Generalized Key-Evolving Signature Schemes or
How to Foil an Armed Adversary

Gene Itkis and Peng Xie

Boston University Computer Science Dept.
111 Cummington St.
Boston, MA 02215, USA
{itkis, xp}@cs.bu.edu

Abstract. Key exposures, known or inconspicuous, are a real security
threat. Recovery mechanisms from such exposures are required. For dig-
ital signatures such a recovery should ideally —and when possible—
include invalidation of the signatures issued with the compromised keys.
We present new signature schemes with such recovery capabilities.

We consider two models for key exposures: full and partial reveal. In the
first, a key exposure reveals all the secrets currently existing in the sys-
tem. This model is suitable for the pessimistic inconspicuous exposures
scenario. The partial reveal model permits the signer to conceal some
information under exposure: e.g., under coercive exposures the signer is
able to reveal a “fake” secret key.

We propose a definition of generalized key-evolving signature scheme,
which unifies forward-security and security against the coercive and in-
conspicuous key exposures (previously considered separately [S/IRIT]).
The new models help us address repudiation problems inherent in the
monotone signatures [18], and achieve performance improvements.

Keywords: digital signatures, forward-security, monotone signatures,
key-evolving signature schemes, key exposures, coercion, recovery.

1 Introduction

Secret key exposures are a well-known threat for cryptographic tools. Such expo-
sures may be inconspicuous (e.g., undetected theft) or obvious (e.g., extortion).
In either case, recovery from such compromises presents an challenge which must
be addressed. Typically, such recovery is achieved by revocation of the compro-
mised keys and re-issue of the new version of the keys to the attacked user. Both
of these operations are very expensive and complicated. Alternative recovery
methods are thus highly desirable.

Coercive key exposures have been considered previously; in particular, [I8]
proposed a mechanism for invalidating all the signatures generated with the ex-
torted keys, but not any of the signatures issued by the legitimate signer both
before or after the coercion attack (thus eliminating the need for revocation

J. Zhou, M. Yung, Y. Han (Eds.): ACNS 2003, LNCS 2846, pp. 151-[I68] 2003.
© Springer-Verlag Berlin Heidelberg 2003

Verwendete Distiller 5.0.x Joboptions
Dieser Report wurde automatisch mit Hilfe der Adobe Acrobat Distiller Erweiterung "Distiller Secrets v1.0.5" der IMPRESSED GmbH erstellt.
Sie koennen diese Startup-Datei für die Distiller Versionen 4.0.5 und 5.0.x kostenlos unter http://www.impressed.de herunterladen.

ALLGEMEIN --
Dateioptionen:
 Kompatibilität: PDF 1.3
 Für schnelle Web-Anzeige optimieren: Nein
 Piktogramme einbetten: Nein
 Seiten automatisch drehen: Nein
 Seiten von: 1
 Seiten bis: Alle Seiten
 Bund: Links
 Auflösung: [2400 2400] dpi
 Papierformat: [594.962 841.96] Punkt

KOMPRIMIERUNG --
Farbbilder:
 Downsampling: Ja
 Berechnungsmethode: Bikubische Neuberechnung
 Downsample-Auflösung: 300 dpi
 Downsampling für Bilder über: 450 dpi
 Komprimieren: Ja
 Automatische Bestimmung der Komprimierungsart: Ja
 JPEG-Qualität: Maximal
 Bitanzahl pro Pixel: Wie Original Bit
Graustufenbilder:
 Downsampling: Ja
 Berechnungsmethode: Bikubische Neuberechnung
 Downsample-Auflösung: 300 dpi
 Downsampling für Bilder über: 450 dpi
 Komprimieren: Ja
 Automatische Bestimmung der Komprimierungsart: Ja
 JPEG-Qualität: Maximal
 Bitanzahl pro Pixel: Wie Original Bit
Schwarzweiß-Bilder:
 Downsampling: Ja
 Berechnungsmethode: Bikubische Neuberechnung
 Downsample-Auflösung: 2400 dpi
 Downsampling für Bilder über: 24000 dpi
 Komprimieren: Ja
 Komprimierungsart: CCITT
 CCITT-Gruppe: 4
 Graustufen glätten: Nein

 Text und Vektorgrafiken komprimieren: Ja

SCHRIFTEN --
 Alle Schriften einbetten: Ja
 Untergruppen aller eingebetteten Schriften: Nein
 Wenn Einbetten fehlschlägt: Warnen und weiter
Einbetten:
 Immer einbetten: [/Courier-BoldOblique /Helvetica-BoldOblique /Courier /Helvetica-Bold /Times-Bold /Courier-Bold /Helvetica /Times-BoldItalic /Times-Roman /ZapfDingbats /Times-Italic /Helvetica-Oblique /Courier-Oblique /Symbol]
 Nie einbetten: []

FARBE(N) --
Farbmanagement:
 Farbumrechnungsmethode: Farbe nicht ändern
 Methode: Standard
Geräteabhängige Daten:
 Einstellungen für Überdrucken beibehalten: Ja
 Unterfarbreduktion und Schwarzaufbau beibehalten: Ja
 Transferfunktionen: Anwenden
 Rastereinstellungen beibehalten: Ja

ERWEITERT --
Optionen:
 Prolog/Epilog verwenden: Ja
 PostScript-Datei darf Einstellungen überschreiben: Ja
 Level 2 copypage-Semantik beibehalten: Ja
 Portable Job Ticket in PDF-Datei speichern: Nein
 Illustrator-Überdruckmodus: Ja
 Farbverläufe zu weichen Nuancen konvertieren: Ja
 ASCII-Format: Nein
Document Structuring Conventions (DSC):
 DSC-Kommentare verarbeiten: Ja
 DSC-Warnungen protokollieren: Nein
 Für EPS-Dateien Seitengröße ändern und Grafiken zentrieren: Ja
 EPS-Info von DSC beibehalten: Ja
 OPI-Kommentare beibehalten: Nein
 Dokumentinfo von DSC beibehalten: Ja

ANDERE --
 Distiller-Kern Version: 5000
 ZIP-Komprimierung verwenden: Ja
 Optimierungen deaktivieren: Nein
 Bildspeicher: 524288 Byte
 Farbbilder glätten: Nein
 Graustufenbilder glätten: Nein
 Bilder (< 257 Farben) in indizierten Farbraum konvertieren: Ja
 sRGB ICC-Profil: sRGB IEC61966-2.1

ENDE DES REPORTS --

IMPRESSED GmbH
Bahrenfelder Chaussee 49
22761 Hamburg, Germany
Tel. +49 40 897189-0
Fax +49 40 897189-71
Email: info@impressed.de
Web: www.impressed.de

