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Abstract. This paper discusses two cluster validity indices that quan-
tify the quality of a putative clustering in terms of label-homogeneity
and connectivity. Because the indices are defined in terms of local data-
density, they do not favour spherical or ellipsoidal clusters as other valid-
ity indices tend to do. A statistics-based decision framework is outlined
that uses these indices to decide on the correct number of clusters.

1 Introduction and Notation

Clustering remains one of the mainstays in a large number of pattern recogni-
tion and machine learning applications. As a consequence there is no shortage
of clustering algorithms and cluster validity indices (see e.g. [3l4L[5] and refer-
ences therein). Most of the latter measure various forms of within versus between
variability and tend to favour clusters that are roughly spherical or ellipsoidal.
In this paper we propose two simple geometric cluster validity indices that are
completely free of such bias. Rather, they try to capture the basic geometric
intuition that a cluster is a part of a point-set (in some metric space) which is
relatively dense, as well as spatially isolated from the rest of the point-set. This
point was also broached in [2,[7] although the solutions proposed in these papers
are fundamentally different from the lines we pursue here. This work is an out-
growth of earlier work [6] in which we defined similar indices. However, in this
paper we considerably improve on results obtained previously by introducing a
methodology for estimating the statistical significance of the index-values.

At this point we should issue a disclaimer. When pursuing research on unsu-
pervised learning, part of the difficulty is due to the fact that there is no clear-cut
definition of what exactly a cluster is supposed to be. Our stance in this paper is
pragmatic: the aim is to develop criteria that will yield the correct (or at least,
an acceptable) clustering in those cases where the “correct” solution is obvious
(see Fig. [ for an example).

We end this section by introducing some notation for future reference. Con-
sider a data set D = {x1,X2,...,X,} of size n in p-dimensional space (i.e.
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x; € IRP, which we assume equipped with the standard metric). An L-clustering
is defined by a labelling function L which maps each point to its cluster label
gegG={1,2,...,K}:ie. L: D — G :x+— g. All points that are mapped to
the same cluster label g will be called a L-cluster. To avoid confusion, we empha-
size that in our notation, (geometric) clusters refer to the “real” clusters that are
present in the dataset, while L-clusters are created through the (user-proposed)
choice of an L-function. It goes without saying that the user’s aim is to make
sure that the L-clusters coincide with the geometric clusters, but attaining this
goal is the essence of the problem.

Finally, we assume that there is (rough) estimate of the data density ¢ defined
on D; how this estimate is obtained is irrelevant for the discussion at hand. In
fact, the methodology proposed in this paper is very robust with respect to
estimate-induced variations of the density. For that reason, a quick-and-dirty
density estimate based on nearest neighbours or a kernel estimate will do. We
point out that such a rough estimate would not lend itself to clustering based
on bump-hunting, as ¢ is likely to grossly under- or over-estimate the number
of local extrema.

2 NN-Based Cluster Tension

2.1 Definition

The first cluster validity index captures the idea that clusters are locally homo-
geneous in that neighbouring points tend to have the same label. Put differently,
lots of label-variation in the neighbourhood of a large number of points is in-
dicative of poor clustering. To recast this straightforward intuition into a quan-
titative measure we investigate nearest neighbours. Denote by Nj(x) the set of
the k nearest neighbours of x. By convention, the centre-point x does not belong
to Ni(x). We then define the local diversity (at x) associated with labelling L
by counting the number of neighbours that have a label different from the label
at the centre point: 6x(x; L) = #{y € Ni(x)|L(y) # L(x)}/k. The (global)
NN-tension (induced by the cluster labelling L) is then obtained by computing
the weighted average over all data points:

Tw(L) = % Z 81 (%35 L) (%) (1)

The rationale for including the density as a weight-factor is that label diver-
sity in high density regions is more significant as a contra-indication for good
clustering. Notice that the number k of nearest neighbours is in fact a sort of
scale-parameter, determining the size of the smallest clusters that can be picked
up. In our experiments we took k to be equal to 5% of the dataset size.

The way this validity index can be used needs little explanation: Consider
the case where a labelling L erroneously splits a single geometric cluster into
two L-clusters (say A and B, see Fig. [Il top row). This will then give rise to
a relatively high local NN-tension along the “faultline” separating A and B,
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Fig. 1. Top: A single geometric cluster is erroneously split into two L-clusters A and
B. This gives rise to relatively high NN-tension along the “faultline” separating A
and B. Bottom: When the L-clusters A and B correspond to geometric clusters, the
NN-tension is low or even zero

which is translated in a relatively high global NN-tension. Contrast this to the
case where the L-clusters do in fact correspond to genuine geometric clusters
(Fig. [ bottom). Now NN-tension will be low throughout the dataset, keeping
the global NN-tension low.

