra-

madass and Arora models. The Ramadass model assumes that SEI

grows everywhere in the electrode, all the time. The rate of growth

depends on the local side-reaction overpotential, but since this vari-

able is continuous across the electrode we can approximate the

overall rate of side reaction in the electrode simply by averaging
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7. physics-based optimal controls 295

the side-reaction overpotential across the electrode to come up with

an average (or total) side-reaction flux density.

The Arora model instead assumes that lithium plating is a binary

phenomena. Anywhere in the electrode that the side-reaction overpo-

tential is positive, lithium plating will not occur. However, anywhere

in the electrode where this overpotential is negative, lithium plat-

ing will occur with severity described by a Butler–Volmer equation.

Therefore, we cannot simply average the side-reaction overpotential

across the electrode to predict lithium plating. Instead, we must at-

tempt to approximate the profile of this overpotential, find where

the overpotential is negative, and integrate the lithium loss over the

region of the electrode where plating is occurring.

The details of the derivation of the ROM are presented in the

paper by Perkins et al. referenced in footnote 12. As with the ROM

of SEI growth, it results with an implicit calculation for the average

side-reaction flux density j̄s. However, unlike the SEI-model ROM,

there is no closed-form solution for this calculation and a nonlinear

solver is required to compute j̄s at every iteration. Even so, it executes

much more quickly than the FOM, and can give good predictions in

some settings. We review some results from that paper here.

The validity of this ROM depends first on the accuracy of the

underlying full-order partial-differential-equation model, which we

assume here to be exact. It then depends on how closely the reduced-

order approximation of j̄s matches the exact calculation of j̄s. In this

section, results from both the FOM and ROM for j̄s are compared.

To compare the FOMs and ROMs, we conducted a series of sim-

ulations. In each simulation, the cell was initially at rest. A sudden

pulse of current was then applied and the resulting j̄s from the PDE

model, averaged over a one-second interval subsequent to the pulse,

was compared to the computed j̄s from the ROM.

To simulate the PDE model, we used COMSOL Multiphysics cou-

pled with a MATLAB script to cycle through the series of simulations

and analyze results. Specifically, each simulation comprised a 1.2 s

time interval, where the cell current iapp was modeled as a step func-

tion, which was applied at t = 0.2 s. We found that the initial rest

interval facilitated convergence of the solution by allowing the PDE

solver to adjust its initial conditions before applying the step current.

The cell parameters that we used in the simulations match those

used in Arora and are listed in the appendix on pg. 311. The applied

current was varied between 0C and 3C in increments of C/33; The

initial cell SOC was varied between 0 % and 100 % in steps of 1 %,

and temperature was held constant at 25 ◦C. We found that the ad-

justable tuning factor required by the ROM worked well with a value

of β = 1.7 (this implies that electrolyte concentration near the sep-
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Figure 7.9: Cross-sectional view of side-
reaction overpotential during a charge
pulse.
(Adapted from Fig. 2a in Perkins et
al., Journal of Power Sources, 209, 2012,
pp. 318–325.)
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Figure 7.10: Overcharge predictions for
the same scenario.
(Adapted from Fig. 2b in Perkins et
al., Journal of Power Sources, 209, 2012,
pp. 318–325.)

arator changes nearly twice as quickly as it does near the current

collector for a suddenly applied pulse).

A total of 10,100 simulations were run. As one point of compar-

ison, the set of full-order PDE simulations took approximately 12

hours to complete, using an average of three processor cores on an

Intel i7 CPU, while the set ROM simulations took approximately 21

seconds to complete, using an average of one core on the same ma-

chine. The speedup, on a per-simulation per-core basis, is more than

5,000 : 1. This is the primary advantage of the ROM over the FOM.

Fig. 7.9 plots the side-reaction overpotential across the negative

electrode for this cell model immediately following the onset of a

2C charge-current pulse applied to a cell having initial 90 % SOC,

and where x = 0 is adjacent to the current-collector and x = 85 µm

is adjacent to the separator. Lithium plating occurs wherever and

whenever ηs < 0, so from the FOM result, we expect lithium to

deposit between about x = 42 µm and x = 85 µm. From the ROM,

we expect lithium deposit to occur between about x = 49 µm and

x = 85 µm. Therefore, in this example, the ROM underpredicts

the width of the deposition region, but it actually overpredicts the

amount of deposition since it predicts a more negative overpotential

than the FOM over this region.

This can be seen more easily in Fig. 7.10. The time-average de-

position rate predicted by the ROM is somewhat higher than the

time-average deposition rate of the FOM over the 1 s interval.

Fig. 7.11 displays aggregate results of predicted overcharge rates

over all scenarios for the FOM and the ROM solutions. As expected,

deposition is worse at high SOC and high charge rates. The FOM and

ROM solutions generally agree very well, with greatest mismatch at

high charge rates.

Figure 7.11: FOM and ROM predictions
of capacity loss due to overcharge.
(Adapted from Fig. 3 in Perkins et
al., Journal of Power Sources, 209, 2012,
pp. 318–325.)

