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PREFACE TO SECOND EDITION 

The attempt made by the first edition of this book to help 
students of social sciences, psychology, education and cog­
nate subjects who find Statistics somewhat baffling, was 
accorded a pleasant measure of appreciation; and in this new 
edition, the authors, besides somewhat improving and 
expanding the text here and there, have introduced a chapter 
on the Elementary Analysis of Variance, a technique now­
adays not out of place in a first book of Statistics. The book 
is written for those students who have to satisfy examiners 
in Statistics and also need for their studies a degree of 
statistical insight, yet, have no knowledge of Mathematics 
beyond simple Arithmetic. They will find that it is not 
difficult to acquire the necessary facility in handling experi­
mental data, and above all, to obtain a clear understanding 
of the nature of basic statistical procedures. Perhaps what 
prevents many students from coming to grips with Statistics 
is that they have not really expected to encounter mathe­
matics after leaving school. The book has evidently had 
some success in enabling arts and social studies students to 
overcome their initial difficulties, and in giving a good basis 
for more advanced work. The scope of the book is that of a 
General B.A. or B.Sc. Degree; it covers the Social Science 
and Social Studies degree courses in most British Univer­
sities; and it provides the basic needs of Psychology Honours 
students. The stress is not on any special techniques suc.h 
as are used by economists, sociologists or psychologists, but 
on sound knowledge of the foundations of the subject. 

The present reprint incorporates a number of minor 
amendments and corrections. 

November 1957 
T. G. C. 

w.s. 



PREFACE TO THIRD EDITION 

It is gratifying that the demand for this introductory text­
book is continuing to grow. Without altering the character 
of the book, we have introduced into this third edition some 
new material. The new sections amplify some initially 
sketchy chapters and also present some new developments 
in the subject. By augmenting some early parts and some­
what reorganising the material, and by adding new chapters 
on prediction and non-parametric statistics, the eleven 
chapters of the second edition have grown to fourteen in 
number in the present one. We hope that this will make 
the book more useful without making it more difficult. 

August 1970 
T.G.C. 

w.s. 
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CHAPTER I 

THE FREQUENCY DISTRIBUTION 

The word "statistics" is used in three distinct senses: 
( 1) Statistics may mean a collection of numerical data. In 

this sense the term is commonly used in everyday life. 
(2) Statistics may refer primarily to methods of elucidation 

of quantitative data (the data being generally affected by 
a multiplicity of causes). This is the sense in which the 
term is used in the title of this and similar books. 

(3) Statistics may be the plural of a statistic. The meaning 
of this term is fully explained later in connection with 
sampling theory. Broadly, in this sense statistics are 
characteristic measures of samples. 

Measurement and Statistics. Where measurements 
are reproducible, there may be no need for statistical 
methods. In some of the physical sciences, that which is 
being studied can often be measured and its true magnitude 
readily established. Under controlled experimental condi­
tions the influence of each of the factors upon what is being 
measured may be examined one at a time. However, in 
research and in industrial experimentation many factors 
affecting a process may be beyond control or may be un­
known; or the measurements themselves may involve an 
element of error. It is then that measurements are not 
reproducible. 

In various fields, for example in agriculture or even in 
chemistry, experimentation cannot usually approach the 
ideal of varying one thing at a time. In a field like meteoro­
logy observation and not experimentation is the rule. Each 
event is a result of numerous causes, and observational data 
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must be treated statistically if useful information is to be 
extracted. 

The social sciences, too, almost invariably yield quantita­
tive data which can only be analysed statistically. If objec­
tive and reliable information is to be had, quantification of 
observational results is necessary. Observation of this kind 
constitutes measurement, though measurement which is 
not fully reproducible and which is subject to error. Data 
based on such measurement must be collected, suitably 
arranged and analysed in various ways before being ad­
judged; in a word, such data must be submitted to a statis­
tical treatment. We shall see step by step, from the simple 
to the more complex, how statistical treatment of data is 
carried out. 

Before embarking on this exercise, however, it is neces­
sary to understand something about the nature of the results 
achieved by such statistical analyses and to be fully aware 
of some of the more common pitfalls in the use and inter­
pretation of quantitative data. Without such an appreciation 
it will be impossible to assess the reasonableness of any 
statistical result or to appraise the validity of any conclusions 
based on such results. Statistical results do have limitations 
and too much must not be attempted with them. Such 
limitations, of course, vary considerably from one investiga­
tion to another, but an awareness at the outset of the more 
frequent sources of error will help the reader to develop a 
critical attitude so essential in statistical work. 

A Mass of Data. Later, the first steps in handling a 
mass of unordered data are outlined, but here attention is 
drawn to the word "mass". Statistical methods are applied 
only to a mass of data. This does not, of course, mean that 
in all investigations there must be a very large number of 
items. What it does mean is that there must always be 
sufficient data to enable the tendency or characteristic 
which is present to show itself. There are, of course, cir­
cumstances and certain investigations where only small 
samples are available and there are special statistical tech­
niques for handling these. These will be discussed later, 
but it must be stressed here- that, in general, sufficiently 
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large samples must be procured in order to draw reasonably 
accurate conclusions about the populations which they 
represent. 

It is quite impossible for example to predict the life span 
of a particular individual whose age is, say, 40 years. 
Nevertheless, actuaries are able to prepare life tables that 
will predict reasonably accurately the life expectancy for any 
age group in the population as a whole. The behaviour of 
the individual is erratic yet, paradoxical as it may appear, 
the combination of a large number of such erratically behav­
ing individuals frequently reveals a large degree of stability 
in the behaviour of the group. Statistics are concerned with 
groups that represent populations. Past group behaviour 
is examined and predictions about future behaviour of the 
population are made. A multiplicity of forces plays on a 
given population in determining any group characteristic; 
these forces reveal themselves in the characteristic and 
stable behaviour of the mass of data, but may not be reflec­
ted in any single individual. It is the stability of the mass of 
data in the group that makes possible the work of the 
statistician in the many fields in which he is engaged. With­
out it, analysis and statistical predictions would be impos­
sible. 

Errors of Interpretation. Statistical results, then, refer 
to characteristics of a group based on an analysis of a mass 
of data. This being so, care must be taken in mterpreting 
the results of an investigation to avoid two not uncommon 
fallacies. The first is applying generalisations based on 
group behaviour to specific individuals. "Mrs Brown is 47 
years old and statistics show that married women over 
45 ... " This sort of statement, which is very common 
indeed, implies that the characteristics of a group may be 
attributed in full to each individual member of the group. 
It must be constantly borne in mind that statistical studies 
yield generalisations about groups as a whole rather than 
about the individuals that compose the group, and common 
errors of deduction will be avoided if this is remembered. 

It is equally easy to make errors of the opposite kind and 
to make generalisations from individual cases or from inade-
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quate data that are not justified. Many a study has been 
made in psychology using a class or classes of students as 
samples because they were the most convenient. Frequently 
tests have been used in certain classes or schools as part of a 
limited survey. Results obtained in these circumstances 
cannot be generalised beyond the specific groups involved. 
Statistical results to be meaningful must relate to a mass of 
data, and to pass from such few cases and make generalisa­
tions about wider populations is not justified. 

Such defective induction is without doubt the most com­
mon error not only in statistical but in other types of 
reasoning also. Sweeping generalisations are frequently 
made based on individualised or inadequate data because 
of ignorance or-more often-wishful thinking. The motor­
car manufacturer may be inclined to over-emphasise the 
importance of the home market because of his individual 
position. The public, or a large section of it, may condemn 
all trade unionists or students because of the behaviour of a 
small percentage, and so on. 

Errors in Attributing Causation. Another source of 
error against which the student of statistics must be con­
stantly on his guard is attributing cause-and-effect relations 
to events which are ordered in time. It is the fallacy of 
"post hoc ergo propter hoc" -after this, therefore because of 
this-and it is a frequent source of error in statistical work. 
Depress a light switch and the light comes on; the one 
event is following the other predictably, and a causal rela­
tionship between these two events is accepted. On the other 
hand, if two clocks are carefully synchronised and keep 
accurate time, when the hand of one points to the hour the 
other will strike. Here also two events continue to occur 
simultaneously but no cause-and-effect relationship is 
attributed to them. These examples are, of course, indis­
putable, but it is not always easy to determine whether 
events which occur in time sequence are related or not in a 
causal way. 

Methods of establishing correlation between two variables 
will be dealt with later, but here at the outset it must be 
emphasised that, even where complete correlation is estab-
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lished between two given variables, it does not necessarily 
follow that a causal relationship exists between them. 
Variables which are, in reality, quite disassociated may, at 
times, show a high degree of correlation. Two such series 
of events may in fact be themselves causally related to a 
third variable, and so they may be common effects of 
another cause. Spurious correlations also result from the 
analysis of time series in which the events under considera­
tion are not independent, and also from failure to allow for 
chance errors in sampling when interpreting the signifi­
cance or otherwise of the relationship. 

Where causal relationships do exist between events in 
time sequence, such causal relationships cannot be proved 
by calculations alone, but must be established on theoretical 
rather than statistical grounds. Facts do not speak for them­
selves and the statistician must interpret his results in order 
to discover their meaning. One important criterion in 
exercising judgement is what may be called the test of 
reasonableness, and this requires that the research worker 
brings to his task a knowledge of the subject under analysis, 
a knowledge that would indicate whether or not any con­
clusion he reaches is consistent with other known data both 
quantitative and qualitative. 

The importance of a critical attitude cannot be too strong­
ly emphasised. Only too frequently, in private and public 
discussion, conclusions are reached and decisions made 
favouring the view that springs from the "simple facts". 
Factual data, however, are very rarely simple, and in order 
to appraise the validity of an argument based on simple 
facts, it is necessary to be fully aware of the nature of the 
results of statistical analysis and equally aware of the more 
common fallacies in the use and interpretation of quantita­
tive data. 

Unordered Data. The economist, sociologist, educa­
tionist, or psychologist, having finished his field work in the 
investigation of a problem, finds himself confronted with a 
mass of unordered data. This information has usually little 
meaning or significance until it has been organised and 
classified in a systematic way. 
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Thus we are at first confronted with a set of individual 
measurements taken as they come. They may be, say, yields 
of wheat in bushels per acre obtained by a number of 
farmers, or, perhaps, the so-called Intelligence Quotients 
(I.Q.s) of some students or army recruits, or some other 
data of this kind. For the sake of example consider Table 
1.1 which sets out I.Q.s of a group of fifty men. A glance at 
the table gives merely a vague general conception of how 
the scores run numerically but nothing more. 

TABLE 1.1 

THE TABULATION OF I.Q.s OF FIFTY MEN 

97 IIO 105 96 109 95 108 II7 107 110 

(L)82 99 93 II6 (H)126 125 108 90 II8 II6 
- --------

124 II4 101 II2 120 II3 IIO 101 103 II5 
--r-------1-

107 102 123 lo6 105 106 120 100 107 II9 -
120 II2 92 103 86 104 97 101 109 105 

H Highest value. L Lowest value. 

Now the investigator usually wants to know several 
things concerning such data. He wants to know, for 
example, what is the I.Q. of the average or typical man. 
He wants to know something about the variability of intelli­
gence in the group, that is how big are the differences 
between individuals. He may wish to know something 
about the scatter of the students, i.e. whether they tend to 
bunch up towards the higher or lower scores, or towards 
the middle, or whether they are more or less equally 
scattered throughout the range. In order to begin answer­
ing this sort of questions about a set of measurements such 
as that in Table 1.1, the measurements ,must first be 
organised into what is known as a frequency distribution. 

Grouping into Class Intervals. The first task in such 
an organisation of our material is to group the measures or 
scores into classes or categories. Clear thinking about large 
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numbers of facts necessitates condensation and organisation 
of the data in a systematic form. We are forced to group our 
data into classes, and the statistical treatment of the data 
depends to some extent upon the determination of these 
classes. 

The procedure of classifying begins with the calculation 
of the range. This is found by subtracting the lowest 
measure from the highest. In Table I. I it is shown that the 
lowest I.Q. is 82, and the highest is 126; thus the range is 
I 26-82 or 44· 

The next thing that has to be decided is the number of 
class intervals and the size of each interval. The choice 
here will be determined by two general principles of statis­
tical practice that have arisen out of much experience. 

First the number of class intervals must be not less than 
IO or more than 20, and the general tendency is to restrict 
the boundaries to between IO and IS intervals. A small 
number of groups is favoured partly because frequently 
there is a small number of individual measurements in the 
sample and partly because a small number of groups is much 
more convenient to handle. Grouping, however, introduces 
minor errors into the calculations, and the smaller the num­
ber of groups, the larger these errors tend to be. Thus 
accuracy of calculation favours a larger number of classes. 
These two points of view must be borne in mind when 
deciding in any particular case upon the number of classes to 
be used. In all cases, however, the number should conform 
to the rule given above. 

The second guiding principle is that certain sizes of class­
interval are to be preferred, the preferred ones being I, 2, 3, 
5, IO and zo. Almost all data can be easily handled by being 
grouped into classes that contain any one of these ranges of 
measures. 

Let us now apply these principles to our data from Table 
I. I. We have already calculated the range to be 44· The 
"distance" from the lowest measurement to the highest is, 
in terms of I.Q. units, 44· This range must now be divided 
into a number of equal intervals. 

The number of classes which this range will give is found 
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by dividing the range by the size of the interval chosen, 
"and adding one". Thus choosing an interval of 3 units, 
44 divided by 3 gives I4, to which I is added, giving I5 as 
the number of classes. This number of classes satisfies the 
first rule. If an interval of 2 units had been chosen it would 
have yielded 22 plus I, or 23 classes, which is too large a 
number. An interval of 5 will yield IO classes, and this also 
satisfies our guiding rule. What size of interval shall we 
choose then, 3 or 5? Our sample contains 50 cases, which 
is a relatively small number for statistical work, so we may 
choose the interval of 5 which gives us the minimum num­
ber of groups, i.e. IO. 

Calculating the Frequencies. We are now in a posi­
tion to tabulate the separate measures within their proper 
class intervals. This has been done in Table I.2. In the 
first column of this table the class intervals have been listed, 
placing the lowest measures at the bottom of the table and 
the highest at the top according to accepted custom. Each 
class interval comprises exactly 5 measures. Thus the first 
interval So-84 should be read as "8o up to 84". That is, it 
contains all measures of So, 81, 82, 83 and 84. The second 
interval begins with 85 and ends with 89, thus including 85, 
86, 87, 88 and 89. The bottom and top measures are what 
we call the limits of the interval. They do not indicate 
exactly where each interval begins and ends. We shall be 
concerned later in this chapter with the exact limits of the 
intervals, but these score limits-as they are often called-are 
useful in tallying and labelling the intervals. 

Each measure in Table I. I is now taken as it comes, and 
placed in its proper interval in Column 2 of Table I.2 by 
placing a tally mark in the row for that interval. It will be 
noticed that the tallying is done in groups of five, each fifth 
tally mark being drawn across the previous four. This is 
very helpful in totting up the frequencies. When the tally­
ing has been completed the tally marks in each row are added 
up to find the frequency (f), or total number of cases that 
fall within each interval. These frequencies are entered in 
Column 3 of the table. 

The next step is to check the tallying. The frequencies 
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in Column 3 are summed and the total placed at the bottom 
of the column. The Greek 1:, capital sigma, means the "sum 
of", and 1:/ means "the sum of the frequencies". If the 
work has been done accurately and the tallying has neither 
omitted nor duplicated any of the measurements, the "i:.f 

TABLE 1.2 

FREQUENCY DISTRIBUTION OF I.Q.s OF FIFTY MEN 

Col. I Col. :t Col. 3 
I.Qs Tally Marks Frequencies 

I 

125-129 II 2 

120-124 -Htt s 
IIS-II9 +H+I 6 

no-n4 +H+II 7 

IOS-109 +H+ i+l+ II I2 

Joo-104 +tH-111 8 

95-99 +H+ s 
9Q-94 Ill 3 

85-89 I I 

So-84 I I 

should equal N, that is, the total number of individual 
measures in our sample. If "£/does not equal N, the tallying 
must be done again until it does check. 

Even when the tallying does check there is another pos­
sible source of error. One or more tally marks may have 
been placed in the wrong interval. The only way to check 
this sort of error would be to repeat the tallying process, a 
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very tedious piece of work when dealing with, say, three or 
four hundred cases. Care should, therefore, be taken to 
make the calculation of the frequencies correct at the first 
attempt. 

Exact Limits of Class Intervals. It will be noticed that 
in Table 1.2, although the lowest I.Q. is 82 the lowest inter­
val begins at 8o. We could have started the lowest interval 
with the lowest score, yielding intervals 82-86, 87-iJI, and 
so on. It is much more convenient, however, and it facili­
tates tabulation and later calculations, if we start the inter­
vals with their lowest score at multiples of the size of the 
interval. This holds for any interval size used. If the inter­
val is 3, start class intervals at 12, IS, 18, etc.; when the 
interval is 10, start them at 40, so, 6o, etc. In this way the 
lowest measure will be "contained in" and will not neces­
sarily be at the beginning of the first interval. 

It was mentioned earlier that the score limits were not 
the exact limits. We shall find, however, that in statistical 
calculations it is essential to think in terms of exact limits. 
Consider the first interval 8o-84. This-we said-con­
tained the measures or scores of 8o, 81, 82, 83 and 84. A 
measure of 8o, however, means in effect anything from 79·s 
to 8o·s; a measure of 82 means 8x·s to 82·s; of 84, 83·s to 
84·s, and so on. Thus an interval of 8o-84 has exact limits 
of 79·s to 84·s. This principle holds no matter what the 
size of the interval, or where it begins. An interval labelled 
24 to 26 includes scores or measures 24, 2S and 26 and 
extends exactly from 23·s to 26·s. An interval labelled 8o-
89 has exact limits of 79·s and 89·s. It will be seen that by 
following this principle each interval begins exactly where 
the one below it ends, which is as it should be. There is no 
need to be confused by this. The intervals with their exact 
limits should read "79·s up to 84·s", which means it 
includes 84, 84·1, 84·2. 84·3, 84·4, but not 84·S· The next 
interval contains 84·s, 84·6, etc., "up to", but not including 
89·s. Table 1.3 shows as an illustration the exact limits of 
the intervals alongside the score limits, which we have 
chosen in our tabulation. 

When is one to tabulate the score limits and when the 
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exact limits? It is certainly more convenient to put down 
So-84 than 79'S-84'S· Provided always that one constantly 
remembers that the "expressed" limits are not the "exact" 
limits, that for instance, So-84 begins at 79· S and ends at 
84·s, then the intervals may be tabulated as they have been 
in Table 1.2. 

TABLE 1.3 

CLASS INTERVALS AND THEIR MID-POINTS FROM THE 
DISTRIBUTION OF THE I.Q. DATA 

Score Limits Exact Limits Mid-points f 
125-129 I24'5-I29'5 127 2 

I2o-I24 II9'5-I24'5 122 5 

II5-II9 II4'5-II9'5 II7 6 

IIo-114 I09'5-II4'5 II2 7 

105-109 104'5-109'5 107 12 

IOo-104 99'5-104'5 102 8 

96-99 94'5-99'5 97 5 

9o-94 89'5-94'5 92 3 

85-89 84·5-89·5 87 I 

So-84 79'5-84'5 82 I 

A comparison of Table 1.1 and Table 1.2 will now show 
the value of the frequency distribution. In Table 1.2 the 
organised data are more meaningful and we get a more com­
plete picture of the group as a whole. We see, for example, 
that the most frequent I.Q.s fall in the interval of 10S-109, 
and that the others tend to group themselves about this 
interval. The average must fall somewhere between 100 
and 1 14. At either end of the range the frequencies fall off, 
relatively low and high I.Q.s being rare. The greatest 
bunching comes just past the middle of the range and in the 
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upper half. Useful indeed as this tabulation is, much better 
pictures of the distribution can be got by presenting the data 
in graphical forms. 

Graphic Representations of Frequency Distribu­
tions. The fundamental aim of all statistical organisation 
of data is to secure a clear picture and interpretation of the 
situation represented by the data. Classifying the data into 
the frequency distribution in the manner outlined above is 
the first step in this direction. It will be shown in the next 
two chapters that there are two major numerical methods of 
further condensing the material. Each of these methods 
condenses the whole of the data into a number; and these 
two numbers, one a measure of "central tendency", the 
other a measure of "variability or dispersion", are of con­
siderable importance in the description and interpretation 
of the facts. 

Before concerning ourselves with these numerical con­
densations, however, we must first consider the two stan­
dard graphical methods of presenting the facts of the 
frequency distribution. Such graphic presentation helps to 
interpret the statistical data. Certainly it seeks to translate 
numerical information, sometimes difficult to grasp or com­
prehend, into pictorial form which is, perhaps, more con­
crete and more readily understandable. Thus, graphic 
presentation gives a better picture of a frequency distribu­
tion, setting out its general contour and showing more 
concisely the number of cases in each interval. 

The two standard methods of graphically representing a 
frequency distribution yield the frequency polygon and the 
histogram. These two will be discussed here. Two further 
methods, yielding the cumulative frequency graph and the 
cumulative percentage curve, will be treated in a later chapter. 

How to Plot a Frequency Polygon. The data of Table 
I.I, represented in the form of a frequency polygon, are 
shown in Fig. 1.1. The word polygon means many-sided 
figure, and a glance at Fig. I. 1 will indicate the aptness of 
the term. 

The figure is drawn on graph paper. In general a con­
venient type of paper is the one that is divided into inch or 
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em. squares with heavy lines, and further subdivided into 
tenths of the unit with lighter lines. With regard to the 
overall size of the figure, the base line to be easily readable 
should be at least five or six inches long; and for the sake of 
good appearance and to make easy the reading of the figure, 
the standard practice is to make the maximum height of the 

FIG. x.t. A FREQUENCY PoLYGON PLOTTED FROM THE 
DISTRIBUTION OF THE I.Q.S IN TABLE I. I 

figure from 75 per cent to 100 per cent of its total width. 
Keeping these general points in mind, the steps in making 
the frequency polygon are as follows: 

1. Note the numerical amount of the range and rule a base 
line of suitable length. 

2. Lay off the units of the frequency distribution on the 
base line, and mark clearly the "exact limits" of the class 
intervals. In the present example we have been dealing with 
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class intervals of 5 units, and we have a total of 10 intervals 
to each of which corresponds a frequency value. In drawing 
the diagram, however, we must always allow for two extra 
intervals, one at each end, in order to enable the diagram to 
be brought down to the base line, as shown in Fig. 1.1. 
Our base line here is divided up into 12 equally spaced 
intervals, beginning with 74·5 and ending with 134·5. 

3· At the left-hand end of the base line erect a vertical 
axis, and mark off on this axis successive units to represent 
the frequencies. As mentioned above, the height of the 
diagram should be no greater than its width. 

4· At the mid-point of each interval (see Table 1.3) on the 
base line, go up in the direction of the vertical axis until a 
position is reached corresponding to the frequency for that 
interval, and here place a point. It is important that this 
point be plotted exactly at the mid-point of the interval. 
The assumption here is that all the scores in an interval are 
equally spaced over the whole of it; therefore, the logical 
choice of a single value to represent all the scores in an inter­
val is its mid-point. This assumption is not always strictly 
justifiable; it holds best when the number of scores is large 
and the intervals are not too wide. But, even if these condi­
tions do not hold, the mid-point assumption does not intro­
duce a serious error, and generally about as many scores will 
fall above as below the various mid-point values, and lack 
of balance in some intervals will be offset by the opposite 
condition in others. 

A simple rule to find the mid-point values is to average 
either the "exact" or "score" limits. For example in our 
problem the interval containing scores 95 to 99 inclusive 
has exact limits of 94 · 5 to 99· 5. Subtracting these limits 
gives the range of the interval as 5 units. Half of this range 
is 2"5· Going thus far above the lower limit, the mid-point 
is 94"5 plus 2·5, that is 97 exactly. Similarly using the score 
limits of 95 and 99, the difference is 4, half the difference is 
2, and 95 plus 2 gives the mid-point value of 97· In Table 
1.3. are set out the score limits, the exact limits and the mid­
points, and frequencies for the class intervals in our 
example. 
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5· In the interval next below the bottom one and next 
above the top one there are no scores, thus the frequency to 
be recorded at the mid-point of these intervals is zero, and 
the points are thus placed on the base line. 

6. The points are joined with straight lines to give the 
frequency polygon. 

How to Plot a Histogram. The second standard method 
of graphically portraying a frequency distribution is by 
means of a histogram. This type of graph, sometimes also 
called a column diagram, is illustrated in Fig. 1.2. Most 
points applying to the plotting of frequency polygons ,apply 
also to the plotting of histograms. In fact the procedure in 
setting out is identical with one exception; there is no need 
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to include the two extra intervals one below the bottom one 
and one above the top. Now although the points represent­
ing the frequencies are located as before at the mid-points 
of the intervals, these points are not joined by ruled lines. 
Instead, a horizontal line is ruled through each point 
extending it to the "exact limits" of each interval, and ver­
tical lines are then drawn from the exact limits on the base 
line to complete the rectangles or columns. 

Both the frequency polygon and the histogram tell the 
same story. Both are useful in enabling us to see in graphic 
form how the scores are distributed, whether symmetrically 
or whether piled up at the low or the high end. On the 
whole the frequency polygon is preferred for a number of 
reasons. First it certainly gives a clearer conception of the 
contour or shape of the distribution. Whereas the histo­
gram gives a stepwise change from one interval to the next, 
based on the assumption that the cases in each interval are 
evenly distributed, the polygon gives the more correct 
impression that the cases in each interval are grouped 
towards the side nearer the greater frequel}cy. It must be 
admitted however that the histogram is more exact than the 
polygon. In the histogram each measurement occupi_es 
exactly the same amount of area, and each rectangle is 
directly proportional to the number of measures within 
that interval. 

A further advantage of the frequency polygon, and per­
haps the most important, is that frequently it is necessary 
to compare two frequency distributions on the same base 
line. If the distributions overlap, as they usually do, the 
histogram type of graph would give a very confused picture. 
An example of the clear comparison of two frequency dis­
tributions afforded by the polygon type of graph is illustrated 
in Fig. 1.3. 

Comparing Distribution Shapes. A new question 
arises when we wish to compare graphically two frequency 
distributions in which the number of cases differs. If the 
difference is large then there may be considerable difficulty 
in plotting the two graphs on the same base line. If the 
polygon for the smaller distribution is made sufficiently 
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large to be easily readable, that for the larger distribution 
may not fit on the sheet. Conversely if the distribution for 
the greater number of cases is made to be of reasonable 
size, the other may be ridiculously small. 

Comparison of different distributions is very common in 
statistical work, and in general it is the shapes, the positions 
on the base lines and the dispersions that we wish to com­
pare. Apart then from any difficulty in plotting, a marked 
difference in size would make such comparisons very 
difficult and unsatisfactory. To obviate these difficulties 
the usual practice is to plot the percentage of cases rather 
than the number of cases for each class interval. 

TABLE 1.4 

PERCENTAGE FREQUENCY DISTRIBUTIONS OF "'TRADE 
TEST" ScoRES FOR Two GROUPS oF ARMY TRAINEES 

Trade Test Mid- h fa pl p2 Scores points 

8o-89 84'5 0 10 0 s·6 

7o-'79 74'5 6 16 8·6 8·8 

6o-69 64·5 12 36 17'1 20'0 

so--s9 54'S 18 52 25'7 28·9 

4Q--49 44'S 13 31 18·s 17'2 

3Q--39 34'S 10 22 14'3 12'2 

2o--29 24'S 7 13 10'0 7'2 

1o--19 14'5 4 0 5'7 0 

N1 = 70 N2 = 180 

To illustrate the procedure of transforming frequencies 
into percentages, Table 1.4 gives the distributions of scores 
on a 'trade test' made by two groups of army trainees. Nt. 
the number of cases in the first group, is 70, whereas N2, 
the number of cases in the second, is 180. When, however, 
the frequencies have been converted into percentage fre-
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quencies P1 and P2, the position is as if we had two distribu­
tions, each having N = 100. 

To convert a frequency into a percentage all that is 
required is to divide the frequency by N and multiply by 
roo. For example, Table 1.4 indicates that in the first 
group, scores of so-59 were achieved by 18 individuals. 
The total number in this group was 70, so to convert the 
frequency of 18 into a percentage, 18 is divided by 70, and 
the result multiplied by roo, yielding 25"7· A shorter 
method, particularly useful when using calculating machines 

or slide-rules, is to calculate the quotient 1;, and then 

multiply each frequency in turn by this ratio. 
In Fig. 1.3 the frequency polygons representing the two 

distributions have been plotted on the same base using 
percentage frequencies instead of the original /-values. 
These polygons provide an immediate comparison of the 
two groups; such a comparison would not have been possible 
if the graphs had been plotted from the original frequencies. 
The better achievement of the second group is evident, as 
also is its greater average. Over the whole range the second 
group has a small but definite advantage. The scatter or 
dispersion factors-a matter which will be dealt with in 
detail later-appear to be about the same. Over the whole 
range the comparison of frequencies interval by interval is 
readily available. 

Smoothing a Frequency Polygon. In dealing with the 
data of Table 1.1, it was not explicitly stated whether the 
fifty men constituted the whole body of men in question, or 
were merely a "sample". If the fifty were the whole lot, 
then they would be known statistically as a "population". 
If on the other hand the fifty men are simply a group selected 
from a much larger body of men, then the group is known 
statistically as a "sample of the population". By far the 
greatest amount of statistical work is the handling of data 
from samples of populations, and the major purpose of the 
work is invariably to study the population through the 
medium of the sample. By the statistical treatment of a 
properly selected sample of measures, it is possible to esti-
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mate with varying degrees of confidence, how the particular 
variable quality will be distributed in the population at 
large. 

The whole theory of sampling is from a beginner's point 
of view quite involved; it is extremely important and will be 
dealt with at some length later. However, for the moment 
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FIG. I.J. PERCENTAGE FREQUENCY DISTRIBUTIONS OF 
"TRADE 'TEsT" ScoRES FROM THE DATA IN TABLE l.4 

suppose that our fifty men do constitute a properly selected 
sample of a larger population, say for example, of a large 
class of army recruits. We wish to forecast from the repre­
sentative sample how the larger population will distribute 
itself. Now a glance at the frequency polygon of Fig. 1.1 
shows that it is somewhat irregular and jagged in outline. 
What sort of curve would we have got if we had increased 
the size of the sample to, say, 100? On the assumption that 
the larger population has practically the same properties as 
those exhibited by the sample, we should expect that 
gradually increasing the size of the sample would yield 
curves that are successively smoother and less subject to 
chance irregularities. 

To get a notion of how the figure might look if we had 
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taken information from all the population, and not just a 
sample, we predict from the frequencies we have what the 
corresponding frequencies would be in the larger popula­
tion. The method is known as smoothing the frequency 
polygon, and is illustrated in Table 1.5. In this table the 

TABLE 1.5 

ORIGINAL AND SMOOTHED FREQUENCIES FOR DISTRIBUTION 
OF I.Q.s FROM TABLE 1.1 

Col. I Col. 2 Col. 3 Col. 4 
Original . Smoothed 

Scores Mid-points Frequencies Frequencies 
fo f· 

13o-I34 132 0 o·67 

125-129 127 2 2'33 

12o-124 122 5 4'33 

II5-II9 II7 6 6·oo 

IIo-II4 II2 7 8·33 

I05-I09 I07 I2 9'00 

IOo-I04 I02 8 8·33 

95-99 97 5 5'33 

9~4 92 3 3'00 

85-89 87 I I'67 

8o-84 82 I o·67 

75-'79 77 0 0'33 

N = 49'99 

observed frequencies are given in Column 3 and the ex­
pected or predicted frequencies for the total population are 
given in Column 4· It will be noted that two class intervals 
have been added at the ends of the range of scores. 

The smoothing consists of taking a series of "running" 
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averages from which the expected frequencies are calculated. 
To find a "smoothed" f for a particular interval, add 
together the /-values for that interval, and the /-values for 
the two adjacent intervals, and divide by 3 to get the 
average. Thus the observed frequency for the interval 
105-109 is 12; for the interval above, IIo-II4, it is 7, and 
for the interval 1oo-1o4 below, it is 8. The predicted 
frequency for the interval 105-109 is then (12 + 7 + 8) -7-
3• or 9·00. The smoothed frequencies for the other intervals 
are calculated in the same way; the values are set out in 
Table 1.5. 

Note the procedure necessary to calculate the smoothed 
/-values for the extremes of the range, that is for the top and 
bottom intervals, 75-79 and 13o-134· Here there are no 
/-values above the top one or below the bottom one, so that 
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we must use in each case a frequency of o. Thus the predic­
ted frequency for the interval75-79 is (o + o + 1) -7- 3, or 
o·33, and for the interval 13o-134 it is (o + o + 2) -7- 3, 
or o·67. 

The smoothed polygon is shown in Fig. 1.4, superposed 
on the original one. It is always important to show the 
original data when presenting a smoothed polygon so that 
the reader will see what the observed facts were. We can 
expect with some confidence that the larger population from 
which the sample was drawn will distribute itself more like 
the smoother curve than the original one--that is, if our 
sampling was statistically sound. 

To what extent can this smoothing process be carried? 
It is very doubtful whether a second smoothing is ever 
warranted. The larger the size of the sample, the smoother, 
in fact, will be the original polygon. This in effect means 
that the larger the initial sample, the more the original 
figure will approximate that of the distribution of the whole 
population. The best advice that can be given to the begin­
ner in statistics is to take large samples, to smooth as little 
as possible, and, whenever reasonable, to present the original 
data alongside the adjusted result. 



CHAPTER II 

MEASURES OF CENTRAL TENDENCY 

Having dealt with the method of organising material in the 
form of a frequency distribution, we are now in a position 
to take up the consideration of methods of statistically treat­
ing the distribution. The organisation of data into class 
intervals, and hence into a frequency distribution, is only a 
preliminary step towards a definite quantitative treatment. 
The frequency distribution with its graphic representations 
may adequately represent the status of the data, but it does 
not enable concise and definite comparison of the features 
of one distribution with those of another. In order to make 
such comparisons we need "measures" of the condensation 
and organisation of the data; we need "numerical descrip­
tions" of the basic features of the distribution. 

There are three principal types of numerical description 
of frequency distributions. 

1. A measure of central tendency or an average: this 
measure enables a concise statement of how distributions 
differ in "position", as shown by the size of the measure 
around which the others laregly cluster. 

2. A measure of variability: this indicates the way m 
which separate measures of a distribution "scatter" or 
"fluctuate" around the average. 

3· A measure of relationship or correlation: this is a 
numerical method of defining the degree of relationship 
that exists, if any, between the measures of one distribution 
and those of another. It enables us to answer such questions 
as what is the relationship between, say, height and weight, 
age and intelligence, income and size of family, poverty and 
delinquency, etc. 

In the present chapter we shall be concerned with 
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measures of central tendency or averages of which there are 
several kinds. Three of these, the arithmetic mean, the 
median and the mode, are in common use, while two others, 
the geometric mean and the harmonic mean, have a more 
restricted use. In statistical work, however, the term "aver­
age" is used generally to cover any measure of central 
tendency. 

Two important purposes are served by a measure of cen­
tral tendency. First it is a concise, brief and economical 
"description" of a mass of data. It iB a simple measure that 
represents all the measures in a sample, and as mentioned 
above, it enables us to compare two or more distributions. 
Secondly it describes indirectly, but with some accuracy, 
the population from which the sample was drawn. 

This is important: we rarely or never know the average 
of a population, and it is only because the average of a 
sample is a close estimate of the average of a population 
that we can generalise and make predictions beyond the 
limits of the sample. This makes possible scientific investi­
gation in the social sciences. Now if we rarely or never 
know population averages, how can we tell how closely our 
sample averages approximate them? Provided our sampling 
has been d0ne correctly, it will be shown later that there are 
methods of calculating the degree of confidence we can have 
in our sample averages as representing population averages. 
For the present, however, let us concern ourselves with the 
methods for calculating the various averages. 