These simple considerations reinforce our original intuition: “high” tension is
indicative of erroneous mergers, while “low” tension bolsters our confidence in the
validity of the proposed labelling. However, in order to turn this qualitative appre-
ciation into an operational decision criterion, we need some value for the typical
value and expected variability of the NN-tension. Have another look at Fig.[lwhere
in both cases the putative clustering is indicated by a vertical line. Now, imag-
ine that the proposed clustering was in fact generated by a horizontal line cutting
both data-sets into two (approximately equal sized) groups. It is clear that for the
top data-set the resulting tension would be comparable to the original one. For the
second data-set (bottom) however, such a split would generate a tension which is
significantly higher than the original one (which was probably close, or equal, to
zero). This leads quite naturally to the following construction: To decide on the
acceptability of the NN-tension 7(©) = T(Lp) associated with a putative cluster
labelling Ly, we generate R random cluster labellings L, (r = 1,..., R) by sepa-
rating the data using R random hyperplanes (i.e. hyperplane through a random
data-point, and orthogonal to a random direction) and compute the correspond-
ing tensions T(") = T(L,). Next, estimate the p-value of T(®) with respect to the
set {T(l), ceey T(R)}, e.g. by computing the fraction of this set that is smaller than
TO ie p(T©) = #{TM | T < T /R. We will now conclude that the pro-
posed clustering is acceptable if this p-value is exceptionally small (e.g. p < 0.05,
or even p < 0.01). We refer to Fig. @ for a illustrative example.

2.2  Adjusting for Variations in Shape

Although definition () of global tension seems natural and straightforward to
use, closer examination reveals a problem which is highlighted by the follow-
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Fig. 2. Top: Elongated Gaussian cluster illustrating the dependency of the total ten-
sion on the split direction. Bottom, left: The unadjusted cluster tension () clearly
shows a dependency on the angle of the separatrix, with low tension at angles where
the separatrix is horizontal (i.e. angle = 0,7, 27), and high tension when the separa-
trix is vertical (i.e. angle = 7/2 and 37 /2). For each angle, the curve shows the mean
and standard deviation for 10 independent resamplings of the Gaussian cluster. This
is also the reason why the results for 0, m and 27 are not identical! Bottom, right: The
adjusted cluster tension () no longer exhibits such a systematic cyclic trend

ing simple example. Consider an elongated Gaussian 2-dim cluster, centered at
the origin and positioned such that its long axis coincides with the z-axis (see
Fig. ). Now, suppose that this cluster has been split into two by using the
k-means algorithm (for k& = 2). A moment’s thought will convince the reader
that k-means will generate a separatrix (line separating the two groups) which
is approximately vertical and passes through the origin (i.e. the cluster’s cen-
tre of gravity). This entails that the “faultline” is relatively short, especially
when compared to the separatrix that would result from a horizontal split (i.e.
when this separatrix would coincide with the z-axis). As a consequence, a hor-
izontal split will result in more points straddling the faultline and since eq.([])
averages over all points, this will result in higher average tension. This is detri-
mental to the computation of the p-value as proposed in the previous section, as
it means that the original tension T is systematically smaller than the ones
that are obtained from random cuts that are not vertical. Phrased in statisti-
cal terminology, the original tension is biased towards small values, resulting in
an artificially low p-value, even if the underlying cluster is compact (but elon-
gated).
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To remove this bias, we adjust definition (I]) by restricting the averaging to
all points that have non-vanishing local tension (we add one to the denominator
to avoid potential division by zero problems):

T(L) ! Zék(xi; L)p(x;), where N, = #{x;|0k(x;;L) >0} (2)
i=1

TN, r1&

Since the denominator is now proportional to the number of points that
effectively contribute to the total tension, this compensates for the shape bias,
as illustrated in Figl2l (bottom, right).

