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Abstract. The reconstruction of evolutionary trees is a major problem in biol-
ogy, and many evolutionary trees are estimated using heuristics for the NP-hard
optimization problem Maximum Parsimony. The current heuristics for searching
through tree space use a particular technique, called “tree-bisection and reconnec-
tion”, or TBR, to transform one tree into another tree; other less-frequently used
transformations, such as SPR and NNI, are special cases of TBR. In this paper, we
describe a new tree-rearrangement operation which we call the p-ECR move, for
p-Edge-Contract-and-Refine. Our results include an efficient algorithm for com-
puting the best 2-ECR neighbors of a given tree, based upon a simple data struc-
ture which also allows us to efficiently calculate the best neighbors under NNI,
SPR, and TBR operations (as well as efficiently running the greedy sequence ad-
dition technique for maximum parsimony). More significantly, we show that the
2-ECR neighborhood of a given tree is incomparable to the neighborhood defined
by TBR, and properly contains all trees within two NNI moves. Hence, the use
of the 2-ECR move, in conjunction with TBR and/or NNI moves, may be a more
effective technique for exploring tree space than TBR alone.

1 Introduction

The Maximum Parsimony Problem, also called the Hamming Distance Steiner Tree
Problem, is one of the main optimization problems in phylogenetic analysis. Because
it is NP-hard [5], heuristics are used to analyze datasets. Most of the favored heuristics
operate by hill-climbing through tree space where each move changes a tree using some
specific transformation, and then scores the new tree, and the search terminates when
no allowed move improves the score. Transformations that are used in standard hill-
climbing procedures are NNI, SPR, and TBR, with NNI being a special case of SPR,
and SPR being a special case of TBR; thus, TBR searches are the most exhaustive,
and also the most preferred [15]. Even TBR searches, however, can get caught in local
optima (that is, trees that have no neighbors under TBR moves which are better and yet
are not globally optimal)

The main result in this paper is a mathematical analysis of a new transformation,
which we call p-edge-contract-and-refine, or p-ECR. This transformation is similar to
other techniques described in other papers [2,9], and has a similar motivation; what is
new here is the mathematical analysis. We provide a fast algorithm for computing the
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optimal 2-ECR neighbors of a given tree, and show that the number of 2-ECR neighbors
that are also TBR neighbors is small, namely O(n), where n is the number of leaves.
In contrast, we show that the size of the 2-ECR neighborhood is itself Θ(n2), and it
has been shown that the TBR neighborhood could be Θ(n3). Our other main result is a
simple algorithm, called Three-Way-Labels, which can be used to speed-up exhaustive
search for optimal neighbors under these and other transformations on trees. See Section
7 for pointers to related work on these problems.

The rest of the paper is organized as follows. In Section 2 we describe the Maxi-
mum Parsimony problem, and describe an algorithm to compute the parsimony score
of a given tree. In Section 3, we define the NNI, SPR and TBR moves and present
some known properties about the neighborhoods induced by these moves. In Section 4,
we describe the p-ECR move, and compare the neighborhoods defined by the 2-ECR,
TBR, and NNI operations. In Section 5, we formally define the problem of finding the
best neighbor under the p-ECR move and describe a general algorithmic technique that
we use to obtain a fast algorithm for the optimal neighbor problem under the 2-ECR
move. In Section 6 we describe how our general technique can be used to obtain fast
algorithms for the optimal neighbor problem under NNI, SPR and TBR moves, and also
for computing the Greedy Sequence Addition algorithm for maximum parsimony. We
conclude with Section 7 where discuss related work.

2 Basics

2.1 The Maximum Parsimony Problem

The input to the Maximum Parsimony problem is a collection S of n strings of the same
length k over a given alphabet, Σ; these are the “given” nodes. The Steiner nodes (i.e.,
the nodes which can be used to connect the given nodes together) are drawn from Σk,
i.e., all strings of length k over Σ. The objective is a tree T , with the given nodes at the
leaves, and internal nodes from Σk, which minimizes the sum of the Hamming distances
on the edges, where the Hamming distance on an edge e = (x,y), denoted H(x,y), is the
number of positions in which x and y differ. Informally, this quantity is the minimum
number of changes (via point mutations) needed to explain the evolution of the dataset
from a common ancestor. We formalize this as follows.