Adobe Acrobat Distiller 5.0.x Joboption Datei
<<
 /ColorSettingsFile ()
 /AntiAliasMonoImages false
 /CannotEmbedFontPolicy /Warning
 /ParseDSCComments true
 /DoThumbnails false
 /CompressPages true
 /CalRGBProfile (sRGB IEC61966-2.1)
 /MaxSubsetPct 100
 /EncodeColorImages true
 /GrayImageFilter /DCTEncode
 /Optimize false
 /ParseDSCCommentsForDocInfo true
 /EmitDSCWarnings false
 /CalGrayProfile ()
 /NeverEmbed []
 /GrayImageDownsampleThreshold 1.5
 /UsePrologue true
 /GrayImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >>
 /AutoFilterColorImages true
 /sRGBProfile (sRGB IEC61966-2.1)
 /ColorImageDepth -1
 /PreserveOverprintSettings true
 /AutoRotatePages /None
 /UCRandBGInfo /Preserve
 /EmbedAllFonts true
 /CompatibilityLevel 1.3
 /StartPage 1
 /AntiAliasColorImages false
 /CreateJobTicket false
 /ConvertImagesToIndexed true
 /ColorImageDownsampleType /Bicubic
 /ColorImageDownsampleThreshold 1.5
 /MonoImageDownsampleType /Bicubic
 /DetectBlends true
 /GrayImageDownsampleType /Bicubic
 /PreserveEPSInfo true
 /GrayACSImageDict << /VSamples [1 1 1 1] /QFactor 0.15 /Blend 1 /HSamples [1 1 1 1] /ColorTransform 1 >>
 /ColorACSImageDict << /VSamples [1 1 1 1] /QFactor 0.15 /Blend 1 /HSamples [1 1 1 1] /ColorTransform 1 >>
 /PreserveCopyPage true
 /EncodeMonoImages true
 /ColorConversionStrategy /LeaveColorUnchanged
 /PreserveOPIComments false
 /AntiAliasGrayImages false
 /GrayImageDepth -1
 /ColorImageResolution 300
 /EndPage -1
 /AutoPositionEPSFiles true
 /MonoImageDepth -1
 /TransferFunctionInfo /Apply
 /EncodeGrayImages true
 /DownsampleGrayImages true
 /DownsampleMonoImages true
 /DownsampleColorImages true
 /MonoImageDownsampleThreshold 10.0
 /MonoImageDict << /K -1 >>
 /Binding /Left
 /CalCMYKProfile (U.S. Web Coated (SWOP) v2)
 /MonoImageResolution 2400
 /AutoFilterGrayImages true
 /AlwaysEmbed [/Courier-BoldOblique /Helvetica-BoldOblique /Courier /Helvetica-Bold /Times-Bold /Courier-Bold /Helvetica /Times-BoldItalic /Times-Roman /ZapfDingbats /Times-Italic /Helvetica-Oblique /Courier-Oblique /Symbol]
 /ImageMemory 524288
 /SubsetFonts false
 /DefaultRenderingIntent /Default
 /OPM 1
 /MonoImageFilter /CCITTFaxEncode
 /GrayImageResolution 300
 /ColorImageFilter /DCTEncode
 /PreserveHalftoneInfo true
 /ColorImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >>
 /ASCII85EncodePages false
 /LockDistillerParams false
>> setdistillerparams
<<
 /PageSize [595.276 841.890]
 /HWResolution [2400 2400]
>> setpagedevice

152 G. Itkis and P. Xie

and re-issue) [The detection of inconspicuous key exposures was addressed pre-
viously in [11], which also suggested an alternative to revocation. A potential
connection to the monotone signatures was noted in that paper as well; here we
develop this connection further.

In this paper we consider both the coercive and inconspicuous key exposures.
First, we focus on the coercive exposures: we discuss the original definition of
the monotone signatures from [18], and highlight some of its shortcomings and
potential pitfalls. Then we propose a new definition, which avoids these pitfalls.
Our definition generalizes the monotone signatures of [18] on the one hand, and
the key-evolving signatures [5 on the other, and as such, it may be of inde-
pendent value. Our definition also allows us to address both the coercive/overt
and inconspicuous exposures within one model. We then propose some schemes,
which not only provide an improved functionality, but are also more efficient than
the original monotone signatures. Finally, we prove some (tight) lower-bounds.

1.1 Monotone Signatures — Evolution of the Public Keys

Let us briefly review the monotone signatures as they were originally defined
n [I8]. The reader is encouraged to consult the original paper for the formal
definitions.

The monotone signatures are motivated by a scenario when the signer is
forced to reveal a key which would enable the attacker to generate valid signa-
tures. How can the system security be recovered after the extortion attack is
over?

PuBrLic KEY EVOLUTION. It appears that whatever recovery mechanism is
used, the public key must change. It therefore makes sense to consider explic-
itly a model with the evolving public keys. This is exactly what the monotone
signatures attempt (without presenting it in exactly these terms).

MONOTONE SIGNATURES. The original definition of the monotone signatures
allowed the verification algorithm (i.e., the public key) to be updated, e.g., after
an attack. Namely, the signer under duress can reveal some (but not all!) of his
secrets to the attacker. These extorted secrets enable the attacker to generate
signatures valid under the current public key. However, after the signer is no
longer under duress, the public key can be updated, so that all the signatures
generated by the legitimate signer (both, before and after the update or the
attack) remain valid, but all the signatures generated by the attacker (using

! Alternative methods of creation of a “subliminal channel” allowing the coerced signer
to covertly inform authorities of the coercion were also proposed (see, e.g., Funkspiel
schemes of [10]). In this case, the key may not be actually exposed and one may
hope that the notification of the authorities for the extorted signatures eliminates
the need of the expensive global recovery.

2 Key-evolving signature schemes were introduced as a functional definition for
forward-secure signatures [3BJ162J13I17I12]15]. They also served as a basis for new
notions such as key-insulated [6], intrusion-resilient [14/12], and tamper-evident [11]
signatures.

Generalized Key-Evolving Signature Schemes 153

the extorted keys) are no longer valid under the updated verification algorithm.
Thus, monotone signatures can be viewed as a generalization of the signature
schemes which includes the revocation and re-issue.

SHORTCOMINGS OF THE ORIGINAL DEFINITION. Unfortunately, the definition of
[18] gives the signer too much power: it undermines the non-repudiation property
of the signatures — often their main functionality. Indeed, a signer can choose to
sign any message “as an attacker” in the above scenario. Then, at any time later
on, he may choose to update his public key so as to invalidate that signature.

1.2 Generalized Key-Evolving Signatures Schemes and
Extortion-Resilience

In this paper, we modify the definition of the monotone signature schemes to
limit this repudiation power of the signer. We also generalize the definition to
include all the above mentioned schemes as its special cases. In particular we
refine the secret key exposure model to include both undetected inconspicuous
exposures as well as the extortions.

CLEARING PERIOD: RESTRICTING REPUDIATION. In particular, in our scenarios,
similarly to the real life check payments, each signature — even if verified as valid
— is not “cleared” for a pre-defined period of time. We limit the repudiation
ability of the signers to that clearing period.

