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Abstract. In the coming post IT era, the problems of signal extraction
and knowledge discovery from huge data sets will become very impor-
tant. For this problem, the use of good model is crucial and thus the
statistical modeling will play an important role. In this paper, we show
two basic tools for statistical modeling, namely the information criteria
for the evaluation of the statistical models and generic state space model
which provides us with a very flexible tool for modeling complex and
time-varying systems. As examples of these methods we shall show some
applications in seismology and macro economics.

1 Importance of Statistical Modeling in Post IT Era

Once the model is specified, various types of inferences and prediction can be
deduced from the model. Therefore, the model plays a curial role in scientific
inference or signal extraction and knowledge discovery from data. In scientific
research, it is frequently assumed that there exists a known or unknown “true”
model. In statistical community as well, from the age of Fisher, the statistical
theories are developed under the situation that we estimate the true model
with small number of parameters based on limited number of data. However,
in recent years, the models are rather considered as tools for extracting useful
information from data. This is motivated by the information criterion AIC that
revealed that in the estimation of model for prediction, we may obtain a good
model by selecting a simple model even though it may have some bias.

On the other hand, if the model is considered as just a tool for signal extrac-
tion, the model cannot be uniquely determined and there exist many possible
models depending on the viewpoints of the analysts. This means that the results
of the inference and the decision depend on the used model. It is obvious that a
good model yields a good result and a poor model yields a poor result. There-
fore, in statistical modeling, the objective of the modeling is not to find out the
unique “true” model, but to obtain a “good” model based on the characteristics
of the object and the objective of the analysis.

To obtain a good model, we need a criterion to evaluate the goodness of the
model. Akaike (1973) proposed to evaluate the model by the goodness of its
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predictive ability and to evaluate it by the Kullback-Leibler information. As is
well-known, the minimization of the Kullback-Leibler information is equivalent
to maximizing the expected log-likelihood of the model. Further, as a natural
estimate of the expected log-likelihood, we can define the log-likelihood and thus
can be lead to the maximum likelihood estimators. However, in comparing the
models with parameters estimated by the method of maximum likelihood, there
arises a bias in the log-likelihood as an estimate of the expected log-likelihood.
By correcting for this bias, we obtain Akaike information criterion AIC. After
the derivation of the AIC, various modifications or extensions of the AIC such
as TIC, GIC and EIC are proposed.

The information criterion suggests various things that should be taken into
account in modeling. Firstly, since the data is finite, the models with too large
number of free parameters may have less ability for prediction. There are two
alternatives to mitigate this difficulty. One way is to restrict the number of free
parameters which is realized by minimizing the AIC criterion. The other way is to
obtain a good model with huge number of parameters by imposing a restriction
on the parameters. For this purpose, we need to combine the information not
only from the data but also the one from the knowledge on the object and the
objective of the analysis. Therefore, the Bayes models play important role, since
the integration of information can be realized by the Bayes model with properly
defined prior information and the data.

By the progress of the information technology, the information infrastructure
in research area and society is being fully equipped, and the environment of the
data has been changed very rapidly. For example, it becomes possible to obtain
huge amount of data from moment to moment in various fields of scientific
research and technology, for example the CCD image of the night sky, POS data
in marketing, high frequency data in finance and the huge observations obtained
in environmental measurement or in the study for disaster prevention. In contrast
with the conventional well designed statistical data, the special feature of these
data sets is that they can be obtained comprehensively. Therefore, it is one of the
most important problem in post IT era to extract useful information or discover
knowledge from not-so-well designed massive data.

For the analysis of such huge amount of data, an automatics treatment of
the data is inevitable and a new facet of difficulty in modeling arises. Namely,
in classical framework of modeling, the precision of the model increases as the
increase of the data. However, in actuality, the model changes with time due
to the change of the stricture of the object. Further, as the information crite-
ria suggest, the complexity of the model increases as the increase of the data.
Therefore, for the analysis of huge data set, it is necessary to develop a flexible
model that can handle various types of nonstationarity, nonlinearity and non-
Gaussianity. It is also important to remember that the information criteria are
relative criteria. This means that the selection by any information criterion is
nothing but the one within the pre-assigned model class. This suggests that the
process of modeling is an everlasting improvement of the model based on the
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increase of the data and knowledge on the object. Therefore, it is very important
to prepare a flexible models that can fully utilize the knowledge of the analyst.

