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Abstract. It is shown that the optimum of an integer program in fixed
dimension, which is defined by a fixed number of constraints, can be
computed with O(s) basic arithmetic operations, where s is the binary
encoding length of the input. This improves on the quadratic running
time of previous algorithms which are based on Lenstra’s algorithm and
binary search.

It follows that an integer program in fixed dimension, which is defined by
m constraints, each of binary encoding length at most s, can be solved
with an expected number of O(m+log(m) s) arithmetic operations using
Clarkson’s random sampling algorithm.

1 Introduction

An integer program is a problem of the following kind. Given an integral matrix
A € Z™*™ and integral vectors b € Z™, d € Z", determine

max{d’z | Ax <b, x € Z"}. (1)

It is well known [6] that integer programming is NP-complete. The situation
changes, if the number of variables or the dimension is fixed. For this case,
Lenstra [I3] showed that () can be solved in polynomial time. Lenstra’s algo-
rithm does not solve the integer programming problem directly. Instead, it is an
algorithm for the integer feasibility problem. Here, the task is to find an integer
point which satisfies all the constraints, or to assure that Ax < b is integer infea-
sible. If Az < b consists of m constraints, each of binary encoding length O(s),
then Lenstra’s algorithm requires O(m + s) arithmetic operations on rational
numbers of size O(s). The actual integer programming problem () can then be
solved via binary search. It is known [I5, p. 239] that, if there exists an optimal
solution, then there exists one with binary encoding length O(s). Consequently,
the integer programming problem can be solved with O(m s+ s?) arithmetic op-
erations on O(s)-bit numbers. Lenstra’s algorithm was subsequently improved [9]
1] by reducing the dependence of the complexity on the dimension n. However,
these improvements do not affect the asymptotic complexity of the integer pro-
gramming problem in fixed dimension. Unless explicitely stated, we from now-on
assume that the dimension n is fixed.
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Clarkson [2] presented a random sampling algorithm to reduce the depen-
dence of the complexity on the number of constraints[] His result is the following.
An integer program which is defined by m constraints can be solved with O(m)
basic operations and O(logm) calls to an algorithm which solves an integer pro-
gram defined by a fixed size subset of the constraints, see also [7].

In light of these results, we are motivated to find a faster algorithm for
the integer programming problem in fixed dimension with a fixed number of
constraints. It is known [4] that the 2-dimensional integer programming problem
with a fixed number of constraints can be solved in linear time. We generalize
this to any fixed dimension.

Theorem 1. An integer program of binary encoding length s in fized dimen-
sion, which is defined by a fixzed number of constraints, can be solved with O(s)
arithmetic operations on rational numbers of binary encoding length O(s).

With Clarkson’s result, Theorem [I] implies that an integer program which is
defined by m constraints, each of binary encoding length O(s) can be solved
with an expected number of O(m + log(m) s) arithmetic operations on rational
numbers of binary encoding length O(s). Our result was also motivated by the
following fact. The greatest common divisor of two integers can be formulated
as an integer program in fixed dimension with a fixed number of constraints,
see, e.g., [I1]. Our result matches the complexity of the integer programming
approach to the ged with the complexity of the Euclidean algorithm.

Outline of our method. As in Lenstra’s algorithm, we make use of the lattice
width concept. Let K C R"™ be a full-dimensional convex body. The width of K
along a direction ¢ € R™ is the quantity w.(K) = max{c'x |z € K} —min{c’z |
x € K}. The width of K, w(K), is the minimum of its widths along nonzero
integral vectors ¢ € Z™ \ {0}. If K does not include any lattice points, then K
must be “flat”. This fact is known as Khinchin’s flatness theorem (see [10]).

Theorem 2 (Flatness theorem). There exists a constant f,, depending only
on the dimension n, such that each full-dimensional convex body K C R™, con-
taining no integer points has width at most f,.

This fact is exploited in Lenstra’s algorithm [T38] for the integer feasibility
problem as follows. If one has to decide, whether a full-dimensional polyhedron
P is integer feasible or not, one computes a flat direction of P, which is an
integral vector ¢ € Z™ \ {0} such that w(P) < w.(P) < vw(P) holds for some
constant v depending on the dimension. If w.(P) is larger than v f,, then P
must contain integer points by the flatness theorem. Otherwise, an integer point
of P must lie in one of the constant number of (n — 1)-dimensional polyhedra

PN (c"z =), where § € ZN [min{c’z | 2 € P}, max{c’x | z € P}].

