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Abstract. The step from the well-known c-means clustering algorithm
to the fuzzy c-means algorithm and its vast number of sophisticated ex-
tensions and generalisations involves an additional clustering parameter,
the so called fuzzifier. This fuzzifier controls how much clusters may over-
lap. It also has some negative effects causing problems for clusters with
varying data density, noisy data and large data sets with a higher number
of clusters. In this paper we take a closer look at what the underlying
general principle of the fuzzifier is. Based on these investigations, we
propose an improved more general framework that avoids the undesired
effects of the fuzzifier.

1 Introduction

Clustering is an exploratory data analysis method applied to data in order to
discover structures or certain groupings in a data set. Fuzzy clustering accepts
the fact that the clusters or classes in the data are usually not completely well
separated and thus assigns a membership degree between 0 and 1 for each cluster
to every datum.

The most common fuzzy clustering techniques aim at minimizing an objective
function whose (main) parameters are the membership degrees and the param-
eters determining the localisation as well as the shape of the clusters. Although
the extension from deterministic (hard) to fuzzy clustering seems to be an ob-
vious concept, it turns out that to actually obtain membership degrees between
zero and one, it is necessary to introduce a so-called fuzzifier in fuzzy clustering.
Usually, the fuzzifier is simply used to control how much clusters are allowed to
overlap. In this paper, we provide a deeper understanding of the underlying con-
cept of the fuzzifier and derive a more general approach that leads to improved
results in fuzzy clustering.

Section 2 briefly reviews the necessary background in objective function-
based fuzzy clustering. The purpose, background and the consequences of the
additional parameter in fuzzy clustering – the fuzzifier – is examined in section 3.
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Based on these considerations and on a more general understanding, we propose
an improved alternative to the fuzzifier in section 4 and outline possible other
approaches in the final conclusions.

2 Objective Function-Based Fuzzy Clustering

Clustering aims at dividing a data set into groups or clusters that consist of simi-
lar data. There is a large number of clustering techniques available with different
underlying assumptions about the data and the clusters to be discovered. A sim-
ple and common popular approach is the so-called c-means clustering [4]. For the
c-means algorithm it is assumed that the number of clusters is known or at least
fixed, i.e., the algorithm will partition a given data set X = {x1, . . . , xn} ⊂ Rp

into c clusters. Since the assumption of a known or a priori fixed number of
clusters is not realistic for many data analysis problems, there are techniques
based on cluster validity considerations that allow to determine the number of
clusters for the c-means algorithm as well. However, the underlying algorithm
remains more or less the same, only the number of clusters is varied and the
resulting clusters or the overall partition is evaluated. Therefore, it is sufficient
to assume for the rest of the paper that the number of clusters is always fixed.

From the purely algorithmic point of view, the c-means clustering can be
described as follows. Each of the c clusters is represented by a prototype vi ∈ Rp.
These prototypes are chosen randomly in the beginning. Then each data vector
is assigned to the nearest prototype (w.r.t. the Euclidean distance). Then each
prototype is replaced by the centre of gravity of those data assigned to it. The
alternating assignment of data to the nearest prototype and the update of the
prototypes as cluster centres is repeated until the algorithm converges, i.e., no
more changes happen.

This algorithm can also be seen as a strategy for minimizing the following
objective function:

f =
c∑

i=1

n∑

j=1

uijdij (1)

under the constraints
c∑

i=1

uij = 1 for all j = 1, . . . , n (2)

where uij ∈ {0, 1} indicates whether data vector xj is assigned to cluster i
(uij = 1) or not (uij = 0). dij =‖ xj − vi ‖2 is the squared Euclidean distance
between data vector xj and cluster prototype vi.