The Arithmetic Mean: The Mean of Ungrouped 
Data. In its most commonly used form, the word average 
refers to the arithmetic mean. To calculate it, all that is 
necessary is to add up all the measurements and divide by 
the number of measurements. The formula for such a cal­
culation is 

M = ('E.X)fN 

where M is the arithmetic mean 
'E.-"the sum of" 
X -an individual measure 
N-the number of measurements. 
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For example, if the price of a certain commodity in five 
different localities is £3, £3·5o, £3·25, £3·1o and £3·15, 
then the average or mean price (£3·2o) is calculated by add­
ing all the prices and dividing by the number of prices. 

The Arithmetic Mean of Grouped Data. When the 
measures have been grouped into a frequency distribution, 
the calculation of the mean is slightly different. The for­
mula we use this time is 

('2:./X)/N 
where M and '£. have the same denotation as before, 

X is the mid-point of a class interval, and 
f 'is the number of cases in an interval. 

The method is illustrated in Table 2.1. 

TABLE 2.1 

AGE DISTRIBUTION oF FEMALE WoRKERS IN A TExTILE 
MILL 

Col. I Col. z Col. 3 Col. 4 
Age Group Mid-point f JX 

6o-64 6z 2 124 

55-59 57 2 114 

5o-54 52 6 312 

45-49 47 8 376 

4Q-44 42 12 504 

35-39 37 14 518 

3Q-34 32 24 768 

25--29 27 12 324 

zo-24 22 x6 352 

15-19 17 4 68 

N= xoo 'E./X= 3460 

M = ('E.JX)/N = 346o/xoo = 34·6 yrs. 
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This method assumes that the mid-point value represents 
all the measures in the interval. For example the table 
shows that there were 12 individuals in the age group 4o-44. 
Instead of concerning ourselves with the exact ages, we 
treat them as if the twelve were all 42 years old, 42 being 
the value of the mid-point for the interval. This is not a 
strictly true representation of all cases. However the error 
in any specific case will be small, and in the actual calcula­
tion of the mean most of the small errors will tend to cancel 
each other out, making the final result essentially correct. 

As each measure is now represented by the mid-point 
value, we must multiply the mid-point value by the number 
of cases in the interval. This means finding for each interval 
the product off times X or JX. This has been done in 
Column 4· The sum of the JX values came to 3460, and the 
total number of cases N being 100, the mean is found by 
dividing the 3460 by 100, and is equal to 34·6. If we had 
put down all the ages in a long column, added them up, and 
divided by 100, we should have got the same result with 
probably a minor discrepancy. 

The Short Method for Calculating the Mean. Fre­
quently in statistical work the measurements are large, and 
if the frequencies and mid-point values are also large, the 
method above involves a lot of tedious calculation. To 
obviate this there is a quick short-cut method that makes 
the actual calculation much simpler. Further, as will be 
shown in the next chapter, this short-cut method involves 
a considerable saving in time and work when calculating a 
measure of variability known as the standard deviation. 
The method is illustrated in Table 2.2; the same data as in 
the previous example are used. 

As the method is a very important one in statistical cal­
culations the reader will be instructed in the use of it step 
by step. 

I. Look at the first three columns of the table and make a 
reasonable guess as to which interval contains the mean. A 
common procedure is to take the interval with the greatest 
frequency. In Column 3 the greatest frequency is 24, but 
the greater total of frequencies above 24 indicates that the 
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mean will be possibly higher so we may choose the interval 
with a frequency of 14, that is age group 35-39. It is most 
important to appreciate that this method will give exactly 
the same result, no matter which interval we start with. 

TABLE 2.2 

AGE DISTRIBUTION oF FEMALE WoRKERS IN A TEXTILE 
MILL 

Col. I Col. 2 Col. 3 Col. 4 Col. 5 
Age Mid-point f x' fx' Group X 

6o-64 62 2 +s +Io 

ss-s9 57 2 +4 +8 

so-s4 52 6 +3 +IS 

45-49 47 8 +z +I6 

4o-44 42 I2 +I +u +64 

A.M. 35-39 37 I4 0 

3Q-34 32 24 -I -24 

25-29 27 I2 -2 -24 

2Q-24 22 I6 -3 -48 

IS-I9 I7 4 -4 -I6 -112 

Totals N= Ioo 'r.fx' = -48 

i=s 
c' = ('r.fx')/N 
C = ic' = i['r.fx')/N] = 5 X ( -48/Ioo) = -240/IOO = -2·40 

M = A.M. + c = 37 - 2·4o = 34·6 yrs. 

The more reasonable our guess, however, the simpler will 
be the calculation. Our guessed-or assumed mean, or A.M., 
is then the mid-point of this interval, i.e. 37· 

2. In Column 4 this interval is given the value o. The 
first interval above is given the value +x, the second +z, 
the third +3, and so on. The first interval below is given 
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the value -1, the next -2, and so on. These are the devia­
tions (x') of the mid-points of the different intervals from 
the A.M. in units of class interval. Thus 62, the mid-point 
of the interval 6o-64, is 5 class intervals above the A.M. In 
like manner 22, the mid-point of interval2o-24, is 3 intervals 
below the A.M., that is, it is -3 class intervals away from 
the A.M. 

3· These deviations are multiplied by the frequencies, 
interval by interval, and the products are entered in 
Column 5 headedfx'. It is important to take great care that 
the algebraic signs are correct. 

4· Sum the fx' values in Column 5 algebraically. This 
has been done in two steps. The sum of the positive pro­
ducts is +64, and the sum of the negative one is -II2. 
The algebraic sum of the whole column (J:.fx') is then 
64 - II2, or -48. 

5· Divide this sum of the fx' products by N, the sum of 
the frequencies or total number of cases in the sample. 
This can be expressed in mathematical terms as c' = 
(J:.fx')fN; it is the correction factor in class interval units. 

6. In order to calculate the correction c that must be 
applied to our guessed mean to arrive at the true mean, the 
quotient above is multiplied by the size of an interval i, that 
is the number of units in an interval. Thus, 

c = c'i = i[('E-fx')fN] = 5 X ( -48/100) = -240/100 = 
-2"40, 

which is the correction in terms of measurements or scores. 
7. This correction is added algebrai,cally to the guessed 

mean, and the result is the true mean. Thus 

M = A.M. + c = 37 - 2·4 = 34·6 yrs. 

It will be noticed that the result is identically the same as 
that achieved by the earlier method, but the actual calcula­
tion involved is much simplified. 

The Median is the second type of statistical average 
which we shall consider. The median is the mid-point of 
the series. It is the point on the measuring scale above which 
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fall exactly one half the cases and below which fall the other 
half. 

The Median ofUngrouped Data. Two situations arise 
in calculating the median from ungrouped data, one when 
N is even and one when N is odd. Suppose we have the 
following numbers of men absent from work at a factory on 
eleven successive working days: 18, 16, 14, 24, 13, 8, II, 18, 
x8, 19, 14. If we arrange these numbers in order of size, we 
have 

8, II, 13, 14, 14, (x6), 18, 18, 18, 19, 24; 

then 16 is the median, since 16 is the mid-point or the 
measure that lies midway in the series. There are five 
measures above and five measures below 1 6, and, as 1 6 is 
the mid-point of a range from xs·s to x6·s, then 16 is the 
median. 

If now we drop out the first number 8, our series is then 

II, 13, 14, 14, 16, 18, 18, 19, 24, 

and contains ten items. The median is the point in the 
series above which lie five cases and below which lie the 
other five. The first five cases take us up to and include the 
16. A measure of 16, however, means anything from 15·5 
to x6·s, so that our coming really takes us up to the upper 
limit of x6, or x6·s. The upper half extends down to the 
first 18 and as this represents a range of 17·s-x8·5 our 
counting takes us down to 17·5, the lower limit. The median 
then lies half-way between x6·s and 17·5, and is the average 
of the two, or 17·0. 

The Median of Grouped Data. When the data are 
grouped, the calculation of the median follows the method 
illustrated in Table 2.3. 

Here, as before, the task is to determine the point on the 
scale on either side of which lie half the cases. As the total 
number of cases in this example is xoo, then so will lie on 
either side of the median. Our problem is how to locate such 
a value in a frequency distribution in which the identities of 
the individual items have been lost. 

Starting at the bottom of the frequency column, the 



30 STATISTICS FOR SOCIAL SCIENCES 

frequencies are added up until the interval which contains 
the soth case from the bottom is reached. This interval is 
called the "median interval". In the table the median inter­
val is the interval 3o-34. Thirty-two cases took us up to the 
"top" of interval 25-29. The next or median interval con­
tains 24 cases, thus the soth case lies somewhat in thi~ 

TABLE 2.3 

CALCULATION OF MEDIAN OF AGE DISTRIBUTION OF 
FEMALE WORKERS IN A TExTILE MILL 

Age Group f 

6o-64 2 

ss-59 2 

5o-54 6 

45-49 8 

4o-44 12 

35-39 14 44 cases down to here 

3o-34 Z4 Median interval 

25~9 12 32 cases up to here 

2o-24 16 l 15-19 4 

Median (a) 29·5 + (18{24)5 = 33'25 yrs. 
(b) 34'5 - (6/24)5 = 33'25 yrs. 

interval. The problem is to determine where it lies. We 
assume for the sake of interpolation that the 24 cases in 
this interval are evenly distributed over the whole range of 
the interval whose exact limits are 29·5 and 34'5· We need 
18 more cases to make up the so, so we must go 18/24 of the 
way up into this interval. The total range of the interval is 
34'5 - 29·5 or 5, so we go 18/24 of 5 or 3'75 units up into 
the interval. Adding the 3'75 on to the exact lower limit of 
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the interval which is 29'S, we get the median value of 29'S 
+ 3'7S• which is 33·2s. 

This can be checked, of course, by working down from 
the top. Starting at the top of the frequency column, 44 
cases take us down to the interval 3S-39· We need 6 more 
cases to make up the so. We must therefore go 6/24 of the 
way down into the median interval. As before, the interval 
range iss, so we go down 6/24 of s or x·zs units. This we 
now subtract from the exact upper limit of the median inter­
val which is 34'S· The median value is then 34'5 - x·zs, or 
33'2S, as before. 

The whole procedure can be summed up neatly by ex­
pressing it in mathematical symbols 

M•dUm ~ I+ (:;:F); 
where l- lower exact limit of median interval; 

N-one half of the total number of cases; 
2 
F - sum of all the frequencies up to, but not 

including, the median interval; 
fm - the frequency within the median interval; 

i - size of class interval, found by subtracting the 
exact limits of an interval. 

If N is an odd number the procedure is exactly the same 
as when it is even. For example if N were 85, then Nfz in 
the formula above would become 42·s, and the median value 
would be calculated exactly as before. 

The Mode. This is the third type of statistical average. 
It is the value which most frequently appears in the distribu­
tion. It is the most "probable" value since it occurs most 
frequently. 

The modal wage for example, is the wage that is earned 
by more people than any other wage. The modal shoe size 
is that size which is taken by more individuals than any 
other size. The modal cost of production of flour is that 
cost that is characteristic of more flour mills than any other 



32 STATISTICS FOR SOCIAL SCIENCES 

cost. When we have ungrouped data, the mode then is that 
particular measurement that occurs most frequently or has 
the maximum frequency. 

Calculation of Mode from Grouped Data. When the 
data are grouped into a frequency distribution we normally 
distinguish between a "crude" mode and a more accurate 
"interpolated" mode. 

The crude mode is the mid-point of the class interval 
having the greatest frequency. In Table 2.3 the modal 
interval is the interval 3o-34 as it has the greatest frequency 
24. The crude mode then is the mid-point of this interval, 
which is 32. Not infrequently a distribution may yield two 
intervals each with the same maximum frequency. If these 
two intervals are separated by more than one intervening 
interval, then we say that the distribution has two modes or 
is "bimodal". If, however, they are separated by only one 
intervening interval, it is probable that the distribution is 
really unimodal, particularly if the intervening interval has 
itself a relatively high frequency. In such a case there is no 
way of deciding what is the crude mode. When the two like 
maximum frequencies occupy adjacent intervals then the 
reasonable thing is to assign the crude mode to the dividing 
point between the two intervals. 

\Vhen the number of cases is not very large, say, when it 
is less than Ioo, then it is usual not to go beyond the deter­
mination of the crude mode. When distributions are 
noticeably skewed however, and also when samples are 
large, the mid-point value is not a sufficiently accurate 
estimate. We then interpolate within the modal interval to 
obtain a more accurate estimate. The formula for obtaining 
the interpolated mode is 

Mode= l + ( d1 ~ d2 ) i 

where 1 - lower exact limit of modal interval; 
d1 - difference between the frequency of the modal 

interval and the frequency of the preceding 
interval; 
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d2 - difference between the frequency of the modal 

interval and the frequency of the next 
following interval; 

i - size of class interval. 

As an illustration of interpolating a modal value let us 
apply this formula to the data from Table 2.3. 

35-39 14· 
3Q-34 Modal interval 
25-29 12 

The modal interval has I= 24, the preceding interval has 
I= 12, and the following interval has I= 14. The exact 
lower limit of the modal interval is 29· 5 and the length of a 
class interval is 5· Thus we have the following 

Mode= 29·5 + [(24 _ ~:1 + (~ _ 14)] 5 

= 29· 5 + [ ~ J 5 = 32·2 yrs. 12 10 

Notice what has happened. The estimate of the mode has 
been "pulled away" from the mid-point value towards the 
following interval. This following interval has a frequency 
of 14 compared with a lesser frequency of 12 for the interval 
preceding the modal interval. If the frequency of the pre­
ceding interval had been the larger, then the pull would have 
been towards the lower interval. 

Only in very rare instances will the mid-point value be a 
final estimate of the mode. It should only be used when 
samples are small. Quite obviously if different intervals had 
been used, the mid-point of the modal class would have been 
different. The interpolation improves the estimate of the 
mode by allowing the adjoining frequencies to add their 
weight in reaching a final estimate. 

When to Use the Mean, Median and Mode. The 
three averages or measures of central tendency described 
above are those in most common use in statistical calcula­
tions. The problem now is which is to be used in any given 
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circumstance. In order to answer this question let us con­
sider some of the characteristics of each of these three 
measures. 

The arithmetic mean is widely used because it is easily 
computed and easily understood. In addition, however, it 
has certain special properties which enhance its use in cer­
tain cases. 

First it must be noted that all the measures in the distri­
bution contribute their weight to the calculation of the 
mean. The extremely small values and the extremely large 
ones, as well as those near the centre of the distribution, 
influence this average. 

A further important property of the mean is that it is 
generally the most accurate, or reliable, of the three 
measures of central tendency. Reliability has a special 
strict meaning in statistical work. We mean here that from 
sample to sample of the total population, this measure will 
fluctuate less widely than either of the other two. Errors of 
measurement tend to neutralise one another around the 
arithmetic mean, and the error of this average can be shown 
to be considerably smaller than the error of a single measure. 

Finally, the arithmetic mean is better suited to further 
statistical calculations. It will be shown in later chapters 
that the short method of computing the mean is an essential 
step in the determination of two very important statistics, 
the "standard deviation", and the "correlation coefficient". 
When distributions are reasonably symmetrical, we may 
almost always use the mean, and in fact should prefer it to 
the median and the mode. 

The median, as we have seen, is a positional average. To 
locate the median we require the serial order of values only, 
the actual numerical values being important only in so far as 
they determine the serial order. Thus all the measures con­
tribute to the calculation of the median, but their magnitude 
is only used indirectly. It is then less affected by the 
extremes of the distribution than is the arithmetic mean. 
For example the median of the series 2, 5, 8, 9, and 11, is 8. 
If the extreme values are changed so that the series is now 
6, 7, 8, 15 and 24, the median remains 8, but the arithmetic 
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mean has changed from 7 to 12. The fact that the median 
is influenced by the number rather than the size of the 
extremes in the distribution makes it a useful average in 
some cases. 

The mode is typicali n that it is the value which charac­
terises more items than any other value. Thus, it is typical 
of a frequency distribution in a significant way, and is an 
especially meaningful average in certain problems. For 
example, the average size of hat worn by the male popula­
tion of Great Britain would be a useful piece of information 
to a hat maker. The modal size, however, would be more 
useful than the mean or median size. More men actually 
wear the modal sized hat than wear any other size. Further, 
the mode is probably the quickest estimate of central ten­
dency available. 

In general then, when deciding which average to use 
apply the following rules. 

1. Use the arithmetic mean when: 
(a) the greatest reliability is required, 
(b) the distribution is reasonably symmetrical, 
(c) subsequent statistical calculations are to be made. 

2. Use the median when: 
(a) distributions are badly skewed, 
(b) a quick and easily calculated average is required, 
(c) extreme measures would affect the mean dispro-

portionately. 

3· Use the mode when: 
(a) the quickest estimate of central tendency is 

required, 
(b) the most typical value is required. 

The Geometric Mean of two numbers is found by mul­
tiplying the two numbers together and finding the square 
root of the product. Thus the G.M. of 9 and 4 is 
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The G.M. of three numbers is found by multiplying the 
three numbers together and finding the cube root of the 
product. The G.M. of 2, 4, and 8, is 

{/2 X 4 X 8 = {/64 = 4 

The G.M. of n numbers is found by multiplying them 
together and finding the nth root of the product. 

G.M. = \YX1 X X2 X Xa X ••• Xn 

When a number of measurements are to be averaged in 
this way, we resort to the use of logarithms, as anything 
beyond the square and cube roots presents a computational 
problem. Thus the calculation can be expressed in symbols 
as follows, 

log G.M. = :E(log X)fn, 

and having calculated log G.M., the antilog gives the geo­
metric mean itself. 

This average is used in special situations; two of the most 
important are: 

1. certain special cases of averaging ratios, and 
2. average rates of change. 

Table 2.4 gives an illustration of the use of the geometric 
mean; the set of data is hypothetical. 

Column 2 gives the prices P1 in 1940; Column 3 gives the 
prices P2 in 1950. In Column 4, the later price is expressed 
as a percentage of the earlier. The problem is to find the 
average percentage change in food prices. The items in 
Column 4 are not individual measurements but are ratios, 
and to average these ratios we use the geometric mean. 
The log of each ratio is expressed in Column 5· The sum of 
the logs ofthe ratios is 23'1077, and dividing this by 10, the 
number of items, the log of the geometric mean is obtained; 
it is 2'3 108. The value of the antilog of this, the geometric 
mean, is 204·6, and thus the average increase of food prices 
is 104·6 per cent. 

When rates of increase of population, of performance, of 
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production, of sales, etc., are expressed as ratios or percen­
tages of previous measurements, the correct average to use 
is the geometric mean. Quite obviously, it is only practically 
adapted to the solution of short series. 

TABLE 2-4 

RELATIVE FooD CoMMODITY PRICES FOR YEARS 1950 
AND 1940 

Col. I 
Com-

modity 

Milk 

Eggs 

Tea 

Butter 

Bread 

Bacon 

Meat 

Sugar 

Potatoes 

Cheese 

N= IO 

Col. 2 Col. 3 Col. 4 Col. 5 
P1 Ps X 

Price I940 Price I950 Psas% ofP1 Log X 

s. d. s. d. % 
3 pt. 5! pt. I83•3 2'2632 

2 0 doz. 4 6 doz. 225"0 2"3522 

2 IO lb. 4 0 lb. I4I'2 2"I498 

I 0 lb. 2 0 lb. 2oo·o 2"30IO 

3! lb. 6 lb. I7I'4 2"2340 

I 7 lb. 3 2 lb. 2oo·o 2"30IO 

6 lb. I 8 lb. 333'3 2·5288 

3 lb. 6 lb. 1 2oo·o 2"30IO 

I lb. 2 lb. 2oo·o 2"30IO 

8 lb. I 7 lb. 237'5 2'3756 

l:: log X= 23'IOI6 
log G.M. = 23'IOI6/Io = 2'3I02 

G.M. = 204·3 

Average increase per cent in food prices is I04'3· 

The Harmonic Mean is the last kind of statistical 
average we have to deal with; it is used in problems includ­
ing the averaging of time rates. A rate is a ratio, and as such 
it may be stated in either of two forms. If there are two 
measurements A and B, they can be expressed as a ratio as 
AfB, or BJA. Suppose a time study was being made of 
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production in a factory department. Two measurements 
would be required: the number of units produced, and the 
time taken, say, in hours. If these two measurements are 
indicated by Nand T respectively, then the production rate 
may be expressed as "NJT units per hour", or "TJN hours 
to produce one unit". 

Consider the following example. In a time study of five 
factory workers assembling radio components, the following 
results were recorded. 

A. I2 components per hour. 5 minutes per component. 
B. 4 " " " IS " " " c. 10 , " , 6 , , , 
D. 8 , , , 7'5 , , , 
E. 6 " " " IO , 

" " SMo , , , 5)43'5 " " " 
8 " " " 8·7 " " " 

and therefore, ~0 = 7' 5 minutes per component. 

The rates have been expressed in two ways, "the number 
of units produced per hour", and "the time taken to produce 
one unit". The arithmetic mean was calculated for the 
individual records in both series, and the average time to 
produce one unit was computed. From the first series the 
average time to produce one unit was calculated to be 7' 5 
minutes, while the second series yielded a result of 8·7 
minutes. This is a difference of I 5 per cent. Why is there a 
difference at all? 

The answer to this question is that the two series are not 
comparable at all until they have been reduced to the same 
basis. Suppose that the study were for the purpose of cost­
ing production; then, the basis would be "the fraction of an 
hour required to produce one component". This is precise­
ly the way the second series has been stated. If we wish to 
answer our question with the data recorded in its first form, 
we must first obtain the reciprocals of the rates. The reci­
procal of a number N is simply IjN. Having found the 
reciprocals, we then find their arithmetic mean. This, in 
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fact, amounts to finding the harmonic mean, H.M., of the 
original numbers. In order to calculate H.M. the following 
formula is used: 

I/H.M. = I/N X [:E(I/X)] 

where H.M. -harmonic mean, 
N - number of cases, 
X - an individual measurement. 

The H.M. of the rates in their first form is calculated as in 
Table 2.5. 

TABLE 2.5 

COMPUTATION OF A HARMONIC MEAN OF 
PRODUCTION RATES 

X 1/X 
Person No. of Units Reciprocals 

per Hour of Rates 

A 12 o·o833 

B 4 0"2500 

c 10 0"1000 

D 8 0"1250 

E 6 o·1667 

N = 5 "£(1/X} = 0"7250 
1/H.M. = (1/5)0"7250 = 0"1450 

H.M. = 1/0·1450 = 6·897 units per hour 
6o/6·897 = 8·7 minutes required to produce one unit "according 

to the harmonic mean". 

The calculation in the table shows that if the H.M. is used 
instead of the arithmetic mean, then the average number of 
units produced per hour is 6·897, as against 8 in the first 
case when the arithmetic mean is used. Further, 6·897 units 
per hour is equivalent to an average production time of 8·7 
minutes per unit. This is exactly what is obtained by find­
ing the arithmetic mean of the rates in the second form. 
Thus, if the data were recorded in "numbers of units per 
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hour", the harmonic mean would be employed to compute 
"the average time per unit". Conversely, if the data were 
recorded as "number of minutes per unit" then the har­
monic mean would be required to compute "the average 
number of units per minute". In general, then, the har­
monic mean must be used in averaging time rates only if 
the recorded rates make variable a factor which it is desired 
to keep constant. 



CHAPTER III 

MEASURES OF VARIABILITY 

A measure of central tendency is the first important charac­
teristic of a frequency distribution. It tells us much about 
a distribution but by no means does it give us a complete 
picture. When it is necessary to compare two distributions, 
if the comparison is made solely on the basis of the averages, 
quite wrong conclusions may be drawn. Other statistical 
measurements must be used with averages to amplify the 
description of a set of data. We shall now consider some 
further attributes of frequency distributions which can be 
expressed as numbers. 

Dispersion and Skewness. Two distributions of statis­
tical -data may be symmetrical and may have the same 
means, medians and modes. Yet they may differ markedly 
in the distribution of the individual values about the measure 
of central tendency. Two sample groups of workers from 
two different factories may have the same average weekly 
output in terms of components assembled; let this be, say, 
100 units. In establishing piece rates it may be concluded 
that taken as a whole each group is as productive as the 
other. If, however, we have the additional information 
that one group has no individuals who produce less than 
90 or more than 110, whereas the other has individuals 
with productive rates ranging from 65 to 135, we recognise 
immediately that there is a decided difference between the 
two groups in variability of production. One group is 
definitely rather homogeneous with respect to production, 
the other rather heterogeneous. A piece rate established 
for the former group on the basis of the average production 
per man may well be a satisfactory one. For the second 
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group, however, with the same average, the same rate 
would, perhaps, place an undue strain on the laggards at 
one extreme, while possibly providing an inadequate incen­
tive for the rapid producers at the other end of the distribu­
tion. The distributions for two such groups are shown in 
Fig. 3.1. 

We obviously need a measure of the degree of dispersion 
so that we may, by referring to a single number, tell 
whether a frequency distribution is compact or spread out 
and scattered. 

FIG. J.I. Two DISTRIBUTIONS WITH THE SAME MEAN BUT 
DIFFERENT RANGES AND DISPERSIONS 

We have already made reference to symmetrical and 
skewed distributions. In a graphic representation of a 
frequency distribution the first obvious feature noticed is 
the symmetry or lack of symmetry in the figure. If the 
figure is perfectly symmetrical the mean, median and mode 
all coincide. If there is lack of symmetry, then the distribu­
tion is said to be skewed, and the mean, median and mode 
fall at different points. 

Distributions that tail off towards the low values are said 
to be negatively skewed, and those with the opposite 
tendency positively skewed. These types of distribution 
are illustrated in Figs. 3.2 and 3·3 later in this chapter. 

It is quite possible for two statistical distributions to have 
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the same mean and the same total frequencies, and yet be 
skewed in opposite directions. Statisticians then have felt 
the need of devising a single coefficient to express the degree 
to which a distribution is skewed or the degree to which it 
lacks symmetry. Such a coefficient is the third numerical 
descriptive feature of frequency distributions. 

It is the purpose of this chapter to explain and illustrate 
the methods of describing the dispersion and skewness of 
distributions by the use of single numbers. 

The Total Range as a Measure of Dispersion. The 
total range has been mentioned in an earlier chapter; it is 
the "distance" from the lowest to the highest. This total 
range is the simplest and most quickly ascertained indicator 
of variability. It is, however, the most unreliable, and 
should be used only for the purpose of preliminary inspec­
tion. In the illustration of the preceding section the range 
of output of the first group of factory workers was IIQ--90 

or zo; the range of output of the second group was I35-65 
or 70. This indicates that individual productivity in the 
second group is considerably more variable than in the 
first. 

The range is unreliable because it is determined by only 
two measurements, all the other individual values in 
between having no effect on it. Quite often there is a gap 
between these extreme values and the next highest or 
lowest value. If these extreme cases had been missing from 
the sample there would have been a marked difference in 
the calculated range. When N, the number of cases per 
sample, is small, more often than not the extremes are 
marked by one case, and the range is a very unreliable 
indicator of variability. When N is large, possibly there is 
more than one case of each of the extreme measurements, 
and under these circumstances more attention may be paid 
to the range. 

When data are grouped, the range is calculated by sub­
tracting the lower limit of the bottom interval from the 
upper limit of the top interval. 

The Quartile Deviation. The quartile deviation or semi­
interquartile range, Q, is one-half of the range of the middle 
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so per cent of the cases. Any individual case is as likely to 
fall within as outside the interquartile range. For this 
reason the quartile deviation is also known as the probable 
error. Quartile values divide the total range into four equal 
groups. The first quartile Q1 is the point below which fall 
the first 2S per cent of the cases. The second quartile Q2 is 
the point below which fall so per cent of the cases, and is, 
of course, the median. The third quartile Qa is the point 
below which lie 7S per cent of the cases, and above which 
fall the top 2S per cent. 

The range from the first quartile to the third, that is 
Qa - Q1, contains exactly half the cases, and this half is the 
middle half. This range is called the "interquartile range". 
It is divided by 2 to get the quartile deviation, a value qften 
used to indicate variability. 

The calculation of the quartiles and of the quartile devia­
tion is illustrated in Table 3.1. The table shows the dis­
tribution of pass marks in an English examination scored 
by a sample of 120 students from a college. 

The method is precisely the same as that used previously 
in calculating the median. For the first quartile Q1, N/4 
gives us 30. Counting up from the bottom we find that we 
need 7 cases from the 1 3 in the first quartile interval. The 
size of the interval is S so that i-a X S gives 2·69. This is 
added on to the exact lower limit, 64·5, of this quartile 
interval, giving for Q1 64·5 + 2·~, or 67•19. Counting 
down we note that 16 cases are needed from the third 
quartile interval. Thus H X s gives "r'44• which has to be 
subtracted from 84·5, the exact upper limit of the third 
quartile interval. Qa, then, is 84·s - 4'44 or 8o·o6. The 
difference between Q1 and Qa gives the interquartile range, 
and half of this gives the quartile deviation; this is (8o·o6 -
67·19) -7- 2, which is 6·4. 

The quartile deviation is a convenient measure of the 
scatter of a distribution. It indicates the degree of concen­
tration of the measures, as it is the ''range'' that contains the 
middle half of the cases. When the quartile deviation is 
relatively large the measures are scattered, when it is small 
they are concentrated in the neighQourhood of the median. 
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In reality, of course, it is not a deviation at all, being deter­
mined simply by counting along the scale in terms of cases. 
No average is calculated, and no particular deviation from 
any central point is involved. It is, however, a convenient 
device for pointing out the position of the middle half of 
the cases, and thus gives the same kind of information as 
those statistical measures which can be more accurately 
termed deviations. 

TABLE 3·1 

DISTRIBUTION OF pASS MARKS IN ENGLISH EXAMINATION 

Scores f 

95--<}9 

1 90--<}4 z 

8s-89 II (14 cases to here) 

8o-84 18 ~ Qs interval 

75-79 31 ~ Median, or Q2 interval 

7o-?4 Z1 (57 cases up to here) 

6s-69 13 ~ Q1 interval 

6o-64 8 (z3 cases to here) 

ss-s9 8 

50-54 3 

45-49 z 

4o-44 z 

N= IZO 

Lower Quartile, Q1 = 64·5 + .1. X 5 = 64·5 + z·69 = 67·19 
13 

Upper Quartile, Qs = 84·5 - :~ X 5 = 84·5 - 4'44 = 8o·o6 

Quartile Deviation, Q = (8o·o6 - 67·19)/z = 1z·87/z = 6·43 

Median, Q2 = 74"5 + .1.. X 5 = 74"5 + o·48 = 74·98 31 
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The Mean Deviation. The quartile deviation just dis­
cussed only takes indirect account of the "scatter" of the 
distribution, of the relation between the values of particular 
measures and their frequency. There are two measures of 
variability that are directly concerned with the frequencies 
of each measure, the "mean deviation" and the "standard 
deviation". 

Each of the measures in a distribution differs, or deviates, 
from the measure of central tendency. If a particular 
measure is greater than the average it has a positive devia­
tion, if less, then it has a negative one. If all the deviations 
were calculated for all the measures, then the mean of their 
sum would give an excellent measure of the dispersion. If 
the measures were widely scattered their deviations would 
be relatively large, and so would be the mean of the devia­
tions. If the measures were concentrated about the average 
then the mean of the deviations would be small. 

This mean deviation (also known as the mean variation), 
then, is the third measure of the dispersion in a distribution. 
In calculating it the signs are ignored. The reason is 
obvious. In a pefectly symmetrical distribution the differ­
ence between positive and negative deviations from the 
median or mode would be zero, and in "any" distribution 
the algebraic sum of the deviations from the mean must 
always be zero. By disregarding the signs we ignore the 
direction which is of no importance to us her~. We are only 
concerned with the amount of the deviation, and treat all 
differences as positive. 

Calculation of the Mean Deviation from Ungrouped 
Data. The mean deviation or M.D., then, is the mean of the 
deviations of all the measures in a series taken from a 
measure of their central tendency, usually the arithmetic 
mean. It can be expressed in symbols for ungrouped data as 

M.D.= ~xfN 

where ~xis the sum of the individual deviations. Table 3.2 
gives an illustration of its calculation. 

The sum of the scores is x6z, and as there are xo cases, 
the arithmetic mean score is x6zfxo or x6·z. Ignoring 
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signs, this mean is then subtracted from each score to get 
the score's deviation; the deviations are listed in Column 2. 
The sum of the deviations is 16·o, and as their number is 
10, the M.D. is I6·o/Io or 1·6. 

TABLE 3·2 

CALCULATION OF M.D. FROM UNGROUPED DATA 

Col. I Col. 2 
Score X Deviation x 

17 o·S 

II 5'2 

x6 0'2 

17 o·S 

IS I'2 

IS I·8 

20 3'8 

IS 1'2 

x6 0'2 

17 o·S 

:EX= x6:z 4x = x6·o 

M = x6z/xo = x6·2 
M.D. = x6·o/xo = 1'6 

Calculation of Mean Deviation from Grouped Data. 
When the data are grouped in a frequency distribution, 
again the mid-points of the classes are taken to represent 
the values in the classes. The formula for the mean devia­
tion is now 

M.D. = ('J:.fx)JN 

where, this time, x is the deviation of each mid-point from 
the mean of the distribution. The method is illustrated in 
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Table 3·3 using the distribution of examination marks from 
Table 3.1. 

The arithmetic mean of the distribution calculated by the 
short method (see Table 2.2) is 73·1. This is subtracted 

TABLE 3·3 
CALCULATION OF MEAN DEVIATION FROM GROUPED DATA 

Col. I Col. 2 Col. 3 Col. 4 Col. 5 
Scores Mid-points f X fx 

95-99 97 I 23•9 23•9 

9Q-94 92 2 I8•9 37•8 

s5-9s 87 II 13•9 152·9 

So-84 82 IS 8·9 16o·z 

75-'79 77 31 3.9 120•9 

70-'74 72 21 -I·I 23•1 

65-69 67 13 -6•1 79•3 

6o-64 62 8 -II·I 88·8 

55-59 57 8 -16•1 128·8 

5o-54 52 3 -21·1 63·3 

45-49- 47 2 -26·1 52·2 

4o-44 42 2 -31•1 62·2 
- --

N = 120 "£fx = 993·4 

M= 73•1 
M.D. = 993·4/120 = 8·3 

from the mid-point of each interval and the deviations x 
are listed in Column 4· Each deviation is multiplied by the 
frequency for that interval, and the fx products are entered 
in Column S· The sum of the fx products, ignoring the 
signs, is 993·4- The M.D. is then this sum divided by N, 
which gives as a result 8·3. 
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What does this result mean? It means that on the 

average, the individual scores differed from the mean score 
of 73·I by a little over 8. We may say further that, as the 
distribution is not too small and is also reasonably sym­
metrical, then, about s8 per cent of the cases fall within 
the limits of I M.D. below the mean and I M.D. above it, 
that is, in the range 65-81 approximately. 

The Standard Deviation. By far the most important 
measure of dispersion is the standard deviation, denoted by 
a (sigma). Its importance lies in the fact that statistically 
it is the most reliable. That is, it varies less than any other 
measure of variability from sample to sample, the samples 
being chosen at random from the same population. It is 
thus the most dependable value, and may be regarded as 
the most accurate estimate of the dispersion of the popula­
tion. 

The standard deviation is, like the mean deviation, a sort 
of average of all the deviations about the mean. It differs 
from the mean deviation in two important aspects. Firstly, 
in computing the standard deviation, the deviation of each 
measure from the mean is "squared". Secondly, the devia­
tions are always ta,ken from the arithmetic mean, whereas 
with the mean deviation they may be taken from the median 
also. Having squared the deviations these squares are then 
summed, and the sum is divided by N, the total number of 
cases in the distribution. From the result of this step the 
square root is extracted to give the standard deviation. 

Calculation of o from Ungrouped Data. The funda­
mental formula for the calculation of the standard deviation 
is 

a= v'('J.:.x2)JN 

where a-standard deviation, 
x-deviation of a case from the mean, 

N-total frequency. 

The calculation of a from ungrouped data is illustrated 
in Table 3.4; the data are those of Table 3.2 in an earlier 
part of the chapter. Ai; before, the deviations from the mean 
of I6·2 are calculated and listed in Column 2. These x 
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values are squared and the squares are entered in Column 
3· The sum of the squares, that is, ~x2 is 49·6o. This is 
divided by 10, the total number of cases, and the square 
root of the result gives a standard deviation of z·zz. 

