Common Intervals of Two Sequences

Gilles Didier

Laboratoire Genome et Informatique - CNRS UMR 8116
Tour Evry2 - 523, place des Terrasses de ’Agora
91034 EVRY CEDEX
didier@genopole.cnrs.fr

Abstract. Looking for the subsets of genes appearing consecutively
in two or more genomes is an useful approach to identify clusters of
genes functionally associated. A possible formalization of this problem
is to modelize the order in which the genes appear in all the considered
genomes as permutations of their order in the first genome and find k-
tuples of contiguous subsets of these permutations consisting of the same
elements: the common intervals. A drawback of this approach is that it
doesn’t allow to take into account paralog genes and genomic internal
duplications (each element occurs only once in a permutation). To do
it we need to modelize the order of genes by sequences which are not
necessary permutations.

In this work, we study some properties of common intervals between two
general sequences. We bound the maximum number of common intervals
between two sequences of length n by n® and present an O(n?log(n))
time complexity algorithm to enumerate their whole set of common in-
tervals. This complexity does not depend on the size of the alphabets of
the sequences.

1 Introduction

The comparison of the sequences of genes of two or more organisms, in partic-
ular finding locally conserved subsets of genes in several genomes, can be used
to predict protein function or just to determine cluster of genes functionally as-
sociated [3l67]. A way to find such clusters is to represent these sequences of
genes by permutations and to find the consecutive elements conserved in these
permutations, which are called common intervals [5]. A limitation of this type
of modelization is that an element of a permutation can occur only once within
it. Consequently paralog genes or internal duplication in a genome cannot be
modelized by permutation. This yields to define and study a notion of common
intervals of general sequences.

But firstly, let us recall that the question of finding all common intervals
of two permutations of n elements was studied and solved by algorithms hav-
ing O(n?) or O(n + K) time complexity, where K is the effective number of

common intervals [§]. This number K is less or equal than (Z) in the case of
two permutations. So in the worst case, any algorithm solving this question will

G. Benson and R. Page (Eds.): WABI 2003, LNBI 2812, pp. 17-24] 2003.
© Springer-Verlag Berlin Heidelberg 2003

Verwendete Distiller 5.0.x Joboptions
Dieser Report wurde automatisch mit Hilfe der Adobe Acrobat Distiller Erweiterung "Distiller Secrets v1.0.5" der IMPRESSED GmbH erstellt.
Sie koennen diese Startup-Datei für die Distiller Versionen 4.0.5 und 5.0.x kostenlos unter http://www.impressed.de herunterladen.

ALLGEMEIN --
Dateioptionen:
 Kompatibilität: PDF 1.2
 Für schnelle Web-Anzeige optimieren: Ja
 Piktogramme einbetten: Ja
 Seiten automatisch drehen: Nein
 Seiten von: 1
 Seiten bis: Alle Seiten
 Bund: Links
 Auflösung: [600 600] dpi
 Papierformat: [595 842] Punkt

KOMPRIMIERUNG --
Farbbilder:
 Downsampling: Ja
 Berechnungsmethode: Bikubische Neuberechnung
 Downsample-Auflösung: 150 dpi
 Downsampling für Bilder über: 225 dpi
 Komprimieren: Ja
 Automatische Bestimmung der Komprimierungsart: Ja
 JPEG-Qualität: Mittel
 Bitanzahl pro Pixel: Wie Original Bit
Graustufenbilder:
 Downsampling: Ja
 Berechnungsmethode: Bikubische Neuberechnung
 Downsample-Auflösung: 150 dpi
 Downsampling für Bilder über: 225 dpi
 Komprimieren: Ja
 Automatische Bestimmung der Komprimierungsart: Ja
 JPEG-Qualität: Mittel
 Bitanzahl pro Pixel: Wie Original Bit
Schwarzweiß-Bilder:
 Downsampling: Ja
 Berechnungsmethode: Bikubische Neuberechnung
 Downsample-Auflösung: 600 dpi
 Downsampling für Bilder über: 900 dpi
 Komprimieren: Ja
 Komprimierungsart: CCITT
 CCITT-Gruppe: 4
 Graustufen glätten: Nein
 Bitanzahl pro Pixel: Wie Original Bit

 Text und Vektorgrafiken komprimieren: Ja

SCHRIFTEN --
 Alle Schriften einbetten: Ja
 Untergruppen aller eingebetteten Schriften: Nein
 Untergruppen bilden unter: 100 %
 Wenn Einbetten fehlschlägt: Warnen und weiter
Einbetten:
 Immer einbetten: []
 Nie einbetten: []

