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Abstract: This paper looks at the analysis of network effectiveness and
vulnerability through dynamic games. Each opposing side consists of a
collection of vertices (pieces) connected in a network. Only vertices in
the largest sub-graph exhibit mobility. We use the mobility and piece
removal rules in the game checkers and modify the evaluation function
to include sub-graph size balance. With this modified evaluation
function, win-lose results of richly versus sparsely connected and
centralised versus decentralized topologies are analysed. The results are
compared with the current vulnerability studies in networks of varying
topology. Finally we use temporal difference learning to calculate
advisor weights for richly or sparsely connected vertices.

1 Introduction

The study of networks and their vulnerability to disruption or deliberate attack is a
topic of increasing importance for society [2]. Many complex systems may be
described in terms of networks where vertices represent the agents of the system and
the edges represent interactions between agents [1]. With this view of networked
agents, broad statistical properties of the system as a whole may be described. For
example, the level of interaction within the system can be inferred from the edge
richness within the network. Once a topologically dependent model of network
function is found, critical agents within the system may be identified [2].

A wide ranging class of naturally occurring networks have similar statistical
properties, in that the degree of such networks follows a power law [1]. Such
networks include chemical interactions in animal metabolism, sexual partner
networks, routing connections in the world-wide-web and power generation grids, to
describe a few [1]. These networks, termed scale-free are characterised by a small
proportion of highly connected vertices. In contrast, random networks, where each
vertex has equal probability of being connected with any other vertex, do not have
these highly connected vertices to any statistical significance [2].

Of importance is the performance of such scale free networks compared to
randomly connected networks. Performance is defined either through the average
diameter of the network or the size of largest connected sub-graph [2]. For the later
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performance measure, as vertices are removed, the proportion of vertices in the
largest connected subgraph drops to zero. For scale free networks, it has been shown
that when random vertices, independent of their degree are removed or are no longer
functional, the largest subgraph size decreases slowly [2]. However the largest sub-
graph size decreases drastically under network attack, when vertices with the highest
degree are preferentially removed [6]. In contrast, random networks, having no
central vertices of high degree show no difference in functionality between random
vertex error or deliberate attack [2, 6].

Though these models of network performance are highly insightful, the results are
generated assuming that under network attack, all vertices may be accessed with equal
probability. There is no underlying model of the how an attacking system could
manage to either sequentially or simultaneously disable vertices of high degree. In
order to understand the true vulnerabilities of a networked system, one must model
the dynamics of the attacking system at the outset. For example, if considering a
computer virus disabling router nodes in a complex network, one must model the
dynamics of transmission and replication through the network. When considering a
police force attempting to disable a criminal network, one should simultaneously
model the functionality of the criminal network as lynch-pin criminals are removed,
as well as the communications/interactions of the legal/police network. When viewed
this way, we have interactions between networks which we call a network game.
Within each network, agents cooperate to achieve a non-cooperative goal against the
opposing network.

In this paper we discuss non-cooperative dynamic games between two opposing
networks. By this, we mean that within each network a cooperative game is played, in
which a strategy is chosen by an agent controlling connected vertices to maximise
some cost to the other network. In turn, an agent controlling the opposing network
selects a strategy to minimize some cost function imposed by the original network.
Vertices in these games are not only purely characterised by links with other vertices.
In general, vertices will be characterised by a number of states, such as internal states
(alive or removed from game) and possibly spatial states (coordinates of each vertex).
Opposing network games are distinct from other within network non-cooperative
games, in which each agent in the network adopts a strategy (such as choosing a
packet routing path, or acceptance/rejection of market contract bids) to maximise its
utility when competing against its direct neighbouring agents [11]. Such games have
been extensively studied with communications or economics applications in mind.

Following this Introduction, we discuss formally modelling games between
opposing networks in Section 2. We then discuss the network checkers game in
Section 3. We next look at some results on the vulnerability of networks with
differing topologies in Section 4 and look at valuing the network through
reinforcement learning in Section 5. Discussion and Conclusion follow in Section 6.