TABLE 3·4 

CALCULATION OF cr FROM UNGROUPED DATA 

Col. I Col. z Col. 3 
X X x2 

I7 o·S o·64 

II -s·2 27'04 

I6 -o·2 0'04 

I7 o·S o·64 

IS -I'2 I'44 

IS I·S 3'24 

20 3'8 I4'44 

IS -I'Z I'44 

I6 -o·z 0'04 

I7 o·S o·64 

16z 49'60 

M= 16·z 
a = v 49·6o/Io = v 4·960 = z·zz 

When the deviations are squared, the extreme values, 
because they are the largest, gain an added weight. This 
emphasis of the extreme items means that the standard 
deviation will always be somewhat larger than the mean 
deviation calculated from the same series. In one important 
aspect, however, the mean and standard deviations are 
similar. Both take into account the absolute value of each 
individual item in the distribution. 

We have already said that it may be taken that approxi-
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mately 58 per cent of the total number of cases fall in the 
range of I M.D. below and 1 M.D. above the mean. It will 
be seen later that in many distributions approximately two­
thirds of the cases fall within the range of one standard 
deviation on either side of the mean. These statements 
apply, of course, more accurately to samples containing large 
numbers. For example suppose the average I.Q. of children 
at a school had been calculated as IOI'2 with a cr of 9'3· 
This means that approximately two-thirds of the pupils fall 
within the range IOI'2 ± 9·3; that is within the range 91:9 
to no·s. This example illustrates the importance in the 
interpretation of statistical data, not only of an average 
value, but also of a measure of dispersion. 

Calculation of a from Grouped Data. By far the greater 
part of statistical calculation is concerned with data grouped 
into class intervals. Because the standard deviation is an 
important statistic, its computation from grouped data will 
be described carefully step by step. The procedure is illus­
trated in Table 3·5 which deals again with the distribution 
of examination marks from the example earlier in this chap­
ter. The formula for the calculation is 

where i - size of class interval, 
x' ·- deviation from the guessed mean in terms of 

class intervals, 
c' - the correction factor in terms of class intervals. 

I. The first part of the computation is the short method 
for calculating the mean illustrated in the previous chapter. 
In this example there is no need actually to calculate the 
true mean, but the correction is required. This is calculated 
as before, giving a value for c' of -94/120. It is noted that 
c' is the correction factor in terms of class intervals. 

2. For each interval the product fx'2 is required. This is 
obtained by multiplying the fx' value in Column 5 by the 
x' value in Column 4· The products are listed in Column 6. 
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TABLE 3·5 
CALCULATION OF STANDARD DEVIATION FROM GROUPED 

DATA 

Col. x Col. 2 Col. 3 Col.4 Col. 5 Col. 6 
Scores Mid-point f x' fx' fx'2 

95--99 97 I 4 4 I6 

90--94 92 2 3 6 x8 

8s-89 87 II 2 22 44 

8o-84 82 I8 I x8 I8 

75-79 A.M.77 31 
--+so 

0 

70-74 72 :u -I -2I 2I 

6s-69 67 I3 -2 -26 52 

6o-64 62 8 -3 -24 72 

ss-s9 57 8 -4 -32 128 

so-54 52 3 -s -IS 75 

45-49 47 2 -6 -I2 72 

4o-44 42 2 -7 -14 98 
---144 

N= x2o "':.fx' = -94 'J:.fx'2 = 6x4 

A.M.= 77 
, "':.fx' -94 c =1r=120 a= S X _ f6x4 _ (- 94) 2 

"'120 120 

c = ic' = - 94 X 5 120 
= -3'92 

M=A.M. +c 
= 77- 3'92 
= 73'1 

= 5 X V s·u6 - o·6x3 
= 5 X 2'122 
= xo·6x 
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3· The fx'2 products in Column 6 are summed giving 

Y..fx'2. In the table this is 6q. 
4· This sum is to be Qivided by N the total frequency to 

give (Y..fx'2)/N, or 614/120. 
5· From this must be subtracted the square of the correc-

tion factor c', or ( -94)2. The calculation has now become 
120 

614/120- (94/12o)2• 

6. The square root must now be extracted from the result 
of the previous step. This gives 2·122. 

7. As all the computation has up to now been carried out 
in terms of cl2ss intervals, the 2·122 must be multiplied by 
the size of the class interval to give the standard deviation 
in terms of measures or scores. The final result is then 5 X 
2·122 or Io·6I. 

The table illustrates the complete calculation of the arith­
metic mean and the standard deviation, probably the most 
important and commonest statistical computation from data 
grouped into a frequency distribution. As the arithmetic 
mean is the most widely used measure of central tendency, 
so the standard deviation is the most widely used measure 
of dispersion. It is well adapted to further statistical com­
putations such as encountered in correlation work, as will 
be shown in a later chapter. 

When to Use the Various Measures of Variability. 
When deciding which measure of variability to use in a 
particular situation several factors need to be considered. 
If statistical reliability is the important desired feature, then 
the order of choice is the standard deviation, the mean 
deviation, the quartile deviation, and the total range. If on 
the other hand ease and rapidity of computation is desired 
then the order is reversed. An important consideration is 
whether further statistical computation is going to be made. 
If so, then the standard deviation is the one to use, as will be 
seen in later work. 

If a distribution has an unusual number of extreme 
measures at one or both ends of the range, then maybe the 
mean deviation will be preferred to the standard deviation. 
This is because the squaring of the deviations might give 
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undue weight to the extremes. The same choice might be 
preferred in the case of a heavily skewed distribution for 
the same reason. 

The quartile deviation takes no note of the extremes, and 
gives great importance to the middle of the range. In 
general it is used when the median is chosen as the measure 
of central tendency. 

The following summary will serve as a guide to the 
selection of a measure of dispersion in a particular situa­
tion. 

1. Use the range: 
(a) for the quickest indication of dispersion, 
(b) when information of the total spread is all that is 

required. 
2. Use the quartile deviation: 

(a) when using the median for central tendency, 
(b) when there are few very extreme measures, 
(c) for a relatively quick inspectional measure of 

dispersion. 
3· Use the mean deviation: 

(a) for a fairly reliable measure, avoiding the work 
involved in computing the standard deviation, 

(b) when extremes should be considered but not 
stressed. 

4· Use the standard deviation: 
(a) for the measure with the highest reliability, 
(b) when further computations depending on it are 

needed, 
(c) when it is desired that extreme deviations should 

have a proportionally greater influence on the 
measure of dispersion. 

Skewness. In this and the preceding chapter we have 
discussed measures of central tendency and of dispersion. 
One gives an estimate of the "typical" value of a series, and 
the other gives an indication of the extent to which the 
items cluster around or scatter away from that typical 
value. 
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We must now concern ourselves with a statistical measure 

that will indicate whether the distribution is symmetrical, or 
tails off in one direction or the other. The measure is called 
the coefficient of skewness. 

Relationships among Measures of Central Tendency 
and Skewness. We have already seen that when data are 
distributed symmetrically, the mean, median and mode have 
identical values. When skewness appears, however, these 
averages pull apart with the arithmetic mean, the median 
and the mode falling at different points. 

FIG. 3.2. NEGATIVE SKEWNESS FIG. 3·3· POSITIVE SKEWNESS 

It is important to know whether any skewness indicated 
in a distribution is a real divergence from the symmetircal 
form, or whether it is merely due to chance factors arising 
from the particular sample chosen. A measure of the degree 
of skewness can be calculated by considering the mean and 
the median. 

The more nearly the distribution is symmetrical, the 
closer will be the mean and the median, and the less the 
skewness. When the values tend to pile up at the high end 
of the scale as in Fig. 3.2, and spread out gradually towards 
the low end of the scale, then the distribution is negatively 
skewed. In this case, as the figure shows, the median has a 
greater value than the mean. The opposite tendency illus­
trated in Fig 3·3 is when the values tend to pile up towards 
the low end of the scale, tailing off towards the high end. 
This is called positive skewness, and here the mean has a 
greater value than the median. 

Calculation of Coefficient of Skewness. By consider­
ing the relation between the values of these two averages, the 
mean and the median, we can achieve a measure that will 
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indicate the degree of skewness of a distribution and also its 
direction. The formula is 

Sk = 3(Mean - Median) 
a 

If the mean is larger than the median, the sign will be 
plus, indicating that the series is positively skewed and the 
values tail off towards the high end of the scale. When the 
median is larger than the mean, the coefficient will have a 
negative sign, indicating that the individual values tend to 
tail off towards the low end of the scale, i.e. that there is 
negative skewness. 

The absolute difference between the mean and the median 
will, of course, depend on the units used as well as upon the 
skewness of the series. In order to achieve a number that 
will be independent of the size of the unit and that will 
enable a comparison of skewness of two different distribu­
tions, the absolute difference is suitably expressed as a 
fraction of the standard deviation of the series. 

As an example of calculating the coefficient, consider the 
distribution of examination marks used earlier in the chap­
ter. Table 3.1 shows that the calculation of the median 
results in a value of 74·98. Table 3·5 gives 73•1 for the mean 
and 10·61 for the standard deviation. Thus 

Sk = 3(73·1 - 74•98)/1o·61 
= 3( -1·88)/1o·61 
= -5·64/1o·61 = -o·53 

This result indicates a relatively large amount of negative 
skewness; that is, the series tails off towards the left, to the 
low values. The distribution is plotted as a frequency poly­
gon in Fig. 3·4 and the lack of symmetry is readily noted. 

The really important question, however, remains to be 
answered. Is the degree of skewness shown in our sample 
"significant"? Can we predict that the total population 
distribution will be skewed to the same degree and in the 
same direction as in our sample? This question can be 
readily answered. The answer however depends on the 
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calculation of a "standard error". In fact all the statistics 
of a distribution require the computation of "standard 
errors" before predictions about population may be made 
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from samples. This important topic will be dealt with in a 
later chapter. 

We now have statistical tools which describe the central 
tendency, the dispersion, and the skewness of a distribution. 
With these we may obtain a reasonably adequate statistical 
description of any homogeneous body of data. 



CHAPTER IV 

CUMULATIVE DISTRIBUTIONS 

In the simple frequency distribution discussed in Chapter 
I, the frequency of each class interval is shown separately. 
The total number of cases in the group is found by adding 
up the frequencies recorded in each class interval. Such a 
method of organising a mass of data into class intervals, we 
have found very useful. From such tables we can learn, for 
example, the number of factory workers between forty and 
forty-five years of age, the number of students who scored 
between so and 6o marks in a test, the number of employees 
earning between £z8 and £29 a week, the number of workers 
who can produce between 30 and 40 units per day, and so on. 

In the present chapter we shall be concerned with a 
different way of presenting the facts. The difference is 
not in the data, but in the manner of presenting it. The data 
are still organised into class intervals as before, but the 
form of the frequency distribution is changed from a simple 
distribution into a cumulative one. 

There is no added merit attached in this. It is just an 
alternative method to be used when information is required 
in a certain form. For example, a sociologist might be in­
terested in knowing how many people "more than" or 
"less than" forty years of age work in the factories in a 
particular area. An education officer might wish to know 
how many children score "more than" or "less than" a 
certain mark in a test. A wages arbitration board may re­
quire to know how many individuals in a certain occupation 
earn "less than" a certain amount; while an economist 
may be interested in the number of factories that produce 
"over a certain production figure" per year. 
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The cumulative form of the frequency distribution is 

well adapted to answering questions posed in this "more 
than" or "less than" manner. As the term suggests, we 
cumulate the frequencies to see how many items are "more 
·than" or "less than" a certain amount. 

Types of Cumulative Frequency Distribution. Table 
4· 1 shows the age distribution of zo,ooo workers employed 
in the factories of a large industrial corporation. The data 
are hypothetical. 

TABLE 4·1 

AGE DISTRIBUTION oF MALE FACTORY WoRKERS 
CORPORATION X 

Col. I Col. 2 
Cumulative Frequencies 

Age Frequency Col. 3 Col. 4 Group No. of Men 
More than Less than 

75-'79 40 40 20,000 

70-'74 206 246 19,950 

65-69 sx6 762 19,754 

6o-64 822 1,684 19,238 

ss-s9 1277 2,861 18,416 

so-54 1856 4,717 17,139 

45-49 2310 7,027 15,283 

4o--44 2414 9,441 12,973 

35-39 2475 II,916 10,559 

3o--34 2455 14,371 8,084 

25-29 2744 17,II5 s,629 

2o--24 2414 19,529 2,885 

15-19 471 20,000 471 

:E = 2o,ooo = N 
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Now from these data we wish to answer three questions. 
Firstly, the corporation is considering the establishment of a 
pension scheme for its factory workers. An individual will 
qualify for a pension at the age of sixty-five, and it is 
required to know how many of the workers are sixty-five or 
over. Secondly the personnel department feels that it is 
doubtful whether there is room for employment for older 
men in the factories, and would like to know how many 
workers are in fact over forty years of age. Finally, if in 
case of a national emergency, workers in the industry 
up to the age of, say, thirty will be conscripted, how 
many of the corporation's factory employees will be 
affected? 

In order to answer the first two questions, it is necessary 
to construct a cumulative frequency distribution of the 
"more than" type, while to answer the third, a cumulative 
distribution of the "less than" type is needed. 

Constructing a "more than" Cumulative Frequency 
Distribution. In Table 4· I we find that there are forty 
workers whose ages are more than seventy-five years. 
Forty, then, appears at the top of Column 3· We next find 
that there are 206 workers whose ages range between seventy 
and seventy-four. The total number of employees aged 
seventy years or over is then 40 + 206, or 246. This is the 
second item in Column 3· 516 workers have ages ranging 
from sixty-five to sixty-nine. Adding this to the accumulated 
frequencies for the two higher classes, we find that 40 + 206 
+ 516, or 762 workers are sixty-five years of age or more. 
And so it goes on, each cumulative frequency being the sum 
of the previous one and of the frequency in the class interval 
itself. This continues until the last, in this case the lowest, 
interval is reached. The last cumulative frequency should 
be equal to N; if it is not, a mistake has been made. In our 
example there are 2o,ooo workers who are fifteen years of 
age or more. 

When the frequencies have been accumulated in this 
way, the distribution shown in Column 3 of the table is 
secured. We can now readily answer our first two questions. 
There are 762 workers aged over sixty-five who would 



CUMULATIVE DISTRIBUTIONS 61 

qualify for a pension. There are 9441, or approximately 
so per cent, who are forty or more. 

Plotting a "more than" Cumulative Distribution. 
Fig. 4.1 shows the cumulative frequencies plotted against 
the corresponding age groups. The method of plotting is 
similar to that used in plotting the simple frequency distri­
bution, except that here we never use the histogram type 
of graph. 
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FIG. 4· I. CUMULATIVE "MORE THAN" AGE DISTRIBUTION 
OF MALE FACTORY WoRKERS 

The age groups or class intervals are marked off along 
the base line, and on the vertical axis the cumulated fre­
quencies are laid off. As before, the height of the curve 
should be approximately 7 5 per cent of its width. When 
plotting the frequency polygon, the frequency in each in­
terval is taken at the "mid-point" of the interval. In the 
"more than" cumulative frequency curve, however, each 
cumulative frequency is plotted at the "exact lower limit" 
of the interval. The reason becomes clear when we con­
sider the lowest age group or interval. There are zo,ooo 



62 STATISTICS FOR SOCIAL SCIENCES 

workers, all of whom are fifteen years of age or older. They 
are not all older than seventeen, the mid-point of the inter­
val, and we know that only 19,950 are older than nineteen, 
the upper limit of the interval. Thus in order to state the 
age exceeded by the 20,000 workers, the mid-point value is 
no use; neither is the upper limit. Clearly, the lower class 
limit is required. 

In plotting the data, therefore, the frequency of 2o,ooo is 
plotted directly over 14·5, the exact lower limit of the first 
interval; 19,529 over 19· 5, the exact lower limit of the inter­
val 2o-24; 17,115 over 24·5, and so on. When all the 
cumulated frequencies have been plotted the points are 
joined by straight lines. To bring the curve down to the 
base line, the cumulative frequency of o is plotted at the 
"upper exact limit" of the interval75-79· This means that 
there are no workers of age "more than" 79· 5 years. 

From this curve we can now read off to a fair degree of 
accuracy the number of workers who exceed any given age. 

Constructing and Plotting a "less than" Cumulative 
Frequency Distribution. In order to answer our third 
question, namely how many workers are of age thirty years 
or less, we need a "less than" cumulative frequency 
distribution. The method of constructing this is identical 
with that just demonstrated, except that now we begin to 
cumulate the frequencies from the other end of the scale. 

In the table we find that there are 471 workers whose 
ages are nineteen or less. 471, then, appears at the bottom of 
Column 4· The next interval shows that 2,414 workers 
have ages ranging between twenty and twenty-four. The 
total number of workers, then, whose ages are less than 
twenty-five is 471 + 2414, or 2885. This is the second 
entry from the bottom in Column 4· Next we find that 
2744 workers are aged between twenty-five and twenty­
nine years. This makes the total number of 2744 + 2885, 
or 5629 who are less than thirty years of age. This process 
is continued up the scale, each cumulative frequency being 
the sum of the cumulative frequency up to the interval 
immediately below it and the frequency for the particular 
interval. At the top of the column we find, as we expect, 
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that there are 2o,ooo workers whose ages are less than 
eighty years. 

From this cumulative distribution we get a ready answer 
to our query. 5629 of the workers would be subject to 
conscription in time of emergency. It will be noted that 
this figure is the cumulative frequency for the interval 
25-29. The reason is that "less than" cumulative frequen­
cies refer to the "upper limit" of the class interval. Again 
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this is readily understood by referring to the lowest interval 
15-19. We do not know how many individuals are of age 
less than seventeen years, the mid-point of the interval. 
No worker is less than fifteen years of age, the lower limit. 
We only know that 4 71 are less than twenty years of age. 

Fig. 4.2 shows the "less than" cumulative frequencies 
plotted in the form of a graph. As just indicated, they are 
plotted above the "exact upper limits" of the intervals. 
Thus, there are 2o,ooo workers whose ages are less than 
79'5 years, 19,950 below 75'5 years, 19,754 below 69·5 
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years, and so on. The graph is again brought down to the 
base line by placing the cumulative frequency of o at the 
"lower exact limit" of the bottom interval, that is 14:5. 
There are no workers less than 14·5 years of age. 

If for any purpose the number of workers less than a 
certain age is required the information is readily available 
from the graph. 

It is interesting to note that from this type of graph the 
median and the quartiles are readily available. To find the 
median, we first locate the frequency of N/2, i.e. 10,000 on 
the vertical axis. From this point a horizontal line is drawn 
to intersect the curve. From the point of intersection a per­
pendicular is dropped to the base. Where this cuts the base 
line the median value can be read off. On ordinary graph 
paper this value can be determined accurately to one place 
of decimals. For example, the median value on the "less 
than" curve in Fig. 4.2, is 38·5. This means that of the 
total group of workers, 1o,ooo are older than 38·5 years, and 
1o,ooo younger. It is the middle age. As would be expected, 
this identical median value is extracted also from the "more 
than" curve. In fact "more than" and "less than" curves 
when plotted on the same base always intersect at the median 
value, or so per cent mark, as it is sometimes called. Q1 
and Q2 are similarly determined by drawing horizontal 
lines from frequencies of s,ooo and 15,000 respectively. 
The quartiles, of course, are not the same for the two curves. 

Distribution of Cumulative Percentages. In an 
earlier chapter we pointed out the value of transforming 
frequencies into percentages for th~ sake of comparing two 
distributions where the N-values differ. The transforma­
tion has a similar usefulness when we are dealing with 
cumulative frequencies. Two cumulative distributions 
plotted on the same base line would reveal little if they 
differed markedly in size due to different total frequencies. 
For example, we might wish to compare the age distribution 
of the male factory workers in Corporation X, with that 
for the female factory workers of whom there were seven 
thousand. To present this comparison graphically in a form 
that will emphasise the basic differences between the dis-
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tributions, the frequencies are transformed into per­
centages. 

The method of transformation is shown in Table 4.2. 
The table contains the data giving the age distribution of 
our factory workers. The frequencies are cumulated on the 
"less than" principle, as in Table 4.1, and are listed in 
Column 4· We now wish to change these into percentages. 
All that is necessary is to multiply each cumulative fre­
quency by xoofN, or in this case xoo/2o,ooo, or xf2oo. 
This has been done and the results are listed in Column 5 
interval by interval. 

TABLE 4·2 

CuMuLATIVE PERCENTAGE AGE DISTRIBUTION OF MALE 
FACTORY WoRKERS 

Col. I Col2 Col. 3 Col. 4 Col5 

Age Exact f cf Cumulative 
Group Upper Limit Pexcentage 

75-79 79'5 40 20,000 100 

70-74 74'5 206 19,950 99'75 

65--69 69'5 516 19,754 98•77 

6o--64 64'5 822 19,238 96'19 

55-59 59'5 1,277 18,416 92'08 

5o-54 54'5 1,856 17,139 85·69 

45-49 49'5 2,310 15,283 76'41 

4o-44 44'5 2,414 12,973 64·86 

35-39 39'5 2,475 10,559 52"79 

3o-34 34"5 2,455 8,084 40"42 

25-29 29"5 2,744 5,629 28"14 

20-24 24"5 2,414 2,885 14"42 

15-19 19"5 471 471 2"35 
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Thus 100 per cent or all the workers are less than 79'S 
years old, the upper limit of the top interval. 8s·69 per 
cent are less than 54'S years of age, 40·42 per cent less than 
34'S years, and so on. In actual practice the cumulative 
percentages need not be given to more than one place of 
decimals. In Fig. 4·3 the cumulative percentages just ob­
tained are plotted as points against the corresponding exact 
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upper limits of the age group intervals. Again we get an 
S-shaped curve. Our curve now, however, is standardised 
as to height. Any other age distribution, irrespective of its 
total frequency, plotted on the same base must have the 
same height. The 100 per cent mark is the ceiling for all. 
Such a standardised curve is known as an ogive. The ogive 
is, in other words, the cumulative percentage distribution 
curve. Two ogives are by virtue of their common height 
much more readily comparable than two ordinary cumula­
tive distribution curves. 
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Use of the Ogive for Comparison. As an illustration of 
the use of the ogive for purposes of comparison, consider 
the data set out in Table 4·3· The table shows the scores 
obtained by two groups of twelve-year-old children in a 

TABLE 4·3 
CuMULATIVE DISTRIBUTIONS FROM MECHANICAL 
ARITHMETIC TEST ScoRES OF BoYs AND GIRLS 

Exact Cumu- Cumu- Cumu- Cumu-f f Scores Upper lative lative lative lative Boys Girls Limit f % f % 

6o-64 64'5 I 300 IOO'O 0 300 IOo·o 

55-59 59'5 2 299 99'7 I 300 IOO'O 

5o-54 54'5 30 297 99'0 I2 299 99'7 

45-49 49'5 72 267 89·0 39 287 95'7 

4Q-45 45'5 69 I95 65·o 6o 248 82•7 

35-39 39'5 38 !26 42'0 63 I88 62'7 

3Q-34 34'5 39 88 29'3 55 I25 4I'7 

25-29 29'5 22 49 I6·3 23 70 23'3 

2Q-24 24'5 14 27 9'0 28 47 I5'7 

15-19 I9'5 IO 13 4'3 8 I9 6·3 

IQ-I4 I4'5 3 3 l'O 5 II 3'7 

5-9 9'5 0 0 o·o 6 6 2'0 

Q-4 4'5 0 0 o·o 0 0 o·o 

mechanical arithmetic test. One group consisted of 300 

girls, the other of 300 boys. The ogives for these data are 
given in Fig. 4+ 

Much useful information is readily available from the 
graphical presentation of these cumulative frequency 
distributions. The ogive for the boys lies to the right of 
that for the girls over the entire range of scores. Thus the 
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boys score consistently higher than the girls. The extent 
of the difference in achievement between the two groups 
is shown by the distance apart of the two curves. This 
varies at different levels. At the extremes the differences 
between the very high-scoring and very low-scoring boys 
and girls are not very large. Over the middle range of 
scores the differences are more marked. 
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FOR BOYS AND GIRLS IN MECHANICAL ARITHMETIC 'TEsT 

A more exact comparison of the two groups can be 
obtained by considering the medians and quartiles. The 
boys' median is approximately 41, while that of the girls 
is approximately 36. The difference between the two 
median values is given in the figure by the length of the 
line AB. Similarly the differences at the first and third 
quartiles are given by the lengths of lines EF and CD 
respectively. It is clear that the groups differ a little more 
markedly at the median and upper quartile level, than at 
the level of the lower quartile. 
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By extending the vertical line through B, the median 
value for the boys' group, we see that approximately 70 
per cent of the girls' group score less than this mark. Thus, 
only 30 per cent of the girls-achieve a mark above the median 
value of the boys in mechanical arithmetic. Conversely, 
34 per cent of the boys score less than the median value for 
the girls; that is 76 per cent of the boys exceed the girls' 
median. In a similar manner the difference between the 
two groups at any level, or the overlap at any point on the 
range of scores, is readily available. 

This illustration clearly indicates the value for compara­
tive purposes of transforming cumulative frequencies into 
cumulative percentages. 

Calculation of Centiles in a Distribution. We have 
already learned that the median is the point in a frequency 
distribution below which lie so per cent of the cases; and 
that the quartiles Q1 and Qs are the points below which lie 
25 per cent and 75 per cent of the cases respectively. Using 
exactly the same method as that used in calculating the 
median and quartiles, we can calculate centile points. A 
centile point is a value on the scoring or measuring scale 
below which falls any given percentage of cases. Thus 
the 84th centile is the point below which fall 84 per cent 
of the cases, and the 40th centile is the point below which 
fall 40 per cent of the cases. Using this terminology the 
median becomes the soth centile, and the upper and lower 
quartiles the 75th and 25th centiles respectively. 

Centiles are extensively used in education, educational 
psychology, and other fields where tests of varying kinds 
are given to relatively large numbers of individuals. Their 
value may be demonstrated by an example. A student in a 
university entrance examination scored, say, 65 in Mathe­
matics, 140 in English, and 73 in Physics. What informa­
tion may be gained from these raw scores? In fact very 
little. It is impossible without further knowledge to assess 
the student's achievements in the three subjects. If, 
however, further information were available to the effect 
that 85 in Mathematics is at the 94th centile, 140 in English 
at the 53rd centile, and 73 in Physics at the 31st centile, 
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and these centiles were established by the marks of 1 ,200 
applicants, then a very informative picture is presented. 
Relative to his fellows our student is very highly placed in 
Mathematics, moderately lowly placed in Physics, and is 
about average in English. The use of centiles, then, 
enables us to do two things. First it enables us to assess the 
general level of a score in a known population, and secondly 
it transforms the scores for different tests into a form in 
which they are readily comparable. 

As an example of the method of calculating the centiles 
let us use the scores achieved by the twelve-year-old boys 
in the mechanical arithmetic test. The computation is 
shown in full in Table 4+ 

The particular centile points calculated are the 9oth, 
8oth, 70th, etc., or as they are called, the deciles. As the 
method of computation is identical with that for computing 
the median and quartiles, the reader is advised to look 
back and check up on that method. 

The table shows in Column 1 the deciles or centile 
points to be calculated. The first thing we must do is to 
find the number of cases we shall have to include in any 
given percentage. There were altogether 300 boys. Ten 
per cent of 300 is 30. Thirty boys then fall below the 1oth 
centile. The number falling below each centile point is 
shown in Column 2. We see, for example, that 270 boys 
fall below the 9oth centile. 

To continue the calculation for the 9oth centile, we must 
now find the point on the scale below which lie 270 cases. 
Referring to Table 4·3 we find that the 27oth case falls 
somewhere in the score interval so-54· The cumulated 
frequencies up to this interval total267. Column 3 of Table 
4·3 indicates the cumulative frequency actually below the 
interval containing the centile point. 

The exact lower limit of the interval so-54 which con­
tains the 9oth centile is 49· 5· We need 3 more cases out of 
the 30 in this interval to make up the 270. There are 5 
score units in the interval, so we have to advance Ia times 
5, or as shown in Column 4 of Table 4·4• we add 3 X 5{30 
to 49·5, the exact lower limit of the interval. This gives a 
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score value of so as the 90th centile point, or, using the usual 
notation, Poo equals so. 

The other centile points in the table are calculated in 
exactly the same manner; they are listed in Column s of the 
table. If a score value which is not listed were required, 
then its equivalent centile position would be estimated by 

TABLE4·4 

CALCULATION OF CENTILES FROM MECHANICAL 
AluTHMETIC TEST DATA 

Col. I Col. 2 Col3 Col. 4 Col. S 
Cumu- Height of 
lative Lower Centile 

% No. Frequency Exact Point 
below below below Limit of above this Centile 
Centile Centile Centile Centile Lower Point 
Point Point Interval Interval Limit Pn 

90 270 267 49'S + ~ 50'0 30 

So 240 195 44'S + 45 X S 47'62 72 

70 210 195 44'5 + IS X 5 
45'54 72 

6o !So !26 39'5 + 54 X S 43'41 ~ 

so ISO 126 39'5 + 24 X 5 41'24 ~ 

40 120 88 34'S + 32 X 5 38•71 
~ 

30 90 88 34'5 + 2 X S 
34'76 "38 

20 6o 49 29'5 + ~ 30'91 
39 

IO 30 27 24'S + ~ 2s·I8 22 
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interpolation. For example, a score of 42 would be at 
approximately the ssth centile, and a score of 46 at the 75th 
centile. The reader is advised to check through the cal­
culation of the other centile points so that he may become 
thoroughly acquainted with the method. 



CHAPTER V 

THE NORMAL CURVE 

Thus far we have dealt with frequency distributions based 
upon data obtained from observation and experiment. 
Distribution curves so obtained often approximate curves 
which are derived from purely theoretical considerations, 
and not infrequently the degree of approximation is a 
close one. A theoretical distribution curve which is of 
fundamental importance is the so-called normal curve. 

We shall not give a rigorous derivation of the normal 
curve. Nevertheless, it will be shown how the normal 
distribution curve may be arrived at. We shall then indi­
cate in what way this theoretical distribution is of practical 
importance in the social sciences. Finally, we shall study in 
some detail the properties of the normal distribution. 

Probability and Binomial Distributions. Customarily, 
coin-tossing has been used as a vehicle for the introduction 
to the elements of probability. It might seem to the reader 
that coin-tossing has little to do with practical problems. 
True as this may be, a consideration of how tossed coins 
will fall can conveniently illustrate some fundamental 
theory. Using it at the outset, we shall be able to avoid 
confronting the reader with the unfamiliar and, perhaps, 
estranging language of mathematics. 

We must assume to be dealing with coins which are 
ideally uniform and symmetrical. That is, each of our 
coins has no tendency whatever to fall more often on one 
side than on the other; in other words, there are absolutely 
even chances of heads or tails. We may then say that there 
is one chance in two ( 1 : 2) or a probability of o· 5 of throwing 
heads; the probability of tails is, of course, the same. 
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Consider now two such coins, say A and B, being tossed 
simultaneously. There are four equally likely probabilities. 
There is I chance in 4 of A-heads and B-tails, I chance in 
4 of A-tails and B-heads, and I in 4, each, of both being 
heads or both being tails. Thus, there is I chance in 4 of 
both heads, I chance in 4 of both tails and 2 chances in 
4 (or I chance in 2) of one being heads and the other tails. 
These probabilities may be set out as shown in Table 5.1. 

TABLE 5·1 

DISTRIBUTION OF CHANCES OF FALLS OF 2 COINS TOSSED 
4 TIMES 

Two Heads One Heads (IH) Two Tails 
Two Coins (zH) and (ZT) 

One Tails (IT) 

Number of chances 
in four I 2 I 

Next, toss three coins simultaneously. By a reasoning 
similar to the above it is easy to see that the four probabilities 
will now be as set out in Table 5.2. 

TABLE 5·2 

DISTRIBUTION OF CHANCES OF FALLS OF 3 COINS TOSSED 
8 TIMES 

Three Coins 3H 4 IH 3T 
2T 

Number of chances 

T 

in eight I 3 3 I 

Tossing four, five, six, seven, eight, nine and ten coins 
at a time, the probabilities of the distribution of falls in 
each case are as shown in Table 5·3· 

Now plot one of the chance distributions of throws in 
the form of a histogram. The dotted columns in Fig. 5.I 
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TABLE 5·3· 

PROBABILITIES OF FALLS OF 4 TO 10 COINS 

4H 3H 2H IH 4T 4 CoiNS IT 2T 3T 
--------

No. of 
chances I 4 6 4 I 
in I6 - - - - - 1-

5H 4H 3H 2H IH 5T 5 COINS IT 2T 3T 4T ------1-
No. of 
chances I 5 IO IO 5 I 
in 32 - - - - - - ,_ 

6H 5H 4H 3H 2H IH 6T 6 COINS IT 2T 3T 4T 5T ---------
No. of 
chances I 6 IS 20 IS 6 I 
in 64 - - 1-- - - - 1-

7H 6H SH 4H 3H 2H IH 7T 7 COINS IT 2T 3T 4T 5T 6T 
-

No. of 
chances I 7 2I 35 35 2I 7 I 
in 128 - - - - - - -

8H 7H 6H SH 4H 3H 2H IH 8T 8 COINS IT 2T 3T 4T 5T 6T 7T --------- -- -
No. of 
chances I 8 28 s6 70 56 28 8 I 
in 256 

1-- - - - - - -
9H 8H 7H 6H 5H 4H 3H 2H IH 9T 9 COINS IT 2T 3T 4T 5T 6T 7T 8T 

---- -
No. of 
chances I 9 36 84 126 126 84 36 9 I 
in SI2 ----- - -

l 
IOH 9H 8H 7H 6H SH 4H JH 2H IH 

Io CoiNS IT 2T 3T 4T 5T 6T 7T 8T 9T ---- - ----
No. of 
chances I IO 45 I20 2IO 252 2IO I20 45 IO 
in I,024 
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show the distribution of throws when ten coins are tossed 
simultaneously. We can also join the mid-points of the 
columns, as shown by the unbroken line superposed upon 
the histogram. The height of each column thus represents 
the number of chances in I,024, corresponding to the 
conditions set out along the base. 

Num/Jtuo of' ehallees 
In 1024 

FIG. 5.1. THE BINOMIAL DISTRIBUTION OF (I + x)l 

Consider for a moment the frequency distributions as 
set out in Tables 5.I, 5·2 and 5·3 in conjunction with the 
following simple algebraic identities, the so-called binomial 
expansions: 

(a + b )2 = a2 + 2ab + b2 
(a+ b)3 = aa + 3a2b + 3ab2 + b3 
(a+ b)4 = a4 + ¥3b + 6a2b2 + 4aba + b4 
(a+ b)5 = a5 + 5a4b + Ioa3b2 + IOa2b3 + 5ab4 + a5, etc. 

Note that the coefficients of the binomial expansions 
correspond to the frequency distributions set out earlier. 
In fact, putting a = I and b = I, we can set out the ex-
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pansions as shown in Table 5·4• so that the numbers to the 
right of the equals signs correspond to the chance distri­
butions of Table 5·3· It is thus clear why such probability 
distributions are known as binomial distributW1ts. 

TABLE 5·4 

EXPANSIONS OF (I+ I)n (WHERE n IS A POSITIVE INTEGER) 

(I + I)2 = I + Z + I 

(I + I)3 = I + 3 + 3 + I 

(I + I)4 = I + 4 + 6 + 4 + I 

(I + I)5 = I + S + IO + IO + S + I 

(I + I)6 = I + 6 + IS + zo + IS + 6 + I 

(I + I)7 = I + 7 + ZI + 3S + 3S + ZI + 7 + I 

(I + I)8 = I + 8 + z8 + s6 + 70 + s6 + z8 + 8 + 1 

(I + I)9 = I + 9 + 36 + 84 + 126 + 126 + 84 + 36 + 9 + I 

(I + I)10 = I + IO + 4S + IZO + ZIO + ZSZ + ZIO + IZO + 
4S + IO +I 

Normal Distributions. We have seen that for ten coins 
to be tossed all at once, the probabilities of the eleven 
different falls can easily be worked out. In circumstances 
which must be regarded as ideal, if we were, in fact, to toss 
IO coins in this manner I,024 times, we could expect the 11 

types of falls to be so distributed that their numbers 
correspond to the binomial expansions of (I + I)lO. 

