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Abstract. We close an open issue on dictionaries dating back to the six-
thies. An array of n keys can be sorted so that searching takes O(logn)
time. Alternatively, it can be organized as a heap so that inserting and
deleting keys take O(logn) time. We show that these bounds can be si-
multaneously achieved in the worst case for searching and updating by
suitably maintaining a permutation of the n keys in the array. The re-
sulting data structure is called implicit as it uses just O(1) extra memory
cells beside the n cells for the array. The data structure is also cache-
oblivious, attaining O(logg n) block transfers in the worst case for any
(unknown) value of the block size B, without wasting any single cell of
memory at any level of the memory hierarchy.

1 Introduction

In this paper we consider the classical dictionary problem in which a set of n dis-
tinct keys aq, as, ..., a, is maintained over a total order, where the only op-
erations allowed on the keys are reads/writes and comparisons using the stan-
dard RAM model of computation [1]. The dictionary supports the operations of
searching, inserting and deleting an arbitrary key z.

Implicit dictionaries solve the problem by maintaining a plain permutation
of ay, ag, ..., a, to encode the data structures [I7]. When employed in this
context, heaps [I9] have the drawback of requiring O(n) time for searching,
while inserting or deleting a key in the middle part of sorted arrays may take
O(n) time [15]. A longstanding question is whether there exists an organization
of the keys in an array of n cells combining the best qualities of sorted arrays
and heaps, so that each operation requires O(logn) time. Previous work since
the sixties did not achieve polylog time in both searching and updating. We refer
the reader to [10] for a history of the problem.

The first milestone in this direction is the implicit AVL tree in the eighties,
showing for the first time that polylog time is possible, namely O(log2 n), by en-
coding bits in chunks of O(log n) permuted keys [16]. It was conjectured a bound
of O(log® n) because O(logn) pointers of O(logn) bits are decoded/encoded in
the worst case to execute an operation in the implicit AVL tree.

The second milestone is the implicit B-tree, attaining O(log2 n/lognlogn)
time [IT]. Notwithstanding the small improvement in main memory, this recent
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result disproved the conjecture of the eighties, making viable the possibility of
getting a bound of O(logn). The implicit B-tree uses nodes of relatively large
fan-out that are augmented with a permuted directory to support fast searching
inside each node. For a known block size B = {2(logn), it supports the operations
in O(logg n) block transfers like regular B-trees, while scanning r contiguous
elements requires O(logz n + r/B) block transfers.

The subsequent results leading to the flat implicit tree [9] probably represents
the third milestone. It is the first implicit data structure with optimal O(logn)
time for searching and O(logn) amortized time for updating. Specifically, the
result of O(lognloglogn) in [7] uses exponential trees of height O(loglogn),
exploiting in-place algorithms to amortize the bounds and introducing different
kinds of chunks of O(logn) contiguous keys to delay the expensive reorganiza-
tions of the updates. The result in [I0] obtains O(logn) amortized time with a
two-layer tree of constant height (except very few cases), adapting the redistribu-
tion technique of [3/14] to the implicit model. Its cache-oblivious evolution in [§]
attains the amortized bounds of O(logz n), where the cache-obliviousness of the
model lies in the fact that the block transfer size B is unknown to the algorithms
operating in the model [13]. The top layer uses a van Emde Boas permutation [13]
of the keys as a directory, and the bottom layer introduces compactor zones to
attain cache-obliviousness. Compared to implicit B-trees, the update bounds are
amortized and scanning is not optimal. On the other hand, achieving an optimal
scanning is still an open problem in explicit cache-oblivious dictionaries even
with amortized update bounds of O(logg n). The implicit B-tree attains this
goal with worst-case bounds as it is aware of the block size B.

In this paper we focus on the worst-case complexity of implicit dictionaries.
The best bound is that of O(log®n/loglogn) with the implicit B-trees. For
explicit cache-oblivious data structures, the best space occupancy in [5] is (14€)n
cells for any € > 0 with an O(1 4 r/B) scanning cost for 7 keys, but the update
bounds are amortized, whereas the worst-case result in [4] uses more space. Here,
we propose a new scheme for implicit data structures that takes O(logn) time
and O(logg n) block transfers in the worst case for any unknown B, as in the
cache-oblivious model. The optimality of our data structure is at any level of
the memory hierarchy as it uses just n + O(1) cells. This closes the problem of
determining a permutation of the keys in an array, so that both searching and
updating are logarithmic in the worst case as explicit dictionaries.

