
X. Zhou et al. (Eds.): APPT 2003, LNCS 2834, pp. 114–124, 2003.
© Springer-Verlag Berlin Heidelberg 2003

Separating Data Storage, Data Computation, and
Resource Management One from Another in Operating

Systems*

Fuyan Liu1,2 and Jinyuan You1

1 Dept. of Computer Sci. & Eng.,
Shanghai Jiaotong Univ.,
Shanghai 200030, China

2 Dept. of Computer Sci. & Tech.,
North China Inst. of Tech.,

Taiyuan 030051, China

Abstract. It’s impossible for traditional operating systems to separate the
abstract for data storage (process virtual address space), the abstract for data
computation (thread), and the abstract for resource management (process itself)
one from another. In this paper, firstly we analyze the problems due to not
separating these three abstracts. On the basis of the analysis, we propose the
idea that these three abstracts should be separated, and on the basis of the idea,
we propose Operating Systems Basing Virtual Address Spaces on Files (OS-
BVASF). Then we investigate OS-BVASF architecture model, Thread
Migration and Instructions Accessing Files Directly that implement the
separation. In the end of this paper, we discuss its implementation and
performance test.

1 Introduction

Constructing some abstracts, with system calls to operate them, can be thought as
operating system’s function. Operating Systems should construct at least four types of
abstracts: the one for data storage, the one for data computation, the one for resource
management, and the one for input and output. In a traditional operating system, the
abstract for data storage is process virtual address space; the abstract for data
computation is thread; the abstract for resource management is process, through
which operating system implements the resource management and allocation; the
abstract for input and output is file.

* This work was support by the National Natural Science Foundation of China (60173033, The

Architecture Research of Operating System Basing Virtual Address Space on Files); also by
the Youth Technology Research Foundation of Shanxi Province (20021016, The
Architecture Research of Operating System Basing Virtual Address Space on Files), and by
the Defense Science and Technology Key laboratory Foundation (51484030301JW0301, The
Architecture Research of Operating System Basing Virtual Address Space on Files for Large
Scale and Parallel Computer).

Separating Data Storage, Data Computation, and Resource Management 115

Among the four types of abstracts constructed by operating systems, file is a
special one. Only file is persistent, only file belongs to no process. The other three
abstracts must belong to some process or even process itself, and cannot be separated
one from another:

1. Thread and process cannot be separated: a thread can only use resources that
belong to its process; threads that belong to the process can only use the
resources of a process.

2. Thread and process virtual address space can not be separated: the virtual
address space of a process can only be addressed by threads that belong to the
process; threads that belong to a process can only address the virtual address
space of the same process.

3. Process virtual address space and process itself cannot be separated: it’s
impossible to separate process virtual address space and process itself one
from the other. Process virtual address space is part of the process itself.

Because data storage (process virtual address space), data computation (thread),
and resource management (process) can not be separated one from another, when a
thread that belongs to one process access services provided by other process, there
exist some problems, for example,

1. Because thread and process cannot be separated, the client thread cannot enter
directly into server process. When client thread need call a service in server, it
has to employ client/server model and inter-process communication
mechanisms, such as Message-Passing, semaphore, pipe, mail-box; socket,
the service is called by a proxy thread in server process. Firstly client thread
awakes server thread, then client thread get slept. When it finishes its task, the
server thread awakes client thread, after that it gets slept. The client thread
gets awaked and keeps on executing. For the client thread, it only calls a
server service once, but for operating system, it need execute several times
thread-switching as well as thread sleeping and waking up. Comparing with
that of calling a function in libraries or a system call in operating system
kernel, the performance of calling a service in server is poorer. This is one of
the reasons why micro-kernel operating system is of poor performance [1].

2. Because thread and process virtual address space cannot be separated, server
thread cannot access data in client process virtual address space. Client thread
has to pass calling parameter through mechanism such as message passing,
pipe, mail-box, socket, etc, so has to server thread return result to client
thread. If there needs passing large mount of data, the performance may turn
worse. This is another reason why micro-kernel operating is of poor
performance [1].

3. Because process virtual address space and process itself can not be separated,
there exists the following problems:
• The problem of data persistency: the non-persistency of a process makes

the data in process virtual address space lose its persistency. To implement
data persistency, data has to be read from file before threads access them,
also it has to be written to file after threads has finished accessing them.
Process virtual address space is NOT physical memory, although it is an
abstract constructed through memory and PERSIST swapping device
(usually one or more disks), it has lost the persistency of swapping device.