Definition 1. Parsimony score of a tree
Let S be a set of sequences of length k over the alphabet Σ. Let T be a bi-

nary tree with leaf set S, and let f be an assignment of sequences to the internal
nodes of T . The score of T under the assignment f , denoted score(T, f ) equals
∑(u,v)∈E(T ) H( f (u), f (v)). The parsimony score of T , denoted by pscore(T ), is the
minimum score(T, f ) over all possible assignments f .

We now define the Maximum Parsimony (MP) problem.

Definition 2. The Maximum Parsimony Problem

Input: Set S of sequences of length k over an alphabet Σ.
Output: A binary tree T whose leaves are bijectively labeled with sequences in S,

such that the parsimony score of T , pscore(T ), is minimum.
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2.2 Computing the Maximum Parsimony Score of a Fixed Tree

Although finding the most parsimonious tree is NP-hard, we can find the optimal la-
beling of the internal nodes of a given tree in polynomial time. The standard algorithm
for this problem, by Fitch [6], is the basis of our Three-Way-Labels algorithm, and so is
included here.

The input to the fixed-tree maximum parsimony problem is a set S of n strings over
a fixed alphabet Σ; for the typical cases, Σ is either the set of four nucleotides, or the
set of amino-acid sequences, and thus is quite small. The elements of Σ are called the
“states”. We make the typical assumption that the sequences are already aligned, so that
all sequences have the same length k. The positions within the sequences are sometimes
called “sites.”

The algorithm operates as follows. First, the tree is rooted (arbitrarily), either at a
leaf, or by subdividing an edge e and rooting the tree at the newly introduced node. The
cost of the tree (also called its “length”) is then computed using dynamic programming.
The algorithm is usually described as having two phases, where the first phase computes
the length of the tree as well as a representation of candidate labels (strings over Σk that
would produce optimal scores) for the root of each subtree of the tree; the second phase
then actually produces a specific labeling for each node achieving the optimal score.
We are primarily interested in the first phase, which we modify for use in our Three-
Way Labels algorithm. However, the whole algorithm is of general interest, and so we
provide it here.

Note that each position within the strings can be handled separately, so it suffices to
describe the fixed-tree maximum parsimony algorithm as though there were only one
position to consider. Since we have rooted T (arbitrarily), for every internal node v in
T , we can define the rooted subtree Tv, and also the children of v. We let Statesv denote
the set of state assignments for the node v (i.e., elements from Σ) which are part of an
optimal assignment of states to all nodes in Tv so as to minimize the total parsimony
score in Tv. We assume that T is binary, and that v’s children are x and y (the algorithm
can be applied more generally, however), and we similarly define Statesx and Statesy.
Then, the following equality holds (see [6]):

v is a leaf : Statesv = {state of v}
v has two children x, y : Statesv =

{
Statesx ∩Statesy if Statesx ∩Statesy �= /0
Statesx ∪Statesy otherwise

This allows us to compute Statesv for every node v in T , from the bottom up. The
optimal cost, i.e. the parsimony score, of T can also be calculated from the bottom-up
at the same time: every time Statesx ∩ Statesy = /0 we increment the parsimony score
of the tree by one. (Since we perform this computation for each site – i.e., position –
independently, the sum of these values over all the sites is the parsimony score of the
tree.)

In the second phase, we obtain the labeling on the internal nodes using a pre-order
traversal. Once again, we can handle the positions (sites) independently. For the root r
arbitrarily assign the state for r to be any element of Statesr. Then visit the remaining
nodes in turn, every time assigning a state to the node v from its set Statesv. When we
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visit a node v we will have already set the state of its parent, u. If the selected state
for u is an element of Statesv, then we use the same state; otherwise we pick a state
arbitrarily from Statesv.

