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Abstract. Looking for the subsets of genes appearing consecutively
in two or more genomes is an useful approach to identify clusters of
genes functionally associated. A possible formalization of this problem
is to modelize the order in which the genes appear in all the considered
genomes as permutations of their order in the first genome and find k-
tuples of contiguous subsets of these permutations consisting of the same
elements: the common intervals. A drawback of this approach is that it
doesn’t allow to take into account paralog genes and genomic internal
duplications (each element occurs only once in a permutation). To do
it we need to modelize the order of genes by sequences which are not
necessary permutations.

In this work, we study some properties of common intervals between two
general sequences. We bound the maximum number of common intervals
between two sequences of length n by n® and present an O(n?log(n))
time complexity algorithm to enumerate their whole set of common in-
tervals. This complexity does not depend on the size of the alphabets of
the sequences.

1 Introduction

The comparison of the sequences of genes of two or more organisms, in partic-
ular finding locally conserved subsets of genes in several genomes, can be used
to predict protein function or just to determine cluster of genes functionally as-
sociated [3l67]. A way to find such clusters is to represent these sequences of
genes by permutations and to find the consecutive elements conserved in these
permutations, which are called common intervals [5]. A limitation of this type
of modelization is that an element of a permutation can occur only once within
it. Consequently paralog genes or internal duplication in a genome cannot be
modelized by permutation. This yields to define and study a notion of common
intervals of general sequences.

But firstly, let us recall that the question of finding all common intervals
of two permutations of n elements was studied and solved by algorithms hav-
ing O(n?) or O(n + K) time complexity, where K is the effective number of

common intervals [§]. This number K is less or equal than (Z) in the case of
two permutations. So in the worst case, any algorithm solving this question will
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run in O(n?) time. Enumerating the common intervals of a given number (> 2)
of permutations was solved in [4], and some more theoretical applications and
developments of this type of algorithms in [2].

We are interested here in a similar problem over two general sequences. The
main difference with permutations is that elements can occur more than a single
time. Because of this, techniques used in the permutations case cannot be directly
transposed. We first give a bound for the number of common intervals between
two sequences and an algorithm to enumerate them. The algorithmic complexity
is O(n?log(n)) in the worst case, where n is the length of the sequences. In the
case of two permutations, this algorithm runs in O(n?) time.

A recent algorithm, developed by Amir et al in [1], solves the same question
in O(n|X|log(n)log(| X)), where | X| is the size of the alphabet of the sequences,
by using an efficient coding of the (sub-)alphabets (called fingerprints) of their
subsequences. Depending on the size of the alphabet relatively to the length of
the sequences, their algorithm or the present one is the fastest.

2 Definitions and Notations

Let s be a finite sequence over a certain set of elements called symbols, we note
|s| its length and index it from 1 to |s|: s = s152. .. 5/5. The alphabet of s, noted
Ay, is the set of symbols appearing in this sequence: A, = {s]1 < 1 < |s]}.
To simplify the statements of definitions and proofs, we add a special symbol 9,
never occurring in the considered sequences, at their beginnings and their ends:
i.e. we fix s9 = 8541 = ¢ for each sequence s. Nevertheless, in the following, 0
and |s| + 1 won’t be considered as positions of s and § ¢ As.

For a pair (4,j) of integers with 1 < ¢ < j < |s| we note [i,j] the set
{i,i+1,...,7}. The corresponding subsequence of s, noted s; ; is the sequence
8iSi+1...58j. A subsequence S| is said alphabetically deliminated if s;—1 ¢
As, ,; and sj41 ¢ Asii -

Let be two sequences s and s', a pair ([¢, j], [, j']) is a common interval of s
and s’ if it satisfies:

0]

L. s[4 and sz" 1) are alphabetically deliminated ;
S[i,4] = sii’,j/] :

We note C(s,s’) the set of common intervals of s and s’. Considering only
alphabetically deliminated subsequences involves a sort of maximality prop-
erty over intervals. More precisely, if ([i, 5], [i',5']) and ([k,1],[i, j']) (resp. and
([¢, 4], [K',1'])) belong to C(s,s’) then the intervals [k,] and [4,j] (resp. [K,1]
and [¢/, j]) are disjoint or equal.