Imagine now that we are to toss a large number, s::ty, n 
coins all at once. The number of arrangements of heads 
and tails in which the coins can fall will, of course, also 
be correspondingly large. Plot then the probable frequency 
distributions of these arrangements. If there are n coins, 
there will be (n + I) arrangements, and they will be dis­
tributed according to the (I + I )n binomial expansion. 

Now imagine n becoming larger and larger. If we were 
to plot the corresponding binomial frequency distributions, 
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we should have more and more points defining our curves. 
If we were to use a sheet of squared paper and attempt to 
superpose our curves upon one another using the same 
base, as n increases we should approach closer and closer 
to what is termed a normal curve, such as is shown in Fig. 5.2. 

y 

FIG. 5-2. NORMAL CURVE 

It ought to be noted that, strictly, there is not just one 
normal curve, but a whole set of curves of the same general 
form. We shall deal with this at a later stage. 

A binomial distribution is a distribution of discrete 
quantities-heads and tails arrangements in the case of our 
example. Thus, there is not a truly continuous, smooth 
curve cprresponding to such a distribution. On the other 
hand, a normal curve is a smooth one. It can be regarded 
as representing a continuous relationship between two 
variables. The independent variable is set out in the con­
ventional manner on the horizontal x-axis; the frequency 
is set out on the vertical y-axis. In this way the curve 
represents y as a function of x. We must note, then, that 
a normal distribution is continuous in contrast to a bi­
nomial distribution which is discontinuous. 

The reader will have noticed that the assumption under­
lying the game of coin-tossing is that the chances of throw-
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ing heads or tails are equal. In other games of chance dif­
ferent conditions obtain. For instance, in dice-throwing the 
chance of a six, or of any other of the six numbers, is one in 
six (1 :6). We could have approached asymmetrical distri­
butions along these lines. There is no need, however, for 
our present purpose to consider skew distributions in this 
manner. 

Practical Approximations to the Normal Curve. It 
used to be thought at one time that (a) many distributions 
found in nature were normal, and that (b) there were some 
special reasons why they should be normal. It is not now 
thought that the second statement is true. As regards the 
first statement, all that can be said is that many natural 
distributions approximate the normal form more or less 
closely. 

Nevertheless, the normal curve plays a very important 
part in statistical work. On the one hand, it has various 
well-known mathematical properties, and it is therefore 
relatively easy to handle. On the other hand, many prac­
tical, "bell-shaped" distributions can be treated as if they 
were normal. 

Examples of distributions which are more or less close 
to normal could be multiplied ad infinitum. In the physical 
sciences we are often confronted with the problem of 
making a measurement with a rather inadequate measuring 
instrument. We may develop a more precise tool later, but 
for the time being the thing to do is to make the same 
measurement again and again and then regard the mean 
value of all the measurements as the true one. In such 
circumstances we find that the individual measurements 
group themselves in an approximately normal manner about 
the mean. Thus, we regard each individual measurement 
as being to a greater or lesser extent in error; therefore, 
such a distribution is regarded as a distribution of errors. 

In the biological sciences we may also deal with near­
normal distributions of errors. However, frequently dis­
tributions of the qualities themselves, and not only of their 
measurements, are approximately normal. 

In the social sciences too, many distributions are close to 
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normal. In business, the distributions of garment measure­
ments, e.g. collar sizes, are a good example. Then take 
psychology: human ability to perform various tasks, as 
measured on a continuous scale, may be said to be scattered 
approximately normally. Such variables as examination 
marks, for instance, have been deliberately normally 
distributed for reasons of convenience. 

There is a useful test-it will be dealt with in a later 
chapter-whereby it is possible to measure the divergence 
of a practical distribution from a theoretical, normal one. 
When this divergence is less than a certain amount, it is 
then considered to be not significant, and the practical 
distribution is treated as if it were normal. 

However, the greatest importance of the normal curve 
lies elsewhere. In the next chapter we shall be dealing with 
the so-called sampling distributions, the consideration of 
which is crucial in all statistical work. These distributions 
have been shown to be very nearly normal in certain cir­
cumstances. To treat them as normal enables us to make 
important and easily verifiable statements about the re­
liability and significance of statistical findings. 

Ordinates of the Normal Curve. Consider a theoretical 
distribution consisting of N cases. Let a be the standard 
deviation of the distribution. Let x be the variable ex­
pressed in a-units, so that x = o at the mean value of the 
variable, x = +a and x = -a respectively one standard 
deviation above and below the mean, etc. If the distribu­
tion of x is normal, then the frequency represented by the 
ordinate y varies with x according to the equation 

N _,.. 
y= .;- e 2a> 

av21t' 

where e is the base of the N aperian system of logarithms 
(e = 2·7I8 approx.). The normal curve equation is repre­
sented graphically as a function in Fig. 5·3· 

It is clear that the shape of the curve is unaffected by the 
value of N; a change in N can only shift the ordinates 
upwards or downwards. But the value of a does affect 
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the shape of the curve. The greater the a, the more is the 
curve spread out. Thus we see that the normal curve equa­
tion may be regarded as representing a family of curves. 
Three normal curves for a particular value of N, but having 

y 

FIG. 5·3· NoRMAL CURVE; x EXPRESSED IN a UNITS 

three different values of the standard deviation a, are shown 
in Fig. 5·4· 

Dealing with ·a distribution which is normal, or which 
can reasonably be assumed to be normal, and knowing N, 
the number of cases, and a, the standard deviation of the 
distribution, we are in a position to evaluate from the equa­
tion of the curve the ordinate y corresponding to any par­
ticular value of the variable. This may be, of course, quite 
a laborious process, even when the data consist of round 
figures. 
. For example, let N = 2o,ooo and a = 4· Suppose, we 
wish to evaluate y when x is 1 ·2a. Then, the ordinate is 
given by 

20 000 -(I•2Xf}' 
y=~e zxt• 

4.Y2~ 

= 970 (approx.) 
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To save computational work, it is convenient to use 
special tables. These have been prepared in such a way that 
the ordinate corresponding to any value of the variable can 
be easily obtained. Table 5·5 may be used for this purpose. 
Despite its abbreviated form, this table is quite sufficient 
for fairly accurate work. Fuller tables will be found in 
reference books and sets of mathematical tables. 

FIG. 5·4· NoRMAL CURVES BASED oN THREE DIFFERENT SIGMAS 

To obtain y corresponding to any value of the variable, 
we must know the standard deviation cr and the number of 
cases N in the distribution. Expressing x, as usual, in 

sigma units, we can easily work out the value of=. We then cr 
-x• 

look up the corresponding value of e 2a'. Finally, we must 

multiply this last value by the appropriate value of .~ crv 2rc 

to obtain the ordinate y. 
Let us return to our example where N = 2o,ooo and 

cr = 4, and use Table 5·5 to obtain the value of y corres­
ponding to x = 1·2cr. We see that when x = 1·2cr, 

-x• 
xfcr = 1·2. The value of e2a' corresponding to 1·2 is 0·487. 
Now this value must be multiplied by the coefficient 
Nfcry21r: = 2o,ooo/4v'2rt; the latter works out to be 
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1,990 (approx.). Hence, the ordinate y corresponding to 
x = 1 ·2o- is given by 

y = 1,990 X 0·487 
:. y = 970 ( approx. ), as before. 

Consider one more example. Given a normal distribution 
of xo,ooo cases, the standard deviation being 5 units, what 
is the height of the curve representing the distribution 8 
units above or below the mean value of the variable? 

When x = 8, xfa = 8/5 = x·6. From Table 5·5 the 
-x' 

corresponding value of e za• is o·278. The coefficient 
Nfay2rr: = xo,ooof5v21t works out to be 797· 

Hence, y = 797 X 0·278 
:. y = 221 (approx.) 

Normal Distribution Constants. As the normal curve 
is symmetrical about the frequency ordinate corresponding 
to the mean of the distribution, the mode and the median of 
the distribution coincide with the mean. The so-called 
points of inflection of the curve, that is the points where 
the tangents to the curve cross it, are exactly one standard 
deviation away from the mean on either side of it, as seen 
in Fig. 5·5· 

Between minus sigma and plus sigma lie approximately 
two-thirds of all the cases of a normal distribution. Between 
-2a and +2o- lie approximately 95 per cent of all the cases. 
Between -3 a and + 3 a lie 99·7 per cent of all the cases, and 
it is therefore reasonable to assume in a practical distribution 
which is regarded as normal that all the cases lie within 
plus and minus three standard deviations of the mean. 

Thus, given a case which is one of a number of cases 
normally distributed, there are approximately 68 chances in 
100 that it will be no further than ±a from the mean. 
Similarly, the chances are 95 in xoo that a case will lie 
within ±2o-, and the chances are 997 in x,ooo that a case 
will be within ±3o- of the mean. 

We have seen earlier that in any distribution one-half of 
all cases lie within the range of plus and minus one prob-
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able error (quartile deviation) of the distribution. This, of 
course, also applies to the normal distribution. Further, 
it can easily be shown that for a normal distribution 
PE = o·67a (approx.), i.e., a= 1·48 PE (approx.); there­
lationship between the mean deviation and the standard 
deviation is: MD= o·8oa (approx.). 

FIG. 5·5· NORMAL CuRVE; AREA CONTAINED BY ±a 

Areas under a Normal Curve. If a curve representing 
any particular normal distribution is plotted, and the whole 
area under the curve is taken as representing the total num­
ber of cases in the distribution, then the area under the 
curve between any two values of the variable x represents 
the number of cases which are contained between the two 
x values. We have seen that 68 per cent of all the cases are 
found between plus and minus one standard deviation of 
the mean ; it follows, therefore, that 68 per cent of the total 
area under the normal curve lies between ±a, as shown in 
Fig. 5·5· 

Tables have been prepared giving percentage areas 
under the normal curve between the ordinate erected upon 
the mean value of the variable, x = o, and other ordinates 
corresponding to different values of x. 

Thus, when x is plus or minus infinity, the area to the 
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right (or to the left) of the central ordinate is so per cent of 
the total area. However, since 49·87 per cent of the area 
lies between the central ordinate and either +3a or -3a, 
the area beyond ±3a can be in practice regarded as negli­
gible. Approximate percentages of the total area under the 
normal curve are set out in Table s.6, below; for very 
accurate work fuller mathematical tables should be used. 

ExAMPLE. There are 2o,ooo cases normally distributed. 
Using Table s.6, determine how many cases are contained 
outside ±o·sa but inside ±I·sa. 

TABLE S·6 
PERCENTAGE AREAs UNDER THE NORMAL CURVE 

(areas are bounded by central ordinate and ordinates 

corresponding to values of .=) 
0" 

I = o·o 0'1 0'2 0'3 O'.oj. o·s o·6 0'7 o·8 a 

%Area o·o 4'0 7'9 n·8 IS'S 19'2 22'6 2S'8 28·8 

-= 0'9 1'0 I'I 1'2 1'3 1'4 x·s x·6 1'7 x·8 1'9 a 

%Area 31•6 34'1 36'4 38·s f4o·3 41'9 f43'3 44'5 f4s·s 46'4 f47'I 

=- 2'0 2'1 2'2 2'3 2'4 2'S 2'6 2'7 2'8 2'9 3'0 a 

%Area i'J-7'7 48'2 48·6 48'9 49'2 49'4 49'S 49'6 49'7 49'8 49'9 
I 

Percentage of all the cases between X = 0 and X = I. sa is 
43'3· Therefore, percentage of all the cases between 
±I· sa is 86·6. Now there are 19·2 per cent cases between 
x = o and x = o·sa, and hence between ±o·sa there are 
38·4 per cent. Subtracting the inner area from the one 
bounded by ±I·sa, we have 86·6- 38·4, which equals 
48·2 per cent. Since N = 2o,ooo, this percentage corres­
ponds to 0·482 X 2o,ooo, or 9,640 cases. 
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Sometimes it is convenient to know the proportion of the 
total area under the normal curve which is contained in the 
"tails". These are the unshaded areas in Fig. 5.5; in this 
case the tails are those for xfcr = ±I. For xfcr > ±I the 
area in the tails is smaller, and when xfcr < ±I the area in 
the tails is larger. It may be noted that xfcr is often denoted 
by z, known as the standard score. Table 5·7 gives the 
proportions of area in the tails under the normal curve 
corresponding to various values of z. These proportions, 
or probabilities, for selected z-values will be useful to the 
reader as he moves on to later chapters of this book. 



CHAPTER VI 

SAMPLING METHODS 

Populations and Samples. It is often the task of a social 
scientist to examine the nature of the distribution of some 
variable character in a large population. This entails the 
determination of values of central tendency and dispersion 
-usually, the arithmetic mean and the standard deviation. 
Other features of the distribution, such as its skewness, its 
peakiness (or the so-called kurtosis), and a measure of its 
departure from some expected distribution may also be 
required. 

The term population is generally used in this connection 
in a wide but, nevertheless, strict sense. It means the aggre­
gate number of objects or events-not necessarily people-­
that vary in respect of some character. For example, we 
may talk about the population of all the school-children 
of a certain age group in a given area, the botanical popula­
tion of some particular plant, the population of an industrial 
product, or even the hypothetical population of all the 
possible coin tosses of a certain kind. 

Now in practice, the examination of a whole population 
is often either impossible or impracticable. When this is 
so, we commonly examine a limited number of individual 
cases which are a part of the population, that is we examine 
a sample of the population. The various distribution 
constants of the sample can then be determined, and on 
this basis the constants of its parent population can be 
estimated. 

Our knowledge of the sample constants can be mathe­
matically precise. On the other hand, we can never know 
with certainty the constants of the parent population; we 
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can only know what they probably are. Whenever we make 
an estimate of a population characteristic from a sample, 
we are faced with the question of the precision of the esti­
mate. Of course, we aim at making our estimates as precise 
as possible. We shall presently see that the precision of an 
estimate can be stated in terms of its probability, or 
more exactly, in terms of the probability of the true value 
being within such and such a distance of the estimated 
one. 

There are one or two useful terms peculiar to the study 
of sampling. It will. be convenient for the reader to become 
familiar with them at the outset. Various constants, such 
as the mean, the standard deviation, etc., which characterise 
a population are known as population parameters. Para­
meters are the true population measures. They cannot 
normally be known with certainty. The various measures, 
such as the mean, the standard deviation, etc., which can 
be known with certainty are computed from samples. Such 
measures are known as sample statistics. Thus, sample 
statistics are estimates of population parameters. The 
precision of the estimates constitutes the so-called reliability 
of the statistics, and we shall see later that there are tech­
niques that enable us to infer population parameters from 
sample statistics with a very high degree of accuracy. 

The Process of Sampling. Before concerning ourselves 
with the reliability or significance of statistics, however, it 
is necessary to have clearly in mind the essential facts 
about the process of sampling. In general, the larger the 
sample size the greater the degree of accuracy in the pre­
diction of population parameters. As the sample becomes 
progressively larger, the sheer mass of numbers reduces the 
variation in the various sample statistics so that the sample 
more faithfully represents the population from which it is 
drawn. From this, however, it does not follow that samples 
must always be large. What is essential is that the sample, 
to the best of our knowledge, is representative of the popu­
lation from which it is taken. To achieve this, certain 
conditions must be satisfied in selecting the sample, and if 
this is done then it is possible to reduce the size of the sample 
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without sacrificing too much the degree of accuracy in 
prediction that would be achieved from a larger sample. 

Why take samples at all, it may be asked. As indicated 
already, it is sometimes the only possible-often it is the 
most practical, and usually it is the most efficient-means 
of studying a mass of data. There are situations, for example, 
in testing materials for quality, or manufactured com­
ponents for strength, when the items under consideration 
are tested to destruction. Obviously, sampling is the only 
possible procedure here and the first problems that arise 
are problems of sampling. How many test pieces are to be 
selected from each batch and how is the selection to be 
made? 

Of course, populations are not always large, but very 
frequently they contain thousands, or even millions, of 
items. This is particularly true of investigations concerning 
characteristics or attitudes of individuals. In cases of such 
large populations, sampling is the only practical method of 
collecting · data in an investigation. In standardising a 
reading test, for example, and establishing norms for 
twelve-year-old school-children, it would be a tremendous 
and extremely costly undertaking to administer the test 
to all the children in the age group. The only practical 
procedure is to take a sample, but to take it with such care 
that it is truly representative of the reading ability of the 
whole population of the age group. 

Even in cases where it would be possible from a financial 
and a physical standpoint to measure a characteristic of the 
total population, it is really not necessary to do so. Properly 
chosen samples will provide the materials from which 
accurate generalisations can be made concerning the 
characteristics of the whole. In the interests of efficiency 
and economy investigators in the varying fields of the 
social sciences invariably resort to sampling procedures 
and study their particular populations by using sample 
statistics. 

Selecting the Sample. How then is a sample properly 
chosen? What is necessary to ensure that it is truly repre­
sentative of the larger population from which it is drawn? 
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The essential condition that must be satisfied is that the 
individual items are selected in a random manner. The 
validity of sampling statistics rests firmly on the assumption 
that this has been done, and without it any conclusions 
that may ultimately be drawn, no matter how accurately 
sample statistics are computed, will be worthless. To say 
that the items must be selected in a random manner means 
that chance must be allowed to operate freely and that every 
individual in the particular population being studied has an 
equal chance of being selected. Under these conditions, 
and only under these conditions, if a sufficiently large 
number of items is collected, then the sample will be a 
miniature cross-section of the population from which it is 
drawn. 

It must always be remembered that, at best, sample 
statistics give only estimates of population parameters from 
which conclusions may be drawn with varying degrees of 
assurance; and the more accurately the sample represents 
the true characteristics of the population from which it is 
drawn, so much the higher the degree of assurance that is 
obtainable. It will also be appreciated, of course, that, 
despite this limitation, without sample statistics it would 
be impossible to achieve any generalised conclusions that 
would be of either scientific or practical value. Random 
selection, then, is essential. 

Techniques of Sampling. There are, in general, two 
techniques that are used in compiling samples, one called 
"Simple Random Sampling" and the other "Stratified 
Random Sampling'', and we will now consider each in tum. 

Simple Random Sampling refers to the situation indi­
cated earlier in which the choice of items is so controlled 
that each has an equal chance of being selected. It is 
important to note here that the word "random" does not 
imply a careless, hit-or-miss form of selection, but indi­
cates that the procedure is so contrived as to ensure the 
chance nature of the selection. If, for example, for a popu­
lation of individuals all names were arranged in alphabetical 
order and a I per cent sample is required, the first name may 
be selected by sticking a pin somewhere in the list and then 
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taking every one-hundredth name following. Such a 
selection would lack any form of bias. Another method 
commonly used is to make use of tables of random numbers. 
All individuals may be numbered in sequence and the 
selection made by following in any systematic way the 
random numbers which themselves have been placed in a 
sequence by some form of lottery procedure. 

The process of obtaining a random sample, however, is 
not always so simple. Consider, for example, the problem of 
obtaining the views of housewives on a particular product 
in a market-research project in a particular city. The city 
may first be divided into numbered districts and then each 
district divided into numbered blocks of approximately 
equal size. A selection can now be made of districts py 
drawing lots and interviewers allocated to each selected 
district could choose housewives from blocks selected in a 
similar manner in his district. By this method a simple 
random sample of the market attitude of the product may 
be obtained. 

To secure a true random sample for statistical study, 
great care must be exercised in the selection process and an 
investigator must be constantly aware of the possibility 
of bias creeping in. 

One common technique that is used to improve the 
accuracy of sampling results, and that helps us to prevent 
bias and assure a more representative sample, is called 
Stratified Random Sampling. In essence, this means 
making use of known characteristics of the parent population 
as a guide in the selection. A good example of this is to be 
found in public opinion polling. Suppose an investigation 
is undertaken to assess the public attitude to a proposed 
major reform in the private sector of the education system. 
It is probable that the two major political parties would 
tend to have opposing views of such an issue. It is also 
probable that people in different economic and social 
groupings, such as professional, business, clerical, skilled 
and unskilled manual workers, would tend to react syste­
matically as groups. There might even be differences of 
opinion in general between men and women and, more 
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probable still, between other divisions of the population, 
such as rural and urban, or between various regional and 
educational groupings. In any given case, of course, all 
the possible variables are not necessarily relevant, but, 
having decided which may be important, the whole popu­
lation is studied to ascertain what proportions fall into each 
category, e.g. Labour or Conservative, male or female, town 
or country, etc. Steps are then taken to ensure that any 
sample would have proportional representations from all 
the important sub-groups, the selection of items in each 
sub-group being carried out, of course, in the manner of 
Simple Random Sampling referred to earlier. 

Clearly, the stratification made of the population will 
depend on the type and purpose of the investigation, but, 
where used, it will appreciably improve the accuracy of 
the sampling results and help to avoid the possibility of 
bias. In essence, it constitutes a good systematic control 
of experimental conditions. A Stratified Random Sample 
is always likely to be more representative of a total popu­
lation than a purely random one. 

Sometimes, purposive sampling-paradoxical, as it may 
at first appear-may be used to produce a sample which 
represents the population adequately in some one respect. 
For example, if the sample is to be of necessity very small, 
and there is a good deal of scatter among the parent 'popu­
lation, a purely random sample may by chance yield a 
mean measure of the variable which is clearly vastly 
different from the population mean. Provided that we are 
concerned with the mean only, we may in fact get nearer 
the truth if we select for our small sample only those indi­
viduals that seem on inspection to be close to what appears 
to be the population average. Where the required random 
characteristic is lacking in making the selection, a "biased 
sample" results, and such a sample contains a systematic 
error. Certain items or individuals have a greater chance 
of being selected and the sample is not a true representation 
of the parent population. Assuming that the procedures 
used are scientifically satisfactory, we wish to see how and 
when conclusions based on observational and experimental 
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data are statistically, from a mathematical standpoint, 
warrantable or otherwise. Having emphasised that un­
biased sampling is a prerequisite of an adequate statisti­
cal treatment, we must begin to discuss the treatment 
itself. 



CHAPTER VII 

THE RELIABILITY OF ESTIMATES 

Sampling Distributions. We have said that the pre­
cision of an estimate, or the reliability of a statistic, is 
stated in terms of the probability of the true value being 
within a certain distance of the estimated one. We shall 
now see why and how this is so. 

Consider any measure that characterises a population; it 
may be the mean, the standard deviation, or any other 
measure. Now suppose that a number of samples are taken 
from the population. Compute then the particular measure 
you are considering from each sample. Each sample will 
yield a slightly different value of the measure. The distri­
bution of such values is known as a sampling distriQution. 

The simplest example of a sampling distribution is a 
distribution of means of samples. Such sample means are 
scattered about the true population mean, just as are the 
individual cases, but of course, the sample means are 
scattered to a lesser extent. Similarly, sample standard 
deviations considered together constitute a sampling 
distribution. Such a distribution is less dispersed than a 
distribution of individual deviations. 

It may be shown that if the distribution of a parent 
population yields anything like a "bell-shaped" curve, 
then its sampling distribution-provided the samples are 
not small-is closer to the normal distribution than the 
parent distribution itself. Even if a parent distribution is 
quite far from normal, its sampling distribution, when 
samples are large, is nearly normal. We may accept there­
fore that when samples contain more than 50 cases, or 
even more than 30, and when the distribution curve of the 
parent population is something like "bell-shaped", then 



RELIABILITY OF ESTIMATES 97 
any sampling distribution based on such a population can 
be regarded for all practical purposes as normal. 

However, from what follows the reader will note that it is 
not generally necessary to assume that a sampling distri­
bution is strictly normal. The only essential assumption is 
that certain constants of a sampling distribution are the same 
as those of a corresponding normal distribution. Thus, we 
take that practically all the sampling distribution is con­
tained within three standard deviations on either side of its 
mean. But above all, we assume that 99 per cent of the 
sample means are contained within ±z· 58 standard devia­
tions of the distribution mean, and similarly, that 95 per 
cent of the sample means are within ± 1 ·96 standard 
deviations of the distribution mean ( cf. approximate 
figures in Table 5·7)· 

We have just been referring to the standard deviation of 
a sampling distribution of means, that is to the standard 
deviation of sample means about the true population mean. 
This quantity is known as the standard error of the mean, and 
is denoted by the symbol aM, or sometimes SEM. 

It has been argued that the term "standard error" is 
something of a misnomer. This may be so. There may 
also be a regrettable tendency on the part of students to 
confuse the standard error with the probable error men­
tioned earlier. Be this as it may, it should be remembered 
that the standard error of the mean is simply the standard 
deviation of a sampling distribution of means. 

Confidence Limits of Estimates. To estimate the mean 
of a population, we take a sample of the population and 
compute its mean. We then regard it as an estimate of the 
true population mean. How good is such an estimate? 

Our sample mean is only one of many possible sample 
means. Suppose that the true mean is smaller than our 
estimated mean. On the assumption that sampling distri­
butions of large samples are approximately normal, our 
mean will most probably not lie farther than three standard 
errors above the true mean. Similarly, the chances are very 
small that the estimated mean will lie farther than three 
standard errors below the true mean. 
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We also know that only 5 per cent of the sample means 
lie outside I·96o-M of the true mean. In other words, the 
probability of a sample mean being outside ±I·96o-M is 
o·os. If the true mean is smaller than the estimated one 
and lies I ·96o-M or more below it, then our sample mean 
can only lie somewhere in the extreme right-hand portion 
of the distribution shown in Fig. 7.1. The probability of 
the true mean being that far below the estimated mean is, 
therefore, one-half of o·os, or o·ozs. 

True 
mean 

2·5% of'total 
area under 

curve 

I 

FIG. 7.1. SAMPLING DISTRIBUTION; TRUE MEAN x·96aM 
OR MORE BELOW EsTIMATED MEAN 

If, on the other hand, the true mean is larger than the 
estimated one and lies I ·960"M or more above it, then the 
estimated mean can only be somewhere in the extreme left­
hand portion of the distribution of Fig. 7.2. Therefore, the 
probability that the true mean lies so far above the esti­
mated mean is again o·ozs. Hence, the probability that the 
true mean lies I ·96o-M or more above or below the estimated 
mean equals o·ozs + o·ozs = o·os. If P stands for 
probability, then P::::;;; o·os that the true mean is I·96o-M or 
more away from the estimated mean. 

Now the probability of a sample mean being outside 
±z· s8o-M of the true mean is o·ox. By a reasoning along the 
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lines of the one above we therefore conclude that the 
probability of a true mean being 2· 58 aM or more above or 
below the estimated one is given by P,::::;; o·o1. 

We thus see that our estimate of the mean is reliable 
within certain limits which have been called fiducial or 
confidence limits. On the basis of P = o·os {I9 in 20 chances 
of being right), or as we call it, at the 5 per cent level of 

True. 
mean 

FIG. 7.2. SAMPLING DISTRIBUTION; ThUE MEAN 1"96<1M 
OR MORE ABOVE EsTIMATED MEAN 

confidence, the confidence limits lie I"96aM above and 
below the estimated mean. Similarly, when P = o·oi, 
or at the I per cent level of confidence, the confidence limits 
lie z·s8aM above and below the estimated mean. 

The farther apart the confidence limits above and below 
our estimated mean, the greater the probability that the true 
mean will lie within them. How far apart the confidence 
limits should be, depends, of course, upon the risk or 
chance of being wrong which we are prepared to take. In 
some inquiries the risk of one chance in twenty of making 
a wrong estimate, that is the 5 per cent level of confidence, 
is considered acceptable; in others, the risk of only I in so 
of being wrong inspires sufficient confidence; and yet in 
others, the risk of I in Ioo, or the I per cent level of con-
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fidence, is insisted upon. Generally, in this matter of de­
ciding upon confidence limits much depends also upon the 
feelings and the temperament of the inquirer. 

The Reliability of an Estimated Mean. We have seen 
that given an agreed risk of being wrong, we can express 
the reliability of an estimated population mean by stating 
the confidence limits above and below it. The confidence 
limits are expressed in terms of the standard error of the 
mean. The question now arises how to determine the stan­
dard error of the mean from one sample only and with no 
knowledge of the sampling distribution of the population. 
This can be done quite easily. 

First, if a is the parametric standard deviation of the 
population, a quantity which cannot be known directly, 
and N is the number of cases included in the sample, then 
the standard error of the mean is given by 

a 
aM=VN 

While not going into the rigorous proof of this formula, 
it is easy to see that it complies with our expectations. Ob­
viously, the larger the population sigma, the more scattered 
will be the sample means, that is the larger must be the 
sampling distribution sigma which we know by the name of 
the standard error of the mean. Further, more cases in 
the sample, the less scattered will be the sample means; and, 
conversely, the smaller the samples, the more scattered will 
be the distribution ofthe sample means; in fact, it has been 
shown that aM is inversely proportional not just to the 
number of cases per sample but to the square root of that 
number. 

As it stands, the formula above cannot be of much use, 
for we do not know the true standard deviation of the 
population. In order to progress further, we must intro­
duce a crucial assumption, namely that for large N, say 
above 30, or better above so cases, statistics are good approxi­
mations of parameters. 

We have already seen that the estimated population 
mean is simply taken to be the sample mean (though we 
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also generally wish to know how confident we should feel 
about such an estimate, and therefore proceed to determine 
the estimate's reliability by attaching to it lower and upper 
limits below and above which it is unlikely that the true 
mean lies). Now just as the estimated population mean is 
taken to be the sample mean, so also a good estimate of the 
standard deviation of a population is giyen by the standard 
deviation of a sample of this population. Thus, the popula­
tion sigma in the formula above may be taken as being 
approximately equal to the sigma of a sample of this 
population. 

We are now in a position to re-state the formula. If N 
is the number of cases in a sample, and cr is their standard 
deviation, then the standard error of the mean is given by 

cr 
crM = vN 

Having calculated the mean, M, and the standard error 
of the mean, crM, from a sample, we can give both the esti­
mate of the population mean and its reliability. Thus at the 
5 per cent level the confidence limits are given by 
M ± x·96crM; and at the 1 per cent level the confidence 
limits are M ± 2· 58crM. 

Let us illustrate the procedure by a numerical example. 
Imagine that a socio-economic survey is concerned with the 
monthly expenditure per family upon a certain group of 
commodities in a certain area. Suppose that an investi­
gation was carried out upon a random sample of xoo families, 
and that the sample mean was 15op, the standard devia­
tion having been 25p; round figures are used for simplicity 
of illustration. What is the reliability of the estimate that 
the monthly expenditure per family on the commodities 
in question is I50p? 

The standard error of the mean is given by 

crM = cr/VN 

= 25/Vxoo 

= 2"5P 
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Therefore, on the basis of the probability of o·os of being 
incorrect, the upper and lower confidence limits regarding 
the value of the estimated mean are 15op ± 1·96 X z·sp. 
Thus the true mean lies probably (P = o·os) between I45P 
and I55P (approx.). 

It should be mentioned that the reliability of a mean may 
be calculated on the basis of the so-called probable error of 
the mean instead of the standard error. Further, the re­
liability of the central tendency measures other than the 
mean, e.g. of the median, may be established by means of 
procedures fundamentally similar to the one explained and 
illustrated above. Our aim here is quite modest; it is to 
introduce the reader to the principles of reliability deter­
mination. Deliberately, only a few selected important 
statistical measures will be treated. 

The Reliability of an Estimated Standard Deviation. 
We have seen that the standard deviation of a sample is 
taken as the estimate of the population standard deviation. 
How reliable is such an estimate? We know how to measure 
the reliability of an estimated mean. The reliability of an 
estimated standard deviation is established along similar 
lines. 

If N, the number of individuals in a sample, is large and 
certainly not less than about 30, and if a is the standard 
deviation obtained from the sample, then a quantity known 
as the standard error of the standard deviation, denoted by 
aa, is given by 

We can now reason as before. The probability is o·os 
that the estimated population sigma does not lie outside 
the limits of ±1·96aa. For a higher degree of confidence, 
viz., for the probability of o·oi the estimated standard 
deviation will not lie outside the limits of ±z·s8a0 • 

Let us return to the example recently used as an illustra­
tion of the reliability of an estimated mean. The data are: 
N = 100, M = 150p and a= 25p. The standard error 
of the standard deviation is given by 
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ria= a{\hN 

= 25/Vzoo 

= 1•768p 

IOJ 

Therefore, on the basis of the probability of o·o5 being 
incorrect, the upper and lower confidence limits regarding 
the value of the estimated standard deviation are 
25 ± I·96 X I-768 or 25 ± 3·5p. Thus, the standard 
deviation of the parent population lies probably (P = o·o5) 
between 2I·5p and 28·5p; or in other words, the standard 
deviation can be relied upon, at the 5 per cent level of 
confidence, to be between 2I·5p and 28·5p. 

Again, the reliability of other dispersion measures, e.g., 
of the semi-interquartile range, can be worked out along 
similar lines. We shall now, however, pass on to another 
important type of statistic and to the determination of its 
reliability. 

The Significance of Difference between Two Means. 
Suppose that we first take one sample of a certain popula­
tion and find its mean and then do the same for another 
sample. Even before we have computed the mean of the 
second sample we know that it will probably be less than 
I ·96aM away from the first sample mean, the odds being 
I9 to I against. Suppose now that we are not sure whether 
the second sample has been drawn from the same or another 
population. If the mean of the second sample is so close 
to the mean of the first sample as to be within the range of 
high probability of the true mean of the population from 
which the first sample was drawn, then we conclude that 
the second sample may have been drawn from the same 
population. But if the mean of the second sample falls 
beyond the range within which the first sample's parent 
population mean probably lies, then we can only conclude 
that the second sample was probably drawn from a different 
population. 

The problem above is known as the problem of signifi­
cance of the difference between two means. It is a highly 
practical problem. Suppose we were to conduct a socio-
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psychological inquiry to answer the question whether there 
is a real difference in verbal facility between town and 
country schoolchildren in a certain area. In the language 
of statistics, we should say that we wish to know whether 
from the point of view of verbal facility town and country 
children can or cannot be treated as one population. As­
suming that we have suitable tests and reasonably large 
unbiased samples of schoolchildren from the urban and 
rural areas, we proceed to obtain the scores of individual 
children. 

Having computed the mean scores for our two samples, 
and assuming that the two means differ, we are now faced 
with the question: "is the difference significant?" For even 
if we drew two samples of urban school-children, their 
means would probably differ somewhat; and there would 
also be a difference between the mean scores of two samples 
of rural children. So it is clear that the difference between 
the mean scores of samples of children from urban and 
rural areas must be greater than a certain amount before 
we can feel confident that there is most probably a difference 
between the verbal facility of town and of country school­
children in the area. 

Once again we can feel confident that the difference 
between two means is most probably not due to chance 
fluctuation of samples, i.e., that the difference is significant, 
if it is at least 1 ·g6 its standard error at the 5 per cent level 
of confidence, or at least 2· 58 its standard error at the 1 per 
cent level of confidence. We, therefore, must be able to 
compute the standard error of the difference between two 
means. We must here add a word of warning. We are 
considering means of uncorrelated measures. The subject 
of correlation is dealt with in Chapters X to XII. The 
computation of the standard error of the difference between 
two means of correlated measures will be found in the last 
section of Chapter X. At this stage we are dealing with the 
standard error of the difference between two independent 
(or uncorrelated) means. It is denoted by an and is given 
by 
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where aM, is the standard error of the mean for the first 
sample, and O'M, is the standard error of the mean for the 
second sample. 

We already know that aM= aJvN. Therefore, for the 
first sample: 

aM,= a1/VN1, and hence aM,2 = a12/N1, 

and for the second sample: 

aM. = a2/VN2. and hence O'M12 = a22/N2 

Thus, the standard error of the difference between two 
means may be expressed in terms of 

a1-standard deviation of first sample, 
a2-t~tandard deviation of second sample, 

N1-number of individuals in first sample, 
N:r-number of individuals in second sample; 

aD= V(a12/N1 + a22/N2) 

Denote the means of the first and second samples respec­
tively by M1 and M2. The difference between these means 
divided by an is known as the "critical ratio", 

CR = (Mt - M2)/an or CR = (M2 - M1)/an 

If the critical ratio is equal to or greater than I ·96, then 
the probability is o·o5 that the two samples are drawn from 
the same population. Similarly, if CR is equal to or greater 
than 2·58, the probability is o·ox that the samples belong to 
the same population. Using the standard phraseology, we 
say that a difference is significant at the 5 per cent level if 
CR ;? 1·96, or is significant at the 1 per cent level if 
CR;? 2·58. 

