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Abstract. In this paper we investigate the construction of efficient
secret sharing schemes by using a technique called hypergraph decom-
position, extending in a non-trivial way the previously studied graph
decomposition technique. A major advantage advantage of hypergraph
decomposition is that it applies to any access structure, rather than
only structures representable as graphs. As a consequence we obtain
secret sharing schemes for several classes of access structures with
improved efficiency over previous results. We also obtain an elementary
characterization of the ideal access structures among the hyperstars,
which is of independent interest.
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1 Introduction

A secret sharing scheme is a pair of efficient algorithms: a distribution algo-
rithm and a reconstruction algorithm, run by a dealer and some parties. The
distribution algorithm is executed by a dealer who, given a secret, computes
some shares of it and gives them to the parties. The reconstruction algorithm
is executed by a qualified subset of parties who, by putting together their own
shares, can therefore reconstruct the secret. A secret sharing scheme satisfies
the additional property that any non-qualified subset of participants does not
obtain any information about the secret. The set of qualified subsets of parties
is also called “access structure”. The notion of secret sharing was introduced by
Blackley [2] and Shamir [IT], who considered the important case in which the
access structure contains all subsets of size at least k, for some integer k.

Since their introduction, secret sharing schemes have been widely employed in
the construction of more elaborated cryptographic primitives and several types
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of cryptographic protocols. Being so often employed, central research questions
in this area are both the construction of efficient secret sharing schemes for
several classes of access structures, and finding bounds on the possible efficiency
that any such scheme can achieve for a certain access structure. The efficiency
measures studied in the literature, and the ones that we will also consider in this
paper, are related to the size of the largest distributed share (typically called
“information rate”, for its analogy with a so-called coding theory notion), or
the sum of the distributed shares (typically called “average information rate”).
The importance of these parameters is clear since they are directly related to
the storage complexity, the communication complexity and the amount of secret
information of the scheme. In the construction of efficient sharing schemes and in
the search of bounds on such efficiency, the literature has paid special attention to
the so-called “ideal” access structures; namely, access structures for which there
exists a secret sharing scheme where the share distributed to each participant
has the same size as the secret. (Note that this is well-known to be the best
efficiency that one can achieve.) Further studied topics along these lines are:
The classification of all access structures according to whether they are ideal or
not, and the investigation of the efficiency of non-ideal access structures using
ideal ones, using elegant techniques such as “graph decomposition”.

In this paper we elaborate along this research direction by studying a non-
trivial extension of the graph decomposition technique, which we call “hyper-
graph decomposition”; by applying this technique so to obtain secret sharing
schemes that are dramatically more efficient than what previously known; and
by finding novel and elementary characterization of ideal access structures within
a large class of them.

Previous results. Secret sharing schemes have been proposed, for instance,
in [11l2] for threshold structures, in [13] for all graph-based access structures,
in [1] for all monotone circuits, in [12] for homogeneous access structures, rank
requirements, in [10] for all access structures. Lower bounds on the size of shares
for all secret sharing schemes have been proposed, for instance, in [7J3[4] for
certain graph-based access structures, and in [I4J0I15] for other classes of access
structures. A characterization of ideal access structures in terms of weighted
matroids has been presented in [6]. The graph decomposition technique [T35]
consists of decomposing a graph into smaller graphs whose union covers the
original graph and representing ideal access structure. (We note that graphs can
be associated only to access structures including all subsets containing some
subsets of size 2.) This technique has been firstly extended in [T4JT2] for general
access structures, where the author describes lower bounds for the information
rate and average information rate for general access structure.