Similarly to the forward-secure signatures, in our system the legitimate sign-
ers obeying the protocol do not have the information that could allow them to
back-date their signatures. Thus, an attacker can use the extorted secrets only
to generate signatures dated after the extortion.

We use techniques similar to tamper-evidence [11] to invalidate the signatures
generated by the extorted keys, with respect to the public keys updated by the
signer after he is released.

FORCING SIGNER COMMUNICATION AND SUBLIMINAL CHANNELS. Given the
above, the attacker may try to prevent a public key update altogether or at least
to make sure that the updated public key does not invalidate the signatures
based on the extorted secrets. To achieve this the attacker may resort to holding
the signer hostage until the extorted signatures are cleared, or even Kkilling the
signer after the extortion. We need to eliminate the motivation for the attacker
to resort to such measures.

To achieve this we require the signer to contact the authority at least once
during the clearing period and perform the public key update. Thus, even if the
attacker holds the signer captive during the clearing period, the attacker still
needs to allow the signer to contact the authority, in order to have the signatures
with the extorted keys cleared. However, this communication between the signer
and authority, unlike the communication with the untrusted verifiers, can utilize
subliminal channels (e.g., similar to the Funkspiel [10]). Thus at the very least
the authority would know that the particular keys had been extorted. And even
if these keys must be treated as valid in order to protect the signer, the authority
can take whatever steps are available. And in particular, it may be able to reset

154 G. Itkis and P. Xie

the system afterwards so that the extorted keys become invalid even after the
clearing period has passed. They would also, of course, be able to identify the
extorted signatures potentially helping with arresting the attacker.

Thus, the attacker is faced with the choice of having her extorted signatures
invalidated before they are cleared, or risking authority notification and subse-
quent tracing. It is our hope that since both of the options involve significant
risks for the attacker, our scheme provides a significant deterrent for an attack.

2 Definitions
2.1 Functional Definitions

GENERAL KEY-EVOLVING SIGNATURE SCHEMES (GKS). Intuitively, in GKS
scheme, both the secret key and public key can evolve. The signer can invali-
date extorted signature by updating the public key. Secret key evolution enable
forward-security, which in turn enables the clearing period functionality.

We start with the functional definition of GKS: A general key-evolving sig-
nature scheme GKS=(KeyGen,SUpd,PUpd,Sign,Ver) is a collection of five
(randomized) polynomial algorithms, where:

KeyGen is the key generation algorithm,
Input: a security parameter k € N (given in unary), and the total number of
periods, T,
Output: a pair (SKo,PKy), the initial secret key and public key;

SUpd is the secret key update algorithm,
Input: the secret key SK; for the current period ¢ < T, and control message
c, which determines the update type: ¢ € {sk_only, sk&pk, pk-only}, corre-
sponding to updating only the secret key, both secret and public, and public
key onlyl}, respectively,
Output: the new secret key SKy41 and update message fi;

PUpd is the public key update algorithm,
Input: the current public key PK; and the update message MtE
Output: The new public key PKyy1;

Sign is the signing algorithm,
Input: the secret key SK; for the current period ¢ and the message M to be
signed,
Output: signature sig, of M (the time period ¢ of the signature generation is
included in sig,);

3 The pk_only option is included here for generality. In this paper we will not support
this option: it is convenient to record the number of public key updates in the secret
key; moreover, an update message for the public key update must be generated,
and this typically requires information from the secret key. E.g., for the monotone
signature schemes of [18] our SUpd algorithm’s main function is to generate the
update message.

4 The update type c here can be inferred from the update message p, if desired.

Generalized Key-Evolving Signature Schemes 155

Ver is the verification algorithm,
Input: the public key PK;, a message M, and an alleged signature sig,
Output: valid or fail.

Intuitively, we count time as the number of key updates, see Experiment
Forge in subsection Z.2lfor the more precise definition. The key update frequency
is selected by the user: it could correspond to physical time intervals (e.g., one
update per day), or performed arbitrarily (e.g., more frequently when the signer
feels vulnerable), or activity related (e.g., one update per each signature).

For simplicity we assume full synchronization of the system: namely, we as-
sume that there are no outdated public keys. In particular, a signature generated
at time t should never be verified using a public key PK; from an earlier period
i<t.

COMPLETENESS, MONOTONICITY, NON-REPUDIATION, CLEARING PERIOD.
We require the completeness property (as in [18]). Namely, all signatures gener-
ated by a legitimate signer must be valid for all the subsequent legitimate public
keys: Ver(PK;, M, Sign(SK;, M)) = valid for any message M and any time pe-
riods ¢ > t. In particular, validity of a legitimately generated signature should
not be changed by updates.

We also require monotonicity of the signatures: an invalid signature can-
not become valid at a later time. Formally: Ver(PKy, M, sig,)=valid =
Ver (PK;, M, sig,)=valid for all j : t<j<t'.f

The monotone signatures, by their very design, are intended to allow the
signer to output alleged secret keys (and thus signatures) which look perfectly
legitimate at the time they are output, but can be invalidated at a later time
by an appropriate public key update. If unrestricted, this power builds in a
repudiation mechanism contradicting the very design of the signatures.

As mentioned in the Introduction, we limit this repudiation power to the
clearing period §: if the signature remains valid after > § public key updates,
then it can never be repudiated by any subsequent updates. Namely, suppose that
signature sig; was generated at time period 7, and let j be a time period at least
0 public key updates after i; then we require that Ver(PK;, M, sig;) =valid =
Ver(PK;/, M, sig;) =valid for all j'> j, and thus by monotonicity for all j* > 1.

FORWARD-SECURE AND MONOTONE SIGNATURES. The above general key-
evolving scheme definition includes as special cases the functional definitions
for forward-secure and monotone signatures: forward-secure signatures [5] up-
date only the secret keys, while the monotone signatures [I8] update only the
public keys (SUpd is used only to update the time period and generate the
update message).

KEY EXPOSURES. In order to formalize key exposures we introduce a special
function:

% This notion of monotonicity is slightly different from that of [I8]: we do not require
a signature to be valid for the “outdated” public keys preceding the signature — in
fact, we rule out such a verification altogether.

156 G. Itkis and P. Xie

Reveal the (possibly randomized) secret key revealing algorithm;
Input: the current secret key SK;, and number r of the previous known attacks
(i.e., the number of times Reveal was used previously with the signer’s
knowledge)@
Output: alleged secret key SKj: Ver(PK., M, Sign(SK;, M)) = valid for all
messages M.

Intuitively, Reveal outputs key SK’ given to the attacker when she tries to
expose the signer’s key SK. For all exposure models below, SK and SK’ should
be indistinguishable at the exposure time. In particular, SK’ should generate
signatures valid for the current public key. But after the subsequent public key
updates, SK and SK’ are easily distinguished: SK’ will now generate invalid sig-
natures.