This algorithm takes O(nrk) time to compute the labeling of every node in T and
the optimal length (i.e., maximum parsimony cost) of T , where r = |Σ|, n = |S|, and k
is the sequence length.

3 Hill-Climbing Heuristics for MP Analysis

The general structure of a heuristic search is as follows:

– First, an initial tree (or set of trees) is obtained, typically using the Greedy Sequence
Addition method (see Section 6.2).

– Then, for each tree in the initial set, a search is initiated in which the given tree
is modified (using a transformation that modifies trees), and the new tree is then
scored. This process is repeated until a local optimum is found – that is, a tree
which has no neighbor that has a better score.

– Finally, of all the local optima found, the set of trees that have the best MP score,
or a “consensus” of these trees is returned; sometimes, sub-optimal trees are also
returned.

Note that since MP is NP-hard, a local optimum need not be globally optimal, and
in general this scheme will not return optimal trees in polynomial time.

We now describe three currently used tree-rearrangement operations and present
some properties of the neighborhood induced around a tree by each of the three opera-
tions. Our definitions closely follow those in [1].

Nearest Neighbor Interchange (NNI) The NNI move swaps one rooted subtree on one
side of an internal edge e with another on the other side; note that this is equivalent to
contracting the edge e, and then resolving the resultant tree into a new binary tree. See
Figure 1 for an example of this procedure.

A

B

C

D

T

A

C

NNINNI

A

D

B

C

B

D

T’T’’

ee
e

Fig. 1. Tree T can be transformed into either T ′ or T ′′ with one NNI move

Subtree Prune and Regraft (SPR) An SPR move on a tree T is defined as cutting any
edge and thereby pruning a subtree, t, and then regrafting the subtree by the same cut
edge to a new vertex obtained by subdividing a pre-existing edge in T − t. Any internal
node that might arise that has degree two is suppressed in the resulting tree.
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Fig. 2. Tree T ′ is one SPR move away from T , while T ′′ is one TBR move away.

Tree Bisection and Reconnection (TBR) In a TBR move an edge is removed from T ,
creating subtrees t and T − t, and then a new edge is added between the midpoints of
any two edges in t and T − t, creating a new tree. Again, throughout the operation any
internal node of degree two is suppressed. The last two operations are illustrated in
Figure 2.

Each of the tree rearrangement operations described above naturally induces a dis-
tance metric in the space of trees. For instance, the NNI distance between two trees is
defined as the minimum number of NNI moves required to transform one tree to an-
other. The metrics induced by NNI, SPR and TBR moves have been discussed in [1].
We will denote the NNI metric by δNNI , the SPR metric by δSPR, and the TBR metric
by δT BR. Note that every NNI move is an SPR move, and that every SPR move is a TBR
move. Hence we have the following result:

Observation 1 (From [12]) For any two unrooted leaf-labeled binary trees T and T ′
on the same set of leaves,

δT BR(T,T ′) ≤ δSPR(T,T ′) ≤ δNNI(T,T ′).

It is known that all of these distances are finite (Robinson showed this for the NNI
distance in [14]).

Note that TBR searches explore a superset of trees, compared to both SPR and
NNI, which is desirable. However, TBR searches are also more expensive, since there
are more trees that are TBR neighbors of a given tree.

Induced neighborhoods We define the neighborhood of an unrooted binary leaf-labeled
tree T under a tree-rearrangement move to be the set of all trees that can be obtained
from T by one move. The following theorem, about the neighborhoods induced by NNI,
SPR and TBR moves, is from [1].

Theorem 1. [1] The size of the neighborhood for T is:

1. 2n−6 for the NNI operation,
2. 2(n−3)(2n−7) for the SPR operation,
3. at most (2n−3)(n−3)2, and dependent on the topology of T for the TBR operation.

