
\ffirs" | 2004/1/28 | 10:00 | page i | #1
✐

✐

✐

✐

✐

✐

✐

✐

Chemometrics



\ffirs" | 2004/1/28 | 10:00 | page ii | #2
✐

✐

✐

✐

✐

✐

✐

✐

CHEMICAL ANALYSIS

A SERIES OF MONOGRAPHS ON ANALYTICAL CHEMISTRY
AND ITS APPLICATIONS

Edited by
J. D. WINEFORDNER

VOLUME 164



\ffirs" | 2004/1/28 | 10:00 | page iii | #3
✐

✐

✐

✐

✐

✐

✐

✐

Chemometrics
From Basics to Wavelet Transform

FOO-TIM CHAU

Hong Kong Polytechnic University

YI-ZENG LIANG

Central South University

JUNBIN GAO

University of New England

XUE-GUANG SHAO

University of Science and Technology of China



\ffirs" | 2004/1/28 | 10:00 | page iv | #4
✐

✐

✐

✐

✐

✐

✐

✐

Copyright ? 2004 by John Wiley & Sons, Inc. All rights reserved.

Published by John Wiley & Sons, Inc., Hoboken, New Jersey.
Published simultaneously in Canada.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in
any form or by any means, electronic, mechanical, photocopying, recording, scanning, or
otherwise, except as permitted under Section 107 or 108 of the 1976 United States
Copyright Act, without either the prior written permission of the Publisher, or authorization
through payment of the appropriate per-copy fee to the Copyright Clearance Center, Inc.,
222 Rosewood Drive, Danvers, MA 01923, 978-750-8400, fax 978-646-8600, or on the web
at www.copyright.com. Requests to the Publisher for permission should be addressed to the
Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030,
(201) 748-6011, fax (201) 748-6008.

Limit of Liability/Disclaimer of Warranty: While the publisher and author have used their best
efforts in preparing this book, they make no representations or warranties with respect to
the accuracy or completeness of the contents of this book and specifically disclaim any
implied warranties of merchantability or fitness for a particular purpose. No warranty may be
created or extended by sales representatives or written sales materials. The advice and
strategies contained herein may not be suitable for your situation. You should consult with a
professional where appropriate. Neither the publisher nor author shall be liable for any loss
of profit or any other commercial damages, including but not limited to special, incidental,
consequential, or other damages.

For general information on our other products and services please contact our Customer
Care Department within the U.S. at 877-762-2974, outside the U.S. at 317-572-3993 or fax
317-572-4002.

Wiley also publishes its books in a variety of electronic formats. Some content that appears
in print, however, may not be available in electronic format.

Library of Congress Cataloging-in-Publication Data:

Chemometrics: from basics to wavelet transform/Foo-tim Chau . . . [et al.].
p. cm. --- (Chemical analysis; 1075)

Includes bibliographical references.
ISBN 0-471-20242-8 (acid-free paper)

1. Instrumental analysis---Data processing. 2. Instrumental analysis---Automation.
3. Wavelets (Mathematics) I. Chau, Foo-tim. II. Chemical analysis; v. 1075.

QD79.I5C44 2004
543′.07′0285---dc21

2003002429

Printed in the United States of America.
10 9 8 7 6 5 4 3 2 1



\ftoc" | 2004/1/28 | 10:10 | page v | #1
✐

✐

✐

✐

✐

✐

✐

✐

CONTENTS

PREFACE xiii

CHAPTER 1 INTRODUCTION 1

1.1. Modern Analytical Chemistry 1

1.1.1. Developments in Modern Chemistry 1

1.1.2. Modern Analytical Chemistry 2

1.1.3. Multidimensional Dataset 3

1.2. Chemometrics 5

1.2.1. Introduction to Chemometrics 5

1.2.2. Instrumental Response and Data
Processing 8

1.2.3. White, Black, and Gray Systems 9

1.3. Chemometrics-Based Signal Processing
Techniques 10

1.3.1. Common Methods for Processing
Chemical Data 10

1.3.2. Wavelets in Chemistry 11

1.4. Resources Available on Chemometrics and
Wavelet Transform 12

1.4.1. Books 12

1.4.2. Online Resources 14

1.4.3. Mathematics Software 15

CHAPTER 2 ONE-DIMENSIONAL SIGNAL PROCESSING
TECHNIQUES IN CHEMISTRY 23

2.1. Digital Smoothing and Filtering Methods 23

2.1.1. Moving-Window Average Smoothing
Method 24

2.1.2. Savitsky--Golay Filter 25

v



\ftoc" | 2004/1/28 | 10:10 | page vi | #2
✐

✐

✐

✐

✐

✐

✐

✐

vi contents

2.1.3. Kalman Filtering 32

2.1.4. Spline Smoothing 36

2.2. Transformation Methods of Analytical
Signals 39

2.2.1. Physical Meaning of the Convolution
Algorithm 39

2.2.2. Multichannel Advantage in Spectroscopy
and Hadamard Transformation 41

2.2.3. Fourier Transformation 44

2.2.3.1. Discrete Fourier Transformation
and Spectral Multiplex
Advantage 45

2.2.3.2. Fast Fourier Transformation 48

2.2.3.3. Fourier Transformation as
Applied to Smooth
Analytical Signals 50

2.2.3.4. Fourier Transformation as
Applied to Convolution
and Deconvolution 52

2.3. Numerical Differentiation 54

2.3.1. Simple Difference Method 54

2.3.2. Moving-Window Polynomial
Least-Squares Fitting Method 55

2.4. Data Compression 57

2.4.1. Data Compression Based on B-Spline
Curve Fitting 57

2.4.2. Data Compression Based on Fourier
Transformation 64

2.4.3. Data Compression Based on
Principal-Component Analysis 64

CHAPTER 3 TWO-DIMENSIONAL SIGNAL PROCESSING
TECHNIQUES IN CHEMISTRY 69

3.1. General Features of Two-Dimensional Data 69

3.2. Some Basic Concepts for Two-Dimensional
Data from Hyphenated Instrumentation 70

3.2.1. Chemical Rank and Principal-
Component Analysis (PCA) 71



\ftoc" | 2004/1/28 | 10:10 | page vii | #3
✐

✐

✐

✐

✐

✐

✐

✐

contents vii

3.2.2. Zero-Component Regions and
Estimation of Noise Level and
Background 75

3.3. Double-Centering Technique for Background
Correction 77

3.4. Congruence Analysis and Least-Squares
Fitting 78

3.5. Differentiation Methods for Two-Dimensional
Data 80

3.6 Resolution Methods for Two-Dimensional
Data 81

3.6.1. Local Principal-Component
Analysis and Rankmap 83

3.6.2. Self-Modeling Curve Resolution and
Evolving Resolution Methods 85

3.6.2.1. Evolving Factor Analysis
(EFA) 88

3.6.2.2. Window Factor Analysis
(WFA) 90

3.6.2.3. Heuristic Evolving Latent
Projections (HELP) 94

CHAPTER 4 FUNDAMENTALS OF WAVELET TRANSFORM 99

4.1. Introduction to Wavelet
Transform and Wavelet Packet Transform 100

4.1.1. A Simple Example: Haar Wavelet 103

4.1.2. Multiresolution Signal Decomposition 108

4.1.3. Basic Properties of Wavelet Function 112

4.2. Wavelet Function Examples 113

4.2.1. Meyer Wavelet 113

4.2.2. B-Spline (Battle--Lemarié) Wavelets 114
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PREFACE

When talking about chemistry, this always leads many to think of doing
wet experiments in a laboratory. This was the situation decades ago.
Thanks to the development of quantum theory as well as the advance-
ment in electronic and optical devices, chemistry is now evolving into a
discipline that corporates both experimentation and modeling together.
For instance, nowadays, before synthesizing a new organic compound,
database searching can provide information on related reactions to assist
in designing viable pathways to synthesize it. In addition, computational
chemistry can help determine whether these pathways are favored from the
thermodynamic point of view; and QSAR (quantitative structure--activity
relationship) studies can help predict the properties of the compound of
interest. Similarly, analytical measurements are no longer used only to
acquire data from chemical experiments. Signal processing techniques
can be used to estimate the precision of these data, extracting more
information from the chemical measurements. According to M. Valcarcel,
analytical chemistry is a metrological science that develops, optimizes,
and applies measuring processes intended to derive both global and par-
tial quality chemical information in order to solve the measuring problems
posed.

Chemometrics with the use of statistics and related mathematical tech-
niques forms a new area in chemistry. According to D. L. Massart, its targets
are to design or select optimal measurement procedures and experiments
as well as to extract a maximum of information from chemical data. With
these unique features and applications, some believe that chemometrics
provides an important theoretical background for analytical chemistry.

In recent years, wavelet transform (WT), a new mathematical technique,
has been widely used in engineering sciences owing to its localization
properties in both the frequency and time domains. It was introduced to
chemistry in 1990s and has now attracted the attention of many chemists.
Prior to January 2003, over 370 chemistry papers and references related
to WT had been published.

Many chemists facing sophisticated practical problems are unfamiliar
with the chemometric methods, especially using such new approaches as
WT, available for solving their problems. They would be happy if they could

xiii
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xiv preface

find the appropriate methods they needed, but where to find them? This
seems to be one of the major obstacles in the way of wide applications
of chemometric methods in chemistry. The famous Chinese philosopher
Guo-wei Wang (1877--1927) cited the lyrics of Song Dynasty to describe
different extent of a scholar’s learning. According to Wang, the highest
extent of knowledge is that described by Qi-ji Xin (1140--1207); from the
tune ‘‘Green Jade Cup,’’ Lantern Festival:

But in the crowd once and again
I look for her in vain.

When all at once I turn my head,
I find her there where lantern light is dimly shed.

It is not so easy for the average chemist to reach such an extent of
learning in the mathematical background of chemometric theory. Fortu-
nately, this book on chemometrics from the basics to wavelet transform
by Professor F. T. Chau’s team is written in a tutorial manner with many
examples provided to clarify the theory and methods described. The basic
theory of WT and its applications to analytical chemistry are described. In
addition, the fundamentals of chemometrics and various common signal
processing techniques are provided to help readers learn more about the
applications of this new mathematical technique. The basic fundamentals
of vector and matrix operations and the mathematical programming lan-
guage MATLAB are also provided in the Appendix to enable newcomers
to the field to derive more from the contents of this book. In addition, com-
puter codes are provided for some topics to help the readers to see how
the proposed algorithms work in real life. Relevant literature references are
also listed at the end of each chapter.

It is really a great honor for me to be invited to write these lines for
the book. The authors have undertaken the large task of surveying the
subject to provide a valuable reference book for chemists, biochemists,
and postgraduate students. In fact, even the most modern innovations of
WT have found a place in this concise volume. With its own distinctiveness,
this book is indeed a very welcome addition to the existing literature on
chemometrics.

Professor of Chemistry Ru-Qin Yu
Member of Chinese Academy of Sciences
Hunan University
Changsha, People’s Republic of China
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CHAPTER

1

INTRODUCTION

1.1. MODERN ANALYTICAL CHEMISTRY

1.1.1. Developments in Modern Chemistry

The field of chemistry is currently facing major changes. As we know,
optical, mechanical, and microelectronic technologies have advanced
rapidly in recent years. Computer power has increased dramatically as
well. All these developments, together with other factors, provide a new
opportunity but also challenge to chemists in research and development.

A recent (as of 2003) development in the pharmaceutical industry is
the use of combinatorial synthesis to generate a library of many com-
pounds with structural diversity. These compounds are then subjected to
high-throughput screening for bioassays. In such a process, tremendous
amounts of data on the structure--activity relationship are generated. For
analytical measurements, a new, advanced, modern technology called
hyphenated instrumentation using two or more devices simultaneously
for quantitative measurement has been introduced [1]. Examples of this
technique are the high-performance liquid chromatography--diode array
detector system (HPLC-DAD), gas chromatography with mass spectrome-
try (GC-MS), and liquid chromatography coupled with mass spectrometry
such as LC-MS and LC-MS-MS. Huge amounts of data are generated
from these pieces of equipment. For example, the Hewlett-Packard (HP)
HPLC 1100 instrument with a diode array detector (DAD) system (Agilent
Technology Inc., CA) produces 1.26 million spectrochromatographic data
in a 30-min experimental run with a sampling rate of 5 Hz, and a spec-
tral range of 190--400 nm with a resolution of 1 data item per 2 nm. To
mine valuable information from these data, different mathematical tech-
niques have been developed. Up to now, research and development of
this kind with the application of statistical and mathematical techniques
in chemistry has been confined mainly to analytical studies. Thus, our

1

Chemometrics: From Basics To Wavelet Transform. Foo-Tim Chau, Yi-Zeng
Liang, Junbin Gao, and Xue-Guang Shao. Chemical Analysis Series, Volume 164.
ISBN 0-471-20242-8. Copyright ? 2004 John Wiley & Sons, Inc.
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discussion will focus on analytical chemistry but other disciplines of chem-
istry will also be included if appropriate. The main content of this book
provides basic chemometric techniques for processing and interpretation
of chemical data as well as chemical applications of advanced techniques,
including wavelet transformation (WT) and mathematical techniques for
manipulating higher-dimensional data.

1.1.2. Modern Analytical Chemistry

Modern analytical chemistry has long been recognized mainly as a
measurement science. In its development, there are two fundamental
aspects:

1. From the instrumental and experimental point of view, analytical
chemistry makes use of the basic properties such as optics, electricity,
magnetism, and acoustic to acquire the data needed.

In addition,

2. New methodologies developed in mathematical, computer, and bio-
logical sciences as well as other fields are also employed to provide
in-depth and broad-range analyses.

Previously the main problem confronting analytical scientists was how
to obtain data. At that time, measurements were labor-intensive, tedious,
time-consuming, and expensive, with low-sensitivity, and manual record-
ing. There were also problems of preparing adequate materials, lack of
proper techniques, as well as inefficient equipment and technical support.
Workers had to handle many unpleasant routine tasks to get only a few
numbers. They also had to attempt to extract as much information as pos-
sible about the structure, composition, and other properties of the system
under investigation, which was an insurmountable task in many cases.
Now, many modern chemical instruments are equipped with advanced opti-
cal, mechanical, and electronic components to produce high-sensitivity,
high-quality signals, and many of these components are found in com-
puters for controlling different devices, managing system operation, data
acquisition, signal processing, data interpretation in the first aspect and
reporting analytical results. Thus the workload on analytical measurement
mentioned above (item 1 in list) is reduced to minimum compared to the
workload typical decades ago.

After an analytical measurement, the data collected are often treated
by different signal processing techniques as mentioned earlier. The aim
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is to obtain higher quality or ‘‘true’’ data and to extract maximum amount
of meaningful information, although this is not easy to accomplish. For
instance, in an HPLC study, two experimental runs were carried out on
the same sample mixture. The two chromatograms acquired usually dif-
fered from each other to a certain extent because of the variations in
instrumentation, experimental conditions, and other factors. To obtain
quality results that are free from these disturbances, it is a common
practice to carry out data preprocessing first. The techniques involved
include denoising, data smoothing, and/or adjustment of baseline, drift,
offset, and other properties. Methods such as differentiation may then be
applied to determine more accurate retention times of peaks, especially
the overlapping peaks that arise from different component mixtures. In
this way, some of these components may be identified via their reten-
tion times with a higher level of confidence through comparison with
those of the standards or known compounds. If the peak heights or
peak areas are available, the concentrations of these components can
also be determined if the relevant calibration curves are available. Sta-
tistical methods can also help in evaluating the results deduced and to
calculate the level of confidence or concentrations of the components
being identified. All these data obtained are very important in prepar-
ing a reliable report for an analytical test. Data treatment and data
interpretation on, for instance, the HPLC chromatograms as mentioned
above form part of an interdisciplinary area known as chemometrics.

1.1.3. Multidimensional Dataset

Many analytical instruments generate one-dimensional (1D) data. Very
often, even if they can produce multidimensional signals, 1D datasets
are still selected for data treatment and interpretation because it is eas-
ier and less time-consuming to manipulate them. Also, most investigators
are used to handle 1D data. Yet, valuable information may be lost in this
approach.

Figure 1.1 shows the spectrochromatogram obtained in a study of the
herb Danggui (Radix angeliciae sinensis) [2] by using the Hewlett-Packard
(HP) HPLC-DAD model 1100 instrument. Methanol was utilized for sam-
ple extraction. In carrying out the experiment, a Sep-Pak C18 column was
used and the runtime was 90 min. The two-dimensional (2D) spectrochro-
matogram shown in Figure 1.1 contains 2.862 million data points [3]. It looks
very complicated and cannot be interpreted easily just by visual inspection.
As mentioned earlier, many workers simplify the job by selecting a good or
an acceptable 1D chromatogram(s) from Fig. 1.1 for analysis. Figure 1.2
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Figure 1.1. The 2D HPLC chromatogram of Danggui.

shows the 1D chromatograms selected with the measured wavelengths of
225, 280, and 320 nm, respectively. However, which one should be chosen
as the fingerprint of Danggui is not an easy question to answer since
the profiles look very different from one another. The variation in these
chromatographic profiles is due mainly to different extents of ultraviolet
absorption of the components within the herb at different wavelengths.
From an information analysis [3], Figure 1.2b is found to be the best chro-
matogram. Yet, the two other chromatograms may be useful in certain
aspects.

Methods for processing 1D data have been developed and applied
by chemists for a long time. As previously mentioned, noise removal,
background correction, differentiation, data smoothing and filtering, and
calibration are examples of this type of data processing. Chemometrics is
considered to be the discipline that does this kind of job. With the growing
popularity of hyphenated instruments, chemometric methods for manip-
ulating 2D data have been developing. The increasing computing power
and memory capacity of the current computer further expedites the pro-
cess. The major aim is to extract more useful information from mountainous
2D data. In the following section, the basic fundamentals of chemomet-
rics are briefly introduced. More details will be provided in the following
chapters.
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Figure 1.2. The HPLC chromatogram of Danggui measured at (a) 225 nm, (b) 280 nm, and
(c) 320 nm.

1.2. CHEMOMETRICS

1.2.1. Introduction to Chemometrics

The term chemometrics was introduced by Svante Wold [4] and Bruce R.
Kowalski in the early 1970s [4]. Terms like biometrics and econometrics
were also introduced into the fields of biological science and economics.
Afterward, the International Chemometrics Society was established. Since
then, chemometrics has been developing and is now widely applied to
different fields of chemistry, especially analytical chemistry in view of the
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numbers of papers published, conferences and workshops being orga-
nized, and related activities. ‘‘A reasonable definition of chemometrics
remains as how do we get chemical relevant information out of measured
chemical data, how do we represent and display this information, and how
do we get such information into data?’’ as mentioned by Wold [4]. Chemo-
metrics is considered by some chemists to be a subdiscipline that provides
the basic theory and methodology for modern analytical chemistry. Yet, the
chemometricans themselves consider chemometrics is a new discipline of
chemistry [4]. Both the academic and industrial sectors have benefited
greatly in employing this new tool in different areas.

Howery and Hirsch [5] in the early 1980s classified the development
of the chemometrics discipline into different stages. The first stage is
before 1970. A number of mathematical methodologies were developed
and standardized in different fields of mathematics, behavioral science, and
engineering sciences. In this period, chemists limited themselves mainly to
data analysis, including computation of statistical parameters such as the
mean, standard deviation, and level of confidence. Howery and Hirsch, in
particular, appreciated the research on correlating vast amounts of chemi-
cal data to relevant molecular properties. These pioneering works form the
basis of an important area of the quantitative structure--activity relationship
(QSAR) developed more recently.

The second stage of chemometrics falls in the 1970s, when the term
chemometrics was coined. This new discipline of chemistry (or subdisci-
pline of analytical chemistry by some) caught the attention of chemists,
especially analytical chemists, who not only applied the methods avail-
able for data analysis but also developed new methodologies to meet
their needs. There are two main reasons why chemometrics developed
so rapidly at that time: (1) large piles of data not available before could be
acquired from advanced chemical instruments (for the first time, chemists
faced bottlenecks similar to those encountered by social scientists or
economists years before on how to obtain useful information from these
large amounts of data) and (2) advancements in microelectronics technol-
ogy within that period. The abilities of chemists in signal processing and
data interpretation were enhanced with the increasing computer power.

The future evolution of chemometrics was also predicted by Howery
and Hirsch in their article [5] and later by Brown [4]. Starting from the
early 1980s, chemometrics were amalgamated into chemistry courses
for graduates and postgraduates in American and European universi-
ties. In addition, it became a common tool to chemists. Since the early
1980s, development of the discipline of chemometrics verified the orig-
inal predictions. Chemometrics has become a mainstay of chemistry
in many universities of America and Europe and some in China and
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other countries. Workshops and courses related to chemometrics are
held regularly at conferences such as the National Meetings of American
Chemical Society (ACS) and the Gordon Conferences, as well as at sym-
posia and meetings of the Royal Society of Chemistry and International
Chemometrics Society. For instance, four courses were offered under
the title ‘‘Statistics/Experimental Design/Chemometrics’’ in the 226th ACS
National Meeting held in New York in September 2003 [http://www.acs.org].
The course titles are ‘‘Chemometric Techniques for Qualitative Analysis,’’
‘‘Experimental Design for Combinatorial and High-Througput Materials
Development,’’ ‘‘Experimental Design for Productivity and Quality in R&D,’’
and ‘‘Statistical Analysis of Laboratory Data.’’ Furthermore, chemomet-
rics training courses are held regularly by software companies like such
as CAMO [6] and PRS [7]. In a review article [8] on the 25 most fre-
quently cited books in analytical chemistry (1980--1999), four are related
to chemometrics: Factor Analysis in Chemistry by Malinowski [9], Data
Reduction and Error Analysis for the Physical Sciences by Bevington and
Robinson [10], Applied Regression Analysis by Draper and Smith [11], and
Multivariate Calibration by Martens and Naes [12] with rankings of 4, 5, 7,
and 16, respectively. The textbook Chemometrics: Statistics and Com-
puter Applications in Analytical Chemistry [13] by Otto was the second
most popular ‘‘bestseller’’ on analytical chemistry according to the Inter-
net source www.amazon.com on February 16, 2001. The Internet source
www.chemistry.co.nz listed ‘‘Statistics for Analytical Chemistry’’ by J. Miller
and J. Miller as one of the eight analytical chemistry bestsellers on January
21, 2002 and February 10, 2003.

Chemometricians have applied the well-known approaches of multivari-
ate calibration, chemical resolution, and pattern recognition for analytical
studies. Tools such as partial least squares (PLS) [14], soft independent
modeling of class analogy (SIMCA) [15], and methods based on factor anal-
ysis, including principal-component regression (PCR) [16], target factor
analysis (TFA) [17], evolving factor analysis (EFA) [18,19], rank annihila-
tion factor analysis (RAFA) [20,21], window factor analysis (WFA) [22,23],
and heuristic evolving latent projection (HELP) [24,25] have been intro-
duced. In providing the basic theory and methodology for analytical study,
its evolution falls into main two categories: (1) development of new theories
and algorithms for manipulating chemical data and (2) new applications of
the chemometrics techniques to different disciplines of chemistry such as
environmental chemistry, food chemistry, agricultural chemistry, medici-
nal chemistry, and chemical engineering. The advancements in computer
and information science, statistics, and applied mathematics have intro-
duced new elements into chemometrics. Neural networking [26,27], a
mathematical technique that simulates the transmission of signals within
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the biological system; genetic algorithm [28--30]; and simulated anneal-
ing [31,32] are examples of this methodology. Wavelet analysis [33] of
information science, a robust method of statistics and image analysis of
engineering and medical sciences, is another example.

Common methods for processing 1D data are reviewed and discussed
in Chapter 2 to provide the readers with the basic knowledge of chemomet-
rics. Chapter 3 discusses an area of current interest in signal processing
involving generation of 2D data using modern analytical instruments.
The basic theory and applications of WT in chemistry are introduced in
Chapters 4 and 5, respectively. WT-related papers are briefly reviewed in
Chapter 5 to give the readers an overview of WT applications in chem-
istry. Examples of various chemometric methods are provided with lists of
MATLAB codes [34] for the calculations involved.

1.2.2. Instrumental Response and Data Processing

Instrumental response in analytical study usually necessitates some form
of mathematical manipulation to make the manipulations more mean-
ingful to chemists. For instance, the absorbance of a peak deduced
from its ultraviolet--visible spectrum can be transformed into a chemical
variable of concentration of the related compound. Similarly, the HPLC
peak height or area of a component can be correlated to its concentra-
tion. Considering the latter case, if the HPLC peak of a one-component
system is free from overlapping and other interference, then the concen-
tration of the component can be determined when the relevant calibration
curve is available. In this case, only one concentration or chemical vari-
able is involved and the system is regarded as a univariate one by
chemometricians.

Figure 1.3 shows the chromatogram of the ginsenoside extract of an
American Ginseng sample as acquired by the HP HPLC model 1100
instrument. It consists mainly of several peaks corresponding to the gin-
senosides of Re, Rg1, Rf, Rb1, Rc, Rb2, and Rd. The peaks with retention
times greater than 15 min are well separated from one another and are
free from impurities. Hence, each one can be considered as a one-
component system that can be treated using univariate methods under
an ideal situation. Yet, the profile around 6 min shows two overlapping
peaks that should be classified as a multivariate system in data analy-
sis. Usually, analytical chemists try their best to adjust the experimental
conditions to separate these overlapping peaks. Yet, it is time-consuming
and not easy to achieve this, especially for complicated systems such as
herbal medicine, which has many constituents. Thus, different multivariate
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Figure 1.3. The HPLC chromatogram of the ginsenoside extract of an American Ginseng
sample.

analysis techniques have been developed to accomplish the target. The
powerful computers currently available considerably help in this respect.
The multivariate approach is currently considered as one of the develop-
ing areas of chemometrics for tackling problems for complicated chemical
systems such as in the example cited above.

Most data obtained from analytical measurements are now represented
in digital rather than analog form as previously. Thus, only manipulation of
digital data is considered throughout this book.

1.2.3. White, Black, and Gray Systems

Mixture samples commonly encountered in analytical chemistry fall into
three categories, which are known collectively as the white--gray--black
multicomponent system [35] according to the information available. The
samples labeled ‘‘white’’ have the following characteristics. All spectra of
the component chemical species in the sample, as well as the impurities
or interferents present, are available. Concentrations of all the selected
analytes are also known for the investigation. In this system, the major aim
is to quantitatively determine the concentrations of some or all the chemical
components of the sample mixture. Chemometric methods for this kind of
analysis are relatively mature.

The system with no a priori information regarding the chemical com-
position is classified as a ‘‘black’’ one. The aim of the chemometric
treatment could be to determine simultaneously spectra (resolution) and
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concentrations (quantification) of all the chemical components. To most, it
is impossible to achieve this. The advantages of having hyphenated instru-
mentation data as mentioned previously is that one can decide the number
of analytes in peak clusters and, in many cases, resolve them into sin-
gle components without access to standards if appropriate chemometric
techniques are used.

The ‘‘gray’’ analytical system covers samples between the two types def
ined above. No complete knowledge is available for the chemical composi-
tion or spectral information. The aim of signal processing in this system is to
determine quantitatively the selected analytes in the presence of unknown
interferents or components. In this way, spectra or models for the analytes
are available. Yet, no information regarding possible interferents or other
unknown chemicals in the samples is on hand.

1.3. CHEMOMETRICS-BASED SIGNAL PROCESSING TECHNIQUES

1.3.1. Common Methods for Processing Chemical Data

Chemical signals obtained from analytical measurements are usually
recorded as chromatograms, spectra, kinetic curves, titration curves, or
in other formats with the domain of time, wavelength, or frequency. Sig-
nal processing may be carried out in the ‘‘online’’ or ‘‘offline’’ mode. For
the online mode, the data acquired are treated immediately and the time
spent has to be relatively short for monitoring or controlling the system in
real time. As for the offline mode, a complete set of data is collected from
measurements and manipulation of data is carried out afterward.

In general, quality of the raw experimental data is evaluated with the
use of statistical analysis. Parameters such as mean, variance, and stan-
dard deviation are utilized very often for this purpose. The assessment
can be further carried out by some methods such as Student’s t-test and
F-test, where the data are assumed to have the Gaussian distribution.
With availability of the full dataset, signal processing techniques such as
smoothing and filtering methods, transformation methods, and numeri-
cal treatment methods can further be used to analyze and enhance the
data. The aims are to improve the signal-to-noise ratio (SNR), to convert
the data into more physically meaningful form, to extract useful and/or
accurate information, to classify objects, and so on. In Chapter 2, signal
processing of this type on 1D data will be discussed in detail. As for 2D
data, techniques for background correction, congruence analysis, least-
square fitting, differentiation, and resolution of overlapping signal will be
described.
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1.3.2. Wavelets in Chemistry

It is well known that Fourier transform (F T) has played an important
role in chemical data processing. F T converts a signal from one form
into another form and simplifies the complex signal for chemists. For
example, F T-IR and F T-NMR spectra are obtained by transforming the
signals measured in the time domain into the frequency domain. Further-
more, development of several signal processing methods such as filtering,
convolution/deconvolution, and derivative calculation was also based on
Fourier transform.

A wavelet is defined as a family of functions derived from a basic function,
called the wavelet basis function, by dilation and translation. Wavelet basis
functions are those functions with some special properties such as orthog-
onality, compact support, symmetry, and smoothness. Wavelet transform
(WT) [36--39] is a projection operation of a signal onto the wavelet. In some
respects, WT is simply an analog to F T. The only difference is the basis
functions. In F T, the trigonometric (sine and cosine) functions are the basis
functions, while the basis function in WT is the wavelet. Therefore, a large
number of basis functions are available as compared with F T.

The most outstanding characteristic of the WT is the localization prop-
erty in both time and frequency domains, while F T is localized only in the
frequency domain. With proper identification, WT may be used to zoom in
or zoom out a signal at any frequency and in any small part. Thus, it can be
called a mathematical microscope of analytical signals. A complex signal
can be decomposed into its components with different frequencies by using
the WT technique. This provides us an opportunity to examine any part of
the signal of interest. Most of the WT applications on processing chemical
signals are based on the dual-localization property. Generally, the signal
is composed of baseline, noise, and chemical signals. Since the frequen-
cies of the three parts as mentioned above are significantly different from
one another, it is not difficult to use the WT technique by removing the
high-frequency part from the signal for denoising and smoothing and by
removing the low-frequency part for baseline correction. Similarly, one can
also use WT to extract the high-resolution information from a low-resolution
signal by eliminating both the high-frequency noise and the low-frequency
background.

Another property of the WT is that it can be turned into sparse expan-
sions, which means that any signal can be quite accurately represented
by a small part of the coefficients derived. This property makes WT an
effective tool for data compression. Several applications of WT, such as
derivative calculation by using the discrete wavelet transform (DWT) and
continuous wavelet transform (CWT), have also been developed based



\c01" | 2004/1/28 | 9:45 | page 12 | #12

12 introduction

on the special properties of the wavelet basis functions. Furthermore, the
combined methods of WT and other chemometric methods were reported.
For example, the wavelet neural network (WNN) provides a new network
model for data compression, pattern recognition, and quantitative predic-
tion. Taking advantage of the WT in data compression, the efficiency of the
artificial neural network (ANN), partial least squares (PLS), chemical factor
analysis (CFA), and other procedures can be improved by combining these
methods with WT. A wavelet toolbox is available from MathWorks, Inc. [33]
to carry out WT calculations.

WT became a hot issue in chemistry field during the late 1980s.
More than 370 papers and several reference books were published from
1989 to 2002. In these published works, both the theory and the appli-
cations of WT were introduced. WT was employed mainly for signal
processing in different fields of analytical chemistry, including flow injection
analysis (FIA), high-performance liquid chromatography (HPLC), capillary
electrophoresis (CE), ultraviolet--visible spectrometry (UV--vis), infrared
spectrometry (IR), Raman spectroscopy, photoacoustic spectroscopy
(PAS), mass spectrometry (MS), nuclear magnetic resonance (NMR)
spectrometry, atomic absorption/emission spectroscopy (AAS/AES), X-ray
diffraction/spectroscopy, potentiometric titration, voltammetric analysis,
and analytical image processing. It has also been employed to solve cer-
tain problems in quantum chemistry and chemical physics. More references
and online resources can be found in Chapter 5.

1.4. RESOURCES AVAILABLE ON CHEMOMETRICS AND
WAVELET TRANSFORM

1.4.1. Books

Tutorial and Introductory
Beebe, K., R. Pell, and M. B. Seasholtz, Chemometrics, A Practical Guide, Wiley,

New York, 1998.
Brereton, R., Data Analysis for the Laboratory and Chemical Plant, Wiley, New

York, 2003.
Bevington, P. R., and D. K. Robinson, Data Reduction and Error Analysis for the

Physical Sciences, 3rd ed., McGraw-Hill, New York, 2002.
Davies, L., Efficiency in Research, Development and Production: The Statistical

Design and Analysis of Chemical Experiments, Royal Society of Chemistry,
London, 1993.

Draper, N., and H. Smith, Applied Regression Analysis, 3rd ed., Wiley, New York,
1999.

Jackson, J. E., A User’ s Guide to Principal Components, Wiley, New York, 1991.
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Kramer, R., Chemometric Techniques for Quantitative Analysis, Wiley, New York,
1998.

Malinowski, E., Factor Analysis in Chemistry, 3rd ed., Wiley, New York, 2002.
Meloun, M., J. Militky, and M. Forina, Chemometrics for Analytical Chemistry, Vols.

1 and 2, PC-Aided Statistical Data Analysis, Ellis Horwood, New York, 1992,
1994.

Miller, J. N., and J. C. Miller, Statistics and Chemometrics for Analytical Chemistry,
4th ed., Prentice-Hall, London, 2000.

Otto, M., Chemometrics: Statistics and Computer Application in Analytical Chem-
istry, Wiley-VCH, Weinheim, 1999.

Sharaf, M. A., D. L. Illman, and B. R. Kowalski, Chemometrics, Chemical Analysis
Series Vol. 82, Wiley, New York, 1986.

Vandeginste, B. G. M., D. L. Massart, L. M. C. Buydens, S. De Jong, P. J. Lewi,
and J. Smeyers-Verbeke, Handbook of Chemometrics and Qualimetrics, Parts
A and B, Elsevier, Amsterdam, 1998.

Walnut, D. F., An Introduction to Wavelet Analysis, Birkhuser, Boston, 2002.

Advanced
Deming, S. N., and S. L. Morgan, Experimental Design: A Chemometrics Approach,

2nd ed., Elsevier, Amsterdam, 1993.
Goupy, J. L., Methods for Experimental Design: Principles and Applications for

Physicists and Chemists, Elsevier, Amsterdam, 1993.
Jurs, P. C., ed., Computer-Enhanced Analytical Spectroscopy, Vol. 3, Plenum

Press, New York, 1992.
Liang, Y. Z., White, Grey and Black Multicomponent System and Their Chemomet-

ric Algorithms (in Chinese), Hunan Publishing House of Science and Technology,
Changsha, 1996.

Liang, Y. Z., R. Nortvedt, O. M. Kvalheim, H. L. Shen, and Q. S. Xu, eds., New
Trends in Chemometrics, Hunan University Press, Changsha, 1997.

Martens, H., and M. Martens, Multivariate Analysis of Quality: An Introduction,
Wiley, New York, 2001.

Meuzelaar, H. L. C., and T. L. Isenhour, eds., Computer-Enhanced Analytical
Spectroscopy, Plenum Press, New York, 1987.

Meuzelaar, H. L. C., ed., Computer-Enhanced Analytical Spectroscopy, Vol. 2,
Plenum Press, New York, 1990.

Rouvray, D. H., ed., Fuzzy Logic in Chemistry, Academic Press, San Diego, 1997.
Schalkoff, R., Pattern Recognition Statistical Structural and Neural Approaches,

Wiley, New York, 1992.
Wakzak, B., ed., Wavelets in Chemistry, Elsevier, Amsterdam, 2000.
Wilkins, C. L., ed., Computer-Enhanced Analytical Spectroscopy, Vol. 4, Plenum

Press, New York, 1993.

General References

Chatfield, C., and A. J. Collins, Introduction to Multivariate Analysis, Chapman &
Hall, London, 1989.
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DeMuth, J. E., Basic Statistics and Pharmaceutical Statistical Application, Wiley,
New York, 1999.

Spiegel, M. R., Schaum’s Outline of Theory and Problems of Statistics, McGraw-
Hill, New York, 1999.

Related Topics
Adams, M. J., Chemometrics in Analytical Spectroscopy, Royal Society of

Chemistry, London, 1995.
Ciurczak, E. W., and J. K. Drennen, Pharmaceutical and Medical Applications of

NIR Spectroscopy, Marcel Dekker, New York, 2002.
Einax, J. W., H. W. Zwanziger, and S. Geiss, Chemometrics in Environmental

Analysis, VCH, Weinheim, 1997.
Mark, H., Principles and Practice of Spectroscopic Calibration, Wiley, New York,

1991.
Zupan, J., and J. Gasteiger, Neural Networks for Chemists: An Introduction, VCH,

Weinheim, 1993.

1.4.2. Online Resources

General Websites
http: / /www.spectroscopynow.com/Spy/basehtml/SpyH/1,2142,2-0-0-0-0-home-0-

0,00.html. Chemometrics World provides comprehensive Web resources,
including online traning, job opportunities, software links, conferences, and dis-
cussion forums. Under the ‘‘Education’’ menu, there is a glossary list compiled
by Bryan Prazen as well as tutorials.

http://www.acc.umu.se/∼tnkjtg/chemometrics/. The Chemometrics homepage is a
portal site edited by Johan Trygg. It provides links to useful Webpages related
to the subject as well as software links. It also maintains a list for upcoming
conferences.

http://www.chemometrics.com/. This is the Website of Applied Chemometrics.
Information on good introductory books, software links, training courses, and
other sources is provided.

http://iris4.chem.ohiou.edu/. This is the official Website of the North American
chapter of the International Chemometrics Society (NAmICS).

http://www.amara.com/current/wavelet.html. Amara’s ‘‘Wavelet’’ page provides
comprehensive online information on wavelets. The ‘‘Beginners Bibliography’’ is
a good place to start if you are not familiar with signal processing. The software
list is extensive.

Journals
http://www.interscience.wiley.com/jpages/0886-9383/. This is the Journal of

Chemometrics’s homepage. A full-text electronic version is available to sub-
scribers for articles since 1997.

http://www.elsevier.nl/inca/publications/store/5/0/2/6/8/2/. This is the Journal of
Chemometrics and Intelligent Laboratory ’s homepage. All articles (including
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those in Vol. 1, published in 1986) are available in Acrobat format for subscribers
to download.

http://pubs.acs.org/journals/jcisd8/index.html. This is the homepage of the Journal
of Chemical Information and Computer Sciences. All articles (including Vol. 1,
published in 1975) are available in Acrobat format for subscribers to download.

http://www.wavelet.org/. The Wavelet Digest is an online journal devoted to the
wavelet community. It has preprints and announcements of new books, software,
jobs, and conferences.

Tutorials and Personal Homepages
http://www.galactic.com/. Thermo Galactic markets a comprehensive data pro-

cessing management software package, GRAMS/AI, which can work with data
files from multiple techniques, including UV, UV--vis, IR, F T-IR, NIR, NMR,
LC, GC, HPLC, DAD, CE, and mass and Raman spectrometry. There is a
Chemometrics extension available called PLSplus/IQ. This Website provides
descriptions of the algorithms used in the programs (http://www.galactic.com/
Algorithms/default.asp), which is also a good introduction to these topics.

http://www.chm.bris.ac.uk/org/chemometrics/pubs/index.html. This is the Website
of the Bristol Chemometrics research groups. An evaluation version of their
Excel add-in software is available for download with some exercises provided.

http://ourworld.compuserve.com/homepages/Catbar/int_chem.htm. This Website
publishes a report entitled ‘‘An introduction to chemometrics,’’ by Brian A. Rock
in October 1985.

http://www.chem.duke.edu/∼clochmul/tutor1/factucmp.html. This Webpage pro-
vides introductory notes on factor analysis by Charles E. Reese and C. H.
Lochmüller.

http://ull.chemistry.uakron.edu/chemometrics/. This is lecture presentations of a
chemometrics course by James K. Hardy of the University of Akron.

http://www.models.kvl.dk/users/rasmus/. This is the personal Website of Profes-
sor Rasmus Bro. He offers a free monograph Multi-way Analysis in the Food
Industry, which describes several applications of wavelets in the food industry.

http://www.ecs.syr.edu/faculty/lewalle/tutor/tutor.html. This is a tutorial on continu-
ous wavelet analysis of experimental data; plots are available on most of the
topics illustrating wavelet techniques in simplified format, without unnecessary
mathematical sophistication.

http://rcmcm.polyu.edu.hk/wavelet.html. The Wavelet Transform in Chemistry pro-
vides a comprehensive literature survey of the application of wavelet transform
in different area of chemistry.

1.4.3. Mathematics Software

A brief introduction to some useful software packages for chemometrics
techniques and wavelet transform is given below. Some of the packages are
even freely available for public download. Many of them have specialized
wavelet extensions available. Thus, we hope that readers can find the
appropriate tools to test the data processing techniques discussed in this
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book. We would recommend MATLAB if readers can access the software;
however, other packages can perform the calculations equally well.

MATLAB (http://www.mathworks.com/ ). MATLAB is a popular and pow-
erful tool in the field marketed by Mathworks. It integrates mathematical
computing, visualization, and a powerful language to provide a flexi-
ble computing environment. This makes MATLAB an extremely useful
tool for exploring data and creating algorithms. The open architecture
makes MATLAB extensible, and many ‘‘toolboxes’’ have been devel-
oped by MATLAB users. All the examples provided in this book are also
implemented in MATLAB script.

There are many toolboxes available for applying chemometrics tech-
niques. A detailed list can be found in http://www.mathtools.net/MATLAB/
Chemometrics/index.html. Examples including the ‘‘chemometrics’’ tool-
box, the ‘‘factor analysis’’ (FA) toolbox, and the ‘‘principal least-squares’’
toolbox provide functions for multivariate analysis such as principal-
component analysis (PCA), principal-component regression (PCR), and
partial least squares (PLS).

Mathworks also markets a toolbox for wavelet analysis. The ‘‘wavelet’’
toolbox is a full-featured MATLAB [graphical user interface (GUI) and
command-line] toolbox originally developed by Michel Misiti, Yves Misiti,
Georges Oppenheim, and Jean-Michel Poggi. The toolbox provides con-
tinuous wavelet transforms (CWTs), discrete wavelet transforms (DWTs),
user-extendible selection of wavelet basis functions, wavelet packet trans-
forms, entropy-based wavelet packet tree pruning for ‘‘best tree’’ and ‘‘best
level’’ analysis, and soft and hard thresholding Denoising (please refer
to Chapter 5). One- and two-dimensional wavelet transforms are sup-
ported so that they can be used for both signal and image analysis and
compression.

Apart from the ‘‘official’’ wavelet toolbox from Mathworks, there are also
many other wavelet toolboxes created by different researchers. Exam-
ples in Chapter 5 are built on one of them, the WaveLab developed by
researchers of Stanford University. The current version of WaveLab is
at level 8.02, yet the examples in Chapter 5 are based on an earlier
version. The toolbox is available from the developer’s Website, http://www-
stat.stanford.edu/∼wavelab/. Many other toolboxes are available, including
the Rice Wavelet Toolbox (http://www-dsp.rice.edu/software), the Wavekit
by Harri Ojanen (http://www.math. rutgers.edu/∼ojanen/wavekit/), and
the Mulitwavelet package by Vasily Strela (http://www.mcs.drexel.edu/
∼vstrela/ ).
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Scilab (http://www-rocq.inria.fr/scilab/ ). Scilab is a software pack-
age for numerical computations providing a powerful open computing
environment for engineering and scientific applications similar to MATLAB.
Yet, it is distributed freely with binary versions for UNIX, Windows, and Mac-
intosh platforms. Scilab has been developed since 1990 by researchers
from the French National Institute for Research in Computer Science and
Control (INRIA) and École Nationale des Ponts et Chaussées (ENPC).
There is a multifractal--wavelet analysis toolbox available from the above
website.

Mathematica (http://www.wri.com/ ). Mathematica seamlessly inte-
grates a numeric and symbolic computational engine, graphics system,
programming language, documentation system, and advanced connectiv-
ity to other applications. There is also a package called Wavelet Explorer
from Wolfram Research. Wavelet Explorer generates a variety of orthogo-
nal and biorthogonal filters and computes scaling functions, wavelets, and
wavelet packets from a given filter. It also contains 1D and 2D wavelet
and wavelet packet transforms, 1D and 2D local trigonometric transforms
and packet transforms, and it performs multiresolution decomposition as
well as 1D and 2D data compression and denoising tasks. Graphics utilities
are provided to allow the user to visualize the results. It is written entirely in
Mathematica with all source codes opened, enabling the user to customize
and extend all the functions.

Maple (http://www.maplesoft.com/ ). Maple is symbolic computing soft-
ware developed by researchers of Waterloo University since 1980. Scripts
or programs in Maple can be easily generated to other languages, including
MATLAB, FORTRAN, and C.

MathCAD (http://www.mathsoft.com/ ). MathCAD is another general
purpose software platform with a symbolic computation engine for applying
mathematics. It can work with mathematical expressions using standard
math notation with the added ability to recalculate, view, present, and
publish the data easily. MathCAD functionality can be extended through
function extension packs and interoperable software packages, including
add-ons dedicated to signal processing, image processing, wavelets, and
solving and optimization. In particular, the Wavelets Extension Package
provides one- and two-dimensional wavelets, discrete wavelet transforms,
multiresolution analysis, and other tools for signal and image analysis,
time-series analysis, statistical signal estimation, and data compression
analysis.
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MuPAD (http://www.mupad.de/ ). MuPAD is a computer algebra system
originally developed by the MuPAD Research Group under the direction of
Professor B. Fuchssteiner at the University of Paderborn, Germany. It is
free (provided gratis) for personal use.

LastWave (http://www.cmap.polytechnique.fr/∼bacry/LastWave/
index.html ). LastWave is a signal processing--oriented command lan-
guage and is available for download from the Website. It is written in
C and runs on X11/Unix, Windows/CygWin, and Macintosh platforms.
It has been designed for use by anyone who knows about signal process-
ing and wants to play around with wavelets and wavelet-like techniques.
The command-line language employs a MATLAB-like syntax and includes
high-level object-oriented graphic elements. It allows the user to deal with
high-level structures such as signals, images, wavelet transforms, extrema
representation, and short-time Fourier transform. One can add very easily
some new commands in LastWave using either the command language
itself or the C-language. New commands can be grouped into a package
that can be loaded easily later. Several other packages have already been
added to LastWave allowing high-level signal processing such as wavelet
transforms (1D and 2D), extrema representations of wavelet transforms
(1D and 2D), fractal analysis, matching pursuit, and compression.

Minitab (http://www.minitab.com/ ). Minitab is an all-in-one statistical
and graphical analysis software package. Statistical tests such as regres-
sion analysis, analysis of variance, multivariate analysis, and time-series
analysis can be completed easily. The Stat Guide is an extremely helpful
tool in interpreting statistical graphs and analyses for users with minimal
statistical background.

Extract (http://www.extractinformation.com/ ). Extract is designed for
visualization of the structure and quantitative relationships in data. Mul-
tivariate statistical methods can then be used to model the data. A trial
version of the software can be obtained after completion of a registration
form on the Extract Information AB Webpage.

Sirius and Xtricator (http://www.prs.no/ ). Sirus and Xtricator are two
pieces of software developed by the Pattern Recognition Systems (PRS), a
company founded by Professor Olav M. Kvalheim of Norway. Sirius is a tool
for multivariate analysis that covers all the essential chemometrics meth-
ods within multivariate exploratory analysis, classification/discrimination,
and calibration/response modeling. Experimental design is also supported
(please refer to Chapter 3 for an introduction to these methods). Xtricator
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is a software product that is developed for quantitative and qualitative anal-
ysis of data from hyphenated analytical instruments such as HPLC-DAD
and GC-MS. It is capable of resolving two-way bilinear multicomponent
instrumental data into spectra and chromatograms of pure analytes using
heuristic evolving latent projection (HELP) techniques as mentioned in
Section 3.6.2.3. A trial version of the software can be obtained after filling
in a registration form on the PRS Webpage.
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CHAPTER

2

ONE-DIMENSIONAL SIGNAL PROCESSING
TECHNIQUES IN CHEMISTRY

In this chapter, some widely used methods for processing one-dimensional
chemical signals are discussed. Chemical signals are usually recorded as
chromatograms, spectra, voltammograms, kinetic curves, titration curves,
and in other formats. Nowadays, almost all of them are acquired in the dig-
ital vector form. In order to denoise, compress, differentiate, and do other
things on the signals acquired, it is always necessary to pretreat them first.
The signal processing methods discussed in this chapter can be roughly
divided into three classes including smoothing methods, transformation
methods, and numerical treatment methods. They are described one by
one below with illustrative examples.

2.1. DIGITAL SMOOTHING AND FILTERING METHODS

In general, averaging is widely used to improve the signal-to-noise ratio
(SNR) for analytical signals. Through this treatment, the influence of noise
can be reduced because the signals are often distributed normally on both
positive and negative sides. In carrying out the averaging operation on a
dataset xi , the mean x̄ can be calculated by

x̄ = 1
n

n∑
i=1

xi (2.1)

Notice that the variance of x̄ is only 1/
√

n of the original variable xi .
Thus, the averaging operation can increase the SNR of analytical signals.
This explains why the spectrum of a sample generated from an infrared
instrument in your laboratory is often the mean spectrum from several mea-
surements. It should be pointed out here that most methods discussed in
the following subsections are based on this principle.

23

Chemometrics: From Basics To Wavelet Transform. Foo-Tim Chau, Yi-Zeng
Liang, Junbin Gao, and Xue-Guang Shao. Chemical Analysis Series, Volume 164.
ISBN 0-471-20242-8. Copyright ? 2004 John Wiley & Sons, Inc.
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2.1.1. Moving-Window Average Smoothing Method

The moving-window average method is the classic and the simplest
smoothing method. It can be utilized to enhance the SNR. The principle of
this method is illustrated in Figure 2.1. Suppose that we have a raw signal
vector, say, x = [x1, x2, . . . , xn−1, xn]. In practice, a window size of (2m +1)
data points has to be specified first before doing any smoothing calcula-
tion. Here, an averaging filter of window size of 5(m = 2) is employed to
illustrate the computing procedure. At the beginning, the first five data are
used to find the first smoothed datum x ∗

3 via the following equation with
i = 3 and m = 2:

x ∗
i = 1

2m + 1

m∑
j=−m

xi+j (2.2)

In this equation, x ∗
i denotes the smoothed value while xi+j are the original

raw data, where i and j are the running indices. It should be noted that the
first two data points, x1 and x2, cannot be smoothed in the process. After
finding x ∗

3 , the next step is to move the window to the right by one datum to
evaluate x ∗

4 (see Fig. 2.1). Then the procedure is repeated by moving the
window successively along the equally spaced data until all the data are
exhausted. As the width of the moving window is an important parameter

x1

xn-1
xn

x2

moving window

Figure 2.1. Moving-window-average filter for a window size of 2m + 1 = 5, that is, m = 2.
It should be noted that for the extreme points, no smoothed data can be calculated because
they are used for computing the first and the last averages. Top plot---the original raw signals;
bottom plot---smoothed signals.



\c02" | 2004/1/28 | 9:47 | page 25 | #3

digital smoothing and filtering methods 25

in this smoothing process, it has to be defined before any calculation is
performed. The guidelines for choosing a right value for this parameter will
be discussed in Section 2.3.

2.1.2. Savitsky--Golay Filter

The Savitsky--Golay filter is a smoothing filter based on polynomial regres-
sion [1--3]. Instead of simply using the averaging technique as mentioned
previously, the Savitsky--Golay filter employs the regression fitting capacity
to improve the smoothing results as depicted in Figure 2.2. From the plot,
it can be seen that this method should perform better than the moving-
window average method as mentioned in Section 2.1.1 because it takes
advantage of the fitting ability of polynomial regression. However, the for-
mulation of the Savitsky--Golay filter is quite similar to that of the averaging
filter [Eq. (2.2)]. The major difference between the moving-window average
method and the Savitsky--Golay filter is that the latter one is essentially a
weighted average method in the form of

x ∗
i = 1

2m + 1

m∑
j=−m

wj xi+j (2.3)

j=-2

j=2 Five point fitting

Seven point fitting

moving window

Figure 2.2. The Savitsky--Golay filter with a window size of 2m +1 = 5. Instead of averaging
the data point in the moving window, it uses the polynomial fitting technique to determine the
weights in Equation (2.3). Top plot---the original raw signals; bottom plot---smoothed signals.
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The problem now is how to find the correct weights wj in this formula
through polynomial regression. In the following example, a five-point
Savitsky--Golay filter is utilized to show how this can be done.

The Savitsky--Golay filter uses the following formula to fit the data first
(see Fig. 2.2), and then finds all the weights through the least-squares
technique by

x i
j = a0 + a1j + a2j2 + · · · + ak j k

( j = −m, −m + 1, . . . , m − 1, m; i = 1, . . . , n) (2.4)

If the window size is 5 coupled with a quadratic model, formula (2.4)
becomes

x i
j = a0 + a1j + a2j2 ( j = −2, −1, 0, 1, 2; i = 1, . . . , n) (2.5)

where the superscript i indicates the numbering of the original chemi-
cal data and j is the window size variable. As x i

j and j are known (see
Fig. 2.2), the least-squares technique can be applied to find aR (R =
0, 1, 2). By substituting the right values in Eq. (2.5), the following set of
linear equations is obtained:



x i−2
−2 = a0 + a1(−2) + a2(−2)2

x i−1
−1 = a0 + a1(−1) + a2(−1)2

x i
0 = a0 + a1(0) + a2(0)2

x i+1
1 = a0 + a1(1) + a2(1)2

x i+2
2 = a0 + a1(2) + a2(2)2

(2.6)

or 


x i−2
−2 = a0 − 2a1 + 4a2

x i−1
−1 = a0 − a1 + a2

x i
0 = a0

x i+1
1 = a0 + a1 + a2

x i+2
2 = a0 + 2a1 + 4a2

=




1 −2 4
1 −1 1
1 0 0
1 1 1
1 2 4




a0

a1

a2




and in the matrix form


x i−2
−2

x i−1
−1

x i
0

x i+1
1

x i+2
+2




=




1 −2 4
1 −1 1
1 0 0
1 1 1
1 2 4




a0

a1

a2



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or

x = Ma (2.7)

where

x =




x i−2
−2

x i−1
−1

x i
0

x i+1
1

x i+2
+2




; M =




1 −2 4
1 −1 1
1 0 0
1 1 1
1 2 4


 ; a =


a0

a1

a2




Equation (2.7) can be solved by least-squares fitting via

a = (Mt M)Mt x (2.8)

Substitution of the solution into Equation (2.7) gives the estimated values
of x̂

x̂ = M(Mt M)Mt x (2.9)

or in the common form


�x i−2
−2 = 1

35 (31x i−2
−2 + 9x i−1

−1 − 3x i
0 − 5x i+1

1 + 3x i+2
2 )

�x i−1
−1 = 1

35 (9x i−2
−2 + 13x i−1

−1 + 12x i
0 + 6x i+1

1 − 5x i+2
2 )

�x i
0 = 1

35 (−3x i−2
−2 + 12x i−1

−1 + 17x i
0 + 12x i+1

1 − 3x i+2
2 )

�x i+1
1 = 1

35 (−5x i−2
−2 + 6x i−1

−1 + 12x i
0 + 13x i+1

1 + 9x i+2
2 )

�x i+2
2 = 1

35 (3x i−2
−2 − 5x i−1

−1 − 3x i
0 + 9x i+1

1 + 31x i+2
2 )

(2.10)

It should be mentioned that the Savitsky--Golay filter only utilizes the
central point in the moving window to do smoothing. Thus, the weights
[w−2 w−1 w w1 w2] can be determined from the coefficients of x i

o of
the equations above, and they have values of [− 3

35
12
35

17
35

12
35 − 3

35 ]
for using five points in the moving window. One may also employ different
window sizes and polynomials of different orders to deduce the weights.
Just in this way, Savitsky and Golay collected the numbers with different
window sizes in their tables (see Tables 2.1 and 2.2) for convenience in
computation.

Example 2.1. An example using the Savitsky--Golay filter to smooth noisy
analytical signals is given in Figure 2.3. The four plots in the figure show the
original noisy signals and the signals that are smoothed by the Savitsky--
Golay filter of quadratic/cubic polynomials with different window sizes. Four
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Table 2.1. Weights of Savitsky--Golay Filter for Smoothing Based on a
Quadratic/Cubic Polynomial

Points 25 23 21 19 17 15 13 11 9 7 5

−12 −253
−11 −138 −42
−10 −33 −21 −171
−9 62 −2 −76 −136
−8 147 15 9 −51 −21
−7 222 30 84 24 −6 −78
−6 287 43 149 89 7 −13 −11
−5 343 54 204 144 18 42 0 −36
−4 387 63 249 189 27 87 9 9 −21
−3 422 70 284 224 34 122 16 44 14 −2
−2 447 75 309 249 39 147 21 69 39 3 −3
−1 462 78 324 264 42 162 24 84 54 6 12

0 467 79 329 269 43 167 25 89 59 7 17
1 462 78 324 264 42 162 24 84 54 6 12
2 447 75 309 249 39 147 21 69 39 3 −3
3 422 70 284 224 34 122 16 44 14 −2
4 387 63 249 189 27 87 9 9 −21
5 343 54 204 144 18 42 0 −36
6 287 43 149 89 7 −13 −11
7 222 30 84 24 −6 −78
8 147 15 9 −51 −21
9 62 −2 −76 −136

10 −33 −21 −171
11 −138 −42
12 −253

5,175 805 3,059 2,261 323 1,105 143 429 231 21 35

different window sizes were utilized to test the Savitsky--Golay filter. From
the plots as given in Figure 2.3, one can see that as the window size
increases, the smoothing effect becomes more significant. Yet, the tradeoff
is that the distortion of the original signals become more serious. In this
example, a window size of 13 seems to give the best result among all.
Thus, the choice of window size for Savitsky--Golay filter is important.

To assist the reader in using the Savitsky--Golay filter for smoothing, a
MATLAB source code is provided in the following frame:

function [y]=smoothing(x,win_num,poly_order)

%This is a program for smoothing the analytical signals.

%x can be a matrix with every column being an analytical

%signal vector.
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%The parameter win_num is the window size which can be chosen

%to have a value of 7 to 17, say 7 9 11 13 15 17;

%The parameter poly_order is the polynomiar order which

%can be chosen to have a value of 2 or 3, and 4 or 5.

[m1,n1]=size(x);

y=zeros(size(x));

if win_num==7

if poly_order==2 | poly_order==3

coef1=[-2 3 6 7 6 3 -2]/21;

for j=1:n1

for i=4:m1-3

y(i,j)=coef1(1)∗x(i-3,j)+coef1(2)∗x(i-2,j)+coef1(3)∗x(i-1,j)+ . . .

coef1(4)∗x(i,j)+coef1(5)∗x(i+1,j)+coef1(6)∗x(i+2,j)+ . . .

coef1(7)∗x(i+3,j);
end

end

else

coef1=[5 -30 75 131 75 -30 5]/231;

for j=1:n1

for i=4:m1-3

y(i,j)=coef1(1)∗x(i-3,j)+coef1(2)∗x(i-2,j)+coef1(3)∗x(i-1,j)+ . . .

coef1(4)∗x(i,j)+coef1(5)∗x(i+1,j)+coef1(6)∗x(i+2,j)+ . . .

coef1(7)∗x(i+3,j);
end

end

end

elseif win_num==9

if poly_order==2|poly_order==3
coef1=[-21 14 39 54 59 54 39 14 -21]/231;

for j=1:n1

for i=5:m1-4

y(i,j)=coef1(1)∗x(i-4,j)+coef1(2)∗x(i-3,j)+coef1(3)∗x(i-2,j)+ . . .

coef1(4)∗x(i-1,j)+coef1(5)∗x(i,j)+coef1(6)∗x(i+1,j)+ . . .

coef1(7)∗x(i+2,j)+coef1(8)∗x(i+3,j)+coef1(9)∗x(i+4,j);
end

end

else

coef1=[15 -55 30 135 179 135 30 -55 15]/429;

for j=1:n1

for i=5:m1-4

y(i,j)=coef1(1)∗x(i-4,j)+coef1(2)∗x(i-3,j)+coef1(3)∗x(i-2,j) . . .

+coef1(4)∗x(i-1,j)+coef1(5)∗x(i,j)+coef1(6)∗x(i+1,j) . . .

+coef1(7)∗x(i+2,j)+coef1(8)∗x(i+3,j)+coef1(9)∗x(i+4,j);
end

end

end

elseif win_num==11

if poly_order==2|poly_order==3
coef1=[-36 9 44 69 84 89 84 69 44 9 -36]/429;
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for j=1:n1

for i=6:m1-5

y(i,j)=coef1(1)∗x(i-5,j)+coef1(2)∗x(i-4,j)+coef1(3)∗x(i-3,j) . . .

+coef1(4)∗x(i-2,j)+coef1(5)∗x(i-1,j)+coef1(6)∗x(i,j)+ . . .

coef1(7)∗x(i+1,j)+coef1(8)∗x(i+2,j)+coef1(9)∗x(i+3,j) . . .

+coef1(10)∗x(i+4,j)+coef1(11)∗x(i+5,j);
end

end

else

coef1=[18 -45 -10 60 120 143 120 60 -10 -45 18]/429;

for j=1:n1

for i=6:m1-5

y(i,j)=coef1(1)∗x(i-5,j)+coef1(2)∗x(i-4,j)+coef1(3)∗x(i-3,j) . . .

+coef1(4)∗x(i-2,j)+coef1(5)∗x(i-1,j)+coef1(6)∗x(i,j)+ . . .

coef1(7)∗x(i+1,j)+coef1(8)∗x(i+2,j)+coef1(9)∗x(i+3,j) . . .

+coef1(10)∗x(i+4,j)+coef1(11)∗x(i+5,j);
end

end

end

elseif win_num==13

if poly_order==2|poly_order==3
coef1=[-11 0 9 16 21 24 25 24 21 16 9 0 -11]/143;

for j=1:n1

for i=7:m1-6

y(i,j)=coef1(1)∗x(i-6,j)+coef1(2)∗x(i-5,j)+coef1(3)∗x(i-4,j) . . .

