
Verification and Compliance Testing

Frank Guerin and Jeremy Pitt

Intelligent and Interactive Systems,
Department of Electrical & Electronic Engineering,
Imperial College of Science, Technology & Medicine,

Exhibition Road, London, SW7 2BT.
{f.guerin,j.pitt}@ic.ac.uk

Phone: +44 20 7594 6318 / Fax: 6274

Abstract. Verification and compliance testing are required if agents are
to be delegated responsibility for legally binding contracts, for example
in electronic markets. This paper describes a general agent communi-
cation framework which allows several different notions of verification
and compliance testing to be described. In particular we consider what
type of verification or testing may be possible depending on the infor-
mation which may be available (agent internals, observable behaviour,
normative specifications) and the semantic definition of the communica-
tion language. We use this framework to identify the types of languages
which will permit verification and testing in open systems where agents’
internals are kept private. This analysis gives some ideas about how com-
pliance might be enforced in an open system.

1 Introduction

Verification means checking the specifications or programs of a multi-agent sys-
tem at design time to ensure that the system will behave as desired in all possible
runs. Compliance testing means checking the behaviour of the system at run time
to determine if it behaves as desired. Desired behaviour may mean compliance
with some normative specification, for example honouring contracts in an e-
commerce system. Such a normative specification must specify something about
required states of the multi-agent system, these states may be agent states or
states of the society. Before we can investigate different notions of verification
and compliance testing we must have a frame of reference: a general agent com-
munication framework which describes the normative constraints as well as the
states of the system.

We begin by describing a general agent communication framework (§ 2). This
framework must describe the agent programs which a multi-agent system in com-
posed of; these can be represented by a computational model for the multi-agent
system (§ 2.1). We then specify additional variables to capture observable states
of an open system through a representation of the agents’ social context (§ 2.2)
and the states of this context (§ 2.3). Next we define the ACL component of the
framework (§ 2.6) which can accomodate languages based on mental or social

M.-P. Huget (Ed.): Communications in Multiagent Systems, LNAI 2650, pp. 98–112, 2003.
c© Springer-Verlag Berlin Heidelberg 2003



Verification and Compliance Testing 99

states and we summarise the general framework (§ 2.7). Using this framework
as a reference we describe several notions of verification and testing (§ 3). We
use the framework to analyse existing ACLs to determine if they are verifiable
(§ 4) and we identify the type of ACL which would be appropriate in an open
system. Finally we discuss how compliance might be enforced in an open system
(§ 5) and conclude (§ 6).

2 A General Agent Communication Framework

Before discussing verification and compliance testing we need to describe a gen-
eral agent communication framework containing the necessary components of
a multi-agent system. Our framework builds on the framework presented by
Wooldridge [14]; we attempt to make the framework more general to allow ACLs
with social semantics to be accommodated.

An agent communication language (ACL) typically has two functions1:

– To specify the meaning of messages; this is useful to an agent designer who
is deciding when an agent will plan to send a message and also what way
the agent will update its internal state upon receiving a message.

– To provide a normative specification for communication in the system; this
is necessary to ensure that the multi-agent system does not become dysfunc-
tional, for example to ensure that agents respond when spoken to and that
they honour their commitments.

We say that the first part defines a semantics for each communicative act
while the second (normative) part defines a specification which must be satisfied
by the system of agents using that language. It is important to note that there
is a distinction between program semantics for communication statements in
an agent’s program and ACL semantics (which constitute specifications) for
communicative acts. If an agent is ACL-compliant then its program semantics
will satisfy the semantics defined by the ACL specification. ACL semantics may
be defined in different ways and each way implies different notions of verification.

Communicating agents operate in a certain context, the entire context in-
cludes the private states and programs of agents as well as the publicly observ-
able state of the society. ACL semantics for communicative acts must specify
something about the state of this context. ACLs based on mental states typ-
ically specify semantics by means of preconditions and/or postconditions [7]
which must be true before or after the communicative act is performed. ACLs
based on social states typically specify social facts that are created or modified
by the performance of a communicative act [11]. Thus an agent communication
framework will need to include a representation of the multi-agent system which
captures information about the internal states of agents in the system as well as
observable (social) states.