In this paper, we shall show two basic tools for statistical modeling. Namely,
firstly we shall show various information criteria AIC, TIC, GIC and EIC. We
shall then show a general state space model as a generic time series model for
signal extraction. Finally, we shall show some applications in seismology and
macro economics.

2 Information Criteria for Statistical Modeling

Assume that the observations are generated from an unknown “true” distribution
function G(z) and the model is characterized by a density function f(x). In the
derivation of AIC (Akaike (1973)), the expected log-likelihood Ey log f(Y) =
[ log f(y)dG(y) is used as the basic measure to evaluate the similarity between
two distributions, which is equivalent to the Kullback-Leibler information.

In actual situations, G(x) is unknown and only a sample X = {X1,..., X,,}
is given. We then use the log-likelihood £ = n [log f(z)dG,(z) = 3.7, log f(X;)
as a natural estimator of (n times of) the expected log-likelihood. Here G, (z)
is the empirical distribution function defined by the data.

When a model contains an unknown parameter 6 and its density is of the
form f(x|6), it naturally leads to use the maximum likelihood estimator .

2.1 AIC and TIC

For a statistical model f(x|6) fitted to the data, however, the log-likelihood
n~H0) =n"t 3" log f(X;]0) = n~'log f(X|6) has a positive bias as an es-
timator of the expected log-likelihood, E¢g log f(Y]0), and it cannot be directly
used for model selection. By correcting the bias

1
M(G) = nbx { & log FXIBC0)) ~ By Tog F(VIBCX) | )
an unbiased estimator of the expected log-likelihood is given by
IC=-2n {rlz log f(X|0(X)) — i&b(G)} = —2log f(X|0(X)) +2b(G). (2)

Since it is very difficult to obtain the bias b(G) in a closed form, it is usually
approximated by an asymptotic bias. Akaike (1973) approximated b(G) by the
number of parameters, ba;c = m, and proposed the AIC criterion,

AIC = —2log f(X|0ar) + 2m, (3)

where éML is the maximum likelihood estimate. On the other hand, Takeuchi
(1976) showed that the asymptotic bias is given by bric = tr{I(G)J(G)"'},
where I(G) and J(G) are the estimates of the Fisher information and expected
Hessian matrices, respectively .
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2.2 General Information Criterion, GIC

The above method of bias correction for the log-likelihood can be extended to a
general model constructed by using a statistical functional such as 0 = T'(G,,).
For such a general statistical model, Konishi and Kitagawa (1996) derived the
asymptotic bias

(4)

baic(G) = trEy {T(l)(y; G)W} ’

00

and proposed GIC (Generalized Information Criterion). Here 7™M (Y'; G) is the
first derivative of the statistical functional T'(Y; G) which is usually called the
influence function.

The information criteria obtained so far can be generally expressed as
log f(X10) — b1 (G,,), where by (G,,) is the first order bias correction term such as
(). The second order bias-corrected information criterion can be defined by

GIC, = —2log f(X|0) + 2 {bl(én) + % (bQ(Gn) — Abl(é’n))} . (5)
Here by (G) is defined by the expansion
WG) = Ex [log S(X]0) — ny log f(Y10)] = b:(G) + 4a(G) + O ~2), (6)
and the bias of the first order bias correction term Ab;(G) is defined by

Bx [(@)] = (@) + %Abl(G) +Om2). (1)

2.3 Bootstrap Information Criterion, EIC

The bootstrap method (Efron 1979) provides us with an alternative way of bias
correction of the log-likelihood. In this method, the bias b(G) in (D) is estimated
by

bp(Gn) = Ex- {log f(X7|0(X7)) —log f(X|T(X"))}, (8)
and the EIC (Extended Information Criterion) is defined by using this (Ishiguro
et al. (1997)). In actual computation, the bootstrap bias correction term bp(G,,)
is approximated by bootstrap resampling.

The variance of the bootstrap estimate of the bias defined in (4) can be
reduced automatically without any analytical arguments (Konishi and Kitagawa
(1996), Ishiguro et al. (1997)). Let D(X; Q) = log f(X|0) — nEy [log f(Y|0)].
Then D(X;G) can be decomposed into

D(X;G) = D1(X;G) + D2(X;G) + D3(X;G) (9)
)

where Dy (X;G) = log f(X|0) — log f(X|T(@)), D2(X;G) = logf(X|T(G)A—
nEBy[log f(Y|T(G))] and D3(X;G) = nEy[log f(Y|T(G))] — nEy [log f(Y]0)].
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For a general estimator defined by a statistical functional 6 = T'(G,,), it can be
shown that the bootstrap estimate of Ex[D;+ D3] is the same as that of Ex[D],
but Var{D} = O(n) and Var{D; + D3} = O(1). Therefore by estimating the
bias by

by(Gn) = Ex+[D1 + Ds], (10)

a significant reduction of the variance can be achieved for any estimators defined
by statistical functional, especially for large n.

