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Abstract. Current metrics for evaluating the performance of Bayesian
network structure learning includes order statistics of the data likelihood
of learned structures, the average data likelihood, and average conver-
gence time. In this work, we define a new metric that directly measures
a structure learning algorithm’s ability to correctly model causal asso-
ciations among variables in a data set. By treating membership in a
Markov Blanket as a retrieval problem, we use ROC analysis to compute
a structure learning algorithm’s efficacy in capturing causal associations
at varying strengths. Because our metric moves beyond error rate and
data-likelihood with a measurement of stability, this is a better char-
acterization of structure learning performance. Because the structure
learning problem is NP-hard, practical algorithms are either heuristic
or approximate. For this reason, an understanding of a structure learn-
ing algorithm’s stability and boundary value conditions is necessary. We
contribute to state of the art in the data-mining community with a new
tool for understanding the behavior of structure learning techniques.

1 Introduction

Bayesian networks are graphical models that compactly define a joint probabil-
ity over domain variables using information about conditional independencies
between variables. Key to the validity of a Bayesian Network is the Markov
Condition [II]. That is, a network that is faithful to a given distribution prop-
erly encodes its independence axioms. Inducing Bayesian networks from data
requires a scoring function and search over the space of network structures [10].
As a consequence of the Markov Condition, structure learning means identifying
a network that leaves behind few unmodeled influences among variables in the
modeled joint distribution.
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Fig. 1. Graphical representation for Bayesian Network

A Bayesian network takes form as a directed acyclic graph G = (V, E') where
the nodes V; € V represent the variables in a data-set and the directed edges
(Vi,V;) € E encode the causal relationship between V; and V;. Dependencies
among variables are modeled by a directed edge. As such, if edge (V;,V;) € E,
then V; depends causally upon V; or, similarly, V; is the parent of V; and V} is
the child of V;. The graphical model for a simple Bayesian network appears in
Figure[ll In this example, we have three nodes V;, V;, and Vj, where V} is causally
dependent upon V; and Vj. Causality is implied in edge directedness. Through its
network structure, a Bayesian network model encodes the independence axioms
of a joint distribution. Given a Bayesian network G = (V, E) we compute the
full joint distribution for variables V; € V' using the chain rule:

n

i=1

where pa; are the set of variables that are the parents of V;. By expressing the
joint distribution in terms of its conditionally independent factors, marginaliza-
tion and inference are made more tractable.

Inference in Bayesian networks is well known to be an NP-hard problem both
in the exact and approximate cases [2, [4]. Construction of Bayesian networks
structures from data is also an NP-hard problem. The major classes of techniques
for learning Baysian networks falls into two major categories. The first considers
network construction as a constraint satisfaction problem [T} [T4]. These meth-
ods compute independence statistics such as x? test, KL-divergence, or entropy
over variables and build networks that represent computed associations. The sec-
ond considers network construction as an optimization problem. These methods
search among candidate network structures for the optimum [3] 5] [15].

The search problem over Bayesian network structures is also an NP-hard prob-
lem. Heuristic approaches such as the K2 algorithm impose simplifying assump-
tions on the network in order to make learning and inference tractable [3]. In K2,
nodes are are assumed to have a causal ordering. That is, a node appears later in
an ordering than the nodes on which it depends. Additionally, the K2 algorithm
also bounds the number of parent dependencies a node may have. In the recent
K2G A approach, the author employs a genetic algorithm to perform stochastic
search simultaneously over the space of node orderings and network structures
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for an extension of the K2 algorithm. K2G A has been found to perform com-
petitively with respect to ground truth networks on benchmark data-sets [7].
Additional search techniques include greedy hill-climbing, simulated annealing
and Markov Chain Monte Carlo (MCMC) [6, [13]. Other approaches make the
problem more tractable by pruning the search space. For example, the sparse
candidate algorithm uses mutual information between variables to prune the
search space so that only a reduced set of potential parents are considered for
each variable [9]. Another approach that has enjoyed success performs greedy
search over equivalence classes of DAG patterns instead of the full DAG space
representation [IJ.