116 F. Liu and J. You

• The problem of complex data structure preservation: the meaning of a
pointer in high-level languages is essentially an address in process virtual
address space. Even if we have saved a pointer persistently, once the
process holding the pointed data has exited, the pointer turns out
meaningless. This means that complex data structure cannot be persistently
preserved in file directly, it need to be translated into another data structure
without pointer before it is saved to file.

• The problem of complex data structure share: a pointer belongs to a unique
process virtual address space, a pointer defined in one process virtual
address space is meaningless to another process, complex data structure
that comprise pointers can not be shared among different processes.
Although it has implemented memory-sharing and memory mapping file,
traditional operating system can only implement the sharing of some
sections of process virtual address space, it can not implement the sharing
of complex data structure that comprise pointers among different
applications.

To solve the problems listed above, we propose and are implementing a new
operating system, which constructs abstracts different from the ones in traditional
operating systems. In our operating system:

1. Only three abstracts are constructed, the three abstracts include the one for
data computation (thread), the one for resource management (process), and
the one for input and output (file). The function implemented by data storage
abstract (process virtual address space) in traditional operating systems is
implemented by files. Similar to memory mapping file in traditional operating
systems, in our operating system, instructions access files directly, threads run
directly on files.

2. The three abstracts, including the abstract for data computation (thread),
abstract for resource management (process), and the abstract for input and
output (file), are separated one from another. Operating system kernel
provides Thread Migration system call, by calling it, a thread can enter from
current process to another process, calling services in server process directly,
and the thread can also return to original process and keep on running, just as
calling system calls in traditional operating systems.

As our operating system integrates process virtual address space and file together,
applications run directly on files, the virtual address spaces accessed by threads are
file spaces; we call it Operating Systems Basing Virtual Address Spaces on Files (OS-
BVASF). In OS-BVASF, when a thread need access some services implemented by
other processes, the thread can get into other process directly by calling thread
migration system call implemented by operating system kernel. When completed, the
thread can also return to original process and keep on running by calling thread return
system call.

Fig. 1 shows the abstracts constructed in OS-BVASF, as well as their relations.
OS-BVASF can solve the problems due to not separating the three abstracts.

1. Because thread and process are separated, thread can enter directly into server
process by thread migration system call, avoiding operations such as thread-
switching, thread-sleeping and thread- waking-up that are necessary in
traditional operating systems.

Separating Data Storage, Data Computation, and Resource Management 117

Fig. 1. The abstracts built by operating system and their relations

2. Because process virtual address space and file are integrated, all threads run
on files, a thread can access all data in all files provided it has the accessing
right. Safety and protection is implemented through file right control. The
data that a thread can access is not confined within its process virtual address
space. It’s unnecessary to copy calling parameters and returning results
between client and server when a client calls a service in server. This can help
improve the performance of micro-kernel operating systems.

3. Because all threads run on files, the meaning of a pointer in high-level
language is an address in file space, not the one in process virtual address
space. A pointer is not confined within a process virtual space; it can be saved
persistently in files directly, as well as be shared among different applications.
This can avoid the problem of complex data structure preservation and the
problem of complex data structure share.

2 The Architecture of OS-BVASF

2.1 The Hierarchy of OS-BVASF

Fig. 2 illustrates the hierarchy of OS-BVASF. In Fig. 2, the middle layer is OS-
BVASF kernel, which implements thread migration, semaphore management,
processor management and memory management. The System Call Interface,
Interruption Handler, Address Mapping Component, and Switch Component in Fig. 2
is related to hardware platform, which should be re-implemented when OS-BVASF is
migrated to other platforms. Upon the kernel are all sorts of servers, including
communication server, file server, directory server, Linux emulator, etc. Applications
are also servers existing in the form of process; any application can be called by other
applications as a server.

118 F. Liu and J. You

Fig. 2. The Architecture and hierarchy of OS-BVASF

2.2 The Function of OS-BVASF Kernel

In OS-BVASF, the following functions are implemented in the kernel: Thread-
migration and thread-return, semaphore management, processor management and
memory management. Through Thread-migration and thread-return, a thread can
migrate between processes; through semaphore P operation and V operation, the
mechanisms such as thread synchronization and thread mutex, are implemented.
Processor management (process creation and exit, thread creation and exit, setting
thread priority, etc.) and memory management (storage domain creation and exit, file
open and close, etc.) are also implemented in kernel. File systems can exist either in
the kernel as device drivers or outside the kernel as applications (servers).

