HANDBOOK OF RESEARCH ON

InNovations IN
Database
Technologies

and Applications

Current and Future Trends

Lk L= e
g | L Freg!
. I| | Ly VY
-

N

|“‘. r ' ‘. ‘ . | : A “r _ pN --
A "H'u"t-' : AT, .
' SRRV A N ﬁ“)‘

Viviana E. Ferraggine, Jorge H. Doorn, & Laura C. Rivero

Handbook of Research on
Innovations in Database
Technologies and

Applications:
Current and Future Trends

Viviana E. Ferraggine
Universidad Nacional del Centro de la Provincia de Buenos Aires, Argentina

Jorge H. Doorn
Universidad Nacional del Centro de la Provincia de Buenos Aires, Argentina

Laura C. Rivero
Universidad Nacional del Centro de la Provincia de Buenos Aires, Argentina

Information Science | INFORMATION SCIENCE REFERENCE
Hershey - New York

Director of Editorial Content: Kristin Klinger

Managing Editor: Jamie Snavely
Assistant Managing Editor: Carole Coulson
Cover Design: Lisa Tosheff

Printed at: Yurchak Printing Inc.

Published in the United States of America by
Information Science Reference (an imprint of IGI Global)
701 E. Chocolate Avenue, Suite 200
Hershey PA 17033
Tel: 717-533-8845
Fax: 717-533-8661
E-mail: cust@igi-global.com
Web site: http://www.igi-global.com/reference

and in the United Kingdom by
Information Science Reference (an imprint of IGI Global)
3 Henrietta Street
Covent Garden
London WC2E 8LU
Tel: 44 20 7240 0856
Fax: 44 20 7379 0609
Web site: http://www.eurospanbookstore.com

Copyright © 2009 by IGI Global. All rights reserved. No part of this publication may be reproduced, stored or distributed in any form or by
any means, electronic or mechanical, including photocopying, without written permission from the publisher.

Product or company names used in this set are for identification purposes only. Inclusion of the names of the products or companies does
not indicate aclaim of ownership by IGI Global of the trademark or registered trademark.

Library of Congress Catal oging-in-Publication Data

Handbook of research on innovations in database technologies and applications: current and future trends/ Viviana E. Ferraggine, Jorge H.
Doorn, and Laura C. Rivero, editors.
p.cm.

Includes bibliographical references and indexes.

Summary: "This book provides a wide compendium of references to topics in the field of the databases systems and applications"--Provided
by publisher.

ISBN 978-1-60566-242-8 (hardcover) -- ISBN 978-1-60566-243-5 (ebook) 1. Database management. 2. Database design--Economic aspects.
3. Technological innovations. |. Ferraggine, VivianaE., 1961- I1. Doorn, Jorge H., 1946- 11. Rivero, Laura C., 1956-

QA76.9.D3H347326 2009

005.74--dc22

2008050170

British Cataloguing in Publication Data
A Cataloguing in Publication record for this book is available from the British Library.

All work contributed to this book is new, previously-unpublished material. The views expressed in this book are those of the authors, but not
necessarily of the publisher.

If alibrary purchased a print copy of this publication, please go to http://mww.igi-global .com/agreement for information on activating
the library's complimentary electronic access to this publication.

List of Contributors

Aldana-Montes, Jose F. / University of Malaga, SPaincoeveieerenenenieieesesieseeesese s 460
Al-Jumaily, Harith T./ Carlos Il University of Madrid, Spain.........ccccceoveieveiiiiee e 145
Alonso-Jiménez, Jose A. | Departamento de Ciencias de la Computacion e Inteligencia Artificial
Universidad de Sevilla, SP@IN.......cccoiiieeiiiiie et s ssa et sresre et nne s 452
Alwan, Ali Amer / Universiti Putra Malaysia, MalaySia.........ccccceceeeeieieceeiese e e 335
Anagnostopoulos, Christos/ University of Athens, GIreeCe..........cccooririrenieinieneseseeeese s 434
Aouiche, Kamel / Université de Québec a Montréal, Canadaccceceeveeieeieeiiecee e 693
Armendariz, J. E. / Universidad Politécnica de Valencia, Spainccccccveveeveeeieeveve s 762
Asprey, Len / Practical Information Management Solutions Pty Ltd, Australia............ccccocevvrvenee. 682
Ausinaga, Joseé Luis Fernandez / Universidad de Buenos Aires, Argentina............cccceeevenene. 396, 403
Bagui, Sikha/ University of West FIorida, USA.........oooe e 1
Banaei-K ashani, Farnoush / University of Southern California, USA ... 788
Baptista, Claudio de Souza / Federal University of Campina Grande, Brasilcccccceveevennee. 753
Barabas, Péter / University of MiskolC, HUNGAIY..........ccoeiiiieiieie e 443
Baxter, Ryan E. / Pennsylvania State University, USA ..o 300
Bellatreche, Ladjel / LIS/ENSMA - University of Poitiers, France...........ccccceeveveveevese e, 199
Benitez-Guerrero, Edgard / Laboratorio Nacional de Informatica Avanzada, Mexico 119, 518
Bentayeb, Fadila/ University of Lyon (ERIC Lyon 2), FranCe..........ccccuoererernienineneeeseseseseenes 129
Berberidis, Christos/ Aristotle University of Thessaloniki, GreeCecovvvveveieieecese e, 612
Bhuiyan, Salim / Indiana University—Purdue University, USA.........ccocce e v see e e 573
Bimonte, Sandro / LIRISNSA LYON, FranCe........cccvvviieieiieeeese s 716
Borrego-Diaz, Joaquin / Departamento de Ciencias de la Computacion e Inteligencia Artificial
Universidad de Svilla, SP8IN.......ccoii et nneas 452
Bounif, Hassina / Ecole Polytechnique Fédérale de Lausanne, (EPFL), Switzerland 91
Boussaid, Omar / University of Lyon (ERIC Lyon 2), FranCe..........cccceveieieeveie e 129
Boutin, Eric/ Université du SUd TOUION Var, FranCeeeee e ee e e e aeeeeaeeeaean 632
Buccella, Agustina / Universidad Nacional del Comahue, Argentingcccccevvveeceesiesinenns 471, 481
Bussler, Christoph / Merced Systems, INC.cocvevueiiiiiieiecie e 828, 837
Camolesi Juanior, Luiz / Sate University of Campinas, UNICAMP, BraZilcccccoceveveeivneneneenens 82
Cao, Longbing / University of Technology, Sydney, AUSIFalia..........ccccverereirinenineseesesesiesiens 562
Caragea, Doina/ Kansas State University, USA ...ttt 589
Caroprese, Luciano / University of Calabria, ltaly ..o 358, 410

Cechich, Algjandra/ Universidad Nacional del Comahue, Argentina..........ccccoceeveevereeeennnn. 471, 481

Chéavez-Gonzalez, Antonia M. / Departamento de Ciencias de la Computacion e Inteligencia

Artificial Universidad de Sevilla, SPAincccouoiioeiiiiiiieiiii e 452
Chen, Yangjun / University of Winnipeg, Canadacccoveeeveiiieeieese e 644, 655
Chen, Zhengxin / University of Nebraska at Omaha, USA..........ccccoovrieiieein e 547
Corral, Antonio / University of AImMeria, SPAIN........cccvevereieeiere et 260, 269
Cuadra, Dolores/ Carlos 11 University of Madrid, Spain.........ccccccveeeveiiiieiesece e 145
Cuzzocrea, Alfredo / University of Calabria, Italy ... 701, 805, 860
Darmont, Jéréme/ University of Lyon (ERIC Lyon 2), France...........cccoeevrenneiesnicriecsnenen. 674, 693
de Mendivil, J. R. Gonzalez / Universidad Politécnica de Valencia, Spain..........ccccceeeveeveeiveniennens 762
Decker, H. / Universidad Politécnica de Valencia, SPain..........ccoceveeeeeereneneeneseseneeeeese e 762
Decker, Hendrik / Instituto Technol égico de Informatica, Spain & Ciudad Politécnica dela

