
Towards a Logic Query Language for Data
Mining

Fosca Giannotti1, Giuseppe Manco2, and Franco Turini3

1 CNUCE-CNR - Via Alfieri 1 - I56010 Ghezzano (PI), Italy
Fosca.Giannotti@cnuce.cnr.it

2 ICAR-CNR - Via Bucci 41c - I87036 Rende (CS), Italy
manco@icar.cnr.it

3 Department of Computer Science, Univ. Pisa - C.so Italia 40 - I56125 Pisa, Italy
turini@di.unipi.it

Abstract. We present a logic database language with elementary data
mining mechanisms to model the relevant aspects of knowledge discovery,
and to provide a support for both the iterative and interactive features
of the knowledge discovery process. We adopt the notion of user-defined
aggregate to model typical data mining tasks as operations unveiling un-
seen knowledge. We illustrate the use of aggregates to model specific data
mining tasks, such as frequent pattern discovery, classification, data dis-
cretization and clustering, and show how the resulting data mining query
language allows the modeling of typical steps of the knowledge discovery
process, that range from data preparation to knowledge extraction and
evaluation.

1 Introduction and Motivations

Research in data mining and knowledge discovery in databases has mostly con-
centrated on algorithmic issues, assuming a naive model of interaction in which
data is first extracted from a database and transformed in a suitable format, and
next processed by a specialized inductive engine. Such an approach has the main
drawback of proposing a fixed paradigm of interaction. Although it may at first
sound appealing to have an autonomous data mining system, it is practically un-
feasible to let the data mining algorithm “run loose” into the data in the hope to
find some valuable knowledge. Blind search into a database can easily bring to
the discovery of an overwhelming large set of patterns, many of which could be
irrelevant, difficult to understand, or simply not valid: in one word, uninteresting.

On the other side, current applications of data mining techniques highlight
the need for flexible knowledge discovery systems, capable of supporting the user
in specifying and refining mining objectives, combining multiple strategies, and
defining the quality of the extracted knowledge. A key issue is the definition of
Knowledge Discovery Support Environment [16], i.e., a query system capable of
obtaining, maintaining, representing and using high level knowledge in a unified
framework. This comprises representation of domain knowledge, extraction of

R. Meo et al.(Eds.): Database Support for Data Mining Applications,LNAI 2682, pp. 76–94, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

Towards a Logic Query Language for Data Mining 77

new knowledge and its organization in ontologies. In this respect, a knowledge
discovery support environment should be an integrated mining and querying
system capable of

– rigorous definition of user interaction during the search process,
– separation of concerns between the specification and the mapping to the

underlying databases and data mining tools, and
– understandable representations for the knowledge.

Such an environment is expected to increase the programmer productivity
of KDD applications. However, such capabilities require higher-order expressive
features capable of providing a tight-coupling between knowledge mining and
the exploitation of domain knowledge to share the mining itself.

A suitable approach can be the definition of a set of data mining primitives,
i.e., a small number of constructs capable of supporting a vast majority of KDD
applications. The main idea (outlined in [13]) is to combine relational query lan-
guages with data mining primitives in an overall framework capable of specifying
data mining problems as complex queries involving KDD objects (rules, cluster-
ing, classifiers, or simply tuples). In this way, the mined KDD objects become
available for further querying. The principle that query answers can be queried
further is typically referred to as closure, and is an essential feature of SQL.
KDD queries can thus generate new knowledge or retrieve previously generated
knowledge. This allows for interactive data mining sessions, where users cross
boundaries between mining and querying. Query optimization and execution
techniques in such a query system will typically rely on advanced data mining
algorithms.

Today, it is still an open question how to realize such features. Recently, the
problem of defining a suitable knowledge discovery query formalism has interes-
tend many researchers, both from the database perspective [1,2,13,19,14,11] and
the logic programming perspective [21,22,20]. The approaches devised, however,
do not explicitly model in a uniform way features such as closure, knowledge ex-
tration and representation, background knowledge and interestingness measures.
Rather, they are often presented as “ad-hoc” proposals, particularly suitable only
for subsets of the described peculiarities.

In such a context, the idea of integrating data mining algorithms in a de-
ductive environment is very powerful, since it allows the direct exploitation of
domain knowledge within the specification of the queries, the specification of
ad-hoc interest measures that can help in evaluating the extracted knowledge,
the modelization of the interactive and iterative features of knowledge discovery
in a uniform way. In [5,7] we propose two specific models based on the notion
of user-defined aggregate, namely for association rules and bayesian classifica-
tion. In these approaches we adopt aggregates as an interface to mining tasks
in a deductive database, obtaining a powerful amalgamation between inferred
and induced knowledge. Moreover, in [4,8] we show that efficiency issues can be
takled in an efficient way, by providing a suitable specification of aggregates.

In this paper we generalize the above approaches. We present a logic database
language with elementary data mining mechanisms to model the relevant aspects

78 F. Giannotti et al.

of knowledge discovery, and to provide a support for both the iterative and
interactive features of the knowledge discovery process. We shall refer to the
notion of inductive database introduced in [17,18,1], and provide a logic database
system capable of representing inductive theories. The resulting data mining
query language shall incorporate all the relevant features that allow the modeling
of typical steps of the knowledge discovery process.

The paper is organized as follows. Section 2 provides an introduction to user-
defined aggregates. Section 3 introduces the formal model that allows to incorpo-
rate both induced and deduced knowledge in a uniform framework. In section 4
we instantiate the model to some relevant mining tasks, namely frequent pat-
terns discovery, classification, clustering and discretization, and show how the
resulting framework allows the modeling of the interactive and iterative features
of the knowledge discovery process. Finally, section 5 discusses how efficiency
issues can be profitably undertaken, in the style of [8].