We introduce new techniques to design our data structures. First, we use
some spare keys and some chunks, called filling chunks, to allocate nodes of the
tree in an implicit way. When we actually need a chunk, we replace the filling
chunk with the routing chunk, and relocate the filling chunk. We also design
a bottom layer that can be updated very quickly. We reuse techniques from
previous work, but we apply them in a novel way since we have to perform
the memory management of the keys in the array. Consequently, our algorithms
are slightly more involved than algorithms for explicit data structures, as the
latter assume to have a powerful memory manager performing the “dirty” work
for them in a transparent way. Instead, we have to carefully orchestrate data
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movement as we cannot leave empty slots in any part of the array. In the full
paper, we show how to extend to our data structure to a multiset, namely,
containing some repeated keys.

The paper is organized as follows. In Section Pl we review some basic tech-
niques that we apply to implicit data structures. We then describe our main
data structure in two parts, in Section BH4] putting them together in Section [l
for the sketch of the final analysis of the supported operations.

2 Preliminary Algorithmic Tools

We encode data by a pairwise (odd-even) permutation of keys [I6]. To encode a
pointer or an integer of b bits by using 2b distinct keys x1,y1, 2, Y2, - - -, Tb, Yp,
we permute them in pairs z;, y; with the rule: if the éth bit is 0, then min{x;, y;}
precedes max{x;,y; }; else, the bit is 1 and max{z;,y;} precedes min{x;,y;}.

Adjacent keys in the array are grouped together into chunks, where each
chunk contains O(k) (pairwise permuted) keys encoding a constant number of
integers and pointers, each of b = O(logn) bits. The keys in any chunk belong to
a certain interval of values, and the chunks are pairwise disjoint when considered
as intervals, thus yielding a total order on any set of the chunks. We introduce
some terminology on the chunks to clarify their different use. We have routing
chunks that help us in routing the search of individual keys, and filling chunks
that provide a certain flexibility in filling the entries of the array in that we can
keep them in no particular order. Access to the latter is via the routing chunks.
The number of keys in a chunk is fixed to be either k or k — « for a certain
constant a > 1, which is clear from the context. We also use a set of spare keys
that can be individually relocated and referenced for a finer level of flexibility in
filling the array, associating O(1) spare keys to some chunks. When considered
as intervals, the chunks include the spare keys although the latter physically
reside elsewhere in the array.

Our algorithms employ some powerful tools to achieve their worst-case and
cache-oblivious bounds. One tool is Willard’s algorithm [I8] and its use in Dietz-
Sleator lists [6]. Suppose we have an array Z of N slots (for a fixed N) storing
a dynamic set S of n < N objects, drawn from a totally ordered universe. At
any time, for every pair of object s1,s9 € S, if 51 < so then the slot storing s;
precedes that storing so. The data structure proposed by Willard in [I8] achieves
this goal using a number of O(log? N) arithmetical operations, comparisons and
moves, in the worst case, for the insertion or the deletion of an individual object
in Z. In our use of Willard’s scheme, the routing chunks play the role of the full
slots while the filling chunks that of the empty slots. It is possible to insert a
new routing chunk (thus replacing a filling chunk that goes elsewhere) and delete
a routing chunk (putting in its place a filling chunk taken somewhere). These
operations have to maintain the invariant of Willard’s scheme according to the
total order of the routing chunks stored in the slots. Since the slots are of size
O(k) in our case, the bounds of Willard’s scheme have to multiplied by a factor
of O(k) time or O(k/B) block transfers to insert or delete a routing chunk.
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Another useful tool is the van Emde Boas (VEB) layout of Prokop [13]. Given
a complete binary search tree T with n = 2° — 1 nodes, the VEB layout of T
allows for searching with O(logz n) block transfers in a cache-oblivious fashion.
Brodal et al. [5] describe how to avoid pointers in the VEB layout, still using
extra memory. Franceschini and Grossi [9] show how to make the VEB layout
implicit in the form of a VEB permutation of the n keys.

