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Abstract. A central problem in computational biology is the inference
of phylogeny given a set of DNA or protein sequences. Currently, this
problem is tackled stepwise, with phylogenetic reconstruction dependent
on an initial multiple sequence alignment step. However these two steps
are fundamentally interdependent. Whether the main interest is in se-
quence alignment or phylogeny, a major goal of computational biology
is the co-estimation of both. Here we present a first step towards this
goal by developing an extension of the Felsenstein peeling algorithm.
Given an alignment, our extension analytically integrates out both sub-
stitution and insertion–deletion events within a proper statistical model.
This new algorithm provides a solution to two important problems in
computational biology. Firstly, indel events become informative for phy-
logenetic reconstruction, and secondly phylogenetic uncertainty can be
included in the estimation of insertion-deletion parameters. We illustrate
the practicality of this algorithm within a Bayesian Markov chain Monte
Carlo framework by demonstrating it on a non-trivial analysis of a mul-
tiple alignment of ten globin protein sequences.

Supplementary material: www.stats.ox.ac.uk/∼miklos/wabi2003/supp.html

1 Introduction

A fundamental problem in computational biology is the inference of phylogeny
given a set of DNA or protein sequences. Traditionally, the problem is split into
two sub-problems, namely multiple alignment of the sequences, and inference of
a phylogeny based on an alignment. Several methods that deal with one or both
of these sub-problems have been developed. ClustalW and T-Coffee are popular
sequence alignment packages, while MrBayes [13], PAUP* [25] and Phylip [6] all
provide phylogenetic reconstruction.
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Although these methods can work very well, they share two fundamental
problems. First, the division of the phylogenetic inference problem into multiple
sequence alignment and alignment-based phylogenetic reconstruction is flawed.
For instance, ClustalW computes its alignment based on a ‘guide tree’, the choice
of which will bias any tree inference that is based on the resulting alignment. The
solutions of the two sub-problems are interdependent, and ideally phylogenies
and alignments should be co-estimated.

The second issue is that heuristic methods are used to deal with insertions and
deletions (indels), and sometimes also substitutions. This lack of a proper sta-
tistical framework makes it impossible to accurately assess the reliability of the
estimated phylogeny. Much biological knowledge and intuition goes into judging
the outcomes of these algorithms.

The relevance of statistical approaches to evolutionary inference has long
been recognised. Time-continuous Markov models for substitution processes were
introduced more than three decades ago [15], and have been considerably im-
proved since then [27]. The first paper on the evolutionary modelling of indel
events appeared in the early nineties [26], giving a statistical approach to pair-
wise sequence alignment, and its extension to an arbitrary numbers of sequences
related by a tree has recently been intensively investigated [23, 9, 12, 10, 19, 18].
Such methods are often computationally demanding, and full maximum likeli-
hood approaches are limited to small trees. Markov chain Monte Carlo techniques
can extend these methods to practical-sized problems.

While statistical modelling has only recently been used for multiple sequence
alignment, it has a long history in population genetic analysis. In particular, co-
alescent approaches to genealogical inference have been very successful, both in
maximum likelihood [16, 7] and Bayesian MCMC frameworks [28, 1]. The MCMC
approach is especially promising, as it allows for large data sets to be tackled, as
well as allowing for nontrivial extensions of the basic coalescent model, e.g. [21].
Over the short evolutionary time spans considered in population genetics, se-
quence alignment is generally straightforward, and genealogical inference from
a fixed alignment is well-understood [5, 7, 24, 22]. On the other hand, for more
divergent sequences, these approaches have difficulty dealing with indels. Not
only is the alignment treated as known, but indel events are generally treated
as missing data. Treating gaps as unobserved residues [4] renders them phyloge-
netically uninformative. However, indel events can be highly informative of the
phylogeny, because of their relative rarity compared to substitution events.

In this paper, we present an efficient algorithm for computing the likeli-
hood of a multiple sequence alignment given a tree relating the sequences, under
the TKF91 model. This model combines probabilistic evolutionary models for
substitution events and indel events, allowing consistent treatment of both in
a statistical inference framework. The crux of the method is that all missing
data (pertaining to the evolutionary history that generated the alignment) is
summed out analytically. The algorithm can be seen as an extension of the cel-
ebrated peeling algorithm for substitutions [4] to include single residue indels.
Summing out missing data eliminates the need for data augmentation of the
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tree, a methodology referred to in the MCMC literature as Rao-Blackwellization
[17]. As a result, we can treat indels in a statistically consistent manner with no
more than a constant cost over existing methods that ignore indels. Moreover we
can utilise existing MCMC kernels for phylogenetic inference, changing only the
likelihood calculator. We implemented the new likelihood algorithm in the pro-
gramming language Java and demonstrated its practicality by interfacing with
an existing MCMC kernel for phylogenetics and population genetics [1].

