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Abstracts

1 The Operation of Hedge Funds: Econometric Evidence,
Dynamic Modeling, and Regulatory Perspectives

Willi Semmler and Raphaéle Chappe

This chapter presents a stochastic dynamic model that can be used
to describe situations in asset management where the use of lever-
age to generate above-average promised returns can result in some
hedge funds finding themselves embroiled in a Ponzi financing scheme.
Greater transparency is necessary to reduce such opportunities as well
as to understand systemic risk implications of hedge-fund operations.
This chapter also assesses the new regulatory frameworks proposed by
the Obama Administration and by the European Commission to that
effect.

2 Inferring Risk-Averse Probability Distributions from
Option Prices Using Implied Binomial Trees

Tom Arnold, Timothy Falcon Crack, and Adam Schwartz

We generalize the Rubinstein (1994) risk-neutral implied binomial tree
(R-IBT) model by introducing a risk premium. Our new risk-averse
implied binomial tree (RA-IBT) model has both probabilistic and pric-
ing applications. We use the RA-IBT model to estimate the pricing kernel
(i.e., marginal rate of substitution) and implied relative risk aversion for
arepresentative agent; we are the first to use wholly implied methods for
this. We also discuss applications of the RA-IBT to stochastic volatility
option pricing models.

3 Pricing Toxic Assets

Carolyn V. Currie

The current global financial crisis has been triggered by a huge increase
in credit default swaps and securitization of bundled mortgages into
collateralized debt obligations (CDOs) which have layers of equity and

Xix
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debt with the latter then bundled into entities known as CDO squared.
The pricing of both has been faulty, resulting in misplaced credit rat-
ings of AAA or above, resulting in severely degraded assets known as
“toxic.” This article discusses a new pricing policy for toxic assets which
does not rely on traditional finance theory but uses the pricing associ-
ated with simple floor plans developed in Australia during the twentieth
century for gold and other commodity and agricultural products. Bino-
mial theory can be used to price the associated collar that relies on put
and call options. This chapter begins by defining toxic assets and then
describing pricing methods to hedge risk in commodities, concluding
with a suggested pricing solution based on Basel 2 capital allocation
methods.

4 A General Efficient Framework for Pricing Options Using
Exponential Time Integration Schemes

Muddun Bhuruth, Ravindra Boojhawon, Ashvin Gopaul, and Yannick
Desire Tangman

We develop a general and efficient framework for pricing options
under various models. These include the Black-Scholes, Merton’s jump-
diffusion, Heston'’s stochastic volatility (SV), Bates’ stochastic volatility
with jumps models (SVJ), and infinite activity models such as CGMY as
well. The semi-discrete systems arising from numerical discretizations
of the pricing equations are solved using exponential time integration
(ETI) schemes. For such integrators, it is well known that computation
of the matrix exponential can be expensive. We show how the algo-
rithms based on ETI can be speeded using best rational approximations
via Carathéodory-Fejér points and that only four sparse linear solves
are sufficient for obtaining convergent solutions in the case of European
and barrier options. For American options, we combine an exponen-
tial forward Euler scheme with Richardson extrapolation in an operator
splitting spatial discretization framework.

5 Unconditional Mean, Volatility, and the FOURIER-GARCH
Representation
Razvan Pascalau, Christian Thomann, and Greg N. Gregoriou

This chapter proposes a new model called Fourier-GARCH which is a
modification of the popular GARCH(1,1). This modification allows for



Abstracts  xxi

time-varying first and second moments via means of flexible Fourier
transforms. A nice feature of this model is its ability to capture both
short- and long-run dynamics in the volatility of the data, requiring only
that the proper frequencies of the Fourier transform be specified. Several
simulations show the ability of the Fourier series to approximate breaks
of an unknown form, irrespective of the time or location of breaks. This
chapter shows that the main cause of the long-run memory effect seen
in stock returns is the result of a time-varying first moment. In addition,
the study suggests that allowing only the second moment to vary over
time is not sufficient to capture the high persistence observed in lagged
returns.

6 Essays in Nonlinear Financial Integration Modeling: The
Philippine Stock Market Case

Mohamed El-Hedi Arouri and Fredj Jawadi

This chapter aims to study the hypothesis of stock-market integration
with the world equity market for the Philippines in a nonlinear frame-
work using recent developments of nonlinear cointegration, nonlinear
cointegration tests, and nonlinear error correction models. Our results
suggest further evidence of nonlinear integration and show an asymmet-
rical and time-varying stock-price mean-reverting phenomenon toward
the world index.

7 A Macroeconomic Analysis of the Latent Factors of the
Yield Curve: Curvature and Real Activity

Matteo Modena

This chapter extends the strand of literature that examines the relation
between the term structure (TS) of interest rates and macroeconomic
variables. The yield curve is summarized by three latent factors which are
obtained through Kalman filtering the Nelson-Siegel TS model. In this
chapter, we address the challenging issue of attributing a macroeconomic
interpretation to the curvature factor, finding evidence that curvature
reflects the cyclical fluctuations of the economy. Interestingly, this result
holds in spite of whether curvature is extracted from the nominal or the
real TS. A negative shock to curvature seems either to anticipate or to
accompany a slowdown in economic activity. The curvature effect thus
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complements the transition from an upward-sloping yield curve to a
flat one.

8 On the Efficiency of Capital Markets: An Analysis of the
Short End of the UK Term Structure

Andrew Hughes Hallett and Christian Richter

In this chapter, we test the expectations hypothesis (EH) for the term
structure of interest rates jointly with the uncovered interest parity (UIP)
condition for the short end of the UK term structure. We find that the
US interest rate, the UK monetary instrument, and the (spot) exchange
rate all affect the short-term interest rate. However, the impact of the US
rate is the biggest effect, although that has decreased a little during the
recent financial crisis. We also test a bounded rationality approach. We
deviate from the contemporary literature by refusing to impose rational
expectations. Instead, we assume extrapolative expectations as an obvi-
ous behavioral alternative. We show that incorporating extrapolative
expectations in both hypotheses turns out to be a significant improve-
ment. Hence, and in contrast to previous work which has assumed
rational expectations, we find the UIP and the EHs are not rejected.
Thus, the problem seems to have been violations of the rational expec-
tations paradigm, not violations of UIP or the EH of the term structure
per se.

9 Continuous and Discrete Time Modeling of Short-Term
Interest Rates

Chih-Ying Hsiao and Willi Semmler

The objective of this chapter is to compare continuous and discrete
time models of short-term interest-rate data. Regarding the continuous-
time method, three discretization methods, the Euler method, the
Milstein method, and the new local linearization method are employed
to obtain discrete-time approximate models. We estimate the short-term
interest rates of Germany, the UK, and the USA. Results of the speci-
fication tests of autocorrelation and normality indicate that the model
suggested by Chan et al. (1992) is not a very strong candidate to be
the data-generating process for these short rates as well as the other
continuous-time models suggested by Ait-Sahalia (1996) and Anderen
and Lund (1997). Therefore, we turn to adopt discrete-time models.
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We find that the ARMA-ARCH model with level dependent volatility
performs better than the continuous-time models in terms of the like-
lihood values and the specification tests as well as the in-sample and
out-of-sample forecasts.

10 Testing the Expectations Hypothesis in the Emerging
Markets of the Middle East: An Application to Egyptian
and Lebanese Treasury Securities

Sam Hakim and Simon Neaime

Despite many rejections, the expectations hypothesis remains the widely
accepted premise believed to explain the shape of the yield curve. This
chapter investigates the stochastic properties of the term structure of
interest rates in Egypt and Lebanon, two emerging bond markets in
the Middle East. Our results show that interest rates in each of these
two countries are non-stationary and can be modeled as unit root pro-
cesses. Further, cointegration analysis indicates that the interest rates
do not drift apart but move together over time, a finding that supports
the expectations hypothesis. Our results shed light for the first time on
two of the Middle East’s bond markets, a region where interest rates
have received little attention before. Furthermore, the results suggest
that the expectations hypothesis is strong enough to hold even in infant
emerging markets.
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The Operation of Hedge Funds:
Econometric Evidence, Dynamic
Modeling, and Regulatory
Perspectives

Willi Semmler and Raphaéle Chappe

1.1 Introduction

The Madoff case has all the makings of a Ponzi scheme. Ponzi schemes
follow what Hyman Minsky described as Ponzi finance. Do hedge funds,
or at least some of them, follow a similar scheme? The best summary
of different financing practices, such as hedge, speculative, and Ponzi
financing, is given in Minsky (1986). Hedge finance is a situation where
operating cash flow can service all payment obligations associated with
the financing. Speculative finance involves situations where operating
cash flow supports interest payments but not repayment of principal.
Ponzi finance describes a situation where operating cash flow is insuf-
ficient to cover either principal or interest payments, which can be
financed only via an increase in liabilities, thus by a new inflow of funds.

This chapter shows a model that can be used to describe situations in
asset management where the use of leverage to generate above-average
returns may result in some hedge funds finding themselves, willingly
or unwillingly, embroiled in a Ponzi financing scheme. This chapter is
organized as follows. After reviewing the literature on hedge funds, this
chapter briefly examines empirical data on the structure of the indus-
try: size, assets under management, measures of returns, and leverage.
This chapter then proceeds to develop a dynamic model of the wealth-
generating process in a hedge fund. If the manager attracts investors by
promising high returns, the hedge fund is, in essence, borrowing at a
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high interest rate. If actual returns do not exceed this high cost of bor-
rowing, on average the hedge fund persistently needs positive inflow of
fresh funds in order not to become insolvent. While hedge finance is
typically associated with a reasonable debt-to-equity ratio, and specu-
lative finance typically results in liabilities being rolled over, in Ponzi
financing the value of net equity is gradually reduced as the company is
in essence continually borrowing against the future. In Section 1.4, we
run a simulation of the impact of the sudden decline of inflow of funds
on the hedge funds, ultimately leading to insolvency.

An economy where Ponzi finance dominates is inherently fragile,
unstable, and conducive to financial crisis. The high level of risky credit
is unsustainable in the long run, and it is only a question of time
before borrowers start to default, potentially bringing the entire financial
system to the brink of collapse via contagion effects if there is suffi-
cient interconnectedness. The hedge-fund industry has been opaque,
with little regulatory oversight and no reporting requirements, cre-
ating opportunities for such Ponzi financing. Given the size of the
industry and the gradually increased exposure of ordinary investors
and the general public to hedge funds, if indeed some funds follow
a pattern of Ponzi financing, there are implications for systemic risk.
However, greater transparency is necessary on the part of hedge funds to
even begin to understand such implications. A new regulatory frame-
work is needed to that effect and has been proposed by the Obama
Administration.

1.2 The literature on hedge funds

The hedge-fund industry is largely unregulated. Hedge funds are under
no obligation to report net asset values or income statements, unlike
their counterparts in the mutual fund industry, which have to provide
daily net asset value calculations and quarterly filings. Hedge-fund man-
agers report performance information to different databases on a purely
voluntary basis. This has given rise to several biases and the issue of
distorted data, thoroughly examined in the literature. Survivorship bias
originates from lower returns being excluded from performance studies
if the hedge fund has failed (only surviving funds are analyzed). There
are different studies and estimates of survivorships bias in the literature,
analyzing different years and different funds. Amin and Kat (2003) esti-
mate survivorship bias at about 2 percent per year. Fung and Hsieh (2000)
have calculated that the survivorship bias is 3 percent annually with a
15 percent dropout rate. Malkiel and Saha (2004) found a bias averaging
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3.74 percent per year. Self-selecting bias is generated to the extent that
hedge-fund managers report performance after the fact and only have
an incentive to do so if the hedge fund has performed well. Hedge funds
might wait for a good track record before they start to report to a database.
Underperforming funds might decide to stop reporting to a database. It
is typically the case that hedge funds stop reporting during their last
months (as was the case, for example, with Long Term Capital Manage-
ment losses between October 1997 and October 1998, which were not
reported to data providers).

One example of self-selecting bias is the backfill bias (also called instant
history bias), which appears when hedge-fund managers add histor-
ical results to their files to give a more comprehensive view of the
fund’s performance once the fund begins reporting to a database. Since
fund managers have an incentive to begin reporting only with a good
track record, backfilled returns tend to be higher than contemporane-
ously reported returns. The backfill bias has been addressed for different
databases at different times. Fung and Hsieh (2000) estimated the backfill
bias to be 1.4 percent for the Tass database over the period 1994-1998.
Also on the basis of the Tass database, Posthuma and Van Der Sluis
(2003) have found that backfilled returns are on average 4 percent higher
annually than normal returns.

Much of the literature is focused on risk analytics for hedge funds.
One issue is that the risk/reward profile for most hedge funds is not
as well understood as that for traditional investments. It is well estab-
lished that there is typically a trade-off between risk and return. The
high (double-digit) returns historically earned by hedge funds may well
present underlying risk exposures that are not well identified and man-
aged by traditional risk-management tools. Lo (2001) has stressed the
need for a new set of risk analytics designed to address the unique fea-
tures of hedge funds and to go beyond traditional value-at-risk analysis.
Such unique features include survivorship bias, the non-normal distri-
bution of returns, and the enormous flexibility in trading enabled by
the absence of regulatory constraints and by the hedge-fund manager’s
ability to manage positions very actively. The need to replace traditional
risk measures has led to alternative performance measures, such as the
downside risk framework designed to take into account the asymmetry
of returns. Generally speaking, the downside risk framework attempts
to take into consideration returns which are inferior to a target rate
of return. Mamoghli and Daboussi (2009) attempt to study the impact
of downside risk measures on the performance measurement of hedge
funds. More detail can be found in Section 1.3.
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Chan et al. (2006) have examined the risk of illiquidity exposure and
have attempted to develop quantitative measures of systemic risk. Illig-
uid exposure is particularly relevant in the event of a forced liquidation,
which is a real threat for hedge funds due to the highly leveraged nature
of their positions. Quick withdrawals of credit, such as that resulting
from adverse changes in the market value of posted collaterals, can
directly lead to forced liquidations. In turn, the unwinding of large
positions over short periods can create significant market disruptions
and a breakdown of the financial system as a whole (systemic risk).
Getmansky et al. (2004) show that high levels of serial correlations can
be partly explained by illiquidity of the hedge fund’s portfolio. Chan
et al. (2006) argue that autocorrelation coefficients of the fund’s monthly
returns are useful indicators of liquidity exposure and show that hedge
funds display a significantly higher level of serial correlation than mutual
funds.!

There is also some analysis in the literature more specifically focused
on the factors that explain the failure of a hedge fund. Malkiel and Saha
(2004) have developed probit regression analysis to examine the proba-
bility of a fund’s survival. The results show that the fund’s performance in
the most recent four quarters is an important determinant of the fund'’s
probability of survival, that large funds have a higher probability of sur-
vival, and that a high standard deviation of returns in the fund’s most
recent year has a negative impact on a fund’s probability of survival. Fur-
ther, Malkiel and Saha (2004) find that a fund is more likely to fail in the
first few years of operation and that once a fund has survived the first
years and has established a track record, its likelihood of failure declines
over time.

1.3 The empirics of hedge funds

The size of the hedge-fund industry has exploded in the past ten years. Its
growth, for the most part attributable to large returns generated through
high leverage and use of derivatives, has had a significant impact on
the structure of U.S. and global markets. The industry has grown into
a parallel financial universe — a shadow banking system. Hedge funds
are involved in virtually every kind of market and invest in every kind
of asset: from equity, loans, mortgages, and distressed debt to project
finance, derivatives, etc. But the industry is still to a large extent unreg-
ulated. As a result, it is an even greater factor of systemic risk than it was
in 1998 when the Fed intervened to prevent the near collapse of Long
Term Capital Management.
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The term “systemic risk” is used to describe the possibility that the
failure of one financial institution can disrupt the financial system as
a whole through a series of correlated defaults. For example, the bank-
ing panics in the USA during 1930-1933 caused many failures of banks
which were otherwise financially sound.? Originally created as a tem-
porary regulatory agency under the Banking Act of 1933, the Federal
Deposit Insurance Corporation (FDIC) was designed to insure deposits
in all national banks. The coverage is limited to a given amount per
depositor, recently increased to $250,000 until December 31, 2013. By
protecting depositors from bank failures, the FDIC significantly reduces
the risk of bank runs and thus minimizes systemic risk. Yet the size and
evolution of the hedge-fund industry raises the question of whether it is
generating a new form of systemic risk: that of market disruptions caused
by hedge-fund failures.

There are different estimates of the current size of the hedge-fund
industry, partly due to the fact that there is no single definition of what
constitutes a hedge fund, resulting in different views of what comprises
the hedge-fund universe. Hedge Fund Intelligence has estimated total
assets under management to be at $1.808 trillion3 at the end of 2008,
while Hedge Fund Research (HFR) estimates a lower figure of $1.4 tril-
lion.# As would be expected in light of recent market disruptions, the
year 2008 was a difficult one for the hedge-fund industry. Hedge funds
experienced losses and redemptions and saw $155 billion of net out-
flows.> The outlook for 2010 is more promising. Deutsche Bank estimates
the industry to attract $222 billion of new funds, and thus nearly return
to pre-crisis levels.®

In spite of the recent downturn, these figures show that the industry
has grown approximately by a factor of five from $387 billion in 1998.
By comparison, over the same period, U.S. GDP has grown by only 64
percent and the mutual fund industry has grown by only 69 percent.’
Citadel Investment Group, which manages approximately $15 billion
of investment capital, accounts for nearly 10 percent of the daily trad-
ing volume of U.S. equities and is the largest market maker of options
in the U.S., executing approximately 30 percent of all equity options
trades daily (Griffin 2008). Further, ordinary investors and the gen-
eral public have been increasingly exposed to the hedge-fund industry.
This is due to new entities investing in hedge funds, such as pension
funds, universities, endowments, charitable organizations, foundations,
and “funds of hedge funds” that offer shares to the general public. In
addition, hedge funds have been somewhat loosening their investment
requirements.
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As for other active investment portfolios, hedge-fund performance
is typically measured by alphas and betas, as well as by Sharpe ratios.
Hedge-fund returns are often characterized through the use of a model
giving the following expected return-beta expression: E(r;) = o; + BiE(tm),
where E(r;) is the expected return of the fund and E(ry;) is the expected
return of the market as a whole. Alternatively, the model may use
only the return in excess of the risk-free rate. The beta coefficient mea-
sures the tendency of the return to rise or fall in correlation with the
market. The g;E(r;;) term should correspond to the return that can be
obtained with any diversified investment, for example an index fund.
The alpha term captures the return in excess of this amount. Roughly,
the beta and alpha terms measure the passive and active components
of the return respectively. Normally the beta should be the right bench-
mark for a hedge fund, and one would expect to be paying fees only
for the alpha. However, this is not the case, as the compensation struc-
ture of hedge funds is unique, typically a 2 percent management fee
based on assets under management and a 20 percent performance fee
on total return.8 Presumably, it is the ability to deliver high alphas
that is responsible for the rise of the hedge-fund industry. While some
papers have confirmed statistically significant positive alphas, others
have shown that a substantial part of the return can be explained by
simple stock, bond, and cash betas (Ibbotson and Cheng 2005). Gilli
et al. (2010) even show it may be possible to replicate the attractive fea-
tures of hedge-fund returns using liquid assets. They are able to construct
a portfolio that closely follows the CSFB/Tremont Hedge Fund Index but
is less sensitive to adverse equity-market movements. This would allow
investors to avoid high management fees, limited liquidity, potential
redemption fees, and ultimately the lack of transparency associated with
hedge funds.

The beta term can also be defined as the coefficient in a multiple
regression on the return of the market portfolio (typically Standard &
Poor’s 500 or other index), with the alpha term the intercept (Cochrane
1999). Some alpha and beta estimates from the literature are presented
in Table 1.1. In addition, Ibbotson and Cheng (2005) have also estimated
a breakdown of return between the management and performance fee,
and the alpha and beta returns. Working on an equally weighted index
of 3,000 hedge funds over the period January 1995 to March 2004, they
estimated the pre-fee return from the fund to be 12.8 percent, which con-
sisted of 3.8 percent going to fees, 3.7 percent from the alpha, and 5.4
percent from the beta. Table 1.2 summarizes the findings of Cochrane
(2005), based on regressions using CFSB/Tremont indices.
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Table 1.1 Alpha and beta estimates

Number
of hedge
Database Years funds
Source Alpha Beta used examined examined
Agarwal and 0.54to 1.25 N/A Hedge January 1,000
Naik (2000) depending Fund 1994 to
on hedge Research  December
fund 1998
strategy
Malkiel and 0.231 TASS 1996-2003 2,024
Saha (2004) (contempo-
raneous
betas) 0.393
(lagged
betas)
Goetzmann 0.3 N/A TASS January 1,221
and Ross (2000) 1994 to
May 2000
Brunnermeier N/A 0.42 merged April 1998 N/A
and Nagel database to
(2004) of MAR, December
TASS, and 2000
HFR
Table 1.2 Alpha and beta estimates across investment styles
Expected
Return
Style (%/mo) a b a3 b3
Index 0.64 0.46 0.28 0.36 0.44
Std. errors 0.20 0.17 0.04
Short -0.53 0.10 —-0.94 0.13 —-0.99
Emerging markets 0.39 0.00 0.58 —-0.07 0.69
Event 0.61 0.46 0.22 0.38 0.37
Global Macro 0.93 0.82 0.17 0.74 0.31
Long/Short equity 0.73 0.42 0.47 0.32 0.65

Source: Cochrane (2005) regressions using CFSB/Tremont indices at hedgeindex.com.

The Sharpe ratio is widely used in financial analysis (Sharpe 1994).
The Sharpe ratio SR measures the ratio of the return of an investment
earned in excess of the risk-free rate (typically the appropriate T-bill rate)
over the return volatility (measured by the standard deviation), for a
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given time period. Sharpe ratios are often characterized with the fol-
lowing expression: SR = w, where E(Ry) is the expected return of
the fund portfolio between dates t —1 and ¢, Ry is the risk-free return
(or other benchmark) in that period, and o the standard deviation of
the portfolio return (see Lo 2002). Roughly speaking, the ratio can be
described as the reward per unit of risk. Xiong (2009) finds that funds
with more assets tend to produce higher returns at lower levels of volatil-
ity, resulting in superior risk-adjusted performance. Lo (2002) has shown
that annualized hedge-fund Sharpe ratios figures, computed by multiply-
ing monthly Sharpe ratios by /12, are often overstated or understated by
as much as 65 percent due to positively or negatively serially correlated
returns. These estimation errors are attributable to approaches that do
not take into consideration the statistical properties of the underlying
returns. Lo (2002) shows that a more accurate measure of annualized
Sharpe ratios requires the use of appropriate statistical distributions for
the return history. There are many estimates of Sharpe ratios in the
literature. Tables 1.3 and 1.4 summarize a few findings.

One criticism is that the traditional measures of alphas, betas, and
Sharpe ratios are static in nature (i.e. based on return distributions at a
given point in time). Lo (2001) has identified the need for a new set of
risk analytics better suited to address the unique features of hedge-fund

Table 1.3 Sharpe ratio estimates

Number of
Risk-free Years hedge
rate per Database exam- funds
Source Sharpe ratio annum used ined examined
Agarwal 0.10 5% Hedge January 1,000
and Naik (quarterly Fund 1994 to
(2000) for Research  December
directional 1998
strategies)
0.46
(quarterly
for non-
directional
strategies)
Goetzmann 1.16 US 30 TASS January 1,221
and Ross (annual) day T-bill 1994 to
(2000) May 2000
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Table 1.4 Sharpe ratio estimates across investment styles

Annual
A}Ilmuallzed aﬁ]usted Number
Sharpe  Sharpe of hedge
ratio ratio Database Years funds
Mean SD Mean SD used examined examined
Convertible  2.38 3.66 1.85 2.55 TASS  February 1977- 176
arbitrage August 2004
Dedicated 0.05 0.59 0.19 0.46  TASS February 1977- 29
short-seller August 2004
Emerging 0.86 1.63 0.84 131 TASS  February 1977- 263
markets August 2004
Equity 097 124 106 1.53  TASS February 1977- 260
market August 2004
neutral
Event driven 1.71 148 149 148  TASS February 1977- 384
August 2004
Fixed- 2.59 9.16 2.29 586  TASS  February 1977- 175
income August 2004
arbitrage
Global 0.60 092 0.70 0.90 TASS  February 1977- 232
macro August 2004
Long/short 082 1.06 0.81 1.07  TASS February 1977- 1,415
equity August 2004
Managed 0.34 091 0.50 0.88 TASS  February 1977- 511
futures August 2004
Multistrategy 1.67 2.16 1.49 2.05 TASS  February 1977- 139
August 2004
Fund of 1.27 1.37 1.21 1.22 TASS  February 1977- 952
funds August 2004

Source: Chan et al. (2006).

investments as the “next challenge in the evolution of the hedge-fund
industry.” Lo (2008a) has proposed new measures of performance that
capture both static and dynamic aspects of decision making on the part
of the hedge-fund manager, in an attempt to consider forecasting skills
that are also essential to successful active investment strategies. This new
methodology decomposes a portfolio’s expected return into two distinct
components. The first is a static weighted average of individual securities’
expected returns, which measures the portion of expected return due to
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static investments in the underlying securities. The second component
is the sum of covariances between returns and portfolio weights, which
captures the forecast power implicit in the manager’s dynamic invest-
ment choices. The key assumption is that at any given date portfolio
weights are functions of the manager’s prior information. Thus the cor-
relation between portfolio weights and returns is used as a measure of the
predictive power of the information used by the manager to select his
portfolio weights. This methodology is particularly relevant for hedge-
fund strategies where both components are significant contributors to
their expected returns.

Another criticism of the alpha, beta, and Sharpe ratios measures is that
hedge funds may display nonlinearities that are not captured by linear
regression models. The distribution of hedge-fund returns displays non-
normal characteristics, which have been analyzed in the literature. For
example, Brooks and Kat (2002) have found that published hedge-fund
indexes exhibit high kurtosis, indicating that the distribution has “fat”
tails. Examining data from the Tass database from 1995 to 2003 for vari-
ous hedge-fund categories, Malkiel and Saha (2004) have confirmed that
hedge-fund returns are characterized by high kurtosis and that many
hedge-fund categories have considerable negative skew, implying an
asymmetric distribution. The shape of the probability distribution of
returns affects the Sharpe ratio. For example, Bernardo and Ledoit (2000)
show that Sharpe ratios are misleading when the shape of the return
distribution is far from normal.

One possible approach is to accept these limitations, recognizing that
the measures are not robust to manipulations, and instead to focus
on identifying strategies that “game” these performance measures, for
example techniques for maximizing the Sharpe ratio. Other approaches
attempt to come up with alternatives to the Sharpe ratio, for example
stochastic-discount factor-based performance measures (Chen and Knez
1996), or downside variance, a new concept in risk analysis that can be
used even when return series are not normally distributed. Downside
risk analysis focuses on downward exposure rather than total volatility.
The basic premise is that the investor has a threshold of desired per-
formance called the minimum acceptable rate of return (MAR), which
can be an index or a risk-free rate. Downside volatility is the volatil-
ity of returns below this benchmark. The Sortino ratio can be formed
as the return in excess of the benchmark over the downside volatility
and used as an alternative to the Sharpe ratio. The Sortino ratio (Sortino
and Price 1994) is a measure of risk-adjusted return based on the MAR
of each investor. Mamoghli and Daboussi (2009) show that hedge-fund
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strategies change ranks when the performance measure changes from
the Sharpe ratio to the Sortino ratio or to other alternative performance
measures. The use of the Sortino ratio allows taking into account the
asymmetric nature of the returns, which is not captured by the measure
of variance in the Sharpe ratio. Investors are also using maximum draw-
down as a measure of expected loss. The maximum drawdown reflects
the biggest past loss as a percentage of the prior high watermark. It
makes no assumptions regarding distribution, and hence is robust to
skewed distributions. For an example of the use of maximum draw-
down to analyze performance of a fund of hedge funds, see Heidorn
et al. (2009).

The main source of leverage for hedge funds is collaterized borrow-
ing through repo markets and prime brokers. Because hedge funds have
been virtually unregulated, they are not required to report their use of
leverage and face no capital adequacy requirements. Leverage can be
defined in balance-sheet terms, as the ratio of borrowing to net worth
(equity). However, this definition fails to capture another implicit source
of leverage, the additional embedded leverage of derivative products in
which hedge funds have traditionally invested. This definition is also
static and fails to capture the links between the ease with which a hedge
fund can borrow and the fund assets’ market liquidity. Brunnermeier
and Pedersen (2009) provide a model that links an asset’s market lig-
uidity with traders’ funding liquidity, showing the interconnectedness
between the two. In this model, market liquidity is defined as the differ-
ence between the transaction price and the asset’s fundamental value,
while funding liquidity is defined as the ability to raise cash at short
notice. Brunnermeier and Pedersen (2009) show that a mechanism of
mutual reinforcement between market liquidity and funding liquidity
may result in liquidity spirals. For example, the tightening of funding
lowers market liquidity, leading to higher margin requirements, which
in turn further accelerates the tightening of funding standards (margins
are the difference between the security’s price and collateral value and
must be financed by the investor’s own capital). More generally, while
solvency itself is typically determined as a “stock” value, funding lig-
uidity can be expressed as a flow constraint, whereby at each point in
time money outflows are less than inflows and money held by the fund
(see for example Drehmann 2007 and Drehmann and Nikolaou 2009).
This flow constraint captures the liquidity spiral described by Brunner-
meier and Pedersen (2009). Further, leverage levels also rise and fall on
the basis of the fluctuations of the measured riskiness of existing assets,
which may be tied to macroeconomic cycles (see Adrian and Shin 2007).
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In this sense, leverage and its evolution can be thought of in terms of
economic risk relative to capital.

For these reasons, it has been difficult to estimate accurate leverage
levels in the hedge-fund industry. In the absence of clear reporting of
hedge-fund leverage, the size of market positions managed by hedge
funds compared to funds received from investor subscriptions is a good
preliminary indicator of leverage. As a whole, hedge funds controlled
approximately $3.7 trillion of market positions as of the end of 2008,
indicating on average leverage at a ratio of 1 to 1.10 However, there
are potentially vast differences between funds: for example, Long Term
Capital Management was very highly leveraged at a ratio of 28 to 1 (debt
to equity) at the end of 1995,11 as part of a strategy to multiply profit
on very tiny spreads,12 while Paulson & Co., an investment advisory
firm that currently manages approximately $36 billion in assets, is only
leveraged up to 33 percent of its equity capital.13 Prior to the current
financial crisis, around 70 percent of hedge funds was levered at less than
2 to 1.14 The industry also experienced some deleveraging in 2009. In a
survey conducted by Deutsche Bank at the end of 2008, only 12 percent
of participants said that they used leverage, and only a further 4 percent
indicated that they were interested in doing so, as opposed to 24 percent
and 12 percent respectively 12 months before.!> Thus, on average, the
industry is not as levered as some of the banking institutions.1® This
said, leverage is undisclosed to investors and to the government, and, as
we have mentioned, additional leverage embedded in certain products
is not really being measured.

1.4 A dynamic model

In order to show how an unregulated hedge fund follow a speculative
or Ponzi financing as defined in Minsky (1986), we want to introduce
a stylized model. To study this problem in a simplified way (a more
sophisticated dynamic decision model is sketched in the Appendix),
we propose a dynamic model of wealth accumulation where the stochas-
tic returns take on the form of a Brownian motion with mean reverting.
This type of model has been used by, among others, Campbell and
Viceira (2002), Wachter (2002), Munk et al. (2004), Platen and Semm-
ler (2009), and Brunnermeier and Sannikov (2009). Details of such
a model can also be found in Chiarella et al. (2007). As it is modi-
fied here, it can be seen to reflect well the risk-taking operations of
hedge funds.
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1.4.1 Returns to size

Standard economic theory on wealth accumulation suggests that the dif-
ference in wealth arises from income differences (shocks) and differences
in saving rates, discount rates, and risk appetite and tax treatment.
Cagetti and De Nardi (2006) give a comprehensive overview of the stan-
dard intertemporal economic models and the standard causes for the
increase in wealth.

Here we want to use a dynamic portfolio approach of the Campbell
and Viceira type, which includes not only a wealth equation but also
Brownian motions for returns. Yet, we want to argue that there are scale
effects from wealth, which might have to be considered when sketch-
ing such a model. In general we could imagine three types of scale
effects:

First, some investors have more or better information about expected
returns than others. Though it is commonly assumed that markets are
efficient and that no money is to be made by forecasting (all information
is already built into asset prices and returns), industry, firm, and product
knowledge, as well as knowledge on innovations, product development,
and future market share, is likely to give rise to better information and
higher expected returns.!” This has often been the case in industry devel-
opments such as the oil boom before World War I (WWI), the boom in
the auto industry after WWI, the boom in the steel industry during and
after WWI, the high-tech boom in the 1990s, the commodity price boom
after 1995, the real-estate boom after 2001, and the recent banking and
finance industry boom. Note, however, that there is also often manip-
ulation of information, in particular when there are stock options as
remunerations for executives.

Second, for large investors there are scale advantages, not only with
respect to information but also with respect to leveraging. Investment
opportunities can be explored more extensively with greater access to,
and lower cost of, credit. Levering, and over-leveraging, up to a ratio of
roughly 30 to 1 (see Section 1.3) has become one of the most common
and well-known strategies to harvest large gains from traditional as well
as new financial instruments in the recent past.18 Yet, these gains are
often only temporarily harvested, as discussed in Section 1.3.

Third, one might reasonably assume that larger income will imply
lower consumption rates and higher saving rates. This will result in a
higher proportion of funds being reinvested with the fund. Numerous
studies in the literature have used this assumption, showing that the
wealth will be built up faster with higher saving ratios. The faster build-up
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of wealth is an expected outcome of this strategy. There is lots of evidence
that higher income leads to higher saving rates.1?

An important mechanism of faster accumulation of wealth works with
borrowing and lending schemes. As mentioned in the introduction,
Minsky (1986) has introduced the financing practices such as hedge
finance, speculative finance, and Ponzi finance. In recent times, in par-
ticular with the Madoff case, a Ponzi scheme has become a well-known
term to the public. In testifying in front of Congress, Frankel (2008)
mentions the following elements of the Ponzi scheme:

Ponzi schemes are simple. A con artist offers obligations that promise
very high returns at seemingly very low risk from a business that does
not in fact exist or a secret idea that does not work out. The con artist
helps himself to the investors’ money, and pays the promised high
return to earlier investors from the money handed over by these and
later investors. The scheme ends when there is no more money from
new investors. (Frankel 2008)

Ponzi schemes, by their very nature follow Ponzi financing. However,
Ponzi financing does not necessarily imply the existence of a Ponzi
scheme. Ponzi schemes are deceptive in nature, relying on fraudulent
misrepresentations, while Ponzi finance simply entails an inability, in
the long run, to sustain payments with operating cash flow. We are
interested to explore the possibility of funds adopting Ponzi financ-
ing. Let us explain how this works in terms of a dynamic model of
wealth accumulation. We can use a model with mean reversion in
returns where the expected returns move in the long run to some
mean. This is one of the most common assumptions in recent asset
return modeling (see Munk et al. 2004). Consumption is neglected
here. For a more complex extended version of the model, which incor-
porates stochastic consumption and portfolio choice and can only be
solved numerically with a dynamic programming algorithm, see the
Appendix.

1.4.2 The wealth-generating process

Letus first define the wealth-generating process. It starts with the investor
turning over funds to a hedge manager and paying a fee,20 ¢;W;, with
¢t a percentage of the invested wealth, W;. To explain the income and
wealth process we use, as stochastic processes, Brownian motions - a
process for wealth, a process of a mean-reverting asset returns and an
interest-rate process. Models with mean reversion in returns are now
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frequently used in the portfolio modeling literature. The simplified
dynamic model can be written as follows (see Munk et al. 2004 and
Wachter 2002):

dw = {lop(re+x0) + A —ap)re Wy — g Wy — rth}dt + O'thdZt (A.1)
dXt ZAQ—Xt)dt—FO‘)(dZt (AZ)
drt = k(9 — rt)dt +UrdZt (A3)

Hereby, r;, denotes the short term interest rate, «t, the fraction of
wealth invested in risky assets, x; is the premium on risky assets, x is an
expected mean of the premium, which is assumed to be constant. We
here have assumed a time-varying equity premium, following a mean
reversion process, as in Campbell and Viceira (1999). There is a stochastic
shock imposed on each dynamic equation. A similar model is used in
Campbell and Viceira (2002: Chapter 5), where, however, a constant
expected premium is used. Moreover, 0 is the mean interest rate and 2
and « are adjustment coefficients. They represent adjustment speeds of
the equity premium and interest rates toward the mean. Moreover, the
dzt are the increments in the Brownian motions, possibly different for
all three Brownian motions.

We can think of the wealth process of equation (A.1) as representing
(long) bonds, equity, real estate, options, or commodities which could be
managed by a hedge fund. In addition, some investment is undertaken
with a risk-free interest rate, r;. We then interpret the wealth as obtained
from accumulated assets, a fraction being invested in risky hedge-fund
assets, indicated by oy, and a fraction invested in a risk-free investment,
(1 — o¢). Risk-free here means that the return is known over the holding
period. Thus, o;(r + x;) Wy represents the expected return from risky
assets. On the other hand, the risk-free asset generates an expected return
of (1 —ay)r;W¢. Moreover, P is the return that the hedge fund promises
to pay the investor. We may assume, for example, that the hedge fund
attempts to attract investors by delivering high returns. Those promised
returns will have to be paid the next time period, at least on average, if
the hedge fund wants to be perceived as credible. This, however, means
that the hedge fund has actually borrowed at a rate r?.

Thus, in the long run, and on average, the wealth W; of the hedge
fund grows if the positive returns on both the risky assets and the risky
free assets exceed the fee and the promised return r?. Yet, if mostly
the promised returns r? are set too high, on average the hedge fund
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persistently needs positive inflow of fresh funds in order not to become
insolvent.

1.4.3 The hedge fund management

The hedge-fund manager can view the above equation in a different
way. As mentioned above, the hedge fund promises returns in order to
obtain an inflow of funds. If 7 is set too high, the fund must persistently
achieve a higher return usual market return, r; + x;, which is the asset
return for risky assets (premium plus risk-free rate), in order to deliver the
promised return ¥ — or it must rely on a positive inflow of funds oy Wydz;
to be able to survive. Thus, it must persistently attract investors to the
fund. But as mentioned above, this means that the promise to pay high
returns, to attract investors, turns into the actual payment to the existing
investors. The hedge fund thus has to pay the existing investors those
returns.

