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Preface

In the last few years machine learning has made its way into the areas of admini-
stration, commerce, and industry, in an impressive way. Data mining is perhaps
the most widely known demonstration of this phenomenon, complemented by less
publicized applications of machine learning, such as adaptive systems in various
industrial settings, financial prediction, medical diagnosis, and the construction
of user profiles for WWW-browsers. This transfer of machine learning from the
research labs to the “real world” has caused increased interest in learning tech-
niques, dictating further effort in informing people from other disciplines about
the state of the art in machine learning and its uses.

The objective of this book is to provide the reader with sufficient information
about the current capabilities of machine learning methods, as well as ideas about
how one could make use of these methods to solve real-world problems. The book
is based primarily on the material that was presented in the Advanced Course
in Artificial Intelligence (ACAI '99), which took place in Chania, Greece and
was attended by research students, professionals, and researchers. However, the
book goes beyond the material covered in the course, in that it contains several
position papers on open research issues of machine learning.

The book is structured in a way that reflects its objective of educating the
reader on how machine learning works, what the open issues are, and how it can
be used. It is divided into two parts: methods and applications.

The first part consists of 10 chapters covering to a large extent the field
of machine learning, from symbolic concept learning and conceptual clustering
to case-based reasoning, neural networks, and genetic algorithms. The research
issues addressed include the relationship of machine learning to knowledge di-
scovery in databases, the handling of noisy data, and the modification of the
learning problem through function decomposition. This part of the book conclu-
des with two chapters examining the basic principles of learning methods. The
first of the two chapters examines the approaches to selecting the appropriate
method for a particular problem or modifying the problem representation to
suit a learning method. In contrast, the last chapter of the section reviews the
approaches to integrating different machine learning methods, in order to handle
difficult learning tasks.

The second part of the book exposes the reader to innovative applications
of machine learning. This part consists of 11 chapters, presenting a range of
applications, from data mining in finance, marketing, and economics to learning
in human language technology and user modeling. Most of these chapters are
based on the work that was presented during the workshops of ACAI '99. Each
such chapter describes the types of problem that have been approached with
the use of machine learning in a particular domain and gives an overview of the
work in this area, as presented at the relevant workshop.




We 'hope that the combination of theoretical and empirical knowledge in this
book will be of use to the reader who is interested in entering this exciting
research field and using mature machine learning techniques to solve real-world
problems. The editors of the book would like to thank the distinguished authors
for their willingness and cooperation in making this special volume a reality.

May 2001 Georgios Paliouras
Vangelis Karkaletsis
Constantine D. Spyropoulos
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Comparing Machine Learning and Knowledge Discovery
in DataBases: An Application to Knowledge Discovery in
Texts

Y ves Kodratoff

CNRS, LRI Bat. 490 Univ. Paris-Sud, F - 91405 Orsay Cedex
vk@lri.fr

1 Introduction

This chapter has two goals. The first goal is to compare Machine Learning (ML) and
Knowledge Discovery in Data (KDD, also often called Data Mining, DM) insisting on
how much they actually differ. In order to make my ideas somewhat easier to
understand, and as an illustration, T will include a description of several research
topics that I find relevant to KDD and to KDD only. The second goal is to show that
the definition I give of KDD can be almost directly applied to text analysis, and that
will lead us to a very restrictive definition of Knowledge Discovery in Texts (KDT). I
will provide a compelling example of a real-life set of rules obtained by what I call
KDT techniques.

Knowledge Discovery in Data (KDD) is better known by the oversimplified name
of Data Mining (DM). Actually, most academics are rather interested in DM, which
develops methods for extracting knowledge from a given set of data. Industrialists and
experts should be more interested in KDD which comprises the whole process of data
selection, data cleaning, transfer to a DM technique, applying the DM technique,
validating the results of the DM technique, and finally interpreting them for the user.
In general, this process is a cycle that improves under the criticism of the expert.

Machine Learning (ML) and KDD have a very strong link: they both acknowledge
the importance of induction as a normal way of thinking, while other scientific fields
are reluctant to accept it, to say the least. We shall first explore this common point.
We believe that the reluctance of other fields to accept induction relies on a misuse of
apparent contradictions inside the theory of confirmation. This leads us to revisit
Hempel paradox in order to explain why it does apply and that it is also possible to
avoid most of its bad effects, when analyzing more precisely its restrictions.

We shall then develop the acknowledged definition of KDD, as given by [3], and
we shall show that, under an apparently innocent wording, it asks for an approach
different from the one of ML, and of Exploratory Statistics (not to speak of the more
classical Confirmatory Statistics that do not even consider the possibility of
performing inductive reasoning).

In general, it can be said that ML, with the exception of dealing with induction, is
still a classical Science in the sense that it still uses the criteria upon which knowledge
is valued in Science. These criteria are mainly four: Knowledge is acceptable if
proven; if it is not proven, it can be experimentally validated, using precision as the
validation criterion. If both are not possible, at least knowledge must be as universal

G. Paliouras, V. Karkaletsis, and C.D. Spyropoulos (Eds.): ACAI " 99, LNAI 2049, pp. 1-21, 2001.
© Springer-Verlag Berlin Heidelberg 2001



as possible that is it must be accepted by as many as possible individuals. Finally,
some elegance can also be asked from knowledge, and elegance equates congcision, as
illustrated by the famous Minimum Description Length (MDL) principle which favors
descriptions the representation of which will ask for the least number of bits to be
encoded. It can be claimed that KDD, if it does not oppose frontally these evaluation
criteria, at least proposes models in which knowledge must primarily be more
understandable than proven, more useful than precise, more particular than universal.
Finally, the principle of "adequacy of the representation” is more significant in KDD
than the MDL one. For instance, a drawing may need an enormous amount of bits to
be coded, but it will nevertheless be preferable if it is the casual representation given
by the user.

2 Reasoning by Induction

Both ML and KDD rely heavily on the induction process. Most scientists still show a
kind of blind faith in favor of deduction. An argument has been, however, recently
presented [9] against the blind use of deduction, in the name of efficiency: deductive
processes can become so complex that there is no hope of achieving them until their
end, and an approximation of them is necessary. If this approximation happens to be
less precise (and I’d like to add: less useful or less comprehensible - the latter being
very often the case) than the model obtained by induction, then there are no objective
grounds to stick to deduction.

2.1 Hempel’s Paradox and the Theory of Confirmation

Hempel underlines the existence of the contraposition associated to each theorem as
shown below:

A=>B~—-AvB~-~Av——-B~—-—-Bv-A~—-B=>-A

The existence of a contraposition proves that any theorem is confirmed by the
simultaneous observation of both premise and conclusion, as well as by the
simultaneous observation of both negation of premise and negation of conclusion. For
example:

V x (crow (x) = black(x)) ~ V x (— black(x) = — crow (x))
confirmed by the observation confirmed by the observation of
of crow(A), black(A) —crow(B), —black(B)

example: white(B), shoe(B)

Induction generates hypotheses that have to be confirmed by observation of the
reality, but Hempel’s paradox tells us that, so many things confirm any crazy
hypothesis that confirmation by counting of instances is simply impossible, thus
automatization of induction (which has to rely on some sort of counting) is absurd.

In order to show how automatic induction has been nevertheless possible, it is
necessary to consider that induction contains complex chains of reasoning steps [6],



[7], and an analysis of this complexity leads to a better understanding of the
conditions into which safe confirmation can be performed. Let me now summarize
this argument. The first remark is that a specific semantic (or meaning) is associated
to an implication, and Hempel’s paradox holds in a different way depending on the
semantics. If the implication is relative to the description of the properties of an
object, such as the black crow above, then there is little to discuss: the "descriptive
theorem” ¥ x (crow (x) => black(x)) is indeed a theorem from the deductive point of
view (the contraposition of such a theorem is valid: for instance, if anything is not
black, obviously it is not a crow) but it is not a real theorem from the inductive point
of view since it is not confirmed by instances of its contraposition. This is why, when
dealing with induction, we have to make the difference between the descriptive
theorems, and what we call causal theorems, where the implication carries a causal
meaning. Due to the fact that Science has been concerned until now with deduction
only, the difference between descriptive and causal theorems is not acknowledged.
We hope this chapter makes clear how useful - and actually how simple - this
difference is.

2.2 Implications that Carry the Meaning of Causality

Consider the implications that represent a causal relationship, such as:

Vx (smokes(x) = cancer(x)) with probability p. There is no point in calling
on Hempel’s paradox here, since indeed, observing (—smokes(A)) & (—cancer(A))

confirms also this theorem, as it should. It must be however noticed that spurious
causes can introduce again a paradox. For instance the theorem:

Vx (smokes(x) & French(x) = cancer(x)) is absurdly confirmed by
observing (—smokes(A) v —French(A)) & (—cancer (A)) meaning that, say, a German
who has no cancer confirms this theorem. A simple analysis of the correlations (see
the definition of a spurious dependency, in definition 14, below) will show easily that
nationality has nothing to do with the link between smoking and cancer. A striking
example of this problem has been given recently by the so-called “French paradox”
stating that Frenchmen had a higher cholesterol count than Americans and they would
nevertheless die less of heart attack. It was called very aptly a “paradox” because the
fact of being French has obviously no causal role, and the real cause has been found in
some typical French habits.

Another disputable argument is that the conjunction of causes is dangerous, for
instance:
Vx (smokes(x) & drinks-alcohol(x) = cancer(x)) is confirmed by ((—smokes

(A) v —drinks-alcohol (A)) & —cancer (A)) which is confirmed by any person who
does not drink and has no cancer. The counter-argument here is that the “medical
and’ is not really a logical conjunct. Actually, here, drinking increases the unhealthy
effect of smoking and we have to confirm two independent theorems, one stating that:

Vx (smokes(x) = cancer(x)), and the other one that

Vx (drinks-alcohol(x) = aggravates (cancer, cause_is_smoking, x)).



More generally, the paradox originates here from a false knowledge representation,
and it will indeed lead to absurdities!, but this is not especially linked to the theory of
confirmation. In other words, the theorem using a logical and is false, and it is
confirmed by almost anything, as it should be. Inversely, when two conditions are
simultaneously necessary to cause a third one, say, as in stress & age>45 =3 heart
condition (where we suppose that both stress and aging are causal), then the
disjunction in the contraposition is no longer paradoxical.

In short, in the case of causal implications, absurd confirmations are avoided by a
careful examination of the meaning of the implication. Simple counting might be
dangerous, but there are enough statistical methods to avoid easily the trap of
Hempel’s paradox.

2.3 Practical Consequences

All that shows how Science has been able to build theories using confirmation, in
spite of Hempel's paradox. Unfortunately it also shows how unreliable some
confirmation measurements that are automatically performed might be.

Suppose you are looking for implications A = B (i.e., associations) coming from a
taxonomy of generality, i.e., with inherited property semantics, such as, for example,
dog = canine. Then only the couples (A,B) confirm this hypothesis, and the
couples (A,mB) disconfirm it. Thus, the probability of confirmation for A = B should
be estimated by counting the number of corresponding items (let # be the counting
function, and N be the total number of items) and approximated by the value: (# (A,B)
-#(A,-B))/N.

Inversely, suppose you are looking for implications A =B with a causal
semantics. They are confirmed by all couples (A,B) and (—A,~B), and they are
disconfirmed by all couples (A,~B). The probability of the confirmation of A = B
should then be approximated by (# (A,B) + # (-A,~B) — 2*(# (A,-B)) / N.

These remarks will explain the changes I propose to the classical definitions of
coverage and confidence in section 3.2.

3 What Makes Knowledge Discovery in Data (KDD) Different

I will recall Fayyad’s acknowledged definition of KDD [3], as being the most
canonical one among KDD and DM scientists. This definition introduces two very
new concepts that are not used in ML: the discovered knowledge is requested to
be (potentially) interesting and novel. T'll insist on the consequences of asking for

! There is another famous argument against induction, namely that observing that 1. drinking
vodka with water makes you drunk, 2. drinking gin with water makes you drunk, leads to the
generalization that drinking water makes you drunk. Some claim: "This generalization is
obviously absurd, hence generalization is absurd.” I leave to the reader to show that, again,
this argument is due to a bad knowledge representation where the word with is represented by
a logical and- which is indeed absurd!



"useful knowledge", and I'll also refine somewhat this definition by adding three more
concepts: the first one is issued from history, and it defines KDD as a melting pot of
many other previous approaches, including ML; the second one opposes most of ML
and other scientific fields: they all have based their validity measures on accuracy
while KDD asks for other measures (including interestingness); the third one is
relatively simple but practically very important: KDD is a cycle that comprises many
steps and no step is “good science” while other steps are “mere engineering”.

The best acknowledged definition of KDD says that:

“ KDD extracts potentially useful and previously unknown knowledge from
large amounts of data .

I'll not insist on the large amount of data to be treated since it simply implies that the
algorithms must be as fast as possible, which is a trend of Computer Science and is so
well accepted that it requires no detailed comment. On the other hand, I'll develop the
consequences of asking for “unknown knowledge” (section 3.1 below) and the
measures of interest (section 3.2 below). The next four sections will develop more
personal points of view about KDD.

3.1 “Previously Unknown Knowledge”

Asking for previously unknown knowledge contains implicitly the statement that
there is nothing wrong in finding knowledge that might contradict the existing one.
Until now, all efforts in Machine Learning (ML) and Statistics have been aimed at
finding knowledge that does not contradict the already existing one: This is even the
principle underlying the development and success of Inductive Logic
Programming (ILLP), where the new created clauses must not contradict the existing
ones. In a sense, the very success of ILP is due to the automatical integration of the
invented model into the body of the existing knowledge. This is due to the fact that
ILP’s so-called “inversion of the resolution”, works as follows: The resolution
procedure, let us call it R, allows us to deduce, from two given clauses C, and C,, a
third one such that R(C,, C,) = C,. The process of inversion of the resolution is the one
that (very similarly to abduction) “inverses” this process by asking for the invention of
a clause ‘x’, such that for given C, and C,, the relation R(C,, ‘x’) = C, holds. From this
definition, it is clear that ‘x” will never contradict the body of existing knowledge.

In conclusion, it can be argued that avoiding contradictory knowledge is a common
characteristic of all existing inductive reasoning approaches. On the contrary, in KDD,
an interesting nugget of knowledge contradicting a large body of knowledge will be
considered all the more interesting!

Discovering a large number of well-known rules is considered to be the typical trap
that KDD systems should be able to avoid.

3.2  “Useful Knowledge”

This statement stresses the importance of the user’s goal in biasing the acquisition
of knowledge. Induction is always an intellectually dangerous process if not tightly
controlled. It should be obvious that the user’s goals are the best of the biases
necessary to avoid inventing trivialities. Up to now, academic research neglected this



view of the problem, and still too few papers deal with it because existing research
fields try to develop techniques that are, as far as possible, universal and that pretend
to be useful to every user instead of being specific (if they are, they are called “mere
engineering”, not “Science”). Some research has been done nevertheless in the KDD
community under the name of “rule validation” or “measures of interest”(see section
3.2b, below) and it tries to take into account the user’s requirements. These tests are
relative to patterns discovered in the data, as opposed to the incredibly large number
of tests proposed to measure the results of supervised classification.

Let A and B be two assertions, and X and Y be their supports, i.e., {X} = {x/ A(x)
= True} and {Y} = {y / B(y) = True}. Suppose also that we deal with a finite set of
examples, in such a way that {X}U{X}={Y}U{Y }=({Tot}the cardinal
of {Tot} is the total number of examples (it can also be said that it is the total number
of records in the database). When we want to infer A = B from the data, then the
following measures will provide an estimation of the validity of this implication.

Measures of Statistical Significance. These measures compute various relations
between the cardinals of {X} and {Y}. Two very classical ones are the measures of
support and confidence that are used by KDD systems that discover associations. The
measurements of conviction and 'interest' have been recently introduced in [2].
Several definitions that take into account the difference between causal and
descriptive implication will also be introduced here.

In order to illustrate our reasoning, let us consider the following three small data
sets :

D1 D2 D3
A -A A -A A -A
B 2 2 B 10 0 B 2 2
-B 2 14 -B 0 10 -B 13 13

Table 1 lists the values of various measures that can be calculated on these data sets.
We shall refer to these results in the discussion that follows.

D1 obviously does not confirm directly A = B since the number of instances of
(A,B) is equal to the number of instances of (A,~B). Besides, each of them represents
only 1/10 of the instances, which means that they both can be due to noise, especially
if we hypothesize a 10% level of noise. Inversely, the contraposition of A = B is well
confirmed since P(~A,-B) = 7/10 which is much higher than the level of noise.

In this case, a descriptive A => B, being equally confirmed and disconfirmed,
should be looked upon as very unlikely. For instance, if the number of women with
short hair (P(A,B)) was approximately the same as that of women with long hair
(P(=A,B)), it would become very clumsy to recognize a woman by the length of her
hair. As to the contraposition, if the number of men with long hair (P(A,~B)) was very
small, it would become again possible to use this feature, but in order to recognize a
man (as a person with short hair), not in order to recognize a woman. Since hair
length is not causally related to sex, the contraposition is not significant for the
recognition of women (as persons with long hair). In other words, the fact that most
men have short hair does not mean that most women should have long hair. The
number of women with long hair and the number of non-women (= men) with non-
long (= short) hair are not at all related, and a measure that would relate them is



unreliable. We shall see that such a relation is implicitly done in some classical
measures such as the confidence, P(B | A). This so-called ‘confidence’ is too high
when descriptive implications are looked for, and too low when real causal
implications are looked for.

D2 is a kind of "ideal" case where A = B and its contraposition are equally
confirmed, with absolute certainty. It will illustrate the limits of the values we
introduce, and why some normative coefficients are necessary. It shows also that the
classical dependency measure (see definition 12 below) under-evaluates the strength
of the causal links: its value is 1/2 only because the confirmation by contraposition has
been only partly taken into account.

D3 is a case where the correlation between A and B is exactly zero, using the
classical dependency measure, or our "putative causal” measure. Its "confirm”
measures are negative, meaning that it is more often disconfirmed than confirmed:

correlation and confirmation both reject the hypothesis that A = B.

Table 1. Measures that can be calculated on datasets D1, D2 and D3.

D1 D2 D3
P(A,B) = 1/10, P(AB)=1/2, P(A.B)=1/15
P(~A,-B) =7/10 P(-~A,-B)=1/2 P(-A,-B) = 13/30
P(-B,A) = 1/10 P(-B,A)=0 P(-B,A) = 13/30
P(A) = 2/10, P(B) = 2/10 P(A)=1/2,P(B)=1/2 P(A)=1/2, P(B) = 2/15
P(-A) = 8/10, P(-B) = 8/10 P(-A)=1/2,P(-B)=1/2 P(-A) = 1/2, P(-B) = 13/15
PB|A)=1/2, PB|A)=1 P(B|A)=2/15
P(-A|-B)=7/8 P(-A|-B)=1 P(-A|-B)=1/2
P(-B|A)=1/2 P(-B|A)=0 P(-B|A)=13/15
P(A|-B)=1/8 P(A|-B)=0 P(A|-B)=1/2
Causal support = 8/10 Causal support = | Causal support = 1/2
Descriptive confirm = 0 Descriptive confirm = 1/2 Descriptive confirm = -11/30
Causal confirm = 6/10 Causal confirm = 1 Causal confirm = -11/30
Causal confidence = 11/16 Causal confidence = 1 Causal confidence = 19/60
Dependency = 3/10 Dependency = 1/2 Dependency =0
Putative causal Putative causal dependency=1 Putative causal dependency=0

dependency=3/8

We do not illustrate the typical case where A = B is mostly directly confirmed,
since it is of little interest relative to our argumentation: it would obviously illustrate
the case where our proposed measures are useless.

Note: In the following, the implication’ will always be A =B, and 'the
contraposition’ will be "B = -A.

Definition 1: Support-descriptive = P(A,B)
The support of the implication expresses how often A and B are True together. It is
measured by the size of the intersection between {X} and {Y}, divided by the size
of {Tot}:

P(AB) = | (X} N {Y)|/ | {Tot}].

All algorithms that detect associations perform a kind of counting based on this last
formula. Generally speaking, the importance of support must be stressed before
presenting any other measurement. If an implication has too little support, even with
the terabytes of data now available, it might very well happen that it is then confirmed
by a very small number of instances that come from noise only. This is why it is



always dangerous to look for implications with small support, even though they migl}t
be very “interesting” since they show a peha,wor at variance with the normal one. This
explains why the “intensity of implication,” presented below in section 3.2b, since 1t
might look for implication with little support, take_s‘much care to take into account a
possible effect of random noise. The abovg definition of support is a very classical
one, and it implies that descriptive implicapons are lookeq for. In the case of causal
implications, We claim that this approximation has no meaning.

Definition 2: Support-causal = P(A,B) + P(<B , ~A)
This measure is not usually presented in the literature. It is approximated by:
(XY Y+ {XI{Y )/ [ {Tot}].
Notice that:
P(-A,-B) =1-P(A) - P(B) + P(AB),
thus adding the confirmation of the contraposition, i.e., computing P(A,B) +
P(~A,~B) amounts to computing either
1-P(A) - P(B) + 2*P(A,B)
or
P(A) + P(B) + 2* P(-A,~B) -1.
It follows that, in a finite world as the one of KDD, taking into account P(A,B)
simultaneously gives some indication on the value of P(—=B,-A). Nevertheless, causal
support can be seen as taking into account the size of P(A) and P(B), a behavior not
displayed by descriptive support. For instance, the causal support of D1 (4/5) is much
higher than its descriptive support (1/10), as it should be since A = B is confirmed
mainly by its contraposition.
Definition 3: Confirm-descriptive = P(A,B) - P(A,-B)
Notice that P(A,B) + P(A,-B) = P(A) thus P(A,B) / P(A) = 1 - P(A,mB) / P(A) which
means that confirmation and disconfirmation are not independent. It follows that:
P(A.B) - P(A,-B) =P(A) - 2* P(A,7B) =2 * P(A,B) - P(A)
In the case of D1, the descriptive-confirm equals 0, as it should be.
Definition 4: Confirm-causal = P(A,B) + P(-A,-B) - 2*P(A,-B)
All the equivalencies already noticed obviously apply, and there are many ways to
approximate this measure. Our causal-confirm raises from 0 to 6/10 in the case of D1
since it takes into account the confirmation of the contraposition, as it should be in the
case of causality.
Definition 5: Confidence-descriptive- = P(A,B) / P(A) = P(B | A)
The descriptive support is divided by P(A) in order to express the fact that the larger
P(A) is, the more it is expected that it will imply other relations. For instance, if P(A)
= 1, then P(A,B)=P(B) for any B. Thus, the implication B => A is absolutely trivial in
this data set. In general, the confidence is approximated by
X} (Y} /XY

Since by definition P(B | A) = P(A,B) / P(A), the confidence is nothing but the a
posteriori probability of B, given A. Since P(B | A) + P(=B | A) = 1, a high confidence
in A = B entails a low confidence in A = —B. In other words, it can be believed that
it is now less interesting to introduce explicitly the number of examples contradicting
A = B, since:

P(B|A)-P(-B|A)=1-2*P(-B | A)=-(1-2*P(B | A)).



A critique of this definition

In the definition of confidence and of dependency (defined below as P(B | A) - P(B)),
the value of P(A,B) / P(A) = P(B | A) is used in order to measure the strength of the
dependency. We claim that this measurement of strength is not adequate. For instance,
in D1 above, P(B | A) = 0.5. This says that the probability of B given A is relatively
high, even in this case where the confirmation is doubtful for a descriptive confidence
and dependency. Confidence is 0.5 and dependency is 0.5 - 2/ 10 = 0.3. Both values
are too high for a descriptive implication so weakly confirmed by the data. With our
definition of confirmed descriptive confidence and dependency, both are equal to 0, as
they should be since the dependency is as much confirmed as disconfirmed.

Definition 6: Confirmed-Confidence-descriptive = (P(A,B) / P(A)) - (P(A,-B) /
P(A))=P(B|A)-P(-B|A)

This measure is zero in D1 since the implication is as much confirmed as it is
disconfirmed. It is 1 in D2 since no example disconfirms the implication. It is
negative in D3, because the data does not support the hypothesis of the implication.

Definition 7: Confidence-causal = 1/2 (P(A,B) / P(A)) + (P(-B,-A) / P(-B)) = 1/2
(P(B|A) + P(-A | -B))
This measure adds the confidence due to the direct instances of the implication, and
the confidence due to its contraposition. The 1/2 coefficient stems from the fact that
each a posteriori probability can be equal to 1, as in D2 above, and we want the
measure to take values between 0 and 1. P(B | A) + P(~A | -B) are linked but their
link introduces again the values of P(A) and P(B) which can change the value of the
confidence in an interesting way. Let us use again that P(-A,=B) =1 - P(A) - P(B) +
P(A,B). It follows that:
P(-A|-B) =P(-A,-B)/P(-B)
=(1-P(A)-P(B)+P(AB))/1-PB)
=1-(P(A)/1-P(B))(1-P(B|A))

A critique of this definition
The same critique as above applies, since this definition does not take into account
disconfirmation. For instance, in the case of D1, the causal confidence is 11/16, which
is too high for an implication that shows such an amount of disconfirmation.
Definition 8: Confirmed-confidence-causal =

1/2 ((P(A,B) / P(A)) + (P(-B , -A) / + P(=B))) - P(-B,A) / P(A)) =12 (P(B| A)

+P(-A |-B)) - P(-B | A)

The normative coefficient 1/2 is needed here because each of P(B | A) and P(—A | —B)
can be equal to 1, as in D2 above, for instance. In the case of DI, the causal
confirmed-confidence decreases from 11/16 to 3/16 since the data confirm rather
weakly the implication.

Let us see now examine two other measures that have been introduced [Brin et al.,
1997], with the goal of expressing better the confirmation of the hypothesis A = B.
They both ignore the difference between causal and non-causal implications.

Definition 9: Conviction = [P(A) * P(= B)] / P(A,mB)
When A is True and B is False, then the implication A = B is disconfirmed. This is
why the larger P(A,~B) is, the lower the conviction. Obviously, the larger P(A) is, the



larger the conviction. Inversely, suppose that {Y}is tiny, then its intersection
with {X} can hardly be due to simple chance, and we have more conviction in favor
of A = B. Thus, the larger the support of P(—B), the larger the conviction. This
measure is valid for descriptive implications only.

Definition 10: ‘Interest’ = P(A,B) / [P(A) * P(B)] = P(B | A) / P(B)

The more probable P(A) and P(B) are, the less interesting is their intersection since it
is expected to be always large. In fact, the ratio P(A,B) / P(A) is also the conditional
probability of B knowing A, and it is written as P(B | A). This measure is valid for
descriptive implications only.

Definition 11: Correlation coefficient

Yet another very classical measure is the measure of correlation, valid for continuous
variables. Consider variables x and y taking real values x, and y, for each of the N
items of the data base. Let M, be the mean value of x, and E_be its variance. Then, the
correlation of x and y is defined as:

L/ND Y (x-M,/E) *(y,-M,/E,)

The intuition behind this measure is that when x and y are correlated, then x, and y,
tend to be together "on the same side" of the mean. The correlation measure is called
‘dependency’ when dealing with discrete values.

Definition 12: Dependency-descriptive = Abs( P(B | A) - P(B)) if P(A) = 0

Abs is the function “absolute value.” If A is not absurd, i.e., its probability of
occurrence is not zero, and in practice this means that P(B | A) = P(A,B) / P(A) is
computable, then the probability of meeting B given A should increase when A = B.
This is why the value Abs (P(B | A) - P(B)) is used to measure the strength of the
dependency. It is approximated by

Abs ((P(A,B) / P(A)) - P(B))) =Abs (| {X} n{Y}|/ [ {X}]) - ({Y} / [ {Tot}])

A critique of this definition
The probability of meeting B given A should also decrease when A = —B is
confirmed. This is why we propose now a more complex definition of dependency.

Definition 13: Putative causal dependency =
172 ([P(B| A) - P(B)] + [P(-A | -B) - P(-A)] - [P(-B | A) - P(-B)] - [P(A | -B) -
P(A)D.
In general, the definition of putative causal dependency contains a measure of
dependency and time orientation: One says that B is causally dependent on A if : Abs(
P(B|A)-P(B)) * 0 and if A occurs before B [17]. This definition is not convenient
for our purposes, since we do not always know the time relationship among variables,
and, worse, there are causal variables that depend on time in a twisted way, e.g., in the
medical domain: sex, skin color, weight, height, sexual orientation, habits etc., in all
cases of so-called "aggravation factors." As an example, it might well happen that a
smoker dies of heart attack and although smoking has been causal, the heart disease
started before the habit of smoking. The smoking habit acted as a reinforcement on an
existing disease, and it is participating to the cause of death by this disease, if not to
the cause of the disease. Besides, the approximation proposed for the computation of
dependency does not fit at all the notion of causality. Since most authors do not make
explicit the approximations they do when measuring P(B | A), it is impossible to



check if they have done the error of approximating it by ({X} n {Y}/ [{X}]). I
find it anyhow more elegant to give a different definition of causal dependency, to
which a correct approximation will be more obviously linked. The classical definition
expresses the fact that when A = B then B should occur more often when A is true
than when it is not. The complete accounting on this topic is then the following:

When A = B holds, for the direct theorem,

B should occur more often when A holds,
which asks for a highly positive P(B | A) - P(B) and

=B should occur less often when A holds,
which asks for a zero or even a highly negative P(-B | A) - P(-B),

while for the contraposed theorem,

- A should occur more often when =B holds,

which asks for a highly positive P(=A | =B) - P(-A) and
--A should occur less often when —B holds,

which asks for a zero or even a highly negative
P(=—A | -B) - P(—A) = P(A | -B) - P(A).

The definition of putative causal dependency can thus be computed as:

1/2 ([P(B | A) - P(B)] + [P(-A | -B) - P(=A)] - [P(<B | A) - P(-B)] - [P(A | -B) -
P(A))]).

Notice the main differences between this definition and the classical one. It might
happen that relationships which are highly confirmed by their contraposition but
which occur in very few cases, are forgotten by the classical measure. It may also
happen that relationships that are both largely confirmed and largely discon-
firmed (because they are actually due to some noise) are accepted by the classical
measure, while they are rejected by ours, as exemplified by D1 where the descriptive
support is 1/10, while the causal one is 8/10, and where the descriptive confirm is
exactly 0. The same kind of remark as the one made for confidence applies here:
classical measures might over-estimate a dependency by not explicitly taking into
account what disconfirms it, or they can as well under-estimate a causal dependency
by not using explicitly the contraposition.

This definition does not exhaust all the cases. We shall define as really causal, any
putative causal dependency that is neither indirect nor spurious.

Definition 14: Spurious causal dependencies = spurious (C = B)

Consider the case where the computations lead to accept that A =>B,and A=>C &
C = B. Since A implies both B and C, B will be true when C is true, even if C is not
causal to B, that is, even if the implication C = B does not hold in reality. If C is
really causal for B, then B must be more frequent when A and C hold than when A
alone holds, that is, P(B | A,C) must be higher than P(B | A). Hence the classical
definition of a spurious causal dependency is P(B | A,C) =P(B | A).

Example: Suppose that we mine data relative to rain, umbrella sales, and grass
growing. Obviously, one should find implications such as: rain = grass growing,
rain => umbrella sales. The problem is that the data will contain also the information
that umbrella sales = grass growing, since the two facts will occur together very
often. The a posteriori probability of grass growing given umbrella sales will be a



good instance of a spurious causal link. However, the probability of grass growing
should be the same, given rain and umbrella sales, or given rain alone.

This definition characterizes spuriousness, i.e., the difference between by
P(B|A,C) and P(B|A) can be used to measure the “degree of spuriousness.”
Spurious dependency is thus confirmed directly by Abs (P(B|A,C) - P(B|A)).
Nevertheless, and in accordance with the measures already defined, we think it should
be rather defined as the difference between everything that confirms that ‘B depends
on A to occur,” and everything that confirms that ‘B depends on A and C to occur.’
Since we claim that causal confirmed-confidence (A =B) = 1/2 (P(B|A) +
P(—~A | -B)) - P(-B | A) is the best measure of the existence of a causal link between
B and A, we shall extend slightly this definition to get a new definition.

Definition 15: Confirmed-spurious (C = B) =
Abs(confirmed-confidence-causal (A = B) - confirmed-confidence-causal

(A,C=B))

Where confirmed-confidence-causal (A,C = B) = 1/2 (P(B | A,C) + P(~A,~C | -B)) -

P(-B | A,C).

This definition does not change the nature of the measure since conditional

dependencies take also into account contraposition and disconfirmation. However, the

exact amount of spuriousness could be wrongly evaluated by the classical definition.

In the case of noise, some real spuriousness could be overseen, and some non-existing

spuriousness could be “invented.”

Definition 16: Indirect causal dependencies = indirect (A = B)

This case is symmetrical with spuriousness. Consider the case where we find again
that A = B, A = C, and C = B but, now, the causality flows only through C, that is
the implication A =B is not really valid.This should show in the a posteriori
probabilities, and here it should be observed that P(B | A,C) = P(B | C) since C carries
all the causality.

Example: Consider a hypothetical database relative to insecurity feelings, sugar
consumption, and tooth decay. The data should convey the theorems that insecurity-
feelings = sugar-consumption and that sugar-consumption =  tooth-decay.
Unfortunately, the data will also lead to insecurity-feelings = tooth-decay. We
should however observe that the probability of tooth-decay given insecurity-feelings
and sugar-consumption is the same as the probability of tooth-decay given sugar-
consumption. This definition characterizes indirectness, i.e., the difference between
P(B | A,C) and P(B | C) can be used to measure the “degree of indirectness.” Indirect
dependency is thus confirmed by the difference Abs (P(B | A,C) - P(B | C)). For the
same reasons as above, we shall propose a new definition.

Definition 17: Confirmed-indirect (A = B) =
Abs(Confirmed-confidence-causal (C = B) - Confirmed-confidence-causal
(A,C=B))
The definition of causality is a very tricky problem where significant progress has
been achieved with the recent introduction of Bayesian networks that rely on a causal
structure. Most researchers use a definition of causal dependency due to Pearl and
Verma [10]. When the time dependency between variables is not known, then



causality can be defined only for a set of more than two variables, as the above
definitions of spuriousness and indirectness show, since they need three variables at
least for their definition.

Definition 18: Causality-global (A = B)
This definition relies on two different computations. One is the measure of correlation
of A and B, when their values are continuous, and the measure of dependency, when
they are discrete. The variables that show very little correlation or dependency are
called independent. The second computation builds all possible geometries, i.e., all
causal schemes, globally compatible with these independencies. The simplest of all is
called ‘the’ causal scheme.

Let us present a new definition of a causal implication, that we shall call Causality-
naive because it relies on a naive, albeit convincing, reasoning.

Definition 19: Causality-naive (A = B), in a network of variables, AND
—Causality-naive (B = A)

IF  Putative-causal-dependency (A = B) = high

AND Putative-causal-dependency (B = A) = high

AND Confirmed-indirect (A = B) = low

AND Confirmed-spurious (A = B) = low

AND Putative-causal-dependency (B = A) >

Putative-causal-dependency (A = B)

Note that the computation of Confirmed-indirect (A = B) and Confirmed-spurious
(A = B) imply that there is a network of variables. Imagine the data generated at a
particular instance by a causal relationship, such as
V x (smokes (x) = cancer(x)). Since smoking is causal it takes place before cancer is
observed. More generally, if A = B is suspected, and A is really causal to B, then A
takes place before B. An important issue that arises then is whether A and B will be
observed simultaneously in a dataset capturing a particular point in time. There are
two cases.

Case I: A causes B and thus takes place before B, but A is still True when B also
starts being True. Then all individuals for which B is True A is also True. Inversely,
for some individuals, A might be True, but its effect on B might not be apparent yet
(in our current example, this is the case of all the smokers that did not get a cancer ...
yet!). Thus, there will be fewer individuals for which A True entails B True. In other
words, the confirmation of A = B will be less than the confirmation of B = A.

Case 2: Suppose that A causes B, but A does not exist anymore when B takes
place. Smoking, for instance, can cause cancer long after the sick person has stopped
smoking. Then A and B can even look uncorrelated in a slice of the population taken
at time t. Thus, the only way to observe the causality is to introduce implicitly time in
the data, by counting A as True if it is or has been true. This leads to case 1.

It follows that in both cases, if the time effect is correctly taken into account - and
this for implications of high putative causal dependence that are neither spurious nor
indirect - one should compare the putative causal dependency of both A = B and
B = A. The one with the smallest value is the one orientating the causal link between
A and B. This definition, even though opposing others, strictly follows the intuition
we have of what should happen when A causes B. '



Measures of Interest. It is quite usual that the number of associations detected by
using some of the above measures is still enormous. In the case of text mining, our
experience is even that megas of texts generate gigas of associations with very high
support and confidence. At any rate, experience shows it is always necessary to sort
among the associations those that are of “interest” for the user. We shall see now four
extensions to the classical measures of statistical significance, that are devoted to the
measurement of some kind of interest for a user, or at least proposed to the user in
order to help him or her to choose these associations that might be more interesting.

- The first extension is Bhandari’s Attribute Focusing [1], linked to the selection
of features that can possibly surprise the user. It relies on the application of correlation
measures to discrete valued features. Suppose we know that feature q is always

interesting for the user (e.g. the amount of sales). It is possible that the values of the
other features that are very strongly (or very weakly) correlated to q are also of
interest. The correlation between the value u of q and the value v of q_is measured
by:
| . (ql =u,q= v) = Abs ( P(q] =u,q= V) - P(q1 =u)* P(q2= v)).
I want to insist here on three facts:

1. The impossibility of using the classical definition of correlation. Imagine that,
following Bhandari, we replace each feature by its probability in the data. It is then
easy to define a mean probability P(g,) for feature q, its variance G, and

normalized values: N, (ql) = [P(g,) - P(ql =uw)]/ . However, the sum of the
products of N, Q) * N, (qz) cannot even be computed in the usual case where q,
and q, do not have the same number of values.

2. It would perhaps be better to measure the correlation between two discrete
variables by the formula for dependency: Abs ( P(B | A) - P(B) ) if P(A) « 0, which
we introduced in section 3.2 above. In this representation, Bhandari's formula
becomes:

I,...=Abs(P(B,A)-[P(B)*P(A)]) and since P(B,A) =P(B | A) * P(A)
1,0 =P(A) * Abs (P(B | A) - P(B) ) = P(A) * dependency.

In other words, L, .. measures the product of the dependency between A and B
by P(A): the “interesting” variable is all the most interesting if its probability of
occurrence is relatively high.

3. Bhandari's formula is thus restricted to the case where the data are purely symbolic.
Consider now the case where they are mixed. It will be easy to measure
independently the correlation between continuous variables and the correlation
between symbolic variables separately. It is an open problem to propose a
convincing measure of dependency among continuous and discrete variables.
Suppose that we would like to prove or disprove a causal dependency between a
typical symbolic feature, such as hair color and a typical continuous one, such as
height. There is nothing we could do.

The second extension, named “intensity of implication,” [5], instead of being
based on the implicit postulate that associations with high support are interesting, it is
based on the postulate that associations with low disconfirmation are interesting. In
other words, instead of looking for association with high values of P(A,B), the



intensity of implication detects associations with low values of P(—A,B), whatever
their P(A,B) is. In order to take into account the possibility of noise in the data, the
value of P(=A,B) in the actual data is compared to the value of P(mA’,B’) where A’
and B’ are random sets with the same cardinality as A and B.

Let {Tot} be the set of all available observations. Let {X} be the subset
of {Tot} such that the assertion A is true (we already have called it the support of A).
Let {Y}be the subset of {Tot}such that the assertion B is true. Then {X}
~{Y} supports the assertion A =B, and {X}{ Y } contradicts this assertion.
Consider now two sets of the same cardinality as {X} and {Y}, {X’} and {Y’}, that
are randomly chosen from {Tot}. Then the relation A = B can be said to be much
more confirmed than by random choice if |{X}m{ Y} | is much smaller than

|{X’}m{ Y'} | The intensity of implication measures the difference between these
two quantities. The bigger the difference, the bigger the intensity of implication. The
measure asks for complex calculations that are simplified by choosing an
approximation to the expected random distribution. Present measures tend to use a
Poisson approximation [5], which leads to the following actual measure of the
intensity of the implication:

oo 2
I=1N2pf, e "dt
where the value ii is given by a computation on the observed values. Let
n,=HX}{Y}],n=l{X}], n,= [{¥}], andn={(Tot}, then
ii = (n, - n,n,/m)/Yn n,/n.
This shows that, although it is a bit more complicated to compute than the other
measures, the intensity of implication is not prohibitively expensive.

The third extension looks for exceptions. Rules seemingly contradictory issued
from the data are deemed to be more interesting. This method looks for couples of
assertions of the form:

A=>B A& A = -B.

An example of such contradiction in real life can be:

Airbag = increase in security; Airbag & (age = baby) = decrease in security.

It is assumed that some combination of statistical significance of the two assertions is
“interesting”. For instance, when A = B is statistically very significant, and A &
A’ = —B has a small cover but large confidence. lit is then very similar to what we
think of as being a “nugget” of knowledge. Suzuki [15] has studied the detection of
contradiction. The problem of exception is similar to that encountered in other rules:
too many statistically significant exceptions are found, and the problem is to reduce
them to the “most interesting” ones. In [16] we explore the possibility of using the
intensity of implication to characterize interesting exceptions.

The fourth extension does not measure the interest of an individual rule, but it
tries to evaluate the interest of a whole set of rules. Global heterogeneity can be
related to interest [4]. Heterogeneity is realized by adding at each step the most distant
rule to the existing set, until the set reaches a pre-determined size. An obvious
extension to this method would be to ask for the most heterogeneous set of rules that
maintains the precision at a fixed proportion of the precision reached by the complete
set of rules.



3.3 Merging Approaches

KDD integrates several knowledge acquisition approaches, without being just a
concatenation of these approaches. Integrating these methods will generate new
solutions, and new scientific problems, imperfectly dealt with until now. The
scientific fields to integrate are various, dealing with Machine Learning, including
Symbolic, Statistical, Neural and Bayesian types of learning, Knowledge Acquisition,
querying Databases, Man-Machine Interaction (MMI) and Cognitive Sciences. Until
very recently, these fields have developed methodologies that consider a very specific
aspect of reality. Putting it in a somewhat crude way, ML has concentrated its efforts
on small data sets of noise-free symbolic values; Statistical and Neural approaches
worked on rather large data sets of purely numeric variables; Bayesian learning has
assumed that the causal model of the problem is known, and asked for the
determination of such a large number of conditional probabilities that it was often
unrealistic in real life; Knowledge Acquisition has dealt with the represention of the
skills of an expert (not taking data very much into account); DBMS work
concentrated on purely deductive queries; MMI has been seen as a discovery process,
not as fitting into a larger discovery process using other techniques (in short, they tend
to show things, but provide no way of using what has been seen); and the Cognitive
Sciences have no concern for computational efficiency. Each domain is improving
rapidly, but, rather than integrating approaches from other fields, it tends to
concentrate its efforts on solving the problems it has already met.

The first, still incomplete, instances of such an integrated approach are the large
KDD systems now found on the market, the most famous of them being: Intelligent
Miner of IBM, MineSet of Silicon Graphics, Clementine of ISL (now, of SPSS), and
SAS Enterprise Miner.

3.4 Accurate vs. Understandable (and Useful) Knowledge

Another concept that I believe to be KDD-specific is a kind of intellectual scandal for
most scientists: it is the recognition that validation by measures of accuracy is far
from sufficient. Up to now, all researchers, including those working on the symbolic
aspects of learning, have been measuring their degree of success only by comparing
accuracy, and most of them do not imagine that a different approach might even exist.
A method is assumed to be better if it is more accurate. KDD, or at least some of the
people working in this field - and still timidly, but with an increasing strength - pushes
forward the idea that there are at least two other criteria of more importance than
accuracy, and calls them “comprehensibility” and usability (described in section 3.2
above). I believe it is absolutely infuriating that while all users and real-world
application people say that accuracy is less important than comprehensibility and
usefulness, almost all academic people are still only concerned with the accuracy of
their approaches. I am convinced that clear measures of comprehensibility and
usefulness are the keys to future progress in the field. A positive example of this
attitude is the commercial software, MineSet, which devoted most of its effort to
providing the user with visual tools which help the user to understand the exact
meaning of the induced decision trees.



As for usefulness, the above described measures of interest begin to give some
objective definition to the notion of “interesting knowledge”. A unifying theory has
yet to be presented and we can guess that it will bring forth more ways to qualify
interestingness than those explained in section 3.2.

About comprehensibility, much less work has been done except the classical
“minimum description length principle” stating that when two models are equally
efficient, then the less cumbersome to describe should be chosen. In practice, this
leads to choosing decision trees that are as small as possible, or rules with the fewest
possible premises. I would like to suggest that a complete definition of
“comprehensible knowledge” will contain, among others, the following four features:

1. Comprehensibility is obviously user dependent. Comprehensible knowledge is
expressed in the user’s language, and with the user’s semantics. Here, two options
are possible. One is that the whole system works directly with the user’s language.
The second one, astutely proposed in [13], {14] is that the system works with its
own internal representation, but provides explanations of its results in the user’s
language.

2. What is not comprehensible cannot be used. It follows that comprehensible
knowledge cannot be separated from the meta-knowledge necessary for the use of
knowledge.

3. A longer explanation might well be much more comprehensible than a shorter one.
The minimum description length principle is still on the side of efficiency rather
than on the side of clarity. Thus, the length of the explanations is not the only
relevant factor.

4. In order to find a reliable definition of comprehensibility, it will be necessary to
introduce a model of the user in the comprehensibility measurements. The results
that best fit the user’s model can be judged as being the most comprehensible.
Building a user’s model is not an easy task as shown by the difficulties met by the
field of Al that attempts to build intelligent tutoring systems. This field that is
obviously very much concerned with the problem of comprehensibility and
therefore the need for building users’ models was recognized very early.

3.5 An Epistemological Difference

The knowledge extracted in KDD will modify the behavior of a human or
mechanical agent. It thus has to be grounded in the real world. Until now, the
solutions looked for by computer scientists have been based on providing more
universality, more precision, and more mathematical proofs to the “knowledge” they
provide to the users. On the contrary, the results of KDD have to be directly usable,
even if they are particular, imprecise, and unproved.

A typical example is the one of the overly stereotyped information provided by an
OLAP query, say: “what are the three shops that sell the best?” A KDD system should
deliver the differences of these three shops from the other ones, so as to allow the
manager to react in improving the worse shops. This example also illustrates that one
person’s information can well be the knowledge of someone else. In other words, the
definition of “knowledge” in KDD is user-dependent, and even goal-dependent. This
is obviously linked to the point made above: the user’s goals are doubly important in
KDD.



Even though the KDD community is very silent about it, this requirement is linked
to the famous Turing problem. Recent discussions about this problem show that
ungrounded knowledge is the key to make the difference between a human and a
computer (see [18], [11], [12] for a very thorough discussion of this problem). Usable,
grounded knowledge is exactly what is needed to solve the Turing problem.

3.6 Engineering Is Not Dirty

The sixth important property of KDD stems more from a practical point of view:
specialists in ML and Statistics tend to expect clean data to work upon. They consider
that data cleaning and selection is pure engineering that does not deserve their
scientific attention. KDD holds that data preparation is an integral part of the KDD
process, and holds as much scientific respect as any other step. I must add that most
specialists in KDD still hate dirtying their hands, but I claim this to be a passé-ist
attitude that will have to change.

3.7 Conclusion

The last four conditions oppose current academic behavior. The argument I meet most
often is the following: “Since you ask for all these requirements that make
measurements almost impossible and since little can be proved of the processes you
are studying, then you are defining an art and not a science.” It is true that there does
not yet exist an established measure of comprehensibility nor of usefulness, but we
just saw that these measures are far from being out of reach. It is also true that, due to
its strong industrial involvement, KDD looks forward more eagerly to new
applications than to new theories, and therefore it still looks much more like
engineering than science but the strong determination of the KDD community to
maintain a high scientific level insures that a safe balance will be respected.

4 Knowledge Discovery in Texts (KDT) Defined as a KDD
Application

The expression “text mining” is being used to cover any kind of text analysis, more
due to the fashion linked to the word “mining” than for any real progress. I know of at
least three different problems, already well-known in the community of Natural
Language Processing (NLP), for which some industrialists claim to be doing “text
mining”: syntactical and semantical analysis, information retrieval (i.e., finding the
texts associated to a set of key-words), and information extraction (i.e., filling up pre-
defined patterns from texts). By no means, can it be said that these problems are easy
ones, and they can even be part of a general KDT system, but for each of them, it
would better to go on being called by its own name.

Rather than giving new names to old topics, I'd like to suggest defining KDT rather
as the science that discovers knowledge in texts, where “ knowledge” is taken with
the meaning used in KDD (see section 2.5 above), that is: the knowledge extracted has
to be grounded in the real world, and will modify the behavior of a human or



mechanical agent. This definition introduces in KDT all the problems already
described for KDD, and shows very well how KDT differs from NLP.

1. KDT discovers knowledge means that induction is used, while NLP never had the
least interest in inductive processes, except in applying ML techniques to NLP.

2. Knowledge is understandable and directly usable by an agent, qualifies all the
statistical tables or principal component analysis, etc. as not belonging to KDT,
even though many NLP specialists present them as “knowledge”. Those tables
transform the text into data, and they can be used as a starting point for KDT. They
can thus be very useful for KDT, and be included in the whole KDT process, but
they do not constitute a complete KDT system.

3. Knowledge is discovered in a large number of texts, instead of one or a few text(s)
shows also that KDT does not aim at improving text understanding, but at
discovering unsuspected relations holding in a body of texts. I will give an example
of this difference just below: the rule given describes knowledge contained in two
years of miscellaneous “Le Monde” articles, instead of showing any kind of deep
understanding of one particular article. It must be noticed that a part of the NLP
community attacked this problem already (and called it very aptly “knowledge
extraction '), but they used statistical tools without interpreting their results, and
that did not allow them to go very far in terms of usefulness and comprehensibility
of their results.

I will give here an example of a set of rules discovered by KDT, without details on
the method used (see [8] for details), but with the hope that it illustrates the power of
KDT, and that KDT provides knowledge of a striking nature, that has never been
discovered before.

Existing NLP systems provide an analysis of the texts contents, with variations
depending on the tool that is used. The problem for KDT is to transform these
analyses into usable data. For example, consider the tool named “Tropes” (presently
available for the French and English languages), sold by the company Acetic, which
executes an analysis of the text. It provides, for each text, a table of syntactic and
semantic results. This constitutes a table, the rows of which are the texts, and the
columns of which correspond to the frequency of each feature in the text. For
instance, the frequency of temporal junctors is a syntactic feature, and the frequency
of appearance of a given concept in each text, is a semantic feature. An example of
such a concept is ‘“catastrophy”. Tropes computes the probability that some of the
words that are an instance of a catastrophy, such as ‘accident’, ‘flooding’, etc. are met
in the text.

In an experiment we used a set of several thousands of articles found in two years
of the French newspaper Le Monde. The only criterion for the selection was that the
articles were relatively large, in order to allow Tropes to work at its best. A
preliminary analysis, performed on the output of Tropes, using the KDD tool
Clementine of the company SPSS, produced, among many others, the following rules,
concluding on the fact that Le Monde has been largely speaking of the concept
catastrophy in one of the texts analyzed. These rules are not particularly important,
but they illustrate clearly the advantages and deficiencies of our approach.



catastrophy = much-talked-of

North—AnIferica = not-at-all-talked-of & Europe = much-talked-of
communi?:lftion = moderately-talked-of & conflict = much-talked-of
Europe =Onl1{uch-talked-of & family = not-at-all-talked-of

Europe =On11{uch-talked-of & woman = not-at-all-talked-of
EconomyO f not-at-all-talked-of & Europe = much-talked-of

This set of rules expresses that, in the articles that refer to a catastrophic event, two
concepts were also very often talked of. One is “Europe,” which underlines an
unexpected characteristic of this newspaper: when a catastrophy happens outside
Europe, the concept of catastrophy is much less strongly evoked. The other concept is
“conflict,” in which case, Le Monde speaks also of communication. Very interesting is
also the analysis of the statistically significant absence of evoked concepts: when
speaking very strongly of a catastrophy, Le Monde does not speak at all of North
America, family, women, and economy. Notice that among some 300 possible
concepts Le Monde could avoid speaking of, those are the only ones significantly
absent when speaking strongly of catastrophy. A detailed analysis would be necessary
to understand why these absent concepts are significant by their absence. It
nevertheless shows very clearly that we have produced knowledge that has never
before been noticed in this newspaper, nor in any kind of text. The amount of potential
research is enormous.

5 Conclusion

This chapter presents the most striking differences between Machine Learning and
what I believe to be an entirely new field of research, and which corresponds roughly
to what the existing KDD (Knowledge Discovery in Data) community recognizes as
“unsolved problems.” This last statement is largely unproved, but at least I can claim,
in a somewhat jokingly way, that even though some will disclaim some of the
properties I am putting forward, nobody will disclaim all these properties. The most
striking instance of the disclaimer that KDD specialists will do is that none of the
members of the existing KDD community will acknowledge that they are dealing with
the Turing problem. Nevertheless, they will all acknowledge that they want to
discover usable knowledge, which means grounded knowledge, which means dealing
with the Turing problem, like it or not.

Moreover, the consequences of these definitions are applied to a new research
field, that I name Knowledge Discovery in Texts (KDT). An example of the kind of
knowledge it can yield has been provided. This kind of knowledge is absolutely new,
and expresses properties that link a large number of texts together (instead of
analyzing one text). It shows that, at least, the definitions proposed can lead to new
results, and indeed define a new field of research.
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1 Introduction

In concept learning and data mining, a typical objective is to determine concept
descriptions or patterns that will classify future data points as correctly as possible. If
one can assume that the data contain no noise, then it is desirable that descriptions are
complete and consistent with regard to all the data, i.e., they characterize all data
points in a given class (positive examples) and no data points outside the class
(negative examples).

In real-world applications, however, data may be noisy, that is, they may contain
various kinds of errors, such as errors of measurement, classification or transmission,
and/or inconsistencies. In such situations, searching for consistent and complete
descriptions ceases to be desirable. In the presence of noise, an increase in
completeness (an increase of generality of a description) tends to cause a decrease in
consistency and vice versa; therefore, the best strategy is to seek a description that
represents the trade-off between the two criteria that is most appropriate for the given
application.

The problem then arises as to how to control such a trade-off and how to determine
the most appropriate one for any given situation. To illustrate this problem, suppose
that a dataset contains 1000 positive examples (P) and 1000 negative examples (N) of
the concept to be learned (target concept). Suppose further that there are two
descriptions or patterns under consideration: D1, which covers 600 positive (p) and 2
negative (n) examples, and D2, which covers 950 positive and 20 negative examples.
Defining completeness as p / P, and consistency as p / (p + n), we have:

Completeness(D1) = 60% Completeness(D2) = 95%
Consistency(D1) = 99.7% Consistency(D2) = 98%

The question then is, which description is better? Clearly, the answer depends on
the problem at hand. In some situations, D1 may be preferred because it is more
consistent, and in other situations, D2 may be preferred because it is more complete.
Therefore, an important problem is how to learn descriptions that reflect different
importance levels of these two criteria, that is, to control the trade-offs between the
descriptions in a learning process. This issue is the main topic of this chapter.
Specifically, the learning process is presented as a search for a description that
maximizes a description quality measure, which best reflects the application domain

Sections 2-5 introduce a general form of a description quality measure and illustrate
it by rankings of descriptions produced by this measure and, for comparison, by
criteria employed in various learning programs. Sections 6 and 7 discuss the
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implementation of the proposed method in the AQ18 rule learning system for natural
induction and pattern discovery [14]. The final section summarizes the obtained
results and discusses topics for further research.

2  Multicriterion Selection of the Best Description

In the progressive covering approach to concept learning (also known as separate-and-
conquer), the primary conditions for admitting an inductive hypothesis (a description)
have typically been consistency and completeness with regard to data. Other factors,
such as computational simplicity, description comprehensibility, or the focus on
preferred attributes, have usually been considered after the consistency and
completeness criteria have been satisfied. As mentioned earlier, if the training
examples contain errors (class errors or value errors) or are inconsistent (contain
examples that occur in more than one class), some degree of inconsistency and
incompleteness of the learned description is not only acceptable, but also desirable e.g.
[2]. In such situations, a criterion for selecting a description is typically a function of
the number of positive and negative examples covered by this description. For
example, in the RIPPER rule learning program [6], the criterion is to maximize:
@-n/(P+N) (1)

where p and n are the numbers of positive and negative examples covered by the rule,
and P and N are the numbers of positive and negative examples in the entire training
set, respectively.

A learning process can be generally characterized as a problem of searching for a
description that optimizes a measure of description quality that best reflects the
characteristics of the problem at hand. Such a measure is a heuristic for choosing
among alternative descriptions. Various measures integrating completeness and
consistency have been described in the literature e.g. [3]. In general, a description
quality measure may integrate in addition to completeness and consistency several
other criteria, such as the cost of description evaluation, and description simplicity.
Existing learning systems usually assume one specific criterion for selecting
descriptions (or components of a description, e.g., attributes in decision tree learning).
It is unrealistic to assume, however, that any single criterion or a fixed combination of
criteria will be suitable for all problems that can be encountered in the real world. For
different problems, different criteria and their combinations may lead to the best
results.

The learning system, AQ18, provides a simple mechanism for combining diverse
criteria into one integrated measure of description quality. The constituent criteria are
selected by the user from a repertoire of available criteria, and then combined together
via the lexicographical evaluation functional (LEF) [13]:

<(Cy, T)s (€2, 1), -+ s (Cpy T)> (2)
where c, represents the ith constituent criterion, and T, is the tolerance associated with
c. The tolerance defines the range (either absolute or relative) within which a
candidate rule’s c, evaluation value can deviate from the best evaluation value of this
criterion in the current set of descriptions. Given a LEF and a set of descriptions, the
system evaluates the descriptions first on the ¢, criterion. Descriptions that do not score
worse than T, percent below the best description according to this criterion are passed



to the next step. The next step evaluates the remaining descriptions on the ¢, criterion,
and the process continues as above until all criteria are used, or only one description
remains. If at the end of this process more than one description remains in the set, the
best remaining one according to the first criterion is chosen.

To illustrate LEF, let us assume, for example, that we have a set of descriptions, S,
and only two criteria, one, to maximize the completeness (or coverage), and the
second to maximize consistency are employed to select the best description from S.
Let us assume further that a description with coverage within 10% of the maximum
coverage achievable by any single description in S is acceptable, and that if two or
more descriptions satisfy this criterion, the one with the highest consistency is to be
selected. The above description selection criterion can be specified by the following
LEF:

LEF = <(coverage, 10%), (consistency, 0%)> 3
It is possible that after applying both criteria, more than one description remains in the
set of candidates. In this case the one that maximizes the coverage is selected.

The advantages of the LEF approach are that it is very simple to apply and very
efficient, so that it can be effectively applied with a very large number of candidate
descriptions. An alternative approach is to assign a weight to every constituent
criterion and combine all the criteria into a single linear equation. One weakness of
this approach is that it is usually difficult to assign specific weights to each constituent
criterion (more difficult than to order criteria and set some tolerance). Another
weakness is that all descriptions need to be evaluated on all criteria (unlike in LEF),
which may be time consuming if the set of candidate descriptions, S, is very large.

3 Completeness, Consistency, and Consistency Gain

As mentioned above, in real-world applications, full consistency and completeness of
descriptions is rarely required. Even if a data set can be assumed to be noise-free
(which is usually unrealistic), the condition of fuil consistency and completeness may
be undesirable if one seeks only strong patterns in the data and allows for exceptions.
In such cases, one seeks descriptions that optimize a given description quality
criterion.

As the main purpose of the learned descriptions is to use them for classifying
future, unknown cases, a useful measure of description quality is the testing accuracy,
that is, the accuracy of classifying testing examples, which are different from the
training examples. By definition, the testing examples are not used during the learning
process. Therefore, a criterion is needed that will approximate the real testing
accuracy solely on the basis of training examples. Before proposing such a measure,
let us explain the notation and terminology used in the rest of this chapter. Since in the
implementation of the method that is presented here, descriptions are represented as a
set of rules (a ruleser), we will henceforth use the term “ruleset” in place of
“description,” and the term “rule” as a component of a description.

Let P and N denote the total number of positive and negative examples,
respectively, of some concept or decision class in a training set. Let R be a rule (or a
ruleset) generated to cover the examples of that class, and p and n be the number of
positive and negative examples covered by R, called positive and negative support,



respectively. For the given rule, the ratio p / P, denoted compl(R), is called the
completeness or relative coverage (or relative support) of R. The ratio p / (p + n),
denoted cons(R), is called the consistency or training accuracy of R, and n/ (p + n),
denoted inc(R), is called the inconsistency or training error rate. If the completeness
of a ruleset for a single class is 100%, then it is a complete cover of the training
examples. If the inconsistency of the ruleset is 0%, then it is a consistent cover. In
defining this terminology, we have tried to maintain agreement with both the existing
literature and intuitive understanding of the terms. Complete agreement is, however,
not possible, because different researchers and research communities attach slightly
different meanings to some of the terms e.g. [3], [7].

Let us now return to the question posed in the introduction: is a description (a rule)
with 60% completeness and 99.7% consistency preferable to a rule with 95%
completeness and 98% consistency? As indicated earlier, the answer depends on the
problem at hand. In some application domains, notably in science, a rule (law) must be
consistent with all the data, unless some of the data are found erroneous. In other
applications, in particular, data mining, one may seek strong patterns that hold
frequently, but not always. Therefore, there is no single measure of rule quality that
would be good for all problems. Instead, we seek a flexible measure that can be easily
changed to fit any given problem at hand.

As mentioned earlier, a function of rule completeness and consistency may be used
for evaluating a rule. Another criterion, rule simplicity, can also be used, especially in
cases in which two rules rank similarly on completeness and consistency. The
simplicity can be taken into consideration by properly defining the LEF criterion.

How then can we define a measure of rule quality? One approach to quantifying
such considerations is the information gain measure that is used for selecting attributes
in decision tree learning e.g. [17]. Such a criterion can also be used for ranking rules,
because the rules can be viewed as binary attributes that take the value true if the rule
covers a datapoint, and false otherwise. Suppose E is the set of all examples (an event
space), and P and N denote the magnitudes of the subsets of positive and negative
examples, respectively, of E. The entropy, or expected information for the class is
defined as:

Info(E)=-((P/ (P+ N))logo(P/(P+N)+ (N/ (P+N))logs(N/ (P+N))) (4)

The expected information for the class when rule R is used to partition the space
into regions covered and not covered by the rule is defined as:

Infor(E) = ((p + n) / (P + N)) Info(R) + (P + N - p - n) / (P + N)) Info(~R)  (5)
where Info(R) and Info(~R) are calculated by applying (4) to the areas covered by R
and its complement, respectively. The information gained about the class by using rule
Ris:

Gain(R) = Info(E) — Infog(E) (6)

This measure represents a function of rule completeness and consistency; the higher
a rule’s completeness or consistency, the higher the Gain. Information gain as a
measure of rule quality has, however, one major disadvantage. It relies not only on the
informativeness of the rule, but also the informativeness of the complement of the
rule. That is, it takes into consideration the entire partition created by the rule, rather
than just the space covered by it. This concern is especially important in the case of
many decision classes. In such cases, a rule may be highly valuable for classifying
datapoints of one specific class, even if it does not reduce the entropy of the datapoints
in other classes.



As an example, consider the problem of distinguishing the upper-case letters of the
English alphabet. In this case, the rule, “If a capital letter has a tail, it is the letter Q" is
simple, with a perfect or near-perfect completeness and consistency for the Q class. As
it is a very specific rule, tailored toward one class, the above gain measure applied to it
will, however, produce a low score. Another limitation of the information gain
measure is that it does not provide the means for modifying it to fit different problems
which may require a different relative importance of consistency versus completeness.

Before proposing another measure, let us observe that the overall relative frequency
of positive and negative examples in the training set of a given class should also be a
factor in evaluating a rule quality. Clearly, a rule with 15% completeness (p / P) and
75% consistency (p /(p + n)) could be quite attractive if the total number of positive
examples (P) was 100, and the total number of negative examples (N) was
substantially larger (e.g., 1000). The same rule would, however, be less attractive if N
was much smaller (e.g., 10).

The distribution of positive and negative examples in the training set can be
measured by the ratio P / (P + N). The distribution of positive and negative examples
in the set covered by the rule can be measured by the consistency p / (p + n). Thus, the
difference between these values, (p /(p + n)) — (P /(P + N)) reflects the gain of the rule
consistency over the dataset distribution. This expression can be normalized by
dividing it by (1 - (P /(P + N))), or equivalently N /(P + N), so that if the distribution
of examples covered by the rule is identical to the distribution in the whole training
set, it will return 0, and in the case of perfect training accuracy (when p >0 and n = 0),
it will return 1. This normalized consistency measure shares the independence
property with statistical rule quality measures described in [3].

The above expression thus measures the advantage of using the rule over making
random guesses. This advantage takes a negative value if using the rule produces
worse results than random guessing. Reorganizing the normalization term, we define
the consistency gain of a rule R, consig(R), as:

consigR)=((p/ (p+n))—(P/(P+ N))) *(P+N)/N @

4 A Definition of Description Quality

This section defines a general measure of description quality. Since we will
subsequently use this measure in connection with a rule learning system, we will
henceforth use the term “rule quality measure,” although the introduced measure can
be used with any type of data description. In developing the measure, we assume the
desirability of maximizing both the completeness, compl(R), and the consistency gain,
consig(R) of a rule. Clearly, a rule with higher values of compl(R) and consig(R) is
more desirable than a rule with lower values. A rule with either compl(R) or consig(R)
equal to 0 is worthless. It makes sense, therefore, to define a rule quality measure that
evaluates to 1 when both of these components reach maximum (value 1), and O when
either is equal to 0.

A simple way to achieve such a behavior is to define rule quality as a product of
compl(R) and consig(R). Such a formula, however, does not allow one to weigh these
factors differently for different applications. To achieve this flexibility, we introduce a
weight, w, defined as the percentage of the description quality measure to be borne by



the completeness condition. Thus, the w-weighted quality, Q(R, w) of rule R, or just
Q(w), if the rule R is implied, is:
Q(R, w) = compl(R)" * consig®)"" "™ (8)
By changing parameter w, one can change the relative importance of the
completeness and the consistency gain to fit a problem at hand. It can be seen that
when w < 1, Q(w) satisfies the constraints listed by Piatetsky-Shapiro [16] regarding a
desirable behavior of a rule evaluation criterion:

1. The rule quality should be O if the example distribution in the space covered by the
rule is the same as in the entire data set. Note that Q(R, w) = 0 when pllp + n) =
P/(P + N), assuming w < 1.

2. All other things being equal, an increase in the rule’s coverage should increase the
quality of the rule. Note that Q(R, w) increases monotonically with p.

3. All other things being equal, the quality of the rule should decrease when the ratio
of covered positive examples in the data to either covered negative examples or
total positive examples decreases. Note that Q(R, w) decreases monotonically as
either n or (P - p) increases, while P + N and p remain constant.

The formula cited by Piatesky-Shapiro [16] as the simplest one that satisfies the
above three criteria is just consig(R), without the normalization factor, multiplied by
(p + n). The advantage of incorporating the component of compl(R) in (8) is that it
allows one to promote high coverage rules when desirable. Thus, (8) is potentially
applicable to a larger set of applications. The next section compares the proposed
Q(w) rule evaluation method with other methods, and Sections 6 and 7 discuss its
implementation in the AQ18 learning system.

5 Empirical Comparison of Description Quality Measures

This section experimentally compares the Q(w) rule evaluation measure with those
used in other rule learning systems. To this end, we performed a series of experiments
using different datasets. In the experiments, the Q(w) measure used with varying
parameter w was compared with the information gain criterion (Section 3), the
PROMISE method [1], [9], and the methods employed in the CN2 [5], IREP (8] and
RIPPER [6] rule learning programs. To simplify the comparison, we use the uniform
notation for all the methods.

As was mentioned above, the information gain criterion takes into consideration the
entropy of the examples covered by the rule and not covered by the rule, and the event
space as a whole. Like the information gain criterion, the PROMISE method [1], 91
was developed to evaluate the quality of attributes. It can also be used for rule
evaluation by considering a rule to be a binary attribute that splits the space into the
part covered by the rule and the part not covered by it. It can be shown that the
PROMISE measure as defined in [1] is equivalently described by the algorithm:

+=max(p, n)
M_=max(P-p, N -n)
T+=Pifp>n,Nifp<n,andmin(P,N)ifp=n
=PifP-p>N-n,NifP-p<N-n,and min(P, N)if P-p=N-n



PROMISE returns a value of (M, / T,) + (M_/ T_) - 1, the last term being a
normalization factor to make the range 0 to 1. It should be noted that when M, and M_
are based on the same class PROMISE will return a value of zero. For example, M,
and M_ are based on the positive class, when p > n and P - p > N — n. Hence, it is not
a useful measure of rule quality in domains in which the positive examples
significantly outnumber the negative ones. Note also that when P = N and p exceeds n
(the latter presumably occurs in any rule of value in an evenly distributed domain), the
PROMISE value reduces to:
(p-n)y/P &)

To see this, note that when P =N, (p/ P) + ((N - n) / N) - 1 can be transformed into (p
/ P)+ ((P-n)/P)-1, which is equivalent to (9).

CN2 [5] builds rules using a beam search, as does the AQ-type learner, on which it
was partially based. In selecting a rule, it attempts to minimize, in the case of two
decision classes, the following expression:

—(p/ (p+m) logy(p / (p + n)) + (n/ (p + n)) logy(n/ (p + n))) (10)

This expression takes into consideration only the consistency, p/(p + n), and does not
consider rule completeness (p/P). Thus, a rule that covers 50 positive and 5 negative
examples is deemed of identical value as a rule that covers 50,000 positive and 5000
negative examples. Although (10) has a somewhat different form than the rule
consistency gain portion of Q(w), CN2’s rule evaluation can be expected to rank rules
similarly as Q(0), i.e., only by consistency gain. Indeed, in the examples shown below,
the two methods provide identical rule rankings. If there are more than two decision
classes, the entropy terms are summed. Nonetheless, the above comments regarding
no consideration of rule completeness remain true.

A later version of CN2 [4] offered a new rule quality formula based on a Laplace
error estimate. This formula is closely tied to a rule’s consistency level, while
completeness still plays a minimal role.

IREP’s formula for rule evaluation [8] is simply:

@+N-n)/ (P +N) (1)
RIPPER, as was mentioned in Section 2, uses a slight modification of formula (11):
p-n/(P+N) (12)

Note that RIPPER’s evaluation will not change when P changes, but P + N stays
constant. In other words, its scores are independent of the distribution of positive and
negative examples in the event space as a whole. While this evaluates a rule on its own
merits, the evaluation does not factor in the benefit provided by the rule based on the
overall distribution of classes.

Furthermore, since P and N are constant for a given problem, a rule deemed
preferable by IREP will also be preferred by RIPPER. Thus, these two measures
produce exactly the same ranking; in comparing different measures, we therefore only
show RIPPER’s rankings below. Comparing (12} to (9), one notices that the RIPPER
evaluation function returns a value equal to half of the PROMISE value when P = N
and p exceeds n. Thus, in such cases, the RIPPER ranking is the same as the
PROMISE ranking.

The methods described above were compared on three datasets, each consisting of
1000 training examples. Dataset A has 20% positive and 80% negative examples,
Dataset B has 50% positive and 50% negative examples, and Dataset C has 80%
positive examples and 20% of negative examples. In each dataset, rules with different
coverage and training accuracy were ranked using the following criteria: Information



Gain, PROMISE, RIPPER, CN2 [5], and Q(w) with the parameter w taking values 0,
0.25, 0.5, 0.75 and 1. Results are summarized in Table 1.

Table 1. A comparison of rule evaluation criteria. Columns labeled V indicate a raw value,
while columns labeled R indicate rank assigned by the given evaluation method in the given
dataset.
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In Table 1, the leftmost column identifies the dataset, the next two columns specify
respectively the number of positive and negative examples covered by a hypothetical
rule, and the remaining columns list the evaluations and rankings of the rules by the
various methods on the corresponding dataset. Most of the values are normalized into
a 0-1 range, although as was discussed in Section 4, a Q(w) value could fall below O, if
the rule performs worse than random guessing; Information Gain may also not fall



into such a range. Since rule selection is solely based on rule ranking, the specific
quality values of rules are relatively unimportant and are given only for general
information.