! Clarkson claims a complexity of O(m + log(m) s) because he mistakenly relied on
algorithms from the literature [I3[9l5] for the integer programming problem with a
fixed number of constraints, which actually only solve the integer feasibility problem.
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In this way one can reduce the integer feasibility problem in dimension n to a
constant number of integer feasibility problems in dimension n — 1.

Our approach is to let the objective function slide into the polyhedron until
the with of the truncated polyhedron P, = PN(d’z > ) is sandwiched between
fn+1and v (f, +1). In this way, we assure that the optimum to the integer
programming problem lies in the truncation P, which is still flat along some
integer vector ¢, thereby reducing the integer programming problem over an n-
dimensional polyhedron to a constant number of integer programming problems
over the (n — 1)-dimensional polyhedra

P, N (c"x =), where 6 € ZN [min{c’z | x € P;)}, max{c’z | z € P.}].

The problem of determining the correct parameter 7 is referred to as the approz-
imate parametric lattice width problem. The 2-dimensional integer programming
algorithm of Eisenbrand and Rote [3] makes already use of this concept. In this
paper we generalize this approach to any dimension.

1.1 Notation

A polyhedron P is a set of the form P = {z € R™ | Az < b}, for some matrix
A € R™*"™ and some vector b € R™. The polyhedron is rational if both A and b
can be chosen to be rational. If P is bounded, then P is called a polytope. The
dimension of P is the dimension of the affine hull of P. The polyhedron P C R"
is full-dimensional, if its dimension is n. An inequality ¢’z < & defines a face
F={zeP|cz=6}of Pif § > max{c'z |z € P}. If F # () is a face
of dimension 0, then F' is called a wvertex of P. A simplex is full-dimensional
polytope X' C R™ with n + 1 vertices. We refer to [14] and [I5] for further basics
of polyhedral theory.

The size of an integer z is the number size(z) = 1+ [logy(|z| + 1)]. The size
of a rational is the sum of the sizes of its numerator and denominator. Likewise,
the size of a matrix A € Z™*™ is the number of bits needed to encode A, i.e.,
size(A) = 3, ;size(a; ;), see [I5 p. 29]. If a polyhedron P is given as P(A,b),
then we denote size(A) + size(b) by size(P). A polytope can be represented by a
set of constraints, as well as by the set of its vertices. In this paper we concentrate
on polyhedra in fixed dimension with a fixed number of constraints. In this case,
if a rational polytope is given by a set of constraints Az < b of size s, then the
vertex representation conv{vy,...,vx} can be computed in constant time and
the vertex representation has size O(s). The same holds vice versa.

A rational lattice in R™ is a set of the form A = {Az | x € Z"}, where
A € Q"*" is a nonsingular matrix. This matrix is a basis of A and we say that
A is generated by A and we also write A(A) to denote a lattice generated by a
matrix A. A shortest vector of A is a nonzero member 0 # v € A of the lattice
with minimal euclidean norm ||v||. We denote the length of a shortest vector by

SV(A).
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2 Proof of Theorem 1]

Suppose we are given an integer program (1) in fixed dimension with a fixed
number of constraints of binary encoding length s. It is very well known that one
can assume without loss of generality that the polyhedron P = {x € R™ | Az <
b} is bounded and full-dimensional and that the objective is to find an integer
vector with maximal first component. A transformation to such a standard form
problem can essentially be done with a constant number of Hermite-Normal-
Form computations and linear programming. Since the number of constraints is
fixed, this can thus be done with O(s) arithmetic operations on rational numbers
of size O(s).

Furthermore, we can assume that P is a two-layer simplex Y. A two-layer
simplex is a simplex, whose vertices can be partitioned into two sets V and W,
such that the first components of the elements in V' and W agree, i.e., for all
v1,v2 € V one has v1(1) = v2(1) and for all wy,ws € W one has w1 (1) = wa(1).
An integer program over P can be reduced to the disjunction of integer programs
over two-layer simplices as follows. First, compute the list of the first components
ai, ... ,ap of the vertices of P in decreasing order. The optimal solution of IP
over P is the largest optimal solution of IP over polytopes

Pi=Pn(z(1) <o) N(z(1) > aip1), i=1,... 0 1. (2)

Carathéodory’s theorem, see [15, p. 94], implies that each P; is covered by the
two-layer simplices, which are spanned by the vertices of P;. Thus we assume
that an integer program has the following form.

