
X. Zhou et al. (Eds.): APPT 2003, LNCS 2834, pp. 236–240, 2003.
© Springer-Verlag Berlin Heidelberg 2003

Study on CORBA-Based Load Balance Algorithm*

Gongxuan Zhang1, Jianfang Ge2, and Changan Jiang1

1 Department of Computer Science and Technology,
Nanjing University of Science and Technology,

210094 Nanjing, China
Gongxuan@mail.njust.edu.cn
2 Department of applied mathematics,

Nantong Institute of Technology,
226007 Nantong, China

Abstract. With the increment of the number of Internet applications, in order to
solve some problems such as heterogeneous access, dynamic services and their
migration, a number of middleware and load balancing methods have been
developed. CORBA is a standard of application middleware made by OMG.
After studying some load balancing algorithms, we present an improved,
CORBA-based load balancing model and its migration algorithm.

1 Introduction

In recent years, the Internet has been applied over most of our real world. Companies
use it for their businesses to provide customers with their products or services. With
the explosion of the number and type of services, some new mechanisms and
frameworks are required to meet the needs of customers with ease. The mechanisms
and frameworks are developed to discover, invoke and migrate web resources. Many
new technologies are developed to improve business processes and quality of services
over Internet.

CORBA, Common Object Request Broker Architecture, is a standard of
middleware gave by Object Management Group[2]. There are many specifications of
object services, for instance, naming service and trading service, described in the
standard. With naming service, a client computer can locate an object reference by
symbol name. And with trading services, a client is able to take advantage of the
service’s dynamic discovery mechanism for the object location. The mechanism is
called dynamic binding. Trading services are hosted on a computer, with providing
query service descriptions that clients can dynamically invoke the services just as the
yellow pages of telephones. The proposed CORBA based load balancing model (in
brief, CBLB model) is based on CORBA trading services. The rests of this paper are
organized as follows: Section 2 describes trading service and layered load balancing
abstract. Section 3 discusses the CBLB model, Section 4 shows migration algorithm.
And the last is the conclusion.

* This is partly sponsored by the National Science Fund Committee, and the project number is

40120140817.

Study on CORBA-Based Load Balance Algorithm 237

2 Trading Service

A CORBA Trading Service provides the function of detecting a dynamic object, and
the client can ask it to locate the object. Similar to the naming service, the trading
service stores object references. Note that, the trading service does not save the
reference’s name but saves the service description that the reference provides. The
follow are some concepts about the object trading service:
1. A bulletin, used for trading storage, is called a service offer that contains the

service’s description and an object reference that provides the service. The service
offer is still of some concrete service types.

2. The action of registering a bulletin is called ‘export’, and the actor of exporting is
called to an exporter. That is a server’s action.

3. The object reference inside the service offer is an object of which provides bulletin
service, that is a service provider which can't be changed after the service offer is
imported. And before the object reference does not remove and the service offer is
imported again, the object reference can’t be changed either

4. Inside a service offer, its service description, of which means the bulletin’s
"original text", is constructed by many name-value pairs. Compared to service
supporters, the values may update. The same service promoters may be repeatedly
advertised, but the values are not the same. Many bulletins have same name-
values but different service promoters. This compare to an advertisement can list
many stores in different areas

5. Bulletins can be withdrawn from the trading service. The bulletins are withdrawn
or deleted only by servers.

6. The action for standard services to search for bulletins is called ‘import’, and the
actor is an importer. That is a client’s action.

In practice, we can take the Trading Service as the trading platform between
CORBA object developers and CORBA clients. The developers register, explain and
promote their objects through the application interfaces or with tools provided by
object trading services, and the clients query, search, get and invoke the objects.

3 CBLB Model

In the CORBA environment, there are several layered abstracts for load balancing
classification in order to construct a practical system. They are object level load
balancing policy that consists
of several CORBA objects
identified by object reference,
object implementing level
load balancing policy that
load balancing is
implemented through active
entities, for instance,
processes of operating system,
and system level load
balancing policy that

Client

Server1 Serveri Serverm Servern

Object Migration

Distributor

Fig. 1. Basic load balancing model

238 G. Zhang, J. Ge, and C. Jiang

processes are distributed to different computing nodes just like traditional load
balancing.

In this paper, the first two policies are introduced. With object level load balancing,
an object reference will be taken if another object send a request to it. The client’s
requests are distributed to available servers. A client can contact the trading server
and obtain appropriate object references if he needs specific services. The load
balancing actions are also done within a trading server, and the server selects suitable
object references and then sends the references back to the client. Finally, the client
choices the object references and the object services.

With object implementing level load balancing, objects are special inner object
instances of processes. The load balancing is implemented by distributing the
instances’ services uniformly to servers’ processes, or by migrating the instances’
services. As depicted in figure 1 is the basic way for load balancing.

As all known, the load balancing strategies are more complicated in a client/server
environment. The client carries out a series of operations, each operation may send a
request to a specific service. And many servers provide services together to meet all
the requests. So the client must find out the servers that can handle its request.
The main responsibility of a trading server is to delivers services between the client
and the server. By a trading server, a client can dynamically and accurately find out
the servers that provide the services. The basic steps are shown in figure 2. As
service-exporters, the servers export
the services. This means they register
their services in a trading server. As
service-importers, the clients first
invoke some operations of a trading
server and acquire the information of a
server’s services. And then the clients
can directly send its requests to the
servers and invoke the services. The
server can remove its registered
services from the trading server by
invoking the function withdraw() to
the trading server.