The experiments described in this paper grew out of the need to character-
ize the performance of an implementation of K2GA. This work goes beyond
measures of model fit and convergence time as typical in the Bayesian network
literature to include measurements of stability. While we use K2G A as the target
system for evaluation, our techniques are generally applicable to any Bayesian
network structure learning algorithm. In recent related work Shaughnessy and
Livingston introduce a method for evaluating the causal explanatory value of
structure learning algorithms [I2]. Their approach begins with randomly gen-
erated ground truth networks involving three-valued discrete variables. Next
they sample from them to produce small synthetic data-sets that are input to
a structure learning algorithm. Finally, precision-recall measures are made from
edge level statistics, such as false positive edge count, comparing the learned and
ground truth networks. While this method evaluates different types of causal
dependencies it cannot vary the strength of such dependencies and requires a
sufficient number of samples. Because K2G A is a stochastic algorithm, we set
out to test if initial conditions and noise in the data affect the structure learner’s
ability to correctly capture variable dependencies.

In the sections that follow, we begin with a high level description of the
stochastic algorithm K2GA. Then, we outline a method for testing how well the
Bayesian network has modeled dependencies among variables. In doing so, we
treat variable dependence as a retrieval problem and apply an ROC technique
for measuring performance stability. Lastly, we describe our experiments and
discuss results.

2 Structure Learning Using K2GA

K2G A makes use of an alternate Bayesian network representation that encodes
a DAG in terms of its undirected skeleton and the causal ordering of the nodes.
Let X ={Xi,...,Xn} be aset of variables, © = {O1,...,0x} be the ordering
of nodes (where ©; € [0,1]), and B be the adjacency matrix for the undirected
skeleton such that B;; = 1 if and only if X is related to X;. Skeleton, B, describes
the dependency between two variables while @ defines the edge directedness. For
example, in the situation where X is causally dependent on X;, we have B;; =1
and 6; < 0.
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Given the exponential space of DAGS, a number of simplifying assumptions
have been made to reduce the complexity of the search space to polynomial in
the number of nodes. These include causal ordering of variables that participate
in the model along with bounded in-degree between a node an its parents. The
topological ordering, <, of graph nodes {X7,..., Xy} is such that

\/Xj < X; — X € Ancestors(X;)
(]

Structure learning algorithms that assume the K2 heuristic search within a
family of DAGS possible from fixed causal orderings. Given topological ordering,
=, the set of all possible skeletons S = {By,..., B} is defined by the number
of unique skeletons( that can be defined from the upper triangle of 5. Given N-

N(N-—-1

. ) e . . . .
variables, |S| =2 2 . Since there are N! orderings, this results in substantial

reduction from a total of N! (2 NU\Q?D) possible DAG patterns. While a factorial

reduction in search space is significant, the issue of which ordering to search
remains. The K2GA algorithm performs simultaneous search of the space of
topological orderings and connectivity matrices. For more detailed descriptions
of K2G A, We direct the reader to the original work [7].

3 Markov Blanket Retrieval: An Efficacy Measure

By extending the definition of a document in information retrieval, verification
of a Bayesian network is treated as a retrieval problem where the information
need is the set of causal dependencies for a given variable. This corresponds to
the Markov blanket that most closely resembles the ground truth blanket for a
given node. In using a vector space approach and ranking, we allow for partial
similarity. This is particularly important for variables with weak dependence
relationship.

This approach differs from traditional methods for verification of Bayesian
networks in that we do not rely on samples from a hand constructed gold stan-
dard network for verification. Because such techniques rely on samples from the
specified network, a sufficient sample size is required. Moreover, for nontriv-
ial real-world problems, apriori knowledge of variable dependencies is difficult.
Consider a real world complex data-set such as manufacturing or supply chain
modeling scenario involving 100’s or 1,000’s of variables. It might be the case
that the Bayesian network structure learned from data is correct, but its per-
formance is discounted by a faulty hand constructed gold standard network. By
exercising precise control over variable dependence and measuring resulting per-
formance, we provide characterization of a Bayesian network learner’s modeling
stability using ROC analysis.

