

 P. Perner (Ed.): ICDM 2004, LNAI 3275, pp. 144–152, 2004.
© Springer-Verlag Berlin Heidelberg 2004

Mining of an Alarm Log to Improve the
Discovery of Frequent Patterns

Françoise Fessant, Fabrice Clérot, and Christophe Dousson

France Télécom R&D, 2 avenue P. Marzin, 22307 Lannion, France
{francoise.fessant, fabrice.clerot, christophe.dousson}

@francetelecom.com
http://www.rd.francetelecom.com

Abstract. In this paper we propose a method to pre-process a
telecommunication alarm log with the aim of discovering more accurately
frequent patterns. In a first step, the alarm types which present the same
temporal behavior are clustered with a self organizing map. Then, the log areas
which are rich in alarms of the clusters are searched. The sublogs are built
based on the selected areas. We will show the efficiency of our preprocessing
method through experiments on an actual alarm log from an ATM network.

1 Introduction

Telecommunications networks are growing in size and complexity, which means that a
constantly increasing volume of notifications must be handled by the management
system. Most of this information is produced spontaneously by equipment (e.g. status
change and dysfunction detection) and this message flow must be preprocessed to make
an effective management possible.

Filters based on a per-notification basis fail to perform an adequate information pre-
processing required by human operators or by management application softwares which
are not able to process such amount of events. A pre-processing stage must “thin” this
information stream by suppressing redundant notifications and/or by aggregating
relevant ones. Numerical time constraints must also be taken into account since time
information is apropos for the telecommunications alarm propagation. Many works deal
with different approaches and propose more or less complex intelligent filtering: one
can use some efficient rule-based languages [1], and/or object-based techniques [2].
More specific techniques are devoted to capture time constraints between alarms [3],
[4]. In any case, the problem of expertise acquisition remains the same: how to feed the
filtering system? Which aggregation rules are relevant?

A way to filter the information flow is to exploit the logs collected from
telecommunications equipment. We have developed a tool called FACE (Frequency
Analyzer for Chronicle Extraction) that performs a frequency-based analysis in order to
extract “frequent patterns” from the logs. We only suppose that all the events are time-
stamped. The searched patterns are sets of event patterns with time constraints between
them (these sets are called “chronicle models”) and the frequency criterion is defined as
an user-defined minimal frequency threshold [5].

 Mining of an Alarm Log to Improve the Discovery of Frequent Patterns 145

Identifying the most frequent chronicle models is relevant to reduce the number of
alarms displayed to the operator: if a chronicle corresponds to a dysfunction, the
corresponding set of alarms is aggregated before being displayed to the human
operator; if not, the corresponding set of alarms is filtered. At the moment, we do not
use any extra knowledge about the domain; the rule qualification (aggregation or
filtering) is performed by an expert at the end of the discovering process.

Real experiments on telecommunications data show that most of the discovered
chronicles are relevant and some of them have a real benefit for the experts. However,
the chronicle process implemented in FACE, based on the exhaustive exploration of
the chronicle instances in the alarm log, is very memory-space consuming and the
main factor of this explosion is the size of the processed event logs.

To deal with that problem in the current implementation of FACE, the operational
experts manually select some alarms types and/or some time periods in the alarms
logs in order to extract a more manageable sublog to be processed by the tool. The
purpose of this communication is to describe and to evaluate a pre-processing method
to automatically extract relevant sublogs from an initial alarm log to simplify the use
of the software and alleviate the memory saturation effect.

The pre-processing stage we propose can be decomposed in two main steps. Firstly
we group together the alarm types which exhibit the same temporal behavior. Then
we search for each group the areas of the log that are rich in alarms of the observed
group. The sublogs are deduced from the alarms in these areas. The following
sections describe our data pre-processing and the experimental results obtained on an
actual alarm log from an ATM network.

2 Data Description and Representation

Previous experiments with FACE on alarm logs of various origins have revealed that
the instances of chronicles tend to be distributed in a clustered way along time. This
can be explained by the fact that most chronicles are indicative of faulty network
states, which do not happen randomly in time but only happen for short periods of
time before being corrected.

The data representation introduced below takes this into account, gives a great
importance to the temporal behavior of the alarms and aims at grouping in sublogs
alarms with similar temporal behaviors.

In the first data preparation phase the entire log is split in slices of fixed duration.
Each slice, called period, can contain a variable number of alarms or can also be
empty. The periods can be seen as unit elements of the log; they form a partition of it.
The periods constitute the base on which the alarms will be described and from which
the sublogs will be built.