Consider now an example from the field of occupational 
psychology. A certain test of manual dexterity is given to 
two samples of 100 individuals randomly selected from two 
different occupational fields. Suppose the mean score for 
the first occupation is 84, the standard deviation being 7, 
and the mean score for the second occupation is 88, the 
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standard deviation being 6. Are the populations of the two 
occupations significantly different as regards manual dex­
terity? 

The standard error of the difference between the means 
is given by 

crn = V(crt2/Nt --f.---~ 

= V(72fxoo + 62/Ioo) 

= 0·92 ( approx.) 

The critical ratio, 

(M2 - Mt)/rrn = (88-84)/o·9 

:. CR = 4'45 
CR = 4'45 is much greater than either 1·96 or 2·58. Thus, 
the difference between the manual dexterity scores of the 
two populations must be considered highly significant or 
highly reliable. 

Just as we can judge the significance of difference be­
tween sample means, so also is it possible to determine the 
significance of difference between two standard deviations. 
The reader will find this and other techniques discussed 
in those reference text-books which are designed to cover 
fully the procedures concerned with the reliability of 
statistics. Having worked through this chapter and under­
stood the principles underlying the determination of statis­
tical significance, the student will experience no difficulty 
in dealing with other types of problems which involve the 
computation of standard errors and reliability. 



CHAPTER VIII 

SMALL-SAMPLE STATISTICS 

Large and Small Samples. So far we have dealt with the 
methods of determining the reliability of statistics applicable 
only to what we have called large samples, and the reader's 
attention has repeatedly been drawn to this limitation. 
Now the smaller the samples, the more inaccurate become 
these methods. 

When N, the number of individuals per sample, is less 
than, say, 50, then it is better to determine the reliability 
of sample statistics by means other than those discussed in 
the last chapter. This becomes imperative when N is less 
than, say, 30; otherwise the errors introduced, if the ordin­
ary large-sample methods are employed, will be very con­
siderable. In this chapter we shall, therefore, deal with the 
special methods used in small-sample work. 

It will be seen that the methods used for the calculation 
of the reliability of statistics obtained from small samples 
may be equally well applied to large samples. However, 
the extra accuracy thus achieved does not warrant the 
additional work which would be entailed. 

The Parametric Standard Deviation. In the treatment 
of large samples we have been assuming that the sample 
standard deviation is a good estimate of the population or 
parametric standard deviation. As a matter of fact we have 
consistently been slightly underestimating the population 
sigma in this way. The error involved becomes consider­
able only when N is small. 

The Standard Error of a Mean. To compensate for the 
fact that the sample sigma underestimates the population 
sigma, a modified standard error formula must be used. 
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If a is the sample standard deviation, and N is the number 
of individual cases per sample; then for small samples the 
standard error of a mean, O"M, is given by 

O'M = crfV(N- x) 

It will be noted that when N is large the difference between 
V N I and VN is small compared with the value of VN, 
and consequently the standard error of the mean is given by 

O'M = cr[VN (approx.) 

Some Initial Assumptions. In large-sample work we 
had no need to make any assumptions about the nature of 
the distribution of the parent population. Further, we said 
that provided the distribution curve of the parent popula­
tion was anything like bell-shaped, its sampling distribution 
could reasonably be assumed to be normal. We then based 
our work on this assumption of normality of sampling distri­
butions. 

Now in small-sample work we are obliged at the start to 
assume that the parent population distributions are normal; 
we have already said that, in any case, such an assumption 
is often fully justifiable. However, despite this initial 
assumption, we cannot also assume that sampling distri­
butions, if the samples taken are small, are normal. In 
fact, the crucial difference between large-sample and small­
sample work .is associated with the different natures of 
sampling distributions obtained from large and from small 
samples. 

We have said that a sampling distribution based on small 
samples, i.e., a distribution of small-sample means, cannot 
be regarded as approximately normal. Such a sampling 
distribution is still represented by a bell-shaped curve, but 
the shape of the curve departs more and more from nor­
mality as N, the number of cases per sample, decreases. 

The Nature of Sampling Distributions. In con­
sequence of the fact that in small-sample work no initial 
assumption regarding the normality of a sampling distri-
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bution can be made, the probability of divergence of a 
sample mean from the true population mean must be com­
puted not from a normal sampling distribution curve but 
from a curve appropriate to the value of N, the number of 
cases in the sample. 

We have seen that on the assumption of a normal sampling 
distribution-an assumption which is warrantable when N 
is large-the probability that the true population mean lies 
outside ±I·96o-M of the estimated mean is equal to o·os. 
This is strictly true only when N is infinitely large, which 
is an unattainable condition. 

When the number of cases per sample is so, the prob­
ability that the true mean lies as far as or further than I ·96o-M 
away from the estimated mean is somewhat more than o·os. 
In other words, at N equal to so the fiducial limits above 
and below the estimated mean, at the s per cent level of 
confidence, are somewhat above ±I·96o-M. 

Now in fact, for the probability of o·os of one's estimate 
being incorrect, i.e., at the S per cent level of confidence, 
the fiducial limits are 2·0IO"M above and below the estimated 
mean instead of I·96o-M. When N = 30, for the probability 
of o·os of one's estimate being incorrect, the confidence 
limits are 2·040"M above and below the estimated mean. 
When N = 10, for the same probability of being wrong, the 
confidence limits are 2·26o-M on either side of the estimated 
mean. 

The sampling distributions corresponding to different 
values of N are known as "Student's" t-distributions. The 
so-called t-values are the distances from the mean value 
which correspond to different levels of confidence. When 
N, the number of cases per sample, is very large, then the 
t-values corresponding to the s per cent and I per cent 
levels of confidence are, as we have seen before, I ·96 and 
2·s8 respectively, the t-distribution being then taken to be 
normal. The lower the values of N, the higher are the t­
values for the same levels of confidence. It is clear that 
t-distribution curves are symmetrical about the mean; 
they are bell-shaped like the normal curve, but are more 
peaky and have longer "tails" than the latter. 
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For the present purpose we need not concern ourselves 
with the t-distances from the mean which correspond to 
many different P-values representing confidence levels. It 
will be sufficient to know and it will make the presentation 
simpler if t-values corresponding only to P = o·os and 
P = o·ox are considered. 

For reasons which need not be discussed here, we do not 
commonly set out t-values against N, the number of cases 
per sample, as might be expected. Instead, t-values are set 

TABLE 8.1 

SELECTED t-VALUES AT THE 5% AND r% 
LEVELS OF SIGNIFICANCE 

Degrees t-values 
of 

Freedom at at 
(N- I) P = o·os P = o·o1 

I,ooo I"96 2·s8 

IOO 1"98 2"63 

so 2"01 2·68 

40 2"02 2"71 

30 2"04 2"7S 

2S 2·06 2"79 

20 2"09 2"84 

IS 2"13 2"9S 

IO 2"23 3"17 

9 2"26 3"2S 

8 2"31 3"36 

7 2"36 3"SO 

6 2"4S 3"71 

s 2"S7 4"03 
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out against the quantity (N- I), the number of degrees of 
freedom. 

A series of t-values which correspond to a number of 
selected values of degrees of freedom for the two usually 
required levels of confidence or significance are given in 
Table 8.1. 

The Reliability of a Mean estimated from a Small 
Sample. To determine the reliability of an estimated mean 
we must first compute the standard error of the mean. It 
must be remembered that the formula appropriate for small 
samples given earlier in this chapter should be used. Then, 
instead of multiplying the standard error by the coefficients 
of I·96 and 2·58 (obtained from the normal curve) in order 
to establish confidence limits for the 5 per cent and the I per 
cent levels of confidence respectively, we are now obliged 
to use an appropriate t-distribution curve to obtain correct 
coefficient values. 

The determination of the reliability of an estimated 
mean, when the estimate is based on a small sample, may be 
best illustrated by means of a numerical example. Suppose 
that eight tests were made upon a certain type of wire, and 
it was found that the mean breaking strength for the eight 
tests was 243 lb. and the standard deviation 7·61 lb. How 
reliable at the I per cent level of confidence is the estimate 
that the breaking strength of the wire is 243 lb.? 

Using the standard-error-of-a-mean formula appropriate 
for small samples, we have 

crM = cr/V(N- I} 

aM= 7'6Ifv7 
= 2·88lb. 

At eight tests there are seven degrees of freedom. From 
Table 8.1 the t-value corresponding to (N - 1) = 7 at 
P = o·oi is 3·50. Therefore, at the I per cent level of 
confidence our limits are given by 243 ± 3'50 X 2·88 
= 243 ± IO'I lb. (approx.). This means that there are 99 
chances in Ioo that the true average breaking strength of 
the wire is somewhere between 232·9 lb. and 253'1 lb. 
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The Reliability of Scatter Values. As with large 
samples, the first step towards the determination of the 
reliability of a measure of dispersion obtained from a sample 
is to compute the standard error of the measure. The 
measure of dispersion most frequently used is the standard 
deviation. We shall now see how to determine the reliability 
of a standard deviation obtained from a small sample. 

We saw in the last chapter that the standard error of a 
standard deviation, denoted by cra, is given by 

cra = cr/V zN 
where cr is the sample standard deviation, and N is the 
number of cases in the sample. 

However, we have noted earlier in this chapter that the 
sample standard deviation tends to be less than the para­
metric standard deviation, particularly if the standard 
deviation is obtained from a small sample. We have already 
seen that for this reason the formula for the standard error 
of the mean for small-sample work has had to be modified. 
Analogously, the standard error of the standard deviation 
for small values of N is given more accurately by 

cra = cr/v'z(N- I) 
Having calculated the standard error of the standard 

deviation, we may now determine the reliability of a stan­
dard deviation obtained from a sample. Instead of basing 
our confidence limits for a given confidence level on the 
normal distribution curve we now base them on an appro­
priate t-distribution curve. To illustrate the method we 
may conveniently refer to the example just used in con­
nection with the evaluation of the reliability of an esti­
mated mean. 

In this case there were eight tests (N = 8); the mean was 
found to 243 lb. and the standard deviation 7·6I lb. The 
standard error of the standard deviation is therefore 

cra = crfv'z(N- I) 

= 7·6x/v' z x 7 
= 2"04lb. 
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Now with eight tests there are seven degrees of freedom. 

We see from Table 8.I that when P = o·oi, the t-value 
corresponding to (N- I)= 7 is 3·50. Therefore, at the 
I per cent level of confidence our limits are given by 
7·6I ± 3'50 X 2·04, or 7'6I ± 7'II (approx.). This means 
that if we took a very large number of readings, the chances 
are 99 in IOO that the standard deviation (representing the 
measure of scatter of the readings) could be anywhere 
between o·5o lb. and I4'72lb. 

The reader will appreciate that the reliability of other 
measures of central tendency and dispersion obtained from 
small samples may also be established. 

Methods of Establishing the Significance of Differ­
ence between Means. ~ in the last chapter, we shall be 
dealing only with sample means of variables which are 
independent of or uncorrelated with one another. The 
strict meaning of correlation and the method of finding out 
whether or not there is a significant correlation between 
two variables will be dealt with in a later chapter. 

We have seen that with large samples, the difference 
between two sample means is regarded as significant at the 
5 per cent level of confidence when it is greater than I ·96 
times its standard error; it is significant at the I per cent 
level of confidence when it is greater than 2' 58 its standard 
error. The coefficients by which the standard error is 
multiplied, the so-called critical ratios or CR-values, are 
based upon the normal curve, as it is assumed that sampling 
distributions for large samples are normal. 

Now we already know that we base statements regarding 
reliability and significance in small-sample work not upon 
normal but upon t-distribution curves. The appropriate 
t-distribution curve is determined by the total number of 
degrees of freedom for the two samples. If N 1 is the number 
of cases in the first sample and N2 the number of cases in 
the second sample, then the total number of degrees of 
freedom is (N1- I)+ (N2- I). 

Consider a numerical example. A group of mental hos­
pital patients were given a test designed to confirm a 
differentiation between certain cases of depres&ion and 
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schizophrenia. Seventeen diagnosed depressive and eleven 
schizophrenic cases were used; the mean score of the 
former was 66 and for the latter was 75; the standard 
deviations were 8 and 9 respectively. The two groups were 
matched as nearly as possible for age, sex, general intelli­
gence and social background. From the results as presented, 
can it be concluded that schizophrenic patients score 
significantly less than depressive ones? 

The standard error of the difference between means is 
given by 

an = V O"M, 2 + O"M, 2 
where O"M1 is the standard error of the mean for the first 
sample, and O"M2 is the standard error of the mean for the 
second sample. 

It is important to remember here that for small samples 

O"M, = 0"1/V (N1 - I) 
and 

aM,= as/v'(Ns- I) 
where a1 and as are the standard deviations of the first and 
second samples and N1 and Ns are the numbers of cases 
in the first and second samples respectively. 

In our example 

O"M, = 8/V(I7 - I) 
= 2"00 

O"M:, = 9/V{II - I) 

= 2·Bs 
Thus, substituting into the formula for the standard 

error, we have 
an= v'2·oo2 + 2·8s2 

= 3"48 

The critical ratio is given by 

CR = (M1 - Ms)/an or CR = (Ms - M1)/an 
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In our example 

CR = (75 - 66)/3·48 

= 2'59 

The number of degrees of freedom is 

= 26 

IIS 

We may now use Table 8. I. We see that our difference 
between mean test scores is significant at the 5 per cent 
level of confidence; it is, however, not insignificant at the 
I per cent level. 

We may conclude that it would be desirable to state with 
greater confidence that on the whole depressive patients 
score less than the schizophrenic ones. To be able to do so 
we must use more patients in our inquiry. If we still 
obtain a difference between means of the same order as 
before, then, clearly, with larger number of cases, we can 
place rather greater reliance upon the difference such as it is. 

Sometimes only raw scores for two samples may be 
available, and it has not otherwise already been necessary 
to work out the two standard deviations. In such circum­
stances another formula for the standard error of the 
difference between two means may be used. The formula 
referred to here is not strictly equivalent to the general 
formula given earlier in this chapter; however, it is no less 
accurate. It is, perhaps, best for beginners not to depart 
whenever possible, from the general method explained, 
earlier. 

Now before this special formula for the standard error 
of the difference between two means can be applied, the 
means for the two samples must be worked out. Then all 
the deviations from the mean of each sample must be 
obtained. Then, if 

x1-values are the deviations from the first mean, and 
x2-values are the deviations from the second mean, 
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the standard error of the difference between the two means 
is given by 

Sn= ~x12 + ~x22 ( I + I ) 
(Nl - I)+ (N2- I) X Nl N2 

where N1 is the number of cases in the first sample, and 
N2 is the number of cases in the second sample. 

Having obtained the value of the standard error by this 
method, the significance of a difference between two means 
is established in the usual manner. Table 8.I should be 
used to obtain t-values corresponding to the appropriate 
number of degrees of freedom and the required level of 
confidence (i.e., either P = o·os or P = o·oi). 



CHAPTER IX 

THE TESTING OF HYPOTHESES 

The Methods of the Social Sciences. It may be main­
tained that the task of a science is to explain the pheno­
mena which lie in the sphere of its interest. An explana­
tion may start with a guess. But how are we to know whether 
a particular guess is right or wrong? We must test it 
against observed facts in such a way as to gain independent 
evidence in favour of the guessed explanation. 

If a guess is not, on the face of it, a wild one, then it is 
known as a hypothesis. It may be maintained that, on 
analysis, all that scientists do is test hypotheses, which is 
only another way of saying that all the activities of scientists 
are subordinated towards explaining observed phenomena. 
Observation itself is selective and must be relevant to some 
underlying expectation, hypothesis or theory. 

In the testing of hypotheses we may or we may not em­
ploy precise measurement andfor mathematics. Sometimes 
we simply resort to checking up gross facts. Darwin, for 
instance, made a series of "historical hypotheses" about the 
ancestry of man. This was, in part, in order to explain the 
similarity in the physical structure between man and other 
animals. From such hypotheses two things followed: 
first, certain other, as yet unknown, similarities would have 
to exist; second, a series of links between man and his 
ancestors should be discoverable. The tests of Darwin's 
hypotheses lay in obtaining positive evidence of both 
kinds. As is well known, more and more independent 
evidence in favour of Darwin's hypotheses is still being 
accumulated, and we feel more and more confident that 
Darwin must have been right. 
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On the other hand, turning to fact for confirmation or 
falsification of a theory may involve a good deal of precise 
measurement. To explain why the orbit of a certain planet 
was as it was found to be, it seemed necessary to suppose 
the existence of a new planet. One way of testing such a 
hypothesis would have been to use, if possible, more power­
ful telescopes to see if the supposed planet in fact existed. 
Alternatively, certain deductions and calculations based on 
the initial hypothesis could have been made regarding the 
behaviour of certain other celestial bodies, and then crucial 
and precise observations of their behaviour would have 
constituted a satisfactory test of the initial hypothesis. 

This last procedure is as often as not the usual procedure 
of the physical sciences. A series of calculations lead to 
crucial, carefully carried-out measurements; and the results 
of the measurements decide whether a hypothesis stands 
or falls. Often there are no two ways about it; we are either 
right or wrong. This, unfortunately, can only rather in­
frequently be applied to the social sciences. That is why 
there is sometimes some doubt expressed as to whether 
the social sciences are sciences at all. But to deny on these 
grounds that the social sciences are sciences amounts to 
asserting that the characteristic of a science is precision. 
Such a position is difficult to maintain. If, on the other 
hand, we hold that a scientific procedure is essentially 
characterised by a search of general explanations and the 
testing of hypotheses, then disciplines such as economics, 
sociology and psychology admit of being scientific. 

In the social sciences an answer to a question often 
appears ambiguous. Do, for instance, certain kinds of 
children do badly at school because they simply lack the 
necessary intellectual ability, or may there be other reasons? 
Let our first hypothesis be that they do lack the aptitude. 
We then test a sample of the children in question as best as 
we can for intellectual aptitude and compare them with other 
children. Suppose that our tests reveal that the individuals 
in our sample of the children who show lack of scholastic 
success lack somewhat in aptitude as compared with some 
standard (control group). Can we feel confident that there 
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is a real lack of aptitude among the children under in­
vestigation, and that the obtained results cannot have, 
quite likely, been due to chance? The answer to this ques­
tion turns on establishing the reliability of a statistic. 

It is a fact that in the social sciences tests of hypotheses 
often do not yield mathematically clear-cut answers. They 
are often answers which may or may not have statistical 
significance. And we have already seen that the concept 
of statistical significance is rooted in probability. 

Null Hypotheses. While dealing with questions the 
answers to which may depend upon statistical significance, 
it is not inconvenient to talk about testing null hypotheses. 
A null hypothesis is simply one which asserts that in a given 
situation nothing but the laws of chance are operative. Thus, 
a null hypothesis is an assumption that a given set of 
statistical data can be entirely explained or accounted for 
by probability alone. 

It is, of course, not necessary to talk about testing null 
hypotheses while being concerned with tests of probability 
and significance. It would appear that the popularity of 
this phraseology is associated with the awareness among 
the social scientists that, on analysis, any scientific work 
consists in essence of the testing of hypotheses. 

This chapter will be concerned with various statistical 
procedures which can be regarded as aiming directly at 
testing null hypotheses. The reader will already be familiar 
with some of these, though he has not looked at them from 
quite this angle. The procedures may be grouped into 
several categories, of which we shall only treat a selected 
few. 

Significance of Difference between Means. To test a 
difference between two sample means for significance 
amounts to the testing of a null hypothesis. The null 
hypothesis would here assert that no true difference exists 
between two means, i.e., it would assert that two samples 
are drawn from the same population and therefore the 
difference between their means, such as it is, is associated 
with the normal scatter of sample means. 

By comparing the obtained difference between means 
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with its standard error in the manner explained in the last 
two chapters, we put the null hypothesis to test. A measure 
of confirmation of the hypothesis is achieved if it is shown 
that the difference is not significant, even at the 5 per cent 
level of confidence. The hypothesis is falsified if the dif­
ference between the two means is shown to be unlikely to 
be due to sheer sampling error, i.e., if the difference is 
significant at, say, the 5 per cent, or better, the 1 per cent 
level of confidence. 

Expectation of Binomial Distribution. We often deal 
with distributions of a single quality or attribute. In a 
number of cases examined it is either present or absent; or, 
as we often put it, it either succeeds or fails to appear. 
Suppose we toss a single coin. We can expect with an 
ordinary coin that there will be equal proportions of heads 
and tails when the number of throws has been reasonably 
large. That is, the coin when flipped will come up heads 
as often as tails. Or, as the statistician would say, heads 
will succeed as often as will fail to make an appearance, and 
the same can be said about tails. 

Suppose now that we are not sure whether a coin is 
symmetrical. We may carry out an experiment, postulating 
a null hypothesis, that is postulating perfect symmetry. 
If we then toss the coin, say, twelve times, we may expect 
that heads will probably appear six times. The question 
now arises what must be the proportion of heads to tails 
in order that we may regard the null hypothesis as falsified. 

Problems of this kind arise again and again. We may 
consider the method of answering them with the help of a 
more practical example. We may use one from the field of 
the psychology of perception. Suppose that we wish to 
know whether a partially colour-blind Subject is capable of 
distinguishing between two hues which we have reason to 
believe are close to his sensory threshold of colour dis­
crimination. Suppose that we carry out an experiment 
where the pair of colours placed side by side are presented 
to the Subject, say, twelve times. We must assume, of 
course, that the experiment is intelligently designed; we 
should expect the colours to be matched as regards bright-
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ness and saturation, and other sources of error to be elimi­
nated or balanced. 

Now if the Subject cannot really distinguish between the 
hues, he will be as likely to be correct as incorrect in naming 
them each time they are shown to him. In other words, the 
chances of an apparent success in telling which colour is 
which will then equal the chances of failure. How far 
must the actual proportion of successes and failures diverge 
from equality to be regarded as not accidental, that is 
how unequal must be the numbers of successes and failures 
before we can regard the null hypothesis postulating the 
Subject's inability truly to perceive the difference as fal­
sified? 

To answer this question recall the binomial expansions 
dealt with in Chapter V. As the Subject makes 12 attempts 
and each time is either right or wrong, to determine the 
probability of any number of successes we must consider 
the expansion of (I + I )12: 

(I + I)l2 = I + 12 + 66 + 220 + 495 + 792 + 
924 + 792 + 495 + 220 + 66 + I2 + I = 4,096 

On the assumption of the null hypothesis, that is assum­
ing that the Subject is unable truly to distinguish between 
the two colours, the probability of 12 successes is 1/4096. 
The probability of II or more successes is {I + 12)/4096 
or I3/4o96. The probability of 10 or more successes is 
given by {I + I2 + 66)/4096 or 79/4096, and so on. 

Now assuming that the Subject is unable to distinguish 
between the two colours, we must decide how improbable 
the Subject's degree of success must be before our con­
fidence in the initial assumption is destroyed. It is cus­
tomary-as we have seen earlier-to be fully satisfied with 
the 1 per cent level of confidence, and certainly with not 
less than the 5 per cent level. Accordingly we may regard 
the null hypothesis as falsified or at least highly suspect if 
the Subject's degree of success is greater than can be ex­
pected at the 5 per cent level of confidence. 

At this agreed level, the probability of success is no more 
than 5 in Ioo, which works out to be 204·8/4096. We see, 
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then, that at the 5 per cent level of confidence IO successes 
are still significantly more than can occur by chance. On 
the other hand, the probability of at least 9 successes in I2 
trials is given by {I + I2 + 66 + 220)/4096 = 299/4096. 
Thus we see that if the Subject were successful 9 times out 
of I2, we could not regard this as a reliable evidence that he 
or she can distinguish between the two colours and that the 
answers are obtained other than by guessing. 

Suppose now that the pair of colours were presented to 
the Subject only 6 times instead of I2, and suppose further 
that the Subject was successful in distinguishing between 
them 5 times. Can this be regarded as a falsification of the 
null hypothesis? 

We note that (I + I )6 = I + 6 + I 5 + 20 + I 5 + 6 + I 
= 64. First consider the probability of 4 or more correct 
guesses. It is given by (I + 6 + I5)/64 = 22/64, which is 
over 34 per cent. Obviously, four correct answers could 
not at all be regarded as indicative of the Subject's ability to 
distinguish the colours. Now, had the Subject been success­
ful 5 times out of 6, the probability that the null hypothesis 
is true or that the Subject is merely guessing would be 
given by (I + 6)/64 = 7/64. Thus, 5 successes in 6 trials 
still do not significantly differ from a chance result at the 5 
per cent level of confidence. 

It is clear, in fact, that only if the Subject had been 
successful in every one of the 6 trials, would the null 
hypothesis have been refuted at the 5 per cent level of 
confidence, for then the probability of success by sheer 
chance would have been I/64. However, at the I per cent 
level of confidence such a result would still not have been 
significant. 

Thus, if we felt confident of the Subject's ability to 
distinguish between two colours only when the experi­
mental results were proved significant at the I per cent 
level of confidence, we should have had to give the Subject 
at least 7 trials. On the assumption of the null hypothesis, 
the probability of success in every one of the 7 attempts 
would be I in I28, that is would be less than o·oi. There­
fore, a falsification of the null hypothesis of the I per cent 
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level of confidence would require (a) at least 7 trials, and 
(b) 7 successes in the 7 trials. 

Checking Obtained Results against Normal Curve 
Probabilities. We have just been comparing observed and 
probable proportions of presences and absences or suc­
cesses and failures, where the number of observations is 
quite small. We have been using binomial expansions of 
(I + I)", where n corresponds to the number of observa­
tions. When n becomes large, say so or Ioo, the work 
involved in computing the binomial expansion terms be­
comes very considerable. 

However, we already know that when n is large, the 
binomial point curve approximates closely the normal 
curve. Therefore, we can compare obtained results directly 
with the probabilities calculated from the normal curve, 
as set out in Table 5.6. 

Suppose that a test containing 64 items is given to 
entrants into a certain occupation with a view to testing 
their knowledge of some particular subject. Suppose that 
the test is simply constructed, each item consisting of two 
statements one of which is true and the other false. The 
task of the person sitting the examination is to underline 
the true statement. 

Now by sheer chance anyone can be as often right as 
wrong. Then, how many more than 32 correct answers 
indicate that the examinee has some knowledge of the 
subject and is not merely guessing? In other words, we have 
to answer the question: "What must be the examinee's 
score to falsify a null hypothesis?" 

Clearly, if we gave the test to a large number of people 
all of whom merely guess the correct answers or pick them 
out at random, then many of them would be 32 times right 
and 32 times wrong. Others, however, would be 33 times 
right and 3I times wrong, or 31 times right and 33 times 
wrong. Some others, somewhat fewer in number, would 
be 34 times right and 30 times wrong, or 30 times right and 
34 times wrong, and so on. There would be very few indeed, 
if any, who would be right or wrong on all the 64 occasions. 

Such successes, as also such failures, would be distri-
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buted in the manner shown in Fig. 9.1, where the vertical 
co-ordinates represent the frequencies corresponding to 
various possible proportions of successes to failures. The 
mode of the probability curve would correspond to 32 
successes (and 32 failures). Compared with the mode 
frequency, there would be negligibly few successes with 
all the 64 test items or with none of them. 

20 

FIG. 9.1. PROBABILITY DISTRIBUTION OF SUCCESSFUL GuESSES 
Questionnaire contains 64 true-false items 

The standard deviation of this curve is given by the 
formula 

(J = vnpq 

where n is the number of test items [or in general the index 
of the (p -1- q)n expansion], and p and q are the prob­
abilities of successes and failures. 

In our example n equals 64, while p and q are equal to 
!, (p + q) being unity. It should be appreciated that p 
and q may have other values. Had there been, for instance, 
four statements per item and only one of them correct, the 
probability of success would have been ! and the prob­
ability of failure would have been equal to£. 
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In our example, then, the standard deviation of the 

distribution is given by 

a= V64><1x! 
that is, a= 4 

We know that in a normal distribution 95 times out of 
I oo a case (here a proportion of successes to failures) lies 
within ±1·96a. Thus, the probability is o·o5 that the 
number of successes will be greater or less than 32 ± 2 X 4 
( approx. ), that is greater than 40 or less than 24. 

Thus, only if an examinee gives at least 40 correct 
answers can we feel confident (at the 5 per cent level of 
significance) that he or she has not been guessing and has, 
in fact, some knowledge of the subject. 

The problem just considered must be regarded as a very 
simple example of checking obtained results against 
normal curve probabilities. We cannot deal here with 
more complex problems of this kind. Instead, we shall 
now concern ourselves with yet another statistical tech­
nique which may be looked upon as being directed towards 
the testing of null hypotheses. 

The Statistic of x2 (Chi-Squared). A problem which 
may sometimes arise is whether an observed frequency 
distribution of a variable conforms to some expectation. 
If the expected distribution is regarded as a null hypothesis, 
we may wish to know what is the standing of the hypo­
thesis in the light of the evidence of observation. 

We take a sample; its observed distribution is one of 
many which could be obtained from other samples. Now 
the divergence between an expected distribution of a 
variable and one actually obtained may be expressed in 
terms of a quantity called x2 (chi-squared). From this and 
some additional knowledge, as explained later, we may 
tell what is the probability that the difference between the 
ob!Jerved and the theoretical results is due to chance samp­
ling fluctuations. 

The formula by which to compute x2 is 

x2 = ~[(0 - E)2/EJ 
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where 0 is the observed frequency of the variable, and E is 
the expected frequency; ::E is "the sum of". 

Now sometimes there are only a few values of 0 and E 
given; sometimes we compare two continuous curves and 
must decide how many pairs of 0 and E to consider. 
Broadly, the more pairs are taken the higher will be the 
value of x2 at which we shall arrive. Therefore, to decide 
whether a value of x2 is indicative of a significant diver­
gence of the observation from expectation, we must also 
take into account the number of degrees of freedom on 
which the particular computation of the x2 is based. We 
have seen earlier how to determine the number of degrees 
of freedom ( df) in a somewhat special case; in connection 
with some practical examples we shall see how to arrive 
at df-values in other cases. 

Having determined x2 and df we are in a position to 
look up a table (such as Table g.6) which gives the prob­
ability of the observed divergence on the assumption of a 
null hypothesis. It will be seen that various types of 
problems demand slightly different treatments. Let us, 
therefore, go on with the discussion of the x2-test by 
reference to several examples. 

Chi-Squared and Tests of Independence. It is fre­
quently necessary to ascertain whether a set of obtained 
data indicates that two variables are related. For instance, 
we may be confronted with a set of figures showing the 
number of births month by month in a particular country 
in a certain year. There is some fluctuation in the number 
of births from month to month, and we may wish to know 
whether the fluctuation can on the whole be regarded as 
seasonal. We are not so much interested in a coefficient of 
correlation between the variables of time and number of 
births, as in confirming or refuting the null hypothesis that 
the variables are independent of one another. 

The x2-test will tell us in a case of this kind whether 
there is reason to believe that there is some relationship 
between the variables. The degree of relationship is not 
indicated by the test. If correlation coefficients for two 
pairs of variables are given, then the larger coefficient 
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would indicate a closer relationship. But the :x.2-test of 
two such relationships would not tell us which relationship 
is the closer; it would tell us in which case we may feel 
more confident that there is some relationship. 

Consider a practical numerical example. A set of so 
Science examination papers has been marked, and each 
paper has been assigned to one of the four categories 
A, B, C and D. A set of English papers by the same so 
pupils has been similarly marked. We may wish to know 
whether successes in Science and in English should be 
regarded as related or as independent of each other. 

Suppose that the examination results were as set out in 
Table g.I. Each pupil may have obtained one of the 
sixteen different pairs of marks, AA, AB, etc., down toDD. 
The number of cases which fall in every one of the sixteen 
arrangements is shown in the appropriate cell. 

TABLE g.I 
EXAMINATION RESULTS OF FIFTY PUPILS 

IN ENGLISH AND SCIENCE 

SCIENCE 

A B c D Totals 

A 2 3 3 0 8 

B 2 7 7 0 16 

c 2 5 8 3 IS 

D 0 2 4 2 8 

Grand 
Total 

Totals 6 17 22 5 so 

If there were no correlation between success in English 
and Science, i.e. if the two variables were independent, 
then the 8 pupils who obtained A in English ought to be 
distributed among the four Science categories in the pro­
portion of 6:17:2z:s. The 16 pupils who obtained Bin 
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English should be distributed among A, B, C and D in 
Science in the same proportion, and so on. Similarly, the 
6 pupils who obtained A in Science should be distributed 
on the null hypothesis in the proportion of 8: I 6: I 8 : 8 in 
the four English categories. 

The contingency table above is a table of obtained 
frequencies, or-as we say-of 0-values. We may now 
construct a corresponding table of expected frequencies, 
or of E-values. Thus, theE-value for A in English and A 
in Science is given by 8 X 060 ; theE-value for A in English 
and B in Science is 8 X ~ ~ ; the E-value for A in English 
and C in Science is 8 X ~~; theE-value for A in English 
and D in Science is 8 x /o. The total number of expected 
A marks in English is, of course, 8 X / 0 + 8 X H + 8 X 
it + 8 X -lo = 8. In this manner E-values for each cell 
may be found, and a table, such as Table 9.2, may be 
constructed. 

TABLE 9·2 

THEORETICALLY EXPECTED DISTRIBUTION 
OF EXAMINATION REsULTS 

A B c D 

A 0"96 2"72 3"52 o·So 

B 1"92 5"44 7"04 1"60 

c 2"16 6·12 7"92 1·8o 

D 0"96 2"72 3"52 o·So 

To compute x2 we must first obtain (0 - E) values cell 

by cell, then ( 0 - E)2 values, then [< 0 E E)2] values, and 

finally, to obtain ~[(O E E)2} we must add up all the 

[< 0 E E)Z] values. 

The (0 - E) values are given in Table 9·3· 
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c 
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TABLE 9·3 
(0- E) VALUES 

A B c 
1•04 o·28 -o·s2 

o·o8 1·s6 -o·o4 

-o·16 -1·12 o·o8 

-0·96 -o·72 o·48 

D 

-o·Bo 

-1·6o 

1·2o 

1·2o 

Squaring the values cell by cell we arrive at Table 9+ 
TABLE 9·4 

(0- E)2 VALUES 

A B c D 

A 1·o8 o·o8 o·27 o·64 

B o·o1 2•44 o·oo 2·s6 

c o·o3 1•26 o·o1 1•44 

D o·92 o·s2 o·23 1.44 

Dividing the values by the E appropriate for each cell, 
we tabulate the results as shown in Table 9·5· 

TABLE 9·5 
(0- E)2 

E VALUES 

A B c D Totals 

A 1•12 o·o3 o·o8 o·Bo 2•0J 

B o·o1 o·45 o·oo 1·6o 2·o6 

c o·o1 o·21 o·oo o·8o 1·02 

D o·96 o·19 o·o7 1·8o J•02 

Totals 2·1o o·88 o·15 s·oo 8·13 
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Having arrived thus far, we must now look up appro­
priate tables to see if the divergence between the obtained 
results and those expected from the null hypothesis is 
significant, say, at the 5 per cent and the I per cent levels. 

We may use Table 9.6; though a greatly abbreviated 
version of Fisher's original tables, the table is good enough 
for our present purpose. Before using it, however, we must 
consider the question of the number of degrees of freedom. 

The number of degrees of freedom in a contingency 
table where each cell gives a frequency value is the number 
of cells to which arbitrary values may be assigned, the sums 
obtained from each row and column remaining fixed. If 
is the number of rows and c is the number of columns in a 
table, then the number of degrees of freedom is given by 

df= (r- I)(c- I) 

In the case of our example r = 4 and c = 4· Therefore, 
dj = (4- I)(4- I)= 9· 

We see that when df = 9 the value of x2 must be much 
greater than 8·I3 for the divergence between the expected 
and obtained results to be significant even at the 5 per cent 
level. Thus, we cannot conclude with any confidence 
from our data that there is a contingency or association 
between successes in English and Science, and the null 
hypothesis of the independence of the variables must be 
retained. This does not, of course, mean that the two 
variables are independent. If we suspect that they are not, 
we must consider many more than 50 pairs of papers; 
this might enable us to assert with greater confidence that 
the divergence, such as it may be, of expected from obtained 
results is statistically significant. 

