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Abstract. Recently, algebraic attacks were proposed to attack several
cryptosystems, e.g. AES, LILI-128 and Toyocrypt. This paper extends
the use of algebraic attacks to combiners with memory. A (k,!)-combiner
consists of k parallel linear feedback shift registers (LFSRs), and the
nonlinear filtering is done via a finite automaton with k input bits and
I memory bits. It is shown that for (k,!)-combiners, nontrivial canceling
relations of degree at most [k(I+1)/2] exist. This makes algebraic attacks
possible. Also, a general method is presented to check for such relations
with an even lower degree. This allows to show the invulnerability of
certain (k,!)-combiners against this kind of algebraic attacks. On the
other hand, this can also be used as a tool to find improved algebraic
attacks.

Inspired by this method, the Ey keystream generator from the Bluetooth
standard is analyzed. As it turns out, a secret key can be recovered by
solving a system of linear equations with 2%:°7 unknowns. To our knowl-
edge, this is the best published attack on the Fy keystream generator yet.

1 Introduction

Stream ciphers are designed for online encryption of secret plaintext bitstreams
E = (e1,e3,--+) which have to pass an insecure channel. Depending on a given
secret information z* € {0, 1}", the stream cipher produces a keystream Z(z*) =
(21, 72, - ) which is bitwise XORed with E. Knowing z*, the decryption can be
performed by using the same rule. It is common to evaluate the security of a
stream cipher relative to the pessimistic scenario that an attacker has access
not only to the encrypted bitstream, but even to a sufficiently long piece of
keystream. Thus, the cryptanalysis problem of a given stream cipher consists in
computing the secret information z* from a sufficiently long prefix of Z(z*).
We call a stream cipher LFSR-based, if it consists of a certain number & of
linear feedback shift registers (LFSRs) and an additional device, called the non-
linear combiner, which transforms the internal linear bitstream, produced by the
LFSRs, into a nonlinear output keystream. Because of the simplicity of LFSRs
and the excellent statistical properties of bitstreams produced by well-chosen
LFSRs, LFSR-based stream ciphers are widely used in practice. A lot of dif-
ferent nontrivial approaches to the cryptanalysis of LESR-based stream ciphers
(fast correlation attacks, backtracking attacks, time-space tradeoffs, BDD-based
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Algebraic Attacks on Combiners with Memory 163

attacks etc.) were discussed in the relevant literature, and a lot of corresponding
design criterions (correlation immunity, large period and linear complexity, good
local statistics etc.) for such stream ciphers were developed (see, e.g., Rueppel
(1991)).

A (k,1)-combiner consists of ¥ LFSRs and a finite Mealy automaton with &
input bits, one output bit and [ memory bits. Let n be the sum of the lengths of
the £ LFSRs. Starting from a secret initial assignment x* € {0,1}", the LFSRs
produce an internal linear bitstream L(x*), built by blocks z? of k parallel bits
for each clock t. Starting from a secret initial assignment ¢! € {0,1}' to the
memory bits, in each clock ¢ the automaton produces the ¢-th keystream bit z;
corresponding to z' and ¢! and changes the inner state to c!*1 (see figure[I)). The
secret information is given by x* and ¢'. Numerous ciphers of this type are used
in practice. Note, e.g., that the Ejy keystream generator used in the Bluetooth
wireless LAN system (see Bluetooth SIG (2001)) is a (4, 4)-combiner.

. (z0)

LFSRs |- 7z .
t 1

Memory |-€ C c*

Fig.1. A (k,l)-combiner

The aim of this paper is to analyze the security of (k,[)-combiners with re-
spect to algebraic attacks, a new method for attacking stream and block ciphers.
Algebraic attacks exist against AES and Serpent (Courtois and Pieprzyk (2002))
and Toyocrypt (Courtois (2002)). Related algebraic attacks were used to attack
the HFE public key cryptosystem (Courtois (2001), cf. also Kipnis and Shamir
(1999)).

Courtois and Meier (2003) discussed algebraic attacks on general LESR-based
stream ciphers and presented the best known attacks on Toyocrypt and LILI-128
so far. Very recently, Courtois introduced fast algebraic attacks on LFSR-based
stream ciphers, an improved version of the algebraic attacks (Courtois (2003)).

