
Rewriting Conjunctive Queries Determined by
Views

Foto Afrati

National Technical University of Athens, Greece
afrati@softlab.ntua.gr

Abstract. Answering queries using views is the problem which exam-
ines how to derive the answers to a query when we only have the answers
to a set of views. Constructing rewritings is a widely studied technique
to derive those answers. In this paper we consider the problem of exis-
tence of rewritings in the case where the answers to the views uniquely
determine the answers to the query. Specifically, we say that a view
set V determines a query Q if for any two databases D1, D2 it holds:
V(D1) = V(D2) implies Q(D1) = Q(D2). We consider the case where
query and views are defined by conjunctive queries and investigate the
question: If a view set V determines a query Q, is there an equivalent
rewriting of Q using V? We present here interesting cases where there are
such rewritings in the language of conjunctive queries. Interestingly, we
identify a class of conjunctive queries, CQpath, for which a view set can
produce equivalent rewritings for “almost all” queries which are deter-
mined by this view set. We introduce a problem which relates determi-
nacy to query equivalence. We show that there are cases where restricted
results can carry over to broader classes of queries.

1 Introduction

The problem of using materialized views to answer queries [19] has received
considerable attention because of its relevance to many data-management ap-
plications, such as information integration [6,11,16,18,20,26], data warehousing
[25],[5] web-site designs [14], and query optimization [10]. The problem can be
stated as follows: given a query Q on a database schema and a set of views V
over the same schema, can we answer the query using only the answers to the
views, i.e., for any database D, can we find Q(D) if we only know V(D)? Con-
structing rewritings is a widely used and extensively studied technique to derive
those answers [17].

A related fundamental question concerns the information provided by a set of
views for a specific query. In that respect, we say that a view set V determines
a query Q if for any two databases D1, D2 it holds: V(D1) = V(D2) implies
Q(D1) = Q(D2) [24]. A query Q can be thought of as defining a partition of
the set of all databases in the sense that databases on which the query produces
the same set of tuples in the answer belong to the same equivalence class. In the
same sense a set of views defines a partition of the set of all databases. Thus, if

L. Kučera and A. Kučera (Eds.): MFCS 2007, LNCS 4708, pp. 78–89, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Rewriting Conjunctive Queries Determined by Views 79

a view set V determines a query Q, then the views’ partition is a refinement of
the partition defined by the query. Thus, the equivalence class of V(D) uniquely
determines the equivalence class of Q(D). Hence, a natural question to ask is: if
a set of views determines a query is there an equivalent rewriting of the query
using the views? In this paper we consider the case where query and views
are defined by conjunctive queries (CQ for short) and investigate decidability
of determinacy and the existence of equivalent rewriting whenever a view set
determines a query.

The existence of rewritings depend on the language of the rewriting and the
language of the query and views. Given query languages L, LV , LQ we say that a
language L is complete for LV -to-LQ rewriting if whenever a set of views V in LV
determines a query Q in LQ then there is an equivalent rewriting of Q in L which
uses only V . We know that CQ is not complete for CQ-to-CQ rewriting [22].
However there exist interesting special cases it is complete [24,22].

In this paper we consider subclasses of CQs and investigate a) decidability
of determinacy, b) special cases where CQ or first order logic is complete for
rewriting and c) the connection between determinacy and query equivalence. In
more detail, our contributions are the following:

1. We show that CQ is complete for the cases a) where the views are full (all
variables from the body are exported to the head) and b) where query has
a single variable and view set consists of a single view with two variables.

2. We show that determinacy is decidable for chain queries and views.
3. We identify a class of conjunctive queries, CQpath, which is almost complete

for CQpath-to-CQpath rewriting. This is the first formal evidence that there
are well behaved subsets of conjunctive queries.

4. Query rewritings using views is a problem closely related to query equiva-
lence. Hence it is natural to ask what is the connection between determi-
nacy and query equivalence. We investigate this question and introduce a
new problem which concerns a property a query language may have and is
a variant of the following: For a given query language, if Q1 is contained in
Q2 and Q2 determines Q1, then are Q1 and Q2 equivalent? We solve special
cases of it such as for CQ queries without self joins.

