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Abstract. Mining maximal frequent itemsets in data streams is more difficult 
than mining them in static databases for the huge, high-speed and continuous 
characteristics of data streams. In this paper, we propose a novel one-pass 
algorithm called FpMFI-DS, which mines all maximal frequent itemsets in 
Landmark windows or Sliding windows in data streams based on FP-Tree. A 
new structure of FP-Tree is designed for storing all transactions in Landmark 
windows or Sliding windows in data streams. To improve the efficiency of the 
algorithm, a new pruning technique, extension support equivalency pruning 
(ESEquivPS), is imported to it. The experiments show that our algorithm is 
efficient and scalable. It is suitable for mining MFIs both in static database and 
in data streams. 
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1   Introduction 

In recent years, data streams have been researched widely. The technologies about 
data streams are used in many applications. Examples of such applications include 
financial applications, network monitoring, security, telecommunications data 
management, web applications, manufacturing, sensor networks, and others [1]. In a 
word, a data stream is a real-time, continuous, ordered (implicitly by arrival time or 
explicitly by timestamp) sequence of items. The algorithm for mining data streams 
must be single-pass algorithm for the characters of data streams. 

The time and space efficiency of data mining in data streams is more significant 
than that in static databases. The number of maximal frequent itemsets and closed 
frequent itemsets is much less than that of frequent itemsets. So, mining MFIs or CFIs 
can get better time and space efficiency than mining frequent itemsets. Mining 
maximal frequent itemsets [2][3][4] and mining closed frequent itemsets [5][6] in data 
streams is to be a tendency. 

Many good algorithms have been developed for mining maximal frequent itemsets 
in static database, for example MaxMiner [7], DepthProject [8], GenMax [9], AFOPT 
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[10], FPMax* [11], FpMFI [12]. All these algorithms need to scan database more than 
one pass. They are not suitable for mining maximal frequent itemsets in data streams. 
In all these algorithms, FpMFI is almost fastest for all tested database [12]. The 
algorithm needs to scan database two passes. We reconstruct the algorithm to a 
single-pass one, called FpMFI-DS. To mining maximal frequent itemsets in 
Landmark windows or Sliding windows in data streams, we must store all 
transactions in the window. For Sliding windows, when transaction is out of window, 
it should be deleted from window. To satisfy with these requires, we designed a new 
structure of FP-Tree, which can store all transactions in Landmark windows or 
Sliding windows, and when transaction is out of Sliding windows, it can be deleted. 
To reduce search space of FpMFI-DS, a new pruning technique, extension support 
equivalency pruning, is added in the algorithm. The efficiency of FpMFI-DS is close 
to FPMax* and a little lower than that of FpMFI. 

2   Preliminaries and Related Work 

This section will formally describe the MFIs mining problem in data streams and the 
set enumeration tree that represents search space. Also the related works will be 
introduced in this section. 

2.1   Problem Revisit 

Let },...,,{ 21 miiiI =  be a set of m distinct elements, called items. A subset IX ⊆  is 

called an itemset. An itemset with k items is called a k-itemset. Each transaction t is a 
set of items in I. A data stream, ),...,[ 21 NtttDS = , is an infinite sequence of 

transaction. For all transactions in a given window W over data stream, the support of 
an itemset X, denoted as sup(X)= / | |xD W , where 

xD  is the number of transactions 

in which X occurs as a subset and | |W  is the width of the window. For a given  

threshold min_sup in the range of [0,1], itemset X is frequent if sup(X) ≥ min_sup. If 
sup(X) ≥ min_sup and for any XY ⊇ , we have sup(Y) < min_sup, then X is called 
maximal frequent itemset in window W. 

From the definitions above, we can see that the selection of window W is important 
for an itemset X be a frequent one. In paper [13], three windows models are 
introduced, including landmark windows, sliding windows, damped windows. In this 
paper, we focus on mining the set of all maximal frequent itemsets in landmark 
windows or in sliding windows over data streams. 