An algebraic attack is based on a nontrivial low degree relation p for r clocks,
i.e. a relation which holds for any sequence of r consecutive bits of the keystream
and the corresponding kr internal bits. Given such a relation p of small degree d
and a sufficiently long piece of a keystream Z(z*,c!), p can be used to produce
an overdefined system of T nonlinear equations in the initial bits of the LFSRs,
which can be thought of as system of linear equations in the monomials of length
at most d. If T is large enough then we get a unique solution which is induced
by «*, and from which z* can be derived in a straightforward way.
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Obviously, a higher value of d increases the running time significantly. Con-
sequently, the nonexistence of nontrivial low degree relations is an important
design criterion for (k,)-combiners. One contribution of this paper is to provide
an algorithm FindRelation which computes for a given (k,)-combiner, repre-
sented by its automaton, and given d and r the set of all nontrivial degree d
relation for r clocks (Section B). One consequence is that nontrivial relations of
degree [k(l + 1)/2] relations for I + 1 clocks (Theorem [I]) cannot be avoided.
Note that the running time is only polynomial in n if &k and [ are supposed
to be constant. Hence, for each (k,l)-combiner exists a value n’, such that the
algebraic attack is more efficient than exhaustive search if n > n'.

E.g., this general bound implies a nontrivial degree 10 relation for 5 clocks
for the Fy generator, which yields, for n = 128, an algebraic attack of running
time 2!, which is much worse than exhaustive key-search. The algebraic attack
would be better than exhaustive search if n > 142. Surprisingly, a nontrivial
degree-4 relation for 4 clocks (Section M) exists. This implies an algebraic attack
of running time around 267-°® and represents a serious weakness of this stream
cipher. On the other hand, by using our method we can prove the nonexistence
of nontrivial relations of degree smaller than 4, at least for 4 and 5 clocks. In the
following section 2] we give basic definitions on boolean functions, LFSRs, and
some notions around algebraic attacks.

2 Basics

2.1 Boolean Functions and GF(2)-Polynomials

In the following, we consider for all £ > 1 the set By of k-ary boolean functions
f:{0,1}* — {0,1} as a 2*-dimensional vector space over the field GF(2). It
is a well known fact that each f € By has a unique representation as GF(2)-
polynomial

p(xlv"'vxk) = @ AaMa, (1)

ae{0,1}*

where for all @ € {0,1}* the monomial m,, is defined as m, = II; o,—12;, and
ao € GF(2). Let us denote |a| = |{i,a; = 1}| for all a € {0,1}*. The degree
deg(p) of the polynomial p is defined as max{|a|,aq, = 1}. For all f € By we
denote by deg(f) the degree of the unique GF(2)-polynomial for f. Given a
set B C By we denote by H(B) the set of all linear combinations of functions
from B. Note that the set of all k-ary boolean functions of degree at most d
equals H(M(k,d)), where M(k,d) = {ma,a € {0,1}* |a] < d}. The crucial
computational problem here is FindNullspace(B, X), where B C By and X C
{0,1}* for some k > 1, which consists in the computation of all h € H(B) for
which h(z) = 0 for all z € X. Clearly, all h € H(B) can be represented as
h =Y ycp a(h)pb, and the set of all coefficient vectors a(h) € GF(2)® solving
FindNullspace(B, X) equals the set of solutions of the system
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> a(h)pb(z) =0, forallz € X, (2)
beB

of GF(2)-linear equations.
As usual, we call a boolean function f € By to be an implicant of another
boolean function g € By, if f(z) = 1 implies g(z) = 1 for all inputs x € {0, 1}*.

2.2 LFSRs and (k,!)-Combiners

Let kK > 0 and [ > 0 be integers. A (k,l)-combiner C = (Z,C) consists of k
linear feedback shift registers (LFSRs) L, --, L and a finite Mealy automaton
which is defined by an output function Z : {0,1}* x {0,1}} — {0,1} and a
feedback function C : {0,1}* x {0,1}! — {0, 1}!. In this paper, we assume that
the following reasonable condition holds: For each ¢ € {0,1}! exist z, 2’ € {0,1}*
with Z(x,¢) = 0 and Z(z',c) = 1. Notice that all known (k,!)-combiners used
in cryptosystems are of this kind.

For each 7,1 < i < k, LFSR L; is defined by its length n(i) and a generator
polynomial L; = (Li,1,-+, Li ni)) € GF(2)"9. Let n = n(1) + - - + n(k). It is
common to suppose that the generator polynomials of the LFSRs are public.