+coef1(4)∗x(i-3,j)+coef1(5)∗x(i-2,j) . . .

+coef1(6)∗x(i-1,j)+coef1(7)∗x(i,j)+coef1(8)∗x(i+1,j)+ . . .

coef1(9)∗x(i+2,j)+coef1(10)∗x(i+3,j)+coef1(11)∗x(i+4,j) . . .

+coef1(12)∗x(i+5,j)+coef1(13)∗x(i+6,j);
end

end

else

coef1=[110 -198 -135 110 390 600 677 600 390 110 -135 -198 110]/2431;

for j=1:n1

for i=7:m1-6

y(i,j)=coef1(1)∗x(i-6,j)+coef1(2)∗x(i-5,j)+coef1(3)∗x(i-4,j) . . .

+coef1(4)∗x(i-3,j)+coef1(5)∗x(i-2,j)+coef1(6)∗x(i-1,j) . . .

+coef1(7)∗x(i,j)+coef1(8)∗x(i+1,j)+ . . .

coef1(9)∗x(i+2,j)+coef1(10)∗x(i+3,j)+coef1(11)∗x(i+4,j) . . .

+coef1(12)∗x(i+5,j)+coef1(13)∗x(i+6,j);
end

end

end

elseif win_num==15

if poly_order==2|poly_order==3
coef1=[-78 -13 42 87 122 147 162 167 162 147 122 87 42 -13 -78]/1105;

for j=1:n1

for i=8:m1-7

y(i,j)=coef1(1)∗x(i-7,j)+coef1(2)∗x(i-6,j)+coef1(3)∗x(i-5,j) . . .
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+coef1(4)∗x(i-4,j)+coef1(5)∗x(i-3,j)+coef1(6)∗x(i-2,j) . . .

+coef1(7)∗x(i-1,j)+coef1(8)∗x(i,j)+coef1(9)∗x(i+1,j) . . .

+coef1(10)∗x(i+2,j)+coef1(11)∗x(i+3,j)+coef1(12)∗x(i+4,j) . . .

+coef1(13)∗x(i+5,j)+coef1(14)∗x(i+6,j)+coef1(15)∗x(i+7,j);
end

end

else

coef1=[2145 -2860 -2937 -165 3755 7500 10125 11063 10125 7500

3755 -165 -2937 -2860 2145]/46189;

for j=1:n1

for i=8:m1-7

y(i,j)=coef1(1)∗x(i-7,j)+coef1(2)∗x(i-6,j)+coef1(3)∗x(i-5,j) . . .

+coef1(4)∗x(i-4,j)+coef1(5)∗x(i-3,j) . . .

+coef1(6)∗x(i-2,j) . . .

+coef1(7)∗x(i-1,j)+coef1(8)∗x(i,j)+coef1(9)∗x(i+1,j) . . .

+coef1(10)∗x(i+2,j)+coef1(11)∗x(i+3,j)+coef1(12)∗x(i+4,j) . . .

+coef1(13)∗x(i+5,j)+coef1(14)∗x(i+6,j)+coef1(15)∗x(i+7,j);
end

end

end

elseif win_num==17

if poly_order==2|poly_order==3
coef1=[-21 -6 7 18 27 34 39 42 43 42 39 34 27 18 7 -6 -21]/323;

for j=1:n1

for i=9:m1-8

y(i,j)=coef1(1)∗x(i-8,j)+coef1(2)∗x(i-7,j)+coef1(3)∗x(i-6,j) . . .

+coef1(4)∗x(i-5,j)+coef1(5)∗x(i-4,j) . . .

+coef1(6)∗x(i-3,j)+coef1(7)∗x(i-2,j)+coef1(8)∗x(i-1,j) . . .

+coef1(9)∗x(i,j)+coef1(10)∗x(i+1,j)+coef1(11)∗x(i+2,j) . . .

+coef1(14)∗x(i+5,j)+coef1(12)∗x(i+3,j)+coef1(13)∗x(i+4,j) . . .

+coef1(15)∗x(i+6,j)+coef1(16)∗x(i+7,j)+coef1(17)∗x(i+8,j);
end

end

else

coef1=[195 -195 -260 -117 135 415 660 825 883 825 660

415 135 -117 -260 -195 195]/4199;

for j=1:n1

for i=9:m1-8

y(i,j)=coef1(1)∗x(i-8,j)+coef1(2)∗x(i-7,j)+coef1(3)∗x(i-6,j) . . .

+coef1(4)∗x(i-5,j)+coef1(5)∗x(i-4,j)+coef1(6)∗x(i-3,j) . . .

+coef1(7)∗x(i-2,j)+coef1(8)∗x(i-1,j)+coef1(9)∗x(i,j)+ . . .

coef1(10)∗x(i+1,j)+coef1(11)∗x(i+2,j)+coef1(12)∗x(i+3,j) . . .

+coef1(13)∗x(i+4,j)+coef1(14)∗x(i+5,j) . . .

+coef1(15)∗x(i+6,j)+coef1(16)∗x(i+7,j)+coef1(17)∗x(i+8,j);
end

end

end

end
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Table 2.2. Weights of Savitsky--Golay Filter for Smoothing Based on a
Quadratic/Cubic Polynomial

Points 25 23 21 19 17 15 13 11 9 7

−12 1, 265
−11 −345 95
−10 −1, 122 −38 11, 628
−9 −1, 255 −95 −6, 460 340
−8 −915 −95 −13, 005 −255 195
−7 −255 −55 −11, 220 −420 −195 2, 145
−6 590 10 −3, 940 −290 −260 −2, 860 110
−5 1, 503 87 6, 378 18 −117 −2, 937 −198 18
−4 2, 385 165 17, 655 405 135 −165 −135 −45 15
−3 3, 155 235 28, 190 790 415 3, 755 110 −10 −55 5
−2 3, 750 290 36, 660 1, 110 660 7, 500 390 60 30 −30
−1 4, 125 325 42, 120 1, 320 825 10, 125 600 120 135 75

0 4, 253 −339 44, 003 1, 393 883 11, 063 677 143 179 131
1 4, 125 325 42, 120 1, 320 825 10, 125 600 120 135 75
2 3, 750 290 36, 660 1, 110 660 7, 500 390 60 30 −30
3 3, 155 235 28, 190 790 415 3, 755 110 −10 −55 5
4 2, 385 165 17, 655 405 135 −165 −135 −45 15
5 1, 503 87 6, 378 18 −117 −2, 937 −198 18
6 590 10 −3, 940 −290 −260 −2, 860 110
7 −255 −55 −11, 220 −420 −195 2, 145
8 −915 −95 −13, 005 −255 195
9 −1, 255 −95 −6, 460 340

10 −1, 122 −38 11, 628
11 −345 95
12 1, 265

30, 015 6, 555 260, 015 7, 429 4, 199 46, 189 2, 431 429 429 231

2.1.3. Kalman Filtering

Kalman filtering is a kind of optimal linear recursive estimation method. Its
operation speed is very high, and relatively small memory space is required
for computation. Kalman filtering has been extensively used in engineering,
especially in space technology. Recursive operation is the key feature of
the method. Here we will first introduce what recursive operation is before
discussing Kalman filtering in detail.

The basic idea of recursive operation is its efficient use of the results
obtained previously and also the newly acquired information so as to avoid
unnecessary repeated calculation. Let us first have a look at the basic
feature of the recursive operation through a simple example. The mean
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Figure 2.3. Smoothing results obtained by the Savitsky--Golay filter with different window
sizes. They are depicted by four plots with the original curve (solid line), the raw noisy signals
(cross line), and the smoothed curve (dashed line) with window size of 7 (a), 11 (b), 13 (c),
and 17 (d).

value is usually evaluated using the following formula

x̄ = �xi

n
(2.11)

where �xi denotes the sum of n observations, say xi (i = 1, . . . , n). When
one measures a new xi (i = n + 1), one has to calculate the mean again
using Equation (2.11). Hence, all the n observations obtained before should
be stored in the computer for future use. However, for recursive operation,
a new mean can be evaluated through the following formula without using
all the observations:

x̄ n+1 = x̄ n + xn+1 − x̄ n

n + 1
(2.12)

Comparing this formula with Equation (2.11), one can obviously see that
the recursive operation is faster and more efficient, and this is the attractive
feature of Kalman filtering.
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Kalman filter is based on a dynamic system model

x(k ) = F(k , k − 1)x(k − 1) + w(k ) (2.13)

and a measurement model

y (k ) = h(k )t x(k − 1) + e(k ) (2.14)

where x(k ), y (k ), and h(k ) denote the state vector, the measurement, and
the measurement function vector, respectively. The variable k represents
a measurement point that can be time, wavelength, or other. It should be
noted that F(k , k − 1) is the system transition matrix which represents how
the system transits from state (k − 1) to state k . Very often, it is an identity
matrix for smoothing purposes. w(k ) denotes the dynamic system noise,
and could be a zero vector approximately because the smoothing filter can
be regarded as a static model. e(k ) is the measurement noise, which can
be a stochastic variable with zero mean and constant variance obeying the
Gaussian distribution.

The core recursive state estimate update in Kalman filtering is given by
the following equation

x(k ) = x(k − 1) + g(k )[ y (k ) − h(k )t x(k − 1)] (2.15)

where the vector g(k ) is called Kalman gain. Comparing this equation with
Equation (2.12), one can easily see the similarity between the two. The
Kalman gain, g(k ), corresponds to 1/(n + 1) in Equation (2.12) and is
used to adjust the difference between the state vectors x(k ) and x(k − 1)
through the term of measurement difference, of [y (k ) − h(k )t x(k − 1)].
Through Equation (2.15), one can also see that the state estimate update
is just based on the newly measured y (k ) and the state vector x(k − 1)
obtained before. Equation (2.15) makes the efficient usage of recursive
operation possible.

The Kalman gain can be determined by the following formula

g(k ) = P(k − 1)h(k )[h(k )t P(k − 1)h(k ) + r (k )]−1 (2.16)

where r (k ) represents the variance of the measurement noise e(k ).
P(k − 1) is the covariance matrix of the system estimated from the (k − 1)
observations obtained before through

P(k ) = [I − g(k − 1)h(k )t ]P(k − 1)[I − g(k − 1)h(k )t ]
+ g(k − 1)r (k )g(k − 1)t (2.17)

where I is an identity matrix.
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From the discussion above, it can be seen that the Kalman gain vector
can be deduced through Equation (2.16) if the initial values of x(k ) and
P(k ), say, x(0) and P(0), are known. Then, the next x(k ) and P(k ) can
be computed through Equations (2.15) and (2.17) until convergence is
attained.

In summary, the procedure of Kalman filtering can be carried out via the
following steps:

1. Setting the initial values:

x(0) = 0, P(0) = γ 2I (2.18)

where γ 2 is an initial estimation of variance of measurement noises that
might be given by the following empirical formula

γ 2 = a
r (1)

[h(1)t h(1)]1/2
(2.19)

The factor a can influence the calculation accuracy and can have values
from 10 to 100. It is worthwhile to note that the initial value of P(0) is crucial
for the estimation. If its value is too small, it can result in bias estimation.
Yet, if its value is too high, it is difficult to have the computation converging
to the desired value.

2. Recursive calculation loop:

g(k ) = P(k − 1)h(k )[h(k )t P(k − 1)h(k ) + r (k )]−1

x(k ) = x(k − 1) + g(k )[ y (k ) − h(k )t x(k − 1)]
P(k ) = [I − g(k − 1)h(k )t ]P(k − 1)[I − g(k − 1)h(k )t ]

+ g(k − 1)r (k )g(k − 1)t

where r (k ) is the variance of measurement noises that can be determined
by the variance of real noise. This loop procedure is repeated until the
estimates become stable.

In Kalman filtering algorithm, the innovative series is very important and
might provide information about whether the results obtained are reliable.
The innovative series can be obtained by the following equation:

v (k ) = y (k ) − h(k )t x(k − 1) (2.20)

In fact, the series is the difference between the measurement and esti-
mation and can be regarded as a residual at the k point. The innovative
series should be a white noise with zero mean if the filtering model used
is correct. Otherwise, the results obtained are not reliable.
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Kalman filtering can be applied for filtering, smoothing, and prediction.
The most common application is known in multicomponent analysis.

2.1.4. Spline Smoothing

In addition to the smoothing methods based on digital filters as discussed
previously, the other widely used one in signal processing is spline func-
tions. The main advantage of spline functions is their differentiability in the
entire measurement domain.

Among various spline functions, the cubic spline function is the most
common one and is defined as follows

y = S(x ) = Ak (x − xk )3 + Bk (x − xk )2 + Ck (x − xk ) + Dk (2.21)

where Ak , Bk , Ck , and Dk are the spline coefficients at data point k . The
cubic spline function S(x ) or y for observations on the abscissa intervals
x1 < x2 < · · · < xn satisfies the following conditions:

1. The intervals are called knots. The knots may be identical with the
index points on the x axis (abscissa).

2. Within the knots k , S(x ) obeys the continuity constraint on the function
and on its twofold derivatives.

3. S(x ) is a cubic function in each subrange [xk , xk−1] for k = 1, . . . , n−1
considered.

4. Outside the range from x1 to xk , S(x ) is a straight line.

For a fixed interval between the data points xk and xk−1, the following
relationships are valid for the signal values and their derivatives:

yk = Dk

yk+1 = Ak (x − xk )3 + Bk (x − xk )2 + Ck (x − xk )

y ′
k = S ′(xk ) = Ck

y ′
k+1 = 3Ak (x − xk )2 + 2Bk (x − xk ) + Ck

y ′′
k = S ′′(xk ) = 2Bk

y ′′
k+1 = 6Ak (x − xk ) + 2Bk

The spline coefficients can be determined by a method that also
smoothes the data under study at the same time. The ordinate values ŷk

are calculated such that the differences of the observed values are positive



\c02" | 2004/1/28 | 9:47 | page 37 | #15

digital smoothing and filtering methods 37

proportional jumps rk in their third derivative at point xk :

rk = S ′′′(xk ) − S ′′′(xk+1) (2.22)

rk = pk (yk − ŷk ) (2.23)

The proportionality factors pk are determined by cross-validation. In con-
trast with polynomials, spline functions may be applied to approximate
and smooth any kind of curve shape. It should be mentioned that many
more coefficients must be estimated and stored in comparison with the
polynomial filters because different coefficients apply in each interval. A
disadvantage is valid for smoothing splines where the parameter estimates
are biased. Therefore, it is more difficult to describe the statistical properties
of spline functions than those of linear regression.

In MATLAB, there is a cubic spline function, named csaps.
csaps(X , Y , p, X ), which returns a smoothed version of the input data
(X , Y ) by cubic smoothing spline, and the result depends on the value of
the smoothing parameter p (from 0 to 1). For p = 0, the smoothing spline
corresponds to the least-squares straight-line fit to the data, while at the
other extreme, with p = 1, it is the ‘‘natural’’ or variational cubic spline inter-
polation. The transition region between these two extremes is usually only
a rather small range of values for p and its optimal value strongly depends
on the nature of the data. Figure 2.4 shows an example of smoothing by
a cubic spline smoother with different p values. From the plots as given
in the figure, one can see that the choice of the right value for parameter
p is crucial. The smoothing results are satisfactory if one makes a good
choice as depicted in Figure 2.4c. In order to make it easier for the readers
to understand the smoothing procedure using the cubic spline smoother,
a MATLAB source code is given in the following frame:

xi=[0:.05:1.5];

yi=cos(xi)

ybad=yi+.2∗(rand(size(xi))-.5);
figure(2)

subplot(221),plot(xi,yi,‘k:’,xi,ybad,‘kx’),grid on

title(‘Original curve: dashed line; Noisey data: cross’)

axis([0 1.5 0 1.2])

xlabel(‘Varibale (x)’)

ylabel(‘Signal, (y)’)

yy1=csaps(xi,ybad,.9981,xi);

subplot(222),plot(xi,yi,‘k:’,xi,ybad,‘kx’,xi,yy1,‘k’), grid on

title(‘Smoothed curve: solid line with p=9981’)

axis([0 1.5 0 1.2])
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xlabel(‘Varibale (x)’)

ylabel(‘Signal, (y)’)

yy2=csaps(xi,ybad,.9756,xi);

subplot(223),plot(xi,yi,‘k:’,xi,ybad,‘kx’,xi,yy2,‘k’), grid on

title(‘Smoothed curve: solid line with p=9756’)

axis([0 1.5 0 1.2])

xlabel(‘Varibale (x)’)

ylabel(‘Signal, (y)’)

yy3=csaps(xi,ybad,.7856,xi);

subplot(224),plot(xi,yi,‘k:’,xi,ybad,‘kx’,xi,yy3,‘k’), grid on

title(‘Smoothed curve: solid line with p=7856’)

axis([0 1.5 0 1.2])

xlabel(‘Varibale (x)’)

ylabel(‘Signal, (y)’)

Usually, it is difficult to choose the best value for the parameter p without
experimentation. If one has difficulty in doing this but has an idea of the
noise level in Y , the MATLAB command spaps(X , Y , tol) may help. Select
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Figure 2.4. Smoothing results obtained by a cubic spline smoother with different values of
the parameter p: (a) the original curve and the raw noisy signals; (b) the smoothed curve
with p = 0.9981; (c) the smoothed curve with p = 0.9756; (d) the smoothed curve with
p = 0.7856.
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a p value in such a way that

tol =
∑

i

(yi − ŷi )2 (2.24)

so as to produce the smoothest spline within an acceptable tolerance for
the data.

2.2. TRANSFORMATION METHODS OF ANALYTICAL SIGNALS

Transformation is a very useful technique in pretreatment of analytical
signals. Convolution, Hadamard, and Fourier transformation are just exam-
ples of this kind. In essence, wavelet analysis is also another kind of
transformation technique. In this section the methods of convolution,
Hadamard and Fourier transformation will be discussed in some detail.

2.2.1. Physical Meaning of the Convolution Algorithm

Convolution plays a very important role in statistics in treating analytical sig-
nals. An example from spectral measurement is now presented to illustrate
how convolution works [6].

Suppose that the real spectrum of a sample is the one given by f (x )
in the upper part of Figure 2.5. Now, a spectrometer with a slit is utilized
to assist the acquisition of the spectrum. If the slit is infinitely narrow, the
spectral signal recorded should be the same as that of f (x ). In practice,
any slit has certain width. Let the slit operation be expressed by function
h(x ) which is essential a triangular function (see the lower part of Fig. 2.5).
From the plot of h(x ), one can see how the slit function (triangular function)
affects the intensity distribution of the lightbeam with respect to the location.
The highest-intensity location appears at the central point of the slit. Thus,
when the light ray passes this slit, the spectrum obtained [as expressed by
the function g(x ) in Fig. 2.5] by the spectrophotometer becomes broader
than the real one f (x ). The whole procedure as described above is called
convolution in the field of signal processing.

From this plot (Fig. 2.5), it can be seen that the slit works some-
what like the Savitsky--Golay filter. The triangular function is essentially
a weight function. That is why the Savitsky--Golay filter is originally called
the polynomial convolution method. Since the spectrum g(x ) obtained from
the spectrophotometer is the convolution result of the original spectrum
f (x ) and the triangular function h(x ), the term g(x ) can be expressed
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Figure 2.5. Illustration of the physical meaning of convolution by the slit function.

mathematically by the following formula:

g[x (i )] =
m∑

i=−m

f (x ) · h[x (i ) − x ] (2.25)

This formula is the discrete expression of the convolution operation through
which one can see that N = 2m + 1 is the width of the slit. In Equation
(2.25), x (i ) represents the intensity of the light of the measured spectrum at
the central point. It should be noted that all the elements of the slit function
h(x ) outside the moving window have zero values. Thus, the continuous
formula of convolution can be expressed as follows:

g[x (i )] =
∫ +∞

−∞
f (x )h(x (i ) − x )dx (2.26)

Let x (i ) be represented by y . Then we have

g(y ) =
∫ +∞

−∞
f (x )h(y − x )dx (2.27)

Here g(y ) is usually called the convolution of functions f (y ) and h(y ) and
is denoted by f (y ) ∗ h(y ).
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It should be mentioned that the convolution operation can be easily ful-
filled by the Fourier transformation. Hence, the convolution operation is
essentially a kind of transformation.

2.2.2. Multichannel Advantage in Spectroscopy
and Hadamard Transformation

The major advantage of multichannel measurement in spectroscopic study
is illustrated by the following design in an weighting experiment [7]. Sup-
pose that there are four alloy samples to be weighed. The variance of
weighting is σ 2 if they are measured one by one in the usual practice. How-
ever, the weighting experiment can be designed in another way by putting
different combinations of the four samples on the two sides of a balance.
From these measurements, the following relationship can be established:



m1 = x1 + x2 + x3 + x4 + e1

m2 = x1 − x2 − x3 + x4 + e2

m3 = x1 − x2 + x3 − x4 + e3

m4 = x1 + x2 − x3 − x4 + e4

(2.28)

Here mi (i = 1, 2, 3, 4) denotes the weight on the left-hand side of the
balance. As for xi (i = 1, 2, 3, 4), it represents the weight of the alloy sample
of which the one with the minus sign means that it is placed on the left-
hand side of the balance and the one with the positive sign is on the right
hand side. From the preceding linear equations, one can easily obtain the
estimation of xi . For instance, the estimation of x1 is given by

�x1 = 1
4

(m1 + m2 + m3 + m4) = x1 + 1
4

∑
ei (2.29)

From this result, it can be seen that the error is only one-fourth that from the
usual practice, or in another words, the variance for this weighting design
is σ 2/16. This example illustrates that a smart design can improve the
accuracy of weighing significantly.

Let us elaborate the weighting experiment above in more detail from the
mathematical point of view. If the four samples are weighted one by one,
the result obtained can be expressed by the following equations (ignoring
the error term) 


m1

m2

m3

m4


 =




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1






x1

x2

x3

x4


 (2.30)
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or in matrix form as m = Ax,

x = A−1m = Am

where A is essentially an identity matrix. The calculation procedure is very
simple, but every sample is weighted only once. With the use of the smart
weighting procedure, the outcomes [Eq. (2.28)] can be expressed as




m1

m2

m3

m4


 =




1 1 1 1
1 −1 −1 1
1 −1 1 −1
1 1 −1 −1






x1

x2

x3

x4


 (2.31)

or m = Hx. Matrix H is known as the Hadamard matrix. Obviously, the
absolute value of every element, Hmn, in H is 1:

|Hmn| = 1 (2.32)

In this case, the inverse matrix of H is also very simple:

H−1 = 1
N

H (2.33)

The approach of the smart weighting design can be applied to spectral
analysis to improve its performance. In traditional spectral measurement,
the intensity of each wavelength is measured one at a time to obtain the
spectrum. Figure 2.6 depicts the operation of such a single-slit scanning
spectrometer. But if the intensities of N different wavelengths are recorded
simultaneously, the signal-to-noise ratio can be enhanced significantly.
According to the weighting design experiment above, one needs to take
only two values, say, +1 and 0. This can be realized easily in spectral
measurement. Here the zero value means that there is no light passing
through, while 1 means ‘‘Yes.’’ Suppose that one uses a rather wide slit

Source
Sample

Monochromator

Slit

A broadband Detector

Figure 2.6. Schematic diagram of a single-slit scanning spectrometer.
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compared to the wavelength under study and tries to cover some wave-
lengths. For instance, the light intensities of seven different wavelengths
ψj ( j = 1, 2, . . . , 7) are acquired at one time. The traditional measurement
method will take them one by one. Yet, we can also design a spectropho-
tometer following the preceding smart weighting design by taking several
selected wavelengths simultaneously. Let 1 × ψj denote the light ray that
can pass through the slit, and assume that 0 × ψj means that it cannot.
Then, for a measurement using the design in the series of 1001011, the
total light intensity detected is expressed as follows:

ψ = 1 × ψ1 + 0 × ψ2 + 1 × ψ3 + 1 × ψ4 + 0 × ψ5 + 1 × ψ6 + 1 × ψ7

= ψ1 + ψ4 + ψ6 + ψ7

Anyone who is clever enough to design seven independent combina-
tions of spectral measurements can easily obtain the seven individual ψj

correctly. One design of this kind is given in the following matrix:

S =




1 0 0 1 0 1 1
1 1 0 0 1 0 1
1 1 1 0 0 1 0
0 1 1 1 0 0 1
1 0 1 1 1 0 0
0 1 0 1 1 1 0
0 0 1 0 1 1 1




(2.34)

This is called the Sylvester matrix, and it can be derived from the Hadamard
matrix. The Sylvester matrix is obtained in the following way. First, set
the elements of the first row. Then the second row is finished by moving
the last element in the first row of the matrix to become the first element.
Afterward, move the remaining six elements sequentially to the right by
one position. The elements of the third and other rows are expressed
in the same way, based on the previous rows. This kind of measure-
ment, called the Hadamard coding procedure in spectral study, is utilized
for Hadamard transformation spectroscopy. A schematic diagram of the
Hadamard multichannel spectrometer is shown in Figure 2.7.

It should be mentioned that Hadamard transformation spectroscopy can
enhance the signal-to-noise ratio (SNR) by (N +1)/2N1/2 times. When the
value of N is large enough, the increase in SNR can reach N1/2/2 times [8].

This multichannel advantage in spectroscopic analysis by using Hada-
mard transformation as mentioned above is called the Fellgett advantage.
In fact, Hadamard transformation infrared spectroscopy has been found to
enhance SNR notably.
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Source
Sample

Monochromator

Window

Broadband detector
Mask

Figure 2.7. Schematic diagram of the Hadamard multichannel spectrometer.

2.2.3. Fourier Transformation

Fourier transformation is a widely used mathematical technique [9--12] for
converting a signal, f (t ), from the time domain into the frequency domain,
F (ν). This is because almost all the continuous signals can be expressed
by the periodic trigonometric functions, sine and cosine functions, in the
form of

f (t ) = a0 +
∞∑

n=1

an cos (nw0t ) + bn sin (nw0t ) (2.35)

where f (t ) is a function in the time domain and w0 = 2π f0 with f0 = 1/t and
a0 represents the so-called direct-current term, which can be deduced by
a mean value in a period (T ) of x (t ):

a0 = 1
T

∫ T

0
f (t )dt (2.36)

The other coefficients, an and bn (n = 1, 2, 3, . . . ), in this expression are
represented by the following expressions:

an = 2
T

∫ T

0
f (t ) cos (nw0t )dt (2.37a)

bn = 2
T

∫ T

0
f (t ) sin (nw0t )dt (n = 1, 2, 3, . . . ) (2.37b)

Fourier transformation is essentially a kind of frequency analysis, which
is quite similar to the procedure of splitting a lightbeam from a source into
different light rays at different wavelengths by a prism or grating.
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Let cos (2πnf0t ) and sin (2πnf0t ) be expressed in the following way:

cos (2πnf0t ) = e j2πnf0t + e−j2πnf0t

2
(2.38a)

sin (2πnf0t ) = e j2πnf0t − e−j2πnf0t

2j
(2.38b)

Then the Fourier series can be written as

f (t ) =
∞∑

n=−∞
Cne j2πnf0t (2.39)

Here Cn are the values taken with n as −∞, . . . , −1, 0, 1, 2, . . . , ∞,
respectively

Cn = 1
T

∫ T
2

− T
2

f (t )e−j2πnf0t dt (2.40)

For every n, Cn will essentially give the swing and phase of the homorous
wave with a frequency f = nf0.

The formal definition of Fourier transformation is given below. Let a
function f (t ) be in the time or space domain. Its expression of Fourier
transformation will be

f (f ) =
∫ ∞

−∞
f (t )e−j2π f0t dt (2.41)

The inverse Fourier transformation is defined as follows:

f (t ) =
∫ ∞

−∞
f (f )e j2π f df (2.42)

Thus, f (f ) can be converted back to f (t ) through the preceding formula.
This means that the function can be freely exchanged between the time or
space domains and the frequency domain through Eqs. (2.41) and (2.42):

f (t ) ⇔ f (f )

2.2.3.1. Discrete Fourier Transformation and
Spectral Multiplex Advantage

In general, we often use the discrete Fourier transformation to pretreat
chemical measurements. Suppose that the time-domain signal f (t ) is sam-
pled at N equally intervals. This is called the discrete Fourier transform
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(DFT):

f (n) =
n−1∑
k=0

f (k )e−j2πk (n/N ) (2.43)

For inverse transformation, we have

f (k ) = 1
N

N−1∑
n=0

f (n)j2πk (n/N ) (2.44)

It can be easily seen that if one can sample the signals by N equally spaced
intervals using a multichannel detector (see Fig. 2.8), then N data points
f (tk ) or f (k ) in the time or space domain, where k = 1, 2, . . . , N , can be
obtained. For every such data point acquired, one can get the correspond-
ing series of frequency domain amplitudes, say, f (fn) or f (n), with the help
of DFT. Therefore, the spectral multiplex advantage of Hadamard trans-
formation as discussed in the previous section also happens in Fourier
transformation. For the Hadamard transformation, we have m = Hx. In the
same way, the Fourier transformation matrix F can be employed to accom-
plish the spectral multiplex advantage: m = Fx. The elements Fmn in
matrix F can be expressed as Fmn = exp(2π jmn/N ) = cos(2πmn/N ) +
jsin(2πmn/N ) with j = √−1. It is easily seen that |Fmn| = 1. Letting N = 4,
we have 


m1

m2

m3

m4


 =




1 1 1 1
1 j −1 j
1 −1 1 −1
1 −j −1 j






x1

x2

x 3

x4


 (2.45)

It should be noted that only some channels of the spectral signals are
utilized in Hadamard transformation while all the spectral signals are con-
sidered in DFT (see Figs. 2.7 and 2.8 for comparison). In this way, SNR
can be enhanced by N1/2.

Source
Sample

Monochromator

Window

Multichannel
detector

Mask

Figure 2.8. Schematic diagram of a multichannel-detector-based spectrometer.
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Figure 2.9. Base function of Hadamard (left part) and Fourier transformation (right part).

Hadamard transformation and Fourier transformation differ from each
other in the base function. Hadamard transformation is based on the
Walsh function, in contrast to the sine and cosine functions in Fourier
transformation. This is illustrated in Figure 2.9.

Example 2.2. A signal in the time domain can be represented by a
combination of periodic sine and cosine functions. Usually, any time-
dependent or continuous signal can be considered as a combination of sine
and cosine functions. This explains why Fourier transformation has wide
application.

Figure 2.10 illustrates how Fourier transformation works. The plot
shown in Figure 2.10a is the sum of three trigonometric functions
(Fig. 2.10c) with two sine functions with the periods of 1π and 2π as
well as one cosine function with the period of 3π . Through applying
Fourier transformation to the plot, the dependence of the intensity on
frequency from the calculation is depicted in Figure 2.10b. It can be
seen from the figure that the three component functions are definitely
identified.
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Figure 2.10. Fourier transformation: the composite signal (a) contains two sine functions with
the periods of 1π and 2π and one cosine function with the period of 3π (b); the dependence
of intensity on frequency after Fourier transformation (c).

2.2.3.2. Fast Fourier Transformation

In this section we briefly describe how the fast Fourier transformation can
be used to carry out inverse Fourier transformation. For more detail, read-
ers can refer to Brigham’s treatise [11]. Here a simple case of N = 4 is
considered. Let us define w to be a complex number

w = e−2π j/4 (2.46)

Then, the expression of DFT can be written as

f (n) =
N−1∑
k=0

f (k )w nk (2.47)

The basic idea of fast Fourier transform (FFT) is to decompose this formula
so as to reduce the calculation burden. When N is equal to a power of 2,
that is, N = 2a where a is an integer, the computation is very simple. Now,
N = 22 = 4 is utilized as an example to illustrate the FFT decomposition
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procedure [18,19]. In this case, Equation (2.47) becomes

f (n) =
4−1∑
k=0

f0(k )w nk n = 0, 1, 2, 3 (2.48)

A slight change in the notation of f (k ) to f0(k ) is made here so as to indicate
the signal before Fourier transformation. This equation can be written as
follows: 



f (0) = f0(0)w 0 + f0(1)w 0 + f0(2)w 0 + f0(3)w 0

f (1) = f0(0)w 0 + f0(1)w 1 + f0(2)w 2 + f0(3)w 3

f (2) = f0(0)w 0 + f0(2)w 2 + f0(2)w 4 + f0(3)w 6

f (3) = f0(0)w 0 + f0(1)w 3 + f0(2)w 6 + f0(3)w 9

(2.49)

or 


f (0)
f (1)
f (2)
f (3)


 =




w 0 w 0 w 0 w 0

w 0 w 1 w 2 w 3

w 0 w 2 w 4 w 6

w 0 w 3 w 6 w 9






f0(0)
f0(1)
f0(2)
f0(3)


 (2.50)

In matrix form, we have

f (n) = Wnk f 0(k )

where

f (n) =




f (0)
f (1)
f (2)
f (3)


 ; Wnk =




w 0 w 0 w 0 w 0

w 0 w 1 w 2 w 3

w 0 w 2 w 4 w 6

w 0 w 3 w 6 w 9


 and f 0(k ) =




f0(0)
f0(1)
f0(2)
f0(3)




It should be noted that w nk = e−2π j (nk/4). Here the symbol ξ is used to
denote the remainder of the division of (kn) by 4. Then, only ξ is needed
to be considered in the following calculation. For nk = 6, we have

w 6 = e−j2π6/4 = e−j2π (4/4)e−j2π2/4 = e−( j2π/4)2 = w 2

and ξ = 2. Equation (2.50) can now be written as




f (0)
f (1)
f (2)
f (3)


 =




1 1 1 1
1 w 1 w 2 w 3

1 w 2 w 0 w 2

1 w 3 w 2 w 1






f0(0)
f0(1)
f0(2)
f0(3)


 (2.51)
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The matrix containing 1 and w ξ terms can be factorized into two matrices as


f (0)
f (2)
f (1)
f (3)


 =




1 w 0 0 0
1 w 2 0 0
0 0 1 w 2

0 0 1 w 3






1 0 w 0 0
0 1 0 w 0

1 0 w 2 0
0 1 0 w 2






f0(0)
f0(1)
f0(2)
f0(3)


 (2.52)

Attention should be paid to the interchange of f (1) and f (2) in the matrix
on the left-hand side of the equation. Computing f (n) via Equation (2.52)
requires four multiplication and eight addition operations of complex
numbers. In contrast, finding the value of the same elements through
Equation (2.50) requires 16 complex multiplications and 12 complex addi-
tions. Hence, the total number of mathematical operations is reduced
significantly with the use of Equation (2.52), instead of Equation (2.50).
It is obvious that the reduction in operations becomes more dramatic when
N is much greater than 4.

In MATLAB software, the fast Fourier transformation (FFT) has its spe-
cific statement. One can simply use one command to obtain the FFT
result:

x = fft (y )

This makes Fourier transformation very simple using MATLAB. Here, fft (x)
is the discrete Fourier transformation (DFT) of vector x. If the length of x
is a power of 2, a fast radix-2 fast Fourier transform algorithm is utilized.
If not, a slower non-power-of 2 algorithm is employed. For matrices, the
FFT operation is applied to each column separately.

2.2.3.3. Fourier Transformation as Applied to
Smooth Analytical Signals

The major feature of Fourier transformation is that it transforms analytical
signals from the time or space domain into the frequency domain. So it is
not strange that it can be applied to smooth noisy analytical signals. The
reasoning behind is quite simple. In chemical study, noises are usually
generated in instrumental measurement and are called white noises that
obey the normal distribution of zero mean and equal variance. In general,
noises are of high frequency while analytical signals are of low frequency
in the time domain. Hence, after transforming the analytical signals into
the frequency domain, if one discards the high-frequency part but keeps
the low-frequency part, it is possible to eliminate the white noises present
in the signals. An example is provided here to illustrate the treatment.

Figure 2.11 gives an example of showing how to use Fourier transfor-
mation to smooth a noisy signal. Plot (a) shows the original noisy signal.
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Figure 2.11. Illustration of how Fourier transformation can be applied to smooth an analytical
signal: the original noisy signal (a); the dependence of intensity on frequency after Fourier
transformation (b); the recovery signal with the cutoff threshold frequency of 10 Hz (c); the
recovery signal with a cutoff threshold frequency of 20 Hz (d).

The intensity distribution in the frequency range of 0--40 Hz after Fourier
transformation is shown in plot (b). From this plot, it can be seen that the
main part of the signal lies in the low-frequency part. The recovery signal
obtained with the threshold of cutoff frequency of ∼10 Hz is shown in plot
(c). It can be seen that the recovery signal by inverse Fourier transforma-
tion is quite smooth with a slight distortion. Plot (d) shows the recovery
signal with a cutoff threshold frequency of ∼20 Hz. From the plot, we can
see that the recovery signal seems to be better than the one shown in plot
(c). Thus, the threshold of the cutoff frequency is an important parameter
for smoothing in Fourier transformation. In order to make it easier for the
readers to understand the smoothing procedure by Fourier transformation,
a MATLAB source code is given as follows:

>%demonstration of FT applied to smoothing
>x1=[0.001:.001:1.024];
>for k=101:1024
> x1b(k)=exp(-(k-100)/176)∗sin(2∗pi∗(k-100)/160);
>end
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>x2=[x1b];
>y=fft(x2);
>subplot(221),plot(x1,x2);grid on
>xlabel(‘Time (s)’);ylabel(‘amplitude’)
>axis([0 1.024 -1 1])
>freq=(0:160)/(1024∗.001);
>subplot(222),plot(freq, abs(y(1:161)),‘.’)
>xlabel(‘Frequency (Hz)’);ylabel(‘amplitude’)
>xx1=ifft(y(1:18),1024);
>subplot(223),plot(real(xx1))
>figure(2)
>x2=x2+randn(size(x2))∗.1;
>yy=fft(x2);
>subplot(221),plot(x1,x2);grid on
>xlabel(‘Time(s)’);ylabel(‘amplitude’)
>axis([0 1.024 -1 1.4])
>freq=(0:40)/(1024∗.001);
>subplot(222),plot(freq, abs(y(1:41)),‘.’)
>xlabel(‘Frequency (Hz)’);ylabel(‘amplitude’)
>axis([0 40/(1024∗.001) 0 100])
>xx=ifft(yy(1:10),1024);
>subplot(223),plot(x1,real(xx)∗2);grid on
>axis([0 1.024 -1 1.4])
>xx=ifft(yy(1:20),1024);
>subplot(224),plot(x1,real(xx)∗2);grid on
>axis([0 1.024 -1 1.4])

2.2.3.4. Fourier Transformation as Applied to
Convolution and Deconvolution

Convolution and deconvolution calculations are very important in analytical
chemistry, especially in electroanalytical chemistry. Application of Fourier
transformation for convolution and deconvolution is based mainly on the
following convolution law of

f (t ) ∗ h(t ) ⇔ F (ν) · H (ν) (2.53a)

where F (ν) and H (ν) correspond to the Fourier transformation of f (t )
and h(t ).

According to the convolution law, we can first apply Fourier transforma-
tion to the functions f (t ) and h(t ) to obtain the corresponding functions F (ν)
and H (ν) in the frequency domain, and then carry out convolution calcula-
tions on functions F (ν) and H (ν). Finally, inverse Fourier transformation is
employed to obtain the broadened function g(t ) (convolution calculation).
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The full procedure is listed as follows:

f (t )
FT−−−−−→ F (ν)

h(t )
FT−−−−−→ H (ν)

F (ν) · H (ν) = G(ν)

G(ν)
inverse FT−−−−−−→ g(t )

(2.53b)

Conversely, since F (ν) = G(ν)/H (ν), the following procedure is utilized to
obtain the original signal f (t ) (deconvolution calculation):

g(t )
FT−−−−−→ G(ν)

h(t )
FT−−−−−→ H (ν)

F (ν) = G(ν)
H (ν)

F (ν)
inverse FT−−−−−−→ f (t )

(2.54)

This algorithm is also called inverse filtering. It should be mentioned that
the noise disturbance is completely ignored here. In fact, the measured
signal is affected not only by the broadening function g(t ) arising from the
width of the slit of a device but also by the measurement noise n(t ) as

g(t ) = f (t ) ∗ h(t ) + n(t ) (2.55)

Thus, the Fourier transformation G(ν) of the measured signal g(t ) should
be expressed as follows after considering the additive property of Fourier
transformation

G(ν) = F (ν)H (ν) + N (ν) (2.56)

G(ν)
H (ν)

= F (ν) + N (ν)
H (ν)

(2.57)

or

F̂ (ν) = F (ν) + N (ν)
H (ν)

(2.58)

Here F (ν) comes from Fourier transformation of an unknown original
signal function f (t ), while F̂ (u) is its estimation from deconvolution cal-
culation. One must also consider the influence of noise when performing
deconvolution using Fourier transformation.
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2.3. NUMERICAL DIFFERENTIATION

Numerical differentiation is a common tool used in analytical chemistry for
processing one-dimensional signals because part of the useful information
is often ‘‘hidden’’ in the usual measurement plot. The combined chromato-
graphic response, for instance, of two poorly resolved components may not
indicate the presence of two coeluting components. The chromatographic
profile may appear to be a unimodel and may show no ‘‘shoulders’’ at all.
Such ‘‘hidden’’ features can be enhanced by taking the derivative of a sig-
nal. A derivative is sensitive to the subtle features of its distribution and is
therefore effective in detecting important yet subtle details such as shoul-
ders. In this section, we discuss some common methods used for obtaining
derivatives of signals.

2.3.1. Simple Difference Method

The direct-difference method is the simplest numerical differentiation
method for analytical signals. For a discrete spectrum xi (i = 1, . . . , n),
suppose that wi (i = 1, . . . , n) are its sampling wavelengths, the direct-
difference method can be expressed as follows:

yi = xi+1 − xi

wi+1 − wi
(2.59)

Here yi (i = 1, . . . , n − 1) represent the series of derivatives of spectrum
xi . If the sampling wavelength or time intervals are equal, this equation can
be rewritten as

yi = xi+1 − xi (i = 1, . . . , n − 1) (2.60)

In MATLAB, there is such a function named ‘‘diff’’ for computing derivative
spectrum just according to the above equation.

The direct-difference method is simple, but its drawback is also obvious.
First, the number of points in the derivative spectrum as deduced in this
way is less than one compared to the original discrete spectrum. This leads
to the whole derivative spectrum moving half a point forward compared
to the original one. Thus, the maximum and/or minimum obtained by the
direct-difference method is not exactly the one of zero gradient. Hence, this
method is good or acceptable for spectrum of high resolution but not for that
of low resolution if one wants to obtain the exact maximum and/or minimum
point from the original spectrum. Figure 2.12 shows the results obtained
from the ‘‘diff’’ function of MATLAB for both high- and low-resolution spectra.
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Figure 2.12. The high- (a) and low- (c) resolution spectrum and their derivative spectra (b,d)
as obtained by the MATLAB ‘‘diff" function.

2.3.2. Moving-Window Polynomial Least-Squares
Fitting Method

In Section 2.1.2, we discussed the Savitsky--Golay filter for smoothing,
which is essentially a method based on moving-window polynomial least-
squares fitting. The filter can also be used for numerical differentiation. As
it is based on polynomial fitting, one can directly perform derivation on the
polynomial and then obtain the weighting expression for the central point
in the moving window to give the derivative spectrum. It is worth noting
that the derivative spectrum deduced by this method is better than that
obtained by the direct-difference method because there is no point shift in
the direct-difference method does.

Every point in a spectrum to be differentiated can be expressed by a
polynomial as

x i+j
j = a0 + a1j + a2j2 + · · · + ak j k

(i = 1, . . . , n)( j = −m, . . . , 0, . . . , m) (2.61)
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Here the subscripts and superscripts have the same meanings as those in
Section 2.1.2. One can directly do derivation on the polynomial. The first
derivative is given by

d (x i+j
j )

d ( j )
= a1 + 2a2j + · · · + kak j k−1 (2.62)

With j = 0, this equation becomes

d (x i+j
j )

d ( j )|j=0
= a1 (2.63)

This means that for the central point ( j = 0) in the moving window, the
weights for the derivative spectrum depends only on the coefficient a1.

For the second derivative, we have

d 2(x i+j
j )

d ( j )
= 2a2j + · · · + (k − 1)kak j k−2 (2.64)

With j = 0, this becomes

d 2(x i+j
j )

d ( j )|j=0
= 2a2 (2.65)

In this way, one can easily obtain the expression of the (k − 1)-order
derivative of the polynomial as

d k (x i+j
j )

d ( j )|j=0
= k !ak (2.66)

Using this expression, we can also find the weights for the derivative spec-
trum of any order if we know ai (i = 1, . . . , k ). In fact, we can easily
determine ai (i = 1, . . . , k ) because of the relationship

a = (Mt M)Mt x (2.67)

or 


a0

a1
...
...

ak




= (Mt M)−1Mt x (2.68)

where M and x have the same meanings as those in Section 2.1.2
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In this way, Savitsky and Golay collected ai (i = 1, . . . , k ) with dif-
ferent orders of derivative and with different window sizes in their tables
(see Tables 2.3--Table 2.6) for convenience. For instance, we can find
the second-derivative spectrum through the use of a window size of
N = 2m + 1 = 9 and polynomial of fourth or fifth orders through the
following expression (see Table 2.5):

x ′′i
0 = ( − 126x i−4

−4 + 371x i−3
−3 + 151x i−2

−2 − 211x i−1
−1 − 370x i

0 − 211x i+1
1

+ 151x i+2
2 + 371x i+3

3 − 126x i+4
4 )

2.4. DATA COMPRESSION

Rapid development in computer technology leads to numerous electronic
spectral libraries and databases such as digitized IR, NMR, and mass spec-
tra available in the market. In order to identify the spectrum of an unknown
compound from a reference library, data searching is required. Thus, fast
and highly accurate library search algorithms are desirable. Before car-
rying out any search, the spectral library must be constructed first from
a set of reference spectra together with additional information such as
structure, name, connection data, and molecular mass of each individ-
ual compound. In order to reduce the storage space of the spectral data,
different compression techniques have been developed.

Generally speaking, the goal of data compression is to represent an
information source (e.g., a data file, a speech signal, an image, or a video
signal) as accurately as possible using the lowest number of bits. Although
many methods have been developed for data compression, most of them
are used for compression of images and acoustic signals. Only few of these
methods have been adopted in compression of chemical signals.

The principles of data compression methods can be classified into trans-
formation, projection, information encoding, vector quantization, functional
approximation, and feature extraction. In this section, data compression
methods that are commonly used in chemistry are briefly discussed, includ-
ing B-spline curve-fitting methods [13--15], Fourier transformation [16--19],
and factor analysis [20--22].

2.4.1. Data Compression Based on B-Spline Curve Fitting

The problem of curve fitting is defined as representing a signal by a linear
combination of a group of functions. In the case of B-spline curve fitting,
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Table 2.5. Weights of Savitsky--Golay Filter for Second Derivative Based
on a Quadratic/Cubic Polynomial

Points 25 23 21 19 17 15 13 11 9 7 5

−12 92
−11 69 77
−10 48 56 190
−9 29 37 133 51
−8 12 20 82 34 40
−7 −3 5 37 19 25 91
−6 −16 −8 −2 6 12 52 22
−5 −27 −19 −35 −5 1 19 11 15
−4 −36 −28 −62 −14 −8 −8 2 6 28
−3 −43 −35 −83 −21 −15 −29 −5 −1 7 5
−2 −48 −40 −98 −26 −20 −44 −10 −6 −8 0 2
−1 −51 −43 −107 −29 −23 −53 −13 −9 −17 −3 −1

0 −52 −44 −110 −30 −24 −56 −14 −10 −20 −4 −2
1 −51 −43 −107 −29 −23 −53 −13 −9 −17 −3 −1
2 −48 −40 −98 −26 −20 −44 −10 −6 −8 0 2
3 −43 −35 −83 −21 −15 −29 −5 −1 7 5
4 −36 −28 −62 −14 −8 −8 2 6 28
5 −27 −19 −35 −5 1 19 11 15
6 −16 −8 −2 6 12 52 22
7 −3 5 37 19 25 91
8 12 20 82 34 40
9 29 37 133 51

10 48 56 190
11 69 77
12 92

26,910 17,710 33,649 6,783 3,876 6,188 1,001 429 462 42 7

for example, a signal with m data points, Pi (1 · · · m), can be represented
by a group of B-spline functions

P̂ (u) =
n∑

j=1

cj Nj ,k (u) (2.69)

where Nj ,k (u) represents a k -order B-spline function, cj is the coefficient
of the B-spline function, and u is called a knot vector. Therefore, the signal
Pi can be represented by n functions and n coefficients.

It is clear that the objective is to find the coefficients so that

m∑
i=1

(Pi −P̂ i )2 is minimum (2.70)
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Such an equation is generally solved using the least-squares method. How-
ever, the parameter k must be correctly used because it is closely related
to the shape of the signal and it affects the computational speed and the
compression ratio. Furthermore, the knot vector is also very important for
speeding up the calculation and obtaining better results.

As a development of the B-spline curve-fitting method [15], the B-spline
with an order different from that in Equation (2.69) can be replaced by a
group of functions with a dilation parameter and a translation parameter:

Na,b(t ) = N
(

t − b
a

)
(2.71)

Equation (2.69) then becomes

P̂ (u) =
n∑

j=1

cj Naj ,bj (u) (2.72)

With this modification, an analytical signal can be represented by n triplets
(ai , bi , ci ), which can be obtained by optimization methods, such as genetic
algorithms.

For example, curve (a) in Figure 2.13 is a simulated chromatogram
comprising four Gaussian peaks with 512 data points. Curve (b) is recon-
structed from the compression data as generated from 10 groups of the
parameter set (ai , bi , ci ) for a second-order B-spline function. The relative
root mean square error per point as estimated by the following equation is

Figure 2.13. A simulated chromatogram (a) and its profile reconstructed from the com-
pressed data (b).
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Figure 2.14. An experimental chromatogram (a) and the reconstructed profile using
40 elementary functions (b).

only 0.0012:

E =
(∑

i |Pi −P̂ i |2
)1/2

m
(∑

i |Pi |2
)1/2 (2.73)

Curves (a) in Figures 2.14 and 2.15 are two experimental chromatograms
with 900 and 2384 data points, respectively, while curves (b) are profiles

Figure 2.15. An experimental chromatogram (a) and the reconstructed profile using
20 elementary functions (b).
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reconstructed by 40 and 20 second-order B-spline functions. The compres-
sion ratio is as high as 7.5 : 1 and 39.7 : 1, respectively. From Figure 2.15,
it can also be seen that the noise was filtered out during reconstruc-
tion. Therefore, such an approach can be used to smooth and compress
analytical signals at the same time.

2.4.2. Data Compression Based on Fourier Transformation

As mentioned in Section 2.2, the major feature of Fourier transformation is
its transformation of the analytical signals from the time or space domain
into the frequency domain. Thus it can also be used for data compression.
The principle of compressing the analytical signal by FT is quite simple.
It is mainly because the spectra or analytical signals are generally of lower
frequency in nature. Consequently, if one keeps only the low-frequency
part after transforming the signal into the frequency domain, the signals
can be compressed. An example is given here for illustration.

Figure 2.16 gives illustrates how the Fourier transformation is used to
compress an infrared spectrum. Curve (a) gives the original simulated
infrared spectrum with 3401 data points, while curve (b) shows the result
of Fourier transformation on the spectrum from 1 to 1000 frequency points.
If only 80 low-frequency points are retained, the recovery signal thus
obtained is given as curve (c). It can be seen that the signal reconstructed
by using inverse Fourier transformation is quite similar to the original one
with a slight distortion. Curve (d) gives the recovery signal with a cutoff
threshold frequency of 300 low-frequency points with more data retained
compared to the former one following Fourier transformation. It should be
noted that the recovery spectrum (Fig. 2.16d) is almost the same as the
original one. In this way, an infrared spectrum with 3401 data points can be
represented by a data vector containing only 300 low-frequency points with
minimal loss of information of the original spectrum. Thus, we can just store
these 300 points instead of all the 3401 data of the original spectrum to save
the memory space in computer. The procedure of data compression by
Fourier transformation is quite similar to that of smoothing the analytical sig-
nal. Hence, no source MATLAB code for data compression is provided here.

2.4.3. Data Compression Based on
Principal-Component Analysis

In general, principal-component analysis (PCA) is utilized in chemometrics
to solve mainly the problem of calibration and resolution. PCA is used to



\c02" | 2004/1/28 | 9:47 | page 65 | #43

data compression 65

1000 2000 3000 4000
0

0.2

0.4

0.6

0.8

1

Wavenumber

U
ni

t 
T

ra
ns

m
it.

0 500 1000
0

1000

2000

3000

Frequency (Hz)

am
pl

itu
de

1000 2000 3000 4000

0.5

0.6

0.7

0.8

0.9

1

Wavenumber

U
ni

t 
T

ra
ns

m
it.

1000 2000 3000 4000

0.5

0.6

0.7

0.8

0.9

1

Wavenumber

U
ni

t 
T

ra
ns

m
it.

(a) (b) 

(c) (d) 

Figure 2.16. Illustration of how the Fourier transformation can be applied to compress a
simulated infrared spectrum. The original simulated IR spectrum (a), the dependence of
intensity on frequency after Fourier transformation (b), the recovery signal with the cutoff
threshold frequency of 80 low-frequency points (c), and the recovery signal with the cutoff
threshold frequency of 300 frequency points (d).

decompose the matrix of interest into several independent and orthogonal
principal components. The mathematical formula of principal-component
analysis can be expressed as follows.

X = U�Vt = UPt =
A∑

i=1

ui pt
i (2.74)

where U�Vt is the singular value decomposition of the matrix X (see
Chapter 5 for more detail). The ui and vi values (i = 1, 2, . . . , A) are the
so-called score and loading vectors, respectively, and are orthogonal with
each other. The diagonal matrix � collects the singular values, which are
equal to the square root of the variance (eigenvalues of the covariance
matrix Xt X, i.e., λi terms arranged in decreasing order) distributing on
every orthogonal principal component axis.

It should be noted that the score and loading vectors are orthogonal to
each other and their importance is decided by their corresponding eigen-
values (variance). If datasets of spectra or chromatograms in the matrix
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Figure 2.17. Chromatographic fingerprints of 19 Ginkgo biloba samples.

form can be represented by a few loading (or score) vectors, data com-
pression by PCA is possible. A simple example is given here to illustrate
the data compression procedure of PCA.

Figure 2.17 shows 19 chromatographic fingerprints of Ginkgo biloba
from different pharmaceutical companies obtained by using high-
performance liquid chromatography (HPLC). To store these fingerprints,
it seems that all of them have to be included. Could we use PCA to help
us to save the memory space of our computer? The answer is ‘‘Yes.’’ Let
us see how this can be achieved.

The procedure of PCA data compression can be carried out through the
following steps:

1. Decompose the data matrix (or dataset) of the analytical signal by
PCA to the singular value decomposition [Eq. (2.74)].

2. Find the number of principal components to be retained for recon-
structing the original signal later.

3. Store the desirable number of loadings of the largest eigenvalue and
the corresponding scores.
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Figure 2.18. Illustration of how PCA can be applied for data compression. From top to bottom:
(a) the reconstructed profile of one chromatographic fingerprint by PCA with the first two
loadings; (b) the reconstructed profile of one chromatographic fingerprint by PCA with the
first three loadings; (c) the reconstructed profile of one chromatographic fingerprint by PCA
with the first four loadings; (d) the reconstructed profile of one chromatographic fingerprint by
PCA with the first five loadings. Solid blue line---the original fingerprint; dotted red line---the
reconstruction fingerprint by PCA.

From this procedure, it can be easily seen that only a few principal load-
ings and scores are needed to be archived after the PCA treatment. For
instance, the variance of the first four principal loadings accounts for
98.32% of the total variance of the 19 samples. Thus, the data to be
stored will be the first four principal loadings and the corresponding scores.
In comparison to the original dataset, the space for storing the principal
loadings and scores for reconstruction is significantly reduced.

Figure 2.18 illustrates the quality of the chromatographic profiles
obtained by reconstructing the original analytical signals by different
amount of data derived from the principal-component analysis. From these
plots, one can see that the chromatographic profile reconstructed by four
principal components is good enough because the recovery fingerprint
(dotted line) is almost the same as the original one (solid line).

It is worth noting that a new mathematical technique called wavelet
transform (WT) has been proposed for signal processing in various fields
of analytical chemistry owing to its efficiency and speed in data treatment
since 1989 [23--25]. Data compression with the use of WT will be discussed
in detail in Chapter 5 in this book.
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CHAPTER

3

TWO-DIMENSIONAL SIGNAL PROCESSING
TECHNIQUES IN CHEMISTRY

3.1. GENERAL FEATURES OF TWO-DIMENSIONAL DATA

In recent years, numerous ‘‘hyphenated instrument’’ technologies have
appeared on the market, such as high-performance liquid chromatography
with diode array detection (HPLC-DAD), gas chromatography with mass
spectroscopic detection (GC-MS), gas chromatography with infrared spec-
troscopic detection (GC-IR), high-performance liquid chromatography with
mass spectroscopic detection (HPLC-MS), and capillary electrophoresis
with diode array detection (CE-DAD). In general, the data produced by
the hyphenated instruments are matrices where every row is an object
(spectrum) and every column is a variable [the chromatogram at a given
wavelength, wavenumber, or m/z (mass/charge) unit] as illustrated in
Figure 3.1.

The data obtained by such hyphenated instrumentation in chemistry is
generally called two-dimensional or two-way data and have the following
features:

1. The two-dimensional data contain both information of chromatogram
and spectra. When a sample is measured by the hyphenated instrument,
the data collected can always be arranged as a matrix, say, X, where
every row is an object (spectrum) and every column is a variable (the
chromatogram at a given wavelength, wavenumber, or m/z unit). Accord-
ing to the Lambert--Beer law or similar rules, the matrix can be expressed
by the product of two matrices as follows:

X = CSt =
A∑

k=1

ck st
k (3.1)

here A is the number of absorbing components coexisting in the system,
while the ci and sk (k = 1, 2, . . . , A) values are pure concentration profiles

69

Chemometrics: From Basics To Wavelet Transform. Foo-Tim Chau, Yi-Zeng
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Figure 3.1. Illustration of two-dimensional data from the hyphenated instrument.

and spectra, respectively. The data of Equation (3.1) are called bilinear
two-way data.

2. The feature of the noise pattern of the two-dimensional data is quite
different from that of the one-dimensional data. It should be noted that
the two-dimensional (2D) data are contributed from a combination of chro-
matographic (e.g., LC, GC, HPLC) and a multichannel detectors (e.g., UV,
IR, MS). Within a given time interval, a complete spectrum within a specific
wavelength range is acquired. Consequently, random errors that occur dur-
ing chromatographic development will influence the corresponding spectra.
Apart from these unavoidable correlated fluctuations, the data will also be
contaminated with spurious detector noise, which is sometime correlated
between neighboring channels. Moreover, noise that is proportional to the
size of the signal is more common than purely additive noise. As a result,
the overall noise present in the real data collected from a ‘‘spectrochro-
matograph’’ will be correlated and, more importantly, the noise should also
be heteroscedastic. Thus, pretreatment of 2D data becomes more difficult.

3. The 2D data matrix is usually very large. The 2D matrix can reach
capacities of>40 megabytes. Thus, this is really a new challenge in modern
analytical chemistry.

In this chapter, we will discuss some basic methods dealing with the
two-dimensional data from the so-called hyphenated instruments.

3.2. SOME BASIC CONCEPTS FOR TWO-DIMENSIONAL DATA
FROM HYPHENATED INSTRUMENTATION

Before discussing the details of the methods involved, some basic concepts
of 2D data from hyphenated instrumentation are mentioned here, to help
readers understand these methods.
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3.2.1. Chemical Rank and Principal-Component Analysis (PCA)

During chromatographic elution, signals arise and vanish as the chemical
constituents appear and disappear at the detector. The variations of the
chemical constituents gives rise to corresponding changes in the rank of
the two-way data matrix. Thus, rank of the submatrix within a retention-
time interval in the raw data matrix is equal to the number of chemical
species eluting out simultaneously in the region. This provides a sound
mathematical background for solving the problem. Without correct estima-
tion of the number of chemical components (chemical rank) in the system,
correct resolution seems to be impossible. However, with measurement
errors present in data acquired and other pitfalls in real chemical measure-
ments, correct chemical rank in the two-way data is not trivial at all. Thus,
pretreatment of the two-way data and the methodologies for estimating the
chemical rankmap sometimes become crucial.

If there were no measurement noises and other pitfalls in measure-
ments, the mathematical rank (the number of independent variables and/or
objects in the two-way data) and chemical rank (the number of chemical
components in the unknown mixtures) should be the same. Thus, deter-
mination of the mathematical rank of a noise-free matrix is trivial. A simple
way is to reduce the matrix to the row-echelon form by means of Gaussian
elimination and account the number of nonzero rows. However, determi-
nation of the chemical rank of a measurement data matrix is a very difficult
task because of (1) the presence of measurement noise and their nonas-
sumed distributions, (2) heteroscedasticity of the noise, (3) background
and baseline shift arising from the instruments, and (4) collinearity in the
measurement data. Thus, in order to avoid these pitfalls, pretreatment of
two-way data and local factor analysis becomes very important.

