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Abstract. We consider the problem of characterizing user equilibria and
optimal solutions for selfish routing in a given network. We extend the
known models by considering malicious behaviour. While selfish users
follow a strategy that minimizes their individual cost, a malicious user
will use his flow through the network in an effort to cause the maximum
possible damage to this cost. We define a generalized model, present
characterizations of flows at Wardrop equilibrium and prove bounds for
the ratio of the social cost of a flow at Wardrop equilibrium over the cost
when centralized coordination among users is allowed.

1 Introduction

Koutsoupias and Papadimitriou [b] initiated the study of the coordination ratio
(also referred to as the price of anarchy): How much worse is the performance of
a network of selfish users where each user optimizes her own cost, compared to
the best possible performance that can be achieved on the same system? This
question has been studied in various different models (e.g. [L1], [12]) and bounds
for the coordination ratio have been shown for many interesting cases.

A Dbasic assumption of the models considered so far is that the users are
considered to be selfish and non-malicious: the user optimizes her own utility
or payoff, and does not care about the performance of the system or the cost
induced to other users by her strategy. We extend these models by considering
malicious users. A malicious user will choose a strategy that will cause the worst
possible performance for the entire network. Such malicious behaviour can be
found in practice in settings such as the internet (for example in ‘denial of service’
attacks, or malicious flow in peer-to-peer networks). While in terms of Wardrop
equilibria, the extension of the selfish model considered before is quite straight-
forward, the existence of malicious users forces us to a different model for the
‘social cost’. We no longer have an objective function that can be minimized by
the centralized coordination among the users, since in our setting some of the
users still can be coordinated to minimize it, but at the same time there is a
(malicious) user that tries to mazimize it. This leads naturally to the formulation
of the ‘social cost’ objective as a minimaz problem instead of just a minimization
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problem. As a result, we cannot refer to an ‘optimal social cost’ that is a global
minimizer of the social cost objective. Instead, we have to compare the worst
Wardrop equilibrium to the saddle-points of the minimax problem. We define the
‘optimal social cost’ as the minimum cost achieved by the set of saddle-points.
The fact that this set is (usually) non-convex makes the exact characterization
of the ‘optimal social cost’ (and therefore the coordination ratio) more difficult
to characterize than the previous models. Nevertheless, in this paper we show
that in the very general setting considered by Roughgarden and Tardos [1T],
their results can be extended to the case of systems with malicious users.

Previous Work: Many of the Game Theoretic tools used for analyzing sys-
tems of non-cooperative users derive from results in traffic models and trans-
portation, including work of Dafermos and Sparrow [4], Beckmann, McGuire
and Winsten [2] and Aashtiani and Magnanti [I]. More recently, Nash equilibria
and their applications were used for routing problems and the internet. Koutsou-
pias and Papadimitriou [5] considered the coordination ratio for load balancing
problems (routing on a network of parallel links). The model they considered
allowed multiple equilibria, and the coordination ratio compared the worst case
equilibrium cost to the optimal routing cost. Their bounds were improved in sub-
sequent work on the same model by Mavronicolas and Spirakis [6], and Czumaj
and Vocking [3]. Roughgarden and Tardos [I1] considered a different model for
selfish routing, where there is a unique Wardrop equilibrium and proved bounds
for the coordination ratio, including results for the special case of linear utility
functions. Other work in this model includes results on the topology of the un-
derlying network [8I[10], and algorithms and bounds for Stackelberg scheduling
strategies [9].

2 The Model

We are given a directed network G = (V, E) and k source-sink pairs of nodes
(si,t;),4 = 1...k. There are also two special nodes sys, tps connected to G with
edges (snr,8:), (tistar),t = 1... k. A commodity ¢ with demand r; is associated
with each pair (s;,t;),i = 1...k, and a commodity M of demand F is associated
with pair (sar,tar). Let P; (Par) be the set of acyclic paths from s; to ¢; (sar
to tar). A latency function [p(-) is associated with each path P. For a flow f
on G, Ip(f) is the latency (cost) of path P for this particular flow. Notice that
in general this latency depends on the whole flow f, and not only on the flow
fe through each edge e € P. In this paper we adopt the additive model for the
path latencies, i.e. Ip(f) = > .cp le(fe), where [ is the latency function for edge
e and f. is the amount of flow that goes through e. We also let P be the set
of all available paths in the network and assume that for every source-sink pair
there is at least one path joining the source to the sink. We use the shorthand
(G, r, F,l) to describe an instance of the model.