Given an initial assignment @} = (27, -+, 2] ,;)) € {0, 137 to each LFSR
L;, 1 <i <k, the LFSRs compute at each clock ¢ a block o' = (z}, -, z%) of
internal bits, where for each 4,1 <4 <k, it holds z} =z} if t < n(i), and

$§ = L171$§_1 S5 Li72z§_2 b---D Ll7n(l)$f_n(l) (3)

if + > n(i). The bitstream L(z*) = (z!,22,---) is called the internal linear
bitstream generated on the initial assignment z* = («7,---,}). Note that for
all t > 0, the GF(2)-linear mapping L' : GF(2)" — GF(2)" which assigns
to z* the t-th block ! of the corresponding linear bitstream can be efficiently
computed from the generator polynomials.

Given such an internal bitstream z = (2,22 ---) and an initial assign-
ment ¢! € {0,1}' to the memory bits, the corresponding output bitstream
(Z,C)(z,c') = (21, 22, - ) is defined according to

2'=2Z@h ) and T =C(at, ), (4)

for all t > 1. For all » > 1 let us denote by (Z,C)"(z!,---,2",ct) the first r
output bits of the keystream generated according to z and c!.

Given the combiner C = (Z,C), the cryptanalysis problem consists in dis-
covering the secret initial assignment z* € {0,1}" to the LFSRs and the secret
initial assignment ¢! € {0,1}! to the memory bits from a sufficiently long prefix
of the output keystream (Z, C')(L(x*),c!). Our results are motivated by an ap-
proach due to Courtois and Pieprzyk (2002) to this problem, which consists in
performing a so-called algebraic attack, and which is based on finding nontrivial
low-degree relations which hold for any sequence of r consecutive output bits
and the corresponding kr bits of the internal bitstream, for some r > 1. Let us
now give an outline of this kind of attack.



166 F. Armknecht and M. Krause

2.3 Nontrivial Relations and Algebraic Attacks
We use the same denotations as in the previous subsection.

Definition 1. Let r > 1 and z € {0,1}". A non-zero GF(2)-polynomial p in
kr wvariables is called a z-relation for C if p(x) = 0 holds for all sequences x =
(2t 22, 2") € ({O,l}k)T of r consecutive blocks of the internal bitstream
which have the property that (Z,C)"(x,c) = z for some initial assignments ¢ €
{0,1}! to the memory bits.

Let us suppose that C has a z-relation p of degree d for some r > 1. Fix
arbitrary assignments 2* € {0, 1}" to the LFSRs and ¢! € {0,1}! to the memory
bits. Suppose that we have a sufficiently long prefix of the corresponding output
bitstream z* = (Z,C)(L(z*),c') and denote by T'(z) the set of all clocks ¢, for
which (zf,---, Z:+(r71)) = 2. By the definitions, it holds for all ¢ € T'(z) that

P,(z*) == p(Lt(z*),---, LT D (z*)) = 0. (5)

P, is a GF(2)-polynomial of degree d in n variables which can be efficiently
computed. Consequently, the system

P(z1,---,2,) =0, t € T(2) (6)

of nonlinear equations can be considered as a system of linear equations in
the unknowns {mq(z),a € {0,1}",|a| < d}. If |T(z)| is large enough then
this system of linear equations has the unique solution {m,(z*), |a| < d}, from
which the secret x* can be easily derived. Obvously, |T'(z)| has to be at least
M (n,p). Here, M(n,p) denotes the set of all monomials in x4, - - -, z, which can
occur in a GF(2)-polynomial contained as equation in the system (@). Observe
that &(n,p) = ¢ () is a trivial upper bound for [M(n,p)|. Note that the

i=0
minimum number of kéystream bits which has to be available can be reduced
if we know several degree-d z-relations for different strings z. In any case, it
follows that the existence of low-degree z-relations implies a serious weakness
of (k,l)-combiners. These attacks are called algebraic attacks. In Courtois and
Meier (2003), the authors discuss algebraic attacks against combiners without

memory. In this paper, we extend these attacks to combiners with memory.