The method presented in this paper represents an important step towards
the goal of a statistical inference method that co-estimates phylogeny and align-
ment. In fact, the only component currently missing is a method for sampling
multiple sequence alignments under a fixed tree. Several approaches to sampling
alignments employing data augmentation have already been investigated [12, 10].
Such methods may well hold the key to a co-estimation approach, and we are
currently investigating the various possibilities.

The rest of the paper is organised as follows. In Section 2 we briefly introduce
the TKF91 model of single residue insertion and deletion. Section 3 forms the
core of the paper. Here we first derive a recursion (the ‘one-state recursion’) for
the tree likelihood that, unlike in the usual Hidden Markov model formulation of
the TKF91 model, does not require states for its computation. We then simplify
the computation of transfer coefficients to a dynamic programming algorithm
on the phylogenetic tree, similar to Felsenstein’s peeling algorithm. Finally we
prune the recursion so that only nonzero contributions remain, thereby yielding
a linear time algorithm. In Section 4, we apply our method to a set of globin
sequences, and estimate their phylogeny. Section 5 concludes with a discussion.

2 The TKF Model

The TKF91 model is a continuous time reversible Markov model for the evolution
of nucleotide (or amino acid) sequences. It models three of the main processes in
sequence evolution, namely substitutions, insertions and deletions of characters,
approximating these as single-character processes. A sequence is represented by
an alternating string of characters and links, connecting the characters, and this
string both starts and terminates with a link. We adopt the view that insertions
originate from links, and add a character-link pair to the right of the original link;
deletions originate from characters and have the effect of removing the character
and its right link. (This view is slightly different but equivalent to the original
description, see [26].) In this way, subsequences evolve independently of each
other, and the evolution of a sequence is the sum of the evolutions of individual
character-link pairs. The leftmost link of the sequence has no corresponding
character to its left, hence it is never deleted, and for this reason it is called the
immortal link.

Since subsequences evolve independently, it is sufficient to describe the evo-
lution of a single character-link pair. In a given time-span τ , this evolves into a
sequence of characters of finite length. Since insertions originate from links, the
first character of this sequence may be homologous to the original one, while
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Fate: Probability: Label:

C → C#n−1 e−µτ (1 − λβ(τ ))(λβ(τ ))n−1 HτBn−1
τ

C → #n (1 − e−µτ − µβ(τ ))(1 − λβ(τ ))(λβ(τ ))n−1 Nτ Bn−1
τ

C → − µβ(τ ) Eτ

� → �#n (1 − λβ(τ ))(λβ(τ ))n (1 − Bτ )Bn
τ

Table 1. Possible fates after time τ of a single character (denoted C), and of
the immortal link (denoted �), and associated probabilities. The first three lines
refer to (1) the ancestral character surviving (with 0 or more newly inserted),
(2) the ancestral character dying after giving birth to at least one newly inserted
one, and (3) the death of the ancestral character and all of its descendants.

subsequent ones will be inserted characters and therefore non-homologous. Ta-
ble 1 summarises the corresponding probabilities. On the right-hand side of the
arrow in the column labelled “Fate”, C denotes a character homologous to the
original character, whereas #’s denote non-homologous characters. The immor-
tal link is denoted by � and other links are suppressed. All final arrangements
can be thought of as being built from five basic “processes” which we call Birth,
Extinction, Homologous, New (or Non-homologous) and Initial (or Immortal).
These processes are labelled by their initials, and each corresponds to a specific
probability factor as follows:

Bτ = λβ(τ) Eτ = µβ(τ)

Hτ = e−µτ (1− λβ(τ)) Nτ = (1− e−µτ − µβ(τ))(1 − λβ(τ)) (1)

where parameters λ and µ are the birth rate per link and the death rate per
character, respectively, and in order to have a finite equilibrium sequence length,
we require λ < µ. We followed [26] in using the abbreviation

β(τ) :=
1− e(λ−µ)τ

µ− λe(λ−µ)τ
. (2)

In a tree, time flows forward from the root to the leaves, and to each node of
the tree we associate a time parameter τ which is set equal to the length of the
incoming branch. For the root, τ =∞ by assumption of stationarity at the root,
and the resulting equilibrium length distribution of the immortal link sequence
is geometric with parameter B∞ = λ/µ (where length 0 is possible); other links
will have left no descendants since H∞ = N∞ = 0.

Because the TKF91 model is time reversible, the root placement does not
influence the likelihood (Felsenstein’s “Pulley Principle”, [4]). Although the al-
gorithms in this paper do not look invariant under root placement at all, in
fact they are. This follows from the proofs, and we have used it to check the
correctness of our implementations.