To get all maximal frequent itemsets, one method is to enumerate all itemsets that 
maybe be maximal frequent itemsets, count the support of these itemsets and decide 
whether they are maximal frequent itemsets. In paper [14], Rymon presents the 
concept of generic set enumeration tree search framework. The enumeration tree is a 
virtual tree. It is just used to illustrate how sets of items are to be completely 
enumerated in a search problem. The tree could be traversed depth-first, breadth-first, 
or even best-first as directed by some heuristic. In the domain of data mining, the set 
enumeration tree is also named after search space tree. 
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But, when the number of different items is big, the algorithm that searches all 
search space may suffer from the problem of combinatorial explosion. So the key to 
an efficient set-enumeration search is the pruning techniques that are applied to 
remove entire branches from consideration [7]. The two most often used pruning 
techniques, subset infrequency pruning and superset frequency pruning, are based on 
following two lemmas: 

Lemma 1. A restricted subset of any frequent itemset is not a maximal frequent 
itemset.  

Lemma 2. A subset of any frequent itemset is a frequent itemset, and a superset of 
any infrequent itemset is not a frequent itemset. 

For example, for the dataset in the left, Fig. 1 shows the corresponding search 
space tree. In Fig. 1, we suppose I = {a,b,c,d,e} is sorted in firm lexicographic order. 
The pruning techniques used in the tree includes subset infrequency pruning (SIP) and 
superset frequency pruning (SFP). The root of the tree represents the empty itemset, 
and the nodes at level k contain the k-itemsets. The itemset associated with each node, 
n, will be referred as the node’s head(n). The possible extensions of the itemset is 
denoted as con_tail(n), which is the set of items after the last item of head(n). The 
frequent extensions denoted as fre_tail(n) is the set of items that can be appended to 
head(n) to build the longer frequent itemsets. In depth-first traversal of the tree, 
fre_tail(n) contains only the frequent extensions of n. The itemset associated with 
each children node of node n is build by appended one of fre_tail(n) to head (n). As 
example in Fig. 1, suppose node n is associated with {b}, then head(n) = {b} and 
con_tail(n) = {c,d,e}. For {e} is not frequent, fre_tail(n) = {c,d}. The children node 
of n, {b,c}, is build by appending c from fre_tail(n) to {b}.  

The problem of MFI mining can be thought as to find a border of the tree, all the 
elements above the border are frequent itemsets, and others are not. All MFIs are near 
the border. As our examples in Fig. 1, itemsets in solid rectangle are MFIs.  
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Fig. 1. The set enumeration tree built based on the dataset in the left 

2.2   Related Work 

Some one-pass algorithms for mining maximal frequent itemsets in data streams have 
been developed, for example, DSM-MFI [3], estDec+ [4] and INSTANT [2]. They 
are all approximate algorithm.  
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DSM-MFI mines the set of all maximal frequent itemsets in landmark windows 
over data streams. The algorithm is composed of four steps. First, it reads a window 
of transactions from the buffer in main memory, and sorts the items of transactions in 
a lexicographical order. Second, it constructs and maintains the in-memory summary 
data structure, SFI-forest. Third, it prunes the infrequent information from the 
summary data structure. Fourth, it searches the maximal frequent itemsets from the 
current summary data structure. Steps 1 and 2 are performed in sequence for a new 
incoming basic window. Steps 3 and 4 are usually performed periodically or when it 
is needed [3]. The experiment results in paper [3] show that DSM-MFI is efficient on 
both sparse and dense datasets, and scalable to very long data streams. 

estDec+ use a structure, CP-tree (Compressed-prefix tree), to keep the supports of 
all the significant itemsets in main memory. It also consists of four phases: parameter 
updating, node restructuring, itemset insertion, and frequent itemset selection. When a 
new transaction Tk in a data stream Dk-1 is generated, these phases except the frequent 
itemset selection phase are performed in sequence. The frequent itemset selection 
phase is performed only when the up-to-date result set of frequent or maximal 
frequent itemsets is requested. The main advantage of the algorithm is that it adopts 
an adaptive memory utilization scheme to maximize the mining accuracy for confined 
memory space at all times [4]. 

