
P. Perner (Ed.): MLDM 2007, LNAI 4571, pp. 479–489, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Mining Maximal Frequent Itemsets in
Data Streams Based on FP-Tree

Fujiang Ao1, Yuejin Yan2, Jian Huang1, and Kedi Huang1

1 School of Mechanical Engineering and Automation, National University
of Defense Technology, Changsha, 410073, China

2 School of Computer Science, National University of Defense
Technology, Changsha, 410073, China

fjao@nudt.edu.cn

Abstract. Mining maximal frequent itemsets in data streams is more difficult
than mining them in static databases for the huge, high-speed and continuous
characteristics of data streams. In this paper, we propose a novel one-pass
algorithm called FpMFI-DS, which mines all maximal frequent itemsets in
Landmark windows or Sliding windows in data streams based on FP-Tree. A
new structure of FP-Tree is designed for storing all transactions in Landmark
windows or Sliding windows in data streams. To improve the efficiency of the
algorithm, a new pruning technique, extension support equivalency pruning
(ESEquivPS), is imported to it. The experiments show that our algorithm is
efficient and scalable. It is suitable for mining MFIs both in static database and
in data streams.

Keywords: maximal frequent itemsets, data streams, FP-Tree, pruning
technique.

1 Introduction

In recent years, data streams have been researched widely. The technologies about
data streams are used in many applications. Examples of such applications include
financial applications, network monitoring, security, telecommunications data
management, web applications, manufacturing, sensor networks, and others [1]. In a
word, a data stream is a real-time, continuous, ordered (implicitly by arrival time or
explicitly by timestamp) sequence of items. The algorithm for mining data streams
must be single-pass algorithm for the characters of data streams.

The time and space efficiency of data mining in data streams is more significant
than that in static databases. The number of maximal frequent itemsets and closed
frequent itemsets is much less than that of frequent itemsets. So, mining MFIs or CFIs
can get better time and space efficiency than mining frequent itemsets. Mining
maximal frequent itemsets [2][3][4] and mining closed frequent itemsets [5][6] in data
streams is to be a tendency.

Many good algorithms have been developed for mining maximal frequent itemsets
in static database, for example MaxMiner [7], DepthProject [8], GenMax [9], AFOPT

480 F. Ao et al.

[10], FPMax* [11], FpMFI [12]. All these algorithms need to scan database more than
one pass. They are not suitable for mining maximal frequent itemsets in data streams.
In all these algorithms, FpMFI is almost fastest for all tested database [12]. The
algorithm needs to scan database two passes. We reconstruct the algorithm to a
single-pass one, called FpMFI-DS. To mining maximal frequent itemsets in
Landmark windows or Sliding windows in data streams, we must store all
transactions in the window. For Sliding windows, when transaction is out of window,
it should be deleted from window. To satisfy with these requires, we designed a new
structure of FP-Tree, which can store all transactions in Landmark windows or
Sliding windows, and when transaction is out of Sliding windows, it can be deleted.
To reduce search space of FpMFI-DS, a new pruning technique, extension support
equivalency pruning, is added in the algorithm. The efficiency of FpMFI-DS is close
to FPMax* and a little lower than that of FpMFI.

2 Preliminaries and Related Work

This section will formally describe the MFIs mining problem in data streams and the
set enumeration tree that represents search space. Also the related works will be
introduced in this section.

2.1 Problem Revisit

Let },...,,{ 21 miiiI = be a set of m distinct elements, called items. A subset IX ⊆ is

called an itemset. An itemset with k items is called a k-itemset. Each transaction t is a
set of items in I. A data stream,),...,[21 NtttDS = , is an infinite sequence of

transaction. For all transactions in a given window W over data stream, the support of
an itemset X, denoted as sup(X)= / | |xD W , where

xD is the number of transactions

in which X occurs as a subset and | |W is the width of the window. For a given

threshold min_sup in the range of [0,1], itemset X is frequent if sup(X) ≥ min_sup. If
sup(X) ≥ min_sup and for any XY ⊇ , we have sup(Y) < min_sup, then X is called
maximal frequent itemset in window W.