3.1 ROC Curves

More than just its raw performance numbers, an algorithm’s quality is also mea-
sured in terms of sensitivity and specificity. A predictor’s sensitivity measures
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the proportion of the cases picked out from a data set relative to the total num-
ber of cases that satisfy some test. Sensitivity is also called the true positive rate.
A predictor’s specificity measures its ability to pick out cases that do not satisfy
some test. Specificity is also called the true negative rate. A receiver operating
characteristic (ROC) curve is related to likelihood ratio tests in statistics and
expresses how the relationship between sensitivity and specificity changes with
system parameters [§].

In comparing Bayesian networks, we would like a single measure of predictive
quality. Area under the curve (AUC) is a non-parametric approach for measuring
predictive quality. AUC is simply the area under the ROC curve. This gives us
a standard means of comparing performance. AUC varies in the closed interval
(0,1) on the real number line and is interpreted as the rate of correct prediction.

As one could imagine, a good predictor is one that can correctly identify cases
in the data that actually have the phenomenon under test. This corresponds to
an AUC that is closer to 100%. AUC results are typically compared to the
random performance. In an example where true positive and false negative are
assumed equally likely, the ROC curve is a straight line with slope 45-degrees
and AUC of 50%. Any method that cannot outperform random performance is
not worth deployment.

For Bayesian network structures, in order to convert performance measures
into likelihood ratio tests for the purpose of ROC analysis, we must compare
structures learned from data with some notion of ground truth. This allows us
to define what it means to have a true positive or a true negative.

3.2 Markov Blanket

A Markov blanket of a node, A, is defined as A’s parents, children and spouses
(the parents of A’s children). The Markov blanket is the minimal set of nodes
that give A conditional independence.

P(A|MB(A), B) = P(A|MB(A))

That is, A is conditionally independent of any node B ¢ M B(A) given M B(A).
The Markov blanket gives complete description of the variables upon which A
depends. As depicted in Figure[2 these are the nodes that partition A from the
rest of the nodes in the network.

The Markov blanket is related to d-separation in that given the set Z = {Z; €
MB(A)} and C = {X — A— MB(A)} where X is the set of variables, it is the
case that A is d-separated from C' given M B(A). Thus, the Markov blanket
gives us the dependence relationship between a node and all other nodes in the
Bayesian network. We use this to test K2GA’s efficacy in correctly modeling
causal dependencies.

3.3 Ground Truth Causal Dependence

Controlling variable dependencies is accomplished by augmenting a data-set
with synthetic variables. We treat synthetic variables X, as queries. Because
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Fig. 2. A node and its Markov blanket

variables X1, ..., X are used to compute the synthetic variable, we know ground
truth that Xi,..., Xy are in X,,¢,,’s Markov blanket. A synthetic variable also
depends on a noise process € used to control the strength of dependence on
the ground truth parent variables. For strong dependence, the contribution to
Xpew by the noise process is dominated by Xi,..., Xi. For weak dependence,
the contribution to X,,¢,, by the ground truth parent variables is dominated by
the noise process. Using random variable A ~ Bernoulli(«) taking on values
a € {0,1} we select

Xy = {fw(Xl,...,Xk) ifa=1

€ o0.w.

where parameter « is defined in the closed interval (0, 1) on the real number line.
Thus, a regulates the strength of causal dependence. Regardless of the strength
of causal dependence, we know ground truth that {Xy,..., X3} C MBg(Xpew)-

