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Abstract. In this paper we propose a weakly supervised learning algorithm for
appearance models based on the minimum description length (MDL) principle.
From a set of training images or volumes depicting examples of an anatomical
structure, correspondences for a set of landmarks are established by group-wise
registration. The approach does not require any annotation. In contrast to existing
methods no assumptions about the topology of the data are made, and the topol-
ogy can change throughout the data set. Instead of a continuous representation of
the volumes or images, only sparse finite sets of interest points are used to repre-
sent the examples during optimization. This enables the algorithm to efficiently
use distinctive points, and to handle texture variations robustly. In contrast to
standard elasticity based deformation constraints the MDL criterion accounts for
systematic deformations typical for training sets stemming from medical image
data. Experimental results are reported for five different 2D and 3D data sets.

1 Introduction

Model based approaches like active shape models (ASMs) or active appearance models
(AAMs) []] capture shape and texture variation of a specific structure or object. They
utilize this a priori knowledge to provide robust segmentation while allowing for re-
peatable identification of specific landmarks in the data. They are employed in various
medical imaging tasks, like the segmentation of the diaphragm in CT data [2]], vertebral
morphometry in dual x-ray absorptiometry data [3]], and registration in functional heart
imaging [4]]. The necessity for a large number of manually annotated training exam-
ples in order to obtain a sufficiently representative power of the model poses a major
drawback for model based approaches, since the annotation is time consuming and the
results are often sub-optimal. The problem of automatic model building or equivalently
that of establishing correspondences over landmark positions in a set of images has
been tackled from different directions: in [3] temporal continuity of image sequences is
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Fig. 1. Left: volume rendering of knee CT data. right: interest points on the bone structure.

used to determine correspondences. Given a set of manual continuous contour annota-
tions in [6/7U8]] landmarks are placed automatically along contours or surfaces that are
mapped to a circle or a sphere using minimum description length (MDL). The reference
manifold limits the approach to a topological class. Even-though these purely shape
based approaches provide good landmark positions for constructing a compact shape
model, in [9] the authors conclude that the lack of texture information poses a limita-
tion hampering the capturing of true correspondences, like anatomical landmarks. In
a line of work correspondences are established by one-to-many [10] or by group-wise
registration of the entire images or volumes [[T1/12]]. Non of these approaches can han-
dle partially missing data. They are either dependent on a prior segmentation of objects,
or deform the entire image continuously. In Fig.[Tlon the left a surface rendering of the
bones in knee CT data is shown. Such structures cannot be handled with a single ref-
erence manifold, and manual prior segmentation is tedious. A continuous deformation
of the whole volume would not account for the compound structure, and would include
large parts of soft tissue that deforms only loosely correlated with the bone surfaces.
On the right the interest points, to which we restrict the calculation in this work, are
depicted. Only local texture information is utilized giving sufficient information about
the bone structure to perform model building.

Contribution. In this paper we propose a method to autonomously build appearance
models based on group-wise registration of sparse representations of the training data.
Instead of deforming dense texture maps we formulate the task as a search for cor-
respondences between finite lists of interest points and local features in the training
examples. This has several advantages: (1) the use of specific local features enables the
algorithm to omit texture variations that yield no relevant information for the model,
and to handle overlaps present in projective modalities, like x-ray. (2) The approach
does not rely on a mapping to a reference manifold, therefore it is not constrained to
an a priori topological class. (3) Occlusions and partially missing data sets are dealt
with by outlier detection and robust model estimation. In contrast to purely shape based
approaches local features add more specific information with regard to the correspon-
dences of anatomical structures. These properties are relevant for complex anatomical
structures that pose an obstacle to supervised model learning strategies, which would
demand for an a priori definition of the topology, the structure or the connectivity con-
straints of the entity and a complete training set, i.e. no missing data. The approach is
aimed at overcoming the necessity for the time consuming manual annotation prone to
errors and variations in expert opinions.
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2 Model Building