5. We make formal the observation that connectivity can be used to simplify
the problem of determinacy and as a result of it we provide more subclasses
with good behavior.

1.1 Related Work

In [24], the problem of determinacy is investigated for many languages including
first order logic and fragments of second order logic and a considerable number
of cases are resolved. The results closer to our setting show that if a language
L is complete for UCQ-to-UCQ (i.e., unions of CQs) rewriting, then L must ex-
press non-monotonic queries. Moreover, this holds even if the database relations,
views and query are restricted to be unary. This says that even Datalog is not
complete for UCQ-to-UCQ rewritings. Datalog is not complete even for CQ �=-
to-CQ rewritings. In [22,24], special classes of conjunctive queries and views are

80 F. Afrati

identified for which the language of conjunctive queries is complete: when views
are unary or Boolean and when there is only one path view. It is shown that
determinacy is undecidable for views and queries in the language of union of
conjunctive queries [24].

Determinacy and notions related to it are also investigated in [15] where the
notion of subsumption is introduced and used to the definition of complete rewrit-
ings and in [7,8] where the concept of lossless view with respect to a query is intro-
duced and investigated both under the sound view assumption (a.k.a. open world
assumption) and under the exact view assumption (a.k.a. closed world assump-
tion) on regular path queries used for semi-structured data. Losslessness under
the CWA is identical to determinacy. There is a large amount of work on equiv-
alent rewritings of queries using views. It includes [19] where it is proven that it
is NP-complete to decide whether a given CQ query has an equivalent rewriting
using a given set of CQ views, [12] where polynomial subcases were identified. In
[23], [4], [13] cases were investigated for CQ queries and views with binding pat-
terns, arithmetic comparisons and recursion, respectively. In some of these works
also the problem of maximally contained rewritings is considered. Intuitively, max-
imally contained rewritings is the bestwe cando for rewritings in a certain language
when there is no equivalent rewriting in the language and want to obtain a query
that uses only the views and computes as many certain answers [1] as possible.
In [21] the notion of p-containment and equipotence is introduced to characterize
view sets that can answer the same set of queries. Answering queries using views
in semi-structured databases is considered in [7] and references therein.

2 Preliminaries

2.1 Basic Definitions

We consider queries and views defined by conjunctive queries (CQ for short)
(i.e., select-project-join queries) in the form:

h(X̄) : −g1(X̄1), . . . , gk(X̄k).

Each subgoal gi(X̄i) in the body is a relational atom, where predicate gi defines
a base relation (we use the same symbol for the predicate and the relation), and
every argument in the subgoal is either a variable or a constant. A variable is
called distinguished if it appears in the head h(X̄).

A relational structure is a set of atoms over a domain of variables and con-
stants. A relational atom with constants in its arguments is called a ground
atom. A database instance or database is a finite relational structure with only
ground atoms. The body of a conjunctive query can be also viewed as a relational
structure and we call it canonical database of query Q and denote DQ; we say
that in DQ the variables of the query are frozen to distinct constants. A query
Q1 is contained in a query Q2, denoted Q1 � Q2, if for any database D on the
base relations, the answer computed by Q1 is a subset of the answer by Q2, i.e.,
Q1(D) ⊆ Q2(D). Two queries are equivalent, denoted Q1 ≡ Q2, if Q1 � Q2 and

Rewriting Conjunctive Queries Determined by Views 81

Q2 � Q1. Chandra and Merlin [9] show that a conjunctive query Q1 is contained
in another conjunctive query Q2 if and only if there is containment mapping from
Q2 to Q1. A containment mapping is a homomorphism which maps the head and
all the subgoals in Q2 to Q1. A CQ query Q is minimized if by deleting any sub-
goal we obtain a query which is not equivalent to Q. We denote by V(D) the
result of computing the views on database D, i.e., V(D) =

⋃
V ∈V V (D), where

V (D) contains atoms v(t) for each answer t of view V .

Definition 1 (equivalent rewritings). Given a query Q and a set of views V,
a query P is an equivalent rewriting of query Q using V, if P uses only the
views in V, and for any database D on the schema of the base relations it holds:
P (V(D)) = Q(D).