INSTANT mines maximal frequent itemsequences from data streams based on a 
new mining theory provided by paper [2]. Where an itemsequence is an ordered list of 
items. The main advantage of the algorithm is that it is an online algorithm, which can 
directly display current maximal frequent itemsequences while they are generated. 
But the time efficiency of the algorithm is affected. 

Paper [12] proposed a MFIs mining algorithm, FpMFI. It is an improvement over 
FPMax* and outperforms FPMax* by 40% averagely. They all need to scan dataset 
two passes. In this paper, we propose an algorithm, FpMFI-DS, based on FpMFI. 
FpMFI-DS only need to scan dataset one pass. It is a one-pass and exact algorithm.  

3   FpMFI-DS 

In this section, FpMFI-DS algorithm is introduced in details. 

3.1   The Construction of FP-Tree in FpMFI-DS 

To construct FP-Tree, it usually needs to scan database two passes. The first scan of 
database derives a list of frequent items. Then it sorts the items by frequency 
descending order. The list of items in header table and each path of prefix-tree will 
follow this order. The second scan of database gets every transaction and inserts all 
frequent items in transaction into FP-Tree. During the process of mining, to construct 
the FP-Tree of node n, it needs to scan the head(n)’s conditional pattern base that 
comes from FP-tree of its parent node two passes[15]. Paper [11] improves this 
approach by adopting an array-based technique. It only needs to scan head(n)’s 
conditional pattern base one pass. 

In FpMFI-DS, to implement one-pass algorithm, we must complete the 
construction of FP-Tree by only scanning dataset one-pass.  
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To mine maximal frequent itemsets in sliding windows, the FP-Tree of root should 
contain all the transactions in the Sliding windows. When a transaction comes to 
window, all items of the transaction are inserted to the FP-Tree of root, whether they 
are frequent or infrequent. And when a transaction is out of window, it should be 
deleted from the FP-Tree of root. So except for header table and prefix-tree, the FP-
Tree of root in FpMFI-DS also contains a tidlist, a list of IDs of the transactions in 
window. Every item in the tidlist is composed of an ID of transaction (an integer) and 
a pointer to the last node of the transaction in the FP-Tree of root. For an one-pass 
algorithm, when adding the transaction to the root FP-Tree, we can’t get the 
frequencies of items in all transactions. So the order of the items in the FP-Tree of 
root can’t be frequency descending order. In FpMFI-DS, the order of the items in the 
FP-Tree of root is based on the lexicographical order of the items. When a transaction 
comes to window, all items of the transaction are inserted to FP-Tree by 
lexicographical order. When a transaction is out of window, the last item of the 
transaction in the FP-Tree of root can be found through the transaction’s ID and 
pointer in the tidlist, then it is deleted from root FP-Tree. To mine maximal frequent 
itemsets in landmark windows, we only need to fixup beginning side of the window. 

The subsequent FP-Tree during the process of mining is similar to that in FPMFI. 
To improve the effectiveness of superset frequency pruning, the order of the items in 
the subsequent FP-Tree also adopts frequency descending order.  

For example, for data streams and window width in the left, Fig. 2 shows the  
FP-tree of root built based on transactions in first window. The FP-tree includes five 
transactions. 
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Fig. 2. The FP-Tree of root built based on transactions in first window 
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Fig. 3. The FP-Tree of root built based on transactions in second window 
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Fig. 3 shows the FP-tree of root built based on transactions in second window. In 
the FP-Tree, the first transaction is deleted from it and the sixth transaction is inserted 
into it.   

When min_sup is 2, Fig. 4 shows the FP-tree of itemset {f} during the process of 
mining for data in Figure 3. The items order in Fig. 2 and Fig. 3 is based on the 
lexicographical order of the items, while that in Fig. 4 is based on frequency 
descending order. 

root

a:2

d:1

c:4 b:1

d:1b:1

header

item node-links

c:4
a:2
b:2
d:2
e:2 e:1

e:1

 

Fig. 4. The FP-Tree of itemset {f} during the process of mining for data in Figure 2 