See [10,1,4] for results related to computing the distance between trees under these
metrics, and [11,1] for results related to the maximum pairwise distance between trees
under these metrics.
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4 The p-ECR Operation

In this section we describe the p-edge-contract-and-refine (p-ECR) move, and we com-
pare neighborhoods defined by the 2-ECR, TBR, and NNI operations. Our main results
are Lemma 3 and Theorem 2, which show that for any tree T , (1) the size of the 2-ECR
neighborhood is Θ(n2), but that (2) there are at most O(n) trees that are in both the
2-ECR neighborhood and the TBR neighborhood of T . We also show that the 2-ECR
neighborhood strictly contains all trees within two NNI moves from T .

The p-ECR move is a generalization of the NNI move in the following sense: Since
an NNI move can also be viewed as an edge contraction followed by a refinement at
the newly created unresolved node, we can generalize NNI by contracting p edges all
at once, creating unresolved nodes in the process, and then refining these unresolved
nodes give back a binary tree. Note that this process is not, in general, equivalent to
contracting and refining each of the p edges in succession. Indeed, in Figure 3 we give
an example of two trees T and T ′ such that δp−ECR(T,T ′) = 1, but δNNI(T,T ′) > p.

Since NNI is the same as 1-ECR, it follows from [14] that δp−ECR(T,T ′) is finite
for all pairs of binary trees on the same leaf set (i.e, we can go from any tree to any
other tree through a sequence of p-ECR moves).

e

a b d

c

a

b
c

2−edge contraction refinement

T3

e

d

T1 T2

a

b c

d

e

Fig. 3. A 2-ECR move. The dashed edges in T1 are contracted to give T2, and then T2
is fully refined to give T3. Note that δNNI(T 1,T3) = 3, although δ2−ECR(T 1,T 3) = 1.

4.1 Comparing p-ECR with TBR

In this section we show that the number of 2-ECR neighbors of a tree on n leaves is
Ω(n2), and that the number of 2-ECR neighbors that are also TBR neighbors is only
O(n).

We now define some concepts that will be necessary for our analyses. Every edge in
a binary leaf-labeled tree T induces a bipartition of the set of leaves. Let the bipartition
induced by an edge e be πe. Then the set C(T ) = {πe|e ∈ E(T )} uniquely defines the
tree T (see [3,17]). In the subsequent discussion all trees will be assumed to be binary,
leaf-labelled trees.

Definition 3. Robinson-Foulds distance [13].
The Robinson-Foulds (RF) distance between two binary leaf-labeled trees T and T ′

is defined to be |(C(T )∆C(T ′)|, i.e, |C(T )−C(T ′)| + |C(T ′)−C(T )|.
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Neither contraction nor refinement of a set of edges alters bipartitions induced by
other edges in a tree, and hence we have the following:

Observation 2 Let T and T ′ be two binary leaf-labeled trees. Then, for any 1 ≤ p ≤
n−3, δp−ECR(T,T ′) = 1 =⇒ RF(T,T ′) ≤ 2p.

We now define the Maximum Agreement Forest [10] between two binary leaf-
labeled trees.

Let F = {t1, t2, . . . ,tm} be a forest of m trees that results from deleting m−1 edges
from a tree T . Let F ′ be a forest of m trees obtained similarly from T ′. F (or F ′) is said
to be an agreement forest for T and T ′ iff F = F ′. A maximum agreement forest (MAF)
for T and T ′ is an agreement forest with the minimum number of trees.

Lemma 1. (From [1]) Let T and T ′ be two binary leaf-labeled trees. Let F be a maxi-
mum agreement forest for T and T ′. Then δT BR(T,T ′) = |F |−1.

We now show that for every and n and every 1 < p < n− 3 there are trees whose
p-ECR distance is less than their TBR distance, and vice versa.

Lemma 2. The following is true for every natural number n and every natural number
p < n−3:

1. ∃T, T ′ s.t δT BR(T,T ′) < δp−ECR(T,T ′).
2. ∃T, T ′ s.t δp−ECR(T,T ′) = 1 and δT BR(T,T ′) ∈ Ω(p).