3 State Space Modeling

3.1 Smoothness Prior Modeling
A smoothing approach attributed to Whittaker [21], is as follows: Let

Yn=fn+ten, n=1,..,N (11)

denote observations, where f,, is an unknown smooth function of n. &, is an i.i.d.
normal random variable with zero mean and unknown variance o2. The problem
is to estimate f,,n = 1,..., N from the observations, y,,n =1, ..., N, in a statis-
tically reasonable way. However, in this problem, the number of parameters to
be estimated is equal to or even greater than the number of observations. There-
fore, the ordinary least squares method or the maximum likelihood method yield
meaningless results. Whittaker [21] suggested that the solution f,,n =1,....,N
balances a tradeoff between infidelity to the data and infidelity to a smoothness
constraint. Namely, for given tradeoff parameter A2 and the difference order k,
the solution satisfies

N N

mfin Z(yn - fn)2 +2? Z(Akfn)2 . (12)

n=1 n=1

Whittaker left the choice of A\? to the investigator.

3.2 State Space Modeling

It can be seen that the minimization of the criterion ([[2)) is equivalent to assume
the following linear-Gaussian model:

Yn = fn + Wn,

fn:CIffn,1+~-~+Cka+'l}n, (13)
where w,, ~ N(0,0?), v, ~ N(0,72), A\ = 02/7% and c;? is the j-th binomial
coeflicient.

Therefore, the models (I3) can be expressed in a special form of the state
space model

T, = Fr,_1 + Gu, (system model),
Yn = Hxp +wy, (observation model), (14)
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where z, = (tn,...,tn—k+1)" is a k-dimensional state vector, F', G and H are
k x k, k x1and 1 x k matrices, respectively. For example, for k = 2, they are
given by

tn 2 -1 1
el ] =[] <)) wena s

One of the merits of using this state space representation is that we can
use computationally efficient Kalman filter for state estimation. Since the state
vector contains unknown trend component, by estimating the state vector x,,
the trend is automatically estimated. Also unknown parameters of the model,
such as the variances 02 and 72 can be estimated by the maximum likelihood
method. In general, the likelihood of the time series model is given by

N
L(0) = p(y1, -, yn10) = [ [ p(ynlYn-1,0), (16)

where Y,,_1 = {y1,...,yn—1} and each component p(y,|Y,_1, ) can be obtained
as byproduct of the Kalman filter [f]. It is interesting to note that the tradeoff
parameter A2 in the penalized least squares method ([2)) can be interpreted as
the ratio of the system noise variance to the observation noise variance, or the
signal-to-noise ratio.

The individual terms in (@) are given by, in general p-dimensional observa-
tion case,

1 _
W |Wn|n—1|

where €1 = Yn — Ynjn—1 is one-step-ahead prediction error of time series
and Yp|,—1 and Vy,|,,_1 are the mean and the variance covariance matrix of the
observation y,,, respectively, and are defined by

Ynln—1 = Hxn|7b—15 Wn\n—l = HV;L\n—lH/ + 02' (18)

1 1 _
p(yn|Yn—1,9) = 2 exp{_2€/nn—an;_15n|n—l}7 (17)

Here z,,,,—1 and V},},,_; are the mean and the variance covariance matrix of the
state vector given the observations Y,,_; and can be obtained by the Kalman
filter [6]. If there are several candidate models, the goodness of the fit of the
models can be evaluated by the AIC criterion defined by

AIC = —2log L(#) 4+ 2(number of parameters). (19)

3.3 General State Space Modeling
Consider a nonlinear non-Gaussian state space model for the time series y,,
Tpn = Fn(mn—la vn)

Yn = Hn(wnywn)v (20)

where x,, is an unknown state vector, v, and w, are the system noise and the
observation noise with densities g, (v) and r, (w), respectively. The first and the
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second model in (20) are called the system model and the observation model,
respectively. The initial state zg is assumed to be distributed according to the
density po(x). F,,(x,v) and H,,(x,w) are possibly nonlinear functions of the state
and the noise inputs. This model is an extension of the ordinary linear Gaussian
state space model ([4)).