The alarm types are then represented through their temporal evolution along the
periods. The cumulative profile of an alarm type is computed by adding up its
occurrences in successive periods and it is normalized in order to make it independent
of the total number of occurrences. Such a description takes into account the time
aspect present in alarm generation.

Our experiments are achieved with ATM (Asynchronous Transfer Mode) network
data. We have about one-month alarms log with 46600 alarms dispatched through
12160 different types. An alarm type is characterized by an alarm message (a string)

 F. Fessant, F. Clérot, and C. Dousson 146

and a date and time of occurrence; 75% of the alarm types weight less than 3
occurrences. We fixed the duration of a period to 15 minutes and we obtained 2317
periods which contain about 16 alarms on the average. The figure 1 shows the
occurrences of one alarm type of the log on all the periods and the figure 2 shows the
corresponding normalized cumulative profile.

0 500 1000 1500 2000
0

5

10

15

20

25

30

periods

oc
cu

rr
en

ce
s

of
 th

e
al

ar
m

 ty
pe

Fig. 1. Occurrence of an alarm type on all the log periods

0 500 1000 1500 2000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

periods

cu
m

ul
at

iv
e

su
m

 o
f a

la
rm

ty

pe
 o

cc
ur

re
nc

es
, n

or
m

al
iz

ed

Fig. 2. Normalized cumulative profile of the alarm type of Figure 1 on all the log periods

The purpose of the next step of the method is to group together the alarm types
which have the same temporal behavior.

3 Clustering of the Cumulative Profiles with a
 Self-Organizing Map

The alarms types are grouped together with a Self Organizing Map (SOM). A SOM is
a useful tool for exploratory data analysis made up of a set of nodes organized into a

 Mining of an Alarm Log to Improve the Discovery of Frequent Patterns 147

2-dimensional grid (the map). Each node has fixed coordinates in the map and
adaptive coordinates (the weights) in the input space. The input space is relative to
the variables setting up the observations. The self-organizing process slightly
moves the nodes coordinates in the data definition space -i.e. adjusts weights
according to the data distribution. This weight adjustment is performed while taking
into account the neighboring relation between nodes in the map. The SOM has the
well-known ability that the projection on the map preserves the proximities: close
observations in the original multidimensional input space are associated with close
nodes in the map. For a complete description of the SOM properties and some
applications, see [6] and [7].

After learning has been completed, the map is segmented into clusters, each cluster
being formed of nodes with similar behavior, with a hierarchical agglomerative
clustering algorithm. This segmentation simplifies the quantitative analysis of the map
[8].

We consider only the frequent alarm types -i.e. alarm types making at least 3
occurrences through the log: a chronicle being by definition characterized by
instances with several occurrences in the log, infrequent alarm types cannot take part
in the chronicle creation. We end up with a database of 3042 cumulative profiles (the
observations) described on the space of the 2317 periods. We experiment with a 9x9
square map with hexagonal neighborhoods (experiments on SOM have been done
with the SOM Toolbox package for Matlab [9]).

The clustering of the map has revealed 10 different groups of observations with
similar behavior. Figure 3 details the characteristic behavior of the clusters. We plot
the mean cumulative profile for each of the 10 clusters; each of the clusters being
identified by a number. The mean cumulative profile of a cluster is computed by the
mean of all the observations that have been classified by the nodes of the map
belonging to the cluster.

0 500 1000 1500 2000 2500
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

periods

m
ea

n
cu

m
ul

at
iv

e
pr

of
ile

s
of

 c
lu

st
er

s

cluster 1
cluster 2
cluster 3
cluster 4
cluster 5
cluster 6
cluster 7
cluster 8
cluster 9
cluster 10

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

(10)

Fig. 3. Mean cumulative profiles of the clusters

 F. Fessant, F. Clérot, and C. Dousson 148

The sharper the rise of a cumulative profile, the stronger the accumulation of the
alarms. The visual inspection of the figure shows that the clusters indeed correspond
to very different accumulation behaviors: some clusters correspond to accumulations
on rather limited sets of periods (cluster 8, accumulating at the very beginning of the
log, cluster 9 accumulating at the very end or cluster 1 accumulating in the middle, for
instance); other clusters show a more even distribution in time (clusters 3 and 4, for
instance).

At this stage we end up with a limited number of groups that characterize and
summarize the whole alarm types: all the alarms types classified in a cluster
accumulate in the same way through the log.

4 Sublogs Construction

Some periods of the log are more significant than others for a given cluster of alarm
types. We define the importance of a period for a cluster by the number of alarms of
the cluster included in the period, in proportion of all the alarms this period contains
(with this definition, we tend to favor some periods producing few alarms but
essentially alarms of the cluster).