For the following sequences:

s =abcbdadbca
s =bacadbabdc

The set of common intervals is:

C(s,8") = {(11,11,[2,2)),(11,11,[4,4]),([1,11,[7,7]),([1,2],[1,2]),([1,2],16,81),([1,4],[1,4]),([1,10], [1,10)) .. }
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3 Number of Common Intervals

By definition, the alphabetically deliminated subsequences starting at a position
1 of s cannot end after the first occurrence of s;_1 following i. For each position
i of s, let us denote by o’ the sequence of the set of symbols occurring between
i (included) and the first occurrence of s;_1 following i (excluded), ordered ac-
cording to their first occurrences. The main interest of this sequence is that the
alphabets of alphabetically deliminated subsequences starting at ¢ are the sets
{of,...,0% } for all integer m € {1,...,|o"|}.

We note p; the application which associates to each m € {1,...,|o?| — 1},
the position preceding the first occurrence of o}, following i and to |o’| the
position preceding the first occurrence of s;_; following 3.

Remark 1 The set of alphabetically deliminated subsequences of s starting at i
is {[i,p:(m)] Im € {1,...,]0%|}} and we have As, ={o},..., 0.} for all
integer m € {1,...,|o"|}.

ipi(m)]

We associate to each symbol & € Ay the integer called i-rank, noted r;(x)
and defined as the position of z in o’ if x occurs in it and as +oo if not. We fix
always r;(0) to +oo. The restriction of the application r; to the set of symbols
with finite images is one to one.

ol —abcd 11234 a b c d
2 P1 1 2 4 (10 ry 1 2 3 4
o, =bcd Pl 2415 = ool T [ 2 | 3
04_c p3|3|—[—|— r3 |[+oo[+oo| 1 |[+oo
o =bda pa| 4|58 = ra| 3 | L |too| 2

Fig. 1. Construction of o’, p; and r; of the sequence s in the preceding example.

An interval [a,b] is said to be i-complete if {r;(s})|l € [a,b]} = {1,...,m},
where m = max{r;(s})|l € [a,b]}. If [a, b] is i-complete then A, o = Aé[l prom]”
So an interval i-complete and alphabetically deliminated of s’ 1s common with
an interval of s starting at 1.

For each position k of s’, we note I;(k) the interval [a,b] containing k such

that the subsequence si o] of s’ verifies:

1. ri(s)) <ri(s),) for alll € [a,b] ;
2. ri(s,_1) > ri(s),) and I'z'(5§,+1) > r;(s),).

The collection of intervals I; is hierarchically-nested.

Lemma 1 If I;(k) and L;(k') are two intervals of 1;, then L;i(k) N L;(k') €
{0,1;(k),L;(K")} . More precisely, if L;(k) NL;(k") # 0 we have:
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1. Ii(k) C Li(K') if and only if r;(s),) < 7i(s),) ;
2. Li(k) D L(K') if and only if 7;(s},) > ri(s},) ;
3. L(k) = L(K) o and only if ri(s}) = rsh)

Proof. We just prove the assertion [I] the other ones being direct consequences.
By definition, the maximum i-rank over I;(k) (resp.I;(k’)) is reached in position
k (vesp. K').If I;(k) D I;(k') then r;(s}) > r;(s},).

Let L;(k) = [a,b] and I;(k¥") = [a/,b'] be two intervals of I, such that
L(k) N Li(k") # 0. Assume that max{s)|l € Li(k)} = ri(s}) < ri(s},) =
max{s)|l € L;(k")}. As L;(k) NL;(k") # 0, we have either a € [a/, V'] or b € [a/,V].
If a € [a’,b] then b cannot be strictly greater than &', in the other case, s,
by definition greater than max{s;|l € I;(k’) would belong to [a, b], which would
be in contradiction with the hypothesis. In the same way, if b € [a,}] then a
cannot be strictly smaller than a’ ; and the assertion[I] is proved.

The collection I; can be represented as a tree of which nodes are associated to
an interval I (k) , or eventually to several intervals if they are confounded, and
where the set of all the leafs having a given node I (k) as ancestor corresponds
to the set of positions of s’ bounded by it (figure [2).

positions : 1 2 3 4 5 6 7 8 9 10
s b a ¢ a d b a b d c
ri(s') 2 1 3 1 4 2 1 2 4 3
I, (2) I, (4) L, (7)
1.(1) 1,(6), I1(8)
I.(3) 1,(10)

I, (5),11(9)

Fig. 2. Tree representation of the hierarchy of the I (k) of the example.