FARBE(N) --
Farbmanagement:
 Farbumrechnungsmethode: Alle Farben zu sRGB konvertieren
 Methode: Standard
Arbeitsbereiche:
 Graustufen ICC-Profil:
 RGB ICC-Profil: sRGB IEC61966-2.1
 CMYK ICC-Profil: U.S. Web Coated (SWOP) v2
Geräteabhängige Daten:
 Einstellungen für Überdrucken beibehalten: Ja
 Unterfarbreduktion und Schwarzaufbau beibehalten: Ja
 Transferfunktionen: Anwenden
 Rastereinstellungen beibehalten: Ja

ERWEITERT --
Optionen:
 Prolog/Epilog verwenden: Nein
 PostScript-Datei darf Einstellungen überschreiben: Ja
 Level 2 copypage-Semantik beibehalten: Ja
 Portable Job Ticket in PDF-Datei speichern: Nein
 Illustrator-Überdruckmodus: Ja
 Farbverläufe zu weichen Nuancen konvertieren: Nein
 ASCII-Format: Nein
Document Structuring Conventions (DSC):
 DSC-Kommentare verarbeiten: Nein
 DSC-Warnungen protokollieren: Nein
 Für EPS-Dateien Seitengröße ändern und Grafiken zentrieren: Nein
 EPS-Info von DSC beibehalten: Nein
 OPI-Kommentare beibehalten: Nein
 Dokumentinfo von DSC beibehalten: Nein

ANDERE --
 Distiller-Kern Version: 5000
 ZIP-Komprimierung verwenden: Ja
 Optimierungen deaktivieren: Nein
 Bildspeicher: 524288 Byte
 Farbbilder glätten: Nein
 Graustufenbilder glätten: Nein
 Bilder (< 257 Farben) in indizierten Farbraum konvertieren: Ja
 sRGB ICC-Profil: sRGB IEC61966-2.1

ENDE DES REPORTS --

IMPRESSED GmbH
Bahrenfelder Chaussee 49
22761 Hamburg, Germany
Tel. +49 40 897189-0
Fax +49 40 897189-71
Email: info@impressed.de
Web: www.impressed.de

Adobe Acrobat Distiller 5.0.x Joboption Datei
<<
 /ColorSettingsFile ()
 /AntiAliasMonoImages false
 /CannotEmbedFontPolicy /Warning
 /ParseDSCComments false
 /DoThumbnails true
 /CompressPages true
 /CalRGBProfile (sRGB IEC61966-2.1)
 /MaxSubsetPct 100
 /EncodeColorImages true
 /GrayImageFilter /DCTEncode
 /Optimize true
 /ParseDSCCommentsForDocInfo false
 /EmitDSCWarnings false
 /CalGrayProfile ()
 /NeverEmbed []
 /GrayImageDownsampleThreshold 1.5
 /UsePrologue false
 /GrayImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >>
 /AutoFilterColorImages true
 /sRGBProfile (sRGB IEC61966-2.1)
 /ColorImageDepth -1
 /PreserveOverprintSettings true
 /AutoRotatePages /None
 /UCRandBGInfo /Preserve
 /EmbedAllFonts true
 /CompatibilityLevel 1.2
 /StartPage 1
 /AntiAliasColorImages false
 /CreateJobTicket false
 /ConvertImagesToIndexed true
 /ColorImageDownsampleType /Bicubic
 /ColorImageDownsampleThreshold 1.5
 /MonoImageDownsampleType /Bicubic
 /DetectBlends false
 /GrayImageDownsampleType /Bicubic
 /PreserveEPSInfo false
 /GrayACSImageDict << /VSamples [2 1 1 2] /QFactor 0.76 /Blend 1 /HSamples [2 1 1 2] /ColorTransform 1 >>
 /ColorACSImageDict << /VSamples [2 1 1 2] /QFactor 0.76 /Blend 1 /HSamples [2 1 1 2] /ColorTransform 1 >>
 /PreserveCopyPage true
 /EncodeMonoImages true
 /ColorConversionStrategy /sRGB
 /PreserveOPIComments false
 /AntiAliasGrayImages false
 /GrayImageDepth -1
 /ColorImageResolution 150
 /EndPage -1
 /AutoPositionEPSFiles false
 /MonoImageDepth -1
 /TransferFunctionInfo /Apply
 /EncodeGrayImages true
 /DownsampleGrayImages true
 /DownsampleMonoImages true
 /DownsampleColorImages true
 /MonoImageDownsampleThreshold 1.5
 /MonoImageDict << /K -1 >>
 /Binding /Left
 /CalCMYKProfile (U.S. Web Coated (SWOP) v2)
 /MonoImageResolution 600
 /AutoFilterGrayImages true
 /AlwaysEmbed []
 /ImageMemory 524288
 /SubsetFonts false
 /DefaultRenderingIntent /Default
 /OPM 1
 /MonoImageFilter /CCITTFaxEncode
 /GrayImageResolution 150
 /ColorImageFilter /DCTEncode
 /PreserveHalftoneInfo true
 /ColorImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >>
 /ASCII85EncodePages false
 /LockDistillerParams false
>> setdistillerparams
<<
 /PageSize [595.276 841.890]
 /HWResolution [600 600]
>> setpagedevice

