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Abstract. This paper presents a novel algorithm that uses techniques
adapted from models originating from biological collective organisms to
discover clusters of arbitrary shape, size and density in spatial data. The
algorithm combines a smart exploratory strategy based on the move-
ments of a flock of birds with a shared nearest-neighbor clustering algo-
rithm to discover clusters in parallel. In the algorithm, birds are used as
agents with an exploring behavior foraging for clusters. Moreover, this
strategy can be used as a data reduction technique to perform approxi-
mate clustering efficiently. We have applied this algorithm on synthetic
and real world data sets and we have measured, through computer sim-
ulation, the impact of the flocking search strategy on performance.

1 Introduction

Data mining deals with the problem of extracting interesting associations, clas-
sifiers, clusters, and other patterns from data by paying careful attention to
the available computing, storage, communication, and human resources. Clus-
tering is a data mining task concerning the process of grouping similar objects
according to their distance, connectivity, or their relative density in space. In
particular, spatial data mining is the discovery of interesting relationships and
characteristics that may exist implicitly in spatial data. Spatial clustering has
been an active area of research into data mining, with many effective and scalable
clustering methods developed. These methods can be classified into partition-
ing methods, hierarchical methods, density-based methods, grid-based methods.
Han, Kamber and Tung’s paper [I] is a good introduction to this subject.

Recently, other algorithms based on biological models [2l8] have been intro-
duced to solve the clustering problem. These algorithms are characterized by
the interaction of a large number of simple agents that sense and change their
environment locally. Furthermore, they exhibit complex, emergent behavior that
is robust with respect to the failure of individual agents. Ants colonies, flocks of
birds, termites, swarms of bees etc. are agent-based insect models that exhibit
a collective intelligent behavior (swarm intelligence) [4] which may be used to
define new algorithms of clustering.

In this paper, we present the parallel spatial clustering algorithm
SPARROW-SNN (SPAtial ClusteRing AlgoRithm thrOugh SWarm Intelli-
gence and Shared Nearest-Neighbor Similarity) which is based on an adaptive
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flocking algorithm proposed by Macgill and S. Openshaw [5] as a form of effective
search strategy to perform an exploratory geographical analysis. The algorithm
takes advantage of the parallel search mechanism a flock implies, by which if a
member of a flock finds an area of interest, the mechanics of the flock will draw
other members to scan that area in more detail. SPARROW-SNN combines the
flocking algorithm with a shared nearest neighbor cluster algorithm to discover
clusters of arbitrary density, shape and size in spatial data. SPARROW-SNN
uses the stochastic and exploratory principles of a flock of birds to detect clus-
ters in parallel according to the shared nearest neighbor-based principles of the
SNN [6] clustering algorithm and a parallel iterative procedure to merge the
clusters discovered. Moreover, we have applied this strategy as a data reduc-
tion technique to perform approximate clustering efficiently [7]. We have built
a SWARM [g§] simulation of SPARROW-SNN to investigate the interaction of
the parameters that characterize the algorithm. The first experiments show en-
couraging results and a better performance of SPARROW-SNN in comparison
with the linear randomized search. The remainder of this paper is organized as
follows. Section 2 briefly presents the heuristics of the SNN clustering. Section
3 introduces the classical flocking algorithm and presents the SPARROW-SNN
algorithm. Section 4 discusses the obtained results and Section 5 draws some
conclusions.

2 The SNN Clustering Algorithm

SNN is a clustering algorithm developed by Ert6z, Steinbach and Kumar [6] to
discover clusters with differing sizes, shapes and densities in noisy, high dimen-
sional data. The algorithm extends the nearest-neighbor non-hierarchical clus-
tering technique developed by Jarvis-Patrick [9] redefining the similarity between
pairs of points in terms of how many nearest neighbors the two points share. Us-
ing this new definition of similarity, the algorithm eliminates noise and outliers,
identifies representative points also called core points, and then builds clusters
around the representative points. These clusters do not contain all the points,
but rather represent relatively uniform groups of points. The SNN algorithm
starts performing the Jarvis-Patrick scheme. In the Jarvis-Patrick algorithm a
set of objects is partitioned into clusters on the basis of the number of shared
nearest-neighbors. The standard implementation is constituted by two phases.
The first is a pre-processing stage which identifies the K nearest-neighbors of
each object in the data set. In the subsequent clustering stage a shared nearest
neighbor graph is constructed from the pre-processed data as follows. A link is
created between two objects i and j if:

— 14 is one of the K nearest-neighbors of j;
— 7 is one of the K nearest-neighbors of i;
— 4 and j have at least K,,;, of their K-nearest-neighbors in common;

where K and K,,;, are used-defined parameters. Each link has an associate
weight defined as:
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weight(i, j) = Z(k+1—m)(k+1-n), where iy = jn (1)

In the equation above, k is the nearest neighbor list size, m and n are the
positions of a shared nearest neighbor in ¢ and j’s lists. At this point, clusters
can be obtained by removing all edges with weights less than a user specified
threshold and taking all the connected components as clusters. A major draw-
back of the Jarvis-Patrick is that, the threshold needs to be set high enough
since two distinct sets of points can be merged into the same cluster even if
there is only one link across them. On the other hand, if a high threshold is
applied, then a natural cluster will be split into many small clusters due to the
variations in the similarity in the cluster. SNN addresses these problems adding
to the Jarvis-Patrick algorithm the following steps:

— for every data point in the weighted graph, calculate the total sum of weights
associated with the links coming out of the point. This value is called con-
nectivity;

— identify core points by choosing the point that have a value of connectivity
greater than a predefined threshold (core_threshold);

— identify noise points by choosing the points that have a value of connectivity
lower than a user specified threshold (noise_threshold) and remove them;

— remove all links between points with weight smaller than a threshold );

— form clusters with the connected components of points. Every point in a
cluster is either a core point or is connected to a core point.

The number of clusters is not given to the algorithm as a parameter. Also
note that not all the points are clustered.

3 SPARROW-SNN: A Flocking Algorithm for Spatial
Clustering

In this section, we present a multi-agent clustering algorithm, called SPARROW-
SNN, which combines the stochastic search of an adaptive flocking with the SNN
heuristics for discovering clusters in spatial data. This approach has a number of
nice properties. It has the advantages of being easily implementable on parallel
computers and is robust compared to the failure of individual agents. It can also
be applied to perform approximate clustering efficiently since the points that
are, to each iteration, visited and analyzed by the agents represent a significant
(in ergodic sense) subset of the entire data set. The subset reduces the size of the
data set while keeping the loss of accuracy as small as possible. We propose to
use flocking sampling as a data reduction technique to speed up the operations
of cluster and outlier detection on large data sets collections. Our approach
iteratively improves the accuracy of the clustering because, at each generation,
new data points are discovered and added to each cluster with about the same
increase per cent.

SPARROW-SNN uses a modified version with an exploring behavior of stan-
dard Reynolds’ flock of birds model [I0] to describe the movement rules of the
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agents. The behavior requires each agent to search the clusters in parallel and
to signal the presence or the lack of significant patterns in the data to the other
flock members, by changing its color. The entire flock then moves towards the
agents (attractors) that have discovered interesting regions to help them, avoid-
ing the uninteresting areas that are instead marked as obstacles. Clusters are
discovered using the heuristics principles of the SNN clustering algorithm.