Due to space requirements, we omit the proof; however, see Figure 4 for a pair of
trees satisfying the first condition, and Figure 5 for a pair of trees satisfying the second
condition.

. . . . . . . . 
11

2 3 4 5 n−2

n

n−1

n

n−2n−1 n−332

T T’

Fig. 4. δT BR(T,T ′) = 1 but RF(T,T ′) = 2n−6.

. . . . 
a

b

d

21 p p+1 c

T

c

d

b 2 1 4 3 pp+1

T’

p−2
. .

a

Fig. 5. |MAF(T,T ′)| ∈ Ω(p) but δp−ECR(T,T ′) = 1.

We now prove some results about the neighborhood induced around a tree by the 2-
ECR operation, and in particular we show that the neighborhood of a tree induced by the
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2-ECR operation is very different from the one induced by the TBR operation. We will
denote the 2-ECR neighborhood of a tree T as N2−ECR(T ), and the TBR neighborhood
as NT BR(T ).

Lemma 3. For any binary leaf-labeled tree T , |N2−ECR(T )| ∈ Θ(n2).

Proof. Omitted due to space constraints.

We now prove that most of the trees in N2−ECR(T ) are not in NT BR(T ).

Theorem 2. For a binary leaf-labeled tree T , |N2−ECR(T )∩NT BR(T )| ∈ O(n).

Proof. Let X(T ) = N2−ECR(T )−NNNI(T ). Note then that each tree T ′ ∈ X(T ) can be
obtained by contracting two edges e1 and e2 in T , and then refining the resultant tree.
Consider the set S of all trees T ′ in X(T ) such that the corresponding contracted edges
e1 and e2 are separated in T by at least two edges. Note that there are only Θ(n) pairs
of edges in T that are either adjacent, or separated by exactly one edge. Consequently,
it follows that |N2−ECR −S| ∈ O(n).

We now show that S∩NT BR(T ) = /0. Suppose to the contrary that there is a tree
T ′ ∈ S∩NT BR(T ). Note that RF(T,T ′) = 4, since C(T )−C(T ′) = {πe1 ,πe2}, where
C(T ) is the set of bipartitions in T , and e1 and e2 are those two edges through whose
contraction (and subsequent refinement) T ′ was obtained from T .

However, T and T ′ are one TBR move apart. Hence, it can be shown that if
{πe1 ,πe2} ⊆C(T )−C(T ′), then the bipartitions induced by all edges (except, possibly,
the edge that was broken in the TBR move) in the path in T between e1 and e2 are
in C(T )−C(T ′). Now, since e1 and e2 are separated by at least two edges, the set
C(T )−C(T ′) must contain at least one more bipartition, which is a contradiction. This
completes our proof.

5 Computing Optimal 2-ECR Neighbors

In this section we consider the problem of finding an optimal neighbor under the p-ECR
tree-rearrangement operation, and present a fast algorithm for solving the problem. The
technique that we use to obtain the fast algorithm is general and can be used to obtain
fast algorithms for the optimal neighbor problem under the NNI, SPR and TBR moves
as well. We now define the Optimal 2-ECR Neighbor problem.

Definition 4. Optimal 2-ECR Neighbors

Input An unrooted binary tree T on n leaves, each bijectively leaf-labeled by a set S
of sequences of length k over an alphabet of size r.

Output: An unrooted binary tree T ′ on n leaves, each bijectively labelled by the same
set S, such that T ′ has the minimum MP score among all such trees t for which
δ2−ECR(T,t) = 1.
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Henceforth, we will call such a tree an optimal 2-ECR-neighbor of T . The Optimal
TBR-neighbor, Optimal SPR-neighbor and Optimal NNI-neighbor problems are
defined similarly. Note also that there can be more than one optimal neighbor, and that
in general the objective is to find all optimal solutions.

At the outset we observe that a brute-force algorithm for the above problem would
take Θ(n3rk) time, since there are Θ(n2) 2-ECR neighbors for any tree, and computing
the parsimony score of each tree using Fitch’s algorithm would take Θ(nrk) time. We
will obtain a Θ(n2rk) time algorithm for the Optimal 2-ECR problem which will return
all the optimal neighbors.