The Expectation of a Uniform Distribution. In the 
last example the expected frequencies for the different 
cells were in proportions such as would have resulted if the 
two variables had been completely independent of one 
another. Sometimes, however, the expected frequencies 
may be distributed uniformly. This could be regarded as 
a special simple case of the type of problem discussed in the 
previous section. 
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Consider, for example, a report regarding the number of 
road accidents in a certain district on each day of a particular 
week, as set out in Table 9·7· 

TABLE 9·7 

INCIDENCE OF RoAD AcciDENTS DAY-BY-DAY 

Sun. Mon. Tues. Wed. Th. Fri. Sat. Total 

I7 I6 IO I3 IS II I6 98 

Does the meagre information justify an assumption that 
the accidents are not uniformly distributed over the week? 
On the null hypothesis of a uniform distribution of acci­
dents, we must expect the following (set out in Table 9.8). 

TABLE 9.8 

EXPECTATION oF RoAD AcciDENTS DAY-BY-DAY 

Sun. Mon. Tues. Wed. 

~ 
Fri. Sat. Total 

I4 I4 I4 I4 I4 14 98 4 

We may now work out the value of x2 in order to find 
out whether the divergence between the obtained and ex­
pected distributions is significant. This may conveniently 
be done in a tabular form (as shown in Table 9·9)· 

TABLE 9·9 
(0- E) AND (0- E)2 VALUES 

~ 
Th. Fri. Sat. 

{0- E) 2 -4 -I I -3 2 ------
{0- E)2 4 I6 I I 9 4 
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Since the value of E is the same for each cell, we may 

first add up (0 - E)2 values and then divide the same by 
E= 14. Thus, 

In this case: 

1:(0 - E)2 = 44 

:E[(O - E)2JE] = 1:(0- E)2JE 

= 44/I4 

:. x2 = 3·I4 

Now the number of degrees of freedom, (r- I)(c- I} 
= 6. This may be seen directly from the definition of df. 
We see that if n is the number of comparisons made (i.e., 
the number of cases), then df = n - I ; here, of course, 
dj= 7- I= 6. 

Looking up Table 9.6 we note that the value of x2 should 
have been at least I2·59 for the divergence between the 
expected and obtained distributions to be significant. It is, 
therefore, clear that any conclusion as to the lack of uni­
formity of accident distribution over the seven days of the 
week would be a rash one. We must retain the null hypo­
thesis, suspending judgment until further data are ob­
tained. 

Chi-Squared Test and the Agreement between 
Obtained and Normal Distributions. Quite often we 
have to deal with a large number of measures of a variable 
and we may wish to know whether we should be justified in 
regarding their distribution as normal. The obtained 
distribution curve can be plotted; so can the theoretical 
normal curve. Our problem, then, is that of goodness of fit 
of the observed and the theoretical distribution curves. 
Again the problem may be tackled by means of the chi­
squared test. 

Suppose that we are dealing with a distribution of I,ooo 
cases (N = I,ooo), its standard deviation being 5 units of 
the variable (a = 5). The frequency curve of this distri­
bution is shown, marked "obtained curve", in Fig. 9.2, 
where a is represented by 4 units on the scale. 
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The first problem facing us is to determine the normal 
curve based on N = I,ooo and cr = 5· The central ordi­
nate is given by 

BD 
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FIG. 9.2. OBSERVED AND EXPECTED CURVES 

:z: 

We can now plot the normal curve which is expected on 
our null hypothesis. A test of the hypothesis will consist 
of establishing the significance of the divergence (or of the 
goodness of fit) between the observed and expected curves. 

Now we must decide at how many points we are going to 
measure the difference between observed and expected 
ordinates, (0 -E). It is accurate enough to do it every 
!cr as far as +3cr and -3cr away from the mean. We can 
conveniently tabulate our results as shown in Table 9.1o; 
the tabulated values are only approximate. 

Having evaluated the chi-squared, we now have to look 
up the tables to see if the divergence between the observed 
and expected curves which the x2 represents is significant 
at the 5 per cent and I per cent levels. 
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However, before we can use the tables we must again 

consider the question of the number of degrees of freedom. 
We have computed the differences between the 0-values 
and the E-values at 13 points. It might, therefore, be 
thought that the number of degrees of freedom is 12. It 
may be shown, however, that the appropriate value when a 
comparison is made between an expected normal curve and 
an observed one is (n - 3). Thus in this case we may take 
the value of d.f. = 10. 

The sum of the entries in Column 4 of Table 9.10 is 
8·66. Now, using Table 9.6, we see that for 10 degrees of 

TABLE 9.10 

EvALUATION OF x2; N = 1,000, a= 5 

Col. I Col. 2 Col. 3 Col. 4 

a-value (0 -E) (0- E)2 (0- E)2 

E 

-3a o·o o·o o·o 

-2!a -I·o I"O 0"25 

~2a -3"0 9"0 o·So 

-I!a +2·o 4"0 O"I5 

-a +I2"0 I44"0 3"00 

-!a o·o o·o o·o 

0 -IO"O Ioo·o I"25 

!a -3"0 9"0 I"30 

a +S·o 64"0 I"35 

Iia +6·o 36·o I"40 

2a -I·o I"O O"IO 

2!a -I·o I"O 0"25 

3a o·o o·o o·o 

x2 = :E[(O - E)2/E] = 9·85 
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freedom, even at the 5 per cent level of confidence, the value 
of x2 is over 18. We must, therefore, conclude that different 
as the obtained curve in Fig. 9.2 may seem, it is not sig­
nificantly different from a normal curve based on the a-value 
of the obtained distribution. Therefore we are obliged to 
retain the null hypothesis that the 1,000 individual cases 
of our example are normally scattered. In other words, it 
cannot be concluded that a normal curve does not fit the 
obtained distribution. 



CHAPTER X 

THE PRINCIPLES OF CORRELATION 

Statistics of Relationship. In the early chapters we 
were concerned with the computation of "descriptive" 
statistics. We sought simple numerical descriptions of 
distributions, such as central tendency or variability. Later 
we went beyond the mere description of the distribution 
within the sample. By considering the general theory of 
the reliability or significance of statistics, we learnt some­
thing of the conditions under which it is permissible to 
generalise from the sample to the parent population. Thus, 
we have been concerned so far mainly with statistics that 
describe quantitatively certain characteristics or attri­
butes of either a sample or a total population. 

The aim of many investigations, however, in various 
fields goes beyond the description of the distributions of 
separate characteristics. The research worker must also 
study the conditions under which different degrees of 
incidence of separate characteristics occur. These con­
ditions themselves are, in effect, a group of different charac­
teristics. Therefore, often the general problem of the 
scientist becomes the discovery, the analysis, and the veri­
fication of the relationships between two or more charac­
teristics. 

A coefficient of correlation is a single number that tells 
us to what extent two characteristics are related. It tells 
us to what extent variations in the incidence of one charac­
teristic of a population go with variations in another charac­
teristic of the same population. With the help of such 
knowledge, the scientist can make predictions; and further, 
he may be able to control one thing by manipulating 
another. 
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Thus, if we knew that the higher an army recruit's score 
in a mechanical aptitude test, the higher the average degree 
of proficiency he is likely to exhibit after training, then in 
future we could use scores in this test to predict the level 
of proficiency. There would be a high degree of correla­
tion between scores in the aptitude test and mechanical 
proficiency. The existence of the relationship between these 
two things would be discovered by finding a coefficient of 
correlation between the scores of a number of recruits, and 
measures of the success of their mechanical performance 
later on. We could, however, do more than predict the 
future success of a group of recruits. We could in effect 
control the level of efficiency by selecting for this particular 
field only those recruits who scored high in the test. 

For just such reasons is the economist interested in 
relationships that may be discov~red in economic and 
business time series. Such relationships enable him to 
predict costs, sales and prices, on the basis of some other 
series with which these may be related. The sociologist may 
be interested in the relationship between age and fertility; 
the education officer, in intelligence and scholastic achieve­
ment. The personnel executive may be concerned with the 
relationship between age and production; and the psy­
chologist, between patterns of interest and occupational 
success. In general, all research work leading to prediction 
and control in the field of human affairs is made possible 
because statistical techniques exist, enabling the research 
worker to examine the existence, degree and direction of 
any relationship there may be between two or more charac­
teristics for which measuring devices have been developed. 

The coefficient of correlation is, then, a statistical device 
which can be very valuable if it is properly applied. How­
ever, perhaps nowhere in the whole field of statistical 
procedure are errors more frequent than in the use and the 
interpretation of correlation techniques. In this chapter 
we shall be concerned first of all with the methods of cal­
culating the coefficients; then, we shall note the more com­
mon sources of error so that the reader may be continually 
on his guard if and when he uses the methods. 
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Some Examples of Correlation. The coefficient of 
correlation is a simple arithmetic figure which will indicate 
the extent to which two variables are correlated. It is a 
pure number that has no connection with the units in which 
our variables are measured.- It varies from a value of 
+ I'OO, which means perfect positive relationship, down 
through the value zero which indicates no relationship at 
all, until it reaches its lower limit -I ·oo, indicating perfect 
negative correlation. 
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FIG. 10.1. CORRELATION BETWEEN Two VARIABLES 

For the purpose of illustrating different degrees of 
relationship, let us assume that we have measured for each 
individual in a sample two quantititative characteristics 
X and Y. Fig. IO.I indicates the sort of relationships that 
might result. 
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In each case in Fig. xo.x measures of the X characteristic 
are marked along the horizontal axis, and measures of the 
Y characteristic along the vertical one. Case (a) illustrates 
perfect positive correlation. There is obviously a relation­
ship between the two sets of measures. High values of X 
go with high values of Y, and conversely low values of X 
are found with low values of Y. Moreover, the agreement 
is an exact one; any measure of X is always exactly twice its 
corresponding Y-value. There is direct proportion between 
the two series of measures, and the coefficient of correlation 
is x·oo. The example is a fictitious one. Rarely, if ever, is 
such exact agreement between two things experienced in the 
social sciences. The example, however, illustrates one limit 
of relationship. 

Case (b) also illustrates a positive correlation, but this 
time the correlation is not perfect. Again it is obvious that 
high values of X "tend" to go with high values of Y. The 
tendency is a pronounced one, although the relationship 
is not perfect; so we should expect a high positive correla­
tion coefficient, but something less than x ·oo. The coeffi­
cient of correlation calculated for this case is o•67. In case 
(a) all the individuals line up in a perfect file from the 
lowest to the highest. In case (b), they tend to fan out or 
diverge from a strict line. It is, in effect, this divergence 
from a straight line that illustrates the difference between a 
perfect and a high positive correlation. 

A glance at case (c) in Fig. xo.I indicates that the spread­
ing effect here ts much greater. There is no obvious relation­
ship between measures of X and their corresponding 
Y-values. As the values of X increase, there is nothing to 
indicate what happens to the values of Y. An individual 
with a high X-value is likely to be almost anywhere with 
regard to his Y-value. Not only do the spots on the diagram 
not fall on a line, but there is also no apparent line from 
which they appear to diverge. The scatter is haphazard. 
We should expect a correlation coefficient of zero, or 
something negligibly small. The calculated coefficient in 
this case is in fact -o·x8. 

The situation that occurs when there is a negative cor-
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relation is illustrated in case (d). Here again the relation­
ship is a perfect one, but this time it is of an inverse order. 
As the values of the X-measures increase, those of the 
¥-measures decrease. As the relationship is a perfect 
one, the "size" of the correlation coefficient is 1 ·oo. As the 
"direction" of relationship is "inverse" and not "direct", 
the sign of the coefficient is minus and not plus. This 
illustrates the other limit of relationship, but here again it 
must be pointed out that such perfect relationships between 
things do not exist in the social sciences. 

The correlation coefficient is, then, a mere number like 
an average, or a standard deviation; and like them it sup­
plies important information. Let us now turn to the 
methods used in calculating these coefficients. 

The Product-Moment Coefficient of Correlation. As 
our first example let us consider some data on production in 
the punch-press shop of a factory. Suppose a number of 
operators have each, in a given time, punched a number of 
pieces correctly and also spoiled or wasted a certain number. 
The management is reviewing its policy with regard to the 
speed of the work recommended and with regard to incen­
tives in the form of bonuses. It is important to know 
whether any relationship exists (and if so how much) 
between quantity produced and quantity spoiled. 

In a department of the shop in which ten operators 
work, the production and wastage figures are as indicated 
in Table 10.1. To examine the relationship between pro­
duction and wastage we will use the standard kind of co­
efficient of correlation, the one most commonly computed. 
This is known as the Pearson-Bravais product-moment 
coefficient. The basic formula is 

I:xy 
Txy=N­

crxcry 

where rxy- correlation between the two variables X and Y. 
x- the deviation of any X value from the mean of 

all the X values. 
y- the deviation of any Y value from the mean of 

all the Y values. 
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az- the standard deviation of the X values. 
a'll- the standard deviation of the Y values. 
N- the total number of cases. 

All the above terms should be familiar to the reader. 
The deviations referred to were used in an earlier chapter 

TABLE 10.1 

PRODUCTION AND SPOILAGE RATES PER Houa 
FOR TEN PRESS OPERATORS 

Operator Units Produced Units Spoiled 

I 94 4 

2 98 5 

3 106 6 

4 II4 7 

5 107 6 

6 93 5 

7 98 6 

8 88 4 

9 IOJ 7 

IO 95 5 

when the method of computing the standard deviation was 
outlined. The steps necessary for the calculation of the 
correlation coefficient are set out in Table 10.2. 

The steps are as follows: 

1. List in parallel columns the paired values of the two 
variables X and Y. In this example X is an operator's 
production figure, and Y his spoilage figure. It is important 
to make sure that corresponding values are together. 

2. Sum these two columns and determine Mz, the mean 
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of the X values, and My the mean of the Y values. In 
Table 10.2 these are: 99·6 the mean production figure, and 
s·s the mean spoilage figure. 

TABLE 10.2 

CORRELATION BETWEEN PRODUCTION AND WASTAGE 
FOR TEN PUNCH-PRESS OPERATORS 

Col. I Col. 2 Col. 3 Col. 4 Col. 5 Col. 6 
X y X y x2 y2 

94 4 -5·6 -x·s 31•36 2"25 

98 5 -x·6 -o·5 2·56 0"25 

lo6 6 +6·4 +o·5 40"96 o·25 

114 7 +14"4 +1·5 207"36 2'25 

107 6 +7"4 +o·5 54'76 0"25 

93 5 -6·6 -o·5 43"56 0"25 

98 6 -1·6 +o·5 2·56 0"25 

88 4 -n·6 -1·5 134"56 2"25 

103 7 +3"4 +r5 11·56 2"25 

95 5 -4·6 -o·5 21·16 0"25 

Sums 996 55 o·o o·o 550"40 1o·5o 

Means 99"6 5"5 

ax= V("i:.x2/N) = V(550"4/IO = V55"04 = 7"419 
ay = V("i:.y2fN) = v(xo·5o/Io) = Vx·o5 = 1·025 

rxy = "i:.xy/N. a.,. ay = 65·o/Io x 7'419 X 1·025 
= 65·0/76·1 
= +o·86 

Col. 7 
xy 

+8·4 

+o·8 

+3"2 

+2x·6 

+3"7 

+3"3 

-o·8 

+I7"4 

+5·1 

+2"3 

65·o 

3· Determine for each X value its deviation from M~ and 
list them in Column 3· Be careful to include the algebraic 
sign. To determine x, simply subtract M~ from each X 
value. 
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4· In a similar manner determine for each Y value its 
deviation from M 11, and list them in Column 4· 

5· Check the determination of the deviations by sum­
ming Columns 3 and 4· In each case the sum should be 
zero. 

6. Square each x deviation and list the squares in Column 
5· Note that all signs are now plus. 

7. Square they deviations and list them in Column 6. 
8. Sum Columns 5 and 6 to get :Ex2 and :Ey2. In the 

table these are 550·40 and 10·5o. 
9· Calculate az from the formula 

Note that in this formula there is no correction factor to 
be considered as we are using deviations from the true 
mean. In the calculations below the table, az comes to 
7'419. 

10. Similarly calculate a11• In this example it comes to 
x-o25. 

II. Multiply each value in Column 3 by the correspond­
ing value in Column 4 to get the xy products. List these in 
Column 7· Be careful to get the algebraic signs correct. 

12. Sum Column 7 algebraically to get :Exy. Table 10.2 
shows this to be 65·0. We now have all the information 
necessary to calculate the coefficient of correlation from our 
formula. The calculations follow the table and result in a 
coefficient of +o·86. 

This is a very high value and indicates a distinct relation­
ship between speed of production and amount spoiled. 
Later in this chapter we shall consider the significance and 
reliability of correlation coefficients. 

There is a shorter and simpler method of calculating this 
coefficient. It is shorter in that az and a11 are not calculated, 
and may be used when the standard deviations are not 
required for further statistical computation. The formula 
for this calculation is 
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All the information required is given in Table 10.2, and 
the calculation is as follows: 

rxv = 6s·o/V(sso·4 x ro·s) = 6s·of76·o = +o·86 

The solution, it will be noted, leads to exactly the same 
coefficient. 

How many places of decimals should be used in stating 
the coefficient? In the present example we have used two. 
It must be stressed, however, that the size of the sample is 
very small, and the corresponding sampling error is liable 
to be relatively large. Anything more than two places of 
decimals would be unjustifiable in these circumstances. 
When larger samples are used, say with N = 200 or more, 
then it is usual to calculate r to three places of decimals. 
Small numbers are used in the examples in this book simply 
to make it easy for the reader to follow the computations. 
Despite the existence of special statistical techniques for 
treating small samples, the reader is strongly advised to 
take as large a sample as is practically available (so long as 
it is reasonably amenable to statistical computation) when 
starting out on an investigation. 

The Scatter Diagram. When the sample is large or 
even when it is moderate in size and no calculating machine 
is available, the methods of computation described above 
become very tedious. The usual procedure in such cir­
cumstances is to use grouped data. 

The general principles we followed when grouping 
data for frequency distributions apply here. We are in fact 
grouping two lots of data into class intervals and presenting 
them in the form of frequency distributions. A special 
method is used, however, in which the two groupings are 
done at the same time and presented in what is called a 
"scatter diagram". An example will iUustrate the method. 

Suppose for the purpose of our example that a factory 
has inaugurated a training scheme whereby recruits are 
trained in the techniques and skills of their jobs before 
being posted to the various shops. In assessing the value 
of the training programme, the management wishes to 
know whether there is any relation between the scores 
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obtained by the recruits during their training course and 
their subsequent success on the job. In order to deter­
mine this, some quantitative estimate of job success is 
required. This is achieved by having the supervisors 
rate the individuals concerned on a rating scale for pro­
duction, efficiency, and job knowledge. The rating scale, 
used after say one year, is so designed that it will yield a 
total score for each individual, and this score can be taken 
as a quantitative estimate of job success. Each individual 
concerned has now two scores, and we are in a position to 
tackle the problem. 

The scatter diagram or "scattergram", as it is often 
called, depicting the paired scores for 140 operatives is 
shown in Fig. 10.2. The construction of this chart is 
quite simple. Along the top are listed the class intervals of 
the training scores with their limits; and down the left­
hand side the class intervals and limits for the distribution 
of job success scores are set out. Each of the 140 operatives 
is represented in the body of the table for both training 
score and success score. He is represented by a tally mark 
which depicts his two scores. 

To illustrate the tallying process, suppose one worker 
scored 68 on the training course, and achieved a rating of 
21 on job success. A tally is placed for him in the cell of the 
diagram where the column for interval 65-69 in training 
score intersects the 'row for interval 2o-24 in job success 
score. 

When all the tallying is completed the cell frequency, or 
the number of cases in each cell, is entered on the diagram. 
Next the cell frequencies in each row are summed and the 
totals are entered for each row in the last column headed fv· 
This column now gives the frequency distribution for the 
job success scores. The cell frequencies in each column 
are now summed, and the totals are entered in the last row 
which has the title f:c· This row depicts the frequency 
distribution for the training programme scores. 

Both the fx column and the fv row must total 140, the 
number of men in all. The fact that these totals both equal 
N is not, however, a check on the tallying process. It is quite 
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easy to put a tally mark in the wrong cell, and the only way 
to check the tallying is to do it twice, or better still, have two 
people do it and compare the results. 

TRAINING SCORES 

f 0\ 
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FIG. 10.2. SCATTER DIAGRAM 

Calculating r from the Scatter Diagram. The 
preparation of the scatter diagram is the first step necessary 
for the calculation of a Pearson r when the data are grouped. 
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For the calculation itself the formula is suitably altered, 
becoming 

LX'y' ---w-- (c' xC'y) 
r xy = (ax')( cry') 

where x'- the deviation from the guessed mean of the 
X-series in terms of the class interval unit. 

y'- the deviation from the guessed mean of the 
¥-series in terms of the class interval unit. 

c' x- the correction factor in X for having used a 
guessed, and not a true mean of X; it is also 
calculated in class interval units. 

c' y - a similar correction factor in Y, also in class 
interval units. 

ax' - the standard deviation of X in class interval 
units. 

ay' - the standard deviation of Y in class interval 
units. 

This at first sight, no doubt, looks a most complicated 
process. It must be stressed, however, that we are not 
using a new formula. It is exactly the same as that used in 
the early part of this chapter when computing r from un­
grouped data. In this case, however, all calculations are in 
terms of the class interval as the unit and in terms of a 
guessed mean, so that the formula has to be adjusted to take 
account of these factors. The sole purpose of using a guessed 
mean and a class interval unit is to make the computation 
simpler. Complicated as it may appear, the working is really 
quite straightforward, and the reader has to concentrate 
chiefly on the manner of setting the work out and the order 
in which the steps are taken. 

Table 10.3 will serve as an illustration of the computa­
tion required. It is called a correlation table, and contains 
the paired job success and training scores from the scatter 
diagram in the form of frequencies for the two sets of class 
intervals. To the right of this frequency table six columns 
are ruled, and below, six rows are ruled. These will even-
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tually contain data concerning the job success and training 
score distributions respectively. 

With the table prepared as explained, the procedure is as 
follows: 

1. Sum all the rows to get the total frequencies for each 
class interval of the job success scores, and enter them in 
Column I under the headingj11• For example, for the class 
interval no-114 the row contains numbers I, 2, 2, 3, and 3, 
and these are summed giving a total frequency of I I that 
appears as the second item in the column. 

2. Similarly sum all the columns and enter the totals in 
Row I to get the frequency distribution of the training 
scores. This row is titledfx· Thus the training score inter­
val 65-69 contains numbers I, 3, 4, 7, 4, and I, and when 
these are summed they give 20 which appears as the fourth 
item in Row fx· 

3· Sum Columnj11 and Row fx, and check that they each 
have a total equal to N. In this example N is 140. 

4· Look down the Column fv and guess the interval that 
contains the mean. It does not matter whether you make 
a good guess or not, but the better the guess the simpler the 
calculation. It is usual to pick the largest frequency. A 
glance at the table shows that 27 is the largest frequency. 
This is the frequency for the job success score interval9Q-94· 
Double lines are ruled above and below the row containing 
this frequency. 

5· Similarly look along the Row fx containing the distri­
bution of the training scores, and again guess the interval 
that contains the mean. The largest frequency is 26 for the 
interval 7o-?4· Double lines are ruled on either side of the 
column containing the frequency 26. 

6. In Column 2 headed y' are entered the deviations of the 
success score intervals from the interval containing the 
guessed mean. These deviations are in units of class inter­
vals. Thus the row above the one bounded by double lines 
has a deviation of I, the next above 2, and so on. Similarly 
the row below the one bounded by double lines has a devia­
tion of -I, the next -2, and so on. 

7· Row 2 titled x' is filled in, giving the deviations of the 
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training score intervals from the one containing the guessed 
mean. Again it will be noted these deviations are in terms 
of class intervals. 

8. Fill in Column 3 by multiplying the corresponding 
entries of Columns I and 2 to get fy'. Sum this column 
algebraically to get 'i:.fy'. In the table 'i:.fy' = 98. Be careful 
with the signs. 

9· Similarly complete Row 3 by multiplying the items 
from Rows I and 2 to get fx', and sum the row to get 'i:.fx'. 
In the table 'i:.fx' = 47· 

IO. Multiply Column 3 by Column 2, item by item, to 
get fy'2, and enter the results in Column 4· All the signs, 
it will be noted, are now plus. Sum this column to get 
'i:.fy'2. In the table 'i:.fy'2 = 654. 

I I. Similarly complete Row 4, and sum the row to get 
'i:.fx'2. In our example 'i:.fx'2 = 637. 

I2. To get the x'y' products the procedure is as follows. 
Take in turn each cell that contains a frequency, and multi­
ply they' value for its row, by the x' value for its column, 
and enter the product (in brackets) in the upper left-hand 
corner of the cell. Be careful with the sign. 

I3· Multiply the x'y' product of each cell by the fre­
quency in the cell to get the total x'y' product. Enter this 
total without brackets in the bottom right-hand corner of 
each cell. The cells bounded by double lines have, of course, 
no x'y' products as their deviations are o. It will be noted 
that all the total x'y' products in the top right-hand quarter 
and bottom left-hand quarter of the tables are +, while 
those in the top left-hand and bottom right-hand quarters 
are -. This must always be so. 

I4. Sum all the +x'y' _products for each row, and enter 
the totals in Column 5· Sum all the -x'y' products for 
each row and enter the totals in Column 6. To get the 
grand total 'i:.x'y', sum Columns 5 and 6, and subtract the 
total of Column 6 from the total of Column 5· In our table 
'i:.x'y' = 488 - 30 = 458. 

I5. Sum the +x'y' products for each column, and also 
the -x'y' products, and enter them in Rows 5 and 6. ·Sum 
Rows 5 and 6 and get the grand total 'i:.x'y'. This is a 
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check on step 14. The sums of Rows 5 and 6 must equal 
the sums of Columns 5 and 6 respectively. 

All the information is now available to calculate r. The 
steps in the calculation are shown below, and are self­
explanatory. The result shows that there is a correlation 
of o·7o between training course scores and subsequent 
merit rating scores. 

c'a: = ~{;' = ~~ = 0'336 

~.f,' 8 
c' = ...iL = ..2____ = o•7oo 

II N 140 

a:~:'= ~fx'2 - (c'x)2 = J637 - 0'113 = 2'11 
N 140 

ay' = J~fy''!.- (c'y)2 = J654 - 0'49 = 2'05 N 140 

I:x'y' , ' !r- (c z. c 11) 

r zy = (a a;')( ay') 

458 - o·336 X 0•700 
= 140 

2'11 X 2'05 

3'28 - 0'235 3'045 = =--
4'32 4'32 

= 0'70 

The Size of the Correlation Coefficient. What degree 
of relationship does a correlation of o·7o indicate? Any 
coefficient that is not zero and that is significant statistically 
indicates some degree of relationship. It is important to 
understand, however, that the degree of relationship is not 
proportional to the size of the coefficient. A coefficient of 
o·6o does not mean that the relationship is exactly twice 
as strong as one indicated by a coefficient of o·3o. 

The correlation coefficient is an index number, not a 
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measurement like inches, pence, or tons. The correct 
interpretation depends always on the particular problem 
being investigated and the purpose for which the coefficient 
is being calculated. What would be considered a high 
correlation in one investigation may be considered a low 
one in another. However, speaking generally, the following 
is a rough but useful guide to the degree of relationship 
indicated by the size of the coefficients. 

less than o·2o 

Very high correlation; very strong relation­
ship. 

High correlation: marked relationship. 
Moderate correlation; substantial re­

lationship. 
Low correlation: a definite relationship 

but a small one. 
A slight correlation: relationship so small 

as to be negligible. 

This interpretation of course is only valid for correlation 
coefficients that satisfy the tests of reliability. 

Reliability of Correlation Coefficients. The mere 
statement of the value of a correlation coefficient is not in 
itself sufficient evidence of relationship between two 
variables. Like all statistics computed from samples taken 
at random, correlation coefficients are subject to sampling 
errors. In the previous example the data on one hundred 
and forty cases yielded a coefficient of o·7o leading us to 
believe that in the circumstances described there was a 
considerable relationship between training scores and 
success on the job. If, however, we took a second and third 
and fourth sample should we continue to get a value in the 
neighbourhood of o·7o? Or, would the successive values 
fluctuate considerably? In general, how reliable is the 
calculated coefficient? 

In earlier chapters the significance and reliability of the 
means of samples were tested by comparing them with their 
standard errors. The reader will remember that if means 
were to be calculated from a number of samples, provided 
the samples were large, these means would themselves 
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tend to be distributed normally. The standard error of the 
mean is simply the standard deviation of all these sample 
means. Knowledge of this standard error enabled us to 
state the degree of confidence we could have that the true 
mean lay within certain specified limits. 

The same method may in certain cases be used in inter­
preting correlation coefficients. The standard error of r 
is given by the formula 

ar =(I - r2)JV(N- 1) 

When N = I40 and r = 070, as in the example above, 

It is sufficient to state most standard errors to two signifi­
cant figures. This result enables us to estimate with varying 
degrees of confidence how close our computed r is to the 
true population r. The odds are about 2 to I that our value 
of o·7o does not deviate from the population r by more than 
o·o43. The odds are 20 to I that it does not deviate more 
than twice its standard error, or o·o86, and xoo to 1 that it 
does not deviate by as much as o·III, or 2·s8 times the 
standard error. In normal statistical practice the odds of 
xoo to I are considered very satisfactory; thus with a 
correlation coefficient of o·7o, and a standard error of o·o43, 
there is less than one chance in a hundred that the true 
population coefficient falls outside the limits of o·7o 
± o·III, or o·8I and o·s9· The coefficient that we arrived 
at is, then, a reliable indication of quite a high correlation, 
and we can feel assured that further sampling would not 
yield a low correlation coefficient. 

It should be pointed out here that sampling distributions 
of correlation coefficients, unlike those of most other statis­
tics, are not symmetrical ones. The shape of the particular 
sampling distribution, in fact, depends on both the size of 
the sample. The former affects the sampling distribution 
symmetry. Correlation coefficients have a very restricted 
range, from +x to -1. No coefficient can exceed these 
limits, so that when the population r-value approaches them, 
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the sampling distribution becomes more and more skewed. 
Only when the population r-value is in the neighbourhood 
of zero, can the sampling distribution be expected to be a 
symmetrical one. 

Does this mean then that the calculation of a standard 
error, which assumes a symmetrical distribution, is no 
guide to reliability? In theory it is applicable only to small 
r-values and large N-values. In practice, however, one need 
not worry about the effect of skewness for correlation co­
efficients that range from, say, +o·8o to -o·8o, provided 
the sample is a large one. The larger the sample the smaller 
the dispersion of r-values, so the moral is take large samples 
and avoid troublesome problems of reliability. 

The Significance ofSmall r-Values. When a calculated 
correlation coefficient is numerically small, but either nega­
tive or positive, the question of reliability becomes more 
important. We are not now only concerned with the 
"amount" of relationship, but the question arises "is there 
any relationship at all?" The possibility is that the popula­
tion r-value is zero, and our calculated r, the size of the 
sample being what it is, has just occurred merely by 
random sampling. 

The best approach to solving this problem is to assume 
that the population r-value is zero, and then ask ourselves 
the question "could the calculated coefficient have arisen 
by random sampling?" Thi~ is another application of the 
null hypothesis. When the population correlation coefficient 
is zero, then the standard error is given by the formula 

cr,.. = I/V(N- 1) 
and by the use of this formula we can answer our question 
with varying degrees of confidence. 

Let us assume, for example, that a given problem yielded 
a calculated r of o·x6 from a sample of 401 cases. Applying 
the formula, 

cr,.. = xJV400 
= I/20 

= o·os 
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Our hypothesis now is that the population r is zero, and the 
value of o·os arose merely due to errors caused by random 
sampling. The test of this hypothesis lies in the examina­
tion of the critical ratio, t, where 

t = rfa,.. 
In our example 

t = o·I6fo·os = 3·2o 

This means, in effect, that the calculated coefficient is more 
than three times as large as its standard error, and rarely 
could such a correction occur by random sampling in a 
population where r is in fact zero. Thus we can reject the 
null hypothesis and declare that there is a significant 
relationship. 

With what degree of confidence can we make such a 
declaration? The larger the t, the less likely could r occur 
by random sampling. At the 5 per cent level of confidence, a 
t of I ·96 indicates a "significant correlation". This means 
that we can reject the null hypothesis and be wrong only 
five times in a hundred. We can be more confident in our 
rejection of the null hypothesis if we set as our criterion 
at-value as large as 2·58. This corresponds to the I per cent 
level of confidence, and means that there is less than one 
chance in a hundred that a t as large or larger could have 
occurred due to chance. 

In general at greater than I·96 but less than 2·58 may be 
taken as indicating a "significant" correlation while a t of 
2' s8 or greater may be taken as indicating a "very significant" 
correlation. Anything below I ·96, however, should ordi­
narily be treated as "insignificant". This does not mean that 
in fact there is no correlation; it simply means that the 
existence of a relationship is "not proven". 

The reader is warned against accepting correlation co­
efficients at face value. It is most important to examine the 
reliability of the figure, and particular notice must be taken 
of small coefficients, as a small positive r might arise in a 
sample when in fact the population r-value is small but 
negative. 

Finally, even a high correlation between A and B does 
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not signify a cause-and-effect relationship. It signifies only 
association. A may in fact be the cause of B; B may be the 
cause of A; or A and B may vary concomitantly due to a 
third, but unknown, factor C. Statistics alone will give no 
answer. When functional relations are examined by the 
use of statistical techniques, the analysis must always be 
considered incomplete until a logical connection has been 
traced between the variables. 

Significance of Difference between Means when 
Measures are Correlated. In considering the question of 
the statistical significance of a difference between two means 
in earlier chapters we noted that the formula we used for the 
standard error of the difference between means was valid 
only when the two sets of data were uncorrelated. In practice 
such two sets of measures are by no means always uncorre­
lated. Correlated samples are encountered when two sets of 
measurements are obtained from the same group of subjects, 
or from two groups where subjects are matched pair by pair. 
A typical example of correlated measures occurs when, say, 
an achievement test is given to a single group of children 
before and after a course of coaching. Those individuals 
who were good on first testing will very likely be good on 
second testing also, and those who were poor to start with 
will probably remain poor. 

The coefficient of correlation must be taken into account 
in the computation of the standard error of the difference 
between two means. The formula is 

<J]) = V <1M12 + <1M1 2 - 2TaM, <1M, 

where an- standard error of the difference between the 
means, 

aM1 - standard error of the first mean, 
GM,- standard error of the second mean, 
r- coefficient of correlation between the two sets 

of data. 

When r = o, the formula assumes the familiar form of 
an= v' ax12 + aM.z. 

Consider a numerical example. A test has been ad-
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ministered to the same group of subjects on two occasions. 
Is there a statistically significant difference between the two 
average scores? The data are as follows. Number of sub­
jects= 101. Mean scores and standard deviations res­
pectively M1 = 99·1, Mz = IOI-8, cr1 = IS, crz = 16. 
Coefficient of correlation between test results = o·7o. 

The first step consists in calculating the standard errors 
of the first and second means. 

crl IS 
crM = = -- = 1"5 

1 v'N - I v'iOo 
crz I6 

crM. = v'N- I= VIOO = 1'6 

Next, the standard error of the difference between the 
means, 

crn = VI-52 + I-62 - 2 X 0•7 X 1"5 X 1"6 

= v' 2·25 + 2·56 - 3·36 

= v'I·4s 
= 1"2 

IOI·8 - 99"1 2"7 Hence t = = -= 2·25. 
' I"2 1"2 

If small-sample methods are used, the number of degrees 
of freedom to be considered is given by the number of 
pairs compared minus one, N - I. In our case, therefore, 
df = 100. Thus we see that the t-ratio of 2·25 indicates 
significance at the 5 per cent level of confidence but not at 
the 1 per cent level. If the coefficient of correlation had not 
been taken into account in the computation of the standard 
error, we would have found the difference between the means 
not significant at the 5 per cent level when, in fact, it is 
significant. 