Our results. Following this line of research, in this paper we present the hy-
pergraph decomposition technique, of decomposing an hypergraph into smaller
hypergraphs whose union covers the original hypergraph and representing ideal
access structures. A secret sharing scheme for the original hypergraph can then
be obtained by composing the schemes for the smaller ones. Applying this tech-
nique requires (a) finding small hypergraphs which represent the access structure
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and (b) finding the optimal decomposition of the input hypergraph into such
smaller ones. As for (a), we consider simple structures such as hyperstars, and
find a new and elementary condition that characterizes whether a given hyper-
star is ideal or not. (This condition being more elementary than the condition
in [6] that however characterizes all ideal access structures.) We prove (b) to be
an NP-complete problem for general hypergraphs, but we note that it can be
solved efficiently for special types of hypergraphs. We then move on to study
special classes of access structures to which the hypergraph decomposition tech-
nique can be efficiently applied. Specifically, we study hyperpaths, hypercycles,
hyperstars and hypertrees (all generalizing their graph-based counterpart) and
obtain efficient secret sharing schemes for these structures. More specifically, for
these classes of access structures, we give upper and lower bounds on the aver-
age information rate that improve on the previous known schemes. We further
present optimal secret sharing schemes for hyperpaths and hypercycles.

Due to space constraints, several proofs are omitted from this extended ab-
stract.

2 Definitions and Preliminaries

In this section we review some basic definitions and notations that will be used
through the paper. Suppose P be a set of participants. We denote by A the
set of subsets of parties which we desire to be able to reconstruct the secret,
thus A C 2P. Each set in A is said to be an authorized set while each set
not in A is called a forbidden set. We define the family of minimal sets as
0"A={Aec A:VA € A\{A}, A" ¢ A}. The set A is called the access structure
and 6~ A is said to be its basis. We will deal only with access structures that are
monotone, i.e., they satisfy the following property: If B € A and BC C C P
then C' € A. Thus, in order to describe an access structure it is sufficient to
describe its basis.

Let S be a set of size ¢ containing all the possible secrets to be shared.
For every participant P € P let us denote by Sp a the set containing all the
possible information given to P by a secret sharing scheme. The elements in Sp
are called shares. As done in the literature, we will denote by P both the party
in the access structure and the random variable describing shares assigned to
him. Similarly, we will denote by S both the secret to be shared and the random
variable associated to it. Suppose a dealer D ¢ P wants to share a secret s € §
among the participants in P. For each party in P € P he selects one element in
Sp and gives it to P. Using Shannon’s entropy function (see [8] for a complete
covering), we say a secret sharing scheme to be perfect if the following conditions
hold:

1 H(S]A) =0,VA € A (Any set A € A of participants who pool their shares
together can recover the secret s).

2 H(S|A) = H(S),VA ¢ A (Any set A ¢ A of participants who pool their
share together obtain no information on s.)
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We will use two values for measuring the efficiency of a secret sharing schemes,

the information rate p and the average information rate p defined as follows:

log ¢ ~ |P|log q

— p_ - -
log max{|Sp|: P € P} > pep log|Sp|

It is easy to see that in any perfect secret sharing scheme, ¢ < max{|Sp| :
P € P} and thus p < 1. A secret sharing scheme in which p = 1 is said to be
ideal. An access structure having an ideal secret sharing scheme is also called
ideal. Notice that as the (maximum) amount of information distributed to the
parties increases, the information rate decreases. Thus the closer the information
rate is to one, the more efficient the secret sharing scheme is.

The information rate considers only the “maximum size” among the share
distributed to the parties. Sometimes it could be more preferable to consider
the average size of the shares distributed by the secret sharing scheme. Since, in
any perfect secret sharing scheme, for any | P e P, q<|Sp|it is immediate that

p< 1. Moreover it is not hard to see that P> p-

A hypergraph H is a pair (V, E) where V is a non-empty set of vertices and
E ={FE1,...,E,} C 2" is a set of hyperedges. The hypergraph is said to be
connected if for any two vertices u,v € V there exists a hyperpath from wu to
v in H. More formally there exists a sequence E; , ..., E;, such that u € E;
Ei, NE;,,, #0 foreach j=1,...,s —1,and v € Ej,.