In the original TKF91 model, a simple substitution process known as the
Felsenstein-81 model [4] was used. It is straightforward to replace this by more
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general models for substitutions of nucleotides or amino acids [11]. In the present
paper, when a new non-homologous character appears at a node (as the result
of a B or N process), it is always drawn from the equilibrium distribution; if
a character at a node is homologous to the character at its immediate ances-
tral node, then the probability of this event is given by the chosen substitution
model.

3 Computing the Likelihood of a Homology Structure

In the previous Monte Carlo statistical alignment papers, the sampled missing
data were either unobserved sequences at internal nodes [14], or both internal
sequences and alignments between nodes [12]. In both cases the underlying tree
was fixed. Here we introduce the concept of homology structure, essentially an
alignment of sequences at leaves, without reference to the internal tree structure.
We present a new algorithm that allows us to compute, under the TKF91 model,
the likelihood of observing a set of sequences and their homology structure,
given a phylogeny and evolutionary parameters. Missing data in this case are all
substitution events and indel events compatible with the observed data, all of
which are analytically summed out in linear time. In contrast to previous MCMC
approaches [12, 14], we need not store missing data at internal tree nodes, and
we can change the tree topology without having to resample missing data. This
enables us to consider the tree as a parameter, and efficiently sample from tree
space.

3.1 Definitions and Statement of the One-State Recursion

Let A1, A2, ...Am be sequences, related to a tree T with vertex set V . Let aj
i

denote the jth character of sequence Ai, and let Ak
i denote its k long prefix.

A homology structure H on A1, . . . , Am is an equivalence relation∼ on the set
of all the characters of the sequences, C = {aj

i}. It specifies which characters are
homologous to which. The evolutionary indel process generating the homology
structure on the sequences imposes constraints on the equivalence relations that
may occur. More precisely, the equivalence relation ∼ has the property that a
total ordering, <h, exists on C such that

ax
i =h ay

j ⇐⇒ ax
i ∼ ay

j ,

ax
i <h ay

i ⇐⇒ x < y
(3)

In particular, these imply that characters of a single sequence are nonhomolo-
gous. The ordering <h corresponds to the ordering of columns of homologous
characters in an alignment. Note that for a given homology structure, this order-
ing may not be unique, see Figure 1. This many-to-one relationship of alignment
to homology structure is the reason for introducing the concept of homology
structure, instead of using the more common concept of alignment.

Below we give an algorithm for calculating the likelihood of the observed
data, namely, the sequences with their homology structure. By definition, this
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C A A - - A C A - A - A

C A - G T T C A G - T T

G A - G T A G A G - T A

A C

G T

Fig. 1. (Left:) Two alignments representing the same homology structure:
residues are homologous if they appear in the same column. These alignments
may represent different evolutionary histories, all of which we include in our
recursion. Note that this ambiguity is rare in biological sequence alignments.
(Right:) Due to the evolutionary process acting on the sequences, homology re-
lationships (arrows) will never ‘cross’ as depicted. This restriction on the equiv-
alence relation ∼ is codified by <h (see text).

likelihood is the sum of the likelihoods of all evolutionary scenarios resulting in
the observed data. In previous works ([12, 14]), it was shown that an evolutionary
scenario can be described as a path in a multiple-HMM, so that the likelihood
of a homology structure can be calculated using a multiple-HMM. However, this
straightforward calculation is infeasible for practical-sized biological problems,
since the number of states in the HMM grows exponentially with the number of
sequences [18].

In this subsection we show that a so-called one-state recursion exists for
calculating this likelihood, given evolutionary parameters. In subsequent sections
we give an efficient algorithm based on this recursion.

Definitions Let tr denote the subtree whose root is r ∈ V . Let Ω be the
(nucleotide or amino acid) alphabet. An event e is a labelling of the nodes of
a subtree tr with Bα, Hα, Nα, E, where α ∈ Ω is a character, subject to the
following conditions: There is a birth of a character α (Bα) at the root r = re

of the event, and only there, and if a node is labelled E then all its descendants
are labelled E as well [18], see Figure 2. In this way, an event codifies the fate
(see Table 1) of a single nucleotide born at r ∈ T , but ignoring all subsequent
births it may have spawned. We let e(n) denote the symbol labelling the node
n. We say that an event e emits a character α at a leaf n if e(n) = Hα, Nα or
Bα. The emission vector ve is an m-dimensional vector, and its ith coordinate is
1 if e emits a character into the ith leaf, and 0 otherwise. The probability factor
p(e) of an event e is the product of probabilities associated to the label of each
node (see Table 1), including nucleotide equilibrium probabilities (for Bα, Nα)
or substitution probabilities (for Hα), except that an E label counts for 1 if its
parent is also labelled E. We call these probability factors as they do not add
up to 1 in an obvious way. However, if we calculate probabilities of observing
sequences at leaves using these probability factors, the obtained probabilities do
add to 1 (summation is over all observable sequences).