TpTal0Y =T To L S o= 1] o OSSR 348
Deufemia, Vincenzo / Universita di Salerno, Italy.......cccoeoeevveneieiiceneseeeee e 102, 110, 190
Diaz, Laura/ Universitat JAUME |, SPAINcceecieiiieiieie e seeeeste s see e sae st st ae e s sneesesse e 325
Donayo, Judith / Universidad de Buenos Aires, Argenting...........cccoveeeveieieeseseseesiese e 403
Dunn, Cheryl L./ Grand Valley State University, USA.........ccooiiiiiineeeeseseseee s 221
Englebert, Vincent / University of Namur, BElQIUM..........cciiiiriiiiceeese s 181
Ennis, Kevin / Universidad de Buenos Aires, Argentina..........ccceceveeieereieceese e e 403
Even, Adir / Ben Gurion University of the Negev, 1Sral..........cocoiiiiriniieee e 385
Evfimievski, Alexandre / IBM Almaden Research Center, USAoooveiiieiiee e 527
Faiz, Sami / National Institute in Applied Sciences and Technology (INSAT), Tunisia..................... 279
Favre, Cécile/ University of Lyon (ERIC Lyon 2), FranCecccoerrinrenineieseeseeeseeeseee s 129
Gao, Qigang / Dalhousie University, Canadaccoeoeeirerinienieesisiesieseeesese s 555
Gerard, Gregory J./ Florida State University, USAcooeiieieereeeeree et eie e e 221
Gonzalez Cisaro, Sandra Elizabeth / Universidad Nacional del Centro de la Provincia de

BUENOS AITES, AFQENTINALuiceeeeectiie ettt e st s ae e e tesbesae e e e sresbeeseeseseenreenes 74, 508
Gossa, Julien / LIRISHNSA LYON, FFANCEcciveiieeiieiee et seestee e esteesteesie e sveeste e ense e esneene s 716
Gould, Michael / Universitat Jaume |, SPAINcoiieiieieeirieieseeeeee e 325
Grabski, Severin V. / Michigan State University, USA ..ot 221
Grandison, Tyrone/ IBM Almaden Research Center, USA..........ccociieieeieene e eee e 527
Graneéll, Carlos/ Universitat Jaume |, SPAINcovierieiieiririeseieeee e 325
Greco, Sergio/ University of Calabria, [taly.........ccceeveieiiceiiese e 410, 798
Green, RoIf / OneMiew Pty Ltd, AUSIFAlIAccceeiieeiicieecee ettt ettt 682
Gupta, Anamika / University of Delhi, INQIa...........cccoereiiiieeese e e 537
Gupta, Shikha/ University of Delhi, INAiacccooviieiiiececee e 537
Hadjiefthymiades, Stathes/ University of Athens, GIrEECE.........cccvviviierrievie e 434
Hainaut, Jean-L uc / University of Namur, BElGiUM.........c..ccooieiriiiieiene e 181
Hammoud, Ahmad / Lebanese American University, LEDAN0ONccccceoveeeeeiececce s, 880
Haraty, Ramzi A. / Lebanese American University, LeDanon...........ccoccooviieoenrienieie s 880
Haupt, Bernd J. / Pennsylvania State UniVersity, USA. ..o 300
Henrard, Jean / REVER S.a., BEIGIUMcooiiiiiiiiee et s 181
Herrera, Norma Edith / Universidad Nacional de San Luis, Argentinga.........ccccoceeeeveneeeeieeneennnnn 728
Hick, Jean-Marc/ REVER S.a., BEIGIUM........ccooiiiiiiiciece et 181

Honavar, Vasant / lowa State UnivVersity, USAccooeeieiiciciese et s 589

Hopfner, Hagen / International University in Germany, GErmMany..........cccvceeveereesieesiessesseesseesneas 252

Huang, Xuegang / Aalborg University, DENMark............ccceoiirireriinineseeesese s 316
Ibrahim, Hamidah / Universiti Putra Malaysia, MalaySiacccccoevveveieieecese e 335, 365
Katsiouli, Polyxeni / University Of AtNENS, GIrEECE........civiiieiie e ciee e ee e s s 434
Kelly, Maurie Caitlin / Pennsylvania State University, USA.........ccooiiririneinieneeseeeeseseseeeens 300
Kontaki, Maria/ Aristotle UniVErsity, GrEECEccciviuieieie et ste sttt ne s 288
Kovacs, Laszl6 / University of MiskolC, HUNQArYcccooiiiiieiiiiceceececeee e 443, 872
Kulikowski, Juliusz L. / Institute of Biocybernetics and Biomedical Engineering PAS,

WVBESAW, POLANT.......ceeeeeee ettt ettt et e e et e e e et e e et e e eesreeesaeneeeseeneeessaseeeseereeesaannes 378
Kumar, Naveen / University of Delhi, INAi@.........ccccovieiiiieccec e e 537
Liu, Pei / Université du SUd TOUION Var, FIaNCEcoocuiiieieeeee ettt sttt st e s e sren e sae e 632
Mahboubi, Hadj / University of Lyon (ERIC Lyon 2), FranCeccccevvvieeveieceeeese e 674
Mahmoudi, Khaoula / High School of Communications-Tunis (SUPCOM), Tunisia..........cccccc...... 279
Malinowski, Elzbieta / Universidad de Costa Rica, CoSta RiCa.........ccoceevvcveeeeiiiee e, 45, 56, 65
Manolopoulos, Yannis/ Aristotle University, GrEECE.........ccvveeeieie et 288
Martinenghi, Davide/ Politecnico di Milano, Italy ..o 348
Martinez, Paloma/ Carlos |11 University of Madrid, Soain........ccccocvveveveieiiecese e 145
Martinez-Gonzalez, M. M ercedes/ Universidad de Valladolid, Spainccccoceeeeveeieciceecnenene, 137
Middleton, Michael / Queensland University of Technology, Australia...........cccooeeereeeeienenenennne. 682
Millham, Richard C. / Catholic University of Ghana, Ghana.............cccceevevviieeieieiiecese e 37
Misra, Manoj / [T ROOTKEE, INAIAcoceeiiiiciee e 737, 744
Mlynkova, Irena/ Charles University, Czech REPUDIIC.........c.ccoieiieiiiiniriee e 852
Molinaro, Cristian / University of Calabria, [ltaly..........cccooviieieiiiicere e 798
Mufoz-Escoi, F. D. / Universidad Politécnica de Valencia, paincccccoeeeeeeieiecieese e, 762
Naidenova, Xenia/ Military Medical Academy, RUSSIA.............coreeiiiinenieneeeseseseee s 605
Navas-Delgado, |smael / University of Malaga, Spain.........cccceeeveiiiierie e 460
Nieva-Garcia, Omar / Universidad del 1StMO, IMEXICOcoeveeeeeeeeee e eeeeeeeeeeeeeeeeeeeeeeeesanneeeean 518
Nigro, Héctor Oscar / Universidad Nacional del Centro de la Provincia de Buenos Aires,