In general, principal-component analysis (or factor analysis) is used in
chemometrics to solve the problem of estimating chemical rank in two-way
data because it can be used to decompose the matrix into several indepen-
dent and orthogonal principal components. The number of independent
and orthogonal principal components corresponds to the number of the
chemical species in the mixture. The mathematical formula of principal
component analysis can be expressed as follows:

X = U�Vt = UPt =
A∑

i=1

ui pt
i

Here U�Vt represents singular value decomposition of the matrix X (see
Chapter 5 for more detail), while the ui and vi (i = 1, 2, . . . , A) terms are
the so-called score and loading vectors, which are orthogonal with each
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other. The diagonal matrix � collects the singular values, which are equal
to the square root of the variance (eigenvalues of the covariance matrix
Xt X, i.e., λi terms arranged in nonincreasing order) distributed on the every
orthogonal principal component axis. Usually, two-way data with measure-
ment noises that are not analyzed by factor analysis can be expressed in
the following formula

X + E = CSt + E = U�Vt + E′ = UPt + E′ (3.2)

or in matrix form as




x11 x12 · · · x1N

· · · · · · · · · · · ·
· · · · · · · · · · · ·
· · · · · · · · · xMN


+




e11 e12 · · · e1N

· · · · · · · · · · · ·
· · · · · · · · · · · ·
· · · · · · · · · · eMN




=




u11 · · · u1A

u21 · · · · · ·
· · · · · · · · ·
uM1 · · · uMA


 ·


p11 · · · · · · p1N

· · · · · · · · · · · ·
pA1 · · · · · · pAN




+




u1,A+1 · · · u1N

u2,A+1 · · · · · ·
· · · · · · · · ·

uM ,A+1 · · · uMN




pA+1,1 · · · · · · pA+1,N

· · · · · · · · · · · ·
pM ,1 · · · · · · pMN


 (3.3)

=




u11 · · · u1A

u21 · · · · · ·
· · · · · · · · ·
uM1 · · · uMA


 ·


p11 · · · · · · p1N

· · · · · · · · · · · ·
pA1 · · · · · · pAN




+




e′
11 · · · · · · e′

1N
e′

21 · · · · · · · · ·
· · · · · · · · · · · ·
e′

M1 · · · · · · e′
MN




In Equation (3.2) the matrix E is the measurement noise with the same
size as the matrix X and E′ is the error matrix, all of which are collectively
called model residuals. If the measurement noise is really a white noise,
which is supposed to be homoscedastic (i.e., with constant variance σ 2)
white noise (uncorrelated), then E and E′ are almost the same. They will
be orthogonal with each other, and also orthogonal with ci and si (i =
1, 2, . . . , A) values and ui and pi (i = 1, 2, . . . , A) values. As assumed, the



\c03" | 2004/1/28 | 9:48 | page 73 | #5

some basic concepts for two-dimensional data 73

following relationship holds:

λ̃i = λi

(N − α + 1)(M − α + 1)
= kσ 2

[α = A + 1, . . . , min(N , M )]
(3.4)

Therefore, the estimation of the chemical rank can be conducted by com-
paring the variances between the factors, at which point the variance will
equal or be almost equal to a constant (most methods in statistics are based
on this comparison). Then, this point can be considered as noise threshold
or, by inspecting the pattern of the scores or loadings, the one with the noisy
pattern can be regarded as noise. The error theory of principal-component
analysis based on the assumption has been thoroughly discussed in the
classic book of Malinowski [1]. In some cases, in which the noise behavior is
quite closed to the assumed pattern, the chemical rank can be reasonably
deduced from the statistical methods discussed in Malinowski’s book.

Example 3.1. Figure 3.2 gives a 2D synthetic chromatogram based on
the data matrix of three chemical components with some white noises.
The spectra and the corresponding chromatograms of these components
are shown in Figure 3.3. The results of the factor analysis are shown in
Table 3.1.

From the plot as shown in Figure 3.2, the chromatographic profile seems
to come from just one component because it seems to have only one
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Figure 3.2. Plot of the synthetic 2D data matrix of three chemical components with white
noises (see Fig. 3.3 for details).
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Figure 3.3. The chromatograms and corresponding spectra of the chemical components
of the synthetic system shown in Figure 3.2: (a) chromatograms of the three components;
(b) spectra of the three components; (c) parameters used for synthesizing the spectra and
chromatograms of the components.

peak without any shoulder. However, from the results obtained (Table 3.1),
one can see that the first three eigenvalues are significantly larger than
the remaining seven eigenvalues, which have relatively very small values.
Thus, one can easily conclude that the chromatographic profile as depicted
in Figure 3.2 comes from a peak cluster with three components. This exam-
ple shows that principal-component analysis is really an efficient method

Table 3.1. Eigenvalues of the Simulated
Three-Component System

Number Eigenvalues

1 69.2683
2 8.1592
3 0.9872
4 0.0019
5 0.0019
6 0.0018
7 0.0017
8 0.0017
9 0.0017

10 0.0016
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for estimating the number of chemical components in the two-way data
matrix.

3.2.2. Zero-Component Regions and Estimation of
Noise Level and Background

As discussed before, the task of estimating the number of components
becomes very difficult because of the presence of measurement noises
and their unknown distributions, heteroscedasticity of the noise and back-
ground, and baseline shift from the instruments. To avoid these pitfalls,
the determination of zero-component regions from the two-way data as
acquired by the hyphenated instrument is of particular significance. The
zero-component region is defined as the one where no chemical species
elute in chromatographic development. Such a region has, by definition, a
chemical rank of zero and is of prime importance for establishing the noise
level in the data because there is no chemical species present at all within
the region. First, if there is no spectral background and chromatographic
shift, the signals obtained in the zero-component region are just the noises
generated from the instrument within this time interval because the zero-
component region plays the role of the analytical blank. With the help of
analytical blank information from zero-component regions, an F-test can
be established between the two submatrices, in which one is the region to
be tested and the other is the region of zero-component. The reader can
refer to the paper by Liang et al. [2] for more detail. Furthermore, the zero-
component regions may be used to detect the presence of a systematic
spectral background and/or baseline offset. This can be done by compar-
ing the zero-component regions before elution of the first species and after
the elution of the last species in a peak cluster. Figure 3.4 illustrates a
chromatogram with three peak clusters and four zero-component regions.

From Figure 3.4, one can see that no chemical component is eluted in the
zero-component regions. Thus, the spectra obtained from these regions
should provide the blank information obtained from a spectral detector and
should have quite similar spectral backgrounds. We will see later that it is
possible for us to estimate the instrumental backgrounds and remove them
utilizing the information obtained from the zero-component regions.

From the discussions above, we now focus on how we can correct the
background shift in the two-way data. For convenience, raw two-way data
in general can be divided into two parts: one originating from the chemical
constituents in the analyzed mixture, and the other due to instrumental arti-
facts, called spectral background and chromatographic baseline shift here
in order to distinguish them from the ‘‘random’’ noise. Thus, raw two-way
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Retention time

b
a

Figure 3.4. A chromatogram with three peak clusters and the zero-component regions before
(b) and after (a) the first peak cluster 1. The background is estimated independently for each
peak cluster. This means that curved baselines can be locally approximated by straight lines.

data may also be expressed as

X = Xc + Xb or Xij = Xc,ij + Xb,ij

(i = 1, . . . , n; j = 1, . . . , m)
(3.5)

where the subscripts c and b denote constituents and background, respec-
tively. Since the most general systematic background for ‘‘hyphenated
instrument’’ spectrochromatographic data is a drifting baseline in combi-
nation with a spectral background that is approximately constant during
the chromatographic run. Such a background of two-way data could be
expressed as

Xb = t1t + 1st or Xb,ij = ti + sj (3.6)

Here we use vector t for the baseline shift from chromatography and st for
the spectral absorbance vector. The vectors 1′ and 1 contain only 1s and
the dimensions of the two vectors are the number of detector channels n (in
wavelength or wavenumbers in spectra) and number of retention timepoints
n, respectively. If the random noise is also included in the raw data, the
two-way data matrix for the real samples might be simply expressed as
follows:

X = CSt + t1t + 1st + E =
∑
k=A

ck st
k + t1t + 1st + E (3.7)

All the data pretreatment methods mentioned in the following sections will
be based on the discussion in this section.
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3.3. DOUBLE-CENTERING TECHNIQUE FOR
BACKGROUND CORRECTION

The double-centering technique for background correction is a classic
method for dealing with the background of 2D data. In this section, we
first examine the effect of combined row--column centering on a 2D matrix
where the data are affected by the same chromatographic and spectral
background as defined by Equation (3.6). As before, we ignore the ran-
dom noise in the absorbance matrix. Then, the two-way data matrix can
be expressed as

X = CSt + 1bt + s1t or Xij = Xc,ij + ti + sj (3.8)

Double centering is defined as the operation of subtracting the row and
column mean from the matrix X and adding the grand mean of the matrix:

Yij = Xij −
∑

j Xij

m
−
∑

i Xij

n
+
∑

i

∑
j Xij

nm
(3.9)

Here Yij is the element at the i th row and the j th column in the data matrix
after double centering. The grand mean of X is easily found to be∑

i

∑
j Xij

nm
=
∑

i ti
n

+
∑

j sj

m
+
∑

i

∑
j Xc,ij

nm
(3.10)

It should be noted that, in the zero-component regions, Xc is by definition a
zero matrix, and according to Equations (3.9) and (3.10), double centering
gives

Y 0
ij = (ti + sj ) −

(
ti +

∑
j sj

m

)
−
(

sj +
∑

i ti
n

+
∑

i Xc,ij

n

)

+
∑

i

∑
j Xc,ij

nm

(3.11)

The superscript 0 is used to indicate the zero-component region. Substitu-
tion of Equation (3.10) into Equation (3.11) gives

Y 0
ij = −∑i XCij

n
+
∑

i

∑
j XCij

nm
(3.12)

From Equation (3.12), one can find that the elements in the double-centered
zero-component regions differ only columnwise and have the same values
rowwise. Thus the pretreatment process removes the spectral background
and chromatographic shift, say, sj and tI , respectively. From this perspec-
tive, the double-centering method can be used for dealing with these two
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factors in 2D data. However, one should also be aware that this has created
zero-component regions of rank 1. This will lead to difficulties in assessing
the level of random noise from these regions which is a key point in the
multicomponent system. Furthermore, from Equation (3.12), we can also
see that the nonnegativity constraint on the absorbances is violated in the
double-centered data.

This procedure is now repeated for regions with chemical rank larger
than zero. Starting from Equation (3.9) and double centering, we obtain
the following after some manipulation:

Y C
ij = XCij −

∑
j sj

m
−
∑

j XCij

m
−
∑

i ti
n

+
∑

i XCij

n
−
∑

i XCij

nm
(3.13)

Inserting Equation (3.10) into Equation (3.13) gives

Y C
ij = XCij +

∑
i

∑
j XCij

nm
−
∑

j XCij

m
−
∑

i XCij

n
(3.14)

Here the superscript C denotes the non-zero-component regions. Inspec-
tion of Equation (3.14) reveals that double centering also removes spectral
and chromatographic background in the regions where chemical com-
ponents elute. Again, however, the nonnegativity of the intensity for 2D
data is destroyed. Furthermore, except for retention-time regions where
all chemical species elute simultaneously, the rank is increased by one
by the double-centering procedure. It is because of the introduction of a
new vector that is a linear combination of all the existing chemical species
coeluted. The rank after double centering remains unchanged since the
new vector introduced by the double-centering procedure depends linearly
on the chemical component spectra.

From the preceding discussion, it can be seen that although double cen-
tering may be used to remove background via Equation (3.7), the procedure
has some undesired effects, such as the introduction of artificial rank and
negative absorbances. Therefore, another procedure is suggested here
to correct the spectral background and chromatographic shift based on
congruence analysis.

3.4. CONGRUENCE ANALYSIS AND LEAST-SQUARES FITTING

As mentioned before, the zero-component region using the spectral detec-
tor may provide the missing information about the spectral background,
because there is no chemical component eluted in this region. Thus, one
may detect the spectral and chromatographic baseline offset with the help
of this information. Once the spectral and/or chromatographic baseline
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zero-component region (b)

zero-component region (a)

Pa′

Pb′

ta tb

If Pa′ Pb′ =1

(a) (b)Retention Time

Figure 3.5. Procedure for correcting the systematic baseline offset and spectral background.
The upper part of the figure illustrates the extraction of one principal component in the
zero-component regions before (b) elution of the first chemical component start and after (a)
the last chemical component has eluted. The loading vectors for the two regions are subse-
quently compared by means of their scalar product (congruence coefficient). A scalar prod-
uct with its value close to 1.0 implies the same loading pattern and thus systematic spectral
background. The offset vectors, say, ta and tb in the lower part, in the retention time direction
will reveal whether the baseline is drftting. Univariate least-squares fit of the elements of the
offset vectors to the retention time and subsequent subtraction corrects the baseline to zero.

offset has been detected in the 2D data, background correction by congru-
ence analysis and least-squares fitting proceeds in the following five steps
(see also Fig. 3.5):

1. Calculate the first normalized principal-component loading vector p1,b

for the zero-component region before [Fig. 3.5, segment (b)] elution of
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the first chemical component starts and the first normalized principal-
component loading vector p1,a for the zero-component region after
[Fig. 3.5, segment (a)] elution of the last chemical component is
finished.

2. Compare the two loading vectors by means of their congruence
coefficients; that is, calculate the scalar product p′

1,b p1,a.

3. If the scalar product in step 2 is close to 1.0, then p1,b ≈ p1,a. This
means that the baseline offset can be explained by the same factor
(loading vector) during the whole chromatographic elution process.
In this case, the offset vector tb and ta are located for the two zero-
component regions.

4. Use the simple univariate least squares to fit a straight line through all
the elements of the offset vectors tb and ta with retention timepoints
as independent variables. This procedure provides estimates of the
baseline in the whole retention-time region between the two zero-
component regions.

5. Collect the estimates in one vector t and subtract t1′ + 1p′
1,b from the

data matrix X to obtain a corrected chromatographic/spectroscopic
data matrix. The last step adjusts the baseline to zero level.

This procedure provides a simple way to deal with the spectral and chro-
matographic baseline offset in two-way data from hyphenated instruments.
With the help of this procedure, the spectral and chromatographic base-
line offset in the two-way data can be removed with introducing additional
artifacts. The entire procedure is also illustrated in Figure 3.5.

3.5. DIFFERENTIATION METHODS FOR TWO-DIMENSIONAL DATA

Two-way data obtained from hyphenated chromatographic instruments are
always collected in both retention-time and spectral directions. Thus, the
data matrix can be differentiated from both directions. Let matrix X with
n rows and m columns be the 2D array of spectral intensities. The reten-
tion time defines the rows, and the spectra define the columns in the matrix.
Neglecting the error term, the matrix X for a mixture of A chemical compo-
nents can then be expressed as a sum of A bilinear matrices with one for
each chemical component:

X = CSt =
A∑

k=1

ck st
k (3.15)

where {ck , k = 1, 2, . . . , A} and {st
k , k = 1, 2, . . . , A} are the (present

unknown) chromatographic and spectral profiles, respectively, of the A
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chemical components. The transposition operator t is used to symbolize a
row vector as opposed to a column vector.

Assuming that both the retention time and spectral wavelength are con-
tinuous parameters, the element x (t , w ) of the data matrix X at time t and
wavelength w can be written as

x (t , w ) = c1(t )s1(w ) + c2(t )s2(w ) + · · · + cA(t )sA(w ) (3.16)

Thus, every element in matrix X can be described by the functions
{ck (t ), k = 1, 2, . . . , A} and {sk (w ), k = 1, 2, . . . , A}. Equation (3.16) des-
cribes the bilinearity of the matrix X. Furthermore, Equation (3.16) shows
that the intensities matrix can be differentiated in either the time or
wavelength direction:

dx (t , w )
dt

= s1(w )dc1(t )
t

+ s2(w )dc2(t )
dt

+ · · · + sA(w )dcA(t )
dt

(3.17a)

dx (t , w )
dw

= c1(t )ds1(w )
w

+ c2(t )ds2(w )
dw

+ · · · + cA(t )dsA(w )
dt

(3.17b)

It should be noted that the derivatives may be expressed in vectorial form as

dxt
i (t )

dt
= st

1dc1(t )
t

+ st
2dc2(t )

dt
+ · · · + st

AdcA(t )
dt

(i = 1, 2, . . . , n)

(3.18a)

dxj (w )
dw

= c1ds1(w )
w

+ c2ds2(w )
dw

+ · · · + cAdsA(w )
dt

(i = 1, 2, . . . , n)

(3.18b)

Here {dxt
i (t )/dt (i = 1, 2, . . . , n)} are the row vectors in the derivative matrix

dX/dt obtained by differentiation in the chromatographic (time) direction,
while {dxj (w )/dw ( j = 1, 2, . . . , m)} represents the column vectors for the
derivative matrix dX/dw obtained by differentiation in the spectral (wave-
length) direction. This means that the two-way data matrix acquired from
‘‘hyphenated instruments’’ can be differentiated from both directions.

Since derivative function has some attractive features, such as enhanc-
ing signal resolution and zero value at the maximum of the original function,
it has many applications in data analysis for the two-way data. The
numerical derivatives of the two-way data can be fulfilled by the tech-
nique discussed in Chapter 2. Of course, the wavelet transform technique
discussed later on in this book can also be used to complete this task.

3.6. RESOLUTION METHODS FOR TWO-DIMENSIONAL DATA

The ultimate aim for the analysis of 2D data is to simultaneously reveal qual-
itative and quantitative information about the eluted chemical components
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as hidden in the chromatographic data that are acquired from hyphenated
instrumentation. This topic is discussed in some detail in this section.

In general, when a sample is measured by hyphenated instrumentation,
the data can be, as discussed before, collected as a matrix, say X, where
every row is an object (spectrum) and every column is a variable (chro-
matogram at a certain wavelength, wavenumber, or m/z unit). According
to the Lambert--Beer law or similar rules, the matrix can be written as

X = CSt =
A∑

k=1

ck st
k (3.19)

Here A is the number of absorbing components coexisting in the system,
and the ci and si (i = 1, 2, . . . , A) terms are the pure concentration profiles
and spectra, respectively. The problem to be solved for resolution is that
with the measurement matrix at hand, one needs to determine

1. The number of absorbing chemical components A,

2. The spectrum of each chemical component si (i = 1, 2, . . . , A)
(qualifications)

3. The concentration profile of each chemical component ci (i =
1, 2, . . . , A) (quantification)

One must move from the left-hand side of the equation (LHS; the measure-
ments available from the instrument measurement) to its right-hand side
(RHS; the chemical contents from the solution of the problem) with as few
artificial assumptions as possible. This type of problem is called ‘‘the inverse
problem of matrix’’ in mathematics. In general, it is impossible to obtain
a unique solution for the problem. Hence, there may be no mathematical
method available at all for solving it uniquely, with a lot of possible solutions
from the point of view of mathematics or according to the least-squares cri-
terion. However, the attempt of chemists in trying to directly analyze the
two-way data can be traced back in 1960 [3]. This was because the matrix
rank has a very good one-to-one correspondence to the number of absorb-
ing chemical components in the system, provided every absorbing chem-
ical component has a different spectrum. Furthermore, the appearance of
the self-modeling curve resolution (SMCR) [4] based on factor analysis (FA)
or principal-component analysis (PCA), rendered the solution of such two-
way data problems both possible and attractive. The reason for this is that
there are only two well-known constraints from chemical measurements:
i.e., non-negative absorbances and concentrations. In particular, the devel-
opment of ‘‘hyphenated’’ chromatographic instrumentation since the early
1980s---including HPLC-DAD, HPLC-MS, GC-MS, CE-DAD, and GC-IR---
made it possible for analysts to directly address the analysis of complex
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mixture samples. The ‘‘hyphenated instruments’’ possess both the sepa-
ration ability and quantitative information from chromatographic measure-
ments and plentiful qualitative information from spectral direction. Working
with the data obtained using the ‘‘hyphenated’’ instruments, more useful
constraints from chemical measurements can be further utilized to narrow
the solution space, and a unique solution can sometimes be reached with
the help of evolving features and the selective information in the data.

In practice, numerous complex multicomponent systems are employed
in analytical chemistry, such as samples from natural products, environ-
mental chemistry, biochemistry, and combinatorial chemistry. It is always
the dream of analytical chemists to find a way to determine quickly and
accurately how many components there are in these systems, and/or to
identify and define these components (qualitative analysis) and/or their
amounts (quantitative analysis). The dream may come true now with the
development of advanced instruments such as hyphenated chromato-
graphic instruments because vast amounts of useful information about the
components can be obtained. However, the volume of data generated from
these instruments is humongous, even more than millions of data points
from one single experiment! The data are too numerous to be handled
by traditional analytical methods, which were developed mainly for han-
dling one-dimensional data. Fortunately, chemometrics that appeared in
the early 1970s uses the multivariate analysis technique to solve com-
plex chemical problems. Powerful methodologies have opened new vistas
for analytical chemists and have provided meaningful solutions for many
complex chemical problems. Combining chemometrics with ‘‘hyphenated
instruments,’’ it is the right time now in modern analytical chemistry to deal
with difficult problems that could not be tackled before.

3.6.1. Local Principal-Component Analysis and Rankmap

As stated before, the size of the data matrix obtained from the hyphen-
ated chromatographic device is vast, sometimes exceeding 40 megabytes.
Hence, it is impossible to analyze the matrix simply at one time by PCA
at the present stage. On the other hand, collinearity in the matrix may
pose another obstacle in chemical rank estimation. Similarity between the
component spectra and concentration profiles of the coexisting chemical
species makes estimation extremely difficult. The ‘‘net analytical signal’’
for every component will be much smaller because of the overlap between
the spectral and concentration profiles of the pure components. When the
differences among some component spectra (e.g., isomers or chiral com-
pounds present in a complex sample) are smaller than the level of the



\c03" | 2004/1/28 | 9:48 | page 84 | #16

84 two-dimensional signal processing techniques in chemistry

noise, how can the mathematical methods be used to recognize these
components. Yet, they have different chemical properties! The more com-
ponents are included in the matrix, the higher the risk of collinearity that
one will encounter. If the matrix can be broken down into smaller parts,
the risk of collinearity will, of course, be reduced. The first attempt to use
the local rank analysis in chemistry to solve the problem was made by
Geladi and Wold [5]. They developed an approach called local rankmap-
ping, which splits firstly the two-dimensional data set into small parts and
then measures their ranks. However, how to split the two-dimensional
matrix reasonably is uncertain. The main rationale behind the techniques
based on local factor analysis that have been developed in chemometrics
is to simply use the separation ability of the chromatography efficiently with-
out losing the information from spectral direction or to figure out the whole
rankmap in the chromatographic direction. If the rankmap can be quickly
and clearly figured out, the information for resolving efficiently the concen-
tration profiles of all the chemical species in the system is at hand. This is,
in our opinion, is the main progress that has been achieved for resolving
the two-dimensional data. We will discuss this issue in some detail in the
following sections. Here a simple example is utilized to illustrate how 2D
data can be rankmapped.

Example 3.2. Figure 3.6 shows a simulated data matrix of three chem-
ical components with some white noise. The simulated spectra and the
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Figure 3.6. A 3D plot of a simulated data matrix of three chemical components with some
white noises.
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Figure 3.7. The synthetic spectra and the corresponding chromatograms (a,b) of the
chemical components together with the parameters used for simulation (c).

corresponding chromatograms of the chemical components together with
the parameters used are given in Figure 3.7.

Figure 3.8 illustrates rankmapping of synthetic 2D data in the chro-
matographic direction. From the figure, one can see that the rankmap
clearly indicates the locations of the zero-component regions and the one-
component region (selective information), and the mixture regions with
rank above 2. With this information at hand, one can easily guess how the
chemical components are eluted. If we take the assumption of first come--
first disappear, then the elution pattern of the peak cluster can be deduced
easily. Now, the problem is how we can obtain such a rankmap. This will
be the topic is discussed in the following sections.

3.6.2. Self-Modeling Curve Resolution and
Evolving Resolution Methods

As stated before, the development of the so-called self-modeling curve
resolution (SMCR) based on factor analysis (FA) or principal-component
analysis (PCA) has made resolution of 2D data possible and attractive. The
most important feature for SMCR lies in that it has only two well-known
constraints from chemical measurements: nonnegative absorbances and
concentrations. Thus a number of chemists have done research in the field
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Figure 3.8. A rankmap illustrating the synthetic 2D data in the chromatographic direction.

along this direction. SMCR based only on nonnegative constraints showed
that the ambiguities inherent to factor analysis decompositions can be only
partly overcome, that is, only a narrow band of possible solutions can be
estimated [4].

Current methods available in chemometrics are all based on SMCR.
They can be roughly divided into iterative or noniterative types. Examples
for methods of the iterative resolution type are iterative target transforma-
tion factor analysis (ITTFA) [6], alternative least squares (ALS) [7], the
Simplisma method [8], and interative key set factor analysis [9]. The ratio-
nale behind this kind of approach lies in introducing further constraints such
as unimodality and closure in concentration profiles apart from nonnegative
absorbances and concentrations proposed in the original SMCR method
for further iteration. If the initial estimate is good enough and the collinear-
ity (overlapping of the signals from both directions) in two-way data is not
serious, the methods, in general, can converge to an acceptable solution.
However, the ambiguities cannot be eliminated for these methods.

The second type of resolution methods can be regarded as evolutionary.
Examples are evolving factor analysis (EFA) [10], window factor analysis
(WFA) [11], heuristic evolving latent projections (HELP) [12--14], and more
recently, subwindow factor analysis [15]. Their common feature is the use
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of the informative ‘‘windows,’’ such as the selective information regions,
zero-concentration regions, and also the regions of (A − 1) components.
Thus, the correct estimation of the abovementioned windows based on the
local rankmap is crucial in order to obtain the correct resolution results.
The resolution condition for ‘‘hyphenated’’ two-way data was comprehen-
sively reviewed by Manne [16]. Three so-called resolution theorems are
presented here.

Theorem 3.1. If all interfering compounds that appear inside the concen-
tration window of a given analyte also appear outside this window, it is
possible to calculate the concentration profile of the analyte.

Theorem 3.2. If for every interferent the concentration window of the ana-
lyte has a subwindow where the interferent is absent, then it is possible to
calculate the spectrum of the analyte.

Theorem 3.3. For a resolution based on rank information in the chro-
matographic direction, the condition of Theorems 3.1 and 3.2 are not only
sufficient but also necessary.

As stated before, selectivity is the cornerstone for the resolution of two-
way data. But, from Theorems 3.1--3.3, it does not seem necessary to
have selective information for complete resolution without ambiguities. Yet,
this is not true because the rationale behind these three theorems is
that the component that elutes out first should also be the one devolv-
ing first in the concentration profiles. Thus, there must be some kind
of selective information available in the data. If one cannot mine this
out, complete resolution for all the components involved with no ambi-
guities is impossible. Of course, it is not necessary that every component
have its own selective information. But for systems of two components
or more, two selective information regions are necessary for complete
resolution without ambiguities. The simplest example is the embedded
peak with only two components in the chromatogram where only one item
of selective information is available. The complete resolution of embed-
ded peaks without additional modeling assumption, to our knowledge,
seems impossible for the two-way data so far. Trilinear data may help
us obtain the complete resolution desired. The more recent progress
for multivariate resolution methodology is based mainly on evolution-
ary methods. Thus, evolutionary methods are the main focus of this
book.
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3.6.2.1. Evolving Factor Analysis (EFA)

The first attempt to efficiently use the separation ability in the chromato-
graphic direction for estimating the chemical rankmap might be the evolving
factor analysis developed by Gampp et al. [17], which was proposed pri-
marily to deal with the titration data. This technique was later extended to
the analysis of chromatographic two-way data. Its most attractive feature
is application of the evolving information in the elution direction for titra-
tion, chromatography, and other chemical procedures. This opens a new
door for chemometricians to work with two-way data. The methodology
from EFA seems simple. It embraces the spectra to be factor-analyzed
in an incremental fashion and then collects the eigenvalues and plots
them against the retention timepoints (see also Figs. 3.9 and 3.10). This
evolving factor-analyzing procedure can also be conducted in the reverse
direction. Finally, the points of appearance and disappearance of every
chemical component can be determined in this manner. The only assump-
tion involved is that the component that first appears will disappear also
first in an evolving manner.

In order to deal with the peak purity problem for two-way chromatog-
raphy, Keller and Massart developed a method termed fixed-size moving-
window factor analysis (FSMWFA) [18] (see also Figs. 3.11 and 3.12).
Instead of factor-analyzing the data matrix in an incremental fashion, the
method factor-analyzes the spectra in a fixed-sized window and moves
the window along the chromatographic direction. The eigenvalues thus
obtained are also plotted against the retention time. This method has been

Figure 3.9. Illustration diagram of the evolving factor analysis (EFA) algorithm. The algorithm
can be conducted in both the forward and backward directions. It embraces the spectra to be
factor-analyzed in a stepwise increasing way and then collects the eigenvalues to be plotted
against the retention timepoints.
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Figure 3.10. The resulting plot of evolving factor analysis of a three-component system.
With the help of the results obtained, the points for every chemical component appearing and
disappearing can be determined in this way. The only assumption of the method is that the
component that first appears will first disappear in an evolving pattern.

successfully applied to detect a minor component with only 0.7% concen-
tration ratio of the major component after correcting the heteroscedastic
noise. The procedure in which this method has been utilized to carry out
the factor analysis seems to be different from that of EFA, but almost the
same information can be extracted. There are two additional advantages
of FSMWFA over the original EFA:

1. This method can reduce the calculation time dramatically. The rea-
son is that when the retention timepoints are large enough, which is
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Figure 3.11. Illustration diagram of the fixed-size moving-window evolving factor analysis
(FSMWEFA) algorithm. Instead of factor-analyzing the data matrix in a stepwise increasing
way, the algorithm is conducted with a moving window. It factor-analyzes the spectra in a
fixed-size window and moves the window along the chromatographic direction.
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Figure 3.12. The resulting plot of FSMWEFA of a three-component system. With the help of
the results obtained, the points for every chemical component appearing and disappearing
can be determined more quickly by comparison with the EFA method.

common in two-way data, the EFA will take a long time for the rank
estimation, while FSMWEFA takes only a few minutes.

2. The noise level can be built up reasonably since the method is essen-
tially a technique based on local factor analysis. If the noises are
correlated slightly, the noise level will be a function of the size of the
window analyzed. (see Ref. 4 for further detail).

FSMWEFA is a good tool for local factor analysis, since it collects all the
information in the spectral direction. The only thing is that it depends on luck
to get the right size of window for the method used to estimate the rank of
local regions. Thus, it was extended to a new technique in heuristic evolving
latent projections (HELP), called eigenstructure tracking analysis (ETA) in
order to obtain the whole rankmap in the chromatographic direction [13].
ETA introduces an ‘‘evolving size, move window’’ by starting with a small
window first and then increasing the window size in steps by one until the
size exceeds the maximum number of overlapping chemical components
or is sufficient in the chromatographic regions under investigation. In this
way, one deduces not only the maximum resolution with respect to the
selective information but also the overlapping information in the retention-
time direction. To ensure a correct rankmap, adjustment of moving-window
size is sometimes crucial. In fact, with a moving window of increasing size,
the sensitivity for detecting chemical signals increases, while with a moving
window of decreasing size, the selectivity increases. With this in one’s
mind, it will be quite helpful for correctly justifying the chemical rank and
for obtaining the whole rankmap in the chromatographic direction.

3.6.2.2. Window Factor Analysis (WFA)

The window factor analysis method was developed by Malinowski. It is a
self-modeling method for extracting the concentration profiles of individual
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The region including
(A-1) components

Figure 3.13. Illustration of the major strategy of window factor analysis.

components from evolutionary processes. The region of (A − 1) compo-
nents, in which the region embracing the analyte is excluded, is used
to calculate the concentration profile of the analyte. The major strategy
employed in the method is illustrated in Figure 3.13.

The calculation procedure of WFA is quite simple, but the WFA principle
is somewhat difficult to understand. For a two-way matrix X, it can be
decomposed first by PCA in such a way as

X = TPt + E =
A∑

i=1

ti pt
i + E (3.20)

Also, according to Lambert--Beer law, the following relation can be
formulated:

X = CSt + E =
A∑

i=1

ci st
i + E (3.21)

Here A is the number of chemical components in the system. With the use
of matrices T and C, Pt , and St span the same linear space such that

ci =
A∑

i=1

βij tj or st
i =

A∑
i=1

αij pt
j (3.22)

where βij and αij are coefficients of the corresponding linear combinations
Suppose that χ is a submatrix that contains only (A − 1) components in

matrix X as shown in Figure 3.13. Thus, on decomposing this submatrix,
the (A−1) orthogonal principal components can be derived via the following
procedure:

χ = ToPot + E =
A−1∑
i=1

to
i pot

i + E
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It should be mentioned that the superscript o is utilized to express these
orthogonal vectors in order to distinguish to

i and ti . As in Equation (3.22),
we have

ci =
A−1∑
i=1

ηij to
j or st

i =
A−1∑
i=1

γij pot
j (3.23)

Yet, Equations (3.22) and (3.23) differ from each other. In Equation (3.23),
the linear space includes only an (A − 1)-dimensional subspace of X; that
is, it has only (A−1) components. In fact, Equation (3.23) can be extended
into an A-dimensional space, which can be accomplished by finding a new
vector, say, po

A, which is orthogonal with all the vectors po
j ( j = 1, . . . , A−1).

Then, we have

pt
i =

A∑
i=1

κij pot
j (3.24)

Owing to the orthogonality of pot
j , κij can be easily determined via

κij = pt
i p

o
j

The problem here is how to obtain po
A. Summing up all pt

i terms in Equation
(3.24) gives

A∑
i=1

pt
i =

A∑
i=1

(
A∑

j=1

κij pot
j

)
=

A∑
j=1

(
A∑

i=1

κij

)
pot

j (3.25)

Equation (3.25) can be rewritten as

A∑
i=1

pt
i =

A∑
i=1

(
A∑

j=1

κij pot
j

)
=

A−1∑
j=1

(
A∑

i=1

κij

)
pot

j +
(

A∑
i=1

κin

)
pot

A

and also (
A∑

j=1

κin

)
pot

A =
A∑

i=1

pt
i

A−1∑
j=1

(
A∑

i=1

κij

)
pot

j (3.26)

In fact, Equation (3.26) provides a means of computing the vector pot
A

because all the variables on the RHS of the equation are known or obtain-
able via PCA, while (�κin) on the LHS of the equation is only a normalized
constant for vector pot

A .
In this way, the orthogonal space pot

j ( j = 1, . . . , A) obtained by exten-
sion can be expressed linearly by the original linear orthogonal space
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pt
j ( j = 1, . . . , A); that is, both orthogonal spaces can be related linearly

with each other. Thus, the spectra of all the components can be formulated
whether by using pot

j ( j = 1, . . . , A) or pt
j ( j = 1, . . . , A) to give

st
i =

A∑
j=1

γij pot
j (3.27)

Inserting Equation (3.27) into the equation X = ∑A
i=1 ci st

i , we obtain

X =
A∑

i=1

ci

(
A∑

j=1

γij pot
j

)
=

A∑
i=1

A∑
j=1

γij ci pot
j

Multiplying po
n on both sides of this last equation leads to

Xpo
A =

(
A∑

i=1

A∑
j=1

γij ci pot
j

)
po

A

As po
A is orthogonal to all the vectors po

j ( j = 1, . . . , A − 1), that is, pot
j po

A =
0( j = 1, . . . , A − 1), it follows that

Xpo
A =

(
A∑

i=1

γinci

)
pot

A po
A (3.28)

It should be mentioned that when the subscript i in st
i is less than A,

that is, when the spectrum of component i is included in the list of (A − 1)
components, st

i can be expressed linearly by these (A − 1) pot
j quantities

[see Eq. (3.27)]. Hence, all the γiA (i = 1, . . . , A − 1) are equal to zeros
except for γAA since only st

A needs po
A. In addition, st

A can be normalized
to yield

Xpo
A = γAAcA (3.29)

This equation indicates that if it is possible to calculate the product of the
normalized po

A and matrix X, then both cA and a normalized constant γAA

can be determined. In this way, WFA can be apply to obtain the pure con-
centration profile of the Ath component. This procedure can be repeated
for all other pure components to find their concentration profiles and to
resolve the mixture system.

From the discussion above, the concrete algorithm for WFA consists of
the following steps:

1. Find a region containing only (A − 1) components in matrix X. This
can be achieved with the help of FWSEFA or EFA.
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2. Use Equation (3.26), that is(
A∑

i=1

κiA

)
pot

A =
A∑

i=1

pt
i −

A−1∑
j=1

(
A∑

i=1

κij

)
pot

j

to deduce pot
A ;

3. Use Equation (3.28) in the form of

Xpo
A = γAAcA

to obtain cA and then normalize cA afterward.

4. Repeat steps 1--3 until all ci (i = 1, 2, . . . , A) are determined. Then
the spectra of the corresponding component can be found using the
least-squares technique through

St = (Ct C)−1Ct X

The WFA procedure has been applied successfully to several datasets.

3.6.2.3. Heuristic Evolving Latent Projections (HELP)

HELP differs from EFA and WFA mainly by its emphasis on using selec-
tive information. The spectra of the analytes with selective information
can be directly determined through decomposing the selective region.
The concentration profile for the same analyte can also be determined by
including both selective information and zero-concentration regions for this
component in the resolution calculation, which has been termed full-rank
resolution. Once the spectral and concentration profiles of the components
with selective information are determined, the component stripping proce-
dure can then be followed to continue to resolve the other components. This
HELP method has been successfully utilized for solving several different
real samples.

The HELP technique is based on the use of the ordered nature of
‘‘hyphenated’’ data and the selective regions appearing as straight-line
segments in bivariate score and loading plots. Score and loadings plots
have been used extensively in multivariate exploratory analysis for a long
time, but their significance has been overlooked for rank estimation and
resolution. There are at least four advantages in using the latent projection
graph (LPG):

1. In the bivariate score plot, a straight-line segment pointing to the ori-
gin suggests selective information in the retention-time direction. As
for the bivariate loadings plot, a straight-line segment pointing to the
origin suggests selective information in the spectral direction. The
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concept of ‘‘straight line’’ here is, of course, in the sense of least
squares.

2. The evolving information of the appearance and disappearance of
the chemical components in the retention-time direction can also be
provided in LPG. If one can produce the three-dimensional LPG for the
peak cluster with more than three components, the LPG can provide
more depicting insight about the data structure.

3. Information enabling the detection of shifts of the chromatographic
baseline and instrumental background is also provided in LPG. If there
is an offset in the chromatogram, the points will not concentrate at the
origin in the plot even if one includes the zero-component regions in
the data.

4. LPG is also a very good diagnostic tool to identify the embedded
peaks in chromatogram. This information is very important for resolv-
ing concentration profiles (see examples in the following section). The
LPG works like a microscope to assist one to see the details of the
data structure of two-way data.

The HELP method also emphasizes to use the local factor analysis.
Using a method called eigenstructure tracking analysis (ETA), one can get
the rankmap about the exact number of chemical species at every retention
timepoint. The unique resolution of a two-dimensional dataset into chro-
matograms and spectra of the pure chemical constituents is carried out via
local full-rank analysis in the HELP method. In general, the full resolution
procedure for the HELP method can be described in the following four
steps:

1. Confirm the background and correct a drifting baseline.

2. Determine the number of components, the selective region, and the
zero-component region of each component through of the evolving
latent projective graph and rankmap on the basis of the eigenstructure
tracking analysis.

3. With the help of the selective information and the zero-component
region, carry out a unique resolution of the two-dimensional data into
pure chromatographic profiles and mass or optical spectra by means
of local full-rank analysis.

4. Verify the reliability of the resolved result.

To clarify these points, an example is given here to illustrate how the HELP
procedure works to resolve a two-component system.

Figure 3.14 shows a two-component chromatographic profile obtained
from a GC-MS instrument. Figure 3.14a shows two selective regions
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Eigenstructure tracking Analysis

Noise Level

Retention time

pc2

pc1

(a)

(b) (c)

Figure 3.14. A two-component chromatographic profile from a GC-MS instrument: (a) the
overlapping chromatographic profile together with the true chromatographic peaks of the two
components ; (b) the results obtained by LPG; (c) the results obtained by FSMWFA.

C

A

S

(a)

(b) (c)

Figure 3.15. The resolved results for the overlapping profile (Fig. 3.14) with two components:
(a) the overlapping chromatographic peak; (b) resolved chromatographic profiles; (c) resolved
mass spectra.
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through which one can easily obtain the pure mass spectra. With the
help of LPG and the local factor analysis technique, such as fixed-size
moving-window factor analysis (FSMWFA), one can easily locate the selec-
tive regions in the chromatographic direction. Figure 3.14a,b shows such
results. With the two pure spectra of the two components at hand, the over-
lapping peaks from the two components can then be resolved easily via
least-squares treatment of

C = XS(St S)−1 (3.30)

The resolved results are depicted in Figure 3.15.
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CHAPTER

4

FUNDAMENTALS OF WAVELET TRANSFORM

The objectives of this chapter are to

• Learn about wavelet transform and to learn how to construct a wavelet
function.

• Introduce some examples of commonly used wavelet functions such
as Haar wavelet, Daubechies wavelet, spline wavelet, and biorthogo-
nal spline wavelet.

• Learn how to implement a wavelet transform and code the algorithm
for wavelet transform.

• Learn about the basic concepts of wavelet packet and multivariate
wavelet.

In the previous chapters, we introduced several popular analysis meth-
ods for digital signal processing in chemistry. One of the main themes of
those methods is to decompose a signal into a combination of several (or
a countable number of) template signals. For example, fast Fourier trans-
form (FFT) decomposes a signal into a series of sine and cosine waves.
As these template signals are very simple to analyze and handle, we can
study an original signal and gather information from an original signal by
comparing an original signal with those well-understood template signals.
However, for different purposes, the templates used should be distinct or
purpose-based. The templates in FFT are sine and cosine waves with
different frequencies, so the FFT technique can easily tell us the global
frequency information contained in a signal. Yet, in some cases we are
concerned about the so-called local frequency information. For example,
one always wants to locate some spectral peaks corresponding to certain
chemicals in spectral analysis. It is desirable to develop new techniques or
approaches to provide possible analyzing methods.

From an algorithmic point of view, wavelet analysis offers a harmonious
compromise between decomposition and smoothing techniques. Unlike
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conventional techniques, wavelet decomposition produces a family of hier-
archically organized decompositions. The selection of a suitable level for
the hierarchy will depend on the signal and experience. Often, selection of
the level is based on a desired lowpass cutoff frequency.

Wavelet transform (WT) has attracted interest in applied mathematics for
signal and image processing [7,10,15]. In contrast to some existing popular
methods, especially the FFT, this new mathematical technique has been
demonstrated to be fast in computation with localization and quick decay
properties. Since 1989, WT has been proposed for signal processing in
chemical studies owing to its efficiency, large number of basis functions
available, and high speed in data treatment. It has been applied success-
fully in flow injection analysis, high-performance liquid chromatography,
infrared spectrometry, mass spectrometry, nuclear magnetic resonance
spectrometry, UV--visible spectrometry, and voltammetry for data compres-
sion and smoothing. More than a hundred papers have been published on
applying WT in chemical studies [1--6,11--13].

4.1. INTRODUCTION TO WAVELET TRANSFORM AND
WAVELET PACKET TRANSFORM

As you have noted at the beginning of this chapter, a set or collection of
templates should be provided or constructed when we want to analyze an
object. Before we introduce the concept of wavelet and multiscale analysis,
let us consider the following simple example.

Let us consider measuring a length or distance. First what we need is
some standard rules or templates. In the metric system, these templates
are units such as kilometer, meter, centimeter, millimeter, and micrometer.
Using these templates, we can express (measure or analyze) a length as,
for instance, 23 m, 43 cm, and 6 mm. In this procedure, we decompose
a length into a (linear) combination of templates; thus we have an idea
about the length. Of course, you can choose another template system to
measure a length, for example, the imperial unit system. Which system
should be chosen is a purpose-based task.

In signal processing, the conventional analyzing tool is Fourier trans-
form. In this technique, a signal to be analyzed is decomposed into a
linear combination of standard sine waves at different frequencies, namely,
Fourier templates. The benefit from this technique is that we can obtain fre-
quency information in the signal. As the sine wave is a global wave signal,
the frequency information obtained will be global. However, sometimes
one may want to determine the local frequencies, in which case it will not
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be easy to extract such information using Fourier transform. We need to
create some new techniques to deal with this problem.

In principle, you can choose any signals as your templates. However, to
do so is nonsense and does not help solve the problem. Before constructing
new templates you should make sure that (1) the templates are suitable to
the problem, (2) the template signals are simple to construct and analyze,
and (3) the algorithms of analyzing signals under those templates are easily
implemented.

WT analysis involves decomposition of a signal function or vector (e.g.,
a spectrum of a chemical) into a set of approximations and details that are
in simpler, fixed building templates at different scales and positions from
one ‘‘mother’’ function. The templates are constructed from a ‘‘mother’’
template ψ(x ), called ‘‘mother wavelet,’’ through scaling ψ(2−j x ) and their
translates ψ(2−j x − k ). In order to understand the meaning of scale, let us
consider a simple example. In Figure 4.1, two sine waves, f (x ) = sin x and
g(x ) = f (23x ) = sin 23x (i.e., j = −3), are shown. The scaled version g(x )
of f (x ) has higher frequency than does f (x ). Thus the concept of frequency
can be replaced by the idea of scale. The organizing parameter scale is
related to a level j , denoted by 2−j . If we consider ψ(x ) as the ‘‘0’’ scale
template, then ψ(2−j x ) is the j th scale template. Also we call ψ(2−j x ) at
the resolution 2j , then the resolution increases as the scale j decreases.
The greater the resolution, the smaller and finer are the details that can be
accessed.

We should keep in mind the following three questions about the new
approach:

1. What kind of template signal is needed? As we want to learn and ana-
lyze local information in a signal, the template needed should be compactly

0 2 4 6
-1

-0.5

0

0.5

1
f(x)

0 2 4 6
-1

-0.5

0

0.5

1
g(x)

Figure 4.1. Two sine waves at different frequencies in terms of scaling.
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Figure 4.2. The style of a basic template function.

supported.1 In other words, the template should have an ability to truncate
the signal around some special locations. On the other hand, in terms
of scaling effect, the template should have an ability to express frequency.
Thus the template should be a wave signal. In summary, the basic template
ψ(x ) would resemble the one shown in Figure 4.2. Thus all the templates
ψ(2−j x ) will be used to measure or analyze the frequency information of
a signal near the time 0. If you want more information about a signal near
the time k , just use the translated version of templates ψ(2−j x − k ).

2. How many templates do we need? Recall the example of measuring
a length. If we didn’t have any rulers (templates) finer than the micrometer
ruler, we cannot measure anything shorter than 1 µm; that is, the family of
templates should be sufficient to extract all information. This requirement
is mathematically equivalent to that the family of templates should consist
of a basis for the whole signal set.

3. How can we find such a short wavefunction? We should provide a
method or theory to describe and construct such wave templates. Many
different algorithms were proposed to achieve this goal. In 1989, Mallat [14]
introduced the multiresolution signal decomposition (MRSD) algorithm,
which was adopted by Daubechies to construct families of compactly
supported analyzing template signals. The approach MRSD provides a
general method for constructing orthogonal wavelet basis and leads to
implementation of the fast wavelet transform (FWT) algorithm.

In the following sections we will consider this theme in the discussions. Let
us begin with the simplest wavelet: the Haar wavelet.

1In mathematics, a function f (x ) is said to be compactly supported, if f (x ) is zero value outside
a finite interval [a,b]; that is, if for any x not in [a,b], one has f (x ) = 0.
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4.1.1. A Simple Example: Haar Wavelet

From this subsection, we restrict ourselves in one-dimensional (1D) sig-
nal. Generally, any signal or physical phenomenon with finite energy can
be represented by a square integrable function; that is, we say a signal
f (x ) is of finite energy if the signal function satisfies the square-integrable
condition

∫ +∞

−∞
f (x )2dx <∞

Mathematically, the set or collection of all such signal functions is denoted
by L2(R). Thus f (x ) ∈ L2(R) means that the signal function f (x ) is square
integrable.

In order to introduce Mallat’s MRSD algorithm, we first consider Haar
basis decomposition of signals here. For simplicity, we denote by Z the
set of (positive and negative) integers, that is, Z = {0,±1,±2,±3, . . . }. In
1910, Haar proposed the following simple piecewise constant function

ψ(x ) =



−1 if 0 ≤ x < 1

2

1 if 1
2 ≤ x < 1

0 otherwise

(4.1)

The Haar function ψ(x ) is shown in Figure 4.3.
For each pair of integers j , k ∈ Z, Haar constructed a templates at scales

2j and translation k

ψj ,k (x ) = 1√
2j
ψ

(
x − 2j k

2j

)
(4.2)

and made a set of those templates as

H = {ψj ,k (x ) | j , k = . . . ,−2,−1, 0, 1, 2, . . . } (4.3)

For any given (positive or negative) integers j and k , the template
ψj ,k (x ) is a piecewise constant function with value −(1/

√
2j ) at the interval

[2j k , 2j k +2j−1), (1/
√

2j ) at the interval [2j k +2j−1, 2j (k +1)) and 0 outside
the interval [2j k , 2j (k +1)]. j is called the scaling level, or simply level, and
k is called the location.
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Example 4.1. Here are several templates at the different scales and
locations which are obtained via Equation (4.2):

ψ0,−2(x ) =



−1 −2 ≤ x < − 3

2

1 − 3
2 ≤ x < −1

0 otherwise

ψ1,1(x ) =



− 1√

2
2 ≤ x < 3

1√
2

3 ≤ x < 4

0 otherwise

ψ−2,1(x ) =



−2 1

4 ≤ x < 3
8

2 3
8 ≤ x < 1

2

0 otherwise

ψ3,−1(x ) =



− 1

2
√

2
−8 ≤ x < −4

1
2
√

2
−4 ≤ x < 0

0 otherwise

Figure 4.3 shows these Haar templates.

Example 4.1 shows that, the larger the level j is, the boarder wave
ψj ,k (x ), and the smaller the level j , the sharper the wave of ψj ,k (x ) is.
Hence a smaller level j corresponds to a finer resolution in ψj ,k (x ) and,
vice verse, a coarser resolution in ψj ,k (x ) is associated with a larger level j .
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Figure 4.3. Haar wavelet templates at different scales and locations.
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First consider the set of finite energy functions L2(R). Let us definite the
inner product of two finite-energy functions f (x ) and g(x ) from L2(R) as

〈f (x ), g(x )〉 =
∫ +∞

−∞
f (x )g(x )dx .

As we know, the inner product 〈f (x ), g(x )〉 can be used for measuring the
similarity of two signals, f (x ) and g(x ). The larger the magnitude of inner
product is, the greater the similarity is. If the inner product of two functions
is 0, then we call these two functions ‘‘orthogonal to each other.’’ If function
f (x ) is orthogonal to a function g(x ), then they are said to be dissimilar.

The inner product of a function f (x ) with itself is called the energy of
the function. Now, by computing integral, you can easily prove that each
Haar template ψj ,k (x ) defined in Equation (4.2) has energy 1 and the inner
product of any two different Haar templates is 0 (i.e., the different Haar
templates are dissimilar). With these two properties, we can say that the
Haar collection H consists of an orthonormal basis of L2(R), called the Haar
wavelet basis. Haar further proved that any finite-energy function f (x ) can
be decomposed into a linear combination form of

f (x ) =
+∞∑

j=−∞

+∞∑
k=−∞

〈f (x ),ψj ,k (x )〉ψj ,k (x ) (4.4)

which means that the Haar family is complete or sufficient to represent any
finite energy signals.

For the example of measuring a length, Equation (4.4) tells us the length
is how many kilometers and how many meters and how many millimeters,
and so on. In general, here we can say that the expansion coefficients
〈f (x ),ψj ,k (x )〉 of ψj ,k (x ) in Equation (4.4) gives us information on how the
signal f (x ) of, for instance, a spectrum or a chromatagram is similar to the
template signal ψj ,k (x ), or we can determine by 〈f (x ),ψj ,k (x )〉 how much
of the template ψj ,k (x ) a spectrum or a chromatagram has.

As the integral ofψj ,k (x ) over (−∞,+∞) is zero, each term in summation
(4.4) can be interpreted as detailed information on the scale j and the
location k . If we put all the detailed information on the scales greater than
j together, which is done by truncating finer resolution details from the
decomposition (4.4), the new resultant approximation signal

fj (x ) =
+∞∑

m=j+1

+∞∑
k=−∞

〈f (x ),ψm,k (x )〉ψm,k (x ) (4.5)

can be created. For the Haar wavelet basis H = {ψj ,k (x )|j , k = . . . ,−2,
−1, 0, 1, 2, . . . }, fj (x ) is piecewise constant on each interval [2j k , 2j (k +1))
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with width 2j . When j → −∞, piecewise function fj (x ) approaches the
actual signal f (x ). For each integer j , denote by Sj the set of all such
piecewise functions fj (x ).

For example, in the case that j = 0, S0 consists of all piecewise functions
over intervals [k , k + 1). Define a basic unit step function

φ(x ) := 1[0,1) =
{

1 if 0 ≤ x < 1

0 otherwise
(4.6)

Then it is easy to prove that each function f0(x ) in S0 can be written as a
linear combination of translated versions of the basic unit step functionφ(x ):

f0(x ) =
∞∑

k=−∞
ckφ(x − k )

In the wavelet community, φ(x ) is called a scaling function. In much the
same way as we defined the Haar wavelet function ψ(x ), we can define a
family of dilations/scales and translates for scaling function φ(x ):

{
φj ,k (x ) = 1√

2j
φ

(
x − 2j k

2j

) ∣∣∣j , k = . . . ,−2,−1, 0, 1, 2, . . .
}

For each fixed j , any function fj (x ) in Sj can be represented as

fj (x ) =
+∞∑

k=−∞
cj ,kφj ,k (x )

Example 4.2. Let f1(x ) be a piecewise constant function on half intervals
defined as

f1(x ) =




1 −1 ≤ x < − 1
2

2 − 1
2 ≤ x < 0

4 0 ≤ x < 1
2

5 1
2 ≤ x < 1

0 otherwise

Then we have

f1(x ) = 1√
2
φ−1,−2(x )+ 2√

2
φ−1,−1(x )+ 4√

2
φ−1,0(x )+ 5√

2
φ−1,1(x )
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that is, c1,−2 = 1/
√

2, c1,−1 = 2/
√

2, c1,0 = 4/
√

2, c1,1 = 5/
√

2 and others
c1,k = 0.

As φ0,0(x ) is a function in collection S0 and the functions φ−1,0(x ) and
φ−1,1 belong to the collection S−1, note that

φ0,0(x ) = 1√
2
φ−1,0(x )+ 1√

2
φ−1,1(x ) (4.7)

This equation states that the function φ0,0(x ) can be represented as the
linear combination of the functions in S−1. On the other hand, each function
in S0 is a form of linear combinations of φ0,k (k = . . . ,−2,−1, 0, 1, 2, . . . ),
which can be represented by the functions in S−1 [see Eq. (4.7)], then
S0 ⊂ S−1, which means that any function in S0 can be represented a form
of linear combinations of the functions in S−1.

In the example of measuring length, the relation S0 ⊂ S−1 would be
expressed, for instance, in a statement such as 1 km is 1000 m. Generally,
one has

· · · ⊂ S2 ⊂ S1 ⊂ S0 ⊂ S−1 ⊂ S−2 ⊂ · · · (4.8)

and

f (x ) ∈ S0 ⇔ f
( x

2j

)
∈ Sj for any j = . . . ,−2,−1, 0, 1, 2, . . . . (4.9)

Alternatively, we might note that ψ0,0(x ) = ψ(x ) ∈ S−1 and

ψ0,0(x ) = − 1√
2
φ−1,0(x )+ 1√

2
φ−1,1(x ) (4.10)

Example 4.3. Let us consider Example 4.2 again. With the aid of
Equations (4.7) and (4.10), we can represent the signal f1(x ) in Example
4.2 as follows:

f1(x ) = 1√
2
φ−1,−2(x )+ 2√

2
φ−1,−1(x )+ 4√

2
φ−1,0(x )+ 5√

2
φ−1,1(x )

= 2+ 1
2

φ0,−1(x )+ 2− 1
2

ψ0,−1(x )+ 5+ 4
2

φ0,0(x )+ 5− 4
2

ψ0,0(x )

= 1.5φ0,−1(x )+ 4.5φ0,0(x )+ 0.5ψ0,−1(x )+ 0.5ψ0,0(x )

We call this relation Haar wavelet expansion/representation. The signifi-
cance of the Haar wavelet representation can be easily explained by this
example. The coefficient 1.5 of φ0,−1(x ) is the mean value of the original
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signal on the interval [−1, 0] and the coefficient 0.5 of ψ0,−1(x ) is the dif-
ferential or variant of the signal on the same interval. The coefficient 4.5
of φ0,0(x ) is the mean value of the original signal on the interval [0,1] and
the coefficient 0.5 of ψ0,0(x ) is the differential or variant of the signal on the
same interval.

As explained above, we have obtained local average/mean information
(like the result given by a moving-average filter) and differential/derivative
information (e.g., the result provided by Savitsky--Golay filter) by using Haar
wavelet expansion.

4.1.2. Multiresolution Signal Decomposition

Haar’s wavelet ψ(x ) defined by Equation (4.1) is one simple example of
wavelets. It has a simple structure and compact support; however, it is not
continuous, as can be seen from Figure 4.3. Are there any other wavelets
with better properties, say, continuity with even more smoothness, com-
pact support (i.e., the template function is zero outside a finite interval),
and symmetry? How can we find them? Haar’s example provides us with a
nested approximation structure (4.8) based on Haar wavelet basis decom-
position (4.7). In terms of the approximation, the collection Sj−1 can provide
a more accurate approximation to a signal than that by Sj . You can imagine,
in the example of measuring a length, that the meter ruler is more accurate
than a kilometer ruler and a millimeter ruler is more accurate than a meter
ruler, and so forth.

It is very important to note that the Haar wavelet function ψ(x ) ∈ S−1

while ψ(x ) �∈ S0. This fact implies that the Haar wavelet function could
be found in the complement of S0 in S−1. This process can be expressed
exactly in terms of a multiresolution signal decomposition (MRSD) first
noted by Mallat [14] and used by Daubechies [9,10] to construct a class
of new wavelet functions. Although it is very difficult to construct a wavelet
function directly, an approximation nested series {Sj } with some properties
such as (4.8) and (4.9) could be easily provided at sometimes. Then a
wavelet function might be constructed from such an approximation nested
series.

A multiresolution signal decomposition of L2(R) is a nested series of
closed subspaces Sj ⊂ L2(R) (for the example of measuring a length, the
following relation means that we have a series of lengths at different scales,
‘‘ . . . lightyear, kilometer, meter, . . . ’’)

{0} ⊂ · · · ⊂ S2 ⊂ S1 ⊂ S0 ⊂ S−1 ⊂ S−2 ⊂ · · · ⊂ L2(R) (4.11)
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with the following properties2

lim
j→−∞

Sj =
∞⋃

j=−∞
Sj = L2(R) (4.12)

∞⋂
j=−∞

Sj = {0} (4.13)

f (x ) ∈ S0 ⇔ f
( x

2j

)
∈ Sj (4.14)

and there exists a function φ(x ) belonging to L2(R) whose integer translates

{φ(x − k ) | k = . . . ,−2,−1, 0, 1, 2, . . . } (4.15)

is an orthonormal basis3 in L2(R). We also say that φ(x ) generates a
multiresolution signal decomposition {Sj }.

The term fj (x ) is the representation of f on the scale space Sj and
contains all details of f (x ) up to finer resolution level j . For example, if
the most accurate ruler used is a millimeter ruler, then we obtain a length
approximation only down to a millimeter. Property (4.12) says that the signal
approximation fj (x ) from Sj converges to an original signal f (x ) when j →
−∞ (the precision becomes finer and finer). You can imagine that fj is the
most accurate length to the length f (x ) in all measurable lengths Sj under
possible rulers; on the other hand, when j →+∞ (the precision becomes
coarser and coarser), Equation (4.13) implies that we lose all the details in
the signal f (x ). We cannot measure a length with bigger and bigger rulers.
Property (4.14) means that Sj is the 2j scale version of S0 by changing
scale and Sj is spanned by the scaled functions

{
φj ,k (x ) = 1√

2j
φ

(
x − 2j k

2j

) ∣∣∣k = . . . ,−2,−1, 0, 1, 2, . . .
}

that is, each element f (x ) in Sj ( j fixed) can be written in the following form:

f (x ) =
+∞∑

k=−∞
cj ,kφj ,k (x )

For the example of measuring a length, property (4.14) means that a length
on a larger scale such as meters can be represented by a length on smaller
scales such as millimeters.

2A ∪ B and A ∩ B are, respectively, the union and intersection of sets A and B; for instance,
let A = {1, 2, 3} and B = {2, 3, 5, 6}, then A ∪ B = {1, 2, 3, 5, 6} and A ∩ B = {2, 3}. ⋃∞j=−∞ Sj

is the union of all the collections Sj and
⋂∞

j=−∞ Sj the intersection of all the collections Sj .
3More generally {φ(x − k ) | k = . . . ,−2,−1, 0, 1, 2, . . . } may be a Riesz basis.
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The function generating an MRSD is called a scaling function. As any
scaling function φ(x ) ∈ S0 ⊂ S−1, φ(x ) can satisfy a scaling equation, that
is, there exists a sequence H = {hk | k = . . . ,−2,−1, 0, 1, 2, . . . } of real
numbers with, just like the relation of a length on different scales, we obtain

φ(x ) = √2
+∞∑

k=−∞
hkφ(2x − k ) (4.16)

where the coefficients hk can be calculated as

hk =
〈
φ(x ),

√
2φ(2x − k )

〉
(4.17)

This scaling equation relates a scaling function φ(x ) to integer translates
of its half-scale versions φ−2,k (x ). The sequence H = {hk | k = . . . ,−2,
−1, 0, 1, 2, . . . } in scaling equation might be interpreted as a discrete filter
as done in signal processing, called a scaling filter.

Example 4.4. Let φ(x ) be the basic unit step function defined by Equation
(4.6). It has been shown that the basic unit step yields a multiresolution
signal decomposition. From Equation (4.7) the scaling equation [Eq. (4.16)]
can be satisfied by taking

hk =
{

1√
2

if k = 0, 1

0 otherwise

Our aim is to construct a wavelet to describe detailed information in a
signal, not just to build a multiresolution signal decomposition. The aim of
introducing MRSD is to construct a wavelet function, specifically, the rulers
for measuring a length. Hence we are really interested in the approximation
error between the approximations of f (x ) at the scales j and j − 1, which
are respectively equal to their orthogonal projections on Sj and Sj−1. As Sj

is included in Sj−1, there is an orthogonal complement of Sj in Sj−1:

Sj−1 = Sj

⊕
Wj (4.18)

which means that any function in Sj−1 can be split into two orthogonal
parts, one in Sj and the other in Wj . How can we understand this method-
ology? Consider the problem of measuring length again. Suppose Sj−1 is
all the length information with the accuracy down to the millimeter scale
and Sj is the length information on the meter scale. Then we can see that
the information in Sj−1 can be split into the information within Sj and the
information exactly on the millimeter scale. Thus our desired ruler on the
millimeter scale must lie within the error information between Sj−1 and Sj .
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The subspaces Wj are called wavelet subspaces. Similar to the Haar
wavelet, we hope that a wavelet basis can be found in these wavelet sub-
spaces. In fact, Mallat [14], Meyer [16], and others proved that for every
MRSD there exists a wavelet function ψ(x ) whose scaled and translated
versions of{

ψj ,k (x ) = 1√
2j
ψ

(
x − 2j k

2j

) ∣∣∣ k = . . . ,−2,−1, 0, 1, 2, . . .
}

generate an orthonormal basis of the wavelet subspace Wj for each fixed
j ∈ Z. This is similar to our rulers for measuring a length. Furthermore,
the wavelet function can be explicitly constructed from the scaling function
φ(x ). The main conclusion can be expressed as follows.