1 The first agent communication languages confused these two functions (for example
FIPA [3] and KQML [7]).



100 Frank Guerin and Jeremy Pitt

In addition to an agent’s current state, we also need a representation of the
agent’s program because we might need to know what the agent is going to
do. The ACL specification for the semantics of communicative acts may refer to
future actions and we may need to verify that an agent will do them. For example,
in order to specify that an agent holds a certain intention as a precondition to
sending a promise act, the specification for the act may require that the agent’s
program eventually executes the intention.

2.1 Computational Model

Each agent in a multi-agent system can be described as a module. An entire
multi-agent system can be described by a single program P executing all these
modules in parallel. Each module has a set of asynchronous buffered input chan-
nels on which it can receive messages from other agents and a set of asynchronous
buffered output channels on which it sends messages to other agents. A channel
is a variable whose value is a list of messages.

A computational model is a mathematical structure which can represent the
behaviour of a program. The behaviour of a program can be described as a
sequence of states that the program could produce, where a state gives a value
to all the variables in the program including the control variable which describes
the location of the next statement. In addition to the internal variables of agents
we will model the social states of the system.

The computational model we choose for multi-agent systems is a fair transi-
tion system [8]. This is a system which contains variables and transitions and an
initial comdition specifying initial values for the variables. Variables represent
the states of the agents and transitions represent the state changes caused by
statements in the agents’ programs. A state is an interpretation of the variables,
assigning each variable a value over its domain. As a program executes it passes
through a sequence of states in which variables may take on different values.

2.2 Representing Social Context

A language LF is introduced to describe social facts. Social facts describe role
relationships, commitments to perform actions and publicly expressed attitudes.
Each agent may have a differing view of the social context, since it may not
have received all events (communications) occurring in the system; therefore for
each agent we use a unique variable to describe the social state observable to it.
The type of each social state variable is a mapping from well formed formulae
of the social facts language LF to true or false values. We also define an initial
condition Φ for the social state variables.

Given an initial social state Φ and a certain sequence of messages, we can
work out the values of the social facts in subsequent states as follows: The social
state is unchanged if no communication occurs; or if a communication does occur
the social state is modified according to the state change function described by
the ACL. For example, if an agent i promises something to another agent, the



Verification and Compliance Testing 101

ACL semantics of the communicative act for promise may require that a new
social commitment proposition becomes true in the social state.

The social state need not be explicitly represented anywhere in a real multi-
agent system, parts of it may or may not be represented by the the local variables
of agents in the system. Each agent should store a copy of all the information in
the social state that might be relevant to its interactions so that it may correctly
interpret context dependent communicative acts and keep track of its social com-
mitments. The complete social state is then implicit. As an external observer we
need to know the social state if we wish to understand the interactions tak-
ing place in the system. We need to know the social knowledge observable to
each agent in a system in order to determine if it is complying with the social
conventions to the best of its knowledge.

2.3 States and Computations

A state s is an interpretation of the variables, assigning each variable a value
over its domain. An infinite sequence of states

σ : s0, s1, s2, s3, . . .

is called a system model. A system model is a computation of the program P
(which identifies our fair transition system) if s0 satisfies the initial condition and
if each state sj+1 is accessible from the previous state sj via one of the transitions
in the system. A computation is a sequence of states that could be produced by
an execution of the program. All computations are system models but not vice
versa. Thus the agent programs identify the components of a fair transition
system and the fair transition system describes all the possible computations
that a program could produce. This is how we say what a program means,
mathematically: it is described as the set of all the sequences it could produce.

This constrains only the interpretations of variables in the agent programs.
We specify additional constraints on the interpretations of the social state vari-
ables so that the social state changes in response to communicative acts between
agents. We define a computation of the multi-agent system S with initial social
fact Φ to be a system model σ which is a computation of the program P and
where the social facts variables are also updated according to the ACL specifi-
cation each time a communication occurs.