The above nonlinear non-Gaussian state space model specifies the conditional
density of the state given the previous state, p(z,|x,—1), and that of the obser-
vation given the state, p(yn,|x,). This is the essential features of the state space
model, and it is sometimes convenient to express the model in this general form
based on conditional distributions

Tn ™~ Qn( : |xn—1)
Yn ~ Ru( - |70). (21)

With this model, it is possible to treat the discrete process such as the Poisson
models.

3.4 Nonlinear Non-Gaussian Filtering

The most important problem in state space modeling is the estimation of the
state vector x, from the observations, Y; = {y1,...,y:}, since many important
problems in time series analysis can be solved by using the estimated state
vector. The problem of state estimation can be formulated as the evaluation
of the conditional density p(z,|Y;). Corresponding to the three distinct cases,
n >t n=1tand n <t the conditional distribution, p(x,|Y;), is called the
predictor, the filter and the smoother, respectively.

For the standard linear-Gaussian state space model, each density can be
expressed by a Gaussian density and its mean vector and the variance-covariance
matrix can be obtained by computationally efficient Kalman filter and smoothing
algorithms [0].

For general state space models, however, the conditional distributions be-
come non-Gaussian and their distributions cannot be completely specified by
the mean vectors and the variance covariance matrices. Therefore, various types
of approximations to the densities have been used to obtain recursive formulas
for state estimation, e.g., the extended Kalman filter [6], the Gaussian-sum filter
[6] and the dynamic generalized linear model [20].

However, the following non-Gaussian filter and smoother [I1] can yield an
arbitrarily precise posterior density.

[Non-Gaussian Filter]

(] Yot)= / (@ nln1)p(nt |Vt )dan_1

P(Yn|Yn-1)

plaa|Vn)=L , (22)

where p(yn[Y,—1) is defined by / P(YnlTn)p(Tn|Yn-1)dz,.
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[Non-Gaussian Smoother]

P(nlY) = p(aa|Ys) / pm”?'&fﬁ@? %) 1. (23)

However, the direct implementation of the formula requires computationally
very costly numerical integration and can be applied only to lower dimensional
state space models.

3.5 Sequential Monte Carlo Filtering

To mitigate the computational burden, numerical methods based on Monte Carlo
approximation of the distribution have been proposed [912]. In the Monte Carlo
filtering [12], we approximate each density function by many particles that can
be considered as realizations from that distribution. Specifically, assume that

each distribution is expressed by using m particles as follows: {p%l)7 ey pslm)} ~
p(xn|Yn—1) and {fy(bl), ce Y(Lm)} ~ p(xn|Yy). This is equivalent to approximate

the distributions by the empirical distributions determined by m particles. Then
it will be shown that a set of realizations expressing the one step ahead predictor
p(x,|Yn—1) and the filter p(z,|Y;,) can be obtained recursively as follows.

[Monte Carlo Filter]

1. Generate a random number fo(j) ~po(x) forj=1,...,m.
2. Repeat the following steps forn =1,..., N.
a) Generate a random number o) ~ q(v), forj=1,...,m.

b Computepg)zF(fT(Lj_)l,vflj)), forj=1,...,m.
& = plynlpt) forj=1,....m.
d) Generate f,(f), j=1,...,m by the resampling ofpgll)7 e ,pS{”). with the

wetghts proportional to a%l), ce aSZ),

)
c) Compute o
)

The above algorithm for Monte Carlo filtering can be extended to smoothing
by a simple modification. The details of the derivation of the algorithm is shown
in [12].

3.6 Self-Organizing State Space Model

If the non-Gaussian filter is implemented by the Monte Carlo filter, the sam-
pling error sometimes renders the maximum likelihood method impractical. In
this case, instead of estimating the parameter # by the maximum likelihood
method, we consider a Bayesian estimation by augmenting the state vector as
2n = [2T,0T)T. The state space model for this augmented state vector z, is
given by

Zn = F*(Zn—lavn)
Yn = H"(2n, w0y) (24)
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where the nonlinear functions F*(z,v) and H*(z,w) are defined by F*(z,v) =
[F(z,v), H}Tv H*(2,w) = H(z,w).

Assume that we obtain the posterior distribution p(z,|Yx) given the entire
observations Yy = {y1,---,yn~}. Since the original state vector x,, and the pa-
rameter vector # are included in the augmented state vector z,, it immediately
yields the marginal posterior densities of the parameter and of the original state.