FaN 0= 01 1] 7= VSRS 74, 508
Nunes, Camilo Porto/ Federal University of Campina Grande, Brasil..........ccccccevvvieiiniieiecnnne 753
Papadopoulos, Apostolos N. / Aristotle University, GrEECE.......ccovvireerere e 288
Papapanagiotou, Petros/ University of Athens, GreeCe...........cceviviieeri i 434
Pendegraft, Norman / University of 1daho, USA.........cccoo et 12
Pi, Jiaxiong / University of Nebraska at Omaha, USA............ccoooriiiinieiece e 547
Piero, Gian / University of Paris [V / Sorbonneg, France..........ccccovviiveereieseese e 418
Pinheiro, FranciscoA. C./ Universidade de Brasilia, Brasil........cccoooeeeeoooeeeeeeeeeeee e 208, 214
PiresVieira, Marina Teresa/ Methodist University of Piracicaba— UNIMEP, Brazl...................... 82
Polese, Giuseppe/ Universita di Salerno, [taly........ccccceceeeeieiie i 102, 110, 190
Porta, Gaspar / Washburn University, USAoieee et .396
R., Manjunath / Bangalore University, INAia...........couvereiiirinieeeseseseeeeese s 597
Rechy-Ramirez, Ericka-Janet / Laboratorio Nacional de Informatica Avanzada, Mexico 119
Répasi, Tibor / University of MiskolC, HUNQAIY..........cccoiriririiirninsiensie e 443
Roland, Didier / REVER S.@., BEIGIUMooiiiiieie et s 181

Roussos, George/ University of London, UK ... 818

Ruano, Carina M abel / Universidad Nacional de San Luis, Argentinacccocevveevvieevieeveeseesnnns 728

Sakurai, Shigeaki / Corporate Research & Development Center, Toshiba Corporation, Japan...... 622
Sampaio, Marcus Costa / Federal University of Campina Grande, Brasil...........ccccccecevvieevienennne 753
Sarje, Anil K./ 1T ROOIKEE, INGIAL.......c.eeiieiieieiee ettt 737, 744
Savinov, Alexandr / University of BONN, GEIMANYcceivieeieneseeeeieesiesreeeeseessesseeseeseesseeseessessens 171
Shahabi, Cyrus/ University of Southern California, USAcccooveieieiiie e 788
Shankar anarayanan, G. / Boston University School of Management, USAcccccceveeevecveccveenee, 385
Shanker, Udai / M. M. M. Eng. College, INdia.........cccceeveiiiiieeieie e 737, 744
Shestakov, Denis/ Turku Centre of Computer Science, Finland............ccoooveveveiecicce e 581
Shi, Yong / University of Nebraska at Omaha, USA & Graduate University of the Chinese

Academy Of SCIENCES, ChIMNEAc.ciiiieiieese et s e et te e eesaesreenaensesrens 547
St.Amant, Kirk / East Carolina University, USA..........coco ittt 844
Stoimenov, Leonid / University of NiS, SErbia.........coooveiiiiieeee e 491
Sunderraman, Rajshekhar / Georgia State University, USA........cooociineneicee e 18
Tagarelli, Andrea/ University of Calabria, Italyccccceiiiiiieiiieceee e 665
Tiako, PierreF. / Langston UniVersity, USAot 154
Tikk, Domonkos/ Budapest University of Technology and Economics, Hungaryccccceeveenee. 872
Trubitsyna, Irina/ University of Calabria, [talycccccoviiieieiiiececse e 798
Tsetsos, Vassileios/ University Of AtNENS, GIrEECE..........coeoviiririreieisese e 434
Tzanis, George/ Aristotle University of Thessaloniki, GreeCe............cccvveveeeereneiieeesese e 612
Udoh, Emmanuel / Indiana University—Purdue University, USAcccocoiiieie e 573
Udzir, Nur lzura/ Universiti Putra Malaysia, MalaySia.........ccccevvririeneneeene e 335
Uz Tansel, Abdullah / Baruch College — CUNY, USA........coi et 28
Vacca, Mario/ Universita di Salerno, ltaly........cccceeeeeeieie e 102, 110, 190
Vassilakopoulos, Michael / University of Central Greece, GreeCe..........ccceovvenereenveiennnns 260, 269, 307
Villegas, Ana Valeria/ Universidad Nacional de San Luis, Argentina.........ccccceevvveveevesesceesensiene 728
Viswanath, Navin / Georgia State University, USA ... s e 18
Vlahavas, | oannis/ Aristotle University of Thessaloniki, GreeCe..........ccoovveveieeiininerieieieesesieees 612
Wang, Hai / Saint Mary's University, Canada.............ccceveieiieiesieiieciese e seeee s 555
Wyse, James E. / Memorial University of Newfoundland, Canada.............ccccceveeieevieviesecneesienn 240
Xiao, Yingyuan / Tianjin University of Technology, China..........ccccceiririreinineneseseeeseseseseees 769
Zelasco, José Francisco / Universidad de Buenos Aires, Argenting............ccceeeeeeeecesieeeenenn, 396, 403
Zendulka, Jaroslav / Brno University of Technology, Czech Republic..........ccccoevvevveieciecieccieenee, 162
Zhang, Chenggi / University of Technology, Sydney, AUStralia...........cccovereereinineneieeesesieseens 562
Zhang, Huaifeng / University of Technology, Sydney, Australia...........ccccceeveveieiecciese e seeiese e 562
Zhang, Ji / C3RO Tasmanian ICT Centre, AUSIFalia.........cccveieereeneeieese e esie e e 555
Zhao, Yanchang / University of Technology, Sydney, AUSIralia...........cccooereeieeineneneneesesesenienns 562
Zoumboulakis, Michael / University of London, UKcccoiiiieieieciceee e 818

Zumpano, Ester / University of Calabria, ltalyccccovereeeiiiieeeeeee e 358, 410, 798

Table of Contents

(== 0L TR Xlviii
ACKNOWIEAGIMENT ...ttt bttt b et b et b bt ne e e e e bt st nb e s e enennens IXii
Volumel

Section |

Conceptual Modeling

Chapter |
Mapping Generalizations and Specializations and Categoriesto Relational Databases.............cccceeee 1
Skha Bagui, University of West Florida, USA

Chapter 11
Bounded Cardinality and Symmetric RElatiONShiPS........cccviieiieeie e 12
Norman Pendegraft, University of Idaho, USA

Chapter 111

A Paraconsistent Relational Data MOE]ccooeeiiiiiiiieee e 18
Navin Viswanath, Georgia Sate University, USA
Rajshekhar Sunderraman, Georgia State University, USA

Chapter 1V
Managing TEMPOIal DalaL........cccuiiueiireie st te et te et e te e te e te e se et e eteeteeteenseeneeereenes 28
Abdullah Uz Tansel, Baruch College — CUNY, USA

Chapter V
Data Reengineering Of LeJaCy SYSIEMS........coiiieiriie ettt 37
Richard C. Millham, Catholic University of Ghana, Ghana

Chapter VI
Different Kinds of Hierarchiesin Multidimensional MOEIS..........oooveieiiveie e 45
Elzbieta Malinowski, Universidad de Costa Rica, Costa Rica

Chapter VII
Spatial Datain Multidimensional Conceptual MOEIS..........cooviiiiiiiiee e 56
Elzbieta Malinowski, Universidad de Costa Rica, Costa Rica

Chapter VIII
Requirement Specification and Conceptual Modeling for Data Warehousescccocevvvevinvennvenninn, 65
Elzbieta Malinowski, Universidad de Costa Rica, Costa Rica

Chapter 1X
Principles on SymboliC DalaANGlYSIS.......cuiceiieieeeie e se s teesteete e te et ae e et e te e reeaeeeeenreenes 74
Héctor Oscar Nigro, Universidad Nacional del Centro de la Provincia de Buenos Aires,
Argentina
Sandra Elizabeth Gonzalez Cisaro, Universidad Nacional del Centro dela Provincia de
Buenos Aires, Argentina

Chapter X

Database Engineering Supporting the Data EVOIULIONcccoiiiieiiiinineeeesesesee e 82
Luiz Camolesi Junior, State University of Campinas, UNICAMP, Brazl
Marina Teresa Pires Vieira, Methodist University of Piracicaba — UNIMEP, Brazl

Chapter XI
Versioning Approach for Database EVOIULION..........cceoiieiiiie ettt e 91
Hassina Bounif, Ecole Polytechnique Fédérale de Lausanne, (EPFL), Switzerland

