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Abstract. We show that a 2-variable integer program, defined by m
constraints involving coefficients with at most ¢ bits can be solved with
O(m + ) arithmetic operations on rational numbers of size O(¢).

This result closes the gap between the running time of two-variable in-
teger programming with the sum of the running times of the Euclidean
algorithm on ¢-bit integers and the problem of checking feasibility of an
integer point for m constraints.

1 Introduction

Integer programming is the problem of maximizing a linear function over the
integer vectors which satisfy a given set of inequalities. A wide range of combi-
natorial optimization problems can be modeled as integer programming prob-
lems. But integer programming is not only related to combinatorics. The greatest
common divisor of two numbers a and b € Z is the smallest integer combination
xa + yb such that xa + yb > 1. This is an integer program in two variables.
This fact links integer programming also to the algorithmic theory of numbers.
The Euclidean algorithm requires O(p) arithmetic operations, if ¢ is the
binary encoding length of the input. Checking an integer point for feasibility,
requires to test it for all the constraints. In this paper we prove that an integer
program max{c'z | Az < b, z € Z*}, where ¢ € Z*, A € Z™*? and b € Z™
involve coefficients with at most ¢ bits, can be solved with O(m + ¢) arith-
metic operations on rationals of binary encoding length O(¢). In the arithmetic
complexity model, this is the best one can hope for if one believes that greatest-
common-divisor computation requires {2(¢) arithmetic operations.

Related Work

The two-variable integer programming problem has a long history. Polynomiality
was established by Hirschberg and Wong [8] and Kannan [I0] for special cases
and by Scarf [T7/I8] for the general case. Then, Lenstra [I5] proved that integer
programming in arbitrary fixed dimension can be solved in polynomial time.

Afterwards, various authors were looking for faster algorithms for the two-
dimensional case. Here is a table which summarizes the development of the last
20 years. In this table, m denotes the number of constraints and ¢ denotes the
maximal binary encoding length of an involved coefficient.
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Method for integer programming l complexity ‘
Feit [6] O(m logm + meyp)
Zamanskij and Cherkasskij [21] O(m logm +m )
Kanamaru, Nishizeki and Asano [9] O(m logm + ¢)
Eisenbrand and Rote [3] O(m + (logm) ¢)
Clarkson [2] combined with Eisenbrand ] [ O(m + (logm) ¢)
This paper Oo(m+ ¢)
Checking a point for feasibility O(m)
Greatest common divisor computation O(p)

For comparison, we have also given the complexity of greatest-common-
divisor computation and of checking whether a given integer point is feasible.
Thus the last two lines of the table is the goal that one should aim for. This
paper achieves this goal.

Our algorithm is the fastest algorithm in the arithmetic complexity model.
Here, the basic arithmetic operations +,-,*,/ are unit-cost operations. This is
in contrast to the bit-complexity model, where bit-operations are counted. In
this model, the algorithm in [5] is the fastest known so far. Its complexity is
O(m + logm log )M (yp), where M(yp) is the bit-complexity of -bit integer
multiplication. In the bit-model, our algorithm can also be analyzed to require
O(m+logm log )M (y) if the occurring shortest vector queries are individually
carried out with Schénhage’s algorithm [19].

It is well known, see, e.g. [4519] that, by means of an appropriate unimodular
transformation, we can assume that the objective is to maximize the value of the
first component. In fact, a reduction of a general integer programming problem
to this special objective function requires one extended gcd-computation and a
constant number of arithmetic operations. Thus we define the integer program-
ming problem as follows.

Problem 1 (2IP). Given a system of inequalities Az < b, where A € Z™*? and
b € Z™, determine an integer point z* € Z? which satisfies Az < b and has
maximal first component z*(1), or assert that Az < b is integer infeasible.

In the following, the letter m denotes the number of constraints of Az < b and
0 is an upper bound on the binary encoding length of each constraint a’z < 3 of
Az < b. We can also assume that the polyhedron {x € R? | Az < b} is bounded,
thus that the constraints define a convezr polygon P = {x € R? | Az < b}.