Each access structure, A C 27, can be represented as a hypergraph H =
(P, A) by letting each party being a vertex and each authorized set being rep-
resented as an hyperedge in the hypergraph.

Let H = (V,E) be a hypergraph and let W C V. We say that the sub-
hypergraph H' = (V' E') is S-induced by W iff ' = {e € ElenN' W # ()} and
V' = Ueegre. For any subset W C P, the sub-hypergraph S-induced by W repre-
sents a minimal sub-access structure containing all the vertices in W and, at the
same time, all hyperedges that have non-empty intersection with W. (We note
that the definition of S-induced subhypergraph does mot reduce to the classical
definition of induced subhypergraph.)

Let I be a set of hyperedges. We say that the region determined by the
hyperedges in [ is the set of vertices that belong to all the hyperedges in [
and does not belong to any other hyperedge in the hypergraph. More formally:
R =Region(I) = (Ng,e1E:) \UEg,e(p\1) Ei. Moreover we say that R is an i-region
if |[I| = ¢. We also define the Remove(H, R) to be hypergraph H' = (V', E) where
V=V \Rand E' = {E/=E;NV'#0 for any E; € E}.

It is important to notice that Remove(H, R) is no longer a substructure of H.
Indeed some forbidden sets for H could be authorized sets for Remove(H, R). It
is immediate that the following holds:

19

Theorem 1. Let H = (V, E) be a hypergraph, W C V and let Hy be the sub-
hypergraph S-induced by W. Then p(H) < p(Hw).

We will extensively use some classes of hypergraphs that we are going to
define formally. These hypergraphs are a natural generalization of graphs like
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stars, paths and cycles. More precisely, a hypergraph H = (V, F) is said to be a
hyperstarif A = ﬂEeE E; # (. We will call A the center of the hyperstar. Notice
that this definition is more general than the one of sunflower or delta-system,
where it is required the egdes must have pairwise the same intersection. In our
case, we simply require that the intersection of all the edges of the hypergraph
must be non-empty. The hypergraph H is said to be a hyperpath, (resp. a hyper-
cycle) if there exists an permutation 7 : {0,...,m — 1} — {0,...,m — 1} such
that for any ¢, Eﬂ'(i) N Eﬂ(i+1) #* ¢ and Eﬂ'(l) N Eﬂ.(j) =0 if j & {Z —1,2,2 + 1}
and 2 <i<m-—1, (resp., j € {i—1 mod m,i,i+1 mod m} and 0 < i <m—1).
We will denote by P, the hyperpath with m hyperedges and by C,,, the hyper-
cycle with m hyperedges.

3 Hypergraph Decomposition

In this section we describe the technique of hypergraph decomposition, a gen-
eralization of the graph decomposition technique studied in [5/13]. Given an
access structure A, we can construct a secret sharing for it as follows. We first
represent A as an hypergraph H. Then we decompose the hypergraph in smaller
sub-hypergraphs Hy, ..., Hy, for which efficient (and possibly ideal) secret shar-
ing schemes are known and such that all the edges in H belong to at least one of
the H;. Thus each participant will receive a certain number of shares by means
of each sub-structure H;. The secret sharing for H is thus obtained as a “union”
of the secret sharing of all the H;’s. Indeed since all the hyperedges in H are
covered by the decomposition, each authorized set will be able to reconstruct
the secret. On the other hand, the security of the secret sharing scheme for H
is guaranteed by the security of the secret sharing schemes for the H;’s and by
the fact that these schemes are independent. Notice that the performance of the
secret sharing scheme not only depends on the performance of the decomposition
of A, but also on “how” the sub-structures combine together.
We now define formally a hypergraph decomposition:

Definition 1 (Hypergraph Decomposition). Let H = (V, E) be a hyper-
graph and let A = {Hy,...,Hy}, where H; = (V;, E;), with E; C E and
Vi = Ueer,e, be a set of sub-hypergraphs of H. The sequence A is said to be
a decomposition of H if and only if each hyperedge in H belongs to at least one
H;. The decomposition is said to be ideal if the access structure represented each
H; is ideal. A decomposition A = {Hy,...,Hy} of H is said to be a hyperstar
decomposition of H if all the subhypergraphs H; are hyperstars.