2 User-Defined Aggregates

In this paper we refer to datalog++ and its current implementation LDL++,
a highly expressive language which includes among its features recursion and a
powerful form of stratified negation [23], and is viable for efficient query evalu-
ation [6].

A remarkable capability of such a language is that of expressing distributive
aggregates, such as sum or count. For example, the following clause illustrates
the use of the count aggregate:

p(X, count〈Y〉)← r(X, Y).

It is worth noting the semantic equivalence of the above clause to the following
SQL statement:

SELECT X, COUNT(Y)
FROM r
GROUP BY X

Specifying User-defined aggregates. Clauses with aggregation are possible mainly
because datalog++ supports nondeterminism [9] and XY-stratification [6,23].
This allows the definition of distributive aggregate functions, i.e., aggregate
functions defined in an inductive way (S denotes a set and h is a composition
operator):

Base: f({x}) := g(x)
Induction: f(S ∪ {x}) := h(f(S), x)

Users can define aggregates in datalog++ by means of the predicates single
and multi. For example, the count aggregate is defined by the unit clauses:

single(count, X, 1).
multi(count, X, C, C + 1).

Towards a Logic Query Language for Data Mining 79

The first clause specifies that the count of a set with a single element x is 1. The
second clause specifies that the count of S ∪ {x} is c + 1 for any set S such that
the count of S is c.

Intuitively, a single predicate computes the Base step, while the multi
predicate computes the Inductive step. The evaluation of clauses containing ag-
gregates consists mainly in (i) evaluating the body of the clause, and nondeter-
ministically sorting the tuples resulting from the evaluation, and (ii) evaluating
the single predicate on the first tuple, and the multi predicate on the other
tuples.

The freturn and ereturn predicates [25] allow building complex aggregate
functions from simpler ones. For example, the average of a set S is obtained
by dividing the sum of its elements by the number of elements. If S contains
c elements whose sum is s, then S ∪ {x} contains c + 1 elements whose sum is
s + x. This leads to the following definition of the avg function:

single(avg, X, (X, 1)).
multi(avg, X, (S, C), (S + X, C + 1)).
freturn(avg, (S, C), S/C).

Iterative User-Defined Aggregates. Distributive aggregates are easy to define by
means of the user-defined predicates single and multi in that they simply re-
quire a single scan of the available data. In many cases, however, even simple
aggregates require multiple scans of the data. As an example, the absolute devi-
ation Sn =

∑
x |x−x| of a set of n elements is defined as the sum of the absolute

difference of each element with the average value x = 1/n
∑

x x of the set. In
order to compute such an aggregate, we need to scan the available data twice:
first, to compute the average, and second, to compute the sum of the absolute
difference.

However, the datalog++ language is powerful enough to cope with multiple
scans in the evaluation of user-defined aggregates. Indeed, in [4] we extend the
semantics of datalog++ by introducing the iterate predicate, which can be
exploited to impose some user-defined conditions for iterating the scans over the
data. More specifically, the evaluation of a clause

p(X, aggr〈Y〉)← r(X, Y). (1)

(where aggr denotes the name of a user-defined aggregate) can be done according
to the following schema:

– Evaluate r(X, Y), and group the resulting values associated with Y into subsets
S1, . . . , Sn according to the different values associated with X.

– For each subset Si = {x1, . . . , xn}, compute the aggregation value r as fol-
lows:
1. evaluate single(aggr, x1, C). Let c be the resulting value associated with

C.
2. Evaluate multi(aggr, xi, c, C), for each i (by updating c to the resulting

value associated with C).

80 F. Giannotti et al.

3. Evaluate iterate(aggr, c, C). If the evaluation is successful, then update
c to the resulting value associated with C, and return to step 2. Otherwise,
evaluate freturn(aggr, c, R) and return the resulting value r associated
with R.

The following example shows how iterative aggregates can be defined in the
datalog++ framework. Further details on the approach can be found in [16,5].

Example 1. By exploiting the iterate predicate, the abserr aggregate for com-
puting the absolute deviation Sn can be defined as follows:

single(abserr, X, (avg, X, 1)).

multi(abserr, (nil, S, C), X, (avg, S + X, C + 1)).

multi(abserr, (M, D), X, (M, D + (M− X)))← M > X.

multi(abserr, (M, D), X, (M, D + (X− M)))← M ≤ X.

iterate(abserr, (avg, S, C), (S/C, 0)).

freturn(abserr, (M, D), D).

The first two clauses compute the average of the tuples under examination,
in a way similar to the computation of the avg aggregate. The remaining clauses
assume that the average value has already been computed, and are mainly used
in the incremental computation of the sum of the absolute difference with the
average. Notice how the combined use of multi and iterate allows the definition
of two scans over the data. ��

3 Logic-Based Inductive Databases

A suitable conceptual model that summarizes the relevant aspects discussed in
section 1 is the notion of inductive database [1,17], that is is a first attempt to
formalize the notion of interactive mining process. In the following definition,
proposed by Mannila [18,17], the term inductive database refers to a relational
database plus the set of all sentences from a specified class of sentences that are
true of the data.

Definition 1. Given an instance r of a relation R, a class L of sentences (pat-
terns), and a selection predicate q, a pattern discovery task is to find a theory

T h(L, r, q) = {s ∈ L|q(r, s) is true}

��

The main idea here is to provide a unified and transparent view of both
deductive knowledge, and all the derived patterns, (the induced knowledge) over

Towards a Logic Query Language for Data Mining 81

the data. The user does not care about whether he/she is dealing with inferred
or induced knowledge, and whether the requested knowledge is materialized
or not. The only detail he/she is interested in is the high-level specification
of the query involving both deductive and inductive knowledge, according to
some interestingness quality measure (which in turn can be either objective or
subjective).