So, in fact, one can say that the hedge fund borrows funds from
investors (that guarantees returns for new investors) at a rate r? but
receives possibly only a smaller return, possibly in excess of r¢, and below,
equal to, or above oy (ry + x¢) + (1 — at)r¢. When, positive returns r; + x¢
and r; are generated for the hedge fund, wealth rises for the investor on
average at the rate r; + x;. The value of the hedge fund can rise too as
long as the term in the Brownian motion oy W;dz; is positive (or has an
expected mean greater than zero).

1.4.4 The collapse of the hedge fund

If indeed r? is set too high, when the inflow of new funds dries up and the
increment in Brownian motion o W;dz; on average becomes negative,
the hedge-fund wealth must necessarily decline, go to zero, and finally
turn negative. The latter results will hold when suddenly funds are with-
drawn. This actually happened since the middle of the year 2008. Figure
1.1 represents typical results of our simulations of equations (A.1)—(A.3).
Curve W (wealth) represents the evolution through time of the market
value of hedge-fund assets. Additional borrowing by the hedge fund from
capital markets can also come in.2! Curve D (debt) represents the evolu-
tion of hedge-fund borrowing over time. Figure 1.1 shows that although
the hedge fund starts positive, it will end up in insolvency. The higher the
promised returns are, the more likely it is that the hedge fund will become
insolvent. Depending on whether the fund is leveraged, insolvency will
come at different points in time. If the fund has borrowed from capital
markets, the fund is technically insolvent as soon as the market value of
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Figure 1.1 Simulation of the insolvency of the hedge fund

assets falls below the value of debt (where curve W intersects curve D). If
the fund has no leverage, insolvency happens when the market value of
assets falls close enough to zero that the fund cannot deliver promised
return r”.22 At this point, with no further borrowing available or no new
inflow of funds from new investors, original investors have lost their
initial investment as the market value of hedge-fund assets falls to zero.
The same results hold when there is a sudden decline of inflow of funds
or when large withdrawals occur. Finally, note that if hedge fund only
earns return at the rate of r¢, or less, the bankruptcy will come earlier, as
in the Madoff case.

A recent article published in the Financial Times (Brewster 2008) evi-
denced that many investors in hedge funds had to withdraw funds
suddenly in the period of the financial market meltdown, 2008-2009.
This was due to other payment obligations, in order to make up for losses
somewhere else, or owing to forced deleveraging, making 2008 a record
year in its experience of such major redemptions. On the other hand, the
hedge funds have tried to impose “gates” against fast exits (for example,
some funds have split their assets into liquid and nonliquid baskets to
make it harder for investors to get money back immediately). The news
in the years 2008-2009 was full of those stories. If such a trend persists
continued withdrawals are likely to precipitate hedge-fund bankruptcies
and reveal the existence of Ponzi financing.
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1.5 The regulatory context and implications

Having shown that promised high returns and use of leverage to generate
above-average returns can result in some hedge funds running a Ponzi
financing scheme, we turn to the regulatory context. The lack of regula-
tory reporting requirements facilitates such financing in that managers
have the ability to claim to deliver returns in excess of actual returns.
Further, as already described, the size of the hedge-fund industry raises
the question of whether a new form of systemic risk is present, with the
added issue that the risk profile of hedge funds is not fully understood.

A new set of risk analytics is required to develop more accurate quan-
titative measures of things such as performance, illiquidity exposure,
probability of the fund’s survival, and systemic risk. For this pur-
pose, transparency and access to information is critical. In his written
testimony to the U.S. House of Representatives, Andrew Lo (2008b)
emphasized that any attempt to understand and measure systemic risk
required greater transparency on the part of hedge funds, and he stressed
the need to develop a new regulatory framework to that effect:

The first order of business for designing new regulations is to develop
a formal definition of systemic risk and to construct specific mea-
sures that are sufficiently practical and encompassing to be used
by policymakers and the public. Such measures may require hedge
funds and other parts of the shadow banking system to provide
more transparency on a confidential basis to regulators, e.g., infor-
mation regarding their assets under management, leverage, liquidity,
counterparties, and holdings. (Lo 2008b: 2)

1.5.1 The hedge fund: definition and structure

There is no legal definition of a hedge fund. The term is absent from fed-
eral securities laws. As many as fourteen different definitions have been
identified in government and industry publications (Vaughan 2003). A
hedge fund can be thought of as a catch-all provision designating any
privately organized pooled investment vehicle administered by profes-
sional investment managers whose interests are not sold in a registered
public offering and which, as such, avoids registration under the Invest-
ment Company Act of 1940. The Dodd-Frank bill has now adopted this
catch-all approach (hedge funds are largely defined by what they are not)
and defines a hedge fund as any investment company that has avoided
regulation under the Investment Company Act of 1940.

Hedge funds are typically structured as limited partnerships, a legal
entity characterized by the presence of both general and limited partners,
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to achieve maximum separation of ownership and management. General
partners have the authority to legally bind the partnership. As opposed to
limited partners, general partners have joint and several liability for the
debts of the partnership. A general partner typically manages the fund
for a fixed fee (usually a percentage of assets under management) and
a percentage of the gross profits from the fund (the “carry” or “carried
interest”). The investors are limited partners with no managerial over-
sight. Investors might invest directly in the fund, or via another fund
called a feeder fund (itself an offshore or U.S. fund), thus resulting in a
layered structure that allows each investor to obtain the best possible tax
treatment while allowing the hedge-fund manager to keep all assets in a
single entity (the master fund).

1.5.2 Lack of regulatory oversight

The Investment Company Act is legislation passed by the U.S. Congress
dealing with the regulation of investment companies. It applies to any
fund that issues securities and “is or holds itself out as being engaged
primarily ... in the business of investing, reinvesting, or trading in secu-
rities.”23 Among other things, the Investment Company Act requires
registration with the Securities and Exchange Commission (SEC) and
sets reporting requirements to investors.

Unlike their mutual fund counterparts, most hedge funds fell out-
side the scope of the Investment Company Act by availing themselves
of applicable exemptions, such as having 100 or fewer beneficial own-
ers and not offering their securities in a public offering,?* or because
investors are all “qualified” high net-worth individuals or institutions.2>
This explains why hedge funds have deliberately chosen not to raise
capital on public markets. Two recent examples of substantial private
initial offerings are that of Oaktree Capital Management LLC, which sold
approximately 14 percent of its equity for more than $800 million in May
2007, and Apollo Management LP, which privately raised $828 million
in August 2007. Both transactions listed equity securities on Goldman
Sachs & Co.’s nonpublic market, the GS Tradable Unregistered Equity
OTC Market (GSTRuUE).26

Hedge-fund advisers have also been exempt from regulation under the
Investment Advisers Act of 1940.27 The Investment Advisers Act is a
companion statute to the Investment Company Act and was primar-
ily designed to introduce record keeping and antifraud standards to the
investment advisory profession. Under the Act, investment advisers must
register with the SEC. An investment adviser is someone who, for com-
pensation, engages in the business of advising others about the value of
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securities or the advisability of investing in, purchasing, or selling secu-
rities.Z8 The SEC has authority to conduct audits and to examine the
records of investment advisers.2?

Hedge-fund managers have been typically exempt from registration
under the private adviser exemption, whereby any investment adviser is
exempt from registration who during the course of 12 months (1) has
had fewer than fifteen clients and (2) neither holds himself out generally
to the public as an investment adviser nor acts as an investment adviser
to any investment company registered under the Investment Company
Act.30 For this purpose, only the hedge fund itself (as opposed to the
investors in the fund) is considered to be a client of the hedge-fund man-
ager. The rationale is that a hedge-fund manager will typically manage
the assets of the fund on the basis of collective investment objectives
rather than individual investors’ financial goals and profiles. Because
investors do not directly receive customized advice, it appears appro-
priate to view the fund itself rather than each investor as a client of
the manager. Because of this technical point, most hedge-fund man-
agers have been exempt from registration, because hedge-fund managers
usually run fewer than fifteen hedge funds.

1.5.3 The SEC’s attempt to impose mandatory registration

Concerned with the growth of the industry, and with the increased
exposure of ordinary investors to such funds, the SEC sought to estab-
lish greater transparency through mandatory registration of hedge-fund
advisers under the Advisers Act, taking the position that one can look
through to the investors in the fund as clients of the adviser for the
purposes of the private adviser exemption.3! Under this interpretation,
most hedge-fund managers would have had more than fifteen clients
and would have had to register by February 1, 2006.

The expectation was that through registration the SEC would be able
to gather “basic information about hedge fund advisers and the hedge
fund industry,” as well as “oversee hedge fund advisers,” and “deter or
detect fraud by unregistered hedge fund advisers.”32 Under this pro-
posal, advisers would have had to adopt record-keeping procedures
subject to periodic audits by the SEC and to supply information (financial
statements) to investors concerning their results of operations.

Challenged by a hedge-fund manager, the SEC was eventually struck
down for lack of statutory grounding by a DC circuit decision on June 23,
2006.33 The decision rejected the SEC’s interpretation of the word
“client” as establishing a direct client relationship between investors
and hedge-fund managers that would have been inconsistent with the
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Advisers Act as a whole. The Court also highlighted that regulating
investment companies on the basis of the number of investors would
appear somewhat misaligned with the SEC’s proclaimed concern with
the national scale of the fund’s activities. Reliance on some financial
metric, such as the volume of assets under management, or the level
of leverage, would seem more appropriate. This required comprehen-
sive new legislation rather than twisted interpretation of the existing
statutes.

1.5.4 Consequences of lack of regulatory oversight

One consequence of the lack of regulatory oversight has been that hedge
funds could participate in highly complex financial transactions inacces-
sible to other regulated market participants, thus furthering the growth
of the industry and exacerbating the potential for systemic risk. Another
consequence was that hedge funds typically remained secretive about
their positions and strategies, even to their own investors, asserting the
proprietary nature of trading techniques and algorithms.

Even though they were not obligated to, some hedge-fund managers
did voluntarily register with the SEC so as to give the market a higher
level of confidence and potentially to minimize the amount of due dili-
gence performed by new investors. It turns out that Madoff himself had
registered with the SEC in September 2006. One issue is that the SEC
may not have the resources needed to examine investment advisers on
a regular basis. If so, mandatory registration could lull investors into
a false sense of security. Madoff himself avoided attracting scrutiny in
spite of repeated letters to the SEC accusing him of running a large Ponzi
scheme. The SEC did not pay specific attention to the basic fact that
the fund relied on a small auditing firm with no other large clients and
no reputation on Wall Street. The SEC has tended to focus on funds
with high-risk profiles and high-risk trading strategies. Madoff avoided
drawing attention by supposedly engaging in plain-vanilla trading.

The issue is that in the absence of detailed financial statements and
the full disclosure of detailed trading strategies, there is typically not
enough information to allow investors to conduct basic due diligence
regarding the performance of funds. The lack of a regulatory framework
facilitated the ability for managers to claim to deliver returns in excess
of actual returns, in that there is no transparency regarding the fund’s
financials. One rationale for limited regulatory oversight of the hedge-
fund industry has traditionally been that high-stakes investors should be
capable of protecting themselves. However, this is untenable given the
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trend toward retailization, the involvement of institutional investors,
and the potential contribution to systemic risk.

1.5.5 Guiding principles for regulatory reform

Today, in the context of the current financial crisis, in a post-Enron,
post-Worldcom, post-Madoff world, the trust in financial markets has
been severely damaged. There is no reason to believe that private-sector
actors such as lawyers, accountants, internal-risk managers, and external
rating agencies can on their own ensure the reliability of the system and
well-functioning markets. There are two distinct goals of financial regu-
lation. One goal is to maintain market integrity and to protect investors
from fraud. The other is to monitor systemic risk and to preserve the
stability of the financial system. Ponzi schemes of the magnitude of the
recent Madoff scandal have implications for both.

To elaborate on that point, hedge-fund failures can contribute to
destabilize the economy and the financial sector because of the size
of the industry and the potential liquidation and unloading of posi-
tions, which may contribute to creating and accelerating downward
price spiral. Kundro and Feffer (2008) and Christory et al. (2008) have
shown that a majority of hedge-fund failures occur because of oper-
ational issues or/and fraud (such as misappropriation of funds, false
valuations, and Ponzi schemes), rather than unsuccessful investment
strategy.

Both adequate protection against fraud and regulation of systemic risk
require that the regulator have access to better financial information.
Every financial firm of a significant size should be disclosing timely finan-
cials (balance sheets and profit-and-loss statements). Specifically, with
respect to hedge funds, transparency regarding valuation policies, per-
formance attributes, portfolio exposures, and risk metrics, and limited
disclosure of positions has also been suggested (Mertzger 2008). For this
purpose, new inspection systems need to be developed for the regulator
to be able to process this vast quantity of information.

One issue is whether there should be different regulators for protec-
tion against fraud and guaranteeing the stability of the financial system.
The general consensus is that the Fed is more inclined to monitor
systemic risk, whereas the SEC has traditionally been focused on pro-
viding investors with accurate financial information and the prevention
of fraud so as to protect investors. In some jurisdictions, in the U.K.
for example, there is a unique regulator for the entire financial services
industry, the Financial Services Authority (FSA). A single regulator may
be in a better position to address both fraud and systemic risk concerns
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more efficiently. Either way, all reported financial information should be
consolidated for the purpose of monitoring systemic risk.

The regulatory framework had been focused on form over substance
and had not kept up with the development of markets and sophistica-
tion of new products that have contributed to blurring the traditional
roles of firms in the financial sector. If hedge funds are performing bank-
ing functions (e.g., extending loans to troubled companies), they should
be regulated as such. If banks are operating like hedge funds (e.g., mer-
chant banking and proprietary trading), or have hedge funds as operating
branches, those activities should be subject to banking regulation as
well. It is inconceivable that the asset-management operations of Bear
Stearns were left essentially unregulated, with no strict requirements for
transparency, to ultimately bring the firm down.

1.5.6 Proposals under the Obama administration

The Obama administration has recently passed the Dodd-Frank Act, a
major legislation designed to reform the financial sector and prevent
future bailouts. The Dodd-Frank Act passed the House of Representa-
tives on June 30, 2010, and was approved by the Senate on July 15,
2010. There are now registration requirements for investment advis-
ers to private funds with assets under management of $150 million or
more. Hedge funds will now have to register with the SEC and disclose
assets under management, use of leverage (including off- balance sheet
leverage), counterparty credit risk exposures, trading practices, valua-
tion policies, types of assets held, and side arrangements or side letters
(whereby certain investors in a fund obtain more favorable rights or enti-
tlements than other investors). Hedge funds will also have to have assets
audited by public accountants. Finally, the Act also specifically contem-
plates that the SEC be empowered to collect systemic risk data, reports,
examinations and disclosures. The SEC would make this information
available to the Financial Services Oversight Council, a newly created
Council designed to look after the stability of the financial system as a
whole.

The Act also significantly restricts proprietary operations undertaken
by commercial banks (provision known as the Volcker rule). Banks can
place up to 3 percent of their Tier 1 capital in hedge fund and proprietary
trading investments. The other aspect of the rule is that banks are prohib-
ited from holding more than 3 percent of the total ownership interest
of any private equity investment or hedge fund. This falls short of a
complete disallowance of proprietary desks, which had been originally
suggested and would have been equivalent to restoring Glass-Steagall.
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1.5.7 Proposals in the European Union

While systemic risk is cross-border in nature, in the European Union (EU)
regulatory oversight is still currently largely national. Data reporting is
voluntary and incomplete, and there is currently no mechanism for shar-
ing the information between regulators of member countries. Aware of
this issue, the European Commission has proposed a hedge-fund direc-
tive, the Directive on Alternative Investment Fund Managers that would
create a comprehensive regulatory and supervisory framework for hedge
funds at the European level. The proposed directive will provide har-
monized regulatory standards for all hedge funds (above a threshold of
€100 million of assets) and managers. These should include minimum
standards in relation to governance, ongoing capital requirements, and
processes, as well as enhanced transparency requirements for supervisors
and the general public. More specifically, some of the key requirements
the directive provides for include

1. valuation of fund assets to be undertaken by an independent
appraiser;

2. an annual report to be made available to investors and the regulator
with audited balance sheet and income and expenditure account, as
well as a report on the activities of the financial year;

3. disclosure of uses and sources of leverage (to be aggregated and shared
with other regulators in the EU), as well as limits to the maximum
amount of leverage;

4. disclosure of investment strategies and objectives of the fund;

. description of the fund’s liquidity risk management;

6. disclosure of dominant or controlling interests in listed or non-listed
companies.

W

Regulators are invited to communicate information to regulators of other
member states where this is relevant for monitoring systemic risk. Fur-
ther, aggregated information relating to the fund activities are to be
communicated on a quarterly basis by each regulator to the Economic
and Financial Committee for the Council of the European Union.

1.6 Conclusion

This chapter has shown a model that can be used to describe situations in
asset management where the use of leverage and the promise of above-
average returns to investors can result in some hedge funds following a
pattern of Ponzi financing. Unlike in a pure Ponzi scheme, this situation
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could develop inadvertently without necessarily involving fraudulent
misrepresentation. The illiquidity of some positions, the computation of
the most accurate mark of a security under mark-to-market accounting
rules, for example, might lead to a declared return that in the end exceeds
actual return. This issue is further accentuated when there are biases
in the data and a lack of transparency regarding valuation policies and
leverage. Given that hedge funds are investing in every kind of assets, and
that the size of assets under management has exploded in the past ten
years, this situation carries systemic risk that is not properly understood
nor measured. In that respect, the new regulatory framework developed
by the Obama administration is a welcome development.

One main challenge, going forward, is the measuring and monitor-
ing of systemic risk. The data-gathering effort proposed by the Obama
Administration would allow the regulator to consider the financial
system as a whole, potentially aggregating the information across insti-
tutions to develop systemic scenario analyses. However, regardless of
which regulatory agency is in charge on monitoring systemic risk (for
example, a new entity such as the Financial Services Oversight Council),
some key issues will include the ability to streamline the collection of a
comprehensive consolidated systemic-risk database and to develop new
formal measures of systemic risk.

Appendix: A stochastic dynamic model with preferences

The background of the stochastic dynamic model of wealth accumula-
tion by a hedge fund in Section 1.4 is an intertemporal decision model
with preferences that allows for consumption choice. In the model, we
have modeled the payoffs c; W; and r? W; as well as the fraction allocated
to risky assets, as determined by some law of motion depending on time.
Yet the payoffs as well as the fraction allocated to risky assets can be deter-
mined by an intertemporal decision model. In doing so, we use, as in
Section 1.4, a model with mean reversion in returns where the expected
returns move in the long run to some mean. This is one of the most com-
mon assumptions in recent asset return modeling (see Munk et al. 2004).
We want to discuss here a stochastic consumption and portfolio choice
model with preferences which has two choice variables and three state
variables. The basics of such model are analytically treated in Semmler
(2006: Chapter 16). The herein presented extended version, as compared
to the model in Section 1.4, also needs to be solved numerically, yet by a
dynamic programming algorithm. As state equations, we again can use
three Brownian motions as stochastic processes, a process for wealth,
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a mean-reverting interest-rate process, and an equity premium process.
This model explores consumption and portfolio choices at each point of
the state space. We hereby can obtain the decision variables. To avoid a
third state equation one could presume a constant expected equity pre-
mium as in Campbell and Viceira (2002: Chapter 3), see also Semmler
(2006), Munk et al. (2004), and Wachter (2002). Next, let us introduce
the full dynamic model, which can be written for power utility as:

00 1-y
rnax/ efat%dt (A.4)
«,C Jo I-y

s.t.
AW = {[ar (ry + %) + (1 —ap)r) W — ¢ Wi — P Wyldt + o, Wedz  (A.S)
dx; =A(x —xp)dt + oxdz; (A.6)
drt =K(9—Tt)dt+0'rdZt (A7)

Hereby, W; denotes total wealth, r¢, the short term interest rate, oy,
the fraction of wealth held as equity, x¢, the equity premium, and x;, an
expected mean equity premium which we assume to be a constant (with
a stochastic shock imposed on it). The parameter 6 is the mean interest
rate, » and « are adjustment coefficients, and dz; the increment in Brow-
nian motion. The terms ¢;W; and r” W; represent the payoffs for con-
sumption and guaranteed returns. Such a model can be solved through
dynamic programming (see Semmler 2006). Section 1.4 has introduced
and solved a simplified version of this model without choice variables.
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Notes

1. Illiquidity exposure can induce serially correlated returns to the extent that
mark-to-market accounting requires that a market value be assigned to
portfolio securities, even when there is no active market and comparable
transactions as is the case for illiquid investments. There is some discretion
on the part of the hedge-fund manager to compute the most accurate mark
for the security. Returns calculated on the basis of such computations typi-
cally exhibit lower volatility and higher serial correlation than true economic
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returns. There is the issue of “smoothed” returns, where, for example, a hedge-
fund manager might obtain different quotes for a given illiquid security from
different broker-dealers, and pick a linear average as the most accurate mark,
thereby minimizing volatility. There is the issue of serial correlation if the
broker-dealers do not frequently update their quotes, as is likely when there
is a low trading volume. Another source of serial correlation is performance
smoothing, where hedge-fund managers deliberately fail to report a portion
of gains in profitable months to offset potential future losses.

. This led to major regulatory overhaul designed to restore confidence in capital

markets, to promote the disclosure of important market-related information,
and to protect investors against fraud. The Securities Act of 1933 was the first
major legislation to regulate the new issue of securities to the general public
and to protect investors against fraud. The Securities Exchange Act of 1934,
designed to regulate secondary markets, created the Securities and Exchange
Commission and required ongoing disclosure for publicly traded securities.

. Hedge Fund Intelligence March 2009.

. HFR Global Hedge Fund Industry Report, Fourth Quarter, 2008.

. HFR Global Hedge Fund Industry Report, Fourth Quarter 2008.

. Deutsche Bank, 2010 Alternative Investment Survey.

. As per the Bureau of Economic Analysis, U.S. GDP was $8.793 trillion in 1998

and $14.441 trillion in 2008.

. This has been described as having option-like features in that the manager

has an incentive for volatility in returns (Cochrane 2005).

. Using the TASS database.
. On the basis of HFR industry report through 2008, Q3, and Credit Suisse for

2008, Q4, projections, Lo (2008b) estimated $1.6 trillion of net assets and
$3.7 trillion of total market positions at the end of 2008.

The firm’s equity had grown to $3.6 billion while assets had grown to $102
billion at the end of 1995. See Lowenstein (2001) p78.

See Lowenstein (2001) p26: from the very start, it was always contemplated
that Long Term Capital Management would be heavily leveraged, twenty to
thirty times of capital or more, in order to make a decent profit on very tiny
spreads.

John Paulson’s verbal testimony to the U.S. House of Representatives, Com-
mittee on Oversight and Government Reform, November 13, 2008 Hearing
on Hedge Funds.

UBS Hedge Fund Report (February 2009).

The participants in the survey are investors in hedge funds that collectively
manage more than $1.1 trillion in hedge-fund assets.

See to that effect Philip Falcone’s verbal testimony to the US House of Rep-
resentatives, Committee on Oversight and Government Reform, November
13, 2008, Hearing on Hedge Funds.

Information flux could include insider information obtained through infor-
mal networks, as the recent case of the Galleon Group may demonstrate. The
FBI arrested the founder of this hedge fund on allegations of insider trading.
There is the well-known Paradox pointing to those scale effects: “The people
who most need the money are worst credits risks and thus cannot get a loan,
whereas people who least need the money are best credit risks and thus once
again the rich get richer” (Tooby and Leda 1996).
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Early contributions include Fisher 1930; Keynes 1936; Vickrey 1947; Duesen-
berry 1949; Hicks 1950; Pigou 1951; Friedman 1957; Friend and Kravis 1957;
and Modigliani and Ando 1960. For more recent work, see for example Saltz
1999; Dynan et al. 2004; and Chakrabarty et al. 2008.

Typically between 1% and 2% of assets under management. Performance-
based fees can be up to 20% of returns.

Indeed, we have seen in Section 1.3 that hedge funds use leverage, albeit
in more limited proportions than banks. Prior to the current financial crisis,
around 70 percent of hedge funds were levered less than 2 to 1. At the end of
2008, on average, the hedge-fund industry had a 1-to-1 debt-to-equity ratio.
But there are great differences in leverage ratios between funds, sometimes
going up to 30 to 1.

We use the term “insolvency” rather loosely in that technically the fund is
not insolvent simply because it cannot deliver promised returns to investors.
However, as we have discussed, if the hedge fund wants to be perceived as
credible, on average it is committed to delivering r” to investors. In essence,
in terms of understanding long-term sustainability of the fund, this can be
interpreted as the hedge fund having borrowed at a rate of .

15 USC £ 80a-3 (a) (1) (A).

15 USC £ 80a-3(c)(1).

15 USC £ 80a-3(c) (7).

Apollo subsequently announced it would transfer the securities to the New
York Stock Exchange. It has been suggested that Apollo’s GSTRuE offering
may therefore have been a transitory step designed to save time initially and
to delay the time-consuming registration process until after capital had been
raised (Davidoff 2008).

15 USC £ 80b-1.

15 USC 3 80b-2 (11).

15 USC £ 80b-4.

15 USC 8 80b-3 (b) (3).

See Rule 203 (b) (3)-2 under the Investment Advisers Act, 17 CFR 8 275.203
(b) (3)-2.

Id.

Goldstein v. SEC, 451 F.3d 873 (DC Cir. 2006). Interestingly enough, the Fed
was opposed to this mandatory registration proposal. The SEC subsequently
tightened restrictions on investors who could invest in both hedge funds
and private-equity funds (investors must have owned at least $2.5 million
in investments). This measure failed to address systemic risk and was only
concerned with individual risk to investors.
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Inferring Risk-Averse Probability
Distributions from Option Prices
Using Implied Binomial Trees

Tom Arnold, Timothy Falcon Crack, and Adam Schwartz

2.1 Introduction

We generalize the Rubinstein (1994) risk-neutral implied binomial tree
(R-IBT) model to a physical-world risk-averse implied binomial tree
(RA-IBT) model. The R-IBT and RA-IBT trees are bound together via a
relationship requiring a risk premium (or a risk-adjusted discount rate)
on the underlying asset at any node. The RA-IBT provides a powerful
numerical platform for many empirical financial option and real option
applications; these include probabilistic inference, pricing, and utility
theory applications.

For ease of exposition, we have estimated a constant risk premium?! RA-
IBT using Standard & Poor’s 500 index options. In our implied tree, this is
consistent with assuming a representative agent with a power-like utility
function where the constant relative risk aversion (CRRA) parameter is
allowed to vary across states and through time. With these assumptions,
we estimate the pricing kernel (marginal rate of substitution) and implied
relative risk aversion (RRA) of our agent and compare and contrast our
results with other authors’ findings. Other empirical applications can be
found in Arnold et al. (2009).

2.2 Motivation and literature review

2.2.1 Motivation/introduction of risk-averse trees

The traditional binomial tree model of Cox, Ross, and Rubinstein
(CRR) (1979) is very powerful, but it is constrained in many respects.
The CRR model cannot, for example, reproduce some well-known

35
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empirical results (e.g., fat tails, skewness, volatility smiles, etc.), and any
probabilistic inferences from a CRR tree must be risk-neutral inferences
not risk-averse probability inferences from the physical economy.

The Rubinstein (1994) implied binomial tree (R-IBT) generalizes the
CRR model to fit the prices of a series of traded options of the same matu-
rity. The R-IBT allows significant deviations from lognormality of prices
(and from normality of continuously compounded returns), allows the
up-jump probability to vary throughout the tree, and allows the local
volatility structure to vary throughout the tree. The R-IBT model is still
constrained, however, in that the probability structure is risk-neutral;
and, therefore, like the CRR model, it does not allow probabilistic
inferences about the physical economy.

In this chapter, we begin with a generalization of the risk-neutral CRR
model to a risk-averse binomial tree (RA-BT). We then present a general-
ization of the risk-averse RA-BT to a risk-averse implied binomial tree
(RA-IBT). Like the R-IBT model, the RA-IBT model captures volatility
smiles and varying local volatility. It should be noted, however, that
both the RA-BT and the RA-IBT have one extra input compared with the
CRR and R-IBT models: The risk-averse trees need to be supplied with
a risk premium (or a risk-adjusted discount rate) at every node to make
them estimable. This risk premium feeds into a relationship that drives
a transformation from the risk-neutral trees to the risk-averse trees.

For empirical ease, we impose a constant risk premium in the RA-
IBT estimations in this chapter. Whether the risk premium is imposed
directly, or derived from utility assumptions for a representative agent, to
each such risk premium function over the nodes of an RA-IBT there cor-
responds a different implied risk-averse probability distribution for the
future prices of the underlying asset; this, in turn, implies a unique, fully
specified stochastic process for the underlying asset prices. Sensitivity
analysis is thus essential for any inferences.

The CRR, RA-BT, R-IBT, and RA-IBT models can each be used to value
and hedge both European-style and American-style options. Neither the
R-IBT model nor the RA-IBT model (under the conditions we develop in
this chapter) can be calibrated using American-style options.

2.2.2 Literature review

Rubinstein (1994: 793, footnote 25) describes implied trees developed by
Hayne Leland (1980) that use “subjective probabilities” (i.e., an individ-
ual investor’s non-risk-neutral probabilities). Stutzer (1996) also infers
“subjective” (i.e., risk-averse) probability densities from options data.
Stutzer differs from us, however, in that he uses diffusions rather than
binomial trees, he requires historical data that are not needed here, and



Inferring Risk-Averse Probability Distributions 37

he uses the risk-averse density to estimate the risk-neutral density for
risk-neutral pricing (the focus of his paper), whereas our focus is the
risk-averse density itself.

Jackwerth and Rubinstein (1996) infer probabilities from option prices
using binomial trees. However, Jackwerth and Rubinstein differ from us
because they use risk-neutral probabilities, whereas we use risk-averse
probabilities. We do though use their “smooth” objective function in
estimating our R-IBT.

Jackwerth (2000) recovers risk-neutral densities from S&P 500 options
and uses historical realized index returns to approximate subjective (i.e.,
risk-averse) densities. Jackwerth is thus able to infer aggregate absolute
risk-aversion functions for different states. When comparing pre- and
post-Crash of 1987 data, changes in the implied risk-neutral densities
that are not accompanied by changes in the risk-averse densities imply
changes in absolute risk-aversion functions that appear inconsistent with
any sensible economic theory (e.g., Jackwerth finds significantly negative
absolute risk aversion). Jackwerth suggests that overpriced put options
may explain the inconsistency, and he is able to construct profitable
trading strategies that appear to exploit this potential mispricing. Jack-
werth (1999) acknowledges that another explanation for inconsistent
risk-aversion functions is that his risk-averse distributions built using his-
torical observations may differ from true ex-ante risk-averse distributions
(Jackwerth 1999: 445-446). However, he rejects this as an explanation
because his trading strategies appear profitable (supporting the hypothe-
sis that his inconsistent risk-aversion functions are driven by exploitable
mispriced options, not by poor estimates of subjective probability). In
contrast, we show that we get wholly positive risk-aversion functions
for the same period and underlying index as Jackwerth’s, but using
implied techniques for both the risk-averse and risk-neutral densities (see
Section 5 for details).

Jackwerth (2004) is an expanded and updated version of Jackwerth
(1999). Jackwerth (2004) also has an expanded section on implied risk
aversion and useful summary tables of categorized literature. Jackwerth
(2004) labels his earlier findings (i.e., those in Jackwerth 2000) as a “pric-
ing kernel puzzle.” The puzzle is that, although the implied marginal
utility of wealth function should be monotonically decreasing in wealth,
Jackwerth'’s empirical estimates of it after the Crash of 1987 are locally
increasing in wealth near the initial wealth level. This suggests that, in
these ranges of wealth, the representative agent is risk-seeking not risk-
averse. Ait-Sahalia and Lo (2000: 36, Fig. 3) find a similar locally humped
plot of the scaled marginal rate of substitution using S&P 500 futures
prices. Our chapter is similar to Jackwerth (2000, 2004) and Ait-Sahalia
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and Lo (2000) in that we recover both risk-neutral and risk-averse dis-
tributions and compare them, but we differ in that we infer our ex-ante
risk-averse distributions from option prices using the RA-IBT rather than
from a backward-looking historical time series of the underlying, as do
these authors.

Another strand of the literature includes Bliss and Panigirtzoglou
(2004) and Alonso et al. (2009) and several other papers they cite. Like
Ziegler (2007), these authors exploit the Breeden and Litzenberger (1978)
result, rather than implied binomial trees, to derive risk-neutral densi-
ties. They then calibrate the parameters of a chosen utility function that
is used to risk-adjust the risk-neutral density. The objective of the cali-
bration is that the risk-averse density should best explain subsequently
realized returns (see further discussion in Section 5). This allows them to
discuss implied risk aversion. Their work is closely related to our own,
except that rather than use implied binomial trees, they use numeri-
cal smoothing techniques to account for volatility smiles over a range
of option strikes, and they use the Breeden and Litzenberger (1978)
result. Our approach has two advantages over these approaches. First,
our implied tree is guaranteed to be arbitrage-free (assuming there are
no-arbitrage opportunities among the quoted option prices), whereas
the Bliss and Panigirtzoglou (2004) numerical smoothing techniques are
not guaranteed to be arbitrage-free. Second, our approach uses a sim-
ple numerical estimation without splines or smoothing (we estimate an
R-IBT and then apply a simple direct transformation to it).

Blackburn (2006) focuses on the time-series properties of risk aversion
and whether the representative agent’s utility is time-separable or not.
Like Bliss and Panigirtzoglou (2004) and Alonso et al. (2009), he exploits
the Breeden and Litzenberger (1978) result and uses splines to derive
the risk-neutral density. Unlike these authors, Blackburn argues that a
calibration that maximizes the forecast ability of the risk-averse density
is inappropriate (because it looks ahead in a way not possible when the
agent is making decisions). Instead, Blackburn obtains a risk-aversion
estimate using five years of historical data. Blackburn (2006) thus differs
from us in that he does not use trees at all, and he uses historical data to
estimate the risk-aversion parameter.

2.3 Arisk-averse binomial tree (RA-BT) model

We now derive the RA-BT model, so that the implied version (i.e., the RA-
IBT) can be developed in Section 4. We begin by noting that generating
the RA-BT or RA-IBT trees relies upon three interrelated technical steps.
First, we derive the functional form of the transformation between the
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risk-neutral and risk-averse trees. Second, we need to generate a risk pre-
mium or risk-adjusted discount rate at every node of the RA-IBT to feed
into the transformation in the first step. Third, we need to combine
the first two steps and propagate risk-averse probabilities through the
risk-averse tree.

To work our way toward establishing the first two steps in the case of
the RA-BT, recall that a continuous-time option pricing model using the
risk-adjusted probability measure requires a stochastic path-dependent
risk-adjusted discount rate; no single risk-adjusted discount rate can cap-
ture the changes in the option’s risk associated with the moneyness
of the option.2 Black and Scholes recognize this with their “instanta-
neous CAPM” approach to deriving the Black-Scholes partial differential
equation (Black and Scholes 1973: 645-646; Ingersoll 1987: 323-324).
However, the (Black-Scholes) model that emerges is difficult to interpret
with respect to the physical world because the risk-averse probability
parameters fall out of the calculation.

The risk-averse RA-BT model is similar to a discretized version of
the original Black-Scholes instantaneous CAPM derivation that allows
for changing risk-adjusted discount rates. The numerical discretization
allows us to infer physical-world parameters from the tree — an infer-
ence not explicitly available in the closed-form continuous-time (i.e.,
the Black-Scholes world) limit of the RA-BT pricing model.

To generate the RA-BT model, begin with the assumptions of the CRR
model as follows. Consider an asset with spot price S at time . From time
t to time f+ At, the asset price either moves up by a multiplicative growth
factor u = e7VAl , or moves down by a multiplicative growth factor d =
e~oVAL Assume a constant continuously compounded riskless interest
rate r, so the riskless growth factor is R=e"2! over the time step. Let V; be
the time-t price of a European-style derivative that, at time t+ At, has the
value V, in the up state and V,; in the down state. Let g = (R—d)/(u—d)
denote the fixed CRR risk-neutral probability of an up-move. Then, to
avoid arbitrage, the CRR model says that equation (2.1) holds for the
value of the European-style derivative over the time step At:

Vi = —ErN (Vitat)

[9Vu+(1-q) V4] (2.1)

(i) v (=) ]

where Epy (-) is the risk-neutral probability expectations operator.

T~ ~ TR~ T
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Arnold et al. (2009) give both equilibrium and no-arbitrage derivations
to show that, if K = ekA! is a risk-adjusted compounding factor over
time step At, then p= (K —d)/(u—d) is the risk-averse probability of the
up state and equation (2.2) holds for the value of the European-style
derivative over the time step At:

1 Vy—V
Ve=% [E(VHM) - (ﬁ) (K—R)]

—2{lovar 0= val- (=g - w)

where E(-) is the risk-averse probability expectations operator. That is,
given an estimated CRR tree and a risk-adjusted discount rate k (or a
risk premium k —r), we can deduce the risk-averse probability p for any
up-move in the CRR tree. The derivative pricing is identical between
equations (2.1) and (2.2), but the probabilities are risk-neutral in (2.1)
and risk-averse in (2.2).

Equation (2.2) is, essentially, a certainty equivalent formula. It is
derived from the relationship in equation (1), and it forms the basis for
our first technical step. It provides a means of deducing risk-averse prob-
abilities to overlay on the price structure of an underlying risk-neutral
tree. Our RA-BT tree is, thus, a CRR tree transformed by replacing risk-
neutral probabilities with risk-averse probabilities (see Arnold et al. 2009
for more details and Arnold and Crack 2004 for an application).

The second step is to generate a risk premium or risk-adjusted discount
rate to feed into each node of the no-arbitrage transformation between
risk-neutral and risk-averse trees. The risk premium can be derived from
an asset pricing model, such as the CAPM. In the case of a macro asset
(e.g., the S&P 500 index portfolio), a representative agent argument frees
us of the CAPM assumptions, and the risk-adjusted discount rates that
feed into each node of this transformation can be derived using gen-
eral assumed utility functions for the representative agent (Arnold et al.
2009).