Commodities i = 1...k model selfish, but otherwise ‘good’ users who want to
just use the network in order to satisfy their demands with the smallest possible
cost (i.e. latency for every unit of flow routed). Commodity M models a selfish
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‘malicious’ user who wants to use his own flow F' in such a way that will do the
biggest possible damage to the total cost of the good players.

For our equilibrium model, we use the following general formulation by Aash-
tiani and Magnanti [1]:

Definition 1 A flow f = Upepfp is at Wardrop equilibrium for instance
(G,r, Fl) iff it satisfies the following constraints:
(Tp(f)—uw)fp=0 forallPeP;i=1...k (1)
(Tp(f) —um)fp =0 forall P € Py
Tp(f)—u; >0 forallPeP;i=1...k
Tp(f) —up >0 forall P € Py

Z fp—r;=0 foralli=1...k

PeP;

Z fP=F=0
PePm

f>0, u>0

where Tp is the delay time or general disutility for path P, fp is the flow through
path P, and u = (uy,... ,uk, uprr) s the vector of shortest travel times (or gen-
eralized costs) for the commodities.

Tp does not need to be the same function for all paths P (it will be a different
function for the good and the malicious users). Also we emphasize that Tp is
not the path latency (the latter is given by function lp). In what follows we
define precisely the functions Tp for all users, and thus we define completely the
equilibrium model of Definition [

The first four equations are the conditions for the existence of a Wardrop
traffic equilibrium. They require that the general disutility for all paths P that
carry flow fp > 0 is the same and equal to u for every user, and less or equal
to the disutility of any path with zero flow. Any flow that complies with this
definition of a Wardrop equilibrium, also satisfies the following alternative char-
acterization:

Lemma 1. A flow that is feasible for instance (G,r, F,l) is a Wardrop equilib-
rium iff for every commodity i (i can be the malicious commodity M) and every
pair of paths Py, Py € P; with fp, >0, Tp, (f) < Tr,(f).

2.1 Existence of Wardrop Equilibrium

The model of Definition [Il is very general. It turns out that the existence of
a Wardrop equilibrium in this model can also be proved under very general
assumptions. More specifically, the following theorem follows immediately from
Theorem 5.4 in [1]:

Theorem 1. Suppose that Tp is a positive continuous function for all P € P.
Then there is a flow that satisfies the conditions of Definition [l
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A function is positive if its values are positive. In order to make sure that a
Wardrop always exists, from now on we make the following assumption:

Assumption 1 The disutility function for every path is a positive function of
the total flow, and that the disutility functions for the good users are increasing
functions of the flow, i.e. as the congestion increases for a good user’s path, its
disutility also increases.

3 Social Cost When Malicious Users Are Present

The existence of a malicious user forces us to redefine the notion of ‘social
cost’ [5]. In addition to a set of users that collectively strive to minimize their
collective cost (the ‘social cost’, as defined earlier [5], [I1]), we have a user who
strives to mazximize this same cost. Therefore we define the ‘socially best’ flow
in terms of a minimaz problem. Note that in such a setting the notion of an
“optimal flow” is replaced by the notion of a flow “in equilibrium”. Therefore
our work compares a Wardrop equilibrium to a minimax equilibrium (as op-
posed to the comparison of a Wardrop equilibrium to an optimal solution of a
minimization problem, as in [TT]).

In what follows, we denote the flow of the good users by ¢, and the flow of
the malicious user by f™ (recall that we denote by f the total flow). We consider
the following minimax formulation:

maxmin > c.(fM, f¢) subject to: (MINMAX)
fhf fG - -
ecE
> fE = Vie{l,... k}
PeP;
> M =F
PePr

= % 8 veer

PcP:ecP
M= M veen
PcP:ecP
>0 VPP
M >0 VP eP

where c.(fM, f&) is the cost of flow (fM, f&) passing through edge e. In our
case we have

Ce( ejwvfec):feG'le( erfe]M)

We call this minimax formulation (MINMAXI), and its objective function
C(fM, 9 = Y,cpce(fM, f€). The solution(s) to (MINMAX) are called

saddle-points, defined as follows:
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Definition 2 A flow (f¢, fM) is said to be a saddle-point of C (with respect to
mazimizing in fM and minimizing in f€) if

(e M)y <o(fe My < o(e M), v, vre. (2)
We also refer to (MINMAX]) saddle-points as (MINMAZXI) equilibria.

3.1 Existence of Saddle-Points

A saddle-point is not always guaranteed to exist. But under certain assumptions,
we can show that (at least one) saddle-point exists. We assume the following for
the cost function C(fM, f¢):

Assumption 2 The functions c.(fM, f&) are continuous, differentiable, con-
vex with respect to f€, and concave with respect to fM for all e € E.