Problem 1 (IP). Given an integral matrix A € Z""1*" and an integral vector
b € Z™*! which define a two-layer simplex X = {z € R" | Az < b}, determine

max{z(l) |z € PNZ"}. (3)
The size of an IP is the sum of the sizes of A and b.

Our main theorem is proved by induction on the dimension. We know that
it holds for n = 1,2 [MI17]. The induction step is by a series of reductions, for
which we now give an overview.

(Step 1) We reduce IP over a two-layer simplex X' to the problem of determining
a parameter 7, such that the width of the truncated simplex XN (x(1) >
) is sandwiched between f,, + 1 and (f,, + 1) -y, where « is a constant
which depends on the dimension only. This problem is the approximate
parametric lattice width problem.

(Step 2) We reduce the approximate parametric lattice width problem to an
approximate parametric shortest vector problem. Here one is given a
lattice basis A and parameters U and k. The task is to find a parameter
p such that the length of the shortest vector of the lattice generated
A, i is sandwiched between U and ' U, where 7/ is a constant which
depends on the dimension only. Here A, ;, denotes the matrix, which
evolves from A by scaling the first k£ rows with p.
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(Step 3) We show that an approximate parametric shortest vector problem can
be solved in linear time with a sequence of calls to the LLL-algorithm.

The linear complexity of the parametric shortest vector problem carries over
to the integer programming problem with a fixed number of constraints, if we
can ensure the following conditions for each reduction step.

(C-1) A problem of size s is reduced to a constant number of problems of size
O(s).

(C-2) The size of the rational numbers which are manipulated in the course of
the reduction of a problem of size s, do not grow beyond O(s).

At the end of each reduction step, we clarify that the conditions (C-1) and (C-2)
are fulfilled.

2.1 Reduction to the Parametric Lattice Width Problem

The parametric lattice width problem for a two-layer simplex X' is defined as
follows.

Problem 2 (PLW). Given a two-layer simplex X' C R™ and some K € N, find a
parameter 7 such that the width of the truncated simplex X = XN (z(1) > m)
satisfies

K < w(Zy) < 200/242 . [/ K, (4)

or assert that w(X) < 9(n+1)/2+2 rv/n] - K.

Let us motivate this concept. Denote the constant 2("+1)/2+2.7,/n] by . Run an
algorithm for PLW on input X' and f,, +1. If this returns a parameter 7 such that
fo+ 1< w(Xy) <v(fn+1), then the optimum solution of the IP over X' must
be in the truncated simplex Y. This follows from the fact that we are searching
an integer point with maximal first component, and that the truncated polytope
has to contain integer points by the flatness theorem. On the other hand, this
truncation X, is flat along some integer vector c¢. Thus the optimum of IP is
the largest optimum of the constant number of the n — 1-dimensional integer
programs

max{z(1) |z € (¥, N (2 = a))NZ"}, (5)

where a € Z N [min{c’z | x € Y;}, max{c’z | z € X,;}]. This means that
we have reduced the integer programming problem over a two-layer simplex in
dimension n to a constant number of integer programming problems in dimen-
sion n — 1 with a fixed number of constraints.

If the algorithm for PLW asserts that w(X) < v K, then X itself is already flat
along an integral direction c. Similarly in this case, the optimization problem can
be reduced to a constant number of optimization problems in lower dimension.
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Analysis. If the size of ¥ and K is at most s and PLW can be solved in O(s)
steps with rational numbers of size O(s), then the parameter = which is returned
has size O(s). A flat direction of X; can be computed with O(s) arithmetic
operations on rationals of size O(s). In fact, a flat direction is a by-product of
our algorithm for the approximate parametric shortest vector problem below. It
follows that the constant number of n — 1-dimensional IP’s (B) have size O(s).
These can then be transformed into IP’s in standard form with n — 1 variables
and a constant number of constraints, in O(s) steps. Consequently we have the
following lemma.

Lemma 1. Suppose that PLW for a two-layer simplex X and parameter K with
size(X) +size(K) = s can be solved with O(s) operations on rational numbers of
size O(s), then IP over X can also be solved with O(s) operations with rational
numbers of size O(s).