Since this is a non-trivial constraint nonlinear optimisation problem with con-
tinuous parameters vi and discrete parameters uij , there is no obvious analytical
solution. Therefore an alternating optimisation scheme, alternatingly optimising
one set of parameters while the other set of parameters is considered as fixed,
seems to be a reasonable approach for minimizing (1). The above mentioned
c-means clustering algorithm follows exactly this strategy.
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It should be noted that choosing the (squared) Euclidean distance as a mea-
sure for the distance between data vector uij and cluster i is just one choice out
of many. In this paper we are not interested in the great variety of specific clus-
ter shapes (spheres, ellipsoids, lines, quadrics,. . .) that can be found by choosing
suitable cluster parameters and an adequate distance function. (For an overview
we refer to [2,5].) Our considerations can be applied to all cluster shapes. In
this paper we concentrate on the assignment of data to clusters specified by the
uij-values, especially in fuzzy clustering where the assumption uij ∈ {0, 1} is
relaxed to uij ∈ [0, 1]. In this case, uij is interpreted as the membership degree
of data vector xj to cluster i. Especially, when ambiguous data exist and cluster
boundaries are not sharp, membership degrees are more realistic than crisp as-
signments. However, it turned out that the minimum of the objective function
(1) under the constraints (2) is still obtained, when uij is chosen in the same
way as in the c-means algorithm, i.e. uij ∈ {0, 1}, even if we allow uij ∈ [0, 1].
Therefore, an additional parameter m, the so-called fuzzifier [1], was introduced
and the objective function (1) is replaced by

f =
c∑

i=1

n∑

j=1

um
ij dij . (3)

Note that the fuzzifier m does not have any effects, when we use hard clustering.
The fuzzifier m > 1 is not subject of the optimisation process and has to be
chosen in advance. A typical choice is m = 2. We will discuss the effects of the
fuzzifier in the next section. The fuzzy clustering approach with the objective
function (3) under the constraints (2) and the assumption uij ∈ [0, 1] is called
probabilistic clustering, since due to the constraints (2) the membership degree
uij can be interpreted as the probability that xj belongs to cluster i.

This still leads to a nonlinear optimisation problem, however, in contrast to
hard clustering, with all parameters being continuous. The common technique
for minimizing this objective function is similar as in hard clustering, alternat-
ingly optimise either the membership degrees or the cluster parameters while
considering the other parameter set as fixed.

Taking the constraints (2) into account by Lagrange functions, the minimum
of the objective function (3) w.r.t. the membership degrees is obtained at [1]

uij =
1

∑c
k=1

(
dij

dkj

) 1
m−1

, (4)

when the cluster parameters, i.e. the distance values dij , are considered to be
fixed. (If dij = 0 for one or more clusters, we deviate from (4) and assign xj

with membership degree 1 to the or one of the clusters with dij = 0 and choose
uij = 0 for the other clusters i.)

If the clusters are represented by simple prototypes vi ∈ Rp and the distances
dij are the squared Euclidean distances of the data to the corresponding cluster
prototypes as in the hard c-means algorithm, the minimum of the objective
function (3) w.r.t. the cluster prototypes is obtained at [1]
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vi =

∑n
j=1 um

ij xj∑n
j=1 um

ij

, (5)

when the membership degrees uij are considered to be fixed. The prototypes
are still the cluster centres. However, using [0, 1]-valued membership degrees
means that we have to compute weighted cluster centres. The fuzzy clustering
scheme using alternatingly equations (4) and (5) is called fuzzy c-means algo-
rithm (FCM). As mentioned before, more complicated cluster shapes can be
detected by introducing additional cluster parameters and a modified distance
function. Our considerations apply to all these schemes, but it would lead too far
to discuss them in detail. However, we should mention that there are alternative
approaches to fuzzy clustering than only probabilistic clustering. Noise cluster-
ing [3] maintains the principle of probabilistic clustering, but an additional noise
cluster is introduced. All data have a fixed (large) distance to the noise cluster.
In this way, data that are near the border between two clusters, still have a high
membership degree to both clusters as in probabilistic clustering. But data that
are far away from all clusters will be assigned to the noise cluster and have no
longer a high membership degree to other clusters. Our investigations and our
alternative approach fit also perfectly to noise clustering. We do not cover pos-
sibilistic clustering [8] where the probabilistic constraint is completely dropped
and an additional term in the objective function is introduced to avoid the triv-
ial solution uij = 0 for all i, j. However, the aim of possibilistic clustering is
actually not to find, but even to avoid the global optimum of the corresponding
objective function. This global optimum of the possibilistic objective function is
obtained, when all clusters are identical [9], covering only the best data cluster
and neglecting all other data. Essentially, the philosophy of possibilistic cluster-
ing is to initialise possibilistic clustering with the result of a probabilistic cluster
analysis and then find the nearest local minimum of the possibilistic objective
function, avoiding the undesired global minimum in this way. Therefore, possi-
bilistic clustering does often lead to non-satisfactory, when it is not initialised
by probabilistic clustering. However, the probabilistic initialisation suffers from
the before mentioned problems.