The last tool is for memory management of nodes of variable size with com-
pactor lists [11] and compactor zones [9]. Nodes in the design of implicit data
structures are sets of permuted keys that should be maintained as contiguous as
possible. For this, nodes of the same size are kept together in a segment of con-
tiguous cells (the compactor zone) or in a linked list of fixed size allocation units
(the compactor list). Their use make possible to avoid to create empty cells
during the operations since the nodes of the same size are collected together.
However, when a node changes size, we have to relocate the node from one com-
pactor zone (or list) to another. Since we want to achieve worst-case bounds,
we use compactor lists for nodes of size ©(y/logn) since they are efficient with
small size nodes, and compactor zones for nodes of size ©(logn) since they can
be incrementally maintained still permitting searching. For larger nodes, we use
a different approach described in Section @l

3 Districts of Chunks

The array of n keys is partitioned into O(loglogn) portions as in Frederick-
son [12], where the pth portion stores 22" keys, except the last portion, which
can store less keys than expected. Inserting or deleting a key in any portion can
be reduced to performing the operation (possibly with a different key) in the
last portion, while searching is applied to each portion. Achieving a logarithmic
cost in each portion sums up to O(logg n) block transfers, which is the final cost
of the supported operations.

In the rest of the paper we focus on the last portion A of the array, assuming
without loss of generality that A is an array of n keys, where N = 22" is the
maximum size of A for some given integer p > 0 and n < N is sufficiently large
to let us fix k = O(log N) = O(logn). (The implicit model assumes that A
occupies just n + O(1) cells and that it can be extended to the right one cell
at a time up to n = N cells.) This condition is guaranteed using Frederickson’s
partitioning.

The first O(log N) keys of A form a preamble encoding some bookkeeping
information for A. We partition the rest of A into two parts, the layer & of the
districts and the layer B of the buckets. We defer the discussion of layer B to
Section Hl Here, we focus on the districts in layer 9 in which we use chunks of
size k — « for a certain constant « > 1. We partition the initial part of layer &%
into a number (at most logarithmic) of consecutive districts Dg, D1, ..., so that
each D; contains 2 chunks and ©(2¢) spare keys according to the invariants we
give next. Here, we denote the zone of & to the right of the districts by F' (see

Figure D).
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Do Dy Do F
e e

N7

Directories Spare keys

Fig. 1. The districts in layer 9.

1. The chunks in layer 9% are routing chunks and filling chunks, each with o =
O(1) spare keys associated. The routing chunks occur only in the districts
Dy, Dy, ..., while the filling chunks can occur anywhere in @ (i.e., both in
l)o,l)l7 ...and in F)

2. The total left-to-right sequence of routing chunks among all districts in 9 is
in order, while the filling chunks are not in any particular order. Given any
two routing chunks (as closest as possible), the sequence of filling chunks can
be arbitrarily long.

3. With each routing chunk ¢, there are ©(1) filling chunks associated. Their
number can range between two suitable constants, so that the overall number
of filling chunks in F is at least 2¢*1. The filling chunks associated with c are
the nearest to ¢ in the total order of the chunks, and the pointers to them
are encoded in c.

4. The first ©(2%) positions of each district D; are initially occupied by some
spare keys associated with the filling chunks in 9. We require that, at any
time, the number of these positions is a multiple of the chunk size. The keys
in these positions form a directory for quickly searching the routing chunks
in Dz

5. The routing chunks in D; are to the right of their directory, and the first
chunk ¢ immediately after the directory is always routing. We maintain the
smallest key of ¢ as a spare key that is stored in the preamble of A. In this
way, we can discover in which district to search by first reading O(logn)
adjacent spare keys in that preamble.