From the definitions above, we can see that the selection of window W is important
for an itemset X be a frequent one. In paper [13], three windows models are
introduced, including landmark windows, sliding windows, damped windows. In this
paper, we focus on mining the set of all maximal frequent itemsets in landmark
windows or in sliding windows over data streams.

To get all maximal frequent itemsets, one method is to enumerate all itemsets that
maybe be maximal frequent itemsets, count the support of these itemsets and decide
whether they are maximal frequent itemsets. In paper [14], Rymon presents the
concept of generic set enumeration tree search framework. The enumeration tree is a
virtual tree. It is just used to illustrate how sets of items are to be completely
enumerated in a search problem. The tree could be traversed depth-first, breadth-first,
or even best-first as directed by some heuristic. In the domain of data mining, the set
enumeration tree is also named after search space tree.

 Mining Maximal Frequent Itemsets in Data Streams Based on FP-Tree 481

But, when the number of different items is big, the algorithm that searches all
search space may suffer from the problem of combinatorial explosion. So the key to
an efficient set-enumeration search is the pruning techniques that are applied to
remove entire branches from consideration [7]. The two most often used pruning
techniques, subset infrequency pruning and superset frequency pruning, are based on
following two lemmas:

Lemma 1. A restricted subset of any frequent itemset is not a maximal frequent
itemset.

Lemma 2. A subset of any frequent itemset is a frequent itemset, and a superset of
any infrequent itemset is not a frequent itemset.

For example, for the dataset in the left, Fig. 1 shows the corresponding search
space tree. In Fig. 1, we suppose I = {a,b,c,d,e} is sorted in firm lexicographic order.
The pruning techniques used in the tree includes subset infrequency pruning (SIP) and
superset frequency pruning (SFP). The root of the tree represents the empty itemset,
and the nodes at level k contain the k-itemsets. The itemset associated with each node,
n, will be referred as the node’s head(n). The possible extensions of the itemset is
denoted as con_tail(n), which is the set of items after the last item of head(n). The
frequent extensions denoted as fre_tail(n) is the set of items that can be appended to
head(n) to build the longer frequent itemsets. In depth-first traversal of the tree,
fre_tail(n) contains only the frequent extensions of n. The itemset associated with
each children node of node n is build by appended one of fre_tail(n) to head (n). As
example in Fig. 1, suppose node n is associated with {b}, then head(n) = {b} and
con_tail(n) = {c,d,e}. For {e} is not frequent, fre_tail(n) = {c,d}. The children node
of n, {b,c}, is build by appending c from fre_tail(n) to {b}.

The problem of MFI mining can be thought as to find a border of the tree, all the
elements above the border are frequent itemsets, and others are not. All MFIs are near
the border. As our examples in Fig. 1, itemsets in solid rectangle are MFIs.

ID

01 a b c
02
03
04
05

Transaction

a b
a c d
b c d
b c d e

Dataset

I={a,b,c,d,e}

min_sup = 2

MFI

Infrequent itemset

Ø

3 a 4 b 1 e

2 a b 2 a c 1 a d

a b c

3 b c

2 b c d

2 b d

3 c 3 d

Itemset that be
 cut by SFP

1

Fig. 1. The set enumeration tree built based on the dataset in the left

2.2 Related Work

Some one-pass algorithms for mining maximal frequent itemsets in data streams have
been developed, for example, DSM-MFI [3], estDec+ [4] and INSTANT [2]. They
are all approximate algorithm.