Lemma 2 Let s and s’ be two sequences. If ([i,j],[a,b]) is a common interval
of s and s’ then there is a position k of s’ such that [a,b] = L;(k)

Proof. 1f ([i, ], [a,b]) € C(s,s’) then the subsequences sj; ; and s, , are al-
phabetically deliminated and verify As, . = Ay = A. By definition of

[a,b]
r;, there is no symbol in A of infinite i-rank and each integer between 1
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and m = max{r;(z)|lx € A} appears as an i-rank of a symbol of A: i.e.
{ri(z)lz € A} = {1,...,m} and [a,8] is i-complete. As 5|, , is alphabetically
deliminated, the symbols s;,_; and s;,, are not in A. Moreover, each rank in
{1,...,m} has an unique antecedent in Ay and we have necessarily r;(s/,_;) and
r;(s;, 1) strictly greater than m, equal to max{r;(s;)|l € [a,b]}. Let k € [a,b] be
such that r;(s),) = m, it follows from the preceding and the definition of I;(k)
that [a,b] = L;(k).

As for each position i of s, there are at most |s’| subsequences L;(k), we
obtain the following bound.

Theorem 1 Let s and s’ be two sequences. The cardinal of C(s,s’) is smaller
than |s| x |§'|.

This bound is certainly not optimal. But as in the particular case of two
n-permutations the optimal bound is (g), the optimal bound for two sequences

of length n grows as O(n?).

4 Algorithm

Let k be a position of s’ with a finite i-rank r;(s),), the left-neighbour (resp. the
right-neighbour) of k is the greatest position smaller (resp. the smallest position
greater) than & where a symbol of i-rank r;(s},) + 1 occurs if it exists (if there is
not such symbol then k won’t have a right- and/or a left-neighbour).

If k and k&’ are positions of s’, the i-distance between k and &’ is the maximum
i-rank of symbols occurring in the subsequence ka,k'} if k < Kk orin kaf,k} if
k > k’. The smallest distance of a position k of finite i-rank and a position of
i-rank r;(s},) + 1 is reached either between k and its left-neighbour or between
k and its right-neighbour.

Let j be a position of finite i-rank and L (resp. R) the i-distance between p
and its left-neighbour (resp. its right-neighbour) if it exists and +oo if not. If R
and L are both infinite, j don’t have a successor. In the other case, the successor
of j is:

— its left-neighbour if L < R ;
— its right-neighbour if L > R.

An i-path of order m is a sequence p of m positions of s’ verifying:

L ri(s,,) =l foralll € {1,...m} ;
2. for alll € {1,...m — 1}, pi41 is the successor of p;.

Lemma 3 If p and q are two i-paths such that p; = q; for an integer j €
{1,...,min(|p|, lq])} then p; = q for alll € {j,...,min(|p|, |q|)}.

Proof. By definition an i-path can be extend in only one way which depends
only on its last element.
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Theorem 2 An interval I;(k) is i-complete if and only if it contains an i-path
of order r;(s},).

Proof. By definition, if I;(k) contains an i-path of order r;(s},) = max{r;(s})|l €
I;(k)}, then it is complete.

Reciprocally let us assume I;(k) to be complete. We will proceed by induction
over the length of an i-path of I;(k). In particular, there is at least a position
p1 € L;(k) such that r;(p;) and an i-path of order 1 belong to I; (k). Assume that
the i-path of order I < r;(s},) is included in I;(k). As I;(k) is complete, there is
at least a position p € I;(k) with a é-rank equal to [ + 1. As the i-distance of p,
and any position not in I;(k) is greater than r;(s},) (by definition of I;(k)). If p
is the position of I;(k) of i-rank [ + 1 having the smallest i-distance d from p,
which is the left- or right-neighbour of p;, then p is the successor of p; and we
have an ¢-path of order [ 4 1.