The expansion of a CQ query P on a set of CQ views V , denoted P exp, is
obtained from P by replacing all the views in P with their corresponding base
relations. Existentially quantified variables (i.e., nondistinguished variables) in a
view are replaced by fresh variables in P exp. For conjunctive queries and views a
conjunctive query P is an equivalent rewriting of query Q using V iff P exp ≡ Q.

2.2 Determinacy

For two databases D1, D2, V(D1) = V(D2) means that for each Vi ∈ V it holds
Vi(D1) = Vi(D2).

Definition 2 (views determine query). Let query Q and views V. We say that
V determines Q if the following is true: For any pair of databases D1 and D2,
if V(D1) = V(D2) then Q(D1) = Q(D2).

Let L be a query language or a set of queries (it will be clear from the context).
We say that a subset L1 of L contains almost all queries in L if the following
holds: Imagine L as a union of specific sets of queries, called eq-sets such that
each eq-set contains exactly all queries in L that are equivalent to each other
(i.e., every two queries in a particular eq-set are equivalent). Then L1 contains
all queries in L except those queries contained in a finite number of eq-subsets.

Definition 3 ((almost) complete language for rewriting). Let LQ and LV be
query languages or sets of queries. Let L be query language.

We say that L is complete for LV -to-LQ rewriting if the following is true for
any query Q in LQ and any set of views V in LV : If V determines Q then there
is an equivalent rewriting in L of Q using V. We say that L is complete for
rewriting if it is complete for L -to-L rewriting.

We say that L is almost complete for LV -to-LQ rewriting if there exists a
subset LQ1 of LQ which contains almost all queries in LQ such that the following
holds: L is complete for LV -to-LQ1 rewriting. We say that L is almost complete
for rewriting if it is almost complete for L -to-L rewriting.

It is easy to show that if there is an equivalent rewriting of a query using a set
of views then this set of views determine the query. The following proposition
states some easy observations.

82 F. Afrati

Proposition 1. Let query Q and views V be given by minimized conjunctive
queries. Suppose V determines Q.

Let Q′ be query resulting from Q after deleting one or more subgoals. Let DQ

and DQ′ be the canonical databases of Q and Q′ respectively. Then the following
hold: a) V(DQ) �= V(DQ′). b) For any database D, the constants in the tuples
in Q(D) is a subset of the constants in the tuples in V(D). c) All base predicates
appearing in the query definition appear also in the views (but not necessarily
vice versa). d) V(DQ) �= ∅.

Canonical Rewriting. Let DQ be the canonical database of Q. We compute
the views on DQ and get view instance V(DQ) [3,2]. We construct canonical
rewriting Rc as follows. The body of Rc contains as subgoals exactly all unfrozen
view tuples in V(DQ) and the tuple in the head of Rc is as the tuple in the head
of query Q. Here is an example which illustrates this construction.

Example 1. We have the query Q : q(X, Y) : −a(X, Z1), a(Z1, Z2), b(Z2, Y) and
views V : V1 : v1(X, Z2) : −a(X, Z1), a(Z1, Z2) and V2 : v2(X, Y) : −b(X, Y).
Then DQ contains the tuples {a(x, z1), a(z1, z2), b(z2, y)} and V(DQ) contains
the tuples {v1(x, z2), v2(z2, y)}. Thus, Rc is: q(X, Y) : −v1(X, Z2), v2(Z2, Y).

The following proposition can be used when we want to show that there is no
equivalent CQ rewriting of a query using a set of views.

Proposition 2. Let Q and V be conjunctive query and views and Rc be the
canonical rewriting. If there is a conjunctive equivalent rewriting of Q using V
then Rc is such a rewriting.

2.3 Cases for Which CQ Is Complete for Rewriting

Theorem 1. CQ is complete for LV -to-LQ rewriting in the case where LV and
LQ are subclasses of conjunctive queries in either of the following cases:

1. LQ = CQ and LV contains only queries with no nondistinguished variables.
2. Binary base predicates, one view in the view set, LQ contains only queries

with one variable and LV contains only queries with one non-distinguished
variable.

3 Chain and Path Queries

In this section we consider chain and path queries and views.