Note that, for any given node, each admissible k produces the same
option valuation at that node (admissible k requires —o+ At < kAt <
o~/At or, equivalently, d < K < u to avoid negative risk-averse probabili-
ties). That is, the risk-adjusted discount rate k determines the risk-averse
probability p and, by construction, k and p offset each other within the
pricing equation to leave the option value unchanged. In fact, one must
be cautious in interpreting p as the risk-averse probability of an up-move
at a node, because any admissible k produces the same option valuation
at that node (see Arnold et al. 2009 for more details). This leads us to a

2.2)
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clause. The fidelity with which p reproduces the true risk-averse proba-
bility of an up-move at a given node of a one-step RA-BT tree depends
upon the accuracy in the choice of k as the true risk-adjusted discount
rate for the underlying security.

This fidelity clause is both a major strength and a slight weakness of
our chapter. It is a major strength because, once supplied with the risk-
adjusted discount rate k at any node, we can take that node on an existing
risk-neutral tree and transform it into a node on a risk-adjusted tree, while
retaining the derivatives pricing at that node. That is, we get existence
of a solution to the risk-averse tree driven by existence of a solution to
the no-arbitrage-driven risk-neutral tree, and we get it via a no-arbitrage
transformation between the two trees at that node. The fidelity clause is
a slight weakness because the risk-averse probabilities inferred from the
RA-BT (and subsequently from the RA-IBT, as discussed below) are only as
good as the discount rate fed into the transformation between the trees.

The third step is to propagate probabilities through the tree. It is almost
trivial in the case of the RA-BT. The multi-period RA-BT model follows
immediately from the single-period model in equation (2.2) simply by
applying the single-period model iteratively backwards through the tree.
The values for the underlying asset price in the risk-averse tree are iden-
tical to the values for the underlying asset price in the CRR tree. In the
special case where k =r at every node or, equivalently, K =R at every
node, the risk-averse model reduces to the CRR model. In the limit where
step size tends to zero, Black-Scholes-world pricing is obtained.

Assuming a constant risk premium in the multi-period RA-BT places a
restriction on the most general form of the RA-BT, where the risk pre-
mium varies freely with state and time. A constant risk premium in
the RA-BT is consistent with assuming power utility for a representative
agent.

2.4 The risk-averse implied binomial tree (RA-IBT)

We need to establish the same three technical steps that we established
for the RA-BT in building an RA-IBT. We establish the first two steps by
starting with an R-IBT. Rubinstein’s R-IBT is a multi-step binomial tree.
Each step in the R-IBT is a one-step CRR model (though it need not pos-
sess the traditional CRR property that u =1/d). The R-IBT (and thus each
of the one-step CRR trees of which it is composed) is estimated using a
calibration to market prices of traded European-style options. This cali-
bration allows the parameters of each one-step CRR model to be different
at every node within the R-IBT. By doing so, the final distribution of asset
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prices in an R-IBT need not be lognormal, even when step sizes tend to
zero. The R-IBT is well behaved and robust (Chriss 1997: 431). In prac-
tice, as long as no arbitrage violations exist among the option prices,
then a solution exists for the R-IBT (Rubinstein 1994: 783).

We can both establish that a solution to the risk-averse implied bino-
mial tree (RA-IBT) model exists and demonstrate how the solution is
related to the other binomial trees by asking what happens if, at each
node within an R-IBT, we transform the one-step CRR model there into
a one-step RA-BT model. That is, given risk-adjusted discount rate k at
that node and focusing on just one internal node of the tree, we replace
risk-neutral probability of an up-move g = (R — d) /(u — d) with risk-averse
probability of an up-move p = (K—d)/(u—d), where R and K are as
defined earlier. We do not change u or d, or the values of the under-
lying, or the value of the derivative at this node, just the probabilities.
The valuation formula at this node, looking ahead to the next two nodes,
then changes from equation (2.1) to equation (2.2). This is the first step
we needed to establish.

If we do exactly the same transformation for every internal node in the
tree, we create a new tree full of one-step risk-averse tree (RA-BT) models.
The new tree provides the same pricing as the R-IBT at each node. That
is, the underlying asset and any derivative have the same values at each
node on the new tree as they had in the R-IBT we started with — we
have a new tree that has risk-averse probabilities of an up-jump at any
step, risk-adjusted discount rates for the underlying, and a new pricing
formula (equation [2.2]) at each node. This new tree is our RA-IBT. If
a solution exists for the R-IBT (and we note above that it does in the
absence of arbitrage opportunities between the options), then we can
build our new RA-IBT tree using the transformation described above and
in detail in Arnold et al. (2009).

The second step is generation of the risk premium at each node to
feed into the transformation at the first step. We assume a constant risk
premium throughout the tree. This is not a requirement of the model
but rather an empirical restriction imposed here for ease of exposition.
This restriction is consistent with a representative agent that possesses a
power-like utility function (i.e., power utility where the CRRA parameter
varies with the state).

This new RA-IBT tree captures volatility smiles and excess skewness
and kurtosis. The probability structure in this tree is, however, no longer
risk-neutral but risk-averse. It has all the benefits of the R-IBT but without
the restriction to risk-neutral probabilities. Of course, where the risk
premium is zero, the RA-IBT reduces to an R-IBT.
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We have not yet mentioned explicitly how the ending nodal risk-averse
probabilities are generated in our RA-IBT. In the original Rubinstein
R-IBT, an optimization is performed, and the ending nodal risk-neutral
probabilities are the choice variables that are estimated. Rubinstein
(1994: 790) supplies a backward recursion that starts at these ending
nodal probabilities and works backward through the tree to deduce all
the u, d, and g parameters, which typically vary at each node (with
constant discount rate r for both the underlying and the option). In our
RA-IBT, something quite different is needed. Having already solved for an
R-IBT and propagated its ending nodal probabilities backward through
the R-IBT, we then apply the transformation described above to arrive at
the u, d, and p parameters, which typically vary at each node through the
RA-IBT. Recall that the transformation needs a risk-adjusted discount rate
k for the underlying at each node either from an assumed utility func-
tion or imposed (with utility consequences). The u and d parameters in
the RA-IBT tree are unchanged from those in the R-IBT tree. We may
then propagate the up-step probabilities p forward through the RA-IBT
to obtain nodal probabilities at each node, out to the ending nodes of
the RA-IBT. Arnold et al. (2009) demonstrate the propagation algorithm
in detail. This completes the derivation of the RA-IBT.

We now discuss another distinction between the R-IBT and the RA-IBT.
Rubinstein’s R-IBT possesses binomial path independence (BPI). That is,
each path leading to any given node arrives there with equal probability
(Chriss 1997: 417). The nodal probability at any node in an R-IBT is thus
simply the path probability times the number of paths arriving at that
node. Our transformation from the risk-neutral R-IBT to the risk-adjusted
RA-IBT does not, however, preserve BPL. It is not true that paths through
our risk-averse RA-IBT tree have equal path probability. Rubinstein forces
his R-IBT tree to have BPI so as to reduce the degrees of freedom enough to
be able to solve the problem and arrive at a solution that propagates natu-
rally backwards through his R-IBT tree. The fact that Rubinstein enforces
BPI in his tree yields his solution, which guarantees the existence of ours.
Our direct transformation of Rubinstein’s tree to ours is followed by a for-
ward propagation of the probabilities without ever needing to explicitly
work out path probabilities.

In summary, we rely upon three distinct but interrelated technical
steps. The first step is the derivation of the functional form of the trans-
formation that binds the risk-neutral and risk-averse trees. At any given
node in the tree, this transformation is a function of the risk-adjusted
discount rate or risk premium at that node. The second step is the ability
to derive this risk-adjusted discount rate at any given node. The third
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step is our demonstration of how to combine and implement these first
two steps and how to propagate risk-adjusted probabilities through the
risk-averse binomial tree.

2.5 Empirical analysis

2.5.1 The options data

We use intraday data on S&P 500 index options over the period from
January 1993 to September 1995. Twenty out of 33 possible sets are usable
after we eliminate data that do not provide an adequate cross-section of
prices.

Each month we select 10 call option quotes, with bid and ask prices in
excess of $0.50. The options are of different strikes but the same matu-
rity (two months, but varying between 59 and 61 days throughout the
period). We select options that are closest to the money and as close as
possible to 11:00 A.M. CST. For a given calibration, all of the quotes are
usually collected within a quarter of an hour. The index level is sam-
pled as close as possible to 11:00 AM. CST. The index level is adjusted for
dividends (i.e., the discounted value of future dividends during the life
of the option is subtracted from the index price based on historic div-
idend payouts collected from the S&P 500 Information Bulletin). Given
the short maturity of the options and the stability of the index over this
time period, using the actual dividends as a substitute for anticipated div-
idends appears reasonable. Further, for the same reason, the riskless rate
is used to discount the dividends. The effect of using an assumed higher
discount rate corresponding to the index for discounting the dividends
is negligible. Finally, we screen option quotes for arbitrage violations,
using a risk-free rate inferred from closing quote midpoints of US Trea-
sury securities that straddle the option maturity date (collected from the
Wall Street Journal).

Given the criteria for the data, 20 sets of options are available for
empirical analysis. Using a 200-step binomial tree, the RA-IBT model is
estimated using imposed risk premiums of 0.0 percent (this is the R-IBT),
3.7 percent, 7.5 percent, and 11.3 percent (i.e., RA-IBTs consistent with
power utility with varying CRRA). In total, 20 binomial trees are esti-
mated via optimization using 10 option quotes each (these are the R-IBT
trees); an additional 60 RA-IBT trees are derived as transformations of
the R-IBTs (three different risk premiums for each R-IBT). A CRR tree
for each of the 20 sets of options data is also computed for comparison
purposes.
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Table 2.1 Model price comparison with bid and
ask quotes of 60-day options (January 19, 1993)

Strike price Bid price Model price Ask price

405 32.0000 32.7518 34.0000
410 27.3750 27.9949 29.3750
415 23.0000 23.4068 25.0000
420 19.0625 19.0629 19.8125
425 15.0000 15.0581 16.0000
430 11.2500 11.4714 12.2500
435* 8.1250 8.3688 8.6250
440 5.1250 5.7877 6.1250
445 3.3750 3.7434 3.8750
450 1.7500 2.2497 2.2500

* Indicates the at-the-money option. The risk-free rate is
2.88 percent per annum. The annual implied volatil-
ity is 11.2 percent. The objective function is minimized
to a value of 0.0000425. These model prices are from a
200-step R-IBT using a lower bound on nodal probabili-
ties of 0.0000005. Identical model prices (to more than
10 decimal places) are obtained from the three RA-IBT
models with different risk premiums.

All the risk-averse RA-IBT models in this chapter are estimated by trans-
forming the solution to a risk-neutral Rubinstein R-IBT. The Rubinstein
R-IBT is estimated using an optimization routine that minimizes the
Jackwerth and Rubinstein (1996) smooth objective function subject to
pricing the traded options within the spread. In practice, the pricing is
very good. Of the 200 options we price in calibrating the R-IBTs (i.e., 10
options priced in each of 20 periods), only two are not priced within the
spread. One is priced at 1/1000th of a penny below the bid and the other
at 12/1000ths of a penny below the bid. Otherwise, all other options
are priced strictly within the spread. The RA-IBTs, by construction as
direct transformations of the R-IBTs, produce identical pricing to the
R-IBTs from which they are derived. Table 2.1 displays, as an example,
the R-IBT prices versus the bid and ask prices for the first set of options
(January 19, 1993). The dividend adjusted level of the S&P 500 around
11:00 a.m. CST was 433.78.

2.5.2 Marginal rate of substitution and implied relative
risk-aversion

We now consider the relationships between utility functions and prob-
ability densities. There are many reasons for doing this. For example,
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stochastic volatility type and jump diffusion type option pricing models
typically have skewed and kurtotic return distributions for the under-
lying security. In these models, a utility function is necessary to map
from the theoretical risk-averse probability return distribution of the
underlying security to the associated risk-neutral return distribution.
Generally, the utility function is chosen with convenience in mind and
not necessarily due to a particular economic rationale. Empirical work
that harvests information about aggregate utility from option prices can
help to shape the assumptions made in such models.

To use our estimated density functions for the S&P 500 to make infer-
ences about representative agent utility functions, we assume that some
unspecified equilibrium asset pricing model holds, that it applies in a
representative agent setting, and that the S&P 500 as a broad market
index serves as a proxy for aggregate consumption. For related discus-
sion, see Ait-Sahalia and Lo (2000), who in turn cite Brown and Gibbons
(1985) and also discuss the limits of these assumptions; see also Bliss and
Panigirtzoglou (2004).

Let fr_ipr(ST) and fra_isT(ST) denote the implied risk-neutral and
risk-averse density functions, respectively, that are inferred from our
IBTs for the future level S of the S&P 500.3 We exploit two relationships
between utility functions and probability densities. The first relationship
is that the ratio of the risk-neutral density to the risk-averse density gives
up to a constant that is independent of the index level, the marginal
rate of substitution (MRS) of the representative agent between consump-
tion at time T and time ¢, as shown in equation (2.3) (Ingersoll 1987:
187; Ait-Sahalia and Lo 2000: 27; Jackwerth 1999: 72, 2000: 436, and
2004: 53):

fR—1BTST)/fRA—IBT (ST) < U’ (ST)/U’ (St) = MRS (2.3)

The MRS is the “pricing kernel.” We will use the terms “MRS” and
“pricing kernel” interchangeably.

If the representative agent is risk-neutral, then we expect the MRS to
be unity. If the representative agent is risk-averse, we expect the MRS to
be downward-sloping as a function of wealth. Jackwerth (2000, 2004)
reports several authors finding that the MRS is locally upward-sloping
for some wealth levels near the initial wealth— a “pricing kernel puzzle”
because it means the representative investor is locally risk-seeking.

We find that the MRS is downward-sloping and well behaved for each
level of risk premium fed into the RA-IBT model (see Figure 2.1 for the 7.5
percent risk premium case). The time period for our data sample encom-
passes that of Ait-Sahalia and Lo (2000). Our results for the MRS are
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Figure 2.1 Scaled marginal rate of substitution (RP =7.5%)

Note: For the 7.5 percent risk premium case, and for each of the 20 months’
optimizations from 1993 to 1995, we estimate the scaled marginal rate of substi-
tution (MRS) (i.e., the pricing kernel) as the ratio fr_g7(ST)/fRA—1BT (ST). We then
average these MRS numbers across the 20 months’ estimations by first associating
each with the percentage change in the S&P 500 relative to that month’s dividend
adjusted index level $*. We calculate the average only where each individual den-
sity possesses a contiguous range of values that does not use the optimization’s
lower bound on the density of 0.0000005. Each tree’s ending nodes are different;
so, for each return level on the plot, we linearly interpolate between the individ-
ual estimates before taking the average. We show the average plus and minus two
empirical standard errors of the mean (SE).

quite similar to those in Ait-Sahalia and Lo (2000: 36, figure 3), though
their confidence interval is bordering on negative territory at high val-
ues of the index, whereas ours is clearly positive everywhere. Our results
are, however, quite unlike the oddly shaped, locally increasing pricing
kernels in Jackwerth (2004: 57, figure 11). The Jackwerth (2004) data are
from a much later time period than ours, and this could partially explain
differences in results.

The Ait-Sahalia and Lo (2000) MRS is calculated using nonparametric
techniques for the numerator and historical data for the denominator
in equation (2.3). The Jackwerth (2004) MRS is calculated using IBTs
for the numerator and historical data for the denominator in equation
(2.3). We differ from each of these authors in that we are the first to use
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wholly implied techniques for both numerator and denominator. Our
MRS results are much smoother than Ait-Sahalia and Lo’s and wholly
downward-sloping, unlike Jackwerth (2004).

The second relationship between utility and probability densities we
exploit is that we can estimate the implied Arrow-Pratt measure of RRA
using equation (2.6) (Ingersoll 1987: 38-39):4

RRA =S [fia_ g7 ST)/fra-1B1ST) ~ fi_pgr SD/fe_Br(ST)|  2.4)

Typical empirical estimates of the RRA range from about 0 to 55 (see
good summaries of prior findings in Ait-Sahalia and Lo 2000: 39, Table 5;
and Jackwerth 2004: 53-54). Jackwerth finds, however, clearly negative
values for absolute (and thus also for relative) risk aversion near initial
levels of wealth (Jackwerth 2000: 442, figure 3: 442). Negative RRA ties in
with locally upward-sloping MRS and forms his pricing kernel puzzle —
inconsistent with economic theory.

Our implied RRA numbers are wholly positive across all levels of
wealth, and they are of the order of 3-9, 7-18, and 9-27 for the 3.7
percent, 7.5 percent, and 11.3 percent risk premium cases, respectively
(middle case only shown). Our implied RRA numbers (Figure 2.2) are
similar to Ait-Sahalia and Lo’s (2000: 38, figure 4) in sign, size, and
behavior across states, but our plots are, again, much smoother than
theirs. Like Ait-Sahalia and Lo, we find economically and statistically
significant evidence against CRRA, and we find that RRA increases with
increasing wealth beyond current levels. Of course, varying CRRA is con-
sistent with our assumption of an imposed constant risk premium. Our
results are quite different from the clearly negative results in Jackwerth
(2000: 442, figure 3). Unlike our MRS results, the time period that Jackw-
erth uses to calculate his risk aversion in Panel D of his figure 3 (Jackwerth
2000: 442) overlaps substantially with the time period we use. Therefore,
different time periods are not the explanation.

The major difference between our analysis and Jackwerth’s is that we
use implied trees for the risk-averse density estimation and he uses his-
torical data. Although Jackwerth (2000: 445-446) dismisses his use of
historical data to estimate the risk-averse density as a cause of the puz-
zle, we suspect that this may be, at least in part, responsible for his
economically unintuitive results.

Ait-Sahalia and Lo (1998) criticize IBTs as possessing inherently nonsta-
tionary estimates relative to nonparametric techniques, but we certainly
do not see that in the results we present. In particular, in comparing our
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Figure 2.2 Implied Arrow-Pratt relative risk aversion (RP =7.5%)

Note: For the 7.5 percent risk premium case and for each of the 20 months’
optimizations from 1993 to 1995, we estimate the implied Arrow-Pratt RRA for
each two-month-ahead level St of the S&P 500 as St [fﬁA_IBT(ST)/fRA,IBT(ST) -
fé,IBT(ST)/fR—IBT(ST)]- We average these estimates over the 20 months’ estima-
tions by first putting them on an equal footing by associating each with the
percentage change in the S&P 500 relative to that month’s dividend adjusted
index level $*. We calculate the mean only where each month’s density (and its
slope estimate) possesses a contiguous range of values that does not use the opti-
mization’s lower bound on the density (0.0000005). Each tree’s ending nodes are
different; so, for each return level on the plot, we linearly interpolate between
the individual estimates before taking the average. We show the average plus and
minus two empirical standard errors of the mean.

MRS and RRA estimations with those in Ait-Sahalia and Lo (2000), we
note that our plots are much smoother. This difference in smoothness
may be because their nonparametric kernel estimations use a bandwidth
that is too small, though Jackwerth suggests that they may in fact have
oversmoothed their results (Jackwerth 2004: 54). Alternatively, the dif-
ference in smoothness may be because Ait-Sahalia and Lo estimate their
plots as a snapshot over one year, whereas we re-estimate our trees
20 times over three years and then average the results. Our averaging
may produce smoother results than their nonparametric technique, but
we would not expect this if our IBTs were inherently nonstationary, as
suggested by Ait-Sahalia and Lo.
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Bliss and Panigirtzoglou (2004) approach the stationarity issue from
yet another angle. Rather than using implied binomial trees, they use
Breeden and Litzenberger’s well-known result (1978) to deduce risk-
neutral densities from option prices. They then assume a utility function
(either power or exponential) and use it to obtain a risk-adjusted den-
sity function. By fixing the utility function and allowing the density
functions to be time-varying, they avoid having to assume that the den-
sity functions are stationary. The aim of their chapter is to calibrate the
parameters of the utility function so as not to be able to reject the risk-
adjusted implied densities as forecasts of subsequently realized returns
distributions. They find RRA estimates that decrease with increasing
horizon and little evidence of pricing kernel anomalies.

The bottom line is that we find no pricing kernel puzzle using wholly
implied techniques. Therefore, the representative agent is risk-averse
with no local risk-seeking behavior. We do find significant variation
in RRA across states that is inconsistent with an assumption of CRRA.
We also find that risk aversion increases with increasing wealth beyond
current wealth.

2.6 Conclusion

Our risk-averse implied binomial tree (RA-IBT) model generalizes Rubin-
stein’s risk-neutral implied binomial tree (R-IBT) model by allowing for
a nonzero risk premium on the underlying asset. The RA-IBT accom-
modates a risk premium that is time-varying and/or state-dependent,
depending upon either the assumed utility function of the representative
agent (in the case of a macro asset such as the S&P 500 index portfolio)
or a CAPM beta (in the case of an individual stock). We have imposed a
constant risk premium in our empirical work with S&P 500 index options
(consistent with assumed power utility with varying CRRA for a repre-
sentative agent). Our S&P 500 index options data run between 1993 and
1995. We estimate the pricing kernel (marginal rate of substitution) and
implied RRA and compare and contrast our results with other researchers’
results. In particular, we are the first to use implied techniques for both
the risk-neutral and risk-averse densities, and we find no “pricing kernel
puzzle” using these techniques (compared with other authors who use
historical data to generate the risk-averse density).
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Notes

1. In Arnold, Crack and Schwartz (2009) we show how to relax the constant
risk premium assumption and generate a risk premium at any node using an
assumed utility function of a representative agent, and we provide examples
for power utility and negative exponential utility.

2. Cox and Rubinstein (1985: 324) discuss a related problem with a discount rate
that is correct on average.

3. Strictly speaking, our discrete trees yield discrete probability masses associated
with ending discrete nodal values of the index. For our 200-step trees, we
associate the probability mass with the width of a range of index values about
the node, and we deduce the density f as the constant value of mass/width
over that range about that node.

4. In fact, we use RRA = (1 + p)[fpa_pr(P)/fRA-IBT(P) — [R_ip7(P)/fR-IBT (P)],
where p = S7/$* — 1 is the simple net return, so that we can put each of
the 20 months’ estimations on an equal footing and average across them to
get the mean RRA and its empirical standard error. This form of the RRA is
mathematically identical to equation (2.4)—although we have never seen it
published.
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Pricing Toxic Assets
Carolyn V. Currie

3.1 Introduction: The importance of pricing toxic assets

The term “toxic asset” is a nontechnical term used to describe certain
financial assets whose value has fallen significantly so that there is no
longer a functioning market for these assets. That is, there is no liquidity
in the market, and the market cannot clear. This term became common
during the financial crisis that began in August 2007 but predated the
global financial crisis, as it was used in 2006 by Angelo Mozilo, founder
of Countrywide Financial, who used the term “toxic” to describe certain
mortgage products in emails in spring of 2006, as revealed in SEC filings:!

“[The 100% loan-to-value subprime loan is] the most dangerous prod-
uct in existence and there can be nothing more toxic.” (March 28,
2006)

The majority of these assets were connected with residential mort-
gages which had been securitized, that is, bundled into groups of assets
and then onsold. The buyer could then borrow on the basis that these
assets had been assigned high credit ratings. Often they were onsold into
levered special-purpose vehicles, which had a mixture of equity, senior,
and junior debt, with subordinated debt. This subordinated debt was
then onsold into another special-purpose vehicle, which was similarly
structured. All derived their top credit ratings from the underlying par-
cel of mortgages. As a side effect, bets on credit ratings became rampant.
These credit derivatives were largely written by only three players — prin-
cipally a state-supervised insurance company, AIG. The value of these
assets was very sensitive to economic factors such as housing prices,
default rates, and financial-market liquidity. At the slightest faltering
of economic growth, the value of these assets started to deteriorate.

53
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The pricing problem with these assets is related to how to comply with
accounting standards demanding mark to market, which could have
resulted in huge write-downs and technical insolvency for some bank
and nonbank financial institutions. The term “zombie bank” was intro-
duced to describe banks that would have become bankrupt if their assets
had been revaluated at realistic levels.2 This resulted in a credit crunch
or in excessively speculative lending to compensate for past risk-taking.
The net result was a failure in the pricing mechanism, with buyers and
sellers unwilling to transact.

On March 23, 2009, US Treasury Secretary Timothy Geithner
announced a public-private investment partnership (PPIP) to buy toxic
assets from banks’ balance sheets. The government hype was,

An attractive feature of the program is that it will allow the mar-
ketplace to establish values for the assets — based, of course, on the
auction mechanism that will signal what someone is willing to pay for
them - and thus might ease the virtual paralysis that has surrounded
those assets up to now. For a relatively small equity exposure, the
private investor thus stands to make a considerable return if prices
recover. The government will make a gain as well.3

The PPIP has two primary programs. The Legacy Loans Program
will attempt to buy residential loans from banks’ balance sheets. The
FDIC will provide nonrecourse loan guarantees for up to 85 percent of
the purchase price of legacy loans. Private-sector asset managers and
the US Treasury will provide the remaining assets. The second pro-
gram is called the Legacy Securities Program, which will buy residential
mortgage-backed securities (RMBS) that were originally rated AAA, and
commercial mortgage-backed securities (CMBS) and asset-backed securi-
ties (ABS), which are rated AAA. The funds will come in many instances in
equal parts from the US Treasury’s Troubled Asset Relief Program monies,
from private investors, and from loans from the Federal Reserve’s Term
Asset Lending Facility (TALF). The initial size of the PPIP is projected to be
$500 billion.# Banking analyst Meridith Whitney argues that banks will
not sell bad assets at fair market values because they are reluctant to take
asset write-downs.> Removing toxic assets would also reduce the upward
volatility of banks’ stock prices. Because stock is a call option on a firm’s
assets, this lost volatility will hurt the stock price of distressed banks.
Therefore, such banks will only sell toxic assets at above-market prices.®
Hence, the pricing issue is critical. Will the US Government set up a clear-
ing house? Or will it design some type of open outcry, or managed open
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outcry?’ The pricing methodology will be the biggest factor in whether
the credit system recovers.8

3.2 Hedging the prices of agricultural and
mining products’

Agricultural protection plans are commonly used by banks to hedge
for price risk using commodity broking services strategies. The differ-
ent type of plans include commodity swaps, minimum priced contracts,
currency-protected commodity swaps, physical and forward sales, col-
lars, basis, limited liability commodity swaps, and commodity protected
commodity swaps.

A commodity swap plan is a derivative product formed by converting
the global price of the commodity into local weights and measures. In
the case of the commodity swap plan, contracts are mostly cash-settled. A
product can be easily bought and sold without having a commitment to
provide physical settlement. A commodity swap plan requires an under-
standing in initial and variation margins. Buyers get the right but not the
obligation to buy or sell an underlying commodity. A minimum priced
contract plan is designed as a minimum floor contract wherein clients
can design the floor.

Commodity price instability has a negative impact on economic
growth, income distribution, and the poor. Early attempts to deal with
commodity price volatility relying on direct government intervention
(for example, price stabilization schemes, floor prices, and guaranteed
prices) were generally unsuccessful. Although there may be a case for lim-
ited direct intervention in some circumstances, liberalization of markets
has resulted in the need for market-based instruments to help manage
commodity price volatility. Large commodity exchanges typically offer
such products (for example, futures and options), but there are substan-
tial barriers to developing these markets for all commodities and for
helping farmers to access existing markets. Key investments needed to
expand access to these services include public goods (price information
systems, data management systems), strengthening supply chain rela-
tionships, strengthening technical capacity in private service providers,
and educating potential users.

3.2.1 Managing commodity price risk

Governments in many countries have intervened in markets, often
through state economic enterprises, to insulate producers and consumers
from world prices. Most interventions have taken a nonmarket approach
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in the form of quota or buffer stock programs organized through state
marketing boards. However, government interventions have been costly
and have crowded out private-sector initiatives.

Price-risk management that relies on market-based products rather
than government guarantees and subsidies will involve a substantially
reduced overall role for government in administration. The long-term
objective must be for government to assume a regulatory role, oversee-
ing markets for risk management tools. However, the public sector can
facilitate initial development of these markets and/or improve access to
established foreign or international markets for these tools, thus ensuring
that needs of the poor are adequately addressed. Market-based systems
are most relevant for standardized commodities traded internationally in
large volumes, mainly coffee, cocoa, rubber, cotton, grains, sugar, and
oilseeds (and some livestock products). They are less applicable to high-
value, highly differentiated, or perishable products for which price risk is
managed through forward contracts, often in the context of integrated
supply chains.

The rationale and theoretical underpinnings of formal mechanisms
for managing price risk are reasonably simple. There are two basic
types of price-risk management tools: physical instruments and financial
instruments:

e Physical instruments involve strategic pricing and timing of physical
purchases and sales (such as “back-to-back” trading), forward con-
tracts, minimum price forward contracts, price-to-be fixed contracts,
and long-term contracts with fixed or floating prices.

e Financial instruments are exchange-traded futures and options, over
the counter (OTC) options and swaps, commodity-linked bonds, and
other commodity derivatives.

e Futures contracts involve the buyer (or seller) of a futures contract
agreeing to purchase (or sell) a specified amount of a commodity at
a specified price on a specified date. Contract terms (for example,
amounts, grades, delivery dates) are standardized, and transactions
are handled only by organized exchanges. Profits and losses in trades
are settled daily through margin funds deposited in the exchange as
collateral. Futures contracts are usually settled before or at maturity,
and they do not generally involve physical delivery of the product.

o Options contracts offer the right — but not the obligation — to purchase
or sell a specified quantity of an underlying futures contract at a pre-
determined price on or before a given date. Like futures contracts,
exchange-traded options are standardized, OTC options offered by
banks and commodity brokers. Purchase of an option is equivalent
to price insurance and therefore requires that a price (premium) be
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paid. Options include calls (which give the buyer the right to buy the
underlying futures contract during a given period and are purchased
as insurance against price increases) and puts (which give the buyer
the right to sell the underlying futures contract during a given period
and are purchased as an insurance against price declines).

3.2.2 Benefits

Market-based price risk management instruments have the potential to
provide producers with more certainty about the minimum price they
will receive for their crop (at the cost of higher revenues forgone), and
they may help producers make more efficient farm-management deci-
sions regarding output mix and input use. The elimination of worst-price
scenarios can provide incentives for investment in promising sectors
(which are often high risk/high return). Reducing market distortions fos-
ters diversification to new and more profitable agricultural enterprises.
Further, eliminating the primary reason for nonrepayment of loans —
an adverse move in commodity prices — can reduce the risk exposure of
producers or market intermediaries in the eyes of lenders and is likely
to result in improved access to (and terms of) credit for the sector as a
whole.

3.2.3 Policy and implementation issues

Targeting use of nonmarket mechanisms. Reforming existing nonmarket
interventions (such as price bands and floors) so that they are minimally
distorting will enable the development of market-based mechanisms
that “price stabilization” has tended to impede. Key to success of such
nonmarket schemes is the ability to accurately define the threshold
price, maintain discipline in implementation and include specific sun-
set clauses. Such schemes are appropriate only when major barriers to
market-based alternatives will persist into the medium term and where
there is a true underlying competitive advantage for the commodity
selected for the price floor scheme.

Commodity exchanges. Well-functioning commodity exchanges -
systems of price discovery — improve marketing efficiency for agricultural
products and open up new production and marketing opportunities to
producers. They reduce price risk (faced by both producers and buyers)
by improving overall market liquidity, enhancing stability of local trad-
ing networks and providing farmers with more certainty (through better
information) of expected future prices (upon which they can make better
managerial decisions).

However, out of all these schemes, by far the most popular is floor-plan
pricing.
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3.3 Floor-plan pricing

Floor-plan pricing mechanisms are hedging tools designed to assist in
mitigating the risk associated specifically with commodity price fluctu-
ations. This allows the farmer, subject to approval from the provider to
fix a price, to select a price range or to set a price floor/cap, up to three
years in advance for certain commodities. This may assist in planning
and budgeting with greater accuracy, achieving better control margins,
and reducing the time associated with monitoring price movements on
overseas commodity exchanges.
Key features include (worked for an Australian farmer):

1. a hedge limit based on a percentage of underlying production, trade

or procurement exposure;

2. the hedge can be established in either Australian dollars or other cur-
rency denominations. An Australian-dollar-denominated product will
eliminate the need to establish a foreign-exchange hedge as well (refer
table below);

. a maximum hedge term of up to three years (refer table below);

. firm intraday pricing in the local time zone;

. no exchange-traded brokerage fees or daily margin calls;

. no requirement to physically deliver your commodity;

. up-to-date market intelligence sourced both domestically and from
abroad.

NOY O W

Strategy reports are provided on a regular basis to assist in making the
most effective hedging decisions relevant to your long-term business
objectives.

3.3.1 Agribusiness price risk management solutions

Contract Specifications

Pricing
Maximum Reference
Term Minimum Unit of Choice of (Futures/ Hedging
Commodity (Years) Quantity Measure Currency Exchange) Strategies
Canola 3 50 metric  AUDor  Winnipeg  Swap,
tonnes CAD Commodity Floor,
Exchange Cap,
(WCE) Collar,

Forward
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Corn 3 100 metric AUD or Chicago Swap,
tonnes UsSD Board of Floor,
Trade (CBOT) Cap,
Collar,
Forward
Cotton 3 100 bales AUD or New York Swap,
USD Cotton Floor,
Exchange Cap,
(NYCE) Collar,
Forward
Sugar 3 100 metric AUD or Coffee Sugar Swap,
tonnes UsSD & Cocoa Floor,
Exchange Cap,
(CSCE) Collar,
Forward
Wheat 3 100 metric AUD or Chicago Swap,
tonnes UsSD Board of Floor,
Trade (CBOT) Cap,
or Kansas Collar,
City Board of Forward
Trade
(KCBOT)
Wheat 2 100 metric AUD ASX Milling Swap
tonnes Wheat

3.4 An example of floor-plan pricing using cattle!'®

An example will help illustrate the total process of hedging risk using
floor plans. Suppose a cattleman who wants to sell a load of feeder
cattle in early October checks the options quotes in June and finds he
could purchase an October feeder cattle option to sell (a put) at $60/cwt
for $2.75/cwt. To further localize this strike price, he adds a $1.00/cwt
(basis) since he normally sells 600-pound steer calves slightly higher in
October than the October futures price. Commission and premium inter-
est cost will be about $0.25/cwt so the $60 put would provide an expected
minimum selling price of $60+$1.00—$2.75—$0.25 or $58/cwt. By com-
paring this with his other pricing alternatives and his production cost,
he decides that the purchase of this put would be an appropriate strat-
egy for the 83 steers he plans to sell in October. He calls his broker and
advises him that he wants to purchase one “$60 October feeder cattle
put at $2.75.” He then forwards a check for $1,450 (500 cwt x $2.75/cwt
plus $75 brokerage fee) to his broker.



60 Carolyn V. Currie

As October approaches, one of these three things will happen: prices
stay the same; prices rise above the option strike price; or prices fall,
making the option valuable.

Alternatives are described below in Tables and Figures:!1

Table 1. Feeder Cattle Price Decline Example

Cash Market Feeder Cattle Option Market
June 1
Expect to sell 83 hd in early October, Buy an October Feeder Cattle put option at a
Expected basis =+1.00, So $60 strike price for $2.75 per cwt.
Expect minimum selling price of $58.00 Premium, trading cost $.25/cwt.
(Strike price - premium & trade cost + basis)
October 10
Sell 83 hd. feeder steers October feeder cattle futures trading at $55.
locally @ $56.00/cwt Sell $60 October put and collect $5 premium.
Results

Offset premium received - original premium &
trading cost paid = $5 - $2.75 - $.25 = $2.00

Cash price + gain or loss in options market =
actual price received OR $56 + $2 = $58/cwit.

Figure 1. Possible outcomes when a $60 Figure 2. Possible outcomes from a $64 and
October put is purchased, +$1.00/cwt. basis. $56 October feeder cattle put purchase,
+$1.00/cwt. basis

$70.00 ‘ — too Pet e $3.00 From & Trade Cort ‘ $70.00 T— $54 Pet  $5.20 From a Trade Cort Kl
B $68.00 g $68.00 [| -o- $56 Pet » $1.60 From « Trade Cort |+
'S $66.00 'S $66.00 e
2 o
g 86400 g $64.00 i
5 $62.00 5 $62.00 =
S $60.00 S $60.00 =
S $58.00 S $58.00 o
2 $56.00 < $56.00 bgs

$54.00 1 1 L $54.00 1 1 L

$50.00  $55.00 $60.00 $65.00  $70.00 $50.00  $55.00 $60.00 $65.00  $70.00
Actual market price Actual market price

However, consider if the cattleman had sold a call as well at an upper
price: he would have then collared his price instability and provided for
future uncertainty. This method is used to hedge gold price uncertainty
associated with the time lags involved in mining gold in Australia.

3.5 Pricing of toxic assets

In this section, a suggested pricing model is expounded that com-
bines the above elements of floor-plan pricing with Basel II methods
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of allocating capital to a risky portfolio. All that needs to change in the
model below is the default probabilities.

Given that the amount of capital allocated to a product, transac-
tion, business unit, or portfolio influences the ultimate profitability, in
terms of risk-adjusted return on capital, and given that capital is the
most expensive source of funds, capital allocation can be deemed to
be a principal driving force in a financial institution. This has been
the obstacle in the pricing of toxic assets — if such assets have to be
written down against capital then the pricing of risk premium has to
be adjusted upwards to compensate for the amount of capital allo-
cated. By combining the method of determining capital to be allocated
with a floor-plan pricing mechanism of puts and calls, it should be
possible to provide some certainty to the market and effectively to
unfreeze it.

We need to understand the concept of economic capital and the use of
risk contributions — the risk retained by a facility, or a sub-portfolio, post-
diversification — as the foundation of the capital allocation system. Risk
contributions can be absolute or marginal, the latter being the changes in
risk with and without an additional unit of exposure, a facility or a sub-
portfolio of facilities. Whereas absolute risk contributions are allocations
of the portfolio risk to the existing individual facilities or sub-portfolios,
being embedded in the correlation structure of the portfolio, marginal
risk contributions serve essentially for risk-based pricing with an ex-ante
view of risk decisions.