As mentioned earlier, there cannot be one universally correct ranking of the rules,
since the desirability of any given ranking depends on the application. As expected,
experiments have shown that the rule ranking changes with the value of w; thus, by
appropriately setting the value of w, one can tailor the evaluation method to a problem
at hand. Table 1 reveals a surprising behavior of some methods. For example, for the
Dataset C, RIPPER ranks higher a rule that performs worse than a random guess (case
500/150) than some rules that perform better.

An interesting result from this experiment is that by modifying the w parameter one
can approximate rankings generated by different rule learning programs. For example,
the CN2 rule ranking is equivalent in Table 1 to ranking by Q(0); the RIPPER and
PROMISE rule rankings are approximated by Q(w) with w in the range 0.5 to 0.75,
and the Information Gain rule ranking is approximated for datasets A and B by

Q(0.75).

6 Admitting Inconsistency in AQ

The AQ type learning programs e.g. [13], [15] were originally oriented toward
generating descriptions that are consistent and complete with regard to the training
data. With the introduction of idea of rule truncation [2], [15], AQ type learning
programs could generate approximate descriptions (incomplete and/or inconsistent),
but only though a post-processing method.

The implementation of the Q(w) measure in the recent AQ18 rule learning program
{12] enables the generation of approximate descriptions (patterns) in a pre-processing
mode. This capability makes AQ18 more efficient and versatile, and is particularly
important in data mining applications. It may be worth noting that the incorporation of
Q(w) in AQI8 does not prevent it from generating complete and consistent
descriptions when desirable, unlike most existing rule learners, e.g., CN2 or RIPPER,
that can generate only approximate descriptions. In addition, AQ18 generates
descriptions as attributional rules, which are more expressive than the atomic decision
rules (rules with conditions: attribute-relation-value) that are employed in the above
programs, as well as than decision trees [14].

This section describes briefly how the Q(w) measure is implemented in AQ18. The
program allows a user to set the w parameter in Q(w) between 0 (inclusive) and 1
(exclusive, because the value 1 would lead to a rule that covers all positive and
negative examples). The default value is 0.5. For the default value, the code has a
short-cut that avoids the exponentiation operation during intermediate calculations of
Q(w), since the ordering is preserved without the exponentiation.

Since AQ learning has been widely described in the literature, it is assumed for the
sake of space that the reader has some familiarity with the AQ algorithm [15], [18].
Nevertheless, we will briefly review the rule generation portion of the algorithm in the
context of the implementation of the Q(w) description quality measure.

The introduction of Q(w) to AQ18 has led to two modes of program operation. The
first mode, called “pattern discovery,” which assumes the existence of noise in the



data, is used to determine strong patterns in the data. This mode utilizes Q(w). The
second mode, called “theory formation,” which assumes no noise or negligible noisc
in the data, is used to determine theories that are complete and consistent with regard
to the data [12], [14]. In pattern discovery mode, the measure is applied at two stages
of rule generation:

1. Star generation, which creates a set of alternative consistent generalizations of a
seed example (an example chosen randomly from the training set) that do not cover
any of the negative examples examined so far. The negative examples are presented
one at a time, and the extend-against operator [13] is applied such that the
hypotheses from the previous iteration are made consistent. A rule selection occurs
whenever alternative candidate rules are being generated.

2. Star termination, which selects the best rule from a star (after all negative rules
have been extended against) according to a given multi-criterion preference
measure (LEF).

6.1 Star Generation

In the standard procedure, star generation is the process of generating a set of
maximally general consistent hypotheses (rules) that cover a selected positive example
(a seed). AQ18 implements the Q(W) measure by extending the seed sequentially
against negative examples [13], and specializing partial hypotheses by intersecting
them with these extensions.

In pattern discovery mode, the system determines the Q(w) value of the generated
rules after each extension-against operation; the rules with Q(w) lower than that of the
parent rule (the rule from which they were generated through specialization), are
discarded. If the Q(w) values of all rules stemming from a given parent rule are lower,
the parent rule is retained instead. This operation is functionally equivalent to treating
the negative example used in this extension-against operation as noise.

In order to speed up the star generation, the user may specify a time-out threshold
on the extension-against process. If after a given number of consecutive extensions,
there has been no further improvement of Q(w) in the partial star, the system considers
the current ruleset of sufficient quality, and terminates the star generation process.

6.2 Star Termination

In the star termination step (i.e., after the last extension-against operation), the
candidate rules are generalized in different ways in search for a rule with a higher
Q(w). This process uses a hill-climbing method. Specifically, each rule in the star is
generalized by separately generalizing each of its component conditions (see below).
The rule with the highest Q(w) from among all these generalizations is selected. This
process is repeated; it is applied now to the rule selected. It continues until no
generalization creates further improvement.

The generalization of rule components (single conditions) takes into consideration
the type of the attribute in the condition, as described in [13]. Conditions with nominal
(unordered) attributes are generalized by applying the condition dropping generali-



zation operator. Conditions with linear attributes (rank, interval, cyclic, or continuous)
are generalized by applying the condition dropping, the interval extending and the
interval closing generalization operators. Conditions with structured attributes
(hierarchically ordered) are generalized by applying the condition dropping and the
generalization tree climbing operators. As a result of this optimization, the best rule in
the resulting star is selected for output through the LEF process.

Table 2 illustrates the application of these generalization operators to the base rule
[color = red v blue] & [length = 2.4 v 10..16} & [animal_type = dog v lion v bat]. In
this rule, color is a nominal attribute, length is a linear attribute, and animal_type is a
structured attribute.

Table 2. Effects of different generalization operators on the base rule:{color = red v blue] &
[length = 2..4 v 10..16] & [animal_type = dog v lion v bat]

Generalization Operator Resuiting Rule

Removing nominal condition [length =2.4 v 10..16] &
[animal _type = dog v lion v bat]

Removing linear condition [color =red v blue] &

[animal_type = dog v lion v bat]

Extending linear interval [color = ted v blue] & [length =2..4 v 8..16]
& [animal_type = dog v lion v bat]

Closing linear interval {color = red v blue] & [length =2..16] &
[animal_type = dog v lion v bat]

Removing structured condition [color =ted v blue] & [length =2..4 v 10..16]

Generalizing structured condition [color =1ed v blue] & [length = 2..4 v 10..16]

& [animal_type = mammal]

6.3 Unexpected Difficulty

Experiments with the pattern discovery mode in AQI8 exposed one unexpected
difficulty. To explain it, let us outline the basic AQ algorithm as implemented in
AQIB. The learning process proceeds in a “‘separate-and-conquer” fashion. It selects a
positive example of the class under consideration, generates a star of it (a set of
maximal generalizations), and selects the best rule from the star according to LEF. If
this rule together with the previously selected rules does not cover all positive training
examples, a new seed is selected randomly from among the uncovered examples. A
new star is generated, and the best rule from it is added to the output ruleset. The
process repeats until all of the positive training examples of are covered. The ruleset is
tested for superfluous rules (rules that cover examples subsumed by the union of the
remaining rules) and any such rules are removed from the final ruleset.

Consider the following scenario. Suppose AQ determines a consistent rule [x = 1]
& [y = 2] that covers a given seed. Assuming that both attributes are nominal, in the
star termination step the algorithm attempts to generalize the rule by dropping
conditions, thereby generating candidate rules [x = 1] and [y = 2]. Suppose that both



rules have Q(w) lower than that of the starting rule, so that the starting rule is added to
the list of selected rules. Let us assume also that the star of a subsequent seed includes
a consistent rule [x = 1] & [y = 5], which is then generalized to produce various rules.
It is possible that the generalization [x = 1] will be found to have a higher Q(w) than
the starting rule, and thus be added to the list of selected rules.

After the complete ruleset has been generated, the system searches for superfluous
rules. It then discovers that the rule [x = 1] & [y = 2] is subsumed by [x = 1], and
accordingly removes it from the ruleset. The latter rule is simpler and may cover more
examples, but it has been previously determined as inferior to the former in terms of

(w).
< How should this problem be solved? Which rule is better? The system may keep
only the first rule, only the second rule, or both (as different patterns in the data). As
we found experimentally, the latter solution may lead to a huge proliferation of rules.
Therefore, AQ18 seeks a ruleset that strives to achieve simultaneously two goals: (1)
to contain the highest Q(w) rules, and (2) to cover the target training data set with the
minimum number of such rules.

To this end, the Q(w) expression (8) was modified by computing a new form of
completeness, ncompl, defined as:

ncompl(R) = p,.. / P (13)
where p,.., is the number of positive events that are covered by the candidate rule and
not covered by any of the previously determined rules (patterns). Thus, the ncompl of
a rule is computed in the context of the rules already generated: only those examples
that have not yet been covered by the previously determined rules are counted. This
condition causes the algorithm to seek at each step the rules that cover the maximum
number of not-yet-covered examples. This in turn leads to rulesets that avoid
superfluous rules and, as a consequence, tends to reduce the size of the resulting
ruleset.

6.4 The Effect of Q(w) on Generated Rules

Experiments with the method presented here have confirmed the expectation that the
rules generated in the pattern discovery mode are more general than those obtained in
the theory formation mode. This effect is due to the fact that this mode allows rules to
have higher completeness at the expense of consistency, if this increases Q(w). In
addition, processing time is reduced substantially.

To illustrate the influence of Q(w) on the learning process, we have conducted
experiments in which the learning process was repeated with different values of the
parameter w. The experiments involved a medical dataset in which patients are
described in terms of 32 attributes (all but 5 of which were of Boolean type). The
attributes characterize patients’ lifestyles and specify their disease. Experiments were
run with three different values of the w parameter: 0.25, 0.5, and 0.75. For the decision
class arthritis, the training set consisted of 7411 examples, of which approximately
16% were positive (P = 1171) and the rest were negative (N = 6240). The rules with
the highest coverage learned for each of the three values of w were:

w=0.25: [education < vocational] & [years in neighborhood > 26] &
[rotundity > low] & [tuberculosis = no]:
p=271,n=903,Q=0.111011



w=0.5: [high blood pressure = yes] & [education < college grad]
p=1355,n=1332,Q=0.136516
w=0.75: (education < college grad])
p =940, n = 4529, Q = 0.303989
As expected, increasing the w weight leads to rules with higher completeness
(coverage) and lower consistency. All three rules indicate a relationship between
educational leve! and the occurrence of arthritis; the first one specializes the
acceptable range of educational levels in comparison to the other two. Furthermore,
the third rule is a generalization of the second one.

7  Admitting Incompleteness in AQ

The previous sections focused on the issue of relaxing the consistency condition in AQ
rule learning. This was done through the incorporation of the Q(w) measure, which
enables the learning program to find rules with high coverage that are not necessarily
consistent. This section considers the problem of relaxing the ruleset completeness
condition in AQ.

Let us start by observing that the application of AQI18 to the medical dataset
described above consistently resulted in rulesets having a similar distribution of rule
coverages regardless of the decision attribute, the value of w, and the training set. An
illustrative example is a ruleset for characterizing the occurrence of arthritis. The
training set consisted of 1171 positive examples (respondents who reported arthritis)
and 6240 negative examples (those who did not report arthritis). This set was
randomly selected from a larger database, and was representative of the overall
distribution of positive and negative examples. AQ18 generated a complete ruleset (a
cover) for the positive class (350 rules) and another cover for the negative class (314
rules). The distribution of rule coverages in these two rulesets is shown in Figures 1
and 2, respectively.

As one can see in these graphs, the distributions of rule coverages in rulesets for the
two classes have a similar shape. A complete ruleset typically contains a few high
coverage rules and many low coverage ones. Generating such a ruleset may take a
significant amount of computation in the case of a large training dataset. This process
could be significantly sped up by stopping the generation of rules at the point when the
remaining rules are expected to have low coverage.

A special case of applying such a process is to generate for each decision class only
the one rule/pattern that has the highest Q(w). If this rule is determined from the first
star generated, such a process will be very fast and simple, but the obtained rule may
not be of the highest quality. It may even be a spurious one, if the seed was an
erroneous example. In addition, this method would not allow the detection of multiple
strong patterns in the class. A more attractive method is to learn rules from n stars,
where n is a fixed parameter, and select one or more best rules from them. An even
more attractive method is to allow the system to generate stars as long as it appears
advantageous, rather than having a predetermined fixed stopping point (fixed n). This
method has been implemented in AQ18. Specifically, the system generates rules as
long as they continue to have sufficient coverage.
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Two parameters define the termination condition for this process. The first is the
probe that defines the length of a sequence of consecutively determined rules whose
coverages fall below a certain threshold. The threshold is a function of the second
parameter, the tolerance, and the coverage, ¢, . of the highest-coverage rule found

thus far. Specifically, the threshold is defined as (1 - tolerance) * ¢t The process of
generating rules for a given class stops when the number of consecutively generated
rules with coverages below the threshold has reached the probe value. For instance, if
the rolerance is 0.2 and the probe is 3, AQ18 will continue generating rules for the
given decision class until three consecutively generated rules fail to cover at least 80%

of the ¢ _coverage, or the system has covered all positive examples of the class. If a

new rule has coverage greater than ¢, , its coverage then becomes the new ¢, .

When this method was applied to determine the arthritis ruleset using the
parameters tolerance = 0.2 and probe = 3, the process terminated after learning four
rules (as opposed to 350 in the complete set). One of the discovered rules was the one
with the highest coverage, as reported in Figure 1, and another had the third highest
coverage. The other two rules had low coverage. Four was the minimum number of
rules that could be generated with these parameters. The minimum was reached
because every rule after the first rule generated had a lower coverage than the
threshold determined by the first rule. In other words, the first rule for each case
(decision class) had a dominatingly high coverage.

Such a situation does not, of course, always occur. For example, when the method
was applied with the same parameters to another disease class, it generated seven
rules. This was so because the dominant rule was found only after several iterations.
As illustrated above, and confirmed by other experiments, the method generated a
significantly smaller number of rules than would be in the complete ruleset, and the
generated rules tended to have high coverage, that is, represented strong patterns.

8 Summary

This chapter presented a method for determining strong patterns in data using the AQ-
type learning approach. Given a set of input examples from different classes, AQ
generates descriptions in the form of attributional rules that represent a trade-off
between consistency and completeness. The trade-off is controlled by a parameter,
Q(w), that serves as a measure of description quality by integrating rule completeness
with the newly introduced measure of consistency gain. The consistency gain
measures the increase in training accuracy over random guessing. The Q(w) measure
can be specialized to a range of specific criteria that weigh differently the
completeness and consistency gain by varying the w parameter.

The Q(w) measure has been implemented in the AQI18 learning and pattern
discovery system during the star generation and star termination processes. By
observing changes of the Q(w) value in the process of rule generation, one can detect
negative examples that may represent noise. This mechanism is particularly useful for
data mining applications. By ignoring such negative examples (which increases
inconsistency), the system often produces rules with much higher coverage than when
full consistency is required. Another benefit from this mechanism is a significantly



higher efficiency, which allows the algorithm to scale up to much more complex
problems.

It was also shown that by varying the w parameter in Q(w), the method can
approximate other rule learning methods, such as CN2, IREP and RIPPER. Thus,
AQ18 with the new features can be viewed not as a single pattern discovery program,
but rather as a family of programs, each of which is defined by a specific value of the
parameter w in the quality measure Qw).

The relaxation of the ruleset completeness condition is controlled by introducing
two parameters, probe and tolerance. These parameters allow the system to
dynamically terminate the ruleset generation process. The resulting ruleset is an
approximation of the target concept.

The presented method deals solely with the issues of consistency and completeness
of generated data descriptions. In practice, other criteria may also be important in
discovering and evaluating patterns in data, such as description simplicity and its
understandability. The method can incorporate such criteria through the
lexicographical evaluation functional [10], [11]. Experiments have shown that the
presented method offers a new tool for determining patterns in large datasets. Due to
its flexibility obtained through Q(w), probe and tolerance, it has the potential to be
useful for a wide range of applications.
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1 Introduction

Since the field’s inception, most research in machine learning has focused on
the problem of supervised induction from labeled training cases. If anything,
this trend has been strengthened by the creation of data repositories that, typ-
ically, include class information. But this emphasis is misguided if we want to
understand the nature of learning in intelligent agents like humans. Clearly, chil-
dren acquire many concepts about the world before they learn names for them,
and scientists regularly discover patterns without any clear supervision from an
outside source. Even the availability of class labels in public data sets can be mis-
leading; many such domains are medical in nature, and medical researchers first
had to discover a disease before they could diagnose it for particular patients.

Naturally, different approaches to induction from unlabeled data are pos-
sible, each stemming from different research goals. In this chapter, we report
on a class of unsupervised methods designed to support learning in intelligent
agents, whether human or artificial. This concern suggests some criteria that
such methods should satisfy; these include:

e The aim of unsupervised learning should be to acquire concepts or cate-
gories;

e Concept descriptions should represent the variability that occurs in the
natural world;

e These concepts should describe experience at different levels of generality;

o The learning process should be incremental, since intelligent agents interact
with the environment over time.

Taken together, these criteria place strong constraints on the representation
and organization of knowledge, and on the mechanisms that support performance
and learning.

Our research has explored a paradigm for unsupervised learning that meets
these criteria. The framework assumes that knowledge takes the form of proba-
bilistic concept descriptions and that these concepts are organized into an ‘is-a’
hierarchy that describes different levels of generality. For this reason, we will
often refer to the framework as one that assumes probabilistic concept hierar-
chies. However, we also assume that using this knowledge involves sorting new
experiences downward through the hierarchy, and that this act of retrieval also
produces changes in the concept descriptions and hierarchy structure, resulting
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in learning. In this chapter, we report on a large body of work that falls within
this paradigm.

We begin by describing COBWEB, the system that played the founding role
in this framework, and some experimental studies that reveal the importance of
its various components. After this, we examine three systems that extend the
basic approach; these include ARACHNE, which incorporates restructuring oper-
ators designed to handle noise and minimize order effects, TWILIX, which con-
structs more complex concept hierarchies that support overlapping categories,
and OXBOW, which forms concepts about temporal phenomena. We also briefly
review a number of other systems that incrementally construct hierarchies of
probabilistic concepts. In closing, we examine the framework’s relation to two
more recent approaches to unsupervised induction, one based on the AUTOCLASS
family and the other involving Bayesian networks.

2 Incremental Formation of Probabilistic Concept
Hierarchies

As noted above, our focus in this chapter is a framework for unsupervised learn-
ing that grew out of Fisher’s COBWEB [6]. We can describe the system’s goals in
terms of its performance and learning tasks. For the former, COBWEB aims to
infer the values of attributes missing from test cases, a task that Fisher called
flezible prediction. For learning, the system aims to carry out hierarchical clus-
tering over unlabeled training cases that are presented in an online fashion and
thus organize these instances in memory. Incidentally, this also lets it estimate
the probability density function over the space of possible instances, which in
recent years has become a more popular way to describe unsupervised learning.
Now let us consider the manner in which COBWEB achieves these goals.

2.1 Representation and Organization of Knowledge

The central representational notion in COBWEB is the concept or category. The
system generates an arbitrary name C for each such category and associates
with C' a descriptive summary. For each attribute A, this summary specifies a
probability distribution over the values of A, conditioned on the category C.
For a nominal or discrete attribute, this takes the form of a discrete probability
distribution; for a numeric or continuous variable, the system uses a normal
distribution, which can be characterized by its mean and variance.! Since it
stores only marginal probability distributions, COBWEB makes the assumption
that the observable attributes are independent given the category.

The key organizational theme in COBWEB is that categories are placed in
a concept hierarchy. Each node C in this ‘is-a’ tree specifies a set of children
and the conditional probability of C' given its parent category. Moreover, the
descriptive summaries between a parent and its children obeys an important

! Most implementations of COBWEB store these internally using counts for the cat-
egory, counts for nominal attribute values, and the sums and sums of squares for
numeric attributes.
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Fig. 1. A small hierarchy of probabilistic concepts for the domain of household pets,
illustrating COBWEB’s representation and organization of knowledge.

relation: the probability distribution for each attribute of a parent is a weighted
mixture of those for its children, so that each node constitutes a probabilistic
summarization of all its descendants. The terminal nodes or leaves in a COB-
WEB hierarchy correspond to specific instances, typically training cases observed
during learning. Thus, the root node corresponds to the most general category,
which summarizes all instances the system has seen, and categories become in-
creasingly specific as one moves down the hierarchy.

Figure 1 shows a small probabilistic concept hierarchy for the domain of
household pets, with the descriptive summaries for three nodes. The leaf node
N8 describes a single animal (a Mexican hairless dog) that is small, has four legs,
barks, and has a body covered with skin. Since this category involves only one
example, all attribute probabilities are either 1 or 0, and the node’s conditional
probability given the parent is %, as it has only one sibling. The parent node, N5,
is somewhat more abstract, summarizing two instances (both dogs) that differ on
some dimensions but not others. Thus, the conditional probability of having four
legs and barking is still 1, given an instance of category N, but the probability
distributions for size and body cover are more diffuse. The node next higher in
the hierarchy, N2, is even more abstract, since it also covers instances (cats)
that mew rather than bark, but still has little variation in the legs attribute,
since all its children are quadrupeds. This node has a conditional probability of
% given its parent, the root, because N2 subsumes that fraction of the leaves in
the tree.



2.2 Performance and Learning Mechanisms

Naturally, COBWEB’s representation and organization of knowledge figure promi-
nently in its use of that knowledge. Given a new test case, typically with only
some attributes specified, the system sorts the experience downward through the
concept hierarchy by recursively assigning the instance to the best child category
at each level. This process halts when the test case reaches a terminal node or
when it is not similar enough to any child to justify sorting downward further.
At this point, COBWEB infers the values for attributes missing from the instance,
using the modal values from the deepest (most specific) node through which it
has passed.

COBWEB integrates classification and learning, so that the latter process
takes place as the system sorts training cases through the hierarchy. As this
occurs, the algorithm updates the conditional probability distributions for each
node through which the instance passes, guaranteeing the property mentioned
earlier that each category summarizes all cases below it in the hierarchy. How-
ever, COBWEB can also invoke four learning operators to alter the structure of
its concept hierarchy. As illustrated in Figure 2, these include:

e extending downward, which occurs when a training case reaches a terminal
node in memory; under these circumstances, the learner creates a new node
N that is a probabilistic summary of the case and the terminal node, making
both children of N;

e creating a disjunct, which occurs if a training case is sufficiently different
from all children of a node N; in this situation, the learner creates a new
child of N based on the case;

e merging two categories, which occurs if a case is similar enough to two
children of node N that the learner judges all three should be combined
into a single child;

e splitting a concept, which occurs when a child C of node N no longer serves

as a useful category; C is removed and its children are promoted to become
direct children of N.

The system considers the last three of these actions at each level of the hierarchy,
as it sorts the new training instance downward through memory. Merging and
splitting are designed to reduce sensitivity to training order, giving the effect of
backtracking in the space of concept hierarchies without requiring the storage of
previous hypotheses.

We have not yet described how COBWEB decides which category to select at
each level, whether to halt at an internal node, and whether to merge or split
categories. To this end, the system uses an evaluation function called category
utility that measures the quality for a set of probabilistic categories. Given a set
of K categories with discrete attributes, category utility was originally defined
by Gluck and Corter [10] as the increase in the expected number of attribute
values that can be correctly guessed over the expected number of correct guesses
without such knowledge. The modification introduced by Fisher [6] and used by
COBWESB is
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Fig. 2. Learning operators used to modify the structure of a hierarchy of probabilistic
concepts: (a) extending the hierarchy downward; (b) creating a new disjunct at an
existing level; (c) merging two existing classes; and (d) splitting an existing category.
Newly created nodes are shown in gray.
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where k varies over categories, i over attributes, and j over values for each
attribute. This function evaluates a partition — defined as a parent node C
and its immediate children Cj. The probability P(C%) represents the base rate
or the prior probability that an instance is a member of the child Ck, whereas
P(A; = Vi;|Cy)? is a measure of within-class similarity for an attribute A;; that
is, how well the instances summarized by Cj resemble one another. Subtracting
the sum over the parent’s within-class similarities, P(4; = V;;|C)? for each
attribute, lets category utility measure the information gained by partitioning
the parent class into the given set of children. Dividing by K, the number of C’s
children, biases the system against proliferation of singleton classes.

For numeric domains, we must modify this evaluation function because the
probability that a continuous attribute will take on a particular number is zero.
For such attributes, probabilities are estimated by assuming that values conform
to a normal distribution with a particular mean and standard deviation. Thus,
for a domain with continuous attributes, Gennari, Langley, and Fisher [9] define
category utility as
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where P(C}) is the probability of class Ck, K is the number of categories, oy
is the standard deviation for an attribute ¢ in class Ci, and o;, is the standard
deviation for attribute ¢ in the parent node.? One can also combine continu-
ous and discrete attributes in the category utility calculation simply by using
the appropriate form of the equation for each attribute. That is, for nominal
attributes, the inner summation over values uses Equation 1, and for numeric
attributes it uses the inverse of the standard deviation.

We should close our review of COBWEB with some remarks about its as-
sumptions and representational power. At each level of the concept hierarchy,
the system assumes that attributes are conditionally independent given the cat-
egory. This condition, which COBWEB shares with the naive Bayesian classifier
[20], will clearly be violated in many domains. But note that the system seldom
makes its predictions at the hierarchy’s top level, and that categories lower in the
tree describe local portions of the instance space where approximate indepen-
dence may be satisfied. Indeed, recall that the leaves in a probabilistic concept
hierarchy correspond to individual training cases, and that COBWEB sometimes
bases its prediction on these nodes. In these situations, the system operates as a
nearest neighbor classifier that uses the concept hierarchy to weight attributes
and bias retrieval. In summary, COBWERB's use of a hierarchical memory gives
it the ability to represent complex target concepts, at least in principle. But
whether its approach works in practice is an empirical issue, to which we now
turn.

3 Empirical Studies of COBWEB

COBWEB appeared on the scene during a period when machine learning re-
searchers were first starting to carry out systematic experiments with their algo-
rithms. As a result, the system has always been under close empirical scrutiny,
though some early studies occurred before clear standards developed within the
community. Here we review a number of experimental evaluations of COBWEB,
concentrating on ones that have not appeared previously in the literature.

3.1 Basic Experimental Results

Initial experimental studies of COBWEB, as with all learning systems, aimed
mainly to show that its performance improved with experience. Fisher [6] re-
ported results on a number of natural domains for a task he called flexible pre-
diction. This involved testing on instances with some attribute omitted and
letting the system predict the missing value for each case, then repeating this

% As discussed by Gennari et al. [9], the value of 1/0 is undefined for any concept
based on a single instance, so an acuity parameter is needed. Acuity corresponds to
the notion of “just noticeable difference” in psychology.



process for each attribute and averaging the result. The technique extends nat-
urally to continuous attributes, and Iba [15] adapted it to measure prediction
errors about temporal phenomena.

Another approach, taken by Gennari (8], used labeled training data but held
back the label during hierarchy construction. This scheme added the most likely
class values to categories only after the hierarchy was complete, then used them
to predict the classes for test cases and produce a standard measure of classifi-
cation accuracy. Figure 3 shows two learning curves that McKusick and Langley
[24] obtained in this manner for COBWEB and a related algorithm, ARACHNE,
that we discuss later. One domain involved predicting the party of U.S. Congress-
men from their voting records, whereas the other domain dealt with diagnosing
disease in soybean plants. Although the latter task is clearly more difficult, CoB-
WEB shows steady improvement in its ability to predict class labels, even though
it could not use them in constructing its concept hierarchy.

Perhaps the most extensive experiments with COBWEB® come from Gennari
[8], who wanted to understand the sources of power in the framework. His studies
included varying system parameters and domain characteristics, using predictive
accuracy and learning curves to measure COBWEB’s sensitivity to particular
settings and domain features. In the remainder of this section, we consider three
of Gennari’s experiments that have not appeared in the literature. These include
the significance of category utility as the evaluation metric used for clustering,
the importance of COBWEB's algorithm for hierarchy formation, and the effect
of missing attributes on behavior.

3.2 Effect of the Evaluation Function

Let us first consider the importance of category utility, the evaluation function
that COBWEB uses when sorting cases through memory and when restructur-
ing its hierarchy. Although Fisher presents convincing arguments for using this
metric, its behavior relative to other functions remains an empirical question.
Gennari was interested in whether more traditional distance metrics, common in
the clustering literature, would produce similar results. However, to embed such
a measure in COBWEB required modifying them to operate over entire partitions
rather than between pairs of clusters. To this end, he introduced the function

K N;
1
trace(W) = E N E (Ii—ffjk)Q ) (3)
k=1""7 i=1

where W is the within-group covariance matrix and N; is the number of members
in class 7. This expression gives an overall measure of the difference among the
probabilistic summaries for sibling nodes (i.e., a distance between probability
distributions). Gennari also notes that this function is similar to another metric,
which he calls category value, that is simply category utility without information
from the parent node subtracted out.

3 Gennari’s studies dealt with a rational reconstruction of Fisher's system, which he
called CLASSIT, that also included a number of extensions. Because most of these
additions were later subsumed by CoBWEB/3 [25], we will also refer to it as COBWEB.
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Fig. 3. Learning curves for COBWEB and a similar system, ARACHNE, on (a) con-
gressional voting records and (b) soybean diseases, using classification accuracy as a
performance measure.

Indeed, he notes that trace(W)/K and category value are isotonic, in that
they produce the same ordering over partitions and thus can be used inter-
changeably when making decisions. In fact, when the number of classes is held
constant, category value is also isotonic to category utility. This means that the
two functions differ primarily in that the former prefers fewer children per node
than the latter. Because category value ignores the information at the parent
node, Gennari expected COBWEB to perform somewhat worse using this metric
than it does when relying on category utility.



An experiment with two natural data sets, one on a glass domain and another
on heart disease, revealed almost identical learning curves for the two evaluation
functions, violating predictions. To gain a better understanding of system be-
havior, Gennari designed two synthetic domains, each with nine attributes but
one having three distinct classes and the other six. In this study, he measured
both classification error and hierarchy depth after the system had processed 150
training cases, which were presumably enough to master the concepts in these
simple domains.

Table 1. The behavior of COBWEB with category utility vs. category value on two
synthetic domains.

THREE CLASSES SIX CLASSES
ERROR DEPTH ERROR DEPTH
CATEGORY UTILITY 2.15 1.23 2.08 1.35
CATEGORY VALUE 2.05 2.40 1.99 3.77

Table 1 shows the predictive error and average tree depth for both evaluation
functions on the three-class and six-class domains. Note that the error rates for
the two metrics are very similar, replicating the result with natural domains.
However, category value constructs a deeper concept hierarchy, as one would
expect given its bias toward fewer children for each node, with category utility
giving trees that more closely reflected the target concepts. Since COBWEB’s
performance element often sorts instances to terminal nodes when making pre-
dictions, tree structure often has little effect on predictive accuracy. But struc-
tural differences in the hierarchy can play a role in other contexts, as we discuss
later, and category utility seems to hold advantages in such situations.

3.3 The Effect of Search Control

Another key factor in the COBWEB framework concerns the algorithm that con-
trols search through the space of concept hierarchies. However, the literature on
clustering abounds with unsupervised algorithms, suggesting that some of these
approaches might give similar or even better results. Thus, Gennari carried out
a second comparative study between COBWEB’s incremental sorting method and
two techniques that are widely used in clustering circles.

The first method also constructs hierarchies, but does this in a nonincre-
mental, agglomerative fashion. Starting with each training case as a separate
category, this algorithm finds the two categories that are nearest to each other,
creates a parent node that specifies them as children, and replaces the original
nodes with the new one in the set of candidates. This process continues, re-
peatedly combining the most similar pair of categories, until only one node (the
root) remains. Because it must calculate all pairwise similarities on each itera-
tion, this agglomerative method is considerably more expensive than COBWEB
in computational terms.



The second method, known as iterative optimization, clusters training cases
into k categories at a single level, where the user specifies the number of clusters.
This process selects k instances at random as seeds to serve as initial category
centroids, then assigns other cases to the cluster with the nearest seed. Next, it
computes a new centroid for each cluster based on the cases it contains and re-
assigns each instance based on its distance to the revised centroids. This process
repeats until no changes in the categories occur. This technique is sometimes
known as k means clustering.

To compare the behavior of these algorithms with COBWEB, Gennari trans-
formed the taxonomy constructed by the agglomerative scheme into a probabilis-
tic concept hierarchy on which he could run COBWEB’s performance element.
In a similar manner, he transformed the clusters generated through iterative
optimization into a one-level probabilistic ‘hierarchy’ on which COBWEB could
operate. He studied the three methods’ behavior on two domains. One involved
a synthetic data set with nine numeric attributes and four top-level classes, two
of which had two subclasses (giving six total leaf categories); the other consisted
of the glass data set from the UCI repository.

Table 2. The behavior of different clustering methods on a synthetic and natural
domain.

THREE CLASSES GLASS DOMAIN
ERROR  DEPTH ERROR DEPTH
COBWEB 2.40% 2.63 13.9% 2.93
AGGLOMERATIVE 1.71% 7.67 18.2% 11.73
ITERATIVE OPT. (k=6) 5.07% (1) 18.5% (1)
ITERATIVE OPT. (k = 8) 2.82% (1)

Table 2 shows the results for both domains. Note that, on the synthetic
data, the agglomerative method outperforms the other algorithms in terms of
classification error, although it constructs a substantially deeper hierarchy than
CoBwEB. The latter difference comes as no surprise, since the agglomerative
technique always generates binary trees. On the glass data set, COBWEB again
creates a relatively shallow tree, but also gives the lowest classification error.
Clearly, studies with more domains seem in order, but these preliminary results
suggest that COBWEB's incremental search-control methods can hold their own
with more traditional nonincremental schemes from the clustering literature.

3.4 The Effect of Missing Information

Many real-world data sets suffer from the characteristic of missing information,
in that instances have no value for some attributes. Although COBWEB was
designed to infer missing attributes in test cases, the omission of values during
training is another matter entirely. Naturally, as the number of missing attributes



increases, we would expect the learning rate to degrade somewhat, but we would
also hope that COBWER’s reliance on probabilistic summaries would make this
degradation a graceful one.

COBWEB’s treatment of missing information is simple and straightforward.
When incorporating a new instance into an existing concept description, any
attributes of the instance that are marked as “missing” remain unchanged in
the description. When calculating a concept’s score as part of category utility,
each attribute’s contribution (i.e., sum over 4; = V;; for attributes and values)
is weighted by the fraction of times it has been present in the cases that concept
summarizes.* Equations 1 and 2, which present idealized forms with no missing
information, do not show this weight factor. As an example, given a concept that
summarizes four prior instances with no missing attributes and a new case with
a missing attribute, the missing attribute’s score would be discounted by 20%
because it characterizes only four out five instances.

Gennari carried out an experimental study with a synthetic domain designed
to evaluate COBWER’s tolerance to partial training data. In this domain, each
instance is described by a class label and 12 attributes, six numeric and six nom-
inal, with three attributes of each type being irrelevant with respect to the class.
For this study, a filter removed attribute values from each training case with a
specified probability p, replacing them with an identifier for ‘missing’. Varying
the parameter p produced a number of domains that were identical except for
the number of omitted values. From each domain, Gennari ran the system on ten
different training sets and measured classification error on a common separate
test set.

Figure 4 (a) shows COBWEB’s learning curves for this domain with 0%, 10%,
20%, and 30% of the attributes omitted. As expected, error increases when fewer
attributes are available in the training cases, and the learning curves for higher
omission levels are slower, but this degradation occurs in a graceful manner.
However, the overall effect is somewhat stronger than Gennari predicted. If one
removes 20% of the attribute values from training data, we would expect that
20% additional training would make up the difference. Instead, we see the curves
generated with missing information needing several times the number of training
cases to reach comparable levels of accuracy. Gennari attributes this effect to
a higher chance that COBWEB will find local optima when enough features are
absent. The fact that the learning curve for 5% (not shown) and 10% omissions
are nearly identical to the curve for no omissions seems consistent with this
interpretation.

In a similar study with the congressional voting data, Gennari collected a
subset of the instances with missing attributes that, on average, had 12% miss-
ing values. He also took a subset of completely specified instances and randomly
filtered values such that this “degraded” set also had 12% missing information.
Figure 4 (b) shows the learning curves for this study. We see an interesting con-
trast between training on instances with missing data and training on data that

4 More complex responses to missing attributes are necessary for other learning frame-
works, such as decision-tree induction (e.g., [27]) and Bayesian networks, but this
simple scheme is appropriate given COBWEB’s assumption of conditional attribute
independence given the category.
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Fig. 4. Learning curves for several levels of missing information on (a) a synthetic
domain and (b) Congressional voting records (from [8]).

was degraded. The former performs significantly worse than COBWEB with no
missing data, while the degraded condition, with the same percentage of missing
values, fares about as well as the no missing condition. Certainly, the system
is robust with respect to certain forms of data loss, but missing information
remains an open question that merits additional attention.



4 Extensions to CoBwes

When first developed, COBWEB appeared to offer many advantages over other
approaches to learning available at the time. The system combined the hier-
archical structure of decision trees with a clean probabilistic semantics, and it
constructed its concept hierarchies in an incremental and unsupervised manner.
However, experience with COBWEB suggested both representational and algo-
rithmic limitations, which led to many attempts to extend the basic approach.
In this section, we report on three such efforts in detail, then briefly review other
research within the framework.

4.1 Minimizing Effects of Noise and Training Order

Despite its many attractions, our direct experience with COBWEB suggested
that often it constructed hierarchies that did not reflect the underlying class
structure of the domain. This behavior was especially apparent with noisy data
and with certain training orders. In response, we developed ARACHNE, an unsu-
pervised system that seeks to construct well-formed hierarchies of probabilistic
concepts while maintaining high predictive accuracy. The algorithm bears many
similarities to COBWEB, but employs different criteria for tree formation and
uses alternative restructuring operators. In this section, we review ARACHNE
and present some experimental results on its behavior.

The Arachne System. ARACHNE assumes the same representation and or-
ganization of knowledge as COBWEB, but differs somewhat in its learning algo-
rithm, classification mechanism, and evaluation function. Like its predecessor,
the system includes two operators for restructuring its probabilistic concept hi-
erarchy, one that merges children and another that promotes a child to the same
level as its parent. Unlike COBWEB, the system applies these operators according
to local constraints that can be tested efficiently but that should produce better
structured hierarchies of probabilistic concepts. The basic learning activity in-
volves sorting a training case downward through memory, with its values being
used to update the probability distributions for the node subsuming it. How-
ever, this sorting process occurs only as the byproduct of the system’s merging
operator, which can lead to other restructuring along the way.

Each time such restructuring alters the children of some node N, the system
checks two constraints designed to ensure a well-formed hierarchy. ARACHNE
first checks each child C of N in turn to make sure the child is ‘vertically well
placed’; that is, it is more similar to its parent than to its grandparent. If C
violates this condition, ARACHNE promotes C, removing it as a child of N and
making it a child of N’s parent.® This ensures that no children of N are more
similar to their grandparent than to their parent. Thus, storing a new instance
as a child of a concept can cause a sibling instance or concept to ‘bubble up’ to
a higher location in memory.

5 Actually, the system must recheck each constraint after applying the promote oper-
ator, since this changes the description of the parent node N.



The system’s next step involves checking each child of N to make sure it is
‘horizontally well placed’, that is, it has equal or greater similarity to its parent
than to any sibling. If the most similar pair of children are more like each other
than either is to N, the system merges this pair by replacing these siblings with
a new node that is their probabilistic average and taking the union of their
children as its children. ARACHNE then recursively considers merging this new
node’s children. In some cases, this leads to recreation of the original siblings at a
lower level in the hierarchy; in other cases, it produces further reorganizations in
the subhierarchy. In particular, if the original instance is merged with an existing
concept, recursive calls of the merge operator can effectively sort it down through
memory.

Once it has merged two nodes at a given level, ARACHNE checks the remaining
nodes for satisfaction of horizontal well-placement. If it finds another pair of
nodes that violate this constraint, it merges them as well, then repeats this
process until all nodes at this level satisfy the constraint. In this way, a single
new instance can cause the system to merge successively many of the nodes
previously stored at a given level, including pairs of nodes dissimilar from it.

For instance, suppose ARACHNE had stored four instances of cats under a
common parent, and a dog instance is added (through merging from above).
Here the system would first merge the two most similar cats, then merge a third
into the resulting node, and finally add the fourth. The result would be two
concepts, one representing the abstraction of four cat instances and the other
based on a single dog. This iterative merging process differs from that used in
COBWEB, which merges nodes only when they are similar to a new instance.
Thus, we expect ARACHNE will create well-structured trees regardless of the
order in which instances are presented.

ARACHNE's evaluation function also differs somewhat from that used in CoB-
WEB. The two constraints require some measure of similarity between pairs of
nodes and/or instances, rather than a metric over an entire partition. To this
end, the system calculates the shared area under the probability distributions
for each attribute, averaged over all attributes. This usage is akin to that found
in Hadzikadic and Yun’s {11] INC system, which also uses a similarity function to
guide the formation of probabilistic concept hierarchies. In addition, ARACHNE
uses its similarity measure to determine the depth to which it should sort an
instance, halting whenever the best similarity score at the next level is no better
than that at the current level.

ARACHNE uses the same metric and essentially the same control structure
for prediction that it uses in learning. The system sorts an instance down the
hierarchy in accordance with its constraints, except that no promotion is allowed
and only merges that involve the instance are executed. Thus an instance sorts
to the class at which it would ordinarily become a disjunct, and a prediction
is made from the last node to which it was sorted. ARACHNE also includes a
simple ‘recognition’ criterion to foster prediction from internal nodes and thus
avoid overfitting. As it sorts an instance through memory, the system makes
a prediction from an internal node if its modal values perfectly match all the
values of the instance.



Experimental Evaluation of Arachne. Our initial experiments were de-
signed to show that ARACHNE is competitive with COBWEB in terms of predic-
tive ability on natural domains. For this purpose, we followed Gennari’s scheme
of including the class attribute as an additional feature that the systems used for
prediction but not in clustering. As shown in Figure 1, averaged results on the
voting records and soybean domains revealed nearly identical learning curves,
with the two systems improving at almost the same rate and reaching the same
asymptotic accuracy. Although such studies show relevance to real-world prob-
lems, artificial domains provide better understanding of the reasons for an algo-
rithm’s behavior. For example, we predicted that ARACHNE’s performance and
learning algorithms would be more robust on noisy data, in terms of both accu-
racy and tree structure, since its more powerful reorganization operators should
make it less subject to constructing overly deep concept hierarchies. We defined
tree quality as the number of well-placed instances, that is, singleton nodes that
are descendents of a target concept and that match 50% or more of the modal
attribute values of the target concept. A high percentage of well-placed instances
in a tree implies many accurate concepts.

To test this hypothesis, we designed artificial data sets with ten distinct
categories, where instances were defined by four attributes, each of which could
take on ten discrete values. For each concept, each attribute had a prototypical
value but could take on other ‘noise’ values at some specified probability. In the
low-noise data set, the modal value for each attribute occurred with probability
0.7, while three ‘noise’ values occurred with probability 0.1. In the noisier data
set, the modal value for each attribute occurred with probability 0.5, while five
noise values occurred with probability 0.1. Because a noise value appearing in one
class was the modal value of some other class, the class descriptions overlapped
to some extent. About 24% of the low-noise instances and only about 6% of the
high-noise instances should conform perfectly to the modal class description,
with the remainder being noisy variants.

We carried out ten runs at both noise levels, presenting COBWEB and
ARACHNE with 100 training examples in each case. Figure 5 shows the learn-
ing curves for predictive accuracy at each level. As expected, increasing noise
produced larger differences between the two systems. For low noise, ARACHNE
asymptoted at 90% accuracy and COBWEB reaches 80%, whereas for high noise
their asymptotes dropped to 76% and 56%, respectively. We observed a similar
interaction regarding tree quality, with the older system being more affected by
increased noise levels. Surprisingly, COBWEB’s tree quality in the low-noise con-
dition (82% well-placed nodes) was higher than for ARACHNE (74% well-placed
nodes), but this order reversed for the high-noise condition, with CoBWEB (37%
well-placed nodes) faring worse than ARACHNE (52% well-placed nodes). Differ-
ences in accuracy were significant at the .001 level, whereas those in tree quality
were significant only at the .025 level, but both measures were consistent with
the predicted interaction effect.

Another one of our concerns in designing ARACHNE was stability with respect
to different orders of training instances. The system’s operators for merging
and promotion should enable recovery from nonrepresentative training orders,
leading to the prediction that COBWEB will suffer more from order effects than
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Fig. 5. Learning curves for ARACHNE and COBWEB on an artificial domain with (a)
low and (b) high attribute noise, using predictive accuracy as a performance measure.

ARACHNE with respect to tree quality but not accuracy. Our experience with
COBWEB suggested it has difficulty when every member of a class is presented
at once, followed by every member of a new class, and so forth. Thus, we tested
our hypothesis by presenting both systems with ten random orderings and ten
“bad” orderings of 200 training instances from the low-noise data set described
earlier. The bad orderings were strictly ordered by class, so the systems saw 20
examples of each class in turn.

The results, shown in Figure 6, indicate that instance order did not affect
asymptotic accuracy for either system, although naturally learning was slower
for the bad ordering, since they did not see a representative of the final class
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Fig. 6. Improvement in predictive accuracy for ARACHNE and COBWEB on artificial
data with (a) random instance order and (b) misleading training sequences.

until the 181st instance. At this stage, random and bad orderings produce hierar-
chies capable of analogous predictive accuracy, approximately 90% for ARACHNE
and 80% for COBWEB. However, tree quality differs significantly in the two sit-
uations. Both systems locate most or all of the concepts at some level, but
CoBWEB is vulnerable to misplaced instances with the pathological ordering.
Whereas ARACHNE arrives at 88% well-placed nodes with the bad ordering, and
a similar 86% with random ordering, COBWER averages only 74% well-placed
nodes when learning from the bad ordering, compared to 84% for the random
ordering. Differences in predictive accuracy were significant for both conditions



at the .001 level. Differences in tree quality between the two systems were not
significant for random orderings of training cases, but were significant at the
.001 level for bad instance orderings.

In summary, we found that ARACHNE's alternative control structure pro-
duced the same predictive accuracy as COBWEB on two natural domains, but we
observed significant differences in both accuracy and tree quality using synthetic
data. In particular, we found that COBWEB was more sensitive than ARACHNE
to noisy training and test cases, and that the quality of COBWEB’s trees suf-
fers from misleading orders of training instances, while the new system’s tree
structure is relatively unaffected. We also saw additional evidence that predic-
tive accuracy is poorly correlated with tree quality. These results suggest that
ARACHNE embodies a promising approach to the construction of probabilistic
concept hierarchies and deserves additional study.

4.2 Learning Overlapping Concepts

Another limitation of COBWEB lies in its assumption that regularities in a do-
main can be summarized by a single hierarchy of probabilistic concepts. One
can easily imagine domains in which two or more orthogonal organizations of
instances, involving different sets of attributes, are possible. If COBWEB uses
one of these taxonomies to structure its experience for one attribute set, it can-
not form generalizations and make useful predictions about the other attributes.
Enough training cases should let the system deal with such domains, but an
excessive reliance on data is a drawback of any inductive system. In response,
Martin and Billman [23] developed TWILIX, a system that extends COBWEB to
deal with domains that have overlapping category structure.

The TwiLIX System. Like the ARACHNE system, TWILIX shares many fea-
tures with its predecessor in terms of representation, organization, performance,
and learning. As in COBWEB, each concept C is encoded using a conditional
probability distribution for each attribute given C, along with a base rate P(C)
for the concept itself.® The system also organizes these probabilistic categories in
a concept hierarchy, with higher nodes subsuming those below them. However,
the immediate children of each node in the TWILIX hierarchy are not individual
categories, but rather sets of categories. Fach such ‘conflict set’ represents a
distinct way of partitioning instances, typically emphasizing different attributes
and thus supporting overlapping concepts. Each such set contains nodes for more
specific probabilistic categories, which can themselves have sets of children, and
so forth.

Naturally, TWILIX uses this extended memory organization to process an
instance I somewhat differently than COBWEB. Within a conflict set, the system
always assigns [ to exactly one of the mutually exclusive categories, just as
in COBWEB, updating the probability distributions that describe that concept.

8 TwiLix differs slightly from COBWEB in incorporating uniform prior probabilities
for each distribution, rather than estimating distributions solely from the training
data.



Across conflict sets, TWILIX finds the best set by tentatively assigning I to the
concepts within each set, then repeats this process to find the next best set,
and so forth. The result is that the system can assign the case to more than
one conflict set, but never to more than one concept within each set. Moreover,
just as COBWEB sometimes decides to create a new category at the current level
based on a distinctive training case, so TWwILIX sometimes decides to create an
entirely new conflict set. The system does not include COBWER’s split and merge
operators, since it should be less sensitive to training order than its predecessor.

Like the earlier system, TWILIX relies on evaluation functions over instance
partitions to direct the classification and learning process. In fact, the function
for assigning cases to a category within a conflict set, which Martin and Bill-
man call set utility, differs only in minor ways from COBWEB's category utility.
However, the system also includes a function U that evaluates different sets 6 of
conflict sets. This can be stated as

M b
U®) = [H SU(Si >} : (4)
=1

where SU is the set utility for cluster S; and M is the number of conflict sets in
9. TwiLix applies this function to candidate sets of sets, selecting the one that
gives the highest score. However, note that the exponent 1/M gives a strong
bias against unnecessary conflict sets, which should lead to a single hierarchy in
domains where that is appropriate.

Experimental Studies of TWiILIX. Since TWILIX was specifically designed
to learn overlapping concepts, Martin [21] tested the system using a data set
on Pittsburgh bridges that he felt had this characteristic. This domain includes
descriptions for 108 bridges that were built in the Pittsburgh area between 1818
and 1986. Each bridge is described by twelve nominal attributes, seven repre-
senting design specifications or requirements, and the other five capturing the
design descriptors. Martin also tested a version of COBWEB that omitted the
merge and split operators to provide a closer basis for comparison.

The experiment involved running each system five separate times, training
on nine successive training blocks and testing on one test block. Each block
consisted of ten instances, made up from 100 instances selected randomly from
the 108 total cases available. After each block of ten training instances, both
systems were run without learning on the test block to obtain learning curves.
The performance measure was the average accuracy on predicting each of the
twelve attributes given the other eleven.

Figure 7 (a) shows the resulting learning curves (averaged over five runs) for
the two systems. The graphs reveal that TWILIX has a significant advantage over
COBWERB in this condition (p < 0.001). However, Martin conducted a tandem ex-
periment in which the performance task was to predict all five design descriptors
given only the specifications. As Figure 7 (b) indicates, there was no difference
between the systems in this setting. Furthermore, for this performance task,
COBWEB's overall performance increased (i.e., generally higher accuracy over-
all), but the overall accuracy for TWILIX was actually lower. Martin speculated
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Fig. 7. Average proportion of correct predictions (a) for one attribute given the other
eleven, and (b) for the five design descriptors given the seven requirement specifications
(from [21]).

that the seven specification attributes in this domain might be too impoverished
to make accurate predictions, yet COBWEB fared better in this condition than
when only predicting a single attribute. Evidence from other empirical studies
using synthetic domains generally indicates that TWILIX is more robust than
its ancestor, but there seems room for additional work to identify the relative
contributions of its extensions to the COBWEB framework.



4.3 Concept Formation in Temporal Domains

Many concepts in the real world describe events that occur over time with certain
indicative characteristics. We can contrast such temporal concepts with those
addressed to this point, which describe static objects or states of an environ-
ment. For example, motor skills correspond to a temporally structured domain
in which it seems natural to use a sequence to characterize and discriminate
among concepts. However, such domains introduce challenges for concept for-
mation systems like COBWEB, which have no direct representation of sequence.
In response, Iba [15], [16] developed OXBOW, an extension to COBWEB that
forms concepts in temporal domains. Here we focus on the system’s application
to learning movement concepts, though the underlying approach is more general.

Design of OxBow. OXBOW represents movements as sequences of descriptions
with temporal relations among them. The system employs a movement parser,
which takes a dense sequence of attribute-value descriptions as input, to cre-
ate a sparse sequence based on zero crossings in velocity and acceleration. At
such events, the parser creates states containing the positions, angles, and ve-
locities (e.g., for the joints of a limb), as well as the time (relative to the start of
the movement) associated with the zero crossing. This sparse representation is
sufficient to capture and summarize the original movement with very low error.

Two issues arise for representing movements in a COBWEB-like concept hier-
archy. First, the movement is a sequence of states instead of single set of attribute
values. But more significantly, movements have variable numbers of states ac-
cording to their complexity (number of zero crossings). In response, OXBOW
represents a single movement concept using a probabilistic hierarchy of states.
The top-level partition of this hierarchy is organized with respect to time only,
and the nodes at this level are ordered by time to yield the state sequence of the
movement.

Movement concepts are organized in a traditional probabilistic ‘movement’
hierarchy, each node of which points to an entire ‘state’ hierarchy that describes
the temporal structure of the movement category. Thus, a movement hierarchy of
baseball pitches might have two top-level concepts corresponding to sidearm and
overhand throws, and the overhand concept might have three children: fast-ball,
curve-ball, and fork-ball. Each of these concepts points to a state hierarchy in
which the top level consists of an ordered AND tree that represents the sequence
of states for the given movement. To continue our example, the sequence might
include states for the wind-up, initial forward motion, wrist-snap, release, and
fellow-through.

The recognition process for a newly observed movement is similar to CoB-
WEB’s classification mechanism. The new motion is parsed into a sequence of
states, which is sorted down through the movement hierarchy. At each level,
OxBow applies and evaluates the four COBWEB operators from Section 2.2. On
termination, the system returns, as the retrieved category, the most recent node
into which the new instance was incorporated. This category can be used to
evaluate the goodness or accuracy of the classification process.



On the surface, OXBOW’s learning method is quite similar to COBWEB’s, but
it introduces a significant variation to deal with structured objects having tem-
poral components. Instead of simply updating attribute-value counts, the system
must incorporate a new state sequence into an existing movement concept. This
involves sequentially incorporating each state from the movement into the state
hierarchy rooted at the movement concept. For each state, OXBow employs the
basic category utility function. However, time is the only attribute considered at
the first level; in this way, the partition structure is organized by the temporal
aspects of the movement. At subsequent levels, time is ignored and the state
features are used in the category utility calculation.

This scheme for incorporating movements carries out a partial match between
the sequence of states that comprise the newly observed movement and the
sequence in the concept (as defined by the time-ordered top level). OXBOW views
the top level of the state hierarchy as a ‘part-of’ structure. Not surprisingly, some
modifications of category utility are necessary to accommodate this structured
representation.

Since OXBow works with continuous attributes, it uses the continuous ver-
sion of category utility from Equation 2. However, this expression assumes that
every class has the same set of attributes, so we must extend this to consider
classes with different components or, in this case, state descriptions. Because
the number of states is not the same for all movement instances, the information
in each component is weighted by its probability. For OxBow, the evaluation
function over movements is

1 K J I 1 M I 1
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where P(Sy;) is the probability of the jth state description in class Cj, which
specifies the proportion of all the state descriptions from schema instances of
node Cy that have been classified at state description Sk;. The probability
P(Spm) is defined in a similar manner for the mth state description in the parent
of the current partition.

We have extensively tested this approach to unsupervised learning over move-
ment categories at both the movement and state levels {16] in both natural and
artificial domains. We have also evaluated OXBOW on other temporal domains,
including the recognition of cursive letters and events in telemetry data from
the space shuttle. Here we present one study that demonstrates the temporal
extension to COBWEB and highlights a variation on the performance task.

Predicting Unseen Movement. Most work in unsupervised learning has re-
sorted to evaluating a method’s utility in supervised learning contexts. We have
done this with OxBow, but we also have an opportunity to measure the error
between the prototype motion, which is stored at the indexed concept, and the
observed motion. We measure the error as the absolute difference in joint posi-
tions between the two movements at each corresponding point in time, which we
then average over all time steps. An even more challenging performance measure



requires OXBOW to predict the continuation of a movement based on its classifi-
cation of a partial observation. That is, given an initial glimpse of a movement,
predict its continuation over time. If we ignore issues of learning, then varying
the observed percentage of a test movement provides a method for adjusting the
difficulty of OXBOW’s retrieval task, thereby allowing a more direct assessment
of its contribution to error.

For a number of our empirical tests, we constructed an artificial movement
domain that consisted of four movement types controlling a two-jointed arm.
Instances of each movement type were generated by a distinct schema, the el-
ements of which were perturbed according to a variability (noise) level. The
four movement types were equally likely to occur. OXBOW learned from a series
of observed movements and was then tested on a set of new movements (with
learning turned off). We conducted these tests in a simulated environment with
an arm that had a maximum possible error of 300 units.

To explore OXBOW'’s ability to predict future movement from partial ob-
servation, we ran a series of 20 sessions, each one consisting of 30 randomly
generated training movements. The test set consisted of the noise-free schemas,
one for each movement type. When testing, we presented an initial portion of the
prototypical movement and then measured error over the remaining unobserved
movement. Note that complete movements were given during training and only
when evaluating system performance did we limit the extent of the observed
prototype. We can compare errors among different lengths of predicted move-
ments because the total error is averaged over the number of unobserved (i.e.,
predicted) time slices. Any differences in errors can be attributed to classifica-
tion problems during retrieval, because the knowledge base is the same for each
level of observation at a given point in training.

This formulation of the task suggests a prediction: as less of the movement
is observed, classification should become more difficult and mistakes should lead
to greater measured error. Simply stated, the more the system sees of a move-
ment, the more it should know about what will happen next. Figure 8(a) shows
the learning curves from an experiment in which we varied the portion of the
movement to be predicted, with results averaged over ten runs of 30 training
instances each.

The figure shows that the errors are consistently the highest when OxBOW
must predict 80% of the movement, except very early in training, when it has
not yet seen all the movement types. However, there is little difference between
predicting 50% of the movement and only 20%. This result suggests that the
system is not severely affected by having less information available for classi-
fication, except at a minimal level. However, from previous experiments with
OxBow, we know that increased domain variability leads to higher asymptotic
errors, presumably because greater noise makes it harder to construct high-
quality generalizations, which in turn hinder classification. This idea suggests a
predicted interaction: as training data becomes more variable, OxBow should
require larger portions of the test movement in order to prevent increased error.

To test this prediction, we ran the system in partial prediction mode while
training it on data with different levels of variability. In a single experimental
run for a given level of noise, we trained OXBOW on 60 observed movements,
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Fig. 8. (a) Learning curves showing error for three levels of partial observation, and
(b) asymptotic error rates for four levels of domain variability and four levels of partial
observation.

then tested on four levels (20%, 40%, 60%, and 80%) that must be predicted. As
before, the system used the initial segment of the movement for classification.
For each condition of noise and observation level, we averaged the results over
20 different training orders, to guard against order effects.

In this experiment, we were only interested in asymptotic error levels, having
considered the effects of variability upon learning rate in an earlier study [16].
Figure 8(b) shows the asymptotic error rates for the four noise levels as a function
of the portion of each test movement to be predicted. The graph indicates similar



asymptote levels for the 0.25 variability condition but a wide range of asymptotes
for the 1.0 level. Separate analyses of variance for these two conditions revealed
a statistically significant difference for variability equal to 1.0 (p < 0.001) but
none for the 0.25 condition (p > 0.1), which seems to support the predicted
interaction. However, an analysis of variance over all the data shows a significant
main effect of the portion to be predicted, but no significant interaction between
the two factors.” Although the results did not strongly support our prediction,
they indicate that OXBOW is somewhat robust with respect to noise; that is, the
system is no more adversely affected by incomplete observations when learning
from noisy data than when learning from more regular data.

Moreover, the above experiments held the learning system constant while
varying the amount of information in the test movement, thus indicating the
sensitivity of the classification process. The results suggest that OXBOW is not
making misclassifications when given partial structures in the input. This pro-
vides supporting evidence that the increase in error associated with increased
variability, is due to problems in the generalization process during incorporation
of a new experience. Understanding and reducing these predictive errors remains
an important topic for future research.

4.4 Other Variations on the CoBwEB Framework

In addition to the extensions described above, a number of researchers have
developed clustering algorithms that derive either directly from COBWEB or
that bear a striking resemblance to it. Each of these systems construct hierar-
chies of probabilistic concepts in an incremental manner, sorting training cases
through memory and updating concept descriptions in the process. Many of
these methods are covered in Fisher, Pazzani, and Langley (7], but they deserve
some comment here.

Pazzani (personal communication, 1990) and colleagues developed an exten-
sion to COBWEB that takes advantage of knowledge about which features one
wants to predict. Their system retained the same control structure but general-
ized the measure of category utility so that it weights features according to the
importance of predicting them. They argued that this approach should lead to
better predictive accuracy than methods like COBWEB, which weights all fea-
tures equally. One can view both unsupervised and supervised learning as special
cases of this framework. Martin [22] has reported a similar technique that also
learns the weights on features from sample queries.

Another extension to COBWEB comes from Reich and Fenves [28], who
adapted the approach to problems in parametric design. Their BRIDGER sys-
tem supports a variety of classification and prediction methods, including the
ability to halt when all attributes that encode the design specifications have been
met. The program also handles numeric attributes in a different manner than
CoBWEB and incorporates a mechanism for grouping nominal values into new
features. Finally, BRIDGER mitigates order effects with a procedure that removes

7 If we consider only the high and low variability (i.e., remove the 0.5 and 0.75 noise
levels), an analysis of variance indicates a significant interaction with p < 0.05.



any node (and its descendents) if it contains ‘characteristic’ values (ones with a
sufficiently high probability) that differ from those in its ancestors. Experiments
using the system for synthesis of bridge designs, which involves predicting many
attributes, gave encouraging results.

Anderson and Matessa [1] describe a COBWEB-like algorithm that incremen-
tally constructs a binary tree of probabilistic concepts. One difference lies in their
performance element, which follows the Bayesian philosophy of using a weighted
average over all categories to make predictions about test cases. Their system
also invokes Dirichelet priors to initialize the probabilistic descriptions for each
category. Moreover, when deciding whether to incorporate a training case into
existing children or to create a new category, it computes the probability that
the case belongs to each child and that it belongs to a new category, rather than
using an evaluation metric like category utility that operates over an entire par-
tition. Their algorithm qualitatively fits numerous results on category learning
from the psychological literature.

Thompson and Langley [29] report on an explicit extension to COBWEB de-
signed to carry out concept formation over structured representations, in which
the values of attributes can themselves be component objects with relations
among them. Their LABYRINTH algorithm calls on COBWEB recursively, in that
acquired component concepts are used to describe and influence the acquisition
of composite concepts. The system also introduced a new operator for ‘attribute
generalization’ that replaced sets of values in a composite node’s description
with a single value that resides above them in the component hierarchy. This
required a new evaluation metric, related to category utility, that determined
when to take such a restructuring step. Handa [12] has extended this approach
to take context into account during the classification of component objects.

Langley and Allen (18], [19] describe DEDALUS, another extension to COB-
WEB that organizes plan knowledge in an effort to improve the efficiency of
problem solving. Each node in the concept hierarchy contains a probabilistic
summary of problems the system has solved previously, described in terms of the
relational differences involved and the operators used in their solution. DEDALUS
includes a means-ends problem solver that sorts each new subproblem through
memory, using a relational variant on category utility, to retrieve an appropri-
ate operator. After solving a problem, the system stores each subproblem and
its operator in the hierarchy, updating probabilities and changing retrieval on
future problems. Experimental studies of DEDALUS’s learning behavior showed
reduction in search on both navigation and blocks-world tasks.

Yoo and Fisher [30] take a different approach to concept formation over
problem-solving experience. Their EXOR system associates with each conceptual
node the abstract solution (stated as an AND tree) for a class of problems,
rather than a single operator, with nodes lower in the hierarchy specifying more
detailed solutions. EXOR uses a version of category utility to sort a new problem,
based on its surface features, downward through memory. The system falls back
on problem-reduction search to complete the solution if this process finds only
a partial solution. The learning mechanism incorporates an explanation-based
component that generalizes the solution stored at each node. Experiments with



EXOR showed that its learning method improves search efficiency on algebra
story problems.

Nor does this exhaust the variations and extensions on the COBWEB frame-
work. Hadzikadic and Yun [11] report a very similar algorithm for the incremental
formation of concept hierarchies that differs in details like its evaluation metric.
Kilander and Jansson {17] describe a variant on COBWEB designed explicitly
to deal with environments that change over time. Day [5] has adapted the ba-
sic approach to learn constraints that produce more efficient search on complex
scheduling tasks. Taken together, these intellectual descendants indicate that
Fisher’s original approach to constructing hierarchies of probabilistic concepts
lends itself naturally to a wide and interesting range of problems.

5 Relation to Other Research on Unsupervised Learning

Before closing, we should clarify the relation between the COBWEB framework
and two other families of algorithms that learn probabilistic descriptions from
unsupervised training data. We begin with another paradigm that also con-
structs probabilistic concept hierarchies, but in a quite different manner, then
examine work within another representational formalism that relies on different
assumptions than our own.

5.1 The AuTtoCLass Family

Soon after the initial publication on COBWEB, Cheeseman et al. [3] introduced
AUTOCLASS, another clustering algorithm that has led to its own distinct fam-
ily of systems. The two frameworks share some key assumptions, including the
notion of describing each category in terms of probability distributions over its
component attributes. Although the first system constructed only a one-level
clustering, later versions like AUTOCLASS/3 [13] generated multi-level descrip-
tions, with more general categories summarizing their more specific children.
Thus, in terms of its representation and organization, the AUTOCLASS family
constitutes an approach to creating and using a probabilistic concept hierarchy.

Despite this clear similarity between the two frameworks, there are also some
significant differences. Unlike COBWEB and its relatives, AUTOCLASS does not
store training cases as terminal nodes in its concept hierarchies or, indeed, even
assign cases definitively to one category or another. Rather, the system assigns
each training case to every category with some probability, which in turn means
that its values contribute only partially to each category description. Another
representational difference is that AUTOCLASS stores not only the conditional
probability distribution for each attribute given the category, but also the con-
ditional covariance matrices. For numeric attributes, this means that decision
regions are not limited to ellipsoids with axes parallel to those of the instance
space, as in COBWEB. More generally, the system can represent relations that
violate independence at a given level of the hierarchy, albeit at the price of more
parameters.

The AUTOCLASS systems also differ from COBWEB and its kin in their per-
formance and learning mechanisms. Cheeseman et al. take a strong Bayesian



position on the classification of new instances, so their algorithms assign a test
case to each category at each level with a certain probability, rather than to the
most probable one. Predictions about missing attributes are then based on a
weighted vote that takes into account each category’s prediction and its prob-
ability given the instance. In this framework, the hierarchical organization of
knowledge provides no computational benefits during the prediction process,
but it retains advantages in understandability.

The clustering process in AUTOCLASS also has a quite different flavor. Rather
than relying on incremental sorting, as in COBWEB, it incorporates a proba-
bilistic variant of the nonincremental k means algorithm known as ezpectation
mazimization. This method initializes the probabilistic descriptions for each of k
clusters randomly and uses these descriptions to compute the probability of each
training case belonging to each cluster. It then uses these partial assignments
to update the descriptions, reassigns each instance using the new descriptions,
and continues the process until no changes occur. After clustering is complete,
AUTOCLASS removes those clusters that have only improbable assignments.® De-
spite their clear relationship, there exist no systematic experimental comparisons
of COBWEB and AUTOCLASS or their close relatives.

5.2 Induction of Bayesian Networks

Another probabilistic approach to unsupervised learning, one that has become
quite popular in the years since COBWEB first appeared, involves Bayesian net-
works (e.g., [14]). This framework also organizes memory using nodes and links,
but their meanings are quite different from those in a probabilistic concept hier-
archy. Rather than corresponding to concepts, each node represents an observ-
able or unobservable attribute, and a link from one node to another means the
values of the former influence those of the latter. Like a probabilistic concept
hierarchy, a Bayesian network specifies a probability density function over the
instance space, but it achieves this through very different assumptions. Infor-
mation about probability distributions reside not in category descriptions but
in ‘conditional probability tables’ stored with each attribute. These specify the
probability for each value of that attribute under each possible combination of
values that influence it.

Research on learning in Bayesian networks has focused on two distinct issues.
The first involves estimating the conditional probability tables from training data
when the structure of the network is already known. When no attribute values
are missing, this simply involves counting the number of times each combination
of values occurs in the training set, so effort here has focused on the issue of
learning from data with omitted values (e.g., [2]). A second body of work deals
with learning a network’s structure from training data (e.g., [4], [26]). Most
algorithms carry out a greedy search through the space of Bayes net structures,
starting with no links and adding the most probable link, given the data, on
each step, then halting when reaching a local optimum.

8 This clustering scheme requires the user to specify the number of clusters, but the
ability to remove low-probability categories mitigates this reliance.



A few researchers have also examined methods that introduce hidden at-
tributes into learned Bayesian networks. One special form of this process in-
troduces a single unobservable node that influences each observable attribute,
which are themselves independent given this attribute. In fact, this task is equiv-
alent to creating a set of probabilistic clusters, and the most common approach
invokes the expectation maximization algorithm that is called at each level in
AUTOCLASS. At first glance, this mapping suggests a close relationship between
the induction of Bayesian networks and the formation of probabilistic concept
hierarchies that has been our focus in this chapter.

However, closer inspection reveals deep differences between the two frame-
works. Granted, both paradigms have a clear probabilistic semantics that sup-
ports unsupervised induction for the prediction of missing attribute values. But
Bayesian networks assume that their graphical structure and associated probabil-
ity tables hold across the entire instance space, whereas probabilistic hierarchies
explicitly partition this space into regions. Bayes nets can create such a partition
by using a hidden attribute, but they cannot introduce partitions at different
levels of abstraction, which happens regularly in the hierarchical framework. On
the other hand, each category in a probabilistic concept hierarchy assumes that
attributes are conditionally independent, whereas Bayes nets can easily represent
more complex situations.

Thus, the key difference between probabilistic concept hierarchies and
Bayesian networks lies not in their learning algorithms. Indeed, we have seen
that AUTOCLASS uses expectation maximization in a recursive manner to con-
struct a probabilistic hierarchy, and one can imagine more gradual, incremental
methods for creating Bayes nets. Rather, they differ mainly in their representa-
tional bias. Both frameworks can represent arbitrary target concepts, at least for
discrete attributes, but each one finds it easier to describe some target functions
than it does others. This means one can design synthetic domains on which either
framework will learn more rapidly, achieving higher accuracy from fewer training
cases, than the other. Of course, natural domains may or may not have similar
characteristics, so it remains unclear which approach will fare best in practice.
However, we anticipate that many real-world induction tasks will have hierar-
chical structure, and that methods for learning probabilistic concept hierarchies
will prove useful on such problems.

6 Closing Remarks

In this chapter, we set out to address issues related to unsupervised learning in
support of intelligent agents. This emphasis constrained the space of solutions
in several ways and led us to focus attention on systems that represent con-
cepts probabilistically and incorporate them incrementally into generalization
hierarchies. Fisher’s 6] COBWEB, which satisfies these constraints, served as our
prototype system.

We reviewed the COBWEB framework as it exists after several rational re-
constructions, characterizing the system’s representation and organization of
knowledge, as well as its processes for recognition and learning. We summarized
a selected sample of empirical studies that have established the framework’s



robustness along several dimensions, including variations in the evaluation func-
tion, search strategy, and domain characteristics. Although these studies were
generally encouraging, they also suggested some limitations and directions for
improvement.

In response, we examined three extensions to the framework in some detail.
One system, ARACHNE, incorporated new restructuring operators designed to
improve the quality of the learned concept hierarchy, whereas another exten-
sion, TWILIX, introduced a more sophisticated memory organization to improve
prediction in domains with overlapping categories. A third system, OXxBow, ex-
tended the basic framework to handle domains with temporal structure. We
also briefly described a variety of other systems that build on COBWEB in some
fashion. In closing, we noted links to other approaches to unsupervised learning
within a probabilistic framework.