6. The rest of the spare keys are in F, at the beginning (a multiple of the chunk
size) and at the end (any number of them). We incrementally move the spare
keys from the end of F to the beginning of F' (or vice versa), when adding
(or removing) routing chunks in D;, the rightmost district in @. When the
number of routing chunks in 9% is sufficiently large, the keys at the beginning
of F' are already organized to create D, 1, thus shortening F' and preparing
for D; o (if any). An analogous situation occurs when D; has no more routing
chunks, and D;_; becomes the rightmost district.

How to search a key in 9. The organization mentioned in points[IHG is not yet
suitable for searching. As mentioned in point Bl we can identify efficiently in
which district, say D;, we must go on searching. Once we identify the correct
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routing chunk in D;, it is a simple task to examine its associated filling chunks.
Consequently, it suffices to show how to search a key in D;, so that a routing
chunk can be identified with O(logg n) block transfers.

With this goal in mind, we set up the directory of D; following the VEB per-
mutation mentioned in Section[2 Since this scenario is well exploited and studied
in previous work [9], we do not describe the one-to-one mapping between the
VEB permutation in the directory and the 2° —1 nodes of a complete binary tree.
In turn, the nodes of the tree are in one-to-one correspondence with the 2¢ — 1
chunks in D;. Although the tree is not yet a search tree, we can activate the
search path in it for each routing chunk in D;. At the beginning, the directory
is made up of spare keys from filling chunks and no search path is active.

Given a routing chunk c, let u be the corresponding node in the complete
binary tree encoded by the VEB permutation. Since ¢ contains ©(logn) keys
and the chunks are disjoint as intervals, we can exchange the smallest keys in ¢
with the spare keys found in the upward path from u. The general property
we maintain is that the exchanged keys of ¢ must guide the search towards u
when searching keys that fall inside ¢ as an interval. In other words, the paths
activated for all the routing chunks form a search tree. The nodes along these
paths contain keys taken from the routing chunks, while the rest of the keys in
the directory are spare keys from the filling chunks. The routing chunks host
temporarily the spare keys that they exchanged in the directory. As a result, the
spare keys hosted inside the routing chunk ¢ can be retrieved from the pointers
encoded in their filling chunks. Vice versa, the keys in ¢ that are currently in the
directory stay along some of the nodes in the upward path from u, and they can
be retrieved with a cost of O(logg n) block transfers.

With this organization of the directory, searching is a standard task with
the VEB permutation as each node have now a routing key when needed. What
can be observed is that we actually exchange keys in pairs to encode a flag bit
indicating whether w has associated spare keys or keys from a routing chunk.
The rest of the searching in the VEB permutation is unchanged.

Lemma 1. Any key x can be searched in @ with O(k/B+logg n) block transfers,
identifying the (routing or filling) chunk that contains x.

How to update @. Within a district D;, we focus on how to maintain its orga-
nization of the keys when the routing chunks are added or removed. The first
routing chunk in D, is to the immediate right of the directory, in which case we
exchange O(logn) keys with the directory. For the following routing chunks, we
apply Willard’s algorithm to D; (without its directory) as described in Section
— The number of routing chunks in each district D; is dictated by Willard’s al-
gorithm. In particular, if D; is the last district, each of Dy, Dy, ..., D;_1 has
the maximum number of routing chunks according to Willard’s algorithm,
and the rest are filling chunks. Instead, D; is not necessarily maximal.
— The structural information needed by Willard’s algorithm can be entirely
encoded and maintained in layer %.

Willard’s scheme preserves the distribution of routing chunks among the filling
chunks in O(log® n) steps. In each step, it relocates a routing chunk ¢ from one
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position to another in D; by exchanging it with a filling chunk ¢'. This step
requires exchanging the keys of the two chunks incrementally, then performing
a search to locate and re-encode the incoming pointer to ¢’.