2 Modelling Opposing Network Games

Formally, in order to specify the a game between two networks, we define at each
time ¢t =0,1,2,3,--- a sequence of graph pairs. Each graph pair corresponds to the new
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vertex-edge set of each side, following the application of some strategy by the
opposing network, such as the removal of an edge or the removal of a vertex. Thus, as
the game progresses, we define the sequence of graph pairs as

(G1(0),G1(0)). (G (1), Gy (D),...., (G (1), G () (1
where
G;(6) = (V;(0), E;() )

specifies the number of vertices or elements and the topology of edges between
them at the time f. The strategy used by a network will depend on the vertex states
and the connectivity between them. In general, the strategy will be a map

S:G1><G2—>Gj,j=1,2. 3)

In particular, let S(v;) be the strategy set for vertex v; € V;(¢) at some time of the

game ¢. Now suppose that vertices {w;,w,,....,w; } € V;(¢) comprise a connected sub-
graph of the network. Then at time ¢, the sub-graph has strategy set

SE)=S(w,) ® S(w,) @ ... ® S(w,). 4)

When coding an agent to play such network games, strategies can be evaluated
through the use of heuristics or the more sophisticated game playing techniques. In
particular, our approach is to use a linear evaluation function of weighted game
features in combination with either min-max decision tree search or the use of
temporal difference learning to find appropriate weights for the features chosen.
Furthermore, we assume that the strategy set is found from the maximal subgraph,
which is the connected graph with the largest number of vertices. The largest sub-
graph may be found by applying Djistraka's algorithm on the current network [9].

3 Networked Checkers

We chose the game of checkers as our template game, in which the pieces become
vertices for an underlying network [7]. There are several principal reasons for this
choice. First the checkers pieces exhibit spatial manoeuvre. Our aim is to model
manoeuvre based conflict between opposing sides, as seen in human sporting games
and warfare, thus the game of checkers is seen as an important start. Coupled with
manoeuvre is the attrition of forces in the game, again a feature of warfare. Finally,
checkers with a well defined end-set of states[l has had considerable research into the
agent based play. This means we are able to conduct Monte Carlo simulations across
many games in order to assess the performance of a particular network topology.
There are three end states in the game of checkers- a win, loss or draw. Our measure

! Here, we assume the game ends either with the loss of all pieces or no mobility from one side
or no pieces taken after 40 moves.
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of network performance is the observed frequency of wins plus half the draws across
games. If we define, for each end-state graph pair (G, G, ) the function

1for win,
o(G,,G,)=41/2forloss, 5)
0 otherwise.
then we estimate the expectation E(p(G,,G,)).If

(G,,G,)',(G,,G,)?,....,(G,,G,)" are independent and identically distributed random

outcomes of the end-states of the network game, then our unbiased estimate of the
expectation is

1< i
p=->0lG..G,Y). ©)
i=0
Assuming we have a binomial model, then the unbiased estimate of the variance is
1-
var(p) = ¥ (7)

Network topologies are specified at the commencement of the game and only alter
due to the removal of a vertex by the opposing network. Topologies are specified by
the number of links between vertices at the instigation and the network growth rule.
The maximum number of vertex to vertex connections is (ljj links.

Given a number of edges between vertices, the structural aspects of the topology
are governed by a number of rules. In particular, the baseline topology is the random
network. Here, two vertices are selected at random and an edge placed between them
if not connected. This process continues till the link budget is exhausted. In this paper,
we compare the performance of random networks with that of hub-spoke networks.
As the name implies, the graph consists of one or number of centralised hubs,
connecting to the spokes of the network. With a link budget of 11, the network is fully
connected, with one central hub. Link budgets greater than 11 have additional hubs,
with a new hub at link budgets of 12, 23, 33,42, 50, 57 and 63 edges.

We have chosen the random and hub-spoke topologies to compare performance
with communication network results [2]. In particular, we will compare the
performance of centralised (hub-spoke) networks under network destruction, as the
game is played, with that of decentralized random networks.
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Fig. 1. Example of the network checkers game. Here the white side is connected with a random
network topology, the red with a hub-spoke topology. Pieces on the white side which exhibit
maneuver, the largest connected subgraph, are shown in shading

The results of Monte Carlo simulations will be dependent on the evaluation
function used in the game. Indeed any performance results obtained must be coupled
with the structure of the evaluation function [8]. At this stage of the research, we
chose an simple as possible evaluation function that highlighted the features of
materiel balance, value of more mobile kings as opposed to unkinged pieces, the
relative rank balanceﬂ of pieces (to encourage king making) and the balance of the
largest subgraph sizes, this being a measure of the strategy set and the network
viability. Thus our evaluation function takes on the form

V =100/}~ V) +250(KV] — KV3)+ RE = R3 +100(N] — Ny), (®)

where V;, KV; and N; i=12are the number of unkinged, king and largest

subgraph pieces respectively. R;, i =1,2is the rank of each side.