Chapter XI1

Evolutionary Database: State Of the Art @nd ISSUES..........ccocviiiiieieeeee s 102
Vincenzo Deufemia, Universita di Salerno, Italy
Giuseppe Polese, Universita di Salerno, Italy
Mario Vacca, Universita di Salerno, Italy

Chapter XI11

Interrogative AgentS for Data MOTEIINGooeieiririieeee s 110
Vincenzo Deufemia, Universita di Salerno, Italy
Giuseppe Polese, Universita di Salerno, Italy
Mario Vacca, Universita di Salerno, Italy

Chapter X1V

Schema Evolution Models and Languages for Multidimensional Data Warehousesc.cccecuenee. 119
Edgard Benitez-Guerrero, Laboratorio Nacional de Informatica Avanzada, Mexico
Ericka-Janet Rechy-Ramirez, Laboratorio Nacional de Informatica Avanzada, Mexico

Chapter XV

A Survey of Data Warehouse Model EVOIULIONcceeiieiiiiiieie i 129
Cécile Favre, University of Lyon (ERIC Lyon 2), France
Fadila Bentayeb, University of Lyon (ERIC Lyon 2), France
Omar Boussaid, University of Lyon (ERIC Lyon 2), France

Chapter XVI
Document Versioning and XML in Digital LibrarieS ..o 137
M. Mercedes Martinez-Gonzalez, Universidad de Valladolid, Spain

Chapter XVII

MDD Approach for Maintaining Integrity Constraintsin Databases...........cccveveveieeceeie e, 145
Harith T. Al-Jumaily, Carlos 111 University of Madrid, Spain
Dolores Cuadra, Carlos 111 University of Madrid, Spain
Paloma Martinez, Carlos |11 University of Madrid, Spain

Chapter XVIII
Artifacts for Collaborative Software DeVEIOPMENLcccceeieieieceeeese e e 154
Pierre F. Tiako, Langston University, USA

Section |1
L ogical Modeling

Chapter XIX
Object-Relational MOGEIING. ..o 162
Jaroslav Zendulka, Brno University of Technology, Czech Republic

Chapter XX

Concept-Oriented MOGELooeieie et esa et e e et e saesreeneensenreas 171
Alexandr Savinov, University of Bonn, Germany

Chapter XXI

Database ReVErSE ENGINEEITNG . ..oieiieeiie e sieseeseeseeseeseesaeesaeestessreesseesseesseesseessesssessneesneesseessnsssnnas 181

Jean-Luc Hainaut, University of Namur, Belgium
Jean Henrard, REVER s.a., Belgium

Didier Roland, REVER s.a., Belgium

Jean-Marc Hick, REVER s.a., Belgium

Vincent Englebert, University of Namur, Belgium

Chapter XXII

Imprecise FUNCtioNal DEPENAENCIESccveiiiiieciee sttt s reenenne e 190
Vincenzo Deufemia, Universita di Salerno, Italy
Giuseppe Polese, Universita di Salerno, Italy
Mario Vacca, Universita di Salerno, Italy

Chapter XXIII
Horizontal Data Partitioning: Past, Present and FULUE..............cooiiiiininicieeese s 199
Ladjel Bellatreche, LIS/ENSMA - University of Poitiers, France

Chapter XXIV
Database Support for Workflow Management SyStemS........cuuiveieeiieieeseesieesieesiesseesseesseesseessesseeens 208
Francisco A. C. Pinheiro, Universidade de Brasilia, Brasi

Chapter XXV
Politically Oriented Database APPIICALIONScceeiirieeiee e s e ee e e e e e saeesreesreesnee s 214
Francisco A. C. Pinheiro, Universidade de Brasilia, Brasil

Chapter XXVI

Semantically Modeled Databases in Integrated Enterprise Information Systems..........ccccocvveveneenene 221
Cheryl L. Dunn, Grand Valley State University, USA
Gregory J. Gerard, Florida State University, USA
Severin V. Grabski, Michigan State University, USA

Chapter XXVII

The Linkcell Construct and Location-Aware Query Processing for Location-Referent

TransaCtionS iN MODIIE BUSINESScoiiiiiiiiiccre e 240
James E. Wyse, Memorial University of Newfoundland, Canada

Chapter XVIII

Caching, Hoarding, and Replication in Client/Server Information Systems with

e oL = @ 11 | S 252
Hagen Hdpfner, International University in Germany, Germany

Section I11
Spatial and Temporal Databases

Chapter XXIX

Spatio-Temporal INdexing TECANIQUESccveiiieiieeere ettt et 260
Michael Vassilakopoulos, University of Central Greece, Greece
Antonio Corral, University of Almeria, Spain

Chapter XXX

Query Processing in Spatial Databasescueieerieieerieesieesieesieseesiessie e esessssesssessressessessesssessesnns 269
Antonio Corral, University of Almeria, Spain
Michael Vassilakopoulos, University of Central Greece, Greece

Chapter XXXI

Automatic Data Enrichment in GIS Through Condensate Textual Information..............cccveevereeene. 279
Khaoula Mahmoudi, High School of Communications-Tunis (SUPCOM), Tunisia
Sami Faiz, National Institute in Applied Sciences and Technology (INSAT), Tunisia

Chapter XXXI|I

Similarity SEarch iN TIME SEIMES....c..ueiee ettt te et e et e et e e teeteeeeeneeeeeeneeenees 288
Maria Kontaki, Aristotle University, Greece
Apostolos N. Papadopoulos, Aristotle University, Greece
Yannis Manolopoulos, Aristotle University, Greece

Chapter XXXII1I

Internet Map Services and Weather Data..........ccooveiiiiiiiiiiiieecese e 300
Maurie Caitlin Kelly, Pennsylvania State University, USA
Bernd J. Haupt, Pennsylvania State University, USA
Ryan E. Baxter, Pennsylvania State University, USA

Chapter XXXIV
Spatial Network Databasesccciiiiiiereriiieeese e nenne e 307
Michael Vassilakopoulos, University of Central Greece, Greece

Chapter XXXV
Supporting Location-Based Services in Spatial Network Databasescccocveveriieriienienieiineieene, 316
Xuegang Huang, Aalborg University, Denmark

Chapter XXXVI

Spatial Data Integration OVer the WEDcccoiiiiiiiiiiiic e 325
Laura Diaz, Universitat Jaume |, Spain
Carlos Granell, Universitat Jaume |, Spain
Michael Gould, Universitat Jaume |, Spain

Section IV
Database I ntegrity

Chapter XXXVII

Improving Constraints Checking in Distributed Databases with Complete, Sufficient,

AN SUPPONT TESES ...tttk b et b et b e st e bt ne e b e e et e bt e b e en e s e e es e e b et e s e neneas 335
Ali Amer Alwan, Universiti Putra Malaysia, Malaysia
Hamidah Ibrahim, Universiti Putra Malaysia, Malaysia
Nur lzura Udzr, Universiti Putra Malaysia, Malaysia

Chapter XXXVIII
Inconsistency-Tolerant Integrity CheCKing.......cooveieiiririeiiiiinee s 348
Hendrik Decker, Instituto Technol égico de Informatica, Spain & Ciudad Politécnica de la
Innovacién, Spain
Davide Martinenghi, Politecnico di Milano, Italy

Chapter XXXIX

Merging, Repairing, and Querying Inconsistent Databases..........cccvuereererireeieeneneseeseeseseeee e 358
Luciano Caroprese, University of Calabria, Italy
Ester Zumpano, University of Calabria, Italy

Chapter XL

The Challenges of Checking Integrity Constraints in Centralized, Distributed, and

Parallel DELaDASES..........cociiieii e 365
Hamidah Ibrahim, Universiti Putra Malaysia, Malaysia