18 G. Didier

run in O(n?) time. Enumerating the common intervals of a given number (> 2)
of permutations was solved in [4], and some more theoretical applications and
developments of this type of algorithms in [2].

We are interested here in a similar problem over two general sequences. The
main difference with permutations is that elements can occur more than a single
time. Because of this, techniques used in the permutations case cannot be directly
transposed. We first give a bound for the number of common intervals between
two sequences and an algorithm to enumerate them. The algorithmic complexity
is O(n?log(n)) in the worst case, where n is the length of the sequences. In the
case of two permutations, this algorithm runs in O(n?) time.

A recent algorithm, developed by Amir et al in [1], solves the same question
in O(n|X|log(n)log(| X)), where | X| is the size of the alphabet of the sequences,
by using an efficient coding of the (sub-)alphabets (called fingerprints) of their
subsequences. Depending on the size of the alphabet relatively to the length of
the sequences, their algorithm or the present one is the fastest.

2 Definitions and Notations

Let s be a finite sequence over a certain set of elements called symbols, we note
|s| its length and index it from 1 to |s|: s = s152. .. 5/5. The alphabet of s, noted
Ay, is the set of symbols appearing in this sequence: A, = {s]1 < 1 < |s]}.
To simplify the statements of definitions and proofs, we add a special symbol 9,
never occurring in the considered sequences, at their beginnings and their ends:
i.e. we fix s9 = 8541 = ¢ for each sequence s. Nevertheless, in the following, 0
and |s| + 1 won’t be considered as positions of s and § ¢ As.

For a pair (4,j) of integers with 1 < ¢ < j < |s| we note [i,j] the set
{i,i+1,...,7}. The corresponding subsequence of s, noted s; ; is the sequence
8iSi+1...58j. A subsequence S| is said alphabetically deliminated if s;—1 ¢
As, ,; and sj41 ¢ Asii -

Let be two sequences s and s', a pair ([¢, j], [, j']) is a common interval of s
and s’ if it satisfies:

0]

L. s[4 and sz" 1) are alphabetically deliminated ;
S[i,4] = sii’,j/] :

We note C(s,s’) the set of common intervals of s and s’. Considering only
alphabetically deliminated subsequences involves a sort of maximality prop-
erty over intervals. More precisely, if ([i, 5], [i',5']) and ([k,1],[i, j']) (resp. and
([¢, 4], [K',1'])) belong to C(s,s’) then the intervals [k,] and [4,j] (resp. [K,1]
and [¢/, j]) are disjoint or equal.

For the following sequences:

s =abcbdadbca
s =bacadbabdc

The set of common intervals is:

C(s,8") = {(11,11,[2,2)),(11,11,[4,4]),([1,11,[7,7]),([1,2],[1,2]),([1,2],16,81),([1,4],[1,4]),([1,10], [1,10)) .. }

Common Intervals of Two Sequences 19
3 Number of Common Intervals

By definition, the alphabetically deliminated subsequences starting at a position
1 of s cannot end after the first occurrence of s;_1 following i. For each position
i of s, let us denote by o’ the sequence of the set of symbols occurring between
i (included) and the first occurrence of s;_1 following i (excluded), ordered ac-
cording to their first occurrences. The main interest of this sequence is that the
alphabets of alphabetically deliminated subsequences starting at ¢ are the sets
{of,...,0% } for all integer m € {1,...,|o"|}.

We note p; the application which associates to each m € {1,...,|o?| — 1},
the position preceding the first occurrence of o}, following i and to |o’| the
position preceding the first occurrence of s;_; following 3.