In summary, the formation of probabilistic concept hierarchies has proven a
fertile paradigm for the study of unsupervised learning. Although early work on
the topic made many simplifying assumptions, researchers have since extended
the framework in many directions, producing methods that are both more robust
and that apply to a broader class of domains. Nevertheless, each extension has
raised intriguing issues that deserve attention, pointing the way for additional
research in this promising paradigm.
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1 Introduction

To solve a complex problem, one of the effective general approaches is to decom-
pose it into smaller, less complex and more manageable subproblems. In machine
learning, this principle is a foundation for structured induction {44]: instead of
learning a single complex classification rule from examples, define a concept hier-
archy and learn rules for each of the (sub)concepts. Shapiro {44] used structured
induction for the classification of a fairly complex chess endgame and demon-
strated that the complexity and comprehensiveness (“brain-compatibility”) of
the obtained solution was superior to the unstructured one. Shapirc was helped
by a chess master to structure his problem domain. Typically, applications of
structured induction involve a manual development of the hierarchy and a man-
ual selection and classification of examples to induce the subconcept classification
rules; usually this is a tiresome process that requires an active availability of a
domain expert over long periods of time. Therefore, it would be very desirable
to automate the problem decomposition task.

In this chapter we present a method for automatically developing a concept
hierarchy from examples using function decomposition. The method is imple-
mented in the program called HINT (Hierarchy INduction Tool) [53]. As an
illustration of the effectiveness of this approach, we present here some motivat-
ing experimental results in reconstruction of Boolean functions from examples.
Consider the learning of Boolean function y of five Boolean attributes x4, ..., zs:

y= (IL‘I OR 372) XOR (.13 OR (.’1,‘4 XOR IL‘5))

Out of the complete 5-attribute space of 32 points, 24 points (75%) were ran-
domly selected as examples for learning. The examples were stated as attribute-
value vectors, hiding from HINT any underlying conceptual structure of the do-
main. In nine out of ten experiments with different randomly selected subsets of
24 examples, HINT found that the most appropriate structure of subconcepts is
as shown in Figure 1. HINT also found a definition of the intermediate functions
corresponding to:

fi=0R
f, = XOR
fa=O0R
fa =XOR

G. Paliouras, V. Karkaletsis, and C.D. Spyropoulos (Eds.): ACAI’99, LNAI 2049, pp. 71-101, 2001.
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This corresponds to complete reconstruction of the target concept. It should be
noted that HINT does not use any predefined repertoire of intermediate functions;
the definitions of the four intermediate functions above were induced solely from
the learning examples.

Fig. 1. Hierarchy of intermediate concepts induced by HINT for the example Boolean
function.

The following results show how much the detection of a useful structure in
data, like the one in Figure 1, helps in terms of classification accuracy on new
data. “New data” in our case was the remaining 25% of the points (other than
those 24 examples used for learning). The average accuracy on new data over
the 10 experiments was 97.5% with standard deviation 7.9%. For a comparison
with a “flat” learner (one that does not look for concept structure in data),
the program C4.5 [35] was run on the same 10 data sets. Its accuracy was
60% with standard deviation 16.5%. This result is typical of the difference in
performance between HINT and flat learners in similar domains where there exist
useful concept hierarchies and illustrates dramatic effects of exploiting a possible
structure in the domain. Further experiments with the HINT method are given
later in the paper.

We present the HINT method in detail in Section 3. Before that, in Sec-
tion 2, we review related work in function decomposition, structured induction
and constructive induction. A reader not interested in this review can proceed
immediately to Section 3.

2 Review of Function Decomposition Related to Machine
Learning

The decomposition approach to machine learning was used early by a pioneer
of artificial intelligence, A. Samuel. He proposed a method based on a signature
table system [43] and used it as an evaluation mechanism for his checkers playing



programs. A signature table system is a tree of input, intermediate, and a single
output variable, and is essentially an identical representation of concept trees as
used in this chapter. Signature tables define the intermediate concepts and use
signatures (examples) that completely cover the attribute space. The value of an
output variable is determined by a bottom-up derivation that first assigns the
values to the intermediate variables, and finally derives the value of the output
variable. Samuel used a manually defined concept structures with two layers of
intermediate concepts. Learning was based on presenting a set of book moves to
the concept hierarchy and adjusting the output values of the signatures according
to the correlation coefficient computed from learning examples. Compared to
his previous approach that was based on the learning of the coefficients in a
linear evaluation polynomial {42], Samuel showed that the use of a signature
table system significantly improves the performance. Samuel’s approach was later
studied and improved by Biermann et al. [2], but still required the concept
structure to be given in advance.

While, within machine learning, Samuel and Biermann et al. may be the
first to realize the power of using concept hierarchies, fundamentals of the ap-
proach that can discover such hierarchies were defined earlier in the area of
switching circuit design. Curtis [10] reports that in the late 1940’s and 1950’s
several switching circuit theorists considered this subject and in 1952 Ashen-
hurst reported on a unified theory of decomposition of switching functions [1].
The method proposed by Ashenhurst decomposes the truth table of a Boolean
function to be realized with standard binary gates. Most of other related work
of that time is reported and reprinted in [10], where Curtis compares the de-
composition approach to other switching circuit design approaches and further
formalizes and extends the decomposition theory. Besides a disjoint decomposi-
tion, where each variable can appear as input in just one of the derived tables,
Curtis defines a non-disjoint decomposition where the resulting structure is an
acyclic graph rather than a tree. Furthermore, Curtis defines a decomposition
algorithm that aims at constructing a switching circuit of the lowest complex-
ity, i.e., with the lowest number of gates used. Curtis’ method is defined over
two-valued variables and requires a set of examples that completely cover the
attribute space.

Recently, the Ashenhurst-Curtis approach was substantially improved by re-
search groups of M. A. Perkowski, T. Luba, and T. D. Ross. Perkowski and
Uong [33] and Wan and Perkowski [49] propose a graph coloring approach to
the decomposition of incompletely specified switching functions. A different ap-
proach is presented by Luba and Selvaraj [22]. Their decomposition algorithms
are able to generalize in the same sense as examples are generalized in inductive
learning. A generalization of function decomposition when applied to a set of
simple Boolean functions was studied by Ross et al. [39] and Goldman [14]. The
authors indicate that the decomposition approach to switching function design
may be termed knowledge discovery as functions and features not previously
anticipated can be discovered. A similar point, but using different terminology,



was made already by Curtis [10], who observed that the same truth table repre-
senting a Boolean function might have different decompositions.

Function decomposition can be viewed as a way of constructing new features.
In Figure 1, for example, a new feature was constructed as z; OR z,. Feature dis-
covery has been at large investigated by constructive induction, a recently active
field within machine learning. The term was first used by Michalski [24], who de-
fined it as an ability of the system to derive and use new attributes in the process
of learning. Following this idea and perhaps closest to function decomposition
are the constructive induction systems that use a set of constructive operators to
derive new attributes. Examples of such systems are described in {23,34,37]. The
main limitation of these approaches is that the set of constructive operators has
to be defined in advance. Moreover, in constructive induction, the new features
are primarily introduced for the purpose of improving the classification accuracy
of the induced classifier, while the above described function decomposition ap-
proaches focused primarily on the reduction of complexity, where the impact on
classification accuracy can be regarded rather as a side-effect of decomposition-
based generalization. In first-order learning of relational concept descriptions,
constructive induction is referred to as predicate invention. An overview of re-
cent achievements in this area can be found in [46].

Decomposition with nominal-valued attributes and classes may be regarded
as a straightforward extension of Ashenhurst-Curtis approach. Such an extension
was described by Biermann et al. [2]. Alternatively, Luba {21] proposes a decom-
position where multi-valued intermediate concepts are binarized. Files et al. [13]
propose a decomposition approach for k-valued logic where both attributes and
intermediate concepts take at most k values.

A concept structure as used in this chapter defines a declarative bias over
the hypothesis space. Biermann et al. [2] showed that concept structure signifi-
cantly limits the number of representable functions. This was also observed by
Russel [40], who proved that tree-structured bias can reduce the size of concept
language from doubly-exponential to singly exponential in the number of at-
tributes. Tadepalli and Russel [47] show that such bias enables PAC-learning of
tabulated functions within concept structure. Their approach for decomposition
of Boolean functions requires the concept structure to be given in advance. Their
learning algorithm differs from the function decomposition approaches in that
it uses both examples and queries, i.e., asks the oracle for the class value of in-
stances that are needed in derivation but not provided in the training examples.
Similar to function decomposition, the learning algorithm of Tadepalli and Rus-
sel induces intermediate concepts that are lower in the hierarchy first. As with
Ashenhurst-Curtis decomposition, the resulting classifiers are consistent with
training examples. Queries are also used in PAC-learning described by Bshouty
et al [8]. Their algorithm identifies both concept structures and their associated
tabulated functions, but can deal only with Boolean functions with symmetric
and constant fan-in gates. Within PAC-learning, Hancock et al. [15] learn non-
overlapping perceptron networks from examples and membership queries. An



excellent review of other related work in PAC-learning that uses structural bias
and queries is given in [47].

Function decomposition is also related to construction of oblivious read-once
decision graphs (OODG). OODGs are rooted, directed acyclic graphs that can
be divided into levels [16]. All nodes at a level test the same attribute, and
all edges that originate from one level terminate at the next level. Like with
decision trees, OODG leaf nodes represent class values. OODGs can be regarded
as a special case of decomposition, where decomposition structures are of the
form fi(z1, f2(Z2,. .-, fn(z,))) and where x, is at the top of a decision graph
and the number of nodes at each level equals the number of distinct output
values used by corresponding function f;. In fact, decision graphs were found as
a good form of representation of examples to be used by decomposition (20,19,
13]. Within machine learning, the use of oblivious decision graphs was studied
by Kohavi [16]. Graphs induced by his learning algorithm are consistent with
training examples, and for incomplete data sets the core of the algorithm is a
graph coloring algorithm similar to the one defined by Perkowski and Uong [33].

Of other machine learning approaches that construct concept hierarchies we
here mention Muggleton’s DUCE [28,29] which uses transformation operators to
compress the given examples by successive generalization and feature construc-
tion. Nevill-Manning and Witten [31] describe SEQUITUR, an algorithm that
infers a hierarchical structure from a sequence of discrete symbols. Although
there are some similarities with function decomposition (e.g., maintaining con-
sistency and induction of new features), DUCE and SEQUITUR are essentially
different in both the algorithmic and representational aspects.

Within machine learning, there are other approaches based on problem de-
composition, but where the problem is decomposed by an expert and not discov-
ered by a machine. A well-known example is structured induction, introduced
by Donald Michie and applied by Shapiro and Niblett [45] and Shapiro [44].
Their approach is based on a manual decomposition of the problem and an
expert-assisted selection and classification of examples to construct rules for in-
termediate concepts in the hierarchy. In comparison with standard decision tree
induction techniques, structured induction exhibits about the same classification
accuracy with the increased transparency and lower complexity of the developed
models. Michie [25] emphasized the important role of structured induction in the
future and listed several real problems that had been solved in this way.

Mozeti¢ [26,27,7] employed another scheme for structuring the learning prob-
lem. That approach was particularly aimed at automated construction of system
models from input-output observations of the system’s behavior. The structure
of the learning problem, specified by a Prolog clause, corresponded to the phys-
ical structure of the modeled system in terms of the system’s components and
connections among them. In an experiment, a substantial part of a qualitative
model of the heart was induced from examples of the behavior of the heart. It
was shown that the structuring of the domain very significantly improved the
effectiveness of learning compared to unstructured learning. Again, the structure
of the system was specified by the user and not induced automatically.



Concept hierarchy has also been used in a multi-attribute decision support
expert system shell DEX (6] which has its roots in DECMAK methodology (12,
3]. There, a tree-like structure of variables is defined by an expert, and several
tools assist in the acquisition of decision rules. These are, like Samuel’s signature
tables, used to derive the values of intermediate and output variables. DEX also
allows different representations of user-defined decision tables, including decision
trees [44] and decision rules [38]. DEX has been applied in more than 50 real
decision making problems.

The HINT method presented in detail in the next section essentially borrows
from three different research areas: it shares the motivation with structured
induction and structured approach to decision support, while the core of the
method is based on Ashenhurst-Curtis function decomposition. Further technical
details of this method can be found in [53].

3 Learning by Function Decomposition in HINT

The HINT method is based on function decomposition, an approach originally
developed for the design of switching circuits [1,10]. The goal is to decompose a
function y = F(X) into y = G(A, H(B)), where X is a set of input attributes
T1,...,Tn, and y is the class variable (Figure 2). F, G, and H are functions
partially specified by examples, i.e., by sets of attribute-value vectors with as-
signed classes. A and B are subsets of input attributes such that AU B = X.
The functions G and H are determined in the decomposition process and are not
predefined in any way. Their joint complexity (determined by some complexity
measure) should be lower than the complexity of F. Such a decomposition also
discovers a new intermediate concept ¢ = H(B). Since decomposition can be ap-
plied recursively on H and G, the result in general is a hierarchy of concepts. For
each concept in the hierarchy, there is a corresponding function (such as H(B))
that determines the dependency of that concept on its immediate descendants
in the hierarchy.

A method for discovery of a concept hierarchy from an unstructured set of
examples by function decomposition can be regarded as a process that comprises
the following mechanisms:

Basic function decomposition step which, given a function y = F(X) partially
represented by examples Er, and a partition of the attribute set X to sets
A and B, finds the corresponding functions G and H, such that y = G(A4, c)
and ¢ = H(B). The new functions are partially defined by examples Fg and
Ey.

Attribute partition selection is a process which, given a function y = F(X),
examines candidate partitions of X to A and B and the corresponding func-
tions G and H. It then selects the preferred partition of X to 4 and B that
minimizes some complexity measure defined over G and H.

Overall function decomposition is then a recursive invocation of the above two
operations on an initial example set that defines y = F(X). In each step,
the best attribute partition of X to A and B for y = F(X) is selected. A
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Fig. 2. Basic decomposition step.

function y = F(X) is decomposed to y = G(A,c) and ¢ = H(B) provided
that G and H are overall less complex than F. If this is the case, this step
is recursively repeated on newly constructed functions G and H.

Generalization usually occurs in the basic function decomposition step. When
constructing example sets Eq and Ey, some points not included in Er may
be assigned a class value, thereby inductively generalizing the definition of
F to points other than those explicitly stated in the examples Ep.

One of the most important problems with function decomposition is its time
complexity. An algorithm for finding an optimal decomposition would consist of
steps of exponential time complexity in the number of attributes. To cope with
reasonably sized problems, these steps must be replaced by heuristic methods.
The method presented here is “greedy” in the sense that it tries to optimize
only a single step of the decomposition process; the whole discovered hierarchy,
however, might not be optimal. The time complexity of splitting the attributes
into sets A and B in a single decomposition step is reduced by bounding the
size of B. For the task of determining the required number of values of a newly
discovered concept ¢, which is equivalent to the graph coloring problem, we use
a sub-optimal but efficient algorithm.

The decomposition method in HINT is limited to nominal-valued attributes
and classes. It only uses disjoint partitions of attributes: AN B = @. This con-
strains the discovered concept hierarchies to concept trees. Furthermore, because
of constraining the size of the bound set B to, say, b attributes, each internal
node in the tree can have at most b descendants.

Although the function decomposition approach results in a tree, it should be
noted that it is quite different from the well-known top down induction of decision
trees [36]. In decision trees, nodes correspond to attributes and leaves correspond



to classes. In function decomposition trees, nodes correspond to functions, and
leaves correspond to attributes.

In this chapter we do not present the specific noise handling mechanism in
HINT. Noise handling in HINT is described by Zupan [51] and Zupan et al. [54].

The remainder of this chapter starts with a detailed description of each of the
above mentioned decomposition components (Sections 4, 5, and 6). A method
that uses function decomposition to detect the redundancy of attributes and to
select non-redundant and most relevant attributes is given in Section 7. Section 8
experimentally evaluates the decomposition method and in particular addresses
its ability to generalize and to construct meaningful concept hierarchies. Sec-
tion 9 gives conclusions and points to some directions for further research.

4 Basic Decomposition Step

Given a set of examples Er that partially specify a function y = F(X) and a
partition of attributes X to subsets A and B, the basic decomposition step of F’
constructs the functions y = G(A, ¢) and ¢ = H(B) (Figure 2). Functions G and
H are partially specified by the example sets E¢ and Ey, respectively, that are
derived from and are consistent with the example set Er. Example sets Eg and
Ey are discovered in the decomposition process and are not predefined in any
way. X is a set of attributes x1,...,z,,, and A and B are a nontrivial disjoint
partition of attributes in X, such that AUB = X, ANB =0, A#0,and B # 0.

The decomposition requires both the input attributes z; € X and class vari-
able y to be nominal-valued with domains D;, and D,, respectively. The car-
dinality of these domains, denoted by |D,,| and |D,|, is required to be finite.
The set Er is required to be consistent: no two examples may have the same
attribute values and different class values.

As proposed by Curtis [10], we will use the names free set and bound set for
attribute sets A and B, respectively, and use the notation A|B for the partition
of attributes X into these two sets. Before the decomposition, the concept y is
defined by an example set Er and after the decomposition it is defined by an
example set E¢. Basic decomposition step discovers a new intermediate concept
¢ which is defined by an example set Efy. We first present an example of such a
decomposition and then define the method for basic decomposition step.

Example 1 Consider a function y = F(zy,z9,23) where z;, z2, and z3 are
attributes and y is the target concept. The domain of y, z1, and x5 is {10, med,
hi} and the domain for z3 is {10, hi}. The function F' is partially specified with
a set of examples shown in Table 1.

Consider the decomposition y = G(z1, H(z2,z3)), i.e., a decomposition with
attribute partition (z1)|{z2,x3). This is given in Figure 3. The following can be
observed:

— The new concept hierarchy is consistent with the original example set. This
can be verified by classifying each example in Er. For instance, for attribute



Table 1. Set of examples that partially define the function y = F(zy,z2,x3).
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values £; = med, zo = med, and =3 =
which is indeed the same as the value of F'(med, med, 10).

— The example sets Eg and Eg are overall smaller than the original Er and
also easier to interpret. We can see that the new concept ¢ corresponds to
MIN(z2,z3), and E¢ represents the function MAX(z,c).

— The decomposition generalizes some undefined entries of F. For example,
F(hi,lo,hi), which does not appear in example set Er, is generalized to hi
(¢= H(lo,hi) =1 and y = G(hi, 1) = hi).

low, we derive ¢ = 1 and y = med,
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Fig. 3. Decomposition y = G1(z1, Hi(z2,23)) of the example set from Table 1.



4.1 The Method

Let Er be a set of examples that partially specify the function y = F(X) and let
A|B be a partition of attributes X. The basic decomposition step derives new
example sets Eg and Ey from Ep, such that they partially specify functions
y = G(A,c) and ¢ = H(B), respectively. Functions G and H are consistent
with F, so that each example from FEf is classified equally by F and by its
decomposition to G and H.

The decomposition starts with the derivation of a partition matrix. Given
a partition of X to A|B, a partition matriz P, p is a tabular representation of
example set Er with each row corresponding to a distinct combination of values
of attributes in A, and each column corresponding to a distinct combination of
values of attributes in B. Each example e; € Er has its corresponding entry in
P 4|p with row index A(e;) and column index B(e;). The elements of P4 p with
no corresponding examples in Er are denoted by “-” and treated as don't care.
A column a of Py, p is called non-empty if there exists an example e; € Er such
that B(e;) = a.

An example partition matrix is given in Figure 4. Note that the columns
represent all possible combinations of the values of the attributes in B. Each
column thus denotes the behavior of F when the attributes in the bound set are
constant. To find a function ¢ = H(B), it is necessary to find a corresponding
value (label) for each non-empty column of the partition matrix.

z2{lo 1o med med hi hi
r1 x3{lohilo hi lo hi
lo lo lolo med lo hi

med - - med- medhi
hi hi- - - hi -
le 1 11 2 1 3]

Fig. 4. Partition matrix for the example set from Table 1 and the attribute partition
(z1)]{z2,x3). The bottom row shows the column labels (values of ¢ for combinations
of z2 and x3) obtained by the coloring of incompatibility graph.

Columns that exhibit non-contradicting behavior are called compatible.
Columns a and b of partition matrix P4 p are compatible if F(e;) = F(e;) for
every pair of examples e;,e; € Er with A(e;) = A(e;) and B(e;) = a, B(e;) = b.
The number of such pairs is called degree of compatibility between columns a and
b and is denoted by d(a,b). The columns not being compatible are incompatible
and their degree of compatibility is zero.

Example sets Eg and Ey are consistent with Er only if EFy is derived from
labeled partition matrix P4 p so that no two incompatible columns are labeled
with the same label. Zupan et al. [53] prove that this is a necessary condition
for consistency.



Let us define a partition matrix to be properly labeled if the same label is
not used for mutually incompatible columns. Below we introduce a method that
constructs E¢ and Ey that are consistent with Er and derived from any prop-
erly labeled partition matrix. The labeling preferred by decomposition is the one
that introduces the fewest distinct labels, i.e., the one that defines the smallest
domain for intermediate concepts c. Finding such labeling corresponds to finding
the lowest number of groups of mutually compatible columns. This number is
called column multiplicity and is denoted by v(A|B).

Column incompatibility graph T4 p is a graph where each non-empty column
of P4ip is represented by a vertex. Two vertices are connected if and only if
the corresponding columns are incompatible. The partition matrix column mul-
tiplicity ¥(A|B) is then the number of colors needed to color the incompatibility
graph 74 p. Namely, the proper coloring guarantees that two vertices represent-
ing incompatible columns are not assigned the same color. The same colors are
only assigned to the columns that are compatible. Therefore, the optimal color-
ing discovers the lowest number of groups of compatible P4 g columns, and thus
induces the assignment of y to every non-empty column of P4 such that |D,|
is minimal. An example of colored incompatibility graph is given in Figure 5.

lgPO
hi,hi loc,?i

hi,lo med,lo

® @

med,hi

©)

Fig. 5. Incompatibility graph for the partition (z;)|(z2,x3) and the partition matrix
of Figure 4. Numbers in circles represent different colors (labels) of vertices.

Graph coloring is an NP-hard problem and the computation time of an ex-
haustive search algorithm is prohibitive even for small graphs with about 15 ver-
tices. Instead of optimal coloring, a heuristic approach should be used. For proper
labeling of partition matrix, an efficient heuristic algorithm called Color Influence
Method was proposed by Perkowski and Uong [33] and Wan and Perkowski [49].
They empirically showed that the method generates solutions close to optimal.
Essentially, Color Influence Method uses similar idea to a heuristic algorithm
for graph coloring by Welsh and Powell [50], which sorts the vertices by their
decreasing connectivity and then assigns to each vertex a color that is different
from the colors of its neighbors so that the minimal number of colors is used. We
use the same coloring method, with the following improvement: when a color is
to be assigned to vertex v and several compatible vertices have already been col-



ored with different colors, the color is chosen that is used for a group of colored
vertices v1,. .., U that are most compatible to v. The degree of compatibility is
estimated as Zle d(v,v;).

Each vertex in Z4p denotes a distinct combination of values of attributes
in B, and its label (color) denotes a value of c. It is therefore straightforward
to derive an example set Ey from the colored Z4 5. The attribute set for these
examples is B. Each vertex in Z4yp is an example in set Ey. Color c of the
vertex is the class of the example.

Example set Eg is derived as follows. For any value of ¢ and combination of
values a of attributes in A, y = G(a,¢) is determined by looking for an example
e; in row a-= A(e;) and in any column labeled with the value of ¢. If such an
example exists, an example with attribute values A(e;) and ¢ and class y = F(e;)
is added to Eg.

Decomposition generalizes every undefined (“”) element of P4 p in row a
and column b, if a corresponding example e; with a = A(e;) and column B(e;)
with the same label as column & is found. For example, an undefined element
P4 Bl<hi>,<lo,hi>] of the first partition matrix in Figure 4 was generalized to
hi because the column <lo,hi> had the same label as columns <lo,10> and
<hi,lo>.

4.2 Some Properties of Basic Decomposition Step

Here we give some properties of the basic decomposition step. We omit the proofs

which rather obviously follow from the method of constructing examples sets E¢
and Ey.

Property 1. The example sets F; and Ey obtained by basic decomposition
step are consistent with Er, i.e., every example in Ep is correctly classified using
the functions H and G.

Property 2. The partition matrix column multiplicity v(A|B) obtained by op-
timal coloring of T4 p is the lowest number of values for ¢ to guarantee the
consistence of example sets Fg and Ey with respect to example set Ep.

Property 3. Let Ng, Ny, and N be the numbers of examples in Eq, Ey, EF,
respectively. Decomposition derives Eg and Ey from Ep using the attribute
partition A|B. Then, Eg and Eg use fewer or equal number of attributes than
Er (|B] < |X| and |A] +1 < |X{, where X is the initial attribute set) and
include fewer or equal number of examples (Vg < Np and Ny < Np).

4.3 Efficient Derivation of Incompatibility Graph

Most often, machine learning algorithms deal with sparse data sets. For these,
the implementation using the partition matrix is memory inefficient. Instead, the
incompatibility graph Z4 g can be derived directly from the example set Er. An
edge (vi, vj) of incompatibility graph Z 4 p connects two vertices v; and v; if there
exist examples e, e; € Ep with F(ex) # F(e;) such that A(ex) = A(ey), 1 =



B(ey), and j = B(e;). We propose an algorithm that efficiently implements the
construction of Z 4 g using this definition. The algorithm first sorts the examples
Er based on the values of the attributes in A and the values of y. Sorting uses
a combination of radiz and counting sort [9], and thus runs |A| + 1 intermediate
sorts of time complexity |Ep|. After sorting, the examples with the same A(e;)
constitute consecutive groups that correspond to rows in partition matrix P4 p.
Within each group, examples with the same value of y constitute consecutive
subgroups. Each pair of examples from the same group and different subgroups
has a corresponding edge in Z4)g.

Again, E'y is derived directly from the colored Z4|5. The sorted examples of
Er are then used to efficiently derive E¢. With coloring, each example from Ep
has obtained a label (value of ¢). Each subgroup can contain examples assigned
to different value of ¢. Now, for each subgroup, and each value of ¢ used within
this subgroup, we then make an example for Eg with the values of attributes in
A and a value of ¢, and a value of y.

Example 2 For the example set from Table 1 and for the partition {x;)|(z2, 3},
the examples sorted on the basis of the values of attributes in A and values of y
are given in Table 2. The double lines delimit the groups and the single lines the
subgroups. Now consider the two instances printed in bold. Their corresponding
vertices in Z4)p are (10,10) and (med,hi). Because these instances are in the
same group but in different subgroups, there is an edge in T, p connecting
(lo,10) and (med,hi). a

Table 2. Examples from Table 1 sorted by z; and v.

1 T2 I3 y

lo lo lo lo
lo 1lo hi 1lo
lo med lo 1lo
lo hi 1lo 1o
lo medhi med
lo hi hi hi
med med lo med
med hi lo med
medhi hi hi

hi loe 1lo hi
hi hi lo hi

5 Partition Selection Measures

The basic decomposition step assumes that a partition of the attributes to free
and bound sets is given. However, for each function F' there can be many possible



partitions, each one yielding a different intermediate concept ¢ and a different
pair of functions G and H. Among these partitions, we prefer those that lead to
a simple concept ¢ and functions G and H of low complexity.

Example 3 Consider again the example set from Table 1. Its decomposition
that uses the attribute partition (xr,)|(z2,z3) is shown in Figure 3. There are
two other non-trivial attribute partitions (z;)|{(z1,z3) and (z3)|{z1, z2) whose
decompositions are given in Figure 6. Note that, compared to these two decompo-
sitions, the first decomposition yields less complex and more comprehensible data
sets. While we could interpret the data sets of the first decomposition (concepts
MIN and MAX), the interpretation of concepts for other two decompositions
is harder. Note also that these two decompositions both discover intermediate
concepts that use more values than the one in the first decomposition. Among
the three attribute partitions it is therefore best to decide for {z;)|(z2,z3) and

decompose y = F(z1,23,23) to y = G1(z1,¢1) and ¢; = Hi(x2, 23)). a
T2 €2 Y r3 €3 Y
lo 1 lo lo 1 lo
lo 2 lo lo 2 1o
lo 4 hi lo 3 lo
med 1 1o lo 4 med
med 3 med 1o 5 hi
med 2 med hi 1 1o
hi 1 lo hi 2 med
hi 3 med hi 3 hi
hi 2 hi hi 4 hi
hi 4 hi @
T1 x2 €3
lo 1o 1
Tl z3 | c2 lo med 2
o lo 1 lo ni |3
1o hi 2 med med 4
med 1o | 8 med hi | 4
med hi 2 Bi o 5
L hi  ni |5

& ® of

Fig. 6. The decompositions y = Ga(x2, H2(z1,x3)) and y = Gs(zs, H3(z1,z2)) of the
example set from Table 1.

&

We introduce a partition selection measure ¥(A|B) that estimates the com-
plexity of decomposition of F' to G and H using the attribute partition A|B. The
best partition is the one that minimizes ¥(A|B). Here we mention three parti-
tion selection measures, one based on column multiplicity of partition matrix



and the remaining two based on the amount of information needed to represent
the functions G and H. The three measures are experimentally compared in [53].

Qur simplest partition selection measure, denoted ¥, is column multiplicity.
It is defined as the number of values required for the new feature c. That is,
when decomposing F, a set of candidate partitions is examined and one that
yields ¢ with the smallest set of possible values is selected for decomposition.
The number of required values for ¢ is equal to column multiplicity of partition
matrix Pa|p, so:

¥y (A|B) = v(A|B)
Note that v(A|B) also indirectly affects the size of instance space that defines
G. The smaller the v(A|B), the less complex the function G.

The idea for this measure came from practical experience with decision sup-
port system DEX [6]. There, a hierarchical system of decision tables is con-
structed manually. In more than 50 real-life applications it was observed that in
order to alleviate the construction and interpretation, the designers consistently
developed functions that define concepts with a small number of values. In most
cases, they used intermediate concepts with 2 to 5 values.

Example 4 For the partitions in Figure 4, v, is 3, 4, and 5, respectively. As
expected, the best partition according to v, is (x1)|(x2, 3). O

Another idea is to consider the complexity of functions as a partition selec-
tion measure. The complexity of a function can be measured as the amount of
information needed to encode the function. Let I(F') denote the minimal number
of bits needed to encode some function F. Then, the best partition is the one
that minimizes the overall complexity of newly discovered functions H and G,
i.e., the partition with minimal I{H) +I(G). Estimating I can be done in various
ways. Two of them are explored in [53]: the first one, denoted with 1), takes
into account only the attribute-class space size of the functions, while the sec-
ond one additionally considers specific constraints imposed by the decomposition
over the functions. Further, complicated refinements are possible (proposed by
other authors and also mentioned in [53]). However, experimental comparison of
these measures does not justify the complications involved (see [53] for details).
Therefore, we recommend the simple column multiplicity as the most practical
and effective partition selection measure.

6 Overall Function Decomposition

The decomposition aims to discover a hierarchy of concepts defined by example
sets that are overall less complex than the initial one. Since an exhaustive search
is prohibitively complex, the decomposition uses a suboptimal greedy algorithm.

6.1 Decomposition Algorithm

The overall decomposition algorithm (Algorithm 1) applies the basic decompo-
sition step over the evolving example sets in a concept hierarchy, starting with



a single non-structured example set. The algorithm keeps a list £ of constructed
example sets, which initially contains a complete training set Er,.

Input: Set of examples EFr, describing a single output concept

Output: Its hierarchical decomposition

initialize £ « {Fr,}

initialize j « 1

while £ # 0
arbitrarily select EF, € £ that partially specifies ¢; = Fi(z1,...,Zm), 1 < j
£« EN{EFR}
Abestleest = arg l:lllg'w(AlB),

where A|B runs over all possible partitions of X =< z1,...,2m >
such that AUB=X, ANB=0,and |B|<b

if Er, is decomposable using Apest|Bpest then
decompose EF, to Eg and Ep]., such that ¢; = G(Asest, ¢j) and
¢j = Fj(Btest) and Eg and EF; partially specify G and F}, respectively
Epi — EG
if |Abest| > 1 then £ « EU{FF,;} end if
if | Bpese| > 2 then £ < £ U {EF,} end if
je<3+1

end if

end while

Algorithm 1 Decomposition algorithm

In each step (the while loop) the algorithm arbitrarily selects an example
set Er, from &€ which belongs to a single node in the evolving concept hierarchy.
The algorithm tries to decompose EF, by evaluating all candidate partitions of
its attributes. To limit the complexity, the candidate partitions are those with
the cardinality of the bound set less than or equal to a user defined parameter
b. For all such partitions, the partition selection measure is determined and
the best partition Apest|Beest is selected accordingly. Next, the decomposition
determines if the best partition would result in two new example sets of lower
complexity than the example set Er, being decomposed. If this is the case, EF, is
called decomposable and is replaced by two new example sets. This decomposition
step is then repeated until a concept structure is found that includes only non-
decomposable example sets.

To decompose a function further or not is determined by the decomposability
criterion. Suppose that we are decomposing a function F and its best attribute
partition would yield functions G and H. Then, either one of the information-
based complexity measures presented in Section 5 can be used to determine the
number of bits I(F), I{G), and I(H) to encode the three functions, where the
method to compute I(F') is the same as for I(G). The decomposability criterion
is then I(G) + I(H) < I(F).



Note that because 1, is not based on function complexity, it can not be
similarly used as decomposability criterion. Therefore, when using ¢, as a par-
tition selection measure, an information-based complexity measures is used to
determine decomposability.

Example 5 Table 3 shows the application of decomposability criterion s on

the example set from Table 1. This criterion only allows the decomposition with
<.’El)|<.’132,1‘3>. (]

Table 3. Complexity measures and decomposability for partitions of Figure 4 and 6.

(z1)|{z2, z3) (z2)|(z1, 73) (z3)|(z1,22)
() + ID(F)| 1) + EIH)| [[(C) + IHE)
s 23.7 28 5| 31.0 28.51X 36.7 28.5|X

6.2 Complexity of Decomposition Algorithm

The time complexity of a single step decomposition of Er to E¢ and Ey, which
consists of sorting Fr and deriving and coloring the incompatibility graph is
O(Nn.) + O(Nk) + O(k?), where N is the number of examples in EF, k is
the number of vertices in Z4 g, and n. is the maximum cardinality of attribute
domains and domains of constructed intermediate concepts. For any bound set
B, the upper bound of k is
kmaa: = 712

where b = |B|. The number of disjoint partitions considered by decomposition
when decomposing Er with n attributes is »

Z (;) Zn] <( = 0(n®)

j=2

The highest number of n — 2 decompositions is required when the hierarchy is a
binary tree, where n is the number of attributes in the initial example set. The
time complexity of the decomposition algorithm is thus

n

O((Nnc t Nkmar + K20) 3 m ) ( b+1(Nnc+Nkmaz+kEnaz))

m=3

Therefore, the algorithm’s complexity is polynomial in N and n, and expo-
nential in b (k.. is exponential in b). Note that the bound b is a user-defined
parameter. This analysis clearly illustrates the benefits of setting b te a suffi-
ciently low value. In our experiments, b was usually set to 3.



7 Attribute Redundancy and Decomposition-Based
Attribute Subset Selection

When applying a basic decomposition step to a function y = F(X) using some
attribute partition A|B, an interesting situation occurs when the resulting func-
tion ¢ = H(B) is constant, i.e., when |D.| = 1. For such a decomposition, the
intermediate concept ¢ can be removed as it does not influence the value of y.
Thus, the attributes in B are redundant, and y = F(X) can be consistently rep-
resented with y = G(A), which is a decomposition-constructed function G(A4,c)
with ¢ removed.

Such decomposition-discovered redundancy may well indicate a true attribute
redundancy. However, especially with the example sets that sparsely cover the
attribute space, this redundancy may also be due to undersampling: the de-
fined entries in partition matrix are sparse and do not provide the evidence for
incompatibility of any two columns. In such cases, several bound sets yielding
intermediate concepts with |D.| = 1 may exist, thus misleading the partition se-
lection measures to prefer partitions with redundant bound sets instead of those
that include attributes that really define some underlying concept.

To overcome this problem, we propose an example set preprocessing by means
of attribute subset selection which removes the redundant attributes. The result-
ing example set is then further used for decomposition. Attributes are removed
one at the time, their redundancy being determined by the following definition:
an attribute a; is redundant for a function y = F(X) = F(a1,...,ax), if for
the partition of attributes X to A|B such that B = (a;) and A = X \ {(a;), the
column multiplicity of partition matrix P4 p is v(4|B) = 1.

Figure 7 provides an example of the discovery and removal of a redundant at-
tribute. The original data set (left) was examined for redundancy of attribute a3
by constructing a corresponding partition matrix (center). Since the two columns
for a3 = lo and a3 = hi are compatible, a3 can be reduced to a constant and
can thus be removed (right).

Besides attribute redundancy, we also define redundancy in attribute values:
an attribute a; has redundant values if for a function y = F(X) = F(ai,...,an)
and for a partition of X to A|B such that B = {a;) and A = X\ (a;), the column
multiplicity of partition matrix P4 p is lower than |D;|.

By this definition, such an attribute can be replaced by an attribute a} =
H(a;), and a function y = G(A,a)) may be used instead of y = F(X). An
example of such attribute replacement is given in Figure 8. Since an example
set Ey may itself be of interest and point out some regularities in data, it is
included in the representation and a;- is treated as an intermediate concept.

It should be noted that not all redundancies according to these definitions
may simply be removed. For example, after removing a redundant attribute from
X, other redundant attributes may become non redundant. Therefore, redun-
dant attributes are processed one at a time in the reverse order of their relevance.
Given an initial example set, redundancy and relevance of the attributes is deter-
mined. Next, the least relevant attribute is selected, and its redundancy removed
by either removing the attribute or replacing it by a corresponding attribute with
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Fig.7. Discovery of redundant attribute as and its removal from the training set.
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fewer values, whichever appropriate. The process is then repeated on the new
example set, until no more redundancies are found. The greedy feature selection
approach described here can be rightfully criticized because it tends towards
local optimization only. However, due to the combinatorial complexity of global
optimization, similar greedy approaches are still commonly used.

To estimate the relevance of attributes, we use the ReliefF algorithm as pro-
posed by Kononenko [17]. This particular algorithm is used due to its advantages
over other impurity functions usually used in inductive learning algorithms [18].
ReliefF estimates the attributes according to how well they distinguish among
the instances that are close to each other and belong to different class. The
relevance of attribute a is then

W (a) = P(different value of a | k—nearest instances from different class) —

P(different value of a | k—nearest instances from same class)



We use the version of ReliefF which determines the attribute’s relevance
based on at most 200 randomly selected examples from the training set, and
which for every example examines k = 5 nearest instances of the same class
and k nearest instances of different class. The distance between two examples
is measured as the number of attributes in which these two examples differ.
Probabilities are estimated by relative frequencies. For further details of the
ReliefF algorithm see [17].

8 Experimental Evaluation

This section attempts to evaluate HINT and the underlying methods from the
aspects of generalization and discovery of concept hierarchies. For this purpose,
several data sets are used for which either the underlying concepts hierarchy is
known or anticipated, or unknown. The latter data sets are considered only for
the evaluation of generalization.

First, the data sets on which experiments were performed are introduced.
This is followed by an assessment of generalization and evaluation of HINT’s
capabilities to discover meaningful concept hierarchies.

8.1 Data Sets

Three types of data set were used: (1) artificial data sets with known underlying
concepts, (2) real-life data sets taken mostly from UCI Repository of machine
learning databases [30], and (3) data sets derived from hierarchical decision
support models developed with the DEX methodology. To distinguish among
them, we will refer to these data sets as artificial, repository, and DEX data
sets. Their basic characteristics are given in Table 4.

The artificial data sets are PALINDROME, PARITY, MONK1, and MONK2.
PALINDROME is a palindrome function over six 3-valued attributes. PARITY is de-
fined as XOR over five binary attributes; the other five attributes in this domain
are irrelevant. MONK1 and MONK2 are well known six-attribute binary classifica-
tion problems [30,48] that use 2 to 4-valued attributes. MONK1 has an underlying
concept £1 = 9 OR x5 = 1, and MONK2 the concept = = 1 for exactly two choices
of attributes = € {z1,...,Z¢}.

VOTE is a real-world database as given with Quinlan’s C4.5 package [35] that
includes example votes by U.S. House of Representatives Congressmen. The
votes are simplified to yes, no, or unknown. PROMOTERS, SPLICE and MUSHROOM
were all obtained from the UCI Repository [30]. PROMOTERS describes E. coli
promoter gene sequences and classifies them according to biological promoter
activity. Given a position in the middle of a window of 60 DNA sequence el-
ements, instances in SPLICE are classified to donors, acceptors, or neither.
Given an attribute-value description of a mushroom, the class of MUSHROOM in-
stances is either edible or poisonous. Common to all four data sets is that
they include only nominal attributes. Only MUSHROOM includes instances with
undefined attributes, which were for the purpose of this study removed. As the



Table 4. Basic characteristics of data sets.

data set | #class|#atts.|#val/att.| #examples[maj. class (%)
PALINDROME 2 6 3.0 729 96.3
PARITY 2 10 2.0 1024 50.0
MONK1 2 6 2.8 432 50.0
MONK2 2 6 2.8 432 67.1
VOTE 2 16 3.0 435 61.4
PROMOTERS 2 57 4.0 106 50.0
SPLICE 3 60 8.0 3191 50.0
MUSHROOM 2 22 - 5644 61.8
CAR 4 6 3.5 1728 70.0
NURSERY 5 8 34 12960 33.3
HOUSING 9 12 2.9 5000 29.9
BREAST 4 12 2.8 5000 41.5
EIS 5 14 3.0 10000 59.0
BANKING 3 17 2.2 5000 40.8

concept hierarchies for these data sets are unknown to us and neither could we
anticipate them, these data sets were only used for the study of generalization.
That is, we were interested in HINT’s accuracy on test data.

The remaining six data sets were obtained from multi-attribute decision mod-
els originally developed using DEX [6]. DEX models are hierarchical, so both
the structure and intermediate concepts for these domains are known. The for-
malisms used to describe the resulting model and its interpretation are essentially
the same as those derived by decomposition. This makes models developed by
DEX ideal benchmarks for the evaluation of decomposition. Additional conve-
nience of DEX examples is the availability of the decision support expert (Marko
Bohanec) who was involved in the development of the models, for the evalua-
tion of comprehensibility and appropriateness of the structures discovered by
decomposition.

Six different DEX models were used. CAR is a model for evaluating cars based
on their price and technical characteristics. This simple model was developed
for educational purposes and is described in [5]. NURSERY is a real-world model
developed to rank applications for nursery schools [32]. HOUSING is a model to
determine the priority of housing loans applications [4]. This model is a part
of a management decision support system for allocating housing loans that has
been used since 1991 in the Housing Fund of Slovenia. BANKING, EIS and BREAST
are three previously unpublished models for the evaluation of business partners
in banking, evaluation of executive information systems, and breast-cancer risk
assessment, respectively.

Each DEX model was used to obtain either 5000 or 10000 attribute-value
instances with corresponding classes as derived from the model such that the
class distribution was equal as in the data set that would completely cover the
attribute space. We have decided for either 5000 or 10000 examples because



within this range HINT’s behavior was found to be most relevant and diverse.
The only exception is CAR where 1728 instances completely cover the attribute
space.

8.2 Generalization

Here we study how the size of the training set affects HINT’s ability to find
a correct generalization. We construct learning curves by a variant of 10-fold
cross-validation. In 10-fold cross validation, the data is divided to 10 subsets, of
which 9 are used for training and the remaining one for testing. The experiment
is repeated 10 times, each time using a different testing subset. Stratified splits
are used, i.e., the class distribution of the original data set and training and test
sets are essentially the same. In our case, instead of learning from all examples
from 9 subsets, only p percent of training instances from 9 subsets are randomly
selected for learning, where p ranges from 10% to 100% in 10% steps. This
adaptation of the standard method was necessary to keep test sets independent
and compare classifiers as proposed in [41]. Note that when p = 100%, this
method is equivalent to the standard stratified 10-fold cross-validation.

HINT derived a concept hierarchy and corresponding classifier using the ex-
amples in the training set. The hierarchy was tested for classification accuracy
on the test set. For each p, the results are the average of 10 independent experi-
ments. The attribute subset selection was done on a training set as described in
Section 7. The resulting set of examples was then used to induce a concept hi-
erarchy. HINT used the column multiplicity as a partition selection measure and
determined the decomposability based on our first information-based measure
1, (Section 5). The bound set size b was limited to three.

The concept hierarchy obtained from training set was used to classify the
instances in the test set. The instance’s class value was obtained by bottom-up
derivation of intermediate concepts. For each intermediate concept, its example
set may or may not include the appropriate example to be used for classification.
In the latter case, the default rule was used that assigns the value of most frequent
class in the example set that defines the intermediate concept.

We compare HINT’s learning curve to the one obtained by C4.5 inductive
decision tree learner [35] run on the same data. As is the case with HINT, C4.5
was also required to induce a decision tree consistent with the training set. Hence,
C4.5 used the default options except for -m1 (minimal number of instances in
leaves was set to 1) and the classification accuracy was evaluated on unpruned
decision trees. For several data sets, we have observed that subsetting (option
-s) obtains a more accurate classifier: the learning curves for C4.5 were then
developed both with and without subsetting, and the better one of the two was
used for comparison with HINT. For each p, a binomial test [41] was used to test
for significant differences between the methods using o = 0.01 (99% confidence
level).

The learning curves are shown in Figures 9 and 10. Drawing symbols are
o for HINT and o for C4.5. Where the difference is significant, the symbol for
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Fig. 9. Learning curves for artificial and repository datasets.

the better classifier is filled (e for HINT and e for C4.5). The following can be
observed:

— In general, for artificial data sets HINT performs significantly better than
C4.5. For all four domains HINT’s classification accuracy converges to 100%
as the training set sizes increase. The percentage of instances needed to reach
100% accuracy varies between domains from 10% to 60%. Note that C4.5
never reaches the 100% classification accuracy.

— For VOTE, PROMOTERS, and MUSHROOM the differences are not significant, while
for SPLICE C4.5 performs better. Only for MUSHROOM both classifiers reached
the maximum accuracy.

— Common for all six DEX domains is that with small training sets HINT
performs similar or worse than C4.5, while when increasing the training set
size it gains the advantage and finally reaches the classification accuracy of
close to or exactly 100%.
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Note that for DEX and most of the artificial data sets, there exist useful con-
cept structures in the form of concept trees. Given sufficient training instances,
it is exactly in these domains where HINT outperforms C4.5. Repository data
sets do not necessarily have such characteristics, which may be the reason why
for these domains HINT’s performance is worse. For example, the domain theory
given with the SPLICE data set [30] mentions several potentially useful interme-
diate concepts that share attributes. Thus these concepts form a concept lattice
rather than a concept tree, and therefore can not be discovered by HINT. Fur-
thermore, DEX and artificial data sets indicate that although a domain possesses
a proper structure discoverable by decomposition, HINT needs a sufficient num-
ber of training examples to induce good classifiers: HINT’s performance suffers
from undersampling more than C4.5s.

The number of attributes used in concept hierarchies depends on attribute
subset selection (training data preprocessing by removing redundant attributes).
This further depends on the existence of irrelevant attributes and on the coverage
of attribute space by training set. Figure 11 illustrates that with increasing
coverage the number of attributes in induced structures increases and, in general,
converges to a specific number of most relevant and non-redundant attributes.
Interestingly, for PARITY and MONK1 domain HINT finds, as expected, that only
5 and 3 attributes are relevant, respectively. HINT converges to the use of about
10 attributes for VOTE, 12 for SPLICE, and 5 for MUSHROOM. For all DEX domains,
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with sufficiently large training sets HINT does not remove any of the attributes
— this was expected since all attributes in these domains are relevant.

The use of default rule for classification had a minor impact on classification
accuracy. This holds even for the smallest training sets, where 95% of instances
were classified without firing the default rule. In most cases, with increasing
training set size this percentage monotonically increased to 100%.

8.3 Hierarchical Concept Structures

Induced concept structures were compared to those anticipated for artificial and
DEX domains. For each of these, HINT converged to a single concept structure
when increasing the training set size. For PALINDROME and PARITY, HINT induced
expected structures of the forms (z1 = zs AND z, = x5) AND (z3 = z4) and
z1 XOR ((z2 XOR z3) XOR (z4 XOR z5)), respectively.

More interesting are the structures for MONK1 and MONK2. For MONK1, HINT
develops a concept hierarchy (Figure 12) that (1) correctly excludes irrelevant
attributes z3, 4, and z¢, (2) transforms z5 to x5 by mapping four values of x5
to only two values of %, (3) includes an intermediate concept ¢ and its tabular
representation for z; = 2, and (4) relates ¢ and xy with a tabular representation
of the OR function. In other words, the resulting hierarchy correctly represents
the target concept. For MONK2, although the discovered structure (Figure 13)
does not directly correspond to the original concept definition, it correctly re-
formulates the target concept by introducing concepts that count the number of
ones in their arguments. Also note that all attributes that have more than two
values are replaced by new binary ones.

For all DEX domains HINT converged to concept hierarchies that were very
similar to the original DEX models. A typical example is NURSERY, for which
Figure 14 shows the original DEX model and the concept hierarchy discovered
by HINT. Note that the two structures are actually the same except that some
original DEX intermediate concepts were additionally decomposed. Similarities
of the same type were also observed for other DEX domains.

For NURSERY, no attributes were removed by preprocessing and redundancies
were found only in attributes’ domains: applicant’s social status none and medium
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Fig. 13. The feature hierarchy discovered for MONK2. Each node gives a name of the
feature and cardinality of its set of values.



Fig. 14. Original (top) and discovered structure (bottom) for NURSERY.

were found equivalent, and there was no difference between a family having
3 or more-than-3 children. Similar type of redundancies were also found in
other DEX models. When a decision support expert that participated in the
development of DEX models was asked to comment on these findings, he indeed
recognized most of them as those that were intentionally used in DEX models
with future extension and specialization of model functions in mind.

9 Conclusion

We presented an approach to machine learning based on function decomposi-
tion. A distinguishing feature of this approach is its capability to discover new
intermediate concepts, organize them into a hierarchical structure, and induce
the relationships between the attributes, newly discovered concepts, and the



target concept. In their basic form, these relationships are specified by newly
constructed example sets. In a way, the learning process can thus be viewed as
a process of generating new, equivalent example sets, which are consistent with
the original example set. The new sets are smaller, have smaller number of at-
tributes, and introduce intermediate concepts. Generalization also occurs in this
process.

We described experiments with the decomposition-based learning method on
several data sets. In particular, we studied the accuracy of the induced descrip-
tions by HINT and its capability to discover meaningful hierarchies. For all data
sets where useful hierarchies existed, HINT significantly outperformed C4.5 and
found relevant concept hierarchies, provided that enough examples were used for
training. Experiments show that decomposition is more sensitive to undersam-
pling and, especially in more complex data sets, C4.5 performed relatively better
with small training sets. For other data sets, with no useful concept structure,
C4.5 and HINT performed similarly in all but one domain.

In terms of the meaningfulness of discovered structures, the most significant
experiments were those with DEX domains. For these domains HINT’s task
was to reconstruct the underlying concept hierarchy. We have observed that
for all six domains investigated, HINT converges to concept hierarchies that are
very similar or identical to those developed by human experts. It should be
emphasized that we consider these similarities of concept structures as the most
significant indicator of HINT’s success.

The approach described in this chapter is limited to consistent data sets and
nominal features. It is therefore desired to extend the approach to discover new
features from noisy data, and from data that comprises continuous features. To
handle noisy data, a minimal-error decomposition was recently proposed [51,54].
It is based on a representation of training examples with class distributions and
uses successive column merging of partition matrix, so that the expected error
of classification is minimized. For continuously-valued data sets, a function de-
composition method was proposed in [11]. They both present preliminary results
which strongly encourage further development in this direction and integration
of their techniques into common function decomposition framework. The feature
construction aspect of HINT is investigated in more detail in [52].
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1 Introduction

Current machine learning systems are often distinguished on the basis of their
representation, which can either be propositional or first order logic. Systems
belonging to the first category are often called attribute value learners, systems of
the second category are called relational learners or inductive logic programming
systems.

In this paper, we describe a methodology for upgrading existing attribute
value learners towards first order logic and demonstrate it at work. This method
has several advantages: one can profit from existing research on propositional
learners (and inherit its efficiency and effectiveness), relational learners (and
inherit its expressiveness) and PAC-learning (and inherit its theoretical basis).
Moreover there is a clear relationship between the new relational system and its
propositional counterpart, resulting in e.g. identical results on identical (propo-
sitional) data. This makes the ILP system easy to use and understand by users
familiar with the propositional counterpart.

This methodology is perhaps the most important lesson learned during the
development of several inductive logic programming systems and results (in-
cluding [21], TiLDE [9,7], ICL [23], CLAUDIEN [20], WARMR [26]) of the machine
learning group in Leuven. The methodology starts from an existing propositional
learner and provides a recipe for upgrading it towards the use of first order logic.
The recipe involves the use of examples which correspond to sets of ground facts
(interpretations), the adaptation of the representation of hypotheses towards
Prolog, the employment of #-subsumption to structure and search the space
of hypotheses, the introduction of a declarative bias, and otherwise recycles as
much as possible from the original system. Following the methodology, it should
be possible to turn virtually any propositional symbolic learner into an inductive
logic programming system.

To show how the methodology works, we demonstrate it on upgrading the
well-known CN2 [14,13] learning algorithm towards ICL [23]. In Section 6 we
give an overview of other systems that follow the same methodology.

G. Paliouras, V. Karkaletsis, and C.D. Spyropoulos (Eds.): ACAI'99, LNAI 2049, pp. 102-126, 2001.
© Springer-Verlag Berlin Heidelberg 2001



The paper is structured as follows: we first elaborate on the characteristics
of the propositional and the first order knowledge representation and we show
how the relational representation can overcome limitations of the propositional
representation. After describing the propositional learner CN2, we present our
methodology for upgrading a propositional learner and illustrate each step w.r.t.
CN2 resulting in the relational learner ICL. We also present some experimental
results with ICL that show that the methodology is worthwhile. In the last
section we discuss some related results and conclude.

2 Knowledge Representation

2.1 Attribute Value Learning

Consider Figure 1. Each example or scene can be described by a fixed number
of attributes: shape-left, size-left, color-left, shape-right, size-right,
color-right and class. The data-set can be summarized in one table as in
Figure 2, where each row (or in relational database terms, each tuple) represents
one example. Many well-known systems like C4.5 [56,57] and CN2 [14,13] are
based on this attribute value representation (also called propositional represen-
tation), and are as such called attribute value learners. Also, data mining mainly
focusses on learning from single tables.

AN B WA
Positive Positive Positive
o AO s
Negative Negative Negative

Fig. 1. A simple classification problem. One scene (example) consists of a left-side and
a right-side object. Each scene is tagged with a class (positive or negative).

The examples in Figure 3 however, cannot easily be described by a fixed
number of features. A scene or example consists of a variable number of geo-
metrical objects (such as lines, points, squares, triangles, circles,...), each having
a number of different properties (e.g., white, black, small, large, horizontal,...),
and a variable number of relations between objects. Representing these scenes
with a fixed set of attribute value pairs results in a number of problems (cf. [19]).
First, one should fix the maximum number of objects in a scene. Given a bound
b on the number of objects, one could then list attributes A; 1, ..., Ai; charac-
terizing each object i. Some of these attributes will yield nil values since not all



id|shape- size- color- shape- size- color-|class
left left left right right right
triangle large white circle large black |positive
triangle large black circle small black |positive
circle small white triangle small black |[positive
circle small white circle large grey [|negative
triangle large black circle large grey |negative
circle large black triangle small black [negative

W=

Fig. 2. An attribute value representation for Figure 1 {with id a unique identifier for
each example).

scenes may possess the same number of objects and not all attributes/properties
are meaningful for each object. Secondly, one should also order the cbjects in
a scene, which is more problematic. Indeed, reconsider scene 1 in Figure 1. Its
representation in Figure 2 assumes that the order is from left to right. In general,
the objects will be essentially unordered (as in Figure 3). Without determining
the order of objects within a scene there is an exponential number of equivalent
representations of a scene (in the number of objects). Scene 1 of Figure 1 corre-
sponds to one such representation, another representation (based on a different
order) would swap the left and right object. For similar reasons, the representa-
tion of rules will also require one such ordering. These two problems prohibit an
efficient encoding of first order problems into the attribute value representations
employed by typical machine learning systems. Thirdly, one should provide an
attribute for each possible relation between each pair of objects (in a specific
order). E.g. the first object is left of the second object, the first object is left
of the third object,... Again, the number of such attributes (relations) grows
exponentially in the number of objects available.
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Fig. 3. A more complex classification problem: Bongard problem 47, developed by the
Russian scientist M. Bongard in [10]. It consists of 12 scenes (or examples), six of class
@ and six of class 8. The goal is to discriminate between the two classes.
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Though the above problem is a toy-problem, it is very similar to real-life
problems in e.g. the field of biochemistry (see [43,11]) where essentially the same
representational problems arise. Data consists of a set of molecules, each of which
is composed of several atoms with specific properties (like charge). Similar to
a scene, there exists a number of relations between atoms (like bonds, struc-
tures,... ).

2.2 First Order Representations

The above sketched problems can be overcome using a relational/first order
representation. We propose the following representation for examples:

an example is a set of ground facts

Ground facts are tuples in a relational database.

From a logical point of view this is called a (Herbrand) interpretation because
the facts represent all atoms which are true for the example, thus all facts not
in the example are assumed to be false. From a computational view this can be
seen as a a small relational database or a Prolog knowledge base, so we can make
use of a Prolog interpreter for querying an example.

To illustrate this representation, let’s reexamine the Bongard problem in
Figure 3. The upper left scene consists of a small triangle, pointing upwards and
being inside a large circle. This scene can be specified as follows:

{class(positive), object(ol), object(o2), shape(ol, circle), size(ol, large),
shape(02, triangle), size(02, small), pointing(o2, up), in(02, o1)}.

The other scenes can be encoded in the same way. The number of objects in
one scene is not limited, and objects are not ordered (they could be called a
and b instead of ol and 02). Different objects can have different properties, e.g.
a triangle can be pointing up or down, but this property makes no sense for a
circle. And finally, the number of relations between objects is not fixed.

This first order representation is more general and more expressive than the
attribute value representation which is a special case of it. Indeed, an attribute
value table with k attributes can be mapped to a set of interpretations/examples
as follows:

For each example (a tuple/row in the attribute value table), construct
the fact {example(valy, ..., valg).}, where val; is the value of the ith
attribute of the example in the table. Then each of these facts is the
interpretation of the corresponding example.

Instead of mapping to one fact, an alternative is to map each row or
example to a set of k facts {att;(val), ..., atti(valy)} where val; is the
value for the ith attribute.

For instance, the first example in Figure 1 can be represented by



{example(triangle, large, white, circle, large, black, positive)}
or
{shape-left(triangle), size-1left(large), color-left(white),
shape-right(circle), size-right(large), color-right(black), class(positive)}

At this point, it is worth noting that in the attribute value representation each
example must have a single value for a given attribute. Therefore, if we know
that the value of e.g. size-left=large, we also know that size-left#£small
This corresponds to making a kind of closed world assumption at the level of
each example (cf. [38]). Due to the use of Prolog (and the implicit negation as
failure), the meaning of each example in the above representation is correctly
captured! (i.e. if color-left(black) then ?-color-left(X) will only succeed for
X=black.)

This framework and use of Prolog is quite similar to what happens in the
older work on structural matching (e.g. [39,40,71,72,73]).

2.3 Background Knowledge

It is useful to use not only factual knowledge in the examples, but also Prolog
rules (or definite clauses). If these rules are common to all the examples, they are
referred to as background knowledge. Such knowledge can take various forms: e.g.
abstraction of specific values into a taxonomy or interval, deriving new properties
from a combination of existing ones, summarizing or aggregating values of several
facts/tuples into a single value, etc.

For our Bongard problem in Figure 3, we could add the following definitions:

polygon(X) :- triangle(X).
polygon(X) :- rectangle(X).
number objects(NO) :- setof(O, object(O), LO), length(LO, NO).

The first two clauses state that a polygon can be either a triangle or a rectangle.
This encodes a kind of taxonomy. The last clause calculates the number of objects
in an example by creating a set of all objects and counting the number of elements
in this set.

As background knowledge is visible for each example, all the facts that can
be derived from the background knowledge and an example are part of the
extended example!. When querying an example, it suffices to assert the back-
ground knowledge and the example; the Prolog interpreter will do the necessary
derivations.

2.4 Note

The above representation of examples is known in the literature as learning
from interpretations [21,18]. It is only one of the possible representations used
within inductive logic programming. More details on the relation among various
inductive logic programming settings can be found in [18].

! Formally, an extended example is the minimal Herbrand model of the example and
the background theory.



3 The Propositional Learner CN2

CNZ2 is a well-known attribute value learning system which is described in [14,
13]. Originally, it induced an ordered list of rules using entropy as its search
heuristic [14]. Two improvements to the algorithm are described in [13]: the
use of the Laplace error estimate as evaluation function and the generation of
unordered rules instead of ordered rules. In the rest of the paper we will only
consider the algorithm for learning unordered rules.

Informally, CN2’s problem specification is: given a set of examples E (rep-
resented in attribute value as described in Section 2.1) and a set of classes C'
(each example belongs to one class), find an unordered set of rules of the form
class=class if condition (with condition a conjunction of attribute-value tests)
such that each example is classified correctly. To classify an example, one collects
all rules which fire (i.e. all rules that cover the example?) and predict the class
by a simple probabilistic method to resolve clashes. For the moment, we will
concentrate on the task to induce a set of rules for one class c: the set of positive
examples P are all the examples belonging to the class ¢, the set of negative
examples N are all the others (so E = PUN).

Reconsider the classification problem in Figure 1. CN2 might learn the fol-
lowing hypothesis for class positive {(as an unordered set of rules):

class=positive if color-left=white and color-right=black
class=positive if size-right=small and shape-right=circle

Learn-For-One-Class(Ezamples, Class) return Hypothesis;

1. let P := {e € Ezamples | example e is of class Class};

2. let N := {e € Ezamples | example e is not of class Class};
3. let H :=0;

4. repeat

a) BestRule = Find-Best-Rule(P, N);
b) if BestRule found then
i. add BestRule to H;
ii. remove from P all examples e covered by BestRule;
until BestRule not found or P is empty;
5. return H;

Fig. 4. Learn a theory for one class.

To learn a theory for one class, CN2 performs a covering approach on the
positive examples: it repeatedly finds a single rule that is considered best (that is
maximizes the positive examples covered and minimizes the negative examples

2 A rule covers an example if the condition of the rule is true for the example.



covered). The best rule is then added to the hypothesis H and all examples of P
that are covered by the rule are removed from P. This process terminates when
no best rule can be found or when no more positives have to be covered. The
algorithm can be found in Figure 4.

Find-Best-Rule(P,N);

let mgr := most general rule in the search-space;
let Beam := {mgr};
let BestRule := {;
while Beam is not empty do
a) let NewBeam := §;
b) for each rule R in Beam do
for each refinement Ref of R do
i. if Ref is better than BestRule and Ref is statistically significant
then let BestRule := Ref;
ii. if Ref is not to be pruned
then
— add Ref to NewBeam;
— if size of NewBeam > MaxrBeamSize
then remove worst rule from NewBeam,;
c) let Beam := NewBeam,;
5. return BestRule;

W

Fig. 5. Beam search algorithm to find the best rule.

To find a best rule, CN2 has to search through the space of rules. The
structure of this search-space is implied by the subset test. Refining a rule is
simply done by adding a new attribute test to the body of the rule (also called
condition). CN2 starts with the most general rule of the search-space (usually
the rule with an empty body: class :- true). It then performs a beam search. At
each step/level, all refinements of the rules in the current beam are evaluated. If
the rule is statistically significant and better than the current best, it becomes the
current best rule. From all the refinements (except those that can be pruned?),
the MaxBeamSize best rules are kept in the new beam. This search repeats
until no more rules are in the bearn. The algorithm for finding a best rule can
be found in Figure 5.

% For example, a rule can be pruned if none of its refinements can become better than
the current BestRule.



4 Upgrading CN2

In Section 2, we have motivated the need for relational representations and we
have introduced a first order representation for examples. Now, we can focus on
the methodology for upgrading propositional learners.

This section will provide a detailed case study with CN2 [14,13] and ICL
(23] introducing the methodology. The final section will briefly review a number
of other cases with the methodology.

4.1 The Propositional Task and Algorithm

Suppose that we are asked to design a learning system for Bongard type
problems. Machine learning researchers would observe that Bongard problems
are classification problems (another popular task is that of descriptive learning,
for example discovering association rules [2,1,66]). So, the range of possible
propositional learning algorithms to consider includes AQ [47], TDIDT [57]
(like C4.5 [56]), and CN2 [14,13]. Suppose we fancy the latter algorithm because
it combines the advantages of AQ and TDIDT, i.e. it produces understandable
rules, it is efficient and can cope with noisy data. So, we decide to base our first
order learner on CN2. Then we have also accomplished the first step of the
methodology:

Step 1 : Identify the propositional learner that best matches the learning task.

Given the goal of upgrading CN2 to first order logic, the question is how to
realize this. At this point, the reader may notice that CN2 will not work on the
Bongard problem because:

— the representation of the examples is propositional,
— the representation of the rules is propositional,
— the search operators are propositional.

We will now discuss these issues in detail.

4.2 Examples Are Interpretations

The propositional representation of examples should be upgraded to a first
order one. We propose to use interpretations for this (see Section 2) as it is a
natural representation for examples and there is a clear relation with attribute
value learning [19,18]. This will alleviate the first problem. Also, if desired,
background knowledge can be formulated in Prolog as in Section 2.3.

Step 2 : Use interpretations to represent examples.



4.3 First Order Hypotheses

As the expressiveness of the examples (inputs) has been extended, we should
also extend the expressiveness of the hypotheses (outputs).

Let us have a closer look at the concept representation in CN2. Recall from
Section 3 that CN2 learns an unordered set of rules of the form class=class if
condition, with condition a conjunction of attribute-value tests (e.g. color-left
=white). An attribute-value test can be seen as a special case of a literal. For
example, color-left=white can be mapped to color-left(white) (cf. also the
mapping in Section 2.2). So if we allow literals (with possibly more than one
argument, and with variables or terms as arguments) instead of just attribute-
value tests, the hypothesis will be a kind of first order expression. When using
rule sets with literals (the variables in the literals are existentially quantified),
we can learn the following rule for the Bongard problem in Figure 3:

class=@ if 3T,C: shape(T, triangle) and shape(C, circle) and in(T, C).

which states that there exists a triangle and a circle {thus an instantiation for
the variables T and C) such that the triangle is inside the circle. At this point,
the condition of the rule corresponds to a Prolog query. Furthermore, instead
of the ’if’ notation in rule-based approaches it is common in logic programming
and Prolog to write ":-’, yielding a typical Prolog clause:

class(@®) - shape(T, triangle), shape(C, circle), in(T, C).
As a result, a first order upgrade of unordered rule sets for CN2 is of the form:

class(class) - 1,1, .., l1,n,

class(class) - lg 1, ..., i ny

where all /; ; are literals and all the variables appearing in the literals are exis-
tentially quantified. Note that the variables are independent between different
rules.

So far, we have only sketched a syntactic adaptation. We also need to modify
the semantics of hypotheses. This boils down to specifying when an example is
covered by a hypothesis. An example e will be covered by a hypothesis H (a set
of rules for class(c)) if H Ae = class(c). Thus to test coverage, one asserts the
hypothesis H (resp. a rule) and the example e in a Prolog knowledge base (one
could also use a relational database system) and runs the query ?-class(c). If
this query succeeds, the example is covered; otherwise it is not.

Note that this coverage test is more complex in both time and space than its
propositional counterpart (which is a simple subset test).

The reader familiar with CN2 may observe that CN2 also uses a simple
probabilistic method to resolve conflicts/clashes when an example is covered by
rules belonging to multiple classes. These probabilities can straightforwardly be
used here too. It is merely the test for coverage that needs to be changed.

The third step of the methodology can be summarized as follows:



Step 3 : Upgrade the representation of propositional hypotheses by replacing
attribute-value tests by first order literals and modify the coverage test accord-

mgly.

This third step alleviates the second problem concerning CNZ2, mentioned
earlier.

Note that this step also works for a wide range of propositional hypothe-
sis/concept representations, like ordered or unordered rule sets, decision trees,
regression trees, association rules,. ... Indeed, all these concept descriptions have
one thing in common: they are all based on attribute-value tests. For instance, in
a decision tree each branch is based on an attribute-value test, and an association
rule is a set of attribute-value tests.

For example, TILDE [9,7] introduces first order logical decision trees - FOLDT
(of which binary trees are a special case). A FOLDT is a binary decision tree in
which the nodes of the tree contain a conjunction of literals. Moreover, different
nodes may share variables, under the restriction that a variable that is introduced
in a node (meaning that it does not occur in higher nodes) does not occur in
the right branch of that node*. An example of a logical decision tree is shown in
Figure 6. Note the sharing of the variable T in both literals.

| shape(T, triangle) J

in(T, X) @

S S

Fig. 6. An example of a first order logical decision tree that discriminates between the
classes @ and © for the Bongard problem in Figure 3.

4.4 Structuring the Search Space

Nearly all symbolic machine learning systems structure the search-space by
means of the is more general than relation. When working with propositional
representations this relation is often quite simple. For instance, in the CN2 algo-
rithm one rule is more general than another rule if all literals (i.e. attribute-value
tests) occurring in the first rule are a subset of those occurring in the second
rule.

4 The need for this restriction follows from the semantics of FOLDT. A variable X in
a literal is existentially quantified within the conjunction of that node. As the the
right subtree is only relevant when the conjunction fails (thus saying there is no such
X), further references to X are meaningless in the right branch.



On the other hand, when working with first order representations the
frameworks for generality become rather complex. Various frameworks have
been proposed, including #-subsumption (from Plotkin [54]), inverse implication,
inverse resolution and inverse entailment (cf. [50] for an overview). However,
in practice, the large majority of ILP systems (including FoiL [58], Golem
[51}, PROGOL® [49], CLAUDIEN [20], and TILDE [9,7],...) uses #-subsumption.
This is due to the excellent computational properties of #-subsumption (as
compared to inverse resolution and inverse implication, which are both compu-
tationally intractable and less understood yet). Another important property of
f-subsumption is that it works at the level of single clauses instead of sets of
clauses (as inverse resolution). This is similar to propositional systems which
also structure the space at the level of individual rules. On the other hand,
working at the level of single clauses only may cause problems when learning
recursive clauses or multiple predicates (cf. [22,4]). However, in our opinion,
recursion is not essential for most real-life applications of relational machine
learning and data mining. Indeed, the authors are only familiar of a few
recursive rules in the mesh-design [27]. Most other current real-life applications
of inductive logic programming do not involve recursive regularities (see [31,11]
for overviews). So, in most applications #-subsumption is the right framework
for generality when upgrading propositional systems to first order logic.

Step 4 : Use f-subsumption as the framework for generality.

Before showing in the next section how to adapt the operators, we provide a
brief review of #-subsumption and its properties.
Let us first introduce the definition:

Clause C; @-subsumes clause Cy iff 30: C16 C Cs.

A clause (rule) is a set of literals and a variable substitution 6
(={V1/t1,-..,Va/t,}) maps each variable V; to its corresponding term t;. For
instance:

C, = father(X,Y) :- parent(X, Y), male(X). is more general than clause Cp =
father(jef, wim) :- parent(jef, wim), parent(jef, ann), male(jef), female(ann).
because C18 C Cy with 8 = {X/jef, Y/wim}.

Note that the propositional ordering on the search-space is a special case
of #-subsumption. This is an important property in the light of the upgrading
procedure. For instance: the clause class(positive) :- color-right(black) is more
general than class(positive) - color-left(white), color-right(black).

At this point it is important to realize that #-subsumption generalizes the
well-known turning constants into variables introduced by [48]. For example, p :-
q(X,Y), q(Y,X) is more general than p :- q(a,a) under §-subsumption, but would
not be regarded a generalization using the turning constants into variables. A
second point where #-subsumption generalizes Michalski’s framework is that it
also works for structured terms. E.g. p :- q(f(a)) is a specialization of p :- q(X).

5 In Progol, the -subsumption lattice is searched top-down but is bounded from below
by a clause computed using inverse entailment.



Some more theoretical properties of 6-subsumption include (for more details
see [54,53,50,68]):

— it induces a quasi-order (reflexive and transitive) on the space of first order
rules

— if ¢; B-subsumes ¢, then ¢; |= ¢g, i.e. ¢ logically entails c,.