Chapter XLI
Data QUAlity ASSESSIMEIL c.vveveeiteeiiiestrestiesteesteeseeseeseesseesseesseesseesseesseesseesseesseesseesseesseesseesseessesssesssenns 378
Juliusz L. Kulikowski, Institute of Biocybernetics and Biomedical Engineering PAS, Warsaw,
Poland

Chapter XLII

Measuring Data QUAality i COMEEXTEveirireerrirrisieeieste e sr e n e nenrenns 385
G. Shankaranarayanan, Boston University School of Management, USA
Adir Even, Ben Gurion University of the Negev, |srael

Chapter XLIII

Geometric Quality in Geographic INformation..........coceeeiiiiirecniineee e 396
José Francisco Zelasco, Universidad de Buenos Aires, Argentina
Gagpar Porta, Washburn University, USA
José Luis Fernandez Ausinaga, Universidad de Buenos Aires, Argentina

Chapter XLIV
Geometric Quality in Geographic Information IFSAR DEM Controlcoceviniiieneninenieenennns 403
José Francisco Zelasco, Universidad de Buenos Aires, Argentina
Judith Donayo, Universidad de Buenos Aires, Argentina
Kevin Ennis, Universidad de Buenos Aires, Argentina
José Luis Fernandez Ausinaga, Universidad de Buenos Aires, Argentina

Chapter XLV

Querying and Integrating P2P Deductive Databasesccooeveeririniciininiseeseseseee e 410
Luciano Caroprese, University of Calabria, Italy
Sergio Greco, University of Calabria, Italy
Ester Zumpano, University of Calabria, Italy

Section V
Ontologies

Chapter XLVI
Using Semantic Web Tools for Ontologies CONSIIUCHIONcerveriirieeienieniineeieesie s 418
Gian Piero, University of Paris |V / Sorbonne, France

Chapter XLVII
Matching Relational Schemata to Semantic Web Ontologies.........ccveveerieieeieeiienieseeseesieeseee e 434
Polyxeni Katsiouli, University of Athens, Greece
Petros Papapanagiotou, University of Athens, Greece
Vassilelos Tsetsos, University of Athens, Greece
Christos Anagnostopoul os, University of Athens, Greece
Sathes Hadjiefthymiades, University of Athens, Greece

Chapter XLVIII

Ontology-Based Semantic ModelS for DalaDases............coveiriririeiiinirieseeeeses e 443
Lasz26 Kovacs, University of Miskolc, Hungary
Péter Barabas, University of Miskolc, Hungary
Tibor Répasi, University of Miskolc, Hungary

Chapter XLIX
Inconsistency, Logic Databases, and ONtOIOGIES........c..ooueieiiiriinierieirisie e 452
José A. Alonso-Jiménez, Departamento de Ciencias de la Computacion e Inteligencia
Artificial Universidad de Sevilla, Spain
Joaquin Borrego-Diaz, Departamento de Ciencias de la Computacion e Inteligencia
Artificial Universidad de Sevilla, Spain
Antonia M. Chavez-Gonzalez, Departamento de Ciencias de la Computacion e Inteligencia
Artificial Universidad de Sevilla, Spain

Chapter L

Data Integration: INtrodUCING SEMEBNTICSuerveeeireriirieee et 460
Ismael Navas-Delgado, University of Malaga, Spain
Jose F. Aldana-Montes, University of Mélaga, Spain

Chapter LI

An Overview of Ontology-Driven Data INEGration............covevrerrerreerineseeees e 471
Agustina Buccella, Universidad Nacional del Comahue, Argentina
Algjandra Cechich, Universidad Nacional del Comahue, Argentina

Chapter LII

Current Approaches and Future Trends of Ontology-Driven Geographic Integration....................... 481
Agustina Buccella, Universidad Nacional del Comahue, Argentina
Alglandra Cechich, Universidad Nacional del Comahue, Argentina

Volumell

Chapter LIII
Mediation and Ontology-Based Framework for Interoperabilitycccceveeieriiiniiininiienecieeen 491
Leonid Soimenov, University of Nis, Serbia

Chapter L1V
Ontologies Application to Knowledge Discovery Processin Databases............ccovvereieeieninienieseennns 508
Héctor Oscar Nigro, Universidad Nacional del Centro de la Provincia de Buenos Aires,
Argentina
Sandra Elizabeth Gonzalez Cisaro, Universidad Nacional del Centro de la Provincia de
Buenos Aires, Argentina

Section VI
Data Mining
Chapter LV
Expression and Processing of INdUCtiVe QUETIES........ccueeieerieeriieiiieriiesieesieesiee e 518

Edgard Benitez-Guerrero, Laboratorio Nacional de Informatica Avanzada, Mexico
Omar Nieva-Garcia, Universidad del 1stmo, Mexico

Chapter LVI

Privacy-Preserving Data MiNiNG.......ccoiiieeeiiiicese ettt ae st re e saesnesneenenne e 527
Alexandre Evfimievski, IBM Almaden Research Center, USA
Tyrone Grandison, IBM Almaden Research Center, USA

Chapter LVII

Mining Frequent Closed Itemsets for ASSOCIation RUIES............cociiiiiiininiiieee s 537
Anamika Gupta, University of Delhi, India
Shikha Gupta, University of Delhi, India
Naveen Kumar, University of Delhi, India

Chapter LVIII
Similarity Retrieval and Cluster AnalySiISUSING R* TrEES.......cooviiiiiireieecenes e 547
Jiaxiong Pi, University of Nebraska at Omaha, USA
Yong Shi, University of Nebraska at Omaha, USA & Graduate University of the Chinese
Academy of Sciences, China
Zhengxin Chen, University of Nebraska at Omaha, USA

Chapter LI1X

Outlying Subspace Detection for High-Dimensional Data.............cccvevevereiieieerese e seeeesie e 555
Ji Zhang, CS RO Tasmanian ICT Centre, Australia
Qigang Gao, Dalhousie University, Canada
Hai Wang, Saint Mary's University, Canada

Chapter LX
D = N O U (=] oo ST U O SURTRTOTPRR 562
Yanchang Zhao, University of Technology, Sydney, Australia
Longhing Cao, University of Technology, Sydney, Australia
Huaifeng Zhang, University of Technology, Sydney, Australia
Chenggi Zhang, University of Technology, Sydney, Australia

Chapter LXI

C-MICRA: A Tool for Clustering Microarray Data.............ccceeeereieeeeienie e eieesre e see e sresnen 573
Emmanuel Udoh, Indiana University—Purdue University, USA
Salim Bhuiyan, Indiana University—Purdue University, USA

Chapter LXII
Deep Web: Databases on the Web...........coiiiiiiiiiiiiicee e 581
Denis Shestakov, Turku Centre of Computer Science, Finland

Chapter LXI1I

Learning Classifiers from Distributed Data SOUICEScceeieeiiriieiiiiiesiesieesee e 589
Doina Caragea, Kansas Sate University, USA
Vasant Honavar, lowa State University, USA

Chapter LXIV
Differential Learning Expert System in Data Management...........ooeienerineineneseseeeesesie s 597
Manjunath R., Bangalore University, India

Chapter LXV
Machine Learning as a Commonsense REaSONING PrOCESSccoeiiiieirecieiieie e ste e see s s 605
Xenia Naidenova, Military Medical Academy, Russia

Chapter LXVI

Machine Learning and Data Mining in BiOiNfOrMBELICS...........cuoirrerieiiinerieseeeeseseseee s 612
George Tzanis, Aristotle University of Thessaloniki, Greece
Christos Berberidis, Aristotle University of Thessaloniki, Greece
loannis Vlahavas, Aristotle University of Thessaloniki, Greece

Chapter LXVII
Sequential Pattern Mining from Sequential Data...........cccovvieeienenie e 622
Shigeaki Sakurai, Corporate Research & Development Center, Toshiba Corporation, Japan