Remark 1 The set of alphabetically deliminated subsequences of s starting at i
is {[i,p:(m)] Im € {1,...,]0%|}} and we have As, ={o},..., 0.} for all
integer m € {1,...,|o"|}.

ipi(m)]

We associate to each symbol & € Ay the integer called i-rank, noted r;(x)
and defined as the position of z in o’ if x occurs in it and as +oo if not. We fix
always r;(0) to +oo. The restriction of the application r; to the set of symbols
with finite images is one to one.

ol —abcd 11234 a b c d
2 P1 1 2 4 (10 ry 1 2 3 4
o, =bcd Pl 2415 = ool T [2 | 3
04_c p3|3|—[—|— r3 |[+oo[+oo| 1 |[+oo
o =bda pa| 4|58 = ra| 3 | L |too| 2

Fig. 1. Construction of o’, p; and r; of the sequence s in the preceding example.

An interval [a,b] is said to be i-complete if {r;(s})|l € [a,b]} = {1,...,m},
where m = max{r;(s})|l € [a,b]}. If [a, b] is i-complete then A, o = Aé[l prom]”
So an interval i-complete and alphabetically deliminated of s’ 1s common with
an interval of s starting at 1.

For each position k of s’, we note I;(k) the interval [a,b] containing k such

that the subsequence si o] of s’ verifies:

1. ri(s)) <ri(s),) for alll € [a,b] ;
2. ri(s,_1) > ri(s),) and I'z'(5§,+1) > r;(s),).

The collection of intervals I; is hierarchically-nested.

Lemma 1 If I;(k) and L;(k') are two intervals of 1;, then L;i(k) N L;(k') €
{0,1;(k),L;(K")} . More precisely, if L;(k) NL;(k") # 0 we have:

20 G. Didier

1. Ii(k) C Li(K') if and only if r;(s),) < 7i(s),) ;
2. Li(k) D L(K') if and only if 7;(s},) > ri(s},) ;
3. L(k) = L(K) o and only if ri(s}) = rsh)

Proof. We just prove the assertion [I] the other ones being direct consequences.
By definition, the maximum i-rank over I;(k) (resp.I;(k’)) is reached in position
k (vesp. K').If I;(k) D I;(k') then r;(s}) > r;(s},).

Let L;(k) = [a,b] and I;(k¥") = [a/,b'] be two intervals of I, such that
L(k) N Li(k") # 0. Assume that max{s)|l € Li(k)} = ri(s}) < ri(s},) =
max{s)|l € L;(k")}. As L;(k) NL;(k") # 0, we have either a € [a/, V'] or b € [a/,V].
If a € [a’,b] then b cannot be strictly greater than &', in the other case, s,
by definition greater than max{s;|l € I;(k’) would belong to [a, b], which would
be in contradiction with the hypothesis. In the same way, if b € [a,}] then a
cannot be strictly smaller than a’ ; and the assertion[I] is proved.

The collection I; can be represented as a tree of which nodes are associated to
an interval I (k) , or eventually to several intervals if they are confounded, and
where the set of all the leafs having a given node I (k) as ancestor corresponds
to the set of positions of s’ bounded by it (figure [2).

positions : 1 2 3 4 5 6 7 8 9 10
s b a ¢ a d b a b d c
ri(s') 2 1 3 1 4 2 1 2 4 3
I, (2) I, (4) L, (7)
1.(1) 1,(6), I1(8)
I.(3) 1,(10)

I, (5),11(9)

Fig. 2. Tree representation of the hierarchy of the I (k) of the example.

Lemma 2 Let s and s’ be two sequences. If ([i,j],[a,b]) is a common interval
of s and s’ then there is a position k of s’ such that [a,b] = L;(k)

Proof. 1f ([i,], [a,b]) € C(s,s’) then the subsequences sj; ; and s, , are al-
phabetically deliminated and verify As, . = Ay = A. By definition of

[a,b]
r;, there is no symbol in A of infinite i-rank and each integer between 1

Common Intervals of Two Sequences 21

and m = max{r;(z)|lx € A} appears as an i-rank of a symbol of A: i.e.
{ri(z)lz € A} = {1,...,m} and [a,8] is i-complete. As 5|, , is alphabetically
deliminated, the symbols s;,_; and s;,, are not in A. Moreover, each rank in
{1,...,m} has an unique antecedent in Ay and we have necessarily r;(s/,_;) and
r;(s;, 1) strictly greater than m, equal to max{r;(s;)|l € [a,b]}. Let k € [a,b] be
such that r;(s),) = m, it follows from the preceding and the definition of I;(k)
that [a,b] = L;(k).