As first step, SPARROW-SNN computes the nearest-neighbor list for each
data point using a threshold similarity that reduces the number of data elements
to take in consideration. The introduction of the threshold similarity produces
variable-length nearest-neighbor lists and therefore now i and j must have at
least P, of the shorter nearest-neighbor list in common; where Py, is a user-
defined percentage. After the nearest-neighbor list is computed, SPARROW-
SNN starts a fixed number of agents that will occupy a randomly generated
position. The agents have an attribute that defines their color. Initially the
color is the same for all. From its initial position, each agent moves around the
spatial data testing the neighborhood of each location in order to verify if the
point can be identified as a core point. All agents execute the same set of rules
for a fixed number of times (MazGenerations). When an agent falls on a data
point A not yet visited, it computes the connectivity, connfA], of the point,
i.e. computes the total number of strong links the points has according to the
rules of the SNN algorithm. Points having a connectivity smaller than a fixed
threshold (noise_threshold) are classified as noise and are considered to be re-
moved from the clustering. Each agent is colored on the basis of the connectivity
computed in the visited data point. The colors assigned to the agents are: red
(conn > core_threshold), revealing core points, green (noise_threshold < conn
<= core_threshold), for border points, yellow (0 < conn < noise_threshold),
for noise points, and white (conn = 0), indicating an obstacle (uninteresting
region).

After the coloration step, the green and yellow agents, compute their move-
ment observing the positions of all other agents that are at some fixed distance
(dist_-maz) from them, and applying the rules of Reynolds’ with the following
modifications:

— Alignment and cohesion do not consider yellow agents, since they move in a
not very attractive zone.

— Cohesion is the resultant of the heading towards the average position of the
green flockmates (centroid), of the attraction towards red agents, and of the
repulsion by white agents.

— A separation distance is maintained from all the agents, whatever their color
is.

Agents will move towards the computed destination with a speed depending
from their color: green agents will move slowly than yellow agents since they will
explore denser zones of clusters. Green and yellow agents have a variable speed,
with a common minimum and maximum for all agents. An agent will speed up to
leave an empty or uninteresting region whereas it will slow down to investigate
an interesting region more carefully. The variable speed introduces an adaptive
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behavior in the algorithm. In fact, agents adapt their movement and change
their behavior (speed) on the basis of their previous experience represented by
the red and white agents. Red and white agents will stop signaling to the others
the interesting and desert regions.

Note that for any agent which has become red or white, a new agent will be
generated in order to maintain a constant number of agents exploring the data.
In the first case, the new agent will be generated in a close random point, since
the zone is considered interesting, while in the latter it will be generated in a
random point over all the space.

In any case, each red agent (placed on a representative point) will run the
merge procedure so that it will include, in the final cluster, the representative
point discovered together with the points that share with it a significant (greater
than P,,;,) number of neighbors and are not noise points. The merging phase
considers two different cases: when we have never visited any of these points
in the neighborhood and when we have points belonging to different clusters.
In the first case, the points will be assigned the same temporary label and will
constitute a new cluster; in the second case, all the points will be merged into
the same cluster, i.e. they will get the label corresponding to the smallest one.
So clusters will be built incrementally.

During simulations a cage effect, was observed; in fact, some agents could
remain trapped inside regions surrounded by red or white agents and would
have no way to go out, wasting useful resources for the exploration. So, a limit
on their life was imposed to avoid this effect; hence, when their age exceeded
a determined value (mazLife) they were killed and were regenerated in a new
randomly chosen position of the space.

4 Experimental Results

For the experiments we used two synthetic data sets and one real life data set
from a spatial database. The structure of these data sets is shown in figure[ll The
first data set, called GEORGE, consists of 8000 points, characterized by a large
number of noise points. The second data set, called DS1, contains 8000 points
and presents different densities in the clusters. The third data set, called North-
East, contains 123593 points representing postal addresses of three metropolitan
areas (New York, Boston and Philadelphia) in the North East States.

We implemented our algorithm using SWARM, a multi-agent software plat-
form for the simulation of complex adaptive systems. We first illustrate the loss
of accuracy of our SPARROW-SNN algorithm in comparison with SNN algo-
rithm when SPARROW-SNN is used as a technique for approximate clustering.
To this purpose, we implemented a version of SNN and we computed the number
of clusters and the number of points for cluster for the three datasets.Table [
presents a comparison of these results with respect to the ones obtained from
SPARROW-SNN when a population of 50 agents have visited respectively 7%,
12% and 22% of the entire data set.
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N

GEBRGE

(&) GEORGE (c) North-East
Fig. 1. The three data sets used in our experiments.