We end this section with a description of which events are allowed given a
homology structure:

Definition 1 (Agreement with homology). An event e agrees with the ho-
mology structure if the following holds:
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E

EE E

Event e′Event e Event e′′

NG

BA

BCHA

HC

HC HT

HT

BT

Fig. 2. Three possible events. The first two events emit two characters; in e they
are homologous (and at least one mutation event occurred, changing an A into
a C), while in e′ they are inhomologous by the the N (“new”) label; see also
Section 2.

1. If e emits a character a ∈ C, then it emits all a′ ∈ C with a ∼ a′, and the
nodes along the path connecting a and a′ are not labelled Nα.

2. If e emits characters a and a′, and a �∼ a′, then at least one of the nodes
along the path connecting them is labelled Nα.

Statement of the One-State Recursion Let P (K) denote the probability of
emitting the prefixes AK := (AK1

1 , ..., AKm
m ) and such that their homology agrees

with the given homology structure H. The following equation holds:

P (K) =

(∏
n∈T

(1 −Bn)

) ∑
(e1,...,en)∈A

p(e1) · · · p(en), (4)

where A is the set of sequences of legal events (see App. A for a definition) that
emit AK and agree with the homology structure, and the factor in front derives
from the immortal link. Note that for brevity we wrote Bn instead of Bl(n),
where l(n) is the length of the incoming branch. Our goal is to find a recursion
in terms of P (K). To formulate our result, we need one more definition:

Definition 2. A set of events {e1, . . . , el} is a nested set if, for i �= j, we have
that rei ∈ tej =⇒ ej(rei ) = E.

Let MK
l denote the set of nested sets of l events, where each event is in E(K).

Here E(K) is the set of events e that emit characters that extend the prefixes to
AK (i.e. from AK−ve), and that agree with the homology structure H.

Theorem 1 (One-state recursion). The following equation holds for P (K):

P (K) =
2m∑
l=1

∑
{e1,e2,...el}∈MK

l

(−1)l−1P
(
K−∑l

j=1 vej

) l∏
i=1

p(ei) (5)

Proof: See appendix A �
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3.2 A Reverse Traversal Algorithm for the Transition Factor

Theorem 1 by itself does not give a fast algorithm for calculating the likelihood
of a homology structure, as the number of terms in the summation (5) grows
exponentially with the number of leaves m. As a first step to arrive at an efficient
algorithm, we group terms in (5) as follows:

P (K) =
∑

v∈{0,1}m

TK
v P (K− v) (6)

Here v runs over all 2m length-m vectors with entries 0 or 1 (in section 3.3 we
reduce the v-summation). The transition factors TK

v are sums of expressions of
the form (−1)l−1

∏l
i=1 p(ei). Previously we showed how to calculate these tran-

sition factors in linear time when there is no homology structure to be observed
[18]. In this section we describe a similar algorithm for the present case.

Note that the zero vector is among the vectors summed over in (6), so that
P (K) also appears on the right-hand side. Solving the resulting linear equation
results in a proper recursion, and conceptually amounts to summing out all
non-emitting events. The relation between this approach and existing ones, see
e.g. [3, 23], is discussed in more detail in [18].

To derive the dynamic programming recursion, the main observation is that
a nested set of events {e1, . . . , el} can be represented by a labeling of a single
tree, since for every node n there is at most one ei with ei(n) �= E. By labeling
each node n with the unique non-E label among the ei(n) (or with E if none
exists), the roots of the events can be recovered as they are precisely the nodes
labeled Bα. The term (−1)l−1p(e1) · · · p(el) that corresponds to a nested set
represented in this way, is calculated by multiplying the probabilities for the
labels at all nodes according to (1) with the following two caveats: (a) a node
labeled E carries a factor 1 if its parent is also labeled E; (b) a Bα attracts a
minus sign to account for the factor (−1)l−1, and an additional factor E if its
parent is not labeled E. Finally, summing over all possible nested sets is done
in linear time with a dynamic programming or ‘pruning’ algorithm similar to
Felsenstein’s one [4].

To take the homology structure into account, we need to restrict the tree
labelings to those that produce emissions compatible with the given homology,
amounting to implementing Definition 1. Input to the algorithm is the total
emission vector v, and a numerical vector h that encodes the homology structure
of v such that hi = hj �= 0 ⇐⇒ aKi

i ∼ a
Kj

j , and hi is zero whenever vi = 0. For
example, for {e1, . . . , el} ∈MK

l we have v =
∑

i vei and we could set h =
∑

i ivei .
Those leaves with hi = hj are said to belong to the same homology class.