The main idea of our approach is to dissect the polygon into four specially
structured polygons and to solve the integer programming problem for each of
them separately. To do so, we need to check their lattice width. This can be
approximated by shortest vector queries for inscribed triangles. Since the poly-
gons have a special structure, the corresponding triangles have similar shapes.
This allows us to batch the shortest vector queries for them so that they can be
carried out in time O(log ¢) for each query after O(p) preprocessing time. Then,
our algorithm follows a prune-and-search technique.

1 This is a randomized method for arbitrary fixed dimension
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2 Preliminaries from Algorithmic Number Theory

In this section, we review some basics from algorithmic number theory, which
are necessary to develop our algorithm.

2.1 The Euclidean Algorithm and Best Approximations

The Euclidean algorithm for computing the greatest common divisor ged(ag, aq)
of two integers ag, a; > 0 computes the remainder sequence ag, a1, ... ,a5—1, 0% €
N,, where a;, i > 2 is given by a;—2 = a;—1¢;—1 + a;, ¢; € N, 0 < a; < a;_1,
and ay divides ar_1 exactly. Then a; = gcd(ao,al) The extended Fuclidean
algomthm keeps track of the unimodular matrices MU 1—[]_1 (%3),0<5<

— 1. One has (Z‘l)) = MU )(a?il ) The extended Euclidean algorithm requires
O(<p) arithmetic operations on O(p)-bit integers, if the binary encoding length
of ap and a1 is O(yp), see also [1317).

The fractions M(l /M2 1 are called the convergents of & = ag/a;. A fraction
x/y, y = 11is called a best apprommatzonE if one has |ya — z| < |y'a — | for all
other fractlons 2'/y’, 0 <y’ <y. A best approximation to « is a convergent of
a, see, e.g. [12].

2.2 Lattices

A 2-dimensional (rational) lattice A is a set of the form A(A) = { Az | x € Z?},
where A € Q?*2 is a nonsingular rational matrix. The matrix A is called a basis
of A. One has A(A) = A(B) for B € Q**? if and only if B = AU with some
unimodular matriz U, i.e., U € Z**? and det(U) = £1. Every lattice A(A) has
a unique basis of the form (8 lc’) € Q?*2, where ¢ > 0 and a > b > 0, called
the Hermite normal form, HNF of A, see, e.g. [20]. The Hermite normal form
can be computed with an extended-gcd computation and a constant number of
arithmetic operations.

A shortest vector of a lattice A is a nonzero vector v € A — {0} with minimal
loo-norm ||v]|o = max{|v(i)| | « = 1,2}. There are many algorithms known
to compute a shortest vector of a 2-dimensional lattice [Z[14/19]. The following
approach is very useful for our purposes.

Proposition 1 ([3] ). Let A C Q2 be a rational lattice which is given by its
Hermite normal form ( ) A shortest vector of A with respect to the £o,-norm
is either (0) or (g), or a vector of the form ( ”;jyb), where the fraction x/y
is a best approzimation of the number b/a.

Later, we will have to deal with the following problem for which we provide
an algorithm below.

2 In [12] this is referred to as best approzimation of the second kind
3 In [3] this assertion is stated for integral lattices. It is easy to see that it also holds
for rational lattices
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Problem 2. Given a lattice basis A € Q%2 and a sequence of K positive rational
numbers a1, ... ,ak, find a shortest vector w.r.t. the ¢,.-norm for each of the
lattices A; generated by the matrices ((1) 0?1, ) “A fori=1,... K.

Lemma 1. Let A € Q**2 and v, ... ,ax be parameters of Problem [3, where
A and each of the a; have binary encoding length O(yp). Then Problem [ can
be solved with O(p + K log ) arithmetic operations on rational numbers of size

O(p).

Proof. First we compute the Hermite normal form (&%) of A with the extended
Euclidean algorithm. Then we compute all convergents z;/y;, j = 1,... ,k of
b/a with the extended Euclidean algorithm. From this, the convergents come
out with the following property. The sequence | — z; a + y; b| is monotonously
decreasing and the sequence y; c is monotonously increasing and nonnegative.