The amount by which the synthetic variable depends on each of its ground
truth parents is determined by a vector of weights. Given k ground truth par-
ent variables, we have weight vector w =< w1, ..., w, > computed by uniform
sampling from the unit simplex in k-dimensions. That is the series of weights
from the set {< wy,...,wp > |wi +...+wy=1,0<=w; <=1,i=1,...,k}.
Given @-samples, this gives us representative coverage across the range of as-
sociations a dependent variable can have on k-parent variables. The dependent
variable takes on values drawn from the union of the domains of its parents. In
Figure B we list the values of the domain for three parents in rectangles along
the top row and domain values of the dependent variable in rectangles along the
bottom row. In this example, we have three parent variables whose domain sets
have values {v1, v2}, {vs, v4,v5}, and {vg, v7, vs, v9} respectively. The dependent
variable draws its values from the set {vi,...,v9} (Figure B]). This allows us
to interpret the weight vector as the relative proportion of cases for which the
value of the dependent variable is dictated by a given parent. An example of this
appears in Figure @l We list values for four cases by repeating the pair of rows
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parent 1 parent 2 parent 3

‘VI‘VZ‘ ‘v3‘v4‘v5‘ ‘v6‘v7‘v8‘v9‘

synthetic variable

‘VI‘VZ‘V3‘V4‘ v5‘v6‘v7‘v8‘ V9‘

Fig. 3. The domain of a synthetic variable
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Fig. 4. Illustration of synthetic variable causally dependent on parents

from Figure [3 once for each case. The values taken by the three parents and
the dependent variable are illustrated by shading in the appropriate positions in
each row.

As can be seen in Figure @l for the synthetic dependent variable, the first,
second, and third cases are causally dependent on the second parent while the
fourth is causally dependent on the third parent. These four example cases would
correspond to a weight vector of < 0.0,0.75,0.25 > with a = 1.0. For a < 1, we
incorporate a noise process € by selecting the dependent variable’s value from its
domain by sampling uniform at random for (1 —«) percent of the cases. We treat
Xpew's Markov blanket computed from Bayesian network B as a document. The
causal dependency set for each of the X; is also treated as a document. This
results in a collection of documents, one for X,,.,, and each X;.

3.4 The Retrieval Problem

A Markov blanket describes the complete set of dependencies for a given variable.
By definition, the Markov blanket is a subset of the variables over the modeling
domain. Let each variable, Xi,..., Xy (including X,.,) in a data-set be an
indexing term. A Markov blanket then becomes a simple document containing
a subset of indexing terms. Define weight w;; as the number of occurrences of
term-¢ in document j. For a Markov blanket, because a variable occurs at most
once, we have that w;; € {0,1}. Given d-variables, the Markov blanket M B(X})
for variable X; is compactly described by weight vector

MB(X]) =< Wij,...,Wq5 >
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A ranking function R(g;,d;) outputs a value along the real number line that
defines an ordering of documents in terms of their relevance to the given infor-
mation need. Define ranking function R:

S Wik

That is the proportion of the variables in the Markov blanket that satisfy the
query. With this definition, we rank the d Markov blankets in a Bayesian network
and select the Markov blanket document associated with the highest rank. The
top ranked Markov blanket corresponds to the variable dependencies that are
most relevant to the query. We then measure quality in modeling ground truth
variable dependences using ROC curves.

We expand a query for X, into known ground truth causal dependencies
in vector form and search for the most relevant document in the collection. In
our procedure, we create X,e, randomly. Given Bayesian network B learned
from a data set augmented with the synthetic variable, compute documents
d; = M Bp(X;). Define the f-blanket for X,ew, MBf(Xpew) = {X1,..., Xi}.
Given a query expansion, ¢;, the most relevant document, d,., is returned:

d, = argmax;R(d;, q;)

That is the document with the highest rank. This corresponds to the Markov
blanket in the learned network that most closely resembles the ground truth
f-blanket. In using a vector space approach and ranking, we allow for partial
similarity with a given query. This is particularly important for synthetic vari-
ables that are weakly dependent on their parents. By adding a set of synthetic
variables whose dependence on Xi,..., Xy varies in the number parent nodes
and strength of dependence, we can use the true positive and false positive rate
for retrieval to measure the Bayesian network’s ability to accurately model true
causal dependencies.