At first sight, this modification might seem to emasculate the criterion. In-
deed, consider the extreme case where you have two 2-dimensional standard
normal Gaussian cluster (labeled 1 and 2) which are well separated (e.g. by a
distance of 10 say). Furthermore, assume there is a single point right in the mid-
dle between these two clusters. Clearly, because the Gaussians are well separated
all points in these two clusters will only have neighbours with the same label
(hence no tension). Whatever the label of the point in the middle is, it will have
approximately half of its neighbours in the first Gaussian, and half of them in
the second, resulting in a local diversity of approximately 0.5. Since eq. (@) now
averages over a single point, one could get the impression that tension will be
relatively high. However, remember that local tension is obtained by multiplying
diversity and data-density. Clearly, the density at the isolated single point will
be very low, resulting in a low value for the adjusted tension, as intended.

2.3 Experiments

The following experiments are meant to illustrate the potential of NN-based
tension. In a first experiment, we generate two standard normal 5-dimensional
Gaussian clusters (of 700 points each), such that the centra are a distance of 6
apart. To create two L-clusters we then generate a hyperplane orthogonal to the
line connecting the two centra: points on either side of this hyperplane get dif-
ferent labels (say 1 and 2). The position of the hyperplane is then systematically
shifted along the line: distance 0 means that it cuts through the centre of the
first Gaussian, while distance 6 indicates that it cuts through the centre of the
second Gaussian. Clearly, the optimal position corresponds to distance 3 when
it cuts the connecting line exactly at the midpoint. For each configuration the
associated tension is generate.

The results (shown in Fig. @) confirm our intuition. The tension attains its
highest values when the separatrix hyperplane slices straight through the cluster
centres, whereas the minimum is obtained around the midpoint (as expected).
It’s also interesting to observe that these results are very robust with respect to
the estimated density (¢ in eq.(2)): In one case the density was estimated using
the distance to the nearest neighbours, while the other result is based on the
exact Gaussian density (from which the samples were drawn). Both graphs are
almost identical, buttressing the point we made earlier.
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Fig. 3. Evolution of the NN-based tension T' as a function of the position splitting
hyperplane (creating the L-clustering: see main text for detailed description). Left:
Tension based on the NN-based estimate for density ¢. Right: Tension based on the
exact version of density ¢

In a second experiment, we tested the discriminatory power of the tension
measure by comparing the tension (and the corresponding p-values) for cluster
configurations for which the answer should be obvious. More precisely, we gen-
erated two (2-dimensional standard-normal) Gaussian clusters at a distance d
apart. For small values of d (e.g. d = 1) the two Gaussians merge into a single
geometric cluster (i.e. an independent observer who has no knowledge about
the underlying generative process would judge it to be one cluster, see Fig. [
top). Increasing the distance will progressively pry the Gaussians apart, up to a
point (e.g. for d = 5) where two constituent clusters are clearly discernable (see
Fig. @ bottom). Typical results for the p-values of the original labelling relative
to simulated labellings are shown in the right column of Fig. [l

3 Connectivity Index

The second geometric cluster validity measure we discuss is the so-called connec-
tivity index. This index captures the intuition that any two points in a cluster
can be connected by a high density path, i.e. a path which at no point needs
to traverse a “void”. To fix ideas we will start with a simple setup (illustrated
in Fig. B)). On the left, we have two geometric clusters (A and B) which we
assume are recognized as such by the labelling. If we now pick random pairs of
points in either cluster (yielding a and b, o’ and b’ respectively) and evaluate the
cluster density ¢ at the midpoints m and m’, we’ll get a relatively high value
as these points tend to be situated at high density locations. Contrast this to
the situation on the right in Fig. Bl where we assume that the labelling L has
erroneously lumped the two geometric clusters A and B in one big L-cluster. As
a consequence, when we are drawing pairs of random points a and b (from the
same L-cluster) there will be a significant fraction of pairs for which these points
are part of different geometric clusters (illustrated by the points o’ and V'; if A
and B have comparable size this will occur with an approximate probability of
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Fig. 4. Top left: Single geometric cluster erroneously split by vertical midline, resulting
in an NN-tension Ty = 0.13. Top right: Histogram for NN-tensions generated by 100
random clusterings. The p-value for Ty equals 0.38 (large!), indicating that the putative
split is erroneous. Bottom left: Two genuine geometric clusters for which Ty = 0.036.
Bottom right: Histogram for NN-tensions generated by 100 random clusterings. The
p-value for Ty now is less than 0.01 (small!), confirming the appropriateness of the
proposed split

0.5). In such an event, the midpoint m’ will likely fall in the void between the
two clusters, and therefore register a low density ¢(m’).