Chapter LXVIII

From Chinese Philosophy to Knowledge Discovery in Databases

A Case Study: SCIENtOMELNIC ANBIYSIS......cciiuiiieiecie ettt s sr et aa e e sreeris 632
Pei Liu, Université du Sud Toulon Var, France
Eric Boutin, Université du Sud Toulon Var, France

Section V11
Physical Issues

Chapter LXIX
An Overview on Signature File TEChNIQUEScoviiiiiie s 644
Yangjun Chen, University of Winnipeg, Canada

Chapter L XX
On the Query Evaluation in XML Databasescccceceeiirriiriiiiieieeie e 655
Yangjun Chen, University of Winnipeg, Canada

Chapter LXXI
XML DOCUMENE CIUSLEITING ...ttt sn e n e nrennen e 665
Andrea Tagarelli, University of Calabria, Italy

Chapter LXXI1

INAICES IN XIMIL DELBIASES.......coteiiteiitie ettt ettt ettt e s e e s esbeesaeesbeesbeesbeesaeesaeesaeesneesneeas 674
Hadj Mahboubi, University of Lyon (ERIC Lyon 2), France
Jéréme Darmont, University of Lyon (ERIC Lyon 2), France

Chapter LXXI11

Integrative Information Systems Architecture: Document & Content Management............cc.cceeeeeee. 682
Len Asprey, Practical Information Management Solutions Pty Ltd, Australia
Rolf Green, OneView Pty Ltd, Australia
Michael Middleton, Queensland University of Technology, Australia

Chapter LXXIV

Index and Materialized View Selection in Data Warehousescccoveeeevieieieciie e 693
Kamel Aouiche, Université de Québec a Montréal, Canada
Jérdme Darmont, University of Lyon (ERIC Lyon 2), France

Chapter LXXV
Synopsis Data Structures for Representing, Querying, and Mining Data Streamsc.cccocceveuennee. 701
Alfredo Cuzzocrea, University of Calabria, Italy

Chapter LXXVI

GR-OLAP: Online Analytical Processing of Grid Monitoring Informationccccceeevvieneneennns 716
Julien Gossa, LIRIS-INSA Lyon, France
Sandro Bimonte, LIRIS-NSA Lyon, France

Chapter LXXVII

A Pagination Method for Indexesin Metric Databases.............coovviieeiiie e 728
Ana Valeria Villegas, Universidad Nacional de San Luis, Argentina
Carina Mabel Ruano, Universidad Nacional de San Luis, Argentina
Norma Edith Herrera, Universidad Nacional de San Luis, Argentina

Chapter LXXVIII

SWIFT: A Distributed Real Time Commit ProtoCol.........oooiiiiiiiiiiiiiiiririrveveverereveee e eeeeeeee e 737
Udai Shanker, M. M. M. Eng. Coallege, India
Manoj Misra, I1T Roorkee, India
Anil K. Sarje, I1T Roorkee, India

Chapter LXXIX

MECP: A Memory Efficient Real Time Commit Protocolccoevieiieiieiiinieiieseeseeeeeeeee 744
Udai Shanker, M. M. M. Eng. College, India
Manoj Misra, |1T Roorkee, India
Anil K. Sarje, I1T Roorkee, India

Chapter L XXX

Self-Tuning Database Management SYSLEMSciiieieirireseree st 753
Camilo Porto Nunes, Federal University of Campina Grande, Brasil
Claudio de Souza Baptista, Federal University of Campina Grande, Brasil
Marcus Costa Sampaio, Federal University of Campina Grande, Brasil

Chapter LXXXI
A Survey of Approachesto Database REPIICALIONcceviiiirieniieirese s 762
F. D. Mufoz-Escoi, Universidad Politécnica de Valencia, Spain
H. Decker, Universidad Politécnica de Valencia, Spain
J. E. Armendariz, Universidad Politécnica de Valencia, Spain
J. R. Gonzalez de Mendivil, Universidad Politécnica de Valencia, Spain

Chapter LXXXII
A Novel Crash Recovery Scheme for Distributed Real-Time Databases.........coccvvveveevecesiese e, 769
Yingyuan Xiao, Tianjin University of Technology, China

Chapter LXXXIII

QUETICAl Data NEEWOTKScoveetiiiieiteeiee ittt ettt et b et et b et et e e st e e e e eateennas 788
Cyrus Shahabi, University of Southern California, USA
Farnoush Banaei-Kashani, University of Southern California, USA

Chapter LXXXIV
On the Implementation of a Logic Language for NP Search and Optimization Problems................. 798
Sergio Greco, University of Calabria, Italy
Cristian Molinaro, University of Calabria, Italy
Irina Trubitsyna, University of Calabria, Italy
Ester Zumpano, University of Calabria, Italy

Chapter LXXXV
A Query-Strategy-Focused Taxonomy of P2P IR TeChniquescccoeeveereririeeiiniseseeseseseeee e 805
Alfredo Cuzzocrea, University of Calabria, Italy

Chapter LXXXVI

Pervasive and Ubiquitous Computing Databases: Critical 1ssues and Challenges....................

Michael Zoumboulakis, University of London, UK
George Roussos, University of London, UK

Chapter LXXXVII

Business-t0-Business (B2B) INTEGratioN..........coeoveeeerirereieeesese e

Christoph Bussler, Merced Systems, Inc.

Chapter LXXXVIII

Enterprise Application INtegration (EAT) ...

Christoph Bussler, Merced Systems, Inc.

Chapter LXXXIX

The Role of Rhetoric in Localization and OffSNOINGcccocvvieieeiiiiiiccece e

Kirk S.Amant, East Carolina University, USA

Chapter XC

Adaptive XML-to-Relational Storage Strat€gi€s.covverreeeirinercieeeseses e

Irena Mlynkova, Charles University, Czech Republic

Chapter XCI

Innovative Access and Query Schemes for Mobile Databases and Data Warehouses

Alfredo Cuzzocrea, University of Calabria, Italy

Chapter XClI|

Full-Text Manipulation in Databases..........cccoiiiiieeeie et eeas

Lasz6 Kovéacs, University of Miskolc, Hungary
Domonkos Tikk, Budapest University of Technology and Economics, Hungary

Chapter XCIl1

Bind but Dynamic Technique: The Ultimate Protection Against SQL Injectionscc.....

Ahmad Hammoud, Lebanese American University, Lebanon
Ramzi A. Haraty, Lebanese American University, Lebanon

Detailed Table of Contents

(== 0L TR Xlviii
ACKNOWIEAGIMENT ...ttt bttt b et b et b bt ne e e e e bt st nb e s e enennens IXii
Volumel

Section |

Conceptual Modeling

Chapter |
Mapping Generalizations and Specializations and Categoriesto Relational Databases.............cccceeee 1
Skha Bagui, University of West Florida, USA

An entity relationship (ER) model that includes all the concepts of the original ER model and the ad-
ditional concepts of generalizations/specializations and categories is often referred to as the extended
ER (EER) model (Elmasri & Navathe, 2007). With the rising complexity of database applications, and
in also light of today’s web data applications (Necasky, 2006), the basic concepts of the ER model, as
originally developed by Chen(1976), were no longer sufficient. Hence the basic ER model was extended
to include generalizations and specializations (Bagui & Earp, 2003; Elmasri & Navathe, 2007), and
the concept of categories (EImasri, et a., 1985). This chapter sheds some light on these relationship
concepts, concepts that database designers often find difficult to directly model (Engels et al., 1992/93).
It al so discuss the mapping rules for generalizations/specializations and categories. Important contribu-
tions in this area are also reported in (Elmasri et al., 1985; Gogolla & Hohenstein, 1991; Markowitz &
Shoshani, 1992; Dey, €t. a., 1999). Dullea, et. al. (2003) discusses the structural validity of modeling
structures with ER models.