3.2   Pruning Techniques 

FpMFI uses three pruning techniques, including subset infrequency pruning, superset 
frequency pruning, parent equivalence pruning. The efficiency of these pruning 
techniques is high for item ordering policy used by it. In FpMFI, since the item order 
in the FP-Tree of root is based on the lexicographical order, the item order in first 
level of search space tree has to accord with it. If only use these pruning techniques, 
the efficiency is lower than that in FpMFI, especially for dense dataset. For example, 
for dataset MUSHROOM, search space of FpMFI-DS is about as twice as that of 
FpMFI. So, Excepting for these pruning techniques, another pruning technique, 
ESEquivPS, is adopted by FpMFI-DS. ESEquivPS is firstly present in paper [16]. The 
pruning technique is described as following:  

Supposed p and n are nodes in search space tree, and n is a children node of p. Let 
item )(_ ptailfrex ∈  and )(_ ntailfrex ∈ . If sup(head(p) ∪ {x}) = 

sup(head(n) ∪ {x}), then any offspring node of p that contains item x and is in the 
right of node n can be pruned.  

Proof. Let j be an item associated with node n, X and Y are itemsets associated with 
head(p) ∪ {x} and head(n) ∪ {x}, respectively. Since sup(X) = sup(Y), then any 
transaction T containing X must contains item j. Thus, the maximal frequent itemset 
containing X must containing j.In the p-subtree, the itemsets, which associated with 
the nodes that contain item x and are in the right of node n, must not contain item j for 
the character of search space tree. So, they can’t be maximal frequent itemsets.  

From experiments, we found that if the nodes in every level of search space tree is 
in the order of frequency descending, then the pruning technique is invalidity. 
Fortunately, the first level of search space tree in FpMFI-DS is in the lexicographical 
order of the items. Then we can use it for the first level of search space tree. The 
experiments show that for the dense datasets, MUSHROOM, the size of search space 
can be trimmed off by about 30%. 
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3.3   Algorithm FpMFI-DS 

Fig. 5 shows algorithm FpMFI-DS. Though the items order in the first level of search 
space tree of FpMFI-DS is different from that of FpMFI, the mining procedure of the 
two algorithms is similar. The difference is that algorithm FpMFI-DS adopts the new 
pruning technique, ESEquivPS (line 4 to line 6). 

PROCEDURE: FpMFI-DS Algorithm
INPUT: 
    n: a node in search space tree that associated with a head itemset h, 
        a FP-tree, a MFI-tree,  and an array
    M-trees: MFI-trees of all ancestor nodes of n
1  For each item x from end to beginning in header of n.FP-tree 
2    h'=h∪{x} //h' identifies n'
3    if (sup(h')<min_sup)   continue
4    if (ESEquivPS_cheching(x))   continue
5    if (Thirdlevel() and sup({x})= = sup(h'))
6       insert true into respective position of a bool array for ESEquivPS
7    if x is not the end item of the header
8       if(superset_checking(con_tail(n'),n.MFI-tree)  return
9       if(superset_checking(con_tail(n'),n.FP-tree)
10        insert h'∪con_tail(n') into M-trees return
11    if n.array is not null
12         fre_tail(n') = {frequent items for x in n.array}
13    else
14       fre_tail(n') = {frequent items in conditional pattern base of h' }
15    PeIs = {items whose count equal to the support of h'}
16    if(superset_checking(fre_tail(n'), n. MFI-tree)
17       if the number of items before x in the header is | fre_tail(n')| 
18             return
19      else continue
20    if(superset_checking(fre_tail(n'), n. FP-tree)
21       insert h'∪fre_tail(n') into M-trees
22       if the number of items before x in the header is | fre_tail(n')|   
23           return
24       insert fre_tail(n') into n.MFI-tree continue
25    h' = h'∪PeIs , fre_tail(n’) = fre_tail(n’) – PeIs
26    sort the items in fre_tail(n')
27    construct the FP-tree of n'
28    if(superset_checking(fre_tail(n'), n'. FP-tree)
29      insert h'∪fre_tail(n') into M-trees
30      if the number of items before x in theheader is | fre_tail(n')|
31         return
32      insert fre_tail(n') into n.MFI-tree continue
33    construct the MFI-tree of n'
34    M-trees = M-trees∪{n.MFI-tree}