Fig. 7.12 shows a different view of the results. Cross sections

through both the FOM and ROM solution spaces are plotted and

compared. The left frame shows how the two methods compare

where each pair of lines represents a specific charge rate. As noted

before, but perhaps more clearly seen here, the difference between

the FOM and ROM solutions are greatest at high charge rates. The
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Figure 7.13: Decision regions for the
FOM and ROM.
(Adapted from Fig. 5 in Perkins et
al., Journal of Power Sources, 209, 2012,
pp. 318–325.)

right frame shows how the two methods compare where each pair

of lines represents a specific initial SOC. The difference is greatest at

moderate SOC levels.
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Figure 7.12: Cross-sectional views of
Fig. 7.11.
(Adapted from Fig. 4 in Perkins et
al., Journal of Power Sources, 209, 2012,
pp. 318–325.)

Finally, Fig. 7.13 illustrates the error between the FOM and ROM

solutions in two ways. The top frame shows the regions where the

two methods agree on whether lithium deposition will occur and the

region where they disagree. The region of disagreement is the very

narrow sliver at around 2.4C and 25 % SOC, where the ROM predicts

overcharge but the FOM does not. Otherwise, the boundaries are

identical. The bottom frame shows the error between the solutions,

calculated as j̄s,ROM − j̄s,FOM. The maximum error is approximately

65 000 A m−3, which seems large but represents a relative error only

on the order of 10 %.

For the purpose of control system design, the results of the top

frame are the most important. Since lithium deposition can be

such a severe degradation mechanism, a charging control scheme

should avoid ever commanding a control action that would cause

any lithium deposition to occur. A time-optimal charger based only

on the FOM model of lithium deposition would control current to

follow the upper contour in the left frame. This allows the maximum

charge rate at any point in time while causing no lithium plating. In

comparison, a time-optimal charger based only on the ROM model

of lithium deposition would control current to follow the lower con-

tour in the figure. This will result in somewhat slower charging. But,

because the ROM overpredicts the amount of lithium deposition, it

will also result in a charging scheme that is conservative, which is a

beneficial feature.

Note that constant-current, constant-voltage charging limited to

a 1C rate will avoid lithium plating if the voltage limit is chosen

properly. The constant-current step will bring SOC to about 80 %,

after which the constant-voltage step will gradually charge the rest

of the way. However, we see that rates much higher than 1C may be

used initially to charge a cell much more quickly.

We conducted additional simulations to investigate the effect of

charge-pulse duration ∆t. That is, how long can the charge pulse
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be sustained before the FOM and the ROM results are significantly

different? We found that pulse lengths less than 10 s are generally

well matched, but that pulse lengths much greater than 10 s can give

significant FOM versus ROM mismatch. For long pulse durations, the

quasi-static nature assumed in the derivation of the ROM is violated,

and a significant offset is noted in actual time-varying φe(x, t) versus

the at-rest φe(x, t), moving the crossover point of ηs(x, t). This causes

the ROM to under-predict the value of lithium plating computed by

the FOM. For this reason, we propose that the ROM is of most value

for computing current limits in dynamic applications such as HEVs,

where a bias in φe cannot develop due to the random nature of power

demand, but is of less value for controlling full charges, such as for

EV applications.

We make one final comment regarding efficiency. The speedup

of the ROM versus the FOM can be much greater than 5,000 : 1 if

ROM solutions are precomputed and stored in a lookup table. Then,

“computing” any value of j̄s,ROM would be nearly instantaneous via

table lookup. We note that, unlike the SEI model, the ROM solution

for lithium plating changes as the film resistance changes. However,

the film resistance changes very slowly. Therefore, the entire table

might be updated by the BMS once per operational period (e.g., once

per day), and then utilized throughout that operational period for

significant performance gains.

7.6 Optimized power limits

We have now seen that there are quite a few causes of cell degrada-

tion and attempts to model two of the more significant mechanisms.

Much more work remains to be done in this area, first by electro-

chemists and materials scientists to develop FOMs, then by control-

systems engineers to convert these to computationally efficient high-

fidelity ROMs.

But, how does one use these models to compute power limits to

slow aging? We look at a few methods next.

We have seen that none of the cell degradation mechanisms are

tied directly to cell terminal voltage, but are rather functions of cell

internal stress factors. Therefore, assuming that degradation mecha-

nisms can be well modeled, it makes more sense to compute power

limits based on predicted capacity loss and/or impedance rise due

to these stress factors than to compute them based on voltage limits.

Clearly, there’s a lot of work to do before this becomes practical, but

the potential benefits indicate that the effort is worthwhile.

The next sections very briefly introduce some optimization meth-

ods that might be used with the physics-based degradation mecha-
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13 A third problem of interest that is
well beyond our scope here is: Consid-
ering xEV as storage units for the smart
grid, when does it make sense to lend
energy to the grid? What should be the
rental fee charged for allowing energy
to be borrowed?

nisms to compute better power limits. In these sections, we consider

two distinct control problems:13

1. For applications such as EV, E-REV, or PHEV where the battery

pack is charged from an external source: What is the optimal

charge profile? Can we fast-charge? For a fixed charge duration,

what is the best charging strategy?