482 F. Ao et al.

DSM-MFI mines the set of all maximal frequent itemsets in landmark windows
over data streams. The algorithm is composed of four steps. First, it reads a window
of transactions from the buffer in main memory, and sorts the items of transactions in
a lexicographical order. Second, it constructs and maintains the in-memory summary
data structure, SFI-forest. Third, it prunes the infrequent information from the
summary data structure. Fourth, it searches the maximal frequent itemsets from the
current summary data structure. Steps 1 and 2 are performed in sequence for a new
incoming basic window. Steps 3 and 4 are usually performed periodically or when it
is needed [3]. The experiment results in paper [3] show that DSM-MFI is efficient on
both sparse and dense datasets, and scalable to very long data streams.

estDec+ use a structure, CP-tree (Compressed-prefix tree), to keep the supports of
all the significant itemsets in main memory. It also consists of four phases: parameter
updating, node restructuring, itemset insertion, and frequent itemset selection. When a
new transaction Tk in a data stream Dk-1 is generated, these phases except the frequent
itemset selection phase are performed in sequence. The frequent itemset selection
phase is performed only when the up-to-date result set of frequent or maximal
frequent itemsets is requested. The main advantage of the algorithm is that it adopts
an adaptive memory utilization scheme to maximize the mining accuracy for confined
memory space at all times [4].

INSTANT mines maximal frequent itemsequences from data streams based on a
new mining theory provided by paper [2]. Where an itemsequence is an ordered list of
items. The main advantage of the algorithm is that it is an online algorithm, which can
directly display current maximal frequent itemsequences while they are generated.
But the time efficiency of the algorithm is affected.

Paper [12] proposed a MFIs mining algorithm, FpMFI. It is an improvement over
FPMax* and outperforms FPMax* by 40% averagely. They all need to scan dataset
two passes. In this paper, we propose an algorithm, FpMFI-DS, based on FpMFI.
FpMFI-DS only need to scan dataset one pass. It is a one-pass and exact algorithm.

3 FpMFI-DS

In this section, FpMFI-DS algorithm is introduced in details.

3.1 The Construction of FP-Tree in FpMFI-DS

To construct FP-Tree, it usually needs to scan database two passes. The first scan of
database derives a list of frequent items. Then it sorts the items by frequency
descending order. The list of items in header table and each path of prefix-tree will
follow this order. The second scan of database gets every transaction and inserts all
frequent items in transaction into FP-Tree. During the process of mining, to construct
the FP-Tree of node n, it needs to scan the head(n)’s conditional pattern base that
comes from FP-tree of its parent node two passes[15]. Paper [11] improves this
approach by adopting an array-based technique. It only needs to scan head(n)’s
conditional pattern base one pass.

In FpMFI-DS, to implement one-pass algorithm, we must complete the
construction of FP-Tree by only scanning dataset one-pass.

 Mining Maximal Frequent Itemsets in Data Streams Based on FP-Tree 483

To mine maximal frequent itemsets in sliding windows, the FP-Tree of root should
contain all the transactions in the Sliding windows. When a transaction comes to
window, all items of the transaction are inserted to the FP-Tree of root, whether they
are frequent or infrequent. And when a transaction is out of window, it should be
deleted from the FP-Tree of root. So except for header table and prefix-tree, the FP-
Tree of root in FpMFI-DS also contains a tidlist, a list of IDs of the transactions in
window. Every item in the tidlist is composed of an ID of transaction (an integer) and
a pointer to the last node of the transaction in the FP-Tree of root. For an one-pass
algorithm, when adding the transaction to the root FP-Tree, we can’t get the
frequencies of items in all transactions. So the order of the items in the FP-Tree of
root can’t be frequency descending order. In FpMFI-DS, the order of the items in the
FP-Tree of root is based on the lexicographical order of the items. When a transaction
comes to window, all items of the transaction are inserted to FP-Tree by
lexicographical order. When a transaction is out of window, the last item of the
transaction in the FP-Tree of root can be found through the transaction’s ID and
pointer in the tidlist, then it is deleted from root FP-Tree. To mine maximal frequent
itemsets in landmark windows, we only need to fixup beginning side of the window.