— there exist clauses ¢; # c; that are equivalent under f-subsumption, e.g. p
- q(X,Y) and p - q(X,Y),q(X.Z).

— the quasi-order can be turned into a partial order (also anti-symmetric) by
defining equivalence classes in the usual way. There is then also a unique
(up to variable renaming) representative of each equivalence class, which is
called the reduced clause. The reduced clause r of a clause c is defined as the
smallest subset of literals in ¢ such that r is equivalent under §-subsumption
with ¢. E.g. p :- q(X)Y) is the reduced clause of p - q(X,Y),q(X,Z).

— at the level of equivalence classes, one obtains a complete lattice, i.e. any
two equivalence classes have a unique least upper bound (also called the
least general generalization, the lgg) and a unique greatest lower bound.

4.5 Adapting the Search Operators

Now that we have chosen a framework for generality, we still need to define
operators for searching the corresponding rule space. Given the advice of step 4,
we will limit the discussion here to operators under §-subsumption only.

Let us consider three typical operators used by concept learners. A special-
ization (resp. a generalization) operator that operates on a single clause, and
a generalization operator that computes the least general generalization of two
clauses.

The typical propositional specialization operator will basically add a condi-
tion to a rule. Using clauses, a condition can be added in two manners: either
by adding a literal or by applying a substitution to the given clause. E.g. the
clauses p :- q(X,Y),r(X), p - q(X,X) and p :- q(X,a). are specializations of the
clause p - q(X,Y).

This yields the so-called refinement operators (cf. [53,68]). There are some ad-
ditional complications when using refinement operators w.r.t. propositional sys-
tems:

— when simply adding literals, one might stay within the same equivalence
class, and there might be infinite chains of such refinements, e.g. when re-
fining p :- q(X,Y) to p - q(X,Y), q(X,Z) and then to p :- q(X,Y), q(X,Z),
q(X,W) ...

— it could be that even some proper refinements of a clause do not affect the
coverage of the examples, this is known as the determinacy problem [59].
E.g. refining class(pos) :- atom(X) to class(pos) :- atom(X), bond(X,Y).
As any atom will have bonds to other atoms, merely adding bond(X,Y) will
not modify the coverage of the clause. This may misguide the heuristics of
the learning engine.

Both difficulties can be alleviated by using a declarative (language) bias that
will be discussed in the next section.



The typical propositional generalization operator will delete (or relax) a con-

dition in a rule. Under #-subsumption there are two ways of relaxing a clause:
either delete a literal, or apply an inverse substitution to the clause. The first
case is the easy one: e.g. generalize p :- q(X,Y), r(Y) towards p :- r(Y). The
second case is more complicated and generalizes the turning constants into vari-
ables rule. If the constant (or term) to be generalized occurs only once in the
clause, there is no problem: it can merely be generalized into a variable not yet
occurring in the clause. E.g. p :- q(a,b) into p :- q(X,b). However, if the constant
or term to be generalized occurs multiple times, generalization can be quite com-
plex. Indeed, consider p :- q(a,a). This can be generalized into p :- q(X,X) or p
- q(a,X),q(X,a). One problem is the existence of infinite chains, i.e., the clause
positive :- q(a,a) has the following generalizations: positive :- q(X,X), positive :-
a(X,Y), q(Y,X), ... The most specific generalization is the infinite rule positive
- q(Xl,XQ), q(Xg,Xg),...,q(Xi,XH.l),...).
This problem and the existence of a lgg operator (cf. below) explains why plain
generalization operators are less popular in ILP than refinement operators. The
problems with generalization operators can again be reduced by an appropriate
declarative bias mechanism.

A third popular operator is the (generalization) operator that computes the
least general generalization (lgg) of two clauses.

A clause g is a least general generalization (lgg) of the clauses Cy and Cs
if and only if
g B-subsumes C; and g 6-subsumes Cs, and for every clause g’ such that
g’ §-subsumes C; and g’ 6-subsumes Cj, ¢’ also §-subsumes g.

Plotkin has given a procedure to compute the lgg of two clauses: The lgg of two
identical terms is the term itself (lgg(t,t) = t). The lgg of the terms f(s1, ..., 5n)
and f(t1,....tn) is f(lgg(s1,t1), .-, 1gg(sn,tn)). The lgg of the terms f(s1, ..., sn)
and g(t1,...,t,m) where f # g is the variable v where v represents this pair of
terms throughout. The lgg of two atoms/literals p(s1,...,sn) and p(t1,...,tn)
is p(lgg(s1,t1), -, 1g9(sn,tn)), the lgg being undefined when the sign or the
predicate symbols are different. Finally, the lgg of two clauses C; and C is
then Vi e er(cy)apesercn) 1991 ly).

For example, the lgg of father(luc,soetkin) :- parent(luc,soetkin), male(luc),
female(soetkin) and father(jef,wim) :- parent(jef,wim), male(jef), male(wim)
is father(X,Y) :- parent(X,Y), male(X), male(Z). Note that the variable X is
the lgg of the terms luc and jef, Y is the lgg of soetkin and wim, and Z is the
lgg of luc and wim.

The lgg is used in specific to general inductive logic programming systems like
Golem [51]. The problem with the lgg operator is that the complexity of the
lgg (i.e. the number of literals) may grow exponentially with the number of
examples in the worst case.

Step 5 : Use an operator under 0-subsumption. Use that one that corre-
sponds closely to the propositional operator.



In the ICL system, we choose a specialization operator under #-subsumption.
Due to the problems sketched above, we will embed it within a declarative bias
mechanism.

4.6 The Need for Bias

In the previous section, several problems with pure §-subsumption operators
were mentioned. These problems are mainly due to the combinatorics of the
search-space, the fact that the space is infinite rather than finite (as in the
propositional case) and the determinacy problem. To make the search tractable
and efficient, it is thus necessary to constrain the search-space in some way. In
ILP, this is solved using syntactical or semantical declarative bias mechanisms.
Various formalisms exist (see [52] for an overview), but the overall idea is to
limit the number of clauses considered. The most straightforward methods
merely employ some bounds on the number of variables, or literals in clauses and
make the search-space finite. Other methods will specify syntactic limitations
on the clauses considered (from which an operator can be derived). E.g. using
a number of schemata to enforce that clauses satisfy certain patterns, e.g. the
pattern P(X,Y) :- Q(X), R(X,Y), where P, Q and R are 'predicate’ variables
(see [42]). Other methods use a kind of grammar construction to explicitly
declare the range of acceptable clauses [17]. A third class of techniques uses
so-called mode-declarations to state how clauses can be refined, like in PROGOL
[49], TILDE [9,7] and WARMR [26].

Step 6: Use a declarative bias mechanism to limit the search-space.

In ICL we selected the DLAB declarative bias formalism of [20], which encodes
a kind of grammar®. An example is given in Figure 7. Min-Max:List means that

dlab_template(’
1-len: [shape(Objectl, 1-1:[circle,triangle]),
size(Objectl, 1-1:[small,largel),
shape(Object2, 1-1:[circle,triangle]),
size(Object2, 1-1:[small,large]),
1-1:[in(Objectl, Object2), left_of(Objectl,Object2)]
1.

Fig. 7. A DLAB bias for the Bongard problem

at least Min and at most Max literals of List are allowed (len is the length
of List). Note that shape(Object, 1-1:[circle,triangle]} is a shorthand for 1-
1:[shape(Object,circle), shape(Object,triangle)]. Recursion is allowed. There is
also a notion of dlab_variable (not used in the example) that allows the user to
define shortcuts for frequently occurring parts (like 1-1:[circle,triangle]).

% We could have used as well the mode-declarations as in Tilde and Warmr.



Given a DLAB expression, a refinement operator can be used to traverse the
(restricted) search-space. A complete refinement operator for DLAB is given in
[20]. For example, based on the DLAB expression in Figure 7, the top rule of the
search-space is
class(®) :- true.

The refinement operator will generate the following refinements for this rule:
class(®) :- shape(Objectl, circle).
class(®) :- shape(Objectl, triangle).

class(®) :- left_of(Objectl, Object2).
These rules again can be refined further on. For the first rule:
class(®) :- shape(Objectl, circle), size(Objectl, small).

class(@®) :- shape(Objectl, circle), shape(Object2, circle).

Note that class(®) :- shape(Objectl, circle), shape(Objectl, triangle). is not
a valid refinement.

The advantage of DLAB is its expressive power. It allows the user to strongly
bias the learning system ICL. On the other hand, a DLAB expression can become
very complex. Writing a DLAB (and bias in general) is an iterative process and
not always straightforward.

Note that some kind of lookahead can be performed by DLAB to overcome the
determinacy problem. Indeed, when using len-len:[List] in the template, all the
literals in List must be added in one step as a refinement.

4.7 Implementing the Algorithm

By now, we are ready to implement our first order learner. All basic modifi-
cations needed have been sketched. In this step, it is important that as many
features of the original algorithm as possible are preserved, like search strategy,
heuristics, noise-handling, pruning, parameters,... For example, ICL uses the
same heuristics (Laplace estimate) as its propositional counterpart CN2.

Some advanced and specific features of propositional learning algorithms
may need further changes. For example, discretization on numerical attributes
cannot be mapped directly towards our relational representation (see Sec-
tion 4.9).

Step 7. Implement.

Currently, ICL is implemented in MasterProLog (formerly ProLog by BIM)
and freely available for academic use (runtime version for Solaris 2.5 is available
on request).

4.8 Evaluation of ILP System

A first evaluation is testing the implementation on a propositional problem, for
example the problem in Figure 1. The results should be compatible with the



results of the corresponding propositional learner. In the ideal case these should
be the same, but in reality some minor differences might occur. Many reasons
exist: small differences in implementation, lack of some features (like handling of
unknown values), a slightly different hypothesis space for the propositional and
relational system,...

The next test is learning on relational data. A good starting point is some
artificial problem, like the Bongard problem in Figure 3, where one has already
a solution (obtained by hand or by some other relational learner). Experiments
with these data can give good insight in the system (the parameters, the output,
the behaviour of learning, some problems,...).

Then one can start the real work and run the system on real-life problems.
A well-known application area is in molecular biology.

Step 8: Ewaluate your (first order) implementation on propositional and
relational data.

In Section 5, some experimental results with ICL will be discussed.

4.9 Extensions to the Basic System

Many propositional systems have been extended with extra features or optimiza-
tions. These can often also be incorporated in their relational counterpart. Some
extensions can be plugged in as they are, others will need some adaption/upgrade
similar to the other steps in the sketched methodology. In this way, ILP learners
can reuse results from research on propositional learners.

Note that also ideas from other ILP systems can be incorporated. These
ILP results then also become available for propositional problems, so both
communities can learn from each other.

Step 9: Add interesting extra features.

The system ICL has many extensions/optimizations w.r.t. the basic system
described up to now (see [70,69] for more details). To handle numerical data,
we upgraded the discretization method of Fayyad and Irani (see [37,29]) to-
wards ICL. To handle multiple classes, we extended the CN2 method with a
Bayesian approach (inspired by [55]). This result can be integrated in CN2 with-
out any problem (illustrating that results in the context of relational learners
can be mapped back to propositional learners). Other extensions/optimizations
of ICL include: learning both DNF and CNF theories, using the m-estimate (as
in (32]) instead of the Laplace estimate as heuristic, extra pruning of the search-
space,... While CN2 has a specific handling of unknown values (* and ?), ICL
Just assumes the closed world assumption.

5 Some Experimental Results with ICL

To illustrate the utility of the method and the effectiveness of ICL, we will give
an overview of some experiments performed with ICL.



5.1 Experimental Settings

The experiments have been performed with ICL version 4.2, implemented in
MasterProLog (formerly ProLog by BIM). We used a Sun Ultra 2 with two 167
Mhz UltraSPARC processors running Solaris 2.6, and a SUN Ultra 10 with a
333 Mhz UltraSPARCII processor running Solaris 7.

Unless stated otherwise, we used the default settings of ICL. The most im-
portant ones: significance level is 90%, heuristic is m_estimate (with parameter
m the number of classes), the size of the beam is 5, and classes are pos and neg.

5.2 Propositional Data

One of the nice properties of our methodology is its backward compatibility,
meaning that the upgraded relational system behaves similar as its proposi-
tional predecessor on propositional data. However, some deflections occur due
to differences in implementation.

To simulate CN2 with ICL, we can use the following simple DLAB expression:
1-len:[att; = 1-1:[v1,1, .oy V1qy)yeees GlEE = 1-1:[uk,1, .-y Uk,ii )], With v; ; the values
of the attribute att;.

We have run ICL on a few propositional data sets used in [13]: voting-records,
breast-cancer, lymphography and primary-tumor. Some information on the data
sets is given in Table 1. We have chosen these data sets because they have no
(or few) numerical values and only few unknown values. So this allows a close
comparison.

Table 1. Details of the propositional domains used in the experiments. We did the
same data conversions as documented in [13].

Domain Description
voting-records |predict democrat/republican from votes
breast-cancer predict if recurrence is likely
lymphography disease diagnosis
primary-tumor predict tumour type
Number of [Unknown Numerical

Exs Atts Classes| values values

435 16 2 yes no

286 9 2 few few

148 18 4 no few

330 17 15 yes no

We performed a similar experimental procedure as in [13]. The accuracies
have been estimated by averaging the results over 20 runs (for each run, 2/3
of the data is selected randomly for training and the remainder for testing).
The results are shown in Table 2. We have run ICL with the same language
bias and the same settings as in [13]: beam=20 and heuristic=laplace. The last
column gives the result of the default ICL performance (with default parameters:
beam=5, significance level=90% and heuristic=m_estimate).



Table 2. Comparison of ICL and CN2 on accuracy (with standard deviation) and
rule set size (number of attribute tests/literals). Results for CN2 are taken from [13],
Appendix 1.

Accuracy ICL CN2 (unordered) ICL
Sign. Threshold] 0% 99.5% 0% 99.5% |[default settings
voting-records [94.1+1.5 92.5+2.0/94.8+1.8 93.34+2.1 94.1+1.9
breast-cancer |69.7+3.3 71.84+3.7|73.0+4.5 70.843.5 69.4+4.1
lymphography [80.3+4.0 76.2+6.3|81.7+4.3 76.54+5.3 81.9+5.8
primary-tumor |41.7+4.9 42.04+4.8{45.843.6 41.4+5.8 41.4£5.5

Rule set size ICL CN2 (unordered) ICL
Sign. Threshold| 0% 99.5%| 0% 99.5% [idefault settings
voting-records | 43.5 14.9 | 64.8 19.9 49.7
breast-cancer |158.5 17.4 |{100.5 18.0 136.1
lymphography |38.5 14.9 |404 13.5 45.5
primary-tumor | 267 115.35|351.0 1314 253.6

When we look at the accuracy and rule set size, we can conclude that ICL’s
performance is similar to CN2’s, what we expected. Differences can be accounted
by the small differences between CN2 and ICL w.r.t. options and implementa-
tion details. There are however 2 boundary cases: for breast-cancer and primary-
tumor with significance threshold 0% ICL performs worse than CN2 w.r.t. ac-
curacy. In both cases, the theories sizes also differ significantly. We haven’t found
any explanation for this”.

5.3 Relational Data

ICL has been used in many experiments with (real-life) relational data sets. We
will give some results, and refer to the literature for more details.

One of the most popular data set in ILP is the mutagenesis one (see [65]).
The data consists of 188 molecules, of which 125 are active (thus mutagenic) and
63 are inactive. A molecule is described by its atoms atom(AtomID, Element,
Type, Charge) (the number of atoms differs between molecules, ranging from
15 to 35) and the bonds bond(Atom1, Atom2, BondType) between these atoms.
Four different sets of background have been used (same as in [65]). Background 1
uses only the information on atoms and bonds, background 2 allows tests on the
charge of an atom, background 3 adds 2 specific measures w.r.t. the molecule
(e.g. log P and eLyar0) and background 4 consists of descriptions of higher-level
structures that appear in the molecule (like aromatic rings).

Experiments with ICL on this data set can be found in [69]. Results with ICL
version 4.2 are given in Table 3. We manually discretized the numerical values

" In other papers we have found similar results for CN2 as ours. For example in [28],
the result for breast-cancer is 70.0+1.4 accuracy with a theory size of 114.5, and
for primary-tumor the accuracy is 39.94+1.0 with a theory size of 302.8. These are
similar to our results. The experiments in that paper used a beam of size 5 instead
of 20. The other settings are the same.



(i.e. log P, eLymo and the Charge of the atoms). It seems that the multi-class
theory is always better than the seperate (DNF) theory for each class. This is
not so surprising as the multi-class theory combines the two seperate theories
for each class, and resolves clashes between the two. The (multi-class) accuracy
of ICL is significantly better than FoIL for background 1 and 2, and marginally
better for background 3 and 4. ICL is also marginally better than PROGOL and
TiLDE for background 1. For Background 2, 3 and 4 however, the performance
of ICL, PrRoGoOL and TILDE is similar. Note that the accuracy increases as more
background is added.

Table 3. Accuracies for the four different backgrounds of the mutagenesis data (esti-
mated by a 10-fold cross-validation). The first three columns are results for ICL (with
the default settings, except for maxbody=8, and without discretization). Pos and Neg
are the two classes and for each of them a DNF theory is learned and evaluated. Multi
merges the 2 theories into a multi-class theory. The results for PRoGoL, FoIL and
TILDE have been taken from [8].

Muta Accuracies (%) Timing (s)
Neg Pos Multi |ProcoL FoiL TILDE ICL
BG1 {79.3+8.2 67.6+5.1 80.9+7.4 76 61 75 79
BG2 |80.3+£8.9 74.54+6.9 82.4+7.4 81 61 79 143
BG3 |85.14+8.7 83.545.9 86.7£10.0| 83 83 85 160
BG4 |85.1+£7.7 86.2+7.6 88.3£8.0 88 82 86 197

Results on the biodegradability domain can be found in {69] (preliminary
results) and [35] (more recent results). The task is to predict the half-life in water
for aerobic aqueous biodegradation of a compound from its chemical structure.
The biodegradation time has been discretized into 4 classes: fast, moderate,
slow and resistant. The structure of a compound is represented by facts about
atoms and bonds, much like in the mutagenesis domain. In [35] experiments
on the relational data (denoted R1) and 2 propositional versions of the data
(denoted P1 and P2) has been performed with the propositional classification
systems C4.5 and RIPPER [15], and the relational learners FFoIL [60], SRT
[46], ICL and TILDE. A short overview of the results can be found in Table 4.
Accuracy is classification accuracy and Accuracy (+/-1) is the accuracy where
only misclassification by more than one class counts as an error (e.g. slow as
fast, moderate as resistant,...). ICL has only been applied to the relational
representation R1. Of all the relational learners using R1, ICL achieves the
highest Accuracy and Accuracy(+/-1). Compared to the propositional systems,
ICL is better than all systems in term of Accuracy(+/-1), except for RIPPER
on P2. For more specific results and discussions we refer to the paper.

ICL also participated in the PTE-2 challenge of which the results have
been published in [63,64]. The challenge was to make carcinogenesis predictions
for 30 compounds, based on models constructed by Machine Learning programs.
There were 9 (legal) submissions using ILP systems (TILDE, WARMR/MACCENT,
ICL, P-PROGOL) and combinations of propositional systems (like C4.5) and ILP



Table 4. Accuracies of machine learning systems predicting Biodegradability. Results
are taken from [35]. We have left out the results of the regression systems.

System |Representation|Accuracy Accuracy (+/-1)
C4.5 Pl 55.2 86.2
Ca.5 P2 56.9 82.4
RIPPER|P1 52.6 89.8
RIPPER|P2 57.6 93.9
FFoi. |RT’ 53.0 88.7
ICL R1 55.7 92.6
SRT-C |P1+ R1 55.0 90.0
TiLpe-C|R1 51.0 88.6
TiLpe-CiP1 + R1 52.0 89.0

(like rules from WARMR). ICL and the other ILP systems perform unexpectedly
well on scales of quantitative performance. ICL itself is in the top 3 of ILP
systems (with 78% accuracy). ILP assisted models appear to be better than
expert assisted ones (w.r.t. the PTE-2 data). Interesting results are obtained with
propositional prediction methods using results from ILP systems (for example
C4.5 using rules/sub-structures generated by WARMR).

Other successful experiments with ICL include: finite element mesh design
by [69]; automated acquisition of knowledge on traffic problem detection by [34,
33]; and the problem of diterpene structure elucidation from '3C NMR spectra
by [30].

To conclude, ICL performs as well as other well-known ILP systems, and
thus can be said to be a successful upgrade.

6 Related Work and Conclusions

There are plenty of other inductive logic programming systems whose devel-
opment more or less fits in with the proposed methodology: FoiIL [58], RIBL
[36], SRT [46], TILDE [9,7], WARMR [26,25], MACCENT [24], jk-CT learner [21],
CLAUDIEN [20], Probabilistic Relational Models [45], Cohen’s Flipper [16] [61]
and RDBC [44].

E.g. Quinlan’s FOIL can also be considered an upgrade of either Michalski’s
AQ [47) or CN2 [14,13], RIBL upgrades the classical k-nearest neighbor algo-
rithm (using a first order distance due to [6]), SRT and TILDE upgrade the
well-known decision (and regression) tree paradigm incorporated in CART [12]
and C4.5 [56,57], WARMR upgrades APRIORI 2,1}, MACCENT upgrades the Max-
imum Entropy approach in {5}, De Raedt and Dzeroski’s PAC-learning results
(as well as its incorporation in the CLAUDIEN system) for jk-CT are derived
from results in [67] for k-CNF, Reddy and Tadepalli’s results are based on the
well-known results on learning horn-sentences by [3], Flipper upgrades Cohen’s
earlier Ripper [15], Koller’s probabilistic relational models upgrade (proposi-
tional) bayesian networks, and Kirsten and Wrobel’s cluster system upgrades
bottom-up agglomerative clustering algorithms to first order logic.



Hence, it is clear that the methodology we presented is not really new. It has
been applied - implicitly - several times before to obtain effective inductive logic
programming systems. One might even argue that it has been applied in some
of the pre-ILP work on relational learning (e.g. [71,48]). The most important
contribution of our work therefore is to describe the underlying recipe explicitly
and to show through a case study that it can be used to obtain novel inductive
logic programming techniques. The authors would like to stress that this does
not imply that this recipe is the only way to obtain inductive logic programming
systems. Certainly, some systems, of which perhaps PROGOL [49] and MIS [62]
are the best examples of well-known inductive logic programming sytems that
have been derived from logical principles (without our recipe). Yet, we hope that
our work gives new insights into the field of inductive logic programming and its
relation to propositional machine learning.
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1 Introduction

This chapter contains an overview of Case-Based Reasoning (CBR). The main goal is
to have a balance between brevity and expressiveness and to provide helpful pointers
to literature in the field. To do so, we first describe the CBR types and the CBR cycle,
then we briefly review a representative set of systems, next we discuss the
connections between CBR and learning. The main part of the chapter analyses the
most important issues and problems of the CBR components, such as
indexing/retrieval/selection, memory organization, adaptation/evaluation, forgetting,
and integration with other techniques. Finally, we discuss the added value of
incorporating fuzzy techniques in CBR and briefly describe some representative
Fuzzy-CBR systems.

Case-based reasoning (CBR) is a major paradigm in automated reasoning and
machine learning. In case-based reasoning, a reasoner solves a new problem by
noticing its similarity with one or several previously solved problems and by adapting
their known solutions instead of working out a solution from scratch. In many aspects,
case-based reasoning is a problem solving method different from other Al approaches.
In particular, instead of using only general domain dependent heuristic knowledge like
in the case of expert systems, it is able to use the specific knowledge of concrete,
previously experienced, problem situations. Another important characteristic is that
CBR implies incremental learning since a new experience is memorized and available
for future problem solving each time a problem is solved. Case-based reasoning is a
powerful and frequently used way of human problem solving. Results from cognitive
psychology have shown its psychological plausibility.

Case-based reasoning can provide an alternative to rule-based expert systems, and
is especially appropriate when the number of rules needed to capture an expert’s
knowledge is unmanageable or when the domain theory is too weak or incomplete.
CBR can work in problem domains where the underlying models used for solutions
are not well understood. Historically, CBR has shown its greatest success in areas
where individual cases or precedents govern the decision-making processes, as in case
law.

1.1 CBR Types and the CBR Cycle

Case-based reasoning can mean different things depending on the intended use of the
reasoning: adapt and combine old solutions to solve a new problem, explain new
situations according to previously experienced similar situations, critique new
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solutions based on old cases, reasoning from precedents to understand a new situation,
or build a consensus solution based on previous cases. However, these different
aspects can be classified into two major types: interpretive (or classification) CBR,
and problem solving CBR [73]. In interpretive CBR the key aspect is arguing whether
or not a new situation should be treated like previous ones based on similarities and
differences among them. In problem solving CBR, the goal is to build a solution to a
new case based on the adaptation of solutions to past cases. This division, though it is
useful to present the field, it is not always clear in practice because many problems
have components of both types of CBR and certainly the most effective case-based
learners will use a combination of both methods. For example, the labor mediation
application [117], which deals with the resolution of labor-related disputes, needs both
interpreting * the situation and then deriving a solution based on precedents.
Furthermore, many systems use interpretive CBR to evaluate the solutions reached
since evaluation is one of the basic operations in any case-based reasoner. In general,
given a case to solve, case-based reasoning involves the following steps :

1. retrieving relevant cases from the case memory (this requires to index the cases by
appropriate features);

. selecting a set of best cases;

. deriving a solution;

. evaluating the solution (in order to make sure that poor solutions are not repeated);

. storing the newly solved case in the case memory.
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According to these steps, Aamodt and Plaza in {3] describe a Case-Based reasoner
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as a cyclic process comprising “the 4 R’s": Retrieve, Reuse, Revise and Retain, that is:

1. RETRIEVE the most similar previously experienced case or cases

2. REUSE the information and knowledge in the retrieved case(s) to solve the new
problem

3. REVISE the solution

4. RETAIN the parts of this experience that are likely to be useful in the future by
incorporating it into the case base

In this chapter we first briefly review some CBR systems from the point of view of
existing representative applications. Next we focus our attention to case-based
reasoning as a learning paradigm and we point to the main issues and problems
associated with the different CBR components. Finally, we discuss the added value of
incorporating fuzzy techniques in CBR and briefly describe some representative
Fuzzy-CBR systems.

2 Some Representative CBR Systems

The case-based approach to reasoning and learning (Kolodner 83) has been growing
impressively during the last few years. Today there are more than one hundred CBR
systems reported in the literature. Kolodner in her very book [73] reports 82 CBR
systems in the USA. Today we can find hundreds of CBR systems reported in the
literature all over the world [76], [124]. Furthermore, there are specialized workshops
and conferences held every year both in the US and in Europe with a quite large
number of participants and in all major conferences in Al one can find several



sessions devoted to this topic. The pioneering work in this field is that of Schank on
Dynamic Memory [108], Carbonell on Analogy [33] and Kolodner who was really the
first to build a case-based reasoning and learning system called CYRUS [69]. After
these early works, the development of CBR continued with further work by Kolodner
and students [70], [71], [118], as well as the work of Hammond and others on case-
based planning [57], [58], [39].

Within the problem solving type of CBR, several systems have been built
addressing case-based planning and design, among them let us mention JULIA [60],
[61] to plan meals; KRITIK [54] that combines case-based and model-based
reasoning for the design of mechanical assemblies; CLAVIER [19] to lay out pieces
made of composite materials in an autoclave; a system developed by Faltings to
represent architectural design knowledge [50}; SMART [121] whose goal is to
increase the planning efficiency (speed-up learning) of the system PRODIGY [34];
CREATOR [56] for the elaboration of design requirements; ARCHIE [89] and
CADRE [42] to help architects understand and solve conceptual design problems.

Another important application field of problem solving CBR is diagnosis. In
diagnosis, just as in planning or design, it is often necessary to adapt an old case to fit
a new problem. CASEY [74] is a well known case-based system for diagnosing heart
problems of patients by adaptation of the known diagnoses of previous patients.
Another very interesting diagnosis system is PROTOS [18]. PROTOS diagnoses
hearing disorders using a learning apprentice approach. The difficulty of this
diagnosis is that many difference diagnoses have similar manifestations and the
relevant differences are so subtle that novices miss them. In such a situation,
PROTOS starts as a novice and when it makes a mistake, a teacher explains the
mistake and as a result PROTOS learns such subtle differences by putting difference
pointers in its memory that allow the system to switch from an apparently trivial but
incorrect diagnosis to the correct one. Another early work in diagnosis is that of
Althoff [7] on complex diagnosis issues. Other more recent representative
applications to diagnosis are CASELINE (82] for airplane maintenance; a system for
maintenance of telecommunication networks [43]; a system for ultrasonic railway
inspection [66]. General Electric has developed a CBR system to determine what
colorants to use for producing a specific color of plastic [37]. In software design
applications, we can mention a system for software project effort estimation [51], the
system CBModeller [75] that applies CBR to information systems design, and a
system applied to software knowledge reuse to improve productivity and reliability of
software development [119].

In interpretive CBR, the first works are those of Rissland and Ashley with the
development of a system for legal reasoning called HYPO [15]. In HYPO, the cases
retrieved are of two different types, those supporting the new situation which are used
to argument in favor and those against the new situation which are used as counter-
arguments.The result is a set of three-ply arguments supporting the proposed solution.
There are many other interpretive CBR systems in the legal domain, among them let
us cite [16], [28], [125].

The latest field where CBR seems to be also useful is creativity [120], [113], [22],
[81]. The main working hypothesis is that much creativity stems from using old
solutions in novel ways. A particularly interesting application is the generation of
expressive music based on examples of human interpretations achieved by the
SAXEX system [11], [12]. SAXEX extracts information related to several expressive



parameters from human recordings by means of spectral modeling techniques. This
set of parameters and the scores of the interpretations constitute the set of cases. From
these, the system decides a set of expressive transformations to apply to a new and
inexpressive musical phrase given as input the sound file. This decision is based on
the similarity between the new phrase and the cases. The similarity is based on
background musical knowledge. Finally, SAXEX applies the transformations to the
sound file using its synthesis capabilities and the results are actually audible.

3 Case Based Reasoning as a Learning Paradigm

Learning in Al is usually taken to mean generalizing through induction or explanation.
Learning is in fact inherent to any case-based reasoner not only because it induces
also generalizations based on the detected similarities between cases but mostly
because it accumulates and indexes cases in a case memory for later use. The main
difference of the CBR approach to inductive learning methods is that CBR
emphasizes the semantics of a given domain through similarity based retrieval and
case adaptation knowledge. Case-based reasoning as a learning paradigm has several
technical advantages:

¢ Since each new solved case is stored in memory for later use, instead of deriving
new solutions from scratch, a CBR system remembers and adapts old solutions. If
such solutions have been adapted in a different novel way or combined in a
different way then, when solving another similar case, these circumstances will be
remembered rather than re-derived.

e A case-based reasoner becomes more competent over time, can avoid previously
made mistakes, and can focus on the most important parts of a problem first.

e CBR enables prototype systems to operate with a small initial set of cases and to
increase its coverage by storing new cases incrementally.

Since many efforts in CBR address the problem of finding techniques to analyze
and select cases, perhaps some of these techniques could be used by the rest of the
machine learning community to help in the selection of training instances.

Perhaps the most important advantage of the case-based approach to learning is its
affinity to human learning: people take into account and use past experiences to take
future decisions.

Instance-based learning (IBL) is a particular case of case-based learning. IBL
algorithms [5] store previously categorized examples and use them to classify new
inputs by assigning the same classification that was assigned to the most similar
previous example. Although they may involve complex indexing, they use a limited
representation (feature-value) and do not address case-adaptation.

Case-based learning algorithms have been applied to a large variety of tasks,
among them we can point to the following ones : predicting power load levels for the
Niagara Mohawk Power Co. [64]; speech recognition [27]; evaluating oil prospecting
sites in the North Sea [38]; knowledge acquisition and refinement [112]; robotic
control [85]; molecular biology [41]; architectural design [50], [109]; and medicine
[92], [106], 5], (80], [83].



4 Components, Issues, and Problems

4.1 Indexing/Retrieval/Selection

The most basic problems in CBR are the retrieval and selection of cases since the
remaining operations of adaptation and evaluation will succeed only if the past cases
are the relevant ones. The retrieval of relevant cases depends on the good indexing of
the cases. One way to do it is to fix the indices a priori for a given domain but the
problem is the loss in generality. Among the techniques being explored to solve this
problem we can mention: Inductive Learning methods to identify predictive features
which will then be used as indices [78], instance-based learning to learn feature
importance, introspective reasoning to learn features for indexing and Explanation-
based techniques to identify relevant features. Explanation-based techniques are used
to justify the actions of a case with respect to those features known when the case was
originally executed. Demonstrably relevant features are generalized to form primary
indices. Inconsistencies between the domain theory and the actual case are used to
determine irrelevant features. The remaining features are marked as secondary indices
that are subject to refinement using similarity-based inductive techniques [20]. In
learning feature importance, each feature is associated with a weight that is adjusted
after each prediction attempt during the training process. The adjustment is done by
comparing the current case with its most similar stored case [5], [63], [126]. The
introspective approach in [52] provides the CBR system with an introspective
reasoning capability to detect poor retrievals, identify features which would retrieve
more adaptable cases and refine the indexing criteria to avoid future failures. The
work of [23] also uses an introspective learning approach to improve the retrieval in
an application to air traffic control.

Some researchers take the approach of defining vocabularies for describing
different types of problems in an attempt to discover the content of indices that allow
reminding across individual domains [55]. Heuristic search techniques and Qualitative
Models are also very promising approaches to the indexing/retrieval problem [102].
Heuristic search techniques [102] are used in a graph containing cases and domain
knowledge to look for support for legal arguments. The idea is to narrow the gap
between the available indexing scheme and the requirements of arguments through the
use of best-first search guided by evaluation functions. A qualitative model of a
physical system has been used in [99] to derive minimal sets of control parameters
relevant to each of the desired inputs in a two stage sewage treatment plant. This
approach reduces the number of features used for indexing the cases in a CBR system,
which suggests the settings of the control parameters based on past experience in
controlling the plant.

Selecting the best case requires being able to find matching cases together. Nearest
Neighbor techniques that provide a measure of how similar a previous case is to a
given problem. In general the match is not perfect because on the one hand, the values
of the features of the new case and previous cases are not exactly the same and on the
other hand there are ususally missing values for some or many of the features,
therefore the usual approach is to define some similarity metric.

The matching problem is being studied by many researchers ([21], [26], [104] and
others). An additional difficulty is that the similarity metrics must take into account



the different importance of the features. In some situations a weighted similarity
measure can be used to account for these differences, but often this is not possible
because the importance of some features is context dependent. Usually, the context is
represented by the cases already in memory and therefore they can be used to
determine which features of the new case are the most important ones. There are
several methods based on this observation: preference heuristics [72], dimensional
analysis [101], the use of dynamically changing weighted evaluation functions [115]
and the use of domain specific knowledge to influence similarity judgments [32],
[111], [116]. A similar approach [21] uses a CBR+EBL similarity metric that is able
to assign a relevance measure to each matching fact. Up to now, practically all the
existing similarity measures assume that cases are represented just by collections of
feature-value pairs, however we have started to see the need for more structured
representations in complex domains [10}, [107] and therefore for new approaches to
similarity such as graph similarity measures already used in pattern recognition [31],
[93], or using domain knowledge to describe declarative biases to guide the retrieval
process [10]. In [88] a formal framework for the construction of similarity metrics
which subsume boolean, numeric and structured measures of similarity is introduced.

Finally, let us mention a very interesting approach [122] that allows to
incrementally learn better similarity metrics by interpreting the behaviour of the
analogical problem solver PRODIGY replaying retrieved cases. To do so, the problem
solver provides information about the utility of the candidate cases suggested as
similar. This information is used to refine the case library organization and the
similarity metric. This process starts with a simple metric that is refined by analysing
the derivational trace produced by PRODIGY.

4.2 Memory Organization

Another basic problem is that of memory organization. Good indexing is not enough
when the case memory is large Good organization of the memory is necessary
because a simple linear organization, like a list, is very inefficient for retrieval
purposes (see Watson and Perera [124] for an evaluation study). A much better
approach is to have a hierarchical structure, where internal nodes are generalizations
of individual cases, as in the system CYRUS [69] based on Schank’s dynamic
memory model [108]. Almost all the existing CBR systems use memory organizations
inspired either by Schank’s dynamic memory or by Porter’s PROTOS approach [94].
The case memory in the dynamic memory model is a hierarchical structure of
‘episodic memory organization packets’. The basic idea is to organize specific cases
which share similar properties under a more general structure called ‘generalized
episode’ (GE). A GE contains norms, cases and indices. Norms are features common
to all cases, indexed under a GE, and indices are features which discriminate between
cases of a GE. An index is composed of an index name and an index value. The entire
case memory is in fact a discrimination network where a node is either a generalized
episode, an index, or a case. When a new case description input is given and the
search for the best matching commences, the input case structure is “pushed down”
the discrimination network starting at the root node. When one or more features of the
input case match one or more features of a GE, the case is further discriminated based
on its remaining features. A case is retrieved by finding the GE with most norms in
common with the problem description, and the indices under that GE are then



traversed in order to find the case which contains most of the remaining problem
features. In case storing, when a feature of the case matches a feature of an existing
case, a GE is created. The two cases can be discriminated by indexing them under
different indices below the GE. If two cases or two GEs end up under the same index,
a new GE is automatically created. Hence, the memory structure is dynamic in the
sense that similar parts of the two cases are dynamically generalized into a GE.

In PROTOS [94], an alternative hierarchical organization is used. The case
memory is embedded in a network structure of categories, semantic relations, cases,
and index pointers. Each case is associated with a category and indices may either
point to a case or a category. The indices are of three types: Feature links pointing
from problem features to cases or categories (called remindings), case links pointing
from categories to their associated cases (called exemplars), which are sorted
according to their degree of typicality in the category, and difference links pointing
from cases to ‘near cases’ that only differ in a small number of features. Furthermore,
the categories are interlinked within a semantic network that represents domain
knowledge and enables to provide an explanatory support to some of the CBR tasks.
Finding a case in memory that matches an input description is done by combining the
input features of a problem case into a pointer to the case or category that shares most
of its features with the problem case. If a reminding points directly to a category, the
links to its most prototypical cases are traversed and these cases are retrieved. The
semantic network of domain knowledge is used to enable matching of features that are
semantically similar. A new case is stored by searching for a matching case and by
establishing the appropriate feature indices. If an old case is found with only minor
differences to the input case, the input case may not be retained or the two cases may
be merged by generalizing some features according to the taxonomic links in the
semantic network.

BOLERO [79] combines Schank’s and Porter’s approaches. It uses the generalized
episodes of Schank together with the exemplar links, difference links and prototypes
of Porter. The structure of the cases themselves is also an important issue. While most
case-based systems store each case as a unit, others break the cases and store them
into pieces along with pointers for later reconstruction [60], [79]. The advantage of
this last approach is that it allows solving complex problems by combining partial
solutions of several other problems. Finally, an obvious approach to the problem of
dealing with large memories of cases is the use of massive parallelism for both the
parallel matching of cases and indices [72].

4.3 Adaptation/Evaluation

A good adaptation of old cases to fit the new case can reduce significantly the amount
of work needed to solve it. Early work by Hammond, Sycara, and others in case-based
planning addressed the adaptation issue, which however afterwards received less
attention. More recently, the interest in adaptation has increased again. For example,
quite a few papers have addressed this problem in the recent workshops and
conferences on CBR. One adaptation technique uses generalization and refinement
heuristics. An example is the plausible design adaptation for design tasks [62]. This
adaptation is a process that takes a source concept, a set of constraints and constraint
violations, and a set of adaptation transformations and returns a new concept that
satisfies the constraints. Chatterjee and Campbell [36] use an interpolation technique



to adapt old cases. Zeyer and Weiss [128] use a similarity-based adaptation approach.
Hanney and Keane [59] use inductive learning techniques to learn adaptation
knowledge from case comparisons. Leake et al [77] use CBR and introspective
reasoning to learn case adaptation. Portinale et al [95] introduce a technique called
Pivoting-Based retrieval that exploits a heuristic estimate of the adaptability of a
solution determining in this way which cases are worth to retrieve. Purvis and Athalye
[97] address the situations in which initially retrieved cases are not easily adaptable,
and propose a genetic algorithm to improve case adaptability. The relations between
case adaptation and case retrieval are also being studied [114].

Evaluation gives feedback to the case-based reasoner about whether or not the new
case was solved adequately. If the solution is not adequate, the retrieval of additional
cases may be required, which may result in the need for an additional adaptation stage
called repair. Some of the major issues involved include strategies for evaluating
cases and the assignment of blame or credit to old cases [73].

4.4 Forgetting

Even assuming that we have solved the basic problems of retrieval and indexing there
is still an additional, somehow unexpected, problem resulting from an uncontrolled
growth of the case memory which may result in the degradation of the performance of
the system, as a direct consequence of the increased cost in accessing memory.
Existing approaches to this problem include: storing new cases selectively (for
example only when the existing cases in memory lead to a classification error) and
deleting cases occasionally [68]; and incorporating a restricted expressiveness policy
into the indexing scheme, by placing an upper bound on the size of a case that can be
matched [53].

4.5 Integration with Other Techniques

In some application domains there is a need to combine CBR with other reasoning
techniques such as model-based or rule-based reasoning. Some examples are the
following: JULIA [60], integrating CBR and constraints for design tasks; Aamodt’s
work on knowledge intensive case-based reasoning [1]; CARS [25] that combines
case-based and fuzzy rule-based systems (see section 6.4); CREEK [2] which
integrates rules and cases and a top level control strategy to decide whether to activate
rules or cases to achieve a goal; CABARET [100], which integrates rule-based and
case-based reasoning to facilitate the use of rules containing ill-defined terms;
GREBE [29], which also integrates rules and cases; PATDEX/MOLTKE [8]
integrating models, cases and compiled knowledge; MoCas [90], combining case-
based and model-based reasoning for technical diagnosis applications; the work of
Portinale et al [95], who also use a combination of models and cases for diagnosis;
QMC [4], which uses a semi-qualitative model to reason about possible effects of
differences between cases and about the possible causes of observed problems;
IKBALS [127], which integrates rules and cases for intelligent information retrieval,
A LA CARTE [87], which uses cases to tune rules in a KBS; BOLERO [79]
integrating rule-based reasoning at the domain level with case-based reasoning at the



meta-level in such a way that the cases guide the inference process at the domain
level, allowing learning of control knowledge by experience (see section 6.2); and
NOOS [91], [13], a reflective architecture capable of integrating different inference
and learning methods. Karacapilidis et al [67] integrate CBR and argumentation-based
reasoning to address group decision making processes. There is also work addressing
the integration of case-based and inductive learning to enhance problem solving [40],
[17], [84], [13], [9]. Finally, there work integrating CBR and Bayesian reasoning. This
work includes the work by Myllymiki and Tirri {86] for case matching and adaptation
in a connectionist network, Breese and Heckerman {30] to identify the most probable
cases for diagnostic purposes, Chang and Harrison [35] to guide retrieval and
indexing, and Aha and Chang [6] for agent cooperation in multi-agent planning tasks.
In these cases, the Bayesian network is used to characterize action selection and the
CBR is used to determine how to implement actions.

4.6 Uncertainty, Imprecision, and Incompleteness in CBR

Uncertainty, imprecision and incompleteness are problems that pervade the CBR
reasoning process. Uncertainty and imprecision are present in the semantics of
abstract features used to index the cases, in the evaluation of the similarity measures
computed across these features, in the determination of relevancy and saliency of
similar cases, and in the modification rules used in the solution adaptation phase.
Incompleteness is also present in the partial domain theory used in indexing and
retrieval, in the (usually) sparse coverage of the problem space by the existing cases,
and in the description of the problem. In [49], the author uses probability theory to
model the uncertainty associated with the main assumption of CBR that to similar
problems correspond similar solutions. He shows that even if that assumption is not
met for particular instances, it is correct on the average. In [103], the authors propose
a Bayesian network modeling for CBR. Their model uses two networks, one for
ranking categories, and another for identifying exemplars within categories. This view
leads to the notion of modeling similarities by conditional probabilities. Therefore it
computes the probability of an exemplar given the features to classify a new case.
Probability theory cannot however model imprecision easily. Fuzzy logic provides
better techniques to deal with imprecision. The following sections are devoted to
discussing the Fuzzy Logic approach to CBR.

5 Fuzzy CBR: Value Added to Conventional CBR

Fuzzy Logic techniques have proven to be very useful in addressing some aspects of
the above open problems such as the representation of imprecise information, case
retrieval and case adaptation. For example, in case representation Fuzzy Logic
provides a characterization for imprecise and uncertain information, in case retrieval it
helps evaluating partial matches by means of fuzzy matching techniques [44]; and in
case adaptation it helps modifying the selected case by means of gradual rules [45]
and aggregating the solutions of different cases by means of fuzzy combination rules,
according to well defined operators called triangular norms [110]. Early work on



fuzzy case-based reasoning is represented by Plaza and Lopez de Mantaras [92],
Bonissone and Ayub [25] and Salotti [105]. In this section we discuss this issue in
more detail. More specifically, the following aspects have been, or are being,
addressed using fuzzy techniques:

1. The casebase itself can be considered a fuzzy set since the cases it contains are not
all simply “completely useful” or “not at all useful”. Instead their usefulness is a
matter of degree (depending on the problem at hand) and this can be exploited in a
fuzzy case-based reasoner.

2. At the representation level, Fuzzy Logic allows to represent cases whose attributes
have imprecise values and in particular linguistic values [92], [25], [80], [65].

3. In order to retrieve appropriate cases, fuzzy prototypes - that is prototypes
described by means of fuzzy terms - can be used [92]. Additionally, viewing the
description of a case as a tuple of attribute values, fuzzy logic provides a powerful
weighted fuzzy pattern matching mechanism [44] to compute the overall similarity
between cases from partial similarities between the attributes describing the cases.
Weighted fuzzy pattern matching allows also to take into account the relative level
of importance of each attribute in the comparison process, thus limiting the penalty
on the matching of cases that differ on unimportant attributes. Fuzzy logic can also
be used to represent the degree of similarity between attribute values that are not
precisely known. When the cases are imprecisely or incompletely described, their
similarity measures can be described by lower and upper bounds, obtained from
possibility and necessity measures respectively [46].

4. Gradual rules of the general form “the more similar two cases are with respect to
some attribute(s), the more similar they possibly are with respect to their solution”
were developed within the framework of fuzzy logic and are the basis for many
approximate reasoning applications. However they can also be used in case
adaptation - that is in adapting to the unsolved case the values appearing in the
known cases of the case base. Conditions can also include the assessment of
difference between cases like for example in the rule "if two used cars are similar
except for the mileage run, the difference between their prices will be a function of
the mileage difference”. In [47] and [48], a gradual rule-based formalization of the
similarity-based inference process of CBR is proposed. This is the first attempt to
provide a logical formalization of CBR.

6 A Brief Account of Fuzzy Case-Based Reasoning Systems

In this section we describe a representative sample of fuzzy techniques present in
several important case-based systems. They all share the capability of using attributes
with fuzzy values and using a fuzzy pattern matcher for case retrieval.

6.1 The ARC System

The memory organization of the ARC system [92] is a hierarchy of classes and cases.
Each class is represented by a fuzzy prototype, which is a description of the features
common to most of the cases belonging in the class. Furthermore, each class is linked



to a set of sub-classes, a set of differentially indexed cases and also to cases that are
near-misses. The memory organization is dynamic in the sense that classes can be
modified or created after each reasoning step. The retrieval process selects first the
most promising classes by means of a fuzzy pattern-matching algorithm based on
common features. Next, cases are selected based on the similarities and differences
between the classes and the cases. Finally, near-misses are used to avoid repeating
past failures. The certainty values of the fuzzy prototypes and the matching degree are
expressed by means of linguistic values.

6.2 The BOLERO System

BOLERO [80] is a system that integrates rule-based and case-based representations.
The object level knowledge of BOLERO is represented by rules and the meta-
knowledge contains the solved instances of problems, conveniently organized in the
memory of cases. Since these solved instances can contain uncertain and imprecise
values, linguistic values represented by fuzzy sets are used. Moreover, the pattern
matching algorithm at the retrieval step is adapted to deal with such linguistic values.
An added-value of such hybrid system is the capability of learning meta-knowledge
by experience. BOLERO has been successfully applied to a complex medical
diagnosis problem using, at the object level, rules about pneumonia diagnosis.

6.3 The CAREFUL System

CAREFUL [65] focuses on the first two steps of a case-based reasoner, that is, the
case and problem representation and the case retrieval. CAREFUL uses an object-
oriented representation based on a hierarchy of fuzzy classes. The use of fuzzy logic
allows taking into account the flexibility (imprecision, incompleteness, preferences)
associated with the target description, the user requests, the case description and the
retrieval process. As with the other systems, the fuzzy sets represent imprecise values
of the attributes of the cases. Furthermore, in CAREFUL, fuzzy sets are also used to
represent vague constraints in the problem description. The retrieval process proceeds
in two steps: first the problem specification and case filtering step guides the operator
in specifying the problem and identifying potentially interesting cases, and second in
the selection step the nearest cases are chosen. The first step is based on an existing
hierarchical fuzzy classification algorithm. The result of the first step is a set of
potentially relevant cases that in the second step are compared with the problem
description in order to select the nearest cases. To do so, each value of a problem
attribute represents a fuzzy constraint and the process selects those cases that better
satisfy these fuzzy constraints according to a weighted fuzzy pattern matching
technique based on computing a possibility and a necessity degree.

6.4 The CARS System

In CARS [25], cases and problems are also defined in an object-oriented environment.
The representation of cases and problems is done by surface and abstract fuzzy



attributes. The abstract attributes are computed using plausible inference rules. The
most interesting aspect of CARS is the technique used in the selection of the nearest
cases, which uses a fuzzy similarity measure between attributes based on a fuzzy
algebra. The resulting similarity, which is a fuzzy set, is compared, by means of a
measure of inclusion, to reference fuzzy sets such as NO-MATCH, PARTIAL-
MATCH, COMPLETE-MATCH, etc., representing the matching degree for each
attribute. Finally, the matching degrees of all attributes are aggregated, taking into
account their importance weight, using different combination methods.

6.5 The FLORAN System

In FLORAN [105] the cases and problems are also represented within an object
oriented environment, where cases and problems are instances of classes whose slots
can have fuzzy values. The classes of FLORAN are linked to dependency contexts -
that is objects that represent, for a given class, a specific goal, a list of relevant
attributes, their importance and a set of fuzzy restrictions on the attributes. This is
similar to the CAREFUL system, except that the contexts in CAREFUL are
hierarchically organized.

As in the other systems, the retrieval step of FLORAN is divided into a filtering
step and a selection step. In the filtering step, FLORAN first looks for the most
compatible context and then gets its associated cases. In the selection step, the current
problem is compared with each filtered case by means of a fuzzy pattern matching
technique. The fuzzy pattern matcher takes into account a tolerance parameter
associated with each context.

7  Conclusions

In this chapter we have described the main aspects of case-based reasoning from the
point of view of representative existing systems and we have mentioned the main
issues and open problems being faced. We have also briefly described several systems
that use fuzzy logic techniques to address some of the existing problems such as the
representation of imprecise information. CBR has produced very promising
techniques in addressing some of the issues and problems mentioned in this chapter,
but there are still several open problems. Among them we could choose the following:
how to efficiently represent complex cases such as those with higher-order relations
between their features and time dependent information, how to index complex cases
in order to optimize their reuse, how to dynamically generate new indices depending
on evolving situations, how to compute similarities when cases are highly structured
and complex, how to determine relevant features, how to deal with forgetting
mechanisms, how to integrate CBR with other paradigms, and how to acquire,
validate, and maintain case bases. For example, Racine and Yang [98] present some
methods for maintaining large unstructured case bases focusing on redundancy and
inconsistency detection. We believe that in the near future we will see fast growing
research activities in all these problems using richer representations, including fuzzy
logic and case-based temporal reasoning.
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1 Introduction

1.1 What Is a Genetic Algorithm

Genetic algorithms are stochastic search algorithms which act on a population
of possible solutions. They are loosely based on the mechanics of population
genetics and selection. The potential solutions are encoded as ‘genes’ — strings
of characters from some alphabet. New solutions can be produced by ‘mutating’
members of the current population, and by ‘mating’ two solutions together to
form a new solution. The better solutions are selected to breed and mutate and
the worse ones are discarded. They are probabilistic search methods; this means
that the states which they explore are not determined solely by the properties of
the problems. A random process helps to guide the search. Genetic algorithms
are used in artificial intelligence like other search algorithms are used in artificial
intelligence — to search a space of potential solutions to find one which solves
the problem.

1.2 Genetic Algorithms in Machine Learning

In machine learning we are trying to create solutions to some problem by using
data or examples. There are essentially two ways to do this. Either the solution
is constructed from the data, or some search method is used to search over a
class of candidate solutions to find an effective one. Decision tree induction by
ID3 and nearest-neighbour classification are examples of creation of a solution by
construction. Use of a gradient-descent algorithm to search over a space of neural
network weights to find those which affect a particular input-output mapping
is an example of the use of search. Genetic algorithms are stochastic search
algorithms which are often used in machine learning applications.

This distinction might not be strict; ID3 might include a search over different
prunings, for example. Nonetheless, algorithms like ID3 are fast and computa-
tionally simple. In addition, there is usually an explicit simplifying assumption
about the nature of the solutions. For example, in ID3 the bias is towards in-
dependent attributes; in nearest neighbour methods it is towards similarity of
outputs being reflected in input similarity. Using search, however, a wide range
of complex potential solutions can be tested against the examples, and thus,
much more difficult problems can be tackled. The cost, of course, is in increased
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computational cost. In addition, any inductive bias is embedded in the algorithm
and is thereby more difficult to control, although introducing explicit controls
or regularizers is becoming increasingly important. In many respects, genetic
algorithms are on the dumb and uncontrolled end of machine learning methods.
They rely least on information and assumptions, and most on blind search to
find solutions. However, they have been seen to be very effective in a range of
problems.

Genetic algorithms are important in machine learning for three reasons. First,
they act on discrete spaces, where gradient-based methods cannot be used. They
can be used to search rule sets, neural network architectures, cellular automata
computers, and so forth. In this respect, they can be used where stochastic
hill-climbing and simulated annealing might also be considered. Second, they
are essentially reinforcement learning algorithms. The performance of a learning
system is determined by a single number, the fitness. This is unlike something
like back-propagation, which gives different signals to different parts of a neural
network based on its contribution to the error. Thus, they are widely used in
situations where the only information is a measurement of performance. In that
regard, its competitors are Q-learning, TD-learning and so forth. Finally, genetic
algorithms involve a population and sometimes what one desires is not a single
entity but a group. Learning in multi-agent systems is a prime example.

In artificial intelligence, search is used in reasoning as well as learning, and
genetic algorithms are used in this context as well. To make the distinction clear,
consider a chess-playing program. Machine learning could be used to acquire
the competence of chess-playing. (Most chess-playing programs are not created
that way; they are programmed.) However, when the program plays the game
it also uses search to find a good move. Other examples include searching over
a set of rules to evaluate a predicate. Genetic algorithms have been used for
problems which have been in the domain of artificial intelligence, such as finding
an effective timetable or schedule within a set of constraints.

1.3 History of Evolutionary Computing

Genetic algorithms are one of a class of approaches often called evolutionary
computation methods used in adaptive aspects of computation — search, opti-
misation, machine learning, parameter adjustment, etc. These approaches are
distinguished by the fact that they act on a population of potential solutions.
Whereby most search algorithms take a single candidate solution and make small
changes to that, attempting to improve it, evolutionary algorithms adapt an
entire population of candidate solutions to the problem. These algorithms are
based on biological populations and include selection operators which increase
the number of better solutions in the population and decrease the number of the
poorer ones; and other operators which generate new solutions. The algorithms
differ in the standard representation of the problems and in the form and relative
importance of the operations which introduce new solutions.

Genetic algorithms were first proposed by John Holland in his book “Adapta-
tion in Natural and Artificial Systems” [14]. Holland guessed that an important



feature which distinguished natural adaptive systems like the biological systems
from artificial ones like perceptrons (this was the early 70’s remember) was that
in biological systems there is only an effective solution when all of the necessary
elements are in place, a property which he deemed “epistatis”. (In biology, genes
encode proteins which catalyse reactions, and typically all of the reactants must
be present. Epistatis is a biological term to describe the situation where many
genes contributed to a single trait.) Holland tried to create an artificial procedure
which simulated this, one component of which was what is now called a genetic
algorithm with crossover. He emphasised crossover, because he believed that this
was the ideal way to search over systems containing epistatis. During a similar
period, L. Fogel and his collaborators [9] used selection and mutation to search
over finite-state automata as solutions to a range of problems. These studies
are described in the book, “Artificial Intelligence through Simulated Evolution”.
Around the same time, Richenberg [26] developed a method called Evolutionary
Strategies in which solutions to a problem were represented as real numbers;
these were selected and mutated with Gaussian noise. He applied this technique
to engineering problems including the design of airfoils. More recently, John
Koza [17,18] developed Genetic Programming, in which genetic algorithms are
used to search parse trees of LISP expressions, essentially computer programs.

These are the four so-called evolutionary programming paradigms. Genetic
algorithms and their extension to genetic programming are probably the most
widely used and most important in machine learning. However, there are still
proponents of evolutionary strategies, notably Schwefel, Back, Hoffmeister and
others who have achieved interesting results.

2 The Basics of Genetic Algorithms

2.1 Elements of a Simple Genetic Algorithm

Representation. In order to use a genetic algorithm to search for solutions to
a problem, potential solutions to the problem must be encoded as strings of
characters drawn from some alphabet, A = ajas...ar. Often the characters are
binary, but it is also possible to draw them from larger alphabets, and real
numbers are sometimes used.

In describing genetic algorithms, one often uses jargon taken from the popu-
lation dynamics. The strings, A are called chromosomes. The components of the
string, a1, as, ... are called genes. The values which each gene can take are called
the alleles. In the most common case of binary strings, the two possible alleles
are 0 and 1. So, for example, the chromosome A = 11110000 the first four genes
take the allele 1 and the last four take the allele 0.

Fitness Function. It is the task of the genetic algorithm to find very good strings.
The goodness of a string is represented in the GA by some function of the strings,
which I will call the objective function, the quantity to be optimised. Another
function which is needed is called the fitness function. This is a monotonic func-
tion of the objective function, and is what determines how the strings will be



multiplied or discarded during the algorithm. It is usual to define the fitness func-
tion so that the algorithm increases the fitness of the strings, so better solutions
correspond to more fit strings.

The genotype is the string representation. The phenotype is what the genotype
produces. Often in genetic algorithms, the two are not terribly different, although
there is a great difference between a biological organism (the phenotype) and
its DNA (the genotype). The objective function is a kind of phenotype. The
objective function and the fitness function are often used interchangeably in the
GA community, but it is useful to separate them. In the biological terminology,
the fitness is the increase due to selection. Thus, the fitness has to do with the
particular form of selection, whereas the objective function is a property of the
problem to be solved.

Population Dynamics. A genetic algorithm works on a population of strings. It
starts with a random population and evolves the population to one containing
(hopefully) good strings. At the heart of the algorithm are operations which
take the population at the present generation, and produce the population at
the next timestep in such a way that the overall fitness of the population is
increased. These operations are repeated until some stopping criterion is met,
such as a given number of strings been processed, a string of given quality has
been produced, etc. There are numerous ways of actually implementing a genetic
algorithm.

The simple genetic algorithm we will consider works with a population size,
N, which is held constant. Three operations take the population at generation
t and produce the new population at generation ¢t + 1: selection, crossover, and
mutation. These are described below.

Selection: This operator selects strings from the current population such that
better strings are more likely to be chosen. Selection does not introduce any
new strings; if applied repeatedly it simply re-proportions the strings in the
population, increasing the number of fitter ones and decreasing the number
of less fit ones.

Recombination/Crossover: This operation produces two (or some other
number) of offspring from a pair of parents by combining parts of each par-
ent. Each offspring contains parts of the strings of each parent.

Mutation: This operation simply changes characters in the offspring string at
random. Each character is changed with a small probability.

2.2 A Simple Genetic Algorithm

There are a number of different variations. Here I show the simplest form.

Dynamics. A simple realization is the following,

current_population=N random strings.
repeat



repeat
Select 2 strings from current population using selection operator.
Produce 2 offspring using recombination.
Mutate those 2 offspring.
Add the 2 offspring to new_population.

until size_of (new_population) = N.

current_population = new_population.

until (stopping criterion met)

Such an approach is called “generational” because it is divided into distinct
generations during which the entire population changes. In addition, offspring
do not compete with parents. Alternatives are to change just a few of the strings
in each time step, or to generate a large “mating pool” using recombination,
including parents, and select N from that to get the next generation.

Fitness Proportional Selection. The simplest implementation of selection is
to select in proportion to the fitness. That is, the probability of selecting a string
o is po
(e 3
S — 1
P =57 (1)

where F@ is the fitness of the string a. Often, this is taken to be the objective
function E* itself. This works if E is positive and is to be maximised. Another
approach is called Boltzmann selection, where

F(E®) = exp(sE®). )

This has a selection strength parameter s.

Fitness proportional selection is also called “roulette wheel selection”. This
is in analogy with a biased roulette wheel, associated with each string is a wedge
of the wheel, whose size is proportional to the fitness of the string. Selection is
equivalent to a spin of the wheel.

There are are two problems with roulette wheel selection. First, the random-
ness does not introduce new individuals; it only removes individuals from the
population. Although it is most likely that unfit members of the population are
removed, it is also possible that fit members are removed by chance. It is often
better to remove this randomness and put the strings into the next population
deterministically in proportion to their fitness.

The second problem is that as the search evolves, the spread of fitnesses
decreases. There is less diversity in the population. This means that selection
has less effect later in the search. To counteract this, the fitness is often rescaled
to keep the spread constant. For example, one can rescale the selection strength
by dividing by the standard deviation of the fitness within the population at
each generation [28].

Mutation. The mutation operation changes the value of each gene with a mu-
tation probability p,,. Le. each character is changed to some other character
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with probability p,,, and left unchanged with probability 1 — p,,,. The mutation
probability is taken to be small, e.g. 1/L, for strings of length L. This probabil-
ity is small so that mutation can explore small changes in the solutions without
disrupting good solutions too much.

Crossover. Crossover works on pairs of strings. For each pair crossover occurs
with probability p. and with probability 1 — p. the offspring are identical to the
parents. Typical value is p. = 0.6.

A commonly used form is called single-point crossover. In this operation, a
crossing site is chosen at random somewhere along the length of the strings. Two
new strings are generated by swapping all of the components of the two strings
on one side of the crossing site. For example, if the two strings are

A, = 1111111|1111111
Ao = 0000000|0000000

and the crossover position is between the 7th and 8th position (as marked), the
new strings would be
1 = 0000000|1111111

Al =1111111]0000000

This operation effectively means that each offspring possesses features from both
parents.
Likewise, multi-point crossover uses multiple crossover points. Le.

A; =1111111111]11111

A, = 000|000000|00000

would yield
A} = 000|111111]00000

A} = 111]000000[11111.

A most extreme form of crossover is uniform crossover, where each site is in-
dependently chosen from parent 1 or parent 2. This is a very effective search
operator if the genes don’t interact in producing the fitness, but is very disrup-
tive when they do.

Other forms of crossover have been invented for use in specific problems or
domains.

Expected behaviour. To see how the genetic algorithm can be useful, consider
the effect of mutation and crossover. Mutation is clearly local random search,
it takes a solution and generates a small, unguided change. Crossover is more
complicated. It takes a pair of parents and produces two offspring between the
parents (think of what it does to binary numbers). The two offspring can be
near the two parents, or they can be far from them, in this sense it is said to be
a global rather than local search algorithm.



One view of what crossover is meant to do is to combine partial solutions
to form more complete solutions. To use a ridiculous example, if you are trying
to produce a duck and one parent has developed wings, while the other has
developed webbed feet, the crossover operation should combine these so that one
offspring has both webbed feet and wings and the other offspring has neither.
Goldberg [10] writes about the the principle of meaningful building blocks — the
problem should be encoded in such a way that substrings or partial solutions
with intermediate fitness can combine under crossover to produce fitter, more
complete solutions. Whether this will actually occur depends upon the likelihood
of both building blocks being in the population simultaneously, and the likelihood
of combining them in that way. Others have argued that crossover is useful
because it allows large moves.

One expects the mean fitness in the population to increase until some form
of equilibrium is reached. Equilibrium is were there is a balance between the
improving effect of selection and the (generally) deleterious effects of mutation
and crossover. Selection tends to make the population better on average, but
decreases the variation. The other operators tend to decrease the quality of the
population on average, but restore diversity. Figure 1 shows histograms of the
fitness distribution in a population during a GA evolution.

0.10 |
| 4 |
0.08 | 50 ! i
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Fitness Distribution

250.0 0.0 50.0 100.0
Fitness

Fig. 1. The distribution of fitnesses in a population for different generations of a genetic
algorithm. The x axis is the fitness value; the y axis is the fraction of the population
with that value. Computed from histograms which have been averaged over many runs
of the genetic algorithm. The decrease in variance as the algorithm runs is apparent.
It is also the case that more of the variance is on the low fitness side; the distribution
has positive skewness.

One thing that often happens is that a state is reached where there is very
little diversity in the population. When this happens, improvement is very slow
because crossover has little effect on very similar strings. This is called “prema-
ture convergence” and is one of the most important causes of failure of genetic
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Fig. 2. Evolution of the mean fitness and the 10 and 90 percentile on a simple problem.
An apparent stable population has been reached.
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Fig. 3. The same as the previous figure for a longer run. Punctuated equilibrium is
apparent. Had premature convergence occurred, the population would have been like
in the previous figure.

algorithms. A population of very similar strings in the vicinity of a local mini-
mum is very stable. Crossover has very little effect on populations of very similar
strings and the time to leave a local minimum via selection and mutation alone
can be very long. Exploration is inhibited by competition with strings in the
vicinity of the minimum [29].

Figures 1 and 2 show examples of the increase in mean fitness in a population
for a short and longer run. The improvements come in levels, or epoch. Had
premature convergence occurred, the population would have remained stuck in
the first level for a long time.



Example — Colouring a Map or Graph. Here is a simple example problem
showing how a genetic algorithm is applied to a simple optimisation problem.
Suppose you have a map that you want to colour with three colours. By this
I mean that you want to assign one of three colours to each country such that
adjacent countries are coloured with a different colour. A related problem is
graph colouring - you assign colours to vertices of a graph so that adjacent
vertices have a different colour. Say the colours are red, green, and blue.

In order to devise a genetic algorithm to solve a problem, there are basically
three things you must do:

1. Encode possible solutions to the problem as strings

2. Devise a fitness function which determines how good a solution is. Generally,
this should be positive and increasing with the quality of the solution.

3. Decide on the forms of the genetic search operators to be used, selection,
mutation and crossover.

Encoding: Let each gene of the string represent one of the countries. Each gene
can take three values: red, green, or blue. For example, one possible string
might be

A = rbrgrbgg.

This would be a map in which the first country is coloured red, the second
is blue, the third is red, and so forth.

Objective function: The obvious cost function is the number of times that
two neighbouring countries have the same colour. This could be written,

E=) Wyd(aa)
i
where W;; = 1 if country ¢ neighbours country j and 0 otherwise; and
d(a;a;) =1 if a; = a; and 0 otherwise.

Fitness Function: However, this does not work as a genetic algorithm fitness
function, because we would want to minimise this, while genetic algorithm
maximises the fitness function. We also could not use —F since the fitness
function should be positive. So, add to —F the smallest value which insures
that the fitness is always positive. What works as the fitness function is,

F= N(N — 1) - ZWijaiaj.
j

Another possibility is to use
F = exp (~BE),

where f3 is a selection strength parameter. This works because exp (anything)
is always positive. This is called “Boltzmann selection”. It has the advantage
that it has a parameter, 3 which controls the strength of selection.

Genetic Operators: The usual selection, single-point crossover, and mutation
could be used.
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Fig. 4. Evolution of the best member of the population for a GA attempting to 2-colour
a map. Premature convergence has occurred; the final population contains strings which
differ by only a few mutations, are within a few mutations of a local optimum, and are
many mutations away from the global optimum.

2.3 Extensions to the Basic Genetic Algorithm

There are many different ways of implementing a genetic algorithm, and re-
searchers rarely use the simple form described above. Below some extensions are
outlined.

Alternative Selection Schemes. Most alternative selection schemes are de-
signed to avoid premature convergence. Here is a list:

Elitism: The best members of the population are put into the next generation at
each timestep. The best individuals cannot be lost due to random sampling,
and selection strength used to pick the other members of the population can
be weaker to maintain diversity.

Tournament Selection: Two members of the population are chosen at ran-
dom. The least fit is removed and replaced by a copy of the most fit.

Steady-state selection: Rather than changing all members of the population
at each stage, only a few members of the population are changed at each
timestep.

Fitness Sharing: In order to maintain diversity in the population, the fitness
of an individual is shared among all other individuals which have similar
genotypes. So a string which is very different from others in the population
has its fitness enhanced, while strings which are very similar to many others
have their fitness decreased.

A related method is called “implicit fitness sharing”. This can only be ap-
plied in applications where the task is to perform well on a set of examples,
such as in classification tasks. Fitness sharing is implemented by having
the fitness shared among all of the solutions which classify a given examiple
correctly, summed over all examples. Two strings which perform well on a



overlapping set of examples would have their fitness reduced, while a string
which performs well on examples not correctly dealt with by other strings
would have a high fitness.
For a comparison of fitness sharing to implicit fitness sharing, see [7].
Niching and Island Models: This is similar to the previous; it is a method of
maintaining diversity in a population and preventing premature convergence.
Here a population is divided into several subpopulations, each evolving in-
dependently for periods of time. If the subpopulations converge, it is likely
to be to different optima. Occasionally, some members of the subpopulations
are exchanged. This injects diversity into the subpopulations. A useful fea-
ture of this approach is that it can be implemented on parallel computers.
Different subpopulations evolve on different processors, and there is only
occasional need for inter-processor communication.

Alternative Crossover Operators. Cutting the solutions up into chunks and
recombining them may not be the best way of creating offspring. The method
of recombination should reflect the structure of the problem. This has been dis-
cussed in a formal sense by [25]. A well-studied example is that of the Travelling
Salesman Problem. In this case, a potential solution is a permutation, e.g. a
potential solution might be 364521 which means visit city 3 first, 6 second, etc.
Single point crossover between two such lists will fail to produce even a valid
tour, much less a good one. To see more about special operators for the travelling
salesman problem, see for example, [8].

Using the Entire Population. In most uses of genetic algorithms, the “an-
swer” is the best member of the population; the other members of the population
are used to help in the search but are discarded at the end. However, there are
some exceptions.

In the early work on genetic algorithms in machine learning, Holland de-
veloped the Learning Classifier System [15]. In this, each string of the genetic
algorithm was one “classifier”, an if-then rule. The population was the system
of classifiers. This approach is called the “Michigan” approach. The alterna-
tive approach, where each member of the population is a complete solution to
the problem, as in DelJong et. al.’s GABIL system, is deemed the “Pittsburgh”
approach.

Another approach in which the entire population is used rather as a solution
is that proposed by Yao and Liu [34]. Here a genetic algorithm is used to train
a neural network. It has been known in the neural network community for some
time that if there exist a number of classifiers to solve the same problem, a clas-
sifier consisting of a committee of all of the classifiers can give better expected
generalisation than any one of the classifiers taken alone (see, for example, sub-
section 9.6 of [6]). Yao and Liu propose using the final population of neural
networks as the committee, and propose four different methods for combining
the output of the neural networks. They use implicit fitness sharing, so that
different learners are encouraged to learn different examples.



3 Examples of Genetic Algorithms in Machine Learning

3.1 Learning Rule Sets

A simple example of the use of a genetic algorithm to induce a set of rules was
described by Delong et. al. and is called GABIL. The genetic algorithm learns
a boolean concept by searching for a disjunctive set of propositional rules. To
represent a rule, a string contains a bit for each value that each variable can
take, and a bit for the concept value. For example, if v; can take the values
Vi1, Via, Vi3, and vy takes the values Va;, Voo, and these are the only two vari-
ables, then the string

110 01 1

is used to denote the rule
IF (’Ul = V12) \% (U1 = V13) AN (UZ = V21) THEN ¢ = T, (3)

where c is the concept. So if the substring associated with a particular variable
is all 1’s, that variable can take any value.