It should be noted that the values for coefficients for the materiel terms in the
evaluation have been taken from, a commonly played Java checkers web-site [7]. The
value of 100 for the coefficient in the largest subgraph balance term was chosen as the
minimal value congruent with materiel and mobility. There is however no a-priori
experience for setting this value and machine learning techniques such as supervised
and reinforcement learning are appropriate, as seen in Section 5.

2 The rank is the sum of the distances of unkinged pieces from its own baseline.
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4 Experiments with Network Checkers.

Monte Carlo simulations were conducted in the network checkers game. The focus of
our research was on the frequency of performance success (wins plus half draws) as a
function of different opposing network characteristics. In one set of trials, we
considered the performance success as a function of the ratio of vertices to edges. As
our starting number of edges is small, rather than considering this ratio, we only
considered the absolute number of edges up to the maximum of 66. The commencing
network topology in this set of experiments was random for each side.

Next we conducted a series of experiments to look at the performance of two
different opposing topologies. In order to draw conclusions purely from the
topological structure, the number of links was kept constant for each side during each
set of simulations. The experiments focused on the random topology against the hub-
spoke topology. The relative performance of the random topology was simulated,
both as the level of edge connectivity increased and for differing strategy search
depths of 0 (random legal moves played) to 3- ply search.

4.1  Results with Differing Edge Number

Simulations show that having an increased number of edges than the opponent does
confer an advantage. This is not surprising as increased network connectivity implies
both a larger maximum subgraph size and robustness over the game.

Of note is the performance of the white network against a red network either with
36 edges or 60 edges — nearly fully connected. Performance gains are not
substantially greater, highlighting diminishing returns as edge numbers increase.

0.8

0.6

—&—red links=12
—l—red links =36
red links =60

0.4

0.2

fraction white wins + half draws

1A
0 5 10 15 20 25 30 35 40 45 50 55 60 65

white links

Fig. 2. Graph of the performance measure as a function the number of white edges
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4.2  Results Comparing Different Topologies

Network performance and vulnerability models compare differing topologies to
highlight the relative strengths and weaknesses of one structure over another. In these
models, the network is eroded either by the removal of vertices or links and measures
of performance, such as throughput or largest subgraph size are compared [1]. There
are no assumptions on the network structure of the opposing agents. We call these
models net versus no-net models. Here, we take the approach of comparing topologies
by direct competition, a net versus net model. In this case, the removal of vertices is
dependent on the performance of the adversary network, hence our model of
performance may be seen as richer, as it does not make poor assumptions about the
behaviour of the collection of agents attempting to destroy or disrupt a network.

In order to make a direct comparison between net versus no-net and net versus net
results, suppose we considered the performance of a hub-spoke network and a random
network. In a net versus no-net model, the hub-spoke architecture is more vulnerable
either in measures of subgraph size or diameter [2]. If the hub vertex is removed both
subgraph size drops to zero and diameter goes to infinity. In a random network, there
is a non-zero probability that the sub-graph size will still be greater than one after
removal of the vertex with highest degree. For example, in a random graph with 4
vertices with 3 edges, if the topology is not hub-spoke (which occurs with probability

4/6), then removing the vertex with highest degree results in a sub-graph size of
two. Hence the expected subgraph size after the removal of the vertex with highest
degree is

E(subgraph size) = 2(1 -4/6° )z 1.96. 9

Hence the net versus no-net model considers the random network less vulnerable.
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0 e e

fraction white wins + half draws

5 7 1" 45 53 60
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Fig. 3. Performance of a random against a hub-spoke topologies at different edge numbers and
for search depth 1-2 ply. Our measure is the fraction of random net wins plus half draws
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Fig. 4. Fraction of vertices in the largest subgraph, for random and hub-spoke topologies,
assuming different edge budgets up to a maximum of 66

The figure on the previous page shows the performance of a random against a hub-
spoke topology in the net versus net model. In contrast to the net versus no-net model,
the hub-spoke topology shows higher performance than that of the random network,
each with the same number of links. This is explained by considering the largest sub-
graph size for the hub-spoke and the random networks given a fixed edge budget,
prior to the removal of any vertices. Here, the hub-spoke network has the largest sub-
graph size with the smallest number of edges. For a hub-spoke network, the addition
of an edge always increases the sub-graph size by one if this sub-graph size is less
than the number of vertices. This property is not assured in the random graph. The
following simulation compares largest subgraph sizes in hub-spoke and random
networks with 12 vertices at differing edge budgets.