3 On Constructing Nontrivial Relations

In this section, we show that for any (k,l)-combiner C, » > k(I + 1), and
d > [k(l +1)/2], the existence of z-relations of degree d for some z € {0,1}"
cannot be avoided. Moreover, we present an algorithm which allows to construct
all z-relations of degree at most d for any given r,d. Note that this solves an
open problem stated, e.g., by Courtois (2003). This algorithm can be used for
estimating the vulnerability of given (k,!)-combiners with respect to algebraic
attacks (known from Courtois and Meier (2003)).
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We first illustrate the problem of constructing nontrivial relations by means
of some special cases. Let as before C = (Z,C) denote a (k,!)-combiner with
output function Z and feedback function C. If [ = 0, the construction of canceling
relations for one clock is straightforward, as

Z(xh, ) Dz >0 (7)

is always fulfilled. By arguments which will be given below this implies the
existence of relations of degree at most [k/2].

Another tractable case is if [ = 1 and the output function Z is linear in the
feedback bit, i.e., Z(x,c) = Z'(x) ® c. Then the relation

29 = Z(2%,C(2', 21 ® x1)) (8)

is always true, which gives z-relations for all z € {0,1}%. If [ > 1 and the
output function is nonlinear, the situation becomes more complicated as, via the
feedback function C, z depends nonlinearly on z',z2,---, 2 for all t > 0. One

attempt for constructing nontrivial relations could be to consider the relation

/\ (Z(2",¢) @ 2), (9)

ce{0,1}!

which obviously gives 0 for all pairs of input and output streams generated via
C. The problem here is that this relation can become trivial. This is especially
true if Z is linear in at least one memory bit, as is the case for the Ey generator.
We use a more systematic approach and show the following result.

Theorem 1. Let k > 1,1 > 1 and a (k,l)-combiner C = (Z,C) be arbitrarily
fized. Then for each r > 1 there is a z-relation of degree [(k(l + 1)/2] for C for
some z € {0,1}".

For the proof of this theorem we need some more technical definitions.

Definition 2. (i) For all v > 1, z € {0,1}", and x = (z',---,2") €
({o, l}k)r, x is called z-critical for C if (Z,C)"(x,c) # z for all c € {0,1}.
We denote by Critc(2) the set of all z € ({0,1}*)" which are z-critical for
C, and by NCritc(z) the set of all x which are not.

(it) The pair (z,z) € ({0, 1}¥)" % {0,1}" is called r-critical for C if x is z-critical
for C. We denote by Critc(r) the set of all r-critical (z,z) € ({0,1}*)" x
{0,1}" and by NCritc(r) the set of all (x,r) which are not. Especially, we
have Crite(r) U NCrite(r) = {0, 1}*" x {0,1}".

(iti) For allr > 1 we denote by x(C), : ({0, 1}k)r x{0,1}" — {0, 1} the critical
function of C, which is defined as x(C)(x,2z) = 1 iff (x, z) is r-critical for
C. For all z € {0,1}" we denote by x(C)Z the subfunction x(C),(-, z) which
outputs 1 on z € ({0, )" iff @ is z-critical.

Observe that for all » > 1 and z € {0,1}", a nontrivial GF(2)-polynomial
p in kr variables is a z-relation of C iff it outputs 0 for all z € NCritc(z) and
outputs 1 for at least one x € Crite(z). This implies
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Lemma 1. For all » > 1 and z € {0,1}" there is a z-relation for C iff
Critc(z) # 0. If Critc(z) # O then p : ({O,l}k)r — {0,1} is a z-relation
for C if and only if it is a nontrivial implicant of x(C)Z.

For each non-critical pair (z,z) € ({0,1}%)" x {0,1}" there exists at least
one ¢ € {0, 1}! such that z = (Z, C)"(z, c). Evidently, the number of non-critical
pairs cannot exceed 257 - 2!, We obtain

Lemma 2. For all r > 1 it holds that |NCrite(r)| < 2kr+t,
For r =1+ 1, we have

INCrite(I14+1)] < 28 UFDH < ok (HDHHL — | Opit o (141)|+| N Crite (14-1)] (10)

Therefore, |Crite(r)] # 0 and there is some z € {0,1}" such that
|Crite(2)| # 0.

For all d > 0 let us denote by M (kr,d) the set of all monomials over the kr
variables z!,-- -, " of length at most d. We derived

Lemma 3. For allr > 1 and z € {0,1}" the set of all z-relations for C equals
the set of non-zero solutions of FindNullspace(M(kr,d), NCrite(z)).