Basic results (omitted here) about hypergraph decomposition include gen-
eralizations of two Theorems in [5]. Our first theorem allows to evaluate the
information rate and the average information rate that can be achieved by a
secret sharing scheme for an access structure A having a decomposition of the
hypergraph representing 4. Our second theorem states that, having a number of
distinct decompositions of a hypergraph, it is possible to construct secret sharing
schemes that improve the average information rate w.r.t. the algorithm that use
a single hypergraph decomposition.
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In order to apply the hypergraph decomposition construction to a certain
class of access structures, we have to solve the following two main problems.

e Define classes of ideal hypergraph-based access structures for which it is
possible to construct in polynomial time an ideal secret sharing scheme.

e Represent the class of access structures given as a class of hypergraphs and
find in polynomial time the optimal decomposition of these hypergraphs
using only the ideal structures previously defined.

4 Hyperstars

In this section we give a complete characterization of the hyperstars having
an ideal secret sharing scheme. We will show that it is possible in polynomial
time to decide whether a given hyperstar represents an ideal access structure on
not. This gives a new (and more elementary than [6]) characterization of ideal
structures within this specific class of structures. We further give an algorithm
that, on input an access structure A representable as an ideal hyperstar, realizes
an ideal secret sharing scheme for it.

Theorem 2. Let H = (V, E) be a hyperstar with E = (E1,...,Ey) and let
By, ... By be the set of all regions in H. Denote by I; C E the set of hyperedges
determining B;. There exists an ideal secret sharing scheme for H if and only
if for each pair of sets I;, and I}, it holds that either I;, N1;, =0 or I;, C I,
(or I, € 1;,).

The key idea of the characterization is the fact that if a hyperstar H contains
a non-ideal sub-hypergraph, than H itself cannot be ideal. On the other hand
we need an algorithm that, given an ideal hyperstar, distributes to each party a
share of the same size of the secret. We start by giving the condition under which
a hyperstar is not ideal (in fact, we prove a stronger statement by quantifying
the blowup on the size of the shares).

Lemma 1. Let H = (V,E) be a hyperstar with |V| = n, E = (Ey,...,Ep)
and let By,..., DB, be the set of all regions in H. Denote by I; C E the set of
hyperedges determining B;. If there exist two non-empty sets I;, and I;, such
that I;, N 1;, #0, I;; \ I;, # 0 and I;, \ I;, # 0, then there exist two parties P;
and P; such that H(P;) + H(P;) > 3H(S).

In the following lemma we show that if the condition of the previous lemma
does not hold, then there exists an ideal secret sharing scheme for hypergraph
H.

Lemma 2. Let H = (V,E) be a hyperstar with |V| = n, E = (Ey,...,Ep)
and let By, ... B, be the set of all regions in H with By being the center of H.
Denote by I; C E the set of hyperedges determining B;. If for each pair of sets
I;, and I, it holds that either I;, N1, = 0 or I, C I, (or I;, C I; ), then
Remove(H, By) is the union of disjoint ideal hyperstars.
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This Lemma immediately suggests an algorithm that allows to construct an
ideal secret sharing scheme for an ideal hyperstar. Roughly speaking, given an
ideal hyperstar H, the algorithm applies a Remove operation on the center By
of H obtaining a set of disjoint (ideal) hyperstars. We write s as s @ so (the ®
operation being over GF(2)), and share s; among the parties in the center using
a (| Bol, | Bol|)-threshold scheme, and sy among the remaining parties of H. Since
the hypergraph graph obtained is the union of a set of disjoint ideal hyperstars,
we can recursively apply the same algorithm to each of these hyperstars by using
So as a secret. However, there are two algorithmic problems to be solved in order
to realize this algorithm. The first one is how to efficiently partition the parties
into disjoint regions. Notice that this problem can be easily solved in polynomial
time. A second problem is how to verify that a given hyperstar is ideal. But,
given the decomposition in regions of the hyperstar, this problem can be easily
solved in polynomial time.