2. For any dynamic application, including all xEV applications while

the car is being driven: What is the maximum absolute charge

power that can be maintained over the next ∆T seconds? What is

the maximum discharge power that can be maintained over the

next ∆T seconds?

Different kinds of optimized controls may be better for these two

problems.

7.7 Plug-in charging

The plug-in charging problem lends itself well to being solved by

a nonlinear-programming method. One example is the sequential

quadratic programming algorithm, implemented in MATLAB’s Opti-

mization Toolbox™ as fmincon.m.

Nonlinear programming is a generic optimization method that

attempts to find solutions to problems that can be posed in the frame-

work:

x∗ = arg min f (x), such that

⎧
⎪⎨

⎪⎩

c(x) ≤ 0 Ax ≤ b

ceq(x) = 0 Aeqx = beq

lb ≤ x x ≤ ub,

where f (x) is a scalar cost function that we wish to minimize by

choosing optimum input vector x∗ such that the following constraints

are satisfied:

• Nonlinear vector inequality constraint function c(x) ≤ 0,

• Nonlinear vector equality constraint function ceq(x) = 0,

• Linear vector inequality constraint function Ax ≤ b,

• Linear vector equality constraint function Aeqx = beq, and

• Bounds lb ≤ x ≤ ub for all entries in vector x,

for user-specified f (x), c(x), ceq(x), A, b, Aeq, beq, lb, and ub.

To use nonlinear programming to solve a specific problem, we

must define an appropriate input vector x, cost function f (x), and

constraint matrices and functions. For the plug-in charging problem,

we choose x to be a vector of cell applied current versus time, f (x)

to be some estimate of the cell degradation that would be caused by
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300 battery management systems: volume ii, equivalent-circuit methods

that applied current, and the other functions and matrices to make

the problem work.

For example, we might want to find

i∗ = arg min
K−1

∑
k=0

−js (ik, zk, Tk)

such that

⎧
⎪⎨

⎪⎩

zmin ≤ zk ≤ zmax

zK = zend

−Imax ≤ ik ≤ Imax

and zk = z0 − ∑
j<k

ij∆t/Q.

This states that we want to minimize the accumulated capacity loss

that would be experienced by a cell if we were to start at SOC z0 and

end at SOC zend over a period of K sampling intervals, where current

is limited between ±Imax, SOC is limited between zmin and zmax,

and the standard SOC equation holds (approximating coulombic

efficiency as perfect).

This formulation can be recast into the nonlinear-programming

paradigm with a little work. First, consider the SOC equation. We can

write it in vector form as
⎡

⎢⎢⎢⎢⎣

z1

z2
...

zK

⎤

⎥⎥⎥⎥⎦
=

⎡

⎢⎢⎢⎢⎣

1

1
...

1

⎤

⎥⎥⎥⎥⎦

︸ ︷︷ ︸
CV

z0 −
∆t

Q

⎡

⎢⎢⎢⎢⎣

1 0 0 0 · · · 0

1 1 0 0 · · · 0
...

...
...

...
. . .

...

1 1 1 1 · · · 1

⎤

⎥⎥⎥⎥⎦

︸ ︷︷ ︸
LT

⎡

⎢⎢⎢⎢⎣

i0
i1
...

iK−1

⎤

⎥⎥⎥⎥⎦

︸ ︷︷ ︸
x

,

where CV is a column vector of ones and LT is a lower-triangular

matrix of ones.

Using this formulation, we can write an equation for the zK con-

straint

zK = z0 −
∆t

Q

[
1 1 1 · · · 1

]
x = zend,

or, in the prescribed format for nonlinear programming,

[
1 1 1 · · · 1

]

︸ ︷︷ ︸
Aeq

x =
Q

∆t
(z0 − zend)

︸ ︷︷ ︸
beq

.

The limit zmin ≤ zk can be written as

⎡

⎢⎢⎢⎢⎣

1

1
...

1

⎤

⎥⎥⎥⎥⎦

︸ ︷︷ ︸
CV

zmin ≤

⎡

⎢⎢⎢⎢⎣

1

1
...

1

⎤

⎥⎥⎥⎥⎦

︸ ︷︷ ︸
CV

z0 −
∆t

Q

⎡

⎢⎢⎢⎢⎣

1 0 0 0 · · · 0

1 1 0 0 · · · 0
...

...
...

...
. . .

...

1 1 1 1 · · · 1

⎤

⎥⎥⎥⎥⎦

︸ ︷︷ ︸
LT

⎡

⎢⎢⎢⎢⎣

i0
i1
...

iK−1

⎤

⎥⎥⎥⎥⎦

︸ ︷︷ ︸
x
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Figure 7.14: Fast-charge strategy using
SEI degradation model.

(CV)(zmin − z0) ≤ −∆t

Q
(LT) x

(LT) x ≤ Q

∆t
(CV)(z0 − zmin).