The notion of Inductive Database fits naturally in rule-based languages, such
as Deductive Databases [7,5]. A deductive database can easily represent both
extensional and intensional data, thus allowing a higher degree of expressiveness
than traditional relational algebra. Such capability makes it viable for suitable
representation of domain knowledge and support of the various steps of the KDD
process.

The main problem in a deductive approach is how to choose a suitable rep-
resentation formalism for the inductive part, enabling a tight integration with
the deductive part. More specifically, the problem is how to formalize the speci-
fication of the set L of patterns in a way such that each pattern s ∈ T h(L, r, q)
is represented as an independent (logical) entity (i.e., a predicate) and each
manipulation of r results in a corresponding change in s. To cope with such a
problem, we introduce the notion of inductive clauses, i.e., clauses that formalize
the dependency between the inductive and the deductive part of an inductive
database.

Definition 2. Given an inductive database theory T h(L, r, q), an inductive
clause for the theory is a clause (denoted by s)

H ← B1, . . . Bn

such that

– The evaluation of B1, . . . Bn in the computed stable model 1 Ms∪r correspond
to the extension r;

– there exist an injective function φ mapping each ground instance p of H in
L;

– T h(L, r, q) corresponds to the model Ms∪r i.e.,

p ∈Ms∪r ⇐⇒ φ(p) ∈ T h(L, r, q)
��

As a consequence of the above definition, we can formalize the notion of
logic-based knowledge discovery support environment, as a deductive database
programming language capable of expressing both inductive clauses and deduc-
tive clauses.

Definition 3. A logic-based knowledge discovery support environment is a de-
ductive database language capable of specifying:

1 See [24,6] for further details.

82 F. Giannotti et al.

– relational extensions;
– intensional predicates, by means of deductive clauses;
– inductive predicates, by means of inductive clauses.

��
The main idea of the previous definition is that of providing a simple way for

modeling the key aspects of a data mining query language:

– the source data is represented by the relational extensions;
– intensional predicates provide a way of dealing with background knowledge;
– inductive predicates provide a representation of both the extracted knowl-

edge and the interestingness measures.

In order to formalize the notion of inductive clauses, the first fact that is
worth observing is that it is particularly easy to deal with data mining tasks in
a deductive framework, if we use aggregates as a basic tool.

Example 2. A frequent itemset {I1, I2} is a database pattern with a validity
specified by the estimation of the posterior probability Pr(I1, I2|r) (i.e., the prob-
ability that items I1 and I2 appear together according to r). Such a probability
can be estimated by means of iceberg queries: an iceberg query is a query con-
taining an aggregate, in which a constraint (typically a threshold constraint)
over the aggregate is specified. For example, the following query

SELECT R1.Item, R2.Item, COUNT(Tid)
FROM r R1, r R2
WHERE R1.Tid = R2.Tid

AND R1.Item <> R2.Item
GROUP BY R1.Item, R2.Item
HAVING COUNT(Tid) > thresh

computes all the pairs of items appearing in a database of transactions with a
given frequency. The above query has a straightforward counterpart in datalog++.
The following clauses define typical (two-dimensional) association rules by using
the count aggregate.

pair(I1, I2, count〈T〉)← basket(T, I1), basket(T, I2), I1 < I2.
rules(I1, I2) ← pair(I1, I2, C), C ≥ 2.

The first clause generates and counts all the possible pairs, and the second
one selects the pairs with sufficient support (i.e., at least 2). As a result, the
predicate rules specifies associations, i.e. rules stating that certain combinations
of values occur with other combinations of values with a certain frequency. Given
the following definitions of the basket relation,

basket(1, fish). basket(2, bread). basket(3, bread).
basket(1, bread). basket(2, milk). basket(3, orange).

basket(2, onions). basket(3, milk).
basket(2, fish).

by querying rules(X, Y) we obtain predicates that model the corresponding in-
ductive instances: rules(bread, milk) and rules(bread, fish). �

Towards a Logic Query Language for Data Mining 83

Example 3. A classifier is a model that describes a discrete attribute, called the
class, in terms of other attributes. A classifier is built from a set of objects (the
training set) whose class values are known. Practically, starting from a table
r, we aim at computing the probability Pr(C = c|A = a, r) for each pair a, c
of the attributes A and C [10]. This probability can be roughly estimated by
computing some statistics over the data, such as, e.g.:

SELECT A, C, COUNT(*)
FROM r
GROUP BY A, C

Again, the datalog++ language easily allows the specification of such statis-
tics. Let us consider for example the playTennis(Out, Temp, Hum, Wind, Play) ta-
ble. We would like to predict the probability of playing tennis, given the values
of the other attributes. The following clauses specify the computation of the
necessary statistics for each attribute of the playTennis relation:

statisticsOut(O, P, count〈∗〉) ← playTennis(O, T, H, W, P).
statisticsTemp(T, P, count〈∗〉)← playTennis(O, T, H, W, P).
statisticsHum(H, P, count〈∗〉) ← playTennis(O, T, H, W, P).
statisticsWind(W, P, count〈∗〉)← playTennis(O, T, H, W, P).
statisticsPlay(P, count〈∗〉) ← playTennis(O, T, H, W, P).

The results of the evaluation of such clauses can be easily combined in order
to obtain the desired classifier. �

The above examples show how the simple clauses specifying aggregates can
be devised as inductive clauses. Clauses containing aggregates, in languages such
as datalog++, satisfy the most desirable property of inductive clauses, i.e., the
capability to specify patterns of L that hold in T h in a “parameterized” way,
i.e., according to the tuples of an extension r. In this paper, we use aggregates
as the means to introduce mining primitives into the query language.

As a matter of fact, an aggregate is a “natural” definition of an inductive
database schema, in which patterns correspond to the true facts in the computed
stable model, as the following statement shows.

Lemma 1. An aggregate defines an inductive database.