As was observed in Section 4, an NNI move can be thought of as a 1-ECR move.
So, not surprisingly, we use a fast algorithm for computing optimal NNI-neighbors
in our algorithm for computing optimal 2-ECR-neighbors. A brute-force optimal NNI
neighbors algorithm would run in Θ(n2rk) time, but our algorithm runs in Θ(nrk) time.

5.1 An O(nrk) Algorithm for the Optimal NNI Neighbor Problem

The way we obtain a speed-up over the brute-force techniques for each of the problems
we address is by performing a preprocessing step in which we assign three labels to
each node in the tree.

In order to understand why we do this preprocessing step, consider an NNI move
across an edge, say (u,v), in a given tree T . Let W and X be the rooted subtrees below
u, and let Y and Z be the rooted subtrees below v. The NNI move will, e.g, involve
swapping W with Y . Let the resulting tree be T ′. Supposing that we have the parsimony
scores and optimal state assignments for the rooted subtrees W , X , Y and Z, the parsi-
mony score of T ′ can be computed in Θ(rk) time, thus: we can subdivide edge (u,v)
and root T ′ at the newly created node, which we shall call x. This produces a binary tree
rooted at x, with subtrees off x rooted at u and v. The parsimony score of the subtree of
T ′ rooted at u depends just on the parsimony scores and optimal state assignments of
X and Y , and can be computed from them in Θ(rk) time, as in Fitch’s algorithm. Sim-
ilarly, the parsimony score of the subtree of T ′ rooted at v can be computed in Θ(rk)
time. Finally, the parsimony score of T ′ (rooted at x) can be computed in O(rk) time
from the parsimony scores and optimal state assignments of the subtrees rooted at u and
v.

The above observations suggest that a preprocessing stage that computes the parsi-
mony score and the optimal state assignments for every rooted subtree will let us com-
pute the parsimony score of each NNI neighbor in Θ(rk) time. The brute-force way of
performing this preprocessing step would take Θ(n2rk) time, but we will next see how
to perform this preprocessing stage in Θ(nrk) time. We will call the preprocessing step
the Three-Way Labels algorithm since it would assign three optimal state-assignment
labels to each internal node.

5.2 Three-Way Labels: The Dynamic Programming Algorithm

In a tree T , consider an internal node v with three neighbors a, b and c, as in Figure
6. The node v is the root of three rooted subtrees, one where a and b are its children
(tree(v,a,b) in the figure), one where a and c are its children (tree(v,a,c)) and one
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where b and c are its children (tree(v,b,c)). The preprocessing step would involve as-
signing three labels (optimal state assignments) for each such internal node v - namely
the optimal state assignments at the roots of tree(v,a,b), tree(v,b,c) and tree(v,a,c).

The parsimony score and the optimal state assignment of, for example, tree(v,a,b)
can be computed from the parsimony score and optimal state assignments of the sub-
trees rooted at a and b. Note that the subtrees of tree(v,a,b) rooted at a and b have fewer
leaves than tree(v,a,b). This suggests the following dynamic programming algorithm:

Bucket sort the rooted subtrees in T by the number of leaves in the subtree in O(n)
time. For subtrees that contain just a single leaf, the label is just the sequence at the
leaf. For subtrees such as tree(v,a,b), the label is computed by in the usual way: for
a given site, if the corresponding sets at a and b are disjoint we take the union of the
sets, and otherwise we take the intersection. Note the when we compute the label at v
corresponding to tree(v,a,b), the necessary labels at a and b are already available since
the subtrees rooted a and b are smaller. There are O(n) rooted trees like tree(v,a,b), and
for each of them the optimal state assignment at the root can be computed in Θ(rk) time
using the dynamic programming technique. Also, the parsimony score of the rooted
subtrees can be computed along side their optimal state assignments.