The algorithm proceeds as follows. First we compute for each homology class
the minimum spanning tree of its leaves. If two such spanning trees intersect, no
nested sets corresponding to v and satisfying the homology contraints exist, and
TK

v = 0. Otherwise, for each node n we set h(n) to be the label of the homology
class whose tree contains n, and 0 otherwise:
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Algorithm 1 (Computing homology spanning trees)
Input: Homology vector h = (h1, . . . , hm), tree T .
Output: Either ′′TK

v = 0′′, or homology class h(n) for each node n in T .
Algorithm:

h(n)← hi for the index i corresponding to leaf n; 0 for non-leaf nodes.
c(n)← 1 if h(n) �= 0; 0 otherwise.
m(j)← #{i|hi = j} (multiplicity of homology class j)
For all nodes n in postorder traversal (i.e. leaves first):
If c(n) �= m(h(n)), then:
If h(a(n)) = 0 or h(a(n)) = h(n), then:

h(a(n))← h(n)
c(a(n))← c(a(n)) + c(n)

Else:
Return “TK

v = 0”
EndIf

EndIf
EndFor
Return h(·)

In this algorithm, a(n) denotes the ancestor of node n. The symbol← (‘becomes’)
is the assignment operator.

Our recursion is in terms of quantities FH(α, n), FN (α, n) and FE(n), which
are related to (1) character α at node n being homologous to at least one charac-
ter at the leaves of tn in the case of FH ; (2) that character being non-homologous
to all characters at the leaves of tn in the case of FN ; (3) no character existing
at node n in the case of FE .

We introduce some notation. For a node n, nl and nr denote the left and right
descendant, respectively. We abbreviate δn,m := δh(n),h(m), where the second δ
is the usual Kronecker delta, i.e. δn,m = 1 if h(n) = h(m), 0 otherwise. Let
pn(α → γ) denote the probability that character α evolves into γ in time ln,
which is the length of the incoming branch to node n, and let π(α) denote
the equilibrium distribution of characters. We finally introduce the following
abbreviations, where we again write Hn, Nn, Bn, En for Hl(n), Nl(n), Bl(n), El(n)

resp., where l(n) is the length of node n’s incoming branch:

H(n, α) =
∑
γ∈Ω

FH(γ, n)Hnpn(α→ γ), (7)

N(n, α) = FE(n)En +
∑
γ∈Ω

FN (γ, n)Hnpn(α→ γ) +

∑
γ∈Ω

[FH(γ, n) + FN (γ, n)] [Nn − EnBn] π(γ), (8)

E(n) = FE(n)−
∑
γ∈Ω

[FH(γ, n) + FN (γ, n)]Bnπ(γ). (9)
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Algorithm 2 (Computing TK
v ) With the notation as above, and p(n) com-

puted by Algorithm 1, the transition factor in (6) associated to the sequences
A1, . . . , Am related by a tree T and homology structure H, is TK

v = −E(r),
where r is the root of T . The terms FE(r), FH(γ, r) and FN (γ, r) are computed
recursively as follows. If h(n) = 0 and n is an internal node, then

FH(α, n) = H(nl, α)N(nr, α) + N(nl, α)H(nr, α), (10)
FN (α, n) = N(nl, α)N(nr, α), (11)

FE(n) = E(nl)E(nr). (12)

If h(n) �= 0 and n is an internal node, then

FH(α, n) = [H(nl, α)δn,nl
+ N(nl, α)(1− δn,nl

)]×
[H(nr, α)δn,nr + N(nr, α)(1− δn,nr )] , (13)

FN (α, n) = FE(n) = 0. (14)

If n is a leaf node, then

FH(α, n) = 1 if aKn
n = α, 0 otherwise; (15)

FN (α, n) = 0; (16)
FE(n) = 1 if vn = 0, 0 otherwise. (17)

Note that we abused notation by confusing (leaf) nodes and sequence indices.

3.3 Finding the Prefix Vectors K

For many vectors K, the quantity P (K) will vanish, since the corresponding
sequence prefixes AK cannot occur while at the same time agreeing with the
homology structure. Secondly, for many vectors v the transition factor TK

v will
similarly vanish, for the same reason. Restricting to those v and K that actually
contribute dramatically increases the efficiency of the algorithm.

All this depends on the homology structure; the various paths through K-
space that the algorithm traverses correspond to the various possible orderings
≤h that correspond to the underlying homology structure. In fact, if none of the
characters are homologous to any other (corresponding to an alignment with only
single-character columns), all of the K-values are valid, and all of the vectors v
have to be considered. In practice, however, such alignments will have very low
likelihood and can safely be ignored.