Proof. By construction. Let us consider the following clause (denoted by rp):

p(X1, . . . , Xn, aggr〈Y1, . . . , Ym〉)← r(X1, . . . , Xn, Y1, . . . , Ym).

We then define

L = {〈t1, . . . , tn, s〉|p(t1, . . . , tn, s) is ground}

and
q(r, 〈t1, . . . , tn, s〉) = true if and only if p(t1, . . . , tn, s) ∈Mrp∪r

that imposes that the only valid patterns are those belonging to the iterated
stable model procedure. ��

84 F. Giannotti et al.

In such a context, an important issue to investigate is the correspondence
between inductive schemas and aggregates, i.e., whether a generic inductive
schema can be specified by means of an aggregate. Formally, for given an in-
ductive database T h(L, r, q), we are interested in providing a specification of an
aggregate aggr, and in defining a clause

q(Z1, . . . , Zk, aggr〈X1, . . . , Xn〉)← r(Y1, . . . , Ym).

which should turn out to be a viable inductive clause for T h. The clause should
define the format of any valid pattern s ∈ L. In particular, the correspondence of
s with the ground instances of the q predicate should be defined by the specifi-
cation of the aggregate aggr (as described in section 2). Moreover, any predicate
q(t1, . . . , tk, s) resulting from the evaluation of such a clause and correspond-
ing to s, should model the fact that s ∈ T h(L, r, q). When such a definition is
possible, the “inductive” predicate q itself can be used in the definition of more
complex queries.

Relating the specification of aggregates with inductive clauses is particularly
attractive for two main reasons. First of all, it provides an amalgamation between
mining and querying, and hence makes it easy to provide a unique interface
capable of specifying source data, knowledge extraction, background knowledge
and interestingness specification. Moreover, it allows a good flexibility in the
exploitation of mining algorithms for specific tasks. Indeed, we can implement
aggregates as simple language interfaces for the algorithms (implemented as
separate modules, like in [7]); conversely, we can exploit the notion of iterative
aggregate, and explicitly specify the algorithms in datalog++ (like in [8]). The
latter approach, in particular, gives two further advantages:

– from a conceptual point of view, it allows the use of background knowledge
directly in the exploration of the search space.

– from an efficiency point of view, it provides the opportunity of integrating
specific optimizations inside the algorithm.

4 Mining Aggregates

As stated in the previous section, our main aim is the definition of inductive
clauses, formally modeled as clauses containing specific user-defined aggregates,
and representing specific data mining tasks. The discussion on how to provide
efficient implementations of algorithms for such tasks by means of iterative ag-
gregates is given in [8]. The rest of the paper is devoted at showing how the
proposed model is suitable to some important knowledge discovery tasks. We
shall formalize some inductive clauses by means of aggregates), to formulate
data mining tasks in the datalog++ framework. In the resulting framework, the
integration of inductive clauses with deductive clauses allows a simple and in-
tuitive formalization of the various steps of the data mining process, in which
deductive rules can specify both the preprocessing and the result evaluation
phase, while inductive rules can specify the mining phase.

Towards a Logic Query Language for Data Mining 85

4.1 Frequent Patterns Discovery

Associations are rules that state that certain combinations of values occur with
other combinations of values with a certain frequency and certainty. A general
definition is the following.

Let I = {a1, . . . , an} be a set of literals, called items. An itemset T is a set
of items such that T ⊆ I. Given a relation R = A1 . . . An, a transaction in an
instance r of R, associated to attribute Ai (where dom(Ai) = I) according to
a transaction identifier Aj , is a set of items of the tuples of r having the same
value of Aj .

An association rule is a statement of the form X ⇒ Y , where X ⊆ I and
Y ⊆ I are two sets of items. To an association rule we can associate some
statistical parameters. The support of a rule is the percentage of transactions
that contain the set X ∪ Y , and the confidence is the percentage of transactions
that contain Y , provided that they contain X.

The problem of association rules mining can be finally stated as follows:
given an instance r of R, find all the association rules from the set of transactions
associated to Ai (grouped according to Aj), such that for each rule A⇒ B[S, C],
S ≥ σ and C ≥ γ, where σ is the support threshold and γ is the confidence
threshold.

The following definition provides a formulation of the association rules mining
task in terms of inductive databases.

Definition 4. Let r be an instance of the table R = A1 . . . An, and σ, γ ∈ [0, 1].
For given i, j ≤ n, let

– L = {A⇒ B|A, B ⊆ dom(R[Ai])}, and
– q(r, A ⇒ B) = true if and only if freq(A ∪ B, r) ≥ σ and freq(A ∪

B, r)/freq(A, r) ≥ γ.

Where freq(s, r) is the (relative) frequency of s in the set of the transactions in
r grouped by Aj. The theory T h(L, r, q) defines the frequent patterns discovery
task. ��

The above definition provides an inductive schema for the frequent pattern
discovery task. We now specify a corresponding inductive clause.

Definition 5. Given a relation r, the patterns aggregate is defined by the rule

p(X1, . . . , Xn, patterns〈(m s, m c, Y)〉)← r(Z1, . . . , Zm) (2)

where the variables X1, . . . , Xn, Y are a rearranged subset of the variables Z1, . . . , Zk
of r, and the Y variable denotes a set of elements. The aggregate patterns
computes the set of predicates p(t1, . . . , tn, l, r, f, c) where:

1. t1, . . . , tn are distinct instances of the variables X1, . . . , Xn, as resulting from
the evaluation of r;

2. l = {l1, . . . , lk} and r = {r1, . . . , rh} are subsets of the value of Y in a tuple
resulting from the evaluation of r;

86 F. Giannotti et al.

3. f and c are respectively the support and the confidence of the rule l ⇒ r,
such that f ≥ m s and c ≥ m c.