The important problems are that how services are registered up to the trading
server (called trader below) and specified by the clients. The solution of CBLB model
is that a server must give its service description by specifying some special properties
or service functions, and exports the description for clients to acquire the service. This
means that a client must specify the name of a service type when importing a service,
and then the trader maps the type to a corresponding object reference and sends the
reference back to the client. It is very convenient for the client to communicate with
the related servers. In the CORBA environment, the trader can be transparently
embedded into an ORB (Object Request Broker) as one of basic CORBA services. In
this paper, the trader is also a component used for the clients and servers.

In our proposed model, the mission of a server is to determine what resources are
available for a client. A server is a process running in a specific host with the CORBA
environment. For the sake of the convenience of description, we suppose each host
circulate a server only. The available server can handle with a series of requests from
the client. And the trader is to deliver the services between clients and servers. In
addition, a supervisor is designed to deal with the service objects’ migration among

Server

2.Importing
a request

1.Exporting
a service 3.Importing

a service

5.Returning
results

4.Sending a
request

Fig. 2. Steps of services delivery

Client

Trader

Study on CORBA-Based Load Balance Algorithm 239

servers. So there are two aspects to deal with the client’s requests to some servers
with balance: one is by the trader’s allocation policy and the other is by the monitor’s
migration algorithm.

There are three kinds of nodes in the CBLB model. The server node exports
services to the trader node for registration. The monitor or the supervisor, as a special
server, gathers load balance information from the server and then migrates some
services to different servers if necessary. On the other hand, the client node imports
available services from the trader and then invokes the services. When receiving a
client’s ‘importing’ request, the trader must quickly search the specific services by
executing the function: t:T (S). If the service type Ti is provided by the current
servers {Si1,Si2,....Sik}, the function’s result is t(Ti)= { Si1,Si2,....Sik }. Of course,
the function t is dynamically affected when the server withdraws the registered
services or the monitor migrates services among the servers.

4 Migration Algorithm

As stated above, the service migration is the monitor’s job. So the monitor must
gather load balance information from the servers and then make a decision whether
the service objects are migrated. Once making the decision, the monitor starts a
migrating process. During the migration, he announces the destination server to
immigrate the specific service objects from the source server. A basic implementation
for migration is that the
destination server creates a new
service object as the same type
one as in the source server and
then receives the objects’ status
from the source server.
Forwards, the destination server
announces the source server
receives the new object
reference in reverse. At the end,
the destination server
announces the trader that the
object has been migrated
correctly and asks the source
server to remove the object. The
entire procedure is depicted in
Figure 3 and the following two
cases should be considered if a
client sends a request to a server
while the server is doing
migration:

(1) One case is that the source object is not removed just after its states have been
migrated when the request comes to the source server. The solution is the
source server sends the new reference to the client and then the client sends the
request to the destination server.

Monitor Des server Src server Trader

Start
Create new
object, get old
object status

Send object
status

Notify trader

Register
changes

Notify source

Del the old

Migration
done End

(1)

(2)

Fig. 3. The whole process of migration

240 G. Zhang, J. Ge, and C. Jiang

(2) The other is that the migration has finished and the old object has been
removed when the client sends the same request. The client will get error
information and must import service objects again from the trader. In this case,
the client invokes the new object reference from the trader.

Just as the discussion, a client always acquires correct service object references.
For the load balance algorithm, Peter Scheuermann’s idea [4], with which the file

is moved from a ‘hottest disk’ to a ‘coolest disk’ (called ‘disk cooling process’), is
introduced to our service object migration that the server stands for the disk and the
service object for the file. The task of the migration algorithm is to move the service
object from a ‘heavier load server’ to a ‘lighter load server’. This is called ‘the
cooling server migration algorithm’.

5 Conclusion

With the CBLB model and the migration algorithm, some tests have been taken in a
communication network with 7 computers. The performance is better but the trader
will become a neck-bottle and block the migration when the service objects migration
occur much frequently.

But there are two benefits in this proposed approach. First the CBLB model can
easily join to existing applications as an ORB. The trader is embedded and taken as
the ORB. Second the migration algorithm may easily be implemented in
programming C++ or Java.

References

1. Andrew S. Tanenbaum. Distributed Systems: Principles and Paradigms. Prentice-Hall, Inc
(2002).

2. K. Wallnau. Common Object Request Broker Architecture. Software Technology Review,
Software Engineering Institute, Carnegie Mellon University (2000)

3. B. Schiemann, L. Borrmann. A new approach for load balancing in high-performance
decision support systems. Future Generations Computer Systems, No. 12, Elsevier / North-
Holland (1997) 345–355

4. Peter Scheuermann Gerhard Weikum and Peter Zabback. Disk Cooling Parallel Disk
Systems. Vol. 17. No.3. IEEE Data Engineering Bulletin (1994) 29–40

	Introduction
	Trading Service
	CBLB Model
	Migration Algorithm
	Conclusion