The subsequent FP-Tree during the process of mining is similar to that in FPMFI.
To improve the effectiveness of superset frequency pruning, the order of the items in
the subsequent FP-Tree also adopts frequency descending order.

For example, for data streams and window width in the left, Fig. 2 shows the
FP-tree of root built based on transactions in first window. The FP-tree includes five
transactions.

ID

01 a b c d
02
03
04
05

Transaction

b d e f
a c f
c e f
b c f

root

a:2

b:1

c:1

d:1

c:1

f:1

b:2

d:1

e:1

f:1

f:1

c:1

f:1

c:1

e:1

header

item node-links

a:2
b:3
c:4
d:2
e:2
f:4

tidlist
pointer ID

01
02
03
04
05

Data streams

DS(|W|=5)

Fig. 2. The FP-Tree of root built based on transactions in first window

ID

06 a c d f

02
03
04
05

Transaction

b d e f
a c f
c e f
b c f

root

a:2

d:1

c:2

f:1

b:2

d:1

e:1

f:1

f:1

c:1

f:1

c:1

e:1

header

item node-links

a:2
b:2
c:4
d:2
e:2
f:5

tidlist
pointer ID

06

02
03
04
05

01 a b c d

f:1
DS(|W|=5)

Data streams

Fig. 3. The FP-Tree of root built based on transactions in second window

484 F. Ao et al.

Fig. 3 shows the FP-tree of root built based on transactions in second window. In
the FP-Tree, the first transaction is deleted from it and the sixth transaction is inserted
into it.

When min_sup is 2, Fig. 4 shows the FP-tree of itemset {f} during the process of
mining for data in Figure 3. The items order in Fig. 2 and Fig. 3 is based on the
lexicographical order of the items, while that in Fig. 4 is based on frequency
descending order.

root

a:2

d:1

c:4 b:1

d:1b:1

header

item node-links

c:4
a:2
b:2
d:2
e:2 e:1

e:1

Fig. 4. The FP-Tree of itemset {f} during the process of mining for data in Figure 2

3.2 Pruning Techniques

FpMFI uses three pruning techniques, including subset infrequency pruning, superset
frequency pruning, parent equivalence pruning. The efficiency of these pruning
techniques is high for item ordering policy used by it. In FpMFI, since the item order
in the FP-Tree of root is based on the lexicographical order, the item order in first
level of search space tree has to accord with it. If only use these pruning techniques,
the efficiency is lower than that in FpMFI, especially for dense dataset. For example,
for dataset MUSHROOM, search space of FpMFI-DS is about as twice as that of
FpMFI. So, Excepting for these pruning techniques, another pruning technique,
ESEquivPS, is adopted by FpMFI-DS. ESEquivPS is firstly present in paper [16]. The
pruning technique is described as following:

Supposed p and n are nodes in search space tree, and n is a children node of p. Let
item)(_ ptailfrex ∈ and)(_ ntailfrex ∈ . If sup(head(p) ∪ {x}) =

sup(head(n) ∪ {x}), then any offspring node of p that contains item x and is in the
right of node n can be pruned.

Proof. Let j be an item associated with node n, X and Y are itemsets associated with
head(p) ∪ {x} and head(n) ∪ {x}, respectively. Since sup(X) = sup(Y), then any
transaction T containing X must contains item j. Thus, the maximal frequent itemset
containing X must containing j.In the p-subtree, the itemsets, which associated with
the nodes that contain item x and are in the right of node n, must not contain item j for
the character of search space tree. So, they can’t be maximal frequent itemsets.

From experiments, we found that if the nodes in every level of search space tree is
in the order of frequency descending, then the pruning technique is invalidity.
Fortunately, the first level of search space tree in FpMFI-DS is in the lexicographical
order of the items. Then we can use it for the first level of search space tree. The
experiments show that for the dense datasets, MUSHROOM, the size of search space
can be trimmed off by about 30%.