��

Example 4. Let us consider a sample transaction table. The following rule
specifies the computation of association rules (with 30% support threshold and
100% confidence threshold) starting from the extension of the table:

transaction(D, C, 〈I〉) ← transaction(D, C, I, Q, P).
rules(patterns〈(0.3, 1.0, S)〉)← transaction(D, C, S). (3)

The first clause collects all the transactions associated to attribute I and
grouped by attributes D and C. The second clause extracts the relevant patterns
from the collection of available transactions. The result of the evaluation of
the predicate rules(L, R, S, C) against such a program yields, e.g., the answer
predicate rules(diapers, beer, 0.5, 1.0). �

It is easy to see how inductive clauses exploiting the patterns aggregate
allow the specification of frequent pattern discovery tasks. The evidence of such
a correspondence can be obtained by suitably specifying the patterns aggre-
gate [8,16].

4.2 (Bayesian) Classification

It is particularly simple to specify Naive Bayes classification by means of an in-
ductive database schema. Let us consider a relation R with attributes A1, . . . , An

and C. For simplicity, we shall assume that all the attributes represent discrete
values. This is not a major problem, since

– it is well-known that classification algorithms perform better with discrete-
valued attributes;

– supervised discretization [15] combined with discrete classification allows a
more effective approach. As we shall see, the framework based on inductive
clauses easily allows the specification of discretization tasks as well.

The bayesian classification task can be summarized as follows. Given an in-
stance r of R, we aim at computing the function

max
c

Pr(C = c|A1 = a1, . . . , An = an, r) (4)

where c ∈ dom(C) and ai ∈ dom(Ai). By repeated application of Bayes’ rule
and the assumption that A1, . . . , An are independent, we obtain

Pr(C = c|A1 = a1, . . . , An = an, r) = Pr(C = c|r)×
∏

i

Pr(Ai = ai|C = c, r)

Now, each factor in the above product can be estimated from r by means of
the following equation

P̃r(Aj = aj |C = c, r) =
freq(c, σAj=aj (r))

freq(c, r)

Towards a Logic Query Language for Data Mining 87

Hence, the definition of a classification task can be accomplished by computing
some suitable statistics. That is, a suitable inductive theory associates to each
possible pair the corresponding statistic.

Definition 6. Let R = A1 . . . AnC be a relation schema. Given an instance r
of R, we define

– L = {〈Ai = ai ∧ C = c, nA, nC〉|ai ∈ dom(Ai), c ∈ dom(C) and nA,
nC ∈ IR}.

– q(r, 〈Ai = ai ∧ C = c, nA, nC〉) = true if and only if nA = Pr(Ai = ai|C =
c, r) and nC = Pr(C = c|r).

The resulting theory T h(L, r, q) formalizes a naive bayesian classification task.
��

Notice that the datalog++ language easily allows the computation of all the
needed statistics, by enumerating all the pairs for which we need to count the
occurrences (see, e.g., example 3). However, we can associate the inductive theory
with a more powerful user-defined aggregate, in which all the needed statistics
can be efficiently computed without resorting to multiple clauses.

Definition 7. Given a relation r, the nbayes aggregate is defined by a rule
schema

s(X1, . . . , Xm, nbayes〈({(1, A1), . . . , (n, An)}, C)〉)← r(Z1, . . . , Zk).
where

– The variables X1, . . . , Xm, A1, . . . , An, C are a (possibly rearranged) subset of the
values of Z1, . . . , Zk resulting from the evaluation of r;

– The result of such an evaluation is a predicate s(t1, . . . , tn, c, (i, ai), vi, vc),
representing the set of counts of all the possible values ai of the i-th attribute
Ai, given any possible value c of C. In particular, vi represents the frequency
of the pair ai, c, and vc represents the frequency of c in the extension r.

��

Example 5. Let us consider the toy playTennis table defined in example 3. The
frequencies of the attributes can be obtained by means of the clause

classifier(nbayes〈({(1, O), (2, T), (3, H), (4, W)}, P)〉)← playTennis(O, T, H, W, P).

The evaluation of the query classifier(C, F, CF, CC) returns, e.g., the answer
predicate classifier(yes, (1, sunny), 0.6, 0.4). �

Again, by suitably specifying the aggregate, we obtain a correspondence be-
tween the inductive database schema and its deductive counterpart [16,5].

4.3 Clustering

Clustering is perhaps the most straightforward example of data mining task pro-
viding a suitable representation of its results in terms of relational tables. In a
relation R with instance r, the main objective of clustering is that of labeling

88 F. Giannotti et al.

each tuple µ ∈ r. In relational terms, this correspond in adding a set of attributes
A1, . . . , An to R, so that a tuple 〈a1, . . . an〉 associated to a tuple µ ∈ r represents
a cluster assigment for µ. For example, we can enhance R with two attributes
C and M , where C denotes the cluster identifier and M denotes a probability
measure. A tuple µ ∈ r is represented in the enhancement of R by a new tuple
µ′, where µ′[A] = µ[A] for each A ∈ R, and µ′[C] represents the cluster to
which µ belongs, with probability µ′[M]. In the following defintion, we provide
a sample inductive schema formalizing the clustering task.

Definition 8. Given a relation R = A1 . . . An with extension r, such that tuples
in r can be organized in k clusters, an inductive database modeling clustering is
defined by T h(L, r, q), where

– L = {〈µ, i〉|µ ∈ dom(A1)× . . .× dom(An), i ∈ IN}, and
– q(r, 〈µ, i〉) is true if and only if µ ∈ r is assigned to the i-th cluster.

��
It is particularly intuitive to specify the clustering data mining task as an

aggregate.