Three models of exposures could be considered: full, partial and creative.
The first model corresponds to the attacker learning all the secrets of the signer,
Reveal(SK, r) = SK.

Partial reveal allows the signer to conceal some of his secrets from the at-
tacker: i.e., the attacker obtains a subset of all the secrets of the signer. It is
important to note that the set of the exposed secrets in this model is determined
by the signer, and not by the attacker. This is the model used in [I§].

Finally, the creative reveal model appears to give the signer the greatest
defensive powers: the signer is allowed to “lie creatively” and generate the alleged
secret key SK’' in an arbitrary way. However, all the alleged secret keys SK’' can
be pre-computed and stored in the SK to be revealed at the appropriate times.
Thus, the creative reveal is actually equivalent to the partial reveal model. So,
in the rest of the paper we consider only the full and partial reveal models.

For the sake of simplicity, in this version of the paper, we consider partial
and full models separately. However, a hybrid model allowing a combination of
the reveal attacks is of interest as well. In particular, the full reveal is well-suited
for the inconspicuous attacks, while the partial model can address the extortion
attacks. Since in real life both types of attacks are possible, it would be useful
to have schemes (and model) to handle both at optimal costs.

2.2 Security Definitions

GKS SECURITY. In GKS, time is divided into time periods. The time is in-
cremented by each key update. The key update can be either secret key only
update, or both secret key and public key update (as noted in the footnote B3]
while theoretically it is possible to allow a “public key only” update, we do not
support it in this paper). We use P(t) to denote the number of the public key
updates (i.e., sk&pk’s) that occurred since the key generation and up to the cur-
rent time period t. We allow the adversary F to adoptively obtain signatures and
secret keys (using Reveal function). We model these two types of information

5 The number of r of previous attacks is needed only for partial and creative reveal
models discussed below. For the full reveal model, this number can be ignored or
even unknown.

Generalized Key-Evolving Signature Schemes 157

with two oracles: Osig and Orvl. The most natural assumption is to allow only
the queries relating to the current time t. We expand the adversary powers to
allow her to query signatures for the past (but not the future, since the future
signatures may depend on the specific evolution path the system takes).

Specifically, given message M and time period ¢ < ¢, oracle Osig,(M,i) at
time t returns the signature that the signer would have generated for the mes-
sage M during the period i. In contrast, oracle Orvlgp) can be queried only
about the present: when queried at time t, it returns the (alleged) secret key
Reveal ”) (SK¢, 1), for the appropriate number r of the previous attacks and the
reveal type p € {pr, fr}: partial or full reveal[l

We use the following experiments to define the security of GKS.

Experiment Forge qpg(F,k,T,0)
t < 0; pu; < empty string;
(SK¢, PK;) + KeyGen(1%,T)
repeat
q FOsigt,O'rvlt (PKt)
if (¢ = sk-only) then SK;+1 < SUpd(SK¢, sk_only)
if (¢ = sk&pk) then
(SKiy1, pt) < SUpd(SK, sk&epk)
PKy 1 < PUpd(PKy, 1)
t+—t+1
until (¢ = forge)
(M, iy J ZZ) +— F
if Ver(M,o;,PK;)=valid, i < j < T, and neither Osig(M,i) nor Orvl¥m) (1)
were queried, and either P(j) > P(i) + 6 or Orvl™ (i’) was not queried for
any i’ <i: P(i") = P(i)
then return 1.

Definition 1 (GKS security).

Let S = (KeyGen, Sign, SUpd, PUpd, Ver) be a GKS-scheme with parame-
ters k,T,6 as above, and let adversary F be any PPT algorithm. Say that S is
secure if Prob[Forges(F,k,T,8)=1] is negligible (e.g., < 5).

Consider an attacker who broke in during time period ¢. Obviously, she can
now generate valid signatures for that period at least until the public key update.
Moreover, in the case of the full reveal, she can generate signatures for the

" In the case of the full reveal model, we can allow the adversary to query the past:
the Orvl:(i) oracle can return SK; for any given time period i < ¢. Moreover, the
number r can be omitted, since it does not affect the Reveal function. In contrast,
for partial reveal, exposing past keys is problematic because the information revealed
is likely to depend on the number of r of prior exposures, and exposing past keys
may change that. Also, in practice, partial reveals are typically to be used to model
known attacks (extortions), and each such reveal is likely to be followed by a sk&pk
update. The number of such updates can then be recorded in the SK and used instead
of r. Thus we keep r only for the notational convenience.

158 G. Itkis and P. Xie

time period t which will remain valid even after the public key updates. So,
intuitively what GKS security requires is that these be the only forgeries that
the attacker can generate successfully. In other words, GKS security confines
the damage to the period of the exposure. In particular, the attacker still cannot
forge valid signatures for any of the time periods before or after ¢. In the case of
partial reveal, the attacker cannot even generate signatures for period ¢ which
will remain valid after the subsequent public key updates.

CMA, FORWARD-SECURITY AND MONOTONE SIGNATURES SECURITY. If no
updates are used in the experiment Forge (i.e., ¢ = forge is immediately selected
by adversary using only the Osig oracle), then the above definition is equivalent
to the standard definition of security against adaptive chosen message attacks
8]

If no public key updates are performed (i.e., only sk_only updates are al-
lowed), then the above definition converges to that of forward-security [5].

The above definition also captures the monotone signatures of [I8] as men-

tioned above: Allow only sk&pk updates and restrict the secret key update to
change only the time period — thus, main purpose of SUpd is to produce the up-
date message p (assume § = 1 for the above definition, but the non-repudiation
after the clearing period is not provided by [18]). Moreover, for monotone signa-
tures, SK = (s1,...,s7) and Reveal(SK, i) = (s1,..., $;).
SOUNDNESS. For monotone signatures described as above, the soundness de-
fined by [18] means that without Orvl(>1i) any adversary has only a negligible
probability of successfully forging a signature for a public key PK;. Our definition
includes this notion of soundness and further refines it to allow sk_only updates
and full reveal.

In principle, it may be interesting to consider GKS schemes with 6 > 1 or
even variable (e.g. depending on time). Specifically, such schemes might offer
better performance. But for the sake of simplicity, in the rest of this paper we
assume § = 1.

3 Using GKS Signatures

This section contains informal discussion about how the signer may wish to use
the GKS signatures, a sort of short “user’s manual” draft. As discussed in the
introduction, we consider two types of exposures: known (e.g., extortion) and
inconspicuous (undetected theft). Clearly, a full reveal exposure, whether known
or undetected, leads to a compromise of all the signatures issued during the
period of the exposure — it is impossible to distinguish signatures generated
with the same secret key. Dealing with these compromised signatures is one
obvious challenge. Another challenge is presented by the requirement that if a
signature remains valid for a certain amount of time (the clearing period), then
it can never become invalid. This later requirement, in particular, implies that
it must be impossible to “back-date” signatures, even after the exposures. We
address this clearing period requirement by including the forward-security in
our definitions and constructions. Using the forward-security, we can approach
the first challenge also (though, forward-security by itself may not be enough to

Generalized Key-Evolving Signature Schemes 159

address it completely): in the extreme case, the signer may wish to perform an
update (which includes erasing of the previous secret key) immediately before
and immediately after each signature. Then the exposed secrets are the least
likely to compromise any legitimate signatures.