Definition 4. A CQ query is called chain query if it is defined over binary
predicates and also the following holds: The body contains as subgoals a number
of binary atoms which if viewed as labeled graph (since they are binary) they
form a directed simple path and the start and end nodes of this path are the
arguments in the head. For example, this is a chain query: q(X, Y) : −a(X, Z1),
b(Z1, Z2), c(Z2, Y).

Rewriting Conjunctive Queries Determined by Views 83

Path queries are chain queries over a single binary relation. Path queries can be
fully defined simply by the length of the path in the body (i.e., number of subgoals in
the body). Hence we denote by Pk the path query of length k. We denote the language
of all chain queries by CQchain and the language of all path queries by CQpath.

3.1 Chain Queries – Decidability

In the case of chain queries and views, we show that the following property fully
characterizes cases where a set of views determine a query (Theorem 2), hence
for this class determinacy is decidable.

Definition 5. Let Q be a binary query over binary predicates. We say that Q
is disjoint if the body of Q viewed as an undirected graph does not contain a
(undirected) path from one head variable of Q to the other.

Theorem 2. Let query Q and views V be chain queries. Then the following
hold:

1. V determines Q iff the canonical rewriting of Q using V is not disjoint.
2. First order logic is complete for CQchain-to-CQchain rewriting.
3. It is decidable whether a set of views determines a query.

3.2 Path Queries – CQ Is Almost Complete for Rewriting

In this section we will prove the following theorem and we will also get a complete
characterization for path queries and two path views as concerns CQ being
complete for this class of queries and views.

Theorem 3. CQpath (and hence CQ) is almost complete for CQpath-to-CQpath

rewriting. Hence CQpath is almost complete for rewriting.

The above theorem is a consequence of Lemma 2. In order to acquire some
intuition we present first some intermediate results.

Theorem 4

1. CQpath (and hence CQ) is complete for {P2, P3}-to-CQpath rewriting.
2. CQpath (and hence CQ) is complete for {P3, P4}-to-CQpath1 rewriting, where

CQpath1 is CQpath after deleting P5.

Proof (of Part 1). The proof of part 1 is easy: The view set does not determine
query P1 for the following reason: Take a database which is empty and another
database which contains a single tuple, then in both databases, the views com-
pute the empty set while the query computes the empty set only in the former
database. All other path queries have easy equivalent CQpath rewritings. �

It is interesting to note (as another counterexample that CQ is not complete for
rewriting) that viewset {P3, P4} determines the query P5 because the following
formula is a rewriting of P5(X, Y) (it is not a CQ however):

84 F. Afrati

φ(X, Y) : ∃Z[P4(X, Z) ∧ ∀W ((P3(W, Z) → P4(W, Y))]

However there is no CQ rewriting of P5 using {P3, P4}.
We generalize the result in Theorem 4 for two views Pk and Pk+1. The fol-

lowing theorem is a complete characterization of all path queries with respect to
viewset {Pk, Pk+1}.

Theorem 5. Let QPk+2 be the set of all path queries except the set of queries

QPPk+2 =
n=k−2⋃

n=1

{Pnk+n+1, Pnk+n+2, . . . , P(n+1)k−1}

Then the following hold:

1. CQpath (and hence CQ) is complete for {Pk, Pk+1}-to-QPk+2 rewriting.
2. CQ is not complete for {Pk, Pk+1}-to-QPPk+2 rewriting.

Proof. (Sketch) First we use Theorem 2 to prove that all path queries except
queries P1, . . . , Pk−1 are determined by {Pk, Pk+1}. We only need to show that
there is in the expansion of the canonical rewriting an undirected path from
head variable X to head variable Y which ends in a forward edge. Inductively,
for query Pm (m ≥ k) there is such a directed path which ends in a forward edge.
For query Pm+1, we augment the undirected path of Pm by taking a backward
edge for Pk and then a forward edge for Pk+1.

Then we use similar argument as in the case of the viewset {P2, P3} to prove
that none of the queries P1, . . . , Pk−1 are determined by {Pk, Pk+1}. Finally we
prove that, for each path query in QPk+2, the canonical rewriting is an equivalent
rewriting. �

The following theorem is a corollary of Theorem 5 and Theorem 7 generalizes for
any two views Pk, Pm. The proof of Theorem 7 is a consequence of Lemma 1.