The lemma P and the theorem[2 ensure that ([i, j] , [a, b]) is a common interval
of s and ¢ if and only if there exists a position k of s such that [a,b] = I;(k)
and I;(k) contains an i-path p of order r;(s) ). Without loss of generality we can
choose k = pjp (ri(pjp)) = ri(k), ri(pp) € Li(k) and lemma [I).

The main idea of our algorithm is, for each position ¢ of s, to test if
the elements of each i-path p of s" are included in I;(p),). From the preced-
ing, if this inclusion is granted then we have a common interval of the form
([i,pi(ri(s;‘p‘))],Ii (pip))) (see remark [[) and all the common intervals will be
find by this way.

To perform this we need first to compute, fixing a position i of s, all the
intervals I;,. This can be done in a linear time and additional space using a
stack S (see the part | Compute the table of intervals I; and the table LeftDistance | in the

algorithm).

Another step is the computing of the successor of each position of s’. To
do it, we need to determine the left- and right-neighbours of each position of
s’, which can be classically done in a linear time. The main difficulty is to
compute the i-distances between each position and its left- and right-neighbours.
In the algorithm these distances are stored in the tables LeftDistance and
RightDistance. The table LeftDistance is compute in the same time and using
the same stack than the intervals. The table RightDistance is compute in the
same way. It need for each position to perform a binary search in the stack. So
the complexity of this part of the algorithm is in the worst case O(|s'|log(|s|)).
The table of successors is easy to compute in a linear time using the tables
LeftDistance and RightDistance.

The last step is straightforward. Starting by all the positions of i-rank 1 of s,
we extend iteratively all the i-paths starting from these and test the preceding
inclusion at each iteration. Following the lemma Bl we don’t need to consider
each position more than once in an i-path (PositionParsed is a boolean table
maintained to avoid such useless iterations). Complexity of this part becomes
linear with the length of s’ in time and space.
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Algorithm 1 Compute the set of common intervals between two sequences

for all position 7 of s do
Compute the rank table r;, iMaz the max of finite i-ranks and the corresponding positions p;
Compute the chain tables LeftNeighbour and RightNeighbour
Initialize the tables LeftDistance and RightDistance to +oco
Initialize the stack S
| Compute the table of intervals I; and the table LeftDistance

for k=0 to |s'| + 1 do
if ri(s},) < iMaz and LeftNeighbour(k) is not EMPTY then
t < the smallest position in the stack > LeftNeighbour(k) (computed by binary search)
LeftDistancelk] < r;(s})
end if
while ri(s{:op(s)) < r;i(s;) do
I;(top(S)).end «— k — 1
pop(S)
end while
if ri(s’top(s)) # r;i(s},) then
I;(k).start — top(S) +1
else
I; (k).start < I,(top(S)).start
end if
push(k, S)
end for
| Compute the table RightDistance |

for k = |s’| +1 to 0 do
if ri(s},) < iMaz and RightNeighbour(k) is not EMPTY then
t < the greatest position in the stack < RightNeighbour(k) (computed by binary search)
RightDistance[k] < r;(s})
end if
while r7,(s;;0p(s)) < r;(sy) do
pop(S)
end while
push(k, S)
end for
| Compute the table Successor |

for all position k of s’ do
if ri(s},) < iMaz and min(LeftDistance[k], RightDistance[k]) < 4+oo then
if LeftDistancek] < RightDistance[k] then
Successor(k) «— LeftNeighbour(k)
else
Successor(k) < RightNeighbour (k)
end if
else
Successor(k) «— EMPTY
end if
end for

Parse the i-paths and output the common intervals

Initialize the table PositionParsed to FALSE
for all position j of i-rank 1 of s’ do
BoundL «+ j ; BoundR «— j
repeat
BoundL < min(j, BoundL) ; BoundR <« max(j, BoundR)
if [BoundL, BoundR] C 1;(j) then

output ([i, pi(ri(s}))),1: (7))
end if
PositionParsed(j) < TRUE ; j < Successor(j)
until j is EMPTY or PositionParsed(j) is TRUE
end for
end for
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For each position ¢ of s, the greater complexity to compute common inter-
vals with left bound ¢ in their s-component is O(|s'|log(|s|)). If the length of
the sequences s and s’ are O(n), the general complexity of the algorithm is
O(n?log(n)).
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