Main Conclusion. Let φ(x ) be an orthogonal scaling function, satisfy-
ing the scaling equation (4.16) with a scaling filter H = {hk |k = . . . ,
−2,−1, 0, 1, 2, . . . }, and generate an MRSD {Sj }−∞j=+∞. Then the function
ψ(x ) ∈ S−1, defined by

ψ(x ) = √2
+∞∑

k=−∞
gkφ(2x − k ) =

+∞∑
k=−∞

gkφ−1,k (x ), (4.19)

with gk = (− 1)1−k h1−k , (4.20)

has the following properties:

1. For any fixed j{
ψj ,k (x ) = 1√

2j
ψ

(
x − 2j k

2j

) ∣∣∣k = . . . ,−2,−1, 0, 1, 2, . . .
}

is an orthonormal basis for Wj

2. All scaled and translated versions {ψj ,k (x ) | j , k = . . . ,−2,−1, 0, 1,
2, . . . } provides an orthonormal basis for L2(R); that is, for any f (x ) ∈
L2(R), one has

f (x ) =
+∞∑

j=−∞

+∞∑
j=−∞

dj ,kψj ,k (x ) (4.21)

where dj ,k = 〈f (x ),ψj ,k (x )〉 are called the wavelet coefficients.

In the previous equations we called H = {hk | k = . . . ,−2,−1, 0, 1, 2, . . . }
the scaling filter and G = {gk | k = . . . ,−2,−1, 0, 1, 2, . . . } the wavelet
filter.
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We can use two main strategies to construct a wavelet function ψ(x ).

Strategy 1

1. Give or choose an MRSD {Sj }−∞j=+∞ associated with a scaling func-
tion φ(x ) (sometimes defining an MRSD is much easier than directly
constructing a wavelet function).

2. Find the coefficients hk of scaling filter H = {hk |k = . . . ,−2,−1,
0, 1, 2, . . . } by Equation (4.17).

3. Construct a wavelet function ψ(x ) using Equations (4.19) and (4.20).

Strategy 2

1. Give a scaling filter H = {hk |k = . . . ,−2,−1, 0, 1, 2, . . . } with some
necessary properties and generate a scaling function φ(x ) using
Equation (4.16).

2. Construct a wavelet function ψ(x ) using Equations (4.19) and (4.20).

4.1.3. Basic Properties of Wavelet Function

The MRSD provides us the techniques for constructing wavelet functions.
However, a further question is what kind of wavelet functions are preferred.
Most applications of wavelets exploit their ability to efficiently approximate
or represent particular classes of signals with few nonzero wavelet coeffi-
cients. This applies not only for data compression but also for noise removal
in chemical data analysis and fast calculations. The design of wavelet
function ψ(x ) must therefore be optimized to produce a maximum num-
ber of wavelet coefficients dj ,k = 〈f (x ),ψj ,k (x )〉 in (4.21) that are close
to zero. A signal f (x ) has few nonnegligible wavelet coefficients if most
of the fine-scale wavelet coefficients are small. This depends mostly on
the smoothness of signal f (x ) and the properties of wavelet function ψ(x )
itself. The following features are very important to a wavelet function with
the mentioned optimal property:

Vanishing Moments

A wavelet function ψ(x ) has p vanishing moments if∫ +∞

−∞
x kψ(x )dx = 0 for 0 ≤ k < p

Why do we introduce the concept of vanishing moments? Simply speak-
ing, if a wavelet functionψ(x ) has larger vanishing moments, then the
wavelet coefficients |dj ,k | of a smooth function f (x ) are much smaller
on a larger scale j (or at finer resolution).
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Compact Support

The compact support of a wavelet function ψ(x ) is the maximal inter-
val outside of which wavelet function has zero value. For example,
the support of Haar wavelet function ψ(x ) is [0, 1) [see Eq. (4.1)].
In general, the smaller the size of such compact, the fewer the high-
amplitude wavelet coefficients there are. There exists a relationship
between the sizes of support of wavelet function and the correspond-
ing scaling filter. If a scaling filter {hk | k = . . . ,−2,−1, 0, 1, 2, . . . }
has only nonzero values for N1 ≤ k ≤ N2, then the corresponding
wavelet function ψ(x ) has a support of size N2 − N1.

Regularity/Smoothness

The regularity of ψ(x ) is a more complicated mathematical concept. It is
related to the definition of Hölder continuity and other factors. In this
chapter we discuss only continuity and smoothness. For example,
the Haar wavelet is an example of discontinous wavelets.

4.2. WAVELET FUNCTION EXAMPLES

In the last section we provided MRSD as a tool to construct some desired
wavelet functions. Can any wavelet function be found from a MRSD? The
simplest Haar provides us an example that can be constructed by the
MRSD generated from a special scaling function: the basic unit step func-
tion φ(x ) = 1[0,1)(x ). In this section we are about to build more examples
and to provide readers with several wavelet functions for their possible
applications.

4.2.1. Meyer Wavelet

As mentioned in the rest of Section 4.1.2, one can construct a wavelet func-
tion in the Fourier transform. The Meyer wavelet function ψ(x ) is the first
example of a wavelet function given its Fourier transform, found by French
mathematician Y. Meyer in the 1980s. The Meyer wavelet function is a
frequency band-limited function whose Fourier transform has a compact
support, namely, nonzero only in a finite interval of frequency variable ω.
It is constructed by using the second strategy. The resultant scaling func-
tion φ(x ) is defined by its Fourier transform. In Meyer’s method, only the
Fourier transform ψ̂(ω) of the Meyer wavelet function ψ(x ) is given. As
the expression is very complicated, we omit it here. Readers can consult
Daubechies’s book [10] for further details.
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Figure 4.4. Meyer scaling function φ and wavelet ψ .

However, we have no explicit formulas for both the Meyer wavelet
function ψ(x ) and the Meyer scaling function φ(x ), although the Fourier
transforms of these two functions have been given. Figure 4.4 displays
the corresponding Meyer scaling function φ(x ) and Meyer wavelet function
ψ(x ). You are encouraged to plot these figures by yourselves with the aid
of the MATLAB wavelet toolbox.

Neither the Meyer wavelet function ψ(x ) nor the Meyer scaling function
φ(x ) has compact support, that is, ψ(x ) �= 0 and φ(x ) �= 0 for any x except
for some points, but these functions do decrease to 0 when x → ∞ at a
very fast speed. Visually they appear as a small wave (see Fig. 4.4), so
they can be considered as local waves.

These two functions have better regularity, that is, they are infinitely
differentiable, andψ(x ) has an infinite number of vanishing moments; thus,
for any integer m ≥ 0, one has∫ +∞

−∞
x mψ(x )dx = 0

4.2.2. B-Spline (Battle--Lemari �e) Wavelets

The first strategy is used to construct B-spline wavelet series, assuming
a scaling function first. Let Bm(x ) be the box spline of degree m, as in
Chapter 2. Bm(x ) can be computed by convolving the basic unit step func-
tion 1[0,1) [see Eq. (4.6)] with itself (m + 1) times. It has a compact support
centered at 0 or 1

2 , and is a piecewise polynomial function with (m − 1)
times continuous differentiability. Its Fourier transform is

B̂m(ω) =
(

sin ω
2

ω
2

)m+1

e−i (νω/2)

where ν is an indicator whose value is 1 if m is even and 0 if m is odd.
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Let S0 be the set or collection of all the functions consisting of a linear
combination of integer translates of Bm(x ); thus, for any f (x ) in S0 one has

f (x ) =
∑
k∈Z

ck Bm(x − k )

Since the integer translates Bm(x − k )s of B-splines are not orthogonal to
each other, we need a procedure for constructing a scaling function φ(x )
in S0 whose integer translates are orthogonal to each other so that we can
generate an MRSD. The procedure can be arrived at in the Fourier domain.
After complicated computation, the procedure gives us a scaling function
φm(x ), which can be represented in terms of its Fourier transform. Similarly,
the Fourier transform of a B-spline wavelet ψm(x ) can be obtained. Neither
of these functions is discussed here; instead, properties of both the scal-
ing filter and the wavelet filter are given. Table 4.1 lists hk corresponding
to linear splines m = 1 and cubic splines m = 3 in which the absolute
coefficients less than 10−3 are omitted.

The B-spline wavelet function ψm(x ) has (m + 1) vanishing moments
and an exponential decay. Since it is generated by a B-spline of degree m,
it is (m−1) times continuously differentiable. Although the B-spline wavelet
has less regularity than the Meyer wavelet, it has faster asymptotic decay;
in other words, the B-spline wavelet is more likely to be a local wave than
a Meyer wavelet. Figure 4.5 displays the graph of the cubic spline scaling
function φ3(x ) and waveletψ3(x ), which is more popular than other B-spline
wavelets in actual applications.

Table 4.1. Scaling Coefficients Corresponding to Linear Spline
Wavelet and Cubic Spline Wavelet

k hk k kk

m = 1 0 0.817645956 m = 3 4,−4 0.032080869
1,−1 0.397296430 5,−5 0.042068328
2,−2 −0.069101020 6,−6 −0.017176331
3,−3 −0.051945337 7,−7 −0.017982291
4,−4 0.016974805 8,−8 0.008685294
5,−5 0.009990599 9,−9 0.008201477
6,−6 −0.003883261 10,−10 −0.004353840
7,−7 −0.002201945 11,−11 −0.003882426

m = 3 0 0.766130398 12,−12 0.002186714
1,−1 0.433923147 13,−13 0.001882120
2,−2 −0.050201753 14,−14 −0.001103748
3,−3 −0.110036987
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Figure 4.5. Cubic spline scaling function φ and wavelet ψ .

4.2.3. Daubechies Wavelets

Daubechies wavelets (see Daubechies wavelets and scaling functions in
Fig. 4.6) are commonly used in wavelet analysis. They were developed
by mathematician I. Daubechies in 1989. Although Meyer wavelet and
spline wavelets are orthogonal, they are not compactly supported; that
is, ψ(x ) �= 0 for any x except for some points. The Daubechies wavelet
is the first example of wavelets with the compactly supported properties.
The construction strategy for Daubechies wavelets is to begin with finite-
impulse response filters H = {h0, h1, . . . , hN−1}, which implies that the
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Figure 4.6. Daubechies scaling functions φ and wavelets ψ .



\c04" | 2004/1/28 | 9:50 | page 117 | #19

wavelet function examples 117

transfer function of H is a trigonometric polynomial:

H (ω) =
N−1∑
k=0

hk e−ikω

Daubechies provided a constructive proof of the existence for such a
wavelet function. Take N = 2p, where p is a given order of vanish-
ing moments; then there exists at least a wavelet ψ(x ) with p vanishing
moments and support [−p + 1, p], and the corresponding scaling function
φ(x ) has the support defined by [0, 2p − 1]. When p = 1, one obtains
the Haar wavelet. Daubechies gave a computing method for the filter
coefficients hk . Table 4.2 lists all the filter coefficients for p ≤ 7.

We still have no explicit formulas for the scaling function φ(x ) and the
wavelet function ψ(x ). The regularity of φ(x ) and ψ(x ) is the same since by
the scaling Equation (4.19), ψ(x ) is a finite linear combination of φ−1,k (x ).
However, this regularity is difficult to estimate precisely. In general, the
Daubechies wavelet is uniformly smooth. For p = 2, the wavelet ψ(x ) is
only continuous but nondifferentiable (with Lipschitz order 0.55); for p = 3,
the wavelet ψ(x ) is already continuously differentiable.

Daubechies wavelets are very asymmetric. To obtain a symmetric or
antisymmetric wavelet, the scaling filter H must be symmetric or antisym-
metric with respect to the center of its support. Daubechies has proved that
the Haar wavelet is the only one compactly supported classical wavelet
whose filter is symmetric or antisymmetric. Daubechies made modifica-
tions to her wavelets such that the symmetry of new wavelets can be
improved while retaining great simplicity. The resulting wavelets still have
a minimum support [−p + 1, p] with p vanishing moments, but they are
more symmetric. Those wavelets, called Symmlets, have many properties
similar to those of Daubechies wavelets.

4.2.4. Coiflet Functions

Daubechies wavelets are asymmetric. In actual applications, symmetric
templates are sometimes preferred. However, Daubechies proved that
no wavelet function could exist with the properties of compact support,
continuity, and symmetry occurring simultaneously.

Coiflets are wavelet functions with much more symmetry than
Daubechies wavelets. A coiflet function ψ(x ) has 2p vanishing moments,
and the corresponding scaling function φ(x ) has (2p − 1) vanishing
moments. Both functions have a compact support of length (6p − 1).

The coefficients of scaling filters are listed in Table 4.3.
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Table 4.2. Daubechies Wavelet Coefficients

k hk k kk

p = 1 0 0.707106781 p = 6 0 0.111540743
1 0.707106781 1 0.494623890

p = 2 0 0.482962913 2 0.751133908
1 0.836516304 3 0.315250352
2 0.224143868 4 −0.226264693
3 −0.129409523 5 −0.129766868

p = 3 0 0.332670553 6 0.097501606
1 0.806891509 7 0.027522866
2 0.459877502 8 −0.031582039
3 −0.135011020 9 0.000553842
4 −0.085441274 10 0.004777258
5 0.035226292 11 −0.001077301

p = 4 0 0.230377813 p = 7 0 0.077852054
1 0.714846571 1 0.396539319
2 0.630880768 2 0.729132091
3 −0.027983769 3 0.469782287
4 −0.187034812 4 −0.143906004
5 0.030841382 5 −0.224036185
6 0.032883012 6 0.071309219
7 −0.010597402 7 0.080612609

p = 5 0 0.160102398 8 −0.038029937
1 0.603829270 9 −0.016574542
2 0.724308528 10 0.012550999
3 0.138428146 11 0.000429578
4 −0.242294887 12 −0.001801641
5 −0.032244870 13 0.000353714
6 0.077571494
7 −0.006241490
8 −0.012580752
9 0.003335725

For more details, see Daubechies’s book [10]. We suggest that you
explore coiflets using the MATLAB wavelet toolbox.

4.3. FAST WAVELET ALGORITHM AND PACKET ALGORITHM

In this section we introduce the basic algorithm, derived by Mallat [14] for
fast computation of the discrete wavelet transform. In practice, any signals
from an equipment, such as chemical spectrum, are discrete. Thus the
most useful transform should be in discrete version. The discrete wavelet
algorithms can be easily derived from the scaling equations. The wavelet
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Table 4.3. The Coefficients of Scaling Filters Corresponding
to Coiflets

k hk k kk

p = 1 0 −0.015655728 p = 3 0 −0.000034600
1 −0.072732620 1 −0.000070983
2 0.384864847 2 0.000466217
3 0.852572020 3 0.001117519
4 0.337897662 4 −0.002574518
5 −0.072732612 5 −0.009007976

p = 2 0 −0.000720549 6 0.015880545
1 −0.001823209 7 0.034555028
2 0.005611435 8 −0.082301927
3 0.023680172 9 −0.071799822
4 −0.059434419 10 0.428483476
5 −0.076488599 11 0.793777223
6 0.417005184 12 0.405176902
7 0.812723635 13 −0.061123390
8 0.386110067 14 −0.065771911
9 −0.067372555 15 0.023452696

10 −0.041464937 16 0.007782596
11 0.016387336 17 −0.003793513

packet algorithm, a more general algorithm, will be also introduced in this
section.

4.3.1. Fast Wavelet Transform

Consider a scaling function φ(x ) whose integer translates are orthonormal.
Assume that the scaling function φ(x ) generates a MRSD {Sj }−∞j=+∞. For a
given discrete signal c = {ck |k = . . . ,−2,−1, 0, 1, 2, . . . }, let us associate
c with a signal function in S0:

f (x ) =
+∞∑

k=−∞
ckφ(x − k ) (4.22)

Mallat developed an algorithm, called fast wavelet transform (FWT), to
express the signal f (x ) of Equation (4.22) in terms of the corresponding
wavelet function ψ(x ). The algorithm is defined as follows:

cj ,k =
+∞∑

m=−∞
hm−2k cj−1,m , (4.23)

dj ,k =
+∞∑

m=−∞
gm−2k cj−1,m . (4.24)
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In the language of signal processing, Equations (4.3) and (4.24)
mean that the signals cj = {cj ,k |k = . . . ,−2,−1, 0, 1, 2, . . . } and dj =
{dj ,k |k = . . . ,−2,−1, 0, 1, 2, . . . } are, respectively, the convolutions of
{cj−1,k |k = . . . ,−2,−1, 0, 1, 2, . . . } with the filters H∗ = {h−k |k = . . . ,−2,
−1, 0, 1, 2, . . . } = {. . . , h2, h1, h0, h−1, h−2, . . . } and G∗ = {g−k |k =
. . . ,−2,−1, 0, 1, 2, . . . } = {. . . , g2, g1, g0, g−1, g−2, . . . } followed by ‘‘down-
sampling’’ of factor 2. Denote still by H∗ and G∗ such the convolution
operators (with downsampling), respectively, then the decomposition
algorithms (4.23) and (4.24) can be written as

cj = H∗cj−1 (4.25)

dj = G∗cj−1 (4.26)

The whole decomposition process is started from c0 := c until J lev-
els of decomposition where J is a given number of scales. A three-level
decomposition process has been shown by Figure 4.7.

After a J -level decomposition process, the initial discrete signal c0

has been turned into a sequence of newly generated signals {cJ ;
dJ ; dJ−1; . . . ; d1}.

Example 4.5. In order to see how to implement the decomposition algo-
rithm, consider a special discrete signal c0 = . . . , 0, 0, 1, 2, 2, 1, 0, 0, . . .
such that c0,−2 = 1, c0,−1 = 2, c0,0 = 2, c0,1 = 1 and other c0,k = 0.
Choose a Daubechies wavelet with the filter coefficients:

h0 = 1−√3

4
√

2
, h1 = 3−√3

4
√

2
, h2 = 3+√3

4
√

2
, h3 = 1+√3

4
√

2

and from Equation (4.20)

g−2 = −1+√3

4
√

2
, g−1 = 3+√3

4
√

2
, g0 = −3−√3

4
√

2
, g1 = 1−√3

4
√

2
.

c3

 c2

 c1

 c0

 d1

 d2

 d3

FWT 

Figure 4.7. The structure of a three-level fast wavelet transform.
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At the first-level decomposition, we take j = 1 in the algorithms (4.23)
and (4.24). By the algorithm we have

c1,−2 =
+∞∑

m=−∞
hm+4c0,m

= h0c0,−4 + h1c0,−3 + h2c0,−2 + h3c0,−1 = 5+ 3
√

3

4
√

2

c1,−1 =
+∞∑

m=−∞
hm+2c0,m

= h0c0,−2 + h1c0,−1 + h2c0,0 + h3c0,1 = 14

4
√

2

c1,0 =
+∞∑

m=−∞
hmc0,m

= h0c0,0 + h1c0,1 + h2c0,2 + h3c0,3 = 5− 3
√

3

4
√

2

and while for other k , c1,k = 0. Hence

c1 = . . . , 0, 0,
5+ 3

√
3

4
√

2
,

14

4
√

2
,

5+ 3
√

3

4
√

2
, 0, 0, . . .

Similarly, we have

d1,−1 =
+∞∑

m=−∞
gm+2c0,m

= g−2c0,−4 + g−1c0,−3 + g0c0,−2 + g1c0,−1 = −1−√3

4
√

2

d1,0 =
+∞∑

m=−∞
gmc0,m

= g−2c0,−2 + g−1c0,−1 + g0c0,0 + g1c0,1 = 2
√

3

4
√

2

d1,1 =
+∞∑

m=−∞
gm−2c0,m

= g−2c0,0 + g−1c0,1 + g0c0,2 + g1c0,3 = 1−√3

4
√

2
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and others d1,k = 0. Hence

d1 = . . . , 0, 0,
−1−√3

4
√

2
,

2
√

3

4
√

2
,

1−√3

4
√

2
, 0, 0, . . .

Similar calculations produce

c2,−2 = 19+ 14
√

3
16

, c2,−1 = 22− 10
√

3
16

, c2,0 = 7− 4
√

3
16

d2,−1 = 4− 9
√

3
16

, d2,0 = 2+ 10
√

3
16

, d2,1 = 2−√3
16

c3,−2 = 91+ 73
√

3

64
√

2
, c3,−1 = 82− 62

√
3

64
√

2
, c3,0 = 19− 11

√
3

64
√

2

d3,−1 = 37− 55
√

3

64
√

2
, d3,0 = −58− 22

√
3

64
√

2
, d3,1 = 5− 3

√
3

64
√

2
...

For example, at three-level decomposition, the final decomposition consists
of the following discrete signals:

d1 = . . . , 0, 0,
−1−√3

4
√

2
,

2
√

3

4
√

2
,

1−√3

4
√

2
, 0, 0, . . .

d2 = . . . , 0, 0,
4− 9

√
3

16
,

2+ 10
√

3
16

,
2−√3

16
, 0, 0, . . .

d3 = . . . , 0, 0,
37− 55

√
3

64
√

2
,−58− 22

√
3

64
√

2
,

5− 3
√

3

64
√

2
, 0, 0, . . .

c3 = . . . , 0, 0,
91+ 73

√
3

64
√

2
,

82− 62
√

3

64
√

2
,

19− 11
√

3

64
√

2
, 0, 0, . . .

4.3.2. Inverse Fast Wavelet Transform

Now we turn to the reconstruction problem. Suppose that we have an
J -level decomposition {cJ ; dJ ; dJ−1; . . . ; d1} from a certain discrete signal
c0, where cj = {cj ,k |k = . . . ,−2,−1, 0, 1, 2, . . . } and dj = {dj ,k |k = . . . ,
−2,−1, 0, 1, 2, . . . }. The inverse wavelet transformation can be used to
attain the aim of reconstructing a signal c0; that is, when we are given all the
information provided by rulers on different scales, we can reconstruct the
information of the whole length. The inverse wavelet is also a successive
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procedure. In general we can get, at any level j , the inverse fast wavelet
transform (IFWT)

cj ,k =
+∞∑

m=−∞
cj+1,mhk−2m +

+∞∑
m=−∞

dj+1,mgk−2m (4.27)

which reconstructs the signal cj from cj+1 and dj+1 and can be recursively
used to get the original signal c0 from j = J to j = 1.

Let us explain the meaning of reconstruction algorithm (4.27). Define a
new signal sequence

ĉl =
{

cj+1,m if l = 2m

0 if l = 2m + 1
for l ∈ Z

which is created from the sequence {cj+1,m|m = . . . ,−2,−1, 0, 1, 2, . . . } by
inserting 0 values between its components. Consider the first part of sum-
mation in the right-hand side (RHS) of (4.27). This part can be viewed as
the discrete convolutions between the resulted signal ĉ = {ĉl |l = . . . ,−2,
−1, 0, 1, 2, . . . } and the filter H = {hk |k = . . . ,−2,−1, 0, 1, 2, . . . }, that is,
following an ‘‘upsampling’’ of factor 2 calculate the convolutions between
the upsampled signal and the filter H = {hk |k = . . . ,−2,−1, 0, 1, 2, . . . }.
The second part of the summation in (4.27) has a similar explanation. The
upsampling-convolution procedures described above are denoted by H
and G, respectively; then the algorithm (4.27) is simply written as

cj = Hcj+1 +Gdj+1

Example 4.6. From Example 4.5, the two-level decomposed signals are

d1 = . . . , 0, 0,
−1−√3

4
√

2
,

2
√

3
4

,
1−√3

4
√

2
, 0, 0, . . .

d2 = . . . , 0, 0,
4− 9

√
3

16
,

2+ 10
√

3
16

,
2−√3

16
, 0, 0, . . .

c2 = . . . , 0, 0,
19+ 14

√
3

16
,

22− 10
√

3
16

,
7− 4

√
3

16
, 0, 0, . . .

In order to reconstruct the original signal c0, we have to get the smooth
signal c1 at the level 1 first.
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By the algorithm in Equation (4.27) we have

c1,−2 =
+∞∑

m=−∞
c2,mh−2−2m +

+∞∑
m=−∞

d2,mg−2−2m

= c2,−2h2 + c2,−1h0 + d2,−1g0 + d2,0g−2

= 19+ 14
√

3
16

× 3+√3

4
√

2
+ 22− 10

√
3

16
× 1−√3

4
√

2

+ 4− 9
√

3
16

× −3+√3

4
√

2
+ 2+ 10

√
3

16
× −1−√3

4
√

2
= 5+ 3

√
3

4
√

2

c1,−1 =
+∞∑

m=−∞
c2,mh−1−2m +

+∞∑
m=−∞

d2,mg−1−2m

= c2,−2h3 + c2,−1h1 + d2,−1g1 + d2,0g−1

= 19+ 14
√

3
16

× 1+√3

4
√

2
+ 22− 10

√
3

16
× 3−√3

4
√

2

+ 4− 9
√

3
16

× 1−√3

4
√

2
+ 2+ 10

√
3

16
× 3+√3

4
√

2
= 14

4
√

2

c1,0 =
+∞∑

m=−∞
c2,mh−2m +

+∞∑
m=−∞

d2,mg−2m

= c2,−1h2 + c2,0h0 + d2,0g0 + d2,1g−2

= 22− 10
√

3
16

× 3+√3

4
√

2
+ 7− 4

√
3

16
× 1−√3

4
√

2

+ 2+ 10
√

3
16

× −3+√3

4
√

2
+ 2−√3

16
× −1−√3

4
√

2
= 5− 3

√
3

4
√

2

Finally, similar calculations will result in the original signal c0. Take the
component c0,0 as an example here:

c0,0 =
+∞∑

m=−∞
c1,mh−2m +

+∞∑
m=−∞

d1,mg−2m

= c1,−1h2 + c1,0h0 + d1,0g0 + d1,1g−2

= 14

4
√

2
× 3+√3

4
√

2
+ 5− 3

√
3

4
√

2
× 1−√3

4
√

2

+ 2
√

3

4
√

2
× −3+√3

4
√

2
+ 1−√3

4
√

2
× −1−√3

4
√

2
= 2
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4.3.3. Finite Discrete Signal Handling with Wavelet Transform

The fast wavelet transforms (4.23) and (4.24) as well as the reconstruction
algorithm (4.27) are defined for infinite signal sequences and the length of
the filters H = {hk |k = . . . ,−2,−1, 0, 1, 2, . . . } and G = {gk |k = . . . ,−2,
−1, 0, 1, 2, . . . }may also be infinite, although most of the known wavelet fil-
ters have an finite support. However, any signals obtained from equipment
is of finite length. Hence there exists a problem when dealing with a finite
discrete signal.

For the sake of simplicity or in practice, we will assume that the support
of filters H = {hk |k = . . . ,−2,−1, 0, 1, 2, . . . } and G = {gk |k = . . . ,−2,
−1, 0, 1, 2, . . . } is finite, denoted by L. This is reasonable. Actually, most
wavelet functions have filters with finite lengths. The filters of many other
wavelet functions have rapidly decreasing properties; thus, when |k | is
sufficiently large, one has hk ≈ 0 and gk ≈ 0. Moreover, without any
confusion the indices of filter components are supposed to be from 0 to
L − 1; thus other components hk and gk are zeros for k �= 0, 1, . . . , L − 1.
As a consequence of this assumption, one can write

H = {hk }L−1
k=0 = {h0, h1, . . . , hL−1} and

G = {gk }L−1
k=0 = {g0, g1, . . . , gL−1}

Generally the observed signal c0 is assumed to be of finite length. Without
loss of generality, such a signal with finite length N is denoted by

c0 = {c0,k }N−1
k=0 = {c0,0, c0,1, . . . , c0,N−1}

Let us consider the decomposition algorithm (4.23), with an analysis sim-
ilar to that in Equation (4.24). In Section 4.3.1 we interpreted this algorithm
as convolution between the signal c0 and the filter H∗ = {h−k |k = . . . ,−2,
−1, 0, 1, 2, . . . } = {. . . , h2, h1, h0, h−1, h−2, . . . } in the case of level j = 1.
In other words, each component in signal c1 is the inner product (the sum
of products of components by components) of signal c0 and filter series
H = {hk |k = . . . ,−2,−1, 0, 1, 2, . . . } but with two-step shifting (right-hand
forward) of components of H once. For example, we have

c1,0 =
L−1∑
k=0

hk c0,k (4.28)

and

c1,1 =
L−1∑
k=0

hk c0,k+2 (4.29)
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and so on. The component c1,0 in (4.28) can be interpreted as aver-
age of vector c0 = (c0,0, c0,1, . . . , c0,N−1) of length N with weights H =
{h0, h1, . . . , hL−1} (assume that N > L), and the component c1,1 in (4.29)
is the average of vector c0 = (c0,0, c0,1, . . . , c0,N−1) but generated by mov-
ing window of weights H two steps righthand forward (for a discussion of
moving-window filtering, see Chapter 2). Other components in c1 can be
computed similarly. However, there are some difficulties while computing
c1,−1 by

c1,−1 =
L−1∑
k=0

hk c0,k−2 (4.30)

which is needed to reconstruct c0,0 by the reconstruction algorithm (4.27).
In fact, we should at least have c1,−L/2, . . . , c1,−2 and c1,−1 to reconstruct
c0,0, assuming that L is even. The difficulty in implementing (4.30) is that
we have no information about c0,−2 and c0,−1. In order to obtain c1,−L/2,
information about c0,−L, . . . , c0,−2 and c0,−1 should be provided. The similar
situation occurs at the other end of c0.

The basic method to overcome the difficulty is to extend the signal c0

with a length L (in fact, L − 2 is sufficient) at both sides. Let us still denote
the extended signal by c0

c0 = {c̃0,−L, . . . , c̃0,−1, c0,0, c0,1, . . . , c0,N−1, c̃0,N , . . . , c̃0,N−1+L}
where the c̃0,k values are components to be added. It is interesting to notice
that whatever the extension c̃0,k terms are, the decomposition performed
using scheme (4.27) is perfect and the original signal can be recovered
using inverse fast wavelet transform (4.27) from

c1 = {c1,−L/2, . . . , c1,−1, c1,0, c1,1, . . . , c1,N/2−1}
and

d1 = {d1,−L/2, . . . , d1,−1, d1,0, d1,1, . . . , d1,N/2−1}
where N is assumed to be even. This assumption is fixed in the following
discussion.

At the second level of fast wavelet transform, signal c1 = {c1,−L/2, . . . ,
c1,−1, c1,0, c1,1, . . . , c1,N/2−1} should be similarly extended in order to obtain
perfect reconstruction at level 2 and so on. The length of cj and dj depends
on the length of filter, the length of original signal c0, and the number of
levels.

In actual applications, there exist many sophisticated methods for side
extension. Typical methods for extending a signal include zero padding,
symmetrization, extrapolation, and periodic extension.
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Zero Padding. This method assumes that the signal is zero outside the
original support. For example, if the original finite signal is

c0 = {1,−2, 3, 2, 1, 3}

with length 6, then one of possible zero-padded signals is

czero
0 = {0, 0, 0, 0, 1,−2, 3, 2, 1, 3, 0, 0, 0, 0}.

However, the obvious disadvantage of zero padding is that discontinuities
are artificially created at the sides.

Symmetrization. This method assumes that signals can be recovered
outside their original support by symmetric boundary-value replication. For
example, the signal

c0 = {1,−2, 3, 2, 1, 3}

may be extended as

csym
0 = {2, 3,−2, 1, 1,−2, 3, 2, 1, 3, 3, 1, 2, 3}

This is the default mode of the wavelet transform in wavelet toolbox 2 of
MATLAB. Symmetrization has the disadvantage of artificially creating dis-
continuities of the first derivative at the border, but this method works well
in general for images.

Extrapolation. To create some values beyond the finite signal c0, one can
employ extrapolation methods. One such method is polynomial extrapola-
tion. Let us consider linear extrapolation. For example, in order to obtain
c0,−1, first define a line that intersects points (0, c0,0) and (1, c0,1) and then
compute c0,−1 such that the point (−1, c0,−1) is on the line. Hence we have

c0,−1 = 2c0,0 − c0,1

In other words, c0,0 is the mean value of c0,−1 and c0,1. In the similar cal-
culation c0,−2, c0,−3 as well as c0,N , the value of c0,N+1 can be determined
step by step. Hence in this procedure signal

c0 = {1,−2, 3, 2, 1, 3}

may be extended as

cline
0 = {13, 10, 7, 4, 1,−2, 3, 2, 1, 3, 5, 7, 9, 11}
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Periodization. This method assumes that signal has a period of its
length N . The signal may be extended by repeating its series of com-
ponents. For example, under periodization, signal

c0 = {1,−2, 3, 2, 1, 3}

may be extended as

cper
0 = {3, 2, 1, 3, 1,−2, 3, 2, 1, 3, 1,−2, 3, 2}

in which the first extended components [3,2,1,3] are repeated by the last
four components of the original signal and the last extended components
[1,−2,3,2] are repeated from the first four components of the original sig-
nal. If there is a large difference between the first and last components
of the original signal, it is obvious that discontinuity at extended points
will be introduced. One method to deal with this problem is to implement
translation--rotation transformation (TRT)

cTRT
0,k = c0,k − c0,0 − k

N − 1
(c0,N−1 − c0,0) (4.31)

where k (=0, 1, . . . , N − 1) is the index and N is the length of the signal.
After the TRT treatment, both cTRT

0,0 and cTRT
0,N−1 have the same value 0. Then

cTRT is extended periodically. By direct computation, the signal

c0 = {1,−2, 3, 2, 1, 3}

is converted into

cTRT
0 = {0,−3.4, 1.2,−0.2,−1.6, 0}

by TRT through Equation (4.31), then periodically extended as

cper
0 = {1.2,−0.2,−1.6, 0, 0,−3.4, 1.2,−0.2,−1.6, 0, 0,−3.4, 1.2,−0.2}

Conclusion. In the following discussion we assume that the periodic
extension is chosen. Under periodic extension we can prove that both
approximation signal c1 and detail signal d1 given by (4.23) and (4.24)
respectively are also periodic with a period of N/2. It means that we
only have to store N/2 components for c1 and d1, respectively. Denote
by c1 = {c1,0, c1,1, . . . , c1,N/2−1} and d1 = {d1,0, d1,1, . . . , d1,N/2−1} at the
first-level wavelet transform. Generally, at any level j , the approximation cj
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and detail dj from the fast wavelet transform are defined as

cj = {cj ,0, cj ,1, . . . , cj ,N/2j−1}
and

dj = {dj ,0, dj ,1, . . . , dj ,N/2j−1}
Under periodic extension both decomposition [Eqs. (4.23) and (4.24)]

and reconstruction [Eq. (4.27)] are very simple. Let us take j = 1 as an
example and that assume N and L are even numbers:

1. First, extend signal c0 = {c0,k }N−1
k=0 into

cext
0 = {c0,0, c0,1, . . . , c0,N−1, . . . , c0,0, c0,1, . . . , c0,L−3}

with length (N + L − 2).

2. Implement a moving filter (see Chapter 2) along with cext
0 by filter

H = {h0, h1, . . . , hL−1} but move two steps at each time, up to N/2
times. The result of such moving filter is taken as approximation signal
c1 = {c1,0, c1,1, . . . , c1,N/2−1}.

3. Implement another moving filter (see Chapter 2) along with cext
0 by

filter G = {g0, g1, . . . , gL−1} but move two steps at each time, up to
N/2 times. The result of such moving filter is taken as detail signal
d1 = {d1,0, d1,1, . . . , d1,N/2−1}.

Example 4.7. Consider a signal c0 = {1, 2, 3, 4}. The length of this signal is
N = 4. Compute the approximation and detail signals given by Daubechies
wavelet of second order.

Daubechies wavelet filters of second order are H =
{

1−√3
4
√

2
, 3−√3

4
√

2
,

3+√3
4
√

2
, 1+√3

4
√

2

}
and G =

{
− 1+√3

4
√

2
, 3+√3

4
√

2
,− 3−√3

4
√

2
, 1−√3

4
√

2

}
with length L = 4.

Thus the extended signal should be of length N + L − 2 = 6:

cext
0 = {1, 2, 3, 4, 1, 2}

By the moving-filter algorithm the first component of approximation signal
is given by [see Eq. (4.28)]

c1,0 = h0c0,0 + h1c0,1 + h2c0,2 + h3c0,3 = 5+√3√
2

and then by moving the filter two steps, the second component of ap-
proximation signal is [see Eq. (4.29)]

c1,1 = h0c0,2 + h1c0,3 + h2c0,4 + h3c0,5 = 5−√3√
2
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Similarly, the moving-filter algorithm with filter G is employed to cext
0 . It turns

out that

d1,0 = g0c0,0 + g1c0,1 + g2c0,2 + g3c0,3 = 0

d1,1 = g0c0,2 + g1c0,3 + g2c0,4 + g3c0,5 = 2√
2

At level 2, the approximation c1 =
{

5+√3√
2

, 5−√3√
2

}
is extended to cext

1 ={
5+√3√

2
, 5−√3√

2
, 5+√3√

2
, 5−√3√

2

}
with period 2. The moving filtering (only once)

along cext
1 with H and G are

c2,0 = h0c1,0 + h1c1,1 + h2c1,2 + h3c1,3 = 5

and

d2,0 = g0c1,0 + g1c1,1 + g2c1,2 + g3c1,3 = −
√

3.

This gives the final approximation and detail signal with period 1.

Now we will discuss the reconstruction algorithm for a signal with finite
length. Still assuming that periodic extension has been employed in the
decomposition procedure, we can describe the whole algorithm as follows:

1. Given approximation c1 = {c1,0, c1,1, . . . , c1,N/2−1} and detail d1 =
{d1,0, d1,1, . . . , d1,N/2−1} which are generated by fast wavelet trans-
form with filters H = {h0, h1, . . . , hL−2, hL−1} and G = {g0, g1, . . . ,
gL2 , gL−1}, we obtain the first inverse filters as H∗ = {hL−1, hL−2, . . . ,
h1, h0} and G∗ = {gL−1, gL−2, . . . , g1, g0}. Let L be even and denote
L = 2m.

2. Periodically extend both c1 and d1 from the front to cext
1 and dext

1 with
length of N

2 + L
2 − 1. Insert 0s between the components of both cext

1
and dext

1 as well as before the first components and after the last
components such that the resulting signals have length of N + L− 1.
The resultant signals are

c̃1 = {0, c1,N/2−L/2−1, 0, . . . , 0, c1,N/2−1, 0, c1,0, 0, . . . , 0, c1,N/2−1, 0}
and

d̃1 = {0, d1,N/2−L/2−1, 0, . . . , 0, d1,N/2−1, 0, d1,0, 0, . . . , 0, d1,N/2−1, 0}
3. Implement moving filters (see Chapter 2) along with c̃1 and d̃1 with

H∗ and G∗, respectively. Add two results of moving filters together to
give the reconstruction signal.



\c04" | 2004/1/28 | 9:50 | page 131 | #33

fast wavelet algorithm and packet algorithm 131

Example 4.8. From approximation signal

c1 =
{

5+√3√
2

,
5−√3√

2

}

and detail signal

d1 =
{

0,
2√
2

}

at level 1, use inverse fast wavelet transform with Daubechies wavelet of
the second order to reconstruct the original signal.

Note that N/2 = 2 and L = 4, the extended and inserted approximation
and detail signals, are

c̃1 =
{

0,
5−√3√

2
, 0,

5+√3√
2

, 0,
5−√3√

2
, 0

}

d̃
1 =

{
0,

2√
2

, 0, 0, 0,
2√
2

, 0
}

The inverse of Daubechies filters are H∗ =
{

1+√3
4
√

2
, 3+√3

4
√

2
, 3−√3

4
√

2
, 1−√3

4
√

2

}
and

G∗ =
{

1−√3
4
√

2
,− 3−√3

4
√

2
, 3+√3

4
√

2
,− 1+√3

4
√

2

}
. By the algorithm, the sum of the first

terms of two moving filtering is

c0,0 = 0× 1+√3

4
√

2
+ 5−√3√

2

3+√3

4
√

2
+ 0× 3−√3

4
√

2
+ 5+√3√

2

1−√3

4
√

2

+ 0× 1−√3

4
√

2
+ 2√

2

−3+√3

4
√

2
+ 0× 3+√3

4
√

2
+ 0× −1−√3

4
√

2
= 1

Similarly, we can compute c0,1, c0,2, and c0,3, and so on.

On the basis of the periodic assumption for a signal, the length of approx-
imation signal cj+1 = {cj+1,0, cj+1,1, . . . , cj+1,N/2j+1−1} and detail signal
dj+1 = {dj+1,0, dj+1,1, . . . , dj+1,N/2j+1−1} is half the of length of cj . Ordinar-
ily the length of the signal is assumed to be power 2 in the standard fast
wavelet transform. For a signal of any length the following ‘‘keep one’’
scheme can be applied:

1. Assume that the length of a finite discrete signal c0 = {c0,0, c0,1, . . . ,
c0,N−1} is N . If N is even, then implement the fast wavelet trans-
form once to get approximation signal c1 and detail signal d1 with
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length N/2. If N is odd, then keep the last component c0,N−1 and
implement fast wavelet transform on {c0,0, c0,1, . . . , c0,N−2} to get the
approximation signal c1 and detail signal d1;

2. At each level j , denote the length of the approximation signal cj =
{cj ,0, cj ,1, . . . , cj ,Nj−1} by Nj . If Nj is even, then implement the fast
wavelet transform on cj to get the approximation signal cj+1 and the
detail signal dj+1. If Nj is odd, then keep the last component cj ,Nj−1

and implement the fast wavelet transform on {cj ,0, cj ,1, . . . , cj ,Nj−2} to
obtain the approximation signal cj+1 and the detail signal dj+1.

3. Repeat step 2 until to a level J such that the length of cJ is 1.

4.3.4. Packet Wavelet Transform

In the fast wavelet transform algorithm, the approximation signal cj−1 is split
into two parts: a coarser approximation cj and a detail dj that disappears
in coarser approximation at each level j . The information lost between two
successive approximations is captured in the detail signal dj . Then the next
step involves splitting the new approximation signal at coarser resolution
and the successive details are never reused.

Instead of splitting only the approximation signal, each detail signal (you
can consider this signal as a new signal to be transformed by WT) might
also be decomposed into two parts using the same approach as in approx-
imation signal splitting in the corresponding wavelet packet situation. The
number of signals generated by this recursive procedure at level j increases
as double the number of signals at level j − 1. You can see that there are
only two signals; one for approximation signal and the other one for detail
signal at level 1. As both approximation and detail signals are split by fast
wavelet transform, there are four signals generated at level 2, and so on.
This recursive splitting of signals is depicted in Figure 4.8, which shows
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Figure 4.8. The structure of wavelet packet up to three levels.
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the structure of a three-levels wavelet packet decomposition. All parts in
each line of this diagram are labeled by the level j , and the number p
of parts from left to right and are represented as a decomposed signal
wp

j = {w p
j ,k |k = . . . ,−2,−1, 0, 1, 2, . . . }. For example, w0

0 corresponds to
an original signal c at level 0. The idea of this decomposition is to start from
a scale-oriented decomposition and then to analyze the obtained signals
on frequency subbands.

The computation scheme for wavelet packets is easy when using an
orthogonal wavelet. Assume that φ(x ) is a scaling function of a given MRSD
and ψ(x ) is the corresponding wavelet function associated with a scaling
filter H = {hk |k = . . . ,−2,−1, 0, 1, 2, . . . }, and a wavelet filter G = {gk |
k = . . . ,−2,−1, 0, 1, 2, . . . }. In the wavelet packet diagram, each
decomposed signal wp

j at a part can be calculated from the signal
corresponding to its abovementioned part as

w 2p
j ,k =

+∞∑
m=−∞

hm−2k w p
j−1,m

w 2p+1
j ,k =

+∞∑
m=−∞

gm−2k w p
j−1,m

Thus, w2p
j and w2p+1

j are, respectively, the approximation signal and detail

signal of wp
j−1 from one-step fast wavelet transform. In Figure 4.8, each

part, except for the parts in the bottom line, covers two subparts that are
obtained from themselves by fast wavelet transform in one-step. In general,
suppose that an original signal w0

0 is of finite length, say, N ; then each part
wp

j (p = 0, 1, . . . , 2j − 1) should be of finite length N
2j .

At the reconstruction stage each part can be reconstructed from its
subparts by inverse fast wavelet transform as

w p
j ,k =

+∞∑
m=−∞

w 2p
j+1,mhk−2m +

+∞∑
m=−∞

w 2p+1
j+1,mgk−2m . (4.32)

It is obvious that the overall diagram of wp
j is redundant for reconstruction

of the original signal c0 = w0
0. One question to be answered is how many

resulting signals wp
j should be stored in order to reconstruct perfectly the

original signal w0
0 at the top of the diagram without any redundant informa-

tion. In order to answer this question, first let us note that all the information
contained in any parts of wavelet packet is conserved in its own two sub-
parts because of the orthogonal fast wavelet transform. Hence, if any part in
a wavelet packet diagram is chosen to be stored, then any subparts as well
as all sub-subparts and its upper parts do not have to be kept. Figure 4.9
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Figure 4.9. The parts to be kept.

illustrates two examples of this kind. The parts that should be kept are
given in the thick boxes. In Figure 4.9a the parts kept are the coefficients
of standard wavelet transform, i.e., {w0

3 = c3, w1
3 = d3, w1

2 = d2, w1
1 =

d1}. In Figure 4.9b, the parts kept consist of {w0
2, w2

3, w3
3, w2

2, w7
3, w6

3}. The
reconstruction process can be implemented from these parts as follows.
From the bottom parts w2

3 and w3
3, the detail signal w1

2 can be reconstructed
by (4.32) with w3

2 from the parts w6
3 and w7

3. Furthermore, w0
1 and w1

1 can
be reconstructed from w0

2, w1
2, w2

2, and w3
2, and finally w0

0 from w0
1 and w1

1.

4.4. BIORTHOGONAL WAVELET TRANSFORM

The requirement that the translates of scaling and wavelet functions consti-
tute orthonormal bases for the subspaces forming a MRSD and a wavelet
decomposition of signal space can be quite restrictive. In theory it has been
proved that no wavelet function occurs simultaneously with properties such
as smoothness, compact support, symmetry, and translation orthogonal-
ity. The Haar wavelet is an example of a wavelet that is symmetric and
compactly supported but discontinuous. Sometimes it might be desirable
to preserve the other properties and give up orthogonality.

4.4.1. Multiresolution Signal Decomposition of
Biorthogonal Wavelet

In order to introduce MRSD for biorthogoal wavelet, let us modify the
concept of MRSD by replacing the last requirement [see Eq. (4.15)] with
{φ(x − k )|k = . . . ,−2,−1, 0, 1, 2, . . . } as a Riesz basis for S0. From now
on we say that a scaling function φ(x ) forms a MRSD in the sense of the
version modified above.
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Mathematically, MRSD for biorthogonal wavelets starts from two mul-
tiresolution signal decompositions. It is hard for a student with a chemistry
orientation to understand this. Please bear in mind the following fact: If an
coordinate system is not orthogonal, then the projection of a point in the
system (coordinate value) can be calculated by the inner product of the
point vector with the axis vectors of a coordinate system biorthogonal to
the original coordinate system. Take a close look at Equation (4.21). At this
time, ψ(x − k ) are not orthogonal to each other; thus the wavelet coeffi-
cients djk cannot be computed by 〈f (x ),ψj ,k (x )〉 but by 〈f (x ), ψ̃j ,k (x )〉 with
a biorthogonal system ψ̃j ,k (x ) to ψj ,k (x ). However, at this stage, we don’t
know both ψ(x ) and ψ̃(x ).

In order to find both ψ(x ) and ψ̃(x ), we take two MRSDs {Sj |j =
. . . ,−2,−1, 0, 1, 2, . . . } and {S̃j |j = . . . ,−2,−1, 0, 1, 2, . . . } generated by
two scaling functions φ(x ) and φ̃(x ), respectively. Two scaling functions
satisfy the biorthogonality conditions

〈φ(x − k1), φ̃(x − k2)〉 = δk1k2

The scaling functions, both φ(x ) and φ̃(x ), satisfy their own scaling
equations (4.16) with scaling filters {hk |k = . . . ,−2,−1, 0, 1, 2, . . . } and
{h̃k |k = . . . ,−2,−1, 0, 1, 2, . . . }, respectively. By a long mathematical
story, it can be proved that, with the definition

gk = (−1)1−k h̃1−k and g̃k = (−1)1−k h1−k

for any k = . . . ,−2,−1, 0, 1, 2, . . .
(4.33)

two wavelet functionsψ(x ) and ψ̃(x ) can be created, respectively, by Equa-
tion (4.19); and ψj ,k (x ) and ψ̃j ′,k ′ (x ) are biorthogonal to each other. Thus
any signal f (x ) ∈ L2(R) has two possible decompositions in these bases:

f (x ) =
+∞∑

j=−∞

+∞∑
k=−∞

〈f (x ),ψj ,k (x )〉ψ̃j ,k (x ) (4.34)

=
+∞∑

j ′=−∞

+∞∑
k ′=−∞

〈f (x ), ψ̃j ′,k ′ (x )〉ψj ′,k ′ (x ) (4.35)

Equations (4.34) and (4.35) provide two different decompositions for a sig-
nal f (x ). In the decomposition (4.34) the decomposition coefficient cj ,k =
〈f (x ),ψj ,k (x )〉 is associated with wavelet ψj ,k (x ) while the basis is associ-
ated with {ψ̃j ,k (x )}. In fact, the following fast biorthogonal wavelet transform
and reconstruction show that the decomposition is implemented by using
filters H = {hk |k = . . . ,−2,−1, 0, 1, 2, . . . } and G = {gk |k = . . . ,−2,



\c04" | 2004/1/28 | 9:50 | page 136 | #38

136 fundamentals of wavelet transform

−1, 0, 1, 2, . . . } as done in standard fast wavelet transform while the recon-
struction is generated with filters H̃ = {h̃k |k = . . . ,−2,−1, 0, 1, 2, . . . } and
G̃ = {g̃k |k = . . . ,−2,−1, 0, 1, 2, . . . }:

Fast Biorthogonal Wavelet Transform

cj ,k =
+∞∑

m=−∞
hm〈f (x ),φj−1,2k+m(x )〉 =

+∞∑
m=−∞

hm−2k cj−1,m

dj ,k =
+∞∑

m=−∞
gm〈f (x ),φj−1,2k+m(x )〉 =

+∞∑
m=−∞

gm−2k cj−1,m

Fast Inverse Biorthogonal Wavelet Transform

cj ,k =
+∞∑

m=−∞
cj+1,mh̃k−2m +

+∞∑
m=−∞

dj+1,mg̃k−2m

Also from Equation (4.35) we can see that a signal f (x ) can be decom-
posed with filters {h̃k |k = . . . ,−2,−1, 0, 1, 2, . . . } and {g̃k |k = . . . ,−2,
−1, 0, 1, 2, . . . }, and then reconstructed with filters {hk |k = . . . ,−2,
−1, 0, 1, 2, . . . } and {gk |k = . . . ,−2,−1, 0, 1, 2, . . . }.

4.4.2. Biorthogonal Spline Wavelets

In this section we introduce biorthogonal wavelets with a minimum size
support for a specified number of vanishing moments. These biorthogo-
nal wavelets with symmetric or antisymmetric supports are constructed
by Cohen and co-workers [8] based on spline MRSD. These biorthogonal
wavelets are known as CDF (Cohen--Daubechies--Feauveau) biorthogonal
wavelets or spline biorthogonal wavelets.

In the construction of orthogonal spline wavelets, the scaling function
φ(x ) is defined through the orthogonalized version of Fourier transform of
the B-spline function. Now this time let us directly choose the B-spline
function of degree m − 1 as a scaling function φm(x ) whose Fourier
transform is

φ̂(ω) = e−i (νω/2)
(

sin ω
2

ω
2

)m

where ν = 0 for m even and ν = 1 for m odd.
Cohen, Daubechies, and Feauveau gave the formulas for the biorthog-

onal filter H̃ with minimal length.
Table 4.4 gives the filter coefficients for some m and m̃. The resulting

scaling functions and wavelet functions for m = 3 and m̃ = 9 are shown in
Figure 4.10.
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Table 4.4. Coefficients of Scaling Filters and
Biorthogonal Scaling Filters Corresponding to

Biorthogonal Spline Wavelets

p, p̃ k hk h̃k

m = 2 0 0.707106781 0.966747552
m̃ = 6 1,−1 0.353553391 0.447466010

2,−2 −0.169871356
3,−3 −0.107723299
4,−4 0.046956310
5,−5 0.013810679
6,−6 −0.006905340

m = 3 0,1 0.530330086 0.942125701
m̃ = 9 −1, 2 0.176776695 0.002050023

−2, 3 −0.320191968
−3, 4 0.012300136
−4, 5 0.099134782
−5, 6 −0.014112788
−6, 7 −0.020618913
−7, 8 0.005060319
−8, 9 0.002039233
−9, 10 −0.000679744

4.4.3. A Computing Example

Fast biorthogonal wavelet transform is the same as standard fast wavelet
transform, while inverse fast biorthogonal wavelet transform is imple-
mented with two dual wavelet filtersH̃ andG̃. Yet, the computation structure
is consistent with that of fast wavelet transform. Thus the strategy intro-
duced in Section 4.3.3 for dealing with signals of finite length still be valid
for the fast biorthogonal wavelet transform and reconstruction.

In this section, we give an example demonstrating how to implement
such algorithms in the case of biorthogonal spline wavelet. Consider
biorthogonal spline wavelet of order (m, m̃) = (2, 4). The lowpass filter
H and its dual H̃ are

H =
{

h−1 =
√

2
4

, h0 =
√

2
2

, h1 =
√

2
4

}

H̃ =
{

h̃±4 = 3
√

2
128

, h̃±3 = −3
√

2
64

, h̃±2 = −
√

2
8

, h̃±1 = 19
√

2
64

, h̃0 = 45
√

2
64

}

The relations between filters and their duals [Eq. (4.33)] give

g̃0 = −h1 = −
√

2
4

, g̃1 = h0 =
√

2
2

, g̃0 = −h−1 = −
√

2
4
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Figure 4.10. Biorthogonal spline scaling functions and wavelets.

and

g−3 = h4 = 3
√

2
128

, g−2 = −h3 = 3
√

2
64

, g−1 = h2 = −
√

2
8

g0 = −h1 = −19
√

2
64

, g1 = h0 = 45
√

2
64

, g2 = −h−1 = −19
√

2
64

g3 = h−2 = −
√

2
8

, g4 = −h−3 = 3
√

2
64

, g5 = h−4 = 3
√

2
128

Construct four filters as follows

H =
{

0, 0, 0, 0,

√
2

4
,

√
2

2
,

√
2

4
, 0, 0, 0

}

G =
{

3
√

2
128

,
3
√

2
64

,−
√

2
8

,−19
√

2
64

,
45
√

2
64

,−19
√

2
64

,−
√

2
8

,
3
√

2
64

,
3
√

2
128

, 0

}
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H̃ =
{

3
√

2
128

,−3
√

2
64

,−
√

2
8

,
19
√

2
64

,
45
√

2
64

,
19
√

2
64

,−
√

2
8

,−3
√

2
64

,
3
√

2
128

, 0

}

G̃ =
{

0, 0, 0, 0,−
√

2
4

,

√
2

2
,−
√

2
4

, 0, 0, 0

}

where 0s are added such that all the filters have same length L = 10.
Consider a signal of length N = 10

c0 = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}
By the periodic extension technique given in Section 4.3.3, it turns out that

c0
ext = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10,

... 1, 2, 3, 4, 5, 6, 7, 8}
Employing two-step moving filtering between c0

ext and H gives

c1,0 = 5×
√

2
4
+ 6×

√
2

2
+ 7×

√
2

4
= 24

√
2

4

c1,1 = 7×
√

2
4
+ 8×

√
2

2
+ 9×

√
2

4
= 32

√
2

4

c1,2 = 9×
√

2
4
+ 10×

√
2

2
+ 1×

√
2

4
= 30

√
2

4

c1,3 = 1×
√

2
4
+ 2×

√
2

2
+ 3×

√
2

4
= 8

√
2

4

c1,4 = 3×
√

2
4
+ 4×

√
2

2
+ 5×

√
2

4
= 16

√
2

4

Similarly, two-step moving filtering between c0
ext and G gives

d1,0 = 0, d1,1 = −15
√

2
64

, d1,2 = 35
√

2
64

d1,3 = −225
√

2
64

, d1,4 = 45
√

2
64

Hence, after fast biorthogonal wavelet wavelet transform at level 1, the
approximation and detail signals are, respectively

c̃1 =
{

24
√

2
4

,
32
√

2
4

,
30
√

2
4

,
8
√

2
4

,
16
√

2
4

}

d̃1 =
{

0,−15
√

2
64

,
35
√

2
64

,−225
√

2
64

,
45
√

2
64

}

with period 5.
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In order to reconstruct c0 from c1 and d1, these subsignals are extended
as

c̃ext
1 =

{
0,

32
√

2
4

, 0,
30
√

2
4

, 0,
8
√

2
4

, 0,
16
√

2
4

, 0,
24
√

2
4

, 0,

32
√

2
4

, 0,
30
√

2
4

, 0,
8
√

2
4

, 0,
16
√

2
4

, 0

}

and

d̃
ext
1 =

{
0,−15

√
2

64
, 0,

35
√

2
64

, 0,−225
√

2
64

, 0,
45
√

2
64

, 0, 0, 0,−15
√

2
64

, 0,

35
√

2
64

, 0,−225
√

2
64

, 0,
45
√

2
64

, 0

}

By the algorithm given in Section 4.3.3, the first component by one-
step moving filtering between c̃ext

1 and H̃ is 289
64 and the first component

of moving filtering between d̃
ext
1 and G̃ is − 225

64 . It is obvious that the sum
of two components gives the first component of original signal c0,0 = 1.
You can further calculate other components c0,k (k = 1, . . . , 9) by moving
filtering.

4.5. TWO-DIMENSIONAL WAVELET TRANSFORM

4.5.1. Multidimensional Wavelet Analysis

A tensor product wavelet orthonormal basis of L2(R2) is constructed from
tensor products of a scaling function φ(x ) and a wavelet function ψ(x ). We
assume that the scaling function φ(x ) is associated with a one-dimensional
MRSD S = {Sj |j = . . . ,−2,−1, 0, 1, 2, . . . } of L2(R) and the corresponding
wavelet function is ψ(x ). From this MRSD we construct a two-dimensional
(2D) MRSD S2 = {S2

j |j = . . . ,−2,−1, 0, 1, 2, . . . } of L2(R2) by setting S2
j =

Sj ⊗Sj for each j , where Sj ⊗Sj is the subset of all the functions generated
by the products of the functions in Sj . Define a bivariate function by


(x , y ) = φ(x )φ(y )

and its scale and translation versions by


j ;k ,l (x , y ) = 1
2j



(
x − 2j k

2j
,

y − 2j l
2j

)
Then the family {
j ;k ,l (x , y )|k , l = . . . ,−2,−1, 0, 1, 2, . . . } will be an
orthonormal basis for S2

j .
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Denote W 2
j the detail subspace equivalent to the orthogonal comple-

ment of the lower-resolution approximation space S2
j in S2

j−1:

S2
j−1 = S2

j

⊕
W 2

j

The orthogonal basis of detail subspaces W 2
j will be called a two-

dimensional wavelet.
As in the case of 1D MRSD, it is interesting to construct such a 2D

wavelet basis in W 2
j . For this purpose, let us define three wavelet functions

�1(x , y ) = φ(x )ψ(y ), �2(x , y ) = ψ(x )φ(y ),

�3(x , y ) = ψ(x )ψ(y )
(4.36)

and their scale and translation versions for p = 1,2,3 and

�
p
j ;k ,l (x , y ) = 1

2j
�p
(

x − 2j k
2j

,
y − 2j l

2j

)

It has been proven, in standard wavelet theory, that the family

{�1
j ;k ,l (x , y ),�2

j ;k ,l (x , y ),�3
j ;k ,l (x , y )|j , k , l = . . . ,−2,−1, 0, 1, 2, . . . }

consists of an orthonormal basis for L2(R2).
In other words, the preceding discussion shows that one can easily con-

struct 2D wavelets from any given orthogonal scaling function φ(x ) and the
corresponding wavelet function ψ(x ). The three basic wavelets defined in
Equation (4.36) can extract detail at different scales and orientations. As
we know, a scaling function φ(x ) is used mainly to extract low-frequency
information from a signal while the wavelet analyzes high-frequency infor-
mation. Thus ψ1(x , y ) will extract the information of a two-dimensional
signal, say, an image, in low horizontal (x -axis) frequencies and high
vertical (y -axis) frequencies, whereas ψ2(x , y ) extracts the information
in high horizontal and low vertical frequencies and ψ3(x , y ) extracts the
information in high horizontal and high vertical frequencies.

Figure 4.11 shows the three bivariate wavelets defined by (4.36) with
the cubic spline scaling function and wavelet.

4.5.2. Implementation of Two-Dimensional Wavelet Transform

The fast wavelet transform algorithm derived in Section 4.3.1 is easily
extended in the case of two dimensions. Let C0 = {c0;k ,l |k , l = . . . ,
−2,−1, 0, 1, 2, . . . } be a discrete two-dimensional signal, called an image.
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Figure 4.11. Bivariate orthogonal cubic spline scaling function 
 and wavelets �p .