From a set of n training images or volumes I,;, 7 = 1,2, ..., n depicting examples of a
structure or an object, n sets of m, interest points each is extracted. Initial correspon-
dences for a random subset of k of these points are established by pairwise matching of
a single reference image I; to the remaining n — 1 images. This results in correspon-
dences for the k landmarks {l1, . .., ) }, which are encoded in a & x n matrix G. Each
column represents an image, and the entry Gj; € {1,...,m;} with j € {1,... k}is
the index of the interest point in image I;, at which the landmark [; is positioned. Start-
ing from these correspondences groupwise registration is performed by minimizing a
criterion function that captures the compactness of the appearance model comprising
the variation of landmark positions and local texture variation at the landmark posi-
tions in the different training images. The interest points in the images or volumes are
treated as landmark candidates. Each point (4, ¢) with ¢ € {1,...,m;} is assigned its
coordinate information p(i, ¢) and local features f(i, ¢) (e.g. SIFT, steerable filters). By
assigning Gj; = ¢ the landmark /; in image I; has position p;; = p(4, ¢) and feature
vector f;; = f(i, ¢). During model building the matrix G is modified to minimize the
criterion function, resulting in optimal positions for each landmark in each image.

2.1 Criterion Based on Minimum Description Length

The criterion function that is minimized during model building comprises the com-
pactness of the model that describes shape and local texture variation, and an elasticity
regularization that is used during the initial phase of the optimization.

Compactness of the shape model. We use a standard linear multivariate Gaussian model
for the shape representation [[1]]. The shape model compactness criterion is based on
minimum description length, see [6] for an extensive derivation. An optimal shape
model should minimize the cost L of communicating the model M itself and the
data D (i.e. the landmark positions) encoded with the model: L(D, M) = L(M) +
L(D|M). Since we do not represent the entire image content but only a sparse set
of landmarks and their variation a normalization term has to be introduced, that pro-
hibits the landmarks from collapsing to a single position. The shape term is normal-
ized by the entropy of the landmark positions in the individual examples L.y =
Y1 nentropyi—i... k(pi;j) and captures the gain of compactness achieved by the
model in contrast to the complexity of the original data without exploiting its struc-
ture. The normalization is not essential to the quality of the model, but fosters the more
even covering of the training images by the model landmarks. The final shape model
criterion is Cs = L(Mg) + L(Dg|Mg) + Rs — Lref, where L(Mg) is the cost of
communicating the shape model, L(Dg|M g) is the cost of the shape data encoded with
help if the model, and R g is a penalty for the residual error not captured by the model.

Local texture. The image content is captured by local descriptors that extract features
at the landmark candidate positions in the training images (e.g. SIFT features). For a
landmark /; the component-wise median of the individual entries in the feature vectors
f;; fori = 1,...,n from the landmark positions in all training images is calculated
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resulting in the center f'j. The local appearance is then modeled by a Gaussian centered
at f'j, and the description length is utilized as criterion for the compactness of the feature
model M analogously to the shape model. Hence the criterion is Cp = L(Myp) +
L(Dp|M71) + Ry, where L(Mr) is the cost for the model, L(Dy| M) the cost of
the local features encoded with the model, and R a penalty for the residual error.

Elasticity regularization. Since at the beginning of the model building the model has
poor generalization behavior an elasticity cost term is introduced to regularize the
deformations during the early phase of the optimization. A standard elasticity term
Cg = |Vd(x)|?, where d is the displacement of the landmark z throughout the training
set, helps avoiding a degenerate model.

Criterion function The final criterion function encompasses the compactness of models
for shape and local texture information and the elasticity regularization: C = Cg +
Cr + a(t)Cg. The weight «(t) controls the influence of the elasticity, and is gradually
decreased to 0 during optimization, to ensure a final result depending on the model costs
only. During model building the criterion function is minimized by altering the matrix
G that holds the correspondences between the landmarks and the interest points in the
training images. A change of a single entry in G corresponds to a change of the position
of a landmark in one image.

2.2 Dealing with Incomplete Data

Due to occlusions, irregular contrast or pose changes certain landmarks may not be
present in all of the images. In order to still be able to build a model if parts of the data
are missing the values are imputed based on previous estimates of the shape model Mg,
which is then re-estimated from the completed data vectors. The algorithm starts with
estimates of the positions of the landmarks in all images i.e. no landmark is reported
as missing. For a missing landmark /; in image I, the corresponding value in a matrix
R € [0,1]**" is set to Rj; = 0 and R;; = 1 if the landmark is present. During model
building the algorithm decides at each iteration for each landmark in an image whether
it is to be considered an outlier or not. The underlying idea is to perform an expectation
maximization (EM) algorithm on the incomplete data set, by iteratively re-estimating
mean and covariance matrix of the data [[13]. Each of the shape vectors x; is partitioned
into x{* € RP«, the vector of p, values that are available for this particular image and
x;" € RP™ the vector of p,,, values that are missing. Accordingly the mean is partitioned
into X, and X,,,. The relationship between available and missing records is modeled by
a linear regression model x,,, = X, + (X, — X,)B + e, where e is the residual error.
The regression matrix B is based on estimates of the mean X and covariance matrix b))
of the entire data set from the preceding model building iteration. The missing values
of all shape vectors are imputed, and based on the completed data the mean Z and the
covariance matrix X are re-estimated. See for a concise explanation of imputation.