Similarly, zk ≤ zmax can be written as

−(LT)x ≤ Q

∆t
(CV)(zmax − z0).

Putting the last two constraints together gives

[
LT

−LT

]

︸ ︷︷ ︸
A

x ≤ Q

∆t

[
(CV)(z0 − zmin)

(CV)(zmax − z0)

]

︸ ︷︷ ︸
b

.

The constraints on input current can be satisfied by setting

lb = −Imax(CV), and ub = Imax(CV).

Then, all that’s left is to specify the cost function f (x). There are no

nonlinear constraints in this problem. Given what we’ve seen in this

chapter, we might consider js to represent the SEI growth model, or

the overcharge model, or the sum of both.

7.8 Fast-charge example

To illustrate the nonlinear-programming method, we investigate

controllers designed to determine optimized charging strategies

using the degradation models generated to date. In the first control

scenarios, the cell initially had a specified SOC value between 10 %

and 90 %, and the charger was required to charge the cell optimally

from this initial state to a 90 % SOC over a period of two hours. Cell

SOC was not allowed outside the range of 10 % to 90 %, but current

was unconstrained.

We first looked at using only the SEI-growth degradation model

in the control strategy. Results are plotted in Fig. 7.14. The top frame

shows the optimal profile of current versus time (positive current is

discharge), and the bottom frame shows a profile of cell SOC versus

time.

The results may be surprising. The optimal charging strategy

when using this degradation model is to discharge the cell quickly

to its minimum permitted SOC, wait as long as possible, and then

charge the cell quickly to the desired end-point SOC. The cost of

discharging plus charging turns out to be less than the cost of main-

taining a high SOC for an extended period of time. Referring back to

the top frame of Fig. 7.4 helps us see why this is the case. Resting at
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Figure 7.15: Fast-charge strategy using
SEI plus lithium-plating degradation
model.

Figure 7.16: Optimal charging trajec-
tory.
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Figure 7.17: Fast-charge results.

a high SOC has a much faster degradation rate than discharging and

then charging back to that SOC.

Next, we look at the same problem but we change the cost func-

tion f (x) to add together degradation from SEI growth and from

lithium deposition on overcharge. The results are plotted in Fig. 7.15.

These are qualitatively similar, but different in some details. In par-

ticular, the final charge event is at a much lower rate, and charge

current tapers off at high SOC to avoid lithium plating.

Fig. 7.16 overlays as a red line a parametric plot of the optimal

charging trajectory from 10 % SOC to 90 % SOC on the combined

degradation function of SEI growth plus lithium deposition on over-

charge. The lowest cost is achieved by moving fairly directly from the

starting point to a point near a 2C charge rate near 30 % SOC. Then,

the trajectory abruptly changes course to avoid the very rapid degra-

dation that would occur if it continued in that direction, and follows

the edge between regions of the cost function of moderate versus

severe degradation.

Third, we looked at fast-charging strategies, with results plotted

in Fig. 7.17. The top frame shows results when using the SEI film-

growth ROM as the cost function; the bottom frame shows results

when using the sum of the SEI and lithium-plating models. In these

experiments, the cell was set to an initial SOC of 50 %, then was al-

lowed 15, 30, 45, 60, 75, 90, 105, or 120 minutes to charge to 90 %.

Again, the two strategies are similar, but not identical. If sufficient

time is granted, the charger will discharge the cell to the minimum

allowed SOC, and then charge the cell. If less time is granted, the

charger will discharge the cell only partially before charging. If even

less time is granted, charger charges cell immediately.

Before leaving this section, we have to ask, “Are any of these re-

sults realistic?” Yes and no. They are realistic in the sense that the

SEI and overcharge models are realistic and so, if we ignore all other

kinds of degradation, these profiles of current versus time are the

best we can do to prolong the life of the battery. However, it is un-

likely that any application would actually fully discharge a cell

before later recharging it to full capacity. For example, if we think

that we can let our electric vehicle charge overnight, but then have

some emergency in the middle of the night where we need to use the

vehicle, it would not be acceptable to have the battery at its lowest

possible SOC at that point. Therefore, it is unlikely that we would

follow these optimal charging profiles exactly. However, they can at

least guide our charging practices. We now know that charging a

battery pack to its top state before it is necessary to do so shortens

its life. So, we might instead choose to charge first to an intermediate

SOC that guarantees some acceptable minimum vehicle range, then
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7. physics-based optimal controls 303

wait as long as possible, and then charge to full capacity only when

needed.

7.9 Dynamic power calculation

The second possible application of optimized controls using physics-

based models of degradation considers the problem of determining

dynamic power limits. This is the same problem as considered in

Chap. 6, except that now we remove voltage limits from considera-

tion and instead substitute physics-based degradation considerations.

That is, we wish to find the maximum levels of discharge and

charge power, based on present battery-pack conditions, that may

be maintained constant for ∆T seconds without violating preset

design limits on SOC, or maximum design power or current, all

while avoiding lithium plating and giving an acceptable tradeoff

between performance and capacity loss due to SEI growth. As before,

we handle this problem by first looking for the maximum discharge

and charge currents that the cell can withstand, and then convert

those values to power by multiplying by voltage.