As the final part of our algorithm, we give the top-level subroutine that
traverses the set of K-vectors for which P (K) �= 0. Input to the algorithm is a
homology structure, which is represented by an alignment, or more precisely, as
a sequence of vectors (c1, c2, . . . , cn), where the jth coordinate of ci is 1 precisely
if the jth character in the ith column in the alignment is a residue, and 0 if it
is a gap. The algorithm is independent of the alignment chosen to represent the
homology structure.
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Algorithm 3 (Traversing contributing prefix vectors)
Input: Vectors (c1, . . . , cn); sequences A1, . . . , Am; tree T ; cutoff N
Output: Likelihood of sequences under given homology structure.
Algorithm:

Mark all ci ‘free’; K← (0, . . . , 0); P (K)←∏
n∈T (1−Bn)

While not all ci marked ‘used’:
Let si be the maximal, increasing subsequence satisfying: csi ‘free’ ∀i
Mark csk

‘possible’ iff csk
·∑k−1

i=1 csi = 0
If there are no more than N ‘possible’ vectors:
For all subsets C = {c′1, . . . , c′n} of ‘possible’ vectors:

Construct v =
∑n

k=1 c′k and h =
∑n

k=1 kc′k; compute TK+v
v

P (K + v)← P (K + v) + TK+v
v (1 − T 0

0 )−1P (K)
EndFor

Else:
Return “Likelihood too small”

EndIf
k ← max{i|ci labeled ‘possible’} ∪ {∞}
Mark ck ‘used’; K← K + ck

For all i > k for which ci is labeled ‘used’:
Mark ci ‘free’; K← K− ci

EndFor
EndWhile
Return “Likelihood=P (K)”

In practice, for biologically meaningful alignments and with the cutoff N in
place, the algorithm is linear, although it has slower worst-case behaviour.

4 Results

The indel peeling algorithm of Section 3.3 provides a method for calculating
the likelihood L = Pr{A,H|T, Q, λ, µ} of observing the sequences with their
homology structure (‘alignment’) given the tree and model parameters. Here
A are the amino acid sequences, H is their homology structure, T is the tree
including branch lengths, Q is the substitution rate matrix, and λ, µ are the
amino acid birth and death rates. To demonstrate the practicality of the new
algorithm for likelihood calculation we undertook a Bayesian MCMC analysis of
ten globin protein sequences. We chose to use the standard Dayhoff rate matrix
to describe the substitution of amino acids. For the purpose of this example we
generated a homology structure using T-Coffee. Given this homology structure,
we co-estimated the parameters of the TKF91 model, and the tree topology and
branch lengths. To do this we sampled from the posterior,

h(µ, T ) =
1
Z

Pr{A,H|T, Q, λ, µ}f(T, λ, µ). (18)

Here Z is the unknown normalising constant. We chose the prior distribution on
our parameters, f(T, λ, µ), so that T was constrained to a molecular clock, and
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Fig. 3. Estimated posterior densities of the death rate µ sampled according to h
(see text), for two independent runs, showing good convergence. Sampled mean
is 0.0187; the 95% highest posterior density (HPD) interval was estimated to be
(0.0114, 0.0265).

λ = µL/(L + 1) to make the expected sequence length under the TKF91 model
agree with the observed lengths. Here L is the geometric average length of the
globin sequences, We assume a molecular clock to gain insight into the relative
divergence times of the alpha-, beta- and myoglobin families. In doing so we
incorporate insertion-deletion events as informative events in the evolutionary
analysis of the globin family.

The posterior density h is a complicated function defined on a space of high
dimension. We summarise the information it contains by computing the expec-
tations, over h, of various statistics of interest. We estimate these expectations
by using MCMC to sample from h. Figure 3 depicts the marginal posterior den-
sity of the µ parameter for two independent MCMC runs, showing convergence.
Figure 4 depicts the maximum a posteriori (MAP) estimate of the phylogenetic
relationships of the sequences. This example exhibits only limited uncertainty in
the tree topology, however we observed an increased uncertainty for trees that
included divergent sequences, such as bacterial and insect globins (results not
shown).