 Mining Maximal Frequent Itemsets in Data Streams Based on FP-Tree 485

3.3 Algorithm FpMFI-DS

Fig. 5 shows algorithm FpMFI-DS. Though the items order in the first level of search
space tree of FpMFI-DS is different from that of FpMFI, the mining procedure of the
two algorithms is similar. The difference is that algorithm FpMFI-DS adopts the new
pruning technique, ESEquivPS (line 4 to line 6).

PROCEDURE: FpMFI-DS Algorithm
INPUT:
 n: a node in search space tree that associated with a head itemset h,
 a FP-tree, a MFI-tree, and an array
 M-trees: MFI-trees of all ancestor nodes of n
1 For each item x from end to beginning in header of n.FP-tree
2 h'=h∪{x} //h' identifies n'
3 if (sup(h')<min_sup) continue
4 if (ESEquivPS_cheching(x)) continue
5 if (Thirdlevel() and sup({x})= = sup(h'))
6 insert true into respective position of a bool array for ESEquivPS
7 if x is not the end item of the header
8 if(superset_checking(con_tail(n'),n.MFI-tree) return
9 if(superset_checking(con_tail(n'),n.FP-tree)
10 insert h'∪con_tail(n') into M-trees return
11 if n.array is not null
12 fre_tail(n') = {frequent items for x in n.array}
13 else
14 fre_tail(n') = {frequent items in conditional pattern base of h' }
15 PeIs = {items whose count equal to the support of h'}
16 if(superset_checking(fre_tail(n'), n. MFI-tree)
17 if the number of items before x in the header is | fre_tail(n')|
18 return
19 else continue
20 if(superset_checking(fre_tail(n'), n. FP-tree)
21 insert h'∪fre_tail(n') into M-trees
22 if the number of items before x in the header is | fre_tail(n')|
23 return
24 insert fre_tail(n') into n.MFI-tree continue
25 h' = h'∪PeIs , fre_tail(n’) = fre_tail(n’) – PeIs
26 sort the items in fre_tail(n')
27 construct the FP-tree of n'
28 if(superset_checking(fre_tail(n'), n'. FP-tree)
29 insert h'∪fre_tail(n') into M-trees
30 if the number of items before x in theheader is | fre_tail(n')|
31 return
32 insert fre_tail(n') into n.MFI-tree continue
33 construct the MFI-tree of n'
34 M-trees = M-trees∪{n.MFI-tree}

35 call FpMFI-DS(n' ,M-trees)

Fig. 5. Algorithm FpMFI-DS

To implement ESEquivPS, we use an integer array store the support of items in
first level of search space tree and use a bool array denote if the respective items
satisfy with the condition of ESEquivPS. When exploring the third level of search
space tree, we check if the support of respective item equals to that of the

486 F. Ao et al.

corresponding item in the first level of search space tree. If they are, the
corresponding position in the bool array is set true (line 5 to line 6). Before exploring
any node in the search space tree, we first chech if the corresponding position in the
bool array is set to true. If it is, the node should be cut off (line 4).

4 Experimental Evaluations

All the experiments were conducted with a 2.4 GHZ Pentium IV with 512 MB of
DDR memory running a Redhat Linux 9.0 operation system. We implemented the
code of FpMFI-DS by c++ and compiled it with the g++ 2.96 compiler.

4.1 Performance Comparisons

To evaluate the performance of FpMFI-DS, we have compared its performance with a
representative algorithm, INSTANT [2]. The advantage of INSTANT is that it can
directly display current maximal frequent itemsequence (not itemsets) while they are
generated. For sparse datasets, the efficiency of the algorithm is high. But for dense
datasets, the efficiency is not very good. The code of INSTANT was provided by its
authors, Guojun Mao, etc. It is also written in c++ and compiled by g++ 2.96
compiler.

The dataset in the experiment is T20I5D10K, a dataset generated by IBM data
generator [17]. The synthetic dataset T20I5D10K has average transaction size T of 20
items and the average size of frequent itemset I of 5 items and the number of
transactions D of 10K. It is a sparse dataset.