However this alone does not guarantee searchability as we need to update
the VEB permutation. We therefore divide the step in further O(logn) substeps
that essentially remove c and its search path in the directory and re-insert it into
another position, along with its new search path. Specifically, in each substep
we retrieve one of the O(logn) keys of ¢ that are in the directory and put it
back in ¢ by exchanging it with the corresponding spare key temporarily hosted
in ¢ (note that each spare key requires a search). Next, we exchange ¢ with ¢/,
and propagate the same exchange in the VEB permutation of the directory. We
then run further O(logn) substeps to trace the path for the new position of ¢
and exchange its keys so that it is now searchable in the directory. During the
substeps, ¢ is the only chunk not searchable in D;. But we can encode a pointer to
it in the preamble, so that searching treats c as a special case. When the task for ¢
is completed, Willard’s scheme takes another routing chunk, which becomes the
new special case. In summary, each of the O(log2 n) steps in Willard’s scheme can
be divided into further O(logn) substeps, each costing O(k + logn) = O(logn)
time and O(k/B 4+ logg n) = O(logg n) block transfers. It is crucial noting that
after each substep, we can run the search as stated in Lemmal[l] plus the special
case for the current c.

When inserting and deleting routing chunks in a district D;, for j < 4, we
perform the same steps as in D;. However we must preserve the property that the
number of routing chunks is maximal. This means inserting/deleting a routing
chunk also in each of Dj41,. .., D;. Since there are O(log n) districts, we have an
extra logarithmic factor in the number of substeps for the districts in the entire
layer 9.

Theorem 1. Layer 9 can be maintained under insertion and deletion of single
routing chunks and filling chunks by performing no more than O(polylog(n))
incremental substeps, each requiring O(logn) time and O(log g n) block transfers.
After executing each single substep, searching a key for identifying its chunk takes
O(logn) time and O(logg n) block transfers for any (unknown) value of B.

4 Indirection with Dynamic Buckets

The layer B of the array A introduced in Section [ is populated with buckets
containing from 2(k%"1) to O(k?) keys, for a constant d > 5. Each bucket is
a balanced tree of constant height. A tree is maintained balanced by split and
merge operations applied to the nodes. Unlike regular B-trees, the condition
that causes a rebalancing for a node is defined with a parameter that depends
on the whole size of the subtree rooted in the node (e.g., see the weight-balanced
B-trees [2]). We now give a high level description of the buckets assuming that
the size of each chunk is k and that we can rely on a suitable memory layout
of the nodes. We postpone the discussion of the layout to Section [£2] which is
crucial for both implicitness and cache-obliviousness.
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4.1 The Structure of the Buckets

A bucket has a constant number d of levels. Each bucket is associated with either
a routing chunk or a filling chunk of layer @, and all the keys in the bucket are
greater than those in that chunk.

Leaves. A leaf of a bucket contains from k to 16k keys. Moreover, a leaf has
associated a maniple that contains from vk to 5vk keys and a number of
filling chunks that ranges from r to 4r for a suitable constant r. The exact value
of r concerns the memorization of the internal nodes of the buckets, as clarified
in Section 4.2l The filling chunks of a leaf [ are maintained in increasing sorted
order in a linked list, say fi,..., fs. Letting m be the maniple associated with [,
we have that (1) f; is the predecessor of fj+q for 1 < j < s, and (2) for each
choice of keys x € f,, ' €l and 2”7 € m, we have z < 2’ < z"’.

As we shall see, each leaf [, its maniple m and its filling chunks are maintained
in a constant number of zone of contiguous memory. Hence, searching in these
objects requires a total of O(k+logn) time and O(k/B+logg n) block transfers.

Internal nodes. An internal node contains routing chunks and filling chunks,
and the pointer to the jth child is encoded by O(logn) keys in the jth chunk,
which must be routing. Following an approach similar to that in [2], we define
the weight w(v) of an internal node v at level i (here, the leaves are at level 1)
as the number of keys in the leaves descending from v. We maintain the weight
ranging from 4°k? to 4°T1k?. For this reason the number of chunks of an internal
node can range from k to 16k. For the root of a bucket, we only require the upper
bound on its weight, since the bucket size can be §2(k%~!) and the number of
chunks in the root can be O(1).

In order to pay O(loggn) block transfers when searching and updating an
internal node v, we maintain a directory of @(k) keys in v, analogously to what
done in [IT]. Thus the chunks of v are not maintained in sorted order, but their
order can be retrieved by scanning the directory in v. In this way, any operation
on v involves only O(1) chunks and portions of ©(k) contiguous keys each.