We proceed as follows to select the most interesting periods for a cluster: we first
order the periods according to their importance for the studied cluster; the periods
which have the highest importance values are ranked first. The subset of periods
corresponding to the cluster is simply built by adding the periods in order of
decreasing importance until a given proportion of the alarms of the cluster are
contained in the sublog.

The figure 4 illustrates the result of the period selection process for cluster 1. We
arbitrarily fixed the stopping criterion to 90% (i.e. we retain the periods until the sublog

0 500 1000 1500 2000 2500
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of selected periods : 285

Cluster 1

Fig. 4. Selected periods for an alarm type cluster

 Mining of an Alarm Log to Improve the Discovery of Frequent Patterns 149

contains 90% of the alarms of the cluster). For the cluster given here as an example in
the figure, we select 285 periods of the log and this corresponds to 7% of the whole
alarms. A cross on the x-axis marks the selected periods. These selected periods
clearly coincide with the accumulation areas of the cluster (essentially in the middle
of the log for the cluster).

The figure 5 plots the location of the selected periods in the log for each cluster.
The comparison with figure 3 shows that the selected periods for a given cluster
correspond to the areas of alarm accumulation for this cluster.

C
1

C
2

C
3

C
4

C
5

C
6

C
7

C
8

C
9

0 500 1000 1500 2000 2500

C
10

index of period

in
de

x
of

 c
lu

st
er

Fig. 5. Time location of the selected periods for the cluster

The number of periods which have to be taken into account to reach 90% of the
alarms of a cluster vary a lot from a cluster to another, but whatever the observed
cluster, the amount of selected periods never goes beyond 35% of the whole alarms.

Table 1. Number of periods and alarms in each sublog

Sublog index Number of
periods

Number of
alarms

1 285 3079
2 287 9996
3 334 14204
4 783 16283
5 741 16083
6 361 11879
7 608 14725
8 136 4476
9 163 7043

10 658 10318
Total 4356 108086

 F. Fessant, F. Clérot, and C. Dousson 150

At this step of the process, we have isolated as many subsets of periods as alarm type
clusters. The sublog attached to a cluster of alarms is simply obtained by re-ordering in
time the alarms of the corresponding subset. Note that we keep all the alarms belonging
to the periods, including those of infrequent alarm types.

The Table 1 gives the number of periods in each subset and the corresponding
number of alarms (recall that the entire log consists of 2317 periods and 46600 alarms).

Let us remark that our selection method considers each cluster independently of the
others and, therefore, one period can be assigned to several subsets. The effect is that the
sum of alarms over the all sublogs is about 2.5 the number of alarms of the initial log.

5 Experimental Results

In this section we report the experimental results we obtained when running FACE
algorithm on the initial log and on the sublogs designed as previously explained (from
now on we call them SOM sublogs). FACE learning algorithm requires two input
parameters: the time window tw which sets the maximum distance between the events
of a chronicle model and the minimum threshold of the chronicle instances nqmin

which gives the minimum number of instances a chronicle model must have in the log
to be considered as frequent. Time window tw is fixed to 15 seconds and we choose to
vary the value of nqmin.

We report in figure 6 the number of different chronicle models discovered on the
entire log and on t he SOM sublogs as a function of nqmin. We also plot this number
for normal sublogs. To build normal sublogs we simply manually split the whole log
into several successive slices with about the same number of alarms in each slice. We

10
1

10
2

0

10

20

30

40

50

60

70

80

90

100

n
qmin

=28

number of chronicle models discovered

entire log
SOM sublogs
2 normal sublogs
3 normal sublogs
5 normal sublogs
10 normal sublogs

n
qmin

Fig. 6. Number of different chronicle models discovered

 Mining of an Alarm Log to Improve the Discovery of Frequent Patterns 151

experiment with four different sets of sublogs (the log is successively split in 2, 3, 5
and 10 sublogs, we proceed as operational experts usually do to extract more
manageable sublogs from an alarm log).

All experiments reported below have been run on the same computer (a Pentium 4
with 1.7 GHz of CPU and 1 Go of RAM) with no other application running than
FACE.

We can observe that the entire log is impossible to process for nqmin below 28; the
reason is a lack of memory-space of the computer. The treatment remains possible on
sublogs for much smaller values of nqmin (the limit is reached for nqmin=16 for the set
of 2 sublogs and nqmin =13 for the other sets of sublogs, and it is never possible to go
below this value).