Because we need a system of monitoring and pricing risk and return
on the basis of risk adjustments (that makes performance comparison
across transactions or business units consistent), buyers and sellers of
toxic assets should consider systems of ex-post risk-adjusted performance
measurement (RAPM) or ex-ante risk-based pricing (RBP) as a method of
pricing in line with risk and with the overall profitability goal of a finan-
cial institution. In the first case, income is given, whereas the purpose
of RBP is to define what is its minimum level. The risk adjustments are
the risk contributions, which do not depend on the source of the risk.
The same calculations apply to market, credit, and operating risk con-
tributions and performance. The relationship of value at risk (VaR) and
risk-based capital is an essential consideration, as the VaR methodol-
ogy serves to define risk-based capital, or the capital required to absorb
potential unexpected losses at a preset confidence level, reflecting the risk
appetite of the bank. By definition, it is also the probability that the loss
exceeds the capital, triggering bank insolvency. That is, the confidence
level is equal to the default probability of the bank.
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So what is economic capital? It is the amount of capital that is needed
to protect an organization with a chosen level of certainty against insol-
vency due to unexpected losses over a given time period of, say, one year.
Hence, operational economic capital protects the company against insol-
vency due to unexpected operational losses. To determine the amount
of economic capital the firm must decide upon the level of certainty
with which it wishes to protect itself against insolvency - the higher
the chosen level of certainty, the greater the amount of economic cap-
ital required as well as the longer the period, the greater the amount
of economic capital needed. Economic capital is, hence, a number that
summarizes the current (market, credit, operational or overall) risk pro-
file of the company in a single figure. This figure serves as a measure for
understanding the absolute size of risk as well as the change in risk over
time, as well as enabling the comparison of risk across different business
units. Finally, it is the basis for assessing whether a sufficient return has
been earned given the size of the risk being taken.

3.5.1 Calculation of risk contributions!2

The mechanisms for calculating risk contributions are similar for mar-
ket risk, credit risk, and operational risk. They require loss distributions
but do not depend on the source of the risk. Capital allocations are the
absolute risk contributions and sum to total overall portfolio risk, while
marginal risk contributions do not. The importance of capital alloca-
tions are their input to RAPM on an ex-post basis, while marginal risk
contributions are relevant for pricing purposes, i.e. to new transactions.

Capital allocation aims at assigning all types of risk to the business
units that generate them, providing top-down and bottom-up links. We
can disaggregate and aggregate risk contributions according to any crite-
ria, as long as individual transaction risk contributions are available. For
instance, if several business units deal with one client, we can allocate the
risk contributions into subsets relative to each business unit according
to the type of risk. We can define standalone risk of a facility, which is
the loss volatility (LV) of a single facility. Marginal risk is the change in
the portfolio LV when adding a new facility to the existing portfolio. The
absolute risk contribution is the covariance of the random loss of this
single facility with the entire portfolio. These definitions can be applied to
the people, processing, and external events that are or may be connected with
facilities and portfolios.

Of the three definitions above, the two first are intuitive, and the
third is mathematical. The absolute risk contribution captures the risk
of a facility given that other facilities diversify away a fraction of its
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stand-alone risk. Risk contributions also depend on the overall measure
of portfolio risk to which they contribute. The simplest risk contribu-
tions are the contributions to the LV of the portfolio loss. These risk
contributions have the attractive property of adding up to the LV of the
portfolio.

Since it is common to express capital as a multiple of this portfo-
lio LV, risk contributions are converted into capital allocations through
the same scaling factor. Since risk contributions sum to the LV, capi-
tal allocations also sum to the portfolio capital. Because they add up
to the portfolio risk measure post-diversification effects, the absolute
risk contributions are a convenient basis for the overall portfolio cap-
ital allocation to individual facilities. The concept of risk contribution is
intuitive, but calculations use technical formulas requiring us to specify
the notation. Risk contributions always refer to a facility of obligor iand a
reference portfolio P. There are several risk contributions defined below.
The portfolio P is made up of Nfacilities. Each facility irelates to a single
obligor. The notation applies to both default models and full valuation
mode models. However, all examples use calculations in default mode
only for simplicity.

3.5.2 Risk contribution definitions

The stand-alone risk is the LV of a single facility. The absolute risk con-
tribution to the LV of the portfolio is the contribution of an obligor ito
the overall LV. Absolute risk contributions to the portfolio LV differ from
the risk contributions to the portfolio capital, which are the capital allo-
cations. The capital allocations relate to the risk contributions through
the portfolio LV. To convert absolute risk contributions to portfolio LV
into absolute risk contributions to capital, we multiply them by the ratio
m(«) of capital to portfolio LV.

The marginal risk contribution to LV is the change in portfolio LV when
adding an additional unit of exposure, a new facility, a new obligor, or a
new portfolio. For instance, the marginal risk contribution of an obligor
fis the variation of the LV with and without the obligor f(or a subset aof
obligors).

3.5.3 Notation to measure risk contributions!3

The marginal risk contribution to the portfolio LV and the marginal con-
tribution to capital differ. The first is the variation of the portfolio LV
when adding a facility or obligor, or any subset of facilities. The marginal
contribution to capital is the corresponding variation of capital. These
distinct marginal contributions do not relate in a simple way. The capital
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is K(«), with confidence level ¢ The two marginal risk contributions are:

MRC’;*f @vPy = LvPH —pvP

Pif
-

Unless otherwise specified, we use marginal risk contribution as the
marginal change in LV of the portfolio. If the multiple m(«) does not
change significantly when the portfolio changes, the marginal contri-
bution to LV times the overall ratio of capital to portfolio LV is a proxy
of marginal risk contribution to capital. This approximation is not valid
whenever the portfolio changes significantly.

MRC, T [K(@)] = K@t —K(@)P

3.5.4 Basic properties of risk contributions

The absolute risk contributions serve to allocate capital. The absolute
risk contribution to the portfolio LV of a facility ito a portfolio Pis the
covariance of the random loss of this single facility iwith the aggregated
random portfolio loss over the entire portfolio (including i), divided by
the LV of this aggregated random loss. The formula for calculating absolute
risk contributions results from that of the variance of the portfolio. Absolute
risk contributions to LV, times the multiple of overall capital to overall portfolio
LV, sum exactly to the portfolio capital. This is the key property making them
the foundation for the capital allocation system solving the nonintuitive issue
of allocating risks.

Marginal risk contributions serve to make incremental decisions for
risk-based pricing. They provide a direct answer to questions such as:
What is the additional capital consumed by an additional facility?
What is the capital saved by withdrawing a facility or a sub-portfolio
from the current portfolio? Marginal contributions serve for pricing
purposes.

e Pricing in such a way that the revenues of an additional facility equal the
target hurdle rate of return times the marginal risk contribution of the new
facility ensures that the target return of the portfolio on capital remains
equal to or above the minimum hurdle rate.

e Marginal risk contributions to the portfolio LV are lower than absolute risk
contributions to the portfolio LV. However, marginal risk contributions to
the portfolio capital can be higher or lower than absolute contributions to
the portfolio capital.
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The properties of absolute and marginal risk contributions serve to
address different issues. The key distinction is ex-post versus ex-ante
applications. Absolute risk contributions serve for ex-post alloca-
tions of capital based on effective usage of line, while marginal risk
contributions serve to make ex-ante risk-based pricing decisions.

3.5.5 Absolute and marginal risk contributions and their key
properties

To portfolio loss volatility LVP or capital KP

Absolute risk contribution e Sum up to LV

ARC (ex post view) o Capital allocation (ex post)

e Risk-based performance (ex post)
Marginal risk contribution Do not sum up to LV? or K?
MRC (ex ante view) o Risk-based pricing (ex ante)

A simple example illustrates these properties, avoiding using complex
maths. However, we need to explain the concept of undiversifiable risk.

With an existing facility, the absolute risk contribution is proportional
to the stand-alone risk. The ratio of the risk contribution of a given facil-
ity to the facility LV is lower than 1. It measures the diversification effect
at the level of a facility. The ratio represents the “retained risk,” or the risk
retained within the portfolio as a percentage of the stand-alone risk of a
facility. This ratio, RR1, measures the undiversifiable risk of the facility
by the portfolio:

RR; = undiversifiable risk/standalone risk = ACR;/o;

Risk contributions and retained risk have several attractive properties
that we demonstrate below. The RR of an individual facility is simply
identical to its correlation coefficient with the entire portfolio. Since
all correlation coefficients are lower than or equal to 1, this demon-
strates the general result that the risk contribution is always lower than,
or equal to, the stand-alone risk. This is intuitively obvious since risk
contributions are post-diversification measures of risk.

The facility RR depends on the entire correlation structure with the
portfolio. The higher the RR ratio, the higher the undiversifiable risk of
the facility. It is important to track the retained risks to identify facilities
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contributing more to correlation risk. Conversely, for diversification pur-
poses, using low RR guides the choice toward transactions that increase
the diversification of the existing portfolio.

We will show in a practical example that the summation of all absolute
risk contributions is the aggregated LV of the portfolio. Using the retained
risk, this LV is:

Up:ZRRi X 0}
i

If all cross-correlations are zero, the absolute risk contribution reduces
to the variance of the LV squared of the facility over the variance of the
portfolio. For a portfolio, the diversification measure is simply the ratio
of the aggregated LV of the portfolio to the summation of all individual
facility loss volatilities or stand-alone risk.

We now use a simple example to calculate various loss statistics includ-
ing risk contributions. The example uses a pure default model, building
on the example of the two-obligor portfolio with 10 percent default cor-
relation. We do not replicate all detailed calculations. Rather, we detail
the comparison of stand-alone and portfolio risk measures.

The examples below provide the details of exposures and the loss
distribution.

Standalone default probabilities and default correlations

Default Exposures X 4
Probability  and Xp

A 7.00% 100

B 5.00% 50

PAB 10.00%

Loss distribution (default correlation 10%)

Cumulated Confidence
Loss Probabilities Probabilities level
A & B default 150 0.906% 100.000% > 0.906%
A defaults 100 6.904% 99.094% > 7.000%
B defaults 50 4.094% 93.000% > 11.094%

Neither defaults 0 88.906% 88.906% Not significant
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The cumulated loss probabilities provide the loss percentiles. For
instance, the loss at the 7 percent confidence level is 50, and the loss
at the 0.906 percent confidence level is 100. When we use the second
percentile, we consider as a rough proxy of the loss at the 1 percent con-
fidence level. For confidence levels lower than or equal to 0.906 percent,
the loss is maximum, or 150. Between 7 percent and less than 0.906 per-
cent, the loss is 100. Between 11.094 percent and less than 7.00 percent,
the loss is 50.

3.5.6 Stand-alone expected losses and portfolio expected losses

The expected loss of obligor i is the default risk times the loss given
default in value. The expected loss for the portfolio of obligors is the sum
of individual obligor expected losses. The expected losses of A and B are
the default probabilities times the exposure, or 100 x 7 percent = 7 and
50 x 5 percent = 2.5 respectively for A and B. The portfolio expected loss
also results directly from the portfolio loss distribution considering all
four possible events, with single default probabilities lower than stand-
alone default probabilities. The probability-weighted average of the four
loss values is also 9.5.

Stand-alone Loss Volatility and Portfolio Loss Volatility

The stand-alone LV of obligor i in value is: LV; = 0; = X; x \/d; x (1 —d;).
The convention is that the exposure X is identical to the loss given default
or an exposure with a zero recovery rate. The loss volatilities of Aand B are
LVA =100 x /7% x (1 —7%) = 25.515 and LVB = 50 x /5% x (1 — 5%) =
10.897. The unit exposure volatilities are = /P (A) [1 — P(A)] = 25.515%
for A and = /P (B) [1 —P(B)] =21.794% for B.

Unit exposure volatilities and loss volatilities

Default Unit exposure  Exposure weighted
Facility = Exposures Probability volatility loss volatility
A 100 7% 25.515% 25.515
B 50 5% 21.794% 10.894

The direct calculation of loss statistics is replicated below. The LV is the
square root of the portfolio loss variance, or 28.73.
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Loss distribution statistics

EL 9.50
Loss volatility 28.73
Loss variance 825.36

3.5.7 Portfolio capital

Capital derives from the loss distributions and the loss percentiles at
various confidence levels. The portfolio loss percentile at 1 percent is
approximately L(1%) = 100. The expected losses of A and B are respec-
tively 7.0 and 2.5, totaling 9.5 for the portfolio. Capital is the loss
percentile in excess of expected loss, or 100—9.5 =90.5. If the confidence
level changes the loss percentiles change as well.

3.6 Conclusion

Developing a market for caps, collars, and floors for toxic assets as well as
a uniform methodology to assess the risk contribution of such portfolios
to financial institutions will unfreeze the market and reduce the like-
lihood of more systemic shocks from write-downs. This, together with
regulatory intervention mandating the application of Basel II method-
ology for assessing capital adequacy, plus suspension of mark to market
would aid complete recovery to eventual stability.
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A General Efficient Framework for
Pricing Options Using Exponential
Time Integration Schemes

Yannick Desire Tangman, Ravindra Boojhawon, Ashvin Gopaul,
and Muddun Bhuruth

4.1 Introduction

In numerical option pricing, spatial discretization of the pricing equation
leads to semi-discrete systems of the form

V() = AV (7)) + b(7), (4.1)

where A € R is in general a negative semi-definite matrix and b(r)
generally represents boundary condition implementations, a penalty
term for American option or approximation of integral terms on an
unbounded domain in models with jumps. With advances in the effi-
cient computation of the matrix exponential (Schmelzer and Trefethen
2007), exponential time integration (Cox and Matthews 2002) is likely
to be a method of choice for the solution of ODE systems of the form
(4.1). Duhamel’s principle states that the exact integration of (4.1) over
one time step gives
5
V(gjq) =TV () + AT+ / s e~ Alp(t)dt,
i
and approximation of the above equation by the exponential forward
Euler method leads to the scheme

yit+l =(pO(AAr)Vi+Ar(p1(AAr)b(r]~), (4.2)

where ¢ (z) = €* and ¢1(2) = (¢ — 1)/z.
In a recent work (Tangman et al. 2008b), we investigated the use
of exponential time-integration schemes for the numerical pricing of

70
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European options under both the Black-Scholes model (Black and
Scholes 1973) and Merton’s jump-diffusion (MJD) model (Merton 1976)
using a onetime step computation of ¢g. As we have noted, it is well
known that only fast evaluations of these ¢ functions will make imple-
mentation of exponential integrators (4.2) efficient. In this chapter, we
provide a more general and efficient framework for numerical pricing
of options for which the price process is allowed to follow a variety of
stochastic dynamics. Since most financial contracts usually have lin-
ear boundary conditions, we show that ETI can be easily adapted to
price a variety of options under various models and that it is very
competitive with existing numerical methods such as Crank-Nicolson.
We improve on our previous work by developing fast implementa-
tion of the ETI scheme for pricing barrier and American-type options
under various models including not only Black-Scholes and MJD but
also under stochastic volatility (SV) (Heston 1993), stochastic volatility
with jumps (SVJ) (Bates 1996) and CGMY (Carr et al. 2002) processes.
Our algorithms rely on efficient techniques for computing the matrix
exponential, and we present various numerical results indicating the
success of the framework developed here for pricing options. For Euro-
pean options, only four sparse linear systems are required to obtain
convergent option prices and hedging parameters making, ETI possi-
bly the fastest Black-Scholes partial differential equation (PDE) solver.
For pricing American options, we need to solve the linear comple-
mentarity problems (LCP) that arise. We make use here of an operator
splitting technique together with the exponential forward Euler scheme
to develop an algorithm with linear computational complexity. Extend-
ing to barrier options is straightforward by the simple implementation
of the boundary condition at the barrier level. Further improvements
in accuracy are achieved by employing a simple Richardson extrapo-
lation method, making ETI a robust framework for pricing financial
derivatives.

This chapter is structured as follows. In 4.2, we review the option pric-
ing problem formulation for European, barrier, and American options
under various models. Next, we describe the second order spatial dis-
cretization of the resulting PDEs or partial integro differential equations
(PIDEs) and implementation of the boundary condition that leads to
semi-discrete systems and show how to apply the ETI scheme. In 4.4,
we study efficient evaluation of the matrix exponentiation based on best
rational approximations (Schmelzer and Trefethen 2007; Trefethen et al.
2006). Numerical experiments are given in 4.5 followed by concluding
remarks in 4.6.
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4.2 Option pricing problem

We consider an economy consisting of a single risky underlying asset
whose price dynamics are driven by different stochastic differential
equations, thus characterizing various models. First, if the price S follows
the geometric Brownian motion,

dS; = (r — 8)Ssdt +o S; AWy, (4.3)

where r is the interest rate, § the amount of dividend, o the volatility
and W; is a standard Wiener process, then a European option which
gives the right but not the obligation to buy the asset at expiry T, solves
the initial-boundary value problem of the Black-Scholes type

282V ( 1 2) v

1
—o r—-8——-o0°)|——-1V, —co<x<o0, 0<1t<T,
27 ax2

oV
=LV
2 ax

Fr

(4.4)

after the log transformation x = log(S/E) where E is the strike price,
v =T —t and L represents the spatial operator. The availability of closed
form solutions has made Black-Scholes a very popular model. However,
empirical evidence showed that this model cannot capture observed mar-
ket features such as the fat tails and high peaks (asymmetric leptokurtic).
Moreover, calibration with market prices showed that the volatility is not
constant, as assumed by the Black-Scholes model and that market prices
do jump. This is why many other models consisting of jumps (Merton
1976) and stochastic volatility (Bates 1996; Heston 1993) have appeared
in the literature.

Merton (1976) was the first to explore option pricing where the under-
lying stock returns are discontinuous. For the jump-diffusion model, the
dynamics of the stock price process are obtained by adding discontinuous
Poisson jumps to (4.3) as

ds
Tt = (r— 8 — Ak)dt +odW; + (n — 1)dNy,
t
and the Black-Scholes PDE (4.4) becomes a PIDE of the form
AV 1 592V 1 5\ oV
L gt _5—= v
or 27 9x2 +<r 27 )ax 7T

o0 5 oV
+[ |:V(x+z, -V, 1) — (e — 1)a(x,r)]g(z)dz. (4.5)

—00
This is just an extension of the Black-Scholes model and allows for sud-
den price movements (jumps) that can happen even over a small time
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step, dt. Naturally, when the mean arrival time A of the independent
Poisson process dN; is zero, it reduces to the simple Black-Scholes model.
Here k =E(n—1) and (n — 1) represent the impulse function causing S to
jump to ;. For Merton’s model, the jump size distribution is assumed
to follow the normal density function

— *(Z*M;)Z/(ZG,Z)
Z) = e , 4.6
8(2) o, o (4.6)

with mean pj, variance O‘IZ and for this model, « can be evaluated ana-

lytically as exp(uj + 012 /2) — 1. A richer model was constructed in Carr
et al. (2002) based on the density function

esz CEGZ

g(Z) = Z1+Y IZ>0+ |Z|1+Y IZ<0r

leading to special cases of Kou’s double exponential model (Kou 2002)
for Y = -1, the VG process for Y =0, infinite activity models with finite
variation for Y € [0, 1] and infinite activity with infinite variation for
Y €[1,2]. It is well known that the discontinuity of the kernel at z=0
causes a lower order of convergence for difference schemes (Almendral
and Oosterlee 2007; Wang et al. 2007). In addition, for infinite activity
models, no diffusion (¢ = 0) is required for the viscosity solution to con-
verge. For a detailed discussion about jump processes, we refer to Cont
and Tankov (2004). We confine ourselves to Merton’s Gaussian distri-
bution and the CGMY process right now, but the pricing methodology
easily extends to other processes as well. When solving Equation (4.5),
the important numerical issue is that the nonlocal nature of the convo-
lution integral term present causes a dense matrix inversion for implicit
schemes. Discretization of this convolution integral results in a Toeplitz
matrix, and it is well known that fast Fourier transform (FFT) needs to
be applied for computational efficiency. Carr and Mayo (2007) observed
that for Merton’s model, part of the integral in equation (4.5) represents
the solution to a heat problem. In the next section, we will show how
the ETI framework can fully exploit this idea.

Instead of adding a jump component to the stochastic differential
equation (4.3), others have preferred to consider a nonconstant volatil-
ity. Heston (1993) proposed a model that assumes correlation with the
stock process itself. This model is very popular among researchers since
it admits a closed-form formula for European options, and it is easy
to implement. However, it results in a multidimensional convection-
diffusion equation with second-order cross-derivative. While the SV
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models give good calibrations for longer maturities, jumps are essential
to reflect the short maturity patterns. Thus, it seems logical that the most
generic model should be a combination of both SV and jump diffusion.
The SV] model was introduced by Bates (1996) and the stochastic dif-
ferential equations governing the asset price process S and the variance
process y > 0 are given by

ds;

< = =8 —adt+ AW+ (- DNy,
t

dyr =a(B —ypdt +yJydW?,

where th, Wt2 are standard Brownian motions and y is the volatility of
yt. Following Yan and Hanson (2006), the governing two-dimensional
PIDE becomes

av o1 82V+1 282V+ 82V+ s e LoV
oV _ 2,00V 12,07 OV (e s—ame—2y) Y
or 27 a2 T2V V2 TP iy 27) ox
Vv o0
+a(ﬂ—y)w—(r+k)v+)»/ [Vix+2z,y,7)] §(2)dz, 4.7)
—0o0

where p € [-1,1] is the correlation coefficient and g(z) is given by (4.6).
For A =0, it reduces to Heston’s SV model, and if y is also zero, we obtain
the simple Black-Scholes model.

Itis the feature of each option that characterizes the condition at expiry
and the boundary conditions at the ends of our computational domain.
For a European call option, these conditions are

V(x,y,0) = max(Ee* —E,0),
Vr(X,}’/T)=—rV(X/V/T); X — —00,

VXX(Xryl T) = VX(le/ r)l X — 00, (48)
and we can use one-sided approximations for the partial derivatives in
y at the boundaries. For PDEs and PIDEs in one dimension, we simply
omit the variable y.

A barrier option depends on whether the stock price hits a barrier or
not. For example, an up-and-out-call barrier has the same payoff and

lower boundary conditions as that of a European call option except for
an upper condition at the barrier x; as

V(xy,y,t)=0.

Nevertheless, most traded options are of American type, and for such
options no simple analytical solution exists. An American option that
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can be exercised at any time up to and including maturity, gives rise to
a linear complementary problem of the form

Vi>LV, V(X,7) > V(X,0),
(Ve =LV) A (V(X,7) = V(X,0)), (4.9)

where X consists of all the spatial dimensions involved, for example in
the SVJ model, X = (x,y). Therefore, for no-arbitrage to hold, the LCP
states that the value of an American option must always be at least the
payoff due to the early exercise feature.

4.3 Exponential time integration schemes

4.3.1 Black-Scholes

To describe ETI schemes, we first consider a European call option under
the Black-Scholes model. For a finite difference discretization of the
spatial derivatives in equation (4.4), we need to truncate the infinite
x-domain (—oo, 00) to a bounded domain Qx = (Xin, Xmax)- We therefore
consider a computational grid Qay C Q2x defined by

Qax = {x; €N : X; =Xmin +iAX,i=0,1,...,m, AX = (Xmax — Xmin) /M},

and define the central second-order approximations to the first- and
second-order spatial derivatives with respect to x by the difference
matrices
Dl = Ltridiag[—l 0,1] and D? = Ltridiag[l -2,1]
X7 2Ax T (Ax)2 L

respectively. Then, by discretizing the Black-Scholes operator L in (4.4),
we obtain the matrix

1 1
A= EUZD)% + (r —5— 502) D) —ry, (4.10)

where Iy € W™= is the corresponding identity matrix for x. It is easy
to implement the boundary conditions for a European call option by
setting the only element in the first row of A as A1 1 = —r and the linear
boundary condition is implemented by using the one-sided second order
approximation

Vi o — 4V 1 4+3Vim
2Ax !

Vx(Xmax, 7) =

to find the last row of D} and then equate the last row of D? to that
of D1.
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4.3.2 Merton’s jump diffusion

In order to solve the PIDE for Merton’s jump diffusion, we realize, as
in Carr and Mayo (2007), that the integral F = me(x+z,r)g(z)dz is
equivalent to the solution of a heat problem, and, for uy # 0, this
solution is translated by uy such that the PDE satisfied by F is the
convection-diffusion equation

OF 9%F 2y oF

2
2Ky OF T
It 9x2 "IZ ax’ 2’

—o<x<oo, O<t<
with same initial and linear boundary conditions as for the European call

problem (4.8). Hence, using the one-step exponential integration after
discretizing the spatial operator to obtain the semi-discretization matrix

B=D2+ <2‘%>D}“ we get

02
(%)
F=e V(x,0),

as the solution to the convection-diffusion problem which is also an
approximation to the integral term. Thus the European option price
will be

V(T) = eA+tE)Ty (), (4.11)

where Fy; = Aexp(Bo?/2). Here, we require a double matrix exponen-
tiation, and we will explain in Section 4.4 how this is done efficiently
by taking advantage of the commutativity feature of the differential and
integral operator.

4.3.3 Carr-German-Madan-Yor (CGMY) model

For the CGMY model, we also consider the PIDE (4.5), but here we
need to split the infinite domain of integration into Qa; = Qay and
Qaz+\Qaz Where Qa + is an extension of our domain such that the trun-
cation error of the integral approximation on the unbounded domain
is negligible. For example, we can take the domains Q7 = (-2,2) and
Qg+ = (—4,4). For jump processes such as in Merton’s model, a sim-
ple composite trapezoidal discretization of the integral part will give
second-order convergence (Tangman et al. 2008b). However, it is well
known that a lower convergence rate is observed for infinite activity
processes and the quadrature methods used in (Wang et al. 2007) are
essential in order to obtain second-order convergence. In general, a spe-
cial treatment of the singularity in the integrand at z = 0O is required
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(Cont and Voltchkova 2005), and we further need to split the integral
domain as Qg ={z:|z] < Az/2},Q1 = Qa7 \Qp and Qp = Qaz+\ (21 UQg).
Then approximating the integro term in the PIDE (4.5) over Q,« gives

6(A2)

FpVa,,« —AMADV (X, 1) —k(A2)Vx(x,T) + 3

VXX (XI 7:);

where A(Az) = ZZ,,EQAZ* 8(zj), k(Az) = szeQAz* g(zi)(ezi =1, Vg, rep-
Az

resents the option values in Qaz+, 6(Az) = [ 2, (ez—l)zg(z)dz (see
-7

Tangman et al. 2010 for details) and
FpVQaz =FL Vo +FmVaoua, +FrVgs

where Fp, Fyy and Fg are Toeplitz matrices. Here Q, and er represent
negative and positive nodes of Q, respectively and can be approximated
by the asymptotic option values for Vg, .

Then we can formulate (4.5) as the semi-discrete linear system

V@)= A+FA)V(@) +b), 0<t<T, (4.12)
where A is constructed in a way similar to equation (4.10) as

_02+5(A2)

A
2

2 A
D2+ (r s %‘(“) - K(AZ)) Dl - (r+A(A2)y,

(4.13)

and the remaining integral term b(7) = Ff, VQg +Fgr VQ;. For a call option,

VQZ =0and VQ; = Ee* — Ee™'". Integrating (4.12) with respect to time
gives

T
V(T) = At Ty 0y 4 eATIT / e~ AR Tp(r)dr, (4.14)
0

The special structure of the vector b(r) allows a closed-form expression
for the integral term in (4.14). It is easy to prove that the second term
on the right hand side of (4.14) becomes

h=Te1 (A+Fy) T) (Fren) — (A+Fyp) + D) 71 (eAH0T — =T (Frey),

n
where s = Ee*2 and &, is a vector with entries equal to E.

4.3.4 Stochastic volatility and stochastic volatility with jumps

In the SV and SVJ models, we can define the computational grid on y
and, hence, the difference matrices D}, D}% and Iy. Then, by using the
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Kronecker product ® we can easily approximate the spatial operator in
22
equation (4.7) to obtain the block tridiagonal matrix A € R *"" as

A= %y [Iy ®D,%] + %yzy [D% ®Ix] +ovy [(Iy ®D§) (D} ®Ix)]

1
+ <r—8 — ik — Ey) (yeDl)+a(-y) (Dyel)-r+n[l ek,
(4.15)

and construct V e R *1if m grid points are also used for Q. Including
jumps will also be trivial using Fjs = [Iy @A exp(Ba].2 / 2)} and the solution
is given by equation (4.11).

4.3.5 American options

Finally, to solve American options, we will combine ETI with the opera-
tor splitting technique proposed in Ikonen and Toivanen (2004). Their
method is based on transforming the inequalities in equation (4.9) into
equalities by the addition of an auxiliary term p(r)and for an American
option under the jump-diffusion model, this results in

V= (A+FM)V+b+P(‘C),

where b represents a constant vector since for American options, the pay-
off values are used for Vg, . On the other hand, b =0 if the method given
by Carr and Mayo (2007) is used. Then the constraints are enforced as

[V(XI 7:) - V(XI 0)] P(T) = 0/
VX, 1)z V(X,0), p@)=0.

The term p(r) acts as a penalty term, which is positive if the American
constraint is not satisfied and zero otherwise. Using the exponential
forward Euler scheme (4.2), we get

V(51 =90 (A+Fy) AD) V() + Aty (A+Fy) A7) (b+p(xp),
(4.16)

as a first step split solution with 7j;; = 7; + T/n. Then the American
option price and the new penalty term are computed by

V(tj41) =max (V(zo), V(g1 + Arp(z) ),

1 ,_
P30 =P+ = (VD = V). (4.17)



A General Efficient Framework for Pricing Options 79

It is obvious that the most important part of the implementation will
require the evaluation of the different ¢;(A) functions for /=0, 1 or, more
precisely, their action on the vector V.

4.4 The matrix exponential

In this section, to describe the method for evaluating ¢, we assume with
no confusion that A is already scaled by Az. Since Moler and Van Loan
(2003), most exponential-type integrators use Padé approximation with
scaling and squaring for computing the ¢; functions as suggested in
Beylkin et al. (1998) and Minchev and Wright (2005). The same tech-
nique is used by the “expm” function in MATLAB®, and, in our case,
since the semi-discretization matrix A is already scaled by Az, the method
works faster since less scaling and squaring is required. Recently, Ashi
et al. (2009) compared the accuracy and computational time of sev-
eral methods, and the scaling and squaring technique was found to be
efficient. However, the amount of work required is about O@m3). This
approach works well for matrices of moderate dimension, but in practice,
when A is large and sparse, we prefer methods that simply approximate
the action of the matrix function ¢;(A) on the vector V. In this set-
ting, one of the most promising techniques is based on best rational
approximations.

4.4.1 Best rational approximations via

Carathéodory-Fejér points

For the semi-discretization matrix A with eigenvalues in the left-half
plane, it is sufficient to study an approximation for e on z € (—o0,0]
in order to compute ¢;(A)V (Schmelzer and Trefethen 2007). Evaluating
the matrix exponentiation based on best rational approximation com-
puted via Carathéodory-Fejér (Trefethen et al. 2006) is very promising
since sparse direct solvers can efficiently be used to solve the resulting
shifted linear systems of the form (zjl —A)xj=V. Following (Schmelzer
and Trefethen 2007; Trefethen et al. 2006) and using the fact that a ratio-
nal approximation can be interpreted as a quadrature formula or vice
versa, we represent the rational approximation as the partial fraction
expansion

00(A)V ~ 2721 G-z~

The residues ¢; and poles z; can be computed via Carathéodory-Fejer

approximations and a MATLAB® code based on a singular value decom-
position of a Hankel matrix is given in Trefethen et al. (2006). In
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Schmelzer and Trefethen (2007), the code further considers the poles and
residues for all ¢; functions showing even better accuracy as I increases.
Instead of computing G and zj for ¢1, Schmelzer and Trefethen (2007)
used the common poles and residues of ¢y and obtained the relation

<p1(A)Vzz7zlciz;1(A—ziI)’1V. (4.18)

Although this procedure is less accurate, yet it achieves reasonable accu-
racy for n > 8. This means that we need to solve the same set of linear
systems for both ¢y and ¢q. Also, since for financial problems the
matrices that arise are real, the poles and residues come in complex con-
jugate pairs. Thus, only n/2 shifted linear systems solutions are required,
making rational approximation very efficient. Furthermore, to evalu-
ate equation (4.14), we can thus make use of the Carathéodory-Fejér
approximation

pAAT _ o—TAT] U Ck 1
— |V ———AAT—z )" V.
( AAT +rATI kglzk—i—rAr( T ad)

For Merton’s model, we note that it can prove costly to calculate equation
(4.11) directly since the second exponential will have a dense matrix as
argument due to the first matrix exponential. Instead, using the fact that
integral and differential operators are commutative, we can approximate
the two spatial operators in equation (4.11) as

V(T) = ATHMT y 0y x FMT AT v (0,
=exp(\T exp(Ba,2 /2))[exp(AT)V (0)].

For the Carathéodory-Fejér method, this means that we need only solve
sparse shifted linear systems and thus gain in computational efficiency.
To obtain the Carathéodory-Fejér points for the double exponential, we
need to modify the MATLAB® code in Trefethen et al. (2006) as

F=exp(ATexp(scl(t—1)/(t+1+ 1e 16y -1,

to obtain vy = exp(Fy;T)v1 —v1 where vi = exp(AT)V(0) and Fy, is as in
(4.11). Hence V(T) is the sum of v; and vy, t is the Chebychev points,
and scl represents the scaling factor for stability. Another possibility to
prevent the dense matrix inversion is to use the regular matrix splitting
(Almendral and Oosterlee 2005) and to solve the linear system using the
fixed point iteration

VK= AT - )~ [V (0) — FyyTH) VK.
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We can even use FFT to perform the dense matrix vector multiplication
in O(mlogm) for F)s as in equations (4.11) or (4.12). We now give the
general algorithm for option pricing using ETI.

Algorithm 4.1: General algorithm for option
pricing using ETI

1. Problem start
a. Set the model parameters.
b. Construct Qay, Qay and Q.
2. Spatial discretization

c. Set D}(,D)%,IX,D},,D}Z,,I}, using one-sided approximations if neces-
sary.

d. Implement any linear boundary condition Vyy = Vy.

e. Build A using either equation (4.10), (4.13), or (4.15).

f. Implement any other boundary conditions such as, for example,
Aq,1 = —rfor a European call and Ay;11,1:m+1 =0, A1:m41,m+1 =0,
for an up-and-out barrier.

3. Integral approximation

g. Form F; = )Lexp(Bo]2 /2) for Merton’s jump-diffusion model.

h. Form Fy,Fys,Fgr and compute V, S VQ; and ¢1, ey for the CGMY
model.

4. Matrix exponential

i. viii. For the Carathé¢odory-Fejér method, use n =8 to compute ;,

zj and use (4.18) for odd ;.
5. Solution process: European

j- Set At =T.

k. For Black-Scholes, SV, compute V(T) =exp(AAT)V(0).

1. For Merton’s model, compute (4.11).

m. For CGMY, compute (4.14).

n. For SVJ, compute (4.11) with Fyy = [, ® kexp(Bajz /2)].
6. Solution process: American

0. Set n and compute At =T /n.

p- forj=1,...,n, compute equations (4.16) and (4.17).

4.5 Numerical experiments

We now present the results of our numerical experiments which were
carried out using MATLAB®. For all test cases, we use a computer with
1 GB RAM and 2.21 GHZ AMD Athlon X2 processor. Implementation
on other machines and using other programming languages will give



82 Y. D. Tangman, R. Boojhawon, A. Gopaul and M. Bhuruth

Table 4.1 CPU(s) time in seconds and error at spot price for all methods for
pricing a European call option

Crank- Crank-
m Nicolson ETIExpm ETICF Error m Nicolson ETIExpm ETICF Error

27 0.1720 0.0310  0.0160 0.0060 210 13120 30.422  0.0470 9.42e-5
28 0.3280 0.4690  0.0220 0.0015 21 26250 241.86  0.0780 2.36e-5
29 0.6410 3.9060 0.0310 3.77e-4 212 57190 - 0.1570 5.89e-6

somewhat different results. Unless specified otherwise, we will use the
following table of parameters.

So=100,0 =0.2,7=0.05,6§=0,E=100,T =1,Sg = 160,
uy=0,01=02,A=1,p=0.1,0=5,=0.16,x3 =0.8
For SV and SV] models: T =0.25,E=1

For the CGMY model: C=0.5,G=10,M =10
For American call options: § =0.07

Table 4.1 shows the speed of execution of different algorithms based on
ETI and the Crank-Nicolson scheme for solving a European call option
and also include the error at Sg. Clearly, all algorithms will have almost
the same accuracy as m varies since the ETI method is exact in time,
and, for a sufficiently refined time step, Crank-Nicolson will contain
only spatial discretization error. However, we emphasize the huge com-
putational speed improvements of the ETI scheme combined with the
Carathéodory-Fejér method that also outperforms, by far, the Crank-
Nicolson method. It is observed that the increase in computational time
is linearly related to the increasing number of spatial steps, confirm-
ing that ETICF has indeed O(ym/2) complexity. This is not the case of
ETIExpm, which is O(m3) and thus has the worst CPU timing. This
code could not be run for the last value of m due to the huge storage
requirements needed by the “expm” function. Since the Crank-Nicolson
method lacks L stability, it is essential to restrict the time-step size at
least as O(Ax), and, for a fair comparison, we will choose At such that
the error is approximately the same for all methods. Hence, the Crank-
Nicolson scheme, which is O(nm) for n time steps, is slower since it needs
to solve much more than the six linear systems required by the ETICF
algorithm if n = 12. Actually, our intensive numerical experiments have
shown that only four shifted linear systems solution are needed to obtain
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very satisfactory accurate prices. Henceforth, for option pricing under
the ETI framework, we will use the ETICF with 8 Carathéodory-Fejér
points.

With the striking low speed of the ETICF method, we now turn our-
selves to the pricing of an American put option in the Black-Scholes
framework. Since simple solutions do not exist for this option, we use
the monotonically convergent binomial method of Leisen and Reimer
(1996) with 15,001 steps as benchmark. Here the free-boundary value
problem is solved by enforcing the American constraint at each time
step. We consider a short (T =0.5) and a long (T = 3) maturity example
and compare the ETICF with the operator splitting technique (ETIC-
FOS) with the commonly used Crank-Nicolson with projected successive
over-relaxation method (CNPSOR) and Crank-Nicolson with operator
splitting (CNOS).

Table 4.2 shows that PSOR converges very slowly for both short and
long maturities. Both the ETICFOS and CNOS schemes seem very effi-
cient as they are not only faster, but also give accurate option prices
and the two hedging parameters, delta and gamma. In addition, we can
see that doubling the number of spatial nodes approximately doubles
the CPU time showing that both are algorithms with linear computa-
tional complexity (Tangman, Gopaul and Bhuruth, 2008a). This is of
|p(0)|| < 7E So for CNOS for each time step. This is why CNOS is about
ten times faster than ETICFOS for short maturity options. However, for
longer T, we can see that CNOS requires more time steps in order to
achieve approximately, the same error as ETICFOS. Basically, the opera-
tor splitting technique used here is composed of two split steps. In the
first one, we need to solve the BS PDE in time and the second step consists
of enforcing the American constraint through the addition of a penalty
term. While ETI performs the first step exactly in time even for large
V =@V @eN+th —v(2N))/3, CN will need more time steps to be accurate
over large T. Thus for longer maturity, the computational speed is almost
the same for both methods.