The estimated time of the most recent common ancestor of each of the al-
pha, beta and myoglobin families are all mutually compatible (result not shown),
suggesting that the molecular clock hypothesis is at least approximately valid.
Analysis of a four sequence dataset demonstrate consistency in µ estimates be-
tween MCMC and previous ML analyses [18] (data not shown). Interestingly,
the current larger dataset supports a lower value of µ. This is probably due
to the fact that no indels are apparent within any of the subfamilies despite a
considerable sequence divergence.
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Beta-globin - Human

Beta-globin - Chicken

Beta-globin - Western painted turtle
0.1042

0.2

Alpha-globin - Human

Alpha-globin - Chicken

Alpha-globin - Western painted turtle
0.1239

0.1916

0.532

Myoglobin - Human

Myoglobin - Chicken
0.1442

Myoglobin - Map turtle 

0.175

0.7873

Leghemoglobin I - Yellow bean

1.0641

Fig. 4. The maximum a posteriori (MAP) estimate of the globin tree. The node
heights are given in expected substitutions per site. Notice that the alpha and
beta chain sub-families both support the traditional ordering of birds, turtles
and mammals, while the three myoglobin sequences support an unconventional
phylogeny. This inconsistent signal from myoglobin has been previously observed
[8]. The marginal posterior probability (estimated from the MCMC chain) for
the monophyly of human and chicken myoglobin was 83.1%, followed by the
conventional grouping of turtle and chicken at 11.9%. The third topological
arrangement of myoglobin occurred the remaining 5% of the time, suggesting
significant homoplasy in this sub-family.

5 Discussion

In this paper we presented a method that extends Felsenstein’s peeling algo-
rithm to incorporate insertion and deletion events, under the TKF91 model.
This renders indel events informative for phylogenetic inference. Although this
incurs considerable algorithmic complications, the resulting algorithm is still
linear-time for biological alignments (see also Figure 1).

It should be stressed that the two MCMC analyses of the globin data set were
purely illustrative of the practicality of the algorithm described, and no novel
biological results were obtained. The two MCMC runs undertaken required only
about 3 hours of CPU time each on a 1.25 GHz G4 Apple Macintosh, using
an unoptimised implementation of the algorithm, and the estimated number of
independent samples (estimated sample size, ESS) obtained for the posterior
probability were good at 650 and 820 respectively (see [1] for methods). The
estimated ESSs for the death rate, µ, were 4800 and 3900 respectively. We expect
analyses of data sets of around 50 sequences to be readily attainable with only
a few days computation.

Our method is intended as the first step towards a full co-sampling approach
of phylogeny and alignment. The only remaining issue is to combine the current
method with a sampling strategy for alignments. Proper sampling algorithms
have already been developed [12, 10], varying mainly in the way data augmen-
tation is employed. These or similar methods of data augmentation may prove
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helpful in certain stages of an MCMC kernel that solves the full problem of
phylogeny/alignment co-estimation. However, in the context of the algorithm
described herein it may be possible to avoid data augmentation entirely and
still achieve efficient co-estimation of phylogeny and alignment through a simple
Metropolis-Hastings proposal scheme that perturbs homology structures directly.

As was mentioned in [26], it would be desirable to have a statistical sequence
evolution model that deals with ‘long’ insertions and deletions, which is the
statistical counterpart of affine gap penalties in score-based alignment methods.
We have made progress on a full likelihood method for statistical sequence
alignment under such an evolutionary model [20], but this method seems not
to be directly extendable to trees. We believe that here too, Markov chain
Monte Carlo approaches, combined with data augmentation, will be the key to
practical algorithms.

Acknowledgements

This research is supported by EPSRC (code HAMJW) and MRC (code
HAMKA).

A Proof of Theorem 1

Let ≤p be the partial ordering on V for which n1 ≤p n2 iff n1 ∈ tn2 . We denote
n1<>p n2 if n1 and n2 are incomparable, and we denote n1 �≤p n2 if either
n1 >p n2 or n1<>p n2. Also we introduce a total ordering ≤ of the nodes which
is an arbitrary refinement of the partial ordering, namely, n1 ≤ n2 implies that
n1 ≤p n2 or n1<>p n2.

A state S is a function V → {0, 1}, with the property that the root of the
tree is labelled with 1, and S(n1) = 0 =⇒ S(n2) = 0 for all n2 <p n1. The
state is used to keep track of where subsequent births may occur (i.e. everywhere
except after extinctions E), and to avoid over-counting of independent histories
in disjoint subtrees. The initial state is the state labelling all nodes with 1. The
action of an event e on a state S′ is defined to be S = S′ ∗ e, with

S(n) =




S′(n) if n > re

0 if n < re and n<>p re

1 if n ≤p re and e(n) �= E
0 if n ≤p re and e(n) = E

(19)

The first two lines make sure that histories in disjoint subtrees are not counted
twice, by disallowing new births in disjoint subtrees at one ‘side’ of the cur-
rent event. The last two lines implement the restriction that new births are
not allowed after extinction (E) events. If an event e occurs in state S, the state
becomes S∗e after the event. An event e is a legal event in a state S iff S(re) = 1.