While it may be too expensive to follow the above tactics all the time, it is
recommended to increase frequency of updates whenever the signer feels there
may be an increased chance of a key exposure. In particular, it is recommended
to perform an update whenever the user enters a more risk-prone situation, when
an attack is more likely. Namely, when facing danger, the signer would trigger
the SUpd algorithm to erase the secret key and generate the new SK, which may
be revealed to the attacker. The attacker can use the revealed secrets to generate
forged signatures. Such signatures must be valid under the current public key.
However, as a matter of policy, they might not be honored until the clearing
period has passed. The same policy should require that passing of the clearing
period requires public key update to be performed subsequently to the signature
in question. However, all the signatures generated using extorted secrets would
have to be invalidated with the subsequent public key updates.

In general, it is important to consider explicitly all the parties involved:
signer, verifiers, attacker, and authority. Intuitively, the last party—authority—
is responsible for communicating with the signer and performing the public key
updates in the verifiers. It is the responsibility of the authority to ensure that
there are no spurious public key updates even when the signer’s keys are exposed.
As expected, the signer generates the signatures and the verifiers verify the
signatures. The signer also maintains the secret key by performing secret key
update SUpd at the end of each time period, which generates update message u.
The signer then communicates g to the authority, which performs the public key
update PUpd and distributes the new public keys to the verifiers. We assume
that the verifiers leak the public keys to the attacker.

The introduction of the authority in order to receive the update message
from the signer allows us to “cheat” by going outside the scheme. In particular,
it allows the use additional (unexposed) secrets, used only for communication be-
tween the signer and the authority. This secret cannot be “tested”: for example,
the signer may have two passwords, one of which would be used only in the case
of an attack to communicate to the authority that the signer is being held by an
attack and his secret is extorted — in this case, the authority may emulate the
normal update behavior, but would notify the police or take other appropriate
measures. More sophisticated subliminal channels (e.g. [10]) could be deployed
for this purpose to allow the signer to communicate more information to the
authority.

4 Constructions

4.1 Construction for Full Reveal Model

GKS AND TAMPER-EVIDENT SIGNATURES. A GKS scheme could be obtained
by using tamper-evident signatures [I1]. Tamper-evident signatures are key-
evolving signature schemes, using only secret key evolution. Their main fea-

160 G. Itkis and P. Xie

ture is inclusion of a special predicate Div: given two signatures, Div determines
whether only one of them is generated by the legitimate user (and the other
by the forger), provided that both signatures were generated after the latest
(undetected) key exposure. The GKS security could be obtained by inclusion
the latest legitimately generated tamper-evident signature into the public key.
The verification procedure would then include the Div test between this signa-
ture and the signature being verified. The scheme below can be viewed as an
optimization of the above approach. Perhaps the most surprising aspect of this
scheme is that, despite its simple approach, it turns out to be optimal (as shown
in Sec.[d). GKS CONCATENATION SCHEME. We propose a GKS scheme based

on an arbitrary ordinary signature scheme. The idea behind this construction is
quite simple: For each time period, a different ordinary secret-public key pair is
used; these public keys are then published in the GKS public key. This leaves
open the question of validity of the signatures generated after the latest public
key update. For this, in each public key update we include a separate ordinary
public key, used to certify the signing keys after this public key update and until
the next one. After the next public key update, this certification key can be dis-
carded, since the public keys it certified are now included directly in the GKS
public key. Next we give the formal description of the scheme.

Let X be any ordinary signature scheme. We use instances of X' for message
signing and certification: S; are used during time periods ¢, and C is used to
certify S;.PK for the current time periods@ S;¢.SK, S;.PK denote the secret and
public keys of Sy, generated by the X¥.KeyGen algorithm. We write .S;.Sign(m)
to denote X.Sign(S;.SK, m) (similarly, S;. Ver(m sig) = ¥ .Ver(S,;.PK, m, sig)).
Let PKy; ;) = S;.PK||...||S;.PK; PK; & PK[l i; Pko 2 @ (i.e., the empty string).
Intuitively, 1/ below is a “current draft” update message, stored in S.SK. Let
S = (KeyGen, Sign, SUpd, PUpd, Ver).

S.KeyGen :
(C.SK, C.PK) «+ Y. KeyGen(1%);

def

return (S.PKy = (PKo, C.PK), S.SKy = (0,C.SK, 1y, =2, So.SK=0, CPK=0))

S.SUpd(S.8K¢, ¢) :
Let S.SK; = (t, C.SK, p}, S;.SK, CPK);
Securely delete S;.SK;
(St+1.SK7 St+1.PK) — ZKeyGen(lk),
if (c = sk&pk) then
(C.SK,C.PK) + X. KeyGen(lk);
pie 4 {py, C.PK); py <= @
CPK < (S¢4+1.PK, C.Sign(S:41.PK));
Hig1 < M%HStﬂ-PK
S.8K¢q1 = (t+ 1,C.8K, p} 41, Si4+1.5K, CPK) ;
if (¢ = sk_only) then return (S.SK;41);
elseif (c = sk&pk) then return (S.SKiy1, fit);

8 In principle, C could use a different signature scheme; in some cases, the number of
times each instance of C will be used is known—for these cases each C could be an
instance of an n-times signature scheme, for the appropriate n.

Generalized Key-Evolving Signature Schemes 161

S.PUpd(S.PKy, pg) :
Let S.PK; = (PK;,C.PK); p¢ = (PK[i11,4, C'.PK)
return (S.PK, ;1 = (PK;, C'.PK)) % P; = PK;||PK(i 1.4

S8.Sign(S.8K¢, m) :
Let S.SK; = (¢, C.SK, p}, S;.SK, CPK);
return (sig = (¢, CPK, S;.Sign(m)))

S.Ver(S.PKy, m, sig) :
Let S.PK; = (PK;, C.PK); sig = (i,CPK = (PK, cs), s)
if ¢ < j then return (S;.Ver(m)) % S:.PK used in the verification is
contained in PK;
else return (C.Ver(C.PX,PK, cs) A X.Ver(PK,m,s))

PERFORMANCE. We use |PK x| to denote the size of the public key for the X
scheme, |sy| for the size of the signature under the X' scheme (for simplicity, we
assume that it does not depend on the message signed), I; for the size of the
representation of the time period t, and |SKy| is the size of the secret key for
X, Let t be an arbitrary time period and j be the first time period which has
no public key updates between itself and ¢: j = min{i : P(i) = P(¢)}. Then our
GKS scheme above has the following performance characteristics:

The size of public key at time ¢ is |S.PK¢| = j - |PKx|.