Definition 9. Given a relation r, the cluster aggregate is defined by the rule
schema

p(X1, . . . , Xn, clusters〈(Y1, . . . , Yk)〉)← r(Z1, . . . , Zm).

where the variables X1, . . . , Xn, Y1, . . . , Yk are a rearranged subset of the variables
Z1, . . . , Zm of r.clusters computes the set of predicates p(t1, . . . , tn, s1, . . ., sk, c),
where:

1. t1, . . . , tn, s1, . . . , sk are distinct instances of the variables X1, . . ., Xn, Y1,. . .Yk,
as resulting from the evaluation of r;

2. c is a label representing the cluster to which the tuple s1, . . . , sk is assigned,
according to some clustering algorithm.

��
Example 6. Consider a relation customer(name, address, age, income), storing
information about customers, as shown in fig. 1 a). We can define a “clustered”
view of such a database by means of the following rule:

custCView(clusters〈(N, AD, AG, I)〉)← customer(N, AD, AG, I).

The evaluation of such rule, shown in fig. 1 b), produces two clusters. �

It is particularly significant to see how the proposed approach allows to di-
rectly model closure (i.e., to manipulate the mining results).

Example 7. We can easily exploit the patterns aggregate to find an explanation
of such clusters:

frqPat(C, patterns〈(0.6, 1.0, {f a(AD), s a(I)})〉)← custCView(N, AD, AG, I, C).

Towards a Logic Query Language for Data Mining 89

name address age income
cust1 pisa 50 50K
cust2 rome 30 30K
cust3 pisa 45 48K
cust4 florence 24 30K
cust5 pisa 60 50K
cust6 rome 26 30K

name address age income cluster
cust1 pisa 50 50K 1
cust2 rome 30 30K 2
cust3 pisa 45 48K 1
cust4 florence 24 30K 2
cust5 pisa 60 50K 1
cust6 rome 26 30K 2

(a) (b)

cluster left right support conf
1 {s a(50K) f a(pisa)} 2 1.0
2 {f (rome) s a(30K)} 2 1.0

(c)

Fig. 1. a) Sample customer table. Each row represents some relevant features
of a customer. b) Cluster assignments: a cluster label is associated to each row
in the originary customer table. c) Cluster explanations with frequent patterns.
The first cluster contains customers with high income and living in pisa, while
the second cluster contains customers with low income and living in rome

Notice how the cluster label C is used for separating transactions belonging
to different clusters, and mining associations in such clusters separately. Table 1
c) shows the patterns resulting from the evaluation of such a rule. As we can see,
cluster 1 is mainly composed by high-income people living in Pisa, while cluster
2 is mainly composed by low-income people living in Rome. �

4.4 Data Discretization

Data discretization can be used to reduce the number of values for a given con-
tinuous attribute, by dividing the range of the attribute into intervals. Interval
labels can be used to replace actual data values.

Given an instance r of a relation R with a numeric attribute A, the main
idea is to provide a mapping among the values of dom(A) and some given labels.
More precisely, we define L as the pairs 〈a, i〉, where a ∈ dom(A) and i ∈ V
represents an interval label (i.e., V is a representation of all the intervals [l, s]
such that l, s ∈ dom(A)). A discretization task of the tuples of r, formalized as
a theory T h(L, r, q), can be defined according to some discretization objective,
i.e., a way of relating a value a ∈ dom(A) to an interval label i.

In such a context, discretization techniques can be distinguished into [12,3]
supervised or unsupervised. The objective of supervised methods is to discretize
continuous values in homogeneous intervals, i.e., intervals that preserve a prede-
fined property (which, in practice, is represented by a label associated to each
continuous value). The formalization of supervised discretization as an inductive
theory can be tuned as follows.

Definition 10. Let r be an instance of a relation R. Given an attribute A ∈ R,
and a discrete-valued attribute C ∈ R, an inductive database theory T h(L, r, q)
defines a supervised discretization task if

90 F. Giannotti et al.

– either dom(A) ∈ IN or dom(A) ∈ IR;
– L = {〈a, C, i〉|a ∈ dom(A), i ∈ IN};
– q(r, 〈a, C, i〉) = true if and only if there is a discretization of πA(r) in ho-

mogeneous intervals with respect to the attribute C, such that a belongs to
the i-th interval.

��
The following definition provides a corresponding inductive clause.

Definition 11. Given a relation r, the aggregate discr defines the rule schema

s(Y1, . . . , Yk, discr〈(Y, C)〉)← r(X1, X2, . . . , Xn).

where

– Y is a continuous-valued variable, and C is a discrete-valued variable;
– Y1, . . . , Yk, Y, C are a rearranged subset of the variables X1, X2, . . . , Xn in r.

The result of the evaluation of such rule is given by predicates p(t1, . . . , tk, v, i),
where t1, . . . , tk, v are distinct instances of the variables Y1, . . . , Yk, Y, and i is
an integer value representing the i-th interval in a supervised discretization of
the values of Y labelled with the values of C. ��

In the ChiMerge approach to supervised discretization [15], a bottom-up in-
terval generation procedure is adopted: initially, each single value is considered
an interval. At each iteraction, two adjacent intervals are chosen and joined,
provided that they are sufficiently homogeneous. The degree of homogeneity is
measured w.r.t. a class label, and is computed by means a χ2 statistics. Homo-
geneity is made parametric to a user-defined significance level α, identifying the
probability that two adjacent intervals have independent label distributions. In
terms of inductive clauses, this can be formalized as follows:

s(Y1, . . . , Yk, discr〈(Y, C, α)〉)← r(X1, X2, . . . , Xn).

Here, Y represents the attribute to discretize, C represents the class label and
α is the significance level.