We call our approach Markov blanket retrieval (MBR). The algorithm for
MBR appears in Figure [l Input parameters to MBR are a data-set X depen-
dence strength «, and parent set size k. We begin by computing the number of
cases and variables in steps 1 and 2. Measurements are made for a fixed number
of @ queries (step 3). Each query consists of a synthetic variable whose k ground
truth parents are selected randomly (step 4). For each selected parent set, we
choose their dependence strengths by sampling from the unit simplex (step 5).
Before constructing the synthetic variable, we first create its domain set by tak-
ing the union of the domains of its k-parent set (step 6). Then, looping over each
of the N cases (step 7) we compute the value, 2; ney Of the synthetic variable
using the mixture weights and the dependence strength a (step 8,9,10). This
gives us a new column of data corresponding to the synthetic variable V,,¢,,. The
augmented data-set X’ is then constructed by including the column of values,
Xnew, for the synthetic variable among the columns {X7,..., X1} of the orig-
inal data set (step 11). We run structure learning on the augmented data set
and obtain a Bayesian network B (step 12). For each variable in the augmented
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MARKOV-BLANKET-RETRIEVAL (k, ar, X)
1 N« |X]
2 L « num-variables(X)
3 forqg—1toQ
4 do sample {V1,...,V,} €X

5 sample < wi,...,wy > from simplex
6 domain(Vpew) = Ule domain(Vj)
7 for i +—1to N
8 do sample A ~ Bernoulli(«)
9 if a = 1 then z; new «— f(xi,1,..., %) //using mixture weights
10 else i new «— €
11 X' ={X1,..., X0, Xnew} //augment data-set
12 B « learn-structure(X")
13 fori—1to L+1
14 do
15 d; = compute-document (M B (X;))
16 g = compute-document(M By ound—truth(Xnew))

17 dr = argmax, R(di, q)
18 record ROC data

Fig. 5. algorithm for Markov blanket retrieval analysis of structure learner

data-set, we obtain the Markov blanked computed by the structure learner and
compute a document (steps 13, 14, and 15). Given the ground truth Markov
blanket for the synthetic variable, we expand it into a query (step 16). We then
rank Markov blanket documents from step 14 and return the highest ranking
document (step 17). We then record whether or not our result is a true positive,
true negative, false positive or false negative and continue to the next query
iteration (step 18).

4 Experiments

Our experimental goal was to uncover how K2GA’s ability to model causal de-
pendence changed as we varied the genetic algorithm’s population size and num-
ber of generations across data-sets of different complexities. We ran experiments
using three data-sets from the UCI machine learning repository. We selected
one nominal (z0o), one mixed nominal-integer (lymphoma), and one real valued
(sonar) data set for experiments in order to have representation across different
types of data-sets. We rank data-sets by their complexity defined in terms of the
number of variables and the number of instances (Table [I).

In our ranking, we include the class label in our variable counts. Since op-
timization based approaches such as K2GA bound the maximum in-degree of
nodes in the Bayesian network, it is important demonstrate how in-degree for
causal dependence affects performance. This means measuring performance as
more parents nodes are recruited. We tested variable dependence by running
experiments for f-blankets of size 1,2, and 3.
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Table 1. Data set complexities

rank data-set number of variables number of instances

1 200 17 101
2 lymphoma 19 148
3 sonar 61 208

zo0-roc-nchoosel zoo-roc-nchoosed

true positive rate
true positive rate

0 02 0.4 06 08 1 0 02 04 06 08 1
false positive rate false positive rate

(a) 1 parent (b) 3 parents

Fig.6. ROC curve for zoo data-set with various parental causal dependencies for
K2GA at 50 generations and population size 10

lymph-roc-nchoose lymph-roc-nchoose3d

true positive rate
true positive rate

0 02 0.4 06 08 1 0 02 04 06 08 1
false positive rate false positive rate

(a) 1 parent (b) 3 parents

Fig.7. ROC curve for lymphoma data-set with various parental causal dependencies
for K2GA at 50 generations and population size 10