We note that the ETI scheme solves the PDE part exactly in time and
therefore, it is unconditionally stable. Furthermore, adding a penalty
term which is always bounded as |p(r)| < rE will not affect the sta-
bility of our method. Hence, we can use an extrapolation method to
improve the accuracy of the ETICF method. We show in Table 4.3, the
absolute extrapolated error at Sg for pricing European, American and Bar-
rier options under Black-Scholes, Merton’s jump-diffusion, Heston’s SV
and Bates SVJ models. The cpu(s) required to calculate the most accurate
extrapolated value V = 4V (2N*1) — v(2N))/3, is also given.
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Figure 4.1 Convergence Rates of ETI for The CGMY Process With C = 0.5,
G=10,M=10

For the CGMY model, we use T = 0.5 and give the convergence plot
of a European call option in Figure 4.1 for various values of Y. For Kou’s
model (Y = —1), there is no need to split the integral domain near zero,
but for Y € (0,2), we need to make use of the quadrature used by Wang
et al. (2007) to obtain second-order convergence as seen in Figure 4.1.
Here, good convergence rates are observed because of the better tem-
poral accuracy of the ETI scheme and also because we did not require
any interpolation in S since the integro and PDE grids coincide. But, as
observed in Wang et al. (2007), the convergence decays as Y — 2. Due to
space limitations, we do not report in detail on computed option prices
that have been seen to work well for the simple Richardson extrapolation
technique also.

The case Y = 0,0 = 0O results in the VG model (Madan et al. 1998),
and the PIDE becomes convectively dominated. Almendral and Oosterlee
(2006) suggested the use of a simple Lax-Wendroff update by adding the
diffusive term

At

2
> (r —5— %(02 +6(A2)) — K(AZ)) Vix(X,T),
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Table 4.4 Convergence ratio for European under VG model, American and
barrier options

European VG American (Y =0.5) Barrier (Y =0.1)

M Value Ratio Value Ratio Value Ratio
25 0.3292 - 5.4351 - 7.2414 -

26 0.3795 - 6.0171 - 7.2758 -

27 0.3966 2.9357 6.1427 4.6353 7.2843  4.0390
28 0.4010 3.9509 6.1729 4.1520 7.2854 4.0586
29 0.4021 3.7236 6.1805 3.9737 7.2869 4.1226
210 0.4024 4.0399 6.1824 4.0181 7.2871 4.2661
Reference value 0.40239 6.18275 -

to obtain more accurate solutions. Another approach is to combine the
semi-Lagrangian discretization (d'Halluin et al. 2005; Wang et al. 2007).
However, we do not pursue this here and show in Table 4.4 that the Lax-
Wendroff update does improve the accuracy and convergence ratio. We
also give in the same table the convergence ratio for an American option
with the benchmark solution obtained by using the extrapolated FFT
method for Bermudan options (Lord et al. 2008). The convergence ratio
for a double knockout barrier at |x| = 0.5 is also included to show that
second order is achieved for infinite activity processes. This option has
not been priced before, and this is why we did not include any reference
value. The numerical results obtained for the large variety of models and
options characterizes the ETICF scheme as a method of choice for fast
option pricing.

4.6 Conclusion

The ETI framework is shown to be general and robust enough to price
a variety of options under various models used in literature. Using
a recently developed method for matrix functions, only four sparse
tridiagonal shifted linear systems are required to be solved to obtain accu-
rate option prices for European and barrier options. Together with an
operator splitting technique, American options can also be priced very
efficiently. Further accuracy improvements can be obtained by using
a simple Richardson extrapolation formula. With a general, fast, and
accurate pricing algorithm, the calibration task can now be performed.
Current investigations include a study of other spatial discretization
such as finite element and spectral methods (Tangman et al. 2008b)
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together with ETICFE. The implementation of efficient solvers for shifted
linear systems (Frommer 2003; Simoncini 2003) is primordial, especially
for multidimensional option pricing problems.
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Unconditional Mean, Volatility,
and the FOURIER-GARCH
Representation

Razvan Pascalau, Christian Thomann and Greg N. Gregoriou

5.1 Introduction

Recently there has been an upsurge interest in modeling the nonstation-
arities present in the volatility of financial data. The clustering and the
persistence of volatility of asset returns have been well documented. The
IGARCH model of Engle and Bollerslev (1986), for instance, describes
in a parsimonious way the high persistence in the conditional volatility
of stock returns while the underlying process remains strictly stationary.
Alternatively, Granger (1980) and Granger and Joyeux (1980) model the
long memory or the long-range dependence of a series of log returns as
a fractionally integrated process to allow the autocorrelation functions
to decay very slowly, in a fashion characteristic of stock returns. How-
ever, seminal papers from Granger and Joyeux (1986), Lamoureux and
Lastrapes (1990), and, more recently, from Diebold and Inoue (2001),
Mikosch and Starica (2004), Starica and Granger (2005), and Perron
and Qu (2007) argue that the high persistence close to unit root and
long memory both in the first and the second moments may actually be
caused by structural changes in the level or slope of an otherwise locally
stationary process of the long-run volatility. Diebold and Inoue (2001)
argue that this is due to switching regimes in the data. Mikosch and
Starica (2004) provide theoretical evidence that changes in the uncon-
ditional mean or variance induce the statistical tools (e.g., sample ACF,
periodogram) to behave the same way they would if used on stationary
long-range dependent sequences. Starica and Granger (2005) also deliver
evidence against global stationarity. Finally, Perron and Qu (2007) con-
clude that the Standard & Poor’s (S&P) 500 return series is best described

90
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as a stationary short memory process contaminated by mean shifts.
These results imply that a good model for volatility should take into
account the possibility of a time-varying unconditional second moment
and, possibly, of a time-varying first moment as well.

Engle and Rangle (2008) propose the Spline-GARCH to model long-
run volatility non-parametrically using an exponential quadratic spline.
However, they do so only for the second moment. Further, Starica and
Granger (2005) use step functions to approximate nonstationary data
locally by stationary models. They apply their methodology to the S&P
500 series of returns covering a period of seventy years of market activity
and find that most of the dynamics are concentrated in shifts of the
unconditional variance.

However, these models pose several problems. While spline functions
may lead to overfitting, step functions may not give smooth approxima-
tions. Even major breaks, such as the stock-market crash of 1929 and the
oil-price shocks of the 1970s did not display their full impact immedi-
ately. Structural changes may take longer to extinguish, which suggests
they need to be modeled as smooth or gradually changing processes.
These arguments motivate the present study to propose a new approach
to model the long-run first and second moments as smooth processes.
This chapter denotes the new process Fourier-GARCH because it uses
the flexible Fourier transform of Gallant (1981) (i.e., an expansion of a
periodic function in terms of an infinite sum of sines and cosines). The
basic model can be extended to incorporate the long-run volatility in
the mean model. Flexible Fourier transforms have been used in the liter-
ature to approximate nonlinear structures in several ways. For instance,
Becker et al. (2001) use Fourier transforms to model inflation and money
demand as having smooth changes in the intercept. Also, Enders and Lee
(2006) and Becker et al. (2006) propose new unit root and stationarity
tests that use the Fourier approximation to model the unknown shape of
the structural breaks in macro time series. The main advantage is that the
issue of estimating the shape and location of the breaks reduces to select-
ing the proper frequency of the Fourier sine and cosine terms. A section
below details how Fourier transforms can be used to approximate various
types of breaks.

The study applies the new model to several of the largest stocks from
S&P 500 to estimate volatility persistence in stock returns. Based on the
discussion above, this chapter considers several competing models. The
basic Fourier-GARCH model specifies a constant first moment, while
the second moment changes smoothly over time. A first extension to
the basic model allows both the first and the second moments to vary
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over time, while a second extension incorporates the long-run volatility
in the model for the mean. This chapter checks for each model the sum
of the estimated coefficients in the equation for conditional volatility to
assess the so-called long-memory effect. The results show that allowing
only the second moment to vary over time does not significantly reduce
the persistence effect. In fact, the difference between this model and
the simple GARCH(1,1) is negligible. However, the extended model that
allows the first moment to vary over time as well reduces the persistence
effect by more than half of the value suggested by GARCH(1,1). The evi-
dence suggests that the persistence effect seen in stock returns is mainly
a result of the misspecification of the model for the mean.

This chapter is structured as follows. Section 5.2 discusses in more
detail the performance of the Fourier series to approximate various types
of structural breaks. Section 5.3 introduces the basic Fourier-GARCH
model and its extensions. Section 5.4 discusses the empirical estimates
of the long memory effect using four different models, and Section 5.5
concludes.

5.2 Nonlinear trend approximation with
Fourier transforms

The general approach to account for breaks is to approximate them using
dummy variables. However, this approach has several undesirable con-
sequences. First, one has to know the exact number and location of
the breaks. These are not usually known and therefore need to be esti-
mated. This, in turn, introduces an undesirable preselection bias (see
Maddala and Kim 1998). Second, use of dummies suggests sharp and
sudden changes in the trend or level. However, for low-frequency data
it is more likely that structural changes take the form of large swings
in the data which cannot be captured well using only dummies. Breaks
should therefore be approximated as smooth processes (see Leybourne
et al. 1998 and Kapetianos et al. 2003).

Flexible Fourier transforms, originally introduced by Gallant (1981),
are able to capture the essential characteristics of one or more structural
breaks using only a small number of low-frequency components. This is
true because a break tends to shift the spectral density function toward
frequency zero. Below is illustrated the ability of Fourier transforms to
capture nonlinear trends.

Using a simple form for the mean model, one can allow the intercept
it to be a deterministic function of time:

Yt =uttve+eét (5.1)
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where the drift term is written as:

2wkt

2wkt
T ) + X} _,dkcos (T)’ s<T/2 (5.2)

It = €0 + X3 _1 Cksin <

In the above formulation, &; is a stationary disturbance term with vari-
ance 052, s is the maximum number of frequencies, k is a particular
frequency, and T is the total number of observations. The drift term
represents the Fourier approximation written as a deterministic function
of sine and cosine terms. Note that by imposing o = 8 =0 one gets the
constant mean or trend return specification. In contrast to other possi-
ble series expansions (e.g., Taylor series), the Fourier expansion has the
advantage of acting as a global approximation (see Gallant 1981). This
property is obtained even if one specifies a small number of frequencies.
In fact, Enders and Lee (2006) argue that a large value of s in a regres-
sion framework uses many of the degrees of freedom and leads to an
overfitting problem.

To illustrate the approximation properties of a Fourier series, this
chapter considers first a single frequency in the data-generating process
(DGP):

Ut = o+ sin <2ﬂTkt> +dksin<2nTkt) (5.3)

where k is the single frequency selected in the approximation, and cx
and dy represent the magnitudes of the sinusoidal terms.

This study considers several possible patterns for the occurrence of a
break. Thus, for T = 500, this chapter simulates one break, two breaks,
and trend breaks both in the middle and toward the extremes. This
chapter illustrates the cases for temporary, permanent, and reinforc-
ing breaks. We display the results below in panels 1 through 9 (i.e.,
Figure 5.1). As in Enders and Lee (2006), Panels 1 and 2 illustrate approx-
imations for breaks toward the end of a series. In Panel 3, the series has a
temporary, though long-lasting break. Panels 4 and 5 display permanent
breaks in opposite directions while in Panel 6 the breaks are in the same
direction. Finally, Panels 7-9 depict breaks in the intercept and slope of a
trending series. This chapter estimates the coefficients of the sinusoidal
terms by performing a simple regression of y; on u; and a time trend.

One can draw several conclusions based on the visual inspection of the
graphs. First, a single frequency k =1 or two cumulative frequencies n =2
can approximate a large variety of breaks. Second, the Fourier transform
approximates well even when the breaks are asymmetric (see Panels 1
and 2). Third, a Fourier series works best when the break is smooth over
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Figure 5.1 Approximation of structural breaks with Fourier Transforms

time, which means it may not be suited for abrupt and sharp breaks
of short duration (see Panel 5). An additional frequency of k = 2 can
improve the fit in this situation. Interested readers are referred to Enders
and Lee (2006) and Becker et al. (2006) who have a longer discussion on
the properties of the Fourier approximations. The next section introduces
a new model to approximate long-run volatility.

5.3 A new model for unconditional volatility

As the introductory part suggested, the simple GARCH (1,1) may not be
appropriate because it implies a long-run level of the volatility which
is constant. However, previous research regarding the presence of vari-
ous shifts in stock returns suggests that structural changes in the second
moment induce global nonstationarity. This invalidates the use of the
simple GARCH(1,1). It is known that breaks shift the spectral density
function toward frequency zero. This indicates that the frequencies
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Figure 5.2 Left: Sample spectrum of absolute returns of S&P 500; Right: Sample
ACF of returns of S&P 500

to be used are toward the low end of the spectrum (see Enders and
Lee 2006). A simple visual inspection of the autocorrelation function
and periodogram of absolute returns of S&P 500 confirms this fact
(see Figure 5.2).

As you can note from the graphs in Figure 5.2, the most important
frequencies that have an impact on the absolute returns are at the low
end of the sample spectrum, which is indicative of structural breaks.
Both graphs confirm the presence of long memory in financial returns —
slow decay with lags still significant at the 200th lag. These findings
suggest the use of the following model whose aim is to capture various
unknown shifts in long-run volatility. This chapter denotes it the basic
Fourier-GARCH:

Ty = 1+ Ut/ utht, where Ut |It—1 ~iid(0, 1) 5.4)
_ 2
ht=(1—(¥—ﬂ)+(x(rt_ulilu) +ﬂht,1 (5.5
t—1

N
2wkt 2mkt
Ut = exp ao—i—Z(aksin(ﬂT)—i—bkcos(nT)) ;$<T/2 (5.6)

k=1

The model preserves the parsimony of the GARCH(1,1) model while
it allows the unconditional expectation of the volatility to be a func-
tion of time and of cycles of different frequencies. A simple extension
allows the unconditional mean to be a function of time as well: higher
unconditional variance certainly requires higher unconditional mean.
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The time-varying first moment is also approximated using a Fourier
representation:

Mt_CO+k2:ICk51n< ) de os(znkt> (5.7

Given its flexible setup, the Fourier-GARCH captures both short- and
long-run dynamics. Note that:

E(ry — 1)* = EQfughy) = wE(hy) = g (5.8)

The study uses an exponential representation of the Fourier transform
to ensure its positivity. Goodness-of-fit measures such as the BIC or
AIC criteria are employed to choose the proper number of frequencies
exogenously. They are computed as follows:

L (r—w?
AIC=—InL+2n, L=-3"|In(hup)+-——* (5.9)
= heuy
a (r — w)?
BIC = —InL+nin(T), L=-3"|In(u) + - (5.10)
= heuy

Here, n denotes the number of parameters estimated by the model. The
advantage of using the AIC and BIC criteria is that they include a penalty
for the additional estimated parameters. Throughout the estimation, the
criteria employ only integer frequencies.

The advantage of using a time-varying first moment for a sample of
forty years of daily data of S&P 500 absolute returns is highlighted in
Figure 5.3.

Note the better fit of the second model, which augments the basic
Fourier-GARCH representation with a time-varying intercept as in
equation (5.7). However, given the presumption that a higher long-
run volatility requires a higher long-run return, this chapter proposes
the Fourier-M model which includes the unconditional time-varying
volatility in the equation for the mean:

It = yUr + vg/ utht, where Ut ’It—l ~iid(0, 1) (5.11)

In this way, both the first and the second moment change over time
while the underlying model ensures a parsimonious representation.
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Panel 1: Fourier-Garch(1,1) with constant Panel 2: Fourier-Garch(1,1) with varying
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Figure 5.3 Panel 1: LCVAR=conditional volatility; LUVAR=unconditional
volatility; Panel 2: LCVAR=conditional volatility; LUVAR2 =unconditional
volatility

One way to assess the persistence or long memory in stock returns is
to compute the sum of the slope coefficients in conditional volatility. If
the sum is close to one, then conditional volatility is said to be almost
integrated and it displays very slow time decay. However, the support
for long memory is weakened if one finds that a changing first and/or
second moment is responsible for the persistence effect. If the sum of
the coefficients is significantly less than one after one accounts for shifts
in the unconditional mean or volatility, then one can conclude that
the volatility process is stationary but suffers from structural shifts (see
Perron and Qu 2007).

A sample of daily returns on S&P 500 from 01/02/1963 to 02/30/2005
illustrates this discussion. The best representation is the one that specifies
a single frequency both for the mean and for the unconditional volatility
(see Figure 5.4).

Note the slow and gradual increase of long-run volatility from the
1960s until the 1980s. Also, note that the estimated long-run volatility of
the 1990s is lower than the one for previous decades, which is consistent
with market facts.
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Panel 1: Fourier-Garch(1,1) with varying Panel 2: Long-Run Volatility
first moment
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Figure 5.4 Panel 1: LCVAR - conditional volatility, LUVAR2 - unconditional
volatility; Panel 2: LUVAR2 - unconditional volatility

5.4 Model validation and persistence effects

This chapter uses several representative stocks of S&P 500 to assess the
long-memory effect of stock returns using the new models. The first
12 stocks of the index are selected according to their market percent-
age participation as of March 2005. Table 5.1 shows their ticker, sector
classification and percentage of total assets.

The data has been obtained from the Center of Research in Security
Prices made available through the WRDS database. The longest sample
period available is 01/02/1926-12/30/2005 and corresponds to Exxon,
IBM, Chevron, Philip Morris, and General Electric. Other stock returns
have shorter sample periods (i.e., Procter & Gamble from January 2, 1929
onwards, Pfizer and Johnson & Johnson from 1944, and Intel from 1972;
while the rest start in 1986). For each stock return, the study chooses
exogenously an integer or cumulative frequencies according to the AIC
and BIC criteria. According to Enders and Lee (2006), a frequency greater
than 5 uses many of the degrees of freedom and leads to an overfitting
problem.
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Table 5.1 Market capitalization of 13 companies on S&P 500 as of February 28,
2006

Ticker Issue name Sector % of Total assets
XOM  Exxon Mobil Corp Energy 3.19
GE General Electric Co. Industrials 3
MSFT  Microsoft Corp. Industrials 2.12
C Citigroup Inc Financials 2.03
PG Procter & Gamble Consumer staples 1.73
PFE Pfizer Inc. Health care 1.67
AIG American Intl. Group Inc. Financials 1.49
JNJ Johnson & Johnson Health care 1.48
MO Altria Group Inc. Consumer staples 1.29
CVX Chevron Corp New Energy 1.09
IBM International Business Mach. Information 1.09
technology
INTC  Intel Corp Information 1.07
technology

Table 5.2 displays the results from applying the AIC and BIC criteri-
ons to identify the best in sample fitting model. The above mentioned
criterions indicate that in most cases the best representation is the basic
Fourier-Garch(1,1) model. The coefficients of the sine and cosine terms
with up to 5 frequencies are significant at the 5% level both for the
basic and for the extended models. However, given that in the model
for the mean each additional frequency requires the estimation of two
more coefficients, the additional penalty increases the values of the
AIC and BIC criterions relative to the ones for the basic model. This
is not surprising given that the BIC criterion favors more parsimonious
representations. Several exceptions to the finding above are notewor-
thy. In the case of Microsoft for instance, both criterions select the
Fourier-M model to be the optimal representation. Also, the Fourier-M
model gives the best fit for Chevron as well. Note that the basic Fourier-
Garch(1,1) and the Fourier-M models have very close values for the BIC
and SBC criterions. This is true because they estimate the same num-
ber of parameters (i.e. six coefficients). In rest, the increased penalty
due to the additional coefficients that are estimated in the models with
two or more cumulative frequencies is greater than the better fit that
is obtained. Therefore, the single frequency representation fits the data
best for all models. Figures 5.5 through 5.7 show several graphs of the
conditional and long-run volatilities obtained using both a constant and
atime varying first moment. Note that for all series the long run volatility
changes smoothly over time.
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Figure 5.5 Conditional and unconditional volatility for AIG and Chevron
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Figure 5.6 Conditional and unconditional volatility for Exxon and General
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Panel 2: Fourier-Garch(1,1) with varying
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Figure 5.7 Conditional and unconditional volatility for IBM and Intel
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Table 5.3 Persistence of financial volatility

M : Fourier- Mj,: Fourier-
Garch(1,1) Garch (1,1)

with with time-
constant varying M 3: Fourier-M
Mgy: GARCH(1,1) mean mean (1,1)
Companies a+p a+p a+p a+p
AIG 0.98024 0.98034 0.97753 0.96798
Chevron 0.98704 0.98373 0.75108 0.96577
Citigroup 1.00104 0.90388 0.57667 0.99360
Exxon 0.98333 0.95727 0.54307 0.95894
General 0.99256 0.99013 0.80713 0.99261
Electric
IBM 0.99180 0.96291 0.51090 0.95930
Intel 0.99185 0.99206 0.64818 0.98175
Johnson & 0.95222 0.88250 0.01595 0.90133
Johnson
Microsoft 0.06820 0.10247 0.22565 0.09550
Pfizer 0.97707 0.90421 0.40066 0.85240
Phillip- 0.99877 0.99251 0.75108 0.98887
Morris
Procter & 0.99595 0.96786 0.29293 0.96698
Gamble

Next, this chapter investigates whether the selected returns display the
long-memory property that is usually observed in financial data. To this
end, the study estimates four competing models:

1. the common GARCH(1,1) developed by denoted M;

2. the basic Fourier-GARCH(1,1) with constant first moment, denoted
My;

3. the Fourier-GARCH(1,1) with a time-varying first moment, denoted
Mj;

4. the Fourier-M (1,1) with long-run volatility in the mean, denoted M3.

Table 5.3 shows the results. Clearly, model M, provides the best reduc-
tion of the persistence effect for most series. For 10 of the 12 stock returns
considered, the long-memory effect is dramatically reduced in many
instances by half or even more (i.e., General Electric, Pfizer, IBM, Philip
Morris, Chevron, Intel, Procter & Gamble, Exxon, Johnson & Johnson,
and Citigroup).

Note that the basic representation (i.e. the M; model above) has
only little impact on overall persistence in the short-run volatility. In
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most cases, its persistence is only slightly lower than the one of the
GARCH(1,1) representation. This is surprising given that this model gives
the best fit according the AIC and BIC criteria in 10 out of the 12 stocks
considered. Note that model M3 clearly outperforms model M7 in terms
of reduced long-memory effect as well. The main conclusion is that
allowing only for the second moment to vary over time is not enough
to account for the strong persistence effect observed in financial returns.
However, in contrast to the basic model, a time-varying first moment
in the equation for the mean reduces significantly the persistence in
short-run volatility.

5.5 Conclusion

This chapter proposes a new model to estimate the short- and long-run
dynamics in financial data that takes into account the possibility of a
time-varying first and second moment. The flexible Fourier transform of
Gallant (1981) approximates the unknown date and shape of any struc-
tural break in the first and second moment as smooth processes. The
study shows that Fourier series are able to approximate a wide variety of
breaks of an unknown form. The basic Fourier-GARCH representation
modifies the popular GARCH (1,1) to include a time-varying uncondi-
tional variance. This chapter proposes two extensions to the basic model.
The first extension specifies a time-varying first moment while the second
extension includes the long-run volatility in the equation for the mean.
The results suggest that persistence still remains significant in the short-
run volatility for the basic model. However, the so-called long-memory
effect disappears if one includes a time-varying first moment in the model
for the mean. This suggests that conditional volatility persistence is an
artifact of the misspecification of the model for the mean.
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Essays in Nonlinear Financial
Integration Modeling: The
Philippine Stock Market Case

Mohamed El-Hedi Arouri and Fredj Jawadi

6.1 Introduction

Emerging stock markets are one of the best areas for investment and have
become more accessible to investors in recent years thanks to successive
efforts to open up these markets. These markets not only offer investors
generous returns and opportunities but also enable them to better diver-
sify their portfolios. These efforts recently led to a significant increase in
capital flows toward the region and a rise in emerging market capitaliza-
tion that reached around 20 percent of world market capitalization in
2000. This also has a considerable impact on the emerging stock market
industry. Indeed, in addition to the significant increase in the finan-
cial integration of emerging markets into the world market (Bekaert and
Harvey 1995), the adjustment dynamics of their asset prices is almost
simultaneously governed by internal, regional, and external economic,
financial, and political factors (Adler and Qi 2003; Carrieri et al. 2007).

In this study, we focus on emerging Asian markets. Indeed, a large
number of these markets have launched a series of reforms, includ-
ing their modernization and liberalization. Consequently, integration
of Asian stock markets has emerged as an important body of literature
(Bekaert and Harvey 1995; Gérard et al. 2003; Carrieri et al. 2007). How-
ever, the intensity and efficiency of these reforms and the degree of
financial integration differ from one country to another. In addition, the
internal and external factors pertaining to the financial markets in this
region are also very different, suggesting perhaps multiple asymmetrical
regimes of financial integration and segmentation which are interesting
to apprehend and investigate.

107



108 M. El-Hedi Arouri and F. Jawadi

The main contribution of this chapter is to investigate whether emerg-
ing Asian stock markets are integrated into the world market or not. We
choose to focus our analysis on the Philippine case for diverse reasons.
First, the Philippines is characterized by an overvalued exchange rate, a
fragile banking system, and insufficient reserves with regard to the mone-
tary mass (Sachs et al. 1996), suggesting that it may benefit considerably
from further financial integration with the world market. Second, the
financial markets in the Philippines have only recently, although contin-
uously, been growing, and the Philippines’ trade-openness ratio reached
an average of 119 percent over the past decade. This is essentially due to
the smooth functioning of the ASEAN (Association of South-EFast Asian
Nations), created in 1965 by five countries (Indonesia, Malaysia, the
Philippines, Singapore, and Thailand). Furthermore, in order to promote
its integration into other international stock markets, the Philippine
market underwent several reforms: liberalization and privatization (in
1985) and the introduction of ADR and country funds (in 1989). The
Philippine stock market is thus expected to be better integrated during
the post-liberalization period than it was during the period prior to the
opening up of its market.

Several previous studies in the literature have focused on financial
integration in Asian and Latin emerging stock markets. However, the
authors’ conclusions are not unanimous, and their results are often het-
erogeneous, perhaps because they define financial integration differently
and test it also via different tools. For example, Bekaert and Harvey (1997)
and Carrieri et al. (2007) studied Asian and Latin American emerging
markets (the Philippines and other emerging countries) using a time-
varying partially integrated CAPM. Their main conclusion is that the
majority of emerging markets are partially integrated in the world mar-
ket and that their degrees of integration are time varying. However, these
results strongly depend on the validity of the CAPM.

Other studies focus on stock market integration in developed and
emerging countries, using cointegration techniques. Masih and Masih
(1997) show that the newly industrialized Asian countries of Honk Kong,
Singapore, Taiwan, and South Korea share a long-term relationship with
the developed markets (the USA, Japan, the UK, and Germany). More
recently, Masih and Masih (2001) found significant interdependencies
between the established OECD and the emerging Asian markets. Lim
et al. (2003) examined the linkages between stock markets in the Asian
region over the period 1988-2002 using nonparametric cointegration
techniques and found a common force that brings these markets together
in the long run. Similar results are suggested by Wang and Nguyen
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Thi (2007) and Iwatsubo and Inagaki (2007). Ratanapakon and Sharma
(2002) studied the short- and long-term relationships in five regional
stock indices from the pre-Asian crisis and the crisis period and found
that the degree of linkage increased during and after the crisis period.
More recently, Phylaktis and Ravazzolo (2005) investigated stock market
interactions of Pacific Basin countries over the period 1980-1998 and
showed that although linkages have increased in recent years, there is
still room for long-term gains when investing in Pacific Asian markets. By
contrast, Bilson et al. (2000) show that the regional integration among
stock markets in South Korea, Taiwan, Thailand, the Philippines, and
Malaysia is faster than their integration within the international mar-
ket. Roca and Selvanathan (2001) show neither short- nor long-term
linkages among the stock markets of Australia, Hong Kong, Singapore,
and Taiwan. Phylaktis and Ravazzolo (2000) also identify a lack of co-
movements during the 1980s for the free stock markets of Singapore and
Hong Kong. More interestingly, other recent studies show that the level
to which markets are integrated or segmented is not fixed but changes
gradually over time.

To sum up, this literature review shows some interdependencies
between emerging and developed stock markets, suggesting further evi-
dence of financial integration. However, it also suggests the difficulty
of arbitraging between the two polar cases of strict segmentation and
perfect integration. In fact, on the one hand, dynamic approaches
show that the financial integration dynamic can be assimilated with a
continuous process combining these two extreme cases as well as a con-
tinuum of intermediate states. This is even more valid for emerging stock
markets which are generally characterized by ongoing liberalization
processes.

On the other hand, analysis of the findings of previous studies shows
that they define financial integration differently and that they have
checked it using different methods. Indeed, they have often used lin-
ear modeling tools, even though some of them argue with the fact that
the financial integration seems to be time-varying and has tended to
increase over the past decade because of the rise in the number of inter-
national investors, the increase in new information and communication
technologies and market liberalization. However, usual linear techniques
yield invariant adjustment and are thus not usually suitable to repro-
duce dynamic and time-varying financial integration. Consequently, the
linear framework used in most previous studies fails to capture certain
types of financial integration which are time-varying, asymmetrical and
nonlinear, and persistent and irregular.
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Thus, in this chapter, we consider markets to be integrated if they
share a common trend and move together. Using linear and nonlinear
modeling, we study the stock price adjustment dynamic and financial
integration of the Philippine market into the world market. In particu-
lar, we propose using nonlinear econometric tools given by nonlinear
error correction models to investigate the Philippines’ emerging stock
market integration. Checking the hypothesis of financial integration
within nonlinear modeling enables the integration dynamics to be asym-
metrical, discontinuous, time-varying, and nonlinear. Moreover, the
nonlinear cointegration methodology not only allows integration to be
studied in a more general setting, taking into account the asymmetry,
persistence, and nonlinearity that characterizes the dynamics of stock
price adjustment, but also enables us to check and specify the degree of
integration in every regime as well as in the short and long run. This is
also interesting for a better understanding of the dynamism of finan-
cial markets and decision-making concerning international portfolio
diversification in the Asian region.

The article is organized as follows. Section 6.2 will briefly present the
econometric methodology. In Section 6.3, we will discuss the empirical
results, and Section 6.4 will conclude.

6.2 Checking financial integration within
nonlinear modeling

According to several stylized facts (financial crises and stock crashes) and
some previous studies, the stock integration dynamics may be nonlinear.
This nonlinearity can be differently explained by market imperfections:
information and segmentation barriers (Bekaert and Harvey 1995), dis-
tinct transaction costs (Anderson 1997), heterogeneous shareholders’
expectations (De Grauwe and Grimaldi 2006), etc. This implies an ongo-
ing financial integration process and a nonlinear time-varying correcting
mechanism which is adequately reproduced using the class of nonlinear
cointegration models. Among the nonlinear cointegration models, we
suggest using two nonlinear error correction models (NECM): the expo-
nential switching transition error correction model (ESTECM) and the
nonlinear error correction model-rational polynomial (NECM-RP) which
we briefly present in the following section.!

Formally, let y; and x; be respectively the stock prices of the Philippines
and the world market, where the long-run relationship corresponds to:

Ve =09 +ajXxt +2Z¢ (6.1)

where z; designates the residuals of the long-run relationship.
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The ESTECM is defined as follows:

q P
Ayr=a0+p12t-1+ ZﬂiAXt—i + Z 8jAyr_j+p2zt—1
i=0 j=1
X [1—exp{—y(zt_1—c)2”+et (6.2)

Where p1, p2, v, and c are respectively the adjustment term in the firstand
the second regimes, the transition speed, and the threshold parameter.

The ESTECM enables the financial integration process to be different
per regime, thus defining two extreme regimes when the exponential
transition function nears the unity, and a central regime when it is
equal to zero, as well as a continuum of intermediate states. The tran-
sition between these regimes is assumed to be smooth and gradual,
and this specification is recommended to capture temporal paths gov-
erned by smooth changing regimes, accounting for a slow adjustment
mechanism.

The NECM-RP is defined as follows:

q p 3
Zy_1+a)”+b

Ayt =00+ p12i-1+ ) _BidXe_i+ Y _8§AVi_j+p2 x (7)2 + 1t
i=0 -1 (zt—1+¢)" +d

(6.3)

Where: a, b, ¢, and d are the parameters of the rational polynomial
function.

As suggested by Chaouachi et al. (2004), the NECM-RP is a more
general nonlinear model which can take into account several poten-
tial sources of nonlinearities (i.e. abrupt changes in adjustment speeds,
the impact of negative and positive shocks on stock price adjustment,
multiple long-run attractors, etc.).

In practice, we carry these out to specification to examine the inte-
gration process of the Philippines’ stock market in several steps. First,
we apply the usual unit root tests (augmented Dickey-Fuller [ADF] and
Phillips-Perron [PP] tests) to check the integration order of the stock
price series. Second, we check the mixing hypothesis, applying KPSS
and R/S tests on the residual term (Z) to test the nonlinear cointegra-
tion hypothesis. Third, accepting the mixing hypothesis suggests that
stock prices are nonlinearly mean-reverting and allows our NECM to be
estimated through the nonlinear least squares (NLS) method.



112 M. El-Hedi Arouri and F. Jawadi

6.3 Empirical results

6.3.1 Data and preliminary analysis

Using monthly stock market indices from the Philippines and the world
market over the period December 1987 to January 2008, obtained from
Morgan Stanley Capital International (MSCI), which we express in US
dollars, we first test the order of integration of these series by ADF and PP
tests and show that both indices are I (1). Second, based on the matrix
of bilateral correlation between the Philippines and the world-market
indices, that we compute over two subperiods (January 1988-November
1994 and December 1994-January 2008) and over the period of study,?
we show that the bilateral correlations between the Philippines and
world stock markets are higher after 1994. This finding indicates that
the Philippines’ stock market has become more integrated in recent years
(see Table 6.1).

Third, we test the symmetry, normality hypotheses, and our find-
ings, presented in Table 6.2, suggest further evidence against normality
and symmetry for the Philippines’ stock returns since the Skewness, and
Kurtosis coefficients are statistically significant.

This may be assimilated with a sign of nonlinearity in the dynamics
of the Philippine stock market. We then estimate the relation (6.1) and
we test for the presence of a unit root in the residuals (z) using the ADF
test. The hypothesis of linear cointegration is not rejected, suggesting
further evidence of integration between the Philippine and the world

Table 6.1 Matrix of bilateral correlations

Series RPHI RMSCI
Subperiod 1: January 1988-November 1994
RPHI 1.00 0.33
RMSCI 0.33 1.00
Subperiod 2: December 1994, January 2008
RPHI 1.00 0.44
RMSCI 0.44 1.00
All the period: January 1988-January 2008
RPHI 1.00 0.40
RMSCI 0.40 1.00

Note: This table shows bilateral correlations between the
stock returns of the world and the Philippines before
and after the 1990s. RMSCI and RPHI are respectively
the stock returns of the world and the Philippines.
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Table 6.2 Descriptive statistics and normality test

Jarque-Bera

Series Mean Std. Dev. Maximum Minimum Skewness Kurtosis (Probability)
Philippines  0.0050 0.0927 0.3601 —0.3465 —0.0727 4.8155 33.31(0.0)
MSCI World 0.0053 0.0398 0.1055 —0.1444 —0.5733 3.8673 20.75(0.0)
Index

Note: This table presents the descriptive statistics between the stock returns of the world and
the Philippine stock markets.

stock markets. However, since several previously cited studies and our
correlation analysis indicated that the degree of financial integration is
time-varying, we propose testing this hypothesis using nonlinear coin-
tegration tests which are more powerful than linear cointegration tests.

6.3.2 Nonlinear cointegration tests for financial
stock market integration

To check for nonlinear cointegration between the Philippine and the
world stock market and to test the hypothesis of time-varying financial
integration, we apply two “mixing” tests which are more robust than the
ADF test: the KPSS and the R/S tests. Both tests check the null hypoth-
esis of “mixing” against its “nonmixing” alternative. For the KPSS, we
retain the values suggested by Schwert (1989) for the truncation parame-

1 1
ter: Iy =int |:4 (%) 4i| and /1 =int |:12 <l—go) 4i| where T is the number

of observations,> while we retain the value of Andrews (1991) concern-
ing the choice of q for the R/S test which corresponds to the following

1—

is the first-order autocorrelation coefficient. We summarize the results
obtained in Table 6.3. The null hypothesis of mixing is retained only at
10 percent according to the R/S test. According to the KPSS test, it is also
accepted but only for the second value of the truncation parameter (112).
Accepting the mixing hypothesis confirms the hypothesis of nonlinear
cointegration and implies that the Philippine stock price is nonlinearly
mean-reverting toward the world market at 10 percent (perhaps over the
past decade). In a final step, we estimate both NECM: the ESTECM and
the NECM-RP.

1 .\ 2
formula: ¢; = [KT], where Kt = (3%)3 ( 2‘;2)3, [KT] = int(K7) and p

6.3.3 Estimation of NECM

We estimate both NECMs following the steps proposed by Escribano and
Mira (2002) and Van Dijk et al. (2002). Firstly, we specify linear models
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Table 6.3 Mixing tests

KPSS R/S
14 112 Andrews
0.72* 0.29 1.6*

Note: This table presents the results of mixing

tests.

*denotes the rejection of the null hypothesis
at the 5 percent significance level.

Table 6.4 NECM estimation results for the Philippines

Coefficients ESTECM (1,1) NECM-RP
o0 —0.0021 (-0.37) 0.0009 (0.90)
01 —0.1815 (-1.02) —0.0086 (—0.81)
02 0.1624 (0.91) —0.0053* (—2.329)
Bo 0.2177* (3.55) 0.2086* (3.59)
81 0.9228* (6.82) 0.9224* (6.83)
v 625.07 (0.49) -
Y X0z_y 219.53 -

—0.3319* (—16.36) -
ADFGLS —15.85 —-15.85
R/S 2.5* 1.5
ONECM/OLECM — 0.99 0.95

Note: This table presents the estimation results of NECM for the
Philippines. The values in brackets are the t-statistic of nonlinear esti-
mators.