The method we propose here is not yet thoroughly tested but is

based on established methodologies used in numerous other appli-

cations of modern control theory. With some work, we believe that it

will give good results.

It is closely related to a control-system design paradigm called

model predictive control (MPC). The idea is to:

• Determine a k∆T-length sequence of control signals using a model

of the system to be controlled, to predict future system perfor-

mance that will cause the system’s controlled variables to converge

toward desired values;

• Implement only the first element in this sequence;

• Repeat.

This allows us, for example, to predict a constant-current input

that would not violate limits and would optimize a cost function

if applied for the full ∆T seconds (k∆T sample periods), but only

implement the first of these, then repeat. This is exactly the same

paradigm as we assumed for voltage-based power-limits calculations

in Chap. 6.

Standard MPC is a little different from what we will look at here.

Standard MPC reformulates the system model to use changes to the

input signal ∆uk as input to the model rather than the direct input

signal uk itself. This formulation implicitly adds an integrator to the

dynamics, which is good for conventional applications of feedback

control because it eliminates steady-state tracking error, but is unnec-
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304 battery management systems: volume ii, equivalent-circuit methods

essary for power-limits estimation. It is also well-suited for setpoint

control: when ∆uk = 0, then u is a constant and the system output

y approaches a steady-state constant. Again, this is not necessary for

power estimation. Standard MPC also does not allow the state-space

model to have a direct feedthrough “D” term, which we need here

since cell ohmic resistance is captured in this term and is vital to our

calculations.

Rather than reformulating our models to use standard MPC, we

reformulate MPC to use our models. We will use a similar idea to

MPC, leading up to the same form of quadratic optimization used by

MPC. The system model we assume is:

xk+1 = Axk + Buk

yk = Cxk + Duk,

where yk are the performance variables that we would like to control

to some limit or to maintain within some hard constraints. That is, yk

may be different from the normal system outputs that we have called

yk in the past. To determine physics-based power limits, we would

want to include SOC and locally linearized models of lithium plating

and SEI growth in this performance output.

To develop the method, we define the vectors of future inputs and

performance variables:

U =
[

uk uk+1 · · · uk+k∆T

]T

Y =
[

yk yk+1 · · · yk+k∆T

]T
.

Then, by recursively evaluating the state-space model we write,

⎡

⎢⎢⎢⎢⎢⎢⎣

yk

yk+1

yk+2
...

yk+k∆T

⎤

⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
Y

=

⎡

⎢⎢⎢⎢⎢⎢⎣

C

CA

CA2

...

CAk∆T

⎤

⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
F

xk +

⎡

⎢⎢⎢⎢⎢⎢⎣

D 0

CB D

CAB CB
...

...
. . .

CAk∆T−1B CAk∆T−2B · · · D

⎤

⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
Φ

⎡

⎢⎢⎢⎢⎢⎢⎣

uk

uk+1

uk+2
...

uk+k∆T

⎤

⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
U

Y = Fxk + ΦU.

We define a desired reference trajectory vector Rs that we would

like Y to match as closely as possible, and penalty matrices Q and R

that weight the importance of tracking this trajectory versus keeping

control inputs small. Then, we can formulate a cost function that we

wish to minimize:

J = (Rs − Y)TQ(Rs − Y) + UT RU
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7. physics-based optimal controls 305

= (Rs − [Fxk + ΦU])TQ(Rs − [Fxk + ΦU]) + UT RU

= RT
s QRs − RT

s QFxk − RT
s QΦU

− xT
k FTQRs + xT

k FTQFxk + xT
k FTQΦU

− UT
Φ

TQRs + UT
Φ

TQFxk + UT
Φ

TQΦU + UT RU.

To simplify this, note that each term is a scalar, and hence equal to

its own transpose. So,

J = [RT
s QRs − 2RT

s QFxk + xT
k FTQFxk] (not a function of U)

+ 2[xT
k FTQΦ − RT

s QΦ]U

+ UT[ΦTQΦ + R]U.

Let,

H = 2[ΦTQΦ + R]

f T = 2(xT
k FTQΦ − RT

s QΦ).

Then,

J =
1

2
UT HU + f TU + constant.

Further, we can put constraints on Y via

Ymin ≤ Fxk + ΦU ≤ Ymax,

which can be written as

ΦU ≤ [Ymax − Fxk]

−ΦU ≤ [Fxk − Ymin],

which can both be combined in the matrix inequality
[

Φ

−Φ

]

︸ ︷︷ ︸
Aineq

U ≤
[

Ymax − Fxk

Fxk − Ymin

]

︸ ︷︷ ︸
bineq

,

or, AineqU ≤ bineq.

So, we now have defined vectors and matrices H, f T , Aineq, and

bineq that match a quadratic programming problem, which is

U∗ = arg min
1

2
UT HU + f TU

such that

AineqU ≤ bineq.