Let PS(K) denote the probability of emitting the prefixes AK by legal events
agreeing with the homology structure, starting from the initial state, such that
the state after the last event is S. A recursion in terms of PS(K) is easy:
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PS(K) =
∑
S′

∑
e∈E(K):

S′∗e=S ∧ S′(e)=1

PS′(K− ve)p(e) (20)

Here E(K) is the set of events e that emit characters extending the prefixes
from AK−ve to AK, and that agree with the homology structure, and as initial
condition we have PI(0) =

∏
n∈T (1 − Bn), with I the initial state (assigning 1

to each node). The correctness of the recursion is discussed in detail in [18]. In
the end, the quantity of interest P (K) is obtained by summing over all states:

P (K) =
∑
S

PS(K) (21)

This approach to calculate the likelihood of a set of sequences is very similar
to the forward-backward algorithm of HMMs [2], and it is the straightforward
extension of the original formulation of the dynamic programming algorithm
given in [26]. We now combine (20) and (21) to get:

P (K) =
∑

{e1}∈MK
1

∑
S:S(re1)=1

PS(K− ve1)p(e1) (22)

We can rewrite this as

P (K) =
∑

{e1}∈MK
1

P (K− ve1)p(e1)−
∑

{e1}∈MK
1

∑
S:S(re1)=0

PS(K− ve1)p(e1) (23)

The theorem can be derived from (23) using the following lemma recursively:

∑
{e1,e2,...el}∈MK

l

∑
S:S(rei

)=0∀i

PS

(
K−∑l

i=1 vei

) l∏
i=1

p(ei) =

=
∑

{e1,e2,...el+1}∈MK
l+1

P
(
K−∑l+1

i=1 vei

) l+1∏
i=1

p(ei)−

−
∑

{e1,e2,...,el+1}∈MK
l+1

∑
S:S(rei

)=0∀i

PS

(
K−∑l+1

i=1 vei

) l+1∏
i=1

p(ei) (24)

Before we prove (24), we show that it indeed leads to the proof of Theorem
1. When we apply the recursion (24) to (23) k − 1 times, we end up with the
equation

P (K) =
k∑

l=1

∑
{e1,e2,...,el}∈MK

l

(−1)l−1P
(
K−∑l

i=1 vei

) l∏
i=1

p(ei)

+(−1)k
∑

{e1,e2,...,ek}∈MK
k

∑
S:S(rei

)=0∀i

PS

(
K−∑k

i=1 vei

) k∏
i=1

p(ei) (25)
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However, MK
k eventually becomes empty, since no two events in a nested set

share a root, and there are 2m−1 nodes in the tree (recall that m is the number
of leaves). This implies the theorem.

To prove the lemma, we first apply (20) to the left-hand side of (24) to get
∑

{e1,e2,...el}
∈MK

l

∑
S:

S(rei
)=0∀i

∑
S′

∑
e∈E(K−�l

i=1 vei
):

S′∗e=S ∧ S′(re)=1

PS′

(
K− ve −

l∑
i=1

vei

)
p(e)

l∏
i=1

p(ei) (26)

The main observation is that for the events {e1, . . . , el} and e over which the
summation extends, we have that {e1, . . . , el, e} ∈ MK

l+1, and re �≤p rei for all
i. To show the latter, suppose that re ≤p rei for a particular i, then since
S(rei) = 0 we have S(re) = 0, contradicting S = S′ ∗ e, therefore re must be
a greatest element in the partial ordering. To show the former, note that from
the action of e on S′ it follows that e(rei ) must be E for all rei <p re, which
implies that {e1, . . . , el, e} is a nested set. The events in a nested set have non-
overlapping emissions, so that e ∈ E(K−∑l

i=1 vei ) implies that e ∈ E(K). From
this it follows that {e1, . . . , el, e} ∈MK

l+1.
Since the summand of (26) only involves S′ and the events, the above obser-

vation implies that we can simplify (26) to a sum of the expression

PS′
(
K−∑l+1

i=1 vei

) l+1∏
i=1

p(ei) (27)

over some {e1, . . . , el+1} ∈MK
l+1, and some states S′. We claim the sum actually

extends over all nested sets in MK
l+1, and all states S′, except those for which

S′(rei ) = 0 for all i. That these should be excluded is clear as e in (26) satisfies
S′(e) = 1. Conversely, let S′ be given and suppose S′(ei) = 1 for at least one i,
then for e choose the event whose root is maximal in the total ordering among the
rei for which S′(rei ) = 1. This event is legal for S′, and yields a state S = S′ ∗ e
for which S(rei ) = 0 for all remaining ei; moreover it is the only event among
the {e1, . . . , el+1} that has these two properties. This finishes the proof of the
lemma, and of the theorem. �
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