All signatures sig have length |sig| = 2|sx| + |PK x| + I, independent of the
time of generation.

The size of the secret key at time ¢ is |S.PKy| = l; + 2|SKs|+ |ss|+ (t— 7+
1) |PKs].
The time complexities of all the S functions are independent of ¢:

S.KeyGen requires only a single Y. KeyGen.

S.Sign requires only a single X.Sign. And §.Ver needs at most two Y. Ver
computations.

S.SUpd requires at most two X' .Key(Gen operations, a single X'.Sign and
some trivial data (list) manipulations.

S.PUpd has O(1) time complexity — independent of X' complexities, as well
as of ¢.

4.2 Concatenation Scheme Security in the Full Reveal Model
Without essential loss of generality, let the clearing period § below be § = 1.

Theorem 1. Let X be an ordinary signature scheme secure against adaptive

chosen-message attack with probability of forgery < ﬁ

Then the GKS scheme S above (Sec. 1s secure: for any PPT forger F’,

1
Prob[Forgeg(F', k, T,5)=1] < >

Proof sketch: Suppose for some forger F”, Prob|Forges(F', k,T,0) =1] > 5x.
Then we can construct another forger F' who uses adaptive chose-message to

attack X' and succeeds with probability greater than ﬁ

162 G. Itkis and P. Xie

Forger F' guesses uniformly the time period ¢ : 1 < ¢ < T for which F’
will issue her forgery (that is the time period ¢ in the experiment Forge ;gg in
Sec.[I)). Then F substitutes the public key X.PK for which it is trying to obtain
the forgery into the S.PK;: S;.PK <— X .PK. All the other keys are generated by F’
according to the S algorithm.

The probability that F' chooses this same i is 1/T. If the guess was wrong,
F aborts. If the guess was correct then with the probability > zik, F’ outputs a
signature and a message valid for S;.PK = X.PK, which were never queried, nor
the corresponding key was queried.

Thus, F is successful with the probability that it makes the right guess (1/7T)
and F' succeeds (> 5). Therefore the probability of F succeeding is > 7. O

4.3 Partial Reveal Schemes

A SIMPLE TRADE-OFF. The schemes of [18] all use the partial reveal model.
Still, they have both public keys and signatures linear in the maximum number
of public key updates Tp.

In our full reveal scheme, the signature size is reduced to constant while the
public key size is linear in the current time periodE

Furthermore, the size of the signatures in the schemes of [18] gives some
indication to the attacker of what Tp might be equal to. Thus the attacker may
force the signer to reveal all or most of the secrets in one attack. In contrast our
concatenation scheme has no Tp and thus can be continued indefinitely, and the
signer has no hidden secrets for the attacker to extort — all the secrets to be
used in the future are generated as needed.

We note that the schemes of [18] can be directly optimized to reduce the
public key size to constant, while keeping the signature size linear in Tp; the
verification would also be reduced to constant — one ordinary signature verifi-
cation. Indeed, intuitively each monotone signature is verified with respect to all
the published public key components. But for security, it is sufficient to verify
the signatures only against the last public key component published. Thus the
previously published public keys can be deleted. Of course, for this optimized
scheme it is possible to generate signatures that could be repudiated at any time
later on. This scheme also allows the signer to violate monotonicity: generate
signatures which are invalid at the time of generation, but valid at the later
times.

In fact, combining similar optimization with our concatenation scheme, it is
possible to achieve a linear trade-off between the signature and public key sizes.

9 To be fair, we must note that in our scheme the number of updates may be larger
than in the monotone signatures: since we update the secret key every time there
is a threat of exposure. On the other hand, this also allows us to deal with full-
reveal inconspicuous exposures, which the monotone signatures are unable to protect
against. If inconspicuous exposures are not a threat, then the sk_only updates can
be implemented using a forward-secure signature scheme Y, reducing the size of the
public key to (nearly) match the monotone signatures.

Generalized Key-Evolving Signature Schemes 163

However, such trade-off is only of theoretical value, since it is very unlikely that
the savings of the public key length might justify the proportional increase of
the signature length.

Interval Crossing Scheme (IX)

INTUITION. This section presents a GKS scheme for the partial reveal model
exponentially improving the asymptotic performance of the above schemes, as
well as the schemes of [18]. We call it interval crossing scheme or IX for short.

IX is based on the forward-secure scheme of [I3]. It also uses two security
parameters: k and . Intuitively, k is the length of the modulus used for GQ-like
signatures [9]; { is the length of the outputs of the random oracle used for the
scheme.

Let T be an upper-bound on the number of all the key updates. The scheme
of [13] divides the interval [2,2/*!] into T subintervals I; = [2! + (t—1)2!/T, 2!+
t2'/T) — one per each time period t. A prime exponent e; € I; is used in the
GQ-like the signatures for the time period t. IX further subdivides each I; into
C intervals, for the parameter C' of the given IX scheme. It then offers an option
to specify the sub-interval of e; with greater precision: The IX public key may
include index 1 < 4; < C for each time period t; if the exponent e; used in a
signature for time ¢ is not from the i;-th subinterval of I;, then the signature is
invalidated. For convenience we identify the index i; with the i;-th subinterval
of It.

Intuitively, C' corresponds to the upper-bound on the number of ways the
signer may try to cheat the attacker. While C is a parameter of the scheme, and
is thus assumed to be known to the attacker, the actual number of the spare
versions of e; prepared for each interval by the signer is unknown. Indeed, as will
become apparent from below, it may be wise to select both T" and C' to be fairly
large — the cost to the signer is only logarithmic in C (recording the index i,
in the public key) and independent of T'. In fact these two parameters may be
set for some fixed large values, same for all users (e.g., T = 100, C' = 219),

Thus, if no extortion attacks took place in period ¢, then no index i; for
that period needs to be published in the IX public key. However, if the signer is
attacked during the time ¢ then he can reveal some secrets for one or more €} € I,
leaving at least one e; € I; not revealed. Upon release, the signer can update
the public key, publishing 4;; all signatures for time ¢ using e} ¢ i; are then
disqualified. Clearly, if the indistinguishability of the “fake” and “real” secrets
in this case can be obtained only if the attacker does not have any legitimate
signatures for the same period ¢. This can be achieved, for example, by the
signer performing an update (thus incrementing t) as soon as he comes under
the attack.

This mechanism is essentially similar to “black-listing” the extorted keys
(more accurately, “white-listing” a non-extorted key) when needed. Applied di-
rectly, this method would not offer significant improvement over the concate-
nations scheme. However we achieve an exponential improvement by using a
compact representation of the “white-list”.