Handling insertions and deletions. If we ignore the memory management, the
insertion or the deletion of a key in a bucket is a relatively standard task. If x is
the key to insert into chunk ¢, the root of a bucket, we place x in its position
inside ¢, shifting at most k keys to extract the maximum key in that chunk. We
obtain the new key x to insert into the node whose pointer is encoded in ¢. In
general, inserting x into a chunk of an internal node u goes along the same lines.

When we reach a leaf [, we perform a constant number of shifts and extrac-
tions of the maximum key in its filling chunks fi,..., fs and in [ itself. We end
up inserting a key into the maniple m of [. If the size of m exceeds the maximum
allowed, we extract the vk smallest keys from m and insert them into I. If the
size of [ is less than 16k, we are done. On the contrary, if also [ exceeds the
maximum allowed but the number of its filling chunks is still less than 4r, we
extract the smallest chunk of [ and create a new filling chunk fs;.

Instead, if the number of filling chunks is the maximum allowed, 47, we “split”
the whole group made up of the leaf [, its maniple z and its filling chunks. That is
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to say, we partition all the keys so that we have two new groups of the same kind,
each group member satisfying all the invariants with their values half on the way
between the maximum and the minimum allowed. We also generate a median
(routing) chunk that have to be inserted in the parent of I, encoding a pointer
in that chunk to the new leaf. We then examine all the ancestors of [, except
the root, splitting every ancestor that exceeds its maximum allowed weight,
obtaining two nodes of roughly the same weight. Deleting a key is analogous,
except that we merge two internal nodes, although we may split once after a
merge when the resulting node is too big. For the leaves we need merging and
borrowing with an individual key. Merging and splitting the root of a bucket fall
inside the control of a mechanism for the synchronization between layer % and
layer B, described in Section

4.2 Memory Layout

We now discuss how to store the buckets in a contiguous portion of memory,
which is divided into three areas.
— The filling area stores all filling chunks of layer B and the routing chunks of
the internal nodes of the buckets.
— The leaf area stores all the leaves of the buckets using a new variation of the
technique of compactor zones [9] that is suitable for de-amortization.
— The maniple area stores all the maniples using a set of compactor lists.

Filling area. We use the filling chunks to allocate the internal nodes. We need
here to make some clear remarks on what we mean by “allocate.” Suppose we
want to allocate an empty node v with 16k chunks. We take a segment of 16k
filling chunks that are contiguous and devote them to v. Since each filling chunk
can be placed everywhere in the memory, when we need to insert a routing
chunk c into v, we can replace the leftmost available filling chunk in v with c,
moving that filling chunk elsewhere at the cost of searching one of its keys and
of re-encoding the pointer to it, with O(logn) time and O(k/B) block transfers.
Keeping the above remark in mind, we logically divide the filling zone into
segments of 16k filling chunks each, since we can have a maximum of 16k routing
chunks for an internal node. A segment is considered “free memory” if it contains
only filling chunks. An internal node v with ¢ routing chunks is stored in a
segment with the first ¢ routing chunks permuted and the remaining 16k — ¢
filling chunks. When a routing chunk needs to be inserted into an internal node v
whose weight is not maximal, we put the chunk in place of a filling chunk in the
segment assigned to v. The replaced filling chunk will find a new place in
— either the segment of the child u of v, if v is an internal node that splits,
— or between the filling area and the leaf area, if u is a leaf that splits (the
filling area increases by one chunk).
The deletion of a routing chunk in v is analogous. We replace the chunk with

a filling chunk that arises either from the two merged children of v, if these
children are internal nodes, or from the last position of the filling area, if these
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children are leaves (and the filling area decreases by one chunk). Thus, using the
directory for the routing as described above, we are able to insert or delete a
chunk in an internal node in O(logn) time and O(k/B) block transfers.