5 Average Information Rate

In this section we will give upper bounds on the average information rate for gen-
eral access structures. By extending the proofs in [5], we can prove the problem
of finding the optimal hyperstar decomposition to be NP-Hard. Moreover we can
prove that it is possible to compute in polynomial-time, optimal secret sharing
schemes for some classes of hypergraphs, namely hyperpaths, hypercycles and
hypertrees. We can show that these schemes improve on the previously known
secret sharing schemes. We further present upper bounds on the average infor-
mation rate for some classes of hypergraphs, namely, hyperpaths, hypercycles
and hypertrees.

5.1 Upper Bounds on the Average Information Rate

Given a hypergraph H, we construct a new hypergraph H’ we call the foundation
of H. The idea is to construct a hypergraph that contains all the vertices that
will receive a share whose size is strictly greater than the size of the secret. More
formally we have:

Definition 2 (Foundation). Let H = (V, E) be a hypergraph. The foundation
of H is a hypergraph H' = (V' E’), where V! = Ug,cp E; and for any hyperedge
E;, € E, E; € E' if and only if there exist two hyperedges E;, Ey, such that:

[ EiﬂEj#w andEiﬁEk;é@
e E;NE; Z By and E;NEy € E;

Consider a hyperedge F; in the foundation hypergraph of H. We denote by
N(E;) the set of hyperedges incident to E; and satisfying the conditions of
Definition 2l Moreover, for each E; in the foundation hypergraph, there exist at
least two regions, say B; 1 = E; N E; and B; » = E; N Ey, with E;, B, € N(E;).
By Lemma [Tl some of the parties in these regions will receive shares whose size
is strictly greater than the size of the secret. Two possible cases can arise:
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e E;,NE;NE, = 0. In this case, the three hyperedges form a hyperpath of
length three that, by Theorem [2] is not ideal.

e E;NE;NE) # (. In this case the three hyperedges form a hyperstar with
three hyperedges and two 2-regions that, by Lemma [I]is not ideal.

Given H, we consider the following linear programming problem A(#H).

Minimize C' =} .y @y
a, >0,veV
Ay + Ay > 1,VEZ € E/,VEJ‘,E]C S N(El),V’U e Fb; ﬁEj,w c F; ﬂEk,] # k

Theorem 3. Let H = (V, E) be a hypergraph with foundation H'. Let C* the
optimal solution for the problem A(H). Then P (H) <|V|/(C*+|V]).

Theorem Bldefines an upper bound on the average information rate for general
access structures. In the next sections we are going to give specific upper bounds
for particular classes of access structures, namely hyperpaths, hypercycles and
hypertrees.

Before going on, we are going to prove a result that will be used in the rest of
this section. For any hyperedge E; € E’ in the foundation hypergraph there are

at least two non-ideal regions we call B;; and Bjo with weight wp,, = |Bj1
and wpj2 = |Bjz2| respectively. Denote by w; = min{wp, ,,wp,,}, Wnin =
min{wp, ., wp,,|j =1,...|E'[}, and wyee = max{wp, ,,ws,,|j =1,...|E'|}.

Theorem 4. Let H be a hypergraph, let H' = (V', E') be its foundation and let
T = Wmin/Wmaz- If the vertices in V' have degree at most d than C* > r|E’|/d.

From this theorem it is possible to derive some interesting results on some
classes of hypergraphs.