Following the methods of Dafermos and Sparrow [4], and under Assumption [2]
we can prove the following theorem for the existence and properties of saddle-

points for (MINMAX]).

Theorem 2. Under Assumption[2 a feasible flow f = (fM, f%) is a solution
(saddle-point) to the minimaz problem (MINMAX]) if and only if it has the
following properties:

Oce | - Oce , = o
Z - f Z ; f 17 VPaP/EPi; fg’fg’>0 (3)

G
eeP eeP’ a‘f
({90e - 0ce , = o
Y oaarN=2 gar(N =B, VPP ePy, fi'.f2l>0 (4
eeP 7€ ecp’ "€

The conditions of Theorem[2 are simply the Kuhn-Tucker conditions for prob-

lem (MINMAX]) [7].

4 Wardrop vs. Minimax Equilibria

We define natural selfish behaviors for both the good and malicious users, in
accordance with the general model of Definition [[l Our aim will be to estimate
how far can selfishness push the total cost from the optimal coordinated one
(i.e. the best saddle-point of (MINMAX]). In order to do this, we modify the
definition of the price of anarchy or coordination ratio, defined by Koutsoupias
and Papadimitriou [5] and used by Roughgarden and Tardos [11].

Definition 3 (Coordination ratio) Let (G,r, F,l) be an instance of the rout-
ing problem on network G with latency function l.(-) for every edge e, with k
good users with demands r;, ¢ = 1,... .k and a malicious user with flow F.
Then the coordination ratio p(G,r, F,l) for this instance is defined as follows:

worst Wardrop equilibrium

best saddle-point of (M}

p(G,r F|l) = (5)
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According to the model of Definition [1] the selfish users will base their deci-
sions for picking flow paths on their individual notion of general disutility 7p,
for every path P. This disutility is very easy to be defined for the ‘good’ users:
it is simply the latency of the path, i.e.

Tp(f9, M) =1p(f°, M) (=D le(fe)) =1,...,k,YPeP;, (6)

ecP

For the malicious user though, the form of his general disutility in fact deter-
mines how powerful or weak this user can be. In this paper we study malicious
players that base their decisions exclusively on the costs of individual paths. The
malicious player exhibits a rather greedy behavior, and does not (or cannol
take into account the impact of his decisions on the whole network (e.g. by solv-
ing (MINMAX) so that his allocation of flow will have the worst impact on the
‘social cost’ he might be able to achieve more damage than looking greedily at
the costs of individual paths). Let M(f¢) = > .5 f& - ;}lM( & 0). Then the
general disutility for the malicious user paths is defined as follows:

Tp(fO£1) = M(9) = Y10 g (U9 2, PPy (D)
ecP

In other words, the malicious player always tries to send his flow through a path
with the biggest possible congestion increase for every unit of flow he allocates to
this path, i.e. the malicious player follows a “best value for your money” policy.

The quantity M (-) is introduced so that Assumption [l holds and therefore
Wardrop equilibria exist.

4.1 Bicriteria Bound

As in the case of [I1] we can prove a “bicriteria” result that gives an upper
bound for the ratio between the cost at Wardrop equilibrium and the cost of the
saddle-point solution.

Theorem 3. If f = (f¢, fM) is a flow at Wardrop Equilibrium for (G,r, F,l)
and f = (f9, f™) is a saddle-point of (MINMAX) for (G,2r, F,1) then C(f) <
c(f).

Proof. The (social) cost of flow f is defined as

C(f) =D & 1(£2 + ).

€

If f is at Wardrop equilibrium, then the total latency along any flow path P for
good user ¢ from s; to t;, ¢ = 1...,k is the same, denoted by L;(f), and the
total cost can be expressed as C'(f) = >, L;(f)r;. Define a new latency function
le(x,y) as follows:

1 maybe because of lack of resources, e.g. time in an on-line scenario
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€

le(z,
l_e(z,y) _ éegff f
Le(fS

Y) if x> f&andy > fM

M) z> f%andy < fM

y) o< f0ady> M ®)
M) e < fFandy < fM

€

€

Note that the difference I (x, fM) — I.(z, fM) is zero for x > f&. Therefore
the following is true for all > 0:

x(ze(x’fy)_le(x’fy)) Sle( eG7fe]VI)feG' (9)

The new latency functions give a new cost (cost with respect to [) that is not
too far from the real cost:

Zz G FMFE — O(fC ) < SIS, M FE - O(f¢ 1) =

. (10)
fo FEFM) =1 (FE F2)) < fEL(FE ) = C(f)

The first inequality is due to the fact that f = ( fG, fM ) is a saddle-point for
(G,2r, F,1), i.e. C(fC, M) < C(f9, fM) since (f€, fM) is a feasible solution
for (MINMAX]). The second inequality comes from (@) for z := f&.