2.2 Reduction to the Approximate Parametric Shortest Vector
Problem

In this section we show how to reduce PLW for a two-layer simplex X' = conv(VU
W) and parameter K to an approzimate parametric shortest vector problem. The
width of a polyhedron is invariant under translation. Thus we can assume that
0 € V and that the first component of the vertices in W is negative.

Before we formally describe our approach, let us explain the idea with the
help of Figure [I. Here we have a two-layer simplex X in 3-space. The set V

(1 = pvr + pwr (1 = p)v1 + pw

(1 — p)vy + pws (1 — p)v1 + pwa

pwt pwt

w2 w2

Fig. 1. Solving PLW.

consists of the points 0 and v; and W consists of w; and wy. The picture on the
left describes a particular point in time, where the objective function slid into
X. So we consider the truncation X, = XN (z(1) > 7) for some 7 > wy(1). This
truncation is the convex hull of the points
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0,v1, pawy, pwz, (1 — p)vy + pawy, (1 — p)vg + paws, (6)

where p = 7/wy(1). Now consider the simplex Xy, ,y, which is spanned by the
points 0, vy, pwy, pwso. This simplex is depicted on the right in Figure [l If this
simplex is scaled by 2, then it contains the truncation X,. This is easy to see,
since the scaled simplex contains the points 2(1 — u) vy, 2 pw; and 2 pws. So
we have the condition Xy ,w C X C 22Xy ,w. From this we can infer the
important observation

w(Zv,uw) < w(Zr) <2w(Dvuw). (7)

This means that we can solve PLW for Y| if we can determine a y > 0, such that
the width of the simplex Xy, is sandwiched between K and (y/2) K, where y
denotes the constant 2(*+1)/2+2. [\ /n]. We now generalize this observation with
the following lemma. A proof is straightforward.

Lemma 2. Let X = conv(V UW) C R™ be a two-layer simplex, where 0 € V,
w(l) <0 for allw € W and let ™ be a number with 0 > 7 > w(1l), w € W. The
truncated simplex X, = X N (x(1) > m) is contained in the simplex 2 Xy ,w,
where Xy ,,w = conv(V U uW), where p = w/w(1l), w € W. Furthermore, the
following relation holds true

w(Zvuw) < w(Ex) <2w(Tvuw). (8)

Before we inspect the with of Xy, w, let us introduce some notation. We
define for an nxn-matrix A, the matrix A, , as

weAiyg), ifi <k,
A(i, j), otherwise.

Au,k(ivj) = { (9)

In other words, the matrix A, ; results from A by scaling the first k£ rows with
L.

Suppose that V = {0,v1,... ,0p—r} and W = {wy,... ,wi}. Let A € R**"
be the matrix, whose rows are the vectors wf, ... ,wi vl ... vl , in this order.
The width of Xy, along the vector ¢ can be bounded as

1Ak lloo < we(Evpw) < 21| Ak lloo, (10)
and consequently as
1/vVr) Ak cll S we(Zvuw) < 2[|Apkcll- (11)

The width of Xy, w is the minimum width along a nonzero vector ¢ € Z"™ —{0}.
Thus we can solve PLW for a two-layer simplex with parameter K if we can
determine a parameter p € Q< with

Vil - K < SV(A(4,)) <7/4- K. (12)
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By substituting U = [y/n] - K this reads as follows. Determine a p € Q¢ such
that

U <SV(A(A,r)) <20ntD/2. 0 (13)

If such a p > 0 exists, we distinguish two cases. In the first case one has 0 <
p < 1. Then # = w(1) - p is a solution to PLW. In the second case, one has
1 < p and it follows that w(X) < v K. If such a 4 € Q¢ does not exist, then
SV(A(A,k)) < U for each 1 > 0. Also then we assert that w(X) < vy K.

Thus we can solve PLW for a two-layer simplex X = conv(V U W) with
an algorithm which solves the approximate parametric shortest vector problem,
which is defined as follows: Given a nonsingular matrix A € Q™*", an integer 1 <
k < n, and some U € N, find a parameter p € Qs such that U < SV(A(A4, %)) <
2n+1)/2 .7 or assert that SV(A(A, %)) < 2HD/2. U for all p € Q.