HyperCycles. The first class of hypergraphs we are going to consider is the class
of hypercycles. It is not hard to see that the foundation hypergraph of C,, is
the C,, itself. Moreover, the non-ideal regions in C,, are exactly all its 2-regions.
Since C,,, has maximum degree 2, by Theorem [4] we can obtain the following:

Corollary 1. Let Cy,, = (V, E) be a hypercycle, let By, ..., By, be its 2-regions
and let w; =| B; | fori=1,...,m. The it holds that: p< [V|/(rm/2+|V]) where
r=mini<j<m Wi/ Max < j<m W;

HyperPaths. The next bound we are going to show is the upper bound on the
average information rate for hyperpaths. It is not hard to see that the foundation
hypergraph of a hyperpath P,, is isomorphic to P,,_2. More precisely, given a
hyperpath P,,, its foundation hypergraph is obtained by removing the first and
the last hyperedge in the hyperpath. Indeed all the other hyperedges in the
hyperpath will be the middle-hyperedge of some subpaths of length 3.
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Corollary 2. Let P,, = (V,E) be a hyperpath, and let P,,_o be its foundation
hypergraph. Moreover let By, ..., Bpy_o be the 2-regions of Py—o and let w; =|

B; | fori=1,...,m —2. The it holds that: p< [V|/(r(m —2)/2 4+ |V|) where

T =Mmini<j<m_n Wi/ MaXi<j<m—2 W;

Hypertrees. Let H be a hypertree with at least four hyperedges. The foundation
hypergraph of a hypertree contains at least all the internal vertices of the tree.

Corollary 3. Let H be a hypertree with mazimum degree d, let H' be its foun-
dation and let 1 = Wynin /Wmaz- It holds that C* > r|E’'|/d

6 Optimal Information Rate

In this section we present a general lower bound on the information rate based on
the multiple hypergraph decomposition. We shall show that using this technique
it is possible to construct optimal secret sharing schemes for some classes of hy-
pergraphs such as hyperpaths, hypercycles and hyperstars w.r.t. the information
rate. For a hypergraph H define

p"(H)=sup{p : 3 perfect secret sharing scheme for H with information rate p}

We are interested in the best information rate we can obtain by multiple
hypergraph decomposition. To this aim we define p},(H) to be this optimal
information rate. It is immediate that p3,(H) < p*(H). We first generalize a
result in [5] that allows to compute the value of p}‘w (H ).

Let H = (V, E) be an hypergraph and assume A; = {Hj1,..., Hj, }, with
7 = 1,2 be two hypergraph decompositions of H. We can deﬁne a partial order
on the Aj’s as follows: Let Rj, = [{¢ : v € Hj;}|. We say that A; < A; if and
only if Rw < Rj, for any v € V. Define a hypergraph decomposition A; to be
minimal if there does not exists A; such that A; < A; and A; # A;. Now assume
that A; = {Hj1,..., Hjg, }, with j = 1,..., L be a complete enumeration of all
minimal hypergraph decomposition of H and for every vertex v € V and for any
j=1,...,L define Rj, = |{i : v € Hj;}|. Consider the following optimization
problem Z(H)

Minimize R = max{z 16 Ry iv eV}
Subject to: ; > 0,1 <j <L such that Z =1,

The proof of the following theorem is a straightforward extension of the corre-
sponding theorem in [5].

Theorem 5. Let R* be the optimal solution to Z(H). Then pi;(H) = 1/R*.

Theorem 6. Let P, be the hyperpath with m hyperedges. Then p*(Py,) = 2/3.

Theorem 7. Let C,, be the hypercycle with m > 3 hyperedges. Then if m is
even p*(Cy,) = 2/3 otherwise p},(Cp,) = (2n+1)/(3n + 2)
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Theorem 8. Let H be a non-ideal hyperstar with three hyperedges. It holds that
p*(H) =2/3.

Corollary 4. Let H be a non-ideal hyperstar with m hyperedges then p*(H) <
2/3.
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