2.3 Optimization

Initialization For each image interest points and corresponding local features are ex-
tracted. The group-wise registration is initialized by a one-to-many registration of one
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Fig. 2. a.: Scheme of the algorithm; b.: For the two ways of optimizing landmark correspondences,
one step is shown: top: genetic algorithm, the correspondence matrix G serves as genome, two
parent genomes and the resulting child are depicted. Below: direct search scheme, a model is
build from all but one example, and the remaining example is changed to better fit the model.

of the images I to the remaining n—1 training images {Io, ..., I, }. In order to provide
for a reliable initialization the feature vectors f;, are matched to the feature vectors in
each of the remaining images, and a transformation H; (e.g. similarity transform) with
a low number of parameters is estimated robustly by RANSAC. The correspondence
matrix G is then initialized by choosing a small random set of &£ landmarks in I; and
propagating them across the images. In each image the interest points closest to the po-
sitions calculated by H; are chosen as initial landmark positions, resulting in the initial
correspondence matrix G-

Optimizing the Criterion function. The algorithm is outlined in Fig.[2l After the coarse
initialization of the correspondences the criterion function is minimized by updating
the correspondence matrix G. For an efficient optimization a neighborhood concept in
the space of possible landmark positions has to be used. In [6] and [[7] contours or sur-
faces of objects are mapped onto a circle or sphere. In contrast to this parameterization
we employ k-D trees to efficiently search for candidates close to the current landmark
position, while being independent from a parameterization reference. This enables the
algorithm to adapt to complex and even changing topological configurations not de-
fined a priori, like in three dimensional medical data where the behavior of anatomical
structures needs to be modeled.

The optimization starts with a small number of landmarks (e.g. 10). After the learn-
ing process converges, additional landmarks are added to the model. This leads to an
increasingly fine definition of the object. The new landmarks can either be chosen au-
tomatically by enforcing an even distribution, or they can be placed manually in a sin-
gle reference frame. Their positions in the training set are estimated by interpolating
the deformation field established by already existing landmark correspondences. Sub-
sequently the entire larger set of landmarks is refined. The coarse deformations are
learned by relatively few landmarks, and only after a good fit is achieved, fine local
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details are modeled by a larger landmark set. Thereby a considerable speedup is
achieved. We optimize the criterion function with two algorithms:

Genetic algorithm search. First the criterion is optimized by a genetic algorithm [13],
with a set of correspondence matrices G serving as genomes of intermediate solutions
(individuals), making a straight-forward implementation of mutations and cross-over
functions possible (Fig.2lb)).

Fine search. After the genetic algorithm converges a fine direct search is performed.
It exploits two properties of the criterion to increase speed, and provide for robustness
(Fig.2Ab)). During an iterative process a single example is chosen, a model is build
from the remaining examples and the landmarks of the examples are projected into
this model. The criterion function is calculated for interest points in the vicinity of the
landmark position suggested by the model, and the landmark is moved to the position
with lowest cost. This is similar to [I1]] but no parameterization of the landmark space
is used. A search by evaluating the criterion function for small displacements of the
current landmark positions is possible but results in far slower convergence. Landmark
outliers are detected by comparing the current estimate for an image to the model built
from the remaining images. If the cost for including the closest interest point to the
landmark position estimate generated by the model is high, either due to its position or
to its texture features, it is considered missing in this image. If the landmark is consid-
ered to be missing R j; is set to 0 and its position is estimated from the model instead
from an interest point candidate, as described in Sec.2.2l