The result that the hub-spoke topology performs better than the random topology
shows that the dynamics of the interacting networks must taken into account. At the
search depth of 2-ply, [8] the opponents response to a move is taken into account.
Typically in observations of these games, the hub vertex is not placed in the position
as one of the front pieces and is thus protected.

5 Learning the Value Function

We chose the value of 100 as our coefficient for the balance in sub-graph sizes
arbitrarily. In general, we cannot assume that the coefficients for materiel balance and
mobility will remain the same in the network game either. Finding the relative
weights for these game features, termed advisors, can be done through reinforcement
learning. Here, we briefly review the approach taken.

Given the board is in state s, we specify a action-value function Q” (s,a). This
action-value function is the expected reward from winning the game given that the
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policy = determines what action to take at each particular state. At a terminal state
s we define the action-value function (reward) to be

1fora win,
Q" (s7,®) =q1/2fora draw, (10)
0 foraloss.

For a particular policyz, this action-value function Q” (s,a) is therefore the

probability that a win is achieved, given we start from state sand adopt action a.
Furthermore, in network checkers, as there are no intermediate rewards or
discounting, the action-value function satisfies the Bellman equation [3] for optimal
return

Q*(Sz’az)ZE”*{maXQ*(SHl’aHI)}s (1)

where the expectation is taken over the optimal policy 7 *.Indeed for the optimal
policy 7 * the expected difference between successive state action-value pairs will be
zero [3],

E”*(Q*(Stsat)_Q*(Sz+1’at+1)|stsaz)ZO- (12)

It is the observation of equation (12) that is the basis of the temporal-difference
learning approach, in the sense that the difference between successive action-value
functions should be close to zero according to Bellman's equation and learning is
achieved by “shifting” the action value function Q(s,,a,)towards O(s,,;,a,,) [3]-

In the network checkers game, we approximate the action-value function by some
function Q:SxXR" — R. We adopt the non-linear approximation of mapping the
linear evaluation function onto the standard sigmoidal function, meaning that

O(s,a) = (1 +exp(~ AV, (s, W) (13)

where V), (s,w)is the principal value taken in a max-min search of depthn from

state sand w is the vector of weights (advisors) we wish to calculate [5]. Adopting
the sigmoidal function has the advantage that for the set of states and actions,
Sx A(s),

0: 8% A(s) = (0,)). (14)

When the evaluation function is large, é is close to one, indicating a win, large and

negative, é = 0 indicating a loss. The constant £ determines the sensitivity of éto
adjustments of weights in the evaluation function.

Weight changes are determined through gradient descent [10] and are done on-line,
meaning that weights of the currently applied action-value function are changed
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during the course of the game [3]. In particular, as a pair of states are visited during
the game, an increment in the weight vector is given by

A =@ 1. ,11) ~ 05,00 4 Os,a,). (15)
where « is the learning rate and V is the gradient operator. Here,
Vi OGs,.a,) = fO(1—=0)V 3V, (s, W). (16)

The learning rate is taken to satisfy stochastic convergence conditions given in [3].
To approximate the optimal policy, we determine the action for states s,,s,,; through

an ¢ -greedy policy of choosing action arg max é(s, a) with probability (1-¢)and a
a

random action with probability £. This approach directs the policy towards the optimal
one, as specified by Bellman's equation, whilst assuring the exploration of novel
states through the random action [3].

5.1 Results of Evaluation Function Learning

We applied the learning method described, referred to as SARSA(0) [10], to the
network checkers game, in order to explore values for the subgraph balance advisor.
In applying TD(0), the opponent's advisor weights were fixed at values of 1.0, 2.5,
1,0, 0.01 for the unkinged, kinged, subgraph and rank balance weights respectively.
The initial weights chosen for learning were 1.0, 1.0, 1.0 and 0.01. Min-max search
was conducted at a depth of 3-ply and the value of B was 0.5. We ran the SARSA(0)

algorithm over 2500 games.

Our initial trials showed that altering the rank balance advisor value is generally
troublesome to learning the advisor values of the other three variables. As games
progressed, the rank balance fervently swung from positive to negative values. In our
current game formulation, kings have a rank of zero and we believe that this is the
cause of the rank balance instability. A side that is close to victory may have either a
positive rank balance (many unkinged pieces versus few unkinged pieces) or negative
rank balance (many kinged pieces against a few unkinged pieces). For this reason, we
chose to set the rank balance advisor weight at a constant value of 0.01.