Associate C0 with a bivaraite function f (x , y ) in space S2
0 such that c0;k ,l =

〈f (x , y ),
0;k ,l (x , y )〉. Of course, function f (x , y ) can be given by

f (x , y ) =
+∞∑

k=−∞

+∞∑
l=−∞

c0;k ,l
0;,k ,l (x , y )

In general, we denote

cj ;k ,l = 〈f (x , y ),
j ;k ,l (x , y )〉 and d p
j ;k ,l = 〈f (x , y ),�p

j ;k ,l (x , y )〉

Then both Cj = {cj ;k ,l } and Dp
j = {d p

j ;k ,l } can be recursively calculated from
C0 by the following fast algorithm:

2D Fast Wavelet Transform

cj ;k ,l =
+∞∑

m=−∞

+∞∑
n=−∞

hm−2k hn−2l cj−1;m,n (4.37)

d 1
j ;k ,l =

+∞∑
m=−∞

+∞∑
n=−∞

hm−2k gn−2l cj−1;m,n (4.38)
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d 2
j ;k ,l =

+∞∑
m=−∞

+∞∑
n=−∞

gm−2k hn−2l cj−1;m,n (4.39)

d 3
j ;k ,l =

+∞∑
m=−∞

+∞∑
n=−∞

gm−2k gn−2l cj−1;m,n (4.40)

and, vice versa, Cj−1 can be perfectly reconstructed from Cj and Dp
j , for

each j , by the following IFWT.

2D Inverse Fast Wavelet Transform

cj ;k ,l =
+∞∑

m=−∞

+∞∑
n=−∞

cj+1;m,nhk−2mhl−2n +
+∞∑

m=−∞

+∞∑
n=−∞

d 1
j+1;m,nhk−2mgl−2n

+
+∞∑

m=−∞

+∞∑
n=−∞

d 2
j+1;m,ngk−2mhl−2n +

+∞∑
m=−∞

+∞∑
n=−∞

d 3
j+1;m,ngk−2mgl−2n

(4.41)

After J recursive procedures of 2D fast wavelet transform, the original
signal C0 may be decomposed of the following approximation and wavelet
signals (also called subimages)

{CJ = {cJ ;k ,l }; D1
j = {d 1

j ;k ,l }; D2
j = {d 2

j ;k ,l }; D3
j = {d 3

j ;k ,l }|j = 1, . . . , J}

We should note that each of CJ , Dp
j (with j = J , J − 1, . . . , 1) is a two-

dimensional signal, so we can use an ‘‘image’’ to represent these signals.
Thus the resulting structure of 2D fast wavelet transform may be shown
by a diagram similar to Figure 4.12, in which a two-level decomposition is
given.

 C
2  D2

2

 D1
2

 D3
2

 D2
1

 D1
1

 D3
1

Figure 4.12. The resultant structure after 2D fast wavelet transform at 2 levels.
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Although Equations (4.37)--(4.40) appear a little complicated, the 2D fast
wavelet transform is in fact very easily implemented. The overall process in
each cycle of 2D fast wavelet transform can be divided into two steps. At the
level j , the rows of 2D signal Cj−1 are firstly transformed by the standard 1D
fast wavelet transform algorithm with H = {hk |k = . . . ,−2,−1, 0, 1, 2, . . . }
and G = {gk |k = . . . ,−2,−1, 0, 1, 2, . . . }; and then the columns of the
resultant signals are transformed by the same 1D fast wavelet transform,
too. The final results are four subsampled-signals Cj , D1

j , D2
j , and D3

j .
In actual applications the 2D signal C0 is of finite lengths in both row

and column directions. Hence we ordinarily consider C0 as an M × N
matrix where M is the number of rows while N is the number of columns.
For such a matrix, 2D fast wavelet transform can be applied to rows and
columns, respectively, with the techniques introduced in Section 4.3.3. At
the reconstruction stage, 1D inverse fast wavelet transform is applied first
to columns and then to rows.

Example 4.9. Apply 2D Haar wavelet transform to the following finite 2D
signal:

C0 =




1 2 3 4
4 3 7 8
6 2 1 8
2 5 4 7




For the Haar wavelet, we have h0 = 1/
√

2, h1 = 1/
√

2, g0 = −1/
√

2
and g1 = 1/

√
2. Let us take the first row of C0 as an example. Using 1D

Haar wavelet transform, the approximation coefficients are

1√
2

(1+ 2),
1√
2

(3+ 4)

and the detail coefficients are

1√
2

(−1+ 2),
1√
2

(−3+ 4)

The same transform is applied to the other rows of C0. Arranging the
approximation parts of each row transform in the first two columns and
the corresponding detail parts in the last two columns results in




1 2 3 4
4 3 7 8
6 2 1 8
2 5 4 7


 1D FWT on rows−−−−−−−−−→ 1√

2




3 7
... 1 1

7 15
... −1 1

8 9
... −4 7

7 11
... 3 3



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The row approximation information and detail information of the original
signal are separated by dotted lines (vertical ellipses) in this equation. The
following step is to apply 1D Haar wavelet transform to the columns of the
resultant matrix. It turns out that

1√
2




3 7
... 1 1

7 15
... −1 1

8 9
... −4 7

7 11
... 3 3




1D FWT on columns−−−−−−−−−−−→ 1
2




10 22
... 0 2

15 20
... −1 10

. . . . . . . . . . . . . . . . . .

4 8
... −2 0

−1 2
... 7 −4




Thus we have

C1 =
(

10 22
15 20

)
D1

1 =
(

4 8
−1 2

)

D2
1 =

(
0 2
−1 10

)
D3

1 =
(−2 0

7 −4

)
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CHAPTER

5

APPLICATION OF WAVELET TRANSFORM
IN CHEMISTRY

The word ‘‘transform’’ is a mathematical term, but it is frequently used in
chemical signal processing. This is because a suitable transform could
make difficult calculations become easier and complex signals simpler.
Traditionally, Fourier transform (FT) plays a very important role in analyt-
ical chemistry. The technique involves a mathematical transformation of
signals from one form to another one and is commonly used in analyti-
cal instrumentation and computational chemistry for data processing. For
example, without the FT technique, it is impossible for chemists to have
instruments such as FT-IR, and FT-NMR, as well as some of the signal
processing methods mentioned in previous chapters.

As mentioned in Chapter 4, wavelet transform (WT), just as any other
mathematical transform, aims at transforming a signal from the original
domain to another one in which operations on the signal can be carried out
more easily, and the inverse transform reverses the processes. In some
respects, the WT resembles the well-known Fourier transform in which
the sine and cosine are the analyzing functions. The analyzing function
of WT is the wavelet, which is a family of functions derived from a basic
function, called the wavelet basis, by dilation (or scaling) and translation.
Therefore, unlike FT, which is localized in the frequency domain but not in
the time domain, WT is well localized in both the time (or position) domain
and the frequency (or scale) domain. Furthermore, compared with FT, a
large number of basis functions are available with WT. Owing to these
differences, one of the main features of WT is that it may decompose a
signal into its components directly according to the frequency. With proper
identification of the scales with frequency, higher-frequency signals can be
separated from lower ones, in the sense that it has zoomin and zoomout
capability at any frequency. Since WT can focus on any smaller part of a
signal, it can be called a mathematical ‘‘microscope.’’ Another feature of
WT is that the development of signals into the frequency domain can be

147
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constituted with a flexible choice of waveforms as a basis rather than with
just the trigonometric functions like FT.

WT became a popular topic in chemistry and other fields of science
starting from late 1980s, after the publication of the important papers
by I. Daubechies [1] in 1988 and S. G. Mallat [2,3] in 1989, in which
compactly supported orthonormal wavelets and fast calculation algorithms
were proposed. Several reference books on WT were published in 1992
and afterwards, such as Ten Lectures on Wavelets [4], An Introduction to
Wavelets [5], Wavelets: A Tutorial in Theory and Application [6], Wavelets:
Theory, Algorithms and Applications [7], and Wavelets: A Mathematical
Tool for Signal Processing [8]. These books provided general information
in wavelet theory, algorithms, and applications. More recently, reference
books were also published to introduce applications of WT in various fields
of chemistry [9--12].

Since 1989, a large number of papers have been published. In these
published works, WT was employed mainly for signal processing in dif-
ferent fields of analytical chemistry that include flow injection analysis
(FIA), high-performance liquid chromatography (HPLC), capillary elec-
trophoresis (CE), infrared spectrometry (IR), ultraviolet--visible (UV--vis)
spectrometry, mass spectrometry (MS), nuclear magnetic resonance spec-
trometry (NMR), electroanalytical chemistry, and X-ray diffraction. WT
has also been employed to solve certain problems in quantum chemistry
and chemical physics. Around 75% of the published works are related
to the application of WT in analytical signal processing, which includes
data compression, data denoising and smoothing, baseline and back-
ground correction, resolution of multicomponent overlapping signals, and
analytical image processing. The remaining 25% are related to quantum
chemistry, chemical physics, and related fields.

In this chapter, the principles and applications of the WT in data com-
pression, denoising and smoothing, baseline and background removal,
resolution enhancement, spectral calibration and regression, classification,
and pattern recognition will be explained in detail with examples provided.
Then, combined techniques of WT and other chemometric methods will be
briefly introduced. The chapter concludes with a review of applications of
WT in various chemistry fields.

5.1. DATA COMPRESSION

Nowadays, chemical instruments are usually connected with microcom-
puter for control of the device, data acquisition, signal processing, inter-
pretation, and reporting of the analyzed results. There is also a growing
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tendency to combine different chemical devices together to form ‘‘hyphen-
ated instruments’’ for multidimensional measurements. These modern
analytical instruments produce multidimensional data that give more infor-
mation on the analytes. However, this demands larger storage capacities
for the instruments, especially when libraries or databases are used for
matching, such as infrared (IR) spectroscopy, mass spectroscopy (MS),
and nuclear magnetic resonance (NMR) spectroscopy. An alternative
to reduce the storage space and the processing time is through signal
compression.

In order to store chemical data efficiently, the compression method
must not be too computationally demanding. Furthermore, the discrep-
ancy between the original dataset and the data reconstructed from the
compressed form should be reasonably small.

Different methods for chemical signal compression have been proposed
in the literature and can be classified into two categories. The first one low-
ers the resolution of the original signal by reducing the number of data to be
retained, such as the binary coding method and factor analysis. The sec-
ond type retains the resolution of the signal through transformation of the
signal from one form to another one, such as the well-known FT method.
In spite of the availability of these methods, the application of WT on com-
pressing analytical data was proposed and the method was proved to be
very efficient.

5.1.1. Principle and Algorithm

In signal processing of chemical datasets, fast wavelet transform (FWT) is
usually employed. The algorithm of FWT has been described in the Chapter
4. For a signal c0, its FWT can be implemented by

cj ,k =
N∑

m=1

hm−2k cj−1,m (5.1)

dj ,k =
N∑

m=1

gm−2k cj−1,m (5.2)

or simply written as

cj = H∗cj−1 (5.3)

dj = G∗cj−1 (5.4)

where c and d with the index represent the elements of the decomposed
components c and d from the original signal c0 by WT, H∗ = {h−k }k∈Z and
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G∗ = {g−k }k∈Z are discrete filters corresponding to the wavelet function
ψ(x ) and the scaling function φ(x ), and N represents the length of the
vector cj−1. In these two equations, the WT of the signal c0 means that
the resulting signals c1 (called discrete approximation or scale coefficient )
and d1 (called discrete detail or wavelet coefficient ) are, respectively, the
convolution of c0 with the discrete filters H∗ and G∗ followed by the property
of ‘‘downsampling by factor 2.’’

A schematic diagram showing the operation of the FWT method is shown
in Figure 5.1. When FWT is applied to a signal c0 = {c0,0, c0,1, . . . , c0,N−1}
with length N ( = 2P ) and P is any positive integer, the scale coeffi-
cients cj and wavelet coefficients dj at resolution level j are determined by
Equations (5.1) and (5.2), respectively. For resolution level j = 1, the num-
bers of the elements of c1 and d1 are the same and equal to N/2. Then, the
decomposition process is applied to c1 again to obtain the coefficients at the
next resolution level. The process is repeated until the desired J th resolu-
tion level is reached. Finally, the original signal is expressed as a collection
of the scale and wavelet coefficients in the form of {cJ , dJ , dJ−1, . . . , d1}.
The total number of coefficients equals the length of the original signal.
Because of the downsampling property of the algorithm, it is called the
‘‘tree algorithm’’ or ‘‘pyramid algorithm.’’

The original signal c0 can be reconstructed from the scale coefficients
cj and wavelet coefficients dj , j = J , . . . , 1, following the backward
procedures of Figure 5.1 using the inverse fast wavelet transform (IFWT)

cj ,k =
N∑

m=1

hk−2mcj+1,m +
N∑

m=1

gk−2mdj+1,m (5.5)

c0, N = 1024

c1, N = 512

c2, N = 256 d2, N = 256

H* G*

G*H*

G*H*

... ... ...

d1, N = 512

cJ

j=0

j=1

j=2

j=JdJ

Figure 5.1. A schematic diagram showing the operation of the FWT method on a signal with
data length of N = 1024.
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or simply written as

cj = Hcj+1 + Gdj+1 (5.6)

where H and G are conjugate filters of the filters H∗ and G∗. In the cal-
culation, cj and dj must followed by a ‘‘upsampling by factor 2’’ with zeros
added between each adjacent elements of the vectors.

The decomposition and reconstruction equations presented above are
useful for data compression because the WT procedure is capable of
retaining a large percentage of the total energy of the signal in the scale
coefficients cj at different resolution levels. Since the wavelet coefficients
are generated from the highpass filter G∗, dj reflects the high-frequency
information contained in the original data set at the j th level. For most
analytical signals, the high-frequency components are usually considered
as noise and disposable. Hence, only a small number of the wavelet
coefficients is needed to effectively represent the original signal.

For determining which coefficients should be retained, the thresholding
method is generally used. Since only the larger coefficients are consid-
ered to represent useful information, those coefficients with absolute values
greater than a given threshold ε are retained. It is obvious that the choice
of the threshold ε affects the compression efficiency and the quality of
the reconstructed signal. Usually, a larger ε gives a higher compression
ratio but a poorer reconstructed signal. Different procedures for the thresh-
olding operation and the determination of the threshold are discussed in
Section 5.1.3.

The general procedure of data compression using WT can be outlined
as follows:

1. Apply a WT treatment to the original signal c0 and to obtain the vector
of the scale and wavelet coefficients w = {cJ , dJ , dJ−1, . . . , d1} using
Equations (5.1) and (5.2).

2. Suppress the small coefficients in w that are considered too small
to contain the useful information of the signal using the threshold-
ing methods. The number of wavelet coefficients to be stored will be
decided by the value of the threshold ε.

3. Store the suppressed vector wstore as the compressed result.

4. Reconstruct the original signal by applying the inverse transform to
the wstore using Equation (5.5) when an original signal is needed.

Example 5.1 illustrates the operation of the above mentioned data
compression procedure.

Example 5.1: Compression of a Simulated Signal Using FWT. Figure
5.2, curve (a) shows a simulated signal denoted as a row vector c0



\c05" | 2004/1/28 | 9:52 | page 152 | #6

152 application of wavelet transform in chemistry

Figure 5.2. Plot of a simulated signal with 1024 data points (a) and the reconstructed signal
by WT using 128 coefficients (b).

with 1024 data points. The WT is applied to c0 with the Daubechies18
(L = 18, where L represents the length of the wavelet filters H and G)
filters and resolution level J = 4, we can obtain the coefficients vector
w shown in Figure 5.3, plot (a). The vector is in the order of {c4,(1,... ,64),
d4,(65,... ,128), d3,(129,... ,256), d2,(253,... ,512), d1,(513,... ,1024)}. It is clearer in Figure
5.3, plot (b), which is plotted by the absolute values of these coefficients
sorted by their magnitudes. It should be noted that WT with different filter
and different resolution level J will give a different result; this is discussed

Figure 5.3. Plot of the coefficient vector obtained by applying WT to the simulated signal (a)
and its absolute values sorted by magnitude (b).
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further in Section 5.1.4. From Figure 5.3, it can be seen that most of the
coefficients are small enough to be neglected. The original signal can be
represented by only a few WT coefficients.

In order to suppress the small coefficients in w, a proper value of the
threshold ε is required. In this example, a threshold for retaining 128 coef-
ficients was adopted; that is, only 128 largest coefficients was retained
while all other coefficients were set to have value zero. In this way, the
compression ratio is 1024/128=8.

Figure 5.2, curve (b) shows the reconstructed signal ŷi from the 128
retained coefficients as obtained from Example 5.1. Comparing with the
original signal yi in Figure 5.2, curve (a), it can be seen that there is
almost no difference between them. The root-mean-square (RMS) error

as calculated by
√∑N

i=1 (ŷi − yi )2/N is only 2.8587 × 10−5.

Computational Details of Example 5.1

1. Generate the original signal with 1024 data points; refer to curve
(a) of Figure 5.2 using the Gaussian equation.

2. Make a wavelet filter---Daubechies18.
3. Set resolution level J = 4 (10 − 6).
4. Perform forward WT to obtain the wavelet coefficients.
5. Perform hard thresholding to the wavelet coefficients keeping

the 128 largest coefficients.
6. Construct the signal by applying inverse WT to the 128 retained

coefficients.
7. Display Figure 5.2, curves (a) and (b).
8. Display Figure 5.3, plots (a) and (b).
9. Display the RMS error between the original signal and the

reconstructed signal.

Note: The MATLAB codes of the examples presented in this chap-
ter are available at the ftp (File Transfer Protocol) server of the
publisher (ftp://www.wiley.com/chemistry), or by sending an email
to the author (xshao@ustc.edu.cn).

Most of the programs were developed based on the WaveLab
7.0. The WaveLab is a toolbox developed by the WaveLab Devel-
opment Team (Jonathan Buckheit, Shaobing Chen, David Donoho,
Iain Johnstone, and Jeffrey Scargle) at Stanford University, and it
can be downloaded from http://www-stat.stanford.edu/∼wavelab/.
Instructions for installation are also available from the Website. You
must install the WaveLab before running these programs.
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In the preceding FWT calculation, the length of the original signal must
be equal to 2P . If an odd-number dataset is encountered at a particular
resolution level, FWT calculation will be stopped automatically and cannot
be processed to the next resolution level. However, in practice, the length
of a chemical signal depends on the sampling time (for chromatograms) or
wavelength range (for spectra). It is not easy for a chemical instrument to
generate 2P data exactly.

Several methods can be used to cope with the problem, such as the
zero padding, symmetrization, extrapolation, and periodization, which have
been introduced in Chapter 4. Besides, truncation of data at one or both
ends of the original data to the previous power of 2 can also be adopted in
some cases. Although these methods are widely used, new ones have also
been proposed to improve the FWT algorithm. One of these new methods
is called the coefficient position-retaining (CPR) method and is described
below.

A schematic diagram for applying FWT to a signal with 1231 data with
the use of CPR is shown in Figure 5.4. In the CPR approach, if the data
length of a scale coefficients cj at resolution level j , NC ,j , is an even number,
the FWT is applied as usual via Equations (5.1) and (5.2). The scale and
wavelet coefficients obtained at resolution ( j +1) will have the same length,
which is equal to NC ,j/2. On the other hand, if NC ,j is an odd number, FWT
is adopted without using the last coefficient of cj in the calculation. This
coefficient is retained and transferred downward to the same position at
the next resolution level. It becomes the last coefficient of dj+1 at resolution
level ( j +1). As a result, the scale and wavelet coefficients will have (NC ,j −
1)/2 and (NC ,j − 1)/2 + 1 elements, respectively.

c0, N = 1231

c1, N = 615

c2, N = 307

cJ

H*

H*

H* G*

G*

G*

j=0

j=1

j=2

j=J

... ... ...

d2, N = 307+1

d1, N = 615+1

dJ

Figure 5.4. A schematic diagram showing the operation of FWT coupled with CPR on a
signal with data length of N = 1231.
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5.1.2. Data Compression Using Wavelet Packet Transform

Wavelet packet transform (WPT) derives from WT. The discrete WT
(DWT) is generalized in the WPT procedure to provide a more flexi-
ble tool for analytical data analysis. In WT, only partial multiresolution
analysis is performed; that is, only cj is utilized to deduce both the
scale and wavelet coefficients at the next resolution level. However, WPT
allows a full multiresolution analysis and dj is also involved at the same
time to produce the scale and wavelet coefficients at the next resolution
level.

Figure 5.5 shows a schematic diagram for the WPT operation of an
analytical signal w0

0 with a data length of 2P . In Figure 5.5 and the fol-
lowing text, wp

j is used to represent the decomposed component by WPT,
where j is the scale parameter and p is an index showing the order of the
component in the wavelet packet table. Since WPT is applied to both the
scale and wavelet coefficients, the path of WPT is called the full binary
tree or WPT binary tree. In the figure, the original data are decomposed
into different components that can be expressed by different bases; that is,
the original signal can be expressed by a suitable combination of bases.
Generally, a combination of the bases subset is called a wavelet packet
table. For example, one possible combination of the bases subset to
represent the original signal could be

{
w0

3, w1
3, w1

2, w2
2, w6

3, w7
3

}
. Another

possible combination could also be
{
w0

2, w2
3, w3

3, w2
2, w6

3, w7
3

}
. How to find

the best wavelet packet table, called best-basis selection, is discussed
in the next section. It can be seen that, whatever the combination will be,
the total number of all these coefficients is equal to that of the original
data.

w0
0, N = 1024

w1
0, N = 512

w2
0, N = 256

w1
1, N = 512

j=0

j=1

j=2

j=3

H*

H*

H* G* H* G* H* G* H* G*

H*G* G*

G*

w2
1, N = 256 w2

2, N = 256 w2
3, N = 256

w3
0, N = 128 w3

1, N = 128 w3
2, N = 128 w3

3, N = 128 w3
4, N = 128 w3

5, N = 128 w3
6, N = 128 w3

7, N = 128

Figure 5.5. A schematic diagram showing the operation of a three-level WPT of a signal with
data length of N = 1024.
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The calculation of the WPT decomposition can be implemented using
equations similar to Equations (5.1)--(5.4) with

w 2p
j ,k =

N∑
m=1

hm−2k w p
j−1,m (5.7)

w 2p+1
j ,k =

N∑
m=1

gm−2k w p
j−1,m (5.8)

or simply as

w2p
j = H∗wp

j−1 (5.9)

w2p+1
j = G∗wp

j−1 (5.10)

where p = 0, . . . , 2 j−1 −1. Signal reconstruction can also be implemented
using equations similar to Equations (5.7) and (5.8) as

w p
j ,k =

N∑
m=1

hk−2mw 2p
j+1,m +

N∑
m=1

gk−2mw 2p+1
j+1,m (5.11)

or simply written as

wp
j = Hw2p

j+1 + Gw2p+1
j+1 (5.12)

In this manner, data compression using WPT involves the following
procedures:

1. Apply WPT to the original signal w0
0 up to level J and to obtain all

the coefficients wp
j for j = 1, . . . , J and p = 0, . . . , 2 j−1 − 1 using

Equations (5.7) and (5.8).

2. Find the best basis to express the original signal.

3. Suppress the small coefficients in the best basis that are considered to
be too small to contain useful information of the signal by thresholding
methods.

4. Store the suppressed coefficients wstore as the compressed result.

5. Reconstruct the original signal by applying the inverse WPT to the
wstore using Equation (5.11) when the original signal is needed.

It can be seen the data compression procedure of WPT requires only one
more step of finding the best basis. If the data length of the original data
is not 2P , the abovementioned methods, including the CPR method, can
also be employed in WPT.
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Figure 5.6. Plot of a simulated signal with 1024 data points (a) and the reconstructed by WT
signal using 128 coefficients (b).

Example 5.2 gives an application of the procedure listed above for data
compression.

Example 5.2: Compression of a Simulated Signal Using WPT. Curve
(a) in Figure 5.6 shows the same signal as that in curve (a) of Figure 5.2.
The original signal is denoted by the row vector w0

0. The WPT is applied to
the vector with Daubechies18 (L = 18) filters and resolution level J = 9 to
obtain the coefficients vectors wp

j . It should be also noted that WPT with

Figure 5.7. Plot of the coefficient vector obtained by applying WT to the simulated signal (a)
and its absolute values sorted by magnitude (b).
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a different filter and resolution level J will give different result as stated in
FWT compression. Compared with FWT again, there is one more step in
best-basis selection, and this is discussed in detail in the next section. Plot
(a) in Figure 5.7 shows the vector of the coefficients contained in the best
basis, which is selected by the Coifman--Wickerhauser entropy method.
The remaining procedures are similar to those of the WT compression,
that is, to sort the coefficients by their absolute magnitudes [see Fig. 5.7,
Plot (b)], to determine a threshold according to the desired compression
ratio, to suppress the coefficients whose absolute value is smaller than
the threshold, and to store the suppressed coefficients as the compressed
result.

In order to compare the performance of the WPT method and FWT com-
pression (Example 5.1), the threshold ε in this example is also assigned
for retaining 128 coefficients. The compression ratio is also 1024/128 = 8.
Figure 5.6, curve (b) shows the reconstructed signal from the retained coef-
ficients. The RMS error between the reconstructed signal and the original
signal is 4.0842 × 10−5.

Computational Details of Example 5.2

1. Generate the original signal with 1024 data points; - refer to
Figure 5.6, curve (a) by using the Gaussian equation.

2. Make a wavelet filter---Daubechies18.
3. Set resolution level J = 9.
4. Perform WPT to obtain the WP coefficients.
5. Find the best basis according to the entropy criteria.
6. Plot the best-basis tree.
7. Apply hard thresholding to the WP coefficients of the best basis

keeping the 128 largest coefficients.
8. Construct the signal by applying inverse WPT to the 128

retained coefficients.
9. Display Figure 5.6, curves (a) and (b).

10. Display Figure 5.7, curves (a) and (b).
11. Display the RMS between the original signal and the recon-

structed signal.

5.1.3. Best-Basis Selection and Criteria for Coefficient Selection

Considering the principles discussed above, it can be seen that both WT
and WPT are useful for data compression because they can turn signals
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into sparse expansions. Thus, a signal can be accurately represented by
only a small number of significant coefficients, and most coefficients have
absolute values small enough to be neglected. Furthermore, the overcom-
plete representation of signal by WPT allows one to choose the appropriate
representation (best basis) for the signal compression. However, the fol-
lowing two problems have to be resolved to guarantee the correct use of
the FWT or WPT in practical applications:

1. How to find the best basis

2. How to determine the threshold value for discarding ‘‘unwanted’’
coefficients

Methods for Best-Basis Selection. Best-basis selection means finding
the most efficient basis out of a given set of bases in the wavelet packet tree
to represent a given signal. Thus, we intend to find a basis through which
some coefficients have high values while the remaining ones have low val-
ues; in other words, we wish to differentiate coefficients within a given set
as much as possible. One way of selecting an efficient basis from all pos-
sible orthonormal bases in the wavelet packet tree is to apply the entropy
or information criterion because the amount of information is a measure of
inequality of distribution. A basis with coefficients giving more or less the
same values would yield a low information or high entropy value. The ‘‘best
basis’’ can be defined as the basis giving the minimum entropy or maxi-
mum information for its distribution of coefficients. This best-basis definition
requires the criterion of the coefficients selection and can also explicitly
contain the criterion of the coefficient selection. For instance, the best
basis can be specified as the basis with the minimal number of coefficients
whose absolute value is higher than the assigned threshold.

In order to calculate the entropy value, several methods have been pro-
posed in the literature. The Coifman--Wickerhauser entropy method and
the Shannon--Weaver entropy method are most commonly used.

The Coifman--Wickerhauser entropy is expressed as

λCW = −
M∑

m=1

pm log pm (5.13)

where pm = (w p
j ,m/‖w0

0‖)2, M is the number of coefficients in the wp
j , and

‖w0
0‖ is the norm of the original signal, that is,

√∑M
m=1 |w0

0,m|2.
The Shannon--Weaver entropy is expressed as

HSW = −
M∑

m=1

qm log qm (5.14)
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where qm = |w p
j ,m|2/‖wp

j ‖2 and |w p
j ,m| is the absolute value of the w p

j ,m and

‖wp
j ‖ is the RMS norm of the wp

j . However, Equation (5.14) does not obey
the theorem of additive measure of the information. Hence Equation (5.15)
is usually used for Shannon--Weaver entropy calculation:

λSW = −
M∑

m=1

|w p
j ,m|2 log |w p

j ,m|2 (5.15)

Other methods have been proposed for entropy calculation, such as

λ =
M∑

m=1

log pm (5.16)

where pm = |w p
j ,m|/‖w0

0‖,

λ =
M∑

m=1

(pm)k (5.17)

where pm = |w p
j ,m|/‖w0

0‖, and k is arbitrary parameter,

λ =
M∑

m=1

w p
j ,m (5.18)

or to calculate the entropy value directly by the number of the coefficients
whose absolute value is higher than the predefined threshold. As different
methods lead to different results, it is hard to say which one is better.
The most suitable method in a case should be chosen by considering the
intended application and performing trial calculations.

Once the wavelet packet tree is set up, the entropy of each node (basis)
can be determined by any of the methods described above. Then, the
best basis can be searched by comparing the entropy values between two
adjacent levels. Since each node in the binary tree represents a subspace
of the original signal and each subspace is the orthogonal sum of its two
children nodes, the search procedure can be performed by a comparison
between the entropy value and the sum of entropy values of the two imme-
diate descendants. Nodes with fewer entropy values will be selected as
part of the best-basis. For example, in Figure 5.5, if the entropy value of
w0

2 is greater than the sum of the entropy values w0
3 and w1

3, the two ‘‘chil-
dren’’ nodes will be chosen as the best basis. If further decomposition is
needed up to level j = 4, one should continue to compare the entropy
values of w0

3 and w1
3 with that of their children nodes w0

4 and w1
4, w2

4 and
w3

4, respectively. However, if the entropy value of w1
2 is less than the sum

of the entropy values w2
3 and w3

3, the ‘‘parent’’ node will be chosen as the
best basis. Even when decomposition goes on, the comparison stops at
this level.



\c05" | 2004/1/28 | 9:52 | page 161 | #15

data compression 161

Methods for Determination of Threshold. In both the FWT and WPT
compression, it is an important step to suppress the small coefficients
by thresholding. A larger ε gives a higher compression ratio but a poorer
reconstructed signal. Therefore, determination of the right threshold value
is a key step for both compression procedures.

There are many ways to determine the threshold value, and they can be
classified as follows:

1. The universal threshold. The threshold value of the method is
defined as

ε =
√

(2 log2 (S)) (5.19)

where S = N log2 (N ) for the WPT and S = N for the FWT. This threshold
must be applied to the data vector f that is normalized to the noise level
1. This means that one has to decompose the data to the resolution level
j = 1 to obtain the detail at the first level, d1, and estimate the noise based
on, for instance, the median of the d1:

s = median(|d1|)
0.6745

(5.20)

Then, normalize the signal vector f by f/s before performing the data
compression.

2. The threshold defined by the desired compression ratio (CR). CR is
generally defined by N ′/N , where N is the data point number of the original
signal and N ′ is the number of the coefficients to be retained. In the cases
of a desired CR has been assigned, the threshold can be defined according
to the CR value. For example, in Examples 5.1 and 5.2, if the desired CR
is assigned as 16, that is, if we must retain 64 largest coefficients, the
threshold will have the same value as the 64th coefficient in plot (b) of
either Figure 5.3 or 5.7.

3. The threshold defined by the (root) mean-square error of the recon-
structed signal. This is the most commonly used method because the (root)
mean-square error is a measure of the quality of the compression. A large
error means that a significant portion of the useful information of the signal
is lost after the compression, while an excessively small error will affect the
compression efficiency. An effective way to determine the threshold value
for the method is by trial and error, which is generally time-consuming. For-
tunately, when the basis of the WT is orthonormal, the mean-square error
of the reconstructed signal equals the sum of the squared coefficients sup-
pressed from the vector w. The quality of the compression can be easily
evaluated directly by the suppressed coefficients without reconstruction. In



\c05" | 2004/1/28 | 9:52 | page 162 | #16

162 application of wavelet transform in chemistry

some cases, the threshold value can also be defined by acceptable local
pointwise error of signal reconstruction.

4. The minimum description length (MDL) criterion. MDL is a criterion
for optimization of the retained largest coefficients and the error of the
reconstructed signal. Use of the MDL criterion allows an objective threshold
selection, which can be particularly useful for real data where the noise level
is difficult to estimate. The MDL is defined by

MDL(k , n) = min
[

3
2

k log (N ) + N
2

log ‖(I − �k )wk
n f‖2

]
(5.21)

where N denotes the length of the signal f, n describes the filter, k (0 ≤
k < N ) denotes the number of nonzero elements in the vector wk

n , I is the
N -dimensional identity matrix, �k is a thresholding operation that keeps
the k largest elements (in absolute value) and sets all other elements to
zero, and ‖(I − �k )wk

n f‖ represents the error between the original signal
and the reconstructed signal with the k largest elements.

The first term of the MDL cost function can be considered as the penalty
function of retaining the nonzero wavelet coefficients, whereas the second
term describes the error between the original signal and the reconstructed
signal with the k largest wavelet coefficients. These two terms of the MDL
represent opposing demands. We would like to have k as small as possible
in order to compress the data. At the same time we would like to minimize
the distortion between the estimated and the true signal. But a larger k
value usually gives a smaller error. By adding the linear penalty function to
the log term, we can observe the minimum of the MDL cost function for a
small amount of k values. We are not interested in a k near N , because
this makes no sense in terms of data compression.

Besides, there are still other methods to determine the threshold value,
and some of which are discussed in Section 5.2.2, because they are used
for data denoising.

Example 5.3: Data Compression of an Experimental NMR Spectrum.
Figure 5.8 shows a NMR spectrum of a biological sample measured on a
Bruker DMX 500 NMR spectrometer. It consists of 32,768 data points. In
order to compress the spectrum using WT, we can first represent the spec-
trum as a vector c0 and scale its values into the range of 0--1, then perform
a FWT to the data vector according to the process described in Section
5.1.1. Figure 5.9 shows the wavelet coefficients obtained with Symmlet10
(L = 20) filters and biggest resolution J = 10. In order to see clearly, the
figure was enlarged and clipped into the magnitude range within ±0.01. It
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Figure 5.8. An experimental NMR spectrum with 32,768 data points.

can be seen that there are only a few coefficients whose absolute value is
greater than 0.001; most of them are small enough to be suppressed.

In order to investigate the effect at different compression ratios, three
thresholds for retaining 2048 (CR = 16), 1024 (CR = 32), and 512 (CR =
64) coefficients were set, respectively. After the thresholding operation,
the reconstructed signals were as shown in Figure 5.10. It can be seen
that there is almost no difference between them. The RMS between the
original spectrum and the reconstructed spectra are, respectively, 1.3642×
10−4, 1.6977 × 10−4, and 2.7684 × 10−4.

Figure 5.9. An enlarged plot of the wavelet coefficients obtained by applying WT to the
experimental NMR spectrum using the filters of Symmlet10 (L = 20) and resolution level
J = 9.
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Figure 5.10. Comparison of the experimental NMR spectrum (a) and the reconstructed
spectra by WT using 2048 (b), 1024 (c), and 512 (d) coefficients.

Computational Details of Example 5.3

1. Load the experimental NMR signal with 32,768 data points (see
Fig. 5.9).

2. Make a wavelet filter---Symmlet10.
3. Set resolution level J = 10 (15 − 5).
4. Perform WT to obtain the wavelet coefficients.
5. Apply thresholding to the wavelet coefficients keeping the 2048,

1024, 512 largest coefficients, respectively.
6. Construct the signal by applying inverse WT to the retained

coefficients, respectively.
7. Display Figure 5.9.
8. Display Figure 5.10.
9. Display the RMS between the original signal and the recon-

structed signals.

Note: Results in Table 5.1 can be obtained by changing the wavelet
filters in step 2, and the results in Table 5.2 can be obtained by
changing the resolution level in step 3.

As has been stated above, different wavelet filters and different decom-
position levels will result in different effects of compression. In order to
obtain optimal filter and resolution level J for the spectrum, the RMS
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Table 5.1. RMS between Experimental NMR Spectrum and Reconstructed
Signal by WT with Different Wavelet Filters and Resolution Level J = 10

(CR = 64)

Length RMS Length RMS Length RMS
Filter (L) (×10−4) Filter (L) (×10−4) Filter (L) (×10−4)

Haar 2 7.2549 Daub18 18 2.9404 Sym10 20 2.7684
Daub4 4 3.4853 Daub20 20 2.9512 Coif1 6 3.2101
Daub6 6 2.9214 Sym4 8 2.7955 Coif2 12 2.7339
Daub8 8 2.9050 Sym5 10 2.7627 Coif3 18 2.7040
Daub10 10 2.8948 Sym6 12 2.7224 Coif4 24 2.7332
Daub12 12 2.7940 Sym7 14 2.7498 Coif5 30 2.7773
Daub14 14 2.7958 Sym8 16 2.7171
Daub16 16 2.9843 Sym9 18 2.7017

between the original measured spectrum and reconstructed signal by
different filters and different resolution levels should be investigated.

Table 5.1 summarizes the RMS by different wavelet filters with decom-
position level J = 10 and CR = 64. Filters including Haar, Daubechies
(L = 4--20), Symmlet (L = 8--20), and coiflet (L = 6--30) are investi-
gated. It can be seen that different filters give different RMS results and the
Symmlet (L = 18) gives a slightly better filter for compression of this NMR
spectrum, yet the difference among these filters are not significant.

Table 5.2. RMS between Experimental NMR Spectrum and
Reconstructed Signal by WT with Wavelet Filters of Coiflet, Daubechies,

and Symmlet and Different Decomposition Level (CR = 64)

Filter: Coiflet (L = 18) Filter: Daubechies (L = 12) Filter: Symmlet (L = 18)

Resolution RMS Resolution RMS Resolution RMS
Level J (×10−4) Level J (×10−4) Level J (×10−4)

6 158.54 6 152.03 6 162.67
7 3.1719 7 3.2537 7 3.1017
8 2.8036 8 2.8865 8 2.7781
9 2.7152 9 2.8089 9 2.7065

10 2.7040 10 2.7940 10 2.7017
11 2.7040 11 2.7940 11 2.7017
12 2.7040 12 2.7940 12 2.7017
13 2.7040 13 2.7940 13 2.7017
14 2.7040 14 2.7940 14 2.7017
15 2.7040 15 2.7940 15 2.7017
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Figure 5.11. An enlarged plot of the WPT coefficients obtained by applying WPT to the
experimental NMR spectrum using the filters of Symmlet6 (L = 12) and resolution level
J = 10.

Table 5.2 lists the RMS by coiflet (L = 18), Daubechies (L = 12), and
Symmlet (L = 18) filters at different decomposition levels. The CR is also
64. It can be seen that, for all the three filters, the RMS reaches a minimum
when decomposition level J is larger than 10. However, the RMS decreases
with the increase of the decomposition level within J = 6--10.

WPT can also be used for compression of the NMR spectrum.
Figure 5.11 shows the coefficients obtained by Symmlet6 filter and decom-
position level J = 10. The best basis was searched by the Coifman--
Wickerhauser entropy method. Figure 5.12 compares the original NMR
spectrum and its reconstructed signals from 2048 (CR = 16), 1024
(CR = 32), and 512 (CR = 64) coefficients. The RMS is 1.3649 × 10−4,
1.7054 × 10−4, and 2.6616 × 10−4, respectively.

5.2. DATA DENOISING AND SMOOTHING

Noise in chemical signals is generally defined as the instantaneously irre-
producible signals caused by interfering physical or chemical processes,
imperfections in the experimental apparatus, and other irregularities, by
which the experimental results are often complicated. Therefore, denoising
and smoothing is a problem of interest in all fields of science and technol-
ogy, and a large number of filtering methods have been developed, such as
the Fourier filtering method, the Savitsky--Golay smoothing method, and
the Kalman filtering method.
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Figure 5.12. Comparison of the experimental NMR spectrum (a) and the reconstructed
spectra by WPT using 2048 (b), 1024 (c), and 512 (d) coefficients.

Strictly speaking, denoising removes the small-amplitude components
of the transformed signal regardless of the frequency, whereas smooth-
ing minimizes the fluctuation in the signal by removing the high-frequency
components regardless of amplitude [see Anal. Chem. 69:78 (1997)].

The underlying philosophy of the denoising by WT is generally thought
to resemble the traditional Fourier filtering, in which the high-frequency
components are cut off by lowpass filters. But strictly speaking, this kind
of filtering should be classified into smoothing according to the definition
given above. The principle of WT denoising and smoothing is in fact similar
to that of compression by WT, which suppresses the small elements from
the coefficient vectors. In the following, both denoising and smoothing are
discussed in further detail.

5.2.1. Denoising

According to the principle of the WT denoising, the procedure of denoising
with WT can be summarized as follows:

1. Apply a WT to noisy signal fnoisy and obtain the wavelet coefficient
vector w.

2. Suppress those elements in w that are thought to be attributed to
noise by thresholding.

3. Apply the inverse transform to the suppressed w to obtain the
denoised signal fdenoised.
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Generally, there are two methods for thresholding operation: hard
thresholding and soft thresholding. The policy for hard thresholding is ‘‘keep
or kill.’’ The absolute values of all transformed coefficients are compared
to the fixed threshold value ε. If the magnitude of a coefficient is less than
ε, the coefficient is replaced by zero; otherwise, it does not change:

w hard
k =

{
0 if |wk | < ε

wk if |wk | ≥ ε
(5.22)

where wk represents an element of the coefficients w. Soft thresholding
shrinks all the coefficients toward the origin in the following way:

w soft
k =

{
0 if |wk | < ε

sign(wk )(|wk | − ε) if |wk | ≥ ε
(5.23)

Thus, if the magnitude of the coefficient is less than ε, the coefficient is
replaced by zero; otherwise, a ε is subtracted from the absolute value of
the coefficient.

In data compression, only hard thresholding is used because the aim
of compression is to remove the small coefficients. But in denoising both
thresholding strategies can be used. On the other hand, because the aim of
the thresholding differs between compression and denoising, the method
determining the threshold value ε for denoising is different from that for com-
pression. Several methods have been proposed, which can be summarized
by the following:

1. Stein’s Unbiased Risk Estimate (SURE ) Method. The SURE method
is a hard-thresholding approach where the major work is invested in finding
the right threshold for different scales. The thresholding is performed on
each scale. For calculation of the threshold value ε for scale j , the squared
coefficients is first computed by

ak = (wj ,k )2 (5.24)

where wj ,k represents an element of the j th-scale coefficients in w,
and sorted in ascending order. Then, the cumulative total of the ak is
computed by

bk =
k∑

i=1

ai (5.25)

Further, a vector c with the same size of the coefficient number of the scale
j , nj , is designed by ck = nj − k ; thus, the first element is nj − 1 and the
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last element is 0. A risk value for every coefficient, rk , is then computed by

rk = (nj − 1) + bk + ak ck

nj
(5.26)

The coefficient that has the minimum rk is selected as the threshold value
for the scale j :

ε = min{rk } (5.27)

It should be noted that the absolute value of the coefficient is used for the
thresholding operation.

2. Visually Calibrated Adaptive Smoothing Method. This method is
generally called the VISU method. The threshold value is computed
simply by

ε = (2 log n)1/2 (5.28)

where n is the number of the elements in the coefficient vector. This value
can be used for hard- or soft-thresholding operation. For methods 1 and
2, the thresholding sometimes is performed only on the coefficients in the
index interval [2J + 1, n] (the wavelet or detail coefficients part) where J is
the predefined largest decomposition scale. J must be smaller than log2 (N )
when the length of the signal is N .

3. Hybrid Thresholding Method. This method is called HYBRID method
because it is a soft-thresholding method where in some cases the VISU
threshold εA = (2 log nj )1/2 is used, and in other cases SURE threshold
εB = min{rk } is used, depending on the parameters e and p defined by


e = ‖wj ‖2−nj

nj

p = J3/2√
nj

(5.29)

where J is the largest decomposition scale, wj and nj are the coefficients of
the scale j and its length, respectively. If e < p, then soft VISU thresholding
is performed, if not, the smaller value in εA and εB is used to perform the
soft-thresholding operation. In this method, the thresholding is performed
on the coefficients of each scale as in the SURE method.

4. Median Absolute Deviation (MAD) Method. The MAD method is
a soft-thresholding method. It is also applied to the individual scales.
The threshold used for each scale j is the same as in VISU method,
i.e., ε = (2 log n)1/2, but the coefficients must be normalized by wj/sj , where
sj = median(|wj |)/0.6745, before the thresholding is performed.

5. MINMAX Thresholding Method. This method finds the optimum
threshold for each scale according to the mean-square error between the
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original signal and the denoised signal. A set of threshold values is used
that satisfy ε ≤ (2 log n)1/2. When the coefficient number n is very large,
the optimum threshold ε will approach (2 log n)1/2.

In practice uses, we can use the thresholds provided in the literature.
For example, we can use the following threshold suggested by Donoho
et al. in the WaveLab (http://www-stat.stanford.edu/∼wavelab/):

{εj }j=1,... ,16 = {0, 0, 0, 0, 0, 1.27, 1.47, 1.67, 1.86, 2.05, 2.23,

2.41, 2.6, 2.77, 2.95, 3.13} (5.30)

It should be noted that, for most of these above methods, the thresh-
old must be applied to the data vector normalized to the noise level 1. It
would be a good idea to normalize the signal f by f/s before performing the
denoising or smoothing, where s can be computed by Equation (5.21).

Example 5.4: Denoising of a Simulated Chromatogram. Curves (a) in
Figures 5.13 and 5.14 are simulated chromatograms with 1024 data point
by Gaussian function

V =
n∑

j=1

cj exp

(
−4 ln (2)

(
t − t0,j

W1/2,j

)2
)

(5.31)

Figure 5.13. Plots of a simulated clean chromatogram (a), noisy chromatogram with random
noise of SNR = 100 (b), and the denoised results by WT with hard- (c), soft- (d), SURE (e),
VISU (f ), HYBRID (g), and MINMAX (h) thresholding methods, respectively.
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Figure 5.14. Plots of a simulated clean chromatogram (a), noisy chromatogram with random
noise of SNR = 20 (b), and the denoised results by hard- (c), soft- (d), SURE (e), VISU (f ),
HYBRID (g), and MINMAX (h) thresholding methods, respectively.

where V is the simulated chromatogram, t is retention time, n is the
number of peaks, and cj , t0,j , and W1/2,j are the concentration, position,
and full width at half height of the peak j , respectively. Curve (b) in
Figure 5.13 shows a noisy chromatogram generated by adding random
noise in curve (a). The SNR calculated by the ratio of the maximum of the
signal and the maximum of the noise is 100. Curve (b) in Figure 5.14 is
generated in the same way, but the SNR is 20.

Curves (c)--(h) in Figures 5.13 and 5.14 are the denoised results
achieved by different thresholding methods. The Symmlet4 (L = 8) filter
and the decomposition level J = 5 were adopted in the calculation. Curves
(c) and (d) in Figure 5.13 are obtained, respectively, by hard- and soft-
thresholding methods with the threshold ε = 0.003 × [max (w) − min (w)],
which is determined by trial and error. In Figure 5.14, curves (c) and
(d) are obtained in the same way as in Figure 5.13, but the threshold
ε = 0.015 × [max (w) − min (w)] is adopted. The thresholds for all the
other thresholding methods are determined by the abovementioned equa-
tions. Soft thresholding is adopted for the HYBRID method, while hard
thresholding operation is adopted for the other methods. In order to com-
pare the denoised results with the original simulated signal, RMS values
between curves (a) and (c)--(h) are calculated, respectively. These values
are 0.0064, 0.0081, 0.0055, 0.0065, 0.0092, and 0.0060 for the results in
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Figure 5.13 (SNR = 100), and 0.0288, 0.0325, 0.0287, 0.0289, 0.0355,
and 0.0304 for the results in Figure 5.14 (SNR = 20). It can be seen that
all the methods can give acceptable results, but the distortion will increase
with the noise level.

Computational Details of Example 5.4

1. Generate the noisy signal with 1024 data points; see curve (b),
Figure 5.13 using the Gaussian equation.

2. Make a wavelet filter---Symmlet4.
3. Normalize the data to noise level 1.
4. Set resolution level J = 5 (10 − 5).
5. Perform forward WT to obtain the wavelet coefficients.
6. Perform thresholding to the wavelet coefficients to suppress the

smaller coefficients, construct the signal by applying inverse WT
to the suppressed coefficients, and display the denoised results,
respectively, by
6.1. Hard thresholding with manually determined threshold [Fig.

5.13, (c)].

6.2. Soft thresholding with manually determined threshold [Fig.
5.13, (d)].

6.3. SURE (hard) thresholding [Fig. 5.13, (e)].

6.4. HYBRID (soft) thresholding [Fig. 5.13, (f)].

6.5. VISU (hard) tresholding [Fig. 5.13, (g)].

6.6. MINMAX (hard) thresholding [Fig. 5.13, (h)].

Note: The only difference between Figures 5.13 and 5.14 is the
SNR of the noisy signal.

From the denoised results curves (c) and (d) in both Figures 5.13 and
5.14, it can be seen that both the hard and soft thresholding by manually
determined threshold ε can give satisfactory results. But these results are
obtained by trial and error, which is tedious and time-consuming. Among
the results of SURE, VISU, HYBRID, and MINMAX, whose thresholds are
determined automatically by the abovementioned equations, the SURE
method result is the best. It is clear that curves (e) in both Figure 5.13 and
5.14 are clean and the least distorted. Although curves (f) and (g) are also
clean enough, there are obvious distortions, especially for the last small
peak in the shoulder. From curve (h) in the two figures, it is clear that the
MINMAX is not a good method for denoising of the chromatogram, because



\c05" | 2004/1/28 | 9:52 | page 173 | #27

data denoising and smoothing 173

there is still noise in the denoised result, especially when the SNR is low
in Figure 5.14.

5.2.2. Smoothing

According to the principle of the WT smoothing, the procedure of smoothing
with WT can be summarized as follows:

1. Apply a WT to noisy signal fnoisy and obtain the wavelet coefficients
vector w.

2. Remove those elements that are thought to represent high-frequency
fluctuation in w.

3. Apply the inverse transform to the suppressed w to obtain the
smoothed signal fsmoothed.

It can be seen that the only difference between denoising and smooth-
ing is the second step. For denoising, coefficients thought to be small
enough are suppressed, but for smoothing, the coefficients representing
high-frequency information are removed. According to the principles of WT,
the detail coefficients at low scale are generally attributed to high-frequency
components.

In order to remove the coefficients corresponding to the high-frequency
component, a threshold for cutting off those coefficients must be pro-
vided for smoothing. Unfortunately, it is not so easy to determine a
frequency threshold as in denoising. Therefore, the threshold value is again
determined by trial and error.

As indicated in Figure 5.3, 5.7, and 5.9, it is difficult to determine a cutoff
position from the figure. Therefore, an improved algorithm was proposed
for DWT calculation. It can be described by

cj ,k = 1√
2

L∑
m=1

hj ,mcj−1,k−m (5.32)

dj ,k = 1√
2

L∑
m=1

gj ,mcj−1,k−m (5.33)

where the hj and gj are obtained by inserting 2j−1 − 1 zeros into the every
adjacent element of h and g in Equation (5.1) and (5.2). Subsequently,
the length of the filter L will be doubled. By this algorithm, both cj = {cj ,k }
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and dj = {dj ,k } keep the same length with cj−1 = {cj−1,k }. Therefore, we
can plot cj and dj , respectively, to inspect their frequency. Furthermore,
the algorithm can be used to decompose the signals c0 with any length
without using the special techniques such as coefficient position retaining
(CPR) method.

The corresponding reconstruction algorithm can be described by

cj ,k = 1√
2

L∑
m=1

hj ,mcj+1,k−m + 1√
2

L∑
m=1

gj ,mdj+1,k−m (5.34)

Example 5.5: Data Smoothing of a Simulated Chromatogram. Figure
5.15 shows the cj and dj obtained by Equations (5.32) and (5.33) with a
Daubechies4 (L = 4) filter and J = 5 from the simulated signal of curve
(b) in Figure 5.14. It is clear that the d1 ∼ d4 are attributed to the high-
frequency components (noise). Therefore, the smoothed results can be
obtained by reconstruction by Equation (5.34) where d1 ∼ d4 is set to
zeros, which is shown in Figure 5.16. By comparison of the smoothed
result with the simulated signal in Figure 5.16, it can be seen that there
is almost no distortion after the smoothing. The RMS between the two
curves is only 0.0028, which is smaller than any of the denoising methods
discussed above.

Figure 5.15. Plot of the wavelet coefficients obtained by WT with the improved algorithm.



\c05" | 2004/1/28 | 9:52 | page 175 | #29

data denoising and smoothing 175

Figure 5.16. Comparison of the simulated clean chromatogram (a) and the smoothed result
by WT with the improved algorithm (b).

Computational Details of Example 5.5

1. Generate the noisy signal with 1024 data points [Fig. 5.14
(a),(b)] using the Gaussian equation.

2. Make a wavelet filter---Daubechies4.
3. Set resolution level J = 5.
4. Perform WT to obtain the c and d components with the improved

algorithm.
5. Display Figure 5.15.
6. Perform smoothing by replacing the d1 − d4 with zeros and

constructing the signal with inverse WT.
7. Display Figure 5.16.
8. Display the RMS between the original signal and the smoothed

signal.

We can also propose a method to estimate an approximate scale thresh-
old for deciding the coefficients at which scale should be set to zero using
the characteristics of Equations (5.32) and (5.33) and the concept of the
Nyquist critical frequency in sampling theory. The Nyquist critical frequency
is defined by

fc = 1
2�S

(5.35)

where �S is sampling time interval. For a signal with the Nyquist critical
frequency fc , the frequency of the cj and dj calculated by Equations (5.32)
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and (5.33) will match the following inequality:{
2−j fc ≤ fdj ≤ 2−j+1fc
fcj > 2−j fc

(5.36)

Then, if we take the peak of an analytical signal (e.g., a chromatogram) as
a periodic signal, following the definition of the Nyquist critical frequency
fc , the frequency of the peak can be defined by

fp = 1
2Wb

(5.37)

where Wb denotes the width of the peak. Because the aim of the smoothing
is to remove high-frequency fluctuation and retain the chromatographic
signal, the frequency of the coefficients to be removed, fcut, should be
much higher than that of the analytical peak:

fp = 1
2Wb

� fcut = min (fdj ) = 2−j fc = 2−j 1
2�S

(5.38)

If we define the fcut by

fcut = 1
2Wth

(5.39)

where Wth denotes the estimated maximal width of noise, then rearrange
the Equation (5.38) and perform a logarithm on both sides, we obtain

−j + log2

(
1

2�S

)
= log2

(
1

2Wth

)
Wth � Wb

(5.40)

Therefore, if we denote the j in Equation (5.40) as j th, we have
j th = log2

(
Wth
�S

)
Wth � Wb

(5.41)

We can estimate an approximate scale threshold j th by Equation (5.41); all
the detail coefficients at the scale lower than the j th should be set to zero
in the reconstruction calculation. The difficulty in using the method is that
the parameter Wth must be estimated by experience.

Example 5.6: Data Smoothing of an Experimental Chromatogram.
Figure 5.17 shows an experimental chromatogram measured by an
reverse-phase HPLC and postcolumn reaction detection with arsenazo III.
The sample is composed of six rare-earth ions (Lu, Yb, Tm, Er, Ho, and
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Figure 5.17. Experimental chromatogram with great level noise of a mixed rare-earth solution
sample.

Yb). The chromatogram recorded between 1.505 and 11.811 min sampled
every 0.005 min is shown. The data length is 2048. The noise is caused
by the strong absorption of the postcolumn reaction agent and the pulse
of the mobile phase. Therefore, the noise is an oscillation as shown in the
enlarged part of the figure. It is impossible to denoise such a chromatogram
by other commonly used denoising methods. But we can easily smooth the
chromatogram by using the WT smoothing method mentioned above.

At first, we can determine a scale threshold by examination of the
enlarged part of the chromatogram. It is easy to find that the maximal width

Figure 5.18. Comparison of the smoothed results of the noisy chromatogram by WT with
general (a) and the improved (b) algorithms.
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of the noise is 16 points (0.08 min). By Equation (5.41), we can calculate
the scale threshold j th = log2 (0.008/0.005) = log2 (16) = 4. Therefore,
if we perform a WT decomposition with J = 4 and Dabechies4 filter, and
then reconstruct the signal with all the detail coefficients (d1 ∼ d4) set to
zero, we can obtained the smoothed result, which is shown in Figure 5.18.
It should be noted that the scale threshold by Equation (5.41) can be used
for both the general algorithm by Equations (5.1), (5.2), and (5.5) and the
improved algorithm by Equations (5.32)--(5.34). Curve (a) in Figure 5.18
is obtained by the former algorithm, and curve (b) is obtained by the later
one. It can be seen that they are almost the same.

Computational Details of Example 5.6

Mallat algorithm: Figure 5.18 (a):
1. Load the experimental chromatographic signal (Fig. 5.17).
2. Make a wavelet filter---Symmlet4.
3. Set resolution level J = 5 (10 − 5).
4. Perform WT to obtain the wavelet coefficients with the Mallat

algorithm.
5. Perform smoothing by replacing the detail coefficients of last

Four scales with zeros and constructing the signal with inverse
WT.

6. Display Figures 5.17 and 5.18 (a).
7. Display the RMS between the original signal and the smoothed

signal.

Improved algorithm: Figure 5.18 (b):
1. Load the experimental chromatographic signal (Fig. 5.17).
2. Make a wavelet filter---Daubechies4.
3. Set resolution level J = 4.
4. Perform WT to obtain the c and d components with the improved

algorithm.
5. Perform smoothing by replacing the d1 − d4 with zeros and

constructing the signal with inverse WT.
6. Display Figures 5.17 and 5.18 (b).
7. Display the RMS between the original signal and the smoothed

signal.

It should be noted that, in Examples 5.4, 5.5, and 5.6, the filters used
are not optimized, better results may be obtained if we use better filters.
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5.2.3. Denoising and Smoothing Using Wavelet
Packet Transform

As discussed in Section 5.1.2, WPT is a development of WT. The only dif-
ference between the two methods is the decomposition tree. In WT, only
the approximation coefficients at each scale are used for further decom-
position, but in WPT, the further decomposition is applied to both the
approximation and the detail coefficients. The procedures of data denoising
and smoothing using WPT can be summarized as follows:

1. Apply a WPT to the original signal w0
0 = fnoise up to a predefined

scale J and to obtain the coefficients wp
j for j = 1, . . . , J and p =

0, . . . , 2j−1 − 1 using Equations (5.7) and (5.8).

2. Find the best basis to express the original signal.

3. Suppress the coefficients in best-basis selection that are considered
to be attributed to noise by thresholding methods for denoising, or
remove those coefficients that are thought to represent high frequency
fluctuation for smoothing.

4. Reconstruct the denoised or the smoothed signal by the inverse WPT
using Equation (5.11).

As for the thresholding operation in step 2, all the methods used in the WT
denoising and smoothing can be employed.

The improved algorithm by Equations (5.32)--(5.34) can also be used
for WPT smoothing. Decomposition and reconstruction can be imple-
mented by

w 2p
j ,k =

L∑
m=1

hj ,mw p
j−1,k−m (5.42)

w 2p+1
j ,k =

L∑
m=1

gj ,mw p
j−1,k−m (5.43)

w p
j ,k =

L∑
m=1

hj ,mw 2p
j+1,k−m +

L∑
m=1

gj ,mw 2p+1
j+1,k−m (5.44)

As in WT, the frequency of the coefficients w0
j will be lower than 2−j fc , and

wp
j for p = 1, . . . , 2j − 1 will be in the range of p × 2−j fc ∼ (p + 1) × 2−j fc .
Compared with WT smoothing, it is more important for WPT smoothing

to develop a scale threshold estimation method because the components
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of the coefficients are much more complicated. It is impossible to examine
all the wp

j by trial and error. Unfortunately, it is difficult to derive a simple
equation for the determination of both j and p as a threshold. In practical
applications, we can simply use Equation (5.41) to estimate a minimum
scale j th and use p th = 0 as the threshold, that is, to decompose the signal
with J = j th to obtain the coefficients {wp

j } and set all the wp
j with p > 0 to

zero in the reconstruction calculation. It is easy to prove that the result of
such an approach will be exactly the same as that of WT smoothing with
scale threshold j th. Therefore, if a satisfactory result can be obtained with
the threshold j th and p th = 0, WPT is not a good choice; it would be better
to use WT. We have mentioned that the difference between WPT and WPT
is the decomposition tree, and WPT gives a finer decomposition than WT.
Therefore, if we cannot obtain a satisfactory result with the threshold j th and
p th = 0, we should perform the WPT decomposition with J = j th +2, j th +3,
or an even higher scale, and then estimate an approximate threshold p th by

min (fwp
j
) = (p + 1) × 2−j fc = (p + 1) × 2−j 1

2�S
= fcut = 1

2Wth
(5.45)

i.e.,

p th = 2j �S

Wth
− 1 (5.46)

By such an approach, trials sometimes, may still be needed to determinate
the parameter p th in practical applications. It is clear that only those wp

j with

j = J and p around p th, instead of all the wp
j , need be examined. (Note: The

best-basis selection step is not necessary if we use the scale threshold in
smoothing.)

Example 5.7: Denoising and Smoothing of Simulated and Experimen-
tal Chromatograms Using WPT. Figure 5.19 shows the denoised and the
smoothed results of the simulated chromatogram in Figure 5.14, curve (b)
using the WPT. The denoised curve (a) in Figure 5.19 is obtained with
Symmlet4 filter and J = 10 by hard thresholding. The best basis was
selected using Coifman--Wickerhauser entropy method, and the threshold
value ε = 0.008 × [max(w) − min(w)] was determined by trial and error.
The smoothed curve (b) in Figure 5.19 is obtained with the same filter
and J = 4. j th = 4 and p th = 0 were used as the scale threshold. Both
the denoising and the smoothing give us a satisfactory result. If we fur-
ther compare the denoised and the smoothed results, we can find that the
smoothed result is superior to the denoised result.
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Figure 5.19. Comparison of the denoised (a) and smoothed (b) results by WPT of the
simulated noisy chromatogram.