2.4 System for a Single Agent

If we are the designers of a single agent and only have access to that agent’s
internals we can construct a new fair transition system Si where the variables,
initial condition and transition sets of the system are just the same as if i was
the only agent in the system [8]. The initial condition for social facts Φ will
include social facts that will be true for the system we intend to allow our agent
to run in. We add one extra transition τE , the environmental transition which
represents all the things other agents could do; τE cannot modify any variables



102 Frank Guerin and Jeremy Pitt

in agent i’s program apart from the communication channels; the outbound
communication channels can be modified by the removal of a message and the
inbound ones can be modified by addition of a message. Other variables may be
modified arbitrarily. Si represents all the possible behaviours of agent i in any
multi-agent system.

2.5 External System

If we do not have access to the internals of any agent, but can detect each message
being sent, we can construct a fair transition system SE which represents all
possible observable sequences. The variables of SE are simply the communication
channels we can observe and there are only two transitions, the idling transition
τI (preserves all variables and does nothing) and the environmental transition
τE . The environmental transition allows arbitrary modification of any variable
outside of the observable channels and allows a channel to be modified by adding
a message to the end or removing one from the front. In order to complete the
social states in computations of the multi-agent system SE we must also know
the initial social facts for the initial condition Φ. A computation of the multi-
agent system SE does not care about how its states interpret variables which
are not observable, it only cares about channels and social facts variables.

2.6 Agent Communication Language

When agents communicate they exchange messages which are well-formed formu-
lae of a language LC . Agents pass messages in order to perform communicative
acts and these acts must have a well defined semantics which is a part of the
ACL specification. The specification for the semantics of communicative acts is
a function �−�C which varies depending on whether the ACL is based on mental
or social states.

Mental: The function �−�C returns a formula in temporal logic LT . The for-
mula specifies properties of the system, for example, it may describe pre and/or
postconditions which must be true of sender or receiver or some other element
of the fair transition system. Preconditions should be true when the message is
sent, postconditions should be applied after i.e. they define things that should
become true after the message is passed. For example, a precondition might re-
quire that a certain mental state exist in the sender or that the receiver has
performed some action before a message can be sent. A postcondition might
assert that the receiver is obliged to adopt a certain mental state upon receiving
the message. The formula is given a semantics �−�T in terms of the set of models
where the formula is satisfied.

Social: The function �−�C returns a function from social state to social state.
The function describes the change to the social state caused by the message



Verification and Compliance Testing 103

transmitted. Since the ACL is responsible for defining the changes that mes-
sages cause in the social state, the ACL must also define the language LF for
social facts whose semantics �−�F returns a temporal formula in LT which is
interpreted over an observable model (i.e. a model where we are concerned only
with how states interpret observable variables). Thus �a, i�F , the semantics of a
social facts assertion a for agent i describes the set of models where the formula
a is satisfied by agent i. Many social facts may be simply satisfied in all situa-
tions, but some such as a commitment to do an action may be satisfied only in
those models where the action is eventually done by the agent. The social facts
semantics function �−�F is allowed to make use of channel variables and any of
the observable state variables but it cannot place constraints on agent internals.

Therefore a complete ACL for our general framework is a 3-tuple:

ACL = 〈LC ,LF ,LT 〉
Each of these languages can by specified by a tuple;
for example LC = 〈wff (LC), �−�C〉, where the first part of the tuple gives the set
of well formed formulae of the languages and the second part gives the semantics.

2.7 Agent Communication Framework

An agent communication framework is a 4-tuple:

〈Ag,Compmodel ,ACL, Φ〉
– Ag is a set of agent names, Ag = {1, . . . , n};
– Compmodel is the fair transition system representing all the programs of all

the agents in the multi-agent system;
– ACL = 〈LC ,LF ,LT 〉 is an ACL including mental and social components;
– Φ is the initial assertion for social states.

Using this framework we can define a few notions of verification and compliance
testing.