3 Understanding the Fuzzifier

The fuzzifier controls how much clusters may overlap. Figure 1 illustrates this
effect by placing two cluster centres on the x-axis at 0 and 1. The leftmost plot
shows the membership functions for the two clusters, when the fuzzifier is set to
m = 2, the middle one for m = 1.5 (and the rightmost will be discussed later).
It is well known and can be seen easily that for a larger m the transition from a
high membership degree from one cluster to the other is more smooth than for
a smaller m. Looking at the extremes, we obtain crisp {0, 1}-valued membership
degrees for m → 1 and equal membership degrees to all clusters for m → ∞
with all cluster centres converging to the centre of the data set. Note that we
have chosen a non-symmetric range around the cluster centres, so that images
do not look symmetric, although the membership functions are complimentary.



258 F. Klawonn and F. Höppner
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Fig. 1. Effects of the fuzzifier (from left to right): m = 2, m = 1.5, β = 0.5

The update equation (4) for the membership degrees derived from the ob-
jective function (3) can lead to undesired or counterintuitive results, because
zero membership degrees never occur (except in the extremely rare case, when
a data vector coincides with a cluster centre). No matter, how far away a data
vector is from a cluster and how well it is covered by another cluster, it will still
have nonzero membership degrees to all other clusters and therefore influence
all clusters. This applies also in the case of noise and of possibilistic clustering,
although the effect is weaker in these cases.

Figure 2 shows an undesired side-effect of the probabilistic fuzzy clustering
approach. There are obviously three clusters. However, the upper cluster has a
much higher data density than the other two. This single dense cluster attracts
all other cluster prototypes so that the prototype of the left cluster is slightly
drawn away from the original cluster centre and the prototype we would expect
in the centre of the lower left cluster migrates completely into the dense cluster.
In the figure we have also indicated for which cluster a data vector has the
highest membership degree. This undesired effect can be reduced to a certain
degree, if we introduce a special volume parameter in the clustering scheme [6].

Another counterintuitive effect of probabilistic fuzzy clustering occurs in the
following situation. Assume we have a data set that we have clustered already.
Then we add more data to the data set in the form of a new cluster that is far
away from all other clusters. If we recluster this enlarged data set with one more
cluster as the original data set, we would expect the same result, except that
the new data are covered by the additional cluster, i.e., we would assume that
the new cluster has no influence on the old ones. However, since we never obtain
zero membership degrees, the new data (cluster) will influence the old clusters.

This means also that, if we have many clusters, clusters far away from the
centre of the whole data set tend to have their computed cluster centres drawn
into the direction of the centre of the data set.

These effects can be amended, when a small fuzzifier is chosen. The price
for this is that we end up more or less with hard clustering again and even
neighbouring clusters become artificially well separated, although there might
be ambiguous data between these clusters.

As can be seen in figure 1, the membership degrees tend to increase again,
when we move far away from all clusters. This undesired effect can be amended
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Fig. 2. Clusters with varying density

by applying noise clustering. Nevertheless, even in the case of noise clustering,
noisy data, no matter how far away they are from all other clusters, will still
have nonzero membership degrees to all clusters.

In order to propose an alternative to the fuzzifier approach, we examine more
closely what impact the fuzzifier has on the objective function. When we want to
generalise the idea of deterministic or hard clustering to fuzzy clustering, using
the original objective function (1) of hard clustering simply allowing the uij

values to be in [0, 1] instead of {0, 1}, still leads to crisp partitions, as we have
already mentioned before. In order to better understand why, let us consider the
following situation. We fix the cluster prototypes, i.e. the distance values dij ,
for the moment – we might even assume that we have already found the best
prototypes – and want to minimize the objective function (1) by choosing the
appropriate membership degrees taking the constraints (2) into account. Due to
these constraints we cannot set all uij to zero. In order to keep the objective
function small, a good starting point seems to be to choose ui0j = 1, if di0j ≤ dij

for all i = 1, . . . , c and uij = 0 otherwise. This means that the only non-zero
membership degree for a fixed j is multiplied by the smallest possible distance
value dij . When we try to further reduce the resulting value of the object function
by decreasing an ui0j-value that was set to one, we have to increase another uij-
value to satisfy the constraint (2). When we reduce ui0j by ε and increase uij

by ε instead, the change in the objective function will be
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∆ = ε · dij − ε · di0j = ε(dij − di0j).