Computational Details of Example 5.7

Denoising: Figures 5.19 (a):
1. Generate the original signal with 1024 data points using the

Gaussian equation.
2. Make a wavelet filter---Symmlet4.
3. Normalize the data to noise level 1.
4. Set decomposition level D = 10 (dyadic length of the signal).
5. Perform WPT to obtain the WP coefficients.
6. Find best basis according to the entropy criteria.
7. Apply hard thresholding to the WP coefficients of the best basis.
8. Perform inverse WPT with the WP coefficients after thresholding

to obtain the denoised signal.
9. Display Figure 5.19, curve (a).

Smoothing: Figure 5.19 (b):
1. Generate the original signal with 1024 data points using the

Gaussian equation.
2. Make a wavelet filter---Symmlet4.
3. Set scale threshold J th = 4 and P th = 0, and set decomposition

level J = J th.
4. Perform WPT to obtain the WP coefficients.
5. Perform inverse WPT with WP coefficients within the scale

threshold to obtain the smoothed signal.
6. Display Figure 5.19, curve (b).
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Figure 5.20. Plots of the smoothed chromatograms by WPT with scale threshold of j th = 7
and p th = 2 (a), 3 (b), 4 (c), 5 (d), 6 (e), and 7 (f).

As mentioned above, if we perform smoothing of the experimental chro-
matogram in Figure 5.17 using the improved algorithm of WPT by scale
threshold j th = 4 and p th = 0, the smoothed result should be same as the
result in Figure 5.18, curve (b). If we want to smooth out the small fluctua-
tion remained in that curve, we can perform a further smoothing using the
WPT by scale threshold j th = 7 and p th < 7, because WPT further decom-
poses the w0

4 into w0
7 ∼ w7

7 and the fcut for j th = 4 and p th = 0, 1 × 2−4fc , is
equal to that for j th = 7 and p th = 7, 8 × 2−7fc .

Figure 5.20 shows the smoothed results by scale threshold j th = 7 and
p th = 2 ∼ 7. It is evident that the threshold j th = 7 and p th = 7 gives the
same result with that in Figure 5.18 (b). Going from curve (f) to curve (a),
it is clear that the curves become increasingly smooth with the decrease
of p th. Therefore, we can conveniently choose a curve as our smoothed
result.

5.2.4. Comparison between Wavelet Transform and
Conventional Methods

In order to compare the WT or WPT denoising and smoothing with the con-
ventional methods, the simulated and the experimental chromatograms are
smoothed by moving-average, Savitsky--Golay, and FFT filtering methods,
respectively. Figures 5.21 and 5.22 show their results. The smoothing win-
dow or filter width for the three methods is respectively 25, 13, and 13 points
for the simulated chromatogram in Figures 5.21 and 25, 17, and 17 points
for the experimental chromatogram in Figure 5.22. By comparing these
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Figure 5.21. A simulated noisy chromatogram (SNR = 20) (a) and the smoothed results with
the use of moving-average (b), Savitsky--Golay (c), and FFT (d) filtering.

curves with those by WT or WPT, it can be found that, for the simulated
signal, all the methods can give similar results, but for the experimental
signal, WT and WPT give more satisfactory results.

5.3. BASELINE/BACKGROUND REMOVAL

In many cases, the baseline drift or background in an analytical signal
is just like the noise, which often increases the difficulties in further pro-
cessing. The baseline drift mainly induces errors in the determination

Figure 5.22. The experimental chromatogram (a) and the smoothed results with the use of
moving-average (b), Savitsky--Golay (c), and FFT (d) filtering.
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of the peak height and peak area, which are very important param-
eters for signals analysis. The background always blurs the analytical
signals. It is difficult or even impossible to analyze a signal with a strong
background. In practice, an artificial baseline or background is usu-
ally drawn beneath the peak, although the error cannot be completely
eliminated by this method. Therefore, most chemists prefer to find the
exact shape of the baseline or background and then subtract it from the
original signal. But it is not easy to obtain the ‘‘true’’ baseline or back-
ground because they are generally represented by curves instead of linear
functions.

5.3.1. Principle and Algorithm

Baseline drift or background interference can be classified as a long-term
noise. This property differs from that of common noise in that the frequency
of the drifting baseline or background is always quite lower than the signals
to be analyzed. In wavelet decomposition, the baseline or background
component in an analytical signal should be easy to separate from the
drifting signals. The removal procedure is similar to WT denoising and
smoothing. The only difference is that the coefficients representing the
lower-frequency components are suppressed. The following two methods
are generally used.

Method A
1. Decompose the experiment data into discrete approximations cj and

discrete details dj by Equations (5.1) and (5.2).

2. Examine the cj by visual inspection to find a cj that resembles the
drifting baseline or background, and denote the scale j as jmax. The
jmax can also be determined by examination of the dj , because there
should be no information of the signal in djmax+1.

3. Reconstruct the signal by Equation (5.5) from only those dj with j ≤
jmax, that is, set cjmax to zeros.

Method B
1. Decompose the experiment data into discrete approximations cj and

discrete details dj by Equations (5.32) and (5.33).

2. Examine the cj by visual inspection to find a cj (denote the scale j as
jmax) that resembles the drifting baseline or background.

3. Subtract the selected cjmax from the original signal by c0 − cjmax or
sometimes c0 − f × cjmax , where f is an arbitrary factor.
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5.3.2. Background Removal

Background removal is a universal problem in spectral studies, such
as absorption spectroscopy and reflection spectroscopy. Example 5.8
describes a procedure to remove the background absorption from an
EXAFS spectrum using the methods A and B, respectively.

Example 5.8: Background Removal of an EXAFS Spectrum. Extended
X-ray absorption fine structure (EXAFS) is an X-ray absorption spectrum.
A typical experimental absorption spectrum of copper with synchrotron
radiation light source is shown in Figure 5.23a. For analyzing the EXAFS
spectrum, we must separate the useful information (oscillation part) from
the total raw spectrum. Then convert the oscillation part into k space by
using the equation k = [0.263(E −E0)]1/2, where E0 is the absorption edge
(the E0 for Cu is 8393.5 eV). At last, the oscillation signal is filtered by FFT
and then fitted by the theoretical equation

χ (k ) =
∑

j

Nj

kr 2
j

∣∣fj (k )
∣∣e−k 2σ2

j e−2rj /λ

× sin
[
2krj + ϕ(k ) + 0.2625rj�E0

k

] (5.47)

where χ (k ) is the filtered oscillation signal multiplied by a factor k 3, j is
the number of the coordination shells, fj (k ) is the amplitude value that can
be obtained from handbook, ϕ(k ) is the phase displacement of scattering,
�E0 is the difference between the theoretical value and the experimental
value of the E0, N is coordination number, r is coordination distance, σ
is Debye--Waller factor, and λ is electron mean-free path. The aim is to
obtain the structural parameter N , r , σ , and λ. Generally, the cubic spline
interpolation method is used for the background removal and the least-
squares method is used for the curve fitting. In our experience, it will take
several hours to analyze one spectrum.

We can use method A for the background removal of an EXAFS spec-
trum. Figure 5.24a shows an experimental spectrum of a Cu sample,
and panel (b) shows the spectrum in k space. In order to decompose
the spectrum into its approximation and details, we can perform a WT on
the k -space spectrum with Equations (5.1) and (5.2). Figure 5.25 shows
the decomposed results, {c4, d4, d3, d2, d1}, obtained with Daubechies8
(L = 8) filter and J = 4. It is clear that the information on the EXAFS
oscillation is decomposed into the dj and that c4 represents the smooth
background absorption. Therefore, if we reconstruct the spectrum from the
dj components only, we will obtain the spectrum without the background
absorption. The dotted line in Figure 5.24c shows the reconstructed
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Figure 5.23. General procedures for analying an EXAFS spectrum: (a) raw spectrum;
(b) oscillation part; (c) Filtered oscillation signal.

spectrum. From the result, it is obvious that the background is removed.
The solid line in Figure 5.24c shows the result obtained by the conventional
cubic spline curve fitting after many trials. By comparing the two curves,
it can be seen that their main shapes are almost the same, but the result
by the WT method is superior to that of the conventional method in both
shape and noise level in the high-k region.

Method B can also be used for removing the background in this exam-
ple. Figure 5.26 shows the decomposed approximations obtained by using
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Figure 5.24. An experimental EXAFS spectrum of Cu sample (a), the converted spectrum
in k space (b), and background-removed results obtained by conventional (c-solid) and WT
(c-dot) methods.

Equations (5.32) and (5.33) of the improved algorithm. It can be seen that
the oscillation signal is gradually removed from c0 to c4, but the smoothed
background remains. Therefore, if we subtract c4 from c0, the oscillation
part can be obtained, which is shown in Figure 5.27, curve (a) by the dotted
line. The solid line shows the results obtained by the conventional cubic
spline interpolation method for comparison. Comparing with the two curves
in Figure 5.27, curve (a), we can also find that there is no significant dif-
ference between them except that the results obtained by the WT method
are superior to those obtained by the conventional method in both shape
and noise level in the high-k region.
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Figure 5.25. Plots of the decomposed approximation (c4) and details (d1, d2, d3, d4) obtained
by applying WT to the k -space EXAFS spectrum with the MRSD algorithm.

Computational Details of Example 5.8
Method A:

1. Load experimental spectrum (Fig. 5.24a) and the spectrum in
k space, (Fig. 5.24b).

2. Extend the spectral data to an integer power of 2.
3. Make a wavelet filter---Daubechies4.
4. Set resolution level J = 4 (8 − 4).
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5. Perform forward WT to obtain the wavelet coefficients.
6. Display Figure 5.25.
7. Set approximation coefficients with zeros, and construct the

signal by applying inverse WT.
8. Display Figure 5.24

Method B:

1. Load experimental spectrum (Fig. 5.24a).
2. Extend the spectral data for avoiding the edge effect.
3. Make a wavelet filter---Daubechies4.
4. Set resolution level J = 5.
5. Perform forward WT to obtain the c and d components with the

improved algorithm.
6. Display Figure 5.26.
7. Subtract c4 from the experimental spectrum.
8. Convert the subtracted result to k space.
9. Display Figure 5.27, curve (a).

As mentioned above, the aim of analyzing the EXAFS spectrum is
to obtain the structural parameters such as N and r in Equation (5.47).
In order to obtain the structural parameters from the EXAFS oscillation,
Fourier filtering and least-square fitting can be performed. Figure 5.27,
curve (b) shows the filtered results for the first coordination shell from the
EXAFS signals in Figure 5.27, curve (a), and Table 5.3 compares the struc-
tural parameters obtained by least-square fitting of three Cu samples. The
last column in the table shows a comparison of the fitted errors, which is

Figure 5.26. Plots of the approximations obtained by applying WT to the experimental EXAFS
spectrum with the improved algorithm.
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Figure 5.27. Background-removed results by conventional (solid line) and WT (dotted line)
methods (a), and their filtered results (b).

calculated by

E = 1
N

N∑
i=1

(X i
cal − X i

exp)2 (5.48)

where N is the number of points in the spectra and X i
cal and X i

exp are,
respectively, the fitted and the experimental values. For the sake of com-
parison between the two methods, both of the experimental and the fitted
spectra were normalized when calculating the fitted error.

From Figure 5.27, curve (b), it is clear that the result by WT method
is superior to that of the cubic spline method. From Table 5.3 it can be
seen that, except for the coordination distance r , which is very close to
the results of the two methods, all the other three parameters obtained
by the wavelet transform method are larger than the results of cubic spline
method. But they are reasonable. The fitted errors are also improved by the
WT method. Table 5.3 also shows that the reproducibility of the three results

Table 5.3. Comparison of Structural Parameters and Fitted Errors
Obtained by Least-Squares-Fitting from Background-Removed Spectra

with WT and Spline Method Respectively

Spectrum Method N r σ λ Fitted Error

I WT 12 2.50 0.112 6.5 0.0026
Spline 8 2.52 0.077 4.4 0.0074

II WT 12 2.49 0.109 6.3 0.0029
Spline 9 2.53 0.082 4.5 0.0027

III WT 12 2.51 0.113 6.3 0.0011
Spline 9 2.52 0.084 4.5 0.0056
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obtained by wavelet transform method is obviously superior to that of the
cubic spline method. The reason for this is that the cubic spline method
performs the background removal according to the points selected by the
operator. However, there is no operator interference in the WT method.

5.3.3. Baseline Correction

Baseline drift is caused mainly by continuous variations of experiment
conditions, such as temperature, solvent programming in liquid chromatog-
raphy, or temperature programming in gas chromatography. Therefore,
baseline drift is a very common problem in chromatographic studies.

Figure 5.28 shows an example of the separation of the drifting base-
line from a chromatogram with gradient elution by method B. Curve (a)
is the experimental chromatogram. From the figure, it can be seen that
there is a strong baseline drift caused by the gradient elution in the
chromatogram. Curve (b) is the 8th-scale discrete approximation c8 decom-
posed by WT with Symmlet (S5) wavelet. Apparently, it resembles the
baseline. Figure 5.29 shows the result obtained by subtracting curve (b)
from curve (a) of Figure 5.28 with a factor f of 0.93. From the result, it is clear
that the removal of baseline by this method is complete and satisfactory.

5.3.4. Background Removal Using Continuous
Wavelet Transform

As stated in Chapter 4, the CWT of a signal s(t ) with an analyzing
waveletψ(t ) is the convolution of s(t ) with a scaled and conjugated wavelet

Figure 5.28. An experimental chromatogram (a) and its eighth discrete approximation
obtained by WT decomposition (b).
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Figure 5.29. Baseline-corrected chromatogram obtained by subtracting the eigth discrete
approximation from the experimental chromatogram.

ψa(t ) = ψa(− t ):

Wf (a, b) = ψa ∗ s(b) = 1√|a|
∫ +∞

−∞
ψ

(
t − b

a

)
f (t )dt (5.49)

In Fourier domain, the equation takes the form

Wf (a, b) = 1
2π

∫ +∞

−∞
ψ̂(aω)ŝ(ω)eiωbdω (5.50)

where ψ̂ and ŝ are the Fourier transforms of the wavelet ψ and the signal
s, respectively. Equations (5.49) and (5.50) show clearly that the wavelet
analysis is a time--frequency analysis, or, more properly, a timescale anal-
ysis because the scale parameter a behaves as the inverse of a frequency.
In particular, Equation (5.50) shows that the CWT of a signal is a filter
with a constant relative bandwidth �ω/ω. Therefore, the CWT should be
used for separating the smooth background and the sharp peaks. In the
following paragraphs, a method for removal of large spectral line from NMR
spectrum is introduced.

Let s(t ) be a signal of the form

s(t ) =
N∑

l=1

sl (t ) (5.51)

where sl (t ) = Al (t ) exp (iωl t ) is the l th spectral line, which has a constant
frequency fl = ωl/2π , and N is the number of the spectral lines. Its CWT



\c05" | 2004/1/28 | 9:52 | page 193 | #47

baseline/background removal 193

is given by

Wf (a, b) =
N∑

l=1

Wfl (a, b) (5.52)

and the Wfl is

Wfl (a, b) = 1
2π

∫ +∞

−∞
ψ̂(aω)Âl (ω − ωl )eiωbdω

= 1
2π

eiωl b
∫ +∞

−∞
ψ̂(a(ω + ωl ))Âl (ω)eiωbdω (5.53)

Using the Taylor expansion of the Fourier transform of the analyzing
wavelet ψ̂ around the pulsation ωl

ψ̂(a(ω + ωl )) = ψ̂(aωl ) +
∑

k

(aω)k

k !
d k ψ̂

dωk
(aωl ) (5.54)

we obtain the following expansion for Wfl :

Wfl (a, b) = ψ̂(aω)sl (b) + eiωl b
∑
k≥1

(− ia)k

k !
d k ψ̂

dωk
(aωl )

d k Al

dbk
(b) (5.55)

Therefore, we have

Wfl (a, b) ≈ ψ̂(aωl )sl (b) (5.56)

and

Wf (a, b) ≈
N∑

l=1

ψ̂(aωl )sl (b) (5.57)

If the values of frequency ωl are sufficiently far away from each other, the
factor ψ̂(aω) will allow us to treat each spectral line independently. In this
case, the contribution of the l th spectral line to the Wf (a, b) is localized on
the scale al = ω0/ωl , where ω0 is the frequency of the analyzing wavelet.
Therefore, we have

Wf (ω0/ωl , b)

ψ̂(ω0)
≈ sl (b) (5.58)

Using this equation, we can easily separate the large spectral line and
small peaks. However, in many cases, especially when the frequency of
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the each component are close to each other, we cannot obtain satisfactory
results using this equation because

Wf (al , b)

ψ̂(ω0)
≈ sl (b) +�Wf (al , b) (5.59)

the second term in the equation is a sum over the other spectral lines, with
the amplitudes attenuated by the exponential factor.

Therefore, in practical applications, we can define

s(k )
l (b) = Wf (al , b)

ψ̂(ω0)
(5.60)

and iterate the procedure with s(k−1)
l (b) as the new input signal. After a

certain number of iterations, the second term in Equation (5.59) will become
negligible.

Example 5.9: Large Spectral Line Removal of a Simulated NMR Spec-
trum. The NMR signal in Fourier domain can be simulated by

sl (t ) = Al (t ) exp (iωl t ) = Al exp (− dl t ) exp (iωl t ) (5.61)

Figure 5.30 shows three simulated signals s1(t ), s2(t ), and s(t ) = s1(t ) +
s2(t ) and their Fourier transforms, where s1(t ) and s2(t ) were simulated by

s1(t ) = 1.0 exp
−t
200

exp (i0.2π t ) (5.62)

s2(t ) = 10.0 exp
−t
100

exp (i0.19π t ) (5.63)

where t is sampled by 2048 data points. It can be seen that the large
spectral line s1(t ) can be viewed as the baseline or the background of the
small peak s2(t ).

In order to separate the signals s1(t ) and s2(t ) from the mixed signal, we
can use the iterative procedure described by Equation (5.60). Figure 5.31
shows the results at the number of the iteration k = 100, 200, and 300. In
the calculation, Morlet wavelet, which is defined by

ψ(t ) = eiω0t e−t2/2σ2
0 (5.64)

ψ̂(ω) = √
2πσ0e−(ω−ω0)2σ2

0 /2 (5.65)

and σ0 = 1, ω0 = 5 were adopted. Because the aim is to remove the s1(t )
and extract s2(t ), al = ω0/ω1 = 5/0.2π was used. It can be seen that, after
500 iterations, the large spectral line is completely removed.



\c05" | 2004/1/28 | 9:52 | page 195 | #49

baseline/background removal 195

Figure 5.30. Simulated NMR signals in Fourier domain (left) and the plots of their Fourier
transform (right).

Figure 5.31. Plots of the extracted NMR signals (left) and their Fourier transform at k = 100
(a), 300 (b), and 500 (c) (right).
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Computational Details of Example 5.9

1. Generate the mixed signal in Figure 5.30 with ω1 = 0.2π and
ω2 = 0.19π .

2. Set the scale parameter for the CWT: a = ω0/ω1, where the ω0

is 5, which is determined by wavelet function used in the CWT.
3. Perform CWT to remove the large spectral line iteratively.
4. Display Figure 5.31.

Using the same procedure, D. Barache et al. successfully subtracted a
large component from an experimental NMR spectrum of polyethylene as
shown in Figure 5.32a. The huge line is the peak corresponding to CH2

groups, which completely obliterates the fine details of the other peaks.
After subtraction of the large peak as shown in Figure 5.32b, the small
peaks become clearly identifiable.

5.3.5. Background Removal of Two-Dimensional Signals

With the development of modern instruments, more and more analytical
instruments provide two-way data matrices as their measurement results. A
method for background removal of 2D analytical signals was also proposed
on the basis of the WT technique.

Assume a data matrix X of order n × m, in which each line represents
a spectral measurement with m wavelength sampling points and each col-
umn represents a chromatographic measurement with n retention-time

Figure 5.32. An experimental NMR spectrum with large spectral line (a) and the spectrum
obtained by CWT extraction (b) [copied from D. Barache et al. J. Magn. Reson. 128:1--11,
(1997)].
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sampling points. The data matrix can be divided into two parts:

X = Xc + Xb (5.66)

Here Xc originated from chemical components and Xb from noise and back-
ground. For the sake of convenience, we assume that the data matrix is free
of noise; Xb will composed of spectral and chromatographic background.
The background of 2D analytical data matrices such as the ‘‘hyphenated’’
chromatographic--spectroscopic data generally has the following proper-
ties: (1) there is no direct correlation between the chromatographic baseline
drift and the spectral background, (2) there is a very similar spectral back-
ground at the two ends of a chromatographic peak, and (3) there is a similar
drift of the baseline at each retention time since the scanning time for each
spectrum is very short. Thus, the background matrix can be written as

Xb = t1T + 1sT (5.67)

where t denotes the baseline drift in chromatographic direction, sT denotes
the spectral background, and 1 and 1T denote that a vector contains
only 1s. The superscript T denotes transposition.

Therefore, the spectrum at retention time i can be expressed as

xT
i = xT

c,i + ti 1T + sT (5.68)

where xT
c,i denotes a ‘‘pure’’ spectrum at retention time i and ti correspond-

ing to the baseline drift at the retention time. In a zero-component regions,
xT

c,i should be a zero vector. Equation (5.68) turns into

xT
i = ti 1T + sT (5.69)

Equation (5.69) shows that the spectra in zero-component regions before
and after elution should be similar if there is spectral background. If not,
they should be flat lines. Therefore, the zero component regions may be
used to detect the presence of spectral background.

According to the algorithm of WT, we can obtain approximation and detail
coefficients by using Equations (5.3) and (5.4). The detail coefficients of a
spectrum at retention time i on scale k can be expressed as

dk = xT
i H0H1H2 · · · Gk−1

= xT
c,i H0H1H2 · · · Gk−1 + ti 1T H0H1H2 · · · Gk−1

+ sT H0H1H2 · · · Gk−1 (5.70)

According to the properties of the filters H and G, it is easy to deduce
that the detail coefficients of a constant vector c = {c, c, . . . , c} should be
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a zero vector:

d1 = cG = 0 (5.71)

Using this property, Equation (5.70) can be reduced to

dk = xT
c,i H0H1H2 · · · Gk−1 + sT H0H1H2 · · · Gk−1 (5.72)

In zero-component regions, this last equation can be further reduced into

dk = sT H0H1H2 · · · Gk−1 (5.73)

Therefore, using Equations (5.72) and (5.73), we can remove both the
chromatographic baseline drift and the spectral background.

For example, Figure 5.33a,b shows two simulated chromatographic
peaks and two simulated spectra, which are used to simulate a theo-
retical HPLC-DAD data matrix (denoted as X). Figure 5.33c,d shows a
simulated chromatographic baseline and a simulated spectral background,
which are used to simulate an HPLC-DAD data matrix containing base-
line drift and background. We can simulate two data matrices X1 and X2,

Figure 5.33. Chromatograms (a), spectra (b), chromatographic baseline (c), and spectral
background (d) used in the simulation of the HPLC-DAD data matrices.
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where X1 includes only chromatographic baseline drift and X2 includes both
chromatographic baseline drift and spectral background.

In order to remove the baseline drift and the spectral background from
the data matrices X1 and X2, we can apply a WT decomposition to each
line of the two data matrices and use the detail coefficients on a defi-
nite scale k to combine new data matrices X1d and X2d . In both matrices
X1d and X2d , chromatographic baseline should have been corrected. After
that, for the matrix X2d , we can further remove the spectral background
by subtracting the transformed background from it using the information
in zero-component regions. Note that in practice, it is very important to
determine the decomposition scale k . Generally, k = 1 or 2 can be used
for those signals with a low sampling frequency, but k = 3, 4, or 5 should
be used for those signals with a high sampling frequency. In this example,
k = 2 was used. Furthermore, different wavelet basis used give different
results. There is no general rule for selection of the best wavelet basis for
a given signal except trial and error. In this example, Daubechies wavelet
filters with length L = 4 were used.

In order to investigate the effect of the method, we can examine the
rankmap of the data matrices as it can reveal the factor number of these
data matrices. Figure 5.34 shows the rankmaps of the data matrices X,
X1, X2 before and after background removal. By comparing the rankmaps
before and after background removal, it is clear that the factor correspond-
ing to the chromatographic baseline and the spectral background in panels
(a), (b), and (c) disappeared in panels (d), (e) and (f) (of Fig. 5.34). This indi-
cates that both the chromatographic baseline and the spectral background
are completely removed.

An experimental HPLC-DAD data matrix was processed by the method
in an article published in Chemometrics and Intelligent Laboratory Systems
[37:261--269 (1997)] by Shen et al. Figure 5.35a shows the rankmap of the
data matrix of a sample consisting of two isomers of a pharmacologically
active drug. It is clear that the factor number is not correct. There are
two factors caused by background absorption. But in Figure 5.35b, which
shows the rankmap of the matrix after background removal by the method,
only two main factors remain. In this work, decomposition scale k = 3 and
Daubechies wavelet filters with length L = 4 were adopted.

5.4. RESOLUTION ENHANCEMENT

Poor resolution is a very common problem encountered by chemists in
spectral or chromatographic studies. In spectral studies, resolution of a
spectrum is very important to ensure a correct assignment of the spectral
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Figure 5.34. Rankmaps of the data matrices x, x1, x2 before (a),(b),(c) and after (d),(e),(f)
background removal by WT decomposition.

peaks. The problem of poor resolution is always an obstruction in spectral
analysis. Another problem in both spectral and chromatographic studies
is peak overlapping. We must resort to mathematical techniques to solve
these problems. Usually, these problems are solved by using techniques
such as linear or nonlinear regression analysis, curve-fitting procedures,
derivative procedures, neural networks, and chemical factor analysis.

5.4.1. Numerical Differentiation Using
Discrete Wavelet Transform

Derivative calculation is a powerful technique used in analytical chemistry
to resolve spectra, sharpen peaks, determine potentiometric titration end-
points, carry out quantitative analysis, and perform similar procedures.
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Figure 5.35. Rankmap of an experimental HPLC-DAD data matrix before (a) and after (b)
background removal by WT decomposition.

Although derivative calculation is a useful tool for data analysis, it has
a major drawback in increasing the noise level in higher-order deriva-
tive calculation. In order to improve the signal-to-noise ratio (SNR) of
higher-order derivative calculation via conventional numerical differentia-
tion, noise reduction is usually performed before calculating the successive
order derivative, which will lead to inconvenience and complication in the
calculation.

In practice, the simplest method of derivative calculation is numerical
differentiation. Other methods used in chemical studies for derivative cal-
culation include Fourier transform and the Savitsky--Golay method. The
former method cannot improve the SNR in its result, and the latter method
involves the selection of suitable parameters.

On the basis of the characteristics of the wavelet functions, a method for
derivative calculation using DWT with Daubechies wavelet was proposed.
The approximate first derivative of a signal x can be computed by the
difference between two scale coefficients

x(1) = cj ,D2m − cj ,D2m̃
m �= m̃ (5.74)

where x(1) represents the first derivative of the signal x, D2m and D2m̃ rep-
resent two Daubechies wavelet functions, and cj ,D2m and cj ,D2m̃

are the
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j th-scale discrete approximations obtained by Equations (5.1) and (5.2)
with the two wavelets, respectively. In practice applications, j = 1 is gener-
ally used. But for noisy signals, a higher value of j can be used to improve
the SNR of the calculated result.

Higher-order derivative computation can be achieved by using the result
obtained from the lower-derivative calculation as an input for WT calculation

x(n) = c(n−1)
j ,D2m

− c(n−1)
j ,D2m̃

m �= m̃ and n > 1 (5.75)

where x(n) represents the nth-order derivative and c(n−1)
j ,D2m

and c(n−1)
j ,D2m̃

rep-
resent the j th-scale approximation coefficients obtained by WT from the
(n − 1)th-order derivative with the Daubechies wavelet functions D2m

and D2m̃ .

Example 5.10: Approximate Derivative Calculation of Simulated Sig-
nals Using DWT. Figure 5.36a shows three types of typical analytical

Figure 5.36. A simulated signal (a) and its first- (a) and second- (c) order derivatives
calculated by DWT method.
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signals simulated by Gaussian, Lorentzian, and sigmoid functions

xgauss = A0 exp

(
−4 ln(2)

(
t − t0
W1/2

)2
)

(5.76)

xlorentz = A0

(
1 + 4

(
t − t0
W1/2

)2
)−1

(5.77)

xsigmoid = A0

1 + e−k (t−t0)
(5.78)

where A0, t0, and W1/2. are the amplitude, position, and the full width at
half maximum of the simulated peak, respectively, and k is a parameter to
control the gradient of the curve. Figure 5.37a shows a noisy signal by the
curve (a) in Figure 36 plus a random noise at SNR = 100.

Figure 5.37. A simulated noisy signal (a) and its first derivative calculated by DWT with j = 1
(b) and j = 3 (c), respectively.
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Figure 5.36b,c shows the first- and second-order derivatives obtained
by Equations (5.74) and (5.75), respectively, using j = 1 and Daubechies
N = 18 and 8 as the filters (D2m and D2m̃). It can be seen that very good
results can be obtained. The only drawback is that the number of data points
is reduced to 1

2 for the first-order derivative and 1
4 for the second-order

derivative.
Figure 5.37b shows the first derivative using the same method and the

parameters as in Figure 5.36b. It can be seen that, when the signal is
noisy, the SNR of the result will be even worse than that of the signal. In
this case, we can use a higher value of j for the calculation. Figure 5.37c
is obtained using j = 3, which is an acceptable result. But there is also
the problem of the reduction of the data point number. The number of data
point in Figure 5.37c is only 1

8 th of the original length.
Although interpolation can solve the problem of the data point number,

we can also use Equations (5.32) and (5.33) for calculation of the cj ,D2m

and cj ,D2m̃
in Equation (5.74) or c(n−1)

j ,D2m
and c(n−1)

j ,D2m̃
in Equation (5.75). The

benefit of using the two equations is that the number of data points in cj

does not change. Consequently, the length of the calculated derivatives will
remain the same as that of the original signal. Figures 5.38 and 5.39 show
the first- and the second-order derivatives of the simulated signals with the
same filters as in the DWT method and j = 1 and j = 4, respectively. It can
be seen that all the results are acceptable. Only the symmetry of the peaks
is slightly distorted because of the effect of the noise in Figure 5.39c.

Computational Details of Example 5.10

1. Generate the signal with 2000 data points (Fig. 5.36a) by using
Gaussian, Lorentzian, and sigmoid equations.

2. Extend the data point number to 2048.
3. Make two wavelet filters---Daubechies18 and 8.
4. Set resolution level J = 1.
5. Perform DWT with the two filters, respectively, to obtain the

wavelet coefficients.
6. Calculate the first derivative by subtracting the approximate

coefficients one from another.
7. Display Figure 5.36b.
8. Perform DWT on the coefficients obtained in step 5 with the

two filters, respectively.
9. Calculate the second derivative from the approximate coeffi-

cients.
10. Display Figure 5.36c.
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Note: The results in Figure 5.37 were obtained in a similar way with
the only difference in J = 3 for the second-derivative calculation,
and the results in Figures 5.38 and 5.39 were obtained by using
the improved algorithm with J = 1 and 4, respectively.

5.4.2. Numerical Differentiation Using Continuous
Wavelet Transform

CWT with some specific wavelet functions can also be used for approximate
derivative calculation of analytical signals. The Haar wavelet function, for
instance, is one of the appropriate wavelet bases because of its symmetric

Figure 5.38. A simulated signal (a) and its first- (b) and second- (c) order derivatives
calculated by the improved WT algorithm with j = 1.
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Figure 5.39. A simulated noisy signal (a) and its first- (b) and second- (c) order derivatives
calculated by the improved WT algorithm with j = 4.

property. Just as in the method using DWT, the approximate nth-order
derivative of an analytical signal can be obtained by applying n times of the
CWT to the signal. CWT is continuous in terms of scaling and shifting; that
is, during computation, the analyzing wavelet can be shifted smoothly over
the full domain of the analyzed signal at any scale. Therefore, it possesses
much stronger resolving ability than does DWT in both time and frequency
domains. In comparison with the other methods, the SNR of the derivatives
for noisy signals can be greatly improved using the CWT method with a
proper scale parameter a for ψa(t ) in Equation (5.49).

In practice, analytical signals are discrete; thus, a discrete form of the
Equation (5.49) is used

Wf (a, i�s) = �s√|a|
∑

n

f (n�s)ψ
(

(n − i )�s

a

)
(5.79)
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where i and n are indices of the data point,�s corresponds to the sampling
interval, and ψ(t ) is the Haar wavelet function:

ψ(t ) =




1 0 ≤ t < 1
2

−1 1
2 ≤ t < 1

0 other

(5.80)

It is obvious that because the Haar wavelet function is of a ladder shape,
the result from Equation (5.79) should correspond to the first derivative of
f (n�s), and the nth-order derivative can be obtained by applying CWT to
the (n − 1)th-order derivative.

Example 5.11: Approximate Derivative Calculation of Simulated Sig-
nals Using CWT. Figures 5.40 and 5.41 show the first- and second-order
derivatives of the two simulated signals used in the DWT method above.
They are computed by using the CWT method with different values of the
scale parameter a. It can be seen that, for the signal without noise in Figure
5.40, all the results at different values of a are satisfactory. Only the width
of the peaks in the calculated derivatives becomes increasingly broad with
increase in the value of a. But for the noisy signal in Figure 5.41, it can be
seen that the effect of noise can be eliminated with a relative large value
of a.

Computational Details of Example 5.11

1. Generate the signal with 2000 data points (Fig. 5.36a) using
Gaussian, Lorentzian, and sigmoid equations.

2. Extend the data point number to 2048.
3. Perform CWT with Haar wavelet and the scale parameter a = 1,

20, and 50 to obtain the first- and second-order derivatives,
and display them in Figure 5.40 and 5.41, respectively, for the
simulated signal with and without noise.

Taking the Gaussian peak as an example, we can investigate the effect
of the scale parameter a on the peak width of its derivative. Figure 5.42
shows the relationship between increase in peak width and the value of a.
The increase is represented in percent of the peak width in the derivative
by the conventional numerical method. The values of the circled points
connected by the dotted line are obtained by manual measurement, and
the solid line represents the fitted curves. It is clear that the peak width
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Figure 5.40. The first- (left column) and second- (right column) order derivatives of the sim-
ulated signal without noise calculated by CWT with Haar wavelet and the scale parameter
a = 1 (a), 20 (b), and 50 (c).

increases with the value of a, but the increase is less than 10% when the
parameter a is less than 100.

Figure 5.43, curve (a) shows a photoacoustic spectrum of a rare-
earth compound. There are three overlapping absorption peaks in the
range of 400--500 nm. It is evident that high magnitude noise exists in
the spectrum, which makes the position of peaks hard to determine. If
the spectral data are directly processed by numerical differentiation meth-
ods, the SNR of the derivatives will be too low to see anything but noise.
Figure 5.43, curves (b) and (c) are respectively the first and second
derivatives computed by the CWT method with a = 100. It can be seen
that the derivatives are smooth and clean, and the SNR is even better
than that of the original signal. Although there is still a small-magnitude
noise in the derivatives, it does not affect determination of the posi-
tion of peaks, because the overlapping peaks are clearly resolved in the
derivatives.
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Figure 5.41. The first- (left column) and second- (right column) order derivatives of the sim-
ulated noisy signal calculated by CWT with the Haar wavelet and the scale parameter a = 1
(a), 20 (b), and 50 (c).

Figure 5.42. Relationship between the relative increase of the peak width in the calculated
derivative of a Gaussian peak and the value of the parameter a.
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Figure 5.43. An experimental photoacoustic spectrum (a) and its first- (b) and second-
(c) order derivatives calculated by CWT with a = 100 [From Fresenius J. Anal. Chem.
367:525--529 (2000)].

5.4.3. Comparison between Wavelet Transform and other
Numerical Differentiation Methods

Here, we compared the derivatives obtained using different methods,
including numerical differentiation, the Fourier transform method, the
Savitsky--Golay method, the DWT method, the DWT method with the
improved WT algorithm, and the CWT method with a = 50. The first-
order derivatives of the above two simulated signals by these methods are
shown in Figure 5.44, respectively. From the figure it can be seen that, for
the signal without noise, all the results are almost the same. But for the
noisy signal, only the last two methods can obtain smooth derivatives.

Table 5.4 lists the parameters describing these results in the left column
of Figure 5.44. The definition of the peak width and peak position is depicted
in Figure 5.44, curve (f). From the parameters in the table, we can find that
all the methods give the same peak position, but the peak width is slightly
different. Because it is difficult to determine the exact beginning and ending
points of the peaks, there is a large error in the peak width in the table. But
it is evident that the peak width in the results using the CWT method is
comparatively greater than from the other methods.
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Figure 5.44. Comparison of the first derivatives of the clean (left column) and noisy (right col-
umn) simulated signals calculated by numerical differentiation (a), Fourier transform method
(b), Savitsky--Golay method (c), DWT method (d), DWT method with the improved WT
algorithm (e), and the CWT method (f).

Table 5.4. Comparison of Peak Position and Width of Calculated Derivatives by
Different Derivative Calculation Methods

Gaussian peak Lorentzian peak Sigmoid peak

Method Position Width Position Width Position Width

Simulated 334 239 1000 596 1666 253
Numerical 333 269 1000 381 1667 215
FT 334 272 1000 370 1667 270
Savitsky--Golay 168 × 2 135 × 2 500 × 2 199 × 2 834 × 2 125 × 2
DWT 167 × 2 135 × 2 500 × 2 200 × 2 833 × 2 113 × 2
Improved DWT 333 275 1000 381 1665 241
CWT 334 330 1000 415 1667 318
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5.4.4. Resolution Enhancement

According to the characteristics of the WT, a signal can be decomposed
into its contributions by the MRSD method to obtain discrete details dj and
discrete approximations cj , which represent the different components of the
signal at different frequencies. If an overlapping or low-resolution signal
is decomposed into its contributions, there must be discrete details that
represent the information at the frequency lower than noise and higher than
the original signal. Therefore, it is not difficult to select a detail at medium
scale to obtain the high-resolution information of the signal. Furthermore,
if we amplify one or several of these selected details and then perform the
inverse transform, that is, reconstruct the original signal with the amplified
contributions, we can also obtain a signal with high resolution.

Therefore, there are generally two methods using WT for resolution
enhancement of analytical signals:

1. Decompose the analyzing signal c0 into its approximations cj and
details dj using Equations (5.32) and (5.33).

2. Inspect the cj and dj , then select either (a) a detail component as
the resolved result for further studies (method A), or (b) one or more
detail components that represent the high-resolution information of
the analyzing signal (method B).

3. Multiply the selected dj by a factor k whose value is bigger than 1.0
and reconstruct the signal by using Equation (5.34) (method B).

Example 5.12: Resolution Enhancement of an Overlapping Chro-
matogram Using Method A. Curve (c0) in Figure 5.45 is an experimental
chromatogram, and curves (d4), (d5), and (d6) are its detail components
obtained by using the improved WT algorithm in Equations (5.32) and
(5.33) with Symmlet (L = 4) wavelet at scale parameter j = 4, 5, and
6, respectively.

As discussed in the WT denoising section, the frequency of the detail
components dj obtained by a WT decomposition decreases with the
increase of the scale parameter j . The detail components at low scales
are generally composed of noise. From Figure 5.45, it is clear that d4 is still
composed mainly of noise, but d5 and d6 are composed of chromatographic
information whose frequency is higher than that of noise and lower than
that of the original signal. That is to say, the d5 and d6 are the desired high-
resolution part of the analytical signal. Therefore, in the detail components
on medium scale, we can find one or more components which represent
the high-resolution information of the analytical signal. If we further com-
pare d5 and d6, it is easy to find that d5 is the better one for representing
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Figure 5.45. An experimental chromatogram (c0) and its detail components obtained by WT
with j = 4(d4), 5(d5), and 6(d6).

the high-resolution information, which can be used for further studies, such
as determination of peak position and quantitative calculation.

Computational Details of Example 5.12
1. Load the experimental chromatogram [Fig. 5.45 (c0)].
2. Extend the chromatographic data for avoiding the edge effect.
3. Make a wavelet filter---Symmlet4.
4. Set resolution level J = 6.
5. Perform WT to obtain the c and d components with the improved

algorithm.
6. Display Figure 5.45.

Because this method can extract the high-resolution information from a
low-resolution or overlapping analytical signal, a method for determination
of the component number in overlapping chromatograms was proposed.
Figure 5.46 shows four experimental chromatograms with different inten-
sities. It is impossible to obtain the correct component number from such
chromatograms. Figure 5.47 shows the d5 component of the four chro-
matograms in Figure 5.46 obtained with Symmlet wavelet filters (L = 4).
The dotted line in the figure indicates the position of zero in the magnitude
axis. From Figure 5.47, it is clear that there are five components in the
chromatograms, and all four chromatograms of different magnitude give
us the same result.
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Figure 5.46. Four experimental chromatograms with different amplitudes [from Chemometr.
Intell. Lab. Syst. 43:147--155 (1998)].

Because the WT is a linear transform, the high-resolution information
should be used for quantitative calculation. An example of quantitative
determination of the components in overlapping chromatographic peaks
was published in Analytical Chemistry, [69:1722--1725 (1997)]. Figure 5.48
shows the chromatograms of five mixed samples of benzene, methyl ben-
zene, and ethyl benzene. It is difficult to perform quantitative calculation

Figure 5.47. The detail component d5 obtained from the four chromatograms in Figure 5.46
by WT decomposition [from Chemometr. Intell. Lab. Syst. 43:147--155 (1998)].
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Figure 5.48. Experimental chromatograms of 5 three-component samples [from Anal. Chem.
69:1722--1725 (1997)].
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Figure 5.49. Wavelet coefficients d3 obtained from the five chromatograms in Figure 5.48 by
WT decomposition [from Anal. Chem. 69:1722--1725 (1997)].
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Figure 5.50. Baseline-corrected wavelet coefficients after subtracting the estimated baseline
by linking the minimum point at both sides of the peak in Figure 5.49 [from Anal. Chem.
69:1722--1725 (1997)].

of the components by directly using the chromatograms because of over-
lapping of the three peaks. Figure 5.49 shows the d3 component obtained
by WT decomposition with Haar wavelet. It is clear that the information of
the three peaks is resolved. In order to calculate the peak area, we can
estimate a baseline by simply linking the minimum point at both sides of
a peak. Figure 5.50 shows the results after subtracting such a baseline.
Figure 5.51 shows the relationship between the area and the concentra-
tion. It can be seen that a very good linearity of the signals in the wavelet
coefficients is kept.

Example 5.13: Resolution Enhancement of an Overlapping NMR
Spectrum Using Method B. In Figure 5.52, spectrum (a) shows a sim-
ulated NMR spectrum by the Lorentzian equation in (5.77). From left to
right, the peaks are doublet, triplet, quartet, and quintet. Spectrum (b) in
the figure shows the reconstructed spectrum by multiplying the d1 and d2

by k1 = k2 = 55. Figure 5.53 shows the detail coefficients d1 to d4 obtained
by WT decomposition of spectrum (a) with Symmlet (L = 4) wavelet filters.
From Figure 5.53 it can be seen that, except for discrete detail d4, d1

through d3 all represent the resolved information of the peaks in the over-
lapping spectrum, but from d1 to d3 the resolution decreases. Therefore,
if we amplify the details d1 and d2, and then perform reconstruction, the



\c05" | 2004/1/28 | 9:52 | page 217 | #71

resolution enhancement 217

30000

25000

20000

15000

10000

5000

0
0.0 2.0 4.0 6.0 8.0 10.0 12.0

(c)

(b)

(a)

Concentration / µl.ml-1

P
ea

k 
A

re
a

Figure 5.51. Calibration curves obtained from the peak area in Figure 5.50 and concentra-
tions of the three components [from Anal. Chem. 69:1722--1725 (1997)].

resolution of the reconstructed spectrum will be improved. From spectrum
(b) in Figure 5.52, it is clear that all four groups of peak are well resolved.

Selection of the details undergoing amplification is generally by visual
inspection on the decomposed details as shown in Figure 5.53. It will be

Figure 5.52. A simulated NMR spectrum (a) and the reconstructed spectrum (b) by
multiplying the d1 and d2 by k1 = k2 = 55.
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Figure 5.53. Detail coefficients of the simulated NMR spectrum obtained by WT
decomposition.

difficult to select the appropriate detail coefficients when the noise level in
the original signal is significant because the noise will also be decomposed
into those low-scale detail coefficients for amplification. Figure 5.54, curve
(a) shows a simulated noisy NMR spectrum. The detail coefficients are
shown in Figure 5.55. It can be seen that the d1 and d2 coefficients are
noisy. If we multiply d1 and d2 by k1 = k2 = 55 as we did above, the noise
level of the reconstructed spectrum will be increased as well, as is shown
in Figure 5.54, curve (b). In such cases, we can only multiply the d2 or d3

Figure 5.54. A simulated noisy NMR spectrum (a) and its reconstructed spectra by multiplying
d1 and d2 with k1 = k2 = 55 (b), d2 with k2 = 60 (c), and d3 with k3 = 10 (d), respectively.
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Figure 5.55. Detail coefficients of the simulated noisy NMR spectrum obtained by WT
decomposition.

in order to avoid the effect of noise. Figure 5.54, curves (c) and (d) are
obtained by multiplying d2 and d3, respectively, with k2 = 60 and k3 = 10.
It is clear that the SNR of the results is improved.

Computational Details of Example 5.13

1. Generate the signal with 700 data points [Figure 5.52 (a)] using
Lorentzian equations.

2. Make a wavelet filter---Symmlet4.
3. Set resolution level J = 4.
4. Perform WT to obtain the c and d components with the improved

algorithm.
5. Perform reconstruction with multiplying the d1 and d2 with a

factor 55.0.
6. Display Figures 5.52 and 5.53.

A more detailed discussion of Example 5.13 can be found in a paper
published in Applied Spectroscopy [54:731--738 (2000)]. In this paper, an
experimental NMR spectrum was also processed by the method. Figure
5.56 shows two enlarged parts of the experimental and the reconstructed
spectra. It is clear that the resolution of the spectra is greatly improved by
this method.
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Figure 5.56. An experimental NMR spectrum (a) and the reconstructed spectrum by
multiplying d1 and d2 with k1 = k2 = 10 (b).

5.4.5. Resolution Enhancement by Using
Wavelet Packet Transform

WPT differs from WT with respect to the decomposition tree. In WT,
only the approximation coefficients on each scale are used for further
decomposition, but in WPT, the further decomposition is applied to both the
approximation and detail coefficients. Therefore, for resolution enhance-
ment, the resolving ability of WPT should be stronger than that of WT,
because there will be more decomposed components representing the
information with different frequencies. Consequently, it is easy for us to
select a component that represents the desired high-resolution information.

The procedures for resolution enhancement of analytical signals are
almost the same as in methods A and B proposed above. The only dif-
ference is to use the Equations (5.42)--(5.44) instead of Equations (5.32)--
(5.34), for decomposition and reconstruction computation.

Figure 5.57 shows the experimental chromatograms of six samples
containing six rare-earth ions. Concentrations of the samples are listed
in Table 5.5. In order to extract the chromatographic information of each
component from the overlapping chromatograms in Figure 5.57, we can
subject them to WPT decomposition and obtain all wp

j first. Then we can
select a coefficient component to represent the desired high-resolution
information. Figure 5.58 shows the selected w3

6 coefficients of the six chro-
matograms. Finally, we can estimate a baseline by linking the minimum
point at both sides of every peak. After subtracting the baseline, we can
obtain the results shown in Figure 5.59. It can be seen that all six peaks
in the six chromatograms are well resolved except for the second peak in
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Figure 5.57. Experimental chromatograms of mixed rare-earth solution samples.

chromatogram (d), which is slightly distorted. Using the resolved peaks,
we can investigate the linearity of the extracted signals by examining the
relationship between the peak area and concentration. Figure 5.60 shows
the calibration curves of the six components. It can be seen that all six
curves are satisfactory.

5.4.6. Comparison between Wavelet Transform and Fast Fourier
Transform for Resolution Enhancement

As we have seen, deconvolution by Fourier transform can also be used
for resolution enhancement of analytical signals. The procedures can be

Table 5.5. Compositions and Concentrations (ppm) of Mixed
Rare-Earth Solution Samples

Number Lu Yb Tm Er Ho Tb

1 15.0 10.0 30.0 25.0 38.0 21.2
2 25.0 30.0 15.0 18.0 22.0 21.2
3 40.0 12.0 25.0 15.0 15.0 21.2
4 16.0 38.0 40.0 18.0 26.0 21.2
5 10.0 20.0 35.0 32.0 24.0 21.2
6 34.0 34.0 16.0 30.0 35.0 21.2
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Figure 5.58. WPT coefficients w3
6 of the chromatograms in Figure 5.57 obtained by WPT

decomposition.

summarized as follows:

1. Transform the signal f (t ) to the Fourier domain: f (t ) ⇒ f̂ (ω).

2. Multiply f̂ (ω) with a window function ĥ(ω) : ĝ(ω) = f̂ (ω)ĥ(ω).

3. Perform inverse transform to obtain the deconvoluted signal: ĝ(ω) ⇒
g(t ).

Figure 5.59. Baseline-corrected WPT coefficients after subtracting the estimated baseline
by linking the minimum point at both sides of the peak in Figure 5.58.
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Figure 5.60. Calibration curves obtained from the peak area in Figure 5.59 and concentra-
tions of each component in the samples.

Generally, for discrete signals, FFT is used for calculation, and the win-
dow functions include the box window, the triangle window, the Hanning
window, and the Hamming window. In practice, the width and position
of the window must be determined by trial and error, which is always
time-consuming.

Figure 5.61 compares the results obtained by two FFT deconvolution
methods and the WT method of the simulated and experimental NMR spec-
tra in curves (a) of Figures 5.52 and 5.56, respectively. Curves (a1) and
(b1) in Figure 5.61 are obtained by the FFT method on the basis of the
abovementioned procedures, where the Hanning window is used, those
coefficients out of the window are cut off. Curves (a2) and (b2) are obtained
by an improved FFT method based on the abovementioned procedures,
where all the coefficients remain but those coefficients in the Hanning win-
dow are amplified by a factor k . It should be noted that many trials must be
done in order to obtain satisfactory results by FFT methods, because we
must select a suitable window width and position. For the second method,
we must determine a suitable value for the parameter k . The (a3) and (b3)
curves are obtained by the WT method in exactly the same way as curves
(b) in Figures 5.52 and 5.56. In this method, only the value of the parameter
k should be optimized by trial and error.

From the results of the simulated spectrum, it can be seen that we can-
not obtain a satisfactory baseline by the first FFT method, because the
low-frequency part of the signal is cut off. For the second FFT method and
the WT method, the baseline will not change because all the information
remain, and the resolution enhancement is caused by the increase of the
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Figure 5.61. Comparison of the results from the simulated (a) and experimental (b) NMR
spectra by FFT deconvolution (a1, b1, a2 and b2) and WT method (a3 and b3).

high-frequency part of the signal. We can easily control the resolution of
the results by changing the value of the parameter k . Comparing curves
(a2) and (a3) in Figure 5.61a, the improved FFT method is even superior
to the WT method because there are positive sidelobes in (a3). From the
results of the experimental spectrum, it can be seen that there is no signifi-
cant difference among the results of the three methods, and the resolution
of (b3) is slightly better than that of curves (b1) and (b2) in Figure 5.61.
Furthermore, it should be noted that we cannot expect to further enhance
the resolution by using a higher value of k in the second FFT method
because the negative sidelobes in (b2) will increase with the value of the
parameter k .
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5.5. COMBINED TECHNIQUES

By the applications of WT discussed above, it has been shown that WT
is a powerful tool for compression, denoising, and resolution of analytical
signals. In the following text, we will discuss the extended applications
based on the combined techniques of WT and other chemometrics
methods.

5.5.1. Combined Method for Regression and Calibration

Regression and calibration are the most commonly used techniques for
quantitative determination in analytical chemistry. There is no difficulty in
regression and calibration calculations for traditional analytical methods
because only one variable is used. In modern analytical chemistry, spectro-
scopic methods are increasingly employed for quantitative determination.
New methods such as multiple linear regression (MLR) for modeling mul-
tivariable datasets are needed. However, the dimensionality of spectral
datasets is basically limited by the number of the objects studied, whereas
the number of variables can easily reach a very large number. Furthermore,
the high-dimensional spectral data are closely correlated and usually noisy.
Therefore, methods more suitable for modeling correlated variables are
proposed, such as the principal-component regression (PCR) and partial
least-squares (PLS) methods.

Generally, all the information contained in the spectra can be used for
the modeling; these are called full-spectrum methods. However, in many
cases, a preprocessing of the experimental spectra using WT compression
can offer some advantages compared to the full-spectrum methods.

A combined procedures of WT compression and PLS is illustrated in
Figure 5.62, including the following steps:

1. The measured signals, denoted by X, such as spectra, are trans-
formed into wavelet domain represented by wavelet coefficients, W.

2. The matrix W is sorted according to their contribution to the data vari-
ance and a matrix Wsorted can be obtained. Because many wavelet
coefficients in W or Wsorted are usually very small, only a limited
number of columns of Wsorted are needed to represent the signal X.
Therefore, the Wsorted can be divided into two submatrices, Ws and
Wn, containing significant (information component) and insignificant
(noisy component) coefficients, respectively. This step can be skipped
in many cases because the sorting will change the relative position
of the coefficients and, subsequently, cause a variation of the original
information.
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Figure 5.62. A diagram showing the procedures of the PLS coupled with WT compression.

3. The submatrix Ws can be determined by different criteria:
3a. We may simply use the criteria discussed in the WT compression,

but this means that only the advantage of WT compression is
utilized.

3b. Other methods can also be employed for this purpose, such as the
relevant component extraction (RCE) PLS approach described
in Walczak’s book, Wavelets in Chemistry [12]. In this method,
as illustrated in Figure 5.62, the PLS is employed to calculate
the b coefficients. A matrix of the regression coefficients can be
obtained by using the ‘‘leave one out’’ cross-validation procedure.
Then, the stability of the regression coefficient i , defined by

Stability(bi ) = mean(bi )
std(bi )

(5.81)
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can be calculated. Using the maximal stability of the noisy
variables as a threshold,

Threshold = max (abs(stabilitynoise)) (5.82)

we can cut off those coefficients in b and the corresponding
wavelet coefficients in the W or Wsorted.

4. With the submatrix Ws , build the PLS model from the training set.

5. Finally, we can use the model for prediction. It should be noted that
the experimental data must be processed in the same way as that
of the training set used to build the model. When you use step 3a
for compression, you must compress the experimental data with the
same criteria. When you use step 3b for determination of the Ws , you
should keep those coefficients at the same position.

This method has been successfully used in the analysis of NIR spec-
tra of gasoline samples. Examples can be found in the book Wavelets in
Chemistry [12].

5.5.2. Combined Method for Classification and
Pattern Recognition

Generally, pattern recognition refers to the ability to assign an object to
one of several possible categories according to the values of some mea-
sured parameters, and the classification is one of the principal goals of
pattern recognition. Many methods have been proposed for classification
and pattern recognition because of their importance in chemical studies.
Combined methods of WT for classification and pattern recognition include
two main steps: (1) compression or feature selection is performed to the
original dataset using WT as a preprocessing technique; then (2) clas-
sification or pattern recognition is performed by classifiers such as the
artificial neural network (ANN), the soft independent modeling of class
analogy (SIMCA), and the k th nearest neighbors (KNN), in the wavelet
domain.

There have been several successful examples based on the com-
bined method of WT and conventional classifiers for classification of
analytical signals. One of them is reported by Bos and Vrielink in Chemo-
metrics and Intelligent Laboratory Systems, [23:115--122, (1994)]. In
their report, identification of mono- and disubstituted benzenes utiliz-
ing WT and several classifiers from IR spectra was studied. The aim
of their work is to show whether the localization property of WT in
both position and scale can be used to extract this information into
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a concentrated form to obtain the salient features of an IR spectrum
effectively. The coefficients obtained from the WT treatment of the IR
spectrum were employed as inputs for an identification process that is
based on the linear or nonlinear neural network classifiers. Using the
concentrated form instead of the full spectra, the time to develop the
classifiers is greatly reduced. Moreover, it is expected that the quality
of the classifiers will improve if they are derived from smaller datasets
that contain all the relevant information. From their study, it is con-
cluded that WT coupled with Daubechies wavelet functions is a fea-
ture extracting method that can successfully reduce IR spectral data by
more than 20-fold with a significant improvement in the classification
process.

Another example is reported by Collantes et al. in Analytical Chem-
istry, [69:1392--1397 (1997)]. They employed WPT for preprocessing of
HPLC data and several classifiers as potential tools for pharmaceutical
fingerprinting pattern recognition. The HPLC data for each l-tryptophan
sample was preprocessed by the Haar wavelet function in the WPT treat-
ment. Then, the coefficients thus obtained in the wavelet domain were
sorted in descending order. A small portion of sorted coefficients were
fed as the inputs of the ANN, KNN, and SIMCA classifiers to classify the
samples according to manufacturers. With this study, they concluded that
WPT preprocessing provides a fast and efficient way of encoding the chro-
matographic data into a highly reduced set of numerical inputs for the
classification models.

For purposes classification and regression, an adaptive wavelet algo-
rithm (AWA) using higher-multiplicity wavelets was proposed. Detailed
descriptions of the method can be found in Chapter 8 and Chapter 18 of
the book Wavelets in Chemistry [12]. The wavelet neural network (WNN)
can also be used for classification and pattern recognition, discussed in
the following section.

5.5.3. Combined Method of Wavelet Transform and
Chemical Factor Analysis

There are several ways to combine WT and chemical factor analysis
(CFA) for different purposes. In Section 5.3.5, for example, WT is used
for background removal in order to obtain the correct rankmap of a data
matrix.

Principal-component analysis (PCA) is an important and basic method
in CFA. However, because the principal components (PCs) are calculated
as the eigenvectors of the variance--covariance matrix, computation of the
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PCs is time-consuming. In order to speed up the calculation of PCA, a fast
approximate PCA has been proposed using WT or WPT as a tool for data
compression. Generally, as can the procedures in the combined methods
for classification and pattern recognition, the main procedures of the fast
approximate PCA can be outlined as two steps: to compress the data set
and then perform the PCA. As an example, one of the algorithms for WPT
compression and PCA of the set of spectral signals can be summarized as
follows:

1. Calculate the ‘‘variance spectrum’’ by

varj = 1
m

m∑
i=1

(xij − x̄j )2 ( j = 1,. . ., n) (5.83)

where m denotes the number of objects, n denotes the number of
variables, xij denotes an element the dataset Xm×n, and x̄j is the
mean of the j th column calculated as

x̄j = 1
m

m∑
i=1

xij (5.84)

2. Decompose the variance spectrum into the WPT coefficients repre-
sented by the WPT tree.

3. Search the WPT tree for the best basis.

4. Compress the coefficients according to a selected criterion.

5. Decompose all the spectra into WPT coefficients and compress them
in the same way as in steps 2 and 4.

6. Perform PCA on the compressed coefficients.

Using WT or WPT as a denoising tool for CFA is another type of com-
bination of WT and FA. An example for resolution of multicomponent
chromatograms by window factor analysis (WFA) with WT preprocess-
ing can be found in the Journal of Chemometrics [12:85--93 (1998)]. In
this paper, resolution and quantitative determination of a multicompo-
nent chromatogram with strong noise was investigated. It was proved that
both the resolved chromatographic profiles and the quantitative results
by WFA can be greatly improved for the noisy chromatographic data
matrix by WT preprocessing. Figure 5.63a,b shows the resolved chro-
matograms both without and with the WT preprocessing, respectively. The
dotted (elliptical) lines in the figure are the experimental chromatograms
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Figure 5.63. Resolved chromatograms by WFA without (a) and with (b) the WT preprocess-
ing. The dotted lines represent the experimental chromatograms of the standard samples for
comparison [from J. Chemometr. 12:85--93 (1998)].

of the standard samples. From this figure we can see the effect of WT
preprocessing.

5.5.4. Wavelet Neural Network

The wavelet neural network (WNN) is a combination of wavelet trans-
form and the artificial neural network (ANN). WNN uses wavelet functions
instead of the traditional sigmoid function as its transfer function in each
neuron. Two different models have been proposed for different applications:
(1) one is for general purposes such as quantitative prediction, classi-
fication, and pattern recognition and (2) one is for signal compression.
Their architectures are illustrated in Figure 5.64a,b, respectively. In the
first model, the architecture is almost exactly the same as ANN except
that the transfer function is replaced by a wavelet function ψa,b(t ). In the
second model, the input is a parameter ti describing the position of the
compressing signal, such as the wavenumber for IR or NIR and retention
time for the chromatogram. In some of the literature, this model is regarded
as one input neuron. It would be more accurate to say that there is no input
layer in the model because the input parameter ti is directly fed into the
middle layers’ neurons without any processing. Furthermore, there is only
one output neuron in the model because the output is the magnitude of the
signal at the position ti .

For both models, the learning procedures are similar with the traditional
ANN, namely, to modify the parameters wik , wkj , ak , and bk for model (a)
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Figure 5.64. The architecture of the WNN for general purposes (a) and signal
compression (b).

(in Fig. 5.64) and wk , ak , and bk for model (b) according to the value of the
output error by the conjugate gradient method.

The most commonly used wavelet is the Morlet wavelet basis function
in the WNN, which is defined as

ψ(t ) = cos (1.75t ) exp
−t 2

2
(5.85)

Applications of the two WNN models have been studied, such as pat-
tern recognition of overlapping UV--vis spectra, classification of analytical
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Figure 5.65. An experimental chromatogram (a) and the reconstructed results from the WNN
parameters (b).

samples based on analytical data, quantitative determination from over-
lapping UV--vis spectra, and compression of the IR spectrum, which can
be found in the literature.

Figure 5.65 shows an example using model (b) (of Fig 5.64) for compres-
sion of a chromatogram. Curve (a) in Figure 5.65 shows a chromatogram
composed of 800 sampling points, and curve (b) was obtained by recon-
struction of 12 wavelet bases optimized by WNN. Thus, we can represent
the chromatogram only by 36 parameters. The compression ratio is
more than 20 : 1. In this example, there is a high level of noise in the
original experimental chromatogram. However, in the reconstructed chro-
matogram, the noise is filtered out. This can be explained by the fact that
a limited number of wavelet bases is used in the reconstruction, and it
represents only the primary information of the chromatogram. Much more
wavelet basis will be needed to represent the high-frequency noise. There-
fore, if we control the parameters of the WNN properly, the method can be
used for compression and denoising simultaneously.