As for each position i of s, there are at most |s’| subsequences L;(k), we
obtain the following bound.

Theorem 1 Let s and s’ be two sequences. The cardinal of C(s,s’) is smaller
than |s| x |§'|.

This bound is certainly not optimal. But as in the particular case of two
n-permutations the optimal bound is (g), the optimal bound for two sequences

of length n grows as O(n?).

4 Algorithm

Let k be a position of s’ with a finite i-rank r;(s),), the left-neighbour (resp. the
right-neighbour) of k is the greatest position smaller (resp. the smallest position
greater) than & where a symbol of i-rank r;(s},) + 1 occurs if it exists (if there is
not such symbol then k won’t have a right- and/or a left-neighbour).

If k and k&’ are positions of s’, the i-distance between k and &’ is the maximum
i-rank of symbols occurring in the subsequence ka,k'} if k < Kk orin kaf,k} if
k > k’. The smallest distance of a position k of finite i-rank and a position of
i-rank r;(s},) + 1 is reached either between k and its left-neighbour or between
k and its right-neighbour.

Let j be a position of finite i-rank and L (resp. R) the i-distance between p
and its left-neighbour (resp. its right-neighbour) if it exists and +oo if not. If R
and L are both infinite, j don’t have a successor. In the other case, the successor
of j is:

— its left-neighbour if L < R ;
— its right-neighbour if L > R.

An i-path of order m is a sequence p of m positions of s’ verifying:

L ri(s,,) =l foralll € {1,...m} ;
2. for alll € {1,...m — 1}, pi41 is the successor of p;.

Lemma 3 If p and q are two i-paths such that p; = q; for an integer j €
{1,...,min(|p|, lq])} then p; = q for alll € {j,...,min(|p|, |q|)}.

Proof. By definition an i-path can be extend in only one way which depends
only on its last element.

22 G. Didier

Theorem 2 An interval I;(k) is i-complete if and only if it contains an i-path
of order r;(s},).

Proof. By definition, if I;(k) contains an i-path of order r;(s},) = max{r;(s})|l €
I;(k)}, then it is complete.

Reciprocally let us assume I;(k) to be complete. We will proceed by induction
over the length of an i-path of I;(k). In particular, there is at least a position
p1 € L;(k) such that r;(p;) and an i-path of order 1 belong to I; (k). Assume that
the i-path of order I < r;(s},) is included in I;(k). As I;(k) is complete, there is
at least a position p € I;(k) with a é-rank equal to [+ 1. As the i-distance of p,
and any position not in I;(k) is greater than r;(s},) (by definition of I;(k)). If p
is the position of I;(k) of i-rank [+ 1 having the smallest i-distance d from p,
which is the left- or right-neighbour of p;, then p is the successor of p; and we
have an ¢-path of order [4 1.

The lemma P and the theorem[2 ensure that ([i, j] , [a, b]) is a common interval
of s and ¢ if and only if there exists a position k of s such that [a,b] = I;(k)
and I;(k) contains an i-path p of order r;(s)). Without loss of generality we can
choose k = pjp (ri(pjp)) = ri(k), ri(pp) € Li(k) and lemma [I).

The main idea of our algorithm is, for each position ¢ of s, to test if
the elements of each i-path p of s" are included in I;(p),). From the preced-
ing, if this inclusion is granted then we have a common interval of the form
([i,pi(ri(s;‘p‘))],Ii (pip))) (see remark [[) and all the common intervals will be
find by this way.

To perform this we need first to compute, fixing a position i of s, all the
intervals I;,. This can be done in a linear time and additional space using a
stack S (see the part | Compute the table of intervals I; and the table LeftDistance | in the

algorithm).

Another step is the computing of the successor of each position of s’. To
do it, we need to determine the left- and right-neighbours of each position of
s’, which can be classically done in a linear time. The main difficulty is to
compute the i-distances between each position and its left- and right-neighbours.
In the algorithm these distances are stored in the tables LeftDistance and
RightDistance. The table LeftDistance is compute in the same time and using
the same stack than the intervals. The table RightDistance is compute in the
same way. It need for each position to perform a binary search in the stack. So
the complexity of this part of the algorithm is in the worst case O(|s'|log(|s|)).
The table of successors is easy to compute in a linear time using the tables
LeftDistance and RightDistance.