A set of rules is a long string of rules concatenated together. In order to
allow for a variable number of rules, a modified form of crossover is used. Two
crossover points are selected at random in the first parent. The crossover points
in the second parent can be in any rule, but must be in the analogous place in
the rule as in the rule of the first parent. For example, if parent one consists of
three rules as represented by the following string and the crossover points are as
shown,

vl v_2c¢ v_lv_2c v_l v_2c
00}1 11 1 111 0J1 © 110 10 1

then possible crossover points in the second parent must be between the first
and second attribute bit in a substring associated with v; in any rule, and the
first and second attribute bit in a substring associated with v, in any rule. For
example,

v_l v_2c v_1v_2c
1011 11 1 001 01 ©

would yield as offspring,

v_l v_2 ¢ v_1v_2c
001 11 O 110 10 1

and

v_l v_2c v_1v_2c v_i v_2¢c
101 11 1 111 01 1 001 01 0



This allows varying lengths of rule sets to be explored, while preserving the
structure of the rules.

It is worth noting that bits with more 1’s are more general rules, and bits
with more 0’s are more specific. Thus, a mutation operator which is biased to-
wards adding more 1’s than 0’s will generate more general rule sets. DeJong
et. al. exploited this fact by experimenting with operators which changed a 0
to a 1 in a variable substring. An additional operator changed all of the bits
to 1's in a substring associated with a variable in a rule (thereby exploring the
possibility that that variable is irrelevant). The objective function was taken to
be the square of the number of examples correctly classified by the rule set. In
experiments comparing GABIL to over rule induction algorithms such as AQ14
and ID5R and C4.5, comparable results were achieved. Significant improvements
were found by introducing the biased mutation operators mentioned in the pre-
vious paragraph.

Another example of use of genetic algorithms to evolve rule sets is Holland’s
Learning Classifier System [15].

3.2 Evolving Computer Programs

Genetic Programming. Genetic programming [17,18] is a form of evolution-
ary computation in which computer programs are evolved using a genetic al-
gorithm. John Koza is credited with its invention. The representation of the
program is in terms of trees rather than strings. Each tree represents the parse
tree of a LISP expression. The leaves (or end nodes) of the tree represents termi-
nals — objects which take no input. The other nodes represent functions which
take a number of arguments, where each argument is either a terminal or another
function. In order to apply this to any problem, the appropriate functions and
terminals must be chosen. So, for example, in order to represent the absolute
value function, the function set could be IF, which takes three arguments and
evaluates the second (third) argument if the first argument evaluates to TRUE
(FALSE), and GT, which takes two arguments and returns TRUE if the first
argument is greater than the second. The terminal set would be real variables z
and real constants. The LISP expression,

(IF (GT (x) (0))
(x)
(-x))

would be represented by the tree shown in figure 5.

As the representation is in terms of trees, a tree-based crossover and mutation
operator is required. The crossover is done by replacing one randomly chosen
subtree from one parent by a subtree from the other parent. This is shown in
figure 6. Mutation occurs by taking a randomly chosen subtree and replacing
it by a randomly generated subtree. Unlike standard genetic algorithms, this
process generates varying sized structures. Some mechanisms might be required
to regulate the size of the trees generated, and to insure that objects of the
appropriate type go into the functions.



Fig. 5. A parse tree representation of the absolute value function.

Koza [17] uses fitness proportional selection with 90% of the trees generated
from the crossover operator and the remaining unmodified from the previous
generation. Koza considered mutation to be of minor importance and often did
not use it.

Ezample - A simulated ant. A simple example described in [17]. A simulated
ant can detect food directly in front of it and can move forward, or turn left or
right on a square grid. There is a trail of food along the grid, with some gaps
in the trail. The ant has to collect as much food as possible. Where the trail of
food is continuous, the ant must learn to follow the trail. Since there are gaps in
the trail, the ant must learn some exploration behaviour, so as to navigate past
the gaps and find the trail again. The complexity of the exploration required
depends upon the size of the gaps.

To solve this using genetic programming, Koza used three terminals cor-
responding to the actions of the ant, MOVE, LEFT, and RIGHT, meaning: move
forward, turn left, and turn right respectively. IF-FOOD-AHEAD is a function with
two arguments. The first is evaluated if food is detected ahead and the second
is evaluated if food is not. For example, the program

(IF-FOOD-AHEAD (MOVE) (LEFT))

moves forward if food is detected and turns left if it is not. Two other functions
were used. PROG2 takes two arguments, evaluates the first and then evaluates
the second. So the program

(PROG2 (MOVE) (LEFT))

simply moves then turns left. A similar function, PROG3, takes three arguments
and evaluates them in turn.

The fitness of a program is the number of pieces of food found by the ant in a
given number of time steps (to prevent random exploration solutions). Each pro-
gram is evaluated fully, then re-executed repeatedly until the maximum amount
of time is used up. A population of 500 was used.
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Fig. 6. An example of crossover on trees. The two parents are on the top of the figure;
the dark line shows the crossover points. The two offspring are below.



Koza found a solution which worked perfectly on one particular trail used
for training after 21 generations. It is

(IF~FOOD-AHEAD (MOVE)
(PROGN3 (LEFT)
(PROGN2 (IF-FOOD-AHEAD (MOVE)
(RIGHT))
(PROGN2 (RIGHT)
(PROGN2 (LEFT)
(RIGHT))))
(PROGN2 (IF-FOOD-AHEAD (MOVE)
(LEFT))
(MOVE))))

If food is detected ahead the ant moves to it. Otherwise it turns left and looks
for food. If no food is there, it turns back to the right and the right again, and
so looks to the right of its original position. If no food is there, it just moves
in the direction it was originally heading. There is also a pointless but harmless
step in which it moves to the left and then to the right resulting in no change
in heading. There is nothing about this rule induction system which prevents
redundant rules like this.

Genetic programming has been used in a wide range of applications, including
the design of circuits [19], and the prediction of complex time series.

3.3 Genetic Algorithms and Neural Networks

Artificial neural networks are very successful methods in machine learning. In
their simplest form, they produce a mapping between an input space and an
output space. This mapping is not represented in terms of rules, but in terms of
non-linear functions of real-valued parameters called “weights”. The mapping is
determined by the structure of the non-linear functions, and given that structure
by the values of the weight parameters. Two learning tasks are: find the structure
of the neural network, and find the weight values of the neural network to make
it perform a particular task.

Often neural networks are used for supervised learning. In this situation, the
correct outputs are known for some example inputs. Then the learning problem is
to find the best neural network given these examples. By “best neural network”
we could mean the neural network which does the best job of producing the
correct outputs on the example inputs, or some other criterion could be used. For
example, one often wants to balance performance on the example set with other
criteria, such as model simplicity, in order to improve generalisation performance.
A standard approach is to choose the network structure by hand, and then
use some real-valued optimisation method using gradient information (e.g. a
conjugate gradient method) to search for the weights which optimise the chosen
criterion.

Numerous authors have used genetic algorithms to search over the structure
space and /or over the weight space to train neural networks to perform different
tasks. For reviews, see Schaffer et. al. [27] or Yao [35].



Genetic Algorithms to Train Fixed Structures. A number of authors
have explored replacing the standard, gradient-based, algorithm with a genetic
algorithm to search for the weights which optimise neural network performance
on an example set for a fixed structure neural network. This appears to be a
questionable enterprise for several reasons. First, it is a long-held belief in the
optimisation community that if you have gradient information you should use
it [24]. Second, it is worth noting that genetic algorithms turn all learning prob-
lems into reinforcement learning tasks. The performance of the network is de-
fined by a single number, the fitness (unless a multi-objective approach is used,
which has not been tried to the best of my knowledge). If there are multiple
outputs, a gradient-based approach can focus the search on those parameters
which contribute to the outputs which are wrong, and if learning is done after
each pattern, the changes can be made which are associated with the patterns
which the network gets wrong. Experience with reinforcement learning as com-
pared to supervised learning using standard algorithms supports the view that
reinforcement learning requires longer search, so it seems questionable to turn
the problem into a reinforcement learning problem.

The argument in favour of evolutionary algorithms over gradient-based ones
is that evolutionary algorithms are global search algorithms, they can in principle
search the entire space eventually. Local search algorithms can get stuck in local
minima. Thus, in search problems dominated by many local minima, global
search methods such as simulated annealing or evolutionary algorithms are used.

An early example of this approach was described by Montana and Davies [22].
They found that a genetic algorithm using simple mutation and uniform
crossover on the weight vectors for an underwater sonar classification task out-
performed the gradient descent algorithm. However, it did not outperform a
simple modified algorithm (quickprop) {27], and it is likely to seriously under-
perform compared to more sophisticated versions of gradient descent.

Genetic Algorithms to Search for Neural Network Structure. A well
known problem in using neural networks is that one does not know what struc-
ture to use. A structure which is too complex may easily perform well on the
example set without giving good generalisation; a structure which is too simple
may be unable to perform the desired task at all. Although methods of auto-
matically growing or pruning network architectures have been known for some
time [6], they are not widely used (cascade correlation may be an exception). A
more standard approach is to train networks of different architectures, and use
cross-validation to determine the expected generalisation of networks of differ-
ent structures. Then one of the networks from the class with the best expected
structure is tested and used. This evolves training an ensemble of networks of
different structure (if cross-validation is used to estimate the expected generali-
sation, many networks of each structure are trained as well). Either only one of
these is used, or a committee is formed from a set of them[6,30].

An alternative approach is to use an evolutionary algorithm to search over
different network architectures. In this approach, the weight adaptation is done
using a gradient method; the evolutionary search is adapting the structure of
the network, either the number of neurons or the connection topology between



them. A straight-forward approach is described in (35], and called EPNet. A
population of neural networks learns weights using a hybrid adaptive gradient-
descent /simulated annealing algorithm. The population undergoes mutations of
various types; no crossover. The mutations grow and prune the network. Each
generation consists of a fixed application of the hybrid algorithm for a fixed
number of computation steps, and then one of four mutations — delete a node,
delete a connection, add node, add connection. The mutations are all tried, the
first one to lead to improvement is chosen. Deletions are tried first to bias the
system towards simple networks. Three example sets are used. The first is used
by the hybrid algorithm to train the weights; the second is a validation set used
to compete the fitness of the neural networks in the population for selection.
The final one is used to select the member of the final population to use as the
network.

The above approach does not include crossover. Once crossover is included,
a string representation of the network architecture is required. There are two
approaches to this. The first is called direct encoding, where the structure of
the neural network is represented directly in the strings. The alternative is to
encode in the strings some dynamical process which produces the strings, such
as a grammatical encoding, in which the genetic algorithm evolves a grammar
which is then used to produce a network topology [16]. Another example is a
genetic string which produces a set of developmental instructions [21]. These
have been mostly applied to toy and test problems.

There is a problem to this approach, which is sometimes called the problem
of competing conventions. There are a number of structures by which a neural
network can solve a problem, many related by symmetries. For example per-
mutation of the labels of the neurons in a layer of a neural network leaves the
network functionally unchanged. A population can consist of networks which dif-
fer in the symmetry of the solution they are learning towards. Crossover between
such neural networks is very disruptive.

3.4 Genetic Algorithms and Reinforcement Learning

Reinforcement learning deals with those situations when the information the
learner gets about its performance is evaluative, rather then instructive. In other
words, it only knows how well it is doing, not what it should or should not be
doing, and perhaps the performance information is available only sometimes.
Learning to talk might be an example of this. No teacher is available to instruct
on how to move the muscles of the mouth to make a particular word, but if the
child can successfully produce the word “up”, it gets a reward (picked up by its
mother). If it fails, it gets no information about which part of the sequence of
movements it made was wrong. Reinforcement learning is important in adaptive
control problems, such as learning to control a mobile robot, learning to play
games, and modelling learning in biological systems. The simulated ant discussed
in section 3.2 was an example of a reinforcement learning problem, since the
only feedback provided to the ant is the amount of food picked up after a long
sequence of actions.



As mentioned previously, genetic algorithms turn learning problems into re-
inforcement learning problems, and is perhaps one of the simplest ways to im-
plement a reinforcement learning method. Thus, reinforcement learning is one of
the most important applications of genetic algorithms in machine learning. Ex-
amples of this include studies of reinforcement learning in simulated agents (1]
and training of robots using evolutionary algorithms.

b

4 Interaction of Evolution and Learning

4.1 Combining Genetic Algorithms with Local Search Algorithms

Many authors have used a local search algorithm combined with an evolution-
ary algorithm to improve search. The idea is that the evolutionary steps move
members of the population near locally optimal solutions, and the local search
algorithm takes it the rest of the way. See, for example Ackley and Littman [1]
and Belew [4]. Alternatively, one could use the local algorithm as the main search
element of the population, adding occasional crossovers as a global element to
move individuals away from locally optimal states.

Once local search is added to the genetic algorithm a question arises, should
the result of the local search change the strings or not. In other words, should
evolution be Lamarckian or Darwinian? Lamarck believed in inheritance of ac-
quired traits, e.g. the giraffe has a long neck because its ancestors stretched their
necks to reach the tall leaves, and their offspring inherited the longer necks. Weis-
mann [32] argued that this is impossible for biological organisms; there was no
way for information to pass from the somatic cells which make up the body
of the organism to the germ cells which carry the inheritable genetic material
(Darwin argued that this was unnecessary to understand evolution, but did not
rule it out).

Although it is impossible for biological organisms, computer programs can
be Lamarckian. There is some evidence that they should be. Hart and Belew [11]
used a genetic algorithm, a variety of local optimisation approaches, Lamarckian
combinations of genetic algorithms with local optimisation and non-Lamarckian
combinations of genetic algorithms with local search on a test optimisation prob-
lem containing a large number of local optima. They found that the Lamarckian
methods were significantly better than all other methods in most of the trials.

Their interpretation of the results was that initially the GA population is dis-
tributed across the search space. A normal GA, however, would become centred
around one good optimum as the population converged. Combining the GA with
a high number of local search steps per generation prevents that, as all members
of the population are centred around optima. The Lamarckian aspect enhances
this. However, if the population starts to converge, the opposite is true, the
Darwinian algorithm is better. Hart and Belew found that for infrequent local
searches, the Darwinian algorithm performs better. Why this might be is shown
in figure 7. When the population has converged around a local optimum, genetic
algorithm search is particularly slow, as discussed in [29]. However, using local
searches without modifying the genotype gives all of the points within a basin



of attraction of an optimum effectively the same fitness. This allows a more di-
verse population which can move between optima much more readily. This idea
has been explored for simulated annealing in the basin hopping algorithm and is
discussed in [31].

/ / Fitness

Genotype

Fig. 7. A fitness function (solid line) and the effective fitness (dashed line) when a
genetic algorithm is combined with local search in a Darwinian manner. Every point
within the basin of attraction of a minimum has the same effective fitness.

Other studies of this effect are presented by Whitley et. al. [33].

4.2 The Baldwin Effect

One effect of the interaction of learning with evolution was first proposed by J. M.
Baldwin in 1896 [3]. He argued that acquired characteristics could be indirectly
inherited. This occurs in two steps. First, plasticity can increase fitness of partial
mutation which is otherwise useless. For example, an organism which lives in a
hot climate may be born with structures which protect it from the sun, or it
could have skin pigments which can react by tanning. Likewise, an organism can
be born with the ability to hunt, or it can be born with the ability to learn to
hunt. The tanning reaction and learning are both examples of plasticity which
impart increased fitness.

However, plasticity has a cost. While an organism is learning to hunt, it
may go hungry or even die. So the second step of the Baldwin effect is genetic
assimilation. The adaptation becomes genetically encoded and innate. Thus,
through this two step process, acquired characteristics are inherited, but without
violating the impossibility of information transfer back to the genetic material.

A model of this was proposed by Hinton and Howlan {13] The genotype is
a string of 20 characters drawn from the alphabet, {0,1,7}. The phenotype is
a neural network with weight values of 0 or 1 assigned from the genotype. The
weights associated with the ?’s are plastic, random search assigns 1 or 0 to those
over 1000 trials. The ideal phenotype has all weight values equal to 1, any other
phenotype is not useful.

The fitness of the individual is

F=20- % min (number of trials to find ideal, 1000). (4)



So if you are born with the ideal phenotype, the fitness is 20. The fitness decreases
linearly with the time for learning to find the ideal phenotype, and is 1 if learning
fails to find the solution in 1000 trials. Learning has a cost.

Without learning, the genetic search is a needle in a haystack problem, and a
solution is never found. With learning, a solution is found and the fitness of the
population increases over time. One also sees that the number of ?’s in the pop-
ulation decays slowly over time; genetic assimilation does occur, albeit slowly.
Thus, learning guides evolution. With plasticity, evolution can work even where
only a perfect solution imparts fitness advantage. This is important, because
it was often hard to see how evolution could work otherwise to evolve struc-
tures which are useless unless complete. This model has been studied further by
Harvey [12] and Mayley [20].

5 Conclusions

Genetic algorithms are general purpose search algorithms which act on a popu-
lation of candidate solutions. They can be applied to search on discrete spaces,
so can be used to search rule sets, representations of computer programs or
computer structures, neural network architectures, and so forth. When applied
to learning, genetic algorithms turn learning tasks into reinforcement learning
problems; it is in this domain where they are often used. Genetic algorithms
combine quite successfully with local search algorithms or local machine learn-
ing methods.

Good introductory texts on genetic algorithms include books by Gold-
berg [10] and Mitchell [23]. The standard introductory books on genetic pro-
gramming are those by Koza [17,18].
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1 Introduction

Pattern Recognition (PR) is a fast growing field with applications in many di-
verse areas such as optical character recognition (OCR), computer - aided diag-
nosis and speech recognition, to name but a few.

Pattern recognition deals with the automatic classification of a given object
into one from a number of different categories (classes). The goal of PR is the
development of an automatic classification system, which will be used for the
classification of objects relevant to the application at hand.

In order to illustrate how an automatic classification system works, let us
consider a computer-aided diagnosis classification system. The purpose of such
a system is to classify regions from an image (e.g. X-rays) in either of two
classes, depending on whether this image corresponds to a benign or malignant
lession. Given the specific region of the image as input, the classification system
will measure some prespecified quantities related to the image region (such as
its perimeter, its area, etc.), known as features. In the sequel, each region is
represented by the vector formed by the above features, which is called feature
vector. Then, based on this vector, a new reduced order feature vector may be
formed, each coordinate of which is either one of the coordinates of the original
vector and/or a combination of them. This feature vector is then used for the
classification of the corresponding lession either to the benign or to the malignant
class.

The vector space into which the selected feature vectors lie is known as
feature space. The dimension of the space depends on the number of features,
I, and it can be either continuous or discrete valued. Thus, if in an application
the features used are discrete valued (i.e., they may take values only in a finite
data set C), the feature space is C*. If, on the other hand, the features can take
values in a continuous real number interval, the feature space is R'. In the case
where the first [; features are continuous valued and the remaining [ — [; are
discrete valued, taking values in C, the feature space is Rl x Cth,

Having given the basic definitions, let us now focus on the major design
stages of a classification system.
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— Feature generation: This stage deals with the generation of the features that
will be used to represent an object. These should be chosen so that their
values vary significantly among the different classes. The choice is application
dependent and they are ususally chosen in cooperation with experts in the
field of application.

— Feature selection: This stage deals with the selection of features, from a larger
number of generated ones, that are most representative for the problem. That
is, they are rich in information concerning the classification task. Basically,
their values must vary a lot for the different classes. This is an important
task. If the selected features are poor in classification related information,
the overall performance of the system will be poor.

— Classifier design: This stage can be considered as the heart of the classifica-
tion system. The design of the vector classifier is usually carried out through
the optimization of an optimality criterion. Speaking in geometrical terms,
the task of a classifier is to divide the feature space into regions each of
which corresponds to a class. Thus, for a given feature vector, the classifier
identifies the region in the feature space where it belongs and assigns the
vector to the corresponding class.

— System FEvaluation: The final stage consists of the performance evaluation
of the system, that is the estimation of the classification error probability.
This is also an important task, since in the majority of cases this estimation
is based on a limited number of test data. If the error probability turns to
be higher than a prespecified threshold, the designer may have to redesign
some or all the previous stages.

In the sequel, we will focus on the classfier design stage. Thus, we assume
that appropriate features have been selected during the feature genereation and
feature selection stage !. It is assumed that there is a one to one correspondence
between objects and selected feature vectors. Also, unless otherwise stated, we
assume that the feature vector consists of real valued coordinates and the feature
space is R!.

2 Bayes Decision Theory

Consider an m-class classification task, i.e., a problem where an object may
belong to one out of m possible classes. Let w; denote the ith class. The problem
that has to be solved by the classifier may be stated as: “Given a feature vector x
which is the most appropriate class to assign it?”. The most reasonable solution
is to assign it to the most probable class. Here is the point where probability
theory enters into the scene. In this context, the feature vector « will be treated
as a random vector, i.e., a vector whose coordinates (features) are treated as
random variables.

Let P(w;|x) be the probability that @ stems from the w; class. This is also
known as a posteriori probability. In mathematical terms the notion of “most
probable” is stated as:

! Techniques for feature generation and feature selection are discussed in [30]



Assign x to class w; if

P(w;|x) = jmax P(w;|x) . (1)

=1,...,

This is the well known Bayes classification rule 2.

Let P(w;) be the a priori probability for class w, and p(z|w;) be the class
conditional probability density function (pdf) for class w;, which describes the
distribution of the feature vectors of the ith class, i = 1,...,m. Finally, let p(z)
denote the pdf of z. Recalling that

P(wi)p(z|wi)
Plw;|x) = ———— 2
(wlz) = =088 )
the Bayes rule may be stated as
Assign x to class w; if
Plw)p(x|w;:) = ]_zrrll'i).(m P(w;)p(z|w;) . (3)

p(x) has been omitted since it is the same for all classes, i.e., independent of w;.
In the special case of equiprobable classes, i.e., if P(w;) =1/m,j=1,...,m,
the Bayes rule can simply be stated as

Assign x to class w; if
p(x|w;) = max p(zjw;) . (4)
j=1,...,m

That is, in this special case, the Bayes decision rule rests on the values of the
class conditional probability densities evaluated at x.

Let us consider now fig. 1, where the class conditional pdf’s of an one-
dimensional two class problem are depicted. The classes are assumed equiprob-
able. The points o and x; correspond to thresholds that partition the feature
space into three regions. Thus, according to the third version of the Bayes deci-
sion rule, all & that belong either to R; or to R3 are assigned to class w;, and
all @ € R, are assigned to class ws.

The above example shows how the condition of the Bayes decision rule may
be interpreted in terms of conditions in the feature space. Moreover, the above
example indicates that classification errors are unavoidable. Speaking in terms
of fig. 1, there is a finite probability for some « to stem from w; and lie in R;.
However, the classifier will assign it to class w;.

The probability of a vector = from class w; to be wrongly assigned to a
different class is

jzg#i/Rj plz|w;)P(w))de =1 — /R,- p(x|w;) P(w;)dx. (5)

2 In the case where two classes satisfy (1) we may choose arbitrarily one of the classes.



Fig. 1. The class conditional pdf’s of a one dimensional two-class problem. The regions
R; and Rj3 are assigned to class wy, while R3 is assigned to class wa

Thus, the total probability of committing a decision error P, is defined as
Po= 01~ [ plafn) Plui)d]. ©)
i=1 i

It may be shown (see, eg., [30]) that the Bayes decision rule minimizes the
total probability of error.

3 Discriminant Functions and Discriminant Surfaces

In some cases, instead of working directly with P(w;|) it is more convenient to
use g;i(x) = f(P(w;|x)), where f(.) is a monotonically increasing function. The
9i(.)’s are known as discriminant functions. In this case, the Bayes decision rule
becomes

Assign x to class w; if

g9i(x) = jnax g;(x) . (7)

In other words, the set of discriminant functions identifies a partition of the
feature space into regions, each one corresponding to a class.

The contiguous regions of the feature space R' that correspond to different
classes are separated by continuous surfaces, known as decision surfaces. Thus,
the decision surface separating the two regions R; and R; associated with classes
w; and wj, respectively, is described by the following equation:

9:i(®) = gi(x) —g;(®) =0,  ij=12,....m, i#]. (8)



In the sequel we focus on the case where p(x|w;) are normal (Gaussian)
distributions, i.e.,

1 1 _
plxlw) = N(pi, X3) = AL exp(—g (@ — p) "IN @ - ), s (9)

i = 1,2,...,m, where p; = Elz|z € w;| is the mean vector of the class w;,
¥ = E[(x — ps)(x — p3)7T) is the I x | covariance matrix for class w; and |Z;| is
the determinant of X;. It is clear that only the vectors € w; contribute 2.

Our objective is to design a Bayesian classifier taking into account that each
p(x|w;) is a normal distribution. Having in mind the Bayesian rule given in (3),
we define the discriminant functions

gi(x) = In(P(w:)p(e|w:)) - (10)
Substituting (9) into (10) we obtain

1 _
gi(x) = _§(w_”"i)T2i Y — ps) + In P(wi) + ¢ (11)
or, after some maninulations,

gi{x) = —%mT}Ji—laz+ %mTEi_lu,- - ;piTEi_lp,- + %piTZi_lw—i—lnP(wi) +e,
(12)
where c; is a constant equal to —% In(27) — § In|Z;].
Clearly, the decision surfaces defined as g;(x) — g;(x) = 0 are quadrics
(hyperellipsoids, hyperparaboloids, pairs of hyperplanes, etc.) and the resulting
Bayesian classifier is a quadric classifier.

Special cases:

I: Assuming that the covariance matrices for all classes are equal to each
other, ie., 2; = X, 1 =1,2,...,m, the terms —%wTZi_lw and c¢; are the same
in all g;’s, thus they can be omitted. In this case, g;(x) becomes a linear function
of x, and it can be rewritten as:

gi(@) =wTx +wo, (13)
where
w;=Z" 1y, (14)
and )
wip = —§mT2_1ui +1n P(w;) . (15)

In this case, the decision surfaces g;(x) — g;(x) = 0 are hyperplanes and the
Bayesian classifier is a linear classifier.

II: Assume, in addition, that all classes are equiprobable, i.e. P(w;) = 1/m,
i=1,2,...,m. Then eq. (11) gives
1

0@) = 5@ — ) 5N @ — ) = 5 (16)
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The quantity d,,, in the right hand side of the above equation, without the minus
sign, is called Mahalanobis distance. Thus, in this case, instead of searching for
the class with the maximum g;(x), we can equivalently search for the class for
which the Mahalanobis distance between the respective mean vector and the
input vector & is minimum.

III: In addition to the above asumptions, assume that ¥ = ¢2I, where I is
the ! x [ identity matrix. In this case, eq. (16) gives

0(@) = 55 (@ — ) (@ — i) a7)

or, eliminating the factor %7, which is common for all g;’s, we obtain:

gi(®) = —(x — ps)T (& — ps) = —dZ . (18)

Clearly, searching for the class with the maximum g¢;(x) is equivalent to
searching for the class for which the Euclidean distance, d., between the respec-
tive mean vector and the input vector £ becomes minimum.

In summary, in the case where each p(x|w;) is a normal distribution, g;(x)’s
are quadratic functions of  and the decision surface between any two classes is
a quadric. If, in addition, all the classes have equal covariance matrices, g;(z)’s
are linear functions of  and the decision surfaces are hyperplanes.

4 Estimation of Unknown Probability Density Functions

As we saw above, the Bayes decision rule requires the knowledge of p(x|w;)’s
and P(w;)’s, i = 1,2,...,m. However, in practice, this is rarely the case. In the
majority of the cases, all we have at our disposal is a finite set of feature vectors
from each class known as the training set, i.e.,

S = {(z;,ci),x; € A(C RY,¢; €{1,2,...,m},i=1,2,...,N}, (19)

where ¢; is the index indicating the class to which x; belongs.

A commonly used estimate for P(w;) ({30]) is

Plw;) = % , (20)

where n; is the number of vectors in the data set that belong to class w;.

However, the estimation of p(x|w;) is not so straightforward. One way to at-
tack the problem of estimating p(x|w;) is to assume that it has a given parametric
form and to establish certain optimality criteria, the optimization of which will
give estimates for the unknmown parameters of the distribution, using only the
feature vectors available for class w;. If, for example, we assume that p(x|w;) is
a normal distribution, the unknown parameters that have to be estimated, may
be the mean vector and/or the covariance matrix.



Parametric methods that follow this philosophy are the Maximum Likelihood
Parameter Estimation, the Maximum A Posteriori Probability Estimation and
the Mixture models (see eg. (8], [22], [30]).

An alternative way for estimating p(x|w;), using the feature vectors available
for w;, Tequires no assumptions of parametric models for p(x|w;). The basic idea
relies on the approximation of the unknown pdf using the histogram method.
Let us consider the one dimansional case (! = 1). In this case the data space
is divided into intervals (bins) of size h. Then, the probability of x lying in a
specific bin is approximated by the frequency ratio, i.e.,

kn

where kx is the number of data points lying in this bin. As N — +oo, the
frequency ratio converges to the true P. The corresponding pdf value is assumed
to be constant throughout the bin and is approximated by
1kn h
i(z) = —— -z < = 22
Be) = 32, -2l <3, (22
where 7 is the center of the bin.

Generalizing to the ! dimensional case, the bins become ! dimensional hyper-
cubes of edge h and p(x) becomes

(a) = 7
p - hl N )
where now ky is the number of feature vectors lying in the [ dimensional hyper-

cube where x belongs.
Let us define ¢(x;) as

b(as) = {1, if leyl < 3, forj=1,...,1 (24)

0, otherwise ’

(23)

where z;; is the jth coordinate of the ith vector. In words, ¢(z;) equals to 1 if z;
lies in the I-dimensional unit hypercube centered at the origin 0 and 0 otherwise.
Then, eq. (23) may be rewritten in the following more general form

Z;

) 11 & —x
pa) = (5 (P (25)
i=1

However, in the above equation, we try to approximate a continuous function
(p(z)) in terms of a linear combination of instances of a discontinuous one (¢(.)).
Parzen ([23]) generalized (25) by using smooth functions ¢ that satisfy

#(x) >0,
and

/ dx)dz =1, (26)
X

and showed that such choices of ¢ lead to legitimate estimates of pdf. A widely
used form of ¢ is the Gaussian ([30]).



5 Nearest Neighbor Rules

A different kind of rules that are suboptimal in the sense that they lead to error
P, grater than that of the Bayesian clasifier, are the k-nearest neighbor (k-NN)
rules. The general idea is the following: for a given vector * we determine the
set A of the k closest neighbors of © among the feature vectors of S (see (19)),
irrespective to the class where they belong. Let k;(A), j = 1,2,...,m be the
number of feature vectors in A that belong to class w;. We determine, among the
k;(A)’s the largest one, say k;(A), and we assign x to class w;. The Euclidean
is the most frequently used distance between vectors although other distances
may also be used.

A popular rule that belongs to this category is the nearest neighbor (NN)
rule, which results from the above general scheme for k = 1. According to this
rule, a vector x is assigned to the class where its closest vector in S belongs. It
has been shown that the probability of error for the NN classifier is no greater
than twice the probability of error of a Bayesian classifier, Pg ([8], [7]). Upper
bounds for the probability of error are also available for the general case where
k > 1. It is worth noting that as k — +oc, the probability of error of the k-NN
classifier approaches Pg ([7], [30]).

Note that all the above schemes require at least O(N) operations, which in
cases where large data sets are to be utilized require excessive computational
effort. One way to avoid this problem, at the cost of loss of information, is to
cluster feature vectors of the same class that are close to each other and to use
the mean vectors of the resulted clusters as data set. Such an approach reduces
significantly the size of the data set.

6 Linear Classifiers

In the sequel, we consider the case of a two-class problem (m = 2) and we
label the two classes wy and we as 1 and 0, respectively. In the previous section
we discussed how discriminant functions, that stem from pdf’s, are related to
decision surfaces. From now on we will emancipate from the notion of probability
densities and our goal will be to design classifiers that divide the feature space
into class regions, via appropriately chosen discriminant functions. These have
not necessarily any relation to probability densities and the Bayesian rule. The
aim is to estimate a set of unknown parameters of the discriminant function in
a way that place the equivalent decision surfaces optimally in the feature space,
according to an optimality criterion.

In this section we deal with linear classifiers, that is, with classifiers that
implement linear decision surfaces, i.e. hyperplanes. A hyperplane is described

as
l

g(z) = Zw,:r,l +wy=wlx+w, =0, (27)

i=1
where w = [wy, ws, ...,wl]T are the parameters specifying the hyperplane.
Note that (w,wo) define uniquely a single hyperplane.



For the compactness of notation, we embed wo into w and we augment
the feature vector & with one more coordinate which is equal to 1, ie., w =
[wo, w1, wa, coow]T and T = (1, 71, 22, ...,x;)T. Thus the last equation
becomes

glxz)=wle =0. (28)

Our aim is to determine the optimal hyperplane that separates the two

classes. Let us define
_ 1*, Zf T € wo

6m_{—1,if:c€w1'

Then a vector x is miclassified (correctly classified) by the hyperplane w if

(29)

sz(wle) > (<)0. (30)

Let us now assume that the feature vectors of the two classes that belong to
S are lineraly separable, i.e., there exists a hyperplane w* that leaves all feature
vectors of S that belong to class 1 (0) in its positive (negative) half-space. An
algorithm that is appropriate for the determination of such a hyperplane that
classifies correctly the feature vectors of S, is the perceptron algorithm (e.g [26],
(8], [20], [30]). This may be viewed as an optimization task as described below.
Let us define the following optimization function

Jw)y= Y bsg(wx), (31)

TV

where Yqy is the set of all misclassified feature vectors of S by w. Clearly, J(w)
is a non-negative function taking its minimum value when Yy = @ 3. Then,
the perceptron algorithm may be written as a gradient descent like method that
minimizes J(w) as follows

wit +1) = w(t) - p 2D gy (32)

Note, however, that this is not a true gradient descent scheme since J(w) is
piecewise linear, thus, non differentiable at the points of discontinuity. For the
points where 8J(w)/0w is defined we can write

%: > bz (33)
w Tl

Substituting the above result to eq. (32), we obtain

wt+1l)=w(t)—p Y Igx. (34)

This is the updating equation of the perceptron algorithm. Note that this equa-
tion is defined at all points. Typical choices for p; are p, = ¢/t, where ¢ is a
constant and p; = p < 2.

% Or in the trivial case where w = 0.



It can be shown that if the available feature vectors of the two classes are
linearly separable, then the perceptron algorithm converges in a finite number of
steps to a w* that separates perfectly these vectors. However, when the available
feature vectors of the two classes are not linearly separable the perceptron al-
gorithm does not converge. A variant of this algorithm that converges (under
certain conditions) to an optimal solution (i.e., to a solution with the minimum
possible number of misclassified feature vectors) is the pocket algorithm ([10]).

Xy =1

Fig. 2. The perceptron

Let us consider now the structuring element shown in fig. 2, with parameters
wg, w1, ..., w. Let also f(z) be the hard limiter function defined as

_J1,ifz>0
flz) = {0, otherwise ’ (35)

The operation of this element is the following: Once z,, =3, ..., x; are applied
to the input nodes, they are weighted by wi, ws, ..., w;, respectively, and the
results are summed , i.e.,

!
z = Zwiz,— +wo =wTlx, (36)

i=1

where w = [wo, wi,...,w)T and & = (1, z1,...,7;]T. Then, the output of
this element is 1 if z > 0 and 0 otherwise. The w;’s are known as synaptic
weights or simply weights. Also, w and wg are called weight vector and threshold,
respectively. Finally, the function f is called activation function.

The above structuring element is known as percepton. Clearly, it implements
the separation of the feature space by the hyperplane H defined by the parameters
wi, 1 =0,...,l. That is, the perceptron will output 1 if the vector applied to its
input nodes lies in the positive side of H and 0 otherwise.

The perceptron, with a generalized activation function f, will be the basic
structuring element for most of the more complicated structures, known as neural
networks that will be discussed next. In this context, it will be known as neuron
or node.



7 Neural Network Classifiers

As it was discussed in the previous section, the perceptron structure can deal
with two-class problems, provided that the classes are linearly separable. Two
well known linearly separable problems are the AND and OR problems (see fig.
3(a)-(b)). The question that arises now is how often linear separability is met in
practice. One has not to go very far to see that even well known simple problems
are not linearly separable. Consider for example the XOR problem, where (0, 0)
and (1,1) are assigned to class 0 and (0,1) and (1,0) are assigned to class 1 (see
fig. 3(c)). Clearly, this problem cannot be solved by a single perceptron, since
a single perceptron realizes a single hyperplane and there is no hyperplane that
separates perfectly the vectors of the two classes.

@ ®)

(G}
Fig. 3. (a) The AND problem. (b) The OR problem. (¢) The XOR problem. (d) The

transformed space for the XOR problem. The open (fiiled) circles correspond to class
1(0)

Table 1. The XOR problem
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Fig. 4. (a) The network that solves the XOR problem. (b) A generalized neural net-
work architecture

In order to solve this problem two hyperplanes are needed, as shown in fig.
3(c). Taking into account the relative position of each point with respect to each
hyperplane, we achieve the transformation of the problem as shown in fig. 3(d)
and table 1. That is, y; and y2 take the values 0 or 1 depending on the relative
position (+ or —) of the point (x, z2) with respect to the respective hyperplane.
Basically, this is a transformation of the original space into the vertices of the unit
square. Clearly, a single hyperplane now suffices to separate the two classes in the
transformed space (y1,¥y2). Speaking in terms of neurons, we need two neurons
to realize the two hyperplanes H; and H; and a single neuron that combines
the outputs of the previous two neurons and realizes a third hyperplane in the
(y1,y2) space. Thus, the structure shown in fig. 4(a) results, where each neuron
has the structure shown in fig. 2 (For simplicity, the neuron thresholds are not
shown explicitly). This is known as a two-layer perceptron. It consists of two
layers of neurons. The first layer consists of two neurons and the second layer of
a single neuron. The input layer has as many input neurons as the dimensionality
of the input space. This is a special type of a neural network architecture.

In general, a Neural Network consists of L layers of neurons (excluding the
input layer) and the rth layer consists of k, neurons (see fig. 4(b)). The Lth
(final) layer is known as the output layer and its neurons output neurons. All the
other layers are called hidden layers and the respective neurons hidden neurons.

So far we have seen how a two layer neural network can be used to solve
the XOR problem. The natural question that now arises is whether there are
partitions of the feature space into classes, via hyperplanes, that cannot be solved
by a two-layer architecture. Let us consider the example of fig. 5(a), where the
shaded regions correspond to class 1 (wq) and the rest to class 0 (wz). Clearly, a



two layer network that will tackle this problem must have in its first layer as many
neurons as the hyperplanes that define the regions in the feature space. Thus,
speaking in the spirit of the solution of the XOR problem, each of these neurons
realizes one of the hyperplanes and at the same time perform a transformation of
the original  space into the (y1,y2,y3) Hs hypercube space, depending on the
position (1 or 0) of & with respect to the respective plane (fig. 5(b)). However, no
single hyperplane, realized by the output neuron in the 3-dimensional (y1, Y2, y3)
space, can separate the vertices of the hypercube that correspond to class 1 from
those that correspond to class 0. Thus, this problem cannot be solved by a two-
layer network.

100 101

110 11

1000 .. 4001

H; 010/ . 011
() (b) |

Fig. 5. (a) Classes separated by hyperplanes. (b)-(c) The transformed spaces (see text
for explanation). The open (filled) circles correspond to class 1 (0)

However, this problem can be solved by a three layer network as follows.
Having transformed the original problem to that of fig. 5(b), we can use two
neurons to realize the hyperplanes Hy and Hs in the transformed 3-dimensional
space. Hy (Hs) leaves the vertex (1,0,0) ((0,1,1)) to its positive side and all
the others to its negative side. Thus, we achieve a further transformation as
shown in fig. 5(c), where class 0 (w3) is represented by a single vertex in the two-
dimensional hypercube (square). Clearly, the problem now in this transformed
space (fig. 5(c)) is linearly separable. The network that implements the given
partition is shown in fig. 6.

The above construction (which by no means is optimal with respect to the
number of neurons used) can be applied to any partition of the input space in
two classes, where each class is a union of polyhedral sets. A polyhedral set is a
union of half-spaces. For example, in fig. 5(a) we have three hyperplanes (lines
in R?) that form seven non-intersected polyhedral sets.

In summary, we can say that the first layer neurons form hyperplanes, the
second layer neurons form regions, and the third layer neurons form classes.
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Fig. 6. The network implementing the partition shown in fig. 5(a)

7.1 Choosing the Size of the Network

Having established the capabilities of neural networks in a more theoretical con-
text, one has to find ways for utilizing them in real world situations, where,
in most of the times, the only available information is a finite set of training
vectors S. More specifically, we need to determine the right size of a network,
as well as all the values of the weights connecting its neurons and the neuron
thresholds. The size of the network plays a very important role. The right size
for the network should be large enough to be able to learn the differences between
the different classes and small enough to be unable to distinguish the differences
between the feature vectors of the same class.

There are three basic directions to approach this problem.

— Constructive techniques: The idea here is to begin with a small neural net-

work architecture (often unable to solve the problem at hand) and to aug-
ment it, utilizing the available training data set, until a specific criterion is
satisfied. One such criterion (not necessarily the best one) is the resulting
architecture to classify correctly all the available training vectors.

In this case, the size of the network as well as the values of its weights are
adjusted simultaneously. Some algorithms of this category are the Divide and
Conquer algorithm ([5], [17]), the Cascade Correlation algorithm ([9]), the
Constructive Learning by Specialization algorithm([25]), the Tilling algorihm
(119]) etc.

Prunning techniques: Here one begins with a very large architecture and
gradually reduces it by prunning weights or even neurons when certain prede-
fined criteria are met. This procedure is repeated until a specific termination
criterion is satisfied (see eg., {18}, [11], [25], [28], [30]).



— Analytical methods: In this case, the size of the network is estimated a priori,
using statistical or algebraic methods, and then, an appropriate algorithm is
employed in order to determine the values of the weights and the thresholds
of the network. Note that the network structure is kept unaltered when
esitmation of the weights and the thresholds takes place.

7.2 The Back Propagation Algorithm

By far, the most well known and widely used learning algorithm to estimate
the values of the synaptic weights and the thresholds, is the so called Back
Propagation (BP) algorithm and its variants ([33], [27], [30]). According to this
training method, the size (number of layers and number of nodes in each layer)
of the network remains fixed. In general, the procedure of determining the values
of the unknown parameters of a network is known as training of the network.

The BP algorithm relies on a training data set S (see (19)). Note that we
can use various representations for labeling the respective class of each vector
of the training set. One representation that is frequently used in practice is the
following:

y(i) =1[0,...,0, , 0,...,0], (37)

m
1
~——
c;
where y(2) is the vector having zeros everywhere except at position ¢;, that
corresponds to the class to which the ith training vector belongs, where it has

1.

The BP algorithm is a gradient descent scheme that determines a local min-
imum of the cost function which is adopted. The most popular cost function is
the following:

N
=30y, (38)
i=1
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p=1

with §,(:) being the true output of the pth output node of the network when
the ith feature vector is fed to the network and k is the number of neurons of
the output layer. Note that, in general, y, and §, are different and are known
as the desired and true outputs, respectively.

In the sequel we adopt the representation of classes described above. Thus,
we have k = m.

The gradient descent optimization procedure requires the computation of the
gradient of the cost function with respect to the unknown parameters. However,
differentiation of J is not possible, since §,(i) is expressed via the hard limiter
function, which is not a differentiable function. One way to overcome this diffi-
culty is to use a smooth function that approximates the hard limiter function,
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which will be continuous and differentiable. One such function is the logistic
function, shown in fig. 7, which is defined as

(40)

where a is the slope parameter. The larger the value of a, the more the logistic
function approaches the hard limiter. Clearly, this function takes values between
0 and 1. This function belongs to a broader class of functions known as squashing
functions, whose output is limited in a continuous real number interval. Other
such functions are also possible (e.g., [30]).

0.8¢
061
04;

0.2}

-10 -5 0 5 10

Fig. 7. The logistic function

An important property of a neuron with sigmoid activation function is
that it gives the same output for all points lying on a hyperplane parallel to
the hyperplane implemented by the neuron. This can be easily verified as fol-
lows. Let H be the hyperplane z = w”x implemented by the neuron with
w = [wo, wy, ..., w7, and H; be the hyperplane z = wy Tz, parallel to H at
distance d. Let &’ be a point on Hy. Then, the distance between &’ and H is

(a1)

or

(42)

4 A negative distance means that the input vector x lies in the negative half-space of

H.



Since the right hand side term of the last equality is constant, for all points
in Hi, and taking into account that the output of the node is equal to 1/(1 +
exp(—a(wTx’))), the claim follows.

Because of the above property, we say that the output of such a neuron is of
global nature.

Note that what has been said, concerning the classification capabilities of
neural networks consisted of neurons with hard limiter activation functions, in
the case of neurons with logistic activation functions is valid only approximately
for large values of a.

Q)

Fig. 8. A one-layer network

Let us now return to the BP algorithm. First, we will derive it for a one layer
network (see fig. 8). In this case, §,(4) is given as

!
i) = F(z(0)) = FO_ wpsz;(3)) = flwp" =(3)) , (43)
=0

where wp; denotes the weight from the jth input neuron to the pth output
neuron, wpo is the threshold of the pth neuron, wp = [wpo, wpi,... ywpr] T is
the weight vector of the pth neuron, z;(%) is the jth coordinate of the ith input
vector and x(i) = [1, z1(4),...,7:(:)]7 is the input vector. Also, z,(i) is the
weighed sum of the inputs to the pth output neuron.

The basic equation of the BP algorithm, at the tth iteration step, is

wp(t + 1) = wp(t) + Awp(t + 1), p=1,...,k, (44)
where 07 (w,)
w
Awp(t+1) = —p_aﬁlwppr(t) . (45)
Let us define
OE(1)

and



— Usually, the number of the output neurons in a neural network, used for clas-

sification, equals to the number of classes involved in the problem at hand,
i.e. each neuron corresponds to a class. This implies that the representation
given in (37) for the class indices is employed.

The BP algorithm is a nonlinear optimization task due to the nonlinearity
of the activation functions of the neurons of the network. This implies that
the cost function J has local minima and the algorithm may converge to one

of them. However, a local minimum is not necessarily a bad solution as we
will see soon.

As a termination criterion we may require that the value of J falls below a
prespecified threshold or that the gradient of J is close enough to zero. The
last criterion indicates convergence to a local minimum.

The quantity p, which is known as learning rate, plays a very important
part to the convergence of the algorithm. It should be sufficiently small, in
order to guarantee convergence, but not very small, so that to slow down
the convergence procedure. In regions of the weight space where broad min-
ima (A in fig. 9) are encountered, p should be larger in order to accelerate
convergence. On the other hand, in regions with very narrow minima (B in
fig. 9), small p should be used in order to avoid oscillation around the local
minimum,

Weight space

Fig. 9. A broad minimum (A) and a narrow minimum (B)

~ In the BP version presented above, the updating of the network weights

takes place once all feature vectors have been presented to the network.
This mode of learning is called batch mode. A different mode arises if we
update the weights of the network each time a new vector is presented to
the network. This mode is called pattern mode of operation. In practice, in



the pattern mode of operation, for each epoch, the sequence of vectors in
which they are presented to the network is randomized.

Training in the batch mode exhibits a smoother convergence behavior. On
the other hand, training in the pattern mode offers the algorithm the possi-
bility of escaping from a local minimum ([30]).

In practice, it is common that the change of the cost function gradient be-
tween successive iteration steps is not smooth but oscillatory, which results
in slow convergence. One way to speed up convergence is to use a momentum
term that smooths out the oscillatory behavior and speeds up convergence.
Then, the correction term A'wf7 is no more a function of the 8J /B'wg only,
but it also depends on the correction term of the previous step via the fol-
lowing relation

N
Awl(new) = aAwi(old) — pz 6g(i)yq_l(i) , (57)
i=1

where a is a constant called momentum factor, which usually takes values
between 0.1 and 0.8.

It is worth noting that due to the above relation, the whole history of the
correction steps is accumulated into Awg(old).

It can be shown (see [30]) that the use of the momentum term is equivalent
to the increase of the learning rate at regions in the weight space where the
gradient of J is close to zero.

An alternative way to accelerate convergence of the BP algorithm is to adapt
the learning rate p using heuristic rules (see e.g. [30]). One set of such rules
is the following: if J(t)/J(t — 1) < 1(> ¢ > 1) then increase (decrease) p
by a factor r; (rq). Otherwise, if 1 < J(t)/J(t — 1) < ¢, we leave p un-
changed. Typical values for the constants r;, rq and c are 1.05, 0.7 and 1.04,
respectively. Other acceleration schemes are also possible (see e.g. [6], [12])
After the completion of the training phase, the parameters of the network
are frozen to their converged values and the network is now ready for clas-
sification. Adopting the repesentation given in (37), the classification of an
unknown vector x into one of the m classes, depends on which output neu-
ron gets the maximum value (this is expected to be close to one and all the
others close to zero).

An important aspect of the type of training discusssed above, i.e., using the
representation given in eq. (37) and the cost function given by (38) and (39),
is that the outputs g, of the network, corresponding to the optimal weights,
are estimates, in the least square sense, of P(wp|x).

More complex training algorithms, such as Newton type schemes, which
involve the computation of the Hessian matrix of J with respect to wp’s:
have also been suggested in order to speed up convergence (see e.g. (16], [2],
[14], 3], [21], [4])-

Different cost function choices are also possible. If for example we assume
that y, take binary values (0 or 1) and they are independent to each other,



and g, are interpreted as estimates of the a posteriori probabilites P(wp|x),
we may define the so called cross-entropy function as

N ki

J= =3 e gp() + (1 - i) (- () . (58)

i=1 p=1

Computation of the ¢ terms is independent of the cost function used and is
performed in the BP spirit.

— It can be shown that if we adopt the cross-entropy cost function and bi-
nary values for y;f‘(i)’s, the outputs §, of the network, corresponding to the
optimal weights, are also estimates of P(w,|x).

7.3 Training Aspects

In the last section we commented on the termination criteria of the BP algorithm.
However, a problem that may arise in practice is that of overtraining. If this
happens, the network learns the peculiarities of the specific training data set
very well and fails to capture the underlying general structure of the problem.
As a consequence, the behavior of the network is expected to be rather poor on
new data, “unknown” to the network.

A way out of the problem of overtraining is to use apart from the training set
at hand, an additional data set, known as test set, which will be used to measure
the performance of the trained neural network. Thus, we split the set of all
available data into two sets, the training set and the test set. Then, we plot the
evolution of the error on the training and the test set, during the training phase,
versus the number of epochs. The point where overtraining becomes noticable is
the one where the error on the test set starts to increase 5 (see fig. 10). However,
it must be pointed out that this method requires the existence of a large data
set, which is not available for all applications.

Avoiding overtraining is one prerequisite for good generalization, i.e., for good
performance to feature vectors that do not belong to the training set. Another
factor affecting the generalization properties is the size of the network. Small
networks (with respect to the number of parameters) are often unable to solve
the problem at hand, while large networks tend to learn the details of the training
data set leading to poor generalization performance.

7.4 Radial Basis Function (RBF) Networks

Up to now we considered only neurons of the structure shown in fig. 2, that
implement the function y = f(wTx), where f may be a hard limiter or a sig-
moid function. In this section we consider networks whose neurons implement
functions of the form

y=fllz—all), (59)

5 Of course, we do not compute the error on the test set at each epoch but after the
completion of a predetermined number of epochs.
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Fig. 10. Plot of the error on the training and the test set versus the number of epochs.
The point where the test error starts to increase, indicates the beginning of overtraining

where ¢; is a vector in R!. Typical choices for f are
1 2
@) = exp(— ke~ ) (60)

and

o2

f(m)zm’

with the Gaussian being the most commonly used form in practice.

In words,the output of each neuron is determined by the distance between
the input vector « and the vector ¢;, associated with the corresponding node.
Clearly, a neuron of this kind gives the same response for all the points lying on
a hypersphere centered at c;. This is the reason why these neurons are called
radial basis function neurons. Moreover, note that for the above choices of f, the
output of the neuron decreases as ||z — ¢;|| increases. Thus the action of such
nodes is of a local nature.

Radial Basis Function Networks usually consist of two layers of neurons.
The first layer consists of ¥ RBF neurons and the second layer of linear output
neurons, i.e., neurons as those shown in fig. 2, with f being the identity function.
A typical architecture of an RBF network is shown in fig. 11.

Let us now see how an RBF network works through an example. Consider
the data set shown in fig. 12(a). The points denoted by open circles belong
to class wy, while the rest belong to class wy. Let us choose k = 2 and RBF
neurons with centers ¢; = (0, 0) and ¢z = (1, 1). The activation function of
these neurons is the one given in eq. (60). Also, let o; = 1/2, i = 1,2. Then
y = [exp(—||@ — c1|?), exp(—||z — c2]{)]T denotes the mapping implemented
by the above choice of RBF neurons. Thus, the data points are mapped to a
two-dimensional space as follows: the points (0, 0) and (1, 1) are mapped to the
points (1, 0.135) and (0.135, 1), respectively, the points (0, 1) and (1, 0) are
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Fig. 12. (a) Set up of the example. The open (filled) circles correspond to class 1 (0).
(b) The transformed space. (c) The RBF network implementing the desired partition.
The threshold of the output node is shown in parenthesis

both mapped to the point (0.368, 0.368) and, finally, the point (0, 2) is mapped
to the point (0.018, 0.136). This mapping is shown in fig. 12(b). Note that the
two classes are linearly separable in the transformed space and the straight line

IW) =y1+y2-1=0, (62)

is one possible solution. The corresponding RBF network is shown in fig. 12(c).

Training of the RBF Networks. In the above toy example, we chose arbi-
trarily the parameters of the RBF network, i.e., the centers c; and the variances
o; for each hidden layer neuron and the weights w; for the output layer neuron.
The question that arises now is how can we estimate these parameters in a real
world problem. In the sequel we consider the case where we have a, single output
neuron.



Let (i) be the output of the network and y(i) the desired output, when x(1)
is the input and #(.) a differentiable function (for example ¢(z) = 22). One way
to determine the parameters of the network is to define a cost function of the
form

N
J=> dle(i)) , (63)
i=1
where e(i) = §(i) — y(i), and to use a gradient descent method to determine the
above parameters, i.e.,

oJ ,
5
aJ .
ci(t+ 1) =¢i(t) —Pz—aah , J=1..k (65)
aJ

git +1) = ou(t) — e, j=1,....k, (66)

p3 30'1'

where ¢ is the current iteration step. However, the computational complexity
of such an approach is excessively high. To overcome this problem other ways
have been suggested. One such way is to select the centers corresponding to
the hidden layer neurons in a way representative of the distribution of the data
set. This can be achieved by assigning a center to every region in the feature
space which is dense in feature vectors. These regions may be unravelled using
appropriate clustering algorithms (see e.g., (13], (8], {1], [30]). Then, we assign
a center to each one of these regions 6 and we compute the variance o; of each
such region.

After the parameters of the first layer neurons have been determined, we
define the following data set

§' = {(zjayj)v z; = [fl(mj)v“-vfk(x.’i)]Ta T; € S, j= 1’-"vN} ’ (67)

where f(x;) is the output of the ith first layer neuron of the network. Then,
based on the new S’, we determine w;’s using the delta rule for one layer networks
described above.

Alternative ways for the training of RBF networks have also been suggested
(e [29], [24), [34], [15], [30)).

8 Concluding Remarks

In this chapter a number of basic classifiers were considered and discussed, such
as the Bayesian classifier, classifers based on Parzen windows and nearest neigh-
bor concepts, the perceptron and neural networks. The goal was to present these
methods in a way appropriate for the newcomer in the field.

6 In most of the cases, the center is computed as the mean of the data vectorsin the
corresponding region.
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1 Introduction

Machine Learning was primarily inspired by human learning. In a branch of Artificial
Intelligence scientists tried to build systems that reproduce forms of human learning.
Currently the methods that were discovered in this way have been elaborated and are
applied to tasks that are not performed by humans at all. For example, one of the most
popular applications is the analysis of consumer data to predict buying behaviour.
This has not traditionally been viewed as an interesting form of human intelligence.

The result of learning is what we shall call a “model”. A model can be a software
system or “knowledge” in the sense of symbolic descriptions (or diagrams) that are
inspected by human users. The requirements for a “system” are often different from
the requirements on “knowledge”. For example, “knowledge” must be communicated
to people and therefore it must be expressed in comprehensible vocabulary and split
into small parts that can be “digested” by people. A system must often satisfy
different requirements such as efficiency, modularity or compatibility with other
software. Another dimension along which learning tasks vary is if learning takes place
in a single pass or “sustained”, “continuously”. In the latter case, the learning task is
to update the acquired model (system or knowledge) all the time. After each update
the model should be usable. Table 1 summarises the main types of learning tasks.

Table 1. Types of tasks.

Learn once Learn sustained
System learning system adaptive system
Knowledge data analysis “dynamic knowledge”

The task of “dynamic knowledge” or sustained acquisition of knowledge is not
studied very often. Most applications and research in machine learning address tasks
of the other three types. A special case is knowledge acquisition for knowledge based
systems. In this case, the result of learning is “system” and “knowledge” in one: it can
be run on a computer to perform a task and it can also be understood by a human user.

Constructing a model in general is not a matter of simply applying a technique. In
learn once tasks this involves the following steps (e.g. [19]):

G. Paliouras, V. Karkaletsis, and C.D. Spyropoulos (Eds.): ACAI 99, LNAI 2049, pp- 196-217, 2001.
© Springer-Verlag Berlin Heidelberg 2001



1. Select a model class. This involves defining a language for representing models.
This language consists of a structure and a vocabulary and an interpretation from a
model to the examples.

. Collect the data.

. Clean the data by removing examples or values that violate certain constraints and
estimating missing values.

4. Transform the data and formulate these so that models can be constructed.

5. Apply an induction method to construct a model.

6. Interpret the model and/or use the model to make predictions about new data.

W N

This general methodology applies to the use of symbolic machine learning methods
but also neural network methods or evolutionary algorithms for model construction.
In fact, an important aspect of the choice between such “paradigms” is the model
class. The most important criterion for a model is usually that the model must be
consistent with the data and also with the wider domain from which the data were
sampled. Because this domain is not known, the model must be a good estimate for
the unknown part. Different learning methods produce different models from the same
data. One of the problems in the application of machine learning systems is therefore
the selection of a tool for a particular problem. Many tools include more than one
method. The choice of a tool includes the choice of methods that are included in the
tool. At a more detailed level, many tools have parameters that need to be tuned to the
dataset. Selecting an appropriate tool and selecting appropriate settings for the
parameters are difficult problems. Experiments in which the results of different
methods were compared show that for many datasets the differences are relatively
small but sometimes the differences can be quite large: a method may detect
regularities that other tools do not find at all. This raises the problem of finding a
method that is appropriate for a problem. A dual to this problem is that of
transforming the problem data such that a particular method can be applied.
Practitioners have often been observed to have a favourite method and to be able to
transform a wide range of problems into a form that allows the method to be applied.
Selecting a method and transforming a problem is considered an art. Running a tool
that implements a method is considered the actual machine learning part.

We may call this the Procrustean approach, after the giant robber Procrustes.
According to the myths around the ancient Greek hero Theseus, travellers who
reached Procrustes’ house after a long journey through the wild mountains were
kindly invited to spend the night there. However, Procrustes would allow them to
sleep only in his special bed for guests. Guests who were too tall for this bed would be
fitted by cutting their feet and if necessary their hands. Guests who were actually too
short he would stretch to make them fit, which many of them did not survive. Theseus
visited Procrustes and when the robber tried to bind him on the bed Theseus managed
to win the struggle and killed Procrustes. In the rest of this paper we try to follow
Theseus and analyse the role of selecting a learning method with an emphasis on the
selection of a class of models or the actual models that are considered by the method.
The goal is to find a way to assign each learning problem to a comfortable rather than
a Procrustean bed. We include a brief discussion of transformations of the data, and
illustrate these with an example. This paper does not present a solution but rather
articulates the issues involved and proposes that selection and construction of model
classes and data transformation can be guided by the principle of minimising the



expected size per accuracy of a model class or data transformation. Section 2
motivates the problem with observations from the practice of data mining, section 3
reviews popular learning methods and their model classes, section 4 illustrates the
problem of model selection and problem transformation and sections 5 and 6 discuss
current approaches to these problems.

2 Selection of a Machine Learning Method

As was shown in a survey by Verdenius and Van Someren [17], the issue of selecting
a tool and method is often not addressed. A survey in the Netherlands provided an
almost complete overview of the applications of inductive techniques around 1995,
when this technology was still at an early stage of development. They identified 93
applications of computational induction methods, including symbolic machine

learning, neural networks, genetic algorithms and case-based reasoning. Table 2 gives
an overview:

Table 2. Overview of how frequently each method is used.

Neural nets 58
Symbolic learning 12
Genetic algorithms 12
Case-Based Reasoning 4
Statistics! 4
Other 3
Total 93

The survey asked why a particular technique was selected. The answers were
categorised by the type of reason that the user gave for using a particular technique.
Table 3 shows the result:

Table 3. Reasons for using a particular method.

Reason type Number
Pragmatic: flexibility, costs, simplicity, availability, 25
speed, experience present

Empirical evidence: best on similar tasks, best tested for task 8
Rational motivation: insight in representation 11
Other: no alternatives, robustness, fixed in advance, suitable 34

This shows that few of the arguments were rational in the sense that they gave an
actual reason why one method is arguably better than another. As Table 4 illustrates,
very few even considered other approaches as an alternative.

! Obviously the study did not aim to give an overview of applications of statistics. It only
included applications of statistics in the context of learning systems.



Table 4. Alternative considered for application.

Applied: Most frequent alternative:
Neural nets (44) other neural net
statistical
symbolic

other

Symbolic learning (8) neural nets
other symbolic
statistical

other

GA (11 neural nets
other

statistical

— oo oW ==
w|\o

This table shows that alternatives considered are mostly within the same paradigm.
Neural nets are also considered as an alternative. Together with the previous tables
this suggests that the selection of a paradigm is motivated mostly by pragmatic
reasons and that these tend to limit the choice to a single paradigm. If we consider the
state of the art, this is not surprising. Not much is known about the conditions under
which one paradigm is better than another and therefore a “rational choice” is hard to
make.

At a more fine-grained level we encounter the same problem when selecting a
particular technique within a paradigm. Consider the following (very incomplete!) list
of model classes, each with the form of models and the geometric shapes:

Table 5. Model classes.

Model class Form Geometry
threshold function | IF F(interval values) > threshold THEN X hyperplane
decision tree Tree with tests at branches and classes at leaves | nested
hyperrectangles
linear function gXw +gtw + ... = hyperplane
prototype Prototype feature vector for each class sphere
N-prototypes Set of feature vectors for each class Voronoi
tesselation
decision list nested IF - THEN - ELSE IF - ELSE IF - ... nested
ELSE ... hyperrectangles
relational rules as above but with relations ?
m-of-n rules IF m OF condition,, condition, ... condition, ?
THEN ...

We illustrate the variety of model classes with two examples taken from real
applications.

Example 1: a medical domain with symptoms, complaints and risk factors

This domain involves the relation between information about patients and their
diseases. The goal of learning is to acquire knowledge that can be used to predict the
disease of future patients. Information about patients consists of complaints



(presented by the patient when they come to see a doctor), signs and symptoms
(observations on the patient made by the doctor) and risk factors (properties of
patients that are not directly visible but that may be relevant for the diagnosis). Some
examples of complaints, signs and symptoms are:

Complaints: pain in chest: yes/no

felt this pain before: yes/no

resting / body exercise

heavy breathing

pale

age

frequency of heart disease in family

prior diagnoses of heart disease

certain medication

habits like smoking, eating too much, lack of
body movement, etc.

Relevant possible diseases: e heart infarction

Symptoms:

Risk factors:

angina pectoris
psychosomatic disorder
hyperventilation

lung embolia

Consider some possible models for this domain. Even without real medical
knowledge we can invent some possible models:

® Threshold functions. These models consist of a function evaluating to a number
and a threshold. If the value is above the threshold then a class is assigned to the
object. The function is either a weighted sum of numerically valued attributes or a
count of boolean functions over categorical attributes. A special form of the latter
case are m-of-n rules: if m of the values specified in the n conditions of rule are
satisfied by the attribute values of an object then a certain class is assigned to the
object. Constructing a threshold function model involves finding the value for the
threshold and the values for the weights or the boolean functions. Consider the
class “heart infarction” in the medical example. The attributes are a mixture of
numerical and categorical ones. For the complaints and symptoms the number of
indications of heart disease can be counted and we get ¢. For the attributes felt this
pain before and resting/body exercise it is not clear if these are by themselves
indicators of heart infarction. It is the combination of pain in chest, not had this
before and rest that is indicative. This situation cannot be expressed well as an
additive function. An approximation would assign a heavy weight to pain in chest
and a small weight to the other two properties. The weights of the observed values
are added and if the resulting sum is above a threshold then the class is heart
infarction. The same applies to the categorical risk factors. The numerical risk
factor values can be multiplied with a weight factor (possibly after standardising
the values).

* Decision trees and decision lists. These are both well known from the literature on
Machine Learning. The main problem of these methods in the diagnosis of heart



disease concerns the numerical risk factors. In this case it makes no sense to use
the precise values of these attributes as tests in a decision tree or a decision list.
The standard solution is to use a method for constructing intervals as a subroutine
in decision tree learning. A small example illustrates this:

IF pain in chest =

yes : age
>50: felt this pain before =
no : resting =
yes: heart infarction
no: angina pectoris
yes: angina pectoris
=<50 ....
no: ....

An example of a decision list is:

IF pain in chest = yes AND age>50 AND felt pain before=yes
AND resting=yes THEN heart infarction

ELSE IF pain in chest = no THEN OK

ELSE IF age=<50 AND resting=no THEN OK

ELSEIF ...

ELSE OK

® Prototype and N-prototypes. A model of this class consists of one or more
prototypical “exemplars” of patients with heart infarction. The prototypical patient
could be:
Complaints: e pain in chest: yes
o felt this pain before: no
e resting
Symptoms: e heavy breathing: yes
e pale: <any>
Risk factors: e qge: over 55
® frequency of heart disease in family: over 2
e prior diagnoses of heart disease: yes
e certain medication: no
e habits like smoking, eating too much, lack of body
movement. yes

In this domain it is not clear if more prototypes are useful.

Example 2: relational vs. propositional representations

This example involves two alternative representations of “shopping events™
customers in a shop see objects on display and decide on whether to buy them or not.
Below, there is a situation in which a customer of age around 35, who has already
bought coffee, sees the milk. The milk is below the cheese and above the sugar. When
we observe such an event, the low level image consists of colour and intensity values
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of pixels. However, combinations of low level units can be described as relations
between objects. Although initially this may appear an irrelevant difference, it
becomes important when different generalisation methods are used. Consider the
following example in which we describe a single underlying event in two different
forms. One form uses only attributes with values and the second uses relations:

Table 6. Relational and propositional representations.

Attribute/value Relational

buys-milk: yes / no buys(client-1, milk)
age: 35 age(client-1, 35)
buys-cheese: yes/no buys(client-1, cheese)
above-milk: cheese above(milk, cheese)
below-milk: sugar above(cheese, sugar)
above-cheese: milk above(milk, sugar)
bought-coffee: yes bought(client-1, coffee)

This learning problem has several interesting properties. One is that some
information is not specific to some examples but is true for any example. Here the
positions of milk, cheese and sugar are always the same, at least for a single shop.
This seems to make them irrelevant for classification but in combination with another
property of this learning problem they may be very relevant. Suppose that a number
of shopping events have been collected and that an attempt is made to induce a
general relation between properties of the client and his or her buying behaviour.
Suppose that the actual relation here is that a client who buys something will also buy
a product on the shelf above the first product.

above(X, Y) & bought(P, X) 2 buys(P,Y)

The actual rules will be probabilistic but that can be represented by adding
probabilities. Here we focus on the structure of the rules. In this case the
generalisation is over “clients” but also over “products” because the relation holds for
any product. Only its properties (in this case “buys(P, X)) and its relations with other
products (above) matter. The propositional representation must express all
combinations of products, their attributes and their relations as separate attributes. In
the attribute-based representation this rule would be represented as a collection of
rules, like:

bought-cheese = yes > buys-milk = yes
bought-milk = yes > buys-sugar = yes

This makes models as the one above much more complex in the propositional
representation. The example illustrates that in a relational model class the actual
model is much more compact and simpler to express than in a propositional model
class.

It will become clear from our discussion of model classes that there are many more
model classes. In fact, it is not hard to define new model classes. We consider this
below. First we review some of the main learning methods.



3 Learning Methods

Table 7 summarises the main methods for constructing models of the model classes in
Table 5.

Table 7. Learning methods.

Model class Learning method

threshold function; m-of-n rules discriminant analysis; m-of-n methods
decision tree top-down induction of decision trees
linear function multiple regression

prototype matching

N-prototypes competitive learning

N-nearest neighbour storing data and matching

decision list rule learning methods

relational rules ILP methods

Details about most of these methods are easily found in the Machine Learning
literature and we shall summarise only a few below for further reference. Although
there is a large variety in the methods, most learning methods have the character of
bheuristic approximations. They use the language for the models as starting point and
generate models from compact to complex. Models are evaluated by the extent to
which they explain the data. The approximation has the form of a search process.
Search stops when some function that trades off size of the model against the extent to
which the data are explained is either minimal or satisfies a condition. Because the
search space is usually too large to search exhaustively, heuristic methods are used
that do not guarantee that a global optimum is found.

A typical ML method exploits an ordering of simplicity on the possible models to
construct candidate models from simple to complex. The parameters of a method that
determine the result of the learning process can be characterised as follows:

representation language for the models,

model evaluation function (involving simplicity and explanatory power),
search method and

actual structure of the dataset.

One prototypical example of a method, and actually the one that has been applied
most to practical problems is fop-down induction of decision trees. This has been
discussed widely in the literature. A very good systematic overview can be found in
Langley (7]. Here we summarise the method for further reference. The data are
descriptions of objects in the form of attribute vectors associated with a class label.
An attribute is selected that is the best predictor of the classes for the dataset. The data
are then split by their value for this attribute and the attribute with its values become
the root and the first branches of the decision tree. For each subset of data generated
by the split the same process is applied recursively and each resulting tree is attached
to the initial branches. The process stops when all data have the same class (or earlier,
according to a statistical criterion). The method contains two important parameters: a
criterion for deciding when to stop building the tree and a criterion for selecting the
best attribute test to add to the decision tree. The decision tree can be viewed as



comprehensible “knowledge” but it can also be viewed as a system (if complemented
with a procedure that classifies new objects).

The basic form involves only tests on the values of attributes but there are many
other possibilities. The C4.5 system [16] includes operators that construct intervals of
continuous attributes and group nominal values. The introduction of intervals for
defining tests that are associated with branches of decision trees let C4.5 search
different model classes from the basic decision tree learning method, which only
allows values of attributes as tests.

Another method is top-down induction of rules. This method constructs rules that
classify subsets of the data. Unlike decision tree learning the rules are not structured
in a tree. The method starts with a set of examples and selects the attribute-value
combination that “covers” most examples of the most frequent class. Next it considers
the subset of data that satisfy this condition and again selects the attribute/value
combination that for this subset keeps most examples of the largest class and excludes
most examples of other classes. This continues until all examples that satisfy the rule
belong to one class or until a statistical criterion is reached. Next the method
considers all examples that are not satisfied by the first rule and continues with these.
The rules are similar to trees but the search strategy and the structure of the
knowledge can cause this method to find different rules.

A method with a probabilistic model is the "naive bayesian classifier”. This
method uses Bayes' rule:

P(Class|Observation) = (P(Observation|Class) * P(Class)) | P(Observation)

interpreted as follows: an example is a set of attribute-value pairs. In probabilistic
terms this is interpreted as an “event”: Obs1 » Obs2 # ... Obsj. From the data we get:

Table 8. Concepts, notation and measurement of the Bayesian view.