Lemma 4. For each r > 0 and z € {0,1}" the set NCritc(z) is not empty.

Proof. We show this proposition by complete induction. As said in the beginning,
we consider only combiners for which the following condition is true:

Ve € {0,1} 3o, 2’ € {0,1}% : Z(x,¢) =0 and Z(2/,¢) = 1 (11)

This assures the proposition for » = 1. Let the proposition be true for some 7.
Choose z = (z1, ..., 2r41) € {0,1}""! arbitrarily. Then NCritc((z1,...,2.)) # 0
by assumption. Let * = (x',...,2") € NCrite((21,...,2-)). Then there ex-
ists a ¢! € {0,1}} with (Z,0)"(z!,...,2",¢') = (21,...,2.). By ([0) we know
that there is a least one 2"+! € {0,1}* with Z(2"*!, ¢" 1) = 2,,1. Therefore,
(Z,C) (zt, ..., 2" ) = (21,...,2,41) and (z1,..., 2" ) € NCrite(2).

For showing the degree bound observe that if |[M(kr, d)| = ®(kr,d) is greater
than |NCrite(z)| then FindNullspace(M(kr,d), NCrite(z)) has a nontrivial
solution. It suffices to prove the degree bound for » = [+ 1. Lemma Blimplies that
INCrite(l + 1)| < 2k@+DH = Lok(FDHHL 1 6 at most one half of all possible
pairs (x,z) are not (I 4+ 1)-critical. Consequently, there exists at least one z €
{0,1}+! for which at most half of all possible x are z-critical, i.e., [NCrite(z)| <
120041 On the other hand, by lemma @ we know that [NCrite(z)| > 0. Using
the fact that ¢(N, [N/2]) > 22V for all N > 2, we obtain the theorem.

We derived the following algorithm for the problem FindRelation(Z,C, z,d)
of computing all z-relations p of degree at most d for a given (k,[)-combiner
C=(20).

1 Compute Crite(z) and NCrite(2).
2 If Crite(z) # 0 then solve FindNullspace(M(kr,d), NCritc(z)).
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Note that the computation of Critc(z) and NCrite(z) can be done in an
elegant way by using an ordered binary decision diagram (OBDD) of size at
most (kr + r)28H 1+ for x(C), (see, e.g., Krause (2002) for the details). Step 2
requires to solve a system of GF'(2)-linear equations with M/(kr,d) unknowns
and at most 2¢"t linear equations.

4 Analyzing the Ey Keystream Generator

In this section, we apply our results to the Ey keystream generator. The Ej
keystream generator is part of the Bluetooth encryption system, used for wire-
less communication (see, e.g., Bluetooth SIG (2001)). It is a (4, 4)-combiner.
Applying our results yields the existence of a nontrivial 5-relation of degree 10.
The number of monomials is 7" < @(n, 10). Therefore, the secret key can be
recovered by solving a system of linear equations in 7" unknowns. The fastest
practial algorithm we are aware of to solve a system of linear equations is the
algorithm by Strassen (1969). It requires about 7 - T'°827 operations. Our attack
is more efficient than exhaustive search, if the following inequality holds:

2" > 7. ((n,10))"0827 (12)

This is the case for n > 142. Notice, that in the Bluetooth encryption system
the length of the secret key is n = 128.

If the Ey keystream generator were optimally resistant against algebraic at-
tacks, no canceling relations for r < 5 or d < 10 should exist. Surprisingly, for
d = 4 and r = 4 such a relation can be found. In this case, it is even possible to
show the existence directly.

Let us first recall the definitions of the keystream generator. The keystream

generator consists of £ = 4 regularly clocked LFSRs and | = 4 memory
bits. With each clock, an output bit z; is produced depending on the out-
puts z¢ = (zf, 2%, 2%, 2%) of the four LFSRs and the four memory bits ¢! =

(¢*,pt,¢" =1, p'~1). Then, the next memory bits c!t1 = (¢!T1, p!Tt ¢t p') are cal-
culated and so on. We see that the memory bits ¢* and p* are used in both clocks ¢
and t+ 1. Let ms(¢) be the symmetric GF(2)-polynomial over z%, x5, x4, z} which
consists of the sum of all monomials of length s < 4. Then the output bit z; and
the memory bits are computed by the following equations