Theorem 6. CQpath (and hence CQ) is almost complete for {Pk, Pk+1}-to-
CQpath rewriting.

Theorem 7. Let k, m be positive integers. Then, CQpath (and hence CQ) is
almost complete for {Pk, Pm}-to-CQpath rewriting.

Lemma 1. Let Pn be a query and let viewset be {Pk, Pm}. Then the following
hold.

1. If n ≥ km and the greatest common divisor of k and m divides n then there
is a CQpath equivalent rewriting of the query using {Pk, Pm}.

2. If the greatest common divisor of k and m does not divide n then {Pk, Pm}
does not determine the query.

Finally the following lemma generalizes Lemma 1 for any number of views:

Lemma 2. Let Pn be a query and let viewset be V={Pk1 , Pk2 , . . . , PkK }. Then
there is a positive integer n0 which is a function only of k1, k2, . . . , kK such that
for any n ≥ n0 the following statements are equivalent.

Rewriting Conjunctive Queries Determined by Views 85

1. There is no equivalent rewriting in CQ of Pn using V.
2. The canonical rewriting of Pn using V is disjoint.
3. V does not determine Pn.

4 Determinacy and Query Equivalence

The problem that we investigate in this paper relates determinacy to query
rewriting. The simplest way to produce an equivalent rewriting of a query Q is
when we have only one view and the view is equivalent to the query. Hence, a
natural related problem is: If Q1 is contained in Q2 and Q2 determines Q1, are
Q1 and Q2 equivalent? The following simple example shows that this statement
does not hold: Let Q1 : q1(X, X) : −a(X, X) and Q2 : q2(X, Y) : −a(X, Y).
Obviously Q1 is contained in Q2. Also Q2 determines Q1 because there is an
equivalent rewriting of Q1 using Q2, it is R : q(X, X) : −q2(X, X). But Q1 and
Q2 are not equivalent.

We add some stronger conditions: Suppose in addition that there is a con-
tainment mapping that uses as targets all subgoals of Q1 and this containment
mapping maps the variables in the head one-to-one. Still there is a counterex-
ample:

Example 2. We have two queries:
Q1 : q1(X, Y, Z, W,A, B) : −r(Y,X), s(Y, X), r(Z, W),
s(Z, Z1), s(Z1, Z1), s(Z1, W), s(A,A1), s(A1, A1), s(A1, B).
and
Q2 : q2(X, Y, Z, W,A, B) : −r(Y,X), s(Y, X), r(Z, W),
s(Z, Z1), s(Z1, Z2), s(Z2, W), s(A,A1), s(A1, A1), s(A1, B).
Clearly Q1 is contained in Q2 and Q2 determines Q1 because there is an equiv-
alent rewriting of Q1 using Q2:
R : q′

1(X, Y, Z, W,A, B) : −q2(X, Y, Z, W,A, B), q2(X1, Y1, Z1, W1, Z, W).
Moreover there is a homomorphism from Q2 to Q1 that uses all subgoals of Q1
and is one-to-one on the head variables. But Q1 and Q2 are not equivalent.

Finally we add another condition which we denote by Q2(D1) ⊆s Q2(D2), where
D1, D2 are the canonical databases of Q1, Q2 respectively.

We need first explain the notation Q(D1) ⊆s Q(D2) which in general expresses
some structural property of databases D1 and D2 with respect to Q and this
property is invariant under renaming. We say that Q(D1) ⊆s Q(D2) holds if
there is a renaming of the constants in D1, D2 such that Q(D1) ⊆ Q(D2). For an
example, say we have query Q : q(X, Y) : −r(X, Y) and three database instances
D1 = {r(1, 2), r(2, 3)}, D2 = {r(a, b), r(b, c)} and D3 = {r(a, b), r(a, c)}. Then it
holds that Q(D1) ⊆s Q1(D2) and Q(D1) ⊆s Q(D2) because there is a renaming
of D2 (actually here D1, D2 are isomorphic) such that Q(D1) ⊆ Q1(D2) and
Q(D1) ⊆ Q(D2). But the following does not hold: Q(D3) ⊆s Q(D2).