2.3 File Servers, Communication Servers, and Applications

In OS-BVASF, all applications exist outside the kernel; they can be treated as virtual
file servers, as a program module that can be called by other applications, and also as
a program unit that implements application division and protection. Through thread
migration, a thread can enter directly into another application, starting from the Initial
Execution Point, the thread begin run within the new process. When completed, the
thread can also return to its original process and keeps on running.

The function of all sorts of applications (also can be treated as virtual file servers)
is to manage persistent objects inside and provides virtual file call interfaces to other
applications. By treating all applications as virtual file servers, OS-BVASF
implements the function of file systems in traditional operating system, as well as the
integration of file server and communication servers.

Separating Data Storage, Data Computation, and Resource Management 119

2.4 Linux Emulator

OS-BVASF implements Linux compatibility through Linux emulator as Mach does.
A Linux thread calls Linux emulator through thread migration system call. Just as a
Linux thread enters Linux operating system kernel, a thread in OS-BVASF enters
Linux emulator, calls it execute function of Linux kernel. When completed, it will
return to original application.

3 Thread Migration – Separating Data Computation and
Resource Management One from the Other

3.1 The Conception of Thread Migration

In OS-BVASF, two processes relate to a thread, one is called owner process, it
identifies to which process the thread belongs, the other is called current process, it
identifies within which process the thread currently exists, its also identifies which
process’s resource the thread currently uses. Within its whole lifetime, thread can not
change its owner process, whereas at any time, thread can change its current process
through thread migration. When it calls thread migration system call, a thread changes
its current process and resource environment, enters from one process to another,
executes program within the new current process, when completed, it can also return
to its original process. Thread migration is one of the main functions implemented
within operating system kernel. One of the differences between OS-BVASF and
traditional operating system is that through thread migration instead of message-
passing or pipe, etc., a thread calls functions within others processes, thus prevents
thread switching, thread sleeping and waking up, and improves performance.

Thread migration implements the separation of data computation (thread) and
resource management (process).

3.2 Some Techniques Related to Thread Migration

Many operating system designers recognize the worse performance due to
client/server model and adopt some techniques to solve this problem. From these
techniques and systems, we propose the thread migration:

• Sun’s Spring OS introduces a new conception: the Door, through which
thread can enter from one domain to another. In Spring OS, Door is defined in
IDL language, which makes threads be possible to enter into other process
even on different computer or heterogeneous architecture. Sun’s Spring OS is
one of the operating systems from which we propose OS-BVASF thread
migration technique.

• Grasshopper operating system constructs Loci (similar to thread in traditional
operating system) which can migrate from one Container (similar to process
in traditional operating system) to another. Loci abstract in Grasshopper
operating system is persistent. It is from the Loci abstract in Grasshopper
operating system that we propose the separation of data computation (thread)

120 F. Liu and J. You

and resource management (process), the implementing technique is thread
migration

• MIT’s Aegis operating system adopts the idea of Exokernel. Through
exception forwarding and upcall, execution in Aegis can go from one process
to another. From MIT’s Aegis operating system, we propose exception
processing in OS-BVASF.

3.3 Thread Initial Executing Context (TIEC) and Thread Initial Executing
Point (TIEP)

When a thread enters into target process through thread migration, it starts running
with a special CPU context called Thread Initial Executing context (TIEC). TIEC’s
instruction pointer is address of the first instruction that thread executes within target
process, TIEC’s registers store calling-parameters from source process.

In traditional operating systems, when a thread enters into kernel, it will start
running at a special address, at which operating system kernel does switch and checks
if the thread owns the accessing rights. If it does own, operating system kernel
executes the called function, if not, operating system kernel refuses. This mechanism
ensures the security and safety. Just as in traditional operating systems, in OS-
BVASF, when a thread enters target process through thread migration system call, it
will start running at Thread Initial Executing Point (TIEP), where target process will
do some checks to ensure the thread is not a malicious one, and guarantee security
and safety.

3.4 The Returning of Migrated Thread

When a thread has finished its task within target process, it can return to its original
process through calling thread return system call. The execution flow of thread
migration and thread return is similar to that of system call in traditional operating
system. The difference is that in traditional operating system, the called object is
operating system kernel, whereas in OS-BVASF, the called objects are processes
outside operating system kernel. Instead of client/server model and message passing
in traditional micro-kernel operating systems, OS-BVASF employs thread migration
and thread return to put some function of traditional operating system outside
operating system kernel. This mechanism can improve extensibility and performance
of operating system.