CHAPTER XI 

STATISTICAL PREDICTION 

In attempting to predict future events we are sometimes 
able to make better-than-chance forecasts by extrapolating 
from known events in the past. If, for example, we know 
that a school-leaver has always in the past done well in 
examinations, we should be inclined to expect him to be 
successful at university. More precisely, assuming that 
there is a moderate positive correlation between people's 
school examination results and their university degree 
classes, any individual whose scores are well above average 
in examinations at school is likely to gain a good university 
degree. Thus, we predict that a given individual will 
leave university with a good degree on the basis of our 
knowledge (a) that there is, in general, a positive correlation 
between school and university examination scores, and (b) 
that the particular individual has done well at school. We 
shall see later in this chapter how such prediction may be 
accomplished in numerical terms. 

Regression Lines. Consider two variables the relation­
ship between which is represented in a scatter diagram, 
such as that set out in Fig. 10.2 in the last chapter. If 
training scores are denoted by X and success rating scores 
are denoted by Y, as shown in Table 10.3, then the best 
prediction for an individual with a given X-score is the 
arithmetic mean of the ¥-distribution in the column corres­
ponding to the class-interval of our X-score. This is the 
case simply because, not knowing which Y-value will be 
the one obtained by the individual in question, we shall 
be least in error if we choose the average Y-score in the 
appropriate column. We may now plot the averages of 
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Y-scores against the mid-points of the class-intervals of the 
variable X, as shown in Fig. II.I, and draw a straight line 
closest to all the plotted points. Such a line is known as the 
regression line of Y on X. A line similarly joining the 
means of rows in Fig. 10.2 would represent regression of 
Xon Y. 

110 

105 

100 

95 
y 

90 

75 

0 

0 

0 

0 

FIG. I I. I. REGRESSION LINE OF Y ON X 
(see data in Fig. 10.2 and Table 10.3) 

0 

0 

It should be noted that it is not always feasible to draw 
straight regression lines joining the plots of means of 
columns and of means of rows in such a way that these 
plots are reasonably evenly distributed on either side of 
each of the two lines. It is only when straight regression 
lines can be satisfactorily fitted to the data that the correla­
tion between the two variables in question is described as 
rectilinear. And the product-moment coefficient of cor­
relation may be computed only when the correlation can 
be assumed to be rectilinear. However, very many cor­
relations encountered in practice are such that they may be 
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with justification expressed numerically by means of the 
product-moment coefficient. In these cases it is taken that 
the regression lines are straight, which makes it practicable 
for simple statistical prediction calculations to be made. 

Linearity of Correlation. Before dealing with predic­
tion calculations, it would be worth while to turn briefly to 
the topic of rectilinearity of relationships. Consider a 
numerical relationship between two variables, which we 
shall call X and Y. Imagine that we have scores for a num­
ber of individuals, as shown in Table II.I. It is clear 
that the correlation between X and Y is perfect in the sense 
that measures on Y are directly and systematically related 
to measures on X. In fact, when X increases by 1, Y in­
variably doubles. 

TABLE II.I 

AN EXAMPLE OF PERFECT NoN-LINEAR CoRRELATION 

Person A B C D E F G H 

Score X 2 3 4 5 6 7 8 

Score Y I 2 4 8 

If we applied the product-moment formula to these made­
up data, we should not obtain a correlation of + 1. When 
variables are perfectly related in a rectilinear manner, the 
computed product-moment r does equal unity. However, 
in this case the relationship between our two variables is 
clearly not linear. This could readily be seen if the data in 
Table II.I were plotted; obviously, a smooth line joining 
the plotted points would be curved. The relationship 
between X and Y is here a curvilinear one. There is an 
appropriate formula for calculating numerical values of 
non-linear correlations. The appropriate coefficient of 
correlation is commonly denoted by the Greek letter l) 

(eta). The coefficient of correlation, l), is equal to the 
familiar product-moment r only when the correlation is 
rectilinear, i.e. when it may be represented graphically by a 
straight line. 
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Curvilinear relationships, which cannot be expressed in 
terms of the product-moment correlation, are by no means 
uncommon in real-life situations. Growth functions are 
one example. Thus, increase of body weight with age is 
curvilinear; so also is, say, one's jumping ability. Intelligence 
test scores (but not I.Q.s) plotted against age give initially 
a fast ascending curve, which later flattens, and eventually 
slowly declines. Learning curves are not rectilinear either; 
they are often jagged, but they tend to flatten out whether 
they are plotted against time or against numbers of training 
sessions. All this, however, is not to say that essentialfy 
rectilinear relationships are unusual; they are, in fact, 
pretty ubiquitous. This being so, the product-moment 
correlation is a very widely used statistic, and predictions 
based on linear regression have many useful applications. 

Predicting Y from X. We have seen that the two 
regression lines based on a scatter diagram join, one-the 
means of rows, and, the other-the means of columns. 
If we could write down their straight-line equations, then 
we should be able to give for any value of X the correspond­
ing value of Y, and vice versa. This corresponding value 
of Y is the most probable value of Y for the given X, and 
therefore the estimated or predicted value of Y. 

We must bear in mind that in statistical prediction we are 
dealing with two correlated distributions, viz. X-scores and 
¥-scores-for example, entry examination and final 
examination results for a given population of individuals. 
Suppose that the particular product-moment correlation 
coefficient is r; suppose also that the mean and the standard 
deviation of the X-distribution are Mx and ax respectively; 
and correspondingly for the ¥-distribution-My and a11• 

Then it may be shown that if Y' is the predicted value for a 
given X-score, 

Y' = r~(X- Mx) + M 11• ax 
This is one of the forms of the straight-line regression 
equation of Y upon X. Provided Mx, M 11, ax, a11 and r are 
known, we may predict or estimate Y' for any value of X. 
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That is, once the constants of the situation have been 
established, we are able to say what the most probable Y­
score will be for any individual initially scoring X. 

Consider the following numerical example. Suppose that 
it has been found that a test of "general ability" ad­
ministered to a population of school-children gives an 
average score, Mx = 102, with a standard deviation, 
crx = 15. Suppose further that examination results three 
years later produce an average mark, My = 56, with a 
standard deviation, cry = 8. And it has also been found that 
a correlation between the test scores and examination 
marks is Txy = 0'59· We may now wish to predict, as far 
as this is possible, how a particular individual, who has 
just obtained a score of 116 on the test, will eventually do 
in the examination. We have all the information necessary 
to apply the formula above. Thus, 

8 
Y' = 0'59 X 3II6-Io2) + s6 15 
Y' = 6o·4 approx., or about 6o marks. 

We could have initially expressed this individual's test 
score not in its raw form, but as deviation score. Having 
scored u6, he was 14 points above the average. Thus, his 
deviation score is x = 14. We may now apply the appro­
priate version of our formula, namely the one that predicts 
a subject's deviation score. The form which the formula, or 
regression line, now takes is: 

Substituting our data, we have 

y' = 0'59 X .! X 14 IS 
:. y' = +4'4 approx. 

That is, the predicted deviation score is 4'4 above the mean 
of s6, as before. 

We could also have expressed our test score not as a raw 
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score, or a deviation score, but as a standard score. If the 
individual's deviation is 14 when the standard deviation 
ofthe distribution is 15, then his standard score, Zz = U, 
i.e. Zz = 0'93 approx. 

The appropriate formula to use is: 

z'y = rzz. 

Substituting our values for rand Zz, we have: 

z'y = 0'59 X 0'93 

:. z'y = o·5s- approx. 

That is, the predicted examination mark will be o·55 of the 
standard deviation above the mean mark. Since the stan­
dard deviation is 8, this individual's deviation score will 
be 8 x o·55, or 4·4; and his actual examination mark is 
predicted to be 56+ 4'4 = 6o·4, as before. 

The Reliability of Simple Prediction. We have seen 
that in the numerical case discussed in the last section the 
best estimate we can make of the person's examination mark 
is that it will be 6o, or perhaps 61. How reliable is such a 
prediction or estimate? We can answer this question by 
specifying the confidence limits below and above the 
estimated examination score at conventional confidence 
levels of 5 per cent and 1 per cent. To be able to do this 
we must first evaluate the standard error of the statistic Y', 
just as in determining the reliability of a mean we have to 
calculate initially the standard error of that mean. 

We have given in earlier chapters formulae for the stan­
dard errors of the mean, the standard deviation, the differ­
ence between two means, and so on. We must now add to 
our list the formula for the standard error of the predicted 
or estimated Y. It is 

O"(est Y) = ayV I - r 2 

where ay-standard deviation of the Y-distribution and 
r-the correlation coefficient between the Y-distri­

bution and the X-distribution. 
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We may now return to our numerical problem. The 
standard error of the estimated Y-score will be: 

a<est Y> = 8v 1 - o·s92 

:. O"(est Y) = 6·4 approx. 

At the 5 per cent level, the confidence limits below and 
above the estimated Y' are: 

Y' =F 1·96 O"(est Y) 

where the coefficient of x-96 derives from the normal 
curve (see Chapter V). At the 1 per cent level, the limit 
below and above Y' are: 

Y' = =Fz·s8 a<est Y) 

where the coefficient 2· 58 is again a normal-curve constant. 
Thus the confidence limits at the 5 per cent level are: 

6o·4 =F x-96 X 6·4, that is 
47·8 and 73·0 approximately. 

At the I per cent level the limits are 

6o·4 =F z·s8 x 6·4, that is 
43·8 and 77·0 approximately. 

It will be seen that the limits within which the actual 
examination mark of the individual in question may fall 
are relatively far apart. In other words prediction from test 
score, when the correlation between test and later examina­
tion is only o·59, is fraught with. uncertainty. In practice 
such correlations may well be below our example figure of 
o· 59; in those cases prediction would be rather unreliable 
and perhaps not really worth while. However, at high 
correlations between X and ¥-distributions, the prediction 
of Y' from any given X will be found to be pretty depend­
able and therefore it could be very useful indeed. 

It may be seen from the formula for Y' that when r = o 

Y'=My. 
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That is, when there is no correlation between the X and 
Y-distribution, the best prediction for any value of X is 
My. Furthermore, when r = o, 

O"(est Y) = cry. 

This means that all that can be said about the estimated 
Y (i.e. Y') is that it will be almost certainly somewhere 
within the range of My ± 3crv (assuming a normal distri­
bution of Y-scores). 

Consider now the prediction from any X-score when 
r = 1. Again Y' may be obtained from the regression 
equation of Yon X. It will also be seen from the formula 
for O"(est Y) that O"(est Y) = o. That is, in these circumstances, 
our prediction of Y from any given X-value will not be 
subject to error; the estimated Y will be fully reliable. 

Such perfect predictions cannot be made in practice. 
On the other hand, when correlations are no more than 
middling, say around o·s, predictions are rather unreliable. 
It may be readily worked out that when r = o·87, the 
standard error of the estimate is reduced to one-half of the 
standard deviation of the Y-distribution. At that level of 
correlation it is clearly useful to make numerical predictions 
based on regression equations. 

Multiple Correlation and Regressional Analysis. 
So far we have been concerned with the prediction of Y 
from any X, given the correlation between Y-measures and 
X-measures. The X-scores are a set of predictor scores. 
For example, these may be initial examination marks in sub­
ject A obtained by entrants into some public service. But 
there may also be available examination marks in subject 
B, that is, a further set of X-scores. And, indeed, there may 
be more predictors to hand-marks in further subjects: 
C, D, etc. Now each of the predictor variables will cor­
relate with the "criterion" variable; in our example, each 
set of examination marks will correlate with the subsequent 
public service success scores. A correlation between the 
"criterion" scores, on the one hand, and all the separate 
predictor scores considered jointly, on the other, is known 
as multiple correlation. 
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If we denote the correlation between the first predictor 
and the criterion by '1-z, the correlation between the 
second predictor and the criterion by r1-3, etc., then it is 
possible to express R, the multiple correlation coefficient, in 
terms of r1_2, r1-3, etc. The actual formula, which is beyond 
the scope of this introductory book, involves also correlation 
coefficients among the predictors themselves. It may 
be noted that R, the multiple correlation coefficient, is 
always greater than the individual correlation coefficients 
between any one of the predictors and the criterion. This 
indicates that prediction from several predictors at once is 
better than prediction from one predictor only, which is 
what one would expect. 

Regressional analysis is concerned with just that kind of 
prediction. As may be surmised, multiple regression 
equations are more complex than the simple regression 
equation given earlier in this chapter. The latter in its 
simplest form was given as z' 71 = rzz. This may be 
conveniently restated, if we denote variable Y by I and 
variable X by 2. Our equation now becomes 

z'1 = rzz. 

This formulation will enable us to introduce further pre­
dictors, to be denoted by 3, 4, etc. Consistent with this 
type of notation is the so-called multiple regression equation, 
as follows: 

z'1 = ~2Z2 + ~3 + ~4Z4 + ... + ~nZn 
where ~2, ~3, etc., are constants of the situation, which may 
be determined from the available data. These ~-values are 
known as ~-weights, or ~-coefficients, or standard partial 
regression coefficients. In essence, regressional analysis 
consists of the determination of ~-weights by means of a 
procedure known as pivotal condensation. This is com­
putationally quite involved, and the interested reader must 
again be referred at this point to more advanced textbooks. 
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SOME FURTHER CORRELATION METHODS 

The product-moment method of calculating the coefficient 
of correlation, discussed in the last chapter, must be re­
garded as the fundamental and the strict one. In the present 
chapter we shall deal with several other methods which, 
although open to certain criticisms and subject to various 
limitations, are very useful when not all or when none of 
the sets of correlated data are given in the form of frequency 
distribution of measures. 

Biserial Correlation. The biserial coefficient, rw, is used 
to measure the degree of correlation between two variables 
when one is given in the form of a frequency distribution 
and the other is in the form of a dichotomous (or, twofold) 
classification; the latter may be exemplified by such classi­
fications as those of men into tall and short or of pupils 
into the ones who passed and the ones who failed to pass 
an examination. 

The formula for the biserial coefficient of correlation 
gi_ven later is very useful, even though it has been developed 
on certain assumptions regarding the nature of the data. 
Thus, before applying the formula it is clearly necessary 
to be satisfied that the particular set of data can be justi­
fiably used. 

The only assumption regarding the frequency distri­
bution is that it is obtained from a sample which is repre­
sentative of the parent population, and that its standard 
deviation is a good estimate of the parametric standard 
deviation. We have already seen that for fairly large samples 
it is reasonable to accept that the sample sigma is the same 
as the parametric population sigma. 
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With regard to the dichotomous classification the assump­
tion made is much more stringent. It is that underlying the 
classification is a normal distribution of a continuous 
variable, and that the classification merely divides the 
normally distributed individuals into those above and those 
below a certain value of the variable quality. Suppose that 
this quality is the knowledge of arithmetic. If a group of 
children are tested for their knowledge of this subject, 
each child will show some knowledge, and this will be 
represented by the child's test score or examination mark. 
The test scores and even the knowledge of arithmetic which 
they represent may be not unreasonably assumed to be 
normally distributed. Then, scores above a certain value 
may be regarded as passes and below that value as failures. 
Provided our twofold classification is obtained, or may be 
assumed to be obtained, on such a basis, the condition 
regarding the classification is satisfied. 

The dichotomous classification divides the continuously 
distributed variable into two groups. For instance, if we 
were to measure the correlation between the results of an 
intelligence test and those of a scholarship examination, 
then the test scores could be divided into two groups of 
(a) the scores of those children who passed the examination, 
and (b) those who failed to pass it. Now if 

Mp is the higher mean of obtained scores from one of the 
groups, 

Mq-the lower mean (i.e., the mean of the other group), 
p- the proportion of the cases in the higher group, 
q- the proportion of the cases in the lower group, 

at -the standard deviation of the total distribution of 
the continuous variable, 

y- the height of the ordinate which divides the normal 
curve of unit area into two segments in the pro­
portion p: q, 

then the coefficient of biserial correlation is given by 

Tbf = Mp - Mq X pq 
at y 
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An alternative form of the formula is 

Mp -Mt p 
TIJt = X-a, y 

where Mt is the mean of the total distribution of the con­
tinuous variable. This form is more convenient when a 
number of biserial coefficients have to be calculated between 
the same continuously distributed variable and several 
dichotomous classifications. Such a situation may arise, 
for example, in mental testing, when test items of the right­
wrong type are correlated with total test scores. 

Consider the following example. Suppose we have the 
results of an "intelligence test" of our own construction for 
200 children, and we know also which of these children have 
passed a scholarship examination and which have failed, but 
have no further information about marks or order of merit. 
We may then calculate the biserial correlation coefficient 
between our test and the scholarship examination results. 
The data and calculation are set out in Table 12.1. 

Assumed Mean= 54"5 

Mp = 54"5 + ~ X 10 = 59"3 120 

S7 Mq = 54"5 - So X 10 = 43·6 

120 p=-=o·6o 200 

So 
q= 200 = 0"40 

at= IOJ619- (-29)2 = 17"52 
200 200 

y = o·3S6 from Table 12.2 below 

59"3 - 43·6 o·6o X o·4o 
TIJt = X ---=,......,.-17"52 0•386 

.". TIJt = 0·556 
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TABLE 12.1 

BISERIAL CORRELATION BETWEEN TEST ScORES AND 
EXAMINATION RESULTS 

Col. Col. Col. Col. Col. Col. Col. Col. Col. 
I 2 3 4 5 6 7 s 9 ------

Number Number 
of of Devia-

Test Exami- Exami- tiona II 
Scorea nation nation from .,. (pX f,x (fp+ft> ftx 

Passes Failures A.M. 
f:t> It " 

90-99 4 0 4 I6 I6 0 4 I6 

So-89 7 0 3 9 2I 0 7 2I 

7o-J79 21 2 2 4 42 4 23 46 
6o-69 24 II I I 24 II 35 35 

5o-59 3I IS - - - - 49 -
4o-49 23 23 -I I -23 -23 46 -46 

3o-39 s II -2 4 -16 -22 I9 -3S 

20-29 2 6 -3 9 -6 -IS s -24 

10-19 0 6 -4 16 0 -24 6 -24 

0--9 0 3 -s 2S 0 -IS 3 -IS --
120 So +sS -S7 200 -29 

The steps in the calculation are as follows: 

Col. 
10 

fix' 

64 

63 

92 

35 

-
46 

76 

72 

96 

75 --
619 

1. M p and M q are calculated by the short method from 
an assumed mean. The latter is taken midway in class 
interval 5o-59· being therefore equal to 54"5· 
'E.f pX is entered at the foot of Column 6 and is +58; 'E.fqx, 

at the foot of Column 7, is -87. Since M-= AM+~ i, 
as explained in Chapter II, Mp = 59"3 and Mq = 43·6, as 
shown in the calculation immediately following Table 12.1. 

2. By definition p = proportion of cases in higher group; 
120 6 . "I I :. p = - = o· ; s1m1 ar y q = o·4. 
200 

3· The standard deviation of the total distribution is 
obtained by the short method, as explained in Chapter 
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III. Squared deviations from the assumed mean are set out 
in Column 5, andfx2 values in Column 10. J'=y:,fi--=-x-::'2==---

We have seen that in general a= i ---w-- c'2. In our 

example, deviations from assumed mean are denoted by x. 
'Efex2 = 619, entered at the foot of Column 10. Hence 

ae = 1oj619 - ( - 29)2 (as shown below the table), 200 200 

giving at = 17'52. 
4· The value of y, the ordinate which divides a normal 

curve of unit area into two segments in the proportion of 
o·6:o·4 may, of course, be calculated from known normal 
distribution constants; but it is most conveniently obtained 
from a table, such as Table 12.2. 

TABLE 12.2 

ORDINATES {y) CORRESPONDING TO POINTS OF DMSION 
OF THE AREA UNDER THE NORMAL CURVE INTO A LARGER 

PROPORTION (A) AND A SMALLER PROPRTION (B) 

A o·5o o·ss o·6o o·6s 0'70 0'75 o·So o·Ss 0'90 0'95 -
B o·so 0'45 0'40 0'35 0'30 0'25 o·zo 0'15 0"10 o·os -
.Y 0'399 0'396 0'386 0'370 0'348 0'318 o•28o 0'233 0'176 0'103 

The Reliability of the Biserial Correlation Coeffi­
cient. Like any other statistic, rw values should be exam­
ined for reliability. To do this, it is necessary to calculate 
confidence limits for some acceptable confidence level. 
Confidence limits of a statistic depend on its standard error. 

The standard error of a biserial coefficient of correlation 
is given by 

arw = __.:;..._-=.---
v'N 
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We may now calculate the standard error of the cor­
relation between test scores and examination results of our 
last example. In this case: p = o·6, q = o·4, y = 0·386, 
N = 200 and rw = 0"559· Substituting these values into 
the formula we have 

(o·559)2 Vo·6 X o·4 
0•386 arw = --""-.;._-,.,.,=----

V2oo 

= o·o67 

The larger our sample the more are we justified in re­
garding the sampling distribution as normal; for small 
samples t-distributions appropriate to the sample size must 
be used for computing confidence limits. Here, at the I per 
cent level of confidence rw = o·559 ± 2·6 X o·o67, i.e., 
rw lies between o·385 and 0"733· We must, therefore, 
conclude that there is a fairly high statistically significant 
correlation between "intelligence" test scores and examina­
tion passes and failures for our group of children. 

Fourfold or Tetrachoric Correlation. When the data 
are available in the form of a 2 X 2 contingency table, and 
a measure of correlation between the two varjables is 
required, then in certain circumstances the tetrachoric 
correlation coefficient, rt, may be computed. 

Suppose that instead of a correlation between test scores 
and examination results, a correlation between examination 
results in two subjects is to be calculated. The only in­
formation available is whether a child has passed or failed 
to pass in each subject, say, English and Arithmetic. 

Now the special circumstances under which the rt 
formula given below may be used must be fully appreciated. 
It is necessary to assume that the two dichotomous classi­
fications have at the back of them two continuous normal 
distributions; then, at some value of one variable and at 
another value of the other variable the distributions are 
divided up into two groups each. 

Thus, examination marks may be arranged to be normally 
distributed. Then, scores above a certain mark are passes 
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and below that mark are failures. In this way a set of 100 
examination results in English and Arithmetic may be 
fitted into a 2 X 2 table, such as Table 12.3. 

Two variables classified in this manner may be correlated 
by more than one method. No very simple computation of 
the correlation coefficient is possible. Quite a good approxi­
mation to the true Tt may be obtained from the following 
equation: 

ad- be zz' 
N2yy' = Tt + 2 rt2 (approx.) 

where (1) a, b, c and dare numbers in cells a, b, c and d 
respectively (see Table 12.3), 

(2) N is the total number of cases, 
(3) y andy' are respectively the heights of the ordi­

nates which divide normal curves of unit area 
into segments in the proportion of p: q and 
p':q', and 

(4) z and z' are respectively the standard scores of 
normal curves of unit area where they are 
divided into the segments, as indicated above. 

TABLE 12.3 

FOURFOLD CLASSIFICATION OF EXAMINATION REsULTS 
IN ENGLISH AND ARITHMETIC 

ENGLISH 
Pass Failure 

a b 
so 10 

c d 
20 20 

p' = o·7 q' = o·3 
y' = o·348 

p = o·6 

y = o·386 

q =o·4 
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It is clear that the computational work involved will 
necessarily be quite considerable. Very simple artificial 
data are therefore used to illustrate the procedure. 

To calculate the tetrachoric coefficient of correlation 
between the examination results in English and Arithmetic, 
as set out in Table 12.3, we may work step-by-step in the 
following way: 

x. From the given values of a, b, c and d we see that the 
total number of passes in Arithmetic is 6o and the number 

of failures is 40. Therefore, p = ~ = o·6, and q = 4o 
100 IOO 

= 0'4· 
Similarly, since the total number of passes in English is 70 

and the number of failures is 30, p' = ~ = o•7 and 
IOO 

q' = E = o·3· IOO 
2. From Table 12.2 we note that they-value correspond­

ing top= o·6 and q = o·4 is 0·386; the y'-value corres­
ponding to p' = 0·7 and q' = o·3 is 0·348. 

3· z-values could, of course, be calculated from known 
normal distribution constants, but they may be conveniently 
obtained from tables, such as Table I2.4 below. 

TABLE 12.4 

STANDARD ScoRES (z) coRRESPONDING TO PoiNTS OF 
DIVISION OF THE AREAs UNDER THE NORMAL CURVE INTO 
A LARGER PROPORTION (A), AND A SMALLER PROPORTION (B) 

A o·so o·ss o•6o o·6s 0'70 o·7s o·So o·Ss 0'90 0'95 - r--------
B o·5o 0'45 0'40 0'35 0'30 o·:z5 o•2o 0'15 0'10 o·o5 ------1----,. 0 o·u6 0'253 0•385 0'524 o·67s o•842 1'04 1'28 1'64 

From Table 12.4 we note that the z-value corresponding 
top = o·6 and q = 0·4 is o·253; the z'-value corresponding 
to p' = o·7 and q' = o·3 is o· 524. 

4· We may now substitute the various values into our 
equation. Thus we have 
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50 X 20 - 10 X 20 
1002 X o·386 X 0·348 

+ 0·253 X o·524 2 
Tt 2 Tt 

or o·595 = rt + o·o66 rt2 (approx.) 

Rearranging terms: 

o·o66 rt2 + rt- o·595 = o 

This is a simple quadratic equation of the standard form 

ax2 + bx + c = o 

whose solution is 

Xl, 2 
-b ± v'b2 - ¥C 

2a 

Solving for Tt we have 

-I ± v' I2 - 4 x o·o66 x ( -o·595) 
rt = 2 X o·o66 

Only the positive root leads here to a meaningful value of a 
coefficient of correlation. We see that 

-1 +VI+ 4 x o·o66 x o·595 
2 X o·o66 

whence Tt = o·6I (approx. only) 
Though not difficult, this direct procedure of calculating 

the tetrachoric coefficient of correlation is tedious and time­
consuming; this is the case even with artificial, simple data 
such as ours, and when only three decimal places resulting 
in considerable inaccuracies are used. Thurstone and others 
have _prepared the so-called Computing Diagrams for the 
Tetrachoric Correlation Coefficient; with their help the 
computational work may be greatly simplified. 

Finally it should be noted that contingency tables such 
as those used in tetrachoric correlation are also amenable 
to a x2-test of a null hypothesis asserting no relationship 
between the two variables. Certain corrections, however, 
which have not been described in this book, must be used 
for 2 X 2 contingency tables (i.e. one degree of freedom). 



I78 STATISTICS FOR SOCIAL SCIENCES 

In fact, it might be simplest to ascertain first by means of a 
x2-test whether there is reason to believe that a significant 
correlation exists between the two variables. If this is so, 
then we may proceed to measure the correlation by com­
puting rt. The reliability of the obtained value of the co­
efficient may be ascertained by computing its standard 
error in the usual manner. The formula is not a simple 
one, and the treatment is beyond the scope of this book. 
We must now concern ourselves with certain other impor­
tant correlation methods. 

Correlating Rankings. We have seen that when a pair 
of variables can be expressed as measurements of scores and 
when in a series of cases the values for the pair are given, 
then the correlation between the variables can be established 
by the Pearson-Bravais product-moment method. Not 
infrequently however, the variables cannot be stated pre­
cisely enough to be capable of quantification. And yet, 
such variables as, for example, human preferences, judge­
ments, or attitude~, though not easily quantifiable, may 
manifestly correlate with one another to a greater or lesser 
extent. 

Although not strictly measurable, the things or persons 
to be judged may simply be arranged in order, either 
according to some quality which they all possess to a varying 
degree or, perhaps, in order of preference where no ob­
jective quality is involved. Such an order is called a ranking 
because each member in it has a rank. Correlations between 
rankings may then be established by means of the so-called 
rank correlation formulae. 

Ranking in order of merit and correlating rankings have 
found many applications in various fields of the social 
sciences. Among others, these methods have been used in 
inquiries into social attitudes, in investigations of the effec­
tiveness of advertisements, in studies of personality traits, 
in inquiries into aesthetic preferences, in personnel selection 
and allocation work, etc., etc. 

With measurable variables perfect positive correlation is 
conventionally + I and perfect negative correlation is -I. 
This arrangement is adhered to in rank correlation work. 
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As will be seen presently, there are a number of different 
rank correlation formulae in use. However, in each case a 
perfect positive correlation will work out to be +I and a 
perfect inverse correlation -I. 

When a correlation is not perfect, then the numerical 
values of the correlation coefficients obtained for a given 
pair of rankings by the different formulae will not be the 
same. This need not give rise to difficulty in practice. We 
may regard correlation as measured by the different 
formulae to be given by reference to different scales. 

Kendall's or (tau) Rank Correlation Coefficient. 
Kendall's correlation coefficient -. (tau) is given by: 

P-Q 
"= !n(n- I) 

where n is the number of items per ranking, 

P-the positive score (in second ranking), and 
Q-the negative score (in second ranking). 

We must now see what, precisely, P and Q stand for. This 
is best explained by reference to a numerical example. 

Suppose that 12 men in a workshop are ranked in order of 
merit regarding, say, their dependability by their foreman 
and their charge-hand, as shown in Table 12.5. 

TABLE 12.5 
ORDER OF MERIT RANKINGS OF TWELVE MEN 

Man A B c D E F G H J K L M 

Rank given by 
Foreman 6 s II I 12 3 2 7 IO 8 4 9 

Rank given by 
Charge-hand s 3 IO 4 9 6 2 7 I2 II I 8 

What measure of agreement is there between the foreman 
and the charge-hand, or what is the correlation between 
their judgements? 
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First, we may rearrange one of the rankings, say, the 
foreman's, and set it out in the natural order, as shown in 
Table 12.6. 

TABLE 12.6 

ORDER OF MERIT RANKINGS REARRANGED 

Man D G F L B A H K M J c E 
-,--- -

Rank by 
Foreman I 2 3 4 5 6 7 8 9 10 II 12 

Rank by 
Charge-hand 4 2 6 I 3 5 7 II 8 12 10 9 

We may arbitrarily call the foreman's the first ranking. 
We might have, of course, arranged the charge-hand's 
ranking in its natural order and regard it as the first ranking. 
This would not have affected our final result. 

Now, as the table stands, the charge-hand's ranking is 
the second. Let us see what are the P and Q values obtained 
from it. Consider the first man, D; he is ranked fourth in 
the second ranking. In front of him are "correctly" placed 
the following: F, A, H, K, M, J, C and E, that is 8 towards 
the total positive score. Consider the second man, G; 
those placed "correctly" in front of him are: F, B, A, H, 
K, M, J, C and E (but not L), that is another 9 towards the 
total positive score. 

In this manner we may obtain the total positive score in 
the second ranking. It is made up as follows: 

D-8 B---7 
0-c) A-6 
F-6 H-5 
L-8 K-1 

This gives a total of P = 53· 

M-3 
J-o 
C-o 
E-o 

Similarly we may find the value of Q. Consider the first 
man, D; in front of him the following are "incorrectly" 
placed: G, L and B, that is 3 towards the total negative 
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score. In this way the total negative score is obtained as 
follows: 

D-3 B~ 
G-x A~ 

F-3 H~ 
lr-o K-3 

This gives a total of Q = IJ. 

M~ 
]-2 
C-x 
E~ 

Now I2 men were ranked, and therefore, n, the number 
of items per ranking, is I2. Hence 

-r = (53 - IJ)/[! X I2(I2 - I)] 
= 40/(6 X u) = o·6o6 (approx.) 

. P-Q Consider agam the -r formula, -r = ! ( r The nn- I 

numerator gives the difference between the positive and 
negative scores (in second ranking). Now the total number 
of comparisons which can be made is given by the de­
nominator, !n(n - I) [which equals the number of ways of 
choosing two things from n]. This equals the maximum 
value of the score (in second ranking); and the maximum 
value is attained when the second ranking is the same as 
the first. The maximum score is also given by (P + Q), 
which, clearly, is the total number of comparisons which 
can be made. Thus, 

!n(n- x) = P + Q 

We may, therefore, write 

-r = (P - Q)/(P + Q) 

Denoting (P + Q) by T, we have Q = T - P. Therefore, 

-r = [P - (T - P)]JT 

or-r = (2P - T)JT 

which is another useful form of the -r formula. 
It may be noted that T depends only on the number of 

items per rank. It need not even be remembered that it 
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equals! n(n - I), because it is the maximum score obtain­
able, i.e. the score when the two rankings are identical. 
In the last example, if the charge-hand's ranking had been 
the same as the foreman's, T would have been obtained 
from: II for D plus IO for G plus 9 for F, etc.; thus T 
would have been given by 11 + IO + 9 + 8 + 7 + 6 + 
5 + 4 + 3 + 2 + I = 66. Since P in the example is 53, 

-r = [(2 X 53) - 66]/66 = 40/66 = o·6o6, as before. 

The tau rank correlations formula may, of course, be 
used for rankings of any length. It should be noted, how­
ever, that it lends itself particularly conveniently to being 
used with shorter rankings (containing, say, up to 20 items). 

Sometimes in practice two or more individuals are given 
the same rank. If this occurs in a ranking, then the two or 
more members are said to be tied. If the -r formula is used 
to obtain a measure of correlation between two rankings in 
one or both of which some members are tied, certain com­
plications arise. Two correlation procedures are then open. 
It may be argued that each is useful in certain special 
circumstances. It is advisable to avoid tied ranks whenever 
possible. If there is no escape, the advanced student may 
consult M. G. Kendall's Rank Correlation Methods. 

Spearman's p (rho) Rank Correlation Coefficient. 
Spearman's correlation coefficient pis given by 

p =I- 6~(d2) 
ns -n 

where n is the number of items per ranking (as before), and 

d-the difference in rank of items in a pair. 

The rho rank correlation formula is most useful with longer 
rankings. 

Suppose that 30 pictures are ranked in order of preference 
by two judges. Having ranked the pictures from the most 
down to the least beautiful, the first judge labels them 
I, 2, 3, 4, and so on down to 30. The second judge then 
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ranks the 30 pictures, and the two rankings may be ranged 
side by side, as shown in Table 12.7. 

TABLE 12.7 

RANKED PREFERENCES oF THIRTY PICTURES BY Two 
jUDGES 

Ranking by 
Judge No. I I 2 3 4 5 6 7 8 9 IO II I2 IJ 14 IS 

1-r-
Ranking by 

Judge No.2 2 4 3 I 5 7 IO I7 8 9 I4 6 IS II I3 

Difference in 
rank (tf) I 2 0 3 0 I 3 9 I I 3 6 2 3 2 - - - 1- -

tJI I 4 0 9 0 I 9 8I I I 9 36 4 9 4 

Ranking by 
Judge No.1 16 I7 I8 19 20 21 22 23 24 25 26 27 28 29 30 

1- -
Ranking by 

Judge No.2 I2 18 19 2I I6 23 JO 29 20 22 25 24 28 26 27 

Difference in 
1- - - - - - - - r--1- - - r- -

rank (tf) 4 I I 2 4 2 8 6 4 3 I 3 0 3 3 - - - 1- -
d' I6 I I 4 I6 4 64 36 I6 9 I 9 0 9 9 

Total 
364 

Rank order differences are then listed underneath each 
pair of ranks, and finally in the bottom row there are the 
d2- values. The sum of the latter, ~(d2) is 364. 

Substituting our numerical values into the p formula, 
we have: 

6 X 364 
I-

30(302- 1) 

:. p = 0"918 
Spearman's Footrule Formula for Rank Correlation. 

Sometimes another formula for rank correlation, known as 
Spearman's Footrule or R coefficient is used. It will be 
seen that it has several disadvantages, but it is simple and 
quick to use. The Footrule coefficient of correlation is 
given by 

R =I- 6~g 
n2 - I 
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where n is the number of items per ranking (as before), and 

g- the gain in rank of second ranking items with 
respect to the first ranking items (considered in 
each pair). 

It may be noted that R is much less sensitive than either 
"' or p. Thus, the same change in the order of members of 
one of the two rankings may result in a smaller change in 
the R-value than in either the 't"- or the p-values. 