35    call FpMFI-DS(n' ,M-trees)  

Fig. 5. Algorithm FpMFI-DS 

To implement ESEquivPS, we use an integer array store the support of items in 
first level of search space tree and use a bool array denote if the respective items 
satisfy with the condition of ESEquivPS. When exploring the third level of search 
space tree, we check if the support of respective item equals to that of the  
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corresponding item in the first level of search space tree. If they are, the 
corresponding position in the bool array is set true (line 5 to line 6). Before exploring 
any node in the search space tree, we first chech if the corresponding position in the 
bool array is set to true. If it is, the node should be cut off (line 4).  

4   Experimental Evaluations 

All the experiments were conducted with a 2.4 GHZ Pentium IV with 512 MB of 
DDR memory running a Redhat Linux 9.0 operation system. We implemented the 
code of FpMFI-DS by c++ and compiled it with the g++ 2.96 compiler. 

4.1   Performance Comparisons 

To evaluate the performance of FpMFI-DS, we have compared its performance with a 
representative algorithm, INSTANT [2]. The advantage of INSTANT is that it can 
directly display current maximal frequent itemsequence (not itemsets) while they are 
generated. For sparse datasets, the efficiency of the algorithm is high. But for dense 
datasets, the efficiency is not very good. The code of INSTANT was provided by its 
authors, Guojun Mao, etc. It is also written in c++ and compiled by g++ 2.96 
compiler. 

The dataset in the experiment is T20I5D10K, a dataset generated by IBM data 
generator [17]. The synthetic dataset T20I5D10K has average transaction size T of 20 
items and the average size of frequent itemset I of 5 items and the number of 
transactions D of 10K. It is a sparse dataset.  
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Fig. 6. Performance comparisons with INSTANT 

Fig. 6 shows the result of performance comparisons for dataset T20I5D10K. The 
efficiency of FpMFI-DS is much higher than that of INSTANT.  For the dataset, 
maximal total time of FpMFI-DS is lower than 2 seconds.  

We also compared its performance with some multi-pass algorithms. Fig. 7 and 
Fig. 8 show the result of performance comparisons with algorithm FPMax*. The 
dataset in Fig. 7 is T20I5D100K, a sparse dataset and the dataset in Fig. 7 is  
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MUSHROOM, a dense dataset. The source code of algorithm FPMax* and dataset 
MUSHROOM were downloaded from [18]. Algorithm FPMax* is written in c++ and 
compiled with the g++ 2.96 compiler, too.  
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Fig. 7. Performance comparisons with FPMax* for dataset T20I5D100K 
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Fig. 8. Performance comparisons with FPMax* for dataset MUSHROOM 

From Fig. 7 and Fig. 8, we can see that for dense dataset, the efficiency of FpMFI-
DS is a little higher than that of FPMax*, and for sparse dataset, the efficiency of 
FpMFI-DS is a little lower than that of FPMax*. We can draw a conclusion that the 
efficiency of two algorithms is close. The result in paper [11] shows that the 
efficiency of FPMax* is very high. So the efficiency of FpMFI-DS is good, too.  

4.2   Scalability of FpMFI-DS 

To evaluate the scalability of FpMFI-DS, we use four huge datasets, T10I5D1000K, 
T10I5D2000K, T10I5D3000K, T10I5D4000K. The minimum support is 0.1%. From 
Fig. 9, we can see that the execution time grows smoothly as the dataset size increases 
from 1,000K to 4,000K. The algorithm has scalability. 
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Fig. 9. The scalability of FpMFI-DS 

5   Conclusions 

In this paper, we proposed a novel one-pass algorithm, FpMFI-DS, which mines all 
set of the maximal frequent itemsets in data streams. To mine MFIs both in landmark 
windows and in sliding windows, we adopt a new structure of FP-Tree. To reduce the 
search space of the algorithm, a new pruning technique, ESEquivPS, is adopted by the 
algorithm. The experiments show that the algorithm is efficient on both sparse and 
dense datasets, and has good scalability.  
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