4 Instructions Access Files Directly – Separating Data Storage
from Data Computation and Resource Management

Similar to Memory Mapping File in traditional operating system [6], in OS-BVASF
instructions access files directly, all applications run on files. Through Instructions
Access Files Directly, OS-BVASF implements separating data storage (file) from data
computation (thread) and resource management (process).

Separating Data Storage, Data Computation, and Resource Management 121

In computer systems, instructions access virtual address space. For example, at the
protection mode of X86 processor, when it executes an assembly instruction MOV
DS:[2000H],AX, X86 CPU will save the value in register EAX to a virtual address
unit whose segment is identified by DS register and offset is 2000H. This unit may be
either in physical memory or on exterior storage device. If it is not in physical
memory, the executions of the instruction will trigger a memory fault exception; the
exception handler will load data of the unit into physical memory, modifies segment
table and page table, and restarts the instruction execution. The relation between
virtual address space and physical memory as well as exterior storage device is
maintained by operating system. If we define it as the relation between file address
space and physical memory as well as exterior storage device, operating system will
implement Instructions Access Files Directly. When programs are running, it seems
that instructions access files directly, it also seems to the users that there exist no
process virtual address space; programs are not running in process virtual address
space, but in file address space. Instructions Access Files Directly can be
implemented in the following method:

1. CPU employs segmentation or segmentation with paging virtual memory
management, which a lot of CPU chip support. The virtual address space is
two-dimensional, one is segment, and the other is offset within the segment.

2. Logically a segment in virtual address space corresponds to a section of file
on file server.

3. Before an application tries to access data, file should first be opened. When
open file, operating system constructs segment table and page table, return the
segment ID to application as file handler. When application access data
through the segment ID (file handler), it will actually access file data.

4. When thread is running and accessing a segment identified by the segment ID
(file handler), if data does not exist in physical memory, a memory fault
exception occurs, the exception handler will call file server to load data into
physical memory, modifies segment table and page table, restart the excepted
instruction to keep on running.

5. If memory resource gets scarce, operating system can select some page
frames, write data in them to files on file servers, and releases these page
frames.

6. In the end, applications close files, write all data in physical memory to file
on file server, release memory resource as well as segment table and page
table.

By the method described above, operating system implements Instructions Access
Files Directly. When instructions access segments, it seems that the instructions
access files. To applications, there is only conception of file, without that of process
virtual address space. Applications do not run among process virtual address space,
but on files.

Because the function of data storage is implemented not through process virtual
address space, but through file abstract, and because files belong to no thread (data
computation) or process (resource management), OS-BVASF separates data storage
from data computation and resource management through Instructions Access Files
Directly.

122 F. Liu and J. You

5 OS-BVASF Implementation and Performance Test

Upon X86 PC, we have implemented an OS-BVASF kernel. Its architecture is based
upon Thread Migration and Instructions Access Files Directly. Upon the kernel, OS-
BVASF applications run directly on files. Our development environment is Redhat
Linux 7.1, Linux kernel version is 2.4.2, CPU is Pentium-IV, Clock Frequency is
1.8G, main memory capacity is 512M, and hard disk capacity is 40G.

The development language of OS-BVASF kernel is GCC under Linux
environment. We also employ Linux LILO to install OS-BVASF kernel. But OS-
BVASF kernel and exterior kernel applications run directly upon hardware, without
the support from Linux. Our implement is not an emulator upon Linux environment;
Linux is only our development environment.

5.1 Performance Test of Thread Migration

To appraise performance of Thread Migration, we test the time length needed for
thread migration between two different processes. On the same hardware platform
and Linux operating system, using pipe and message buffer, we also test the time
length to do an execution switching between two different Linux processes. Test
result is listed in Tab. 1.

OS-BVASF threads can execute at either kernel mode or user mode. If the source
process and target process mode are different, so is the test result. That is the reason
why Tab. 1 includes four items. But our test result doesn’t show the difference too
much.

From Tab. 1 we can conclude that OS-BVASF execution switching time between

two different processes is shorter than that of Linux.

5.2 Performance Test of Instructions Access Files Directly

The mechanism of Instructions Access Files Directly is very similar to that of
Memory Mapping Files in traditional operating systems [6]. To appraise the
performance of OS-BVASF memory management, we test the performance of Linux
Memory Mapping File, and compare the test result to that of Instructions Access Files
Directly in OS-BVASF. The test method is:

Table1. Execution switching time length in OS-BVASF and Linux (unit: µs)

In OS-BVASF through Thread Migration
User-User User-Kernel Kernel-User Kernel-Kernel

3.2 2.9 3.3 3.4
In Linux through Message Buffer and Pipe

Through Message Buffer Through Pipe
6.3 6.4

Separating Data Storage, Data Computation, and Resource Management 123

• Under Linux environment, we map file /dev/zero to a process virtual address
space. Through repeatedly accessing mapped virtual pages, we test the time
length for handling a page fault exception. File /dev/zero is a special character
device that supports memory mapping file, all data read from it is zero.