164 G. Itkis and P. Xie

COMPACT SET REPRESENTATION. Consider the following problem stated here
informally: We need to generate a set S of ¢, elements so that for any ¢ < ¢,,44,
the subset Sy C S of ¢ elements can be represented compactly and in such a way
that no information about S —.S; is revealed. In particular, no information about
the size of S is leaked, nor is it possible to deduce whether a given x ¢ S; is
actually in S.

We propose the following, slightly simplified approach: Let most of the el-
ements of the sets S; be leaves of a small (logarithmic in ¢) number of trees
(e.g., at most one of each height). Each tree can be represented by its height and
the value at its root. All the tree leaves are computed from the root as in the
pseudo-random function (PRF) tree of [7]. A small —bounded by constant—
number of elements of S; are not leaves in such trees, but are listed individually.

We use this approach as follows: as the i; values are published in the IX
public key, they are initially listed individually. As more of them are collected,
they are aggregated into the trees. At any moment of time, the set of the revealed
i¢’s gives no indication of whether it has reached t,,,,, the maximum number of
periods for which the signer had prepared the secret key. Moreover, the latest
revealed “fake” secrets cannot be distinguished from the “real” ones.

IX-SCHEME: FORMAL DESCRIPTION. For the sake of simplicity in describing
the algorithms, we assume that C' = 2. Thus, each i; can be specified with a single
bit (in addition to specifying t). Let H : {0,1}* — {0, 1}! be a random function,
A = 9 /(TC), and ty,4, be the maximum number of the time periods for the
give scheme instance. Let P be a length-doubling PRG, P : {0,1}* — {0,1}2L,
wlog assume L = [. We use P to generate PRF trees. Consider a balanced PRF
tree with T leaves, and let R; be the smallest set of the tree nodes such that the
set of the maximal subtrees rooted in R; contains exactly the leftmost ¢ leaves
of the tree, and contains no trees with exactly two leaves and at least one tree of
size one. Let the j-th leftmost leaf determine ¢;. Say (e, j) € R; whenever e € 4,
as determined by R;.

KeyGen (k,1,T)
Generate random ((%1 — 1)-bit primes ¢1,¢2 s.t. p; = 2¢; + 1 are both
primes.
N < p1p2
For a PRF tree of depth [lg T, generate Ry, ..
For each t : 1 <t < t;4s, generate primes ey, e} such that e; € i; and

, .
€y S It — 1t.
def / ’ s def / def > def
(let fi = eiej. . etpantr, ..o I = fix1-¢€}, Fi = fit1-e;, and €); 5 =
/ /
(e, €l ... e, ej>)
R .
by < Zn

v 1/1){1 mod n

51 bf{ mod n

s} « b mod n

by bile,l mod n

SK1 < (Rt,,.., Ltmamn,51,€1,b2,é’[2,tmaz]> % real secret

Generalized Key-Evolving Signature Schemes 165

SKj « (=R1,1,1,n,s], 6’1,’1},5[2’1] = @) % fake secret, to be revealed in key
exposure

PK; < (n,v,0)

return (SKy,SK|,PKy) % while formally SK', should be part of SK we keep them
separate for clarity; the signer disposes of SK' before issuing the first signature
of the period

Let SKj = <Rtmaz 5 j, tmaza n,sj;,€j, bj+17 g[j+1,tm,a,m]>

if j = tma’z then return @

Sj41 bffll mod n;

FA
81 < ;17" mod n;
’
€5 €.
b2 < b5 7T modn
return SK; 1 = <Rtmam7j + 1, tmax, My Sj41, €541, bjt2, g[j+27t7yzam]> and fake
secret key

SK = (RjUe€) 1, j+1,n,85, €, ,0,0)
w4 Ry % it is sufficient to include the part of R; only for the periods of
extortion
PUpd (PK;, ;)
Let PK; = (n,v,...).
return PK; 1 = (n,v, i)
let SKj = <Rtma:c7j7 tmama n, Sj, ej, bj+17 é'[j+1,T]>
r & 7x
y < r% mod n
0 H(j’ej’y>M)
z <= rs] mod n
return (2,0, j,€;)
Ver (PK;, M, (z,0,j,¢€))
Let PK; = <’I’L,U, Rt/>.
if eis even or e ¢ I; or z = 0 mod n then return 0
if j <t and (e,j) ¢ Ry then return 0

y/ % Ze,U(T
if o = H(j,e,y’, M) return 1 else return 0
Reveal

When face dangers, the signer just needs to update his secret key and begins
new time period, j. For time period j, the signer reveals the fake secret key
SK’..

J

The proof of security of the above scheme is similar to the proof in [I3].
Intuitively, if the forger breaks in some time period, the signer can reveal fake
secret key for that time period, this fake secret is indistinguishable from the
real secret key under the current public key. Furthermore, this fake secret key
doesn’t help the forger to guess the real secret key by the variant of the strong
RSA assumption in [4]. The probability that the forger succeeds in generating
valid signature for other time periods is negligible. In the above algorithm, we
always use the fixed fake secret. Actually, the signer can reveal several fake secret

166 G. Itkis and P. Xie

keys. The attacker have no idea how many secret keys in each interval because
the T and s is unknown to the attacker, and the number of secret candidates is
probabilistic.

From the construction, we can see that the size of the signature is constant
and the size of the public key grows logarithm with time. This is in contrast
to the full reveal scheme where each time period added the security parameter
number of bits.

5 Lower Bounds: Full Reveal Model

In this section we consider the GKS schemes in the full reveal model, and prove
the lower bound for the public key length matching that of our scheme in sec. 11
First, a simple probability observation:

Claim. For any events A, B, C, Prob[A A\ B|C] = Prob[A|C] - Prob[B|A A C].

Indeed, starting with the right-hand side and using the conditional probabil-

ity definition we get Prob[A|C] - Prob[B|A A\ C] = Prolf’rﬁ[/c\]C] Pro;r[i{}}ié\cl

Prob[A /\ B
Pt t AB AL _ proba A BIC. .

Now, let S be an GKS-secure scheme and F' be a forger. Fix some time period
t, immediately after a public key update For ¢ < t, let f; denote an event that
an attacker generates a signature valid for S.PK;, and some message and time
period (m, i) pair (without querying the Osig(m,i) oracle). Let b; be the event
of the attacker break-in at period 4 (in other words, a query to Orvl; oracle);
assume no other key exposures except those mentioned explicitly. Recall that k
is the security parameter and Prob[f;|—b;] < 1/2F (see definition).

Lemma 1. Prob[(f1 A fa A ... fi)|bo] < u , where k is the security parameter.