0

50

100

150

200

250

1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1

Support (%)

T
ot

al
 T

im
e

(s
)

INSTANT

FpMFI-DS

Fig. 6. Performance comparisons with INSTANT

Fig. 6 shows the result of performance comparisons for dataset T20I5D10K. The
efficiency of FpMFI-DS is much higher than that of INSTANT. For the dataset,
maximal total time of FpMFI-DS is lower than 2 seconds.

We also compared its performance with some multi-pass algorithms. Fig. 7 and
Fig. 8 show the result of performance comparisons with algorithm FPMax*. The
dataset in Fig. 7 is T20I5D100K, a sparse dataset and the dataset in Fig. 7 is

 Mining Maximal Frequent Itemsets in Data Streams Based on FP-Tree 487

MUSHROOM, a dense dataset. The source code of algorithm FPMax* and dataset
MUSHROOM were downloaded from [18]. Algorithm FPMax* is written in c++ and
compiled with the g++ 2.96 compiler, too.

0

2

4

6

8

10

1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1

Support (%)

T
ot

al
 T

im
e

(s
)

FPMax*

FpMFI-DS

Fig. 7. Performance comparisons with FPMax* for dataset T20I5D100K

0

0.3

0.6

0.9

1.2

1.5

1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1

Support (%)

T
ot

al
 T

im
e

(s
)

FPMax*

FpMFI-DS

Fig. 8. Performance comparisons with FPMax* for dataset MUSHROOM

From Fig. 7 and Fig. 8, we can see that for dense dataset, the efficiency of FpMFI-
DS is a little higher than that of FPMax*, and for sparse dataset, the efficiency of
FpMFI-DS is a little lower than that of FPMax*. We can draw a conclusion that the
efficiency of two algorithms is close. The result in paper [11] shows that the
efficiency of FPMax* is very high. So the efficiency of FpMFI-DS is good, too.

4.2 Scalability of FpMFI-DS

To evaluate the scalability of FpMFI-DS, we use four huge datasets, T10I5D1000K,
T10I5D2000K, T10I5D3000K, T10I5D4000K. The minimum support is 0.1%. From
Fig. 9, we can see that the execution time grows smoothly as the dataset size increases
from 1,000K to 4,000K. The algorithm has scalability.

488 F. Ao et al.

0

20

40

60

80

100

120

1000k 2000k 3000k 4000k

The Number of Transactions (k)

T
ot

al
 T

im
e

(s
) FpMFI-DS

Fig. 9. The scalability of FpMFI-DS

5 Conclusions

In this paper, we proposed a novel one-pass algorithm, FpMFI-DS, which mines all
set of the maximal frequent itemsets in data streams. To mine MFIs both in landmark
windows and in sliding windows, we adopt a new structure of FP-Tree. To reduce the
search space of the algorithm, a new pruning technique, ESEquivPS, is adopted by the
algorithm. The experiments show that the algorithm is efficient on both sparse and
dense datasets, and has good scalability.

Acknowledgements

We would like to thank Guojun Mao for providing the code of algorithm INSTANT.
The work of this paper was supported by the Natural Science Foundation of China
under the Grant No. 60573057.

References

1. Babcock, B., Babu, S., Datar, M., Motwani, R., Widom, J.: Models and issues in data
stream systems. In: Proc. of the twenty-first ACM SIGMOD-SIGACTSIGART
Symposium on Principles of Database Systems 2002, pp. 1–16 (2002)

2. Mao, G., Wu, X., Liu, C.: Online Mining of Maximal Frequent Itemsequences from Data
Streams. University of Vermont, Computer Science Technical Report, CS-05-07 (2005)

3. Li, H., Lee, S., Shan, M.: Online mining (recently) maximal frequent itemsets over data
streams. In: Proc. of the fifteenth International Workshops on Research Issues in Data
Engineering: Stream Data Mining and Applications, Tokyo, Japan, pp. 11–18. IEEE Press,
NJ (2005)