3 Types of Verification and Testing

Several different types of verification and compliance testing are possible depend-
ing on the type of ACL used, the information available and whether we wish to
verify at design time or test at run time. Design time verification is important
when we want to prove some properties (of an agent or the entire system) to
guarantee certain behaviours or outcomes in a system. Run time testing is used
to determine if agents are misbehaving in a certain run of the system. Run time
compliance testing is important in an open system because it may be the only
way to identify rogue agents. We must be able to identify misbehaving agents
if we are to take action against them and hence guarantee that they will not
prevent the society from functioning in the desired way.



104 Frank Guerin and Jeremy Pitt

d
es

ig
n

ti
m

e
v
er

ifi
ca

ti
o
n

︷
︸
︸

︷

co
m

p
li
a
n
ce

te
st

in
g

︷
︸
︸

︷

m
en

ta
l
la

n
g
u
a
g
e

so
ci

a
l
la

n
g
u
a
g
e

︷ ︸︸ ︷ ︷ ︸︸ ︷

a
cc

es
s

to
in

te
rn

a
ls

ex
te

rn
a
l
o
b
se

rv
a
ti
o
n

sp
ec

ifi
ca

ti
o
n

o
n
ly

a
cc

es
s

to
in

te
rn

a
ls

ex
te

rn
a
l
o
b
se

rv
a
ti
o
n

sp
ec

ifi
ca

ti
o
n

o
n
ly

Prove a property for agent programs • - - • - -
Mental semantics are always respected • - - - - -
Social facts are always respected - - - • - -

Verify the outcome of a system • - - • - -
Assume unknown agents are compliant - - • - - •
Prove a protocol property - - • - - •

Test mental semantic formula • - - - - -

Test via observed history
Test social constraints by history - - - - • -
Test protocols by history - - - - • -

• verification is possible and appropriate

Table 1. Types of Verification and Compliance Testing

Type of ACL: Our general framework allows the semantics of an act to include
both a formula which must be satisfied in the system and a social state change
function (see § 2.6), in which case both would need to be verified. In practise
there exist no ACLs which include both parts and ACLs can partitioned into
mental languages and social languages.

Information available: There are three relevant types of information that
might be available for verification and testing.



Verification and Compliance Testing 105

1. Internal States : The agent designer or system designer will typically have
access to internal states. By internal states we mean the agents’ program
code as well as their state during execution. Knowledge of the agents’ code
permits verification of future behaviour. This type of knowledge is usually
necessary to verify compliance with mental languages. When a social lan-
guage is used, the agent designer who has access to internal states of the
agents may still wish to verify at design time that the agent will always re-
spect the semantics. We may use information about internal states for both
design time verification and run time testing.

2. External States : In an e-commerce scenario different vendors contribute their
own agents to the system; these vendors might not desire to publicise the
internal code of their agents. Even if the code is publicised, the agents might
be based on very different architectures making it too difficult to verify their
behaviour by analysis of the code. In such cases the system administrator
has to perform some type of compliance testing which works with observable
social states. If we assume that the communications occurring in a run of
the system can be observed then testing based on external states is possible
at run time for languages based on social states.

3. Language specification: With only the language specification available we
can still prove certain properties. For example by assuming that all agents
respect the language’s semantics during the execution of a protocol we can
verify that certain outcomes will result. In this case we have no information
about runs of the system so only design time verification is possible.

Table 1 shows the types of verification and testing that are possible and
appropriate based the information available. Note how the only hope for run time
compliance testing in an open system (where agent internals are inaccessible) is
with a social language. We now give a more detailed explanation in terms of our
general framework.

3.1 Prove a Property for Agent Programs

This entails ensuring that some property holds for the system at design time.
In relation to communicating agents this verification has been used by van Eijk
[2] where a certain property is specified and proven to hold for a certain sys-
tem of communicating agents; this does not necessarily imply the use of any
communication language. In our framework we have a communication language
which may be social or mental, corresponding to these possibilities there are two
special cases of proving properties that are of particular interest to us.