By Proposition [ and since a best approximation of b/a is a convergent of
b/a, for each of the «;, we have to determine the convergent x;/y; of b/a such
that [|( _277“;'%7 b )|l is minimal. For this, we search the position j; in the list of
convergents, where |—x;, a+y;, b| > y;, a; cand | —xj, 41 a+yj,41 b < yj,41 a5 ¢
If | —zja+y;b| > y;a;c holds for all convergents x;/y;, then j; shall be the
second-last position. Similarly, if | — z;a 4+ y; b| < y; a; ¢ for all convergents
xj/y;, then j; shall be the first position. The shortest vector of A; is then the
shortest vector among the vectors

—xj, a+y; b —Zj41a+Yj41b a b 1)
Yj i € ’ Yji+1 Q4 C "\0)’ \a;c/)

Since there are at most O(p) convergents of b/a, this position j;, can be
computed with binary search in O(log ¢) many steps. Thus we have the desired
running time of O(y + K log ¢).

2.3 The Flatness Theorem

A central concept of our algorithm, as in Lenstra’s algorithm [I5], is the lattice
width of a convex body. Let K C R? be a convex body. The width of K along
a direction ¢ € R? is defined as w.(K) = max{c'z | z € K} — min{ctz | = €
K}. The lattice width w(K) of a K is defined as the minimum w.(K) over all
nonzero vectors ¢ € Z% — {0}. Thus if a convex body has lattice width ¢ with a
corresponding direction ¢ € Z<, then all its lattice points can be covered by at
most |¢]| + 1 parallel hyperplanes of the form c'z = §, where § € Z N [min{c'z |
r € K}, max{c'z | z € K}]. If a convex body does not contain any lattice
points, then it must be thin in some direction, or equivalently its lattice width
must be small. This is known as Khinchin’s Flatness Theorem [I1].

Theorem 1 (Flatness theorem). There exists a constant f(d) depending only
on the dimension d, such that each full-dimensional conver body K C R? con-
taining no integer point has width at most f(d).
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How can the width of a convex body be computed? In this paper, we only
need to do this for triangles. Let T = conv(u,v,w) C R? be a triangle. The
width is invariant under translation. Thus the width of T is the width of the
triangle 7' = conv(0, v —u, w —u). The width of 7" along a vector ¢ € R? is then
bounded from below by max{|ct(v — u)], |c¢'(w — u)|} and bounded from above

by 2 max{|c'(v — u)|,|c’(w — u)|}. Let A7 € R? be the matrix Ay = ( (v—u)’ ).

(w—u)"
The width along ¢ thus satisfies the following relation

A7 ¢lloc < we(T) < 2| A7 ¢l oo- (2)

This means that the width of T' is bounded from below by the length of the
shortest (infinity norm) vector of A(Ar) and bounded from above by twice the
length of the shortest vector of A(Ar). Furthermore, if v = Ay c is a shortest
vector, then the following relation holds

we(T) < w(T) < 2w (T). (3)

In the sequel, we call a vector ¢ € Z2, such that v = Ar c is a shortest vector
of A(Ar), a thin direction of T. A shortest vector of A(Ar) w.r.t. the £o-norm
will be denoted as a shortest vector of the triangle T'. Its length is denoted by
SV(T).

3 Partitioning the Polygon

In a first step, we partition the polygon into four parts. Two of the parts belong
to a class of polygons for which one already knows an O(m + ) algorithm for
their corresponding integer programs [5]. In the following sections, we will deal
with the other two polygons.