The R-formula must be regarded as a simplification of 
the p-formula. Using the latter as a criterion, the correlation 
measures given by R are correct only when R = +I or 
R = -I. At other values of R it is necessary to correct 
the result. The corrected value of correlation, denoted by 
r, is given by 

• rc R r=stn- ,or 
2 

as sin~ is in radian measure, 
2 

1t 3'I42 and- is 90° not --2 , 2 

There is another important limitation to the use of the 
Footrule formula. It is that the formula can only be used for 
positive correlation. If a negative result is obtained, one 
of the rankings must be reversed; then, the sign of the R­
value obtained in this manner is also reversed. This is the 
only legitimate procedure of computing a negative correla­
tion by the Footrule method. 

It may further be pointed out that the scales of measure­
ment of rank correlation based on the tau and rho methods 
are symmetrical about the zero values. Thus, corresponding 
to any given positive value of -r and of p, there is a negative 
value of the same magnitude arising from an inversion of 
one of the rankings. This is not the case with R-values 
obtained from the Footrule formula. 
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By wa:y of a numerical example, let us use the Footrule 
formula in conjunction with the data of Table I2.7. The 
two rankings and the "gains in rank" are set out in Table 
12.8. 

TABLE 12.8 

RANKED PREFERENCEs oF THIRTY PICTURES BY Two 
jUDGES 

Ranking (I) I 2 3 4 s 6 7 8 9 IO 

Ranking (2) 2 4 3 I s 7 IO I7 8 9 - - -
Gain in Rank I 2 - - - I 3 9 - -- - ~ Ranking (I) II I2 I3 I4 IS I6 I7 I8 I9 20 

Ranking (2) I4 6 IS II I3 I2 I8 I9 2I I6 
r--r-- -

Gain in Rank 3 - 2 - - - I I 2 --
Ranking (I) 2I 22 23 24 2S 26 27 28 29 30 

- - 1-
Ranking (2) 23 30 29 20 22 2S 24 28 26 27 

Total 
Gain in Rank 2 8 6 - - - - - - - 4I 

We see that only gains in rank, or positive rank differences, 
are considered; negative rank differences are no gains and 
are, therefore, ignored. The sum of the gains, ~g. is 4I. 
Substituting numerical values into the formula, we have 

R =I- 6 X 4I 
302- I 

:. R = o·725 
This value is considerably lower than the one obtained 

by the p-formula. It may, however, be corrected. Thus, 

r = sin~ (o·725) 
2 

= sin (o·725 X 90°) 
= sin 65·25° (or sin 65° I5') 



186 STATISTICS FOR SOCIAL SCIENCES 

From tables of natural sines we find that 

r = o·9QS 
We see that this result is now quite close to that obtained 

earlier by the rho formula (p = 0'9I8). It will be appreciated 
that when rankings are long and the differences in rank 
large, then the arithmetic may be considerably simplified 
if the Footrule formula (preferably corrected) is used. 



CHAPTER XIII 

SOME FURTHER NON-PARAMETRIC 
STATISTICS 

So far we have not drawn the reader's attention to the 
distinction between the so-called parametric and the so­
called non-parametric methods used in inference statistics. 
Although we have not done this, we have in fact already 
described various statistical procedures of both kinds. 
It will be convenient now to introduce more formally the 
terms "parametric" and "non-parametric", as well as the 
phrase "distribution-free statistics". We shall do this as a 
preliminary to introducing the reader to some non-para­
metric techniques of statistical inference which have not 
yet been presented and discussed. 

Parametric and Non-parametric Statistical Tests 
and Measures of Correlation. We study samples with a 
view to drawing inferences about population values, or 
parameters. Techniques used for this purpose which do not 
involve making any stringent assumptions about the distri­
bution of population measures (or parametric measures) 
are known as non-parametric statistical methods. They 
are also known as distribution-free statistics, because they 
make no particular assumptions about the distributions of 
the different measures, or variables, with which one may 
be concerned. 

Consider, for example, the t-test of significance of dif­
ference between two means. It will be recalled that it is 
used when it may be assumed that the population from which 
the samples are drawn is normally distributed. It is true 
that it has been demonstrated that the t-test may safely be 
used even when the actual measures dealt with are distri-



188 STATISTICS FOR SOCIAL SCIENCES 

buted in a way which markedly departs from normality. 
Nevertheless the t-test, being based on the model of normal 
distribution, is a parametric test. Now we have available 
a non-parametric test for judging separateness of groups, 
which essentially corresponds to the t-test; we shall describe 
this test, the Mann-Whitney U-test, later in this chapter. 
It will be seen that the U-test does not assume normality 
in the common population, and therefore it comes into 
the category of non-parametric or distribution-free tests. 

Since the chi-squared test, dealt with in earlier chapters, 
also makes no assumptions about population parameters, 
therefore, it too may be said to be non-parametric. And 
we shall introduce shortly a statistical test, the Fisher exact 
probability test, that is used in circumstances similar to 
those in which the 2 X 2 chi-squared test is appro­
priate. 

It will be clear from the study of Chapter X on correlation 
that the product-moment coefficient of correlation does not 
assume normality of variables. It does, however, assume 
rectilinearity of relationship between the variables. Because 
of this assumption the product-moment measure of 
correlation may be described as parametric. On the other 
hand, rank correlation methods discussed in the last chapter 
are regarded as non-parametric measures of correlation. 
We shall introduce later in this chapter one more non­
parametric measure of correlation, the ·so-called co­
efficient of concordance. 

The Fisher Exact Test. Consider a contingency table 
of frequencies, such as given below in Table IJ.I. 

TABLE IJ.I 

A CONTINGENCY TABLE 

Present Absent 

Sample K 19 (A) 6 (B) 

Sample L 24 (C) 1 (0) 

43 7 

25 

as 
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In the first sample of 25 individuals, sample K, the distri­
bution ofthe attribute in question is in the ratio of 19 to 6; 
that is, it is present in 19 cases and absent in 6. In the second 
sample, the distribution is in the ratio of 24 to 1. The 
question is whether these two distributions indicate that 
K and L derive from different populations; or whether the 
null hypothesis that the divergence between K and L 
distributions is no more than a matter of chance must be 
retained. 

It might be thought that the_ appropriate statistical test 
is the 2 X 2 chi-squared test. While this is so, it is ad­
visable to use this test only when the expected frequencies 
are sufficiently large; a rough-and-ready guideline is that 
the chi-squared test should preferably hot be applied when 
any ·expected frequency is below S· In our example the 
expected frequencies may readily be worked out from the 
data in Table 13.1; the lowest expected frequency is 

25 X .1_ = 3"5· so 
Therefore, the chi-squared test is not entirely appro­

priate in our case. In fact, it may be shown that the prob­
abilities arrived at by this test are always a slight 
underestimate; and when the expected frequencies are 
small (below 5) and/or whenever N is small (N < 30), these 
probabilities would be more considerably underestimated. 
Therefore, at marginal values of chi-squared the null 
hypothesis might be rejected when it should properly be 
retained. The Fisher test, cumbersome though it may be 
computationally, gives exact probabilities. 

The probability of the divergence between two frequency 
distributions, such as K and L in our example, is given by 
the .formula below: 

(A+ B)! (C +D) I (A + C)! (B +D) I 
P= NIA!B!C!D! 

+ p for more extreme cases. 

In our example the more extreme case, keeping the row 
and column totals constant, is given in Table 13.2. 
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No more extreme distributions are here possible because 
of the zero entry in one of the cells. 

We are now in a position to apply our formula. Thus, 

2SI2SI43171 2SI2SI4317! 
p =so! I9l6l24l II+ so! I8l7l2sl ol 

Now2sl(factorial2s)issimply2S x 24 X 23 X ... X 1. 

Similarly7l = 7 X 6 X S X 4 X 3 X 2 X 1. It should be 
noted that I ! is of course 1. It has also been shown by 
mathematicians that ol should be treated as equal to I. 

TABLE I3.2 

THE MoRE ExTREME CASE OF EXAMPLE CoNTINGENCY TABLE 

18 7 25 

25 0 25 

43 7 

Clearly the computation of p in a case such as ours will 
involve a fair amount of work, though it presents no essential 
difficulty. It will be seen that when the necessary calcula­
tions have been done p will be found to be > o·o8. This 
indicates that the divergence between our two distributions 
K and L is not significant at the s per cent level of confi­
dence. Therefore, we must retain the null hypothesis 
that the difference between the ratios of I9:6 and 24: I 
could be due solely to a sampling error. 

The Mann-Whitney U-test. We must now move away 
from comparisons of sample distributions to comparisons 
of averages. The appropriate parametric method for 
comparing means is the critical-ratio test or t-test. The 
non-parametric analogue of this method is the U-test. Like 
the standard t-test, the U-test is used for two independent 
groups. Unlike the t-test, the U-test is applied to data in 
rank-order form. That is, it is appropriate when the two 
groups may be combined to form a single ranking. The 
groups need not, of course, be of equal size. The U-test 
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can tell us whether the bulk of the cases in one group lies 
significantly above or below the bulk of the cases in the 
other group. 

Let N 1 be the number of cases in the smaller of the two 
independent groups being compared, and N 2 the number 
of cases in the larger group. Then, when a single ranking 
of all the cases has been made, T1 will be the sum of the 
ranks assigned to the cases in the smaller group, and T2 
the sum of the ranks of the cases in the larger group. We 
shall now be in a position to calculate the statistic ul needed 
for the test of significance of separation between the two 
groups. This statistic is as below: 

Before going any further, a numerical example may be 
useful. Suppose that there are four individuals in one 
group, i.e. N1 = 4, and five individuals in the other group, 
i.e. N2 = 5· Call the first lot A, B, C and D; and call the 
second lot E, F, G, Hand J. Now when they are ranked 
according to some characteristic their ranks are as shown in 
Table 13·3· 

TABLE 13·3 

A SINGLE RANKING oF Two GRouPs: EXAMPLE 

A-7th 
B-6th 
c-sth 
0--<)th 

n = 27 

E--znd 
F--8th. 
G-1st 
H-4th 
J-Jrd 

Substituting numerical values into the formula, 

U1 = 4 X 5 + 4 X 5 - 2 7 2 

=3· 
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Note further that while another statistic, U2, may be cal­
culated directly, it is also given by: 

U2 = N1 X N2 - U1. 

In our example, U2 = 4 X S - 3 

= I7. 
Whichever of the two U-values is the smaller is then used 
in the test of significance. In our example the value to use 
would be U = 3· 

When any scores happen to be tied, we give eacli of the 
ties the average rank that the tied individuals would have 
occupied. If, for example, in a given ranking there is a tie 
for 2nd and 3rd places, then the Ist member is assigned 
rank I, the tied ones get ranks of z! each, the 4th member is 
rank 4 and so on. The reader is directed to more ad­
vanced texts for discussion of the effect of ties on U-values. 

AB a matter of fact, when N 1 and N 2 are less than 8, 
special tables, found in more advanced texts, may con­
veniently be used to determine whether the probability 
associated with the obtained value of U is less than con­
ventional values of o·os or o·oi, that is, 5 per cent or I per 
cent levels of confidence. 

When N1 and N2 are greater than 8, then the statistic 
U is distributed approximately normally with a mean value 
of !N1N2 and a standard deviation equal to 

JNlN2(Nl + N2 + I}. 
12 

This fact enables us to calculate the standard error, de­
noted by z, which is: 

U -!N1N2 z- -~=:-;;'~~~~""""""' 
- JN1N2(N1 +N2+ x)· 

12 

Normal distribution tables, such as Table 5·7• may then 
be used to judge whether the groups are significantly dis­
parate. 



SOME FURTHER NON-PARAMETRIC STATISTICS 193 

For example, if N1 = IS and N2 = 20, and U turns out 
to be 240, then 

240 -! X IS X 20 z- ~P:==~~==~==~ - JIS X 20(IS + 20 + I) 
12 

:. z = 3· 
Looking up Table S·7• we see that the probability of such 
a value arising from chance is approximately o·oo3. This 
indicates that the separation between the groups in our 
example is significant well beyond the 1 per cent level of 
confidence. 

The Sign and Wilcoxon Tests for Related Samples. 
The U-test is used for comparing two independent samples. 
If the samples of measures are related, such as when the 
same individuals are assessed on two different occasions, 
then either the so-called sign test or the Wilcoxon test 

TABLE 13·4 

RELATED ScoRES: AN EXAMPLE 

Individual Initial Later Sign 
Score Score 

A 7 12 + 
B 16 I7 + 
c 4 4 0 

D 9 8 -
E 14 20 + 
F IS 19 + 
G 3 IO + 
H 5 II + 
J 2 7 + 
K 12 9 -
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should be applied. The sign test is probably the simplest 
of all the non-parametric tests commonly used. The Wil­
coxon test, which is computationally somewhat more 
complex, is, however, the more sensitive of the two in that 
it takes into account not only the direction of change (as 
does the sign test) but also the extent of the divergence 
between the two related sets of measures. 

In order to see what the application of these tests in­
volves, consider a numerical example, as set out in Table 
13·4· 

If chance alone were operating, then there would be 
about as many increases in score (pluses) as decreases 
(minuses). The likelihood of a chance departure from 
balance may be obtained from the binomial distribution. 
In applying the sign test, the practice is simply to count 
the number of fewer signs; in our example this is the 
number of minuses, which is 2 (n = 2). Then we count 

TABLE 13.5 

PROBABILITIES (ONE-TAILED) ASSOCIATED WITH VALUES 
AS SMALL AS OBSERVED VALUES IN THE SIGN TEST 

~ 0 2 3 4 5 6 7 8 

5 0'031 o•188 o•5oo o•812 0'969 approx. I 

6 0'016 0'109 0'344 o·656 o·891 0•984 

7 o·oo8 o·o6z 0'227 o•5oo 0"773 0'938 0'99Z 

8 0'004 0"035 0'145 0•363 o•637 o•855 0'965 0'996 

9 o·ooz o·o.zo 0'090 0"Z54 o•5oo 0'746 0'910 0•98o 0'998 

IO 0'001 o·orr o·o55 0"I7Z 0"377 o·6z3 o·8z8 0'945 0'989 

II o·oo6 0"033 0'113 0"Z74 o·5oo 0•7z6 o•887 o·967 

12 0'003 0"019 0"073 0"194 0•387 o•613 o·8o6 0'927 

13 o·oo:z 0"011 0'046 0"133 0'Z9I o·5oo 0"709 o·867 

14 o·oot o·oo6 0'029 0'090 o·aia 0"395 o·6o5 o•788 

15 pprox.o 0'004 0'018 0'059 0"151 o·304 o·5oo o·6Q6 

Ad~ted from Table IV of Walker and Lev, StatistiC<Zl lrifn-mu, published 
by H t, New York, by permission of the authors and publiabers. 



SOME FURTHER NON-PARAMETRIC STATISTICS I95 

the number of cases that showed any change at all; in our 
example this is 7 + 2, or 10- 1 (N = 9). We then look 
up Table 13·5· We see that when n = 2 and N = 9, p = 
o·o9o. This means that we cannot reject the null hypoth­
esis that there has been a significant change upwards in 
the scores of our sample. 

It is clear that by ignoring the extent of change the sign 
test does not make full use of the available data. The Wil­
coxon test, however, does this. For convenience the data 
in Table 13.4 are set out again in Table 13.6. 

TABLE 13.6 

CALCULATIONS REQUIRED FOR THE WILCOXON TEsT 

Initial Later Rank Rank with 
Individual d less frequent Score Score ofd sign 

A 7 12 5 st 
B 16 17 I It 

c 4 4 0 -
D 9 8 -I -It xi 
E 14 20 6 7t 
F IS 19 4 4 
G 3 IO 7 9 

H 5 II 6 7i 

J 2 7 5 st 
K 12 9 -3 -3 3 

T=d 

As in the sign test, ties are left out; therefore we ignore 
individual C; this makes N = 9· We then write.down the 
actual differences in scores, and these are set out in the 
4th column in Table 13.6. Next, we rank these d-values 
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irrespective of sign, and some ranks may of course tie up. 
The ranks of d-values are set out in the 5th column. The 
appropriate signs are then given; thus D and K are negative. 
Finally we sum up the ranks with the less frequent sign, as 
shown in the last column. We are now ready to look up 
Table 13·7· Our N is 9 and Tis 4'5• We see that this T 

TABLE 13·7 
CRITICAL vALUES OF T IN THE WILCOXON TEST 

~' ''' IO II IZ I3 I4 IS I6 I7 IS I9 20 

~lof } o 2 4 6 8 II I4 I7 2I 25 30 35 40 46 52 
ssgnificance _ _ 0 2 3 5 7 IO I3 I6 zo 23 z8 32 38 

Adapted from Table I of Wilcoxon, Some Rapid Approximau Statistical 
Procedure~_, published by American Cyanamid Company, New York, by per­
miasion or tbe author and publishers. 

is less than 6 but more than 3· Therefore the change is 
significant at the 5 per cent, but not at the I per cent level. 

It may be noted that by the relatively crude sign test, 
the change was not significant. The more precise Wilcoxon 
test enabled us, however, to reject the null hypothesis of 
no difference between the initial and later scores. Quite 
often the initial data provide no quantitative information 
other than that a change, positive or negative, has occurred; 
the sign test is the only one that may then be used. When 
the extent of change is known, the Wilcoxon test is the more 
appropriate, while the sign test may be used to give a first 
rough-and-ready indication as to the significance of the 
difference between the related sets of measurements. 

The Kendall coefficient of Concordance. Earlier in 
this chapter we noted that, apart from non-parametric 
tests, some measures of correlation are often referred to as 
non-parametric. One of them-as we saw in the last 
chapter-is Kendall's -r rank correlation coefficient. This 
gives a measure of correlation between two rankings. 
Kendall's measure of association among three or more 
variables is known as the coefficient of concordance, for 
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which the symbol W is used. The coefficient of concor­
dance is valuable in that it provides a single measure of 
agreement among several sets of judgements, expressed as 
rankings. Thus, it may indicate inter-judge reliability, 
inter-test reliability and the like. 

Perhaps the best way of learning how the coefficient of 
concordance is computed is to consider a numerical example. 
The data given below were actually obtained in a follow­
up study of social work with a group of nine mothers of 

TABLE 13.8 

STATEMENTS RANKED IN ORDER OF IMPORTANCE 

Statements 
Mother 

I II III IV v VI VII VIII 

A 5 7 I :z 3 4 6 8 

B :z 4 5 6 I 3 7 8 

c 4 8 I 6 I 2 3 5 

D 8 3 6 7 2 4 5 I 

E 7 5 I 8 4 2 6 3 

F 6 5 3 4 :z I 7 8 

G 6 2 4 5 I 3 8 7 

H 4 3 6 5 2 I 8 7 

J 5 6 3 4 I :z 8 7 

ERt 
R1 47 43 30 47 17 2:z ss 54 3I8 

disturbed children. Each mother had to rank eight state­
ments about group sessions (the statements need not be 
quoted here) in order of subjective importance. The results 
are shown in Table 13.8. 

To obtain a numerical index of agreement among the 
mothers' rankings, we must first calculate the sums of 
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ranks, Rj. These are set out at the foot of each column in 
Table 13.8. Next we have to evaluate the expression 

In our example, '1:.RJ = 318. 

Since N = 8, '1:.~ = 39'1 approx. 

Continuing the calculation, we find that S = 1,583. 
Now we apply the formula for the coefficient of con­
cordance, as follows: 

W=---s __ 
!_K2(N8 -N) 
12 

where K is the number of judges. 
In our example, substituting numerical values in the 
formula, 

W= o·465. 

In general, W can vary between o, no agreement among 
rankings, and 1, perfect agreement. W = 0·465 would 
indicate a fair measure of agreement or concordance. 
Whether this is statistically significant is another matter. 
Like other measures of correlation-for example, the 
product-moment-W should be tested in appropriate cases 
for statistical significance. That is, if we are dealing with 
concordance within a sample, we should wish to know 
what to infer from it about concordance within the popu­
lation which the sample represents. At this point again, 
the interested reader must be referred to more advanced 
textbooks on the subject. 



CHAPTER XIV 

THE ANALYSIS OF VARIANCE 

The statistical significance of a difference between two 
means was discussed in earlier chapters. What if there 
are more than two means to compare? Not infrequently 
one is confronted with several groups, wondering whether 
they may all be regarded as samples of the same population, 
or alternatively whether the groups differ so considerably 
from one another that the null hypothesis of a common 
parent population behind all the groups must be rejected. 

If there are only a few groups then it is a relatively 
simple matter to compare their means pair by pair; in 
each case the critical ratio of t-test is used. When there are 
three groups of measurements, three such tests will be 
necessary. When there are four groups: A, B, C and D, 
the following six comparisons will have to be made: 
A - B, A - C, A - D, B - C, B - D and C - D. 
When there are ten groups as many as forty-five tests will 
have to be carried out. Clearly, at this rate the task of 
comparing means pair by pair soon becomes prodigious. 
The analysis of variance, in its simplest form, is a more 
rapid means of testing the null hypothesis that several 
groups derive from a common population. Instead of 
considering groups pair by pair, the analysis of variance 
considers all the groups together and submits them to an 
overall test. It will be noted, however, that this overall 
test still has to be sometimes followed by a few individual 
t-tests. 

In its simplest form the analysis of variance may thus be 
regarded as an extension or a development of the t-test. 
In this chapter we shall concern ourselves with this func-



200 STATISTICS FOR SOCIAL SCIENCES 

tion of the analysis of variance. It must not be thought, 
however, that this covers its full field of application. On 
the contrary, the technique of the analysis of variance is 
used extensively in statistics for various purposes. Once the 
basic procedures of the technique are grasped, the more 
advanced student will have little difficulty in applying the 
analysis of variance to a wide range of problems. 
Two Estimates of Variance. The variance of a distribu­
tion is one of the mt;asures of its scatter. It is equal to the 
square of the standard deviation. It is simply denoted by 
u2. For any particular distribution, 

where x- the deviation of a measurement from the mean of 
the distribution, 

N- the number of cases in the distribution. 

The null hypothesis of the analysis of variance asserts 
that the several groups are all samples drawn from a com­
mon parent population. In order to test this hypothesis 
two independent estimates of the population variance are 
made. If the two estimates give widely different results, 
the hypothesis is falsified. 

One of the estimates of the population variance is based 
on the variation of the measurements within the several 
groups. The other estimate is based on the variation 
between the group means. Now if the groups are all alike, 
these two estimates of variance will be alike. But if the 
variations between groups are considerably greater than 
those within them, then the groups are probably not 
samples of the same population; in fact, they probably 
represent different parent populations. 

The Test of Statistical Significance. The estimate of 
the population variance that is based on the variation between 
groups is known as the mean square between groups. The 
estimate of the population variance that is based on the 
variation within groups is known as the mean square within 
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groups. The so-called variance ratio, denoted by F, is given 
by: 

F _ Mean square between groups 
- Mean square within groups 

If the actual calculated variance ratio turns out to be 
greater than the F-values corresponding to the generally 
accepted levels of statistical significance (commonly the 
5 per cent and the 1 per cent levels) in standard tables for 
the distribution ofF, then the groups cannot be considered 
as differing from one another merely as a result of sampling 
error. Thus the F-test is a test of statistical significance 
of the differences among the several groups, just as the t­
test is a test of statistical significance of the difference be­
tween two groups. 

The Calculation of the Sum of the Squares. The first 
step towards the determination of the mean squares between 
and within groups is the calculation of three sums of squares: 
(a) the total sum of squares, (b) the sum of squares between 
groups, and (c) the sum of squares within groups. 

Let us assume that there are a groups, and n cases in 
each group. Let N be the total number of cases. Then, 
obviously, N =a X n. 

(a) The total sum of squares is by definition given by 
~2. If we deal with raw measurements, X, instead of 
deviations, x, then 

(:EX)2 
the total sum of squares = :EX2 - ~ 

The student may note the derivation of this expression. 
If X denotes the mean, then 

x=X-X 
x2= (X -X)2 

= X2 - 2XX + Jl2 
Hence, ~2 = :EX2 - 2X:EX + NX2 

Since X = :E:, :EX= NX 
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Substituting this into the expression for :Ex2, 

:Ex2 = :EX2 - 2NJl2 + NJl2 

= :EX2- NX2 

- ~x2 - N(:EX)2 
-"' N2 

(b) The sum of squares between groups is given by 

where xl, x2, Xa, etc., denote raw measurements in the 1St, 
2nd, 3rd, etc., groups respectively. 

In the general expression for the sum of squares between 
groups the various expressions are not brought to a common 
denominator because when groups are of unequal size it is 
necessary to add appropriate suffixes to n-values, which 
then become n1, n2, na, etc. 

(c) The sum of squares within groups is given by the 
difference between the total sum of squares and the sum of 
squares between groups. This is the quickest way of 
calculating it. A direct calculation may be used as a check. 

To calculate directly the sum of squares within groups, 
we must obtain first the sum of squares within each group. 
Then the sum of these expressions gives the value of the 
sum of squares within groups. 

The Calculation of the Mean Squares. The mean 
squares necessary for the calculation of the F-ratio are 
obtained by dividing the sums of squares between and within 
groups by appropriate values of degrees of freedom. 

The total number of degrees of freedom is (N - 1 ). 
The number of degrees of freedom between a groups is 
(a- 1). The number of degrees of freedom by which to 
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divide the sum of squares within groups is a(n - 1}, 
which equals (an -a) or (N - a). 

Thus: 

Mean square between groups 
= Sum of squares between gt:oups 

a-1 

Mean square within groups 
_ Sum of squares within groups 
- N-a 

It should be noted that the total number of degrees of 
freedom equals the sum of df between groups and df within 
groups: 

N- 1 =(a- 1) + (N- a) 

Likewise, as mentioned earlier, the total sum of squares 
equals the sum of the sum of squares between groups and 
the sum of squares within groups. 

Some Assumptions. Two major assumptions are made 
about a set of data that is submitted to the analysis of 
variance. To start with, it is assumed that the distribution 
of cases within each group is normal. Therefore, if the 
distributions of measurements depart very considerably 
from normality, the analysis of variance should not be 
used. 

Then, it is assumed that the cases within every one of the 
groups are scattered equally, that is, that the variances 
within the groups are the same. The homogeneity of 
variance, as it is known, may be checked. This is done by 
Bartlett's test of the homogeneity of variance which in­
volves the use of chi-squared. A modification of it is some­
times referred to as the Hartley test. A crude check may 
be made by dividing each of the separate sums of squares 
within the several groups by the corresponding df-value to 
see if the thus obtained variances are in fact all reasonably 
alike. 
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The F-Test and the t-Test. If the analysis of variance 
results in a sufficiently small value of F we conclude that 
the null hypothesis is upheld, that is, that it may be assumed 
that the samples have been drawn at random from a 
common parent population. But it does not follow that if 
we compared two samples characterised by extreme 
means, say, the largest and the smallest of all, then they 
would tum out not to be significantly different. The means 
of two such groups could indeed prove to be significantly 
different because these two samples have not been taken at 
random but have, in fact, been deliberately selected. 

If the F-test indicates significance, that is, that the 
samples cannot be assumed to have been drawn from a 
common parent population, then the various individual 
means may have to be compared to carry further the 
investigation of the data. Selected t-tests must now be 
applied. And certain methods have been proposed as to 
how to go about the selection of the t-tests to draw as 
many conclusions as possible about the differences among 
the groups. 

When there are several groups we start off the investiga­
tion of the significance of the differences among the means 
by using the analysis of variance. When there are only two 
groups we may still, if we like, use the analysis of variance 
instead of the t-test. Neither procedure has any particular 
advantage over the other. And in fact, as one would expect, 
the two procedures are mathematically equivalent. In the 
case of two groups F = t2, or t = v'F. Either a t-table or 
an F-table may be looked up to determine the statistical 
significance of the difference between two means. 

A Numerical Example. Data from three samples of 
unequal size are set out in Table 14.1 below. May it be 
assumed that the samples have been drawn at random from 
a common population? 

The sums and averages for each group are set out im­
mediately below the data. The next table, Table 14.2, sets 
out the squares of the measurements in our three groups. 
Directly underneath this table are given the sums of the 
squares. 
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TABLE 14.1 

DISTRIBUTION OF MEASUREMENTS IN THREE SAMPLES 

Xt Xz X a 

I4 IS IO IO II I7 I3 I2 
---

I8 IS II I2 nz = 2I IS IS 14 

I6 I3 II IS I3 I3 I3 

I3 I4 I4 I2 IS I6 I3 

I6 I3 I4 I3 I4 I6 I2 

I4 I6 12 I3 IS 9 I3 

17 I2 10 7 9 IO I4 ---
IS I6 9 I2 I2 8 11na=27 ---
I7 nt = I8 I2 13 II I2 

IS 8 13 I4 I2 

l:Xt = 269 l:Xz = 242 l:Xa = 349 

_x1 = 269 
Xz = 242 = n·s2 Xa = 349 = 12"93 18 

21 27 
= 14"94 

l:X=86o N=66 

Sum of squares between groups: 

(I:X1)2 + (I:X2)2 + (I:Xa)2 _ (I:X)2 
n1 n2 na N 

2692 2422 3492 86o2 
=18+21+27-66 

= 4,020 +-2,789 + 4·511- 11,206 = 114· 

Sum of squares within groups 

= Total sum of squares - Sum of squares between 
groups. 
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TABLE 14.2 

SQUARES OF MEASUREMENTS IN THREE SAMPLES 

Xt2 Xs2 Xa2 

196 ' 225 100 IOO I2I 289 I69 I44 

324 225 12I I44 225 225 I¢ 

256 I69 12I 225 169 169 I69 

169 I¢ 196 I44 225 as6 169 

256 169 196 I69 196 256 I44 

196 as6 144 169 225 81 169 

289 144 100 49 81 100 196 

225 256 Sx 144 64 121 

289 144 169 121 I44 

225 64 169 196 I44 

:E.X't2 = 4,o6s :E.X'a2 = a,87o :EXs2 = 4,643 

TABLE 14·3 

ANALYSIS OF VARIANCE OF DATA IN THREE SAMPLES 

Source of Sum of Degrees of Mesn Square Variation Squares Freedom 

Between 114 2 !!f = 57'0 Groups 2 

Within ass 63 ~ 
Groups = 4'095 63 

Total 372 6s 
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Total sum of squares: 

Hence, sum of squares within groups is 

Degrees of freedom between groups = a - I = 3 - I = 2. 
Degrees of freedom within groups = N - a = 66 - 3 = 63. 

We may now summarise the results as shown in Table 
I4·3 below. 

F _ Mean square between groups 
- Mean square within groups 

The last stage of the analysis consists of looking up the 
variance ratio tables. Table I4·4 sets out the 5 per cent 
points for the distribution ofF; Table I4·5 sets out the I per 
cent points. The top row of each table gives the degrees of 
freedom for the greater mean square; in the case of our 
simple analysis variance this is the mean square between 
groups. The first column gives the degrees of freedom for 
the mean square representing in general the so-called error 
variance; in our case this is the mean square within groups. 
We see that we must enter the column headed 2; and the 
nearest row to df = 63 is the one headed 6o. F = I3·92 
is much larger than the values of 3"I5 and 4·98 in the 5 per 
cent and I per cent tables respectively. Therefore, the 
three samples are most unlikely to have been drawn ran­
domly from a common population; i.e. the differences 
among the group means are statistically significant. 
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We have just carried out a simple analysis of variance 
where the variation of the variable is treated as if it were 
due to but a single factor. Data of this kind are obtained 
from the simplest experimental design, known as the single-
classification design. More complex experimental designs 
call for more complex analyses of variance which are 
beyond the scope of this introductory textbook. 

TABLE 14·4 

THE 5 PER CENT POINTS FOR THE DISTRIBUTION OF F 

Nb 
Na--degrees of freedom for greater mean square. 

a 3 4 6 8 Ia a4 <X> 

161'4 199'5 aiS'7 aa4·6 a34'0 a38'9 a43'9 a49'0 aS4'3 
a 18'51 19'00 19'16 19'25 19'33 19'37 19'41 19'45 19'50 

3 10'13 9'55 9'a8 9'12 8·94 8·84 8'74 8·64 8·s3 

4 7'71 6•94 6•59 6·39 6·16 6·04 5'91 5'77 s·63 

5 6·61 5'79 5'41 5'19 4'95 4'82 4'68 4'53 4'36 

6 5'99 5'14 4'76 4'53 4'28 4'15 4'00 3'84 3'67 

7 5'59 4'74 4'35 4'12 3'87 3'73 3'57 3'41 3'23 
8 5'32 4'¢ 4'07 3'84 3'58 3'44 3'a8 3'12 2'93 

9 5'12 4•a6 3·86 3'63 3'37 3'23 3'07 2'90 2'71 

10 4'96 4'10 3'71 3'48 3'22 3'07 2'91 a•74 2'54 

12 4'75 3•88 3'49 3'26 3'00 2·85 2'69 a·5o 2'30 

14 4'6o 3'74 3'34 3'11 a·8s a•7o a·s3 2'35 a'l3 

16 4'49 3'63 3'24 3'01 2'74 a·s9 a·42 a·24 2'01 

ao 4'35 3'49 3'10 2·87 2•6o 2'45 a·a8 a·o8 1·84 

as 4'24 3'38 2'99 a•76 2'49 a'34 2•16 1'¢ 1'71 

30 4'17 3'32 2'92 a·69 2'42 a•27 a'09 1'89 1·6a 

40 4'o8 3'a3 2•84 a•61 2'34 a·18 2'00 1'79 1'51 

6o 4'00 3'15 a•76 2'52 2'25 2•JQ 1'92 1'70 1'39 
120 3'9a 3'07 a·68 a•4S a•l7 a·o2 1'83 1'61 1'25 

<X> 3'84 a•99 ao6o a•37 a·09 1'94 1'75 I'Sa 1'00 
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TABLE 14·5 
THE I PER CENT POINTS FOR THE DISTRIBUTION OF F 

Nb 
Na-degrees of freedom for greater mean square. 

2 3 4 6 8 12 24 00 

4052 4999 5403 5625 5859 5981 6106 6234 6366 

2 98'49 99'00 99'17 99'25 99'33 99'36 99'4Z 99'46 99'50 

3 34'1Z 30'81 29'46 28·71 27"91 27'49 27·05 a6•6o 26•12 

4 ZI-20 18·oo 16·69 15'98 15":<11 14·8o 14'37 13'93 13'46 

5 16•26 13"27 12•06 Il'39 10•67 10'29 9'89 9'47 9'02 

6 13'74 10'92 9'78 9'15 8•47 8•10 7"72 7"31 6·88 

7 rz·25 9'55 8·45 7·85 7"19 6·84 6•47 6•07 5·65 

8 11•26 8·65 7"59 7"01 6•37 6•03 5·67 s·28 4•86 

9 10•56 8•02 6·99 6·4Z 5·8o 5'47 5·11 4'73 4'31 

10 10'04 7•56 6·55 5'99 5'39 5·o6 4'71 4'33 3'91 

IZ 9'33 6•93 5"95 5'41 4'8:<1 4'50 4'16 3'78 3'36 

14 8·86 6·51 5·56 5"03 4'46 4'14 3•8o 3'43 3'00 

16 8·53 6•23 5"29 4"77 4'20 3'89 3'55 3•18 2'75 

20 8·1o s·8s 4'94 4'43 3'87 3·56 3'23 2·86 2'4Z 

25 7"77 5"57 4·68 4'18 3'63 3'3:<1 2'99 2·62 :<1'17 

30 7·56 5'39 4'51 4'02 3'47 3'17 2•84 2'47 z·ox 

40 7"31 5·18 4'31 3'83 3'29 "~'99 2•66 :<1':<19 1'80 

6o~ 7·o8 4'98 4'13 3·65 3'1:<1 2•82 2•50 2·rz 1'60 

uo 6·85 4'79 3'95 3'48 2'96 2•66 2'34 1'95 1'38 

00 6·64 4•6o 3'78 3'3:<1 a·So a· 51 2•18 1'79 1'00 

Tables 14.4 and ~k. reprinted in rearranged form from Table V of Fisher and 
Yates, Stamtical ~ for Biological, Agricultural and Medical Research, Oliver 
and Boyd Ltd, Edinburgh, by permission of the authors and publiahers. 
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