Verify Mental Semantics are Always Respected: Given a mental language
we can verify at design time that the semantics of the communication language
are always respected by the agents in all possible computations of the system.
This means that for any computation, we verify that for each state which in-
volves message passing, the semantics of that message are satisfied. The semantic
property may be a precondition in the case of the FIPA ACL or a conjunction
of a precondition and postcondition in the case of KQML.



106 Frank Guerin and Jeremy Pitt

Verify Social Facts are Always Respected: With social languages acts cre-
ate or modify social facts and we may discuss whether or not agents respect the
social facts. If we have access to an agent’s internals, we can verify at design
time that the agent will always respect its social facts regardless of what other
agents in a system do. From the agent’s code we construct the transition system
Si as described in § 2.4; to verify that agent i always respects its social commit-
ments we need to prove that in all computations of the multi-agent system Si,
whenever a social fact x is true for agent i, the semantic formula corresponding
to x holds in the model.

In practice we will not need to check all possible well formed formulae of the
social facts language, inspection of the ACL specification can allow us to identify
the set of social facts that may arise. This is provided that our ACL satisfies
certain reasonable requirements, for example an agent should not be able to
create commitments for another agent without notifying the other. If an agent
is implemented by a finite state program2 then we can use a model checking
algorithm to perform the verification, it is less complex than proof theoretic
verification.

3.2 Verify the Outcome of a System

The designer of a multi-agent system may want to verify that a certain outcome
will occur given a certain initial state. If the internals of all agents are known this
is simply a matter of proving that a property holds eventually in all computations
of the system. This is independent of any communication language. If we don’t
know the internals of all the agents in the system, we cannot say much about
the outcome unless we make some assumptions about unknown agents.

Verify Outcome for Compliant Agents: Supposing we have designed an
agent (whose internals are known to us) and we wish to verify at design time that
a certain outcome is guaranteed when we let our agent run in a system of agents
whose internals we do not have access to. We construct a fair transition system
which represents all the possible behaviours of our agent in any environment
as described in § 2.4. Then we prove that our desired outcome is guaranteed
if all external transitions in the environment are compliant with the normative
constraints of the ACL. This type of verification is possible both with mental
and social languages.

Prove a Protocol Property: Proving properties of protocols at design time is
possible for both mental and social languages even when the internals of agents
are not accessible. If a property p holds for any system of compliant agents
executing a protocol prot, then we say that protocol prot has property p. With
a social language, the proof is carried out as follows

2 A finite state program is one where each system variable assumes only finitely many
values in all computations.



Verification and Compliance Testing 107

– Let p be an assertion characterising the desired property to be proved for
protocol prot.

– Set the initial condition Φ to an assertion characterising a social state where
protocol prot has started.

– Construct a fair transition system SE which represents all possible observable
sequences of states (see § 2.5).

– Prove the following over all computations of the multi-agent system SE :
if all agents are compliant then property p will hold.

The antecedant “all agents are compliant” requires that all social facts are
respected by all agents; in practice and we need only consider social facts that
can arise in the protocol under consideration; likewise we need only consider
agents that are involved in the protocol and these agents must be specified in
the initial condition Φ as they will occupy certain roles in the protocol. For a
worked example of this type of verification see [5].

3.3 Test Mental Semantic Formula at Run Time

This type of compliance testing is performed at run time with a mental language.
Given that the system is in a certain state s where a communication has just
taken place (by passing a message m), we wish to check if the semantics of the
communication language are satisfied for that communication. We check that
the mental semantic formula is satisfied on all possible paths from this point.
This type of testing allows for the possibility that the semantics are respected in
this instance but may not always be respected by the agents of the system. We
set the initial assertion to an assertion characterising the state s. Then we check
for this system that the mental semantic formula for message m holds. The type
of verification discussed by Wooldridge [14] falls in this category.

3.4 Testing Using an Observable History

This is used to determine if an agent is compliant by observing its external
behaviour at run time. We assume that we have access to the ACL specification,
an initial description of social facts and an observable history which takes the
form of a history of messages exchanged by one agent or by the entire system.
With this information it may be possible to determine if agents have complied
with the ACL thus far, but not to determine if they will comply in future.
However, this is probably the only kind of testing possible in open systems.