* denotes the significance at 5 percent.

and determine the number of lags (p) for the NECMs on the basis of
the information criteria and the autocorrelation functions. The optimal
value retained is p = 1. We then estimate the NECMs by the NLS method
and we report the results in Table 6.4. Our findings show several con-
clusions regarding the hypothesis of financial integration. Firstly, the
current MSCI world index parameter is statistically significant, suggest-
ing the presence of statistical dependence of the Philippine stock market
on the world market (external factor). The first AR parameter is also sig-
nificant, which suggests that its index depends on its past tendencies
(local and internal factor). Secondly, our results show that ESTECM is not
appropriate to the Philippines. Neither the exponential function param-
eters nor the nonlinear adjustment terms are statistically significant and
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Figure 6.1 Histogram of the rational polynomial function for the Philippines

the residuals of the estimated model are not mixing. We therefore reject
this nonlinear representation for the Philippines.

The dynamics of the Philippine stock market is better apprehended
using the NECM-RP. This model, estimated under the following restric-
tions: a=c=d =1 and b =0, as in Chaouachi et al., (2004) in order to
simplify the algorithm convergence, seems more suited to capturing the
type of asymmetry inherent to the Philippines’ stock market. Overall, the
estimation results of this model suggest significant correlation between
the Philippine and the world stock markets.

More interestingly, from Figure 6.1, the persistence, asymmetry
and smoothness associated with the Philippine stock price adjustment
dynamics seem to be captured by the NECM-RP. Indeed, while the first
adjustment term is negative but statistically non-significant, the second
one is statistically significant and the sum of the two adjustment terms
is also negative suggestion a nonlinear and asymmetric mean reversion
in the stock price of the Philippines. More particularly, this means that
in the first regime the Philippine stock price may deviate from the equi-
librium and the stock market of the Philippine be segmented but a mean
reversion is activated when stock price deviations exceed some threshold.

In order to highlight the pattern of nonlinear and asymmetric behav-
ior characterizing this Asian stock market, we plot the histogram of
the rational polynomial function in accordance with the estimated mis-
alignment values (Z¢_1). This confirms the rejection of normality and
linearity hypotheses. The NECM-RP also captures the asymmetry in the
integration process between the emerging and world markets. Indeed,
this figure shows a bimodal density and even several modes with two
modes of unequal heights. The presence of these unequal modes suggests
significant and extreme stock price deviations between the regimes of
segmentation and integration. This asymmetry in the distribution of the
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rational polynomial function also reflects the persistence and smooth-
ness of the integration process of this emerging stock market into the
world market. This asymmetry and persistence in the pace of the Philip-
pine stock market integration may perhaps be explained by the different
theoretical arguments discussed in the body of this chapter. Finally, our
findings are validated via misspecification tests that highlight that the
residuals of NECM-RP are mixing and stationary.

6.4 Conclusion

We investigated the hypothesis of time-varying financial integration
between the Philippine and the world stock markets over three decades
in a nonlinear framework. Our findings suggest further evidence of
asymmetrical and nonlinear cointegration between these markets. They
confirm the hypothesis of time-varying financial integration for the
Philippines and highlight the contribution of nonlinear error correc-
tion models in studying this hypothesis. Indeed, these tools enable the
extreme cases of financial integration to be reproduced (perfect integra-
tion and strict segmentation) as well as a continuum of intermediate
states relative to partial integration that characterizes most emerging
stock markets. This study may be extended by testing this approach for
other emerging and developed stock markets.

Notes

1. The NECM-RP methodology is based on the theorem of Escribano and Mira
(2002), whereas that of the ESTECM is developed by Van Dijk et al. (2002), who
adapt the methodology to the threshold models, thus defining a particular
kind of threshold cointegration model for which the adjustment is relatively
smooth and asymmetric. For more details regarding nonlinear cointegration
models, see Dufrénot and Mignon (2002).

2. See tablel in the appendices in which we also present all the empirical results.

3. Int [.] denotes the interior part.
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A Macroeconomic Analysis of the
Latent Factors of the Yield Curve:
Curvature and Real Activity

Matteo Modena

7.1 Introduction

Examining the relation between yields at different maturities is crucial
for both macroeconomists and financial economists. From a macro-
economic perspective, the short rate is the policy instrument under
the control of the monetary authority; however, from a financial per-
spective, movements in short-term rates are analyzed to forecast longer
yields’ dynamics, since yields on long-term bonds are the expected aver-
age of risk-adjusted future spot rates. Moreover, the dynamics of the
term structure (TS) is influenced both by monetary policy actions and
by expectations about policy announcements; while, on the other hand,
economists infer the future path of macro variables from different shapes
of the yield curve.

Including macro variables in TS models is a quite recent phenomenon;
in this chapter we focus on the interpretation of curvature which has
been mostly ignored by previous analysis.

We consider the US bond market between March 1987 and December
2007, thus focusing on a sample characterized by price stability and a rel-
atively homogeneous monetary regime: explicit interest-rate targeting.
Data evidence suggests that almost all TS movements can be summa-
rized by few underlying factors, namely level, slope, and curvature. The
terminology refers to the effect that a shock to these unobservable vari-
ables exerts on the shape of the yield curve (Litterman and Scheinkman
1991). When interest rates of all maturities change by the same amount,
the yield curve is subject to a level shock; hence, a perturbation of this
kind causes a parallel shift of the entire yield curve. A shock to the slope
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exerts different intensity on the maturity spectrum of interest rates. A
positive slope shock decreases short rates more than long rates, enlarging
the spread and steepening the yield curve. Finally, a positive curvature
shock increases yields at medium-term maturities, impressing a more
accentuated hump-shaped form to the yield curve. For its peculiar effect
on the maturity field, curvature has been labeled the butterfly factor.

An important strand of literature has recently focused on the macro-
economic interpretation of these factors. The existing empirical literature
associates the level to some measures of inflation. Rudebusch and Wu
(2004), as well as Bekaert et al. (2005), suggest level reflecting the infla-
tion rate targeted by the monetary authority, also known as the long-run
equilibrium inflation rate. Dewachter et al. (2006) provide evidence that
the level is an indicator of the central tendency of inflation. There is also
general consensus about the interpretation of the slope, which is believed
to be a monetary policy factor. Rudebusch and Wu (2004) provide evi-
dence that the slope factor tracks a fitted Taylor-type monetary policy
rule; Bekaert et al. (2005) relate the slope to monetary policy shocks. A
negative slope shock reduces the spread flattening TS, that is, what gen-
erally occurs when monetary policy tightens. More controversial seems
to be the interpretation of curvature. It has been argued that curvature
is either related to monetary policy shocks (Bekaert et al. 2005) or to the
real stance of monetary policy! (Dewachter et al. 2006), or, eventually, to
the expected future path of interest rates (Giese 2008). Finally, Hordahl
et al. (2006) emphasize the effect of both inflation and output shocks on
medium-term maturities of the yield curve.

The empirical analysis worked out in this chapter finds its inspiration
in the diagrams of Figure 7.1, where grey shaded areas highlight National
Bureau of Economic Research recessions. The left panel plots the level
factor together with the CPI inflation rate and the slope factor with the
effective federal funds rate. The constant decline of the level might be due
either to the augmented credibility of the monetary regime or to the con-
solidation of the monetary authority’s reputation over time, or to both.

The central and the left panels of Figure 7.1 plot curvature together
with different measures of the business cycle. The series appear to dis-
play important co-movements; in particular, a visual inspection suggests
curvature dropping during slowdown in economic activity. Curvature
is positively related to the growth of industrial production (henceforth
IP), the Hodrick-Prescott filtered series of log IP, the log total capacity
utilization, the 6-month lagged growth rate in real consumption expen-
ditures. Finally, the dynamics of curvature is inversely related to that of
unemployment.
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Figure 7.1 Curvature and macroeconomic variables

Notes: Level: level factor of the TS; slope: slope factor of the TS; CPI inflation:
consumer price index rate of change; ffr: effective federal funds rate; curvature:
curvature factor of the TS; IP growth: industrial production rate of growth; IP
gap (HP): Hodrick-Prescott filter gap of IP; real cons. growth: real consump-
tion expenditure rate of growth; TCU (In): log series of total capacity utilization;
unemployment: unemployment rate.

In this chapter we provide evidence supporting the interpretation of
curvature as a cyclical indicator. We analyze curvature obtained from
both nominal and real TS. It has been argued (Harvey 1988; Chapman
1997) that there exists a significant relationship between real TS of inter-
est rates and consumption growth. Harvey (1988) provides evidence that
the expected real TS helps predict consumption growth. We find evidence
which is consistent with this story. In particular, despite the fact that cur-
vature from the nominal TS seems unrelated to consumption growth, we
find a significant inverse correlation between consumption growth and
curvature from real TS.
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The rest of this chapter is organized as follows. Section 7.2 presents
a brief review of the literature. Data are presented in Section 7.3. In
Section 7.4 we outline the Nelson-Siegel latent factor model. The core of
the empirical analysis is contained in Sections 7.5, 7.6, and 7.7, where
we provide evidence to support the macro-interpretation of curvature. In
particular, Section 7.5 shows that curvature reflects the cyclical behavior
of the economy. In Section 7.6 we estimate a cyclical model for curvature,
while in Section 7.7 we develop and estimate a joint macroeconometric
model for curvature and real activity. Section 7.8 concludes.

7.2 Literature review

Arbitrage-free affine TS models have been largely adopted in the literature
to examine yield curve dynamics. Affine models are appealing since they
summarize TS information in few state variables, or latent factors, given
that most of TS movements are due to the effect of few components. Dai
and Singleton (2000) show that 99 percent of the variations in the yield
curve can be attributed to three factors. A second important group of
TS models is the Nelson-Siegel class, where yields are assumed to be a
function of factors through Laguerre functions of their maturities.

In a seminal article, Ang and Piazzesi (2003) show that incorporat-
ing macro factors into TS models improves the ability to forecast yields’
movements both in- and out-of-sample. Approximately 85 percent of
bond yields variation is attributable to the impact of macro factors; in
particular, macro variables explain movements at short- and medium-
term maturities (up to one year), while, movements of long-term yields
depends upon the effect of financial factors. Hordahl et al. (2006) sug-
gest that inflationary shocks mostly affect yields at medium maturities
increasing the TS curvature. Monetary policy shocks, instead, seem to
affect the short end of the yield curve; risk premia tend to respond to
output gap shocks. Rudebusch and Wu (2004) focus on only two latent
factors. The level turns put to be associated with the central bank’s long-
run inflation target, while the slope reflects the central bank’s reaction
function a la Taylor (1993).

Dewachter et al. (2004), using a continuous-time affine TS model find
that macroeconomic variables are not capable of explaining movements
atthelong end of the yield curve. The variability of the long-term yields is
related to the central tendency of inflation. Medium-term interest rates,
from six months to two years, appear to respond to the real rate central
tendency; both observable and unobservable components influence risk
premia and bond excess returns.
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Diebold and Li (2003), Diebold et al. (2005), and Diebold et al. (2006)
employ the Nelson-Siegel interpolant to examine bond pricing. All these
studies document a good forecasting performance of the Nelson-Siegel
method. The most recent strand of literature has mixed the TS model
with modern macroeconomic theory, including latent factor dynam-
ics into New Keynesian general equilibrium frameworks. Bekaert et al.
(2005) develop a model combining structural New Keynesian macroe-
conomics and no-arbitrage TS theory. This line of research has been
followed by Wachter (2006) and Garcia and Luger (2007) who consider
a consumption-based equilibrium macro-finance model.

7.3 Data

All data have monthly frequency, from March 1987 to December 2007.
US yields data between March 1987 and December 1998 are from both
the McCulloch-Kown database (three, six, and 120 months) and from
the Fama-Bliss dataset (one, two, three, four, and five years). After
January 1999, all yields are from Datastream (ZCB yields). The effec-
tive federal funds rate is from the Federal Reserve Economic Data (FRED)
database. Table 7.1 reports some descriptive statistics of yields. The mean
is increasing with maturity suggesting a positive liquidity, or risk, pre-
mium. The standard deviation tends to be large at short to medium matu-
rities. Long-term yields are more persistent than short yields. The Jarque
and Bera suggest short-term yields being normally distributed around the
mean. Autocorrelations decay fast; the partial autocorrelation function
suggests the first-order autoregressive structure of yields. AR(1) regres-
sions for each yield return coefficients of approximately 0.98; however,

Table 7.1 Descriptive statistics of yields

Yields
maturity ffr 3 6 12 24 36 60 120
mean 5.323 5.173 5.324 5.593 5.963 6.232 6.575 7.054
std dev 2.395 2.152 2.189 2.225 2.179 2.102 2.008 1.885
skew 0.088 0.009 0.049 0.129 0.391 0.556 0.825 1.004
kurt 2.598 2.720 2.871 3.030 3.377 3.542 3.875 4.041
JB norm (0.323) (0.631) (0.856) (0.668) (0.012) (0.000) (0.000) (0.000)
ADF (0.141)** (0.082)** (0.093)** (0.064)** (0.051)** (0.051)** (0.040)** (0.021)**
KPSS 0.096**  0.089** 0.093** 0.095** 0.105** 0.115** 0.140** 0.166**

Notes: Normality and ADF tests: p-values in parenthesis. Exogenous included: **Intercept and
trend.
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the Wald test rejects the null of unity coefficient. Both the augmented
Dickey-Fuller (ADF) and the Kwiatkowski-Phillips-Schmidt-Shin (KPSS)
suggest the series are stationary.2

Inflation is the annual change of the seasonally adjusted (SA) Con-
sumer Price Index for all urban consumers (FRED, Bureau of Labour
Statistics). M1 is the SA money stock from FRED (Federal Board of Gover-
nors). The monthly SA series of IP is from FRED. Different measures of the
output gap have been generated: the growth rate of log IP; the Hodrick-
Prescott filtered log IP; the Baxter-King and the Christiano-Fitzgerald
cyclical component of log IP. All cyclical indicators are highly correlated.
The SA civilian unemployment rate series is from FRED (Bureau of Labour
Statistics) as well as the SA real personal consumption expenditures
(Bureau of Economic Analysis).

7.4 The Nelson-Siegel factor model

The factor model is based on the approach pioneered by Nelson and
Siegel (1987). Their method has become increasingly popular among
financial economists for its relatively simple tractability and the fairly
good fit. The yield on a bond with maturity » is a polynomial function
of maturity:

y(") _ L+, <1 —exp{—kn}) +C <1 —exp{—in}

v . —exp{—xn}) (7.1)

Parameter A governs the exponential decay.? The first loading is a con-
stant, that is the unity coefficient multiplying L;. The second loading
is an exponential function that starts at one and decays monotonically
toward zero. Finally, the third loading starts at zero, increases with matu-
rity n and then gradually decays approaching zero. The path followed by
these loadings allows interpreting them as level, slope, and curvature,
respectively.

Factors are stacked in the state vector F; which is assumed to follow a
first-order VAR process. Differently from standard assumptions in canon-
ical affine TS models (Dai and Singleton 2000), we do not restrict the
transition matrix (®yg) to be lower triangular. Hence, we allow the actual
value of each factor to depend on the first lag of all other factors. We con-
sider nine yields with maturities at one, three, six, 12, 24, 36, 48, 60, and
120 months, offering a dense representation of the maturity spectrum
domain. The transition equation of the state-space representation is:

Ft=pup+oNs-Fr_1torp (7.2)
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ot F, 18 i.i.d. Normal with zero mean and diagonal covariance matrix ().
The initial state vector Fy is orthogonal to the disturbances wy g, of the
transition equation. The observation equation is:

Ve =RF¢+vt (7.3)

The noise term is i.i.d. Normal with zero mean and variance 2. The white
noise transition disturbances v; are orthogonal to the initial state vector
Fp. The measurement equation is:

B 1 —exp(—A) 1 —exp(—2) 7]
3) 1—exp(—31) 1—exp(—34) B B
2 _ 1 3 31 exp(—31)
y(1'20) 1-e p(: 120A) 1 —exp( 120A):
¢ —exp(— —exp(—
! 1207, 1207, —exp(=120-2)
Vt,1
Lt Vt,3
St |+ . (7.4)
Ct :
Vt,120

Estimations suggest that the cross-factor dynamics is weak. The first
autoregressive coefficients of the latent factors from the nominal TS are
0.98, 0.92, and 0.92 for L¢, S¢, and Cy respectively. The most persistent
factor becomes curvature when estimating the real TS; the autoregres-
sive coefficients of L, ¢, and C; from the real TS are 0.93, 0.92, and 0.96
respectively.

7.5 Curvature and business cycle fluctuations

A better understanding of TS dynamics can be achieved by exploring the
macroeconomic underpinning of the yield curve. A certain consensus
exists on the interpretation of the level and the slope; however, so far
the interpretation of curvature is still controversial. In this section we
provide evidence suggesting that curvature is related to the fluctuations
of real activity. A curvature shock affects medium-term maturities of the
yield curve. A positive shock increases medium-term yields, while a neg-
ative shock generates an inverted hump-shaped yield curve, which is
sometimes observed in the data. Figure 7.1 shows that a significant neg-
ative curvature shock hits the yield curve each quarter preceding NBER
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recessions. We point out that the relationship between curvature and the
economic cycle is not in contrast with previous evidence suggesting that
the TS slope is a good predictor of future economic activity (Stock and
Watson 1989; Estrella and Hardouvelis 1991).

Intermediate maturities have been largely ignored so far; thus, we try to
achieve a more general and comprehensive examination of TS dynamics.
Any shock affecting the short end of the yield curve, typically a mon-
etary policy shock, generates only a moderate and delayed reaction of
long yields, which are smooth and persistent, so that any shock affecting
the short end of TS can be considered a shock to the slope. Our interest
in medium maturities arises from the idea that medium-term yields rep-
resent an important link between the extremely dynamic short end and
the smooth long end of TS. In particular, we argue that the propagation
of shocks from the short to the long end of the yield curve reflects the
evolution of economic conditions over the business cycle.

The empirical macro-finance literature has proposed different the-
oretical measures of curvature.* The correlation coefficients of these
components are positive but not always as high as expected. Cur-
vature is positively correlated to IP growth computed over different
horizons, from a quarter to three years. Curvature shares also impor-
tant co-movements with different measures of the output gap. Curvature
is inversely correlated with the variation of unemployment over time
(Figure 7.2).

A sharp reduction of curvature occurs immediately before economic
slowdowns. Data evidence seems to support the conjecture that curva-
ture is informative beyond the slope about business cycle fluctuations.
We speculate that negative shocks to curvature seem either to anticipate
or to accompany a decline in economic activity. Moreover, available
empirical evidence is consistent with the idea that the curvature effect
complements the transition from an upward-sloping to a flat yield curve.

It has been argued that the curvature factor is either related to mon-
etary policy shocks (Cho et al. 2005), or to the real stance of monetary
policy (Dewachter et al. 2006), or again to the expected future path of
interest rates (Giese 2007). In the following analysis we show that cur-
vature (C;) is more closely related to the condition of the real economy
than to monetary variables. We thus estimate two different equations.
The monetary model (M) is:

Cr=2380+81Affrtt—12+82AM 1t 12+ 3837 + 6t M (7.5)

Affrt t—12 is the annual change in the fed funds; AM 1 ¢_12 is the annual
rate of growth of M1; =y represents CPI inflation. The real-variable model
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Figure 7.2 Curvature and macroeconomic variables: scatter plots

Notes: NS curvature: curvature obtained with the Nelson-Siegel method; IP gap:
industrial production gap; unemployment: unemployment rate; TCU (In): log
series of the total capacity utilization; IP growth: industrial production growth;
unemployment growth: rate of growth of the unemployment rate; real cons.
growth: real consumption expenditure rate of growth.

(R) relates curvature to some cyclical indicators:

Ct=po+p1AIPtt 12+ p2 ATt 12+ p3AUNt ¢t 12+ p48APt 1 + €4 R
(7.6)

AIPtt_q12 is the annual change of the seasonally adjusted IP; Arct¢_12
represents the annual change in the real personal consumption expen-
ditures; Aung¢ 15 is the annual variation in unemployment; gap; is
either the Hodrick-Prescott or the Baxter-King de-trended series of log
IP. Estimation results are reported in Table 7.2.

To show our results are robust, the above equations have been esti-
mated both by OLS and by IV.> OLS estimations have been performed
allowing different structures of the variance-covariance matrix of param-
eter estimates.® Real consumption seems weakly related to curvature;
however, as we show later, consumption growth is significantly related
to curvature from the real TS. Evidence is in line with the idea that the
shape of the yield curve changes over the business cycle. We remark that
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the curvature effect is not incompatible with the fact that also the TS
slope varies across the business cycle.

A flat yield curve is usually interpreted as a sign of imminent reces-
sion since relative high short- to long-term rates are assumed to reflect
a severe monetary policy stance (Bernanke and Blinder 1992). On the
contrary, an upward-sloping yield curve reflects expectations about an
accommodative monetary policy and, thus, is indicative of a thriving
economy. Suppose the economy is growing fast so that strong aggregate
demand is likely to generate inflationary pressures. Suppose further the
monetary authority raises interest rates to preserve price stability. Two
effects may follow. On the one hand, the yield spread shrinks, since short
yields are likely to increase by a larger amount than long-term yields;
on the other hand, aggregate demand weakens, following the reduc-
tion of private investments. The adjustment process of the long end of
the yield curve following the shock affecting the short end implies an
intermediate step occurring at medium-term maturities, where the cor-
responding yields rise by more than long-term ones. The propagation
along the entire spectrum of TS maturities generates a temporary spike
in the medium end of the yield curve. Therefore, both the dynamics
of the yield curve and the evolution of the macroeconomic conditions
occur at the same time. Expectations may either accelerate or anticipate
the process. The contrary happens before a recession. Expectations of
accommodative monetary policy exert a negative pressure on TS medium
maturities thus causing curvature to drop (Figure 7.1). In this chapter
we do not intend to establish any causality relation between curvature
and real economy, we simply suggest that curvature reflects the cycli-
cal behavior of the economy. In short, the curvature effect seems to
accompany the transition of the yield curve from a positively sloped one,
prevailing during booms, to a flat one, which is believed to anticipate
recessions.

Estimations of the monetary equation (7.5) suggest curvature being
significantly related to the annual change of both the federal funds and
M1. Hence, evidence does not entirely reject the hypothesis that curva-
ture is related to monetary policy shocks. However, we provide evidence
that the link between curvature and the real economy is stronger than
the link between curvature and monetary policy variables.” In line with
Rudebusch and Wu (2004, 2005), we suggest that the TS slope is more
closely related to a Taylor-type monetary policy reaction function.

Since we believe that curvature reflects the state of the economy rather
than the monetary conditions, we forecast curvature using both mod-
els. According to our results (Figure 7.3) model R, rather than model
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Figure 7.3 Forecasting performance of models (7.5) and (7.6)

Notes: NS curvature: curvature obtained with the Nelson-Siegel method; std errors:
standard errors; forecast: forecast of the curvature factor; forecast error: difference
between actual and predicted curvature.

M, returns a better fit. Both models return quite accurate forecasts, but
standard errors of model R are lower. In addition, forecast errors of
model R oscillate closer around the zero line. A battery of tests is per-
formed to prove that the predictive accuracy of model (R) is better than
that of model (M): Theil inequality, Diebold-Mariano, Morgan-Granger-
Newbold, Wilcoxon.

As a further robustness check, we examine whether also curvature
obtained from the real TS is related to the real economy. Removing the
effect of inflation from TS should not affect the curvature factor, since
inflation is mainly reflected in the long end of the yield curve. Ang et al.
(2008) point out that the real TS does not exhibit any trend, while the
typical upward-sloping shape of the nominal yield curve is due to a pos-
itive inflation risk premium which is incorporated in long-term yields.
Therefore, the medium part of the yield curve should be unaffected after
removing the effect of inflation. Hence, curvature extracted from the real
TS should track curvature obtained from the nominal TS.8 The correla-
tion coefficient between real TS curvature and nominal TS curvature is
very high indeed, about 0.95.

After ruling out inflation, we re-estimate both the monetary and the
real equations for the real TS curvature. Curvature is still significantly
explained by real variables, as reported in Table 7.3. Real TS curvature
is also significantly related to consumption growth; such result can be
interpreted consistently with previous findings in the literature (Harvey
1988; Chapman 1997).
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We thus use both models (7.5) and (7.6) to predict curvature obtained
from the real TS. Results support the thesis that model R performs bet-
ter than model M. During periods of economic slowdown, both models
tend to overestimate curvature. As before, a further robustness check is
provided by predictive accuracy tests.

Finally, we wish to verify whether the curvature factor is related to the
aggregate demand (AD) curve, which is usually assumed to describe the
state of the economy.

gapt = vo,g +V1,gEt (8ape1) + (1 —v1,5) - [V2, 8Pt 1]
+¥3.¢ [mt —E; (”Hl)] +étg

cure = vo,c + ¥1,c Et (curey1) + (1= v1,¢) - [V2,c cure_1]
+¥3,c [ffit —Et (me41)] +ét,c

A traditional AD (IS) curve implies that the output gap is a function of
its forward-looking component, its lagged realizations, and the expected
real interest rate. We jointly estimate equations (7.7) in order to compare
the coefficients obtained from the actual AD curve with those com-
ing from the curvature equation. The forward-looking real component
in the AD equation captures both consumption-smoothing behavior,
which is an empirical regularity, and the sentiment about the future
state of the economy. The system is GMM estimated, thus matching
a twofold objective. Instruments are necessary since expected future
(unobserved) variables appear in both equations; they are also required
to back generated regressors in the second equation. In both cases, vari-
ables may be eventually measured with errors, so that the GMM allows
obtaining robust estimates.? In addition, GMM estimation handles with
heteroscedasticity and serial correlation of unknown forms.

Result of estimating system (7.7) is reported in Table 7.4. If estimated
coefficients of the first equation are similar to the respective coefficients

(7.7)

Table 7.4 Estimates of equations (7.7)

AD equation

IP gap Curvature
Vg Vig V2,6 V3, vo,c Vi, V2, V3,
GMM -0.0494 0.8931 0.8292 0.0246 -0.0608 0.7366 09711  0.0197
(0.035) (0.089) (0.339) (0.013) (0.183) (0.292) (0.209) (0.042)
[-1.4] [10] [2.4] [1.9] [-0.3] [2.5] [4.6] [0.5]
2 2
Radi 0.88 Radi 0.95

Notes: Standard errors in parenthesis; t-statistics in square brackets.
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of the second equation, we may presume that curvature can proxy the IP
gap, that is the curvature reflects the cyclical fluctuations of real activity.
The magnitude of coefficients are comparable. The better fit of the cur-
vature equation might be due to the higher persistence of the financial
factor. Residuals from both equations are serially uncorrelated and suf-
ficiently homoscedastic. Residuals’ correlograms is regularly distributed
around zero. The Wald test, used to check whether the estimated param-
eters in the IP gap equation are equal to the respective counterparts in
the curvature equation, supports both individual and joint coefficient
equality.

As a final check, we forecast the IP gap after replacing the dependent
variable of the curvature equation with the aforementioned variable,
thus imposing the IP gap to be a function of curvature and the real inter-
est rate. The forecast tracks quite well the actual series of the IP gap
reproducing the real pattern of business cycle fluctuations.

7.6 A cyclical model for curvature

In this section, we provide some more evidence relating curvature to the
cyclical component extracted from a structural time series model for IP
(Harvey 1989). IP is assumed to have a stochastic trend and a cyclical
component; the former represents the long-term movement in the time
series while the latter determines the entity of economic fluctuation, that
is the cycle dynamics. Two random walk processes underlie the stochastic
trend py:

e =pe—1+Br+ne (7.8)
Bt =Br—1+ st (7.9)

n¢ and ¢y are white noise mutually uncorrelated disturbances with zero
mean and standard deviation o5, and o, respectively. Both the upward
and downward movements of the trend are driven by the n; component;
while the steepness of the trend depends on ¢;. Whenever the variance
of the disturbances collapses to zero the stochastic trend turns into a
deterministic one; on the other hand, the larger the variances the greater
the stochastic movements of the trend.

The cycle y; is technically constructed using the sine/cosine wave
functions. The length of a cycle is called the period, which represents
the time taken to go through its complete range of values (27/1); while
the frequency (1) measures how often the cycle is repeated in the unit
of time. The cycle is then characterized by few other parameters, the
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amplitude (4) and the phase shift (9). The cyclical component is thus
expressed as follows:

Yy =Acos(At—0) (7.10)

A complete formulation representing the cycle combines both the sine
and the cosine waves:

Yt = acos (At) + bsin (At) (7.11)

The time series of the IP cycle thus can be seen as the summation of the
above cyclical component plus a white noise error term with zero mean. A
stochastic pattern for the cycle requires parameters a and b to evolve over
time; to preserve time series continuity we adopt the following recursion:

][z s o] ] -
v —sini  cosA | ¥f 4 «f

with initial states o = a and y;5 = b; and, where «; and «/ are white
noise disturbances. The model is identified if either we assume that two
disturbances have the same variance or if they are uncorrelated. Finally,
we introduce a dumping factor (p) affecting the amplitude of the cycle in

order to allow for more flexibility. System (7.13) summarizes the entire
structural model for IP:

Kt 11 0 0 Ht—1 nt
Bt 01 0 0 Bt-1 St

= 7.13
Yt 0 O pcosr psini Y1 + Kt ( )
v 0 0O —psinA pcosi Vi K}

Equation (7.13) is the state, or transition, equation of the state-space
representation. The transition matrix on RHS describes the evolution of
the unobservable components so that it captures the stochastic behavior
of both the trend and the cycle.

The seasonal component is excluded from the model since we use the
seasonally adjusted IP series. IP is thus decomposed into a trend and
a cycle (plus a residual component). The model is estimated using the
Kalman filter for both the level of the seasonally adjusted IP series and
for its log transformation. The estimation of the amplitude is 0.9357
(p-value: 0); it is a stable solution (]p| < 1) that denotes a cycle with
decreasing amplitude (i.e., convergence).10

Diagrams in Figure 7.4 plot the cyclical component together with dif-
ferent indicators of the business cycle. There is a positive and significant
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Figure 7.4 Cycle prediction and cyclical variables

Notes: Cycle prediction: cyclical component of the structural model; gap HP: IP
gap obtained with the Hodrick-Prescott filter; gap BK: IP gap obtained with the
Baxter King filter; unempl. growth: rate of growth of the unemployment rate.

relationship with the output gap computed applying both the Hodrick-
Prescott and the Baxter-King frequency filters; while, there is an evident
inverse relation with the annuals, instead, shows that the IP cyclical
component is highly correlated with the curvature factor one-year ahead.
The correlation coefficient is about 0.71. Moreover, curvature lies within
the forecast standard error bands only except for periods of economic
downturn, when it slightly crosses the bands downward. The central and
the right panels of Figure 7.5 plot respectively the deviations between
curvature and the cycle prediction and the associated correlogram. The
forecast errors series is stationary, as suggested by both the autocorrela-
tion function. Stationarity of the forecast errors series is also supported by
unit root tests; both the ADF and the Phillips-Perron tests reject the null
hypothesis of unit root. In addition, the KPSS test confirms stationarity.
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Figure 7.5 Cycle prediction and curvature (nominal TS); autocorrelogram of the
deviations

Notes: Cycle prediction: cyclical component of the structural model; std errors:
curvature: standard errors of the prediction; curvature: curvature factor; devia-
tions: difference between curvature and its prediction; ACF(deviations): autocor-
relogram of the deviation series.

We also compare the cyclical component with curvature from the real
TS. The correlation coefficient between the series is almost 0.70. The
left panel of the diagram below highlights how similar the path of both
series are. The central diagram shows the discrepancies between the cur-
vature and the predicted cycle and the right diagram plots the associated
autocorrelogram (Figure 7.6).

7.7 A joint macroeconometric model for curvature and
industrial production

To provide more evidence about the economic relationship between cur-
vature and the business cycle, in this section we develop and estimate
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Figure 7.6 Cycle prediction and curvature (real TS); autocorrelogram of the
deviations

Notes: Cycle prediction: cyclical component of the structural model; std errors:
curvature: standard errors of the prediction; curvature: curvature factor; devia-
tions: difference between curvature and its prediction; ACF(deviations): autocor-
relogram of the deviation series.

a joint structural macroeconometric model for both curvature and IP.11
The measurement equations are summarized by the following system:

Mt

log Gpp)| |1 0 1 Of| Bt &

il 101 0|y | |ecs (7.14)
v

where cur; is the simulated trended curvature series. In the model above
we assume that both trends follow first-order integrated stochastic pro-
cesses, while the cyclical components are a combination of sine and
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cosine waves. The model structure is:

[wel] 11 0 0 00 0 0 7
Bt 01 0 0 00 0 0
Yt 0 0 pcosh psink O O 0 0
v | |0 0 —psini pcosr O O 0 0
Mt “10 0 0 0 1 1 0 0
Bet 00 0 0 01 0 0
Vet 0 0 0 0 0 O pccosh  pesini
c*,t L0 0 0 0 0 0 —pcsini  pcCcosA |
Mt—1 Nt
Bt-1 St
Vi1 Kt
* *
L N (7.15)
Me,t—1 Ne, t
Bet—1 St
Yet-1 Ke,t
RSN BN

The model has been estimated with data from 1987 to 2007. The esti-
mated amplitude of the cycle is 0.9311 for IP (p) and 0.7741 for the
simulated curvature factor (pc). These results are coherent with a decreas-
ing amplitude of the cycle, that is, stability. The covariance between
the cycles has been imposed to be approximately zero. The left dia-
gram in Figure 7.7 shows the evolution over time of both the predicted
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AL AR & YAt o0
0.10 \y/‘\’l ¥ \,‘., @\{4} \ o
W
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Figure 7.7 Cyclical indicators and curvature

Notes: 1P grw: rate of growth of the industrial production index; IP gap HP:
industrial production gap obtained with the Hodrick-Prescott filter; cycle CUR
KF prediction: curvature prediction obtained by Kalman filtering the structural
model; cycle KF prediction: cyclical component obtained by Kalman filtering the
structural model.
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states of the cycle (right scale) and the cyclical indicators (left scale).
Co-movements with the IP growth and the IP gap (HP filtered) are
important.

As far as the trend component is concerned, Figure 7.8 plots the esti-
mated deterministic trend of log IP and the trend series obtained after
Kalman filtering the joint model. The predicted series displays a slightly
larger variance than the estimated one; both series fluctuate regularly
around the deterministic time trend though. We now show how the
decomposition of the SA series of log IP into a cyclical component and
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88 90 92 94 96 98 00 02 04 06 88 90 92 94 96 98 00 02 04 06
— KF predicted trend — log(IP) Observation Eq. errors
——- KF estimated trend
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Figure 7.8 Industrial production trend
Notes: KF predicted trend: Kalman filtered trend prediction; KF estimated trend:
Kalman filtered estimation of the trend; log (IP) trend: log series of the IP trend;
log (IP) Observation Eq. errors: residual of the observation equation of model
(7.14) and its correlogram.
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a trend reliable is. We thus consider the error term of the measurement
equation for log IP, that is ¢, in equation (7.15).

Residuals are covariance stationary (ADF, Phillips-Perron, KPSS). The
correlogram confirms the noise series is stationary. The Jarque and Bera
test suggests the normal distribution of residuals.!? Before conclud-
ing, we repeat the same experiment using the curvature series obtained
from the real TS. The simulated trended curvature series is obtained as
described above. The estimated dumping factor that affects the ampli-
tude of the cycle is 0.9365 for IP (p) and 0.6926 for simulated curvature
(pc)- Theright panel of Figure 7.8 shows both the predicted and estimated
states of the cycle together with the annual IP growth rate and the out-
put gap (constructed by removing the HP filtered log IP from the actual
series). There is an evident relationship between the series extracted by
Kalman filtering and the real economic indicators.

7.8 Conclusion

Both macroeconomists and financial economists have always paid
scrupulous attention to the bidirectional relation linking macroeco-
nomics and finance. The yield curve certainly represents an appealing
bridge to explore the aforementioned relation. In this vein, TS mod-
els provide an effective framework to summarize in few factors all the
information contained in the yield curve, which is regarded to be a lead-
ing economic indicator. So far, the empirical literature has expressed a
certain consensus about the macroeconomic interpretation of only two
components underlying TS, namely the level and the slope. The former
is associated to the rate of inflation targeted by the monetary authority,
while the latter is considered a sign of the monetary policy stance. This
study offers a refinement of traditional TS factor-models since we mainly
focus on the third latent factor.

Working with US data we provide significant evidence that curva-
ture reflects the cyclical behavior of the economy, as represented by the
dynamics of unemployment and IP. We find evidence, in fact, that a
negative shock to curvature seems either to anticipate or to accompany
a slowdown in economic activity. The curvature effect thus appears to
complement the transition from an upward-sloping to a flat yield curve.
Interestingly, our main result holds despite the fact that the curvature
factor is extracted from the real or the nominal TS of interest rates. In
particular, US data also suggest that curvature from the real TS is related
to consumption growth.
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Notes

1. Dewachter et al. (2006) find evidence that a shock to the central tendency
of real interest rates exerts a significant effect on intermediate maturities of
the yield curve. Dewachter and Lyrio (2002) suggest that curvature repre-
sents a clear independent monetary policy factor; in particular, curvature
reflects movements of the real interest rates that are orthogonal to any other
macroeconomic variables. They also argue that the slope reflects business
cycle conditions.

2. To match the monthly frequency of data 12 is the selected number of lags in
the auxiliary regression. Automatic lag selection (Akaike, Schwarz, Hannan-
Quinn criteria) leads to similar results. KPSS critical values (including intercept
and trend) are 0.216, 0.146, and 0.119 at 1%, 5%, and 10% significance levels
respectively. We cannot reject the null of stationarity when the empirical KPSS
statistics (reported in the Table) is below the critical values.

3. Nelson and Siegel suggest fixing it equal to 0.06, the value that maximizes
the third loading. Following Diebold, Rudebusch and Aruoba (2006) we fix it
equal to 0.077.

4. The theoretical measure of curvature proposed by Ang and Piazzesi (2003)
is computed as y(1m)+y(60m)-2*y(12m), where m indicate the maturity in
months. Bekaert, Cho and Moreno (2005) propose y(3m)+y(60m)-2*y(12m).
Finally, Nelson and Siegel (1987), as well as Diebold and Li (2006), and
Diebold, Rudebusch and Aruoba (2006), compute the curvature as 2*(y24m)-
y(120m)-y(3m).

5. The first lag of explanatory variables has been used as instruments.

6. Since we cannot assume that residuals are serially uncorrelated and iid normal,
the asymptotic chi-square test rather than the small sample F-test is used to
assess the joint significance of estimated coefficients. The White correction is
used in presence of heteroscedasticity of unknown form. The Hansen-Hodrick
correction is a standard way to deal with overlapping data and serially cor-
related residuals in forecasting models. The Hansen-Hodrick procedure does
not guarantee a positive definite covariance matrix. The Newey-West correc-
tion returns a positive definite matrix. The chi-square statistics to test for joint
significant is suspiciously large, so that we carry out estimates with the simpli-
fied HH. Standard errors are built ignoring conditional heteroscedasticity and
assuming that serial correlation is simply due to overlapping observations of
homoscedastic forecast errors.