5.6. AN OVERVIEW OF THE APPLICATIONS IN CHEMISTRY

As mentioned at the beginning of this chapter, more than 370 papers
have been published on WT. Applications of WT in chemistry have been
extensively studied. According to the statistics of the published papers on
this topic by Dr. Alexander Kai-man Leung (please refer to his homepage
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at http://fg702-6.abct.polyu.edu.hk/wavelet.html ), WT has been applied in
the following areas:

• Analytical chemistry

Capillary electrophoresis (CE)

Chemiluminescence/fluorescence spectroscopy

Flow injection analysis (FIA)

High-performance liquid chromatography (HPLC)

Gas chromatography (GC)

Graphite furnace atomic absorption spectrometry (GFAA)

Inductively coupled plasma atomic emission spectrometry (ICP-
AES)

Infrared spectrometry (IR)

Mass spectrometry (MS)

Nuclear magnetic resonance (NMR) spectrometry

Potentiometric titration

Photoacoustic spectroscopy (PAS)

Raman spectroscopy

Ultraviolet--visible spectrometry (UV--vis)

Voltammetry

X-ray diffraction/spectroscopy

• Chemical engineering
• Chemical physics
• Quantum chemistry
• Miscellaneous (denoising, compression, comparison studies and

review papers, etc.)

In the following sections, the published papers are briefly reviewed to
give the readers an overview of the applications of the WT techniques in
different fields.

5.6.1. Flow Injection Analysis

As early as in 1992, Bos and Hoogendam [13] proposed using WT to min-
imize the effect of noise and baseline drift in flow injection analysis. When
a FIA system is operated near the detection limits, it is difficult to locate
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peaks and find the right baseline correction method, because weak sig-
nals are embedded in the stochastic noise. In this work, the FIA signal was
transformed into a two-dimensional time--frequency form so as to obtain
the denoised peak intensity optimally. The maximum peak position can be
obtained by searching the wavelet coefficients of the FIA signal obtained for
a sample with a relatively high concentration. By using the peak intensity
at the maximum peak position, quantitative determination can be further
performed. Both the simulated peaks of Gaussian and exponentially mod-
ified Gaussian (EMG) and the experimental signals of Imidazole samples
and 18-crown-6 samples were studied. Results show that, for a white noise
and a favorable peak shape, a signal-to-noise ratio (SNR) of 2 can be tol-
erated at the 5% error level. This means that a significant reduction in the
detection limit can be obtained in comparison with the conventional signal
processing methods.

The character of baseline noise strongly influences several steps in
the data processing procedure, including choice of the optimal filter,
peak detection, peak boundary setting, precision of integration results,
peak purity detection, and choice of the calibration method. Generally,
noises can be classified into groups such as white noise, heteroscedas-
tic noise, and correlated noise (1/f noise), which have different properties
and subsequently have different effects on the processing of analytical
signals. The second paper published in FIA is reported by Mittermayr
et al. [14]. The goal of the paper is to detect correlated noise from the
actual measurement in the presence of peaks without the necessity of
the additional measurements of pure baselines and assumptions about
the ergodicity. On the basis of the ability of WT to provide information in
both time and frequency domains, the authors used the wavelet power
spectral density (WPSD) to get a low-resolution equivalent to the tradi-
tional power spectral density (PSD) based on the Fourier transform (FT).
Then the work demonstrated that the WT separates signal and noise
in both the time and frequency domains simultaneously. An F-test is
proposed to detect the presence of correlated noise, and the correla-
tion parameter is estimated by weighted least square regression. Finally,
the WSPD is applied to flow injection analysis (FIA) signals and its
results are compared to the estimates obtained from data with baseline
noise.

5.6.2. Chromatography and Capillary Electrophoresis

More than 30 papers have been published on adopting WT in chromato-
graphic data processing, including smoothing, denoising [15--20], data



\c05" | 2004/1/28 | 9:52 | page 235 | #89

an overview of the applications in chemistry 235

compression, [19,20], baseline correction [21,22], resolution of overlap-
ping chromatograms, [23--27], and classification studies with the combined
techniques [28].

Smoothing and denoising is a universal problem in signal processing. In
chromatographic data processing, noise suppression is also a very com-
mon technique. It attempts to improve a chromatogram to give a higher
signal-to-noise ratio (SNR). Traditionally, techniques such as the Fourier
and Kalman filters and the Savitsky--Golay method are generally used for
smoothing and denoising. As discussed in Section 5.1.2, WT is a very good
technique for this purpose because of its ability to decompose a signal into
components of different frequency. Applications similar to those described
in Examples 5.4--5.7 can be found in the literature [15--17].

The work reported by Mittermayr et al. [18] used WT as a tool to
improve the calibration and the detection limit of a gas chromatograph cou-
pled with a microwave-induced plasma detector system. Symmlet wavelets
and universal soft thresholding were employed for denoising. By compar-
ing the technique with the Fourier and the Savitsky--Golay filters, they
concluded that special care should be taken for the choice of the filter
parameters, especially when large variations in peak widths are present.
In such cases, denoising with wavelet filter was better than with the other
two methods.

In References [19] and [20], two combined techniques for denoising and
compression of chromatograms were proposed. The first one is the WNN
introduced in Section 5.5.4. The second one is a combined technique of
WT and a genetic algorithm (GA). The underlying theme of both papers
was to represent an analytical signal by linear combination of wavelet
functions

f̂ =
N∑

i=1

ciψai ,bi (5.86)

where N is the number of elementary functions, ψai ,bi is a set of elemen-
tary functions defined by dilation with ai and translation with bi , ci is the
corresponding coefficient, and f̂ can be regarded as an approximation of
the original signal f . The genetic algorithm is applied to find all the param-
eters ai , bi , and ci that fit the original signal best. B2-spline, B3-spline,
Marr, and Morlet basis functions were studied. The B2-spline was found to
be in computation and precise in representation. The number of the ele-
mentary function, N , is an important parameter in the method because it
determines the compression ratio and the effect of denoising. However, the
parameter depends on the complexity of the signals being analyzed and
must be determined by manual trials.
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References [21] and [22] and Sections 5.3.3 and 5.3.5 (in this chap-
ter) discuss methods for removal of baseline or background from 1D
and 2D chromatograms. WT-based techniques for resolution enhance-
ment of overlapping chromatograms are discussed in Sections 5.4.4
and 5.4.5. Both WT and WPT can be used for this purpose. These
techniques are described in further detail in References [23--25]. In Ref-
erence [26], the technique is applied to plant hormone analysis. Plant
hormones eluted as overlapping chromatographic peaks were quan-
titatively determined with the help of WT resolution. Application of
CWT for resolution enhancement was also reported [27]. Compared
with the DWT, CWT is a more redundant transform. It tends to rein-
force the traits of a signal and makes all information more visible
because of its redundancy. Therefore, CWT has much more capa-
ble of extracting subtle information from seriously overlapping signals.
Furthermore, in CWT, the parameters a and b vary continuously; we
can choose the exact value of a to depict the component of a cer-
tain frequency band in which we are interested, whereas in DWT,
we cannot adjust the analytical window precisely to meet a particular
need. In this study, the magnitude of each coefficient is represented
by graytone and the coefficient matrix was plotted in a graytone graph.
Darker spots correspond to larger coefficients. The highest-resolution
chromatogram can be obtained by visual inspection of the graytone
graph.

Application of WPT combined with classifiers was also studied by Col-
lantes et al. [28] In their work, several computer-based classifiers were
evaluated as potential tools for pharmaceutical fingerprinting, which was
based on analysis of HPLC trace organic impurity patterns using WPT
compression.

An online WT technique for denoising and resolution of overlapping
chromatograms was proposed in References [29] and [30]. At first, a
‘‘parallel algorithm’’ calculating cj and dj for j = 1, . . . , J simultaneously
with the progress of sampling was proposed, which can be described as
follows:

/* Prepare hj and gj */

/* Preset the best resolution level J */

While (!stop-sampling)

/* Wait until elapsed time equals to the sampling

time interval */

/* Sample the kth point of cj */

for ( j=1; j<=J; j++)

cj,k=
1√
2

L−1∑
m=0

hj,mcj−1,k−m /* L is the length of the filters */



\c05" | 2004/1/28 | 9:52 | page 237 | #91

an overview of the applications in chemistry 237

dj,k=
1√
2

L−1∑
m=0

gj,mcj−1,k−m/*cj−1,k−m=0 when k − m<1 */

/* Graphical display of dJ,k or cJ,k and dj,k */

end;

k = k + 1;
End of while;

where k runs from 1 to N (k = 1, . . . , N ) and N is the total number of the
sampling point.

Using this program, online denoising and resolution enhancement of
high-performance liquid chromatography (HPLC) were studied. In these
studies, the signal from detector was sampled by an A/D (analog-to-digital)
convertor, and cj ,k and dj ,k can be obtained by the program simultane-
ously with the progress of sampling. With mixed samples using benzene,
methyl benzene, and ethyl benzene, performance of the method in denois-
ing and resolution enhancement was investigated in the References [29]
and [30], respectively. Eight samples with low concentration were mea-
sured in the denoising study. The correlation coefficient above 0.99 was
obtained for five standard samples, and the recoveries of three mixed sam-
ples lay between 94.0 and 105.0%. Comparison of the results with those
obtained from the unprocessed chromatograms indicated that the quality
of the chromatographic signals was improved by the online wavelet trans-
form. In the study of resolution enhancement, quantitative calculation of
three samples was also investigated, and recoveries between 96.3 and
104.5% were obtained.

Applications of WT in capillary electrophoresis analysis are similar
with those methods used in chromatography studies, including smooth-
ing, denoising, and resolution of the overlapping peaks [31--33]. Schirm
et al. [33] developed a method to transfer the use of fingerprints from
spectroscopy to electrophoresis by interpolation and wavelet filtering of the
baseline signal. The resulting data were classified by several algorithms,
including self-organizing maps (SOMs), artificial neural networks (ANNs),
soft independent modeling of class analogy (SIMCA), and k nearest neigh-
bors (KNNs). In order to test the performance of this combined approach
in practice, it was applied to process the data from the quality assur-
ance samples of pentosan polysulfate (PPS). A capillary electrophoresis
method using indirect UV detection was employed. All algorithms were
capable of classifying the examined PPS test batches. Even minor varia-
tions in the PPS composition not perceptible by visual inspection could be
automatically detected. The entire method has been validated by classi-
fying various unknown PPS quality assurance samples, which have been
correctly identified without exception.
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5.6.3. Spectroscopy

The spectroscopic techniques include atomic absorption spectroscopy
(AAS), atomic emission spectroscopy (AES), fluorescence spectroscopy,
ultraviolet--visible (UV--vis) spectroscopy, infrared (IR) spectroscopy, near-
infrared (NIR) spectroscopy, Raman spectroscopy, nuclear magnetic
resonance (NMR) spectroscopy, X-ray spectroscopy, and photoacoustic
spectroscopy (PAS). These techniques have been widely used in analytical
chemistry for both qualitative and quantitative analysis. As in other analyt-
ical techniques, the raw spectral data of spectroscopic measurements are
a combination of useful signals from the analyzing sample and noise from
various forms of interference. Signal processing methods are commonly
used to extract the useful signal from the raw experimental data.

Applications of WT-related methods have been studied extensively in
spectroscopic signal processing. About 80 papers have been published on
these topics. Only some of the papers are reviewed here.

Infrared spectroscopy plays an important role in the identification and
characterization of chemicals. Applications of WT in IR spectroscopy can
be categorized mainly into denoising [34], compression [35--37], pattern
recognition [38], signal extraction [39], and variable selection for PLS
regression [40].

Alsberg et al. [34] reported a comparative study in applying WT to
denoise IR spectra. Six different methods, including SURE, VISU, HYBRID,
MINMAX, MAD, and WPT, were applied to pure IR spectra with the addition
of different levels of homo- and heteroscedastic noise. Results show that
at higher SNR, the wavelet denoising methods were better, especially, the
HYBRID and VISU methods. However, at very low SNR, there was no sig-
nificant difference between the performance of the wavelet methods and
the traditional methods, such as Fourier and moving mean filtering. This
study concluded that the visual quality of WT denoised infrared spectra is
superior.

Several papers were published on the compression of IR spectrum utiliz-
ing WT. Reference [35] proposed a successful method for the compression
of experimental infrared spectra. This method was based on FWT coupled
with multiresolution signal decomposition (MRSD) as well as the optimal bit
allocation quantization and Huffman coding techniques. Comparison of the
results of IR spectra using several chemicals from the method proposed
in Reference [35] with results from FFT and wavelet-based threshoding
methods revealed that the proposed method outperforms the other two.

Leung et al. [36] used WT to reduce IR spectral data for library searching.
In this work, FWT and WPT were applied to compress infrared IR spectrum
for storage and spectral searching. The coefficient position-retaining (CPR)
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method was discussed in detail for handling data with any length. IR spectra
of 20 organic compounds with similar structures were compressed at the
fourth resolution level with the use of the Daubechies wavelet function
(L = 16). After data compression, the coefficients obtained were selected
and employed to build a spectral library for future searching. Spectral library
searching of this database was found to be better than that treated by
FFT, especially in the aspect of visual comparison in some cases. The
scale coefficients obtained from FWT and WPT can be used effectively for
preliminary searching in a large spectral library. The proposed methods
can minimize the search time by using a direct matching method.

Application of WNN to compression of IR spectrum was also
reported [37]. In this study, the Morlet wavelet function was employed as
the transfer function. The wavenumber and the transmittance of the IR
were chosen as the input and output of the network, respectively. With
proper training, the weighting factor for each neuron and the parameters
of the wavelet function can be optimized. The original spectrum can be
represented and compressed by using the optimized weighting factor and
wavelet function parameters. In this work, compression ratios of 50 and
80% were obtained when the wavenumber interval of the IR spectrum was
2.0 and 0.1 cm−1, respectively.

Bos and Vrielink [38] reported their results on identification of mono- and
disubstituded benzenes utilizing WT preprocessing. The aim of the work
was to examine whether the localization property of WT in both position and
scale can be used to extract features of an IR spectrum effectively. After the
WT treatment on the IR spectrum, the coefficients obtained were employed
as inputs for an identification process based on linear and nonlinear neural
network classifiers. It was shown that, by using the extracted informa-
tion instead of the full spectrum, the classification was greatly improved
in both speed and quality. This study was also showed that WT with the
Daubechies wavelet is a good method for feature extraction that can reduce
IR spectral data by more than 20-fold.

The Fourier transform IR spectrum of a rock contains information about
its constituent minerals. Stark et al. [39] employed WT to predict the mass
fraction of a given constituent in a mixture. Using the wavelet transform, the
authors roughly separated the mineralogical information in the FT-IR spec-
trum from the noise, using an extensive set of known mineral spectra as the
training data for which the true mineralogy is known. Wavelet coefficients
that varied either too much or too little were ignored because the former
coefficients are likely to reflect analytical noise and the latter coefficients do
not help one discriminate between different minerals. The remaining coef-
ficients were used as the data for estimating the mineralogy of the sample.
In this work, an empirical affine estimator was also developed to estimate
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the mass fraction of a given mineral in a mixture. The estimator was found
to typically perform better than the weighted nonnegative least-squares
instrument.

Variable selection and compression are often used to produce more
parsimonious regression models. When they are applied directly to the
original spectrum domain, however, it is not easy to determine the type
of feature that the selected variables represent. In another study, Alsberg
et al. [40] showed that it is possible to identify important variables as being
part of short- or large-scale features by performing variable selection in the
wavelet domain. The suggested method can be used to extract information
about the selected variables that otherwise would have been inaccessible,
and to obtain information about the location of these features in the origi-
nal domain. In this article, three types of variable selection methods were
applied to the wavelet domain: selection of optimal combination of scales,
thresholding based on mutual information, and truncation of weight vectors
in the PLS regression algorithm. It was found that truncation of weight vec-
tors in PLS was the most effective method for selecting variables. Two
experimental datasets were investigated. Results showed that approxi-
mately the same prediction error was obtained by using less than 1% and
10% of the original variables, respectively. In this work, it was also found
that the selected variables were restricted to a limited number of wavelet
scales. This information can be used to suggest whether the underlying
features may be dominated by narrow peaks (indicated by variables in
short-wavelet-scale regions) or by broader regions (indicated by variables
in long-wavelet-scale regions). This study also concluded that the variables
selected are not unique when the variable selection is applied to collinear
data such as spectral profiles of complex mixtures. In most cases, we can-
not expect to find a very limited number of unique variables, but rather
regions of interest where good representative wavenumber candidates are
found. This suggests that instead of performing the variable selection in
the original domain, a compressed domain representation may be more
fruitful.

Near-infrared (NIR) spectroscopy has become increasingly popular in
quantitative determination. Variable selection and compression are often
used to build better regression models. Trygg and Wold [41] studied PLS
regression on wavelet compressed NIR spectra and showed that, using
DWT as a preprocessing method in regression modeling, compression
of the data up to 3% of the original size can be achieved without any
loss of information. The predictive ability of the compressed regression
model is basically the same as that of the original uncompressed regression
model. Furthermore, a method for quantitative analysis of NIR spectra by
wavelet coefficient regression with the help of a genetic algorithm [42] and
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application of linear regression on wavelet coefficients for robust calibration
of spectral data with a highly variable background [43] were proposed, and
the results are encouraging. In the latter study [43], the Monte Carlo tech-
nique was used to investigate the performance of the method in cases
where the background variation in the prediction set was both (1) the same
as and (2) differed from that in the calibration set. Multivariate linear regres-
sion on wavelet coefficients proved to be competitive in the case 1 and
superior in case 2 with respect to the partial least squares (PLS) calibra-
tion. This work is a good example of how the properties of WT can be
used for reducing the effects of varying background. As a background cor-
rection method, the proposed approach avoided errors introduced in the
estimation process.

In analytical chemistry, especially in spectroscopic studies, data transfer
(i.e., the comparison of the performance between analytical instruments)
or calibration transfer (i.e., where a calibration model developed on one
instrument is transported to other instruments) is a very important prob-
lem. Several methods have been proposed for the purpose, such as slope
and bias correction (SBC), direct standardization (DS), piecewise direct
standardization (PDS), orthogonal signal correction (OSC), finite impulse
response (FIR) filtering application of neural networks, and WT-based tech-
niques. Walczak et al. [44] proposed a new standardization method for
comparing the performance between two NIR spectrometers in the wavelet
domain. They tried to relate the WT coefficients of the NIR spectra obtained
from two different instruments utilizing an univariate linear model. WT was
applied on the NIR spectra obtained from both the ‘‘master’’ (first) spec-
trometer and the ‘‘slave’’ (second) spectrometer. Then, an univariate linear
model was set up to determine the standardization parameters between
the two sets of NIR spectra. Once these parameters were found, NIR
spectra in the wavelet domain could be transferred between two different
spectrometers for subsequent data analysis.

Another standardization method called wavelet hybrid direct standard-
ization (WHDS) was proposed by Tan and Brown [45]. It is based on a new
wavelet reconstruction algorithm in which approximation and detail spectra
are reconstructed separately. Piecewise direct standardization (PDS) and
direct standardization (DS) were used to correct the differences of orig-
inal spectra by transforming the reconstructed approximation and detail
spectra, respectively. The proposed method is applied to NIR data, and its
performance is compared with that using conventional methods. Results
showed that, using the wavelet multiresolution technique and combining
PDS and DS, the WHDS algorithm allows a more robust and reliable means
for standardization when transfer standards are available. More practical
examples can be found in References [46] and [47].
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An automated method integrating wavelet processing and techniques
from multivariate statistical process control (MSPC) is reported by Stork
et al. [48]. This method provided a means of simultaneous localization,
detection, and identification of disturbances in spectral data. Because of
the ability of WT to map a one-dimensional spectrum into a two-dimensional
function of wavelength and scale, the method employing WT process-
ing results in the generation of multiple models within the wavelength-
scale domain. Provided the spectral disturbance can be localized within
a subregion of the wavelength-scale domain through an advantageous
choice of basis set, the method allows identification of the underlying
disturbance.

Denoising and spike removal of Raman spectra were reported by Cai
[49] and Ehrentreich and Summchen [50], respectively. In the former work,
the Raman spectra of the alcohol solution of CCl4 with different concen-
trations are measured and denoised by WT. The work showed that WT is
very efficient in extracting weak signals from high-level noise background
and maintains the linear relationship between the peak intensity and the
concentration of the solutions. The results indicated that WT can be used
in quantitative analysis of the weak signal. In the latter work [50], a method
for spike removal was proposed. Although the suppression of spikes is not
straightforward by WT, WT can be used to recognize the spikes by their
first-level detail coefficients. Then, spike locations can be projected from
the details to the approximations and, further, to appropriate locations of
the original spectrum. After recognition, the spikes can be removed by
replacing those regions by interpolated values.

Nuclear magnetic resonance (NMR) spectroscopy is one of the most
powerful techniques for probing structures of chemical compounds. A
few papers have been published on the application of WT in NMR spec-
troscopy. Neue [51] published a paper on application of WT in dynamic
NMR spectroscopy that could simplify the analysis of the free induction
decay (FID) signal. The localization property of WT gives a better picture
of the nature of the underlying dynamical process in both the frequency
and time domains.

CWT was also studied as an analysis tool in NMR spectroscopy by
Barache et al. [50], who adopted CWT for removal of a large spectral line
and rephasing the NMR signal influenced by eddy currents. The theory
and examples have been discussed in Section 5.3.4.

Serrai et al. [53] published another paper on the application of WT in
time-domain quantification of NMR parameters, including amplitude, chem-
ical shift, apparent relaxation time T ∗

2 , and phase. The proposed method
separates each component from the FID first by using WT, then succes-
sively quantifies it and subtracts it from the raw signal. Both simulated and
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experimental data were tested by the method; results indicated that the
WT method can provide efficient and accurate quantification of NMR data.
Compression and resolution of NMR signals were also reported [54,55]
and are discussed in Sections 5.1 and 5.4.

Because ultraviolet--visible (UV--vis) spectroscopy is an important tool
for characterization, identification, and quantification of substances, appli-
cations of WT in UV--vis spectroscopy have been extensively studied.
Denoising and compression of UV--vis spectra were studied in several
papers [56--58], followed by pattern recognition [59] and resolution of
overlapping peaks [60].

WNN was applied by Liu et al. [59] to recognize the UV--vis spectra of
tyrosine, 3,4-dihydroxyphenylalanine, and trytophane. The Morlet wavelet
and line search conjugate gradient optimization method were used in their
neural network. The results indicated that the wavelet neural network had
a very good recognition power to differentiate minor differences between
similar UV--vis spectra.

Ren and Gao [60] adopted WT for removing noise and irrelevant infor-
mation from spectrophotometric spectra. A PLS based on the wavelet
multiresolution analysis (WPLS) method was developed to perform simul-
taneous spectrophotometric determination of Fe(II) and Fe(III) with over-
lapping peaks. Results showed the WPLS method to be successful
even for spectra with severe overlapping. Data reduction was also per-
formed using wavelet multiresolution analysis and the principal-component
analysis (PCA) algorithm. Results indicated that this method can be
considered as a powerful tool for efficient compression of experimen-
tal data and can be applied for rapid simultaneous multicomponent
determination.

Photoacoustic (PA) spectroscopy is a comparatively new technique
in analytical chemistry. It is a complementary technique of conventional
spectroscopy for studying those materials that are unsuitable for the
transmission or reflection methodologies. The application of WT in PA spec-
troscopy concentrated mainly on noise filtering, baseline separation, and
resolution enhancement [61--63]. Mao et al. [61] applied WT to analyze
the PA spectra of degraded poly(vinyl chloride) (PVC). Shao et al. [62]
reported a technique for denoising and resolution of PA spectra using
the online WT algorithm discussed in Section 5.6.2. In Reference [63],
a WT-based derivative calculation was used for enhancement of the PA
spectra.

Applications of WT in X-ray spectroscopy [64--66], atomic absorption
spectroscopy (AAS) [67], atomic emission spectroscopy (AES) [68], fluo-
rescence spectroscopy [69] were also reported. Detailed information can
be found in the reference cited above.
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5.6.4. Electrochemistry

Electrochemistry is an important branch of chemistry that plays a very
important role in many areas such as chemical analysis, thermodynamic
and kinetic studies, electrochemical synthesis, and energy conversion, as
well as biological electron transport. Electroanalytical techniques include
conductivity, potentiometry, voltammetry, amperometric detection, and
coulometry. Electrochemistry is another field where WT was extensively
studied. More than 50 papers have been published on the subject. These
applications can be divided into smoothing and denoising, useful infor-
mation retrieval, resolution of overlapping signals, and quantitative deter-
mination using combined techniques. Since these techniques have been
discussed previously, only several selected papers are reviewed here.

In applications of WT in electrochemistry studies, the spline wavelet is
the major wavelet function, which is rarely utilized in other fields. Details of
the spline wavelet can be found in Chapter 4 and in References [4--12].

As in many fields, smoothing and denoising represented the first appli-
cation of WT in processing the electroanalytical signals. In the paper
by Yan and Mo [70], a real-time continuous wavelet was developed to
denoise signals from the staircase voltammetry. Fang and Chen [71] pro-
posed a new tool for processing electroanalytical signals with an adaptive
wavelet filter based on the WPT technique. Their study showed that the
wavelet adaptive filter can be applied to a system in which the interfer-
ence originated from the power supply. This is useful for the study of
fast-electron-transfer processes. Fang et al. [72] also proposed a new
algorithm for decomposition calculation without the limit of data point num-
ber, and the method was successfully used in extracting weak signals.
Applications of WT in recovering useful information from different kinds of
oscillographic chronopotentiometric signal were also studied [73,74].

Another combination technique was developed by Zheng et al. [75,76],
who coupled the spline wavelet and the Riemann--Liouville transform (RLT)
together to filter random noise and extraneous currents in voltammetric sig-
nals. They processed both simulated and experimental data. The results
showed that signals of SNR = 0.8 can be filtered. The errors of the
peak current were less than 5% and those of the peak potential were less
than 1%.

WT has been proposed as an alternative tool to overcome the limitations
of FFT in the analysis of electrochemical noise measurements (ENM) data
by Aballe et al. [77], who applied both WT and FFT methods to study var-
ious different corrosion systems covering a wide range of ENM signals.
Results demonstrated that WT is applicable to those systems in which the
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FFT technique works. However, in cases where FFT fails, WT can still pro-
vide valuable knowledge about the behavior of the system. Using WT, the
different ENM components contributing to the original signal can be charac-
terized. Each component is defined by a set of wavelet coefficients, which
contain information about the timescale characteristic of the associated
corrosion event.

In differential pulse voltammetry (DPV) quantitative analysis, it is very
difficult to measure the peak height of a component in a sample with low
concentration. Chen et al. [78] employed a new type of wavelet function
known as DOG (the difference of Gaussians) to process DPV signals. In
this study, they first transformed the DPV signal of a sample in high concen-
tration to determine a scale parameter, and then transformed the signals of
samples with low concentration with the predetermined scale parameter.
The results showed that a new linear calibration curve can be obtained and
the detection range can be extended in the low concentration side.

Using the edge detection property of WT, an application of WT to deter-
mine the endpoint in potentiometric titration was proposed by Wang et al.
[79]. In this work, the authors used a second-order differential spline func-
tion to process the titration curve, and used the discrete wavelet coefficients
to determine the endpoint. Titration curves of HCl, AcOH, H3PO4, and
H2C2O4 were studied by this method. It was found that the endpoint could
be determined easily and accurately.

Fourier self-deconvolution is an effective means for resolving overlap-
ping bands, but this method requires a mathematical model to yield the
deconvolution and it is quite sensitive to noises in the unresolved bands.
A WT-based Fourier deconvolution was proposed by Zhang et al. [80], who
obtained a discrete approximation from WT of the original data and sub-
stituted it for the original data to be deconvolved and then used another
discrete approximation as a lineshape function to yield the deconvolution.
After that, they employed the B-spline wavelet, instead of the apodization
function, to smooth the deconvolved data to enhance the signal-to-noise
ratio (SNR). This method is not adversely affected by noises in the origi-
nal data as in the Fourier self-deconvolution. The results of this study [80]
indicated that resolution can be significantly enhanced, especially for sig-
nals with higher noise level. Furthermore, this method does not require a
mathematical model to yield the deconvolution.

In order to resolve the overlapping voltammetric peaks that can be
described by the sech2 (hyperbolic secant squared) function, a new method
known as the flip shift subtraction method (FSSM) was proposed by Wu
et al. [81]. The method is built on the basis of finding the peak positions
using the CWT with the Marr wavelet. To guarantee the accuracy of the
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determined peak position, a technique known as the crossed iterative algo-
rithm of continuous wavelet transform and original signal (CIACWTOS) is
proposed to locate the refined peak positions. The calculated results of
synthetic peaks and experimental signals both agreed well with the the-
oretical predictions. In the case of severe noise (SNR = 10), the peak
positions can still be obtained under the appropriate dilation parameter.
This work demonstrated that CWT is an efficient tool for finding the peak
positions using the Marr wavelet even in the case of serious overlap and
noise.

The online WT algorithm was adopted in Reference [82] for development
of a WT-based voltammetric analyzer. Because the online WT decom-
poses the sampled signal simultaneously with the progress of sampling,
the developed voltammetric analyzer gives all the components contained in
the sampled voltammogram. Applications of the equipment in linear sweep
voltammetric analysis of mixtures of Pb(II) and Tl(I) and in square-wave
voltammetric analysis of mixture of Cd(II) and In(III) were investigated in
this study [82]. The results showed that the overlapping peaks of Pb(II)
and Tl(I) can be separated easily, and the peak position after the online
wavelet transform did not change. The linearity of the calibration curves
for Cd(II) and In(III) in the overlapping square-wave voltammograms was
retained after on-line WT. Quantitative determination of Cd(II) and In(III)
in mixture samples were also investigated, with recovery rates between
92.5% and 107.1%.

5.6.5. Mass Spectrometry

Applications of WT in MS studies are relatively scarce compared with other
chemistry fields. WT was applied mainly in two areas: instrumentation
design and signal processing of secondary-ion mass spectrometry (SIMS).

With regard to instrumentation design, Shew [83] applied a patent in
which WT was applied to process real-time signals from the mass spec-
trometer. For determination of the relative ion abundances in ion cyclotron
resonance mass spectrometry, the author utilized WT to isolate the inten-
sity of a particular ion frequency as a function of position or time within the
transient ion cyclotron resonance signal. The WT intensity corresponding
to the frequency of each ion species as a function of time can be fitted
by an exponential decay curve. Then the fitted curves can be extrapolated
back in time to the end of the excitation phase and used to determine accu-
rate values for the relative abundances of the various ions in a sample. By
determining the abundances of ions at a point in time at or near the end
of excitation, the effects of different rates of decay of the intensity of the
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signal from different ions species can be reduced and more accurate ion
abundance measurements obtained.

Applications of WT in processing SIMS images were studied mainly
by researchers from the same group at the Vienna University of Technol-
ogy [84--91]. In their studies before 1998 [84--87], they focused mainly on
the denoising of SIMS iamges. Two-dimensional (2D) WT decomposition
was employed in their studies. Different types of wavelet functions, different
thresholding methods, and comparison with other conventional denoising
methods were investigated. An image compression method was also pro-
posed for three-dimensional (3D) secondary-ion microscopy (SIMS) image
sets using a separable nonuniform 3D WT [88]. Compared to different 2D
image compression methods, compression ratios of the 3D WT method are
about 4 times higher at a comparable peak signal-to-noise ratio (PSNR).

A novel methodology was proposed for automated segmentation of
SIMS image sets [89]. The method combines a restoration process (using a
combination of channelplate sensitivity compensation with a 3D denoising
technique based on the WT) with a fuzzy logic 3D gray-level segmenta-
tion that can be used to successfully segment 3D SIMS image sets. The
restoration algorithm removes the artifacts produced by the channelplate
inhomogeneities as well as noise aberrations from the image sets, and the
gray-level thresholding algorithm segments their features.

Image fusion is a process whereby images obtained from various sen-
sors are combined together to provide a more complete picture of the
object under investigation. The process of combining SIMS images may
be viewed as an attempt to compensate for the inherent effect of SIMS
to channel the information obtained from the sample into different images,
corresponding to different element phases. WT was proved to be a pow-
erful method for fusion of images by the work in Reference [90], where
the use of wavelet-based fusion algorithms on multispectral SIMS images,
was discussed, the performance of different wavelet-based fusion rules
on different types of image systems was evaluated, and the results were
compared to those obtained by conventional fusion techniques.

An ‘‘edge’’ in an image is the boundary between two regions that have
relatively distinct properties. Since edges represent the basic structure of
an image, detecting edges is of profound importance for image analysis.
Wolkenstein et al. [91] discussed the application of a novel edge detection
method based on WT for images of chemical content. The results obtained
for both simulated and real images proved that the method can detect
edges of images even at very low signal-to-noise ratios (SNRs).

These studies are described in more detail in Chapter 20 of Walczak’s
book [12].
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5.6.6. Chemical Physics and Quantum Chemistry

More than 30 papers have been published to reporting studies on apply-
ing WT to different chemical physics and quantum chemistry calcula-
tions, including quantum mechanics, quantum dynamics, and molecular
mechanics. It was found that there are advantages in using WT in quan-
tum chemistry calculations; for instance, the simultaneous localization of
wavelets in both coordinates and momenta allows one to customize the
basis set to provide resolution locally, the orthonormal wavelets can be
used to eliminate the need to solve a generalized eigenvalue problem, and
the basis sets can be easily extended to multiple dimensions by taking the
tensor products of one-dimensional wavelets.

A detailed summary and discussion of the applications of WT in chemical
physics and quantum chemistry before 1999 can be found in the Chapter
12 of Walczak’s book [12], including the applications of WT in calculation of
molecular structure, electromagnetic spectra of chemical molecules, chem-
ical dynamics, chemical kinetics, and fractal structures. In the following
paragraphs, only a few papers published since 1999 are summarized.

A review was published in 1999 by Arias [92]. The paper presented
the theory of wavelets from a physical perspective, provided a unified and
self-contained treatment of nonlinear couplings and physical operators,
and introduced a modern framework for effective single-particle theories of
quantum mechanics. The review focused on electronic structure, and the
advances that are useful for nonlinear problems in the physical sciences in
general were described paper.

Ab initio electronic structure calculations have been proved useful in
understanding nanostructure physics. Extension of the current methods to
large, localized systems remains an active area of research. A key diffi-
culty can be found in the scaling properties associated with the basis sets
used. Therefore, it is worthwhile to consider alternatives to the conven-
tional plane-wave and Gauusian bases. In the work published by Richie
et al. [93], the use of wavelet basis was examined.

An all-electron density-functional (AEDF) program using the ‘‘Mexican
hat’’ wavelet was developed by Han et al. [94]. The AEDF program was
applied to the ab initio all-electron calculations of small molecules as pro-
totype systems, and the construction scheme of multiresolution support
spheres was used to optimize the computational efficiency. H2, CO, and
H2O molecules and the 1s core-ionized C∗O and CO∗ molecules were ana-
lyzed in detail. Results showed good agreement obtained with experiments
and other theoretical work.

A numerical procedure based on wavelet collocation was suggested
and developed by Liu et al. [95] for the solution of models for packed-bed
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chemical reactors and chromatographic columns. They indicated that the
algorithm is stable and convergent and is a simple, accurate, fast, and
unified approach. It is not necessary to analyze the model on the basis
of particular physical laws to derive a scheme for tracking the steep
front. Furthermore, wavelets have the capability of representing solu-
tions at different levels of resolution, which makes them particularly useful
for developing hierarchical solutions for chemical processes. The most
important advantage of this method is that it simulates the chemical pro-
cesses with steep fronts more effectively than do conventional numerical
methods.

Nagy and Pipek [96] studied multiresolution analysis of density oper-
ators, electron density, and energy functionals and proved that, for real
physical systems, neither arbitrarily fine nor arbitrarily rough details of the
wavefunction and density operators can exist. They also showed that the
calculation of both kinetic energy and interaction energy expectation values
can be reduced to the determination of some universal functions defined
on integer-valued arguments.

Leherte [97] proposed a wavelet-based multiresolution analysis
approach to generate low-resolution molecular electron density (ED) dis-
tribution functions and compared the performance of the proposed method
with that of the other two methods (a crystallography-based formalism
and an analytical approach) using the critical point graph representa-
tions of the molecular ED distributions for pairwise molecular superpo-
sitions. The results showed that, for generation of the ED distribution, the
crystallography-based method is the fastest. Wavelet-based multiresolu-
tion analysis (WMRA) is the most time-consuming, but it is applicable to any
grid representation of a molecular property. The analytical approach offers
the advantage of generating functions that are continuously scalable, but
requires an analytical description of the molecular property considered. For
molecular superpositions, the WMRA approach led to the most consistent
superposition results.

5.6.7. Conclusion

Applications of WT in various fields of chemistry have been extensively
studied. Besides the contents and the works reviewed in this chapter,
there are many other works related to applications of WT in chemistry,
such as discriminant analysis, multiscale analysis, multifractal analysis,
transition detection, and protein sequences analysis. These studies, have
proved that WT based techniques are very efficient tools and have played
an important role in chemical signal processing. There is no doubt that
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an increasing number of chemists will be interested in exploring more
application of WT in chemistry and will derive more benefit from using the
techniques. WT-based techniques will be one of the most popular methods
in the future.
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LIST OF WAVELET-RELATED INTERNET WEBSITES

A wavelet tutorial: http://engineering.rowan.edu/∼polikar/wavelets/wttutorial.html.
A wavelet tutorial: http://nt.eit.uni-kl.de/wavelet/.
A practical guide to wavelet analysis: http://paos.colorado.edu/research/wavelets/.
A wavelet tutorial from S. Mallat’s book: http://cas.ensmp. fr/∼chaplais/Wavetour_

presentation/Wavetour_presentation_US. html.
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Amara’s wavelet page---wavelet resources: http://www.amara.com/current/wavelet.
html.

Wavelets---internet resources: http://www.cosy.sbg.ac.at/∼uhl/wav.html.
Information on wavelets: http://lettuce.ms.u-tokyo.ac.jp/mei/wavelet.html.
WaveLab: http://www-stat.stanford.edu/∼wavelab/.
The MathWorks---wavelet toolbox: http://www.mathworks.com/products/wavelet/.
Wavelet Explorer new-Generation signal and image analysis: http://www.wolfram.

com/products/applications/wavelet/.
Digital signal processing at Rice University: http://www-dsp.rice.edu/software/.
XWPL, the X Wavelet Packet Laboratory: http://math.yale.edu/pub/wavelets/software/

xwpl/html/xwpl.html.
WAVEKIT---a wavelet toolbox for MATLAB: http://www.math.rutgers.edu/∼ojanen/

wavekit/.
Wavelet toolbox: http://www.comsol.se/products/wavelet/index.php.
Bibliographies on wavelets: http://liinwww.ira.uka.de/bibliography/Theory/Wavelets/.
Wavelet transform in chemistry: http://fg702-6.abct.polyu.edu.hk/wavelet.html.
Wavelet papers: http://www.ee.umanitoba.ca/∼ferens/wavelets.html.
The Wavelet Digest: http://www.wavelet.org/.
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APPENDIX

VECTOR AND MATRIX OPERATIONS AND
ELEMENTARY MATLAB

A.1. ELEMENTARY KNOWLEDGE IN LINEAR ALGEBRA

A.1.1. Vectors and Matrices in Analytical Chemistry

All the data from spectra, chromatograms, voltammograms, kinetic curves,
titration curves, and other sources can be digitized into a series of numbers
(see Fig. A.1) that can be represented as a vector in mathematics. Thus,
when dealing with a vector in this book, we are working on one-dimensional
analytical signals. Further, if several one-dimensional chemical signals
are compiled together, then a matrix is formed. Many of the so-called
hyphenated instrument technologies, such as high-performance liquid
chromatography with a diode array detector (HPLC-DAD), gas chromatog-
raphy with a mass spectroscopic detector (GC-MS), gas chromatography
with an infrared spectroscopic detector (GC-IR), high-performance liquid
chromatography with a mass spectroscopic detector (HPLC-MS), and cap-
illary electrophoresis with a diode array detector (CE-DAD) have been
introduced to chemical laboratories recently. The data generated by the
such instrument can be arranged as a matric in which each row repre-
sents a spectrum and each column represents a chromatogram (at a given
wavelength, wavenumber, or m/e unit) as illustrated in Figure A.2.

Data obtained by ‘‘hyphenated instruments’’ in chemistry are generally
called two-dimensional or two-way data. They have the following features:

1. They contain information in both chromatograms and spectra.

2. The data matrix for one sample run is usually very large. Sometimes
it can be more than 80 megabytes, which is much more difficult to
handle;
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a1

a=[a1 . . . ak . . . an]

ak an. . . . . .

Figure A.1. Illustration of a digitized spectrum.

3. Most important feature of the hyphenated instruments is that they
combine a chromatography (e.g. CE, GC, HPLC) and a multichan-
nel spectroscopic detector (e.g. UV, IR, MS). At each regular time
interval, a complete spectrum is measured. Consequently, random
errors that occur in the chromatogram also influence the spectrum.
Apart from these inevitably related fluctuations, the data will also be
contaminated by detector noise which could be correlated among
adjacent channels. Moreover, noise that is proportional to the mag-
nitude of the signal is more common than purely additive noise. As
a result, the overall noise present in the ‘‘spectrochromatographic’’
data collected is complicated by different factors, and more impor-
tantly, the noise is heteroscedastic in nature. Thus, the pretreatment
of the two-dimensional data is more difficult.

....
..
.
.
....

Figure A.2. The physical meanings of the rows and columns of two-dimensional data matrix
as generated by a hyphenated instrument.
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From this perspective, vectors and matrices in linear algebra are
important in mathematical manipulation of one- and two-dimensional data
obtained from analytical instruments.

A.1.2. Column and Row Vectors

A group of real numbers arranged in a column form a column vector, while
its transpose is a row vector as shown in the following way:

a =




a1

a2
...

an


 at = [a1, a2, . . . , an]

Here, we follow the convention in which a boldfaced variable denotes a
column vector or a matrix.

If we say two vectors, a and b, are equal to each other, that means every
corresponding element in them are equal.

A.1.3. Addition and Subtraction of Vectors

Addition or subtraction of two vectors means that every element of the
vectors is added or subtracted in the following manner:

a ± b =




a1 ± b1

a2 ± b2
...

an ± bn




Vector addition and subtraction have the following properties:

a + b = b + a

(a + b) + c = a + (b + c)

a + 0 = a

Here 0 = [0, 0, . . . , 0]t .
A spectrum of a mixture of two chemical components, say, a and b, can

be expressed as the vector sum of the individual spectra a and b according
to the Lambert--Beer law (see Fig. A.3).

Vector addition of individual spectra to give the spectrum of the mixture
can also be applied to other analytical signals such as a chromatogram, a
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mixture

a b

λ nm

Figure A.3. The mixture spectrum produced by adding two spectra a and b together.

voltammogram, a kinetic curve, or a titration curve, as they are governed
by additive laws similar to the Lambert--Beer law for absorbance. A vector
with n elements can be regarded as a point in n-dimensional linear space.
Subtraction of two vectors gives the distance between these two points
the in the n-dimensional linear space. The geometric meaning of vector
subtraction is shown in Figure A.4.

It is well known that addition and subtraction between vectors can be
visualized by the so-called parallelogram rule as depicted in Figure A.5.

A.1.4. Vector Direction and Length

A vector in a n-dimensional linear space has direction and length. The
direction of a vector is determined by the ratios between elements. The

0

o

a_b

a_b=[a1
_b1, ..., an

_bn]

a

b

Figure A.4. Geometric illustration of vector subtraction in an n-dimensional linear space.
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b c

a

a+b=c

b c

a

c-b=a

Figure A.5. Parallelogram rule for vector addition and subtraction.

length or the magnitudes of a vector is defined by

‖a‖ = (a2
1 + · · · , +a2

n)1/2

In linear algebra, ‖a‖ is called the norm of the vector a.

A.1.5. Scalar Multiplication of Vectors

A vector a multiplied by a scalar (a constant) k is given by

ka =




ka1

ka2
...

kan




and is called the scalar multiplication of a vector in linear algebra. Note
that the spectra of different concentrations are just like vectors multiplied
by different constants, say, k1, k2, and so on (see Fig. A.6).

A

k2a

k1a

a

Figure A.6. Profiles obtained by scalar multiplication of a vector (spectrum) by constants k1

and k2 with k2 > k1.
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Scalar multiplication of vectors has the following properties:

k1(k2a) = (kk2)a

k1(a + b) = k1a + k1b

(k1 + k2) a = ka + k2a

In particular, we have

0 a = 0 1 a = a −1 a = −a

A.1.6. Inner and Outer Products between Vectors

When two vectors with the same size (number of elements) multiply each
other, there are two possible operations: the inner product and the outer
product. The inner product (also known as the dot product or the scalar
product ) produces a scalar (a number), while the outer product (also known
as the cross-product or the vector product ) produces a matrix. The follow-
ing formula (where the superscript t denotes transposition) defines the
inner product between two vectors:

at b = [a1, a2, . . . , an]




b1

b2
...

bn


 =

∑
ai bi

The inner product has the following properties:

at (b + c) = at b + at c

(a + b)t c = at c + bt c

Figure A.7 gives the geometric meaning of the inner product between
two vectors. The inner product is essentially a kind of projection. The

Inner product of vectors

a a

a

b

a.b=|a|.|b|.cos(α)

b b

α

→ →

Figure A.7. Graphic representation of inner product of the two vectors a and b.
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concept of projection is very important in chemometrics, and a good
understanding of this concept will be very helpful in studying the subject.

If two vectors a and b are orthogonal with each other, that is, if the angle,
α, between them is 90◦ (as shown in the middle part of Fig. A.7), then the
inner product is equal to zero:

at b = 0

The outer product of two vectors produces a bilinear matrix of rank equal
to 1, which is of special importance in multivariate resolution for two-way
data. In the two-way data from ‘‘hyphenated’’ chromatography, every chem-
ical component can be expressed by such a bilinear matrix of rank 1. The
outer product of vectors a and b is given as follows:

a bt =




a1

a2
...

an


 [b1, b2, . . . , bn] =




a1b1 a1b2 · · · a1bn

a2b1 a2b2 · · · a2bn
...

... · · · ...
anb1 anb2 · · · anbn




A.1.7. The Matrix and Its Operations

In general, a matrix is expressed in the following manner




a11 a12 · · · a1m

a21 a22 · · · a2m
...

... · · · ...
an1 an2 · · · anm




in which there are m columns and n rows.
Usually, capital letters are used to represent matrices, for example, A,

B, . . . . Lowercase symbols, with integer subscripts i and j , represent the
elements in the matrix. For example, aij in the expression above denotes
the matrix r elements at the i th row and the j th column. Thus, sometimes,
(aij ) is utilized to denote matrix A. Matrix A can also be expressed as
collection of column vectors:

A = [a1, a2, . . . , am]
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A.1.8. Matrix Addition and Subtraction

Two or more matrices of the same order can be added (or subtracted) by
adding (or subtracting) their corresponding elements in the following way:

A + B = (aij ) + (bij ) = (aij + bij )

It is obvious that the addition operation has the following properties:

A + B = B + A

(A + B) + C = A + (B + C)

A.1.9. Matrix Multiplication

The product of a matrix of order (n × q), A = (aij )n×q and a matrix B =
(bij )q×m of order (q × m) produces a matrix C = (cij )n×m of order (n × m).
The elements cij are defined as

cij =
∑

aik bkj

Essentially, cij is the result of the inner product of the i th row of matrix A
and the j th column of matrix B. It should be noted that matrix multiplication
may not satisfy the commutative rule:

A B �= B A

However, it will satisfy the associative rule

ABC = (AB)C = A(BC)

and also the distribution rule:

A(B + C) = AB + AC

(A + B)(C + D) = A(C + D) + B(C + D)

A.1.10. Zero Matrix and Identity Matrix

In a zero matrix, 0, all component elements equal to zero. A square matrix
of order n × n is called an identity matrix if all its diagonal elements have
unity value and the off-diagonal elements have zero value. It is denoted by
I or In in linear algebra.

It is obvious that the 0 and I matrices have the following features:

A + 0 = A

IA = AI = A
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A.1.11. Transpose of a Matrix

The transpose of a matrix A, namely, At , is obtained by exchanging rows
and columns of A:

(aij )t = (aji )

From this definition, we have

(AB)t = Bt At

(ABC)t = Ct Bt At

A matrix is called a symmetric matrix if its transpose is equal to itself:

At = A

A.1.12. Determinant of a Matrix

The determinant of a square matrix A of order (n × n), |A| or det(A), is
defined by

det(A) = |A| =
n∑

i=1

( −1)i+j aij |Mij|

=
n∑

i=1

aij Aij (for any i , j = a fixed value)

where |Mij| is the determinant of the minor of the element aij . The minor
Mij is a (n − 1) × (n − 1) matrix obtained by deleting the i th row and the j th
column of A. The resulting quantity Aij , is called the cofactor of aij and is
defined as (−1)i+j |Mij|.

Consider the following examples:

N = 2:

|A| = a11a22 − a12a22

N = 3: the first column with j = 1 is fixed:

A11 = ( −1)2

∣∣∣∣a22 a23

a32 a33

∣∣∣∣ = ( −1)2|M11|

A21 = ( −1)2

∣∣∣∣a12 a13

a32 a33

∣∣∣∣ = ( −1)2|M21|

A31 = ( −1)2

∣∣∣∣a12 a13

a22 a23

∣∣∣∣ = ( −1)2|M31|

and |A| = a11A11 + a21A21 + a31A31.
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As an alternative, one may fix a row and write down the determinant of
A according to

det(A) = |A| =
n∑

j=1

( −1)i+j aij |Mij| (for any i , i = a fixed value)

A square matrix A is said to be regular or nonsingular if |A| �= 0.
Otherwise A is said to be singular.

Let A and B be n × n square matrices and k be a scalar; we then have

|At | = |A|
|kA| = k n|A|
|AB| = |A||B|
|A2| = |A|2

If A is a diagonal or triangular matrix, then

|A| =
n∏

i=1

aii

A.1.13. Inverse of a Matrix

If two square matrices, say, A and B, satisfy AB = I, then B is called the
inverse matrix of A and is denoted by A−1. If A−1 exists, matrix A is a
nonsingular matrix or a matrix of full rank. It is easily seen that A−1 exists
if and only if A is nonsingular.

If the inverses A−1 and B−1 exist, the following expressions hold:

(kA)−1 = k −1A−1

(A B)−1 = B−1A−1

(At )−1 = (A−1)t

A.1.14. Orthogonal Matrix

A square matrix A is said to be orthogonal if

At A = AAt = I
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The orthogonal matrices have the following properties:

At = A−1

det(A) = ±1

This is because

det(A) det(A) = det(At ) det(A) = det(At A) = det(I) = 1

A.1.15. Trace of a Square Matrix

The trace of a square matrix, tr(A), is defined as the sum of the diagonal
elements as

tr(A) =
∑

aii

In a special case when A is a matrix of order (1 × 1), it contains only one
element a, then

tr(A) = a

For example, a quadratic type yt Ay is a number:

tr(yt Ay) = yt Ay

Properties of the trace of a square matrix are as follows:

tr(A + B) = tr(A) + tr(B)

tr(αA) = α tr(A)

tr(AB) = tr(BA)

E [tr(A)] = tr[E (A)]

tr(AAt ) = tr(At A) =
n∑

i=1

n∑
j=1

a2
ij

It is obvious that if a = [a1, a2, . . . , an]t is a vector of n elements, then the
squared norm may be written as

‖a‖2 = at a =
n∑

i=1

a2
i = tr(aat )
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A.1.16. Rank of a Matrix

For matrix A of order (n ×m), its rank is the number of linearly independent
row vectors (or column vectors) in it (see the example below) and is denoted
by rank(A). It has the following features:

At = (A−1)t

0 ≤ rank(A) ≤ min(n, m)

rank(AB) ≤ min[rank(A), rank(B)]
rank(A + B) ≤ rank(A) + rank(B)

rank(At A) = rank(AAt ) = rank(A)

The rank of a square matrix equals its order n if and only if det(A) is not
equal to zeros:

rank(A) = n (det(A) �= 0)

Remarks. When a sample is measured by a ‘‘hyphenated instrument,’’ the
data can be arranged in the form of a matrix. If there is no measurement
noise and the spectrum of every absorbing chemical component is different
from all the other spectra, then the rank of the data matrix equals the
number of chemical components within the sample.

Example A.1. Suppose that a data matrix is composed of n vectors (spec-
tra) as obtained from measurements that are a linear combination of the
vectors a and b, pure spectra of two chemical components. The rank of
this matrix is 2 as there are only two linearly independent vectors in it. Each
of the n vectors (spectra) mi (with i = 1, . . . , n) can be expressed by the
following formula:

mi = ciaa + cibb (i = 1, 2, . . . , n)

where cia and cib are the relative concentrations of the two components
under the i th condition. Thus, the linear space is essentially determined
by the two vectors a and b of the chemical components as illustrated in
Figure A.8.

A.1.17. Eigenvalues and Eigenvectors of a Matrix

For a matrix A, we have the following relationship

A�i = λi�i (i = 1, 2, . . . , k )
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a

b

m1

mk

mn

Figure A.8. Geometric illustration of the vectors m1 and mn obtained from the linear
combination of two vectors a and b (components).

where �i (i = 1, 2, . . . , k ) are called the eigenvectors of the matrix A while
λi are the corresponding eigenvalues. If matrix A is a symmetric matrix, all
the eigenvalues are real numbers.

If there is a nonsingular matrix �, with B = �A�−1, the square matrices
B and A are said to be similar. Also, the matrix B is called the orthogonal
similar matrix of A, if � is an orthogonal matrix.

Any symmetric matrix A can be transformed into a diagonal matrix �
through the orthogonal similar transformation of

�t A� = � or A = ���t

It can be proved that the diagonal elements of � are λi (i = 1, 2, . . . , k ),
the eigenvalues of matrix A, while the column vectors �i (i = 1, 2, . . . , k )
containing the orthogonal matrix � are the corresponding eigenvectors.
Moreover, the rank of A is exactly equal to the number of nonzero real
numbers of diagonal elements or eigenvalues of �.

A.1.18. Singular-Value Decomposition

For any matrix An×m(n ≥ m), one can use the technique called singular-
value decomposition (SVD) to obtain its eigenvalues and eigenvectors. The
SVD technique decomposes the matrix into three matrices as A = USVt ,
where U is the so-called column orthogonal matrix. This means that all
columns of U are orthogonal to each other, that is, Ut U = In. S is a diagonal
matrix with its diagonal elements equal to the square root of the eigenvalues
of covariance matrix of A, while Vt is a row orthogonal matrix, where the
column vectors of V are orthogonal to one another, or in other words,
Vt V = Im . Usually in chemometrics, the matrix U is called the ‘‘scores’’
while the matrix V is called the ‘‘loadings.’’

Figure A.9 illustrates the SVD of matrix A.
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A             =           ...U S V       .  

Figure A.9. Illustration of singular value decomposition of a matrix A.

Every column in the column orthogonal matrix U is the left eigenvector
of the matrix A, as

AV = US ⇒ Avi = si ui

Every row in the row orthogonal matrix Vt is the right eigenvector of the
matrix A because

Ut A = SVt ⇒ ut
i A = si vt

i

A.1.19. Generalized Inverse

For a matrix of order (n×m), if there is a matrix B of order (m×n), satisfying
the equation

ABA = A

then B is called a generalized inverse matrix of A and is denoted by A−,
or sometimes is simply called the ‘‘−’’ inverse. It can be easily seen that
A− is just A−1 if matrix A is a full-rank matrix. From this point of view, it
can be seen that the generalized inverse is an extension of the inverse
which is only defined for square matrices. The question here is whether
the generalized inverse is not unique. A unique generalized inverse can be
defined by specified constraints, and such a generalized inverse is called
the ‘‘+’’ inverse or the Moore--Penrose inverse, denoted as A+. It satisfies
the following four conditions:

1. AA+A = A

2. A+A A+ = A+

3. (AA+)t = AA+

4. (A+A)t = A+
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The Moore--Penrose inverse has the following features:

rank(A) = rank(A+)

(A+)+ = A

(At )+ = (A+)t

((AB)+)t = (At Bt )+

It should be noted that AA+ and A+A are both symmetric and idempotent.
A matrix is idempotent if the square of the matrix is equal to itself (i.e.,
A2 = A).

A.1.20. Derivative of a Matrix

If the elements in matrix A are functions of variable t, then the derivative of
A is still a matrix and is denoted as dA/dt . If aij is the element at the i th
row and the j th column, the element in the corresponding derivative matrix
dA/dt is represented by daij/dt .

The derivative of matrix has the following properties:

d (AB)
dt

=
(

dA
dt

)
B +

(
dB
dt

)
A

d [tr(A)]
dt

= tr
(

dA
dt

)

A.1.21. Derivative of a Function with Vector as Variable

Suppose that f is a number function with a vector as its variable, that is,
f = f (x); the derivative of f with respect to vector x is defined as follows:

df (x)
dx

=
[

df
dx1

,
df
dx2

,
df
dx3

, . . . ,
df
dxn

]t

Here x = [x1, x2, . . . , xn]t . The derivative of a function of vectorial variable
has the features mentioned below.

If a is constant vector, then

d (at x)
dx

= a

d (xt a)
dx

= a

d (xt Ax)
dx

= 2Ax
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y

a c
b

Figure A.10. The spectrum y of a mixture that contains three chemial components with their
pure spectra a, b, and c.

Here A is a symmetric square matrix, and all the elements in matrix A are
constants.

Example A.2. Suppose that the spectrum of a mixture containing three
chemicals, a, b, and c (see Fig. A.10) is measured, and their pure spectra,
s1, s2, and s3, are also available. Can we determine the concentrations
of these three chemical compounds in the mixture? If ‘‘Yes,’’ how can we
do it?

According to the Lambert--Beer law, the spectra of the mixture y are
related to the concentrations of the three components by

y = c1s1 + c2s2 + c3s3 + e

Here ci (i = 1, 2, 3) are the relative concentrations of the components and
vector e represents the measurement noises, which is usually assumed to
be a series of random numbers with normal distribution and zero mean.
Since the spectra y, s1, s2, and s3 are known, the problem now is to find
the concentrations ci from the preceding equation. It can be solved in the
following way.

The equation y = c1s1 + c2s2 + c3s3 + e is essentially a combination of
linear equations as expressed below:

y1 = c1s11 + c2s12 + c3s13 + e1

y2 = c1s21 + c2s22 + c3s23 + e2

...

yn = c1sn1 + c2sn2 + c3sn3 + en
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Here y = [y1, y2, . . . , yn]t , s1 = [s11, s21, . . . , sn1]t , s2 = [s12, s22, . . . , sn2]t ,
and s3 = [s13, s23, . . . , sn3]t . If we express the linear equations above in
matrix form and ignore the noise vector e, then we have

y = Sc

Here vector c = [c1, c2, c3]t represents the unknown relative concentra-
tions of the three compounds and matrix S is a collection of the three
spectra:

S =




s11 s12 s13

s21 s22 s23
...

...
...

...
...

...
sn1 sn2 sn3




= [s1 s2 s3]

In order to solve this matrix equation, we need to find the inverse of S.
However, matrix S is not a square matrix, and hence no inverse matrix is
available. Now, let us multiply the equation by St in the following manner:

St y = St Sc

Then it is possible to solve this equation with the help of the inverse matrix
because matrix (St S) is a square matrix of full rank. In this way, the solution
of the equation is expressed in the following form:

c = (St S)−1St y

Remarks

1. Note first that S is not a square matrix; thus we cannot obtain its
inverse matrix directly.

2. We can prove that the solution above is essentially the famous least-
squares solution.

3. In Section A.2, the readers will see that the preceding equation can
be solved easily using only one statement with the help of MATLAB.

A.2. ELEMENTARY KNOWLEDGE OF MATLAB

The major advantage of MATLAB in signal processing, especially for manip-
ulating two-dimensional signals, is the simplicity with which signals of all
types can be generated and visualized. In this section, we will show how



\bapp01" | 2004/1/28 | 9:35 | page 274 | #18

274 appendix

to use MATLAB to carry out vector and matrix operations. Some examples
will be utilized to illustrate how simple commands can be used to produce
meaningful information and plots.

For convenience, in the rest of this appendix, all the matrix and vector
quantities will be shown not in the usual boldface type, as above, but in
the same typeface (font) as they appear in the MATLAB command window.
Readers should encounter no difficulty in determining whether a matrix or
vector is used in the text.

In the MATLAB command window, one can directly give MATLAB a com-
mand to execute something. For instance, to generate a matrix of order
3 × 3, just use the following command:

>A=[1 2 3 ; 4 5 6 ; 7 8 9]

Here the two square brackets denote a matrix with the quantities enclosed,
while a space is used between elements within a row and a semicolon is
used for separating rows. After pressing the enter key, the following matrix
will be shown in the MATLAB window:

>A =

1 2 3

4 5 6

7 8 9

To obtain the inverse of this matrix, simply key in the following command:

>B=inv(A);

The results will be stored in matrix B, which is the inverse of matrix A.
The semicolon at the end of the statement is used to suppress the output
appearing in the command window. This is very useful to avoid excessive
outputs while running a MATLAB program.

MATLAB script is very powerful and convenient for handling matrix
and vector operations. For instance, to solve the least-squares equation
c=(StS)-1Sty as discussed in the previous section, just input the matrix
S that contains the standard spectra and the response vector y. Then the
solution can be easily obtained by the following statement:

>c=inv(S’*S)*S’*y

The symbols ∗ and ’ denote multiplication and transpose operation,
respectively.

In order to further explain how to use MATLAB to do chemometric
calculation, some commonly used commands will be given below.
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A.2.1. Matrix Construction

As mentioned before, one can easily construct the matrix by directly
inputting the matrix A under the MATLAB command window as follows:

>A=[1 3 5 7; 12 3 5 3; 3 5 9 1]

Then, MATLAB will store the matrix A:

A=

1 3 5 7

12 3 5 3

3 5 9 1

You can also type the following statement to produce another matrix a:

>a=[2,3,4,6;1,4,5,7]

The output matrix a will be as follows:

a=

2 3 4 6

1 4 5 7

Note that every row in matrix is separated by a semicolon.