2t = T (t) EBpt (13)
Ct+1 - (qt+17pt+1>qt7pt> (14>
=St edop T ST ep ad op ¢ DY), (15)

where

xt1+xt2+x§+xfl+2-qt+th (16)

Siy1 = (stl+1»S?+1) = { 9

The values for ¢! and the contents of the LFSRs must be set before the start,
the other values will then be calculated. Obviously, the value of ¢**! depends
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only on zt, ¢*, p* and p*~! and the value of p'™! on 2t, ¢*, ¢! ', p* and p*~!. The

calculations of ¢!™* and p'*! are done via the following equations (see appendix
A for details)

¢t =ma(t) & ma(t)p' @ ma(t)g' B m(t)p'e B gt Bp' T (17)
Pl =mt)emtp edeqd T ep T ep (18)

If we define the following additional variables

a(t) = ma(t) © ma(t)p’ @ p' !
b(t) = ma(t) @ m (t)p' @1,

equations (I7) and (I8) can be rewritten to

¢t =a(t) © b(t)q" (19)
pl=bt)eleptepedad (20)

By multiplying (I9) with b(¢) we get another equation
0= b(t)(a(t) ®q" ®q"™). (21)
Equation (20) is equivalent to
d e =bt)®10p ! @ pt @ ptt. (22)
Now we insert into with index ¢ + 1 instead of ¢ and get
0=>0(t) (alt) Dbt +1) @ 1@dp ®p' @pt?).

Using (T3)), we eliminate all memory bits in the equation and get the following
equation which holds for every clock t:

0=1@ 21D 2 D zt41 D 242
Bm1(t) - (22642 D 2e2e41 D 2e20—1 B 2e—1 D 2441 D 242 D 1)
Ba(t) (1 ® zp—1 D 2t B 20401 D 2e2) D ws(t)2e B walt)
emt—1)@mt—1DmE)(1dz) ®m(t — 1)ma(t)
ATt 4+ 1)zep @t + D (t)2ze41 (1D 2¢) ® it + 1)ma(t) 2641
Oma(t+ 1) ®ma(t + 1) () (1 D 2z¢) @ ma(t + 1)ma(t)
Bmi(t+2)®mi(t+ 2)m () (1 D 2z) @ my(t + 2)ma(t)

This gives a nontrivial degree-4 z-relation p for 4 clocks for any z € {0,1}%.
The number M (128, p) of monomials occuring in the corresponding system of
nonlinear equations (see subsection ZZ) can not exceed ®(128,4) ~ 22339 In
fact, if we look closely at p, we can see that not all monomials of M(kr,d)
occur. Thus, we have M(128,p) < T := 8,824,350 ~ 223:07 (see appendix B for
details).
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With each clock ¢, we get a new equation in the bits of the secret key. If
we have at least M (128, p) linearly independent equations, x* can be recovered
by solving the system of linear equations. Using Strassen’s algorithm, the secret
key can be recovered with work < 7-T"9827 ~ 267-58  The memory complexity is
more or less the size of the matrix which is about 246-14,

Obviously, to get enough linearly independent equations, we have to clock
at least M (128, p) times. The question is whether we have to clock more often.
Until now, there is no satisfying answer to this question. Our assumption is that
approximately T clocks should be enough, meaning that about 223:°7 key stream
bits would be sufficient to mount the attack. We did some simulations for the
same cryptosystem but with shorter LESRs. The results can be seen in Table [l
Each time, the initial values of the LFSRs were successfully reconstructed. In
all cases the number of clocks needed to reconstruct the secret key was close (or
even equal) to T+ 3]

Table 1. Algebraic attacks on smaller Fy crypto systems

[n(1), n(2),n(3),n(4)] Initial Values Feedback Taps [ T [Clocks]
1, 2, 3, 111 011 11110 111 101 10100 477 | 483
1, 2, 3, 110 101 01101 111 101 10100 477 | 481
1,2, 3,5, 1 01 010 01001 111101 11011 477 480
111111 01111 111101 11110 477 | 483
1 01 010 10100 111110 11011 477 | 484

10 010 11110 1100110|11 110 11101 1000100|2643| 2647
11 101 01101 0010011{11 101 10100 1101010|2643| 2649
10 100 10001 001000111 110 11110 1111000|2643| 2647

NN
| ol wo

==
D] ro
ot| o | | wof &Pl cof w

3| 3| | CY | &Y | on

Of course, a lower degree d would decrease the value of T" and therefore allow
a better attack. Applying our algorithm showed the non-existence of nontrivial
relations of degree d = 3 for » = 4 and r = 5. Nevertheless, lower degree relations
for r > 5 may exist.