When we have to split an internal node v in two nodes v’,v”, we allocate
a new segment a for v/ while re-using the segment of v for v/, and exchange
incrementally the routing chunks in the segment of v’ with filling chunks of a,
the segment for v”. We exchange a constant number of chunks at each step, and
these s = O(k) steps are spread through the subsequent s operations operating
through v. Note that, during this transition, v is considered not split but only
partitioned in two segments instead of one. The execution of a merge is analo-
gous. The invariants defined on the buckets guarantee that we can terminate an
incremental transfer before that a further split or merge occurs.

The management of segments is through a simple linked list of free segments.
The constant r that bounds the minimum number of filling chunks associated
with a leaf can be easily chosen so that we can guarantee that there exists a
sufficient number of filling chunks in layer % for all internal nodes.

Leaf area. The size of the leaves ranges from k to 16k keys, and vary by vk keys
at a time. Using the technique of the compactor zones, we maintain 15vk + 1
zones of contiguous memory, one for each possible size. Each zone is indexed by
the size of the leaves it contains. The zones are in order by this index, so that
zone s precedes zone s + Vk, for each s = k. k +Vk,k+2Vk,...,16k — VEk.
When we have to add vk keys to a leaf [ of size s, we would like to extract { out
of all compactor zones, moving [ near to the vk keys to be added by rotating
each traversed zone by s keys. As a result, all the leaves are in a contiguous
portion of memory except for a single leaf that can be “broken” in two pieces
because of the rotation. This scheme is simple and powerful but too costly. We
achieve our worst-case bounds with a two-step modification of this scheme. The
first step exploits the fact that, for each leaf [,
1. !Z(\/E ) update operations occur in its maniple between two consecutive vari-
ations of vk in the size of [;
2. (k) update operations occur in its maniple between two consecutive varia-
tions of k in the size of | (due to the creation/destruction of a filling chunk);
3. £2(k) update operations occur in its filling chunks and its maniple between
two consecutive splits or merges of .

Consequently, we have a sufficient number of operations to perform incrementally
the updates involving a leaf [. The basic idea is to execute a constant number of
rotations from zone to zone in a single operation.

The second step introduces two commuting sub-zones between any two com-
pactor zones. These two sub-zones work like the compactor zones but contain
blocks of keys in transit between zones (see Figure2l). For any pair of sub-zones,
the first sub-zone contains the blocks of k + vk keys that have to be inserted in
or deleted from a leaf. The second sub-zone contains

— chunks that have to be inserted or deleted in a leaf;
— all the chunks of the leaves to be split or merged.
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Fig. 2. Compactor zones and sub-zones with broken items highlighted.

For example, when a leaf reaches its maximum number of keys, it is transformed
into a linked list of O(1) chunks going to the second sub-zone near zone 16k. At
this point, we incrementally move these chunks until we reach the sub-zone near
zone 8k; we split the list into two parts and put them as two new leaves of size
8k. Note that the leaf is still searchable while traversing the zones.

Maniple area. The maniple area is handled with compactor lists [I1]. However,
we use allocation units of size vk, and so the structural information for them
must be encoded in the leaves associated with the maniples. Each time we need
a structural information (e.g., next allocation unit in a list), we perform a search
to locate the corresponding leaf. There are O(v/k ) heads of size at most vk, so
the whole head area occupies O(k) positions and can be scanned each time.

Theorem 2. Searching, inserting and deleting a key in a bucket of layer B takes
O(logn) time and O(logg n) block transfers for any (unknown) value of B.

5 Synchronization between Layer % and Layer %

We combine the two layers described in Sections[BH4l by using a simple variation
of the Dietz-Sleator list [6]. Every other £2(polylog(n)) operations in layer %,
we eventually split the largest bucket and we merge the smallest bucket. This
causes the insertion and the deletion of a routing chunk in layer &. By setting
up the suitable multiplicative constants, we provide a time slot that is sufficient
to complete the algorithms operating in layer @ by Theorem [T}

Theorem 3. An array of n keys can be maintained under insertions and dele-
tions in O(logn) worst-case time per operation using just O(1) RAM registers,
so that searching a key takes O(logn) time. The only operations performed on
the keys are comparisons and moves. They require O(loggn) block transfers in
the worst case for the cache-oblivious model, where the block size B is unknown
to the operations.
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