Therefore, we have the following:

Lemma 4. The Three-Way Labels algorithm takes O(nrk) time, where n is the number
of leaves in the tree T , and each leaf is labeled by a sequence of length k over an
alphabet of size r.

v v v

a

b c

vv

ba a c b c

tree(v, a, b) tree(v, a, c) tree(v, b, c)

Fig. 6. Internal node v and the three subtrees associated with it.

As we saw in the previous section, the preprocessing stage would let us compute
the parsimony score of each NNI-neighbor in Θ(rk) time. Since there are 2n−6 NNI-
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neighbors, the optimal NNI neighbors can be identified in Θ(nrk) time after the prepro-
cessing step. To summarize,

Theorem 3. We can solve the Optimal NNI-Neighbors Problem in Θ(nrk) time.

5.3 Computing an Optimal 2-ECR Neighbor

We now show how to compute an optimal 2-ECR neighbor of an unrooted binary tree
on n labeled leaves, each labeled by a sequence of length k over an alphabet of size r,
in Θ(n2rk) time, thus spending only Θ(rk) time per neighbor.

A 2-ECR move on a tree T is specified by the two edges e1 and e2 to be contracted,
and the refinement of the resulting contracted tree into an unrooted binary tree that
differs from T .

Our algorithm will handle the following two cases separately.

1. The edges e1 and e2 are not adjacent to each other.
2. The edges e1 and e2 are adjacent to each other.

We now show how to handle case (1). We first state a lemma that in this case any
2-ECR move can be “simulated” by two successive NNI moves. We omit the proof
because of space limitations.

Lemma 5. Let T be an unrooted leaf-labeled tree and let T ′ be a 2-ECR neighbor of T
such that the 2-ECR move involves the contraction and refinement of two non-adjacent
edges in T . Then T ′ can be reached from T through two NNI moves.

We now continue with the discussion of the Optimal 2-ECR neighbors algorithm.
Case 1: the edges are not adjacent By Lemma 5, in this case the optimal 2-ECR
neighbors can be obtained by two sequential NNI moves. To compute the optimal 2-
ECR neighbors of T in this case, we compute the optimal NNI neighbors of every NNI
neighbor of T . There are Θ(n) NNI neighbors of T , and the optimal NNI neighbors of a
given tree can be found in Θ(nrk) time by Theorem 3. Hence, the set of optimal 2-ECR
neighbors can be computed in Θ(n2rk) time for this case.
Case 2: the edges are adjacent Note that on a tree with n leaves, there are only O(n)
pairs of adjacent edges. For each possible way of contracting a pair of adjacent edges,
we create a tree with a single unresolved node (that is, a node of degree more than
three), and the unresolved node has degree 5. Hence, there are 15 possible binary trees
that resolve each such tree. Furthermore, each of the 15 refinements involves only a
rearrangement of the 5 rooted subtrees off the unresolved node around the two new
edges that result from the refinement. Therefore, the algorithm operates as follows.
First, we compute the optimal labels at the root of all such subtrees in Θ(nrk) time
in a preprocessing step as in Section 5.2. Then, for each of the O(n) pairs of adjacent
edges, in O(rk) additional time we can compute the optimal neighbors obtainable by
contracting and refining those edges. Hence, for the case of adjacent edges, can compute
the set of optimal 2-ECR neighbors in Θ(nrk) time.

The overall optimal 2-ECR neighbors will be those with the best score, and hence
we have the following:
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Theorem 4. Let T be an unrooted binary tree on n leaves, each labeled by a sequence
of length k over an alphabet of size r. Then the optimal 2-ECR neighbors of T can be
computed in Θ(n2rk) time.

6 Application of Three-Way Labeling to Other Problems

In this section we describe how our Three-Way labeling algorithm can be used to com-
pute the set of optimal SPR and TBR neighbors in O(n2rk) time and O(n3rk) time
respectively. We then describe how the technique can be used to compute the Greedy
Sequence Addition parsimony algorithm in O(n2rk) time.