We may also allow some constants in D1, D2 that are special as concerns
renaming. Although we need incorporate these constants in the notation, we

86 F. Afrati

will keep (slightly abusively) the same notation here since we always mean the
same constants. By Q2(D1) ⊆s Q2(D2) we mean in addition that (i) the frozen
variables in the head of the queries are identical component-wise, i.e., if in the
head of Q1 we have tuple (X1, . . . , Xm) then in the head of Q2 we also have
same tuple (X1, . . . , Xm) and in both D1, D2 these variables freeze to constants
x1, . . . , xm and (ii) we are not allowed to rename the constants x1, . . . , xm.

Now we introduce a new problem which relates determinacy to query equiv-
alence:

Determinacy and query equivalence: Let Q1, Q2 conjunctive queries. Suppose
Q2 determines Q1, and Q1 is contained in Q2. Suppose also that the following
hold: a) there is a containment mapping from Q2 to Q1 which (i) uses as targets
all subgoals of Q1 and (ii) maps the variables in the head one-to-one, and b)
Q2(D1) ⊆s Q2(D2), where D1, D2 are the canonical databases of Q1, Q2 respec-
tively. Then are Q1 and Q2 equivalent? If the answer is “yes” for any pair of
queries Q1, Q2 where Q1 belongs to CQ class CQ1 and Q2 belongs to CQ class
CQ2, then we say that determinacy defines CQ2-to-CQ1 equivalence.

This problem seems to be easier to resolve than the determinacy problem and
Theorem 8 is formal evidence of that.

Theorem 8. Let CQ1, CQ2 be subsets of the set of conjunctive queries. For the
following two statements it holds: Statement (A) implies statement (B).

A) CQ is complete for CQ2-to-CQ1 single view rewriting.
B) Determinacy defines CQ2-to-CQ1 equivalence.

In [22] it is proven part A of the above theorem for one path view. A consequence
of it and Theorem 8 is the following:

Theorem 9. Determinacy defines CQpath-to-CQ equivalence.

The determinacy and query equivalence question remains open. Theorem 10 set-
tles a special case where we have replaced condition (b) with a stronger one.
Theorem 11 is a consequence of Theorem 10.

Theorem 10. Let Q1, Q2 be conjunctive queries. Suppose Q2 determines Q1,
and Q1 is contained in Q2. Suppose also that the following hold: a) there is a
containment mapping that uses as targets all subgoals of Q1 and this containment
mapping maps the variables in the head one-to-one, and b) Q2(D1) contains
exactly one tuple, where D1 is the canonical database of Q1. Then Q1 and Q2
are equivalent.

Theorem 11. Consider queries in either of the following cases: a) Q1 has no
self joins (i.e., each predicate name appears only once in the body) or b) Q1
contains a single variable.

Suppose CQ query Q2 determines Q1 and Q1 is contained in Q2. Then Q1
and Q2 are equivalent.

Rewriting Conjunctive Queries Determined by Views 87

5 Connectivity

In this section, we present a case where good behavior for determinacy can
carry over to a broader class of queries. Specifically we relate determinacy to
connectivity in the body of the query. The following example shows the intuition.

Example 3. We have query: Q : Q(X) : −r(Y, X), s(Y, X), s1(Z, Z1), s2(Z1, Z)
and views V : v1(X, Y) : −r(Y, X) and v2(X, Y) : −s(Y, X), s1(Z, Z1), s2(Z1, Z).
First observe that all variables contained in the last two subgoals of Q are not
contained in any other subgoal of Q and neither they appear in the head of Q.
In this case we say that subgoals s1(Z, Z1), s2(Z1, Z) form a connected com-
ponent (see definitions below). Moreover, let us consider the canonical rewrit-
ing (which happens to be an equivalent rewriting) of Q using these two views
R1 : Q(X) : −v1(X, Y), v2(X, Y). Observe that none of the variables in the two
last subgoals of the query appear in the rewriting (we conveniently retain the
same names for the variables). In this case, we say in addition that the sub-
goals s1(Z, Z1), s2(Z1, Z) form a semi-covered component wrto the views (see
definition below). We conclude the observations on this example by noticing
that the following query and views a) are simpler and b) can be used “instead”
of the original query and views. Query Q′(X) : −r(Y, X), s(Y, X) and views
V : v′1(X, Y) : −r(Y, X) and v′2(X, Y) : −s(Y, X). They were produced from the
original query and views by a) deleting the semi-covered subgoals from the query
and b) deleting an isomorphic copy of the semi-covered subgoals from view v2
(see Lemma 3 for the feasibility of this). Then the canonical rewriting of Q′ using
V ′ is isomorphic to R1, specifically it is: R′