7. We have estimated the monetary equation (7.5) for the slope factor; all
coefficients are statistically significant and robust (White, Hansen-Hodrick,
Newey-West, simplified HH). The goodness of fit is about 60%. Mone-
tary variables predict the slope more accurately than curvature. We have
jointly estimated two simple Taylor-type reaction functions by maximum
likelihood. One equation based on the federal funds rate, the other on
the slope factor, which (as in Rudebusch and Wu, 2004) is considered as
a proxy of the policy rate. The first lag of the dependent variable has
been included among regressors to capture monetary policy inertia. The
Wald test confirms that respective coefficients are the same in the two
Taylor-type equations. GMM results are similar if we include future (expected)
inflation.
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8. Our analysis is theory-consistent since the level obtained from the nominal

TS dominates in magnitude the level factor extracted from the real TS, which
is flat.

. GMM estimation does not require distributional assumptions. GMM is a large
sample estimator; each equation is estimated using more than 250 observa-
tions. Instruments: the annual rate of growth of industrial production and
its first lag, both of which are highly correlated with both the industrial
production gap and the curvature factor; the realized real interest rate, com-
puted as the difference between the fist lag of the federal funds rate and actual
inflation.

10. The estimation of the of the variance of the disturbances are the fol-

11.

12.

lowing. Measurement equation: (0.1588)2 (p-value: 0); trend component:
(0.0564)2 (p-value: 0.0040); and cyclical component: (0.3358)2 (p-value:
0). The estimate of the amplitude of the cycle extracted from the log
series of the IP is 0.9461; the variance of disturbances are the following.
Measurement equation: (0.001 6)2 (p-value: 0); trend component: (0.006)2
(p-value: 0.0030); and cyclical component (0.004)2 (p-value: 0). In both cases
convergence is achieved after quite a few iterations.

Since curvature is stationary we need to add a stochastic trend in order to make
it comparable with the log IP series. We estimate the trend and the intercept of
the IP series; then we run a stochastic simulation (with 1000, 5000, and 10000,
repetitions achieving similar results) in order to get the trended series for
curvature. The OLS regression of log IP onto the constant and the trend returns
an estimate of 3.41 and 0.0026 respectively; both coefficients are statistically
significant with null p-values. Statistical significance is confirmed by both the
White and the Newey-West corrections.

We have also run an auxiliary OLS estimation of log IP onto the trend and the
cycle. Residuals obtained from this regression turns out to be homoscedastic
and serially uncorrelated. The statistical properties of both the error series
from the measurement equation and the residuals from this auxiliary regres-
sion are almost identical. Moreover, since regressors of the aforementioned
auxiliary regression are generated series (KF estimated trend and cycle), we
have also employed the IV method, using as instruments the lagged values of
IP. The IV estimated coefficients are actually the same; the estimation returns
a suitable pattern for residuals. Trivially, as largely expected, the goodness of
fit of the auxiliary regression is almost 1.
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On the Efficiency of Capital
Markets: An Analysis of the Short
End of the UK Term Structure

Andrew Hughes Hallett and Christian Richter

8.1 Introduction

In this chapter, we analyze the term structure of interest rates in a novel
way. We test to what extent the UK short-term interest rate is determined
by the short-term US interest rate, and how much by the UK monetary
instrument. In other words, we test jointly whether and to what extent
the uncovered interest parity (UIP) and/or the expectations hypothesis
(EH) of the term structure of interest rates holds.

The EH of the term structure was prominently formulated by Fisher
(1930), Keynes (1930), and Hicks (1953) and states that long-term inter-
est rates are determined by expectations of future short-term interest
rates. UIP, in turn, postulates that the interest differential between two
countries should equal the expected rate of depreciation or apprecia-
tion of the corresponding exchange rate. UIP received prominence from
expositions by Keynes (1923), whose attention had been captured by the
rapid expansion of organized trading in the forward exchange markets
following World War I.

Both hypotheses have in common that they use expectations. The
UIP uses expectations concerning the (spot) exchange rate; and the EH
uses expectations of the monetary instrument in our case, but of shorter
term interest rates in the general case. Both hypotheses have also in
common that the expectations are usually modeled assuming rational
expectations, although both hypotheses were actually formulated well
before the concept of rational expectations had been developed. Hence,
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expectations in UIP and EH do not have to be “rational.” In fact, in
the original literature, expectations were given exogenously. As a result,
when combining UIP and EH with rational expectations, one has to be
aware that an empirical rejection is not necessarily a rejection of UIP
and EH per se but may simply be a rejection of rational expectations.
This outcome should be of particular interest in the light of the finan-
cial crisis that started in 2007. Rational expectations imply that agents
have a complete knowledge of the economy and the economics involved.
Therefore, it is not surprising that UIP and EH are usually rejected when
rational expectations are included.! At the same time, experimental
and survey evidence on exchange-rate expectations often rejects rational
expectations and also static expectations for that matter but tends to sup-
port extrapolative, adaptive, or regressive expectations instead (Marey
2004).2

In this chapter, we test UIP and EH jointly using extrapolative expec-
tations for the short end of the UK term structure. We can show that
both hypotheses affect the short-term interest rate albeit with unequal
weights. In our sample, the short-term interest rate is more affected by
the US interest rate than by the UK monetary instrument. However, that
does not mean that UK monetary policy has no impact. Indeed, we find
that extrapolative expectations serve well as a proxy for the formation of
expectations. Finally, we are also able to show how the current financial
crisis has affected the link between UK and US interest rates.

This chapter is organized as follows: Section 8.2 introduces our model
to be tested and how it is estimated. Section 8.3 presents the results, and
Section 8.4 concludes.

8.2 Empirical techniques

8.2.1 The hypotheses tested in this chapter

For UIP we use the common notation:
i =i e 1
t1 _lt,1+ASt+}‘t (8 )

where “A¢” is the time-varying risk premium, “s;” is the spot exchange
“usn

rate, “iy” is the interest rate (maturity of three months), superscript “f”

upn

is foreign, and “e” means expectation.
The EH of the term structure in turn implies:

it 1 = aCBS (8.2)
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where “CB¢” is the central-bank interest rate. We use extrapolative
expectations of the form:

x{=(1—PB)x¢ —Bxr_1 (8.3)

The reason for using extrapolative expectations is that they represent,
together with the Kalman filter, an optimal learning and updating algo-
rithm (Garratt and Hall 1997a). It therefore has a sound theoretical
foundation in markets where agents may not be perfectly informed all
the time. Moreover, using extrapolative expectations results in a lag
structure, which is important for calculating phase shifts between mon-
etary policy changes and avoids the poor fits often found with rational
expectations.
If we substitute Equation (8.3) into (8.4), we get:

it1= i’tcll +(A=y)st—ySe—1—St—1+A¢
=il A=) s~ Ty st + A (8.4)
Using extrapolative expectations in EH results in:
it ] =a(1-8)CB; —adCB;_q (8.5)

Take a time-varying weighted average of both equations (i.e., sometimes
domestic influences are more important but sometimes foreign pressures
are more important):

Weig 1+ (1 —wp)ip,1 = wela (1 —8) CBt —a8CBy_1]
+ A= woll] |+ (A= y)se— (L y)Se-1 + Al
& it =wra(1 —=8)CBt —wpadCBy_1 + (1 —wy)
[i 1+ (1= y)se = (L4 p)se_1 +A¢] (8.6)

Equation (8.6) is the equation we estimate in this chapter, although we
added one extra lag for the foreign interest rate. If UIP and EH had the
same impact on the UK interest rate, then w; would be equal to 0.5.
Notice that in equation (8.6), not only do the variables vary over time
but so also do the parameters. Our approach therefore allows for time-
varying risk premiums as well as for a changing relationship between
foreign and domestic interest rates (market conditions at home and
abroad).
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In order to estimate the parameters in Equation (8.6) we use the
Kalman filter. That is, we estimate the following state space model:

it :DtXt+gl,t (87)
where equation (2.7) is the measurement equation, and with
Dy =Dt_1+ext (8.8)

where g, ¢ ~ i.i.d. (0, agza) for a=1, 2, in the state equation.

In this formulation, i; is the British three-month T-Bill rate; X; is a
set of determining variables such as the British base rate (the monetary
instrument in the British case) and the US three-month T-Bill rate; and
Dy is a matrix of estimated parameters, including any time-varying risk
premium. In either case, the rationale of equation (2.8) is that agents
only update the parameters of the model once an unforeseen shock
has occurred (Lucas 1976). Moreover, an attractive advantage of the
Kalman filter algorithm is that it assumes that agents form one-period
ahead forecasts. These forecasts are then compared with the correspond-
ing (new) observation for the same variable. According to the Kalman
gain, the coefficients are systematically updated in order to minimize
the one-period ahead forecast error. That property makes the Kalman
filter convenient for modeling the process of learning> and the acqui-
sition of new information It incorporates rational learning behavior by
market participants, defined as the ability to minimize their short-run
forecasting errors.

The question now is how the parameters are updated to reflect learn-
ing. Wells (1996) shows that, in the case of an exogenous shock, the
parameters are optimally updated as follows:

dyr =dpr—1+Ke (i = Xed 1) 8.9

where dy|; denotes the estimate of the state “d” at time ¢ conditional
on the information available at time s. The interesting part of equation
(8.9) is the term in brackets. It shows the forecast error. Hence, the cur-
rent parameters are updated according to the forecast error resulting from
an estimated parameter, which did not contain the additional informa-
tion revealed in the current period. This forecast error in turn affects the
Kalman gain. Thus, the Kalman gain may be calculated as:

——1
Kt :Pt‘t_lX,’f (tit‘t_lxg-i— a) (8.10)
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where Pys is the variance of the forecast error at time ¢ conditioned on
the system at time s and E is the covariance matrix of e ¢. In other
words, the updating process depends on the one period forecast error
and its distribution in the past.

8.2.2 Significance tests and diagnostic test

Using the procedure described so far implies that we get a set of param-
eter values for each point in time. Hence, a particular parameter could
be significant for all points in time, or at some periods but not oth-
ers; or it might never be significant. These parameter changes are at the
heart of this chapter since they imply changes in the lag structure and
hence in our frequency and dependency analysis. We therefore employed
the following testing strategy. We start with a general lag structure of
order q. The value of g is determined by the Akaike information criterion
(AIC) test. If a particular lag was never significant (across successive time
periods) then this lag was dropped from the equation and the model
estimated again. If the AIC criterion was less than before, then that lag
was excluded altogether. If a parameter was significant for some periods
but not others, it was kept in the equation with a parameter value of zero
for those periods in which it was insignificant. This strategy minimizes
the AIC criterion and leads to a parsimonious specification. Finally, we
tested the residuals in each regression for the absence of serial correlation
and heteroscedasticity.

The final specification, equations (8.8)—(8.9), was then validated using
two different stability tests. Both tests check the same null hypothesis
against differing temporal instabilities. The first is the fluctuations test of
Ploberger et al. (1989), which detects discrete breaks at any point in time
in the coefficients of a (possibly dynamic) regression. The second test
is due to LaMotte and McWorther (1978) and is designed specifically to
detect random parameter variation of a specific unit root form (our speci-
fication). We found that the random walk hypothesis for the parameters
was justified for each country (results available on request). Finally, we
chose the fluctuations test for detecting structural breaks because the
Kalman filter allows structural breaks at any point and the fluctuations
test is able to accommodate this.4 Thus, and in contrast to other tests, the
fluctuations test is not restricted to any prespecified (and hence untested)
number of breaks.®

Once this regression is done, it gives us a time-varying model. From
this model, we can then calculate the short-time Fourier transform as
outlined below in order to calculate the associated time-varying spectra
and cross-spectra.
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8.2.3 Spectral analysis

The spectral density function shows the strength of the variations of a
time series at each frequency of oscillation. It decomposes the variance
of a time series into the component that occurs at each frequency or
cycle length. Put in a diagram, it shows at which frequencies the vari-
ance or fluctuations are strong or powerful and at which frequencies the
variations are weak.

In order to calculate the spectrum from the estimated version of
equation (8.6), it is convenient to use the fast Fourier transform. The fast
Fourier transform creates a frequency domain representation of the original
time domain representation of the data. Thus, the spectra, cross-spectra,
and phase shifts are based on regressions done in the time domain but
then transformed into a frequency domain representation by the Fourier
transform. However, we have allowed the coefficients in our regressions
to vary over time. We therefore have to derive one Fourier transform for
each point in time. These calculations define a sequence of short-time
Fourier transformations (STFTs). In discrete time, this means the data to
be transformed has been broken up into frames (which usually overlap
each other). Each frame is then transformed as described, and the result
added to a matrix, which records its magnitude, phase, and frequency at
each time point. These steps may be expressed as:

STFT {(x[n]} =X (m,0)= Y x[n]w[n—m]e /" (8.11)

Nn=—0o0

In this case, m and » are different points in time; » is the frequency
and is continuous; j =,/ —1; and “n—m” is the estimation period of the
regression currently in play. In our application, the estimation period is
not constant but is increasing with each new observation. The squared
magnitude of the STFT then yields the spectrogram of the function:

spectogram {x;} = IX (t,w)|? (8.12)

In this chapter, the specific algorithm used to calculate the various
Fourier transforms is the Bluestein algorithm (Bluestein 1968). This is a
well established algorithm, widely used in engineering (Boashash 2003;
Boashash and Reilly 1992) but not commonly used in economics.
Finally, Boashash and Reilly (1992) have shown that, once equation
(8.2) has been estimated, its coefficients «; ; can be used to calculate the
STFT and the power spectra directly. That has the convenient property
that the traditional formulae are still valid and may still be used, but they
have to be recalculated at each point in time. The time-varying spectrum
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of the growth rate series can therefore be calculated as follows (see also
Lin 1997):

o2

Py (@) = (8.13)

9 2

1+ Y ajrexp(—jowi)

i=1 t

Hence, at any pointin time, the power spectrum can be calculated instan-

taneously from the updated parameters of the model. In addition, we are

able to generate a power spectrum even if we have a short time series,
and even if that time series contains structural breaks.

8.2.4 Cross-spectral analysis

Let us assume that we estimated the following model:
, L. 2
ir =AWL)xp +ug, up ~iid. (O,o ) (8.14)

where A(L); is a filter, and L is the lag operator such that Lz = z¢_1.
Notice that the lag structure, A(L);, is time-varying. That means we need
to use a time-varying model (we use the Kalman filter again) to estimate
the implied lag structure. That is:

ajt=dj¢ 1+ forj=0, ..., qand ne~ (0, ar%) (8.15)

What we are interested in is to find a lead-lag relationship between the
different variables. For example, for UIP we would like to know how
fast the adjustment of the UK interest rate is, once the US rate changes.
That is, by how much is the US rate leading? With respect to the central-
bank rate, we would also like to know how much the central-bank rate is
reflected in movements in the three-month market interest rate. In other
words, by how much does the three-month interest rate lead the central
bank’s rate? A convenient tool to measure these lead-lag relationships
is the phase shift. The phase shift is widely used in frequency or time-
frequency analysis®. Given that we have already estimated the model
(8.13), all we have to do is to use the coefficient to calculate the phase
shift from it.

In what follows, we briefly explain the concept of the phase shift.
In order to calculate the phase shift, we need the phase angle. The phase
angle measures the lead or lag relationship between two variables at each
cyclical frequency. Formally:

1 —Qyx (w)

¢(w)=tan™ Cyx (@)

(8.16)
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where

o oo
Cyx () =fxx (w) Zai coswj, and Qyx (w) = fxx (w) Zaj sin wj
j=0 j=0
(8.17)

The phase angle can therefore be written as

o0
> ajsinwj
j=0
o) =tan 1| = (8.18)
> ajCoswj
j=0
Hence, to calculate the phase angle, all we need to know are the coeffi-
cients a; from equation (8.14). However, in this chapter we will actually
analyze a “standardized” phase angle, or phase shift:

(@)= (8.19)

To see how to interpret the phase shift statistic, consider Figure 8.1,
which shows one variable is following the other at long cycles, with
a delay of one month - peak to peak, say. However, for smaller cycles,
the delay is shorter. If the markets are efficient in the conventional sense,
the two processes should follow each other very closely since agents are
able to process new information relatively quickly. Nevertheless, in other
cases, there will be natural leads or lags depending on the structure of
the markets, the institutional arrangements, and the degree of financial
integration.

The formulae given above are for the time-invariant case. Since we get
new values for g; for each point of observation f, we can apply the above

(o) A

v

Figure 8.1 Assumed shape of a phase shift
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formulae for every point in time t. That means the time-varying phase
shift changes to:

_ 9(w)t
()

(W) = (8.20)

8.3 Empirical results for the UK and US money markets

8.3.1 Data set

The UK and US three-month T-Bill rates and the dollar-pound exchange
rate are taken from the IFS database. We used monthly data from 1972M1
to 2008M12. The UK central-bank rate is from the Bank of England and is
available from its webpage. The sample for the bank rate is also 1972M1-
2008M12.

8.3.2 Kalman filter results

To economize on space, we show only the final regressions here. All
other results, for the earlier periods, are available from the authors
upon request. The time series estimates of equation (8.6) are shown in
Table 8.1.

Table 8.1 Regression results

VAR/System (estimation by Kalman filter)

Dependent January 1976 to
variable UKTBILL Monthly data from  December 2008
Usable 396 Std error of 3.4868193831
observations dependent
variable
R2 0.996184 Standard error of 0.5527347969
estimate
Mean of 8.1563131313 Sum of squared 118.84562898
dependent residuals
variable
Akaike (AIC) 0.54873 Ljung-box test: Q* 44.3872
criterion (40)
Variable Coefficient Std error T-Stat
Constant 0.178406348 0.035619453216 5.008677325101
UKDISC 1.121130944 0.100796310081 11.12273795870
UKDISC{1} —0.302678222  0.084186905184 —3.59531237803
USTBILL 0.244651619 0.041170474386 5.94240467455
GBPDOL —1.261248657  0.169144089998 —7.4566522360
GBPDOL(1} 0.764879193 0.103076219570 7.42052043125

USTBILL{4}

—0.001187483

0.005018534745

—0.2366194133
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In Table 8.1, UKTBILL is the UK three-months T-bill rate, UKDISC is
the central-bank rate; USTBILL is the US three-months T-bill rate, and
GBPDOL is the pound-dollar rate. We included the fourth lag of the
US T-bill rate in order to generate non-autocorrelated errors. If we add
the two coefficients of USTBILL and use that value to calculate w; from
equation (8.6), then we get the long-run impact of the US T-bill rate
on UK rate, that is it is the impact if the system reaches a steady state.
As figure 8.2 shows, the impact of the US rate varies over time but is
always the most important determinant, although its influence is shrink-
ing sharply towards the end of the sample. That may be an indication
that the UK rate is decoupling itself from the US rate. However, that is a
relatively recent phenomenon and follows a period when the US influ-
ence was unusually high (2003-2008). The history before that shows that
US rates had a steadily declining influence, although it was always high,
through the EMS period (1979-1990); but then a slowly increasing influ-
ence from the breakdown of the EMS (1993) until the period of recent
growth (2006).

The obvious next question that we need to answer is by how much
does the US Treasury bill rate lead the UK rate? For that, we look at the
phase shift.

1.2
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Figure 8.2 Impact of the US rate on the UK rate (wy)
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Figure 8.3 Phase shift between the UK and the US rate

From Figure 8.3, we can see that the lead of the US rate at long cycles is
small and has decreased over time, essentially since 2002. At the begin-
ning of the sample it was about 0.08 months and that was reduced to
0.06 months by the start of the financial crisis in mid-2007. The finan-
cial crisis itself has led to immediate reactions of the UK rate and a small
increase in the lead of US interest rates. However, the interesting result
is that, according to UIP, the UK rate does not necessarily have to follow
the US rate. Instead, the exchange rate (expectation) could change and
that could lead to a change of the UK rate. The above figure shows that
this is not the case. US rate changes have had a direct impact on the
UK rate, implying fairly fixed exchange rates and exchange rate expec-
tations. This appears to have held, even into the current financial crisis.
Whilst previous changes in the lead-lag relationship could be attributed
to changes in technology (early 70s), the recent immediate incorporation
of US rate into UK rates reflects much more markets sentiments towards
the US.

The fact that UK agents now incorporate changes in US rates into UK
rates more rapidly than they used to, does not contradict the fact that
the importance of the US rate decreased. What the above diagram shows
is the speed of adjustments and not the extent.
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Figure 8.4 Phase shift between the central-bank rate and the T-Bill rate

We now turn our attention to the central bank’s rate. Here we asked
how well extrapolative expectations work in this model. If extrapolative
expectations work well, then they should enable agents to incorporate
their expectations into the interest rate and hence the T-bill rate should
lead the central bank rate.

Figure 8.4 shows the phase shift between the T-bill rate and the central
bank rate in the UK.

From the above figure we can see, that extrapolative expectations work
well on average, because the T-bill rate is leading the monetary instru-
ment except in the period 2002 - 2007. Hence, expectations up to 2007
were formed in terms of what they could anticipate of monetary pol-
icy and incorporate into the current T-bill rate, otherwise the T-bill rate
could not lead the monetary instrument. This example shows that form-
ing extrapolative expectations does not imply that agents are irrational.
Instead, they may just be learning how to anticipate the behavior of the
monetary authorities in the sense we defined earlier. Thus, if we allow
for learning, extrapolative expectations can serve as a tool to anticipate
the behavior of other variables.

Finally, we look at the lead-lag relationship between the T-bill rate
and the spot exchange rate. From the UIP relationship (8.1), the interest
rate will depend on the expected spot rate. As in the previous example,
we have assumed extrapolative expectations are at work here. If extrap-
olative expectations are at work, then they should help to incorporate
future developments of the exchange rate into the interest rate and imply
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S
Figure 8.5 The phase shift between the T-bill rate and the exchange rate

that the T-bill rate leads the exchange rate. Figure 8.5 now shows the
relationship between the two variables in practice.

Figure 8.5 shows that, in qualitative terms, the lead-lag relationship is
relatively stable. Up to a frequency of 1.2, or 5.2 months, the exchange
rate is leading the T-bill rate. Nevertheless, for shorter cycles the T-bill
rate leads. The interesting thing about these results is that the current
crisis has increased the lead of the exchange rate in the long term, and the
lead of the T-bill rate in the short term. This says that agents have been
able to anticipate short-term fluctuations in the exchange rate relatively
well, but have difficulties concerning long run behavior.

Moreover, this diagram also highlights why it is sometimes difficult to
reach results concerning the validity of an expectation formation. The
advantage of the Fourier transform is that it shows for all frequencies how
one variable affects another one. It does not average an effect across some
or all frequencies. If we had focused solely on a time-series approach, the
property that extrapolative expectations work for some cycles but not for
all would have been hidden. The reason is that a time-series approach,
if not filtered, calculates averages over all the different frequencies.

8.4 Conclusion

In this chapter, we test the EH for the term structure of interest rates
jointly with the UIP condition for the short end of the UK term structure.
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We find that the US interest rate, the UK monetary instrument, and the
(spot) exchange rate all affect the short-term interest rate. However, the
impact of the US rate is the biggest effect, although that has decreased a
little during the recent financial crisis.

We also tested a bounded rationality approach. We deviated from
the contemporary literature by refusing to impose rational expectations.
Instead, we have assumed extrapolative expectations as an obvious
behavioral alternative. We have shown that incorporating extrapolative
expectations in both hypotheses turned out to be a significant improve-
ment. Hence, and in contrast to previous work which has assumed
rational expectations, we find the UIP and the EHs are not rejected. Thus,
the problem seems to have been violations of the rational expectations
paradigm, not violations of UIP or the EH of behavior in the financial
markets. Second, we also show that extrapolative expectations formation
can help us anticipate the central bank’s impact on short-term interest
rates. Finally, concerning the exchange rate, we were able to show that
extrapolative expectations can help to anticipate short-term movements
of the exchange rate but not long-term movements of the exchange rate.
Hence, in the short-run, interest rates lead movements in the exchange
rate. However, in the longer term they do not.

Notes

1. Many comprehensive surveys exist: see, for example, Froot and Thaler (1990),
Lewis (1995) and Engel (1996) for UIP, and Cook and Hahn (1990) and
Campbell and Shiller (1991) for EH.

2. See also Hughes Hallett and Richter (2002; 2003a; 2003b; 2004).

3. The Kalman filter is widely used in finance and macroeconomics as a learning
algorithm: see for example, Lucas (1976), Garatt and Hall (1997a; 1997b),
Whitley (1994). Salmon (1995) shows that the Kalman filter is a special case
of a neural network. Hence the Kalman filter can be regarded as an optimal
procedural learning algorithm.

4. Note that all our tests of significance, and significant differences in parameters,
are being conducted in the time domain, before transferring to the frequency
domain. This is because no statistical tests exist for calculated spectra (the
data transformations are nonlinear and involve complex arithmetic). Stability
tests are important here because our spectra are sensitive to changes in the
underlying parameters. But, given the extensive stability and specification tests
conducted, we know there is no reason to switch to another model that fails
to pass those tests.

5. The fluctuations test works as follows: one parameter value is taken as the ref-
erence value, for example, the last value of the sample. All other observations
are now tested whether they significantly differ from that value. In order to do
so, Ploberger et al. (1989) have provided critical values which we have used in
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the figures. If the test value is above the critical value then we have a structural
break, i.e. the parameters differ significantly from their reference values and
vice versa. For reasons of limited space we have excluded the test diagrams
from this chapter but report on the results. The diagrams are available from
the authors upon request.

6. See, for example, Boashash (2003), Boashash and Reilly (1992) and Hughes
Hallett and Richter (2009).
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9

Continuous and Discrete Time
Modeling of Short-Term
Interest Rates

Chih-Ying Hsiao and Willi Semmler

9.1 Introduction

In modern finance theory, the short-term interest rate is important
in characterizing the term structure of interest rates and in pricing
interest-rate-contingent-claims. There is some pioneering work in the
continuous-time framework, for example by Vasicek (1997) and Cox et al.
(1985). A survey of is provided by Chan et al. (1992). Chan et al. (1992)
show that a wide variety of well-known one-factor models for short rates
can be nested within the following stochastic different equation (SDE):

dX; = (c — BXpdt + o X] dAW;. (9.1)

The unpredictable residual of the Chan, Karolyi, Longstaff and Sanders
(CKLS) model is modeled as a Brownian motion W¢. The features of this
model include a mean-reverting drift coefficient! and a level-dependent
diffusion coefficient. This continuous-time framework can provide ele-
gant expressions in theory, but it entails some difficulty in the empirical
research (see Lo 1988). Many methods have been developed to imple-
ment the empirical estimations. For example, among others, one can
mention the indirect inference method of Gouriéroux et al. (1993),
the approximate likelihood method of Perdersen (1995), the general
method of moments with respect to diffusion generators by Hansen and
Scheinkman (1995) and Duffie and Glynn (2001), the efficient method
of moments of Gallant and Tauchen (1996), the nonparametric method
of Ait-Sahalia (1996) and Ait-Sahalia (1997), the density-approximation
method by Dacunha-Castelle and Florens-Zmirou (1986) and Ait-Sahalia
(1999), and the Milstein method by Elerian (1998). Finally, this chapter2
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considers the new local linearization (NLL) method developed by Shoji
and Ozaki (1997, 1998).

In order to take continuous-time models to the data, one first has
to discretize those models. We employ here three discretization meth-
ods: the Euler method, the NLL method, and the Milstein method. The
three methods deliver discrete-time approximate models for discrete-
time-observed data of a continuous-time diffusion process. In this way
we can implement the maximum likelihood estimation (ML estimation)
and provide predictions. In the literature, Lo (1988) pointed out that the
Euler estimator? is not consistent. The Milstein and NLL approximations
are shown to improve the Euler approximation (see Elerian 1998: 11,
Table 1; and Shoji and Ozaki 1997: 494-501). The improvement in their
papers is represented by smaller errors of the parameter estimations in the
numerical experiments. Our chapter takes another view to assess those
models. Besides the accuracy of parameter estimation, we also consider
the accuracy of prediction. For the SDE (1) where the drift coefficient is
linear, we show that the Euler and the NLL methods provide the same
prediction. Thus, these two methods are actually statistically equivalent.
For comparing the Euler and the Milstein methods we do not verify the
superiority of the Milstein method, in contrast to Elerian (1998). The
parameter estimations and the one-step-ahead predictions of the two
models are very similar. We argue it is because of the small scales of the
parameters, which lead to a relatively small effect on the discretization
bias. The scales of the parameters are chosen from the results of our
empirical study. In other words, the advantage of the Milstein method
is not very significant in the current short-term interest-rate case.

The Euler and Milstein approximate models are applied to the short-
term interest-rate data of Germany, the UK, and the USA. The two
approximate models perform quite similarly in both estimation and
prediction. We find none of the country short-rate data can pass our
specification tests in a satisfactory way where the estimated residuals of
all the three countries have too high autocorrelation and too thick tails.
So we look for new models which can explain these stylized facts. In the
continuous-time framework there is some work pointing out the short-
comings of the CKLS model (9.1) (see, for example, Ait-Sahalia 1996 and
Andersen and Lund 1997). However, the data simulated by these two
continuous-time models still cannot generate the high autocorrelation
of the residuals either.

Since we cannot find a suitable model in the continuous-time frame-
work we turn to the discrete-time framework. The autoregressive moving-
average (ARMA) structure is a candidate for fitting high autocorrelations
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of the estimated white noise. We will see, in Section 9.4, that we can
model the autocorrelation of the estimated noise by taking more lags in
the models. To model the thick tails in the estimated white noise we fol-
low the work of Brenner et al. (1996) and Koediji et al. (1997). They
employ the autoregressive conditional heteroscedastic (ARCH) model
suggested by Engle (1982) and Bollerslev (1986) to model the thick tails.
In addition, their conditional variance depends on the level of the short-
time interest rates. Combining the modeling strategies above, we obtain
an ARMA-ARCH structure with level-dependent volatility. Our model
generalizes the model of Brenner et al. (1996) by the ARMA structure.

The remainder of this chapter is organized as follows. Section 9.2
introduces the three discretization methods. We show that the Euler
and NLL approximate models for the SDE (9.1) are equivalent under
reparametrization. In Section 9.3, the Euler and the Milstein approxima-
tions will be applied to the empirical short-rate data. We find evidence
which cannot be represented by the model (9.1). We thus look for new
models in Section 9.4, where we find the discrete-time ARMA-ARCH
model with level-dependent volatility is a better candidate for the short
rates. Section 9.5 concludes this chapter.

9.2 Discrete-time approximation

Here we introduce briefly the three methods of discrete-time approxima-
tion: the Euler, the Milstein, and the NLL method.

9.2.1 Euler method

The idea of the Euler method is to replace dt in the equation (1) by a time
interval At and we have a discrete-time approximation for the diffusion
process X:

X,

i+1

— Xy, = b(Xy, 0) Al +a(Xy, 0) AW,. 9.2)

9.2.2 Milstein method
The Milstein method approximates the SDE by the following scheme:

X,

1
1~ Xty = DXy, O AL+ (X, 0) AWy + 5a(Xe)a (X)) (AW)? — Aty

9.3)

where At; = (i1 —t;)) and AWy, = Wy, — W;,.# It has one more term

then the Euler method of the equation (9.2) and better convergence.>
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The likelihood based on the Milstein method is calculated as follows.
Following (9.3), the dynamic of the SDE (9.1) is approximated by

1
Xij,y =Xt = €= BXi) Al +0X] AWy + 20 yXZV Law? - aty,
where Atl' =ljy1 — ti/ Ath, = Wti+l — th,.
Let
1 2y-1
Vi =Xty = Xg = (€= BX)Ali+ 5o 2yX, At

The above equation becomes
1 2y-1
o yX Y= (Ath.)z—i—aXZAWti =Y
Let x; € R still be the realizations of X;, and y; be the realizations of Yy,

fori=0,...,N correspondingly. We solve the equation (16) to obtain the
realizations of AWy, =uf ,u7, where

i+1°

i+1’7i+1’
1414 2
+
urn  =—1rr
1
i+ nyy 1
—-1-— /1+2%ii+1
u, =—
i+1 JVXI%/_l

Then the conditional density is given by

dP{AW}, = YU{AW,, =du? )
Xt =X Xt =Xx;) = ! l+1 H—l
PXty, = Xip11 Xy, = X)) s
dP(AWy, = duf ) |duf | | dP(AWy, = dul ) |du
B dul—i—l dyl+1 dul+1 dyi—i-l
_\2
P G p? Lexp _(”i+1) 1
ZJTA 2At1

2AL; [ f
! axz./ 1_{_72)/))(/;“

as 1+ M >0.1f 1+ M <0, then the density above is infinity. If

1+ Zyy ‘“ <0, which means there is no real solution of AW}, in (16) for
such yl 11, therefore the density is equal to zero

p(XtiJrl = dX,'_,,_l |Xti =x;)=0
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Comparing this density function and the density function in Equation
(2.5) in Elerian (1998: 7), it is not difficult to show the identity of these
two functions by some calculation.

By numerical operations of the ML estimations we must modify the
density function, because when 1 + % =0, the value of the density
function is infinity. Therefore, we appl}; the following density function
for the ML estimations:

dP(Xt =dxi+l|Xt,- =Xi)

g 'l(x'lx' lrer At) = il
mi 111+ 1 Xm+1
2 2
+ —
= ! ex —7(ui+l) +ex — (ui+1> !
NN P 2At; P

2At; !
’ ox 14 2z

2 .
for 14 ZXViHL  10-10,

Xi

= 10_10, otherwise.

9.2.3 New local linearization method

The NLL method is suggested by Shoji and Ozaki (1997: 490-491). It
approximates the drift coefficient b(Xs) up to the second-order terms by
using the It6 formula

1
dXs = (b(Xy,) +b'(Xg)(Xs — Xg,) + Eb”(Xti)aZ(Xti)(s — £p)ds + a(Xt,)dWs.
(9.4)
while the diffusion coefficient is still kept as a constant. The equation
(9.4) can be solved analytically, and the solution at t;, ; is given by
bXy) b Xt -t
Xty = X6 = prxgy© -1

V(X)) a(Xg)?

X2 2 (eb e —t) _q _ b/(Xt,-)(tiJrl )
i

liy1 4/ Lo
+a(Xy,) / T K a=2 gy (9.5)
ti
The distribution of the last term can is given by

tiv1 4 R i fit1 / o
a(Xt,-)/ 6,b X)) (i Z)dWZ d’lle (O, a(Xti)Z/ eZb X)) (tigq Z)dz) )
{ {

(9.6)
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9.2.4 Equivalence of the Euler and NLL predictors

Here we show the Euler and NLL predictors of the SDE (1) are actu-
ally statistically equivalent due to the linearity of the drift coefficient
in Equation (9.1). The Euler approximation is obtained according to
Equation (9.3) and given by

Xiit1yat —Xiat = (€ = BXjap) At +0 X[ [ AWing 9.7)
while the NLL approximation is obtained according to Equation (5)

h
Xit1ar —Xiat = 1/;/3) (€= BXinp) +oha(B)X],  Uitq (9-8)

Then we can observe an equivalent mapping under the reparametrization

_ C
Beut = hy (Byyp) :=1—e Pl ceuAtzﬂL’lllhl(ﬁnm
n

M B 1 _e—zﬁnIIAt
Yeu = Ynll: Oeu = 0pn)1N2(Pnil) :=opujy ’
n n n nily/ 2B, AL

where U;,i=1,... are i.i.d N(0, Af)-distributed.

9.3 Empirical results on modeling short-term interest rates

9.3.1 Data

We apply only the Euler and the Milstein approximations for the empir-
ical short-rate data. The short-rate data are interest rates with a one-day
maturity, which are the call money rate of Germany, the overnight inter-
bank rate of the UK, and the federal funds rate of the USA. All data are
monthly data from “The International Statistical Yearbook”® for the time
period January 1983 to December 1997 (180 observations) for estima-
tion. The further period January 1998 to June 2000 (30 observations) is
reserved for prediction. We take data after the oil crisis, for January 1983-
June 2000, because many researchers have found evidence of regime
changes for the crisis period 1979-1982. The time series of the rates are
plotted in Figures 9.1, 9.4, and 9.7.

9.3.2 Specification test

The main idea of the specification tests is to check whether there
is still deterministic structure in the residuals. Two specification tests
are adopted. The first test is to check whether the residuals are
auto-correlated. The second one is to test whether the residuals have
thick tails.
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Checking autocorrelation

Let Uy,...,Uy be identically distributed random variables with that
E[U;1=0, Var[U;] =1 and E|U;|® < oo, for all s > 2. Let f(k be the sample
autovariance function
. 1 X
Re=5— > UiUik.
i=k+1

Under the null we have E[Rk] =0and

Var[ﬁk] = m,

for k > 1. We normalized Rk into

. E[Rk] /N kR
T‘k = Rk = — Z U:
\/ Var[Rk] v 1 k+1

Consider the sequence (U;U;_g)i=k+1,..,~ for a fixed k. It is near epoch

Ui 4. (9.9)

dependent on (Uj)j=1, ~-/ Using the central limit theorem for near
epoch processes,8 7x converges to N(0,1) in distribution as N — oc.
Applying the test for our discrete-time approximations, we let U; =
W;—Wi_y. A

We remark here that 7, ~ N(0,1) means Ry ~ N(0, ﬁ). It is similar
with the result Var[Rk] ~ 1/N in Box et al. (1994: 32) when N is large
enough.

Testing normality

We employ here x2-test for histogram to test whether the distribution
of samples is N(0, 1) distribution.” The idea is to compare the relative
frequency of samples on intervals Ij;

~ _ number of {i;U; € Im}

Pm= N
and py,; the probability of N(0, 1)-distribution on the intervals I;;; where

{Im,m=1,...,M} are disjoint intervals of the real line.
The weighted distance

M N )
= E - (pm-— 9.10
P P —pm) Pm — pm) ( )
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measures the distance between the sample and the normal distributions.
It converges to XZ(M —1) in distribution as N — oc.