6.1 Optimal SPR and TBR Neighbors

An SPR move on a tree T to create a tree T ′ involves the following three steps:

– Delete an edge e = (x1,x2) from T , thus producing two trees T1 and T2 with x1 ∈
V (T1) and x2 ∈V (T2).

– Pick one of the two subtrees (say, T1). Then, pick an edge e2 in T2, and subdivide
e2, thus creating a new node v2.

– Add the edge (x1,v2).

To compute the parsimony score of T ′, we can root T ′ at the edge (x1,v2). We will
then need the parsimony score and optimal state assignments of T2 rooted at v2 and those
of T1 rooted at x1. We perform a Three-Way labeling of the nodes in T1 and T2. This
takes O(nrk) time, and would allow us to compute the parsimony score and optimal
state assignments of T2 rooted at v2 and those of T1 rooted at x1 in O(rk) time. Once
this information is available, the parsimony score of T ′ can be computed in O(rk) time.
Thus, for a fixed way of deleting an edge (x1,x2), all SPR neighbors can be evaluated
in O(nrk) time. There are O(n) ways of deleting an edge, and thus we can evaluate all
SPR neighbors and identify the optimal ones in O(n2rk) time.

As for TBR, the only difference here is that for every way of deleting an edge
(x1,x2) in T1, there can be O(n2) TBR neighbors. Evaluating all these neighbors can be
done in O(n2rk) time if we Three-Label the two trees (T1 and T2) that result from the
deletion of (x1,x2) from T . There are O(n) ways of deleting an edge from T , and thus
we can evaluate all TBR neighbors and identify the optimal ones in O(n3rk) time.

6.2 A Faster Algorithm for Greedy Sequence Addition Parsimony

We begin by describing a brute-force algorithm for the Greedy-MP algorithm.

Brute-Force Greedy MP Greedy-MP constructs a tree for a set S of sequences based
upon a specified (usually random) ordering on S; suppose that ordering is s1,s2, . . . ,sn. It
begins with the star tree on the first three sequences, s1,s2, and s3, and then sequentially
adds each of the remaining sequences into the tree it has constructed so far. Before it
attempts to insert the ith sequence, si, it has a tree ti−1 on the first i− 1 sequences. In
order to insert si into ti−1, it computes the length of each possible extension of ti−1, in
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the obvious way: for each way of adding si (by subdividing an edge in ti−1, and making
the newly created node the parent of si), it uses Fitch’s algorithm (see Section 2.2) to
score the resultant tree. If there is a tie (more than one way of adding si gives a minimal
score), then a best tree is selected arbitrarily. When all sequences have been added, the
resultant tree is returned.

The running time of this brute-force algorithm follows from the analysis of the cost
of adding si to the tree ti−1. First, note that there are O(i) ways to add si to ti−1, and
that scoring the resultant trees costs O(irk) per tree, where r is the alphabet size, and k
is the sequence length. Hence, computing ti, given ti−1, costs O(i2rk). Since we do this
for i = 4,5, . . . ,n, the total cost is O(n3rk).

Faster Greedy-MP If we do a Three-Way Labeling of ti−1, then we can compute the
optimal placement of si into ti in only O(irk) time, so that Greedy-MP can be completed
in O(n2rk) time.

7 Related Work

In the “sectorial search” technique used in the parsimony software TNT, developed by
Goloboff et. al ([9]), repeatedly a set of edges is identified (using some specific tech-
nique) to be contracted and then refined. This can be viewed as a p-ECR based search,
where the value for p is determined indirectly. The general approach of contracting
edges and then finding an optimal resolution has also been suggested in [2]. Empirical
comparisons in [9] of sectorial search to other search strategies suggested that this kind
of approach would be potentially useful. Our contribution here is theoretical rather than
empirical, and our findings are consistent with those positive observations reported in
[9].

Our other main contribution, namely the 3-Way-Labels algorithm, and its use in
finding optimal neighbors under various tree transformations, is new, but similar tech-
niques have been presented before (see [16,7,8]).
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