We are now in a position to provide a formal definition for the connectivity
index C' associated with a labelling L:

1. Draw from the dataset K random pairs of points (ag, bx), making sure that
the points in each pair belong to the same L-cluster, i.e. Vi : L(ay) = L(by);

2. Construct for each pair the corresponding midpoint my and evaluate the
data-density ¢ at that point. The connectivity index C' is then defined to be
the average over all random pairs:

O(L) = 2 32 6lm). )

To render this index really useful, we need to make it slightly more robust.
The right panel in Fig. Bl shows what needs to be done: When confronted with a
curved cluster, the chances are that the midpoint will fall in a “convexity void”
and therefore return an underestimate for the density. If we allow m to hill-climb
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Fig. 5. Illustrating the definition of the connectivity index. Left and middle: Basic

definition of connectivity index; see text for more details. Right: Better value for con-
nectivity index is obtained by measuring the density along a high density ridge obtained
by hill-climbing from m to 7 (constrained by the condition d(a,m) = d(b,m)))

towards the high density point m, (keeping m approximately in the “middle” of
the anchor points a and b by insisting that d(a,m) =~ d(b,m)), we get a more
representative density estimate. Sensitivity of this index can be further increased
by repeating the procedure for the midpoints between a and m, and m and b
(which then contribute to the mean in eq.(H)). Basically, this means that we are
estimating the density along a “snake” connecting a and b, which is attracted
by the high density ridge.

To illustrate the validity of this concept, have another look at the data-sets
in Fig. @ but this time ignore the different labels, i.e. assume that each data-set
is considered to be one L-cluster. In that case, the top dataset should have high
connectivity, while the lower dataset should score a significantly lower value due
to the gap between the two geometric clusters. This is borne out by the tests
reported in Fig. [6] where the histogram shows the result for 200 computed con-
nectivity indices, 100 for each dataset. They nicely cluster in two groups of 100
indices each: the left group corresponds to the low connectivity indices obtained
for the lower dataset (consisting of two disconnected geometric clusters), while
the right group comprises the higher connectivity indices obtained for the upper
dataset in Fig. @

We conclude this section by indicating how the connectivity index is used in
practice. To fix ideas, consider once again the case depicted in Fig. B(top). Since
there are indeed two geometric clusters, we expect the connectivity index to be
significantly lower when we assume that both clusters are lumped together in a
single L-cluster. To quantify what should be considered “significant”, we proceed
as follows. Recall that C as defined in eq.Blis an average over a random sample of
K paired anchor points. We can therefore easily resample and compute another
instance of this parameter. Let C’Z.(l) denote the i'" realisation of the C-index
assuming that both clusters are lumped together in a single L-cluster, while
C]@) denotes similar results under the assumption that the clusters are different.
Allowing both ¢ and j to run over r repeats, we subsequently compute the
corresponding means (M) and M(®)) and standard deviations (S™") and S()).
To test whether M) is indeed much lower than M), we apply a standard
T-test and evaluate whether the Student t-statistic
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Fig. 6. Histograms for 200 connectivity indices; see main text for more details
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Fig. 7. llustration of cluster selection based on both geometric cluster validity indices.
Left: Complicated dataset initially divided up in 6 groups using k-means clustering.
These groups are then systematically merged, such that each merger maximizes the
reduction in NN-tension. The number of groups is thus stepwise reduced until finally
two clusters remain: the ring and the central core. Middle: This graph charts the
evolution of the p-value for the NN-tension during the evolution from 6 to 2 clusters.
The final p-value (for 2 clusters) is exceptionally low (p < 0.025), indicating that the
NN-tension for 2 clusters is exceptionally low. Right: This graph shows the evolution
of the V-parameter (defined in section [ for the connectivity index. Again, we see
that this measure drops below the 0-threshold when two clusters remain. Both indices
therefore agree on two being the correct number of clusters

MO a2
V(8D (5D)2)/r

is less than —2 (which corresponds to an approximate p-value of 0.025). For
convenience we introduce a new parameter V = ¢t 42, such that V' < 0 flags that
further mergers are contra-indicated.

A final illustration is provided in Fig. [[] were we applied both validity cri-
teria on a challenging data-set in which points are distributed over a central
cluster and a surrounding ring. An initial k-means clustering (with k=6) re-
turns 6 groups, five of which are situated in the ring. Reducing the number of
clusters in a stepwise fashion by merging the neighbouring clusters whose unifi-
cation produces the largest reduction in NN-tension, finally yields two clusters
(the ring and the central core). At this point, both validity indices indicate that
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further reduction of the number of clusters is contra-indicated, thus confirming
that two is the correct number of clusters.
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