The last step is straightforward. Starting by all the positions of i-rank 1 of s,
we extend iteratively all the i-paths starting from these and test the preceding
inclusion at each iteration. Following the lemma Bl we don’t need to consider
each position more than once in an i-path (PositionParsed is a boolean table
maintained to avoid such useless iterations). Complexity of this part becomes
linear with the length of s’ in time and space.

Common Intervals of Two Sequences 23

Algorithm 1 Compute the set of common intervals between two sequences

for all position 7 of s do
Compute the rank table r;, iMaz the max of finite i-ranks and the corresponding positions p;
Compute the chain tables LeftNeighbour and RightNeighbour
Initialize the tables LeftDistance and RightDistance to +oco
Initialize the stack S
| Compute the table of intervals I; and the table LeftDistance

for k=0 to |s'| + 1 do
if ri(s},) < iMaz and LeftNeighbour(k) is not EMPTY then
t < the smallest position in the stack > LeftNeighbour(k) (computed by binary search)
LeftDistancelk] < r;(s})
end if
while ri(s{:op(s)) < r;i(s;) do
I;(top(S)).end «— k — 1
pop(S)
end while
if ri(s’top(s)) # r;i(s},) then
I;(k).start — top(S) +1
else
I; (k).start < I,(top(S)).start
end if
push(k, S)
end for
| Compute the table RightDistance |

for k = |s’| +1 to 0 do
if ri(s},) < iMaz and RightNeighbour(k) is not EMPTY then
t < the greatest position in the stack < RightNeighbour(k) (computed by binary search)
RightDistance[k] < r;(s})
end if
while r7,(s;;0p(s)) < r;(sy) do
pop(S)
end while
push(k, S)
end for
| Compute the table Successor |

for all position k of s’ do
if ri(s},) < iMaz and min(LeftDistance[k], RightDistance[k]) < 4+oo then
if LeftDistancek] < RightDistance[k] then
Successor(k) «— LeftNeighbour(k)
else
Successor(k) < RightNeighbour (k)
end if
else
Successor(k) «— EMPTY
end if
end for

Parse the i-paths and output the common intervals

Initialize the table PositionParsed to FALSE
for all position j of i-rank 1 of s’ do
BoundL «+ j ; BoundR «— j
repeat
BoundL < min(j, BoundL) ; BoundR <« max(j, BoundR)
if [BoundL, BoundR] C 1;(j) then

output ([i, pi(ri(s}))),1: (7))
end if
PositionParsed(j) < TRUE ; j < Successor(j)
until j is EMPTY or PositionParsed(j) is TRUE
end for
end for

24 G. Didier

For each position ¢ of s, the greater complexity to compute common inter-
vals with left bound ¢ in their s-component is O(|s'|log(|s|)). If the length of
the sequences s and s’ are O(n), the general complexity of the algorithm is
O(n?log(n)).

Acknowledgements

We thank Mathieu Raffinot for introducing the problem, references and discus-
sions and Marie-Odile Delorme for helpful comments and suggestions. We also
thank the referees for comments and indicating the reference [1J.

References

1. A. Amir, A. Apostolico, G. Landau and G. Satta, Efficient Text Fingerprinting Via
Parikh Mapping, Journal of Discrete Algorithms, to appear.

2. A. Bergeron, S. Heber, J. Stoye, Common intervals and sorting by reversals: a
marriage of necessity, ECCB 2002, 54-63.

3. T. Dandekar, B. Snel, M. Huynen and P. Bork, Conservation of gene order: A
fingerprint of proteins that physically interact, Trends Biochem. Sci. 23 (1998),
324-328.

4. S. Heber, J. Stoye, Finding All Common Intervals of k Permutations, CPM 2001,
207-218.

5. S. Heber, J. Stoye, Algorithms for Finding Gene Clusters, WABI 2001, 252-263.

6. A. R. Mushegian and E. V. Koonin, Gene order is not conserved in bacterial evolu-
tion, Trends Genet. 12 (1996), 289-290.

7. J. Tamames, M. Gonzales-Moreno, J.Mingorance, A. Valencia, Conserved clusters of
functionally related genes in two bacterial genomes, J. Mol. Evol. 44 (1996), 66-73.

8. T. Uno and M. Yagira, Fast algorithms to enumerate all common intervals of two
permutations, Algorithmica, 26(2) (2000), 290-309.

	Introduction
	Definitions and Notations
	Number of Common Intervals
	Algorithm