Since di0j ≤ dij , this can only lead to an increase and therefore never to an im-
provement of the objective function. The trade-off by reducing ui0j and therefore
increasing uij always means a bad pay-off in terms of the objective function. We
can turn the pay-off into a good one, if we modify the objective function in
the following way: A reduction of a ui0j-value near 1 by ε must have a higher
decreasing effect than the increment of a uij-value near 0. Since the factor di0j

of ui0j is smaller than the factor dij of uij , we apply a transformation to the
membership degrees in the objective function, such that a decrease of a high
membership degree has a stronger decreasing effect than the increasing effect
caused by an increase of a small membership value. One transformation, satis-
fying this criterion, is

g : [0, 1] → [0, 1], u �→ um

with m > 1 that is commonly used in fuzzy clustering. However, there might be
other choices as well. Which properties should such a transformation satisfy? It is
obvious that g should be increasing and that we want g(0) = 0 and g(1) = 1. If g
is differentiable and we apply the above mentioned reduction of the membership
degree ui0j by ε, trading it in for an increase of the membership degree uij by a
small value ε, the change in the objective function is now approximately

∆ ≈ ε · g′(uij) · dij − ε · g′(ui0j) · di0j = ε(dij · g′(uij) − di0j · g′(ui0j)). (6)

In order to let this decrease the objective function, we need at least g′(uij) <
g′(ui0j), since di0j ≤ dij . More generally, we require that the derivative of g is
increasing on [0, 1]. g(u) = um with m > 1 definitely has this property. Espe-
cially, for this transformation we have g′(0) = 0, so that it always pays off to get
away from zero membership degrees. Figure 3 shows the identity (the line which
does not transform the membership degrees at all), the transformation u2 (the
lower curve) and another transformation that also satisfies the requirements for
g, but has a nonzero derivative at 0, so that it only pays off to have a nonzero
membership degree, if the distance values dij is not too large in comparison to
di0j .

Let us take a closer look which effect the transformation g has on the objective
function. Assume, we want to minimize the objective function

f =
c∑

i=1

n∑

j=1

g(uij)dij (7)

under the constraints (2) w.r.t. the values uij , i.e., we consider the distances as
fixed. The constraints lead to the Lagrange function

L =
c∑

i=1

n∑

j=1

g(uij)dij +
n∑

j=1

λj

(
1 −

c∑

i=1

uij

)

and the partial derivatives
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Fig. 3. Transformations for probabilistic clustering

∂L

∂uij
= g′(uij)dij − λj . (8)

At a minimum of the objective function the partial derivatives must be zero,
i.e. λj = g′(uij)dij . Since λj is independent of i, we must have g′(uij)dij =
g′(ukj)dkj for all i, k at a minimum. This actually means that these products
must be balanced during the minimization process. In other words, the minimum
is not reached unless the ∆-values in (6) are all zero.

4 An Alternative for the Fuzzifier

Taking into account the analysis carried out in the previous section, we propose a
new approach to fuzzy clustering that replaces the transformation g(u) = um by
another transformation. In principle, we can think of any differentiable function
satisfying the requirements stated in the previous section. However, when we
want to maintain the computationally more efficient alternating optimisation
scheme for fuzzy clustering with explicit update equations for the membership
degrees, we easily run into problems for general functions g. From (8) we can
immediately see that we will need the inverse of g′ in order to compute the
uij . Therefore, we restrict our considerations here to quadratic transformations.
Since we require g(0) = 0 and g(1) = 1 and an increasing first derivative, the
choices reduce to quadratic functions of the form g(u) = αu2 + (1 − α)u with
0 ≤ α ≤ 1.

Instead of α we use the parameter

β =
g′(0)
g′(1)

=
1 − α

1 + α
.
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We can easily compute α = 1−β
1+β . Let us assume that di0j is the distance of data

vector xj to the nearest cluster and dij is the distance of xj to another cluster
further away. Then β indicates the lower bound that the quotient di0j

dij
must

exceed, in order to have a nonzero membership degree of xj to the cluster that
lies further away. For β = 0 we obtain standard fuzzy clustering with fuzzifier
m = 2 and for β → 1 we approach crisp clustering.