We argue now that we can assume that A is an integral matrix and that 1
is a lower bound on the parameter p we are looking for. Clearly we can scale
the matrix A and U with the product of the denominators of the components of
A. In this way we can already assume that A is integral. If A is integral, then
(| det(A)],0,...,0) is an element of A(A). This implies that we can bound p
from below by 1/|det(A)|. Thus by scaling U and the last n — k rows of A with
| det(A)|, we can assume that p > 1. Therefore we formulate the approximate
parametric shortest vector problem in its integral version.

Problem 3 (PSV). Given a nonsingular matrix A € Z"*", an integer 1 < k < n,
and some U € N, find a parameter p € Q31 such that U < SV(A(4,x)) <
2n+D/2 . or assert that SV(A(A, ) < 2"+1/2. U for all p € Qs or assert
that SV(A(A)) > U.

By virtue of our reduction to the integral problem, the assertion SV(A(A)) > U
can never be met in our case. It is only a technicality for the description and
analysis of our algorithm below.

Analysis. The conditions (C-1) and (C-2) are straightforward since the binary
encoding lengths of the determinant and the products of the denominators are
linear in the encoding length of the input in fixed dimension.

Lemma 3. Suppose that a PSV of size s can be solved with O(s) arithmetic
operations on rational numbers of size O(s), then a PLW of size s for a two-layer

simplex X and parameter K can also be solved with O(s) arithmetic operations
on rational numbers of size O(s).

2.3 Solving the Approximate Parametric Shortest Vector Problem

In the following, we do not treat the dimension as a constant.
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The LLL Algorithm

First, we briefly review the LLL-algorithm for lattice-basis reduction [12]. We
refer the reader to the book of Grotschel, Lovasz and Schrijver [§] or von zur Ga-
then and Gerhard [16] for a more detailed account.

Intuitively, a lattice basis is reduced, if it is “almost orthogonal”. Reduction
algorithms apply unimodular transformations of a lattice basis from the right,
to obtain a basis whose vectors are more and more orthogonal.

The Gram-Schmidt orthogonalization (b3,...,b%) of a basis (b1,...,b,) of
R"™ satisfies

J
Z ]lb'L7 j -5 N, (14)

where each p;; = 1. A lattice basis B € Z"*" is LLL-reduced, if the following
conditions hold for its Gram-Schmidt orthogonalization.

(1) |pi ] <1/2,for every 1 <i<j<
(i) 1541 + w1, 0512 > 3/4 165112, fOf j=1.. - L

The LLL-algorithm iteratively normalizes the basis, which means that the
basis is unimodularly transformed into a basis which meets condition (i), and
swaps two columns if these violate condition (). These two steps are repeated
until the basis is LLL-reduced. The first column of an LLL-reduced basis is a
2(n=1)/2_factor approximation to the shortest vector of the lattice.

Algorithm 1: LLL

Input: Lattice basis A € Z™"*".

Output: Lattice basis B € Z"*" with A(A) = A(B) and
b1 < 2071728V (A(A4)).

B+ A
Compute GSO b}, pji of B as in equation ([4).
repeat

foreach j=1,... ,n

foreachi=1,... ,7—1
bj 4= bj — [p5i]bi
if There is a subscript j which violates condition (i)
Swap columns b; and bj;1 of B
Update GSO b}, pj:
) until B is LLL-reduced
) return B

e e e i L L e S
H = O 00 O O s W N
= O T

The key to the termination argument of the LLL-algorithm is the following
potential function ¢(B) of a lattice basis B € Z"*":

¢(B) = ||bg[|*" |3 >~ - [lo7 2. (15)
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The potential of an integral lattice basis is always an integer. Furthermore, if By
and By are two subsequent bases at the end of the repeat-loop of Algorithm [i]
then

6(B2) < J0(B). (16)
The potential of the input A can be bounded by ¢(A) < (||ai]|-- - |lan||)?". The
number of iterations can thus be bounded by O(n(log ||ai||+. . .+||axn]|)). Step @)
is executed only once and costs O(n?) operations. The number of operations per-
formed in one iteration of the repeat-loop can be bounded by O(n?). The rational
numbers during the course of the algorithm have polynomial binary encoding
length. This implies that the LLL-algorithm has polynomial complexity.

Theorem 3 (Lenstra, Lenstra and Lovész). Let A € Z™*"™ be a lattice basis
and let Ay be the number Ay = max{||a;|| | j = 1,...,n}. The LLL-algorithm
performs O(n*log Ag) arithmetic operations on rational numbers, whose binary
encoding length is O(nlog Ap).