It is important to mention that in the Bluetooth encryption system the secret
key is changed after 2745 clocks. Therefore, we will never get enough equations
in pratice. Note that the best published attack against the Fy was proposed by
Krause (2002) with time and memory effort of ~ 277, given only 128 known key
stream bits. The attack by Fluhrer and Lucks (2001) needs about 2™ operations
if 243 bits are available. The memory needed is very small: about 10638 bits.

Recently, Courtois developed an improved version of algebraic attacks: fast
algebraic attacks (Courtois (2003)). They allow an even better attack on the Ey
keystream generator. The estimation is that about 2% operations are enough.

1 As we need 4 succesive clocks to produce one equation the number of clocks needed
is at least T'+ 3
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We want to point out one remarkable fact. The output function was chosen to
be linear in one memory bit to achieve maximum correlation immunity. The same
attribute made it possible to eliminate the same memory bit in our relation. This
may be a hint that some tradeoff between correlation immunity of the output
function and resistance against algebraic attacks exists.

5 Discussion

We have seen that for all (k,)-combiners, nontrivial relations of degree at most
[k(141)/2] exist. This fact extends the attacks described by Courtois and Meier
(2003) to combiners with memory. In consequence, each combiner is vulnerable
against algebraic attacks if the length of the secret key n is large enough. E.g., for
the Ey keystream generator this is the case for n > 142. A (k,[)-combiner should
be designed in such a way that an algebraic attack never becomes faster than
exhaustive key-search. For this purpose, it should be checked if the automaton
induces nontrivial degree-d relations for critical values of d. This can be done
by applying the algorithm FindRelation presented in this paper, at least for a
reasonable set of clocks.

The analysis of the Ey generator shows that it may be dangerous to use
a linear output function, since this may help replacing the memory bits and
deriving nontrivial low-degree relations. It turns out that a nontrivial relation
of degree 4 exists. This makes it possible to recover the secret key by solving a
system of linear equations in at most 22397 unknowns.

Algebraic attacks work successfully only for LFSR-based stream ciphers
which are oblivious in the sense that the attacker always knows which bit of
the keystream depends on which bits of the internal bitstream. It would be in-
teresting to know if similar attacks can also be applied to non-oblivious ciphers
like the A5 generator or the shrinking generator.

Acknowledgment. The authors would like to thank Nicolas Courtois, Erik
Zenner, Stefan Lucks and some unknown referees for helpful comments and dis-
cussions.
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A The Equations for g1 and p;41

In this section we prove the correctness of equations (I7) resp. (I8) for ¢'™* resp.
ptt1. Let us recall the equation for ¢t*!

= (¢ P ) (23)
=St odap S ep g opl ¢, p) (24)
where ¢ t t t £t
9.
Sin = (St1+1,5t0+1) _ \‘an + 25+ 23 +2CC4 +2-¢g+p J (25)
Let fo resp. fi1 be the two boolean functions for which the equations
Z—&-l :fi(xﬁvxgaxévxthtvpt) (26)

hold for i« € {0,1}. fo and f; can be found with the help of computers. If we
write down fy and f; in algebraic normal form, we get

fir =ma(t) @ ms(t)p’ @ ma(t)g' ® mi(t)p'e (27)
fo=m(t) o m(t)p' @q' (28)
See section [ for the definition of 7 (¢). In table Bl fo and f; are evaluated for
all possible inputs and compared with Sy41. It is easy to see that fy and f; fulfill

the requirements. Together with ([24]), we get the following expressions for ¢'*!
and ptt!

t—1

N
Nej

¢t =S, edep
=m(t) @ m3(t)p' @ ma(t)g' @ m(t)p'd" @ ¢' B p'!

pt+1 — S?+1 ®pt @ qtfl @ptfl
=mt)emt)p' oo opapT

~ o~ o~
w
(=]

w
N
—_— = =

1
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Table 2. fo and fi evaluated for all possible inputs and compared with Si41