Proof: Prob[(f1 A fa A ... ft)]bo]

=Prob][f1]bo] x Prob[(f2 A f3... ft)|(f1 Abo)] (by the claim above)

< Prob[fl\bo} X Prob[(f2 A fs... ft)l(bl AN bo)}

:Prob[f1|b0] X Prob[f2|(b1 AN bo)} X Prob[(f3 Afg... ft)l(f2 Abi A bo)}

< Prob[f1 ‘bo] X Prob[f2|(b1 /\bo)} X Prob[(f3|b2 Aby /\bo] Prob[ft|(bt,1 Abis ... b())}
<4 5% X Qk .. 21k = Q{t by the definition of GKS. a

For the full reveal GKS signatures, we assume that the attacker receives all
the secrets of the system at the time period of the break-in. Thus immediately
after b;, the real signer and the attacker F' have exactly the same information.
The difficulty of f;-; relies on the fact that the evolutions of the signer and F'

10 The next lemma, and thus the subsequent theorem, rely on the assumption that
the clearing period is 6 = 1. Adjusting them to arbitrary J would require that we
talk below about the public key PK, such that ¢’ is § public key updates after ¢:
P(t') > P(t) + §. Then the lower bound would be shown for the public key PK;s
instead of PK;. The rest of the section would remain intact.

Generalized Key-Evolving Signature Schemes 167

are likely to diverge. If somehow F', emulating the evolution of the real signer,
arrives at the same public key S.PK; as the real signer, then F' can generate
signatures for all messages and all the time periods ' : # < i’ < j and valid for
S.PK;.

Thus, probability of F' emulating real signer evolution and arriving at the
same public key S.PK; as the real signer is no greater than Prob[(f; A fa A
... f¢)|bo]. Which means that this probability of evolving into S.PK; is < 5.
But since both signer and F' use the same probability distributions, this implies
the following theorem:

Theorem 2. Let S be a GKS signature scheme secure (with security parameter
k) in the full reveal model and let t immediately follow a public key update. Then
|S.PK,| > kt

The theorem implies optimality of our scheme in Sec. [f:T]at least with respect
to the length of the public keys.

Acknowledgments. The authors are grateful to Shai Halevi for helpful discus-
sions.

References

1. Third Conference on Security in Communication Networks (SCN’02), Lecture
Notes in Computer Science. Springer-Verlag, September 12-13 2002.

2. Michel Abdalla and Leonid Reyzin. A new forward-secure digital signature scheme.
In Tatsuaki Okamoto, editor, Advances in Cryptology—ASIACRYPT 2000, volume
1976 of Lecture Notes in Computer Science, pages 116—-129, Kyoto, Japan, 3—7 De-
cember 2000. Springer-Verlag. Full version available from the Cryptology ePrint
Archive, record 2000/002, http://eprint.iacr.org/.

3. Ross Anderson. Invited lecture. Fourth Annual Conference on Computer and
Communications Security, ACM (see
http://www.ftp.cl.cam.ac.uk/ftp/users/rjal4/forwardsecure.pdf), 1997.

4. Niko Bari¢ and Birgit Pfitzmann. Collision-free accumulators and fail-stop sig-
nature schemes without trees. In Walter Fumy, editor, Advances in Cryptology—
EUROCRYPT 97, volume 1233 of Lecture Notes in Computer Science, pages 480—
494. Springer-Verlag, 11-15 May 1997.

5. Mihir Bellare and Sara Miner. A forward-secure digital signature scheme. In
Michael Wiener, editor, Advances in Cryptology—CRYPTO ’99, volume 1666 of
Lecture Notes in Computer Science, pages 431-448. Springer-Verlag, 15-19 August
1999. Revised version is available from http://www.cs.ucsd.edu/ "mihir/.

6. Yevgeniy Dodis, Jonathan Katz, Shouhuai Xu, and Moti Yung. Strong key-
insulated signature schemes. Unpublished Manuscript.

7. Oded Goldreich, Shafi Goldwasser, and Silvio Micali. How to construct random
functions. Journal of the ACM, 33(4):792-807, October 1986.

8. Shafi Goldwasser, Silvio Micali, and Ronald L. Rivest. A digital signature scheme
secure against adaptive chosen-message attacks. SIAM Journal on Computing,
17(2):281-308, April 1988.

168

9.

10.

11.

12.

13.

14.

15.

16.

17.

18.

G. Itkis and P. Xie

Louis Claude Guillou and Jean-Jacques Quisquater. A “paradoxical” indentity-
based signature scheme resulting from zero-knowledge. In Shafi Goldwasser, editor,
Advances in Cryptology—CRYPTO 88, volume 403 of Lecture Notes in Computer
Science, pages 216—231. Springer-Verlag, 1990, 21-25 August 1988.

Johan Hastad, Jakob Jonsson, Ari Juels, and Moti Yung. Funkspiel schemes:
an alternative to conventional tamper resistance. In Proceedings of the 7th ACM
conference on Computer and communications security, pages 125-133. ACM Press,
2000.

Gene Itkis. Cryptographic tamper evidence. Submitted. Avaliable from
http://www.cs.bu.edu/ itkis/papers/, 2002.

Gene Itkis. Intrusion-resilient signatures: Generic constructions, or defeating strong
adversary with minimal assumptions. In Third Conference on Security in Com-
munication Networks (SCN’02) [1].

Gene Itkis and Leonid Reyzin. Forward-secure signatures with optimal signing and
verifying. In Joe Kilian, editor, Advances in Cryptology—CRYPTO 2001, volume
2139 of Lecture Notes in Computer Science, pages 332-354. Springer-Verlag, 19—
23 August 2001.

Gene Itkis and Leonid Reyzin. Intrusion-resilient signatures, or towards obsole-
tion of certificate revocation. In Moti Yung, editor, Advances in Cryptology—
CRYPTO 2002, Lecture Notes in Computer Science. Springer-Verlag, 18-22 Au-
gust 2002. Available from http://eprint.iacr.org/2002/054/.

Anton Kozlov and Leonid Reyzin. Forward-secure signatures with fast key update.
In Third Conference on Security in Communication Networks (SCN’02) [1].
Hugo Krawczyk. Simple forward-secure signatures from any signature scheme.
In Seventh ACM Conference on Computer and Communication Security. ACM,
November 1-4 2000.

Tal Malkin, Daniele Micciancio, and Sara Miner. Efficient generic forward-secure
signatures with an unbounded number of time periods. In Lars Knudsen, editor,
Advances in Cryptology—FEUROCRYPT 2002, Lecture Notes in Computer Science.
Springer-Verlag, 28 April-2 May 2002.

David Naccache, David Pointcheval, and Christophe Tymen. Monotone signatures.
In P. Syverson, editor, Financial Cryptography, volume 2339 of Lecture Notes in
Computer Science, pages 305-318. Springer-Verlag, 2001.

	Introduction
	Monotone Signatures --- Evolution of the Public Keys
	Generalized Key-Evolving Signatures Schemes and Extortion-Resilience

	Definitions
	Functional Definitions
	Security Definitions

	Using $@mathit {GKS}$ Signatures
	Constructions
	Construction for Full Reveal Model
	Concatenation Scheme Security in the Full Reveal Model
	Partial Reveal Schemes

	Lower Bounds: Full Reveal Model