First we compute the rightmost point and the leftmost point of P and we
consider the line g through these two points, see Figure [[I This line dissects P
into an upper part Py and a lower part Pr. Next we compute vertices of Py
and Pr, which have largest distance from the line g and draw a vertical line Ay
and hy through these points. The line Ay dissects Py again in two parts, an
upper-left polygon Py; and an upper-right polygon Pp... The line hj, partitions
Py, into two parts, a lower-left polygon Py; and a lower-right polygon Pr,.. The
optimum integer point in P is the maximum of the optima of these four polygons.
This partition can be found with linear programming. Using the algorithm of
Megiddo [16], this requires O(m) operations. Notice that the binary encoding
length of each constraint describing the four polygons remains O(¢p).

The polygons Py; and Pp; are lower polygons in the terminology of Eisen-
brand and Rote [5]. This is because they have a line-segment parallel to the
objective line as an edge and there are two parallel lines trough the endpoints
of this edge which enclose the polygonH Thus Proposition 1 and Theorem 2

4In [5] the objective is to find a highest integer point, while we find a rightmost integer
point
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z(1)

hu

PUT

Py

hr

Fig. 1. The dissection of the polygon P. The arrow is the z(1)-direction in which we
optimize.

of [5] implies that the integer program over Py; and Pr; can be solved in with
O(m + ¢) arithmetic operations on rationals with O(¢p) bits.

The polygons Py, and Pp, are the ones we need to take care of. The polygon
Py, has a special structure. It has an edge e, such that each point of Py, lies
vertically above e and the two vertical lines through the endpoints of this edge
enclose the polygon. Furthermore, the vertical line through the vertex on the left
of e, defines a facet of Py,.. All the other facets, from left to right, have decreasing
slope and each slope is at most the slope of e. A polygon of this kind will be
called a polygon of upper-right kind in the sequel. Notice that Py, becomes an
upper-right polygon, when it is reflected around the x(1) axis. Therefore we
concentrate now on the solution of integer programming problems over polygons
of upper-right kind.

4 A Prune-and-Search Algorithm

In the following, let P be a polygon of upper-right kind. We now present an
O(m + ) algorithm for this case. Similar to the algorithm in [5] we use the
prune-and-search technique of Megiddo [16] to solve the optimization problem
over P.

The idea is to search for a parameter ¢, such that the truncated polygon
P, = Pn(xz(1) > ¢) has width w(Py) between f(2) + 1 and 4(f(2) + 1). If
we have found such an ¢, we know two important things. First, the flatness
theorem guarantees that Py is feasible and thus that the optimum of the integer
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programming problem over P lies in P,. Furthermore, all lattice points of Py,
and therefore also the optimum, must lie on at most 4(f(2) + 1) + 1 parallel
line segments in the corresponding flat direction. Thus, we have reduced the
integer programming problem over P to the problem of finding an optimum of a
constant number of one-dimensional integer programming problems, which then
can be solved in linear time.

We will approximate the width of P, as follows. Consider the edge f of P,
induced by the constraint xz(1) > ¢ and the edge €', which emerges from the
lower edge e of P intersected with (x(1) > £). The convex hull of both edges is
a triangle T}, see, Figure

Fig. 2. The polygon P, and the triangle T%.

Obviously, we have T; C P,. It is easy to see that if we scale Ty by a factor
of 2 and translating T, appropriately, then it includes P,. Hence, the width
w(Py) satisfies w(Ty) < w(Py) < 2w(Ty). From Section 223 we can conclude
SV(Ty) < w(Py) < 4SV(T}). Thus, we are interested in a parameter £, such that
the shortest vector of T, has length f(2) + 1.

We start with m constraints and maintain two numbers £p,;cr and fipin. In
the beginning, lip;cr is the z(1)-component of the left endpoint of the edge e and
Linin is the z(1)-component of the right endpoint of the edge e. If SV(Ty,,..,.) <
f(2) + 1, then P itself is flat and we are done. Otherwise we keep the following
invariant.

The shortest vector of Ty,, .. has length at least f(2) + 1 and the
shortest vector of Ty,,. has length at most f(2) + 1.