We now derive the update equations for our new clustering approach. We
have to minimize the objective function

f =
c∑

i=1

n∑

j=1

(
1 − β

1 + β
u2

ij +
2β

1 + β
uij

)
dij

under the constraints (2) as well as 0 ≤ uij ≤ 1. Computing the partial deriva-
tives of the Lagrange function

L =
c∑

i=1

n∑

j=1

(
1 − β

1 + β
u2

ij +
2β

1 + β
uij

)
dij +

n∑

j=1

λj

(
1 −

c∑

i=1

uij

)

and solving for uij we obtain

uij =
1

1 − β

(
(1 + β)λj

2dij
− β

)
(9)

if uij 	= 0. Using
∑

k:ukj �=0 ukj = 1, we can compute

λj =
2(1 + (ĉ − 1)β)

(1 + β)
∑

k:ukj �=0
1

dkj

where ĉ is the number of clusters to which data vector xj has nonzero member-
ship degrees. Replacing λj in (9), we finally obtain the update equation for

uij =
1

1 − β



 1 + (ĉ − 1)β
∑

k:ukj �=0
dij

dkj

− β



 . (10)

We still have to determine which uij are zero. Since we want to minimize the
objective function (7), we can make the following observation. If uij = 0 and
dij < dtj , then at a minimum of the objective function, we must have utj = 0
as well. Otherwise we could reduce the value by setting utj to zero and letting
uij assume the original value of utj . This implies the following. For a fixed j we
can sort the distances dij in decreasing order. Without loss of generality let us
assume d1j ≥ . . . ≥ dcj . If there are zero membership degrees at all, we know
that for minimizing the objective function the uij-values with larger distances
have to be zero. (10) does not apply to these uij-values. Therefore, we have to
find the smallest index i0 to which (10) is applicable, i.e. for which it yields a
positive value. For i < i0 we have uij = 0 and for i ≥ i0 the membership degree
uij is computed according to (10) with ĉ = c + 1 − i0.



What Is Fuzzy about Fuzzy Clustering? 263

With this modified algorithm the data set in figure 2 is clustered correctly, i.e.
the cluster centres correspond to the centres of the data clusters. The parameter
β was set to β = 0.5, the corresponding transformation g is the curve in the
middle in figure 3. β = 0.5 turned out to be a good choice for most of our data
sets and can be used as a rule of thumb similar to the choice of the fuzzifier m = 2.
Especially, when our modified approach is coupled with noise clustering, most
of the undesired effects of fuzzy clustering can be avoided and the advantages
of a fuzzy approach can be maintained. The diagram on the right-hand side of
figure 1 shows the membership degrees for two cluster with centres at 0 and 1,
when we use our approach with β = 0.5. The membership degree one is not only
assumed in the cluster centre, but also in a region around the cluster centre.
The undesired effect that membership degrees tend to 1/c or 1/2 in the case of
two clusters for data that are far away from all clusters is still present. However,
when we introduce a noise cluster, data lying far away from all clusters will not
only have small membership degrees to the clusters as in probabilistic clustering,
but membership degree one to the noise cluster and zero to all other clusters.

When using our modified algorithm, the update equations for the cluster
prototypes remain the same – for instance, in the case of FCM as in (5) – except
that we have to replace um

ij by

g(uij) = αu2
ij + (1 − α)uij =

1 − β

1 + β
u2

ij +
2β

1 + β
uij .

5 Conclusions

We have proposed a new approach to fuzzy clustering that overcomes the prob-
lem in fuzzy clustering that all data tend to influence all clusters. From the
computational point of view our algorithm is slightly more complex than the
standard fuzzy clustering scheme. The update equations are quite similar to
standard (probabilistic) fuzzy clustering. However, for each data vector we have
to sort the distances to the clusters in each iteration step. Since the number of
clusters is usually quite small and the order of the distances tends to converge
quickly, this additional computational effort can be kept at minimum. Looking
at the computational costs of computing αu2

ij +(1−α)uij instead of um
ij , we are

even faster, when the fuzzifier m is not an integer number, since in this case the
power function is need explicitly. But even for the case m = 2, we only need one
extra multiplication, one subtraction and one addition, when we use

αu2
ij + (1 − α)uij = (α · uij) · uij + uij − (α · uij).

As a future work, we will extend our approach not only to quadratic functions
as in this paper or to exponential functions [7], but to more general transforma-
tions g and apply the balancing scheme induced by (6) directly to compute the
membership degrees.
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