1 : Q′(X) : −v′1(X, Y), v′2(X, Y) and is
again an equivalent rewriting. In this section, we make this observation formal,
i.e., that in certain cases, we can reduce the original problem to a simpler one.

Definition 6 (Connectivity graph of query). Let Q be a conjunctive query. The
nodes of the connectivity graph of Q are all the subgoals of Q and there is an
(undirected) edge between two nodes if they share a variable or a constant.

A connected component of a graph is a maximal subset of its nodes such that
for every pair of nodes in the subset there is a path in the graph that connects
them. A connected component of a query is a subset of subgoals which define
a connected component in the connectivity graph. A query is head-connected
if all subgoals containing head variables are contained in the same connected
component.

Definition 7 (semi-covered component). Let Q and V be CQ query and views.
Let G be a connected component of query Q. Suppose that every variable or
constant in G is such that there is no tuple in V(DQ) (DQ is the canonical
database of Q) that contains it. Then we say that G is a semi-covered component
of Q wrto V.

Lemma 3. Let Q and V be conjunctive query and views. Suppose V determines
Q. Let GQ be a connected component of Q which is semi-covered wrto V. Then
there is a view in V which contains a connected component which is isomorphic
to GQ.

88 F. Afrati

As a consequence of Lemma 3, we can identify the semi-covered components of
the query in the views definitions as well. Hence, we define the semi-covered-free
pair, (Q′, V ′), of a pair (Q, V) of query and views: Q′ results from Q by deleting
all semi-covered components wrto V and each view in V ′ results from a view in
V by deleting the components isomorphic to the semi-covered components of the
query. Then the following holds:

Theorem 12. Let CQ1, CQ2 be subsets of the set of conjunctive queries such
that each query in either of them is head-connected. Let CQc be a conjunctive
query language. Let CQ1f , CQ2f be subsets of the set of conjunctive queries such
that for each query Q in CQ1 (CQ2 respectively) there is a query in CQ1f (CQ2f ,
respectively) which is produced from Q by deleting a connected component. Then
the following holds:

Language CQc is complete for CQ1-to-CQ2 rewriting iff it is complete for
CQ1f -to-CQ2f rewriting.

The following is a corollary of Theorem 12 and results from Section 3:

Theorem 13. Let P a
k be a query with two variables in the head whose body

contains i) a path on binary predicate r from one head variable to the other and
ii) additional subgoals on predicates distinct from r and using variables distinct
from the variables that are used to define the path. We call the language of such
queries CQapath.

Suppose we have query Q and views V that are in CQapath. Then it holds:
CQpath (and hence CQ) is almost complete for CQapath-to-CQapath rewriting.

6 Conclusion

The case about finding well behaved subclasses of conjunctive queries is of in-
terest and is far from closed. We include some suggestions that are close to the
research presented in this paper. For chain queries, we don’t have a full char-
acterization as concerns subclasses for which CQ is complete. We don’t know
whether determinacy defines CQ-to-CQ equivalence. Decidability of determinacy
for conjunctive queries remains open.

Acknowledgments. Many thanks to Jeff Ullman for insightful discussions and
for providing Example 2. Thanks also to the anonymous reviewers for their very
useful comments.