We are able to discover more chronicles with the sublogs than with the entire log
(except for the set of 10 normal sublogs): for a given nqmin, we discover more
chronicles with the entire log than with the sublogs, but the exploration can be carried
on sublogs for much lower nqmin. Moreover, a detailed analysis of the discovered
chronicles shows that we find from the sublogs all the chronicles we have found from
the entire log and also many new chronicles: we do not loose any chronicle with SOM
sublogs.

We now compare the number of discovered chronicle models for low values of
nqmin, with normal sublogs and with SOM sublogs. We can see that the highest
number of chronicles discovered with normal sublogs is obtained for the set of 3
sublogs. SOM sublogs show a better performance. We found more chronicles with
SOM sublogs. Therefore, the improvement obtained with the SOM sublogs cannot be
attributed to the sequential processing of many smaller logs instead of the entire log
and to the ability to reach low frequencies. This improvement has to be attributed to
the data processing method adopted to build relevant sublogs.

Let us remark that the manual search of the good number of sublogs that will lead
to the discovery of the maximum number of chronicles is a very time consuming
process. The processing method we propose automatically extracts the relevant
sublogs.

These experimental results validate our data processing method which takes into
account the fact that chronicle instances do not happen randomly in time but in a
rather clustered way; using this pre-processing we recover all the chronicle models
discovered without pre-processing and we can analyze the log in a more accurate way
and discover new chronicles. We also have observed that the total processing time of
the SOM sublogs remains of the same order of magnitude as for the entire log.

6 Conclusion

The system FACE is very helpful for experts to discover monitoring knowledge from
alarm logs. However, the chronicle discovery process implemented in FACE (based
on the exploration of all the possibilities of chronicle instances) has the limitation to
be very memory-space consuming; the main factor of this explosion being the size of
the alarm log.

In this paper we have proposed a method to automatically extract relevant sublogs
from an alarm log to simplify the use of the software and alleviate this memory
saturation effect.

 F. Fessant, F. Clérot, and C. Dousson 152

The method is decomposed in several steps. The first step consists in the
description of the alarm types in a suitable representation that takes into account the
temporal evolution of the alarm types through the log. Then the alarm types which
have the same temporal behavior are grouped together with a self-organizing map.
The result of the clustering is a description of the whole alarm types in few groups.
Finally, the areas of the log that are the more relevant for the clusters of alarm types
are isolated and the alarms in these areas are grouped in sublogs. The sublogs can be
processed with FACE.

We presented experiments on an actual ATM log. The proposed data processing
method turns out to be very effective: with the sublogs we have found the same
chronicles that we were able to find while processing the whole log. Moreover we can
carry the search on sublogs to a point that is impossible to reach with the entire log
and obtain many new chronicles. We also have observed that the total duration
process of the sublogs always remain moderate. Another interesting point is that the
user can get intermediate results after the processing of each sublog and future
research will consider the adaptation of the learning parameters of the tool
independently for each sublog in order to discover the maximum number of
chronicles.

References

1. Möller, M., Tretter, S., Fink, B.: Intelligent filtering in network-management systems.
Proceedings of the 4th International Symposium on Integrated Network Management
(1995) 304-315

2. Nygate, Y.A.: Event correlation using rule and object base techniques. Proceedings of the
4th International Symposium on Integrated Network Management (1995) 279-289

3. Dousson, C.: Extending and Unifying Chronicle Representation with Event Counters.
Proceedings of the 15th ECAI (2002) 257-261

4. Jakobson, G., Weissman, M.: Real-time telecommunication network management:
extending event correlation with temporal constraints. Proceedings of the 4th International
Symposium on Integrated Network Management (1995) 290-301

5. Dousson, C., Vu Duong, T.: Discovering chronicles with numerical time constraints from
alarm logs for monitoring dynamic systems. Proceedings of the 16th IJCAI (1999) 620-626

6. T. Kohonen. Self-Organizing Maps. 3rd edn. Springer-Verlag, Berlin Heidelberg New York
(2001)

7. E. Oja. S. Kaski. Kohonen maps. Elsevier (1999)
8. Vesanto, J., Alhoniemi, E.: Clustering of the Self-Organizing Map. IEEE Transactions on

Neural Networks. 11 (3) (2000) 586-600
9. Vesanto, J., Himberg, J., Alhoniemi, E., Parhankangas, J.: SOM Toolbox for Matlab, Report

A57 Helsinki University of Technology, Neural Networks Research Centre, Espoo, Finland,
(2000)

	Introduction
	Data Description and Representation
	Clustering of the Cumulative Profiles with a Self-Organizing Map
	Sublogs Construction
	Experimental Results
	Conclusion
	References