The solution can be found via quadprog.m using MATLAB’s Opti-

mization Toolbox™. Note, we can use

U =
[

1 1 1 · · · 1
]T

u
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306 battery management systems: volume ii, equivalent-circuit methods

to make a fast single-variable optimization problem, to give us the

maximum discharge and charge current values that would apply to

all times.

But, what values to use for the design constants? When comput-

ing charge-power limits, we set reference Rs for the SOC state to 1.0;

when computing discharge-power limits, we set it to 0.0. We further

need to augment our standard ESC cell model with additional states

that describe locally linearized SEI growth; then, we must put con-

straints on these states to minimize degradation. Further, we must

augment the model with additional performance outputs that predict

locally linearized lithium plating so that we can put hard constraints

on this output to prevent lithium plating in the negative electrode.

This remains a research opportunity at this point.

7.10 Where to from here?

We have now reached the end of this volume on battery-management

algorithms based on equivalent-circuit models of battery cells. We’ve

come a long way in our understanding!

• We have seen the major functional requirements of a BMS. These

include a need to be able to sense battery-stack and individual cell

voltages, as well as module temperatures and battery-pack current.

Further, the BMS must be able to sense loss of isolation and to

control the contactors that connect the battery pack to its load. The

electronics and controls of the battery pack must be designed to

protect the operator and the battery pack itself in both normal and

abuse scenarios. The BMS must be able to communicate with its

environment to control the charger, transmit operational limits

to the load controller, and to report logged abnormal events to

a service technician. Its algorithms must be able to estimate cell

SOCs, states of health, total energy and available power.

• We have reviewed the formulation of equivalent-circuit models of

cells and have seen how to use these models to simulate battery

packs comprising cells wired in arbitrary configurations. In par-

ticular, we saw that battery packs made from series-cell modules

behave differently from packs made from parallel-cell modules,

even if they have the same number of cells wired in series and in

parallel. Understanding how the overall battery pack will behave,

particularly in fault situations, is important to the BMS designer.

In addition, it is important to be able to cosimulate the battery

pack and its load. We explored the relatively simple example of an

electric-vehicle load, but any other load could also be modeled and

simulated along with the battery pack.
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7. physics-based optimal controls 307

• The majority of this book explored algorithms designed to per-

form the estimation and control tasks of the BMS. We looked first

at SOC estimation and saw that simple methods tend to behave

poorly. So, we then invested a considerable amount of time to un-

derstand how model-based estimation methods work, and focused

in particular on extended and sigma-point Kalman filters as meth-

ods to estimate the state vector of an equivalent-circuit model of a

battery cell. Both of these methods can work quite well in practice,

with the sigma-point Kalman filter having a slight performance

edge and extended Kalman filters having a slight complexity ad-

vantage. We also looked at some very practical ways to ensure that

these algorithms give robust predictions without user intervention,

including approaches to handling sensor faults and biases. The

bar-delta approach to co-estimating all cell SOCs in a battery pack

was shown to reduce the computational requirements of the BMS

processor greatly.

• We then looked at SOH estimation. First, we discussed the dom-

inant physical causes of cell degradation and saw that the most

easily measurable indicators of aging are cell total capacity and

resistance. We discovered that the sensitivity of cell voltage to re-

sistance is relatively high, implying that it should be fairly easy

to estimate cell resistance. We developed a simple method to do

so that works well. We also saw that sensitivity of voltage to to-

tal capacity is very low, meaning that it is much more difficult to

estimate total capacity. We quickly explored joint and dual nonlin-

ear Kalman filters as methods that could be used to estimate the

entire degradation state of the cell, but spent most of our time in-

vestigating some simpler methods based on regression techniques.

Standard least-squares regression was shown to produce biased

results, but methods based on total-least-squares were proposed

that worked much better and produced estimates that were accom-

panied by confidence intervals and a goodness-of-fit metric that

allowed the application to know whether the estimates are reliable.

• Next, we looked at cell balancing. First, we saw the factors that

lead to long-term imbalance in a battery pack and some that might

be expected to do so but actually do not. We considered some

questions to address when designing a balancing system and some

circuit concepts that could be used to equalize cells. A simulation

example showed that dissipative balancing can be sufficient if the

objective is only to keep the pack in long-term balance. However,

if we additionally want to use balancing circuitry to maximize

the energy and power output of the battery pack each cycle and

to extend life by differentially processing power on a cell-by-cell

basis, then nondissipative balancing will be required.
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• We returned to the question of power-limit estimation, which we

had quickly previewed in the first chapter. We saw that voltage-

based HPPC power limits could easily be augmented with SOC,

maximum-design current, and maximum-design power limits

as well. We then replaced the simple cell model assumed by the

HPPC method with the full ESC cell model and saw how a bisec-

tion algorithm could rapidly compute a power limit that more

accurately represented the actual dynamic capabilities of the cell.

• Finally, we introduced the idea of physics-based power limits to

more directly optimize a tradeoff between the performance of a

battery pack and its rate of degradation. While we cannot do a

full investigation of this topic using equivalent-circuit cell models

as a basis, we found that we could make simplified 0D ROMs of

some degradation mechanisms and use these inside of controls to

compute fast-charge and dynamic power limits.