Test social constraints by history: This is the type of compliance testing
discussed by Singh, where “agents could be tested for compliance on the basis of
their communications”[11]. Recall that a history of messages and an initial social
state description Φ can uniquely describe a sequence of observable states. From
information of sending events we construct social states which are consistent
with the sequence of sending events. We then construct a fair transition system



108 Frank Guerin and Jeremy Pitt

SE which represents all possible observable sequences of states. Φ is the initial
condition of SE ; the variables are the channels of agents present in Φ and the
social state variables; the transitions are τI and τE as described in § 2.5. We then
find the set of all models which match the observed finite sequence up to its final
state and thereafter take all possible paths by taking the idling or environmental
transitions. Note that the models constructed here do not coincide with models
of the entire system where the transitions of agent programs are considered and
many transitions do not involve message passing; however, the semantics of social
facts will never refer to an absolute number of states, so this model is sufficient
for testing.

Now we can interpret the semantics of each of our observed agent’s social
facts over these observed models. Certain social facts in states of an observed
model may already have their semantics satisfied before the state where the
last observed message was passed (i.e. satisfied in the sequence which proceeds
after that state by infinite applications of the idling transition) for example
obligations which have been fulfilled. Certain other facts may not have their
semantics satisfied yet, though it may be possible that they will be satisfied
after and do not yet constitute a violation.

Thus we wish to check if there exists an observed model in which the semantic
formulae for all social facts in all states are satisfied; i.e. it is possible that the
observed sequence is part of a model where the observed agent is compliant.

Test Protocols by History: With a protocol based language it may be possible
to test compliance with a protocol by observing a history of communications if
the semantics of acts define obligations to perform observable actions. This is
the case with sACL [9] which defines the semantics of an act as a postcondition
which is an intention for the receiver to reply, given a predefined possible set of
replies. Given an observable history as described above (§ 3.4), we can see if each
agent respects the protocol by checking that an agent does send the message he
is obliged to send after receiving a message. This approach is effectively giving
a social semantics to the intention to reply by interpreting it as an observable
obligation, hence we are really creating a new language which is no longer entirely
mental. This is why table 1 states that protocols cannot be tested for a mental
language by observing a history.

4 Verifiability

Table 1 has shown what types of verification are possible for mental and social
languages; however, some languages may not be verifiable at all if certain compo-
nents of the communication framework are missing. Typically we describe this
in terms of missing language components; recall that we had three languages
as part of our ACL: A communication language, a social facts language and
temporal logic. In the more general case the temporal logic language LT can
be replaced by any semantic language Ls which will provide a relationship be-
tween the semantics of communication (either mental states or social facts) and



Verification and Compliance Testing 109

a grounded computational model. Table 3 shows what language components are
present in several different languages. For mental languages both wff(Ls) and
�−�s must be present to allow any type of verification at all. While FIPA has
specified a semantic language wff(Ls), it has given it a semantics using modal
operators;3 it has not attempted to give it a grounded semantics in terms of a
computational model, and this is what we require of the component �−�s in our
framework. In contrast, the QUETL language of Wooldridge [13] includes all four
components necessary for a mental language to be verifiable. Although it defines
the semantics of an inform in terms of an agent’s knowledge, this knowledge
operator is grounded in terms of states of the agent program.

ACL ACL Components

wff(LC) �−�C wff(Ls) �−�s wff(LF ) �−�F

FIPA � � � - - -
KQML Cognitive States � � � - - -
QUETL Wooldridge ’99 [13] � � � � - -
Singh Commitments 2000 [11] � � � � � �

︸ ︷︷ ︸

Necessary for: mental languages
︸ ︷︷ ︸

social languages

Table 2. Some ACLs and their Constituent Language Components.