An Algorithm for PSV

Suppose we want to solve PSV on input A € Z"*", U € Nand 1 < k < n.
The following approach is very natural. We use the LLL-algorithm to compute
approximate shortest vectors of the lattices A(A, i) for parameters p = 2Mlog Ul—i
with increasing ¢, until the approximation of the shortest vector, returned by the
LLL-algorithm for A(A, ;) is at most 2(»~1/2. ],

Before this is done, we try to assert that SV(A(A,)) < 2*+1/2. U holds
for all p € Q1. This is the case if and only if the sub-lattice A" of A(A),
which is defined by A" = {v € A | v(1) = ... = v(k) = 0} contains already
a nonzero vector of at most this length. A basis B’ of A’ can be read off the
Hermite-Normal-Form of A. The first step of the algorithm checks whether the
LLL-approximation of the shortest vector of A’ has length at most 2(*~1/2. .
If this is not the case, then there must be a p > 1 such that SV(A(A4,x)) > U.

As the algorithm enters the repeat-loop, we can then be sure that the length
of the shortest vector of A(B) is at least U. In the first iteration, this is ensured
by the choice of the initial p and the fact that the length of the shortest vector of
A’ is at least U. In the following iterations, this follows, since the shortest vector
of A(B) has length at least ||b1/2(*~1)/2 > U. Consider now the iteration where
the condition ||b;|| < 2(*~D/2.U is met. If we scale the first k components of by
by 2, we obtain a vector b’ € A(Aap ). The length of V' satisfies ||| < 2-||b1]| <
2(n+1/2. 7. On the other hand, we argued above that SV(Az,) > U. Last, if
the condition in step (@) is satisfied, then we can assure that SV(A(A4)) > U.
This implies the correctness of the algorithm.

Analysis. Let B9, BW . B(®) be the values of B in the course of the algo-
rithm at the beginning of the repeat-loop (step (@)) and consider two consecutive
bases B®) and B +1) of this sequence. Step ([B) decreases the potential of B,
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Algorithm 2: Iterated LLL

Input: Lattice basis A € Z"*", parameters k,U € N, 1 < k < n.
(1) Compute basis B’ of A, B’ + LLL(B')

() <202y
(3) return SV(A(A4px)) < 2+ 1/2 17 for all pE Q1
(4)  pe2lsVIT B A,

(5) repeat

(7) return SV(A) > U

(8) B+ Biyay

9) p <+ p/2

(10) B« LLL(B)

(11)  until [y <2079/ U

(12) return 2p

Thus by (I6), we conclude that the number ¢ of iterations performed by the
LLL-algorithm in step ([I0) satisfies

14
(3) o5®) > om0 a7)

From this we conclude that the overall amount of iterations through the repeat-
loop of the calls to the LLL-algorithm in step ([Q) can be bounded by

O(log p(B”)) = O(log (Au,1.)). (18)

The potential ¢(Ay ;) can be bounded by ¢(Ay k) < U2™ (||lag]|- - |lan])?". As
in the analysis of the LLL-algorithm, let Ay be the number Ay = max{]a;|| |
i = 1,...,n}. The overall number of iterations through the repeat-loop of the
LLL-algorithm can be bounded by

O(n*(log U + log Ay)). (19)

Each iteration performs O(n?) operations. As far as the binary encoding length
of the numbers is concerned, we can directly apply Theorem[3 to obtain the next
result.

Theorem 4. Let A € Z™"*™ be a lattice basis, U € N and 1 < k < n be positive
integers. Furthermore let Ag = max{||a;|| | = 1,... ,n}. The parametric short-
est vector problem for A, U and k can be solved with O(n®(logU + log Ag))
basic arithmetic operations with rational numbers of binary encoding length

O(n(log Ag + logU)).

This shows that the complexity of PSV in fixed dimension n is linear in the
input size and operates on rationals whose size is also linear in the input. This
concludes the proof of Theorem [Il. O

As a consequence, we obtain the following result using Clarkson’s [2] random
sampling algorithm.
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Theorem 5. An integer program in fized dimension n, where the objective
vector and each of the m constraints of Ax < b have binary encoding length at
most s, can be solved with an expected amount of O(m + log(m)s) arithmetic
operations on rational numbers of size O(s).

Acknowledgement. Many thanks are due to Giinter Rote and to an ESA-
referee for many helpful comments and suggestions.
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