Example 8. The following rule

intervals(discr〈(Price, Beer, 0.9)〉)← serves(, Beer, Price).

defines a 0.9 significance level supervised discretization of the price attribute,
according to the values of beer, of the relation serves shown in fig. 2. More
precisely, we aim at obtaining a discretization of price into intervals preserving
the values of the beer attribute (as they appear associate to price in the tuples
of the relation serves. For example, the values 100 and 117 can be merged into
the interval [100, 117], since the tuples of serves in which such values occur
contain the same value of the beer attribute (the Bud value). The results of the
evaluation of the inductive clause are shown in fig. 2 c). �

Towards a Logic Query Language for Data Mining 91

bar beer price
A Bud 100
A Becks 120
C Bud 117
D Bud 130
D Bud 150
E Becks 140
E Becks 122
F Bud 121
G Bud 133
H Becks 125
H Bud 160
I Bud 135

value interval
100 1
120 1
117 1
130 3
150 4
140 4
122 2
121 2
133 3
125 2
160 4
135 3

(a) (b)

Fig. 2. a) The serves relation. Each row in the relation represents a brand of
beer served by a given bar, with the associated price. b) ChiMerge Discretiza-
tion: each value of the price attribute in serves is associated with an interval.
Intervals contain values which occur in tuples of serves presenting similar values
of the beer attribute

It is particularly interesting to see how the discretization and classification
tasks can be combined, by exploiting the respective logical formalizations.

Example 9. A typical dataset used as a benchmark for classification tasks is the
Iris classification dataset [15]. The dataset can be represented by means of a
relation containing 5 attributes:

iris(Sepal length, Sepal width, Petal length, Petal width, Specie)

Each tuple in the dataset describes the relevant features of an iris flower. The
first four attributes are continuous-valued attributes, and the Specie attribute is
a nominal attribute corresponding to the class to which the flower belongs (either
iris-setosa, iris-versicolor, or iris-virginica). We would like to characterize species
in the iris relation according to their features. To this purpose, we may need a
preprocessing phase in which continuous attributes are discretized:

intervalsSL(discr〈(SL, C, 0.9)〉)← iris(SL, SW, PL, PW, C).
intervalsSW(discr〈(SW, C, 0.9)〉)← iris(SL, SW, PL, PW, C).
intervalsPL(discr〈(PL, C, 0.9)〉)← iris(SL, SW, PL, PW, C).
intervalsPW(discr〈(PW, C, 0.9)〉)← iris(SL, SW, PL, PW, C).

The predicates defined by the above clauses provide a mapping of the contin-
uous values to the intervals shown in fig. 3. A classification task can be defined
by exploiting such predicates:

irisCl(nbayes〈({SL, SW, PL, PW}, C)〉)← iris(SL1, SW1, PL1, PW1, C),
intervalsSW(SW1, SW),
intervalsSL(SL1, SL),
intervalsPW(PW1, PW),
intervalsPL(PL1, PL).

92 F. Giannotti et al.

interval setosa virginica versicolor
[4.3,4.9) 16 0 0
[4.9,5) 4 1 1
[5,5.5) 25 5 0
[5.5,5.8) 4 15 2
[5.8,6.3) 1 15 10
[6.3,7.1) 0 14 25
[7.1,7.9] 0 0 12

interval setosa virginica versicolor
[2,2.5) 1 9 1
[2.5 ,2.9) 0 18 18
[2.9,3) 1 7 2
[3,3.4) 18 15 24
[3.4,4.4] 30 1 5

sepal length sepal width

interval setosa virginica versicolor
[1,3) 50 0 0
[3,4.8) 0 44 1
[4.8,5.2) 0 6 15
[5.2,6.9] 0 0 34

interval setosa virginica versicolor
[0.1,1) 50 0 0
[1,1.4) 0 28 0
[1.4,1.8) 0 21 5
[1.8,2.5] 0 1 45

petal length petal width

Fig. 3. Bayesian statistics using ChiMerge and the nbayes aggregate. For each
attribute of the iris relation, a set of intervals is obtained, and the distribution
of the classes within such intervals is computed. For example, interval [4.3, 4.9) of
the sepal length attribute contains 16 tuples labelled as setosa, while interval
[7.1, 7.9) of the same attribute contains 12 tuples labelled as versicolor

The statistics resulting from the evaluation of the predicate defined by the
above rule are shown in fig. 3. �

5 Conclusions

The main purpose of flexible knowledge discovery systems is to obtain, maintain,
represent, and utilize high-level knowledge. This includes representation and
organization of domain and extracted knowledge, its creation through specialized
algorithms, and its utilization for context recognition, disambiguation, and needs
identification. Current knowledge discovery systems provide a fixed paradigm
that does not sufficiently supports such features in a coherent formalism. On the
contrary, logic-based databases languages provide a flexible model of interaction
that actually supports most of the above features in a powerful, simple and
versatile formalism. This motivated the study of a logic-based framework for
intelligent data analysis.

The main contribution of this paper was the development of a logic database
language with elementary data mining mechanisms to model extraction, repre-
sentation and utilization of both induced and deduced knowledge. In particular,
we have shown that aggregates provide a standard interface for the specification
of data mining tasks in the deductive environment: i.e., they allow to model
mining tasks as operations unveiling pre-existing knowledge. We used such main
features to model a set of data mining primitives: frequent pattern discovery,
Bayesian classification, clustering and discretization.

The main drawback of a deductive approach to data mining query languages
concerns efficiency: a data mining algorithm can be worth substantial optimiza-

Towards a Logic Query Language for Data Mining 93

tions that come both from a smart constraining of the search space, and from
the exploitation of efficient data structures. In this case, the adoption of the
datalog++ logic database language has the advantage of allowing a direct specifi-
cation of mining algorithms, thus allowing specific optimizations. Practically, we
can directly specify data mining algorithms by means of iterative user-defined
aggregates, and implement the most computationally intensive operations by
means of hot-spot refinements [8]. Such a feature allows to modularize data min-
ing algorithms and integrate domain knowledge in the right points, thus allowing
crucial domain-oriented optimizations.