Concept Notation Measured as
prob. observation P(Observation) #Observation | #cases
rior probability P(Class) #Class. | #cases
conditional prob. P(Observation|Class.) #(Observation AND Class) / #Class,

Using this interpretation we can find P(Class), P(Observation) and
P(Observation|Class). For a new observation we can compute for each class the
posterior probability P(Class |Observations):

(P(ObservationIIClassJ) * Lk P(Class])) / P(Observation)) *...* P(Observation )

The prediction is the Class with highest posterior probability. A problem is that an
example is viewed as a compound event. The naive bayesian classifier assumes
conditional independence. Details of this method can be found in most textbooks on
machine learning.

We complete this summary with a method for learning threshold functions: N-of-M
learning. The basic method for this (see for example [14]) involves two steps:
collecting a set of (M) conditions (in general attribute-value pairs) and optimising the
threshold (N). The standard method is to search for N-of-M rules one by one. Search
is organised by systematically increasing M (the set of conditions) and N, evaluating
the resulting rules on the data. This is combined with a pruning procedure using a
statistical criterion.



4 The Role of Model Class Selection in Learning

In general the task for machine learning methods such as those sketched above is
the following:

Given: Data + initial or current model* + prior knowledge* + a set of possible
models,

Find a model satisfying the following constraints:

It belongs in the given set of possible models.

It is the most compact model.

It provides the best explanation of the data.

It is the most consistent model with the given prior knowledge.
It is close to the initial or current model.

The justification for finding a compact model is that in general a simple model is
better than a more complex model if both explain the same data (“Occam’s razor”).
This does not refer to models that are semantically the same in the sense that they
make the same predictions but that are expressed in two ways, one of which is more
compact: these are obviously equally good in predictive accuracy, although we may
prefer one over the other for reasons of comprehensibility. From the perspective of
generalisation and predictive accuracy, we should compare the most compact
expression of each hypothesis and prefer the most compact of these. Intuitively the
justification for using compactness as a criterion is that, if we look at parts of the
model that say something about the domain, parts of a simpler model “say more”
about the data and so, vice versa, are supported by more data. In the context of top-
down decision tree learning and top-down rule learning, splitting the data during
learning reduces at each step the amount of data on which extensions of the tree or the
rule can be based. Consider the following example:

Table 9. Example data.

noise level colour class
low blue positive
low brown positive

live music brown positive
low red positive
low orange negative

For this table, consider the following models:

(A) IF noise level = any AND colour = any THEN class = positive
(B) (B1) IF colour = (blue OR brown OR red) THEN class = positive
(B2) IF colour = orange THEN class = negative

Model (B) consists of two submodels about parts of the domain. Now consider the
evidence for each model:



Table 10. Evidence for models in example.

Model Sample size Proportion correct in sample
A) 5 0.8

(Bl) 4 1

(B2) 1 1

Which is better: (A) or (B) (= (B1) + (B2))? Although (A) and (B1) involve the
same statements about part of the examples, (A) and (B2) have different implications
for all objects that are “orange”. The evidence for B2 is so weak compared with the
evidence for A that A seems a better model. Top-down learning methods construct
candidate models by focusing on ever smaller subsets of the data. At some point this
causes overfitting and therefore a form of pruning or a cut-off is needed. Methods that
during learning recursively decompose the data into subsets all suffer from this
problem of reducing available data for the next learning step. This problem is called
the “data fragmentation problem”. In the case of fitting polynomials or regression
models on data a similar problem occurs. Higher order polynomials and in general
more complex functions are “longer” and therefore a particular part of the function
models fewer data than a simpler, lower order or linear function and therefore
receives support from less data, giving rise to overfitting when the evidence becomes
too weak. Compare fitting a first-degree polynomial and a second-degree polynomial
to a dataset. The second-degree polynomial can approximate the data better but the
function is also “longer” in the sense of being more complex. Thus, if we look at two
parts of the function of equal length then the part of the first-degree polynomial
predicts more observations and is supported by more observations than the part of the
second-degree polynomial. For a formal analysis, see the literature on Minimal
Description Length [8].

The standard approaches to avoiding overfitting are the use of cross validation to
find the optimal complexity of a model and the use of a statistical criterion to decide if
a more complex model class results in a model that is not only better in the sense that
it predicts better for the available data but that it is also significantly (in the statistical
sense) different from a model constructed earlier in the process. In our example
above, this means that there is a (statistically significant) difference between models
(A) and (B). This method avoids models that are based on limited data because then a
difference must be quite large to be significant. Without going further into the merits
and problems of this approach, we can consider the effect of model class selection on
the risk of overfitting. For model classes, Occam’s razor implies that a model class
MC1 is better than another model class MC2 if for the models in MC1 the ratio of
complexity of a model per data supporting it (or being predicted by it) is lower than in
MC2.2 This makes a priori selection of a good model class useful because it increases
the probability of finding a simple model that explains the data.

2 In fact this analysis should take the search strategy of the learning method into account: it is
also important that the simple model is actually found.



§  Methods for Model Class Selection

Existing methods construct an optimal model within a particular model class. As
illustrated with the examples in the previous sections, the model class of each
individual method does not include the optimal model for every application, that is,
for every underlying actual structure in the domain. Thus, we face the problem of
selecting an optimal model class and the corresponding method(s). There are several
lines of attack to this problem. One limitation is set by the No Free Lunch theorem.
This states that there is no effective method for finding the optimal (e.g. the minimal)
model in the general case without exponentially complex computation. This is usually
prohibitive. However, if prior knowledge is available then this can be used to achieve
effective induction. Using prior knowledge a class of models can be selected or
constructed that includes the optimal model. A learning method can then be selected,
which finds (or approximates) the optimal model. An alternative approach is to select
a learning method that searches a specific class of models and transform the data in a
way that facilitates the formulation of a model that subsumes the assumed model set.
We have illustrated this approach with the examples above.

Model class selection method 1: The monkey and the toolbox.

This method consists of selecting all (or as many as resources of time, money and
computers allow) possible model classes, learning within each model class and then
evaluating the result using a form of cross validation. This method can be supported
by the use of a “toolbox” of learning systems, making it less expensive than finding,
buying or obtaining otherwise, understanding and installing many different systems.
Although for some problems this may be feasible, and although this method is often
used, it is both a practical and a scientific challenge to improve over it. Also, for
problems for which no existing model class (that is: no model class for an existing
learning method) leads to an optimal solution, it will not find a good solution. In our
two examples in section 2, this approach would involve applying all available
methods to the medical data and to the shopping event data, using cross validation to
find the best predicting method and apply this.

Model class selection method 2: Using prior knowledge about the model class. 3

If some properties of the data or of possible models or even of the target model are
known in advance then it may be possible to use these to select or construct the
desired model class. Ideally, the model class should minimise the number of candidate
models and include the actual model. The model class should include a relatively
simple model that is adequate for the data. If this is the case then the learning methods
have a good chance of finding it. Using prior knowledge about possible models
involves the mapping of properties of the learning problem to model classes. At the
moment this is largely an art rather than a science. It exists in the form of expertise of
the data analysts. Below is a list of some fragments of this expertise:

o Linear separability. This is one of the best known examples of this principle. The
proof by Minsky and Papert [12] that one layer neural networks can only learn

3 This is also known as “declarative bias” (e.g. [15]).



models that are “linearly separable” is a prime example of relating the model class
of a learning method (one level neural networks) to a property of the domain and
the data. This is an extreme case in which a method actually excludes a class of
models. The rule that this gives is:

IF the classes are linearly separable by the attributes THEN a single layer neural
network model (architecture) is sufficient ELSE a multi-layer model is needed.

Differences between classes in “polymorphy”, “variance”, “number of peaks”.
Good examples of this are medical domains. The persons who suffer from a
particular disease may be quite similar but those who do not will vary widely. The
more compact and uniform class will be captured by a relatively compact rule but
for the other class a very complex rule may be needed. This can be solved by using
the class with the largest variance or number of peaks as default class and learn to
recognise the other class (or classes). So the heuristic that we get is:

IF there are two classes and one class is much more homogeneous than the other
THEN learn to recognise the homogeneous class and use the other as default
class.

Exceptions. Usually, there is a relatively simple part of the model that explains
most of the data but there are a few situations that need small and very specific
additional model parts. These special parts are likely to be represented by few
examples in the training set. This requires a model class that allows fine-grained
decomposition of the domain. Model classes with model parts for subsets of cases
(decision trees, rule-based models, instance-based models) are more appropriate
than other model classes.

Relevance and local relevance. Some learning problems involve many attributes,
many of which may not be relevant. Although all learning methods can handle
irrelevant attributes, some methods (e.g. the naive bayesian learner above) include
by definition all attributes in a model. A more complicated case is when attributes
are locally relevant: these attributes are not always relevant but only for certain
subsets of the total domain; their relevance depends on the values of other
attributes. For such domains, model classes that allow locally relevant attributes are
obviously more suitable than others. In our collection above, these include TDIDT
and TDIR but not the naive bayesian classifier and regression methods. These
methods can only assign a global role to an attribute and therefore they cannot
adequately express local relevance. If there is prior knowledge about (local)
relevance an appropriate learning method can be selected. It is not clear that it is
possible to detect this more efficiently than just by experimenting with different
methods.

Noise and associated or correlated attributes. The data may contain much “random
noise”, errors in the data that are caused by poor data collection (measurement
errors, transcription and typing errors). In general this should be counteracted by
using redundancy in the data and applying a form of averaging. Suppose that in a
medical domain we have two ways to measure blood pressure. Both measures
involve errors and therefore they are not perfectly correlated. However, because the
errors are random, they will on average cancel each other if the two attributes are
averaged. This means that, although the attributes are correlated it is better to
include the average of the two as predictor than a single attribute. If the attributes



are numerical then error-cancelling is achieved in models that allow a form of
addition. If symbolic attributes are associated (like for example medication of a
patient and chronic disease) then attributes can be combined in N-of-M or other
rules that define new attributes. Learning methods with model classes that include a
form of averaging of attributes are multiple regression and bayesian methods.
Decision tree learning and rule learning are less suitable because they do not
exploit this type of redundancy in attributes. Models that add or average attributes
are better able to explore the redundancy in the attributes to counter the effect of
noise. The heuristic that we get is:

IF the domain structure involves both noise and attributes that are correlated
THEN use a method that includes (weighted) sums of these attributes in the
models in its model class.

e Conditional independence of attributes with respect to the criterion (in
classification or prediction). Two attributes are conditionally independent if
P(prediction|attribute = value) does not depend on the values of other attributes.
Intuitively, the effect of an attribute on the predicted class does not depend on the
values of other attributes. Some learning methods only give optimal results if this
holds. For example, in the models constructed by the naive bayesian classifier and
regression analysis the role of an attribute in predicting a class should not depend
on the values of other attributes. In decision tree learning, this is no problem. The
effect of an attribute may be very different in different branches of the tree. The
heuristic that we get is:

IF the relation between attributes and class can be factored into independent
effects of all separate attributes THEN use a model class with independent effects.

The properties of learning problems listed so far are relevant for categorical data,
the focus of most machine learning methods. If we broaden the scope to mathematical
modelling techniques in general then the range of model classes and of problem
properties becomes very wide. Also in the area of discrete categories there are more
properties of the underlying structure in the data than these summarised here. The
purpose of the heuristics presented above is to demonstrate that it is possible to
identify problem properties that can be used to define heuristics that can be justified
from underlying principles.

Model class selection method 3: Selection based on “cheap” properties of the data.

If properties of the data distribution such as the ones we discussed above are not
known as prior knowledge, a possibility is to compute them. However, in terms of
computational costs this would take us back to the monkey and the typewriter:
measuring properties such as the number of peaks, linear separability and the
existence of exceptions amounts to applying complete learning methods. A number of
studies have been conducted that try to relate “cheaper” (in the computational sense)
properties of the distribution of data to the performance of learning techniques.
Examples of “cheap” statistical properties are properties of the distribution of classes
or a continuous criterion such as number of classes or skewness, number of
predictors, average association between predictors or scale type of predictors
(numerical / nominal / ordinal). It is also possible to include properties that may
indirectly predict the effectiveness of learning methods. For example, the content of
the domain or the provider of the data. If the relation between such properties and the



effectiveness of methods is known then this can be used to follow a three-step
approach to learning problems:
1. Measure properties of the dataset.
2. Select an appropriate induction method.
3. Apply the method.

A number of studies have been conducted to obtain knowledge that relates
properties of datasets to the performance of induction methods. We can distinguish
three types of studies:

Type 1 study: Method evaluation.

Type 1 studies relate individual datasets to the performance of individual methods.
The result of a type 1 study is a table of Dataset * Technique * Performance. A typical
type 1 study using our examples would select representative induction methods and
apply these to a number of datasets without data transformation, using the default
settings for parameters, where possible. Performance would be measured empirically
as the average accuracy using a single cross-validation testing suite. A more refined
version of type 1 includes variations in the parameters of techniques and possibly
some standard data transformations. Many type 1 studies are a mere justification for
developing a new technique, which is compared with a number of existing techniques.
The main limitation of type 1 studies is that the results are difficult to interpret and
generalise. Since each induction method involves a search bias, it is usually possible
to find a dataset on which the technique outperforms comparable methods. Type 1
studies do not give an indication of why and when this is the case.

Type 2 study: Relating properties of data to the effect of learning methods.
Studies of type 2 improve generalisability of the results by measuring properties of
datasets instead of individual datasets and relating these properties to the performance
of learning techniques. Some large scale type 2 studies on many datasets using a
relatively wide range of techniques have been done in the STATLOG project [11], but
there have been many comparisons between methods reported in the literature.

Type 2 studies tend to produce typical patterns of results:

¢ On most problems performance of all methods is similar.

* On some problems there are significant differences in performance.
o There are large differences in speed (several orders of magnitude).
¢ Some problems need manual “encoding” or re-formulation.

Type 2 studies have several limitations:

e They do not generalise over techniques. If one technique is found to work bad
for certain properties of the data this means nothing for a somewhat modified
version of the technique. The modification may remove the problem, make it
worse, or not affect it at all.

¢ It does not explain why techniques work well with some datasets but not with
others. There is no abstraction that justifies the observed relation.

e It is difficult to select relevant and predictive attributes of datasets. There are
many parameters to describe datasets and there is no way to know if a
particular selection of parameters includes the relevant ones.

These problems are due to the purely empirical, a-theoretical character of this type
of study.



Type 3 study: Relating properties of datasets and methods to the effectiveness of types
of learning methods.

Type 3 studies resolve the problems of the above two types, by relating both
properties of datasets and properties of methods to the performance of the methods on
the domain. This brings the results closer to the factors identified above in section 2
and makes it possible to generalise over methods in terms of their characteristics.
Type 3 studies are the ultimate goal. The main difficulty of this approach is to define
relevant properties of methods. These must be somewhere between those that we
reviewed under the use of prior knowledge and those used in empirical studies. The
examples that we gave above under the use of prior knowledge illustrate this
approach.

Model class selection method 4: Divide the data and conquer.

A frequently occurring problem is that a model class is appropriate for only part of the
data: part of the examples or part of the attributes. In this case a problem can be
decomposed into subproblems that are solved with different methods after which the
results are combined. Brodley [3] gives a method for partitioning the data into subsets
that are then modelled using different model classes. In our medical example an
elegant approach is to use decision tree or rule learning for (categorical) symptoms
and complaints and bayesian learning or regression for (numerical) risk factors. A
complete solution then needs a way to combine the predictions from both partial
models. At this point we consider the two partial models as attributes and look for a
model class able to combine the models. The final model is then constructed by
learning a model that combines the two partial models using the original dataset.

Model class selection method 5: Propose and revise, using feedback.

Another approach is a variation of the monkey with the toolkit that uses information
from the application of a method as feedback to select a new model class (or
transformation). This is largely an art. How to do this in a principled way remains an
open problem.

6 Data Transformation and Construction of New Learning
Methods

For many problems there is no single model class and method will produce an
adequate solution. For example, our medical domain involves a mixture of “nominal”
and numerical data which corresponds to a model class for which few techniques are
available. A crude “Procrustean” solution is to select a technique that is appropriate
for at least part of the data (in this case part of the attributes) and forget about the rest.
This loses much information, however. There are two other possibilities: data
transformation and method construction. Data transformation can be guided by the
need to apply a learning method or it can be “unsupervised”.

If a model class has been selected from prior knowledge or from *‘cheap” attributes
of the data, there may still be remaining probiems that will prevent the discovery of a
compact model. If these problems are associated with certain attributes then it is
sometimes possible to apply a transformation to the data that produces new attributes
to describe examples. This is also known as “constructive induction” (e.g. [20]) or



“term invention” (e.g. [13]). These new attributes either replace the original attributes
or are added to the descriptions of the examples, if a learning method is used that can
select only relevant features. As with model classes, a new attribute set is better than
the original one if it allows a model to be found that has a better size per
accuracy/error ratio. When considering the compactness of models that use the new
attribute, the definition of the new attribute should also be taken into account. Data
transformations can also affect the complexity of the learning process. If new
attributes replace the original attributes then the size of the space of possible models
decreases but if new attributes are added to the original attributes the size of this space
increases. In other words, replacing attributes introduces bias into the learning process
but adding attributes increases the computational cost of learning.

In our medical example we had both numerical and nominal methods. Many model
classes include models with either numerical or nominal (or categorical) attributes and
these will not be appropriate for this problem. Yet, if for lack of alternatives, it is
decided to use one of these model classes then part of the attribute set cannot be used
or must be transformed into a different type. In our medical example, the risk factors
can be transformed into nominal values so that a symbolic method can be applied or
the symbolic values can be transformed into numerical values:

1. numerical properties > nominal properties. This is called “discretisation”. A
numerical scale is divided into two or more intervals and these intervals are used as
nominal values. The main problem is to find a minimal number of intervals that
gives good accuracy in the final model. A number of methods have been proposed
for constructing such intervals. The basic idea is to exploit the distribution of
examples over the numerical scale (to make intervals coincide with high-density
clusters of examples) and the association between attribute values and the attribute
selection criterion.

2. "nominal properties” -> "numerical properties”. For this there are several
possibilities:

® Scaling. Applied to nominal values of property P with respect to the selection
criterion. The principle is that a range of items, in this case nominal values, are
ordered to create a scale. Scaling methods include the possibility of
constructing numerical (interval) scales and multidimensional scales. Consider
the following example. Suppose that possible colours of a patient are normal,
white, red, blue, grey, yellow. Suppose that the data show that the probability
of a particular disease for patients with these colours is:

normal .01
white .01
red .03
blue .02
grey .05
yellow .08

These probabilities can be used to define a scale for the attribute colour,
transforming a nominal attribute into an attribute with an ordinal or interval
scale. A discussion of methods for constructing scales can be found in the
literature on psychophysical measurement methods, for example Birnbaum [1].



e Counting. A different approach is to construct numerical properties from more
than one nominal property. For example, in our medical example, some
attributes are “risk factors”. If more risk factors hold for a person, the
probability of a disease increases. For this problem we can introduce a new
property such as the count of the number of positive risk factors.

e Flattening and structure introduction. A structured description can be
transformed into a less structured description or to a name. The inverse of
Flattening is introducing structure. Examples of this are the transformations
between relations and propositions in the descriptions of buying events in
section 2 above. Above we also illustrated the effect that these operations have
on the learning process and the result.

Table 11 lists some examples of attribute transformations that are frequently used.

Table 11. Some examples of transformations.

Transformation Meaning
counting count the number of occurrences of values for given attributes
grouping group values of an attribute into sets, interpreted as

disjunctions; can be hierarchical

interval construction /

define interval on numerical attribute

discretisation

scaling map nominal/categorical values to an ordered or numerical
scale by their association with the selection criterion [1]

flattening transform a structured description to a “flat” description

structure introduction

the inverse of flattening: introduce new structured objects

(weighted) sum of
attributes

compute a new value as a (weighted sum) of original numerical
values

normalisation (of
numerical values)

normalise the values on a numerical attribute to a distribution,
usually with a mean of 0 and a standard deviation of 1

term invention

defining a new term based on existing terms such that the new
term can be used for further learning; the new term can be a
symbolic (e.g. boolean) or numerical function

multi-valued
attributes to boolean
attributes

define a boolean attribute for each value

boolean attributes
into multi-valued
attributes

inverse of above

clustering

variables or objects are clustered and clusters are defined as
new attributes

principal component
analysis

the dimensionality of the (numerical) domain is reduced by
defining new attributes and removing the attributes on which
there is little variation

The range of possible transformations is of course very large and in the end
includes all mathematical functions. In practice, however, a relatively small set of
transformations is effective for many problems. As indicated above, these
transformations are often used to complement model class selection.

How can transformations be selected? The main reason for transforming the data is
that the model class of the learning method that will be applied does not include



models for some of the attributes. This means that the initial attributes must be
transformed into new, constructed attributes, such that the new attributes can be
computed from the initial ones and the model class of the learning method does
include the possible relation between the new attributes and the target class or
criterion. This guides the selection of transformations from the list above.

Some data transformations are not aimed at adapting the data to the model class of
the selected technique but at avoiding statistical problems, in particular overfitting.
For example, learning methods that (recursively) partition the data into subsets to
construct models for the subsets may not exploit weak global structures in the data
because locally there is not enough data to detect the pattern. Consider data with noise
and correlated attributes. A decision tree learner will select one of the correlated
attributes and split the data. In the resulting subsets the remaining small additional
effect of the other attribute is likely to remain undetected. However, a global analysis
could have shown that the attributes were correlated and both were predictive. A
better solution would have been to first cluster attributes, define strong clusters as new
attributes, define the scores on the cluster-attribute as a (weighted) sum of the original
attributes and replace the attributes in the cluster with the new cluster-attribute. The
reason that this results in more compact models per accuracy level is that in the
cluster-attribute random errors can cancel out and therefore the relation between a
cluster-attribute and a selection criterion becomes more compact. The advantage of
this method is that it can be combined with methods that construct local models, such
as decision tree learning.

This example suggests two interesting points: (1) data transformations can
themselves involve inductive learning and (2) by combining (inductive) data
transformation operations with learning methods creates new learning methods. In the
example above, we effectively defined a new learning method: first apply clustering
and then apply decision tree learning to the clustered (and unclustered) attributes. The
new method can be viewed as an old method “wrapped” in a data transformation.

In fact, if we consider other inductive learning methods to construct “data
transformers” there are suddenly very many ways to define new “hybrid” model
classes in terms of old classes. Some examples in the recent machine learning
literature are:

e Linear additive combination of models. The idea is to construct several models
using one or more learning methods and combine the predictions of these by a
weighting scheme. The models can all be of the same kind, e.g. decision trees,
neural networks, etc. but it is also possible to use more than one model class. Using
a linear combination is likely to help if the component models include random
errors that cancel each other in a linear combination. Examples are bagging and
boosting (e.g. [4]). Boosting combines this with overweighting misclassified
examples.

e Decision trees of models. Just as the terms in a linear (threshold) function, the
terms in a decision tree can be replaced by “submodels” constructed by other
methods: this leads to a range of new methods: discrimination trees [5], regression
trees [18], decision trees with relational terms [2], and so on.

Another attractive possibility, suggested by the observations above, is to integrate
model selection or model construction into learning methods. For many methods this
is relatively easy. Operators that modify the model class (or that transform the data)



-

are added to the learning method. In methods based on heuristic search such operators
can be added to the actual learning algorithm. Another principle is to increase the
model class when normal learning operators cannot solve the problem. Michalski
proposed this under the heading “constructive induction”. The famous C4.5 decision
tree learner includes operators that construct intervals and group nominal values into
value groups, thus dynamically increasing the space of possible models. Several of
Michalski’s AQ systems include operators that construct new terms [9], [10]. Several
learning systems based on inverted resolution include inverted resolution operators
that construct new terms and use these for further learning (e.g. [13]).

7  Conclusions and Further Issues

One of the differences between learning methods is the model class that they consider.
The choice of a model class for a particular learning problem is important because for
a particular dataset one model class may allow a simpler model to be found than
another model class. A simpler model is better than a complex one because parts of a
simple model receive support from more data than parts of a longer, more complex
model. We distinguish the following possibilities for dealing with the problem of
representation (or model class misfit), in terms of our Procrustean metaphor:

e transform your data to make them fit better into the procrustean bed of a learning
method or

¢ increase the range of available beds and find out how to allow problem-specific bed
construction.

On one hand, we have the certainty that there is No Free Lunch: without prior
information about the structures in the data no learning method will systematically,
for each domain, dominate all others in terms of accuracy. However, in some cases
we do have prior knowledge and frequently we consider only a particular set of
learning methods. In these cases, choice of a model class is possible. In other cases we
can apply “cheap” steps that tell us which class of methods will be applicable. Our
understanding of the selection or construction of model classes and learning methods
is still in an early stage. What we have at this moment are some examples of rational
model class selection, some ideas and pieces of methods but it looks as if this is only
the surface of a whole range of new methods. What we need most are more concepts
for relating properties of data distributions to properties of model classes for learning
methods. In this chapter we reviewed an unstructured collection of these concepts, but
structuring them and constructing effective procedures clearly requires more work.

Further reading. Most of this paper is based on ideas that appear in the literature
under the headings “bias selection”, “bias evaluation”, “declarative bias” and Minimal
Description Length. Useful further reading is a special issue of the Machine Learning
journal edited by Diana Gordon and Marie DesJardins [6]. As we mentioned above,
many authors have explored the possibilities of extending or restructuring a model
class by constructing new concepts and vocabulary. More global model selection is
less well understood although most authors mention this as a key problem. A good
source on the empirical approach to this issue is the book by Michie et al. [11]. Li and

Vitanyi [8] includes a formal discussion of the Minimal Description Length principle.



The recent research literature includes many examples of hybrid methods that can be
viewed as extending or modifying the model class of the basic component methods.
Especially conferences and journals on Data Mining and Knowledge Discovery in
Databases publish studies that address more global model class selection. The
METAL project (see www.cs.bris.ac.uk/~cgc/METALY/) studies the method selection
problem.
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1 Introduction

With the growing complexity of Machine Learning applications, the need for using
integrated or hybrid (or multistrategy) approaches becomes more and more
imperative, and an increasing amount of research effort is devoted to this issue. The
increasing complexity of applications is not the only reason making multistrategic
approaches appealing: as it is well known, no single approach/system can claim to be
uniformly superior to any other, so that hybridisation seems a natural and viable way
of compensating drawbacks and enhancing advantages. Even though there is no
common agreement on what integration exactly means in Machine Learning, in a
broad sense an integrated architecture can be defined as one which is organised or
structured so that its constituent units function co-operatively.

Some effort has also been made to define “multistrategy” learning. For example
Michalski [36] proposes to classify learning methods as a set of “knowledge
transmutation” processes. Kodratoff [32], and Console and Saitta [13] try to
systematise the definitions of several reasoning methods used in learning so far. Other
contributions to theory come from Plaza and Arcos [47], who propose that learning
requires a “self-model” of the learner to work in parallel with the learner itself, and
from Altmann [2].

Hybrid systems can be analysed from several perspectives. We have mainly used
the following two dimensions: a “syntactic” one, ie., type of co-operation among
system components, independently of their nature and content, and a “semantic” one,
which, instead, takes into account the nature of the components.

2 Type of Interaction

At the highest architectural level, a Machine Learning (ML) program can be simply
viewed as one among a complex system's components, as represented in Figure 1.
Other components possibly include performance modules, human experts, Knowledge
Acquisition interfaces, databases, traditional software or simulators.
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Fig. 1. A ML module can be included in a complex systern S, whose component units S; are
usually functionally differentiated.

In this case, each module is devoted to its own specific task, and the co-operation
with ML reduces to an exchange of input/output information. However, mutual
dependencies among modules may occur: for instance, a given performance module,
or a database may impose constraints on the ML module’s content. This type of
interaction actually characterises Knowledge Discovery in Databases (KDD) systems,
in which the Data Mining (DM) module contains the learning component in the whole
process, as it is described in Figure 2.

Result
Interpretation

Data
Mining

Data
Pre-processing

Data
Collection

Fig. 2. Scheme of the KDD process [21], in which modules with different functions interact.
Data Mining represents the learning component.

Even though the architecture in Figure 1 can be further elaborated upon, in this
overview we are more interested in a type of co-operation that takes place inside the
ML component, as presented in Figure 3.

The architecture in Figure 3 is very abstract, and may represent a large variety of
hybrid learning systems, differing in the topology, in the meaning of the internal links,
and in the content of the components C. For instance, integration of alternative
systems, devoted to specific learning tasks, is achieved in the MOBAL system [41].
This system introduces the idea of “balanced co-operation” between human expert
and learning algorithms, and includes automated tools for rule discovery, concept
formation, model acquisition, sort taxonomy handling, predicate structuring,
knowledge revision and a control and inference engine module.
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Fig. 3. The hybridisation that we are interested in occurs inside the ML component of a
possibly more complex system.

In the following, we will first consider variations in the topology of the connections
[48]. Generally, the topologies can be broadly grouped into three classes:

1. Toolbox.
2. Co-operative (sequential/functional).
3. Tightly Integrated.

A Toolbox is one of the simplest ways to achieve co-operation, and can be realised
among modules designed to perform the same task but with different means. The
toolbox architecture has two variants, according to the specific policy of interaction:
Toolbox with Selection and Toolbox with Integration. In the first variant, which is
presented in Figure 4, a number of “strategies” S, (1 i * M) work on (or are related to)
the same learning problem P independently. Each strategy tends to achieve the
common goal by itself, and all of them could be possibly run in parallel. In this case,
the strategies correspond to algorithms/systems. The result R, is the “best”, according
to some predetermined criterion, among the results provided by each one of the
strategies. The choice can be done before using the various S;’s (ex-ante selection), if
a-priori information is available, or after using the S;’s (ex-post selection).

This idea of a toolbox with selection has been the basis of the ML T Project [33],
which offers a number of choices related to knowledge representation (from tables to
FOL expressions), learning tasks (classification and clustering, for instance) and
systems, oriented towards the learning of new rules, new concepts, or new classes, or
combinations of these.

The choice among alternative systems is based, among other parameters, on the
type of knowledge representation that is used and on the target learning task. The
problem of strategy selection has been alleviated by means of a Consultant [15], [52],
which is a classification expert system, where the user is interrogated about features
of the learning task and the Consultant suggests the use of one of the available
algorithms. As a continuation of the MLToolbox project, the system MUSKRAT [26]
has been built, which helps the user to select a knowledge refinement tool among a
number of systems.



Each S; (I<=1<=M)
works on the same problem

Ex-post selection
(could also be done
ex-ante).

Fig. 4. Toolbox with Selection. Only one among the strategies S; (1<1 < M) has to be chosen.
This selection can be done before or after the strategies have been used.

For a toolbox to be effective, it is important to provide the user with a
homogeneous interface between the problem/data and the data types required by any
single algorithm. This goal can be addressed by designing a common language, as it
has been done with the Common Knowledge Representation Language (CKRL) [42].
CKRL allows uniform access to all tools, each having its own internal reasoning and
learning approaches.

A modification of the schema in Figure 4 is the Toolbox with Integration, presented
in Figure 5. The “strategies” S, (1¢ i * M) again work on (or are related to) the same
learning problem P, but the result R is a function f(R,,..., R,,) of the results obtained by
all the strategies.

Each S; (1<=i<=M)
works on the same problem

Ex-post
integration.

Integration

Fig. 5. Toolbox with Integration. The global tesult is a combination of the results obtained by
all the strategies S; (1<i < M).



An early example of this kind of toolbox with integration is given by Drobnic and
Gams [19], who try to combine the results of alternative classification systems to
obtain a single final decision. Similar ideas are suggested by Heath, Kasif and
Salzberg [27], who generate decision trees with alternative methods and then combine
the resulting classifications with a majority voting strategy, and by Chan and Stolfo
[12], who propose to use meta-learning strategies for combining the results of several
classification systems, no matter how learned.

More recently, this type of algorithm combination has been proposed in the
Bagging [10] or Boosting [22] approaches to ML. The basic idea behind boosting is
that combining different classification models is better than selecting one. In boosting,
the “strategies” of Figure 5 are different runs of the same “weak” learning algorithm,
In each run, the probability distribution over the examples in the learning set changes.
Combination consists in applying a function to the outputs obtained at each run from
the classifiers, in order to get a single decision. As an example, the function may be
majority voting. The utility of boosting consists in the fact that even though the
performance of a classifier learned in any single run may be affected by a large error
£ (provided that € is less than 1/2), the global error J tends to zero when T goes to
infinity.

Another scheme of hybridisation is Sequential Co-operation, presented in Figure 6,
in which each strategy works (possibly iteratively) during a different phase Ph, of the
problem solution, according to a fixed temporal/logical order. The final result is the
result provided by the last strategy in the chain.

Fig. 6. Sequential Cooperation. Sy outputs the global result. Each component works during a
different phase of the learning process.

An example of sequential co-operation is provided by Botta, Giordana and Piola
[8], and by Botta and Piola [9]. According to this approach, a symbolic learner
acquires the structural part of a rule base, whereas a subsequent connectionist
algorithm adjusts the numerical parameters occurring in the rules. The components of
a system based on sequential co-operation may be functionally differentiated.



Another type of co-operation is Functional Co-operation, presented in Figure 7, in
which components devoted to different tasks work on subproblems of a given
problem. The components work independently and only their results are merged.

Fig. 7. Functional Co-operation. The global result is produced by the union of the outputs of

components devoted to different tasks.

Finally, in the Tight Integration scheme, represented in Figure 8, different phases
or aspects of subproblems cannot be isolated, and all the strategies must work

together.

Sl Sz

Su

Fig. 8. Tight Integration. The global result is produced by the joint work of all system

components.

Tight integration is the most difficult scheme to design, because it requires both a
meaningful partition of the problem into subproblems, and an effective way of

recombining the results.




3 Level of Interaction

Integration, according to any of the schemes described in Section 2, can occur at many
levels in a ML system. The most abstract one is the system level, in which the S
components, introduced in Section 2, are alternative ML systems. A typical examplé
of this type of integration is MOBAL [41], whose idea of balanced co-operation
considers also the human user as part of the global system.

Most instances of integration, in ML systems, occur at the paradigm level. In
particular, the symbolic, connectionist, and evolutionary paradigms have been
combined in various ways to improve system performance or scope.

The integration of connectionist with symbolic methods has received a lot of
attention, in the effort of exploiting both the powerful learning rules used in neural
nets, and the comprehensibility of symbolic knowledge. Towel and Shavlik [S6], and
Craven and Shavlik [14] transform a rule base into a neural net; then, the network
weights are updated and the final network is transformed again into a set of rules.
Bayesian classification, neural nets and symbolic learning are combined in the
approach proposed by Tchoumatchenko and Ganascia [53]. Mitchell and Thrun [39]
have proposed the use EBNN (explanation-based neural nets) to encode task-
independent knowledge, which is used to supply a kind of explanation. Integration of
connectionist and symbolic approaches in First Order Logic has been proposed by
Botta and Piola [9].

Genetic algorithms have been used in connection with symbolic learning for
acquiring concepts both in propositional calculus [59], [57], [17], [31] and in First
Order Logic [23], [24], [1]. Recent approaches have been proposed by Michalski [37],
who suggests the exploitation of the symbolic approach to guide evolutionary
learning, and Burns and Danyluk [11], who propose the integration of an evolutionary
and a connectionist approach for feature selection. An alternative type of integration
between symbolic and stochastic learning is suggested by Sebag and Rouveirol [50],
who suggest reducing the complexity of learning in FOL by means of stochastic
sampling.

There are also systems that try to integrate several paradigms in the same learning
system. For instance, Hunter [30] suggests exploiting statistics, symbolic and
connectionist learning for the prediction of the secondary structure of proteins. In this
respect, a classic system is PRODIGY, which integrates induction, deduction, analogy
and CBR [58]. Considering the nature of the available data, instead of the type of
target knowledge, various approaches have been proposed to handle both categorical
and numerical data in the training instances, combining statistics, artificial neural
networks or genetic algorithms with symbolic learning methods, as done, for instance,
by Giordana et al. [25].

Within the same paradigm, there may exist hybrid systems integrating different
inference types for learning. This happens mostly in the symbolic approach, which
allows hypotheses to be searched for not only inductively, but also through deduction,
abduction and analogy. The first combined approaches of this type, appeared after the
introduction of EBL [38], [16]. Examples appear in Pazzani [45], Lebowitz [35], and
Bergadano and Giordana [4]. More recently, besides the combination of induction and
deduction [46], [6], other approaches have been proposed combining more complex
inference methods. In particular, Tecuci [54] proposes the refinement of a knowledge
base using induction, deduction, abduction and analogy. He also proposes the



introduction of active experimentation and interaction with the user for more effective
learning [55]. Induction, deduction and abduction on a causal theory are also used in
the systems WHY [49], SMART+ [7], CLINT [18], and Esposito et al. [20] to build
and/or refine a FOL classification knowledge base. The system EITHER [40] uses the
same types of inference for refining a propositional rule base. Another logic-based
multistrategy approach to learning is proposed by Lamma, Pereira and Riguzzi [34).
Finally, Zucker [60] has proposed a novel approach to multiple levels of knowledge
representation via abstraction.

On the application side, the field of robotics seems particularly well suited to
support a variety of learning approaches, due to the complexity and diversity of the
tasks involved in robot learning. In particular, Baroglio et al. [3] use symbolic
Jearning, neural networks and reinforcement learning to build fuzzy controllers for an
industrial manipulation robot. Other interesting fields of application are medicine
{43], and modelling of human learning [20], [44], [51]. In this last field, multistrategy
learning seems particular promising, given the complexity and variety of human
Jearning mechanisms. Other recent applications of hybrid learning systems have been
presented by Hekanaho et al. [28], and by Hsu et al. [29]. The first one refers to
bankrupt analysis, whereas the second one concerns learning heterogeneous time
series for crisis monitoring. Multistrategy learning fits also well the metaphor of
agents, as proposed by Bergen and Bock [5].

4 Conclusions

Multistrategy or hybrid learning is proving increasingly useful and far-reaching for
learning in complex domains. On the other hand, there are still several conceptual and
technical difficulties that need to be addressed and overcome. Among the most
important conceptual difficulties, there is the problem of evaluation. According to
what parameters can the improvement of a multistrategy system be evaluated? How
should the increased system complexity weighted vis-a-vis of improvements?
Examples of important technical difficulties are the problem of computational
complexity and the difficulty of control.

Notwithstanding the above still unsolved problems, trying to proceed along the
route of integration seems fundamental to face real-world problems. An example is
the new field of knowledge discovery in data bases, in which components from
several disciplines naturally cooperate: for instance, statistics, machine learning, and
data base management, each contributing a variety of methods and approaches.
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1 Introduction

The process of scientific discovery has long been viewed as the pinnacle of creative
thought. Thus, to many people, including some scientists themselves, it seems
an unlikely candidate for automation by computer. However, over the past two
decades, researchers in artificial intelligence have repeatedly questioned this at-
titude and attempted to develop intelligent artifacts that replicate the act of
discovery. The computational study of scientific discovery has made important
strides in its short history, some of which we review in this paper.

Artificial intelligence often gets its initial ideas from observing human behay-
ior and attempting to model these activities. Computational scientific discovery
is no exception, as early research focused on replicating discoveries from the his-
tory of disciplines as diverse as mathematics [27], physics [21], chemistry [44],
and biology [20}]. As the collection by Shrager and Langley [34] reveals, these
efforts also had considerable breadth in the range of scientific activities they
attempted to model, though most work aimed to replicate the historical record
only at the most abstract level. Despite the explicit goals of this early research,
some critics (e.g., [13]) have questioned progress in the area because it dealt with
scientific laws and theories already known to the developers.

Although many researchers have continued their attempts to reproduce his-
torical discoveries, others have turned their energies toward the computational
discovery of new scientific knowledge. As with the historical research, this applied
work covers a broad range of disciplines, including mathematics, astronomy, met-
allurgy, physical chemistry, biochemistry, medicine, and ecology. Many of these
efforts have led to refereed publications in the relevant scientific literature, which
seems a convincing measure of their accomplishment.

Our aim here is to examine some recent applications of computational scien-
tific discovery and to analyze the reasons for their success. We set the background
by reviewing the major forms that discovery takes in scientific domains, giving
a framework to organize the later discussion. After this, we consider steps in the
larger discovery process at which humans can influence the behavior of a compu-
tational discovery system. We then turn to seven examples of computer-aided
discoveries that have produced scientific publications. In each case, we examine
briefly the role played by the developer or user, then discuss the interactions
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with one such system at greater length. In closing, we consider directions for
future work, emphasizing the need for discovery aids that explicitly encourage
interaction with humans.

9 Stages of the Discovery Process

The history of science reveals a variety of distinct types of discovery activity,
ranging from the detection of empirical regularities to the formation of deeper
theoretical accounts. Generally speaking, these activities tend to occur in a given
order within a field, in that the products of one process influence or constrain
the behavior of successors. Of course, science is not a strictly linear process, so
that earlier stages may be revisited in the light of results from a later stage, but
the logical relation provides a convenient framework for discussion.

Perhaps the earliest discovery activity involves the formation of tazonomies.
Before one can formulate laws or theories, one must first establish the basic
concepts or categories one hopes to relate. An example comes from the early
history of chemistry, when scientists agreed to classify some chemicals as acids,
some as alkalis, and still others as salts based on observable properties like taste.
Similar groupings have emerged in other fields like astronomy and physics, but
the best known taxonomies come from biology, which groups living entities into
categories and subcategories in a hierarchical manner.

Once they have identified a set of entities, scientists can begin to discover
qualitative laws that characterize their behavior or that relate them to each
other. For example, early chemists found that acids tended to react with alkalis
to form salts, along with similar connections among other classes of chemicals.
Some qualitative laws describe static relations, whereas others summarize events
like reactions that happen over time. Again, this process can occur only after a
field has settled on the basic classes of entities under consideration.

A third scientific activity aims to discover quantitative laws that state mathe-
matical relations among numeric variables. For instance, early chemists identified
the relative masses of hydrochloric acid and sodium hydrochloride that combine
to form a unit mass of sodium chloride. This process can also involve postulating
the existence of an intrinsic property like density or specific heat, as well as esti-
mating the property’s value for specific entities. Such numeric laws are typically
stated in the context of some qualitative relationship that places constraints on
their operation.

Scientists in most fields are not content with empirical summaries and so try
to explain such regularities, with the most typical first step involving the creation
of structural models that incorporate unobserved entities. Thus, nineteenth cen-
tury chemists like Dalton and Avogadro postulated atomic and molecular models
of chemicals to account for the numeric proportions observed in reactions. Initial
models of this sort are typically qualitative in nature, stating only the compo-
nents and their generic relations, but later models often incorporate numeric
descriptions that provide further constraints. Both types of models are closely
tied to the empirical phenomena they are designed to explain.



Eventually, most scientific disciplines move beyond structural models to pro-
cess models, which explain phenomena in terms of hypothesized mechanisms
that involve change over time. One well-known process account is the kinetic
theory of gases, which explains the empirical relations among gas volume, pres-
sure, and temperature in terms of interactions among molecules. Again, some
process models (like those in geology) are mainly qualitative, while others (like
the kinetic theory) include numeric components, but both types make contact
with empirical laws that one can derive from them:.

In the past two decades, research in automated scientific discovery has ad-
dressed each of these five stages. Clustering systems like CLUSTER/2 [29], AUTO-
Crass (4], and RETAX [1] deal with the task of taxonomy formation, whereas
systems like NGLAUBER [16] search for qualitative relations. Starting with Ba-
CON [21], [23], researchers have developed a great variety of systems that dis-
cover numeric laws. Systems like DALTON (23], STAHLP [33], and GELL-MANN
(43] formulate structural models, whereas a smaller group, like MECHEM [39]
and ASTRA [19], instead construct process models.

A few systems, such as Lenat’s [27) AM, Nordhausen and Langley’s IDS [31],
and Kulkarni and Simon’s [20] KEKADA, deal with more than one of these facets,
but most contributions have focused on one stage to the exclusion of others.
Although the work to date has emphasized rediscovering laws and models from
the history of science, we will see that a similar bias holds for efforts at finding
new scientific knowledge. We suspect that integrated discovery applications will
be developed, but only once the focused efforts that already exist have become
more widely known.

This framework is not the only way to categorize scientific activity, but it
appears to have general applicability across different fields, so we will use it to
organize our presentation of applied discovery work. The scheme does favor meth-
ods that generate the types of formalisms reported in the scientific literature,
and thus downplays the role of mainstream techniques from machine learning.
For example, decision-tree induction, neural networks, and nearest neighbor have
produced quite accurate predictors in scientific domains like molecular biology
[15], but they employ quite different notations from those used normally to char-
acterize scientific laws and models. For this reason, we will not focus on their
application to scientific problems here.

3 The Developer’s Role in Computational Discovery

Although the term computational discovery suggests an automated process, close
inspection of the literature reveals that the human developer or user plays an
important role in any successful project. Early computational research on sci-
entific discovery downplayed this fact and emphasized the automation aspect,
in general keeping with the goals of artificial intelligence at the time. However,
the new climate in Al favors systems that advise humans rather than replace
them, and recent analyses of machine learning applications (e.g., [22]) suggest an
important role for the developer. Such analyses carry over directly to discovery
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Fig. 1. Steps in the computational discovery process at which the developer or user
can influence system behavior.

in scientific domains, and here we review the major ways in which developers
can influence the behavior of discovery systems.

As Figure 1 depicts, the first step in using computational discovery methods
is to formulate the discovery problem in terms that can be solved using existing
techniques. The developer must first cast the task as one that involves forming
taxonomies, finding qualitative laws, detecting numeric relations, forming struc-
tural models, or constructing process accounts. For most methods, he must also
specify the dependent variables that laws should predict or indicate the phenom-
ena that models should explain. Informed and careful problem formulation can
greatly increase the chances of a successful discovery.

The second step in applying discovery techniques is to settle on an effective
representation.! The developer must state the variables or predicates used to
describe the data or phenomena to be explained, along with the output rep-
resentation used for taxonomies, laws, or models. The latter must include the
operations allowed when combining variables into laws and the component struc-
tures or processes used in explanatory models. The developer may also need to
encode background knowledge about the domain in terms of an initial theory
or results from earlier stages of the discovery process. Such representational
engineering plays an essential role in successful applications of computational
scientific discovery.

Another important activity of the developer concerns preparing the data
or phenomena on which the discovery system will operate. Data collected by

! We are not referring here to the representational formalism, such as decision trees
or neural networks, but rather to the domain features encoded in a formalism.



scientists may be quite sparse, lack certain values, be very noisy, or include
outliers, and the system user can improve the quality of these data manually or
using techniques for interpolation, inference, or smoothing. Similarly, scientists’
statements of empirical phenomena may omit hidden assumptions that the user
can make explicit or include irrelevant statements that he can remove. Such
data manipulation can also improve the results obtained through computational
discovery.

Research papers on machine discovery typically give the algorithm center
stage, but they pay little attention to the developer’s efforts to modulate the
algorithm’s behavior for given inputs. This can involve activities like the man-
ual setting of system parameters (e.g., for evidence thresholds, noise tolerance,
and halting criteria) and the interactive control of heuristic search by rejecting
bad candidates or attending to good ones. Some systems are designed with this
interaction in mind, whereas others support the process more surreptitiously.
But in either case, such algorithm manipulation is another important way that
developers and users can improve their chances for successful discoveries.

A final step in the application process involves transforming the discovery
system’s output into results that are meaningful to the scientific community. This
stage can include manual filtering of interesting results from the overall output,
recasting these results in comprehensible terms or notations, and interpreting
the relevance of these results for the scientific field. Thus, such postprocessing
subsumes both the human user’s evaluation of scientific results and their com-
munication to scientists who will find them interesting. Since evaluation and
communication are central activities in science, they play a crucial role in com-
putational discovery as well.

The literature on computational scientific discovery reveals, though often
between the lines, that developers’ intervention plays an important role even
in historical models of discovery. Indeed, early critiques of machine discovery
research frowned on these activities, since both developers and critics assumed
the aim was to completely automate the discovery process. However, this view
has changed in recent years, and the more common perspective is that discovery
systems should aid scientists rather than replace them. In this light, human
intervention is perfectly acceptable, especially if the goal is to discover new
scientific knowledge and not to assign credit.

4 Some Computer-Aided Scientific Discoveries

Now that we have set the stage, we are ready to report some successful applica-
tions of Al methods to the discovery of new scientific knowledge. We organize the
presentation in terms of the basic scientific activities described earlier, starting
with examples of taxonomy formation, then moving on to law discovery and fi-
nally to model construction. In each case, we review the basic scientific problem,
describe the discovery system, and present the novel discovery that it has pro-
duced. We also examine the role that the developer played in each application,
drawing on the five steps outlined in the previous section.



Although we have not attempted to be exhaustive, we did select examples
that meet certain criteria. Valdés-Pérez [40] suggests that scientific discovery in-
volves the “generation of novel, interesting, plausible, and intelligible knowledge
about objects of scientific study”, and reviews four computer-aided discoveries
that he argues meet this definition. Rather than repeating his analysis, we have
chosen instead to use publication of the result in the relevant scientific literature
as our main criterion for success, though we suspect that publication is highly
correlated with his factors.

4.1 Stellar Taxonomies from Infrared Spectra

Existing taxonomies of stars are based primarily on characteristics from the
visible spectrum. However, artificial satellites provide an opportunity to make
measurements of types that are not possible from the Earth’s surface, and the
resulting data could suggest new groupings of known stellar objects. One such
source of new data is the Infrared Astronomical Satellite, which has produced
a database that describes the intensity of some 5425 stars at 94 wavelengths
throughout the infrared spectrum.

Cheeseman et al. [5] applied their AUTOCLASS system to these infrared data.
They designed this program to form one-level taxonomies, that is, to group
objects into meaningful classes or clusters based on similar attribute values. For
this domain, they chose to represent each cluster in terms of a mean and variance
for each attribute, thus specifying a Gaussian distribution. The system carries
out a gradient descent search through the space of such descriptions, starting
with random initial descriptions for a specified number of clusters. On each step,
the search process uses the current descriptions to probabilistically assign each
training object to each class, and then uses the observed values for each object to
update class descriptions, repeating this process until only minor changes occur.
At a higher level, AUTOCLASS iterates through different numbers of clusters to
determine the best taxonomy, starting with a user-specified number of classes
and increasing this count until it produces classes with negligible probabilities.

Application of AUTOCLASS to the infrared data on stars produced 77 stellar
classes, which the developers organized into nine higher-level clusters by run-
ning the system on the cluster descriptions themselves. The resulting taxonomy
differed significantly from the one then used in astronomy, and the collaborat-
ing astronomers felt that it reflected some important results. These included a
new class of blackbody stars with significant infrared excess, presumably due
to surrounding dust, and a very weak spectral ‘bump’ at 13 microns in some
classes that was undetectable in individual spectra. Goebel et al. [14] recount
these and other discoveries, along with their physical interpretation; thus, the
results were deemed important enough to justify their publication in an refereed
astrophysical journal.

Although AuTOCLASS clearly contributed greatly to these discoveries, the
developers acknowledge that they also played an important role [6]. Casting the
basic problem in terms of clustering was straightforward, but the team quickly



encountered problems with the basic infrared spectra, which had been normal-
ized to ensure that all had the same peak height. To obtain reasonable results,
they renormalized the data so that all curves had the same area. They also had
to correct for some negative spectral intensities, which earlier software used by
the astronomers had caused by subtracting out a background value. The devel-
opers’ decision to run AUTOCLASS on its own output to produce a two-level tax-
onomy constituted another intervention. Finally, the collaborating astronomers
did considerable interpretation of the system outputs before presenting them to
the scientific community.

4.2 Qualitative Factors in Carcinogenesis

Over 80,000 chemicals are available commercially, yet the long-term health effects
are known for only about 15 percent of them. Even fewer definitive results are
available about whether chemicals cause cancer, since the standard tests for
carcinogens involve two-year animal bioassays that cost $2 million per chemical.
As aresult, there is great demand for predictive laws that would let one predict
carcinogenicity from more rapid and less expensive measurements.

Lee, Buchanan, and Aronis [24] have applied the rule-induction system RL to
the problem of discovering such qualitative laws. The program constructs a set
of conjunctive rules, each of which states the conditions under which some result
occurs. Like many other rule-induction methods, RL invokes a general-to-specific
search to generate each rule, selecting conditions to add that increase the rule’s
ability to discriminate among classes and halting when there is no improvement
in accuracy. The system also lets the user bias this search by specifying desirable
properties of the learned rules.

The developers ran RL on three databases for which carcinogenicity results
were available, including 301, 108, and 1300 chemical compounds, respectively.
Chemicals were described in terms of physical properties, structural features,
short-term effects, and values on potency measures produced by another system.
Experiments revealed that the induced rules were substantially more accurate
than existing prediction schemes, which justified publication in the scientific
literature [26]. They also tested the rules’ ability to classify 24 new chemicals
for which the status was unknown at development time; these results were also
positive and led to another scientific publication [25].

The authors recount a number of ways in which they intervened in the discov-
ery process to obtain these results. For example, they reduced the 496 attributes
for one database to only 75 features by grouping values about lesions on vari-
ous organs. The developers also constrained the induction process by specifying
that RL should favor some attributes over others when constructing rules and
telling it to consider only certain values of a symbolic attribute for a given class,
as well as certain types of tests on numeric attributes. These constraints, which
they developed through interaction with domain scientists, took precedence over
accuracy-oriented measures in deciding what conditions to select, and it seems
likely that they helped account for the effort’s success.



4.3 Chemical Predictors of Mutagens

Another area of biochemistry with important social implications aims to un-
derstand the factors that determine whether a chemical will cause mutations
in genetic material. One data set that contains results of this sort involves 230
aromatic and heteroaromatic nitro compounds, which can be divided into 138
chemicals that have high mutagenicity and 92 chemicals that are low on this
dimension. Qualitative relations that characterize these two classes could prove
useful in predicting whether new compounds pose a danger of causing mutation.

King, Muggleton, Srinivasan, and Sternberg [17] report an application of their
PROGOL system to this problem. The program operates along lines similar to
other rule-induction methods, in that it carries out a general-to-specific search
for a conjunctive rule that covers some of the data, then repeats this process to
find additional rules that cover the rest. The system also lets the user specify
background knowledge, stated in the same form, which it takes into account in
measuring the quality of induced rules. Unlike most rule-induction techniques,
PRoOGOL assumes a predicate logic formalism that can represent relations among
objects, rather than just attribute values.

This support for relational descriptions led to revealing structural descrip-
tions of mutation factors. For example, for the data set mentioned above, the
system found one rule predicting that a compound is mutagenic if it has “a
highly aliphatic carbon atom attached by a single bond to a carbon atom that is
in a six-membered aromatic ring”. Combined with four similar rules, this charac-
terization gave 81% correct predictions, which is comparable to the accuracy of
other computational methods. However, alternative techniques do not produce
a structural description that one can use to visualize spatial relations and thus
to posit the deeper causes of mutation, so that the results justified publication
in the chemistry literature [17].

As in other applications, the developers aided the discovery process in a
number of ways. They chose to formulate the task in terms of finding a classifier
that labels chemicals as causing mutation or not, rather than predicting levels
of mutagenicity. King et al. also presented their system with background knowl-
edge about methyl and nitro groups, the length and connectivity of rings, and
other concepts. In addition, they manipulated the data by dividing them into
two groups with different characteristics, as done earlier by others working in the
area. Although the induced rules were understandable in that they made clear
contact with chemical concepts, the authors aided their interpretation by pre-
senting graphical depictions of their structural claims. Similar interventions have
been used by the developers on related scientific problems, including prediction
of carcinogenicity [18] and pharmacophore discovery [11].

4.4 Quantitative Laws of Metallic Behavior

A central process in the manufacture of iron and steel involves the removal of
impurities from molten slag. Qualitatively, the chemical reactions that are re-
sponsible for this removal process increase in effectiveness when the slag contains



more free oxide (O?~) ions. However, metallurgists have only imperfect quan-
titative laws that relate the oxide amount, known as the basicity of the slag,
to dependent variables of interest, such as the slag’s sulfur capacity. Moreover,
basicity cannot always be measured accurately, so there is a need for improved
ways to estimate this intrinsic property.

Mitchell, Sleeman, Duffy, Ingram, and Young [30] applied computational dis-
covery techniques to these scientific problems. Their DAVICCAND system includes
operations for selecting pairs of numeric variables to relate, specifying qualitative
conditions that focus attention on some of the data, and finding numeric laws
that relate variables within a given region. The program also includes mecha-
nisms for identifying outliers that violate these numeric laws and for using the
laws to infer the values of intrinsic properties when one cannot measure them
more directly.

The developers report two new discoveries in which DAVICCAND played a
central role. The first involves the quantitative relation between basicity and
sulfur capacity. Previous accounts modeled this relation using a single polynomial
that held across all temperature ranges. The new results involve three simpler,
linear laws that relate these two variables under different temperature ranges.
The second contribution concerns improved estimates for the basicity of slags
that contain Ti0Oy and FeO, which DAVICCAND inferred using the numeric laws
it induced from data, and the conclusion that FeO has quite different basicity
values for sulphur and phosphorus slags. These results were deemed important
enough to appear in a respected metallurgical journal [30].

Unlike most discovery systems, DAVICCAND encourages users to take part in
the search process and provides explicit control points where they can influence
choices. Thus, they formulate the problem by specifying what dependent variable
the laws should predict and what region of the space to consider. Users also affect
representational choices by selecting what independent variables to use when
looking for numeric laws, and they can manipulate the data by selecting what
points to treat as outliers. DAVICCAND presents its results in terms of graphical
displays and functional forms that are familiar to metallurgists, and, given the
user’s role in the discovery process, there remains little need for postprocessing
to filter results.

4.5 Quantitative Conjectures in Graph Theory

A recurring theme in graph theory involves proving theorems about relations
among quantitative properties of graphs. However, before a mathematician can
prove that such a relation always holds, someone must first formulate it as a
conjecture. Although mathematical publications tend to emphasize proofs of
theorems, the process of finding interesting conjectures is equally important and
has much in common with discovery in the natural sciences.

Fajtlowicz [8] and colleagues have developed GRAFFITI, a system that gen-
erates conjectures in graph theory and other areas of discrete mathematics.
The system carries out search through a space of quantitative relations like
> x; > > vy;, where each z; and y; is some numerical feature of a graph (e.g..



its diameter or its largest eigenvalue), the product of such elementary features,
or their ratio. GRAFFITI ensures that its conjectures are novel by maintaining
a record of previous hypotheses, and filters many uninteresting conjectures by
noting that they seem to be implied by earlier, more general, candidates.

GRAFFITI has generated hundreds of novel conjectures in graph theory, many
of which have spurred mathematicians to attempt their proof or refutation, which
in turn has produced numerous publications. One example involves a conjecture
that the ‘average distance’ of a graph is no greater than its ‘independence num-
ber’, which resulted in a proof that appeared in the refereed mathematical liter-
ature [7]. Although GRAFFITI was designed as an automated discovery system,
its developers have clearly constrained its behavior by specifying the primitive
graph features and the types of relations it should consider. Data manipulation
occurs through a file that contains qualitatively different graphs, against which
the system tests its conjectures empirically, and postprocessing occurs when
mathematicians filter the system output for interesting results.

4.6 Temporal Laws of Ecological Behavior

One major concern in ecology is the effect of pollution on the plant and animal
populations. Ecologists regularly develop quantitative models that are stated
as sets of differential equations. Each such equation describes changes in one
variable (its derivative) as a function of other variables, typically ones that can
be directly observed. For example, Lake Glumsoe is a shallow lake in Denmark
with high concentrations of nitrogen and phosphorus from waste water, and
ecologists would like to model the effect of these variables on the concentration
of phytoplankton and zooplankton in the lake.

Todorovski, Dzeroski, and Kompare [37] have applied techniques for numeric
discovery to this problem. Their LAGRAMGE system carries out search through a
space of differential equations, looking for the equation set that gives the small-
est error on the observed data. The system uses two constraints to make this
search process tractable. First, LAGRAMGE incorporates background knowledge
about the domain in the form of a context-free grammar that it uses to gen-
erate plausible equations. Second, it places a limit on the allowed depth of the
derivations used to produce equations. For each candidate set of equations, the
system uses numerical integration to estimate the error and thus the quality of
the proposed model.

The developers report a new set of equations, discovered by LAGRAMGE,
that model accurately the relation between the pollution and plankton concen-
trations in Lake Glumsoe. This revealed that phosphorus and temperature are
the limiting factors on the growth of phytoplankton in the lake. We can infer
Todorovski et al.’s role in the discovery process from their paper. They formu-
lated the problem in terms of the variables to be predicted, and they engineered
the representation both by specifying the predictive variables and by provid-
ing the grammar used to generate candidate equations. Because the data were
sparse (from only 14 time points over two months), they convinced three ex-
perts to draw curves that filled in the gaps, used splines to smooth these curves,



and sampled from these ten times per day. They also manipulated LAGRAMGE
by telling it to consider derivations that were no more than four levels deep.
However, little postprocessing or interpretation was needed, since the system
produces output in a form familiar to ecologists.

4.7 Structural Models of Organic Molecules

A central task in organic chemistry involves determining the molecular structure
of a new substance. The chemist typically knows the substance’s chemical for-
mula, such as C1gH2403, and frequently knows its mass spectrum, which maps
the masses of fragments (obtained by fracturing the chemical in a mass spec-
trometer) against their frequency of occurrence. The goal is to infer the structure
of the compound in terms of the molecular connections among its elementary
constituents. For reasonably complex compounds, there can be hundreds of mil-
lions of possible structures, suggesting the need for computational aids to search
this space effectively.

In perhaps the earliest effort to use AI techniques for scientific reasoning,
Feigenbaum, Buchanan, and Lederberg [10] developed DENDRAL to address this
task. The system operates in three stages, first using the mass spectrum to infer
likely substructures of the molecule that could explain major peaks in the data.?
Next, DENDRAL considers different combinations of these substructures, plus the
residual atoms, that produce the known chemical formula, using knowledge of
chemical stability to generate all (and only) chemical structure graphs consistent
with these constraints. Finally, the system ranks these candidate structural mod-
els in terms of their abilities to predict the observed spectrum, using knowledge
of mass spectrometry for this purpose.

The DENDRAL effort led to a variety of chemical structures that were pub-
lished in organic chemistry journals. For instance, Cheer et al. [3] report new
structural models for terpenoids, that is, C15 and Cy9 compounds isolated from
plants, as well as for sterol compounds that could be metabolic precursors of
known sterols in marine organisms. Similarly, Varkony, Carhart, and Smith [41]
report system-generated models for compounds that result from chemical and
photochemical rearrangements of cyclic hydrocarbons, whereas Fitch, Anderson,
Smith, and Djerassi [12] describe models for chemicals found in the body flu-
ids of patients suspected of inherited metabolic disorders. Lindsay, Buchanan,
Feigenbaum, and Lederberg [28] give a fuller list of scientific publications that
resulted from the project, including results on gaseous ions, compounds that
display pharmacological activity, and secretions used by insects for defense.

Although the early DENDRAL work emphasized automating the structural-
modeling process, the system’s developers influenced its behavior by encoding
considerable knowledge about chemical stability into its search constraints. They
presented spectrograms to DENDRAL without any special preprocessing, but they

2 At this step, the system can also accept input from chemists about likely or unlikely

substructures.



did select the structural-modeling tasks and thus the spectrograms that it en-
countered. Later versions of the system were more interactive, letting chemists
jmpose additional constraints based on their own knowledge and data sources.
Also, it seems likely that users filtered the structural inferences included in their
publications, although the output itself required little interpretation, being cast
in a formalism familiar to organic chemists.

4.8 Reaction Pathways in Catalytic Chemistry

For a century, chemists have known that many reactions involve, not a single
step, but rather a sequence of primitive interactions. Thus, a recurring problem
has been to formulate the sequence of steps, known as the reaction pathway, for
a given chemical reaction. In addition to the reactants and products of the reac-
tion, this inference may also be constrained by information about intermediate
products, concentrations over time, relative quantities, and many other factors.
Even so, the great number of possible pathways makes it possible that scientists
will overlook some viable alternatives, so there exists a need for computational
assistance on this task.

Valdés-Pérez [39] developed MECHEM with this end in mind. The system
accepts as input the reactants and products for a chemical reaction, along with
other experimental evidence and considerable background knowledge about the
domain of catalytic chemistry. MECHEM lets the user specify interactively which
of these constraints to incorporate when generating pathways, giving him con-
trol over its global behavior. The system carries out a search through the space
of reaction pathways, generating the elementary steps from scratch using spe-
cial graph algorithms. Search always proceeds from simpler pathways (fewer
substances and steps) to more complex ones. MECHEM uses its constraints to
eliminate pathways that are not viable and also to identify any intermediate
products it hypothesizes in the process. The final output is a comprehensive set
of the simplest pathways that explain the evidence and that are consistent with
the system’s background knowledge.

This approach has produced a number of novel reaction pathways that have
appeared in the chemical literature. For example, Valdés-Pérez [38] reports a new
explanation for the catalytic reaction ethane + Hy — 2 methane, which chemists
had viewed as largely solved, whereas Zeigarnik et al. [42] present another novel
result on acrylic acid. Bruk et al. [2] describe a third application of MECHEM
that produced 41 novel pathways, which prompted experimental studies that
reduced this to a small set consistent with the new data. The human’s role
in this process is explicit, with users formulating the problem through stating
the reaction of interest and manipulating the algorithm’s behavior by invoking
domain constraints. Because MECHEM produces pathways in a notation familiar
to chemists, its outputs require little interpretation.



4.9 Other Computational Aids for Scientific Research

We have focused on the examples above because they cover a broad range of
scientific problems and illustrate the importance of human interaction with the
discovery system, but they do not exhaust the list of successful applications. For
example, Pericliev and Valdés-Pérez [32] have used their KINSHIP program to
generate minimal sets of features that distinguish kinship terms, like son and
uncle, given genealogical and matrimonial relations that hold for each. They
have applied their system to characterize kinship terms in both English and
Bulgarian, and the results have found acceptance in anthropological linguistics
because they are stated in that field’s conventional notation.

Another instance comes from Swanson and Smalheiser [36], who have used
their ARROWSMITH program to discover unsuspected relations in the medica)
literature. The system searches through online papers, looking for an entry in
which some relation B => C occurs along with some other relation A = B. ARr-
ROWSMITH constrains its search by requiring that C be a physiological state (like
a disease) and that A be a possible intervention (like a drug or dietary factor).
For example, the system noted that magnesium can inhibit spreading depres-
sion, and that spreading depression has been implicated in migraine attacks. The
resulting hypothesis, that magnesium could alleviate migraines, appeared in the
medical literature [35] and has since been supported repeatedly in clinical tests.

We should also consider the relation between computational scientific dis-
covery and the kindred topic of data mining, which also aims to uncover novej,
interesting, plausible, and intelligible knowledge. One difference is that data min-
ing typically focuses on commercial applications, though Fayyad, Haussler, and
Stolorz [9] review some impressive examples of mining scientific data from as-
tronomy (for classifying stars and galaxies in sky photographs) and planetology
(for recognizing volcanoes on Venus). However, these efforts and related ones
invoke induction algorithms primarily to automate tedious recognition tasks in
support of cataloguing and statistical analysis, rather than to discover publish-
able scientific knowledge in its own right.> Moreover, such work seldom produces
knowledge in any standard scientific notation, since they typically rely on repre-
sentations from supervised machine learning like decision trees or probabilistic
summaries.

A similar relation holds between computational scientific discovery and com-
putational approaches to molecular biology. One major goal here, which Fayyad
et al. also review, is to predict the qualitative structure of proteins from their
nucleotide sequence. This paradigm has led to many publications in the biology
and biochemistry literature, but most studies emphasize predictive accuracy,
with low priority given to expressing the predictors in some common scientific
notation. A similar trend has occurred in work on learning structure-activity
relations in biochemistry, though the work by King, Muggleton, Srinivasan, and
Sternberg [17] constitutes an exception, in that they focus on presenting dis-
covered relations in chemical notation. Within computational molecular biology,

3 The classifiers learned by such methods, when applied to images, can ‘discover’ new
stars or volcanoes, but we would be unlikely to use that term if a human carried out
the same task.



the main exceptions deal with the discovery of structural motifs, which are sim-

le taxonomies that describe configurations of nucleotides or other components
that tend to recur in biological sequences. However, most research in t‘he area
has been less concerned with discovering new knowledge than with showing that
their predictors give slight improvements in accuracy over other methods, which
has led us to discuss them here only in passing.

5 An Illustration of Interactive Discovery

Since we have emphasized the interaction between humans and computational
discovery methods, we should illustrate the nature of such interactions in more
detail. Table 1 presents a sample trace of DAVICCAND, a system that provides
explicit support for such interaction. Recall that DAVICCAND deals with the dis-
covery of quantitative relations among variables that describe the behavior of the
irons slags central to steelmaking. In this case, the metallurgist communicated
verbally with one of the program’s developers, who in turn entered commands
to the system.

The first step involves the user selecting a data set from those available in
the online library, in this case one known as the ‘Strathclyde data set’. The
user can also focus the system’s attention on certain groups of data points, in
this case those that contain less than 10% silicon dioxide. This process can rely
on predefined groups or, as in this trace, the definition of entirely new groups
based on ranges of values. DAVICCAND also lets the user define groups in terms
of conjunctions of ranges, ratios of quantities, and distance from a specified line,
though here the definition is univariate.

In this trace, having specified a group, the scientist asks the system to display
a straight line through the data contained in that group. Since this appears to
give a close fit, he redirects attention to another group of cases that contain
more than 10% silicon dioxide, then changes his mind and displays instead those
with more than 20% silicon. Because neither group seems easy to characterize,
the user asks DAVICCAND to search for group definitions in terms of silicon
dioxide percentages, specifying the region within which to search. The system
displays the resulting groups and transition between them, which the user deems
interesting. He focuses especially on one cluster, defined as having less than 44%
silicon, that he thinks requires more analysis. The scientist notes that a straight
line does not describe these data, and so asks the system to fit and display a
higher-order curve for his inspection.

Later interactions with the same scientist led DAVICCAND to define new
groups based on temperature ranges and percentage of titanium dioxide. These
in turn led him to focus on regions in which values for optical basicity were
uncertain, and finally to invoke a module that estimated new values from exper-
imental data. Interactions with this user ignored some of DAVICCAND’s features,
such as the ability to label some observations as outliers. However, this fact sup-
ports our view that both humans and machines have an important role to play
in computational scientific discovery.



Table 1. A trace interaction between a metallurgist (M) and system developer (S)
jointly using DAVICCAND to analyze data about the behavior of iron slags.

= n X

n X nu X n X n X 20N 2 n X W0

2w 2 n X

=2 wn

: Okay, can you bring up the Strathclyde data set?”
: [Loads and displays the data set.]
: Can you highlight all those points that contain less than 10% silicon [actually

Si0,)?

: [Creates and displays the new group.|

: Can you draw a line through those points?

: Straight line or curve?

: A straight line.

: [Invokes module that fits and dispays a line.]

: What about those points with more than 10% silicon?

: [Creates and displays the new group.|

: That doesn’t look quite right. Can you change the value to 20%7?

: [Removes old groups from display, then creates and displays the new groups and

lines.]

: Still not quite right.

: Do you want to try a curve? Or we could try searching for the two lines.

: Let’s try searching.

: Where abouts in the data set do you want to search for the lines?

: From 10% to 70% silicon?

: We're currently locking at log sulphur vs optical basicity. To do that I need

to change the visualization or, if you can say roughly where on the screen you
want to search from, I can do that without changing the visualization.

: [Points at screen, showing start and stop points.] From here to here.

: [Invokes the search process.]

: That looks interesting. Can you show me what the groups look like?

: [Displays the group definitions.]

: It looks like the bottom group [silicon less than 44%)] is not a straight line. Can

you draw a curve through that?

: What degree of polynomial?
: Two or three.
: [Invokes curve-fitting module.]

* This data set has two slightly different groups that more or less fall on a line, but
the fits are better if each  group is treated separately.



6 Progress and Prospects

As the above examples show, work in computational scientific discovery no longer
focuses solely on historical models, but also contributes novel knowledge to a
range of scientific disciplines. To date, such applications remain the exception
rather than the rule, but the breadth of successful computer-aided discoveries
provides convincing evidence that these methods have great potential for aiding
the scientific process. The clear influence of humans in each of these applications
does not diminish the equally important contribution of the discovery system;
each has a role to play in a complex and challenging endeavor.