A social language must specify all six components if it is to be verifiable:
messages are written in LC and �−�F defines how they create or modify social
facts; both wff(LF ) and �−�F are necessary to provide a mapping from social
facts to social facts semantics; both wff(Ls) and �−�s are necessary to give that
semantics a grounding in the computational model. We see that the language of
Singh [11] does have all six components, let us look at a request and its objective
meaning as an example:

– LC is the language in which messages are written, such as request(x, y, p); this
is given a semantics �−�C which maps it to C(x, y,G,RFp), an expression in
a social language LF (this is the objective meaning, there is also a subjective
and practical meaning for each act).

– LF is a language of commitments, the expression C(x, y,G,RFp) means that
x commits that he expects y to make p true. This expression is in turn given
a semantics �−�F as an expression in Ls.

3 The semantics of these operators is not given in any of the FIPA documents, see
also [10].



110 Frank Guerin and Jeremy Pitt

– Ls is a variant of Computation Tree Logic (CTL), CTL formulas have a
semantics �−�s in terms of the system models where they are satisfied.

Singh has in fact put together the languages Ls and LF by extending the syntax
and semantics of CTL so that commitments can be specified within it, and their
semantics given in terms of the other CTL primitives. The semantics of the
objective and practical meanings are grounded in observable social states of the
system.

As mentioned earlier, in an open system it may only be possible to make
external observations and if so, as shown in table 1, the only verification possible
will be by observing a history with a social language. The only language in our
table which could be verifiable in an open system is Singh’s language; this is
because the semantics of communication is grounded in social states (which are
observable in an open system), in contrast the semantics of a mental language is
grounded in program states (which might not be accessible in an open system).

5 Verification, Testing and Enforcement in an Open
System

The following are the most important types of verification in an open system.

1. Verify that an agent always satisfies its social facts.
2. Prove a property of a protocol.
3. Determine if an agent is not respecting its social facts at run time.

These types support each other, for example, proving properties of open systems
requires three verification types: agent designers must be able to prove that
individual agents are compliant (type 1); the protocol designer must be able
to prove properties for a system of compliant agents using the protocol (type
2); and the system itself needs to determine if agents do comply with social
commitments at run time (type 3) in order to police the society and guarantee
that rogue agents cannot damage the system’s properties.

5.1 Policing an Open Society

With reference to the enumerated verification types for an open system above,
type 2 requires that all agents comply. To be able to use this in an open system
there must be some way to enforce compliance. The issue of policing a society
can be tackled in one of the following three ways.

Sentinel agents may monitor the observable behaviour of agents and have
the capability to place sanctions or to evict or terminate offending agents. If we
guarantee that all violators are evicted then the system progresses as if all agents
complied; however, we must design protocols in such a way that an eviction
cannot destroy the desirable properties of the system.

If the society has to police itself we may introduce notions like trust and
politeness, whereby agents violating certain commitments or conventions of the



Verification and Compliance Testing 111

society are branded as untrustworthy or antisocial and are ostracised by the rest
of the society. Prisoner’s dilemma experiments [1] have shown that a strategy of
reciprocating (rewarding good behaviour and punishing bad behaviour) has the
effect of policing the society because agents will not tend to misbehave if they
cannot thereby gain an advantage. If we want self policing we must consider this
in the design of protocols so that all agents participating can observe enough
information to determine if an agent complies.

Yet another possibility is that agent owners will be legally responsible for the
behaviour of their agents. Agents will not be allowed to participate in a system
unless their owner guarantees that they are compliant. Then if such an agent
misbehaves at run time some sanction (such as a fine) can be placed on the
agent owner. This approach has the drawbacks that it requires some centralised
authority and the practicality of policing a system as distributed as the internet
might be questionable [12]. However, if the exchange of real money is to be
carried out by agents, there will inevitably be some human or institution who is
liable.