References

1. J-F. Boulicaut, M. Klemettinen, and H. Mannila. Querying Inductive Databases:
A Case Study on the MINE RULE Operator. In Procs. 2nd European Conf. on
Principles and Practice of Knowledge Discovery in Databases (PKDD98), LNCS
1510, pages 194–202, 1998.

2. M.S. Chen, J. Han, and P.S. Yu. Data Mining: An Overview from a Database
Perspective. IEEE Trans. on Knowledge and Data Engineering, 8(6):866–883, 1996.

3. J. Dougherty, R. Kohavi, and M. Sahami. Supervised and Unsupervised Discretiza-
tion of Continuous Features. In Procs. 12th International Conference on Machine
Learning, pages 194–202, 1995.

4. F. Giannotti and G. Manco. Declarative knowledge extraction with iterative user-
defined aggregates. AI*IA Notizie, 13(4), December 2000.

5. F. Giannotti and G. Manco. Making Knowledge Extraction and Reasoning Closer.
In Procs. 4th Pacific-Asia Conference on Knowledge Discovery and Data Mining
(PAKDD 2000), LNAI 1805, pages 360–371, 2000.

6. F. Giannotti, G. Manco, M. Nanni, and D. Pedreschi. Nondeterministic, Non-
monotonic Logic Databases. IEEE Trans. on Knowledge and Data Engineering,
13(5):813–823, 2001.

7. F. Giannotti, G. Manco, D. Pedreschi, and F. Turini. Experiences with a Logic-
Based Knowledge Discovery Support Environment. In Selected Papers of the Sixth
congress of the Italian Congress of Artificial Intellingence, LNCS 1792, 2000.

8. F. Giannotti, G. Manco, and F. Turini. Specifying Mining Algorithms with Itera-
tive User-Defined Aggregates: A Case Study. In Procs. 5th European Conference
on Principles and Practice of Knowledge Discovery in Databases (PKDD 2001),
LNAI 2168, pages 128–139, 2001.

9. F. Giannotti, D. Pedreschi, and C. Zaniolo. Semantics and Expressive Power of
Non Deterministic Constructs for Deductive Databases. Journal of Computer and
Systems Sciences, 62(1):15–42, 2001.

10. G. Graefe, U. Fayyad, and S. Chaudhuri. On the Efficient Gathering of Sufficient
Statistics for Classification from Large SQL Databases. In Proc. 4th Int. Conf. on
Knowledge Discovery and Data Mining (KDD98), pages 204–208, 1998.

11. J. Han, Y. Fu, K. Koperski, W. Wang, and O. Zaiane. DMQL: A Data Mining
Query Language for Relational Databases. In SIGMOD’96 Workshop on Research
Issues on Data Mining and Knowledge Discovery (DMKD’96), 1996.

12. F. Hussain, H. Liu, C. Tan, and M. Dash. Discretization: An Enabling Technique.
Journal of Knowledge Discovery and Data Mining, 6(4):393–423, 2002.

94 F. Giannotti et al.

13. T. Imielinski and H. Mannila. A Database Perspective on Knowledge Discovery.
Communications of the ACM, 39(11):58–64, 1996.

14. T. Imielinski and A. Virmani. MSQL: A Query Language for Database Mining.
Journal of Knowledge Discovery and Data Mining, 3(4):373–408, 1999.

15. R. Kerber. ChiMerge: Discretization of Numeric Attributes. In Proc. 10th National
Conference on Artificial Intelligence (AAAI92), pages 123–127. The MIT Press,
1992.

16. G. Manco. Foundations of a Logic-Based Framework for Intelligent Data Analysis.
PhD thesis, Department of Computer Science, University of Pisa, April 2001.

17. H. Mannila. Inductive databases and condensed representations for data mining.
In International Logic Programming Symposium, pages 21–30, 1997.

18. H. Mannila and H. Toivonen. Levelwise Search and Border of Theories in Knowl-
edge Discovery. Journal of Knowledge Discovery and Data Mining, 3:241–258,
1997.

19. R. Meo, G. Psaila, and S. Ceri. A Tightly-Coupled Architecture for Data Mining.
In International Conference on Data Engineering (ICDE98), pages 316–323, 1998.

20. L. De Raedt. Data mining as constraint logic programming. In Procs. Int. Conf.
on Inductive Logic Programming, 2000.

21. W. Shen, K. Ong, B. Mitbander, and C. Zaniolo. Metaqueries for Data Min-
ing. In Advances in Knowledge Discovery and Data Mining, pages 375–398. AAAI
Press/The MIT Press, 1996.

22. D. Tsur et al. Query Flocks: A Generalization of Association-Rule Mining. In
Proc. ACM Conf. on Management of Data (Sigmod98), pages 1–12, 1998.

23. C. Zaniolo, N. Arni, and K. Ong. Negation and Aggregates in Recursive Rules:
The LDL++ Approach. In Proc. 3rd Int. Conf. on Deductive and Object-Oriented
Databases (DOOD93), LNCS 760, 1993.

24. C. Zaniolo, S. Ceri, C. Faloutsos, R.T Snodgrass, V.S. Subrahmanian, and R. Zi-
cari. Advanced Database Systems. Morgan Kaufman, 1997.

25. C. Zaniolo and H. Wang. Logic-Based User-Defined Aggregates for the Next Gener-
ation of Database Systems. In The Logic Programming Paradigm: Current Trends
and Future Directions, Springer Verlag, 1998.

	Introduction and Motivations
	User-Defined Aggregates
	Logic-Based Inductive Databases
	Mining Aggregates
	Frequent Patterns Discovery
	(Bayesian) Classification
	Clustering
	Data Discretization

	Conclusions