This method of Bayesian simultaneous estimation of the parameter and the
state of the state space model can be easily extended to a time-varying parameter
situation where the parameter § = 6,, evolves with time n. It should be noted
that in this case we need a proper model for time evolution of the parameter.

4 Examples

4.1 Extraction of Seismic Waves

The earth’s surface is under continuous disturbances due to a variety of natural
forces and human induced sources. Therefore, if the amplitude of the earthquake
signal is very small, it will be quite difficult to distinguish it from the background
noise. In this section, we consider a method of extracting small seismic signals
(P-wave and S-wave) from relatively large background noise [13], [17].

For the extraction of the small seismic signal from background noise, we
consider the model

Yn = Tn + Sn + €n, (25)

where r,, s, and €,, denote the background noise, the signal and the observation
noise, respectively. To separate these three components, it is assumed that the
background noise r,, is expressed by the autoregressive model

m

Tn = Z CiTn—i + Un (26)
=1

where the AR order m and the AR coefficients ¢; are unknown and wu,, and &,
are white noise sequences with u,, ~ N(0,72) and &,, ~ N(0,0?).

The seismograms are actually records of seismic waves in 3-dimensional space
and the seismic signal is composed of P-wave and S-wave. Hereafter East-West,
North-South and Up-Down components are denoted as y, = [Tn, Yn, 2n]’ . P-
wave is a compression wave and it moves along the wave direction. Therefore it
can be approximated by a one-dimensional model,

Pn = Zajpnfj + Up. (27)
J=1

On the other hand, S-wave moves on a plane perpendicular to the wave direction
and thus can be expressed by 2-dimensional model,

¢
dn | _ bji1 bj12 | | Gn—j Un1 0
[rn} Z [bj21 bjoa | | Tn—j + Una | (28)

j=1
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Therefore, the observed three-variate time series can be expressed as

Tn a1n Bin Yin | | Pn wy,
Yn | = | Q2n 62n Yon qn | + w% . (29)
Zn a3n B3n Yan | | Tn w}

In this approach, the crucial problem is the estimation of time-varying wave
direction, oy, Bjn and 7y;,. They can be estimated by the principle component
analysis of the 3D data. These models can be combined in the state space model
form.

Note that the variances of the component models corresponds to the am-
plitude of the seismic signals and are actually time varying. These variance
parameters play the role of a signal to noise ratios, and the estimation of these
parameters is the key problem for the extraction of the seismic signal. A self-
organizing state space model can be applied to the estimation of the time-varying
variances [13].

4.2 Seasonal Adjustment

The standard model for seasonal adjustment is given by
Yn = tn + Sn + Wp, (30)

where t,, s, and w,, are trend, seasonal and irregular components. A reasonable
solution to this decomposition was given by the use of smoothness priors for
both ¢, and s,, [14]. The trend component ¢, and the seasonal component s,
are assumed to follow

tn = 2tp—1 — tp—2 + Un,
Sn = _(Snfl +"‘+Sn711)+una (31)

where vy, u,, and w,, are Gaussian white noise with v,, ~ N (0, 72), u, ~ N(0,72)
and w, ~ N(0,02).

However, by using a more sophisticated model, we can extract a more infor-
mation from the data. For example, many of the economic time series related to
sales or production are affected by the number of days of the week. Therefore,
the sales of a department store will be strongly affected by the number of Sun-
days and Saturdays in each month. Such kind of effect is called the trading day
effect.

To extract the trading day effect, we consider the decomposition

Yn = tn + Sp + td, + wh,, (32)

where t,, s, and w, are as above and the trading day effect component, td,, is
assumed to be expressed as

7
tdn = Zﬂjdjny (33)
j=1
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where dj, is the number of j-th day of the week (e.g., j=1 for Sunday and j=2
for Monday, etc.) and 3; is the unknown trading day effect coefficient. To assure
the identifiability, it is necessary to put constraint that 5y +--- + Gy = 0.

Since the numbers of day of the week are completely determined by the
calendar, if we obtain good estimates of the trading day effect coefficients, then
it will greatly contribute to the increase of the precision of the prediction.

4.3 Analysis of Exchange Rate Data

We consider the multivariate time series of exchange rate between US dollars
and other foreign currencies. By using proper smoothness prior models, we try to
decompose the change of the exchange rate into two components, one expresses
the effect of US economy and the other the effect of other country. By this
decomposition, it is possible to determine, for example, whether the decrease of
the Yen/USD exchange rate at a certain time is due to weak Yen or strong US
dollar.
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