6 Conclusions and Future Work

We have described a general agent communication framework which includes a
computational model and an agent communication language component which
can accomodate an ACL based on mental or social states. This allowed us to
investigate different types of verification and to identify which components must
be present in the framework to facilitate each type of verification. We have
identified the need for a language based on social conventions for applications
with open systems of agents, such as e-commerce applications. We have also
described the types of verification that are possible in such systems and the
types of policing which could be used to enforce compliance. This theoretical
framework could be used to implement useful tools for such systems. For exam-
ple, an agent platform could automatically monitor the messages exchanged and
identify (and take action against) rogue agents. A tool could aid a designer by
automatically checking if an agent’s code is compliant and checking if protocols
give the expected outcomes.

The use of temporal logic for the specification of social facts allows many
properties to be specified but does not allow an absolute time frame to be refer-
enced; this could be achieved by moving to a clocked transition system [6].

Current and future work involves applying a model checking algorithm to
each type of verification; this will use protocol diagrams as state transition dia-
grams for observable systems, much of this is described in [4].



112 Frank Guerin and Jeremy Pitt

References

[1] R. Axelrod. The evolution of cooperation. Basic Books, New York, 1984. 111
[2] R. M. v. Eijk. Programming Languages for Agent Communication. PhD thesis,

Department of Information and Computing Sciences, Utrecht University, 2000.
105

[3] FIPA. [FIPA OC00003] FIPA 97 Part 2 Version 2.0: Agent Communication Lan-
guage Specification. In Website of the Foundation for Intelligent Physical Agents.
http://www.fipa.org/specs/fipa2000.tar.gz, 1997. 99

[4] F. Guerin. Specifying Agent Communication Languages. PhD thesis, Department
of Electrical and Electronic Engineering, Imperial College, UK, 2002. 111

[5] F. Guerin and J. Pitt. Guaranteeing properties for e-commerce systems. In
Autonomous Agents 2002 Workshop on Agent Mediated Electronic Commerce IV:
Designing Mechanisms and Systems, Bologna, 2002. 107

[6] Y. Kesten, Z. Manna, and A. Pnueli. Verifying clocked transition systems. In
Hybrid Systems III, LNCS vol. 1066, pages 13–40. Springer-Verlag, Berlin, 1996.
111

[7] Y. Labrou and T. Finin. A semantics approach for kqml – a general purpose
communication language for software agents. In Third International Conference
on Information and Knowledge Management (CIKM’94), pages 447–455, 1994.
99, 99

[8] Z. Manna and A. Pnueli. Temporal Verification of Reactive Systems (Safety), vol.
2. Springer-Verlag, New York, Inc., 1995. 100, 101

[9] J. Pitt and A. Mamdani. A protocol-based semantics for an agent communica-
tion language. In Proceedings 16th International Joint Conference on Artificial
Intelligence IJCAI’99, Stockholm, pages 486–491. Morgan-Kaufmann Publishers,
1999. 108

[10] J. Pitt and A. Mamdani. Some remarks on the semantics of FIPA’s agent com-
munication language. Autonomous Agents and Multi-Agent Systems, 4:333–356,
1999. 109

[11] M. Singh. A social semantics for agent communication languages. In IJCAI
Workshop on Agent Communication Languages, Springer-Verlag, Berlin., 2000.
99, 107, 109, 109

[12] M. Wooldridge. Verifiable semantics for agent communication languages. In IC-
MAS’98, 1998. 111

[13] M. Wooldridge. Verifying that agents implement a communication language. In
Sixteenth National Conference on Artificial Intelligence (AAAI-99), Orlando, FL,
(July 1999), 1999. 109, 109

[14] M. Wooldridge. Semantic issues in the verification of agent communication lan-
guages. Journal of Autonomous Agents and Multi-Agent Systems, 3(1):9–31, 2000.
99, 107


	Introduction
	A General Agent Communication Framework
	Computational Model
	Representing Social Context
	States and Computations
	System for a Single Agent
	External System
	Agent Communication Language
	Agent Communication Framework

	Types of Verification and Testing
	Prove a Property for Agent Programs
	Verify the Outcome of a System
	Test Mental Semantic Formula at Run Time
	Testing Using an Observable History

	Verifiability
	Verification, Testing and Enforcement in an Open System
	Policing an Open Society

	Conclusions and Future Work