This book has presented state-of-the-art methods in battery-management

algorithms using equivalent-circuit cell models as a basis. These al-

gorithms can work very well and are representative of the methods

used in practically every fielded BMS at this point. However, there

are still gains to be made, principally in being able to compute power

limits using physics-based models to more directly control trade-

offs between performance and degradation rate. The planned third

volume of this series, Battery Management Systems: Volume III, Physics-

Based Methods will explore these topics.

• We first review the continuum-scale physics-based model from

Volume I, but reformulate the model equations in terms of more

readily identifiable quantities. We then show how the model-order

reduction approach from Volume I can be applied to this reformu-

lated model and how to simulate cells and battery packs with this

new ROM.

• An enormous challenge when wishing to use physics-based mod-

els is “How do we find the parameter values?” That is, what are

the conductivities, diffusivities, and other material properties re-

quired to simulate the model equations. Historically, the process

of system identification has been performed by trained scientists

who tear down the cells and measure the quantities directly. We

will show how to find the required values using simple cell-level

laboratory tests instead, without the need for cell teardown.

• A BMS that uses physics-based models must perform the same

tasks as one that uses equivalent-circuit based models. Thus, for

example, we need to perform state estimation. We show how to

apply the nonlinear Kalman filters developed in the present book
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7. physics-based optimal controls 309

to the physics-based models, which requires an additional step

beyond what we have seen here.

• SOH estimation using physics-based models can yield the same

kinds of information that we have seen in this book but can ad-

ditionally detect how the stoichiometric operating windows have

shifted in each electrode. This is valuable input to power-limit cal-

culation, because voltages and internal electrochemical potentials

that an aged cell can withstand are often different from those of a

new cell. This enables maximizing battery-pack usage throughout

the lifetime of the pack.

• Most important, we can bring powerful methods to bear on the

problem of power-limit estimation. We will look at some reduced-

order 1D physics-based degradation models that give better per-

formance than those presented in this book and will see how to

compute power limits using model predictive control to avoid

lithium plating and to minimize other kinds of aging as well.

In closing, I hope that some of the material covered in this book has

sparked your imagination and that it will enable you to contribute to

making BMSs of the future even better!
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310 battery management systems: volume ii, equivalent-circuit methods

Appendix: Parameters used for SEI simulations

The following is adapted from Table 1 in Randall, A.V., Perkins, R.D.,

Zhou, X., Plett, G.L., “Controls Oriented Reduced Order Modeling of

SEI Layer Growth,” Journal of Power Sources, 209, 2012, pp. 282–288.

Symbol Units Neg. electrode Separator Pos. electrode

L µm 88 20 80

R µm 2 — 2

A m2 0.0596 0.0596 0.0596

σ S m−1 100 — 100

εs — 0.49 — 0.59

εe — 0.485 1 0.385

brug — 4 — 4

cs,max mol m−3 30,555 — 51,555

ce,0 mol m−3 1,000 1,000 1,000

θmin — 0.03 — 0.95

θmax — 0.886 — 0.487

Ds m2 s−1 3.9 × 10−14 — 1.0× 10−14

De m2 s−1 7.5 × 10−10 7.5 × 10−10 7.5× 10−10

t0
+ — 0.363 0.363 0.363

k A m5/2 mol−3/2 4.854× 10-6 — 2.252× 10-6

α — 0.5 — 0.5

Us V 0.4 — —

RSEI Ω m2 0.01 — —

i0,s A m−2 1.5 × 10-6 — —
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7. physics-based optimal controls 311

Appendix: Parameters used for overcharge simulations

The following is adapted from Table 1 in Perkins, R.D., Randall, A.V.,

Zhou, X., Plett, G.L., “Controls Oriented Reduced Order Modeling

of Lithium Deposition on Overcharge,” Journal of Power Sources, 209,

2012, pp. 318–325.