Table 1. Number of clusters and number of points for cluster for GEORGE, DS1 and
North-East data sets (percentage in comparison to the total points for cluster found
by SNN) when SPARROW-SNN analyzes 7%, 12% and 22% points.

Clustering Per. of data points Clu.sterlng Per. of data points
using the for cluster found by using the [|for cluster found by
GEORGE data set| SPARROW-gNN |25t data set] SPARROW SNN
750 11290 229 ™% | 12% | 22%
- 1 41.35%|58.31%|70.37%
G 55.8%|80.0%| 88.3% =
2 30.08%53.58%60.72%
E 53.1%(69.8%| 88.6% 5 > o
3 29.28%140.99%|53.02%
O 62.8%(82.1%| 86.2% :
= 4 20.9% | 30.5% |51.41%
R 49.0%(67.5%| 83.2%
5 53.38%65.36%|76.56%
G 47.9%|72.0%| 78.8%
B AR AT 6 56.89%|69.87%|73.63%
- : . 7 33.89%| 43.5% [61.58%
Clustering Per. of data points
using the for cluster found by
North-East data set|| SPARROW-SNN
% |12% 22%
Philadelfia 42.5%165.2%| 79.4%
New York 38.7%|52.3%| 67.6%
Boston 46.5%|68.6%| 82.3%

Note that with only 7% of points we can have a clear vision of the found
clusters and with a few more points we can obtain the nearly totality of the
points. This trend is well marked in GEORGE and in North-East data sets.
For DS1 data set the results are not so clear because the 3 and 4 clusters have
very few points, so they are very hard to discover. For the real data set we
only reported the results for the three main clusters representing the towns of
Boston, New York and Philadelphia. We can explain the good results through the
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adaptive search strategy of SPARROW-SNN that requires the individual agents
to first explore the data searching for representative points whose position is not
known a priori. Then, after the representative points are located, all the flock
members are steered to move towards the representative points, that represent
the interesting regions, in order to help them, avoiding the uninteresting areas
that are instead marked as obstacles and adaptively changing their speed.

SPARROWESHN
1200 i ’ 300 S ARROV-SHN
----- R HOC R . )
E 200 4 - W - RANDOM
o - i
- - - 200 _ -
& 600 o 3 -
o = B 150 el
E 100 & im e
@ o 4 -.'3 @
0 . r . . . o : : - -
] 20 M0 600 800 1000 o 100 200 300 i
Visited Points Visite<l Points

Fig. 2. Number of representative points found with SPARROW-SNN vs. total number
of visited points for GEORGE and North-East datasets.

To verify the effectiveness of the search strategy we have compared
SPARROW-SNN with the random-walk search strategy. Figure Pl shows, for
the data sets GEORGE and North-East, the number of core points found with
SPARROW-SNN and those found with the random search vs. the total number
of visited points. This figure reveals that the number of core points discovered
at the beginning (110 visited points for George data set and 200 for North-East
data set) from the random strategy is slightly higher than the number discovered
by SPARROW-SNN.

Subsequently, our strategy presents a superior behavior on the random search
strategy because of the adaptive behavior of the algorithm that allows the agents
to learn on their previous experience. A similar behavior has been observed for
the DS1 dataset.

5 Conclusions

In this paper, we have described the parallel clustering algorithm SPARROW-
SNN, which is based on the use of swarm intelligence techniques. The algorithm
combines a smart exploratory strategy based on a flock of birds with a shared
nearest neighbor clustering algorithm to discover clusters of arbitrary shape, size
and density in spatial data. The algorithm has been implemented in SWARM
and evaluated using two synthetic data sets and one real word data set. Measures
of accuracy of the results show that SPARROW-SNN can be efficiently applied
as a data reduction strategy to perform approximate clustering. Moreover, the
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adaptive search strategy of SPARROW-SNN is more efficient than that of the
random-walk search strategy.
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