Consider any path P € P;. From the definition of I, we have that

Zie(oafy) 2 ZZE( erfeI\/[):Li(f)'

ecP ecP

and from the fact that I.(x, fM) is an increasing function of = we get
STEE M) = (0, M),
eeP ecP

Therefore:

DS M) 230 3 FEYLUE M 2

ecE i PeP; ecP

> LiSE = X 2L = 20()

i PeP;

By combining ([0) with ([[I) we get C(f) < C(f).
The same proof also gives the following result:

Theorem 4. If f = (f&, fM) is a flow at Wardrop Equilibrium for (G, r, F,1)

and f = (f€, fM) is a saddle-point of (MINMAX) for (G, (1+~)r,F,l), v >0
then C(f) < A{C(f).
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At a first glance, it seems rather surprising that the bicriteria bounds of [11]
are quite robust against the existence of a malicious user. But if we look closer to
the quantities compared in the theorems above, we see that while the demands
of the good users are increased, the flow quantity at the disposal of the malicious
user remained the same. Intuitively, the malicious user has the same power to
disrupt the good users in both cases, and therefore if he settles with some strategy
to do so for the initial good demands, this strategy should work about as well
when the latter demands increase. The same goes for the good users’ strategies
as well.

4.2 Special Case: Linear Latency Functions

In this section we deal with the special case of linear edge latency functions, i.e.
for every edge e € E, I.(f&, fM) = a.(f& + fM) + b, for some a. > 0,b. > 0.
Note that we assume that the latency for an edge is positive even if no flow
passes through it. This is a quite natural assumption (in all physical systems
there is always some delay in moving from point A to point B, even if there is
no congestion at all), and allows Theorem [I] to apply in this case. We modify
our shorthand notation to (G,r, F,a,b) to include the linear coefficient vectors.
In this special case we have

i TP(vafM) = Zegp(aef§+aefe]\/[+be)v Vi=1,...,k, VPP
L4 TP(vafM) = ZeeEaefeG_ZeePaefeGa v-PGIPM

Lemma [ and Theorem [2] take a more specific form for the linear case:

Lemma 2. Letl.(f&, fM) = ac(f&+fM)+b. with a. > 0,b. > 0 be the latency
function for every edge e € E of G.

(a) a flow f = (f9, fM) is at Wardrop equilibrium iff
e for all usersi=1,... ,k and paths P, P’ € P; with fp >0

D (acfE +acfM +be) <Y (acfS +acfM +be)

ecP ec P’

o for all paths P, P' € Pay with fp >0: > acfd > > acf’
- o ecP ecP’
(b) a flow f = (f&, M) is an equilibrium for (MINMAX) iff B
e for all commodities i = 1,... ,k and paths P, P’ € P; with fp >0

> (20fE + acfM +be) <Y (200 fE + acfM +be)

ecP ecP’
e for all paths P, P' € Py with fp > 0: Z aefeG > Z aefeG
ecP ecP’

For this special form of the edge latency functions, we can prove that the
saddle-point cost for (MINMAX]) is unique (proof omitted). In a way similar
to [II] we can prove our main theorem for the coordination ratio in the linear
case:
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Theorem 5. For instance (G,r,F,a,b), 1 < p(G,r,F,a,b) < %.

Note that the lower bound for the coordination ratio is tight, since
p(G,r, Fya,b) = 1if G is just a path with the sources for all users in one end,
and all the sinks in the other.

5 Open Problems

The model presented in our work gives rise to many open problems. It would be
very interesting to present a result connecting the social cost of an equilibrium
point in a network with malicious users and the cost in an equivalent instance
without malicious users. This would give a clear characterization of the negative
impact of the presence of malicious flow. For the general latency functions, it
seems that it is possible to prove more tight results and extend the bicriteria
result by proving a lower bound. The model defined in our work gives rise to
unique saddle-points and Wardrop equilibria. It would be interesting to consider
a more general model that allows multiple equilibria (for example, by adding
capacities for the edges in the network [12]) and analyze the performance of the
system in the presence of malicious users.

Acknowledgments. We would like to thank Tamas Terlaky and Nicola Galesi
for many helpful discussions.
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