A positive test instance is a synthetic variable for which a true causal de-
pendency exists and a negative is a synthetic variable for which a dependence
does not exist. We generated synthetic variables with 50% priors over positive
instances. For the remaining 50%, we set thresholds for strength of causal de-
pendence in regular increments for a = 0.0,0.1,...,1.0. Across all settings of «
the expected generation rate for positive instances is 0.5 + Zi{io.o 0.5 = 0.75.
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true positive rate
° °
= 5
= >

0 02 0.4 06 08 1 0 02 04 06 08 1
false positive rate false positive rate

(a) 1 parent (b) 3 parents

Fig. 8. ROC curve for sonar data-set with various parental causal dependencies for
K2GA at 50 generations and population size 10

200-Toc-nchoosel zoo-roc-nchoosed

§ 0 Bl § osf
2 2

g

Q Q

2 oaf B 2 oap

0 02 04 06 08 1 0 02 04 06 08 1
false positive rate false postve rate

(a) 1 parent (b) 3 parents

Fig.9. ROC curve for zoo data-set with various parental causal dependencies for
K2GA at 100 generations and population size 20

An augmented data-set has d + 1 variables where d variables are from the orig-
inal data-set, and the d + 1-th is the synthetic variable. Since a random ap-
proach must guess uniform at random which of the d + 1 Markov blanket doc-
uments matches the query, the probability of picking out the true positive is
i1 (054 S50 4 0.50). Using the trapezoidal rule, we compute AUC for ran-
dom performance as 0.5000.

K2GA performs optimization by stochastic search. K2GA is a genetic algo-
rithm in which Bayesian network structure candidates are members of a pop-
ulation. Thus, the population size for K2G'A controls the number of frontiers
along which stochastic search in the space of network structures is performed.
The number of generations controls the number of optimization rounds for which
search proceeds. We ran two versions of K2GA differing in population size and
number of generations, one at 50 generations and population size of 10 and
another at 100 generations and population size of 20. We refer to these as
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lymph-roc-nchoose lymph-roc-nchoose3d

06| \//\\/ 06/\VM
04t 04}

0 02 0.4 06 08 1 0 02 04 06 08 1
false positive rate false positive rate

(a) 1 parent (b) 3 parents

true positive rate
true positive rate

Fig.10. ROC curve for lymphoma data-set with various parental causal dependencies
for K2GA at 100 generations and population size 20

sonar-roc-nchoose sonar-roc-nchoose3

£ 08 Bl § oer
2 H
g g
Q Q
2 oap B 2 oap

0 02 04 06 08 1 0 02 04 06 08 1
false positive rate false postve rate

(a) 1 parent (b) 3 parents

Fig.11. ROC curve for sonar data-set with various parental causal dependencies for
K2GA at 100 generations and population size 20

K2GA-small and K2GA-large. We ran experiments for 100 queries for each set-
ting of causal dependence strength using 5 fold cross validation on 10 random
initializations of K2GA. Because validation is done directly on the resulting
structure and not on the test set, we did not use the test set from each fold. We
did this in order to train similarly to approaches that validate by partitioning
data into training and testing sets.

This resulted in 5000 queries for each setting of « representing a total of
55,000 total queries per experiment. ROC curves for f-blanket sizes 1 and 3
appear in Figure [ [ B @ [0 M1 In each of our results, there was a dramatic
decrease in the true positive rate once the false positive rate reached between
0.4 and 0.5. We compare K2GA-small with K2GA-large by their AUC scores
(Table Bl). We group the results of K2GA-small and K2GA-large and indicate
the better performer in bold typeface.
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Table 2. AUC scores for Markov-Blanket Retrieval