One recurring theme in applied discovery work has been the difficulty in
finding collaborators from the relevant scientific field. Presumably, scientists in
many disciplines are satisfied with their existing methods and see little advantage
to moving beyond the statistical aids they currently use. This attitude seems
Jess common in fields like molecular biology, which have taken the computational
metaphor to heart, but often there are social obstacles to overcome. The obvious
response is to emphasize that we do not intend our computational tools to replace
scientists but rather to aid them, just as simpler software already aids them in
carrying out statistical analyses.

However, making this argument convincing will require some changes in our
systems to better reflect the position. As noted, existing discovery software al-
ready supports intervention by humans in a variety of ways, from initial problem
formulation to final interpretation. But in most cases this activity happens in
spite of the software design rather than because the developer intended it. If
we want to encourage synergy between human and artificial scientists, then we
must modify our discovery systems to support their interaction more directly.
This means we must install interfaces with explicit hooks that let users state
or revise their problem formulation and representational choices, manipulate
the data and system parameters, and recast outputs in understandable terms.
The MECHEM and DAVICCAND systems already include such facilities and thus
constitute good role models, but we need more efforts along these lines.

Naturally, explicit inclusion of users in the computational discovery process
raises a host of issues that are absent from the autonomous approach. These
include questions about which decisions should be automated and which placed
under human control, the granularity at which interaction should occur, and
the type of interface that is best suited to a particular scientific domain. The
discipline of human-computer interaction regularly addresses such matters, and
though its lessons and design criteria have not yet been applied to computer-
aided discovery, many of them should carry over directly from other domains.
Interactive discovery systems also pose challenges in evaluation, since human
variability makes experimentation more difficult than for autonomous systems.
Yet experimental studies are not essential if one’s main goal is to develop com-
putational tools that aid users in discovering new scientific knowledge.

Clearly, we are only beginning to develop effective ways to combine the
strengths of human cognition with those of computational discovery systems. But
even our initial efforts have produced some convincing examples of computer-
aided discovery that have led to publications in the scientific literature. We



predict that, as more developers realize the need to provide explicit support for
human intervention, we will see even more productive systems and even more
impressive discoveries that advance the state of scientific knowledge.
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1 Introduction

This chapter presents a summary of the issues discussed during the one day workshop
on "Support Vector Machines (SVM) Theory and Applications" organized as part of
the Advanced Course on Artificial Intelligence (ACAI °99) in Chania, Greece [19].
The goal of the chapter is twofold: to present an overview of the background theory
and current understanding of SVM, and to discuss the papers presented as well as the
issues that arose during the workshop.

Support Vector Machines (SVM) have been recently developed in the framework
of statistical learning theory [14], [4], and have been successfully applied to a number
of applications, ranging from time series prediction [7], to face recognition [12], to
biological data processing for medical diagnosis [17]. Their theoretical foundations
and their experimental success encourage further research on their characteristics, as
well as their further use.

In this chapter we present a brief introduction to the theory and implementation of
SVM, and we discuss the five papers presented during the workshop. The chapter is
organized as follows: section 2 presents the theoretical foundations of SVM. A brief
overview of statistical learning theory also using the discussion in [16] is given. The
mathematical formulation of SVM is presented, and theory for the implementation of
SVM, as in [13], is briefly discussed. Section 3 summarizes the experimental work of
[17], [7] and [12] and the variations of the standard SVM proposed in these papers.
Finally section 4 presents some conclusions and suggestions for future research.

2 A Brief Overview of the SVM Theory

Support Vector Machines have been developed in the framework of Statistical
Learning Theory - see for example [14]. We first briefly discuss some basic ideas of
the theory.

2.1 Statistical Learning Theory: A Primer

In statistical learning theory (SLT) the problem of supervised learning is formulated
as follows. We are given a set of [ training data {((%,,y,).--(x,y)} in R" x R sampled
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according to unknown probability distribution P(x,y), and a loss function V(y,f(x))
that measures the error done when, for a given x, f(x) is "predicted” instead of the
actual value y. The problem consists in finding a function f that minimizes the
expectation of the error on new data, that is, find a function f that minimizes the
expected error:

Jv(y.fo0) Pex,y) ax dy

Since P(x,y) in unknown, we need to use some induction principle in order to infer
from the [ available training examples a function that minimizes the expected error.
The principle used is Empirical Risk Minimization (ERM) over a set of possible
functions, called hypothesis space. Formally this can be written as minimizing the
empirical error:

1 1
;Evm,f(xi»
i=1

with f being restricted to be in a space of functions - hypothesis space - say H. An
important question is how close the empirical error of the solution (minimizer of the
empirical error) is to the minimum of the expected error that can be achieved with
functions from H. A central result of the theory states the conditions under which the
two errors are close to each other, and provides probabilistic bounds on the distance
between empirical and expected errors (see theorem 1 below). These bounds are given
in terms of a measure of complexity of the hypothesis space H: the more "complex" H
is, the larger the distance between the empirical and expected errors is in probability
(see theorem 1 below).

From the bounds that the theory provides, it occurs that it is possible to improve
the ERM inductive principle by considering a structure of hypothesis spaces H, < H,
C... ¢ H,, with ordered "complexity" (i.e. H,, is more "complex” than H). ERM is
performed in each of these spaces, and the choice of the final solution can be done
using the aforementioned bounds. This principle of performing ERM over a structure
(sequence) of nested hypothesis spaces is known as Structural Risk Minimization
(SRM) [14].

An important question that arises in SLT is that of measuring the "complexity" of a
hypothesis space - which, as we discussed, we need in order to choose the final
optimal solution to the learning problem. In [16] quantities measuring this
"complexity” of a hypothesis space are discussed, and suggestions for how to measure
such quantities experimentally are made. We briefly describe the "complexity”
quantities discussed in [16].

The first quantity discussed is a standard one in SLT [14], and is called the VC

dimension of a set of functions. This is a combinatorial quantity that characterizes the
capacity of the set of functions to shatter a set of points (for more information we
refer the reader to the literature). Using the VC dimension of a hypothesis spaces H,
the aforementioned distance between empirical and expected errors can be bound as
follows:
Theorem 1 [15] If h is the VC-dimension of a hypothesis space H, then with
probability 1-n, the minimum of the expected error that can be achieved with
functions from H, say L, and the minimum empirical error, say L, satisfy the
constraint:
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independent of the distribution of the data P(x,y).

Theorem 1 holds independently of the probability distribution of the data P(x,y). In
[16] the distribution P(x,y) is also taken into account (similar work has already been
done in the past - for example see [14] and references therein), and the distance
petween empirical and expected error is bounded using a "complexity” quantity that
takes P(x.y) into account. The bounds presented are tighter than that of theorem 1, but
require the knowledge of the distribution dependent complexity quantity. The goal of
Vayatis and Azencott [16] was to introduce a possible experimental setup to compute
the distribution-depended complexity quantity they suggest. To summarize, Vayatis
and Azencott [16] discuss the basic theoretical framework in which learning machines
such as SVM have been developed, and suggest possible directions of research that
can lead to improvements of the theory and so possibly to improvements of SVM (for
example the theory can be used to choose the parameters of an SVM, such as the
kernel and the regularization parameter C - see below).

We now discuss how SVM emerge from the theoretical framework we outlined.

2.2 Support Vector Machines Formulation

Support Vector machines realize the ideas outlined above. To see why, we need to
specify two things: the hypothesis spaces used by SVM, and the loss functions used.
The folklore view of SVM is that they find an "optimal” hyperplane as the solution to
the learning problem. The simplest formulation of SVM 1is the linear one, where the
hyperplane lies on the space of the input data x. In this case the hypothesis space is a
subset of all hyperplanes of the form:

f(x) = wx +b.

In their most general formulation, SVM find a hyperplane in a space different from
that of the input data x. It is a hyperplane in a feature space induced by a kernel K (the
kernel defines a dot product in that space [18]). Through the kernel K the hypothesis
space is defined as a set of "hyperplanes” in the feature space induced by K. This can
also be seen as a set of functions in a Reproducing Kernel Hilbert Space (RKHS)
defined by K [18], [14]. We do not discuss RKHS here and refer the reader to the
literature.

So to summarize, the hypothesis space used by SVM is a subset of the set of
hyperplanes defined in some space - an RKHS. This space can be formally written as

2
el <o}
where X is the kernel that defines the RKHS, and "f"i is the RKHS norm of the
function [18]. For example, for the linear case mentioned above, K is the kernel K(x,,
X)) = x,x,, the functions considered are of the form f(x) = wx + b, and the RKHS
norm of these functions is simply the norm of w, namely "f”i = “""Il2 .
In fact SVM consider subsets of this space, namely sets of the form
Eilel <A



for some constant A. In the SLT framework discussed above, the constant A is used to
define a structure of hypothesis spaces (the larger A is, the more complex the
hypothesis space is). The goal of SVM is to find the solution with the "optimal”
RKHS norm, that is, to find the optimal A.

Instead of searching many hypothesis spaces one by one by performing ERM for

each choice of A, SVM search for an A (or the optimal RKHS norm ||f"f() in a
different way, as it will become obvious from the SVM formulation presented below.

This "search method" for the optimal ||f||f< has been extensively discussed in the
literature (see for example [1], [3], [6]), and we do not discuss it here any further.

The second choice is that of the loss function. For this we have to distinguish
between SVM classifiers and SVM regressors. For classification ideally the
misclassification error needs to be minimized, so a loss function of the form sign(-
yf(x)) should be used (in classification y takes binary values +1, and classification is
done by taking the sign of function f(x)). However because of scaling as well as
computational reasons [14], the actual loss function used for SVM classification is 1-
yf(x)|, (that is, O if 1-yf(x) < 0, and 1-yf(x) otherwise). This is also called the "soft
margin” loss function because of its standard "margin” interpretation: the points for
which the loss function is zero are the ones that have "margin"

yfo/ |l

at least 1/ ”f",z( (that is 1-yf(x)< 0 = yf(x)/ i3 |]]2( > 1/ i ||:( ). The margin is an important
geometric quantity associated with SVM classification. For every point (x,y) its
margin is its Euclidean distance from the hyperplane, with positive sign if the point is
correctly classified by the hyperplane f, and negative sign otherwise. The margin of
the hyperplane f is defined to be the distance of the closest correctly classified point
from the hyperplane f. For more information we refer the reader to the literature.

For regression the loss function used is the so-called epsilon-insensitive loss
function |y-f(x)|, which is equal to |y-f(x)|-€ if |y-f(x)| > €, and O otherwise.

To summarize, following the SLT ideas outlined above for the given choices of the
loss function and the hypothesis spaces, SVM are learning machines that minimize
the empirical error while taking into account the "complexity” of the hypothesis space

2
used by also minimizing the RKHS norm of the solution ”f“,( SVM in practice
minimize a trade off between empirical error and complexity of hypothesis space.
Formally this is done by solving the following minimization problems:

SVM classification mfin “f"i + Czl] 1-y,f(x,) |, (D
i=1

2

£

SVM regression min “f”lz( + Cil)’a -f(x;)
i1

where C is a so called "regularization parameter” that controls the trade off between
empirical error and complexity of the hypothesis space used.

Having discussed how SVM stem out of the theory outlined above, we now turn to
their actual implementation. The next section briefly discusses how the minimization
problems (1) and (2) can be done, taking also into account [13].



2.3 SVM Implementation

As mentioned above, training an SVM means solving problems (1) or (2). It turns out
that both problems can be rewritten as constrained quadratic programming (QP)
problems. We present the QP formulation for SVM classification, and regarding
regression we refer the reader to the literature [14].

Problem (1) can be rewritten as follows:

sV classification: min e 21: £ 3)
b i=l

subject to: yf(x) >1- &, forall i, § 20.

Variables & are called slack variables and they measure the error made at point (x,y,).
We see that the number of constraints is equal to the number of training data, 1.
Training SVM, that is, solving constrained QP problem (3), becomes quite
challenging when the number of training points is large. A number of methods for fast
SVM training have been proposed in the literature. Decomposing the QP problem into
a number of smaller ones through chunking or decomposition algorithms is one
approach suggested (for example see [8], [14]). A sequential optimization method has
also recently been proposed [9].

In [13] the approach suggested to solve the QP problem (3) was that of Interior
Point Methods (IPM). Trafalis [13] presents an overview of IPM, concentrating on
primal-dual optimization methods. These methods consist of solving iteratively the
QP problem by moving between the formulation (3) (called the "primal” formulation)
and its dual formulation, which can be found to be (see [14], [13]):

SVM classification, Dual formulation:

11

rniniai _'15 ZzaiajyiyjK(xi’xj) 4)
o

i=t i=1 j=1

subject to: 0 < o, <C, for all i,

’Zar)’i =0
i=1

Typically in the literature SVM are trained by solving the dual optimization
problem (4) (e.g. [8], [14], [3]). Trafalis [13] proposes primal-dual IPM methods for
SVM training which differ from the ones typically used.

In [13] the IPM discussed are also used to train learning machines other than SVM.
In particular, Trafalis [13] shows how the proposed primal-dual IPM can be used to
train Artificial Neural Networks (ANN) typically trained using backpropagation. One
of the main differences between ANN and SVM is that, as mentioned in [13], while
for ANN there can be many local optimal solutions, for SVM there is only one
optimal solution for problem (3), since SVM are trained by solving a QP problem
which has one global optimal solution. This is one practical “advantage” of SVM
when compared with ANN.
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3 Experiments with SVM and Some Variations

3.1 Application of SVM to Medical Decision Support

Veropoulos et al. [17] proposed an application of SVM classifiers to medical
diagnosis of Tuberculosis from photomicrographs of Sputum smears. Except the fact
that this is the first time that SVMs are used in a medical problem, another interesting
point was the introduction of two methods that can be used for controlling the
performance of the system on a particular class of the data (that is, force the SVM to
better classify the data from one of the two classes of the classification task). In most
medical problems, medical experts must have the ability to put more weight on one of
the classes of the problem (usually the class on which the diagnosis is heavily’ based).
Another common problem in a wider area of applications is the presence of
unbalanced data sets (the set of examples from one class is significantly larger than
the set of examples from the other class). For these reasons, controlling the
performance of a system on a particular class of the data is practically very useful. To
do so, Veropoulos et al. [17] used a slightly modified version of the standard SVM
formulation (3) — the same idea was suggested in [8). The idea is to use different
regularization parameter C for each of the two classes. This translates in the following
SVM formulation:

min I+ ¢, F&+c, & ®)

i€ class, i€ class,

subject to: yf(x) 21- &, forall i, § >0.

By changing the ratio C /C,, Veropoulos et al. [17] showed how to influence the
performance of the SVM on one of the classes, therefore altering the false negative vs
false positive ratio for one of the classes.

A different approach to dealing with the problem of unbalanced data or to putting
more weight on one of the classes is also discussed in [17]. This second approach is
based on a version of SVM slightly different from the one described above, so we do
not discuss it here and refer the reader to [17].

3.2 Time Series Prediction Using Local SVM

An application of SVM regression was discussed in [7]. The problem was time series
prediction. The approach taken was the use of SVM regression to model the dynamics
of the time series and subsequently predict future values of the series using the
constructed model. Instead of using the standard SVM regression formulation
described above, a variation developed in [11] was used. Using this variation the €
parameter of the SVM regression loss function (see above) is automatically estimated.
Furthermore, Fernandez [7] used an approach to learning which is different from the
standard one: instead of developing one global regression model from all the available
training data, Fernandez [7] develops a number of SVM regression models, each one
trained using only part of the initial training data. The idea, which has been suggested
in [2], is to split the initial training data set into parts, each part consisting only of
training data that are close to each other (in a Euclidean distance sense). Then a



nocal” SVM is trained for each subset of the data. The claim in [2] is that such an
approach can lead to a number of simple (low complexity, in the. SLT sense outlined
above) learning machines, instead of a single machine that is required to fit all data.

In [7] each of the individual SVM machines had its € parameter estimated
independently. The € parameter of the SVM loss function is known to be related to
the noise of the data [10]. So, in a sense, the approach of Fernandez [7] leads to local
SVMs each having an € parameter that depends on the noise of the data in particular
regions of the space (instead of a single € that needs to "model” the noise of all the

ta).
daT)he experiments described in [7] show that training many local SVMs instead of
one global learning machine leads to significant improvements in performance. In
fact, this was also the finding of [2] who first showed experiments with local learning
machines.

33 An Application of SVM to Face Authentication

Starting from Fisher Linear Discriminant (FLT) (5], [12] develop variations of this
standard classification method, and compare them with SVM classification. In [12]
ideas behind the formulation of FLT are used to, effectively, choose a kernel for SVM
classification. We briefly review FLT, and we then show the SVM used in [12].

Given data from two classes, FLT leads to a hyperplane separating the two classes
using the following criterion: the projections of the data on the hyperplane are such
that the between-class variance of the projections is maximized, while the within-
class variance is minimized [5]. If m, and m, are the means of the two classes, and S,
and S, are the between-class and within class scatter matrices, then FLT yields the
hyperplane w that maximizes the so called Fisher discriminant ratio w'S,w/ WS w.

In [12] the solution w™T of FLT is also shown to be the optimal solution of a
constrained QP optimization problem. It is noted in [12] that SVM are also
formulated as constrained QP problems (as we discussed in the previous section), and
a comparison between the SVM formulation with the one yielding w ' is made.

Furthermore, Tefas et al [12] use the idea of FLT of maximizing the within class
variance in order to design a kernel K for SVM classification. To see how this is
done, we state again the SVM formulation for linear kernels, in which case, as
discussed above, the RKHS norm of the functions f(x) = wx + f is simply ||w|[". In
this case SVM is formulated as:

SV linear classification i 2 l a
minfw| + €24,

subject to: y (w-x, +b) 21 - &, for alli, § 0.
Instead of using this linear SVM machine, Tefas et al. [12] use the following
machine:

SV classification with “FLT" kernel: minw’S w+ Cif (6)
w ! il
subject to: y(wx, +b) 21 - §, for all i, § 20.
It turns out that Tefas et al. [12] use an SVM classifier with kernel K(x,, X,) = xlT
S, X, (this can be seen through the dual formulation of problem (6)). In [12] the "FLT



kernel” SVM was compared with the standard linear SVM for the task of face
recognition from images. They show that the "FLT" SVM outperforms the standard
SVM. On the other hand, they mention than using non-liner SVMs they can further
improve performance.

4 Conclusions

The chapter presented an overview of the theory of SVM in parallel with a summary
of the papers presented in the ACAI "99 workshop on "Support Vector Machines:
theory and applications”. Some of the important conclusions of this chapter as well as
of the workshop are summarized below:

1. SVM are motivated through statistical learning theory. The theory characterizes the
performance of learning machines using bounds on their ability to predict future
data. Cne of the papers in the workshop [16] presented new bounds on the
performance of learning machines, and suggested a method to use them
experimentally in order to better understand the learning machines (including
SVM).

2. SVM are trained by solving a constrained quadratic optimization problem. Among
others, this implies that there is a unique optimal solution for each choice of the
SVM parameters. This is unlike other learning machines, such as standard Neural
Networks trained using backpropagation.

3. Primal dual interior point optimization methods may be used to efficiently train
SVM with large data sets, as described in [13].

4. Training many local SVMs instead of a single global one can lead to significant
improvement in the performance of a learning machine, as shown in [7].

5. SVM has been successfully used for medical diagnosis [17]. Methods for dealing
with unbalanced training data, or for biasing the performance of an SVM towards
one of the classes during classification were suggested and used in [17].

6. An SVM using a kernel motivated from Fisher Linear Discriminant was shown to
outperform the standard linear SVM for a face recognition task in [12].

The ideas presented in the papers and discussed in the workshop suggest a number
of future research directions: from tuning the basic statistical learning theory results,
to developing efficient training methods for SVM, to designing variations of the
standard SVM for practical usage. Some of the main issues regarding the design and
use of SVMs are, among others, the choice of the kernel of the SVM (as Tefas et al.
[12] showed), and the choice of the regularization parameter (as Veropoulos et al.
(17] discussed). On the other hand, significant improvements in the performance of
SVM may be achieved if ensembles of SVMs are used (like in [7]).

Acknowledgements. The authors would like to thank the organizers of ACAI 99,
and the co-organizers of the workshop: Constantine Papageorgiou, Tomaso Poggio,
and Ioannis Pitas.
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1  Introduction: Knowledge Discovery and Machine Learning

Knowledge discovery in databases (KDD) has become a very attractive discipline both
for research and industry within the last few years. Its goal is to extract "pieces” of
knowledge or "patterns” from usually very large databases. It portrays a robust sequence
of procedures or steps that have to be carried out so as to derive reasonable and
understandable results. One of its components is the process which induces the above
“pieces” of knowledge; usually this is a machine learning (ML) algorithm. However, most
of the machine learning algorithms require perfect data in a specific format. The data that
are to be processed by a knowledge acquisition (inductive) algorithm are usually noisy
and often inconsistent. Many steps are involved before the actual data analysis starts.
Moreover, many ML systems do not easily allow processing of numerical attributes as
well as numerical (continuous) classes. Therefore, certain procedures have to precede the
actual data analysis process. Next, a result of an ML algorithm, such as a decision tree,
a set of decision rules, or weights and topology of a neural net, may not be appropriate
from the view of custom or commercial applications. As a result, a concept description
(model, knowledge base) produced by an inductive process has to be usually
postprocessed. Postprocessing procedures usually include various pruning routines, rule
quality processing, rule filtering, rule combination, model combination, or even
knowledge integration. All these procedures provide a kind of symbolic filter for noisy,
imprecise, or non-user-friendly knowledge derived by an inductive algorithm. Therefore,
some preprocessing routines as well as postprocessing ones should fill up the entire chain
of data processing. The pre- and post-processing tools always help to investigate
databases as well as to refine the acquired knowledge. Usually, these tools exploit
techniques that are not genuinely symbolic/logical, e.g., statistics, neural nets, and others.

Historically, different names have been used for the process of extracting useful
knowledge from databases, e.g., knowledge extraction, data analysis, information
discovery, knowledge discovery in databases, data mining. Especially the last term is used
quite often and its connection to knowledge discovery is discussed at many papers and
conferences. Some researchers claim that data mining is a subset of KDD (see e.g. [12]),
others declare that it is the opposite way [20]. In this survey we use the first
interpretation.

Research in knowledge discovery is supposed to develop methods and techniques to
process large databases in order to acquire knowledge (which is "hidden” in these
databases) that is compact, more or less abstract, but understandable, and useful for
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further applications. Agrawal and Psaila [1] define knowledge discovery as a nontrivial
process of identifying valid, novel, and ultimately understandable knowledge in data.

In our understanding, knowledge discovery refers to the overall process of determining
useful knowledge from databases, i.e. extracting high-level knowledge from low-level
data in the context of large databases. Knowledge discovery can be viewed as a
multidisciplinary activity because it exploits several research disciplines of artificial
intelligence such as machine learning, pattern recognition, expert systems, knowledge
acquisition, as well as mathematical disciplines such as statistics, theory of information,
uncertainty processing.

The input to a knowledge discovery process is a database, i.e. a collection (a set) of
objects. An object (also called case, event, evidence, fact, instance, manifestation, record,
observation, statement) is a unit of the given problem. A formal description of an object
is then formed by a suitable collection of so-called elementary descriptions. They can be
of either quantitative (numerical) or qualitative (symbolic) character. Their collections
can be of various forms, too, e.g. numerical vectors, lists of attribute values, strings,
graphs, ground facts.

The output of the knowledge discovery process is a collection of "pieces” of

_knowledge "dug" from a database. They should exhibit a high-level description in a

particular language. Such a knowledge base (model, concept description) is usually
represented by a set of production (decision) rules, decision trees, collection of prototypes
(representative exemplars), etc.

The entire chain of knowledge discovery consists of the following steps:

1. Selecting the problem area. Prior to any processing, we first have to find and specify
an application domain, and to identify the goal of the knowledge discovery process
from the customer’s viewpoint. Also, we need to choose a suitable representation for
this goal.

2. Collecting the data. Next, we have to choose the object representation and collect data
as formally represented objects. If a domain expert is available, then he/she could
suggest what fields (attributes, features) are the most informative. If not, then the
simplest method is a brute-force’ which indicates that we measure everything available
and only hope that the right (informative, relevant) attributes are among them.

3. Preprocessing of the data. A data set collected by the brute-force’ method or by
following advices of a domain expert is not directly suitable for induction (knowledge
acquisition); it comprises in most cases noise and missing values, the data are not
consistent, the data set is too large, there are too many attributes that describe each
object of the database and so on. Therefore, we need to minimize the noise in the data,
and choose a strategy for handling missing (unknown) attribute values. Also, we
should use any suitable method for selecting and ordering attributes (features)
according to their informativity. In this step, we also discretize and/or fuzzify
numerical (continuous) attributes, and eventually, process continuous classes.

4. Data mining: Extracting pieces of knowledge. Now, we reach the stage of selecting a
paradigm for extracting pieces of knowledge (e.g., statistical methods, neural net
approach, symbolic/logical learning, genetic algorithms). First, we have to realize that
there is no optimal algorithm which would be able to process correctly any database.



Second, we are to follow the criteria of the end-user; e.g., he/she might be more
interested in understanding the model extracted rather than its predictive capabilities.
Afterwards, we apply the selected algorithm and derive (extract) new knowledge.

5. Postprocessing of the knowledge derived. The pieces of knowledge extracted in the
previous step could be further processed. One option is to simplify the extracted
knowledge. Also, we can evaluate the extracted knowledge, visualize it, or merely
document it for the end user. They are various techniques to do that. Next, we may
interpret the knowledge and incorporate it into an existing system, and check for
potential conflicts with previously induced knowledge.

It is worth mentioning here that we may return from any step of the knowledge
discovery process to any previous step and change our decisions. Thus, this process
involves significant iteration and represents a time-consuming mechanism with many
loops. Most previous work has been done in step 4. However, the other steps are also
important for the successful application of knowledge discovery in practice.

2 Description of Workshop Papers

This section presents an overview of the papers presented during the workshop on "Pre-
and Post-Processing in Machine Learning and Data Mining" organized as part of the
Advanced Course on Atrtificial Intelligence (ACAI *99) [23].

The survey paper by Bruha [5] focuses on collecting and preprocessing the data, and
postprocessing the extracted knowledge. It describes in detail ail the essential steps for
each of the three processes. The paper was motivated by several other papers, among
them [1], [3], [12]. Here we will only introduce in brief the steps of collecting and
preprocessing the data, and postprocessing extracted knowledge.

Collecting and Preprocessing of Data

1. Choosing the object representation. The input to a knowledge discovery process is
a database, i.e. a set of objects. An object as a unit of the given problem must be
formally described by a collection of elementary descriptions. Therefore, we have
to choose the appropriate object representation. The most common choice is the
attribute representation of objects. Elementary properties, called attributes, are
selected on actual objects. An object is thus represented by a list of attributes and
their values. Each attribute has its domain of possible values. Depending on the
organization of the attribute’s domain, we distinguish three basic types of attributes:
symbolic (discrete, nominal, categorial), continuous (numerical), and structured.

2. Mapping and collecting data. After selecting a proper representation, we choose the
attributes to be measured on objects (either following a suggestion of a domain
expert or using the 'brute-force’ method). Also, we have to determine the attribute
names and the names of their values. The data collected are thus mapped into a
single naming convention and uniformly represented.



3. Scaling large datasets. Practically all learning algorithms assume that data are in the
main memory and pay no attention to how the algorithm could deal with extremely
large databases when only a limited number of data can be viewed. There are several
possibilities of solving this problem, e.g. windowing, batch-incremental mode.

4. Handling noise and errors. There are generally two sources of error. External errors
are introduced from the world outside the system itself (random errors and noise, an
imperfect teacher, etc.). Internal errors are caused by poor properties of the learning
(data mining) system itself, e.g. poor search heuristics or preference criteria.

5. Processing unknown attribute values. When processing real-world data, one
important aspect in particular is the processing of unknown (missing) attribute values.
This topic has been discussed and analyzed by several researchers in the field of
machine learning; see e.g. 18], [8], [6]. There are a few important factors to be
taken into account when processing unknown attribute values. One of the most
important ones is the source of unknownness”. (i) a value is missing because it was
forgotten or lost; (ii) a certain attribute is not applicable for a given object, e.g., it
does not exist for a given object; (iii) an attribute value is irrelevant in a given
context; (iv) for a given observation, the designer of a training database does not care
about the value of a certain attribute (so-called dont-care value).

6. Discretization/fuzzification of numerical attributes. The symbolic, logical learning
algorithms are able to process symbolic, categorial data only. However, real-world
problems involve both symbolic and numerical attributes. Therefore, there is an
important issue to discretize numerical (continuous) attributes. It could be performed
either off-line (preprocessor) or on-line (dynamic discretization). A natural extension
of this procedure is fuzzification of numerical attributes.

7. Processing of continuous classes. Similar problem to the above issue is processing
of continuous classes. Most inductive symbolic algorithms require discretized
(symbolic) classes. In some applications, however, we are faced by continuous
(numerical) classes. Similarly to the problem above, there are two approaches: either
off-line or on-line splitting.

8.  Grouping of values of symbolic attributes. It is a known problem that attributes with
too many values are overestimated in the process of selecting the most informative
attributes, both for inducing decision trees and for deriving decision rules. To
overcome this overestimation problem, the values of multivalued attributes can be
grouped into two or more subsets.

9. Attribute selection and ordering. We cannot be definitely sure that all attributes are
informative for the given target. In real-world data, the representation of data often
uses too many attributes, but only a few of them may be related to the target concept.
Attribute selection and ordering procedures help to solve the above problem. They
order the set of input attributes according to their informativity, and then select a
relatively small subset of the most informative attributes.

10. Artribute construction and transformation. As we stated earlier, finding suitable
attributes for problem representation could be a difficult and time-consuming task.
If the attributes are inappropriate for the target concept, data mining (learning) could
be difficult or impossible. To overcome this problem a system needs to be capable
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of generating (constructing) new appropriate attributes. There are two different
methods for doing that: attribute construction and attribute transformation.

11. Consistency checking. As for inconsistency in a database, it may not be eliminated
by the previous steps of preprocessing. There are two general approaches to handle
inconsistency in the data. The first one is done off-line’, i.e. by a preprocessor or
within the data mining process itself. Another possibility is to utilize the loop facility
of the knowledge discovery process, i.e. to return to one of the previous steps and
perform it again for different parameters.

Postprocessing

1. Knowledge filtering: Rule truncation and postpruning. If the training data is noisy then
the learning algorithm generates leaves of a decision tree or decision rules that cover
a very small number of training objects. This happens because the learning algorithm
tries to split subsets of training objects to even smaller subsets that would be genuinely
consistent. To overcome this problem a tree or a decision rule set must be shrunk, by
either postpruning (decision trees) or truncation (decision rules).

2. Interpretation and explanation. Now, we may use the acquired knowledge directly for
prediction or in an expert system shell as a knowledge base. If the knowledge
discovery process is performed for an end-user, we usually document the derived
results. Another possibility is to visualize the knowledge, or to transform it to an
understandable form for the user-end. Also, we may check the new knowledge for
potential conflicts with previously induced knowledge. In this step, we can also
summarize the rules and combine them with a domain-specific knowledge provided
for the given task.

3. Evaluation. After a learning system induces concept hypotheses (models) from the
training set, their evaluation (or testing) should take place. There are several widely
used criteria for this purpose: classification accuracy, comprehensibility, computational
complexity, and so on.

4. Knowledge integration. The traditional decision-making systems have been dependant
on a single technique, strategy, model. New sophisticated decision-supporting systems
combine or refine results obtained from several models, produced usually by different
methods. This process increases accuracy and successfulness.

The paper by Brijs et al. [4] deals with large sets of decision rules discovered during
the mining process. Control of a large set of decision rules is extremely costly and
difficult. Moreover, a set of rules is usually incomplete, i.e., some objects (instances) are
not covered by any rule, and the rules are mutually inclusive, i.e., some objects may be
covered by more than one rule. Therefore, the authors propose a postprocessing,
knowledge-filtering procedure to solve the problem of selecting the most promising
subset of decision (characteristic) rules. Their method also influences the pruning process
in a sense that some overall measure of quality of the reduced decision set can be
produced. In fact, it allows controlling a user-defined level of overall quality of the model
in combination with a maximum reduction of the redundancy in the original decision set.

The paper discusses two integer-programming (IP) techniques developed by the
authors, namely the “Maximum redundancy reduction” technique and the “Incorporating



noise and discriminant power”” one. The first technique searches for an optimal selection
of rules that is able to maximally reduce redundancy under the constraint of covering all

itive objects (instances) that are covered by the original set of rules. In the latter
technique, the first technique has been adapted to account for noise in the data and to
impose a quality criterion on the final set of decision rules. Both techniques have been
empirically tested on real-world data and compared with the well-known RuleCover
heuristic [22] as a method for redundancy reduction. It has been found that the integer-
programming techniques are able to produce significantly betier results than the
RuleCover heuristic; in terms of the number of rules that remain in the final set of rules,
in terms of the discriminant power of the final set of rules, and also in terms of the total

redundancy.

The paper by Kalles and Papagelis [14] introduces a project on discretization of
numerical attributes (as a preprocessor) for decision-tree induction. The authors prefer
descriptions that make the grouping of objects easier rather than those that allow
fuzzification. This bias can be captured by the observation that entropy gain is maximized
at the class boundaries for numerical attributes [11]. The method splits the range of each
numerical attribute to a small number of non-overlapping intervals; each interval is
assigned to a bucket. Then the buckets are merged utilizing the x* metric, which leads to
a simple prepruning technique. The experiments on various datasets have revealed that
the greater the confidence level that is required, the better the classification occurrence
is achieved. The only drawback is the size of a decision tree constructed using this
method for handling numerical attributes. On the other hand, an interesting aspect of the
method is that it naturally paves the way for deploying more effective postprocessing
schemes. The authors investigated the postprocessing technique for character recognition
setting.

The paper by Kontkanen et al. [15] utilizes Bayesian networks for visualization as an
important step in postprocessing for visual inspection of the rationality of the learned
models (classifiers, knowledge bases). The authors have designed a model-based
visualization scheme which utilizes a Bayesian network representing the problem domain
probability distribution, and producing two- or three-dimensional (2D or 3D) images of
the problem domain. To display high-dimensional data on a 2D or 3D device, each data
vector has to be provided with the corresponding 2D or 3D coordinates that determine its
visual location. The traditional statistical data analysis provides so-called
multidimensional scaling [10]. The authors of the paper have developed a model-based
visualization scheme with the motto Two vectors are considered similar if they lead to
similar predictions’. This idea follows from a Bayesian distance metric [16].

The authors also discuss methods for validating the goodness of different
visualizations, and suggest a simple scheme based on estimating the prediction accuracy
that can be obtained by using reduced, low-dimensional data. Experiments have been
performed on UCI benchmark databases. Examples of the 2D visualizations for some
databases demonstrate that the proposed scheme produces visualizations that are much
better (with respect to the validation scheme suggested) than those obtained by classical
Euclidean multidimensional scaling.
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The paper by Kralik and Bruha (17] introduces an off-line discretization procedure (ag
a preprocessor) for genetic learning algorithms. The genetic algorithms are usually
developed in such a way that they are capable of processing symbolic data only, not
continuous ones. There exist quite a few discretization procedures in the machine learning
field. The paper introduces a version of a new algorithm for discretization of continuous
attributes [2], which has been applied to a learning system based on genetic algorithms.

The induction stage of a learning process consists in searching usually a huge space
of possible concept descriptions. There exist several paradigms on how to control this
search. One of the promising and efficient paradigms is genetic algorithms. Severa]
approaches have been proposed concerning the application of genetic algorithms to
learning. The paper describes an efficient composite of the discretization preprocessor
and a genetic algorithm in an attribute-based rule-inducing ML algorithm. Actually, a
domain-independent genetic algorithm has been incorporated into the covering machine
learning algorithm CN4 [7], a large extension of the well-known algorithm CN2. The
induction procedure of CN4 (beam search methodology) has been replaced by the genetic
algorithm.

The paper by Smid et al. [19] deals with the attribute selection problem. Modelling an
input response system is an immense problem of great complexity. A good model
typically requires insight from an engineer or a scientist. With the World Wide Web
(WWW), engineers and scientists can use data mining techniques to understand better
patterns and relationships among data. The authors discuss the selection of significant
(informative) attributes. The set of input attributes sometimes is not sufficient and new
attributes have to be derived (constructed). The project designed by the authors employs
visual analysis [9] for discovering new attributes (in addition to the set of the input
attributes). The set of new attributes also includes operators such as standard deviation,
difference, delay. The authors utilize WebGraph, a data visualization and analysis tool.
WebGraph provides algorithms and functions that allow users to preview patterns in
selected data sets. The users need to use only a standard web browser. Two case studies
are presented to demonstrate the use of the system for building an efficient model.

The paper by Talavera [21] presents an unsupervised feature (attribute) selection
method aimed to reduce the dimensionality of a symbolic database prior to a clustering
process. The author’s method is based on the assumption that features which are not
correlated with other features in the database are likely to be irrelevant. The author has
applied a feature dependency measure proposed by [13]. Feature selection is viewed as
a heuristic search in a feature space in which several characteristics such as an evaluation
function, stopping criterion, or a generation procedure has to be determined. The author’s
method represents a greedy search that only performs one step at a time in the feature
space to select the final feature set. In his experiments the author has utilized COBWEB,
the well-known symbolic probabilistic clustering algorithm. The method has been
evaluated on UCI databases. Despite a close relationship of the dependency measure used
to rank the importance of features and the clustering system employed in the experiments,
the method developed can be applied to any symbolic clustering algorithm. The
experiments have demonstrated evidence that the dependency measure can identify
completely irrelevant features. Thus, removal of these features should improve the
performance of various clustering algorithms.
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Conclusion

The discussion that followed the presentation of the papers first focused on the

spec

ification of the fields and methodologies of KDD. The conclusion of the discussion

was that there are two main streams in KDD, namely: methodology and applications. In
poth streams, the following issues arise:

selection of a problem and its representation;

selection of a description language;

data collection;

data preprocessing (discretization, grouping, attribute selection, construction of new
attributes, etc.);

knowledge extracting;

postprocessing the knowledge base (rule filtering, rule quality, etc.);

evaluation, interpretation, visualization, combination, etc. of the derived knowledge.

The results of the fruitful discussion could be summarized as follows:

There is work that combines the above mentioned streams in KDD, i.e. methodology
and real-world applications. However, there is a ‘'gap’ of terminology between these
two streams. Methodologists use traditional terms common in KDD and ML. On the
other hand, the specialists who apply KDD and ML methods to real problem use
terminology common for the given discipline (medicine, financing, insurance, car
manufacturing, etc.) which, however, is not understandable to KDD specialists.
Preprocessing is a favourite topic in KDD, in contrast to postprocessing. There is much
more work on preprocessing than on postprocessing. There are many algorithms for
attribute mining’, but only a few for postprocessing. Nevertheless, the visual
interpretation and evaluation is now getting a great spirit in the field of KDD.
Knowledge integration (i.e., model combination, merging, and modification) should
not concentrate solely on boosting and bagging.

Last but not least, a question arose about the difference between machine learning
(ML) and data mining (DM). The general consensus was that ML and DM overlap and
one is to observe ML as a scientific discipline, whereas DM as an engineering one.
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1 Introduction

The undoubted usefulness of present-day information systems is only moderated by
the fact that people have to invest substantial effort and training time in order to learn
how to use them. Even modern applications with Graphical-User Interfaces (which are
considered user-friendly), buiit-in wizards and on-line context-sensitive help, require a
considerable self-training period, thus discouraging most people from fully exploiting
their capabilities. In the years to come we expect that information systems will
gradually become more and more complex and since the training period is usually
proportional to the system complexity, with the usual Human Computer Interaction
methods less and less people will have the time to learn how to use a new piece of
software.

The obvious solution to the aforementioned problem is to make the Human
Computer Interface intelligent enough to understand human language. That is one vital
objective of Human Language Technology (HLT). HLT is an emerging field, which is
expected not only to facilitate future applications as the natural improvement of
today’s Graphical User Interfaces, but also to provide applications of significant
importance like machine translation systems and tele-services. HLT will enable
casual, not technically inclined users to benefit from modern information technology.
HLT will also enable the retrieval of information from resources, which are not
organized for computer access, like newspapers and audio recordings.

HLT is further subdivided into Speech Processing (SP) and Natural Language
Processing (NLP). SP covers all tasks concerning spoken language input and output,
including speech recognition and synthesis, signal representation, speaker
identification/verification and several performance issues, like robustness, adaptation
and real-time response. NLP covers grammars and parsing techniques, lexicon
representations, syntax, semantics and dialogues. The two areas (SP and NLP) are
generally complementary to each other although some “gray areas” do exist, in which
overlaps occur frequently, e.g. SP systems may have a language model independent of
any NLP module that may follow, or NLP systems may consider phonetic
transcriptions in order to become more versatile.

HLT is an intriguing field of research where some very interesting problems arise;
problems that researchers in the Machine Learning (ML) field would like to try
solving using their own methods. In fact, HLT researchers already use some. well
known machine learning techniques like hidden Markov models (HMMs), neural
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networks (NNs), probabilistic context-free grammars (PCFGs), etc., although they
prefer the term “training” instead of “learning” to denote the adaptation of their
systems. But most of the HLT systems, especially in the NLP area, are built by
handcrafted rules derived from linguistic theories and syntax textbooks. There is
nothing wrong about that of course, especially if the systems perform acceptably in
practice, except that systems produced by this method are highly language dependent
and very likely application dependent too. Considering the time and effort needed to
build such systems for several languages and different applications, the need of
language independent and application independent methods of language representation
becomes imperative. Thus one of the most promising subfields of NLP is the so-called
“corpus-based NLP” which aims to extract lexicons, linguistic rules and related
knowledge from large text corpora automatically, usually by statistic methods.

We believe that if the communication between the HLT community and the ML
community becomes stronger, then even more sophisticated ML methods will be
applied to HLT systems and new ML techniques will be devised having the HLT
requirements in mind. The use and evaluation of existing and innovative machine
learning techniques in the field of HLT will affect significantly the overall
performance of HLT systems and will indicate new directions for research and
development. The ML field is mature enough to provide solutions and methodologies
from which an emerging technology like HLT will certainly benefit. Fortunately, the
scientific community has realized the importance of the cooperation between ML and
HLT [8]. It remains to see to what extent these two fields can cooperate and what
promises lie towards this direction.

This chapter stresses the importance for cooperation in research between the field
of Machine Learning and the field of Human Language Technology, arguing that this
cooperation can be of benefit to both scientific areas in terms of trends, aims and
methods used. This argument is backed up by the results of the Workshop on Machine
Learning in Human Language Technology (held on July 7-8, 1999, Chania, Greece, in
the framework of ACAI ’99), by introducing the papers presented in the Workshop
and pointing out how these papers advance the research status of both fields.

2 Brief History

Although ML-oriented ideas like training the system to a set of rules (grammar) have
been researched quite early in the SP field (see for example [1]), analogous attempts in
NLP have flourished mostly in the nineties with a renewed interest towards corpus-
based research, after the rule-based techniques used so far proved inefficient to
confront real-world texts [3]. The new techniques were first applied as enhancements
to rule-based methods (like [17]) thus producing hybrid components, and later were
applied as stand-alone methods with satisfactory robust results. The applied ML-
techniques varied from statistical/probabilistic methods [9], [23] to transformation-
based learning [5] and n-gram models [7]. The good news with the statistical/corpus-
based/ML methods was that they were mainly language independent [11], robust {4]



and application independent [6]. The new techniques have also indicated new
interesting directions for research, for example adaptation of existing systems to
different domains [26]. For a thorough historic review on the subject see [21], [12] and

(10].

3 The ACAI ’99 Workshop on ML in HLT

The Workshop on Machine Learning in Human Language Technology was intended to

omote the cooperation between the two scientific fields. The Workshop was held on
July 7-8, 1999, at Chania, Greece, in the framework of the ECCAI Advanced Course
on Artificial Intelligence for 1999 (ACAI *99), whose goal was to present the current
state-of-the-art in Machine Learning, and to show the potential of Machine Learning
in a variety of problems. The aim of the Workshop was the presentation of the current
Machine Learning research activities in the area of Human Language Technology (i.e.
Written and Spoken Language Recognition, Understanding, Generation, etc.).

The papers presented in the Workshop [27] addressed several HLT issues, like
Part-of-Speech Tagging, Word Sense Disambiguation, Unknown Word Acquisition,
Sentence Boundary Disambiguation, etc., using a wide range of ML techniques, like
Decision Tree Induction, Transformation-Based Learning, Self-Organization,
Memory-Based Learning, etc. Descriptions of these papers are presented in the
following section.

4 Overview of the Papers

The invited talk by Kodratoff [14] examined the potential of Knowledge Discovery in
Texts (KDT) as a new scientific topic emerging from Knowledge Discovery in
Databases (KDD or Data Mining, as often called). The author compared KDT with
classical Natural Language Processing (NLP) and explained the different nature of the
KDT-extracted knowledge arguing that the knowledge obtained by KDT, since it is
extracted from a large number of texts, constitutes an absolutely new type of
knowledge, often complementary to the knowledge obtained by NLP. The author
provided a detailed example which presented the different types of knowledge that the
NLP system TROPES and the KDD system CLEMENTINE extract from the same
text corpus. Since Data Mining is an always-hot topic with a very broad range of
applications, we can expect that KDT techniques will certainly develop and flourish in
the years to come.

The paper by Orphanos et al. [18] presented a machine learning approach to the
problems of disambiguation and unknown word guessing based on decision trees.
Three induction algorithms were introduced; two producing generalized trees and one
producing binary trees. All three algorithms use set value attributes in decision tree
induction in a linguistic context obtained by some extensions to the basic model. The



authors used a Modern Greek corpus of more than 130,000 tokens with wide thematic
coverage to obtain performance results for the aforementioned three algorithms in
POS disambiguation and POS guessing. The results were very positive: the authors
reported 93-95% accuracy in POS disambiguation and 82-88% in guessing the POS of
unknown words. These results are presented in detail in the paper and compared to
each other, according to the algorithms used.

Megyesi [16] presented the implementation of a Brill tagger for Hungarian. The
author has adapted and tested the tagger for the particular language, by automatically
acquiring rules from a training corpus. The method used was based on
Transformation-Based Error-Driven Learning, but the results obtained at first did not
reach the high accuracy levels of the English implementation. Due to the rich
morphology, high inflectionality and free word order of the Hungarian language, the
method obtained only 83% accuracy. In order to improve the overall performance of
the system, the author explained how she augmented the tagger’s rule generating
mechanism with extended lexical templates, obtaining an impressive 14% increase in
accuracy for a final 97%.

Another method to enhance the performance of a Brill tagger was presented in the
paper by Petasis et al. [19]. The authors used Transformation-Based Error-Driven
Learning to resolve the POS ambiguity in Modern Greek texts. They presented
experimental results from two different test cases, one based on a 65,000-word corpus
on “management succession events” and the other based on a 125,000-word general-
purpose corpus, obtaining 95% accuracy. One additional interesting result of these
experiments was evidence that the performance of the method is independent of the
thematic domain of the corpus used in the training process. The authors have also
estimated the optimal size for the training corpus with respect to performance over
training effort, i.e. the size after which the increase in performance is too small to
justify further training. This optimal size was measured to 18,000 words for the Greek
language.

On the task of word sense disambiguation, Levinson [15] presented a fully
unsupervised method based on pairwise similarity clustering. The proposed method
needs just a sufficiently large monolingual corpus in order to be applied and it can be
used for both morphological disambiguation and for discrimination between different
meanings of the same part of speech. Since it does not rely on any linguistic
characteristics but only on the manner in which information is organized and
conveyed, the method proves to be language independent. The author presented the
successful application of his method to English and Hebrew, two languages with very
different structures, and examined several variations of the main method.

The paper by Basili et al. [2] presented a conceptual clustering method for learning
subcategorisation frames from a corpus and described an original architecture for
tuning the lexicon to a specific sublanguage in order to improve syntactic analysis. A
lexicalised shallow parser was used for the evaluation of the proposed techniques. The
authors described RGL, a conceptual clustering system for learning verb
subcategorisation frames, and CHAOS, a robust parser for information extraction,



combined in a bootstrap architecture tested with a collection of tagged trees from a
large newspaper corpus.

On the issue of unknown word acquisition, Kameda et al. [13] presented a rule-
pased method applied to Japanese language. The authors defined three classes of
unknown words: heterographs, compound words and out-of-dictionary words.
Especially for compound words, which are characterised by an underlying syntactic
structure, the authors defined a surface layer and a deep layer utilizing a four-stage
acquisition process. The paper described the corresponding algorithms for each class
of unknown words and presented evaluation results for a system implementing the
proposed method. The reported results were 96.8% for class-1 (heterographs), 76.4%
(words) and 73.4% (lexemes) for class-2 (compound words).

In the paper by Thomas [24] an inductive machine learning method was presented
for the construction of wrappers from semi-structured documents (such as WEB-
pages). The proposed method learns how to construct T-wrappers for multi-slot
extraction in an automatic way from positive examples, which consist of text-tuples
occurring in the document. The technique is based on a modified version of least
general generalization (TD-Anti-Unification) for a subset of feature structures
(tokens). The author has tested the method on web pages with various types of
structured information.

Using a “house design” task as an example, the paper by Sakurai et al. [20]
described an algorithm for self-organization of a task model from word sequences.
The proposed algorithm uses six basic rules and two types of background knowledge:
“sequence changeable words knowledge” and “identical words knowledge”. The
authors described a structure called an Extended Object Automaton and they defined
an inference method for constructing automatically Extended Object Automata based
on a self-organization procedure. The proposed method has been successfully applied
to a multi-modal system performing a house design task. The authors report 90%
acceptance ratio for 175 sequences, 90% activity ratio and negative acceptance ratio
less than 0.1%.

The problem of sentence boundary disambiguation was addressed by Stamatatos et
al. [22]. The authors proposed a variation of Transformation-Based Learning (TBL)
applied to the observation of preceding and following words and punctuation marks in
order to automatically extract sentence boundary disambiguation rules from real-world
texts. The proposed method has been tested for Modern Greek texts downloaded from
the World Wide Web consisting of more than 165,000 words for the training corpus
and more than 200,000 words for the test corpus and achieved high accuracy results
(99.4%). The authors have also performed a test comparing their method to the
traditional TBL, reporting a 3.7% increase in accuracy, in favor of their method.

Text chunking as an approach to data reduction in computational linguistics was the
subject of the paper by Veenstra [25]. The author used Memory-Based Learning in the
context of subject/object identification to perform efficient NP, VP and PP chunking.
The method has been tested on an annotated and POS-tagged newspaper corpus of
more than one million words and presented high precision and recall scores (94-95%).



5 Conclusion

It seems that the cooperation and exchange of ideas between the field of Machine
Learning and the field of Human Language Technology provides many benefits for
both fields. Some ML techniques have direct impact to HLT applications and HLT has
some very interesting problems that require specially designed or augmented ML
techniques. The papers presented in the ACAI '99 Workshop on Machine Learning in
Human Language Technology give substantial evidence that research in this direction
1s promising and worthwhile.
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1 Intrbduction

As the volume of electronically stored information continues to expand across
computer networks, the need for intelligent access to on-line collections of
multimedia documents becomes imperative. Examples of such collections are the
World Wide Web, digital libraries and enterprise-wide information repositories,
Machine learning offers an invaluable corpus of techniques, tools and systems that
can help to solve effectively related problems, such as semantic indexing, content-
based search, semantic querying, integration of ontologies/knowledge bases into
Internet search technologies, in order to develop a new generation of intelligent search
engines. There has been a growing interest in augmenting or replacing traditional
information filtering and retrieval approaches with machine learning techniques in
order to build systems that can scale to the intrinsic complexity of the task. This issue
was addressed in the workshop on “Machine Learning for Intelligent Information
Access”, which was organized as part of the Advanced Course on Artificial
Intelligence (ACAI '99).

Important themes of work in the application of machine learning techniques to
intelligent information access problems include: (i) filtering of relevant information
from distributed, heterogeneous sources that differ in type, form and content, (ii) text
topic categorization, (iii) enterprise-wide dissemination of information and (iv) multi-
agent information markets. In particular, state-of-the-art research topics that are also
relevant to the workshop include:

Text classification [6].

Adaptive filtering [15].

Query expansion [14].

Clustering of documents [13].

Scalability over very large datasets [15].

Ensemble and multi-strategy learning [9].

Knowledge representation for information retrieval [13].
Architectures and protocols for electronic information markets [2].

The goal of this workshop was to promote discussion and interaction among
researchers and practitioners from various related communities on how machine
learning, which offers an invaluable corpus of techniques, tools and systems, can be
used to augment or replace traditional information filtering and retrieval approaches
for intelligent information access. The workshop consisted of an invited talk and five
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pers that presented machine learning techniques for various types of information
access tasks, i.e.

hypertext information extraction,

development of web knowledge bases,

automatic query expansion in document ranking systems,
change detection in adaptive information filtering,

information capture in digital libraries,

information agents for learning user profiles,

multi-agent engines that learn user models for searching the web.

The next section presents an overview of the workshop papers [16] and invited
talk, followed by a summary of the discussion from the workshop and a list of
references for suggested reading.

2 Overview of the Workshop Papers

In his invited talk Tom Mitchell [8] first addressed the topic of integrating knowledge
bases/ontologies into Internet search technologies. The goal of his research is to
develop a knowledge base that mirrors the content of the WWW, in order to make
text information on the Web available in computer-understandable form. Specifically,
Mitchell investigated the problem of what kind of knowledge base (KB) should be
built and used for a specific task. He also gave an overview of what currently
available systems do. Then, he presented the description of a KB that was
automatically extracted. This KB was extracted at CMU in the first week of July 1999
and is about companies on the Web. It consists of about 50000 axioms and facts. The
instances of the KB can be used as training examples for learning to classify Web
pages.

In this context, a central role is played by the concept of "contiguous segment of
text", which can be a Web page taken as a whole, or a fragment of text in a Web page,
or a hyperlinked fragment of text in a Web page. The problem of the automatic
extraction of KBs from the Web can be cast as a problem of hypertext information
extraction, which involves/implies the analysis of a hypertext at three levels of
resolution, namely:

¢ individual web pages (e.g., in a University Web site, these might be pages
concerning Faculty, Student, etc),

* groups of interconnected Web pages (e.g., the Web pages concerning a course and
the person who teaches that course, represented by a predicate teaches-
courses(person, course)),

® individual sentences and fragments.

Another problem involved in the automatic extraction of KBs is that of recognizing
the class of the extracted instances. Bag-of-words classification is usually used to
cope with this problem. Results from applying a Naive-Bayes classifier to University
Web sites, show that extracted instances are correctly classified with an accuracy. that
ranges from a minimum of 42% to a maximum of 100%, according to the class of
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instances, and with an overall average accuracy close to 80%. In this domain, the top
learned word weights are "Facuity”, "Student”, "Courses”, "Department”, "Research
Groups", by using a training set of 400 Web pages. Standard bag-of-words classifiers
turn out to be useful for flat text, but not for hypertext. Therefore, the main idea is to
learn rules expressed in First Order Logic for classifying Web pages. Results from
this approach show a classification accuracy of greater than 90%.

Recent themes in the research about web knowledge bases are:

¢ learning to extract useful information, where the focus is about the linguistic
structure of a "contiguous segment of text", and about the possibility of training a
system with minimal effort,

e learning with unlabelled and labelled training data [1], [11].

In the last theme, a relevant concept is that of "redundantly sufficient attributes”,
Examples of redundantly sufficient attributes are:

page and incoming anchor text for Web page classification [12],
noun phrase and surrounding context for text information extraction,
lips and voice for speech recognition,

video, audio and close caption for classifying multimedia segments,
local contexts for word sense disambiguation.

The algorithms that turn out to be effective for learning from unlabelled and
labelled training data are called co-training algorithms. Given a (small) set of labelled
training examples and a set of unlabelled ones, co-training algorithms are able to learn
both hyperlink-based classifiers and full-text classifiers from the labelled training
examples. Moreover, these classifiers are used to iteratively label a certain number of
positive and negative examples taken from the set of unlabelled ones. Then, these
newly labelled examples are added to the set of the labelled training examples and
this leads to a new cycle of the algorithm. The approach based on co-training
algorithms showed the best performance when compared to results based on
supervised learning (overall predictive accuracy of 95%).

The paper by Carpineto and Romano [3] presented an empirical evaluation of term
weighting and retrieval feedback schemes for automatic query expansion on the
TREC-7 text collection. Their purpose was to identify potential differences in the
distribution of term weights and relevant documents that could lead to performance
gains by combining those schemes. In particular, they compare Rocchio’s weighting
scheme with three schemes that are based on the Chi-square statistic and Kullback-
Lieber distance of term distributions. The results showed that the latter three
techniques outperformed Rocchio’s technique over all 50 queries (TREC topics 351-
400). Furthermore, they found significant variations in both term ranking and retrieval
effectiveness amongst these techniques. Because of this, they applied a simple
approach for combining the term ranking from the three techniques. The evaluation of
this combined weighting technique yielded improved mean retrieval performance on
the above dataset. These experiments suggest that there is potential in studying
methods for combining existing techniques for automatic query expansion, and
adding to the growing literature of research on ensemble learning for information
retrieval.



Lanquillon [7] looked at one of the key issues in adaptive information filtering,
namely detecting changes in the content of a text stream. These changes occur
because new topics may arise, existing topics may disappear, or the content of
existing topics may change. The purpose of detecting such changes is to make the
information filter adaptive to them so that, when due to changes documents start
becoming relevant, these documents make their way to the user. Lanquillon
considered two types of change indicators, those based on classification properties
(e.g. error rate) and those on text properties (e.g. word frequencies). He proposed an
indicator that uses intermediate classification results without additional user feedback
for the true class labels. In particular, the indicator is defined as the average number
of documents in the collection that are classified as irrelevant with a confidence below
some threshold. The latter is empirically set. To make the information filter adaptive
to changes he applied a rather simplistic approach of relearning from scratch once
changes in the average value of the indicator were more than three times the standard
deviation. For his experiments he used a dataset of Usenet articles and a similarity
based classifier. The experiments showed that his approach for detecting changes and
relearning the classifier scales to changes and compares well with a benchmark that
requires complete knowledge of the true class labels. A shortcoming of this approach
is that the proposed indicator may not be sensitive to changes in the content of a text
stream when the irrelevance class consists of many diverse topics. Text clustering or
learning multiple models of relevance could be ways for overcoming this problem.

The paper by Esposito et al. [5] applies learning techniques to the task of
information capture within IDL (Intelligent Digital Library), a prototypical digital
library service. Information capture denotes the task of converting data from the
medium on which they are stored into a digital format. The main features of IDL are:
(i) support for information capture, (ii) support for semantic indexing and (iii) support
for content understanding and interface adaptivity. Prior to being stored in IDL, each
document is transformed into a symbolic representation through the following steps:
segmentation, document analysis, classification and understanding. The paper
describes various techniques that have been applied for learning associations between
layout components and the corresponding logical components of a document, such as
document class, title, authors and sections of a paper. For learning document
classifications, the layout of documents is represented in first-order descriptions. A
supervised learning algorithm was initially developed for this task that combined two
classifiers, one from the numeric features of the layout and one from the symbolic
ones. More recently, research in this project has focused on applying incremental
rule-based induction techniques to the problem of classifying scientific documents.
The results from the application of these techniques indicate that the incrementally
learned theories compare well with the batch learned theories in terms of predictive
accuracy.

D’Aloisi and Giannini [4] presented a new approach to learning user profiles for
searching on the Internet using an intelligent agent, named Abis (Agent Based
Information System). Abis purports to predict the action a user might choose to apply
to a document — i.e. store in a folder, delete, print — or the relevance value of a
document — i.e. interesting/not interesting — based on past training examples. Once a
user query is submitted to the system, Harvest, a public-domain search engine, is
invoked for finding relevant documents. Harvest represents documents and queries
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using SOIF (Summary Object Interchange Format) that extracts relevant attributes
from their structure. In Abis, documents, queries and profiles are represented as lists
of attribute/value pairs through a modified version of SOIF. The documents retrieved
by the search engine are processed by Abis in two stages. First, they are compared
with the user profile for refining the results of the search. Then, the documents
selected from the first stage are compared against the set of past situations to predict a
relevance value or an action to perform on a document. A typical similarity metric is
adopted for this comparison. Documents evaluated by the user are added as situations
to the memory of the agent. The evaluation of the system is currently in a preliminary
phase.

Muller [10] presented an abstract prototype, OySTER, for intelligent search on the
Internet, based on user models that are learned with respect to an ontology that
describes document contents in a multi-agent environment. The latter is structured as
a blackboard system where different classes of agents are reading and writing
requests. Search requests are submitted via interface agents. Search agents perform
query refinement based on user models for generating a set of meta-search queries
that are passed onto search engines. User models are represented as a disjunctive list
of expressions where literals describe membership of document classes. A user model
is initialized and continuously refined by several agents. Initially, the user’s
homepage and bookmarks are processed by URL updating daemon plans to derive
user specific keyword lists and document categories of interest. For each result
delivered by a search engine and evaluated by the user the model is updated. Since
document categories form a lattice, machine learning techniques can be used for
learning specific and general category descriptions of documents as well as user
models on such categories. Database maintenance agents are used to organize the
documents returned by the search engines into a hierarchy of document types.
Classification of document types is currently done via a simple handcrafted grammar.

3 Discussion

The workshop ended with a discussion that addressed the following questions:

e What are the challenges that Information Retrieval (IR), Information Filtering (IF)
and Information Extraction (IE) pose to the Machine Learning (ML) community?

¢ How ML can help IR/IF/IE?
e Which ML techniques are more appropriate for IR/IF/IE?
¢ What is the impact of ML technology on the IT market?

¢ How can we develop effective adaptive software systems?

The conclusions from this discussion can be summarised into a list of topics for
future research as follows:

1. There is a growing attention of the ML community towards Information Retrieval,
and in particular towards



e retrieval feedback methods (automatic query expansion and reweighting),

o adaptive information filtering or information filtering in dynamic environments
(document classification on the ground of user interests and concept drift),

o intelligent/learning agents for information retrieval/filtering.

The three topics listed above are facets of the same area, namely multi-agent
learning for information filtering and retrieval from distributed and heterogeneous
information sources (Web, archives, etc).

_There is a growing need of Meta-Search services, which poses the following

challenges:

e integration of ontologies into Web search engines for personalized content-
based retrieval,
o information capture and semantic indexing of documents in digital libraries.

Both of these challenges require ML techniques for:

conceptual/knowledge-based/intelligent/content-based indexing,
querying and retrieval of unstructured or semi-structured documents,
on-line learning,

adaptive information filtering.

These techniques should be able to:

¢ combine with symbolic knowledge (inductive logic programming),

scale to deal with very large collections of textual/unstructured/semi-structured
data.

If the ML community is able to provide answers to the above research topics then

it is foreseeable that, the impact of ML technology on the IT market will grow as soon
as role-based access to Internet services becomes common practice. In terms of the
possibility of developing effective adaptive software systems, useful hints could come
from systems that are able to measure the satisfaction of users (on-line user
satisfaction) and perform some form of user analysis.
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1 Introduction

The purpose of this chapter is to provide an introduction to the field of machine
learning techniques for intelligent agents based on the contributions in the workshop
of ‘Machine Learning and Intelligent Agents’ [20], which was held in conjunction
with the Advanced Course on Artificial Intelligence (ACAI *99) on Machine Learning
& Applications, at Chania, Greece.

Machine Learning in single and multi-agent systems is a relatively new but
significant and promising topic in Artificial Intelligence. Intelligent agents and agent-
based computer systems represent an important, fundamentally new way of dealing
with many important software application problems for which mainstream computer
science techniques offer no obvious solution. Many of these new problems are due to
the recent dynamic and distributed nature of both data and applications.

Topics covered in this chapter concern the development of intelligent agent
architectures which exhibit machine learning capabilities. These architectures apply
some learning strategy, learning from examples, evolutionary learning etc. and some
learning feedback method, supervised, reward and punishment, unsupervised
learning, etc. Various approaches and algorithms with comparative studies have also
been concerned for classification problems such as k-nearest neighbor, naive bayes
artificial neural networks with back propagation learning, Kohonen maps, decision
rulesets, genetic algorithms, efc.

There are also many interesting agent-based applications from the areas of
robotics, ship damage control, personalised information filtering and collection from
the Web as well as natural language interfaces. We will give a brief overview of the
main methods and techniques used in each field, summarize the presented work and
provide some additional references. We highlight the important issues and trends
based on the workshop discussions.

2 Overview of the Workshop Papers

2.1 Intelligent Agents for the Web

In the face of the constant change and explosive growth of information that is
available through the World Wide Web, it is becoming increasingly difficult for the
users to find the information of interest. Searching the Web efficiently is not an easy
task and a number of search services have been developed for this purpose. Each of
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these search services works very differently and no one provides the best index for all
the topics.

However, even though most of the search engines contain links to ap
overwhelming number of documents they are still the best place for a user to start 3
search. Thus, search services are valuable tools for searching the Web, they have
several unsolved problems for the novice users. For example, which strategy a user
should follow in order to find the information which interests him/her, which
keywords describe a concept, how to combine the keywords with the logic operators,
or what he/she should do with a huge list of hits.

Researchers in the field of Artificial Intelligence have proposed the development of
intelligent software aiming to collect information from large, complex, unstructured
and heterogeneous information spaces like the WWW, where information source may
appear and disappear unpredictably. Furthermore, advanced applications such ag
electronic commerce and auctions, information filtering, workflow management etc.,
need flexible and adaptive mechanisms in order to manage and use the information
available on the Web. During the past few years, the notion of a software agent [11],
[S] has become increasingly popular, as a means for realizing intelligent systems that
help their users in the discovery of useful information. The first two papers in the
workshop, which are summarized below describe a personalized intelligent assistant
aiming to support a single user’s informational needs. A main variation among
applications in this problem domain is when the agent collects documents from an
index which has been constructed by recommendations from other users with similar
interests. In such a case, the term collaborative filtering describes the task. Other
practical Web applications based on agent systems fall into the following categories:
WEB browsing [1], [2], [10], [13], filtering net news and email messages [9], [15],
[14], shopping [4] and lifestyle [7]

The paper by Mladenic [12] presents a personal browsing assistant that suggests
interesting hyperlinks on the requested Web documents. Personal WebWatcher
consists of two main parts: a proxy server and a machine learning module. The system
learns user interests from the pages requested by the user. Hyperlinks whose
documents were visited by the user are considered to be positive examples and all the
other to be negative examples of user interests. Experimental results show the
classification accuracy of two algorithms, k-Nearest Neighbor and Naive Bayes.

Zacharis and Panayiotopoulos [19] presented the architecture and the main
components of a intelligent agent that uses a meta-genetic algorithm to filter and
collect information from the WWW. The meta-genetic algorithm operates in two
stages and creates two interacting populations. The first population contains keyword
sets from the user’s profile and the second population contains sets of logic operators.
The combination of keywords and logic operators creates queries for five popular
Web search engines. The user’s feedback on the agent’s recommendations drives the
learning process. Experimental results show that this learning algorithm can be used
quite successfully to produce learning agents.

2.2 Learning Interface Agents
In the last few years, there has been a lot of interest and activity in the area of

Intelligent User Interfaces. Various methods and techniques have been used to design
and realize interfaces that make human-computer interaction easier and more



effective. As the applications are getting more and more complex, it is necessary to
puild more flexible, portable, adaptive and collaborative interface systems in order to
support the human-computer interaction. Furthermore, using Artificial Intelliggnce
techniques and intelligent architectures for the interface is very important especially
in a multi-user environment where the interface must adapt to the needs of different
users, provide explanations of its actions, take initiative and make recommendations
to the user etc.

Designing and building general-purpose Natural Language Processing systems for
text understanding and information extraction is a very difficult task. Domain-specific
semantics and vocabulary are necessary for a system in order to understand
information relevant to a specific domain. Also, domain-specific linguistic patterns
are used as references to domain objects. Thus, if an agent acts in a virtual
environment it will need a set of rules that identify references to various objects in the
virtual world and the possible types of interactions.

The paper by Kontos and Malagardi [6] describes the design of a motion command
understanding system that could be applied to the communication between a user and
an intelligent agent. The agent accepts commands and knowledge about the objects
and the actions possible in a virtual environment. Commands are phrased in Greek or
English Natural Language and express different kinds of actions. Moreover, the
proposed system has the ability to learn from its user to understand and execute
correctly motion commands that go beyond its initial capabilities. This learning takes
place in cases when the system faces the problem of unknown words, of unknown
senses of words or underspecified positions of objects.

2.3 Learning to Build Robot Maps

In the process of robot map building, many different aspects of the problem must be
taken into account, like the environment the robot moves in, the type of sensors it
uses, the dimensionality of the measurements, etc. Feature-extraction from the raw
measurements for self-localization of the robot becomes therefore a fundamental
issue, [18].

Sensor technology provides high-dimensional and highly correlated data vectors,
which need an appropriate feature extraction method to be applied on these data,
before the modeling step {16]. The principal component analysis, (PCA), projection
method has been applied to extract linear features from a range sensor profile. The
same method has also been applied to images. Non-linear feature extraction methods
are the landmark-based approaches, as well as some direct nonlinear mapping using
feed-forward neural networks. Recent research proposes a Bayesian localisation error
formula in a neural network based non-linear feature extraction scheme as an
optimization criterion [16].

The paper by Vlassis et al. [17] concerns the task of autonomous navigation of
mobile robots, that requires precise localization of the robot within the workspace,
and proposes an alternative criterion that is based on information-theoretic concepts.
The paper presented an analysis of the method, comparison with other work and
Ppresentation of experimental results by a real robot in a typical office environment.



2.4 Learning to Take Decisions in a Real-Time Crisis

A typical problem-solving cycle within the blackboard framework consists of three
steps: the deliberation step, during which a set of proposed actions is posted on the
blackboard, a scheduling step, during which the best action is selected, and finally the
execution step, during which the selected action is passed to the actuators and the
environment changes.

Bulitko and Wilkins [3] described an Intelligent Agent for real-time crisis decision
making. The agent is blackboard-based and uses envisionment to schedule its actions
as the complexity associated with ship damage control does not allow to capture every
behavior in a reasonably sized set of rules. Although, the procedure of simulating fire
and flood spread is slow, the learning module compiles the generated knowledge and
thus allows for real-time performance. A novel scheduling approach is proposed and
the environment is represented as an Extended Petri Net model.

2.5 Inductive Concept Learning in a Three-Valued Logical Setting

It is often the case that we are confident about the truth or falsity of only a limited
number of facts as the available information is too scarce. An agent gathering
information from a surrounding world needs to distinguish what is true, what is false
and what is unknown, in a three-valued setting.

Lamma et al. [8] presented an approach for inductive concept learning adopting a
three-valued setting. The definition of a concept as well as its opposite can be derived
considering positive and negative examples as instances of two disjoint classes.
Extended logic programs under a well-founded semantics with explicit negation have
been adopted as the representation formalism. The issue of strategic combination of
possibly contradictory definitions was also considered.

3 Conclusions

During the last years, the topic of developing learning and adaptation mechanisms
within Intelligent Agent systems has gained increasing attention in Artificial
Intelligence. Intelligent agent theories, languages and systems can use all the research
done in the area of machine learning, as the latter provides tools for dynamic
adaptation in unknown environments. The dimensionality as well as the complexity of
the modeled environments becomes an additional reason for developing machine
learning intelligent agent systems.

During the Machine Learning and Intelligent Agents workshop, work was
presented that applied machine learning to many different problems such as,
searching the Web, adaptive and collaborative NLP interfaces, robot map building,
and taking real-time decisions in crisis situations. All these domains can be
successfully challenged if we select an appropriate machine learning strategy. We
believe that the time is near, when hybrid intelligent agent systems will be provided,
using alternative or unified machine learning techniques for solving the challenges of
the future. One of these challenges is the development of an intelligent agent with
learning capabilities from the Web. The Web suggests new problems and new
constrains on existing techniques. Also, intelligent Web agents will provide tangible
evidence of the power and utility of Artificial Intelligence techniques.
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1 Introduction

It is generally recognized that information systems are becoming more complex and,
therefore, intelligent user interfaces are needed to improve user interaction with these
systems. Furthermore, the exponential growth of the Internet makes it difficult for the
users to cope with the huge amount of available on-line information. The challenge
that information providers and system engineers face is the creation of adaptive (Web-
based) applications, as well as the development of "personalized" retrieval and
filtering mechanisms. Responses to this challenge come from various disciplines
including machine learning and data mining, intelligent agents and multi-agent
systems, intelligent tutoring, information retrieval, etc.