Symbol Units Neg. electrode Separator Pos. electrode

L µm 85 76.2 179.3

R µm 12.5 — 8.5

A m2 1 1 1

σ S m−1 100 — 3.8

εs — 0.59 — 0.534

εe — 0.36 1 0.416

κe S m−1 0.2875 0.2875 0.2875

brug — 1.5 — 1.5

cs,max mol m−3 30,540 — 22,860

ce,0 mol m−3 1,000 1,000 1,000

θmin — 0.10 — 0.95

θmax — 0.90 — 0.175

Ds m2 s−1 2.0 × 10−14 — 1.0 × 10−13

De m2 s−1 7.5 × 10−11 7.5 × 10−11 7.5 × 10−11

t0
+ — 0.363 0.363 0.363

k A m5/2 mol−3/2 2 × 10−6 — 2 × 10−6

α — 0.5 — 0.5

αs — 0.7 — —

Us V 0.0 — —

RSEI Ω m2 0.002 — —

i0,s A m−2 10 — —
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Index

Active balancing, see Cell balancing,
nondissipative

Additive, 172, 175, 178, 281

Algorithm, 1

Anode poisoning, 174

Anonymous function, 272

Autocorrelation function, 93

Autocovariance function, 93

Available energy, 7, 227, 241, 245

Balancing, see Cell balancing
Battery management system, 1

Battery stack, 7, 9, 247

Battery-electric vehicle, see Electric
vehicle

Butler–Volmer equation, 37, 284, 292,
293

Capacity
Discharge, 73

Nominal, 73

Residual, 73

Total, 25, 29, 33, 72, 168, 183, 185,
195

Capacity fade, 29, 169, 173, 174, 292

Cell balancing, 237

Active, see Cell balancing, nondissi-
pative

Dissipative, 9, 237

Nondissipative, 237

Passive, see Cell balancing, dissipa-
tive

Cell equalization, see Cell balancing
Central limit theorem, 84, 90

Central-difference Kalman filter, 133

Charge-depletion mode, 3, 23, 40, 46,
47

Charge-sustaining mode, 3, 23, 47

Charging

Constant-current constant-voltage
(CC/CV), 57, 72, 297

Constant-power constant-voltage
(CP/CV), 57

Plug-in, 3, 18, 20, 244, 257, 299

Random, 20, 292

Cholesky decomposition, 92, 132

Contactor, 13, 69, 147

Precharge, 13

Control area network (CAN), 21

Correlation coefficient, 87

Correlation matrix, 86

Coulomb counting, 12, 25, 76

Coulombic efficiency, 33, 239, 260

Covariance matrix, 86

Cramer–Rao theorem, 206

Current shunt, 11

Diffusion-resistor current, 33

Drive-cycle profile
HW-FET, 40

NYCC, 41

UDDS, 40, 54, 129, 157, 276

US06, 41, 54

Dual estimation, 191

Electric vehicle, 4, 20, 40, 224, 264, 299

Embedded system, 1

Energy, 23

Equalization, see Cell balancing
Equivalent series resistance, see Resis-

tance
Extended-range electric vehicle, 3, 20,

299

Formation process, 173, 282

Four-wire voltage measurement, 12

Frequency regulation, 4, 252

Gaussian distribution, 84, 88, 91, 97,
198

Scalar, 84

Simulating, 92

Vector, 87

Grid backup, 4, 252

Grid storage, 4, 252

Ground fault, see Isolation fault

Hall-effect sensor, 12

Hessian, 203

HPPC method, 27, 266, 276

Hybrid Pulse Power Characterization,
see HPPC method

Hybrid-electric vehicle, 3, 220, 264

Hysteresis voltage, 34

Innovation, 97, 105

Isolation fault, 13, 15

Isolation resistance, 16

Jacobian, 90, 203

Joint estimation, 191

Joseph-form covariance update, 111

Kelvin connection, 12

LDL decomposition, 92

Leakage current, 77, 239, 260

Least squares, see Regression, least
squares

Level 2 charging, 257

Lithium plating, 174, 292

Lookup table, 11, 26, 27, 74, 288, 298

Model
Enhanced self-correcting, 32

Equivalent-circuit, 31

Output equation, 35
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316 battery management systems: volume ii, equivalent-circuit methods

Parameter, 33, 70

Physics-based, 32

State, 70

State equation, 35

Model predictive control, 303

Model-based estimation, 77

Modular design, 6

Module, 5

Normal distribution, see Gaussian
distribution

Open-circuit voltage, 26, 35

Ordinary least squares, see Regres-
sion, least squares

Parallel-cell module, 6

Passive balancing, see Cell balancing,
dissipative

Phase transitions, 177

Plug-in hybrid-electric vehicle, 3, 20,
299

Power, 5, 23

Power fade, 29, 170, 173

Probability density function, 81

Conditional, 80, 88

Gaussian, see Gaussian distribution
Joint, 85

Marginal, 88

Process noise, 78

Random process, 80, 93

Stationary, 93

Random variable, 81

Conditional expectation, 89

Correlation, 88

Expected value, 83

Independence, 88

Iterated expectation, 89

Mean, 83, 86

Standard deviation, 84

Variance, 83

Vector, 80, 85

Random walk, 185

Regeneration (regen), 20, 43

Regression
Least squares, 196, 197

Ordinary least squares, see Regres-
sion, least squares

Total least squares, 197

Resistance, 170, 185

Sample period, 33

Self-discharge current, 77, 239

Sensitivity, 179

Sensor bias, 77

Sensor noise, 77, 78

Sequential probabilistic inference, 80

Series-cell module, 6

Solid–electrolyte interphase, 173

State of charge, 8, 33, 73

State of health, 8, 168

Stochastic process, 93

Structural disordering, 178

System identification, 33, 38, 181, 308

Tafel equation, 284, 292

Thermal runaway, 8, 253

Thermistor, 10

Thermocouple, 10

Total capacity, see Capacity, total
Total energy, 241

Total least squares, see Regression,
total least squares

Unscented Kalman filter, 133

White Gaussian noise process, 94, 102,
114

White noise process, 93, 185

xEV, 4, 20, 40
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