Chapter |11
Bounded Cardinality and Symmetric REIGtiONSNiPS.........coveiiiriiriiecresesee e 12
Norman Pendegraft, University of Idaho, USA

Bounded cardinality occurs when the cardinality of a relationship is within a specified range. Bounded
cardinality is closely linked to symmetric relationships. This chapter describes these two notions, notes
some of the problems they present, and discusses their implementation in arelational database.

Chapter 111

A Paraconsistent Relational Data MOE]ccooeeieiiiiiieece e 18
Navin Viswanath, Georgia Sate University, USA
Rajshekhar Sunderraman, Georgia State University, USA

Theaim of this chapter isto introduce a data model that allows the user to store both positive and nega-
tive information. When the user poses a query to the database under this model, he obtains both positive
and negative answers. The positive answers are those for which the answer to the query is“yes’ and the
negative answers are those for which the answer to the query is “no”. The authors define the data model
and arelational algebrafor query processing.

Chapter 1V
Managing TEMPOIAl DalaL........cccuiiuriiiieie et ee et ee e te et e et e e e e teeseeeteenteeteeteenseeneeereenes 28
Abdullah Uz Tansel, Baruch College — CUNY, USA

In general, databases store current data. However, the capability to maintain temporal datais a crucial
requirement for many organizations and provides the base for organizational intelligence. A temporal
database maintains time-varying data, that is, past, present, and future data. This chapter focuses on the
relational data model and addresses the subtle issues in modeling and designing temporal databases.

Chapter V
Data Reengineering Of LegaCty SYSLEIMS.......cccviiiiiiriieeieeie e ete e et etesteeae e ee et eteeeeeeeeneenee e 37
Richard C. Millham, Catholic University of Ghana, Ghana

This chapter discusses some of the recent research into datareengineering, in particular the transformar
tion of data, usually legacy data from a sequential file system, to a different type of database system, a
relational database. This chapter outlines the various methods used in data reengineering to transform
a legacy database (both its structure and data values), usually stored as sequential files, into a relational
database structure. In addition, methods are outlined to transform the program logic that accesses this
database to access it in a relational way using WSL (wide spectrum language, a formal language nota-
tion for software) as the program’s intermediate representation.

Chapter VI
Different Kinds of Hierarchiesin Multidimensional MOGEIS.........cccvviiiei ettt reeeree e 45
Elzbieta Malinowski, Universidad de Costa Rica, Costa Rica

The authors of this chapter advocate that it is necessary to represent DW data requirements at the concep-
tual level. The conceptual model should clearly distinguish different kinds of hierarchies since they exist
in real-world situations and are important for DW and OLAP applications. Further, developers should
be able to implement these hierarchies. Therefore, considering that DWs and OLAP can use relational
storage, the authors present how hierarchies can be mapped to arelational model.

Chapter VII
Spatial Datain Multidimensional Conceptual MOEIS..........cooviiiiiiiiee e 56
Elzbieta Malinowski, Universidad de Costa Rica, Costa Rica

SDWs combine SDB and DW technologies for managing significant amounts of historical data that include
spatial location. To better represent users’ requirements for SDW applications, a conceptual model should
be used. The advantages of using conceptual models are well known in database design. Nevertheless,
the lack of a conceptual approach for DW and OLAP system modeling in addition to the absence of a
commonly accepted conceptual model for spatial applications make the modeling task difficult. Existing
conceptual models for SDBs are not adequate for DWs since they do not include the concepts of dimen-
sions, hierarchies, and measures. Therefore, there is a need for extending multidimensional models by
including spatial datato help users have a better understanding of the data to be analyzed.

Chapter VIII
Requirement Specification and Conceptual Modeling for Data Warehousesccocevvvevineeniieeninn, 65
Elzbieta Malinowski, Universidad de Costa Rica, Costa Rica

This chapter refers to requirements specification and conceptual modeling phases for DW design. The
author’s proposal unifies the already existing approaches by giving an overall perspective of different
alternatives available to designers when developing a DW.

Chapter I X
Principles on SymboliC DAtaANAYSIS.......ccviiiieiire e 74
Héctor Oscar Nigro, Universidad Nacional del Centro de la Provincia de Buenos Aires,
Argentina
Sandra Elizabeth Gonzalez Cisaro, Universidad Nacional del Centro de la Provincia de
Buenos Aires, Argentina

In data analysis process or data mining, it is necessary to know the nature of null values—the cases are
by absence value, null value or default value -, being also possible and valid to have some imprecision,
due to differential semantic in a concept, diverse sources, linguistic imprecision, element resumed in
database, human errors, etc (Chavent, 1997). So, we need a conceptual support to manipulate these
types of situations. This chapter describes symbolic data analysis (SDA), a new issue based on a strong
conceptual model called symbolic object (SO).

Chapter X

Database Engineering Supporting the Data EVOIULIONcccccvriiiieeiecece e 82
Luiz Camolesi Junior, State University of Campinas, UNICAMP, Brazl
Marina Teresa Pires Vieira, Methodist University of Piracicaba — UNIMEP, Brazl

Researchersin several areas (sociology, philosophy and psychology), among them Herbert Spencer and
Abraham Masl ow, attribute human actionsresulting in continual environmental changesto the search for
the satisfaction of individual and collective needs. Specifically in computer science, software engineer-
ing isacritical sub-areafor these researches and their application (Lehman & Stenning, 1997), sinceit

involves the construction of models and orientation for their use in the development of resources, such
as software, to support the user’s needs. Databases should be included in this context as a component
for data storage. Considering the premise of continuous changes and the human needs involved (Khan
& Khang, 2004), the consequences for software and for the required database are obvious. In the field
of computational science, these changes in the modern world are reflected in evolutionary features for
software and databases, based on Database concepts, structures and processesthat allow for rapid, albeit
not traumatic, shifts to new industrial, commercial or scientific systems (Mcfadden et al., 1999) in new
contexts (temporal scenarios) (Camolesi, 2004).

Chapter XI
Versioning Approach for Database EVOIULION............coiiiieiiiii e 91
Hassina Bounif, Ecole Polytechnique Fédérale de Lausanne, (EPFL), Switzerland

Schema evolution is an important research topic with an extensive literature built up over the years.
However, databases are still reluctant to change and thus their evolution is difficult to achieve because
the evolution of the schemainvolves several issues at different levels of the database schema such asthe
change management at thelogical level. Several approaches have been proposed to achieve the evolution
of a schema of a wide range of types of databases. Versioning, modification and views are examples
of these chosen approaches. This chapter presents and discusses one of these approaches, which is the
versioning approach for database evolution. The future trends of the versioning are presented as well.

Chapter XI|1

Evolutionary Database: State Of the Art @nd ISSUES..........cccviirirereee s 102
Vincenzo Deufemia, Universita di Salerno, Italy
Giuseppe Polese, Universita di Salerno, Italy
Mario Vacca, Universita di Salerno, Italy

With the introduction of evolutionary databases methodologies, the research area of schema evolution
and versioning has been naturally broadening to embody new and more challenging research problems.
Inthischapter, borrowing thetermfromAmbler et al. (2006), we call thisnew research areaevolutionary
database. This chapter discusses the main issues concerning evolutionary database and then we survey
several models and tools proposed for their solution.

Chapter XI11

Interrogative AgentS for Data MOTEIINGeoeieiriiiieeeee s 110
Vincenzo Deufemia, Universita di Salerno, Italy
Giuseppe Polese, Universita di Salerno, Italy
Mario Vacca, Universita di Salerno, Italy

This chapter deals with the problem of devel oping tools supporting the evol utionary data modeling pro-
cess. First of al, the authors observe that the characteristics of the problem can be naturally framed in
the agent paradigm, because the evol utionary datamodeling can be seen as a processin active databases
able to change their beliefs and structure. Moreover, the evolutionary data modeling can be compared
to the design of an agent acting in an open environment: the environment can be represented by the

user needs and requirements (which change in an unforeseeable way), while the database devel opment
processisrepresented by the evolution of areactive agent. Then, by following the AOSE (agent-oriented
software engineering) view, we show that the use of tools and techniques from Al (artificial intelligence)
can help facing the problem of developing supporting tools to automate evolutionary data modeling.
To thisend, after a brief introduction to the basic concepts in agent theory, and the highlighting of rela-
tionships among agents, software engineering, and databases, the authors point out the correspondence
between agents and data modeling by showing a suitabl e architecture based on the logic of interrogation
(Hintikka et al., 2002).