[ac[be [ [di [Qi]P][Sera | /1] fo]

0
0
1

1
1

[ac|be]ci[de ][ Q[P Seva [ o[ fo]

0]0]0]0
0/]0]0]0
0]0]0]0
0/0]0]O0

0100
0100

B The Number of Terms

In this section, we estimate the maximum number T of different monomials in the

algebraic attack against the Ey crypto system. With each clock ¢ the following

equation is produced

0=1D 21Dzt D zt41 D 2442

AT(t) - (2e2e42 B 2e2e41 B 26201 B 241 B Ze41 D 2042 D 1)
@’/TQ(t) . (1 @D Zt—1 D Zt &b Zt+1 D Zt+2) D 7T3(t)Zt &b ’/T4(t)

emt—1)@mt—1)mE)(1dz) ®m(t — 1)ma(t)

Om(t+ 1) 2ze1 @ T (t+ D)7 (8) 20401 (1D 2¢) © ot + D)ma(t) 2441
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Pma(t+ 1) ®ma(t+ 1)mi(t)(1 @ 2¢) ® ma(t + 1)ma(t)
Omi(t+2)®m(t+ 2)m(t) (1 ® 2¢) ® w1 (t + 2)wa(t).

As we can see, every occurring term has to be one of the following types

a,b, c,d,ab, ac, ad, be, bd, cd, abe, acd, abd, bed, abed, aa'be, aa’ cd, aa’bd,
bt ac, bt cd, bb'ad, cc’ab, cc'ad, cc’bd, dd’ ab, dd'ac, dd'be, aa’bb’, aa’cc,
aa’dd',bb'cc’,bb'dd’, cc’'dd’, aa'b, aa’c, aa’d, bb'a, bb'c, bb'd, cc'a, cc'b,
ccd,dd'a,dd'b,dd c, aa’,bb’, cc’, dd’

Here, a,a’ € {x7 ,...,27 ,, } with a # @/, etc. In table 3 the number of possible
terms for each type is presented depending on the length n, no, ng, and n4 of
the four LFSRs. In addition, we give for each type one product in which it can
occur. Note that some terms may occur in other products todd. Of course, these
types have to be counted only once. The sum is the number of possible terms 7T'.
In Ey, the lengths are n; = 25, ny = 31, ng = 33 and ny = 39, so T' = 8,824, 350,
which is approximately 223:07.

Table 3. All possible terms and their number depending on n;

type ‘ occur in ‘ number ‘
a,b,c,d m1(t) n1 +n2 +n3 +ng
ab, ac, ad, be, bd, cd o (t) ni(n2 + ng + na) + na2(n3 + na) + ngna
abe, acd, abd, bed m3(t) n1(nans + nana + nana) + nanzng
abed ma(t) N1M2N3N4
aa’,bb' cc’, dd’ w1 (t) - mi(t') Zf L 3ni(ni — 1)
aa'b,aa’c,aa’d | wi(t) - ma(t) ini(n1 — 1)(n2 + ns + na)
bb'a, bb'c, bb'd m1(t) - ma(t') ina(ng — 1)(n1 + ns + na)
cc'a,cc’b,ec’d m1(t) - ma(t') ins(ns — 1)(n1 + n2 + na)
dd'a,dd’'b,dd'c m1(t) - ma(t') ina(na — 1)(n1 + n2 + n3)
aa'be,aa’cd,aa’bd | m2(t) - w2 (t) %nl (n1 — 1)(nans + nana + nzna)
bb'ac,bb'cd, bb'ad | mwa(t) - m2(t') %nz(ng —1)(nin3 + nina + nana)
cc’ab,cc’ad,cc’bd | ma(t) - ma(t) %n;(ng — 1)(nin2 + nina + nang)
dd'ab,dd'ac,dd'bc | m2(t) - w2 (t) %n4(n4 — 1)(nin2 + ning + nang)
aa'bl’;aa’cc’aa'dd’ | wa(t) - wa(t) ini(ni —1) (Zf 5 ani(n; — 1))
b’ cc’, bb'dd’ mo(t) - m2(t') | n2(n2 — 1) [ns(ns — 1) 4+ na(na — 1)]
cc'dd ma(t) - m2(t') ins(ns — Dna(na — 1)

% For example, a term of type abc can occur in 71 (t)m2(t') and in w2 (t)m2(t)
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