The idea is to prune constraints, while we search for the correct position ¢,
which cannot be facet defining for the intermediate part of the polygon P N
(2(1) = lenicr) N (2(1) < Lepin), see Figure Bl

One iteration is as follows. We pair up all m constraints yielding m/2 inter-
section points. Then we compute the x-median £,,.4 of the intersection points.
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Now we distinguish three cases. One is that £,,.q lies to the right of £:p;,. In
this case, we can delete from each pair of intersection points to the right of the
median, the constraint with the smaller slope. We can do this, since this con-
straint cannot be facet-defining for the intermediate polygon. Similarly, if £,,cq
lies to the left of fipick, we can delete from each pair on the left of the median
the constraint with the larger slope.

N

P,
T
EnLed
ethick ‘gthin

Fig. 3. The prune-and-search algorithm for a polygon of the upper-right kind

The more interesting case is the one, where /,,.q4 lies in-between fip;., and
Liin- Then we compute the length of the edge f which is induced by (1) > £ycq-
This edge is simply the line-segment spanned by the intersection of z(1) = £,,eq
with e and by the lowest intersection point of the line x(1) = £,,.4 with all m
constraints.

Now we compute the shortest vector of Ty _,. If its length is smaller than
f(2) + 1, then we set ipin t0 £eq and delete from each intersection point that
lies to the right of £,,.q the constraint with the smaller slope. Otherwise we set
Ciniek t0 £eq and delete from each intersection point that lies to the left of £,,¢q
the constraint with the larger slope.

We repeat this prune and search procedure until we have found a position /,
where the shortest vector of Ty is f(2) + 1 or we identified a constant number of
constraints, which can be facet defining for P N (z(1) 2= Lipick) N (x(1) < Lipin)-

In the first case, we know that the optimum lies in P, and we have a flat
direction of P, namely the vector ¢ € Z? — {0} such that v = Ar, c is a short-
est vector of Tp. Thus the optimum is the largest of the optima of the inte-
ger programs over the constant number line segments P, N (ctz = §), where
§ € ZNmin{c'z | x € P}, max{c'z | € P}]. In the second case, we know that
the optimum lies in P, . Furthermore, F,,,,., can be partitioned into P,,, ,
and the polygon P N (2(1) > linick) N (2(1) < Lipin). The first polygon is flat.
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The second polygon is defined by a constant number of constraints, for which
integer programming can be solved with O(y) arithmetic operations.

Analysis

We will prove that the presented algorithm runs in O(m + ¢) using rational
numbers of size O(yp).

Suppose we are in the i-th round of the prune-and-search algorithm and
suppose we are left with m; constraints. In this round we compute m;/2 inter-
section points, the median of them, the corresponding triangle T, and query for
the shortest vector of Ty. Hence, the running time for round ¢, without consid-
ering the shortest vector queries, is O(m;). We discard 1/4 of the constraints.
Therefore, the overall running time of the prune-and-search algorithm without
considering the shortest vector queries is O(m).

Let us consider the shortest vector queries. Let T' be the first triangle, for
which we compute the shortest vector. The angle, which is enclosed by the edges
f and €’ is the same for all triangles for which we query a shortest vector. Let
A7 be the matrix of T as it is defined at the end of Section 23] The matrices
Ar, of the following triangles thus satisfy

Ar, =B (§ Q) - Ar, (4)

with rational numbers oy and By which can be computed from 7 and 7Ty in
constant time. The length of the shortest vector of Ty is equal to (3, times the
length of the shortest vector of the lattice A (((1) O?e) . AT). Hence, we can apply
Lemma [1. As we perform O(logm) queries, the total number shortest vector
queries can be computed with O(y + logm - logy) arithmetic operations on
rational numbers of size O(y). Thus the total running time amounts to O(m +
p+logm-log ) = O(m+y) arithmetic operations on rational numbers of binary

encoding length O(p), which proves our main result.

Theorem 2. A two-variable integer programming problem max{c'z | Ax <
b, x € Z2}, where A € Z™*? and b € Z™ and c € Z* involve only coefficients of
binary encoding length O(y), can be solved with O(p +m) arithmetic operations
on rational numbers of size O(yp).
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