data-set K2GA setting f-blanket size AUC for MBR AUC for random

zoo  50-gen 10-pop 1 0.5802 0.5000
zoo  100-gen 20-pop 1 0.5482 0.5000
zoo  50-gen 10-pop 2 0.6338 0.5000
zoo  100-gen 20-pop 2 0.6023 0.5000
zoo  H0-gen 10-pop 3 0.6359 0.5000
zoo  100-gen 20-pop 3 0.5927 0.5000
lymph 50-gen 10-pop 1 0.5653 0.5000
lymph 100-gen 20-pop 1 0.5737 0.5000
lymph 50-gen 10-pop 2 0.6305 0.5000
lymph 100-gen 20-pop 2 0.6174 0.5000
lymph 50-gen 10-pop 3 0.6205 0.5000
lymph 100-gen 20-pop 3 0.6529 0.5000
sonar 50-gen 10-pop 1 0.6356 0.5000
sonar 100-gen 20-pop 1 0.6709 0.5000
sonar 50-gen 10-pop 2 0.6280 0.5000
sonar 100-gen 20-pop 2 0.6640 0.5000
sonar 50-gen 10-pop 3 0.6652 0.5000
sonar 100-gen 20-pop 3 0.6186 0.5000

We found that if the data-set contained a smaller number of variables as is
the case with the zoo data-set (complexity rank 1), as we increase the number
of parents upon which a variable can causally depend, K2GA-small consistently
had higher AUC. A Bayesian network with larger node in-degree is a more com-
plex model. Building more complex models require a larger number of training
examples. The zoo data-set contains relatively few instances. Since K2GA-large
searches twice as many frontiers for twice as many optimization rounds, it tends
to over-fit the data. Therefore, its performance is worse on our simplest data-set
as the f-blanket size increases. On the lymphoma data-set, we see a modest
increase in the number of variables and 40% increase in number of instances.
K2GA-large turns in its largest favorable difference in performance over K2GA-
small when the f-blanket is 3. This coincides with K2GA-large’s ability to search
more complex models.

For the sonar data-set (rank 3) , we find K2GA-large turns in a higher AUC for
f-blanket sizes 1 and 2. The sonar data-set has 3x more variables. By searching
twice as many frontiers for twice as many optimization rounds, K2GA-large
is more able to consistently and stably (higher AUC) model causal linkages
in complex data. When the f-blanket increases to 3, the number of instances
becomes insufficient. Consider 2 Markov blankets each containing a child node
with 3 parent nodes. Building network involves evaluating conditional probability
tables. If each variable assumes only 2 states, we find the conditional probability
table (CPT) for the child node has 2* entries. Across 2 Markov blankets, we
have (2%)? = 256 unique configurations. Estimating the CPTs for this example
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requires more than 208 instances. Because K2GA-small involves fewer frontiers
and optimization rounds, it effectively builds lower complexity models. This
gives us advantage when there are too few examples because it helps against
over-fitting by early stopping. As we can see K2GA-small turns in a higher AUC
than K2GA-large when the f-blanket is 3.

5 Discussion

We have presented a new tool for measuring the efficacy of structure learn-
ing algorithms in finding causal dependencies that exist within data. By treat-
ing membership in a Markov blanket as a retrieval problem and controlling for
ground truth causal dependencies, we are able to borrow sound principles of ROC
analysis to evaluate the structure learner’s performance. Our measurements go
beyond error by measuring stability across a range of dependence strengths using
AUC. Our method measures structure learning efficacy directly from the learned
structures themselves without use of a gold standard network. We have found
from our experiments that Markov Blanket Retrieval (MBR) lends insight into
parameter tuning and stability of a structure learning algorithm and feel it is a
valuable tool for the data-mining community.

The goal for reported experiments was the development of a tool for compar-
ing the performance of different parameterizations of a structure learner under
varying dependence strengths. In complex real-world data-sets, some of the vari-
ables are correlated. Future investigation will include measurements for the effect
of correlation between parent variables on modeling efficacy. We are encouraged
by results for our measure on K2GA. A logical next step is to investigate MBR’s
utility in making fair comparison between different structure learning techniques.
We represented Markov blankets using vector space and ranked documents based
on a normalized inner product. This approach allowed us to observe the pro-
portion of variables in the augmented data-set that matched the ground truth
f-blanket. In future experiments we will extend our ranking approach to include
measurement of graph properties as well as other distance measures.
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