User modeling (UM) aims to make information systems really user-friendly, by
adapting the behaviour of the system to the needs of the individual. The importance of
adding this capability to information systems is proven by the variety of areas in
which user modeling has already been applied: information retrieval, filtering and
extraction systems, adaptive user interfaces, educational software.

Machine learning (ML) techniques have been applied to user modeling problems
for acquiring models of individual users interacting with an information system and
grouping them into communities or stereotypes with common interests. This
functionality is essential in order to have a useful and usable system that can modify
its behavior over time and for different users. ML techniques are promising in cases
where very large sets of usage data are available, like WWW sites, and other Internet
applications (news filtering, digital libraries, search engines, etc.). In such
applications, the information providers need a tool to help users in selecting useful
information from the plethora of information on the Net.

This chapter is based on the work presented in the Workshop on “Machine
Learning in User Modeling”, which was organised in conjunction with the ECCAI
Advanced Course on Artificial Intelligence for 1999 (ACAI '99). The aim of the
Workshop was the presentation of the current trends and activities in exploiting
Machine Learning techniques for the creation of adaptive user interfaces, the
construction of user communities and stereotypes, the customized web usage and for
the development of educational hypermedia. Pat Langley was invited speaker and the
rest of the Workshop consisted of seven papers, which could be grouped in "clusters”
corresponding to the topics: Adaptive User Interfaces, Agent-based systems.
Student Modeling and Web Mining.
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The following section presents an overview of UM and describes the general
contribution of ML in UM. Section 3 discusses the current research efforts in the
above-mentioned topics, as they were presented in the workshop. Finally section 4
presents some conclusions and suggestions for future research.

2 Machine Learning in User Modeling

A user model consists mainly of knowledge about the individual preferences which
determine the user’s behaviour. As in the most knowledge based approaches, two are
the main issues that user modelling faces: The user model representation and
acquisition.

User models could be represented as preferences sets, first order predicates or
groups of predicates, plans, decision trees, etc. Furthermore, a user model may contain
personal information about the user, such as his/her age, occupation, etc. The latter
type of information is not directly necessary for the adaptation of the system to the
user, but may be used to categorise the user into a stereotype, which in turn allows the
system to anticipate some of the user's behaviour. Stereotypes have been introduced by
Rich [34], as a means of organising the users of the system with common behaviour,
into meaningful groups. Personal information about the users of a system is not always
available and therefore the construction of user stereotypes may not be possible. This
is especially true of visitors to a Web site. In that case, the organisation of users into
groups with common interests can still be useful. Such a group of users is termed by
Orwant [26] a user community and corresponds to a stereotype missing the personal
information.

Many user model acquisition methods have been presented in the literature. These
methods depend on the user model definition and representation and vice versa. For
example plan recognition methods are used when user models are represented as plan
hierarchies or libraries. In general, the user model acquisition methods could be
grouped in two families: The explicit and the implicit (non-invasive) methods. The
first family creates the user models by asking the users directly about their interests
and preferences or by allowing them to specify and modify their own model. These
preference setting methods could be found in many modern software packages. The
implicit methods estimate and infer user models by tracking the user behaviour and
interaction.

Educational software uses student modelling techniques to personilise the learning
process, i.e., to make it adaptive to the student skills and background knowledge, as
well as to predict the student's actions [40], [17]. Student modeling precedes
historically user modeling and thus one could argue that it was one of the "causes” for
the development of UM technology.

On the other hand, information retrieval and filtering systems aim to deliver to the
user those documents that are relevant to his/her information requirements, whereas
information extraction systems aim to deliver specific facts from those documents.
NewT is a system that helps the user filter Usenet Netnews [22] according to his/her



interests. Brajnik and Tasso [8], [9] present the exploitation of the user modelling shel]
UMT in the prototype information-providing system Tourist Advisor (TA). Kay [19]
describes the Movie Advisor project, which operates on a database of movie
descriptions, suggesting movies that should appeal to a specific user. Doppelginger
[26] is a user modelling system that gathers sensor data about users, draws inferenceg
on those data and makes the results available to applications. Firefly’s agent software
groups users’ interests based on their similarities in order to suggest buying
opportunities to specific customers based on their similarity to other customers. UMIE
(5] is a Web-based prototype user modelling component (see http://www.iit.demo-
kritos.gr/UMIE), that filters the data extracted from an information extraction system
according to the users’ models.

Machine learning (ML) methods have been applied to user modeling problems,
mainly for acquiring models of individual users interacting with an information
system, e.g. [7], [33], [32], [3]. In such situations, the use of the system by an
individual is monitored and the collected data are used to construct the model of the
user, i.e., his/her individual requirements. By definition, the development of intelligent
and adaptive user interfaces presupposes the design of specific modules, responsible
for learning user models by tracing the interaction of the system with the users [20],
[10], [11].

Moreover, ML techniques have been used in many agent-based and multiagent
systems which aim to discover and recommend information from Web sites like FAB
[2], Syskill & Webert [29], WebWatcher [18], Amalthea [23] and Oyster [25].
Perkowitz and Etzioni [30], [31] deal with the development of adaptive Web-sites,
which recommend (on the fly) pages relevant to the interests of their visitors.
Specifically, they provide a conceptual cluster mining method that analyses the Web
server usage data (logs).

Furthermore, ML for UM has been used in digital library services, like IDL [15],
[14], and in news filtering systems, like News Dude [6]. The main goal of these
systems is to learn and revise user profiles as well as to propose which information on
a given topic would be interesting to a user.

Most of this work “revolves” around the World Wide Web, which provides a
wealth of information to filter, as well as a famous interaction mechanism. We could
classify the filtering methods into two families. The first one is content-based filtering
in which the system accepts information describing the items, and learn to predict
which items fit to the user models. Syskill & Webert and IDL are representatives of
this family. The other family is the collaborative or social filtering, in which the
system updates the user models and predicts items that fit to them, based on feedback
from many different users. Typical representatives of this approach are FAB, Firefly
and amazon.com. The works dealing with the formulation of user communities [26],
[27] have similarities to the latter family. However there are systems (e.g. (3]), which
adopt a hybrid philosophy in recommending items based on user models.

Apart from information discovery and filtering systems, Langley [20] refers to a
variety of systems that use ML in order to adapt to particular situations that a user
faces, such as travel assistance, routing in an area, emergencies reaction and
scheduling. Furthermore, such techniques have been applied in intelligent tutoring



systems [37], [12]. Finally, ML techniques have been applied sucpesfully to the
rediction of a users’ actions. Significant research efforts on intelligent assistance
and/or tutoring view the user behaviour as a plan and learn the patterns of users’
actions which achieve particular states [4]. Specifically, there are significant
contributions concerning the usage of decision theory and Bayesian belief networks in

plan recognition [1], [39].

3 Overview of the Workshop Papers

The workshop consisted of the invited talk of Pat Langley and seven papers [41],
presenting Machine Learning applications for the development of adaptive user
inerfaces, agent-based information discovery, student modeling systems, as well as for
analyzing the behaviour of Web users.

3.1 Adaptive User Interfaces

Pat Langley in his invited talk [21] defined adaptive interfaces as "software artifacts
that improve their ability to interact with users by constructing user models based on
partial experience with each of them". Furthermore, he considered information
filtering and recommendation systems as typical examples of adaptive interfaces and
he presented a review of "content-based" and “collaborative” filtering systems as well
as efforts, which combine the two approaches. Moreover, he described innovative
applications of recommendation systems such as an Adaptive Route Advisor, which
suggests alternative routes between a driver’s current location and his destination. This
system takes into account a weighted combination of parameters like the distance, the
estimated driving time, the number of turns and intersections, etc. and proposes the
routes that best fit to the current user model. Another application that was presented is
INCA, which helps persons who are responsible in allocating resources in response to
emergencies that involve hazardous materials. Finally, Prof. Langley compared the
domain of adaptive user interfaces with other paradigms. He argued that the main
difference between adaptive user interfaces and other cognition computational models,
is that the former deal primarily with the content of human decision, while the latter
focus on the process of human thought and decision making. He closed his talk
providing a list of challenges and open questions that Machine Learning faces in
creating Adaptive Interfaces.

The paper by Schwab and Pohl [35] described LaboUr, a recommendation system,
which learns user profiles from ELFI, a Web-based system that provides information
concerning research funds. In particular ELFI is organized into hierarchies of research
topics, e.g. mathematics, computer science, etc., and funding types, such as grant,
fellowship. The system displays the contents of a topic by listing links to so-called
detailed views (DVs) of relevant funding programs. A DV consists of the available
data about a research program, i.e. an abstract, the covered topics, the funding type,



etc. The authors implemented a simple Bayessian classifier and they modified the
known k-Nearest Neighbor algorithm to classify the set of information objects (DVs),
selected by the users. Most probable or close DVs are considered as a class, which
could be recommended to a user. Finally, seeking to determine explicitly the users’
interests, the authors employed statistical methods to find the DVs features that are
important to an individual user.

Semeraro et al. [36] described an intelligent Web-based digital library, named
CDL, which incorporates Machine Learning techniques both for document analysis
and classification, as well as for user modeling. Users can access CDL in several
ways, even through a dial-up connection to Internet, and interact with it via either g
form-based, a tree-based, or a topic-map interface. The topic map provides a global
view of the semantic content of the documents by showing the document topics. The
topics have been defined incorporating standard thesaurus building techniques and
represented by vectors. The navigation in the map or in the tree interfaces results into
the automatic query composition. Regarding user modeling, CDL incorporates the
supervised learning algorithm C4.5 as a module of the "Application Server" which is
embedded in the Learning Server component. C4.5 takes as input the data stored in the
log files, and classifies the users interacting with CDL, inducing a decision tree as well
as a set of rules. Each entry of the interaction log files is labeled indicating three main
registered user categories: Novice, Expert and Teacher. Furthermore, each class is
associated with one of the mentioned interfaces. In this manner the CDL architecture
uses Machine Learning techniques for managing user models and providing a weak
form of user interface adaptivity.

3.2 Intelligent Agents and Multi-agent Systems

Fragoudis and Likothanassis [16] provided a complete comparative study of the user
modeling approaches of the most well-known information discovery intelligent agents,
such as Lira, Letizia, Amalthea, Arachnid, Webmate, Webace, Syskill & Webert,
Webwatcher, Siteseer, Law and Fab. They stated that Intelligent agents help people in
two different ways: They can provide assistance while browsing or they may
autonomously discover documents of interest, based on the results of a query to some
search engine. The main conclusion of this work is that "none of the referred solutions
seems to outperform the others and in any case the result is the same: Intelligent
systems that help people on their battle against information overload".

The paper by Moukas [24] described "Amalthaea”, a multi-agent user modeling and
information discovery system. Amalthaea is implemented by creating an "ecosystem”
of two kinds of cooperating agents: the Information Filtering Agents which are
responsible for the acquisition and maintenance of the user profiles and the
Information Discovery Agents which monitor and adapt user profiles to the various
information sources. Both documents and user preferences are represented using the
Vector Space Model. The results of the users’ queries on existing search engines are
used to define the interestingness of the documents. The user receives only the most



vinteresting” documents and rates them in a scale from 1 to 7, providing the ecosystem
with relevance feedback. Amalthaea assigns to each user model a population of
Information Filtering and Information Discovery agents. The user profiles are updated
dynamically by the Information Filtering Agents, which, evolve by three operators:
cloning, crossover and mutation. The agents’ survival, offspring generation, or
diminishment depends on the values of two measures: the individual and overall
fitness. Agents with low individual fitness are purged and new ones are created, while
the evolution rate is determined by the overall fitness of the ecosystem.

3.3 Student Modeling

Chiu and Webb [13] dealt with two issues confronted during the student behavior
prediction process. First, what mechanisms could be employed in order to increase the
predictions without degrading prediction accuracy and second, for contexts in which
accuracy is of primary importance, how the prediction accuracy could be further
improved. The paper improved previous work of the authors known as the Dual
model. This approach utilizes temporal data in order to improve the prediction rate of
a student modeling system. Specifically, Dual model creates a temporal model,
namely fresh model - built using data from the most recent observations - in addition
to a conventional model, which is referred to as an extended model - inferred from
data of all historical observations. When a Dual-model system predicts a student’s
future actions, both models will be consulted. In this paper the authors, aiming to
further increase the prediction rate, propose an alternative Dual-model strategy that
consults the two models in parallel. Moreover they present and evaluate three new
variants of Dual-model, which improve its prediction accuracy.

34 Web Mining

Spiliopoulou et al. [38] described WUM (Web Utilisation Miner), an algorithm which
keeps track of all traversals of the paths through the pages of a site and aggregates
them in a graph. The authors specify MINT, a mining language, which forms SQL-
like queries to extract useful information from the "aggregated” graph. Specifically,
MINT provides "interesting” navigation patterns (paths). Finally, the authors define
the concept of "interestingness" according to the structure of a MINT-query.

The paper by Paliouras et al. [28] proposed a methodology for constructing user
communities (i.e., groups of people with common interests) from Web logs and they
applied it on the logs of the ACAI'99 Web site. The methodology deals with three
major issues: The fisrt issue is that of data engineering, which includes selecting the
right representation for the training data and reducing the dimensionality of the
problem. Regarding this issue, the authors propose the representation of access
sessions as transitions between pages, or as bags of pages. The second issue concerns
the selection of the clustering method. The authors construct user groups using the
conceptual clustering algorithm COBWEB. The last issue, in which they pay



substantial attention, is the characterization of the community models, i.e., the
construction of meaningful communities. For this purpose, they introduce Srequency
increase, a metric to decide which are the representative features for each community
of visitors. One of the results of this paper is that representing access sessions by
means of transitions between pages produces interesting navigation patterns for the
community models. Finally the authors conclude that Web usage analysis is much
more insightful than the approach of examining simple usage statistics of a Web site
and that the employment of machine learning and user modelling techniques are very
promising tools for this analysis.

4 Discussion

After the paper presentations an interesting discussion took place, debating the
following issues:

1. The impact of ML in the development of adaptive interfaces and UM software.

2. What kinds of ML techniques are needed in UM.

3. Whether it is worth-while using "heavy" ML algorithms in the development of
on-line interactive systems such as tutoring systems, or personilized Web-based
applications.

The conclusions of this discussion could be summarized as follows:

1. ML offers a suite of powerful techniques either for user model acquisition or for
user community induction.

2. ML techniques support complex decision making tasks and improve the prediction
quality of a UM software.

3. UM should focus on the utilization of rapid and on-line learning techniques. This
means that accurate and descriptive user models should be generated from small
sets of training cases and that the models should be updated each time a user
interaction occurs or at least before the next session.
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1 Introduction

Data Mining has become a buzzword in industry in recent years. It is something that
everyone is talking about but few seem to understand. There are two reasons for this
lack of understanding: First is the fact that Data Mining researchers have very diverse
backgrounds such as machine learning, psychology and statistics. This means that the
research is often based on different methodologies and communication links e.g.
notation is often unique to a particular research area which hampers the exchange of
ideas and the dissemination to the wider public. The second reason for the lack of
understanding is that the main ideas behind Data Mining are often completely
opposite to mainstream statistics and as many companies interested in Data Mining
already employ statisticians, such a change of view can create opposition.
There are many definitions of Data Mining, the one we favour can be summarised
as follows:!
“Data Mining is concerned with secondary data analysis of large
data bases where the aim is to identify unsuspected relationships of
interest or value.”

Classical statistics is mostly based on hypothesis testing. The researcher makes
assumptions about the structure of the data and then uses statistical tests to either
prove or disprove these assumptions. The result of such an exercise is that a lot of
careful consideration goes into building a model and that the researcher should have a
good understanding of the data involved. The drawback is, of course, that the quality
of a model becomes dependent on the quality of the researcher, his ability to
formulate interesting hypotheses and his experience in handling a given date source.
Data Mining does not have hypotheses testing at its heart and this is its main
difference from classical statistics. Instead, Data Mining aims to find interesting
relationships within the data that are of value to the researcher. The most appealing
aspect of Data Mining is that it removes the need for the researcher to be an expert in
model building and therefore reduces the cost of the analysis. It also offers the
possibility that the tools might come up with ideas that the researcher would not have
thought of. Although this sounds excellent for applied researchers there are
unfortunately also some drawbacks. Here are a couple that are of particular interest:
Are the identified relationships of interest? Most Data Mining is used on medium
or large-scale databases. With a large enough number of observations, it is all too

! This note draws on ideas from Prof. David J. Hand’s RSS (Royal Statistical Society)
presentation: “Data Mining: puff or potential”.
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easy to identify spurious or obvious patterns. Spurious patterns are caused by pure
chance and do not relate to the general structure of the data, whereas obvious patterns
are relationships in the data caused by data collection procedures or inherent in a
particular type of data e.g. the colder it is, the fewer ice creams are sold. Many
examples have been presented where Data Mining techniques have come up with
solutions that are trivial for an expert in the field.

Selection bias. Much work has been done on selection bias in statistics but Data
Mining research has largely ignored this issue. One way to think about selection biag
is “how did the people on which I have data happen to be in the data set in the first
place?” One often sees forecasts, say from decision trees, being applied to the whole
population without recognising that the data from which the tree was derived was
non-random.

Few people in industry doubt that Data Mining is here to stay and that it offers
significant improvements over classical analysis when used on large databases. The
challenge for the Data Mining research community is to incorporate knowledge from
other fields, like econometrics and statistics, in order not to make obvious mistakes or
to re-invent the wheel. The Workshop on “Data Mining in Economics, Finance and
Marketing”, which took place during the Advanced Course on Artificial Intelligence
(ACAI ’99) aimed to address this challenge, by bringing together people from
different disciplines who share a common interest for developing and using data
mining techniques. This chapter presents an overview of the papers presented in the
workshop [15] and some of the general conclusions that were drawn.

2 Overview of the Workshop Papers

Data mining or Knowledge Discovery in Databases (KDD) is an exploratory and
iterative process that can be decomposed into a number of stages. The paper by
Feelders and Daniels [4] describes the different activities in the data mining process
and discusses some pitfalls and guidelines to circumvent them. Despite the
predominant attention for analysis, data selection and pre-processing is usually the
most time-consuming activity, and has a substantial influence on the ultimate success
of the process. The involvement of a subject area expert, data mining expert as well as
a data expert is critical to the success of data mining projects. Despite the attractive
suggestion of “fully automatic” data analysis, knowledge of the processes behind the
data remains indispensible in avoiding the many pitfalls of data mining. Although
company databases are usually quite large, proper formulation of the data mining
problem combined with sampling techniques often allows reduction to manageable
sized data sets. In the majority of applications the data were originally not collected
with the intention of data mining, but merely to support daily business processes. This
may give rise to low quality data, as well as biases in the data that reduce the
applicability of discovered patterns.

Dikaiakos [3] presented the architecture of a Financial Information Gathering
Infrastructure (FIGI). FIGI helps investors collect, filter, combine and integrate
portfolio-related information, provided through various Internet services, like World-
Wide Web sites and Web-databases. FIGI is being developed with Java-based Mobile
Agent technology by Mitsubishi Electric Information Technology Center [5]. The



employment of Java and Mobile Agents provides a framework for unifying the
various financial information services currently available on Internet and for
sustaining continuous information provision to mobile users.

The vast improvement of hardware and software technology in the last years has
made it possible for companies to store large amounts of data in a reliable and
jnexpensive way. Although this may appear to be very positive at first, it has led in
very many cases to large collections of data, where it has become impossible for
humans to maintain the right understanding of the data they hold. The paper by
Karamanlidou et al. [6] concentrates on data related to stock markets and especially
on the stock market in Athens. It presents the system Stock Miner, which intends to
deal with problems related to large volumes of data in financial areas. Stock Miner
combines technical analysis, which is used by stockbrokers, and Knowledge
Discovery in Databases, which is a new field concerned with analyzing data and
discovering useful information.

The approach introduced by Piasta [11] for analysing business databases is based
on the idea of rule induction. The ProbRough system [10] for inducing rough
classifiers was inspired by the methodology of the rough set theory. The search
strategy of ProbRough, through the set of partitions of the attribute space, is guided
by the global cost criterion. Because of the specific shape of partition elements, the
resultant rough classifiers may be presented as sets of simple and transparent decision
rules, easily understood by humans. The domains of rules are disjoint and fill up the
whole attribute space. ProbRough accepts databases with noisy and inconsistent
information delivered by attributes of any mixed qualitative and quantitative type.
Moreover, it enables the use of background knowledge in the form of prior
probabilities of decisions and different costs of misclassification. The ProbRough
system is capable of inducing decision rules from databases with practically unlimited
number of objects and attributes. The paper presents the behavior of the ProbRough
system on several real-life business databases. Two real-world marketing databases
[8], [14] are being used to illustrate the way of discovering the decision rules for
identifying customers who are likely to accept or reject an offer. Furthermore, the US
Census Bureau database is being analysed and applications of ProbRough in credit
evaluation and financial ratio analysis are being illustrated.

The exploration of huge quantities of stored data and the extraction of useful
knowledge, which is formally referred to as data mining, is now believed to be a
critical factor in the decision that a company or any other interested individual may
take. Recently, Evolutionary Algorithms (EAs) have been applied with very good
results to various types of data mining problems. EAs are stochastic search techniques
that explore combinatorial search spaces, using simulated evolution. The primary
objective of an EA is to either find something — whether this is known or not — or
accomplish a goal, or more generally solve a problem. The paper by Adamidis and
Koukoulakis [1] presents initial results of data mining from TV program databases
using EAs. It compares the performance of different operators and different operator
parameters of EAs. The EA mining system is used to extract rules from a database
that contains TV broadcast data. The database has historical data, i.e., broadcasted
schedules. Therefore, the interested individual, that is the owner of the station, given
the rules, can be informed about possible relations between attributes and plan future
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schedules accordingly. Initial results show that EAs can discover previously unknown
knowledge in the TV database that we used.

Direct mail is a typical example for the use of response modelling. In order to
decide which people will receive the mailing, potential customers are divided into two
groups or classes (buyers and non-buyers) and a response model is created. The main
aim of the paper by Coenen et al. [2] is the improvement of response modelling. For
this purpose, a combined approach of rule-induction and case-based reasoning is
being proposed. The initial classification of buyers and non-buyers is done by means
of the C5 algorithm, the more recent version of C4.5 [12]. In order to improve the
ranking of the classified cases, a new method, called rule-predicted typicality, is being
introduced. The combination of these two approaches is tested on synergy by
elaborating a direct mail example.

Corporate bankruptcy prediction is a usual problem in financing and management.
Several approaches have been proposed for the solution of this problem. These can be
classified into two categories: conventional classification (e.g. discriminant analysis
and multicriteria analysis) and data mining methods (e.g. neural networks, genetic
algorithms, decision trees). In the paper by Thomaidis et al. [13] a new approach is
proposed based on Machine Learning and Fuzzy Logic. This new approach uses a
fuzzy system, in order to classify firms into efficient and inefficient ones. The system
uses the Fuzzy- ROSA (Rule Qriented Statistical Analysis) [7] methodology, which is
found in Winrosa®© [9] and is a combination of the Standard-ROSA methodology and
Fuzzy Logic. It is shown that the proposed method produces better results than the
conventional ones. Furthermore, it produces rules with fewer statements in their
premise, which are more ‘general’, and thus have greater prediction capability.

3  Conclusions

The workshop papers clearly showed how Data Mining can be applied to many
different economic and/or financial prediction problems. What is perhaps the most
interesting observation is just how quickly this research area has become popular in
the otherwise conservative world of business. Statistical analysis has been available to
businesses for years but somehow Data Mining has captured the interest of businesses
in a way that classical statistical analysis never did. Cynics may believe that this is
due to better marketing of Data Mining with labels such as “artificial Intelligence,
Neural Networks, Decision rules” instead of the usual statistical labels like “nonlinear
regression, discriminant analysis”. This may be partly true but without a real financial
benefit to businesses, Data Mining would not have gained so widespread popularity.
Although the future looks very rosy for Data Mining both as a research area and as
a tool to increase profitability for businesses, there are still teething problems that
need to be dealt with more rigorously. For example, several of the papers drew
attention to data issues. Without a thorough understanding of how data is collected
and pre-processed, it is unlikely that Data Mining can offer unbiased results.
Understanding your data is not a glamorous undertaking and many businesses tend to
ignore this and go straight to doing the analysis. Perhaps there is a need for some
caveats to the usual selling of Data Mining as do-it-all-without-thinking techniques.
Another example raised at the workshop was the need to keep the output of the Data



Mining analysis easily understandable. Most business leaders will be uncomfortable
with things they do not at least have some understanding of and “black boxes” will
never be acceptable.

The papers contained many examples of innovative technical developments. One
of the most attractive things about this research area is the diversity of approaches to
data analysis. In fact, Data Mining probably incorporates a greater variety of different
techniques than any branch of numerical analysis. It is highly likely that this coming
together of ideas and innovations from so many sources will continue to inspire
developments in the Data Mining area and that businesses will be increasingly
interested in what Data Mining can offer them.
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1 Introduction

Machine Learning (ML) provides methods, techniques, and tools that can help solving
diagnostic and prognostic problems in a variety of medical domains. ML is being used
for the analysis of the importance of clinical parameters and their combinations for
prognosis, e.g. prediction of disease progression, extraction of medical knowledge for
outcome research, therapy planning and support, and for the overall patient
management. ML is also being used for data analysis, such as detection of regularities
in the data by appropriately dealing with imperfect data, interpretation of continuous
data used in the Intensive Care Unit, and intelligent alarming resulting in effective and
efficient monitoring. It is argued that the successful implementation of ML methods
can help the integration of computer-based systems in the healthcare environment
providing opportunities to facilitate and enhance the work of medical experts and
ultimately to improve the efficiency and quality of medical care. Below, we
summarize some major ML applications in medicine.

Medical diagnostic reasoning is a very important application area of intelligent
systems [18], [35], [36]. In this framework, expert systems and model-based schemes
provide mechanisms for the generation of hypotheses from patient data. For example,
rules are extracted from the knowledge of experts to construct expert systems.
Unfortunately, in many cases, experts may not know, or may not be able to formulate,
what knowledge they actually use in solving their problems. Symbolic learning
techniques (e.g. inductive learning by examples) are used to add learning, and
knowledge management capabilities to expert systems [5]: given a set of clinical cases
that act as examples, learning in intelligent systems can be achieved using ML
methods that are able to produce a systematic description of those clinical features that
uniquely characterize the clinical conditions. Thus, knowledge can be expressed in the
form of simple rules, or often as a decision tree. A classic example of this type of
system is KARDIO, which was developed to interpret ECGs [7].

This approach can be extended to handle cases where there is no previous
experience in the interpretation and understanding of medical data. For example, Hau
and Coiera [11] describe an intelligent system, which takes real-time patient data
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obtained during cardiac bypass surgery and creates models of normal and abnormal
cardiac physiology to detect changes in patient’s condition. Additionally, in a research
setting, these models can serve as initial hypotheses that can drive further
experlmentatlon

Learning from patient data one encounters several difficulties, since datasets are
characterized by incompleteness (missing parameter values), incorrectness (systematic
or random noise in the data), sparseness (few and/or non-representable patient records
available), and inexactness (inappropriate selection of parameters for the given task).
ML provides tools for dealing with these characteristics of medical datasets {20].
Subsymbolic learning methods, especially neural networks are able to handle these
datasets and are mostly used for their pattern matching abilities and their human like
characteristics (generalization, robustness to noise), in order to improve medical
decision making [1], [21], [22], [26], [31].

Another field of application is biomedical signal processing [9], [17], [24], [30]}.
Since our understanding of biological systems is not complete, there are essential
features and information hidden in the physiological signals that are not readily
apparent. Also, the effects between the different subsystems are not distinguishable.
Biological signals are characterized by substantial variability, caused either by
spontaneous internal mechanisms or by external stimuli. Associations between the
different parameters may be too complex to be solved with conventional techniques.
ML methods use these sets of data, which can be produced easier, and can help to
model the nonlinear relationships that exist between these data, and extract parameters
and features which can improve medical care.

Computer-based medical image interpretation systems comprise a major
application area providing significant assistance in medical diagnosis [10], (121, [13],
[27]. In most cases, the development of these systems is considered as an attempt tc
emulate the doctor’s expertise in the identification of malignant regions in minimally
invasive imaging procedures (e.g., computed tomography, ultrasonography
endoscopy, confocal microscopy, computed radiography or magnetic resonance
imaging). The objective is to increase the expert’s ability to identify malignant region:
while decreasing the need for intervention, and maintaining the ability for accurate
diagnosis. Furthermore, it may be possible to examine a larger area, studying living
tissue in vivo, possibly at a distance [8], and, thus, minimize the shortcomings of
biopsies, such as discomfort for the patient, delay in diagnosis, and limited number of
tissue samples. The need for more effective methods of early detection, such as those
that computer assisted medical diagnosis systems aim to provide is obvious. The
potential of ML in this area is significantly high since it provides us witl
computational methods for accumulating, changing and updating knowledge it
intelligent medical image interpretation systems, and, in particular, learning
mechanisms that will help us to induce knowledge from examples or data. Especially
in minimally invasive imaging procedures that apply new imaging principles, such a
fluorescence imaging or laser scanning microscopy, ML methods can be useful sinc
algorithmic solutions are not available, there is lack of formal models, or th
knowledge about the application domain is poorly defined due to lack of previou
experience and/or medical expertise in the interpretation of the acquired images.
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In general, it seems that as the healthcare environment is becoming more and more
reliant on computer technology, the use of ML methods can provide useful aids to
assist the physician in many cases, eliminate issues associated with human fatigue and
habituation, provide rapid identification of abnormalities and enable diagnosis in real
time.

Next, we will summarize successful applications of ML methods that were
presented at the Workshop on Machine Learning in Medical Applications held on July
15%, 1999, and hosted by the ECCAI Advanced Course on Artificial Intelligence for
1999 (ACAI '99) at Chania, Island of Crete, in Greece. The goals of the workshop
were to foster fundamental and applied research in the application of ML methods to
medical problem solving and medical research, provide a forum for reporting
advances in the area, determine whether ML. methods are able to support the research
and development on intelligent systems for medical applications, and identify those
areas where increased research is likely to yield advances.

The workshop comprised eleven refereed papers [38] and one invited, which looked
at the theories and approaches that underpin the use of ML methods in medicine. A
number of recommendations for a research agenda were produced, including both
technical and human-centered issues. In the next section, a brief description of these
contributions is presented and the chapter concludes with a general discussion on the
development and use of ML methods in a medical context.

3 Overview of the Workshop Papers

The invited talk by Schurr [34] focused on endoscopic techniques and the role of ML
methods in this context. The speaker referred to current limitations of endoscopic
techniques, which are related to the restrictions of access to the human body,
associated to endoscopy. In this regard, the technical limitations include: restrictions
of manual capabilities to manipulate human organs through a small access, limitations
in visualizing tissues and restrictions in getting diagnostic information about tissues.
To alleviate these problems, international technology developments focus on the
creation of new manipulation techniques involving robotics and intelligent sensor
devices for more precise endoscopic interventions. It is acknowledged that this new
generation of sensor devices contributes to the development and spread of intelligent
systems in medicine by providing ML methods with data for further processing.
Current applications include suturing in cardiac surgery, and other clinical fields. It
was mentioned that particular focus is put by several research groups on the
development of new endoscopic visualizing and diagnostic tools. In this context, the
potentials of new imaging principles, such as fluorescence imaging or laser scanning
microscopy, and ML methods are very high. The clinical idea behind these
developments is early detection of malignant lesions in stages were local endoscopic
therapy is possible. Technical developments in this field are very promising, however,
clinical results are still pending and ongoing research will have to clarify the real
potential of these technologies for clinical use.



The paper by Moustakis and Charissis [23] surveyed the role of ML in medical
decision making and provided an extensive literature review on various ML
applications in medicine that could be useful to practitioners interested in applying ML
methods to improve the efficiency and quality of medical decision making systems. In
this work the point of getting away from the accuracy measures as sole evaluation
criteria of learning algorithms was stressed. The issue of comprehensibility, i.e. how
well the medical expert can understand and, thus, use the results from a system that
applies ML methods, is very important and should be carefully considered in the
evaluation.

The paper by Alexopoulos et al. [2] focused on the application of inductive ML
methods in medical diagnosis of stroke. The proposed approach was based on the See5
algorithm, which is an updated version of the C4.5 algorithm. In the experiments
reported, this approach exhibited the capability to learn from examples and handle
missing information by constructing a decision tree, which could be transformed to
IF/THEN rules. Special attention was given to the determination of the complexity
and comprehensibility of the acquired decision rules by consulting medical experts.

In the paper by Zeli¢ et al. [37], the Magnus Assistant decision tree learner and the
Bayesian classifier were used for the diagnosis and prognosis of first cerebral
paroxysm. Despite the fact that best predictions were obtained using the naive
Bayesian classifier, the most interesting results from a medical point of view were
obtained using the Magnus Assistant decision tree learner. Data and attributes that
were considered by expert neurologists as obvious and meaningless turned out to be
very important for automatic diagnosis and prognosis. In this case, ML methods
provided a different estimation of some clinical attributes and motivated clinicians to
generate new hypotheses and ultimately to improve their standard diagnostic and
prognostic processes.

An interactive system for the ascertainment of visual perception disorders was
presented by Ruseckaite [33]. The system performed data analysis and extracted
interesting dependencies between visual perception disorder and damage of the brain
by applying a modified version of the ML algorithm Charade. Preliminary results
indicated the effectiveness of the proposed approach in rehabilitating persons with
certain brain anomalies.

The paper by Bourlas et al. [6] extended previous work of the authors on medical
expert systems for ECG diagnosis by incorporating ML methods to continuously
improve the knowledge base of a medical expert system. According to the reported
results, the new system exhibits continual learning capabilities using an extended
version of the ID3 algorithm to extract, from time to time, a set to diagnosis rules
based on a training set of ECGs. The extracted rules are merged into the older ones
and the duplicates are removed. In order to optimize the performance of the system, a
knowledge management subsystem provides monitoring of the performance of the
final rules, in terms of their diagnostic accuracy, and modifies the knowledge base.

The work presented in Neves et al. [25] demonstrated the need for Health Care
Unit's medical imaging models and introduced the concept of a generic and
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deductive/inductive model of operation, which supports scheduling, forecasting, and
accounting. Following this approach, several agents concurred in generating
hypotheses, each one of them having a different role in evaluating parts of the data,
and neural networks were used to discover associations in the dataset.

Asteroth and Moller [4] investigated the use of neural network-based
approximation of structural information to the identification of individualized models
of the human cardiovascular system. This approach allowed them to achieve robust
real-time identification.

The problem of identifying the structure of a population of patients with brain
disorder was investigated by Pranckeviciene [29]. A single layer neural network
evaluated the similarity among patients’ electroencephalograms (EEGs). Experiments
indicated that this approach successfully revealed similarities in the electrical activity
of the brain of different patients.

In the paper by Jankowski [14] the use of incremental neural networks was
suggested for approximation and classification tasks. The proposed model was based
on neurons with a new form of rotated bi-radial transfer functions and was
dynamically generated to match the complexity of the training data. In simulation
experiments, the model exhibited superior generalization performance in the
classification of medical data when compared with other popular methods.

The paper by Karkanis et al. [15] proposed the use of textural descriptors for the
discrimination of cancer regions in endoscopic images. Second order gray level
statistics were used for texture description and a multi-layer feedforward neural
network was employed for classifying regions of interest. In preliminary experiments,
this simple scheme was able to detect abnormalities in colonoscopic images with high
accuracy.

The paper by Karkanis et al. [16] outlined a new approach to texture classification
applied to lung endoscopic images. Feature selection was based on the texture
spectrum of the image and a clustering method was used to distinguish the features
with the most discriminative ability.

4 Discussion

Research in ML methods for medical applications to-date remains centered on
technological issues and is mostly application driven. However, in order to answer
fundamental questions and acquire useful insight in the performance and behavior of
ML methods in a medical context, it is important to enhance our understanding of ML
algorithms, as well as to provide mathematical justifications for their properties.
Furthermore, we have to cope with a number of difficulties which concern the process
of learning knowledge in practice, such as visualization of the learned knowledge,
extraction of understandable rules from neural networks and identification of noise
and outliers in the data. Other issues that arise in ML applications in medicine, like the



control of overfitting and the scaling properties of the ML methods, so that they can
apply to problems with large datasets, and high-dimensional input (feature) and output
(classes-categories) spaces need also further investigation.

A common concern for ML applications in a medical context is the need for
comprehensibility of the learning outcome, relevance of rules, criteria for identifying
applications and assessing their feasibility, integration with the patient records, as well
as the description of the appropriate level and role of intelligent systems in healthcare.
These issues are very complex, as technical, organizational and social issues become
intertwined. Previous research and experience suggest that the successful
implementation of information systems (e.g., [3], [28]), and decision support systems
in particular (e.g., {19], [32]), in the area of healthcare relies on the successful
integration of the technology with the organizational and social context within which it
is applied. Medical information is vital for the diagnosis and treatment of patients and
therefore the ethical issues presented during its life cycle are critical. Understanding
these issues becomes imperative as such technologies become pervasive. Some of
these issues are system-centered, i.e., related to the inherent problems of the ML
research. However, it is humans, not systems, who can act as moral agents. This
means that it is humans that can identify and deal with ethical issues. Therefore, it is
important to study the emerging challenges and ethical issues from a human-centered
perspective by considering the motivations and ethical dilemmas of researchers,
developers and medical users of ML methods in medical applications.
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voltage summing function. Simulations on a 6-bus-4-generator system show that
neural network controllers are trained to provide better voltage regulation than
conventional controllers and previously unstable systems can be stabilized by a
properly trained neural network controller. This is quite a remarkable finding. It is
also shown that optimal recovery after a major disturbance is achieved by training
neural network controllers to provide optimal regulation for non-catastrophic faults
and also to provide stabilization for some catastrophic faults.

In the paper, optimal control of nonlinear systems using the open-loop dynamic
optimization algorithm, as well as the neural network state-feedback approach trained
by the backpropagation-through-time algorithm are reviewed. Comparing the
adaptation equations of the two, it can be seen that backpropagation-through-time and
dynamic optimization are related in the sense that a neural network can be trained to
give results that are very similar to those that dynamic optimization would give. In
other words, neural networks can give dynamically optimal solutions.

This is fortuitous, as dynamic optimization is not a practical algorithm for on-line
applications. Runs could take a few hours, depending on the complexity of the plant
and the computer speed. Even the fastest, most advanced computers still would not
make dynamic optimization practical. On the other hand, neural networks can be
trained off-line, when time is not crucial. After adequate training, the weights of the
neural network can be loaded and used on-line. Response speeds would be in a matter
of milliseconds. However, dynamic optimization serves as a good benchmark for
determining the goodness and optimality of a trained neural network. Isolated cases
could run with dynamic optimization, and the solution can be compared with the
neural network solution as a test.

The paper by Vasconcelos et al. [20] presents the capabilities provided by Kernel
Regression Trees - a hybrid non-parametric regression technique - to on-line dynamic
security assessment and monitoring of isolated power systems with high penetration
of wind power. In the applied technique, to avoid overfitting a pruning algorithm is
used to extract the security structure. This approach, is demonstrated on the electrical
power system of Crete Island, and proves very suitable to extract simple,
interpretable, and reliable security structures. A description of the security problem
and the data set generation procedure are included. Comparative results regarding
performances of Regression Trees and Decision Trees are presented and discussed.

The security evaluation structures provided by the Kernel Regression Trees
approach have been integrated into CARE [17], the advanced control system that aims
to achieve optimal utilization of renewable energy sources, in a wide variety of
medium and large size isolated systems. The security evaluation structures obtained
provide a classification on dynamic security. Moreover, the degree of security is
provided, expressed as the expected minimum value of system frequency and
maximal rate of frequency change for a selected disturbance. For the creation of the
data set, a large number of initial operating points (OPs) were obtained by varying
randomly the load for each load busbar, the wind power for each wind park and the
wind margin. For each of the produced OPs a number of possible disturbances has
been simulated.

From the results obtained with the various approaches the following conclusions
are derived:



1. The Kernel Regression Tree approach is able to provide security classification
results and emulation of the numerical security index f,, in a coherent way and
with good accuracy. Besides, KRTs provide simple interpretable security rules that
can be adopted by operators in the control rooms to help them in operating the
system.

1. Decision Trees (DT) provide classification structures of comparable performance
but with a simpler structure, which makes easier any interpretation of the
phenomena and of the influence of the relevant parameters. KRTs however have
the advantage of producing simultaneously a classification structure and giving the
degree of robustness of the system.

The paper by Matos et al. [12] tackles the same problem as the previous paper with
a different technique. It reports on the application of fuzzy reasoning to the fast
assessment of the dynamic security of isolated power systems with high wind power
penetration. The inference method is a Takagi-Sugeno type system with a small
number of rules, optimized for each specific learning set by a standard method
included in the MATLAB Fuzzy Logic Toolbox. The methodology is demonstrated in
a contingency study in the network of Crete that showed interesting results in the test
set. The paper discusses some implementation issues and possible future
developments of the approach, now in a preliminary phase.

Two approaches have been used regarding the classification problem: direct
classification of the operating state, or inference of the value of some index or
important variable, then used for classification. Some of the techniques can work with
either philosophy. In the present case, frequency is considered as the most important
variable, and both £ and df/dt_, values constitute usual security indices that lead
straightforward to decision rules based on thresholds to their values. In this paper,
both approaches are used and results are compared.

Most of the paper is devoted to the analysis of the example and results. Results of
the application of fuzzy inference systems to dynamic security assessment are very
promising, even when a general purpose package is used to design the system.
However, more extensive tests are certainly needed, with different learning sets and
contingency situations, in order to draw more definite conclusions. Future
development of this work includes the use of different types of fuzzy inference
systems (first-order Takagi-Sugeno, different logical operators, etc.), new training
algorithms and new training philosophies, namely for the direct classification
procedures, with minimization of the classification error instead of the RMSE.

A Genetic Algorithm (GA) solution to the Economic Dispatch (ED) problem is
presented in the paper by Saramourtsis et al. [15]. Economic dispatch analysis
schedules the outputs of the online generating units so as to meet the system load at
minimum cost. Improvements in scheduling the unit outputs can lead to significant
cost savings. Traditional dispatch algorithms (i.e. lambda iteration) are based on the
concept of equal incremental cost: the total production cost of a set of generators is
minimized when all the units operate at the same incremental cost. When considering
transmission losses, the unit incremental costs are modified to account for incremental
transmission losses. Traditional algorithms however, require that the unit cost curves
($/h vs MW) be convex functions. Hence, they cannot handle non-monotonically
increasing incremental cost curves.



Solution to the economic dispatch problem with non-convex unit cost functions
can be achieved using dynamic programming (DP). Unlike the traditional solution,
the DP solution imposes no restrictions on the generating unit characteristics.
However, it suffers from the dimensionality problem: as the number of generators to
be dispatched increases and higher solution accuracy is needed, the storage
requirements and the execution time increases dramatically.

The GA solution proposed in this paper is integrated in CARE and applied to Crete
with very satisfactory results. A binary genetic algorithm was implemented in order to
achieve the operating cost minimization. The algorithm’s aim is to maximize the GA
objective function (which is the inverse of the operating cost) while satisfying the
constraint relations that are set by the generators’ operating limits, as well as by the
power demand. GA solutions do not impose any convexity restrictions on the
generators’ cost functions making them ideal for use with generator units non-convex
cost functions. Test cases with different numbers of online generators showed that the
proposed GA gives comparable results with the well-known «iteration method that
was used as benchmark. In addition the encoding strategy, the penalty policy for
constraints violation and the importance of special operators that were designed
specifically for the economic dispatch problem are analyzed.

The paper by Gavoyiannis et al. [8] addresses the problem of computing the
probability density functions (pdfs) of power flows as approximated by a weighted
sum of a finite number of Gaussian kernels. The parameters and weights of these
kernels are iteratively estimated from the actual power flow input samples using the
EM (Expectation-Maximization) algorithm implemented by a suitable Neural
Network. In this way, probabilistic load flows can be calculated avoiding assumptions
about the input data regarding their pdfs and correlation among them. The proposed
method, still at its infancy, presents interesting prospects for planning applications.

2.2 Machine Learning Applications at the Power System Component Level

The paper by Kalles et al. [10] proposes a novel approach to intelligent monitoring
and predictive maintenance of power plants based on reinforcement learning. This is a
new computational approach to automating goal-directed learning and decision-
making emphasizing on learning from direct interaction with its environment without
relying on exemplary supervision or complete models of its environment.

Proper maintenance of power plant equipment is essential to high system
availability. The complexity of modern power plant equipment is such, that few plant
maintenance personnel are truly experts in diagnosing faults and even fewer are
capable of predicting them. An effective approach to equipment maintenance is
predictive maintenance, and has been used to monitor the health of rotating
equipment by recording the vibrations and temperatures of their bearings. These
measurements, or signatures, are taken periodically, analysed using well-known DSP
techniques and compared with desired signatures or with earlier signatures to observe
how they evolve. When significant deviations occur, these are flagged so that
appropriate action can be taken. The decision on whether or not the equipment
requires maintenance is taken by human experts though expert systems are
commercially available to this end. Maintenance is carried out only when necessary
and not at regular intervals as in preventive maintenance, thereby reducing
maintenance costs and the possibility of major breakdown significantly.



Essential to predictive maintenance is any platform capable of data acquisition
from suitable sensors, which supply a continuous flow of data on the condition of the
plant in addition to a real-time decision mechanism to predict impending faults so that
immediate remedial action can be taken. Both qualitative as well as quantitative
information from the plant can be fused in the inference mechanism to decide on the
condition of the plant equipment and what maintenance is required and most
importantly, when. The diagnostic problem starts with the observation of some
deviation in the behavior of the plant equipment as compared to that desired or
expected. When a malfunction is observed, maintenance personnel hypothesize on its
causes, based on their knowledge and experience. Attempting to accept or reject some
of these hypotheses leads to further tests or uses specific or deep knowledge of the
specific piece of malfunctioning equipment. This knowledge usually concerns the
structural and behavioral characteristics of the equipment. Qualitative reasoning has
attracted much attention in the past. Rule-based diagnostic systems with deterministic
or fuzzy reasoning have been proved capable of reaching conclusions using only
shallow knowledge about the plant. Artificial Neural Networks, by their very nature,
allow for learning by viewing this problem as a pattern classification activity. Their
mapping ability can be exploited to perform associations between input patterns
derived from plant sensors and patterns representing fault conditions. Input patterns
are represented by vectors of measurements while the output data from the system are
vectors of the fault space representing the condition of the health of power plant
equipment.

The paper by Damousis et al. [4] presents a genetic fuzzy model that utilizes
special features, for the prediction of the wind speed variations in various time
windows in the future. The model utilizes a set of meteorological stations that encircle
the wind turbine clusters at a radius of 15km or more. The system has been applied
using data collected over a period of 2 years at locations in the Crete Island and
Northern Greece. A user intervention to assist the training process is not needed while
there is also no need for parameter initialization, like in other methods, contributing to
the model’s robustness.

Studies have also been made for spatial correlation of wind turbulence regarding
short distances (700 m to 15 km) and short time scales (wind changes per 4, 10, 30
min and also l-minute deviations from 30-min averaged value). Correlation
coefficients are concluded to be related to the wind direction, terrain roughness and
height above the ground.

The paper induces a genetic fuzzy system that uses local and spatial relations of the
wind speed so as to improve the efficiency of forecasting, ranging from minutes to
several hours ahead. Since the efficiency of a genetic algorithm based solution
depends greatly on the coding scheme, the proposed GA for the training of the fuzzy
system uses an effective coding scheme as well as special operators, tailored to the
problem. The model is flexible and self-sufficient so as to easily learn and adapt in
data of any special case without any guidance or constraint by the user.

The paper by Georgilakis et al. [9] uses machine learning to predict iron losses in
the transformer manufacturing process. Prediction of iron losses is an important task
in the transformer manufacturing industry, since iron losses constitute one of the main
parameters of transformer quality. Furthermore, accurate prediction of transformer
iron losses protects the manufacturer from paying loss penalties. In order to avoid this



risk, and in view of the fact that iron losses cannot be accurately predicted in the
current practice, one possible method is to design the transformer at a lower magnetic
induction, resulting in an increase of the transformer cost since more magnetic
material is required. Satisfactory prediction of iron losses, however, can be achieved
only if various parameters involved in the process, both qualitative and quantitative,
are taken into consideration. Instead, in the current practice, only the loss curve is
used, i.e., the influence of the rated magnetic induction on iron losses for each
specific magnetic material. This is dictated by the fact that there is no analytical
relationship expressing the effect of the other parameters on transformer iron losses.

The origin of this paper is the effective use of measurements taken at the first
stages of transformer construction, in order to minimize iron losses of transformer.
These measurements are collected and stored in databases. Each database corresponds
to different conditions (environment), i.e. to a certain supplier, grade and thickness of
magnetic material. When a satisfactory number of measurements has been collected,
machine learning is applied in order to learn the information included in the
databases. More specifically, decision trees are used to select the most relevant
attributes among a large set of candidate ones and to produce "if-then-else” decision
rules. These rules are applicable at the early stages of core production, and allow
possible corrective actions during the manufacturing process.

Moreover, neural networks are used to predict iron losses at the early stages of
transformer manufacturing. Each neural network model is suited to a different
environment. Selection of the most appropriate network (or equivalently
environment) is based on the satisfaction of customers’ requirements and several
technical and economical criteria. The attributes selected by the decision trees are
used as inputs to the neural networks. The intelligent iron loss model (i.e., the model
of iron losses obtained through the neural network) is applied on-line in order to
optimally combine the individual cores and reduce the iron losses of assembled
transformers.

Finally, based on the good performance of the neural network structure, a new
grouping algorithm has been proposed. This algorithm selects, among the various
possible combinations of grouping cores, the one providing the minimal deviation of
predicting iron losses from the guaranteed to the customer losses. Application of the
proposed method to transformer manufacturing industry has verified the accurate
prediction of iron losses in all the examined environments. Moreover, reduction of the
transformer losses is achieved.

Triantafyllidis [19] presented a method for prediciting mesh density with the use of
Artificial Neural Networks (ANN). The Finite Element Method (FEM) has been
widely used to solve electromagnetic field problems, mainly due to its ability to
handle cases of geometrical complexity. One of the main disadvantages of the method
is the need for an experienced user to provide a quality mesh, i.e. a mesh with which
the method will converge to an accurate solution quickly. One way around this
problem is the adaptive use, i.e. starting with an initial coarse mesh the problem is
solved, then the solution error is estimated for each element and finally the elements
with error that exceeds a given threshold are split into smaller elements, thus refining
the initial mesh. This technique will provide very accurate results, but is very time
and memory consuming.

The use of Artificial Neural Networks (ANNs) has been proposed for predicting
the mesh density of specific electromagnetic problems [2]. For this purpose a



prototype mesh is generated for a magnetic device, which includes all features
expected to be found in future devices to be meshed. The device is sampled at specific
sample points and a set of geometric features is associated to the mesh density at the
neighborhood of the given sample point. The data gathered constitute the training
database for the ANN. Although these mesh density prediction methods work well for
the magnetic devices that they were designed for, they fail in cases of faulted
overhead power transmission line systems (TLS), carrying a zero-sequence current.
The paper presents an ANN trained to reproduce the mesh density vector of open-
boundary faulted power transmission line problems under the presence of small
features, such as conductors. In order to produce the data for the training database of
the ANN a technique for recursively subdividing the solving area is proposed. A
Delaunay-based mesh generator is used to produce the final mesh. Several test cases
show that this method significantly reduces solving time.

The paper by Satsios et al. [16] presents a novel application of genetically evolved
Fuzzy Logic Systems (FLSs), to transmission line electromagnetic field modeling. A
sophisticated artificial intelligence system (AIS), consisting of a sequence of FLSs
which evolve until the optimum FLS is achieved, has been developed by the
combination of FLS and GA techniques. The artificial intelligence system (AIS)
proposed uses a rule base adaptation mechanism. Instead of using fixed-length
chromosomes, new rules are added when necessary to form a variable-length FLS-
chromosome.

The AIS presented consists of a population of fuzzy logic systems (FLSs) evolving
with time. The evolution of the FLSs is accomplished by using a rule base adaptation
mechanism combined with a genetic algorithm (GA). The number and parameters of
fuzzy rules of each FLS are changed, until an optimum is achieved. To implement
this, a vector of variable length is defined for every FLS, containing its parameters.
This vector corresponds to an FLS-chromosome that will be processed by the GA.
After some generations, the population of the FLS-chromosomes converges to the
optimum FLS. The developed AIS is used to predict the electromagnetic field induced
by an overhead transmission line. This field depends on multiple variables, such as
the position of the phase conductors, the currents flowing through all conducting
materials, the earth resistivity and other operational parameters. The AIS was trained
using data resulting from finite element method calculations, for different
configuration cases of the above electromagnetic field problem. The performance of
the optimum FLS, derived after the training, is tested for new configuration cases,
differing significantly from the cases used for training. It is shown that the proposed
method may be very effective in predicting electromagnetic fields.

The architecture of each FLS of the AIS has been designed to solve the inductive
interaction problem between a faulted overhead transmission line and a nearby-buried
pipeline. This problem is of growing practical interest, due to restrictions currently
imposed on public utilities in the use of right-of-ways resulting in overhead
transmission lines, pipelines, railroads, telecommunication lines etc. to be laid in
narrow corridors for several kilometers.

Fountas and Hatziargyriou [7] proposed the use of Petri Nets for planning power
system restoration. Experience from the development of system restoration plans
based on knowledge bases has indicated the effective role of these systems to the
overall restoration process. Recognizing the maturing capabilities of the expert



systems, it is believed that the suitable integration with existing facilities will enable
many elements of restoration planning to be carried out in an on-line environment.
This environment shall provide powerful on-line assistance to operators of the type
they most need, at the time they most need it. The result will be a significant
reduction in the time required for major restoration incidents, and significant
reduction in the losses that are incurred.

In this paper Petri Nets are used to plan power system restoration. Petri Nets
constitute a reasoning tool that has been used in modeling discrete event dynamic
systems, mainly in the areas of computers, communication protocols and factory
automation. This model-based approach is based on Petri Net formulation of the
power system procedures. Illustrative examples are provided, showing the
applicability of Petri nets in power system restoration (PSR) following a total or
partial blackout. Common features regarding power system behavior are highlighted,
and the equivalent models are explained.

By implementing the state-space analysis techniques, all important net properties
can be analytically explained and verified. Through the analysis of the 1989 Hellenic
power system blackstart, the dynamic behaviour of the modelled power system was
evaluated and the suggested sequence of generic restoration tasks proved to be
meaningful and well-defined. The cumulative required restoration time was estimated,
assigning practical time delays to transition firings.

3 Conclusions

In the Workshop a wide variety of ML techniques for solving timely problems in the
areas of Generation, Transmission and Distribution of modern Electric Energy
Systems have been proposed. In particular, applications of Artificial Neural
Networks, Kernel Regression and Decision Trees, Fuzzy Systems and Genetic
Algorithms have been proposed or applied to security assessment, control, economic
dispatch, power flows calculations, forecasting, restoration, plant monitoring,
transformer manufacturing, faulted transmission line problems, and inductive
inference problems. In all cases, the application of ML techniques has proven their
efficiency to tackle difficult power system operation, planning and manufacturing
issues. These applications, by no means exhaustive, are indicative of a booming
activity in Power System applied research, as shown by the impressive number of
related publications in the literature. In conclusion, ML techniques coupled with
mature analytical techniques promise to provide significant support to power systems
in the new era.
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1 Introduction

Environmental applications share common features that make them distinct from
typical applications of other areas of applied computer science. This fact has lead
during the last years to the development of Environmental Informatics, a novel
specialty of Applied Informatics, which studies specific problems related with the
application of computer science techniques in environmental problems. In
environmental applications often many different, non homogeneous information
sources can be found, such as text data e.g. environmental legislation or research
projects results, measurement data from monitoring networks, structural data on
chemical substances, satellite data etc. In particular, environmental data is often
geographically coded, i.e. information is attached to a particular point or region in
space. Secondly, some of the data objects are multidimensional and have to be
represented by means of complex geometric objects (polygons or curves).

The processing of measurement data and related statistical analysis methods as
well as handling of vague, uncertain and incomplete knowledge is a major concern in
Environmental Informatics. In addition easy user access on heterogeneous distributed
environmental data bases has to be supported. And finally, environmental data must
be presented and evaluated in a subject-overlapping way. As a requirement, this
information has to be often deducted from different subject specific primary data
bases beforehand and then combined in an appropriate way [1]. As described in [7],
Environmental Informatics need to play a mediating role since, on one hand, it is
called to analyse real-world problems in the environmental sector field, while on the
other hand, brings the problem solving potential of Information Technology to this
application field. .

Machine Learning techniques are particularly relevant to Environmental
Informatics. Artificial Intelligence, Neural Networks, Fuzzy Logic, Genetic
Algorithms, Decision Trees and Expert Systems together with powerful techniques
from Statistics, Signal and Image Processing, Computer Vision and Pattern
Recognition are recently applied to homogeneous or inhomogeneous multisource
spatio-temporal and/or structural data in order to extract useful information and
produce solutions to a variety of difficult problems related to the environment.
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There has been an ongoing discussion on the role of computer science in the
environmental field. Concerns have been expressed that computer science can miss
some of the issues that surround an environmental problem, and that the solution
provided may be structured, but also incomplete or inflexible. One of the main goals
of the workshop on “Intelligent Techniques for Spatio-Temporal Data Analysis in
Environmental Applications” [13], which was organised during the Advanced Course
on Artificial Intelligence (ACAI '99), was to show that Environmental Informatics
can benefit a lot by modern research in computer science in dealing with the various
real world environmental problems.

2 Short Description of Workshop Papers

Tsatsoulis et al. [10] use a Dempster-Shafer rule base to integrate data from multiple
sources in order to classify sea ice. Their system, named ARKTOS, fuses SAR
imagery, digital grid climatology and classified SSM/I images of polar regions in
order to classify sea ice into four categories (old ice, first-year ice, fast ice and open
water). ARKTOS is currently installed at the U.S. National Ice Center and at the
Canadian Ice Services and is integrated in the operations flow of these organizations.

After some basic preprocessing of the SAR image that includes a mask to separate
land from sea ice, ARKTOS segments the image into non-intersected regions (areas
of neighboring pixels) using the Watershed algorithm, whereby regions are
characterized by low image intensity gradient and region boundaries correspond to
pixels of high gradient. Next, a set of 17 features (numerical descriptors) is extracted
for each identified region such as the following: area, average intensity, perimeter,
outer perimeter, centroid, orientation, roundness and irregularity. These features are
then used to generate symbolic facts (as suggested by the experts) which together with
facts from digital climatology (historically compiled data and the last ice chart) and
SSM/I passive microwave data are used in the Dempster-Shafer rule-based system for
classification.

The rule-base was developed by interviewing sea ice experts using the protocol,
blind test and reference knowledge acquisition methods. Uncertainty in the
classification rules was expressed by the experts through a degree of belief and the
Dempster-Shafer theory was then used to combine the uncertainty values of the
classification rules. Finally, all rules are subject to change by the system users.

Benediktsson and Arnason [2] provide a logarithmic consensus rule for combining
multi-temporal and multi-type earth-observation data sources. Application of this rule
is used for land cover classification and for detecting and mapping of land cover
changes.

In particular, the classification decisions produced by using each of the different
data sets are combined through a statistical consensus rule in order to make the final
decision. By assuming that the data sets correspond to experts the authors combine
the individual decisions using a logarithmic opinion pool with the following
advantages: a) it is externally Bayesian (unlike a linear consensus rule), and b) it
obeys the data independence property (i.e., it treats data sources independently).
Various methods are suggested to assign weights to the various sources (experts). For
example, in the absence of any knowledge regarding the reliability of the experts the



combination weights should be equal, otherwise they should reflect the individual
reliabilities. If self-rating of the sources is possible then the weights should be
proportional to the corresponding scores. Finally, scoring rules can be used to
comparatively assess the performance of each expert.

Experimental classification results in fifteen land-cover categories using
multispectral SPOT, Landsat-TM, panchromatic SPOT and Landsat MSS satellite
data on a 30 km by 30 km test site from southwest Iceland were obtained using the
maximum likelihood statistical classifier. The results based on logarithmic consensus
rules with various weight combinations show improvement in terms of test accuracies
when compared to the single source classifications.

Vassilas et al. [12] present an automatic lineament detection method based on a
weighted Hough transform. Geophysical grid data (airborne magnetic and
electromagnetic measurments) are used for this purpose. Where the application of the
original Hough transform fails to delineate the existent geological lineaments due to
the arc-like shape of the surrounding objects, the use of a continuous function of the
shape descriptors greatly improves the overall results. In the process, Self-Organizing
Maps and a scheme for fast indexed classification are used.

More specifically, lineament extraction is performed using the following
processing stages: a) unsupervised classification of the spatial data using a self-
organizing map (SOM) with simultaneous production of an array of pointers to the
SOM prototypes (the index table), b) binarization of the classification result by using
one of four thresholding options, c) identification of connected regions in the binary
image using image processing techniques, d) evaluation of shape descriptors for each
connected region, and e) extraction of lineaments using a modified (weighted) Hough
Transform.

The shape descriptors evaluated for each region are the following: a) the area, b)
the angle of the principal axis relative to the x-axis, and c) the elongation. Each region
is then represented by its geometrical center and the original Hough Transform is
modified by introducing a voting kernel to reduce interference effects and avoid
spurious accumulator array maxima. The voting kernel is a continuous function of the
shape descriptors and is constructed by taking into account the folowing
considerations: a) elongated regions should be weighted mostly in the direction of the
principal axis, i.e., the closer the line (with respect to angle) to the principal axis the
higher its accumulator array value should be, b) the influence of a region in the
accumulator array cells should increase with the elongation parameter, c) nearly
circular regions should be allowed to vote equally for all directions while very
elongated ones should vote only for the direction of the principal axis, d) suppression
of the contribution from regions with large areas and small elongation since such lines
would be spurious, €) suppression of regions with very small areas as they introduce
random noise, and f) regions of small elongation whose area is comparable to a
characteristic intermediate area scale may be part of a chain of regions contributing to
a disrupted linear structure and should be taken into account.

Experimental results using airborne magnetic and electromagnetic data from the
Vammala area in Finland showed a significant speedup in automatic classification as
well as meaningful lineament structures by using the modified Hough Transform. On
the contrary, direct application of the original Hough Transform on the binarized
classification result or its coresponding edge image failed to reveal lineaments mainly
due to interference from unwanted pixels.



Tsoumakas and Vlahavas [11] present ISLE, an intelligent system for land
evaluation supporting GIS capabilities and expert analysis through a sophisticated
user interface. Presented with a digital map of an area and its geographical database,
the system displays this map, evaluates the land units selected by the user and finally
visualises the results colouring properly the analysed land units.

The features supported by ISLE are the following: a) capability of displaying the
digital map of the land, b) automation of the land evaluation process for the displayed
map (or part of it) based on an expert system in accordance with the FAO-SYS
system for land evaluation, c) visualization of the evaluation result by map coloring,
and d) provisions of spatial analysis tools and other GIS functions. In addition, ISLE
is designed in such a way as to integrate the functionality of a geographical
information system with an expert system for land evaluation and consists of the
following main parts: a) the front end that provides the interface to the expert system,
encapsulates the mapping object and provides the user interface, b) the digital map
and the geographical database of the area under evaluation, and c) the expert system
which is responsible for the evaluation process.

The knowledge base consists of production and deductive rules and the
information flow between the fron end and the expert system is implemented with
Prolog predicates. An example of land evaluation using ISLE is provided for an area
of the Kilkis prefecture in northern Greece.

Demyanov et al. [4] study the efficiency of modeling the problem of land surface
contamination utilizing Radial Basis Functions Neural Networks (RBFNNs). Parallel
to the main model, another one based on the residual error of the former is
constructed for handling the prediction uncertainty problem. A methodology
exploiting the variography of the prediction and of the error residuals is proposed for
decision support.

RBFNNSs are supervised nonparametric methods and known to possess the property
of universal approximation. It is for this reason that they are used for spatial
estimations in two case studies dealing with: a) radioactive soil contamination with
caesium 137 originated after the Chernobyl Nuclear Power Plant accident, and b)
nickel contamination of the Geneva Lake. In both cases the training and test sets
consist of contamination levels as a function of the 2-D coordinates.

To incorporate error estimates and confidence intervals placed on the neural
network estimates, the so called predictive error bars (PEB) approach has been
implemented. During training, the network weights are optimized with a two-stage
procedure: a) the first stage determines the weights for the typical regression problem,
i.e., find the weights that best approximate the target values (known contamination
levels) of the training set, and b) the second stage keeps the weights of the hidden
layer fixed, presents the same inputs as before and determines the weights of another
set of output nodes (connected to the same hidden nodes) so as to best approximate
the variance (conditional error values computed at the first stage using the training
samples).

Finally, geostatistical methods are applied throughout the decision-oriented
mapping, that is from the beginning of the analysis (exploratory data analysis,
declustering, data splitting, spatial continuity description — variography) until the
interpretation of the results. The results on the above data sets are presented in the
form of thick contour isolines for both the function estimation and the variance



predictions. Such kind of visualization combines regression mapping with spatial
uncertainty given by confidence intervals around the estimated isolines.

Gilardi et al. [5] investigate the use of several kernel functions for a Support
Vector Machine (SVM) applied on a water contamination problem. Comparison with
probabilistic mapping is made, using a non-parametric geostatistical model.

SVMs constitute a recently developed statistical theory that can be used as a
universal constructive learning procedure for classification and regression problems.
The strength of this method is that it attempts to simultaneously minimize the
empirical risk of the error (estimation of the error on the training data) and the
structural risk (model complexity). The SVM paradigm was used on the following
two data sets: a) chemical analysis of Lake Leman sediments, and b) chemical
analysis of Lake Leman water at various depths.

Data classification was performed with respect to Cadmium concentration by
considering two thresholds on the concentration levels. For the design of the SVM
classifier three basic kernel types were examined, i.e., polynomial, hyperbolic tangent
and radial basis function kernels. Next, the specific parameters of each kernel were
selected, the support vector coefficients were calculated according to the training data
and, finally, the efficiency of those coefficients and the kernels’ parameters were
estimated using the test data set. The data were also processed using geostatistical
methods for comparison. Both classification approaches gave smooth output results.

Kalapanidas and Avouris [8] compare three methods from the machine learning
area on local air pollution data. A Case-Based Reasoning (CBR) prototype along with
a MLP neural net and a CART-like decision tree are competing at predicting the point
maximum measurement of the day for nitrogen dioxide.

The case-based reasoning algorithm uses past knowledge to solve new problems;
the basic idea behind CBR is the use of a systematically recorded repository of past
cases of the problem to be solved. All metrics (modification heuristics, similarity
metrics) have been replaced by the Knowledge Base. NEMO consists of three main
modules. Two of them are assigned with the retrieval and the filtering of the similar
cases, while the third one adapts the solutions proposed by the remaining similar
cases to form the proposed solution for the new problem.

Through the use of the remaining two techniques, some knowledge about each
attribute’s importance in the data is required. Results are presented in quantitative way
through confusion tables, test set error, rms error and mean absolute distance
calculations. Also qualitative presentation of the results is done through efficiency
charts and rules visualisation.

The three algorithms compete with each other and obtain very close results.
Overall they constitute an efficent decision support ensemble that can function as a
predictive working system in an air quality operational centre.

Grosser and Conruyt [6] concentrate on a knowledge description methodology for
identification of coral specimens. The authors indicate the problem of complex
knowledge representation and the need for updates of the knowledge base, from
expert users. For these tasks a modified C4.5 decision tree is implemented.

A working definition for the purposes of biology adopted in this paper views
knowledge as consisting of the following three kinds: a) domain knowledge that refers
to what is observable, b) instantiated knowledge that refers to the description of
observed instances, and c) derived knowledge that is discovered from domain and



instantiated knowledge and can be compared with produced hypotheses. An iterative
knowledge base system (IKBS) is then used to extract knowledge from domain and
instantiated knowledge through a three step cyclical process: a) knowledge acquisition
(domain knowledge, observed facts or cases), b) knowledge processing using decision
trees and case-based reasoning, and ¢) knowledge validation and refinement.

The descriptive model built during the acquisition phase is organized in a
structured tree scheme. The nodes of the tree represent objects defined by a list of
attributes with their respective values. Case bases are created by the users through
automatically generated questionnaires by the program. Next, inductive learning
algorithms such as the C4.5 decision tree algorithm are used for classification (tree-
pased knowledge processing). IKBS extends some functionality of the C4.5 algorithm
for dealing with: a) structured objects, b) taxonomic attribute-values, and ¢) multi-
valued attributes.

Finally, the reliability of the IKBS system was tested on coral identification with
different users. The update of the descriptive model through the validation and
refinement phase significantly improved the accuracy of identification.

Da Rocha et al. [3] propose a Bayesian Network topology for detecting and for
identifying changes in images. A Bayesian Network for Environmental Monitoring
(BNEM) model has been designed for multitemporal information fusion, knowledge
representation and uncertainty handling. An application of this topology is shown
concerning the change of land use between two images of the same area at different
time instants.

Bayesian networks constitute a probabilistic knowledge representation framework
that incorporate: a) uncertainty representation based on probability theory, b)
possibility to model causal and temporal influence, and c¢) evidential reasoning
capabilities. It is for these reasons that have been used for the design of BNEM for
remote sensing postclassification comparison and change analysis. Besides remote
sensing spatio-temporal data, other GIS contextual data that describe soil properties,
vegetation, hydrology, climate, biomass and economic activities can also be
incorporated in BNEM and provide valuable evidences for environmental analysis.

The applicability of the BNEM model is shown in the evaluation of wood cover
changes using two Lansat TM images taken at 1984 and 1991 from the Port Renfrew,
Canada, region. The vegetation status (classification categories) detected was one of
the following: a) mature, b) in regeneration, and ¢) ausent.

Toivonen et al. [9] present a Bayesian Network for the reconstruction of
environmental conditions in the past (paleoecological reconstruction), by determining
the relation between environmental variables and fossil data. Two such models are
shown, and an experimental comparison of them with other methods is made.

The aim of the paper is to obtain good estimates of the environmental variable in
the past (such as the temperature) based on fossil assemblages of abundances. The
requirements for the reconstruction results are twofold: a) to obtain information about
the reliability of the estimates of environmental variables, and b) to be able to
extrapolate from the training samples as it cannot be assumed that all historical
variance is covered by the modern training data.

Quantitative reconstruction based on two Bayesian networks is compared
favorably to regression trees, nearest neighbor learning methods and other Machine
Learning techniques such as rule induction, naive Bayes classifiers and neural
networks, by examining the ecological plausibility of the response function used in
the reconstruction.



3 Conclusions

The papers included in the workshop covered a wide range of environmenta|
problems, such as sea ice monitoring, land surface classification and geological
evaluation, soil and water contamination control, air poliution assessment, bio-life
monitoring, to name a few. They also targeted on the following major tasks: feature
classification, prediction, modeling and function approximation / interpolation by
making use of a variety of techniques from the Machine Learning community,
Decision Trees, Neural Networks, Bayesian Modeling, Support Vector Machines,
Case-Based Reasoning, Self-Organized Maps, and several hybrid techniques,
exhibited their potential in solving complex real-life problems. Of course, special
attention was paid to the use of pre- and post-processing spatial and/or temporal
analysis, due to the fact that most of the problems are of such multi-dimensiona)
nature.
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Machine Learning and Its Applications

In recent years machine learning has made its way from artificial intelligence
into areas of administration, commerce, and industry. Data mining is perhaps
~the most widely known demonstration of this migration, complemented by
less publicized applications of machine learning such as adaptive systems in
various industrial settings, financial prediction, medical diagnosis, and the
construction of user profiles for Web browsers.

This book presents the current capabilities of machine learning methods as
well as ideas on how these methods could be used to solve real-world prob-
lems. The first ten chapters assess to a large extent the current state of the art
of machine learning, from symbolic concept learning and conceptual cluster-
ing to case-based reasoning, neural networks, and genetic algorithms.

The second part of the book introduces the reader to innovative applications
of machine learning techniques in fields such as data mining, knowledge
discovery, human language technology, user modeling, data analysis, dis-
covery science, agent technology, finance, etc.
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