• Under OS-BVASF environment, we open a file. Also through repeatedly
accessing mapped virtual file pages, we test the time length for handling a page
fault exception. In order to make the test comparable, we also set all data in file
zero. We do the test when file is both managed by device driver within memory
manager in kernel and file system outside kernel.

The time length for handling a page fault exception under Linux environment is
19.8ms under out test platform and environment. The test result under OS-BVASF
environment is listed in Tab. 2. Once one memory fault exception occurs, OS-BVASF
memory manager can set up address mapping for multi-page frames when handles the
exception. The number of frames is identified when file is opened. In Tab. 2, the first
row is the number of frames, the second row is test result when device driver within
memory manager in kernel manages file, and the third row is test result when file is
managed by file system outside kernel.

From Tab. 2, we can conclude that if file is managed by device driver within

memory manager in kernel, the performance for handling memory fault exception is
better than that of Linux, if by file system outside kernel, the performance is worse.

6 Conclusions

By replacing message-passing and client/server model with Thread Migration, and
also by Instructions Access Files Directly, OS-BVASF abandons process virtual
address space, it makes all programs run directly on files, implements Separation of
data storage, data computation and resource management one from another in
operating systems. Comparing with traditional operating systems, OS-BVASF can
solve the three problems due to not separating data storage, data computation and
resource management. Our implementation shows OS-BVASF feasible and of better
performance.

Table 2. Time length for handling memory fault exception (unit: µs)

Mapped Page
Frame Number

File is managed by device driver
within memory manager in
kernel

File is managed by file
system outside kernel

1 15.7 37.6
2 13.3 29.6
4 12.2 28.8
8 11.6 28.7

16 11.5 27.8
32 11.4 27.7
64 11.4 27.7

124 F. Liu and J. You

References

1. Wang, Shiyou, Guo, Fushun. The performance effect of Microkernel operating system
architecture, Computer Research and Development, Jan, 1999 (Chinese).

2. James G. Mitchell, Jonathan J.Gibbons: An Overview of the Spring System Sun

Microsystems Inc. 2550 Garcia Avenue, Mountain View Ca 94303.
3. Alan Dearle, Rex di Bona, James Farrow, Frans Henskens, Anders Lindstrom, John

Rosenberg, Francis Vaughan. Grasshopper: An Orthogonally Persistent Operating System.
Computing Systems, 7(3), pp 289–312, Summer 1994

4. Alan Dearle, Rex di Bona, James Farrow, Frans Henskens, Anders Lindstrom, John
Rosenberg, Francis Vaughan. Grasshopper: An Orthogonally Persistent Operating System.
Grasshopper Technical Report GH-10. Department of Computer Science University of
Adelaide S.A., 5001, Australia, 1994

5. Dawson R. Engler. The exokernel operating system architecture. Ph.D. thesis,
Massachusetts Institute of Technology, October 1998.

6. M. Frans Kaashoek, Dawson R. Engler, Gregory R. Ganger, Héctor M. Briceno, Russell
Hunt, David Mazières, Thomas Pinckney, Robert Grimm, John Jannotti, and Kenneth
Mackenzie. Application performance and flexibility on exokernel systems. In the
Proceedings of the 16th ACM Symposium on Operating Systems Principles (SOSP '97),
Saint-Mal, France, October 1997, pages 52–65.

7. W. Richard Stevens, Advanced Programming in the UNIX Environment, Addison Wesley
Publishing Company, 1992, Translate by You, Jinyuan, China Machine Press, 1999.

	Introduction
	The Architecture of OS-BVASF
	The Hierarchy of OS-BVASF
	The Function of OS-BVASF Kernel
	File Servers, Communication Servers, and Applications
	Linux Emulator

	Thread Migration – Separating Data Computation and Resource Management One from the Other
	The Conception of Thread Migration
	Some Techniques Related to Thread Migration
	Thread Initial Executing Context (TIEC) and Thread Initial Executing Point (TIEP)
	The Returning of Migrated Thread

	Instructions Access Files Directly – Separating Data Storage from Data Computation and Resource Management
	OS-BVASF Implementation and Performance Test
	Performance Test of Thread Migration
	Performance Test of Instructions Access Files Directly

	Conclusions