4. Lee, D., Lee, W.: Finding maximal frequent itemsets over online data streams adaptively.
In: Proc. of the Fifth IEEE International Conference on Data Mining.Houston, USA, pp.
266–273. IEEE Press, NJ (2005)

5. Chi, Y., Wang, H., Yu, P S, Muntz, R.: Moment: maintaining closed frequent itemsets
over a stream sliding window. In: Proc. of the fourth IEEE International Conference on
Data Mining, UK, pp. 59–66. IEEE Press, NJ (2004)

 Mining Maximal Frequent Itemsets in Data Streams Based on FP-Tree 489

6. Jiang, N., Gruenwald, L.: CFI-Stream: mining closed frequent itemsets in data streams. In:
Proc. of the 12th ACM SIGKDD international conference on Knowledge discovery and
data mining, Philadelphia, PA, USA, 2006, pp. 592–597 (2006)

7. Bayardo, R.: Efficiently mining long patterns from databases. In: ACM SIGMOD
Conference (1998)

8. Agarwal, R., Aggarwal, C., Prasad, V.: A tree projection algorithm for generation of
frequent itemsets. Journal of Parallel and Distributed Computing (2001)

9. Gouda, K., Zaki, M.J.: Efficiently Mining Maximal Frequent Itemsets. In: Proc. of the
IEEE Int. Conference on Data Mining, San Jose (2001)

10. Rigoutsos, L., Floratos, A.: Combinatorial pattern discovery in biological sequences: The
Teiresias algorithm. Bioinformatics 14(1), 55–67 (1998)

11. Grahne, G., Zhu, J.: Efficiently Using Prefix-trees in Mining Frequent Itemsets. In: Proc.
of the IEEE ICDM Workshop on Frequent Itemset Mining Implementations, November
19, 2003, Melbourne, Florida, USA (2003)

12. Yan, Y., Li, Z., Chen, H.: Fast Mining Maximal Frequent ItemSets Based on FP-Tree. In:
Webb, G.I., Yu, X. (eds.) AI 2004. LNCS (LNAI), vol. 3339, pp. 475–487. Springer,
Heidelberg (2004)

13. Zhu, Y., Shasha, D.: StatStream: Statistical monitoring of thousands of data streams in real
time. In: Bernstein, P., Ioannidis, Y., Ramakrishnan, R. (eds.) Proc. of the 28th Int’l Conf.
on Very Large Data Bases, Hong Kong, pp. 358–369. Morgan Kaufmann, Seattle (2002)

14. Rymon, R.: Search through Systematic Set Enumeration. In: Proc. of Third Int’l Conf. on
Principles of Knowledge Representation and Reasoning, pp. 539–550 (1992)

15. Han, J., Pei, J., Yin, Y.: Mining Frequent Patterns without Candidate Generation. In: Proc.
2000 ACM-SIGMOD Int. Conf. on Management of Data (SIGMOD’00), May 2000,
Dallas, TX (2000)

16. Ma, Z., Chen, X., Wang, X.: Pruning strategy for mining maximal frequent itemsets.
Journal of Tsinghua Univ 45(S1), 1748–1752 (2005)

17. Agrawal, R., Srikant, R.: Fast algorithms for mining association rules. In: Proc. Of the 20th
Intl. Conf. on Very Large Databases (VLDB’94), Santiago, Chile, Sept, 1994, pp. 487–499
(1994)

18. Codes and datasets available at http://fimi.cs.helsinki.fi/

	Mining Maximal Frequent Itemsets in Data Streams Based on FP-Tree
	Introduction
	Preliminaries and Related Work
	Problem Revisit
	Related Work

	FpMFI-DS
	The Construction of FP-Tree in FpMFI-DS
	Pruning Techniques
	Algorithm FpMFI-DS

	Experimental Evaluations
	Performance Comparisons
	Scalability of FpMFI-DS

	Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