First, we ran the SARSA(0) method when the network was fully connected, with
66 edges. Next we ran the algorithm with a random topology connected 20 edges.

Our results show that a fully connected network, after 2500 games, the subgraph
advisor weight is slightly lower than that of kinged piece (advisor values 0.29 and
0.31 respectively). Not surprisingly, the kinged pieces have the highest value,
approximately double that of an unkinged piece (value 0.15). As kings have the
highest mobility, in checkers they are considered to have the highest value [8].
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Fig. 5. Graph of the unkinged, kinged and subgraph advisor weights for 2500 games

With a sparse network, maintaining the subgraph size is crucial, as the loss of a
single vertex with high degree may fragment the network into isolated small sub-
graphs or single vertices [2]. As we assume that only the largest subgraph exhibits
mobility, a loss of a single piece may cause an incommensurate loss in mobility. The
subgraph balance advisor weight reflects this, as it has the highest value in the learned
advisor weights for a sparsely connected network (20 links, value 0.39).

At this stage of our research, the advisor weights are only taken as an indicator of
the importance of unkinged, kinged and subgraph balance for networks either
abundantly or sparsely connected. It is suggested that when attempting to find the

exact optimal values for the advisor weights, one should apply the SARSA(A)

algorithm for A values close to one initially, then refine the values by choosing
A close to zero [4]. This is the next stage of our research.

6 Discussion and Conclusions

Our research goals are to understand the impact of element connectivity and
communications in conflicts/games where two or more groups of agents cooperate
with one another against an opposing group of elements. Several directions need to be
taken for greater understanding of the role of networked gaming vertices. First, we
assumed in our simulations that once an vertex is isolated from the main subgraph, it
no longer exhibits any maneuver. This type of assumption may be termed control by
direction in the sense that each vertex requires direction or guidance from peers to
exhibit any mobility. Any truly autonomous act distinct from the main group is
excluded.

The results presented in this paper may be contrast with agent models, where
control is done by veto. Here, agents only recognize peers connected in their own sub-
graph and will act autonomously unless vetoed with other connected agents. Since
control is by veto, this means that agents not connected will not recognize each other
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as peers, but will still act autonomously. Agents of the same group may eliminate one
another. With this new assumption, the same set of simulations may be run, for
example, comparing outcomes with differing connectivity to agent ratios (vertex to
edge) and comparing outcomes with centralised versus de-centralised connectivity.

In real-world situations agents such as humans naturally establish or cut links
between other agents because of either environmental or adaptive reasons [12]. This
means a dynamic network is formed, depending on the state of each agent. In this
sense, network formation may be seen as a strategic decision along with the maneuver
of agents. Such adaptive dynamic network games are worth modelling, however this
generates a cost in the problem domain. Consider a game with an approximate
movement branching factor of 8 (as is checkers) and 20 edges to be placed amongst
12 agents. The total branching factor will be the product of the movement branching

factor and the number of ways to place 20 edges amongst 12 agents, 8[?2} = 800000.

This simple analysis implies that games, of dynamic network formation are of
complexity vastly exceeding games such as go or backgammon.

In conclusion, we examined games in which mobility of vertices was determined
by a network structure connecting vertices. The complexity of strategy was also
dependent on the size of the largest subgraph connecting those vertices. Mobility was
determined through the rules of checkers.

Through Monte-Carlo simulation, we examined game outcomes where one side
had a differing edge to vertex ratio to the opponent. Larger edge to vertex ratios
increased the probability of winning.

We also compared game outcomes opposing differing topologies with the same
edge number on both sides. In this respect only the topological properties of the
network were considered. We found through simulation that centralised networks
with a hub vertex fare better against decentralized networks for two reasons. Firstly a
centralized hub network connects the maximum number of vertices together with the
minimum number of links. Second, once a hub vertex is protected from attack through
manoeuvre, the network shows the greatest resilience to attack, as the loss of a vertex
only decreases the subgraph size by one.

Finally, we conducted a series of machine learning experiments, implementing
reinforcement/temporal difference methods in the play of the game. Through
implementing gradient based SARSA(0), we determined the values of the specific
advisors for the importance of materiel and subgraph balance. For fully connected
networks, the king balance advisor had the greatest value. With a sparse network, the

subgraph balance advisor had the greatest value, due to the sensitivity of subgraph
size as vertices as lost.
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