References

1. Abiteboul, S., Duschka, O.M.: Complexity of answering queries using materialized
views. In: PODS (1998)

2. Afrati, F., Li, C., Ullman, J.D.: Generating efficient plans using views. In: SIGMOD
(2001)

Rewriting Conjunctive Queries Determined by Views 89

3. Afrati, F., Li, C., Ullman, J.D.: Using views to generate efficient evaluation plans
for queries. JCSS, to appear

4. Afrati, F.N., Li, C., Mitra, P.: Rewriting queries using views in the presence of
arithmetic comparisons. Theor. Comput. Sci. 368(1-2) (2006)

5. Agrawal, S., Chaudhuri, S., Narasayya, V.R.: Automated selection of materialized
views and indexes in sql databases. In: Proc. of VLDB (2000)

6. Bayardo Jr., R.J., et al.: Infosleuth: Semantic integration of information in open
and dynamic environments (experience paper). In: SIGMOD (1997)

7. Calvanese, D., De Giacomo, G., Lenzerini, M., Vardi, M.Y.: Lossless regular views.
In: PODS, ACM, New York (2002)

8. Calvanese, D., De Giacomo, G., Lenzerini, M., Vardi, M.Y.: View-based query
query processing: On the relationship between rewriting, answering and lossless-
ness. In: International Conference on Database Theory (ICDT) (2005)

9. Chandra, A.K., Merlin, P.M.: Optimal implementation of conjunctive queries in
relational data bases. In: STOC (1977)

10. Chaudhuri, S., Krishnamurthy, R., Potamianos, S., Shim, K.: Optimizing queries
with materialized views. In: ICDE (1995)

11. Chawathe, S.S., et al.: The TSIMMIS project: Integration of heterogeneous infor-
mation sources. In: IPSJ (1994)

12. Chekuri, C., Rajaraman, A.: Conjunctive query containment revisited. In: Afrati,
F.N., Kolaitis, P.G. (eds.) ICDT 1997. LNCS, vol. 1186, Springer, Heidelberg (1996)

13. Duschka, O.M., Genesereth, M.R.: Answering recursive queries using views. In:
PODS (1997)

14. Florescu, D., Levy, A., Suciu, D., Yagoub, K.: Optimization of run-time manage-
ment of data intensive web-sites. In: Proc. of VLDB (1999)

15. Grumbach, S., Tininini, L.: On the content of materialized aggregate views. In:
PODS (2000)

16. Haas, L.M., Kossmann, D., Wimmers, E.L., Yang, J.: Optimizing queries across
diverse data sources. In: Proc. of VLDB (1997)

17. Halevy, A.Y.: Answering queries using views: A survey. VLDB Journal 10(4)
18. Ives, Z., Florescu, D., Friedman, M., Levy, A., Weld, D.: An adaptive query exe-

cution engine for data integration. In: SIGMOD (1999)
19. Levy, A., Mendelzon, A., Sagiv, Y., Srivastava, D.: Answering queries using views.

In: PODS (1995)
20. Levy, A., Rajaraman, A., Ordille, J.J.: Querying heterogeneous information sources

using source descriptions. In: Proc. of VLDB (1996)
21. Li, C., Bawa, M., Ullman, J.: Minimizing view sets without losing query-answering

power. In: Van den Bussche, J., Vianu, V. (eds.) ICDT 2001. LNCS, vol. 1973,
Springer, Heidelberg (2000)

22. Nash, A., Segoufin, L., Vianu, V.: Determinacy and rewriting of conjunctive queries
using views: A progress report. In: Schwentick, T., Suciu, D. (eds.) ICDT 2007.
LNCS, vol. 4353, Springer, Heidelberg (2006)

23. Rajaraman, A., Sagiv, Y., Ullman, J.D.: Answering queries using templates with
binding patterns. In: PODS (1995)

24. Segoufin, L., Vianu, V.: Views and queries: Determinacy and rewriting. In: PODS,
ACM Press, New York (2005)

25. Theodoratos, D., Sellis, T.: Data warehouse configuration. In: Proc. of VLDB
(1997)

26. Ullman, J.D.: Information integration using logical views. In: Afrati, F.N., Kolaitis,
P.G. (eds.) ICDT 1997. LNCS, vol. 1186, Springer, Heidelberg (1996)

	Rewriting Conjunctive Queries Determined by Views
	Introduction
	Related Work

	Preliminaries
	Basic Definitions
	Determinacy
	Cases for Which CQ Is Complete for Rewriting

	Chain and Path Queries
	Chain Queries -- Decidability
	Path Queries -- CQ Is Almost Complete for Rewriting

	Determinacy and Query Equivalence
	Connectivity
	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