3 Experiments

Setup Evaluation results are reported for five data sets: 1. 20 hand radiographs with a
resolution of 0.34 mm/ pixel, and semi-manual expert standard of reference annotations
of 256 landmarks each on metacarpals and proximal phalanges. 2. 20 randomly picked
frames from a sequence of face images [16] with 576 x 720 pixel resolution and semi-
manual ground truth annotation. The temporal coherence of the frames was not utilized.
3. The same data as in 2. but with random occlusions covering up to 10% of the face.
4. A synthetic data set of two 3D surfaces with an approximate diameter of 60 voxels
consisting of a deformed torus and a sphere was generated using a single mode of defor-
mation. To assess the capability of the algorithm to deal with 3D data independent of its
topology, the topology of the setup changes throughout the data set. The model build-
ing was performed on dense sets of points on the surfaces. No texture information was
used in this experiment, and correspondences were initialized with nearest neighbors,
after the examples were centered and normalized w.r.t. to their standard deviation. 5. 10
computed tomography data sets of the knee region (Fig.[I). For this data set no standard
of reference was available and the model quality is assessed by means of the model
compactness. For data sets 1.-4. the accuracy with regard to a semi-manual standard of
reference annotation was assessed: the landmark correspondences define a deformation
field between examples. One example was selected and the corresponding annotation
was propagated to the other examples by piece wise affine interpolation according to the
deformation field. The mean and median distance between propagated and standard of
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Fig. 3. a. Face data, and b. hand data: ground truth landmarks (green) and propagated landmarks,
after autonomous model building (red circles), white crosses are the landmarks learned by the
algorithm. c. 1°* shape mode for artificial 3D data, before and after optimization. d. 1" and 2™¢
shape model for hand data, d1. and d2. during early optimization, d3. and d4 after fine search.
The positions of the bones correspond to b.

Table 1. Landmark deviation between propagated and standard of reference landmarks

Data  Hand Hand cont. 3D Face F. occl.
Mean 5.84 227  2.1410.10 13.08
Median 4.91 1.03 1.25 5.34 7.80

reference landmarks on the remaining images were recorded. It provides for a measure
of how the model building captures the structure of the data.

Results In Fig.[Bla) and (b) the standard of reference (green) and the landmarks prop-
agated according to the learned model (red) are depicted for face and hand data. White
crosses show the positions of the landmarks learned automatically, used as control
points for the landmark propagation. The accuracy of the resulting landmark corre-
spondences is given in Tab.[Il The median error for the hand data is 4.91 pixels. Larger
errors occur predominantly in regions where only few interest points are available be-
cause of low contrast. The error to the continuous standard of reference bone contours
are reported, too, since salient features like the contours are modeled with high accu-
racy (mean error is 2.27 pixel). In this case a splitting of the model according to the
separate bones can be expected to improve the landmark accuracy, since the variation
in hand posture superposes the shape variation of individual bones [[17]. For the face
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data the landmark error increases if the images exhibit occlusions, however the moder-
ate increase of the error indicates that the method can deal with incomplete data without
resulting in a degenerate model. The percentage of landmarks reported missing was in
the range of 8 — 10%. In Fig.[Blc) and (d) the modes of shape variation before and after
optimization for sets (1) and (4) are depicted. The single mode that generates the data
(4) is adequately captured by the resulting landmarks. For the hands the modes prop-
erly capture the aspect ratio change and the variation of finger positions. The results
indicate that the approach is capable of generating reliable landmark correspondences
which can replace semi-manual annotations, and that the resulting statistical model re-
flects the properties of the data. The criterion terms corresponding to shape and texture
can be weighted according to the reliability of the image structure. This is subject of
ongoing research. In [I8] a similar evaluation was performed for registration of labeled
magnetic resonance images, and the surface to surface distance after registration was in
the range of 1.5 to 3.3 voxels. For the knee data (5) the compactness of the shape model
increases significantly during optimization. After initialization 5 modes are necessary
to represent 85% of the data variation, while after optimization 2 modes are sufficient.

4 Conclusion

In this paper we propose a method to autonomously learn appearance models. The algo-
rithm does not need manual annotations, and establishes correspondences of landmarks
by group-wise robust registration of a sparse set of interest points. No mapping onto
a reference shape is used, and thereby a restriction to an a priori topological class is
avoided. Instead of deforming the entire image local features are used to capture image
content in an efficient way. In contrast to elasticity based registration techniques, the
evolving shape model allows to deal with partially missing data in a natural way, by
using the statistical properties of the training population. The results indicate that the
resulting correspondences are good, that the approach produces compact models cap-
turing the relevant information in the data, and that it has the potential to overcome the
need for manual annotation. Future research will focus on the evaluation and the im-
provement of the method on a wider range of medical data, to model complex structures
with minimal training effort and with the accuracy necessary for clinical application.
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