9.3.3 Results of estimating the CKLS model

In Tables 9.1, 9.2, and 9.3, the empirical results are reported. The first two
columns show the results of the Euler and Milstein approximations for
the CKLS model (9.1). The notations of the parameters are adjusted for
Section 9.4 later. All estimates in the drift coefficients are not significantly
different from zero. The forecast errors are given in the lower part of the
tables. We found that the CKLS model does not provide better data pre-
diction than a “naive” forecast without any model. In the row “relative,”
the relative forecast errors comparing a “naive” forecast are quoted. The
naive forecast just uses today’s data to forecast the next period. The rela-
tive errors both for the in-sample and out-of-sample forecast are all about
100 percent or even above.

The estimated white noises based on the two methods are very sim-
ilar as plotted in Figures 9.2, 9.5, and 9.8. Figures 9.3, 9.6, and 9.9.
plot the normalized autocorrelations given in Equation (9.9) for the
Euler approximation. The normalized autocorrelations should be within
[—2,+2] band. However, in the figures they are about 3.5 for Germany
and the UK and about 5 for the USA. This finding indicates strong
autocorrelation in the estimated residuals. Durbin (1970) and Box and
Pierce (1970) have pointed out that the sample autocorrelations will be
underestimated for close time differences.10 In this case, the underesti-
mation indicates an even stronger autocorrelation than the values given
above. As a reference, we run a Monte Carlo simulation for 1,000 repeti-
tions using the result of the US estimations. Most of them (96 percent)
have the maximal normalized autocorrelations smaller than 2.8 (we take
the first ten normalized autocorrelations), and the maximal of them
is only 4.2.

We also observe that the estimated residuals are more concentrated
around zero than the standard normal distribution, which implies they
have thick tails.1! This fact can be inferred from Figures 9.2, 9.5, and 9.8,
and the large d-statistics of the normality test in Tables 9.1-9.3 indicate
that the distributions of the residuals are far from a normal distribution.

9.4 Searching for new models

Because of the results that show high correlations and thick tails for the
model (9.1) shown in the last section we search for new models.
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Figure 9.9 Normalized autocorrelation of the estimated noise, USA

9.4.1 Improvement in the continuous-time framework

In the literature, there are further works to improve the model (9.1)
for modeling the short-term rate in the framework of continuous-
time models. For example, Ait-Sahalia (1996) suggests a nonlinear drift
coefficient:

(04
dre = (g +aqre +opr® + 73)dt+\/ /30+/31ft+/32r3ﬂth
t

and Andersen and Lund (1997) suggest a stochastic volatility model:

drt =K1 (,LL — rt)dt—}—atr;/dWlt,

dlogat2 =xp(0— logatz)dt+$dW2t.

We simulate data using the models specified in Ait-Sahalia (1996) and
Andersen and Lund (1997).12 We plot them in Figures 9.10 and 9.11.
The model of Ait-Sahalia cannot reproduce a similar time series of the
real data. It stays always in a narrow band around the steady state. The
normalized autocorrelation functions from these two models are plotted
in Figure 9.12. We observe that there is no extreme autocorrelation in
the estimated noise.
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Table 9.1 Results of estimation and forecast for Germany

Milstein Euler Euler Euler
Germany CKLS CKLS LALARMA LARMA-ARCH
Model Identification
p 1 {1,6} {1,6}
q 0 0 0
k 0 0 (1,7}
ag(c) 0.020 0.017 0.068 0.065
(t-stat.) (0.37) (0.34) (1.38) (1.74)
a1(—=ph) —0.007 —0.007 0.095 0.079
(-0.73) (—0.71) (3.89) (3.54)
ag -0.107 -0.091
(—4.28) (—4.01)
y 0.417 0.378 0.186 0.485
2.21) (2.01) (1.00) (2.14)
co(o) 0.113 0.122 0.153 0.062
3.11) 3.1 3.16) (2.48)
1 0.297
(2.43)
cy 0.272
(2.47)
Log-Likelihood 0.0054 0.0054 0.0061 0.0067
d-Statistics (x2) 161 160 95 31
(p-value) (1.78¢725)  (2.91e725)  (6.39¢713) (0.02)
Avg. Forecast Errors
- Level Forecast
In Sample 0.0540% 0.0541% 0.0439% 0.0441%
(Relative) (99%) (99%) (90%) (90%)
Out of Sample 0.0192% 0.0193% 0.0153% 0.0156%
(Relative) (100%) (100%) (79%) (81%)
- Volatility Forecast
In Sample 0.0144% 0.0144% 0.0090% 0.0082%
Out of Sample 0.0017% 0.0017% 0.0015% 0.0013%

9.4.2 Modeling autocorrelations in the estimated noise
We employ the ARMA process!3 to model the autocorrelation of the
estimated noise

» q
AW =" $iAW,_ i+ Ve (9.11)
i=1 j=0
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Table 9.2 Results of estimation and forecast for UK

Milstein Euler Euler Euler
United Kingdom CKLS CKLS LALARMA LARMA-ARCH
Model Identification
p {1} {1} {1}
q 0 {1 {1
k 0 0 {1}
ag(c) 0.153 0.155 0.289 0.210
(t-stat.) (1.30) (1.23) (1.63) (1.71)
a1(=B) -0.018 —0.019 —0.034 -0.025
(=1.25) (=1.26) (-1.67) (-1.71)
B1 0.431 0.313
(5.38) (2.18)
y 0.974 0.742 0.574 0.527
(4.97) (3.45) (2.91) (2.21)
co(o) 0.067 0.115 0.157 0.136
(2.31) (2.11) 2.29) (1.86)
= 0.498
(2.31)
Log-Likelihood 0.00038 0.00019 0.00052 0.00091
d—Statistics (x2) 1639 1675 349 235
(p-value) (0.00) (0.00) (9.59¢64) (2.22¢—40)
Avg. Forecast Errors
- Level Forecast
In Sample 0.3668% 0.3886% 0.3155% 0.3212%
(Relative) (99%) (99%) (85%) (87%)
Out of Sample 0.0701% 0.0701% 0.0777% 0.0714%
(Relative) (105%) (105%) (116%) (107%)
- Volatility Forecast
In Sample 1.1705% 1.1503% 0.6469% 0.8050%
Out of Sample 0.0218% 0.0306% 0.0298% 0.0277%

If the noise AW} has an autoregressive coefficient of order one then
AWt = ¢)AWt_1 +8t.
By replacing AW; using (9.7), we obtain

AXy—(c—BXt 1) AXy1—(c—BXt_2)
v = ¢ y +8t.
aXt_l UXt—Z
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Table 9.3 Results of estimation and forecast for USA

Milstein Euler Euler Euler
Us CKLS CKLS LALARMA LARMA-ARCH
Model Identification
p 1 {1,2} {1,2}
q 0 0 0
k 0 0 (1,6}
) 0.048 0.047 0.055 0.028
(t-stat.) (1.03) (1.01) (1.23) (0.64)
a1(—B) -0.010 -0.010 0.361 0.456
(-1.22) (—1.20) (5.219) 6.11)
ap -0.371 —-0.461
(-5.39) (—6.29)
y 0.827 0.839 0.767 0.808
(5.70) (5.74) (5.25) 3.57)
co(o) 0.055 0.054 0.057 0.037
(3.70) (3.68) (3.68) (2.23)
a 0.225
(1.26)
6 0.330
(2.07)
Log-Likelihood 0.0050 0.0050 0.0054 0.0057
d-Statistics (x2) 65 63 76 36
(p-value) (1.32¢77)  (3.43¢77)  (2.33¢79) (0.0053)
Avg. forecast errors
- Level forecast
In sample 0.0732% 0.0732% 0.0614% 0.0618%
(Relative) (99%) (99%) (82%) (83%)
Out of sample 0.0252% 0.0252% 0.0190% 0.0187%
(Relative) (102%) (102%) (77%) (76%)
- Volatility forecast
In sample 0.0256% 0.0256% 0.0183% 0.0178%
Out of sample 0.0020% 0.0020% 0.0017% 0.0014%

Rearranging it we obtain:

X¢_
AXy=(c—BXi—1)+¢ (Xti;

14
) (thl — (C — ﬂthz)) +O‘Xg./71£t.

(9.12)
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Figure 9.12 Normalized autocorrelation of the estimated noise for the
continuous-time models

Rewriting (9.12) using the approximation (ig:; )Y &~ 1, we obtain a model

with two lags in the drift term

AXy=ap+o1 Xp_1+ap X2+ (IX;:let.

So, the noise AWy, with an autocorrelation of order one, gives us an
model with two lags. Using this idea, we give the general structure as:

P q
AXp=ag+ Y aiXei+X] 1 | D Biee—i |- (9.13)
i=1 i=0

9.4.3 Modeling thick tails in the estimated noise

For modeling thick tails of the noise we employ the idea of Brenner et al.
(1996) and Koedijk et al. (1997). The common feature of their construc-
tions is that they apply the ARCH# to model the thick tail. Moreover,
the conditional variance (the volatility) of X; is level-dependent. Bren-
ner et al. (1996) argue that both level and ARCH effects are significant
for short-term rates. We follow their idea and build the ARCH-structure
into the model (9.13) where ¢; is N(0, ;) distributed with

k
hy :c%+Zc,-st27i. (9.14)
i=1
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We employ (9.13) and (9.14) as our model class to model short rates.
For the unique specification of the parameter we normalize g = 1. We
have a more general model than Brenner et al. (1996) by considering
the ARMA structure (9.13). This can correct the autocorrelations of the
residuals.15 We note that we employ the ARCH structure instead of the
GARCH structure in Brenner et al. (1996). The GARCH model is a techni-
cal improvement over the ARCH modell® when the lags of a? are long.
The results during the model-identification stage suggest we do not need
to employ the GARCH structure.

9.4.4 Results

In Tables 9.1, 9.2, and 9.3, we report the empirical results for the short
rate of Germany, the UK, and the USA. The first and second columns are
results of the CKLS model (1) using the Euler and the Milstein approxi-
mation as mentioned. The third and fourth columns report the results of
the ARMA and the ARMA-ARCH models, respectively. The abbreviation
“LARMA” denotes “level + ARMA” meaning the ARMA structure with a
level effect.

The “Model Identification” in the tables means the determination
of the orders p, g, and k in (9.13) and (9.14). We follow the stan-
dard procedure of Box et al. (1994). p and q are determined based on
the autocorrelation function of ¢;. Next, k is chosen according to the
autocorrelation function of etz. The procedure chooses the most par-
simonious model where the estimated noise does not have significant
autocorrelations.

The parameters of the drift coefficients « are not significant in the CKLS
model (the t-statistics are quoted in parenthesis). However, they become
significant after the ARMA and ARMA-ARCH structures are introduced in
the third and fourth column (with the UK as an exception). All likelihood
values increase when the ARMA structure is considered and are improved
further when the ARCH components are introduced.

The forecast errors are reported in the tables for both the in-sample and
the out-of-sample forecasts. According to (9.13), the predictor of X; 1 in
the LARMA and the LARMA-ARCH model is given by:

p .
Xep1 =EelXe110) =X+ a0+ ) _&iX_iy1 + X[ Bret+...+ Baet—g+1)-
i=1

Thus, the forecast error of the level is the difference:

2 2
Xtp1 = Xep1 =Xt ee1
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and the forecast error of volatility is given by:
A A 'y 2’\ A
K1 = XesD? =Bl X1 = X121 = XY e 1)? = X7 by

We observe in Tables 9.1, 9.2, and 9.3 that the in-sample and out-of-
sample forecasts have improved, with the exception of the out-of-sample
level forecast for the UK. We relate this improvement with the results that
all estimates become significant after the introduction of the ARMA and
ARMA-ARCH structure (again with the exception of the drift coefficients
for the UK).

We can see that the major improvement of the level forecast is due to
the introduction of the ARMA structure and the ARMA-ARCH structure
contributes to the forecast improvement of volatility. The parameter y is
significantly different from zero for all three countries. This corresponds
to the existence of the level effect in Brenner et al. (1996). For the data of
Germany and the UK, the estimates of the parameter y are not far from
0.5 as in the model of Cox et al. (1985).

The normalized autocorrelations with respect to the lags are plotted in
Figures 9.3, 9.6, and 9.9. The normalized autocorrelations for the chosen
LARMA and LARMA-ARCH models are controlled within [—2,+2]. The
distribution of the noise can be found in Figures 9.13, 9.14, and 9.15,
and the y2-statistics for the normality test are reported in Tables 9.1-9.3.
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Figure 9.13 Distribution of estimated white noise (II), Germany
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Although we already have reduced the concentration of the distributions
by introducing the ARCH structure, we still note that they are signifi-
cantly different from the normal distribution at the 5 percent level. The
distance is greatest for the short rate in the UK.
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Comparing all three countries, we can observe that the modeling of
the short rate for the UK is less successful. The t-statistics of the esti-
mated parameters are not significantly different from zero, and the
distance between the distribution of the estimated noise and the nor-
mal distribution is still sizeable, even after the introduction of the ARCH
structure.

The parameters p,q, and k are the model identification parameters as
given in Equation (9.13) and (9.14). In the parenthesis are t-statistics.
d-Statistics is x2-distributed given by Equation (9.10). The relative in-
sample forecast error in level is 99 percent of the error of the naive
forecast. The naive forecast assumes the value in the next period is just
that of today.

9.5 Conclusions

The objective of this chapter is to empirically model the short-term inter-
est rates. We begin with the continuous-time CKLS model (9.1), and we
apply the Euler, Milstein, and NLL approximations. For evaluating the
quality of the discrete-time approximations, we compare the errors of the
parameter estimations and the one-step-ahead predictions. Our results
do not show an improvement of the NLL and Milstein approximations
over the Euler approximation frequently found in the literature. The NLL
approximation is equivalent to the Euler approximation due to the lin-
earity of the drift coefficient. The Milstein and the Euler approximations
behave similarly.

We apply the Euler and the Milstein approximations to the short-term
interest rates of Germany, the UK, and the USA. It indicates evidence
of model misspecification where the estimated residuals have high auto-
correlation and thick tails. We show that two further continuous-time
models of Ait-Sahalia (1996) and Andersen and Lund (1997) cannot suf-
ficiently model the autocorrelation of the estimated white noise either.
Therefore, we decide to model the short rates in a discrete-time frame-
work. The model of the ARMA-ARCH structure with level-dependent
volatility copes with the autocorrelation problem successfully. This
model can also provide higher likelihood values and improve the level
and volatility forecasts by a significant amount. However, the results
regarding the distribution normality of the residuals display only a mod-
erate success. In addition, the out-of-sample level forecasts of the UK data
do not show marked improvements. This suggests one needs to broaden
the framework and consider other models such as the multifactor and
regime-switching models.
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Notes

1. If the process deviates from % (the mean), for example, X; > %, then the

process is drifting down and it is pulled up when X; < %

2. The application of the Milstein method for approximating diffusion processes
is independently developed by the authors. In the appendix of this chapter
we present our application and show that it is equivalent to that of Elerian
(1998).

. It means the ML estimator by using the Euler method.

. See Kloeden and Platen (1992: 345).

. See Kloeden and Platen (1992: Chap.10).

. See http://www.ub.uni-bielefeld.de/english/library/databases/, then choose
International Statistical YearBook 2000, for “Datenbank” choosing “OECD”
and “main economic indicators”, for “Period” choose “monthly data”, for
“Search” choose “indicator-search”, then “interest rates”, then “immediate
rates”.

7. See Gallant and White (1988) Def. 3.13, p. 27 with Z,;; = U;U;_g. One can see
vm =0 when m > k.

8. See Gallant and White (1988), Theorem 5.3, p. 76. The conditions of the
theorem are satisfied because under null (U;) is independent and v, =n —k.

9. See Breiman (1973: 189).

10. The is why the “Q-statistic” is developed, see Box and Pierce(1970) and Ljung
and Box(1978).

11. Because the variance is normalized to 1. The concentration of the distribution
around O leads to a smaller variance. In order to keep the variance as 1, there
must be more weight in the tail.

12. We undertake simulation with an interval 0.01 and then pick up the simulated
series with an interval, 1.

13. See Box, Jenkins and Reinsel (1994).

14. See Engle (1982).

15. See Brenner et al. (1996) p. 95 “The Ljung-Box Q (st /oy) statistics indicate that
both models have significant serial correlation in the residuals.”

16. See Bollerslev (1986).
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Testing the Expectations
Hypothesis in the Emerging
Markets of the Middle East: An
Application to Egyptian and
Lebanese Treasury Securities

Sam Hakim and Simon Neaime

10.1 Introduction

For many years, and despite many rejections,! the expectations hypoth-
esis remains the widely accepted premise believed to explain the shape
of the yield curve. In its simplest form, the expectations theory sug-
gests that the current long-term interest rate is a weighted average of
current and expected future short-term rates. In this setting, the spread
between long- and short-term rates predicts future changes in short rates.
Changes in the slope of the yield curve depend on interest expectations,
with steeper yield curves foreboding greater expectations of rate changes.

This chapter focuses on testing the expectations hypothesis in two
emerging capital markets. The theory assumes that securities of differ-
ent maturities are substitutes and investors’ arbitrage away yield spreads,
which are caused by the relative excess supply or demand of a particu-
lar security over the term structure. Specifically, investors shift from one
maturity sector to another in order to take advantage of yield differentials
due to differences between expectations and forward rates. In this frame-
work, the term structure is shaped by market expectations regarding the
future direction of rates.

To evaluate the validity of the expectations hypothesis in the Mid-
dle East, we analyze the stochastic nature of interest rates representing
the yields on securities for the entire maturity spectrum of the Egyp-
tian and Lebanese term structures. To our knowledge, this is the first
time that a study of the term structure in Middle Eastern countries has

188
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been undertaken despite the popularity of the region’s fixed income
instruments amongst mutual and hedge funds investing in emerging
markets.2 Our findings show that Egyptian and Lebanese interest rates
are non-stationary and can be modeled as unit-root processes. Further
investigation of their common relations showed that the interest rates
in each country are bound by a cointegrating relation and that a unique
common trend between them exists. This property suggests that Egyp-
tian and Lebanese interest rates do not diverge consistently apart from
one another and that a change in one interest rate is rapidly transmitted
to the entire term structure. Overall, our results lend theoretical support
to the expectations hypothesis and confirm the analysis of bond markets
in more mature economies.

The remainder of this chapter is organized as follows. Section 10.2
briefly examines the empirical and theoretical literature on the term
structure. Section 10.3 describes the data and provides descriptive statis-
tics. The tests for unit roots are done in Section 10.4. We investigate the
cointegrating relations between interest rates in each of the two coun-
tries and discuss the results in Section 10.5. Section 10.6 concludes this
chapter.

10.2 The existing literature

The recent theoretical underpinnings of the term structure assume that
the yield curve is represented by a stochastic process. Several models
have evolved. In single state models, all yields, and correspondingly all
discount bonds, are affected by movements in the short rate. Given the
spot-rate dynamics and the structure of the market price of interest rates,
default-free bonds of all maturities can be priced (Cox et al. 1985). Two
factor models of the term structure were also developed by Brennan and
Schwartz (1979). By and large, the interest rate is assumed to follow an
Ornstein—Uhlenbeck - or mean-reverting — process, where the underlying
distribution is normal. Unfortunately, this last property has the perverse
implication that interest rates could also become negative, a likelihood
largely mitigated by an appropriate choice of parameters of the stochastic
process or by imposing certain boundary restrictions.

In general, the single-factor models are based solely on the initial short-
term rate and overlook any other information on rates which can be
imputed from the yield curve. Models that incorporate more information
include Heath et al. (1992), Ritchken and Sankarasubramanian (1995),
and Hull and White (1996).
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The empirical literature on the term structure includes Engel et al.
(1987) who pioneered the use of autoregressive conditional heteroscedas-
tic models in the analysis of interest-rate series. This versatility allows
for the conditional variance to affect the excess holding yield on a long-
term bond. Their approach leads to a time-varying premia on securities
of different maturities and a relaxation of the assumption of constant
heteroscedasticity in the disturbances, based on earlier results obtained
by Shiller (1979) and Campbell and Shiller (1987).

Historical support for the expectations hypothesis in the USA is docu-
mented in Bradley and Lumpkin (1992) and Hall et al. (1992), who find
the rates for treasury securities cointegrated with unit roots.3 Similar con-
clusions drawn from the analysis of British and Danish data is found in
McDonald and Speight (1988), Mills (1991), Lee and Tse (1991), Taylor
(1992), and Engsted and Tangaard (1994). More recently, Beechey et al.
(2009) also found evidence of the expectations hypothesis in eight devel-
oped and six emerging economies. Nevertheless, there is also mixed
evidence documented in Boothe (1991), Hall et al. (1992), Zhang (1993),
and Lardic and Mignon (2004). The academic attention to interest rates
in the Middle East is small but growing. Instead of interest rates, studies
have focused on the region’s thriving equity markets and the more tradi-
tional currency exchange rates. For example, Hammoudeh et al. (2009)
examine the co-movements among the prices of four strategic commodi-
ties and their causal relationships with interest and exchange rates. The
goal is to shed some light on the predictive behavior of those individ-
ual commodity prices relative to the selected financial variables and to
establish a transmission link between commodity prices and the dollar
exchange rate. Another set of studies examined the spread on sovereign
bonds and how these measures are influenced either by the geopoliti-
cal landscape of the region (Haddad and Hakim 2007, 2009) or by US
macroeconomic news (Ozatay et al. 2009).

10.3 Data and diagnostic statistics

Our data consists of the weekly yields on Egyptian treasury securities auc-
tioned between July 21, 2006, and April 3, 2009, in five maturity sectors:
one year, two years, three years, five years, and seven years. Treasury secu-
rities have only recently been auctioned in Egypt, and, therefore, there is
a lot of interest to determine the efficiency of the term structure for that
country. For Lebanon, our data is based on monthly observations since
these securities were first introduced in 1991 as a tool of monetary policy.
The data period for Lebanon covers October 1991 through to February
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Figure 10.2 Lebanese treasury securities

2009. The Lebanese treasury securities are auctioned by Banque du Liban,
the Lebanese central bank, and their yield is determined in a competi-
tive environment. The figures were obtained from the quarterly reports
published by the central bank. In both countries, the subscribers to the
treasury auctions include commercial banks, financial institutions, pub-
lic agencies, and private (domestic and foreign) buyers, most notably
mutual funds that invest in emerging markets. Figures 10.1 and 10.2
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Table 10.1 Descriptive statistics yields on Egyptian and Lebanese treasury
securities

Lebanon Egypt
3M 6M 1Y 2Y 1Y 2Y 3Y 5Y 7Y

Mean 11.38 12.87 14.17 1565 894 9.08 9.13 10.00 10.24
Median 11.18 12.12 13.43 14.64 9 935 9.4 9.88 9.97
Mode 522 724 7.75 868 9 7.25 7.25 10.72 10.76
Standard 561 560 642 673 144 130 139 0.89 1.03

deviation
Kurtosis 1.53 150 148 -0.51 -0.65 —-1.38 0.20 —-1.17 -0.88
Skewness 095 103 109 064 018 -0.23 -0.71 0.11 0.39
Range 29.08 28.97 31.17 25.7 598 357 7.03 3.4 3.8
Minimum 5.1 631 668 7.89 575 7.25 3.79 8.15 8.45
Maximum 34.18 35.28 37.85 33.59 11.73 10.82 10.82 11.55 12.25
No. of 209 209 209 209 120 120 120 120 120

observations

Egypt: February 2006-April 2009 (weekly)
Lebanon: October 1991-April 2009 (monthly)

show the behavior of interest rates from the two countries over the study
periods.

The descriptive statistics of the term structure in each country are
provided in Table 10.1. The mean interest rate during the study period
ranged between 11.38 percent and 15.65 percent for Lebanon and 8.94
percent and 10.24 percent for Egypt. It appears that the term structure
in each country was upward-sloping as the interest rates increased with
longer maturity, an observation that is consistent with the normal shape
of the yield curve. The distribution of each maturity class over time is
not normal as is clear from the skewness statistic reported in Table 10.1
(a normal distribution has O skewness). The Lebanese interest rates are
skewed to the right while the Egyptian interest rates are mixed. Looking
at the standard deviation of the interest rates over time in relation to their
mean, we find that the two-year security in Lebanon has offered its hold-
ers the lowest risk per unit of return at 0.43 (=15.65/6.73). The best com-
parable rate in Egypt is the five-year treasury security at 0.09 (=0.89/10).

10.4 Tests of unit roots in Lebanese and Egyptian
interest rates

We begin by examining the stochastic nature of the yields offered on
the treasury securities across the Egyptian and Lebanese term structures.
We show that each set of series represents a unit-root process which we
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assume can be written as:
Ve=B+oay_1+u; (10.1)

where g is a drift parameter. The process can be rewritten in first
difference form as:

Ayr=pB+(@—Dyr_1+us (10.2)

The test for unit root is essentially one which tests for « = 1. If the errors
are assumed to follow an AR (1) process

Ut = pUt_1 + £ (10.3)
the model can be rewritten as:

Ayr=ZtB+(@—1D(p—1)yt_1+apAyr_1 +et (10.4)

where Z; is the drift term. The new test is an Augmented Dickey Fuller
(7) test of (@ — 1)(p — 1) = 0. Elliott et al. (1996) perform asymptotic
power calculations and show that the modified DF-GLS test can achieve
substantial power gain over the testing procedure outlined in (10.4). In
the DF-GLS test, we consider the same null hypothesis on the t-ratio
tests but critical values change as reported in Elliott et al. (1996). To see
whether our results are sensitive to serial correlation in the disturbances,
we ran the tests with AR (2), AR (3), and AR (4) errors* without a change
in our results. In the end, we base the model selection on Schwartz’s
criterion.>

We also employ the KPSS test as developed in Kwiatkowski (1992) with
bandwidth set at 4 and Bartlett kernel. For the KPSS test, we perform
estimation with the modified Akaike information criterion (AIC).

The test statistics for all variables reported in Table 10.2 clearly reject
the null hypothesis of unit root in the differences but not in the lev-
els. This leads us to believe that each variable is an I(1) process, which
becomes stationary after differencing it once.

Overall, our results confirm the analysis of the bonds market in other
countries, notably Lee and Tse (1991), Mills (1991), Taylor (1992),
Engsted and Tangaard (1994), Chong et al. (2006), Kleimeier and Sander
(2006), De Graeve et al. (2007), and Liu et al. (2008).

The preceding findings suggest that the Lebanese and Egyptian inter-
est rates can be modeled as unit-root processes. As such, the variance
for each interest-rate series goes to infinity as the sample size increases.
Furthermore, from equation (10.1), any innovation u; has a permanent
effect on the value y; which can be written as a sum of all previous
innovations.
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Table 10.2 Unit-root tests for interest-rate spreads of
Egyptian and Lebanese treasury securities

ADF-GLS (2 lags) KPSS (4 lags)
Egypt
Spreads with 1Y Treasury
2Y-1Y —2.48 0.28 **
3Y-1Y -2.75 * 0.28 **
SY-1Y —2.62 * 0.4 **
7Y-1Y -2.52 0.34 **
Lebanon
Spreads with 3m Treasury
6m-3m -1.33 0.72 **
12m-3m -3.5 ** 1.27 **
24m-3m  -0.72 2.08 **

Significant at 10% (*) or 1 percent (**)

10.5 Testing the expectations hypothesis and
cointegration analysis

In this section, we turn our attention to the expectations hypothesis in
the term structure of each country. To that end, we begin with a simple
model of the expectations hypothesis of the term structure which can be
written as:

m—1

1
Yt = 3 Bt (V1,000 + Am (10.5)
k=0

where ypy, t represents the yield on a pure discount treasury bond with
maturity m, E(.) is the expectations operator, and Ap, is the term pre-
mium. Equation (10.5) suggests that the yield at time ¢ of a pure discount
bond with m maturity can be written as the average expected yield on m
future bonds. In our case, we consider four specific yields with time to
maturity equal to three, six, twelve, and twenty-four months in Lebanon
and five specific yields for Egypt with maturities of one year, two years,
three years, five years, and seven years. These interest rates enable us
to construct three possible pairs for Lebanon and four pairs for Egypt
that obey equation (10.5) and define stationary interest-rate spreads.
These are:

Lebanon : {yem,Y3m} {Y12m,¥Y3m}: {Y24m, ¥Y3m}
Egypt: {y1,y2},{y1,¥3},{y1,¥5}, {y1,y7}
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Based on the results of the preceding section suggesting the unit-root
nature of the series, we now examine their cointegrating relationship.
Let Y; represents a k x 1 vector of non-stationary I(1) time series. A
k x r matrix of cointegrating vectors y is said to exist if the linear com-
bination y’ Yy is stationary or 1(0). Each cointegrating vector suggests
the existence of a long-term relationship between the series, namely an
equilibrium.

We define Yy opanon = V3m: Vem: V12m, Y2am] as the vector of four inter-
est rates composing the Lebanese term structure. The expectations
hypothesis asserts that if each component of Y; is I(1), then the spreads
defined as S;(Lebanon) = y; — y3,, for i = 6m, 12m, 24m may be 1(0),
and, hence, any two yields must be cointegrated with cointegrating
vectors determined by the spread vectors. A similar vector Yggy is
defined for the Egyptian term structure with the corresponding spreads
Sj(Egypt) = yj — y1y for j=2y, 3y, Sy, and 7y. Table 10.3 reports the ADF-
GLS and KPSS tests for unit roots applied to the interest-rate spreads
in each country. The results of ADF-GLS are somewhat mixed but hold
more for the intermediate term spreads. For example, the Egyptian 7y-1y
interest-rate spread is non-stationary. The same applies to the 2y-1y
spread for Egypt and the 24m-3m and the 12m-3m for Lebanon. The

Table 10.3 Unit-root tests for yields on Egyptian and Lebanese treasury
securities™

ADF-GLS (2 lags) KPSS (4 lags)
Series Levels 1st differences Levels 1st differences
Egypt
1M -1.12 —-5.74 *k 0.47 *k 0.08
1Y —1.47 -5.47 ** 0.51 ** 0.08
2Y —1.41 —6.18 bl 0.37 *x 0.09
3Y —1.45 —7.48 *x 0.36 *x 0.08
5Y -1.30 —6.53 bl 0.47 b 0.14
7Y -1.29 —6.60 *x 0.47 *x 0.15
Lebanon
3M -1.30 -8.93 b 3.72 bl 0.02
6M —1.08 -5.06 *x 3.70 *x 0.02
1Y -1.29 -7.30 b 3.56 *x 0.02
2Y -0.22 -3.35 *x 3.76 *x 0.05

Significant at 10 percent (*) or 1 percent (**)
Egypt: 1-month, 1-year, 2-year, 3-year, 5-year, and 7-year maturity
Lebanon: 3-month, 6-month, 1-year, and 2-year maturity



196 S. Hakim and S. Neaime

KPSS tests are more consistent and show that all interest-rate spreads are
stationary in both countries.

When the expectations hypothesis holds, the spreads between the
long-term rate and the short-term rate provide information about
the future level of the short-term rate. However, if the fluctuations in
the short-term rate are unpredictable, the spread between long-term and
short-term rates cannot provide useful information about the market’s
expectation for the short-term rate unless the two rates share a cointe-
grating relation. Specifically, having established that the interest rates
are unit roots, they can be stationary in levels in the direction of the
cointegrating vector.

We now turn our attention to the cointegration analysis. This is impor-
tant because the lack of cointegration represents strong evidence against
the expectations hypothesis as there is no stable long-run relationship
between interest rates of different maturities.

To test for cointegration, we consider a multivariate model of the form:

Ye=u+A Y1 +A2Y o4+ AQY g e t=1,2,--,T  (10.6)

where each Y; is an N-dimensional vector of yields defined above and ¢¢’s
are independent k-dimensional Gaussian errors with covariance matrix
¥. N represents the number of yields in each country (four for Lebanon,
and five for Egypt). The model can be written in difference form as:

AYt =W + HIAYt—l + HZAYt—Z +-+ l_[qAYt,q + CDYt,q + €t (107)
where u is a linear deterministic trend,

Mj=-I+A]+Ag+-+A (10.8)
P=-I1+A1+Ar+-+Aq (10.9)

and I is the identity matrix. Note that equation (10.7) is equivalent to a
g dimensional VAR except for the term ®Y¢_g. Note also that the inclu-
sion of the term PYi_q makes equation (10.7) an error-correction model,
where the matrix ® contains the information about the cointegrating
relations. If there are r cointegrating vectors then @ can be expressed as:

D =gy’ (10.10)
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where ¢ and y are kxr matrices of rank r, 0 < r < k, and y is a matrix of
cointegrating vectors. Therefore, the rank® of @ is also r. Johansen (1988)
and Johansen and Juselius (1990) maximize the likelihood function for
Y conditional on the restrictions ® = ¢y‘. The likelihood ratio (LR) is
derived by applying least squares on the following equations:

thq =u + Vl AYt—l +V2AYt_Z +---+ Vq_1 AYt_q+1 +u0t (101 1)
AYt =u +W1 AYt—l + WZAYt—Z +---+ Wq—l AYt—q+1 +U1t (1012)
and computing the residual sample second-moment matrices:

T

. A

Qoo =T~ iiorily,
=1

T
Qu=T"1) iy, (10.13)
t=1

M=

. e n
Q=T Uyttt

t

I
—_

where ug and uq are i.i.d. Under the null hypothesis H(r) that there are r
cointegrating vectors against the alternative of no cointegrating vectors,
the LR statistic, can be written as:”

n
—2In QH()|Hy) =-T Y In(1—4) (10.14)
i=r+1

This is referred to as the A-trace test, where ):,H,...,):n are the n—r
smallest eigenvalues that solve the detrimental equation:

|)\SA211 - leofl&} 5201| =0 (10.15)

The \-trace test statistics are provided in Table 10.4. The results reveal
the existence of a single cointegrating vector for Lebanon and three
cointegrating vectors for Egypt. Among the Lebanese treasury securi-
ties, there is a single common stochastic trend, and there are two among
the Egyptian securities. The number of trends is simply the difference
between the number of interest variables and the number of cointegrat-
ing vectors. Generally, with n yields to maturity, it is possible to form
n—1 linearly independent yield spreads. The yields are I(1) cointegrated
processes and the spreads between them represent cointegrating rela-
tions. If the expectations hypothesis is valid, this leaves three common
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Table 10.4 Tests of cointegration of interest rates

Lebanon

Rank Eigenvalue Trace test p-value Lmax test p-value
0 0.413 166.28 0.0000 110.29 0.0000
1 0.192 55.993 0.0000 44.341 0.0000
2 0.0491 11.653 0.1765 10.44 0.1878
3 0.0058 1.2131 0.2707 1.2131 0.2707
Cointegration vector: (12m) 4+ 0.40(3m) — 1.31(6m) — 0.19(24m) = —1.04

Egypt

Rank Eigenvalue Trace test p-value Lmax test p-value
0 0.366 129.80 0.000 53.732 0.000
1 0.245 76.068 0.000 33.125 0.0065
2 0.191 42.944 0.0007 25.021 0.0114
3 0.100 17.923 0.0195 12.447 0.0945

Cointegration vector: (1y) —0.42(2y) + 0.04(3y) — 0.66(Sy) — 0.39(7y) = —5.10

Egypt: 1-month, 1-year, 2-year, 3-year, 5-year, and 7-year maturity
Lebanon: 3-month, 6-month, 1-year, and 2-year maturity

Egypt: February 2006-April 2009 (weekly)

Lebanon: October 1991-April 2009 (monthly)

non-stationary I(1) factors for Lebanon and two for Egypt that represent
exogenous elements to the system of yields, as, for example, the growth
in monetary aggregates which derives from the central bank’s monetary
policy. The evidence in support of a unique common factor is found in
several studies (Engle and Granger 1987; Stock and Watson 1988).

The cointegrating vectors for Egypt and Lebanon are:

Lebanese yields cointegrating vector:

(12m) +0.40 (3m) —1.31 (6m) —0.19 (24m) = —1.04
Egyptian yields cointegrating vector:
(1y) — 0.42(2y) +0.04(3y) — 0.66(5y) — 0.39(7y) = -5.10

The preceding results suggest that Lebanese and Egyptian bond yields
do not drift apart from one another indefinitely. Even though each inter-
est rate is stochastic and non-predictable, the rates are linked together by
a stable and long-term relation. They move together over time, a basic
feature of the expectations theory.
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10.6 Conclusion

This chapter tested the expectations hypothesis and found it to hold in
two emerging bond markets. We investigated in detail the time-series
properties of interest rates offered on distinct securities forming the
entire Egyptian and Lebanese term structures. The results showed that
long- and short-term interest rates are characterized as unit-root pro-
cesses with stationary spreads. This suggests that interest rates in each
country are well behaved in the sense that they do not diverge consis-
tently and permanently from one another. Further analysis showed that
it is appropriate to model the Egyptian and Lebanese term structures as
a cointegrated system. The results pointed to the existence of three coin-
tegrating vectors for Egypt and a single vector for Lebanon, a property
that suggests that the liquidity premia are stationary across the maturity
spectrum. Overall, our results offer hope for the development of capital
markets in other infant emerging economies, particularly in the Middle
East.

Notes

1. See Froot (1989) for a historical recap of the expectations hypothesis.

2. See Russian, Kazakh, Middle East bonds fill bulging pipeline.” Euroweek
(September 15, 2006): 25-25.

3. Campbell (1995) reviews the latest literature on the term structure, and Crock-
ett (1998) examines the assumptions underlying the expectations hypothesis.

4. MacKinnon (1990) provides a more complete set of critical values for 7. A
non-parametric analog to ¢ which allows for a wide range of serial correlation
and heterogeneity patterns was suggested by Phillips (1987a and 1987b) and
Phillips and Perron (1988). The critical values for the statistic are presented
in Phillips and Ouliaris (1990). However the finite sample properties of the
statistic are not fully investigated.

5. Schwartz’s (1978) criterion is defined as: BIC =1log|S| + (p2q)T~1log T where
p is the dimension of the VAR; q the order of the VAR model being tested
for ¢ =m against q=m — 1; m is the maximum order considered; and ¥ is the
estimated covariance of the errors. In effect, BIC includes a penalty adjustment
for the number of estimated parameters. Note that Schwartz’s (BIC) is similar
to Akaike’s Information Criterion (AIC) with the distinction that the former
can be shown to be strongly consistent.

6. Without arbitrary constraints it is impossible to uniquely identify the elements
of ¢y ‘because for any rxr matrix I', we have (oI'"1)(I'y’) = ¢y’

7. The test statistic has an asymptotic x2 distribution with r(v-w) degrees of free-
dom where r is the number of cointegrating vectors, v the number of variables
in the VAR system, and w is the number of variables left in the VAR system
after testing the restrictions of the cointegrating relations. Note that if r=w,
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then the null hypothesis places no restrictions on the cointegrating relations,
whereas if w=r, all the VAR system variables need to be I(0) under the null. In
general we haver<w<wv.
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