A.2.2. Matrix Manipulation

A’: transpose of matrix A. If matrix A is a complex matrix, its transpose
will be the conjugated transformation.

A+B: sum of matrices A and B. This means that the corresponding ele-
ments of matrices A and B are summed together. If A and B are scalars,
the two numbers are added.

A-B: difference between matrices A and B. This means that the elements
in A will be subtracted by the corresponding elements of B.

A*B: multiplication between matrices A and B. A and B can be matrices
and/or vectors, if they comply with the rule of matrix multiplication.

A.*B: element-by-element multiplication between matrices A and B, that
is, A(i,j)*B(i,j). Note that matrices A and B must be of the same
order in this case, unless one of them is a scalar.



\bapp01" | 2004/1/28 | 9:35 | page 276 | #20

276 appendix

A.2.3. Basic Mathematical Functions

MATLAB provides almost all the commonly used mathematical functions.
The only difference between MATLAB and other advanced computer lan-
guage, such as C, Pascal, FORTRAN, and BASIC (Beginner’s All-Purpose
Symbolic Instruction Code), is that variables used in MATLAB are basically
all vectors and matrices. Therefore, the mathematical functions in MATLAB
are operating on the elements of the matrix, for example

>A=[123 245 365 ; 345 345 232]

>B=fix(0.45∗A)
>C=cos(A)

These three commands will give the following results:

>A=

123 245 365

345 345 232

>B=

55 110 164

155 155 104

>C=

-0.8880 0.9990 0.8391

0.8391 0.8391 0.8880

MATLAB provides the following trigonometric functions and other com-
monly used functions:

sin: sine function.

cos: cosine function.

tan: tangent function.

asin: arcsine function.

acos: arccosine function.

atan: arctangent function.

sinh: hyperbolic sine function.

cosh: hyperbolic sine function.

tanh: hyperbolic tangent function.

asinh: inverse hyperbolic sine function.

acosh: inverse hyperbolic cosine function.

atanh: inverse hyperbolic tangent function.
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abs: absolute value function. abs(X) is the absolute value of the elements
of X. When X is complex, abs(X) is the complex modulus (magnitude)
of the elements of X.

angle: phase angle function. angle(X) returns the phase angles, in
radians, of a matrix with complex elements.

sqrt: square root function. sqrt(X) is the square root of the elements of
X. Complex results are produced if X is not positive.

real: complex real part function. real(X) is the real part of X.

round: round toward nearest integer function. round(X) rounds the
elements of X to the nearest integers.

fix: round toward zero function. fix(X) rounds the elements of X to the
nearest integers toward zero.

floor: round toward minus infinity. floor(X) rounds the elements of X
to the nearest integers toward minus infinity;

ceil: round toward plus infinity. ceil(X) rounds the elements of X to the
nearest integers toward infinity.

sign: signum function. For each element of X, sign(X) returns 1 if the
element is greater than zero, 0 if it equals zero, and −1 if it is less
than zero. For complex X, sign(X)=X ./ abs(X).

rem: remainder after division. rem(x,y) is x-y.*fix(x./y) if y �= 0. By
convention, REM(x,0) is not a number (NaN in MATLAB). The input
x and y must be real arrays of the same size, or real scalars.

gcd: greatest common divisor. G = gcd(A,B) is the greatest common
divisor of corresponding elements of A and B. The arrays A and B

must contain nonnegative integers and must be the same size (or
either can be scalar). gcd(0,0) is 0 by convention; all other GCDs
are positive integers.

lcm: least common multiple. lcm(A,B) is the least common multiple of
corresponding elements of A and B. The arrays A and B must con-
tain positive integers and must be the same size (or either can be
scalar).

exp: exponential function. exp(X) is the exponential of the ele-
ments of X, e to the X. For complex Z=X+i*Y, exp(Z)= exp(X)*

(cos(Y)+i*sin(Y)).

log: natural logarithm function. log(X) is the natural logarithm of
the elements of X. Complex results are produced if X is not
positive.

log10: common (base 10) logarithm function. log10(X) is the base 10
logarithm of the elements of X. Complex results are produced if X is
not positive.
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rat: rational approximation function. [N,D]=rat(X,tol) returns
two integer matrices so that N./D is close to X in the sense
that abs(N./D-X)<= tol*abs(X). The rational approximations are
generated by truncating continued fraction expansions. Here
tol=1.e−6∗norm(X(:),1) is the default. S=rat(X) or rat(X, tol)
returns the continued fraction representation as a string. The same
algorithm, with the default tol, is used internally by MATLAB for format
rat.

erf: error function. Y=erf(X) is the error function for each element of X.
X must be real. The error function is defined as

erf(x)=2/sqrt(π)
∫ x

0 exp(-t
2)dt.

erfinv: inverse error function. X = erfinv(Y) is the inverse error func-
tion for each element of X. The inverse error functions satisfies
y=erf(x), for −1 <= y < 1 and −∞ ≤ x ≤ ∞.

Note that all the functions mentioned above can be conveniently used
for calculations. This may be one of the most convenient features of the
MATLAB language.

A.2.4. Methods for Generating Vectors and Matrices

The colon operator in MATLAB is one of the most convenient tools for
constructing vectors and/or matrices. For instance, with the following
commands, one can easily obtain a function data table:

>x=[0.0 : 0.2 : 3.0]’; (obtaining the first column in the ans table)
>y=-exp(x).* sin(x); (obtaining the second column in the ans

table)

>[x y]ans=
0 0

0.2000 -0.2427

0.4000 -0.5809

0.6000 -1.0288

0.8000 -1.5965

1.0000 -2.2874

1.2000 -3.0945

1.4000 -3.9962

1.6000 -4.9509
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1.8000 -5.8914

2.0000 -6.7188

2.2000 -7.2967

2.4000 -7.4457

2.6000 -6.9406

2.8000 -5.5088

3.0000 -2.8345

One can also use the linspace function to produce linearly spaced vectors
and the logspace function to generate logarithmically spaced vectors. For
instance, linspace(x1, x2, N) will gives N linearly equally spaced points
between x1 and x2.

If we key in the following statement

>linspace(.3,5.2,14)

the results obtained will be as follows:

ans=

Columns 1 through 7

0.3000 0.6769 1.0538 1.4308 1.8077 2.1846 2.5615

Columns 8 through 14

2.9385 3.3154 3.6923 4.0692 4.4462 4.8231 5.2000

MATLAB also provides functions to construct some special matrices. These
include

diag: diagonal matrices and diagonals of a matrix. diag(V,K) where
V is a vector with N components and K is an integer, the functions
returns a square matrix of order N+abs(K) with the elements of V
on the Kth diagonal. K=0 is the main diagonal, K > 0 is above the
main diagonal; and K < 0 is below the main diagonal. If X is a matrix,
diag(X) returns the main diagonal of X. Thus, diag(diag(X)) returns
a diagonal matrix.

Hadamard: Hadamard matrix. hadamard(N) is a Hadamard matrix of
order N , that is, a matrix, say, H, with elements 1 or −1 such that
H

′∗H=N*IN (where IN denotes the identity matrix of order N ). A N-
by-N (N ×N ) Hadamard matrix with N > 2 exists only if N is divisible
by 4, that is, rem(N,4)=0.
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ones: ones array. ones(N) returns a matrix of order N with all the ele-
ments equals to one. ones(size(A)) gives a matrix of the same size
as A with all the elements equal to one.

rand: uniformly distributed random numbers. rand(N) is an N-by-
N matrix of random numbers that are uniformly distributed in the
interval (0.0,1.0). rand with no argument returns a scalar, while
rand(size(A)) is a matrix of the same size as A.

randn: normally distributed random numbers. randn(N) is an N-by-N
matrix of random numbers that follow the normal distribution with
mean zero and unity variance. randn(size(A)) returns a matrix of
the same size as A.

eye: identity matrix. eye(N) returns an identity matrix of order N .
eye(size(A)) is an identity matrix having the same size as A.

Thus, to produce a random matrix of order 3×5, one can simply key in the
following statement:

>rand(3,5)

The results are as follows:

ans=

0.9501 0.4860 0.4565 0.4447 0.9218

0.2311 0.8913 0.0185 0.6154 0.7382

0.6068 0.7621 0.8214 0.7919 0.1763

With these functions, we can easily construct data matrices of any size.

A.2.5. Matrix Subscript System

In order to indicate the position of an element in a matrix, subscripts are
always used in mathematics. In principle, MATLAB follows the same rules
as those of mathematics. There is no difference between MATLAB and
other advanced computer languages. The only difference in MATLAB is
that it is possible for MATLAB to use a vector subscript to define submatrix,
through which MATLAB makes the matrix operation very convenient. For
instance, if A is a matrix of order 10 × 10, the statement

>A(1:5,3)

can be used to construct a column vector of order 5 × 1, which consists of
the first five elements in the third column in matrix A. Again, if we key in the
statement

>X=A(1:5,7:10);
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A X

Figure A.11. Generation of a 5 × 4 submatrix using the command X=A(1:5,7:10) to specify
the 20 elements (located in an upper right region with label X) within the 10 × 10 matrix A.

we can obtain a new matrix of X of order 5×4, which contains the elements
in the last four columns and in the first five rows in matrix A as shown in
Figure A.11, It should be noted that in this expression, if we use only a
colon without specifying the starting and ending positions, the command
embraces all the rows and/or all the columns of the matrix identified. For
example, the statement

>A(:,3)

gives the third column in matrix A, while the command

>A(1:5,:)

gives the first five rows in matrix A.
The subscript expression of a matrix can be used in input state-

ments, which makes the matrix operation in MATLAB very convenient.
For instance, the following commands can be employed to construct two
matrices, B and a:

>B=magic(8),

B =

64 2 3 61 60 6 7 57

9 55 54 12 13 51 50 16

17 47 46 20 21 43 42 24

40 26 27 37 36 30 31 33

32 34 35 29 28 38 39 25

41 23 22 44 45 19 18 48

49 15 14 52 53 11 10 56

8 58 59 5 4 62 63 1
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>a=rand(8)

a =

0.9501 0.8214 0.9355 0.1389 0.4451 0.8381 0.3046 0.3784

0.2311 0.4447 0.9169 0.2028 0.9318 0.0196 0.1897 0.8600

0.6068 0.6154 0.4103 0.1987 0.4660 0.6813 0.1934 0.8537

0.4860 0.7919 0.8936 0.6038 0.4186 0.3795 0.6822 0.5936

0.8913 0.9218 0.0579 0.2722 0.8462 0.8318 0.3028 0.4966

0.7621 0.7382 0.3529 0.1988 0.5252 0.5028 0.5417 0.8998

0.4565 0.1763 0.8132 0.0153 0.2026 0.7095 0.1509 0.8216

0.0185 0.4057 0.0099 0.7468 0.6721 0.4289 0.6979 0.6449

We can replace part of the elements in the matrix a with that of B by the
command

>a(:,[3 5 7])=B(:,1:3)

Then, the matrix a becomes

a =

0.9501 0.8214 64.0000 0.1389 2.0000 0.8381 3.0000 0.3784

0.2311 0.4447 9.0000 0.2028 55.0000 0.0196 54.0000 0.8600

0.6068 0.6154 17.0000 0.1987 47.0000 0.6813 46.0000 0.8537

0.4860 0.7919 40.0000 0.6038 26.0000 0.3795 27.0000 0.5936

0.8913 0.9218 32.0000 0.2722 34.0000 0.8318 35.0000 0.4966

0.7621 0.7382 41.0000 0.1988 23.0000 0.5028 22.0000 0.8998

0.4565 0.1763 49.0000 0.0153 15.0000 0.7095 14.0000 0.8216

0.0185 0.4057 8.0000 0.7468 58.0000 0.4289 59.0000 0.6449

This procedure replaced the third, fifth, and seventh columns of matrix a

by the first three columns of matrix B.
In general, if v and w are integer vectors, then A(v,w) represents a

submatrix originating from matrix A, in which the rows are determined by
vector v, while the columns is determined by vector w. Here vector v is
called a row subscript and w, the column subscript. In this way, some
matrix calculations, which may be clumsy to program in other computer
languages, can be easily implemented with the help of the subscript system
in MATLAB.

Sometimes, we may need to vectorize a matrix before performing some
calculations. This can be easily achieved in MATLAB through the following
commands:

>A=[1 2 ; 3 4 ; 5 6]

>b=A(:)
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The following results can be obtained immediately:

A=

1 2

3 4

5 6

b=

1

3

5

2

4

6

The reshape function in MATLAB is another way to change the order of
a matrix. For example, suppose that we want to change a matrix of order
3 × 4 into a matrix of order 2 × 6; this can be achieved by the following
commands. First, we define a 3 × 4 matrix

>A=[1 4 7 10; 2 5 8 11; 3 6 9 12]
A=

1 4 7 10

2 5 8 11

3 6 9 12

Then, the reshape function is used:

>B=reshape(A,2,6)

The result is

B=

1 3 5 7 9 11

2 4 6 8 10 12

It is worth noting that MATLAB also defines a special but important matrix,
which is the empty matrix. An empty matrix can be constructed by the
following statement:

>x=[ ]

In this way, x is an empty matrix and it can be used as a variable to do the
calculation. Using this empty matrix as a variable, one can easily delete
some rows and/or columns in a matrix:

>A(:,[2,4])=[]

The resulting matrix following this operation is that the submatrix of the
second column and the fourth column in matrix A is deleted as follows:
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>A(:,[2,4])=[]
>A=

1 7

2 8

3 9

In MATLAB, some MATLAB functions have their default values for the empty
matrix. For instance, functions det (the determinant of a matrix), cond (con-
ditioned number of a matrix), sum (sum of the elements in every column
in a matrix), and others have their default values. If X is an empty matrix,
then det(X)=1, cond(X)=0 and sum(X)=0. Note that an empty matrix is a
very important variable in MATLAB programming.

In order to manipulate matrices easily, MATLAB provides many useful
functions. Following are some examples:

max: largest component. For vectors, max(X) is the largest element in X.
For matrices, max(X) is a row vector containing the maximum element
from each column.

min: smallest component. For vectors, min(X) is the smallest element
in X. For matrices, min(X) is a row vector containing the minimum
element from each column.

mean: average or mean value. For vectors, mean(X) is the mean value
of the elements in X. For matrices, mean(X) is a row vector containing
the mean value of each column.

median: median value. For vectors, median(X) is the median value of
the elements in X. For matrices, median(X) is a row vector containing
the median value of each column.

std: standard deviation. For vectors, std(X) returns the standard devi-
ation. For matrices, std(X) is a row vector containing the standard
deviation of each column.

sum: sum of elements. For vectors, sum(X) is the sum of the elements
of X. For matrices, sum(X) is a row vector with the sum over each
column.

prod: product of elements. For vectors, prod(X) is the product of the
elements of X. For matrices, prod(X) is a row vector with the product
over each column.

sort: sort in ascending order. For vectors, sort(X) sorts the elements
of X in ascending order. For matrices, sort(X) sorts each column
of X in ascending order. When X is a cell array of strings, sort(X)
sorts the strings in ASCII (American Standard Code for Information
Interchange) dictionary order.



\bapp01" | 2004/1/28 | 9:35 | page 285 | #29

appendix 285

Please note that if an N-dimensional array X is passed as the argu-
ment, all the functions listed above operate on the first nonsingleton
dimension of X.

conv: convolution and polynomial multiplication. C = conv(A, B)

convolves vectors A and B. The resulting vector is length LENGTH(A)+

LENGTH(B)−1. If A and B are vectors of polynomial coeffi-
cients, convolving them is equivalent to multiplying the two poly-
nomials.

corrcoef: correlation coefficients. corrcoef(X) is a matrix of correlation
coefficients formed from array X whose each row is an observation,
and each column is a variable. corrcoef(X,Y), where X and Y are
column vectors, is the same as corrcoef([X Y]).

Consider the following examples. First, let a matrix B be defined and the
outputs of a few functions mentioned above be shown as

>B=[1 4 7 10 5; 2 5 8 11 4; 3 6 9 12 6; 2 5 7 3 2]

>B=

1 4 7 10 5

2 5 8 11 4

3 6 9 12 6

2 5 7 3 2

>max(B)

ans =

3 6 9 12 6

>min(B)

ans =

1 4 7 3 2

>mean(B)

ans =

2.0000 5.0000 7.7500 9.0000 4.2500

>prod(B)

ans =

12 600 3528 3960 240
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>sort(B)

ans =

1 4 7 3 2

2 5 7 10 4

2 5 8 11 5

3 6 9 12 6

>corrcoef(B)

ans =

1.0000 1.0000 0.8528 0.2000 0.2390

1.0000 1.0000 0.8528 0.2000 0.2390

0.8528 0.8528 1.0000 0.6822 0.6625

0.2000 0.2000 0.6822 1.0000 0.9084

0.2390 0.2390 0.6625 0.9084 1.0000

The most attractive feature of the MATLAB language is that it provides
very convenient functions for matrix operations. It makes some programs
for processing chemical signals very easy and convenient to implement.
Moreover, computations involving MATLAB script are usually very fast and
efficient, significantly simplifying and facilitating chemometric programming
in the MATLAB language.

A.2.6. Matrix Decomposition

Matrix decomposition is the core of chemometric techniques. Many algo-
rithms used in chemometrics are based on matrix decomposition, such
as principal-component analysis (PCA) and partial least squares (PLS).
Some familiarity with the basic ideas of matrix decomposition will make it
easier to follow the algorithms presented in this book.

A.2.6.1. Singular-Value Decomposition (SVD)

Singular-value decomposition is very important in chemometrics. In MAT-
LAB, matrix decomposition can be performed simply by the following
statement

>[U,S,V]=svd(A)

in which U is a column orthogonal matrix or so-called scores, matrix V is
a row orthogonal matrix or so-called loadings, and matrix S is a diagonal
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matrix satisfying the following relation:

A=U*S*V’

For example, assume that

>A=[1 4 7 10; 2 5 8 11; 3 6 9 12]

Then, we have

A=

1 4 7 10

2 5 8 11

3 6 9 12

Then, we can simply key in

>[U,S,V]=svd(A)

The following results are obtained:

U=

0.5045 0.7608 0.4082

0.5745 0.0571 -0.8165

0.6445 -0.6465 0.4082

S=

25.4624 0 0 0

0 1.2907 0 0

0 0 0.0000 0

V=

0.1409 -0.8247 0.1605 -0.5237

0.3439 -0.4263 0.1764 0.8179

0.5470 -0.0278 -0.8342 -0.0647

0.7501 0.3706 0.4973 -0.2295

A.2.6.2. Eigenvalues and Eigenvectors (eig)

Suppose that A is a square matrix. If a vector x and a scalar a satisfy
theequation Ax=αx, then x and α are respectively called the eigenvector
and eigenvalue of matrix A. In MATLAB, eigenvalues of A can be obtained
by the following statement:

>e=eig(A)

Here e is a vector containing all the eigenvalues of A. If one also requires
the corresponding eigenvectors, then the statement

>[V,D]=eig(A)



\bapp01" | 2004/1/28 | 9:35 | page 288 | #32

288 appendix

will produce a diagonal matrix D of eigenvalues and a full matrix V whose
columns are the corresponding eigenvectors so that A*V=V*D. In addition,
E=eig(A,B) is a vector containing the generalized eigenvalues of square
matrices A and B. The statement [V,D]=eig(A,B) produces a diagonal
matrix D of generalized eigenvalues and a full matrix V whose columns are
the corresponding eigenvectors so that A*V=B*V*D. For example, if

>[x,d]=eig(A’*A)

then, we have

x=

0.5279 -0.1462 -0.8247 0.1409

-0.8128 -0.1986 -0.4263 0.3439

0.0419 0.8356 -0.0278 0.5470

0.2430 -0.4909 0.3706 0.7501

d=

-0.0000 0 0 0

0 0.0000 0 0

0 0 1.6658 0

0 0 0 648.3342

A.2.7. Graphic Functions

The MATLAB graphic functions are very powerful and extremely useful in
generating scientific plots for data analysis, interpretation, and publication.
These functions are very difficult to implement in most of the advanced com-
puter languages without accessing other sophisticated graphic libraries.
For instance, mesh plots and contour plots can be easily created in MAT-
LAB. One simple statement can do the job. Here we give a very brief
introduction on the graphics features of MATLAB.

We can begin by constructing a matrix of order 16 × 16 and then use
this matrix data to show several powerful plotting functions in MATLAB. A
small matrix is created first:

>A= [4 5 3 8

1 6 9 2

7 8 2 8

9 4 12 6]

A=

4 5 3 8

1 6 9 2

7 8 2 8

9 4 12 6
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Figure A.12. A plot of the ninth column vector (contains 16 elements) of the matrix B1.

Then, we enlarge the order of the matrix and key in the following
statements:

>B=[A A’;1.2*A sqrt(A)]

>B1=[B 3*B’;2.1*B B∧2]

Finally, we have a matrix of order 16 × 16. If we key in

>plot(B1(:,9))

then Figure A.12 is generated. If we type the following statements, such as

>subplot(221),plot(B1(:,9),’∗-’)
>hold

the command hold retains the current graph so that subsequent plotting
commands add to the graph:

>subplot(222),plot(B1(:,10),’o−’)

>subplot(223),plot(B1(:,11),’+−’)

>subplot(224),plot(B1(:,11),’.−’)

Then, Figure A.13 will appear on the screen.
If we key in the statement

>bar(B1(:,6))

we will obtain Figure A.14.
To obtain the contour plot of this data matrix, we can simply utilize the

following statement.

>contour(B1)
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Figure A.13. Plots of the ninth, tenth, and eleventh column vectors of B1 in the same graph
window.

and then, we will have Figure A.15.
To obtain the three-dimensional plot of the data, we can type in

>mesh(B1)

Then Figure A.16 immediately appears on the screen.
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Figure A.14. Bar chart of the sixth column vector of B1.
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Figure A.15. A contour plot of B1.
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Figure A.16. A 3D mesh plot of B1.
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For these above plots (Figs. A.12--A.16), we can still use functions such
as title, xlabel, ylabel, and axis, to customize the plot such as adding
a title, axis range, axis label, or other feature. In summary, the plotting
functions in MATLAB are very convenient to use and make visualization of
the data and results much easier and simpler.
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EXAFS spectrum, 185--191
principles and algorithms, 184
two-dimensional signals, 196--199

Baseline adjustment and removal:
chemical rank, 71--75
two-dimensional signal processing, 75--76

congruence analysis and least-squares
fitting, 78--80

wavelet transform, 183--199
chromatography and capillary

electrophoresis, 235--237
correction techniques, 191
fast Fourier transform comparisons,

221--225
principles and algorithms, 184

Best-basis selection, wavelet packet
transform, data compression,
158--166

Bilinear two-way data, 69--70
Binary tree, wavelet packet transform, data

compression, 155--158
Biology, analytical chemistry and, 2--3
Biometrics, 5
Biorthogonal spline wavelets, 136--137

computing example, 137--140
Biorthogonal wavelet transform, 134--140

computing example, 137--140
multiresolution signal decomposition,

134--136
spline wavelets, 136--137

Bivariate function, two-dimensional wavelet
transform, 140--141, 142--145

Black system, chemometrics and, 9--10
B-spline (Battle-Lemarié) wavelets,

114--116
chromatography and capillary

electrophoresis, 235--237

293

Chemometrics: From Basics To Wavelet Transform. Foo-Tim Chau, Yi-Zeng
Liang, Junbin Gao, and Xue-Guang Shao. Chemical Analysis Series, Volume 164.
ISBN 0-471-20242-8. Copyright ? 2004 John Wiley & Sons, Inc.
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curve fitting, one-dimensional signal
processing, 57--64

Calibration curve. See also
Regression/calibration combined
chemometrics, 3, 8

Capillary electrophoresis (CE), wavelet
transform, applications, 12,
235--237

Chemical factor analysis (CFA), 12
wavelet transform, combined techniques,

229--230
Chemical physics, wavelet transform,

248--249
Chemical rank, two-dimensional (2D) signal

processing, 71--75
Chemical resolution, chemometrics and,

7--8
Chemometrics:

defined, 3, 6
education and training in, 7--8
evolution of, 5--8
information resources:

books, 12--14
mathematics software, 15--19
online resources, 14--15

technique, 2
Chromatogram simulation:

wavelet packet transform:
data denoising and smoothing,

180--182
resolution enhancement,

220--221
wavelet transform:

background removal, two-dimensional
signals, 196--199

baseline correction, 191
data denoising, 170--173
resolution enhancement, NMR spectra,

216--220
resolution enhancement, overlapping

chromatograms, 212--220
smoothing, 174--178

Chromatography:
two-dimensional signal processing,

baseline shifting, 75--76
wavelet transform, applications,

235--237
Classification, wavelet transform, combined

techniques, 227--228
Coefficient position-retaining (CPR) method:

data compression, fast wavelet transform,
154

wavelet transform:
smoothing applications, 174--178
spectroscopic applications, 238--243

Coefficient selection criteria, wavelet
transform data compression,
158--166

Cohen-Daubechies, Feauveau (CDF)
biorthogonal wavelets, 136--137

Coiflet wavelet functions, 117--119
Coifman-Wickerhauser entropy, wavelet

packet transform, 158
best-basis selection, 159--160

Collinearity:
chemical rank, 71--75
two-dimensional signal processing, local

principal-component analysis and
rankmap, 83--85

Column/row vectors, in MATLAB software,
259

Compact support:
B-spline (Battle-Lemarié) wavelets,

114--116
Daubechies wavelets, 116--118
Meyer wavelet function, 113--114
wavelet function, 113

Compression ratio:
analytical chemistry, 11--12
wavelet packet transform, 158
wavelet transform data compression:

NMR spectrum example, 162--166
threshold determination, 161

Computer science, analytical chemistry
and, 2--3

Congruence analysis, two-dimensional
signal processing, 78--80

Continuous wavelet transform (CWT):
background removal, 191--196
chemometrics-based signal processing,

11--12
chromatography and capillary

electrophoresis, 235--237
flip shift subtraction method (FSSM),

245--246
nuclear magnetic resonance applications,

242--243
numerical differentiation, 205--210

comparison with other methods,
210--211

Convolution algorithm:
analytical signal transform, 39--41
Fourier transform, 52--53

Crossed iterative algorithm, continuous
wavelet transform and original
signal (CIACWTOS), 246
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Cross-product, defined, 262--263
Cubic spline function:

one-dimensional signaling, 36--39
scaling coefficients, 115--116

Curve fitting:
combined wavelet transform/wavelet

neural network, 230--232
continuous wavelet transform, numerical

differentiation, 207--211
fast Fourier transform calculations,

221--225
one-dimensional signal processing,

B-spline curve fitting, 57--64
Cutoff frequency, noisy analytical

signals, Fourier transform,
51--52

Danggui, chemometric analysis, 3--4
Data compression:

chemometrics, 8--9
signal processing techniques, 10

one-dimensional signal processing,
57--67

B-spline curve fitting, 57--64
Fourier transform, 64
principle-component analysis, 64--67

wavelet transform, 148--166
best-basis/coefficient selection criteria,

158--166
principle and algorithm, 149--154
spectroscopic applications, 238--243
wavelet packet transform, 155--158

Data point number, discrete wavelet
transform, derivative calculations,
200--205

Data smoothing:
analytical chemistry and, 3
chemometrics, 3--4, 10
wavelet packet transform, 179--182
wavelet transform, 166, 173--183

chromatography and capillary
electrophoresis, 235--237

Daubechies wavelet:
background removal, EXAFS spectrum,

185--191
data compression, fast wavelet transform,

151--154
data smoothing applications, 174--178
discrete wavelet transform:

derivative calculation, 202--205
resolution enhancement, numerical

differentiation, 199--205
fast wavelet transform, 120--122

finite discrete signal handling, 129--132
Decomposition algorithm:

fast wavelet transform, 120--122
in MATLAB software, matrix

decomposition, 286--288
wavelet packet transform, denoising and

smoothing, 179--182
wavelet transform:

baseline/background removal, 184
EXAFS spectrum, 185--191

data compression, 148--166
finite discrete signal handling, 125--132,

129--132
Deconvolution. See also Fourier

self-deconvolution
fast Fourier transform (FFT) calculations,

221--225
Fourier transformation, 52--53

Denoising:
analytical chemistry and, 3
wavelet packet transform, 179--182
wavelet transform, 166--173

chromatography and capillary
electrophoresis, 235--237

Derivative calculation:
comparison of methods, 210--211
continuous wavelet transform (CWT),

numerical differentiation, 205--210
matrices, 271
resolution enhancement, numerical

differentiation, discrete wavelet
transform, 199--205

vector functions as variables, 271--273
Determinants, of matrices, 265--266
Differential pulse voltammetry, wavelet

transform, electrochemical
applications, 245--246

Differentiation. See Numerical differentiation
Digital smoothing and filtering techniques,

one-dimensional signal
processing, 23--39

Kalman filtering, 32--36
moving-window average smoothing,

24--25
Savitsky-Golay filter, 25--32
spline smoothing, 36--39

Diode array detector (DAD) system, 1
Direct-current term, Fourier transformation,

one-dimensional analytical signals,
44--45

Direct-difference method, one-dimensional
signal processing, 54--55

Direction/length of vectors, in MATLAB,
260--261
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Direct standardization (DS), wavelet
transform, 241--243

Discrete approximation:
data compression, wavelet transform,

151--154
fast Fourier transform (FFT) calculations,

223--225
Discrete detail, data compression, wavelet

transform, 150--154
Discrete filters, data compression, wavelet

transform, 150--154
Discrete Fourier transformation (DFT),

one-dimensional analytical signals:
fast Fourier transformation vs., 50
spectral multiplex advantage, 45--48

Discrete wavelet transform (DWT):
chemometrics-based signal processing,

11--12
comparison with wavelet transform and

numerical differentiation,
210--211

data compression, 155--158
data smoothing, 173--178
near-infrared spectroscopy, 240--243
resolution enhancement, numerical

differentiation, 199--205
Dot product, defined, 262--263
Double-centering technique, background

correction, 77--78
Downsampling, fast wavelet transform,

120--122

Econometrics, 5
Edge representation, wavelet transform,

mass spectrometry applications,
246--247

Eigenstructure tracking analysis (ETA),
twodimensional signal processing,
88--90

heuristic evolving latent projection
(HELP), 95--97

Eigenvalues:
chemical rank, principal components

analysis, 74--75
MATLAB matrices, 268--269
matrix decomposition, 287--288

Eigenvectors:
MATLAB matrices, 268--269
matrix decomposition, 287--288

Electrochemical noise measurement (ENM),
wavelet transform, 244--246

Electrochemistry, wavelet transform
applications, 244--246

Electron density distribution, wavelet
transform, chemical physics and
quantum chemistry, 248--249

Entropy techniques:
Coifman-Wickerhauser, 158--160
Shannon-Weaver, 159--160
wavelet packet transform, data denoising

and smoothing, 180--182
Evolving factor analysis (EFA):

chemometrics and, 7--8
two-dimensional signal processing,

86--87
basic principles, 88--90

Exponential modified Gaussian (EMG),
wavelet transform, flow injection
analysis, 234

Extended X-ray absorption fine structure
(EXAFS), background removal,
wavelet transform, 185--191

Extract software, chemometrics
applications, 18

Extrapolation, finite discrete signal handling,
wavelet transform, 127

Factor analysis (FA), two-dimensional signal
processing:

resolution evolution, 85--87
self-modeling curve resolution, 82--83

Fast biorthogonal wavelet transform, 136
computing example, 137--140

Fast Fourier transform (FFT):
one-dimensional analytical signals,

48--50
resolution enhancement, wavelet

transform comparisons, 220--225
signal decomposition, 99--100
wavelet transform:

background removal, EXAFS spectrum,
185--191

conventional methods comparisons,
182--183

electrochemistry applications, 244--246
spectroscopic applications, 238--243

Fast inverse biorthogonal wavelet transform,
136

Fast wavelet transform (FWT) algorithm:
basic principles, 119--122
best-basis selection, 159--166
data compression, 148--154

simulated signal example, 151--154
threshold determination, 161--162

two-dimensional wavelet transform,
141--145
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wavelet packet transform comparisons,
157--158

wavelet transform, 102--108, 118--134
fast wavelet transform, 119--122
finite discrete signal handling, 125--132

extrapolation, 127
periodization, 128
symmetrization, 127
zero padding, 127

inverse fast wavelet transform,
122--124

packet wavelet transform, 132--134
spectroscopic applications, 239--243

Fellgett advantage, one-dimensional
signaling, Hadamard
transformation, multichannel
advantage, 43--44

Finite discrete signal handling, wavelet
transform, 125--132

Finite impulse response (FIR), wavelet
transform, 241--243

Fixed-size moving-window factor analysis
(FSMWFA), two-dimensional
signal processing, 88--90

heuristic evolving latent projection
(HELP), 97

Flip shift subtraction method (FSSM),
wavelet transform,
electrochemistry, 245--246

Flow injection analysis (FIA), 12
Flow injection analysis (FIA), wavelet

transform, 234
Fluorescence spectroscopy, wavelet

transform applications, 243
Fourier self-deconvolution, wavelet

transform, electrochemical
applications, 245--246

Fourier transform (FT):
analytical chemistry and, 147--148
B-spline (Battle-Lemarié) wavelets,

114--116
chemometrics-based signal processing,

wavelets, 11--12
continuous wavelet transform:

background, NMR spectrum, 194--196
background removal, 191--196

data compression, 64
Meyer wavelet function, 113--114
one-dimensional analytical signals,

44--53
convolution/deconvolution, 50--52
discrete Fourier transformation and

spectral multiplexing, 45--48
fast Fourier transformation, 48--50

smooth analytical signals, 50--52
one-dimensional signaling, transformation

of analytical signals, 41
resolution enhancement, numerical

differentiation, discrete wavelet
transform, 199--205

wavelet transform:
chromatography and capillary

electrophoresis, 235--237
comparison of methods, 210--211
data denoising/smoothing, 166--183
flow injection analysis, 234

Fourier transform infrared (FTIR), wavelet
transform applications, 239--243

Free induction decay (FID) signal, wavelet
transform applications, 242--243

Frequency domain:
chemometrics, 11
continuous wavelet transform,

background removal, 191--196
Full-spectrum methods, wavelet transform,

combined techniques, 225--227
Function energy, Haar wavelets, 105--108

Gas chromatography-mass spectrometry
(GC-MS), 1

Gaussian equation:
B-spline curve fitting, 62--64
chemical rank, 71--75
continuous wavelet transform (CWT),

numerical differentiation,
207--210

discrete wavelet transform, derivative
calculation, 202--205

Kalman filtering, 34--36
wavelet packet transform, data denoising

and smoothing, 181--182
wavelet transform:

flow injection analysis, 234
smoothing, 174--178

Genetic algorithm (GA), chromatography
and capillary electrophoresis,
235--237

Ginsenoside, 8
Gray systems, chemometrics and, 9--10

Haar wavelet:
basic properties, 102--108
basis, defined, 103
biorthogonal wavelet transform,

134--140
compact support, 113
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continuous wavelet transform (CWT),
numerical differentiation, 205--210

expansion/representation, 107--108
multiresolution signal decomposition,

102--108, 113
two-dimensional inverse wavelet

transform, 144--145
Hadamard transformation:

coding procedure, one-dimensional
signaling, 43--44

one-dimensional signaling:
discrete Fourier transform, 46--48
multichannel measurement, 41--44

Hamming window, fast Fourier transform
(FFT) calculations, 223--225

Hanning window, fast Fourier transform
(FFT) calculations, 223--225

Hard thresholding, wavelet transform, data
denoising, 168--173

Heteroscedasticity:
analytical chemistry vectors and matrices,

258--259
chemical rank, 71--75

Heuristic evolving latent projection (HELP):
chemometrics and, 7--8
eigenstructure tracking analysis (ETA), 90
two-dimensional signal processing,

94--97
High-performance liquid chromatography

(HPLC):
analytical chemistry and, 2--3
data smoothing, 176--178
instrumental response, 8--9
principal-component analysis (PCA),

66--67
wavelet transform, online denoising and

resolution enhancement, 237
High-performance liquid chromatography

(HPLC)-Diode array detector
(DAD) data matrix, wavelet
transform, background removal,
two-dimensional signals, 196--199

Hlder continuity, wavelet function, 113
HYBRID thresholding, wavelet transform:

chromatogram simulation, 171--173
data denoising, 167
spectroscopy applications, 238--243

Hyphenated instrumentation:
basic concepts, 70--76
data compression, wavelet transform

(WT), 149
MATLAB vectors and matrices,

257--259
matrix ranking, 268

modern developments, analytical
chemistry, 1--3

two-dimensional signal processing:
chemical rank and principal-component

analysis (PCA), 71--75
differentiation methods, 80--81
heuristic evolving latent projection

(HELP), 94--97
research background, 69
resolution methods, 81--83
zero-component regions, noise level

and background estimation, 75--76
vector inner and outer products, 263
wavelet transform, background removal,

two-dimensional signals, 196--199

Identity matrices:
MATLAB software, 264
one-dimensional signaling, multichannel

measurement, Hadamard
transformation, 42--44

Image fusion, wavelet transform, mass
spectrometry applications, 247

Information resources, chemometrics and
wavelet transform, 12--19

Infrared (IR) spectroscopy, 12
Infrared (IR) spectroscopy, wavelet

transform applications, 238--243
Inner product, vectors, 262--263
Input layer, combined wavelet

transform/wavelet neural network,
230--232

Instrumental response, chemometrics, 8--9
Intensity distribution, noisy analytical signals,

Fourier transformation, 51--52
Inverse fast wavelet transform (IFWT):

basic principles, 122--124
resolution enhancement, fast Fourier

transform comparisons, 221--225
Inverse filtering, Fourier transformation,

convolution/deconvolution, 53
Inverse Fourier transformation,

one-dimensional analytical signals,
45

discrete Fourier transform, 46--48
Inverse of matrix:

defined, 266
generalized inverse, 270--271

Ion cyclotron resonance mass spectrometry,
wavelet transform, 246--247

Iterative target transformation factor
analysis (ITTFA), two-dimensional
signal processing, 86--87
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J -level decomposition:
fast wavelet transform, 120--122
inverse fast wavelet transform (IFWT),

122--124
wavelet packet transform, 157--158
wavelet transform:

data compression, NMR spectrum
example, 162--166

data smoothing, 178

Kalman filtering:
one-dimensional signaling, 32--36
wavelet transform:

chromatography and capillary
electrophoresis, 235--237

data denoising/smoothing, 166--183
"Keep one" scheme, finite discrete signal

handling, wavelet transform,
131--132

"Keep or kill" policy, wavelet transform, data
denoising, 168--173

k th nearest neighbors (KNN), wavelet
transform:

capillary electrophoresis, 237
classification and pattern recognition,

228

Lambert-Beer law:
two-dimensional signal processing,

69--70
resolution methods, 82--83
window factor analysis, 91--94

vector functions as variables, 272--273
LastWave software, chemometrics

applications, 18
Latent projection graph (LPG),

two-dimensional signal processing,
heuristic evolving latent projection,
94--97

Least-squares fitting:
two-dimensional signal processing, 78--80
wavelet transform, baseline/background

removal, EXAFS spectrum,
190--191

Linear algebra, MATLAB applications,
257--273

Linear spline wavelet, scaling coefficients,
115--116

Localization property, wavelet transform, 11
Lorentzian equation:

continuous wavelet transform, numerical
differentiation, 207--210

discrete wavelet transform, derivative
calculation, 203--205

wavelet transform, resolution
enhancement, overlapping NMR
spectra, 216--220

Maple software, chemometrics applications,
17

Marr basis function:
chromatography and capillary

electrophoresis, 235--237
flip shift subtraction method, 245--246

Mass spectrometry, wavelet transform,
246--247

MathCAD software, chemometrics
applications, 17

Mathematica, chemometrics applications,
17

Mathematical microscope,
chemometrics-based signal
processing, wavelet transform,
11--12

Mathematics:
analytical chemistry and, 2--3
in MATLAB software, 276--278

Mathematics software, chemometrics and
wavelet transform, 15--19

MATLAB software:
basic principles, 273--292
chemometrics and wavelet transform,

16
data compression, fast wavelet transform,

153--154
fast Fourier transform, 50
finite discrete signal handling, wavelet

transform, symmetrization
operation, 127

graphic functions, 288--291
linear algebra principles, 257--273
mathematical functions, 276--278
matrix construction, 275
matrix manipulation, 275
matrix subscript system, 280--286
Savitsky-Golay filter smoothing, 28--32
simple difference numerical

differentiation, 54--55
spline smoothing, 37--39
symbols and notation, 274
vector and matrix generation,

278--280
vector and matrix operations, 257--292
wavelet function applications, 114

Matrices, 257--292
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analytical chemistry, 257--259
construction, 275
decomposition, 286--288
derivatives, 271
determinants, 265--266
eigenvalues and eigenvectors,

268--269
generalized inverse, 270--271
generating methods, 278--280
inverse of, 266
manipulation of, 275
multiplication, 264
operations, 263--264
orthogonal matrix, 266--267
singular-value decomposition, 269--270
square matrix trace, 267--268
subscript system, 280--286
transposes of, 265
zero and identity matrices, 264

Measurement data matrix, chemical rank,
71--75

Median absolute deviation (MAD), wavelet
transform:

data denoising, 167
spectroscopy applications, 238--243

Meyer wavelet function, 113--114
Minimum description length (MDL) criterion,

wavelet transform data
compression, threshold
determination, 162

Minitab software, chemometrics
applications, 18

MINMAX thresholding, wavelet transform:
chromatogram simulation, 170--173
data denoising, 167--170
spectroscopy applications, 238--243

Model residuals, chemical rank, principal
components analysis, 72--75

Moore-Penrose inverse, defined,
270--271

Morlet wavelet basis function:
chromatography and capillary

electrophoresis, 235--237
combined wavelet transform/wavelet

neural network, 232
Mother wavelets, wavelet transform,

101--108
Moving-window average smoothing:

evolving factor analysis, 89--90
finite discrete signal handling, wavelet

transform, 126--132
one-dimensional signaling, 24--25
wavelet transform, conventional methods

comparisons, 182--183

Moving-window polynomial least-squares
fitting, one-dimensional signal
processing, 55--57

Multichannel measurement,
one-dimensional signaling,
spectroscopy and Hadamard
transformation, 41--44

Multidimensional datasets, basic principles,
3--5

Multidimensional wavelet analysis,
two-dimensional wavelet
transform, 140--141

Multiple linear regression (MLR), wavelet
transform, 225--227

Multiplication, matrices, 264
Multiresolution signal decomposition

(MRSD) algorithm:
biorthogonal spline wavelets, 136--137
biorthogonal wavelet transform, 134--136
B-spline (Battle-Lemarié) wavelets,

114--116
fast wavelet transform, 119--122
Haar wavelet, 102--108, 113
packet wavelet transform, 133--134
wavelet transform, 102--113

chemical physics and quantum
chemistry, 248

resolution enhancement, 212--220
spectroscopy, 238--243

Multivariate calibration:
chemometrics and, 7--8
instrumental response, 8--9

Multivariate statistical process control
(MSPC), wavelet transform,
spectroscopic applications,
242--243

MuPAD software, chemometrics
applications, 18

Near-infrared (NIR) spectroscopy, wavelet
transform, 240--243

Net analytical signal, two-dimensional signal
processing, local
principal-component analysis
(PCA) and rankmap, 83--85

Neural networks:
chemometrics and, 7--8
wavelet neural network (WNN), 12

Noise level estimation:
analytical chemistry vectors and matrices,

257--259
two-dimensional signal processing,

75--76
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Noise thresholds, chemical rank, principal
components analysis, 72--75

Noisy analytical signals:
combined wavelet transform/chemical

factor analysis, 229--230
discrete wavelet transform, derivative

calculation, 202--205
Fourier transformation, 50--52
Savitsky-Golay filter, 27--32

Nuclear magnetic resonance (NMR)
spectrum:

continuous wavelet transform (CWT),
background removal, 192--196

wavelet transform:
applications, 242--243
data compression, 162--166
resolution enhancement, overlapping

spectra, 216--220
Numerical differentiation:

analytical chemistry and, 3
continuous wavelet transform, 205--210
one-dimensional signal processing,

54--57
moving-window polynomial

least-squares fitting method,
55--57

simple difference method, 54--55
two-dimensional data, 80--81
wavelet transform resolution

enhancement:
comparison of methods, 210--211
discrete wavelet transform, 200--205

Nyquist critical frequency, wavelet
transform, smoothing applications,
175--178

One-dimensional (1D) signal processing:
data compression, 57--67

B-spline curve fitting, 57--64
Fourier transformation, 64
principle-component analysis, 64--67

digital smoothing and filtering techniques,
23--39

Kalman filtering, 32--36
moving-window average smoothing,

24--25
Savitsky-Golay filter, 25--32
spline smoothing, 36--39

Haar wavelet, 102--108
multidimensional datasets, 3--5
numerical differentiation, 54--57

moving-window polynomial
least-squares fitting method, 55--57

simple difference method, 54--55
transformation, analytical signals,

39--53
convolution algorithm, 39--41
Fourier transformation, 44--53

convolution/deconvolution, 50--52
discrete Fourier transformation and

spectral multiplexing, 45--48
fast Fourier transformation, 48--50
smooth analytical signals, 50--52

multichannel advantage, spectroscopy
and Hadamard transformation,
41--44

wavelet transform, chromatography and
capillary electrophoresis, 237

Online resources:
chemometrics and wavelet transform,

14--15
mathematics software, 16--19
wavelet transform, 250

Orthogonality:
biorthogonal wavelet transform,

134--140
Haar wavelets, 105--108
multiresolution signal decomposition,

109--112, 111--112
packet wavelet transform, 133--134
two-dimensional signal processing:

wavelet transform, 141
window factor analysis, 91--94

Orthogonal matrix, defined, 266--267
Orthogonal signal correction (OSC), wavelet

transform, 241--243
Outer product, vectors, 262--263
Overlapping chromatogram, wavelet

transform:
chromatography and capillary

electrophoresis, 236--237
resolution enhancement, 212--220

nuclear magnetic resonance spectrum,
216--220

Packet wavelet algorithm, wavelet
transform, 118--134

fast wavelet transform, 119--122
finite discrete signal handling,

125--132
extrapolation, 127
periodization, 128
symmetrization, 127
zero padding, 127

inverse fast wavelet transform, 122--124
packet wavelet transform, 132--134
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Packet wavelet transform, basic principles,
132--134

Paralellogram rule, vector addition and
subtraction, 260--261

Partial least squares (PLS) techniques:
chemometrics and, 7--8
wavelet transform:

combined techniques, 225--227
spectroscopic applications,

240--243
Pattern recognition:

chemometrics and, 7--8
wavelet transform, combined techniques,

227--228
Peak signal-to-noise ratio (PSNR), wavelet

transform, mass spectrometry
applications, 247

Pentosan polysulfate (PPS), wavelet
transform, capillary
electrophoresis, 237

Periodization, finite discrete signal handling,
wavelet transform, 128

Piecewise direct standardization (PDS),
wavelet transform, 241--243

Piecewise functions, Haar wavelet,
105--108

Polynomial convolution. See Savitsky-Golay
filter moving-window polynomial
least-squares fitting, 55--57

Polynomial regression, Savitsky-Golay filter,
25--32

Poly(vinyl chloride), wavelet transform,
243

Power spectral density (PSD), wavelet
transform, flow injection analysis,
234

Principal-component analysis (PCA):
combined wavelet transform/chemical

factor analysis, 229--230
data compression, 64--67
two-dimensional signal processing:

hyphenated data concepts, 71--75
rankmap, 83--85
resolution evolution, 85--87
self-modeling curve resolution (SMCR),

82--83
wavelet transform, spectroscopic

applications, 243
Principal-component regression (PCR):

chemometrics and, 7--8
wavelet transform, combined techniques,

225--227
Proportionality factors, one-dimensional

signaling, 37--39

Quantum chemistry, wavelet transform,
248--249

Radix angeliciae sinensis, 3
Raman spectroscopy, wavelet transform,

242--243
Rank annihilation factor analysis (RAFA),

chemometrics and, 7--8
Rankmapping:

evolving factor analysis, 88--90
two-dimensional signal processing, local

principal-component analysis,
83--85

Rank of matrix, 268
Reconstruction algorithm:

data compression, wavelet transform,
151--154

finite discrete signal handling, wavelet
transform, 129--132

wavelet packet transform, 133--134
denoising and smoothing, 179--182

wavelet transform, smoothing
applications, 174--178

Recursive estimation, Kalman filtering,
32--36

Recursive signal splitting, packet wavelet
transform, 132--134

Regression/calibration combined method,
wavelet transform, 225--227

Regularity/smoothness, wavelet function,
113

Relevant component extraction (RCE),
wavelet transform, combined
techniques, 226--227

Resolution enhancement:
two-dimensional signal processing,

81--97
evolving factor analysis, 88--90
heuristic evolving latent projections,

94--97
local principal-component analysis and

rankmapping, 83--85
self-modeling curve and evolving

resolution, 85--87
window factor analysis, 90--94

wavelet packet transform, 220--221
wavelet transform, 199--225

chromatography and capillary
electrophoresis, 237

fast Fourier transform vs.,
221--225

multiresolution signal decomposition
algorithm, 212--220
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numerical differentiation:
continuous wavelet transform,

205--210
discrete wavelet transform,

200--205
methods comparisons, 210--211

Riemann-Liouville transform (RLT),
electrochemistry, wavelet
transform applications,
244--246

Riesz basis, biorthogonal wavelet transform,
134--136

Root mean-squared (RMS) error, wavelet
transform data compression:

best-basis selection, 159
NMR spectrum example, 163--166
threshold determination, 161
wavelet packet transform, 158

Savitsky-Golay filter:
cubic/fourth-order polynomial, 58
discrete wavelet transform, resolution

enhancement, numerical
differentiation, 199--205

fifth/sixth-order polynomial, 59
fourth/fifth-order polynomial, 61
Haar wavelet transform, 108
moving-window polynomial least-squares

fitting, 56--57
one-dimensional signaling, 25--32

convolution algorithm, 39--41
quadratic/cubic polynomial, 60
wavelet transform:

chromatography and capillary
electrophoresis, 235--237

conventional methods comparisons,
182--183, 210--211

data denoising/smoothing, 166--183
Scalar multiplication, MATLAB vectors,

261--262
Scalar product, defined, 262--263
Scale threshold determination:

wavelet packet transform, data denoising
and smoothing, 179--182

wavelet transform, data smoothing, HPLC
chromatogram, 176

Scaling coefficients:
B-spline (Battle-Lemarié) wavelets,

115--116
data compression, wavelet transform,

148--154
Scaling filter:

Coiflets wavelets, 117--119

multiresolution signal decomposition,
110--112

Scaling function:
biorthogonal wavelet transform,

134--136
Cohen-Daubechies, Feauveau

biorthogonal wavelets, 136--137
Daubechies wavelets, 117--118
fast wavelet transform, 119--122
Haar wavelet, 105--108
multiresolution signal decomposition,

110--112
Scilab software, chemometrics applications,

17
Secondary-ion mass spectrometry

(SIMS), wavelet transform,
246--247

Selectivity, two-dimensional signal
processing, 87

evolving factor analysis, 89--90
Self-modeling curve resolution (SMCR),

two-dimensional signal processing,
82--83

resolution evolution, 85--87
Self-organizing maps (SOMs), wavelet

transform, capillary
electrophoresis, 237

Shannon-Weaver entropy, best-basis
selection, 159--160

Sigmoid functions:
continuous wavelet transform, numerical

differentiation, 207--210
discrete wavelet transform, derivative

calculation, 202--205
Signal processing:

chemometric techniques, 10--12
data processing, 10

offline and online modes, 10
Signal simulation:

continuous wavelet transform, numerical
differentiation, 207--210

discrete wavelet transform, derivative
calculation, 202--205

fast wavelet transform, 151--154
wavelet packet transform, 157--158

Signal-to-noise ratio (SNR):
chemometric-based signal processing,

10
continuous wavelet transform, numerical

differentiation, 205--210
digital smoothing and filtering techniques,

23--39
moving-window average smoothing,

24--25
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discrete wavelet transform, resolution
enhancement, numerical
differentiation, 200--205

Hadamard transformation, multichannel
advantage, 43--44

wavelet transform:
chromatography and capillary

electrophoresis, 235--237
data denoising, chromatogram

simulation, 170--173
flow injection analysis, 234
mass spectrometry applications,

246
spectroscopy, 238--243

Simple difference methods,
one-dimensional signal
processing, 54--55

Singular-value decomposition (SVD):
MATLAB software applications,

286--287
matrices, 269--270

Sirius software, chemometrics applications,
18--19

Slit operation, analytical signal
transformation, convolution
algorithm, 39--41

Slope and bias correction (SBC), wavelet
transform, 241--243

Smooth analytical signals, Fourier
transformation and, 50--52

Smoothing. See Data smoothing
Soft independent modeling of class analogy

(SIMCA):
chemometrics and, 7
wavelet transform:

capillary electrophoresis, 237
classification and pattern recognition,

228
Soft thresholding, wavelet transform:

chromatogram simulation, 170--173
data denoising, 167--173

Sparse expansions, wavelet transform,
11

Spectral background, two-dimensional
signal processing, 75--76

Spectral line removal:
continuous wavelet transform,

background, NMR spectrum,
194--196

wavelet transform, background removal,
two-dimensional signals, 196

Spectral multiplexing, one-dimensional
analytical signals, discrete Fourier
transformation, 45--48

Spectrochromatography, multidimensional
datasets, 3--5

Spectrophotometric data, wavelet transform
applications, 243

Spectroscopy:
one-dimensional signaling, multichannel

measurement, 41--44
wavelet transform applications,

238--243
Spline smoothing:

one-dimensional signaling, 36--39
wavelet transform, baseline/background

removal, EXAFS spectrum,
185--191

Spline wavelet, electrochemistry, wavelet
transform applications,
244--246

Square matrix, trace of, 267
Stein’s unbiased risk estimate (SURE)

method, wavelet transform:
chromatogram simulation, 170--173
data denoising, 167--173
spectroscopy applications, 238--243

Student’s F-test, chemometrics, 10
Student’s t-test, chemometrics, 10
Subimages, two-dimensional inverse

wavelet transform, 143
Subtraction, in MATLAB software:

matrices, 264
vectors, 259--260

Sylvester matrix, one-dimensional signaling,
multichannel measurement,
Hadamard transformation, 43--44

Symmetric matrix, transpose of, 265
Symmetrization, finite discrete signal

handling, wavelet transform, 127
Symmlet filters:

Daubechies wavelets, 117
wavelet packet transform, data denoising

and smoothing, 179--182
wavelet transform:

baseline correction, 191
chromatography and capillary

electrophoresis, 235--237
data denoising, chromatogram

simulation, 170--173
data smoothing, 176
NMR spectrum data compression,

162--166
resolution enhancement:

overlapping chromatograms,
212--220

overlapping NMR spectra,
216--220
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Target factor analysis (TFA), chemometrics
and, 7--8

Taylor expansion, continuous wavelet
transform, background shift and
removal, 193--196

Template properties:
Haar wavelets, 104--108
wavelet transform, 101--108

Three-dimensional (3D) denoising, wavelet
transform, mass spectrometry
applications, 247

Threshold determination:
wavelet packet transform, denoising and

smoothing, 179--182
wavelet transform:

data compression, 148--166
data denoising, 167--173
data smoothing, 173--178

Thresholding method, data compression,
wavelet transform, 151--154

Time domain, chemometrics, 11
Transformation. See also specific

transformations, e.g. Wavelet
transform (WT)

one-dimensional analytical signals,
39--53

convolution algorithm, 39--41
Fourier transformation, 44--53

convolution/deconvolution, 50--52
discrete Fourier transformation and

spectral multiplexing, 45--48
fast Fourier transformation,

48--50
smooth analytical signals, 50--52

multichannel advantage, spectroscopy
and Hadamard transformation,
41--44

Translation-rotation transformation (TRT),
finite discrete signal handling,
wavelet transform, 128

Transpose of matrix, MATLAB software,
265

Trigonometric functions, Fourier
transformation, one-dimensional
analytical signals, 44--45

Two-dimensional (2D) signal processing:
analytical chemistry vectors and matrices,

257--259
congruence analysis and least-squares

fitting, 78--80
data features, 69--70
differentiation methods, 80--81
double-centering technique, background

correction, 77--78

hyphenated instrumentation concepts,
70--76

chemical rank and principal-component
analysis, 71--75

zero-component regions, noise level
and background estimation, 75--76

multidimensional datasets, 3--5
resolution methods, 81--97

evolving factor analysis, 88--90
heuristic evolving latent projections,

94--97
local principal-component analysis and

rankmapping, 83--85
self-modeling curve and evolving

resolution, 85--87
window factor analysis, 90--94

wavelet transform:
background removal, 196--199
chromatography and capillary

electrophoresis, 235--237
mass spectrometry applications, 246

Two-dimensional inverse wavelet transform,
basic properties, 143--144

Two-dimensional wavelet transform,
140--145

implementation, 141--145
multidimensional analysis, 140--141

Two-step moving filtering, biorthogonal
spline wavelets, 139--140

Ultraviolet-visible spectrometry (UV-vis),
wavelet transform, 12

applications, 243
Univariate systems, instrumental response,

8--9
Universal threshold, wavelet transform data

compression, 161
Unsampling:

data compression, wavelet transform,
151--154

inverse fast wavelet transform, 123--124

Vanishing moments:
Coiflet wavelet functions, 117--119
wavelet function, 112

Vectors, in MATLAB software, 257--292
addition and subtraction of, 259--260
analytical chemistry, 257--259
column and row vectors, 259, 282--286
direction and length, 260--261
functional derivatives, 271--273
generating methods, 278--280
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inner and outer products, 262--263
scalar multiplication, 261--262

Visually calibrated adaptive smoothing
(VISU) method, wavelet transform:

chromatogram simulation, 172--173
data denoising, 167--173
spectroscopy applications, 238--243

WaveLab toolbox, data compression, fast
wavelet transform, 153--154

Wavelet-based multiresolution analysis
(WMRA), chemical physics and
quantum chemistry, 248--249

Wavelet basis, 147--148
Wavelet coefficients:

data compression, wavelet transform,
148--166

data smoothing, 173--178
multiresolution signal decomposition,

111--112
Wavelet collocation, chemical physics and

quantum chemistry, 248--249
Wavelet hybrid direct standardization

(WHDS), applications, 241--243
Wavelet neural networks (WNN):

chemometrics-basedsignalprocessing,12
chromatography and capillary

electrophoresis, 235--237
ultraviolet-visible spectrometry (UV-vis)

applications, 243
wavelet transform, combined techniques,

230--232
spectroscopic applications, 238--243

Wavelet packet table:
best-basis selection, 159--166
chromatography and capillary

electrophoresis, 235--237
data compression, 155--158

Wavelet packet transform (WPT):
basic principles, 100--108
classification and pattern recognition,

228
conventional methods comparisons,

182--183
data compression, 155--158

NMR spectrum example, 166
threshold determination, 161--162

data denoising and smoothing, 179--182
resolution enhancement, 220--221
spectroscopy applications, 238--243

Wavelet power spectral density (WPSD),
wavelet transform, flow injection
analysis, 234

Wavelet subspaces, multiresolution signal
decomposition, 111

Wavelet transform (WT):
applications in chemistry, 147--148,

232--250
chemical physics and quantum

chemistry, 248--249
chromatography and capillary

electrophoresis, 235--237
electrochemistry, 244--246
flow injection analysis, 234
mass spectrometry, 246--247
spectroscopy, 238--243

background removal, 183--191
continuous wavelet transform,

191--196
two-dimensional signals, 196--199

baseline correction, 191
baseline removal, 183--199

algorithms, 183--184
basic principles, 100--108, 112--113
biorthogonal wavelet transform,

134--140
computing example, 137--140
multiresolution signal decomposition,

134--136
spline wavelets, 136--137

B-spline (Battle-Lemarié) wavelets,
114--116

chemometrics and, 8
signal processing techniques, 11--12

Coiflet functions, 117--119
combined techniques, 225--232

chemical factor analysis, 229--230
classification and pattern recognition,

227--228
regression/calibration combined

method, 225--227
wavelet neural networks, 230--232

compact support, 113
conventional techniques, comparisons,

182--183
data compression, 148--166

best-basis/coefficient selection criteria,
158--166

principle and algorithm, 149--154
wavelet packet transform, 155--158

data denoising and smoothing, 166--183
Daubechies wavelets, 116--118
denoising operations, 167--173

hybrid thresholding, 169
median absolute deviation, 169
MINMAX thresholding, 169--170
simulated chromatograms, 170--173
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Stein’s unbiased risk estimate method,
168--169

visually calibrated adaptive smoothing,
169

fast wavelet algorithm and packet
algorithm, 118--134

fast wavelet transform, 119--122
finite discrete signal handling, 125--132

extrapolation, 127
periodization, 128
symmetrization, 127
zero padding, 127

inverse fast wavelet transform, 122--124
packet wavelet transform, 132--134

finite discrete signal handling, 125--132
fundamentals, 99--100
Haar wavelet, 103--108
information resources:

books, 12--14
mathematics software, 15--19
online resources, 14--15

Meyer wavelet, 113--114
modern developments, 2
multiresolution signal decomposition,

108--112
principal-component analysis, 67
regularity/smoothness, 113
resolution enhancement, 199--225

fast Fourier transform vs., 221--225
multiresolution signal decomposition

algorithm, 212--220
numerical differentiation:

continuous wavelet transform,
205--210

discrete wavelet transform, 200--205
methods comparisons, 210--211

smoothing operations, 173--178
two-dimensional wavelet transform,

140--145
implementation, 141--145
multidimensional analysis, 140--141

vanishing moments, 112
White systems, chemometrics and,

9--10
Window factor analysis (WFA):

chemometrics and, 7--8
two-dimensional signal processing,

86--87
basic principles, 90--94

Window size, Savitsky-Golay filter
smoothing, 28--32

X-ray spectroscopy, wavelet transform
applications, 243

Xtricator software, chemometrics
applications, 18--19

Zero-component regions:
two-dimensional signal processing,

75--76
double-centered background

correction, 77--78
wavelet transform, background removal,

two-dimensional signals,
196--199

Zero matrix, MATLAB software, 264
Zero mean, Kalman filtering, 34--36
Zero padding, finite discrete signal handling,

wavelet transform, 127
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