Chapter XIV

Schema Evolution Models and Languages for Multidimensional Data Warehousescccecuennee. 119
Edgard Benitez-Guerrero, Laboratorio Nacional de Informatica Avanzada, Mexico
Ericka-Janet Rechy-Ramirez, Laboratorio Nacional de Informatica Avanzada, Mexico

The objective of this entry is to introduce the problem of DW schema evolution, explaining current solu-
tions and identifying open problems. It is organized as follows. First, background information, covering
traditional solutionsto the schema evolution problem, will be introduced. Then, research on conceptual
evolution models and languages will be presented, comparing reference works to others. Open issues
will beintroduced. Finally, this entry will conclude with a summary

Chapter XV

A Survey of Data Warehouse Model EVOIULIONccvevviiiiiiicicrneeecse e 129
Cécile Favre, University of Lyon (ERIC Lyon 2), France
Fadila Bentayeb, University of Lyon (ERIC Lyon 2), France
Omar Boussaid, University of Lyon (ERIC Lyon 2), France

This chapter provides an overall view of the state of the art in data warehouse model evolution. The
authors present a series of comparison criteria and compare the different works. Moreover, the authors
discuss the future trends in data warehouse model evolution.

Chapter XVI
Document Versioning and XML in Digital LibrarieS.........ccccoouriieieiiinencneseseseseeeeseseseees 137
M. Mercedes Martinez-Gonzalez, Universidad de Valladolid, Spain

In recent years, the spread of XML asthe metalanguage for document modelling has been accompani ed
by a strong interest in XML document versioning. The interesting issue is that XML documents are no
longer considered as atomic itemsthat can be substituted or not, but composed of document nodes (ele-
ments) that can themselves be versioned. Besides, there have been several initiatives that propose using
XML astheideal format to represent metadata related with changes. Next, we revise the issues related
with document versioning, the main approaches proposed and the issues that each approach favours.
Issues related with XML will receive special attention in this updated chapter1. Versioning a document
impacts not only the document itself but also other items, such as references from and to the versioned
document, or the indexes created for information retrieval operations.

Chapter XVII

MDD Approach for Maintaining Integrity Constraints in Databases...........cccooeereieneieeieneneseene 145
Harith T. Al-Jumaily, Carlos |11 University of Madrid, Spain
Dolores Cuadra, Carlos 11 University of Madrid, Spain
Paloma Martinez, Carlos 111 University of Madrid, Spain

In this work, the model-driven development (MDD) approach has been considered to enhance the trans-
formation rules of the conceptual schemainto the relational schema. The relational model was consid-
ered in this work because most database methodologies are agreeing with it to transform the conceptual
schema into a logical schema. A tool was plugged into rational rose to ensure this task. This tool can
automatically generate maintai ning mechanismsfor these constraintsto atarget DBMS. Triggers system
as maintaining mechanismsis used. These mechanisms can provide afundamental baseto obtain avery
high level of knowledge independence (Paton, 1999). The triggers system is specified according to the
recent SQL:2003 standard that revises all parts of SQL99 and adds new features (ISO Standard 2003).

Chapter XVIII
Artifacts for Collaborative Software DeVEl OPMENTcceiiirireieirese s 154
Pierre F. Tiako, Langston University, USA

While several research projects have contributed to different aspects of collaboration among software
development environments during the past decade, little has been done on explicitly defining and mod-
eling processes and environment artifacts involved in such partnerships. That is what this chapter is
about. In the context of this study, environments work together by assigning tasks and sharing working
methods. Tasks and working methods can be explicitly defined using process models. Process models,
aready the main focus in monoalithic software development, will still be an important factor in our ap-
proach of collaborative software development. Because they are process-based, all software develop-
ment environments considered here will be qualified in the continuation of process-sensitive software
engineering environments (PSEES).

Section 11
L ogical Modeling

Chapter XIX
Object-Relational MOGEIING........ccoiiiiiieriee et 162
Jaroslav Zendulka, Brno University of Technology, Czech Republic

The objective of this chapter is to introduce UML profiles for object-relational modeling. All such profiles
exploit the extensibility mechanism of the UML. The author has chosen the profile used by Rational
Rose Oracle8 tool as a representative one and has described it. Such profiles can be useful not only for
manual object-relational database schema modeling but also for automated object to object-relational
transformations in the MDA approach.

Chapter XX
ConCEPt-OriENTEA IMOUEL ..ottt e et b b s n e 171
Alexandr Savinov, University of Bonn, Germany

This chapter describes the main properties of the concept-oriented data model and demonstrates how it
can be used. Thismodel has a number of advantages over the existing approaches especialy in the area
of conceptual modelling and analytical data processing. It is an integrated full featured model that can
be applied to a wide range of tasks. At the same time it is rather simple approach which uses only a few
basic notions to derive many important data modelling mechanisms and manipul ation techniques.

Chapter XXI
Database ReVEIrSE ENGINEEITNGcc.veieiiiieeeie sttt st se st sae e e sre st e neentesreeneennense e 181
Jean-Luc Hainaut, University of Namur, Belgium
Jean Henrard, REVER s.a., Belgium
Didier Roland, REVER s.a., Belgium
Jean-Marc Hick, REVER s.a., Belgium
Vincent Englebert, University of Namur, Belgium

The goal of this chapter isto describe the problems that arise when one tries to rebuilt the documenta-
tion of alegacy database and the methods, techniques and tools through which these problems can be
solved.

Chapter XXII

Imprecise FUNCtioNal DEPENAENCIEScceeiiiicice sttt reenenne e 190
Vincenzo Deufemia, Universita di Salerno, Italy
Giuseppe Polese, Universita di Salerno, Italy
Mario Vacca, Universita di Salerno, Italy

In this chapter, we have presented the concept of imprecise functional dependency, both outlining its
basic constitutive elements and examining representative definitions of IFD existing in the literature.
We have provided a critical discussion of the concept of imprecise functional dependency also showing
its winding development and discussing the open problems.

Chapter XXI1I
Horizontal Data Partitioning: Past, Present and FULUIE............ccoceiiiineneceseee e 199
Ladjel Bellatreche, LIS/ENSMA - University of Poitiers, France

This chapter presents an optimization structure, called, horizontal partitioning, used in traditional da-
tabases (relational and object), distributed and parallel databases, and data warehouses. We gave a his-
tory of the use of horizontal partitioning along the evolution of the database. A specia focus has been
given to the data warehouses, where data partitioning represent an import aspect of physical design.
Severa horizontal partitioning scenarios of fragmenting a relational data warehouse modeled using a
star schemaare presented. The complexity of the number of generated fragmentsisgiven. A formulation
of horizontal partitioning selection problem as an optimization problem with constraint is given. This
constraint represents the number of fact fragments that the DWA should maintain.

Chapter XXIV
Database Support for Workflow Management SyStemS.........ccccvereeriereeiieneeneereeseesreesreesree e 208
Francisco A. C. Pinheiro, Universidade de Brasilia, Brasil

A WIMS implemented on top of a database system is a special database application. Therefore, it
helps to understand how advances on databases as a supporting technology may be applied to build
more useful workflow applications and, on the other hand, how workflow application needs may drive
the improvement of database technologies. Nevertheless, workflow applications are highly human-
centered and should not be limited by technology. Organizational requirements have to be taken into
consideration when developing workflow applications and in choosing an appropriate WMS (Silva &
Pinheiro, 2003). These requirements may impose restrictions that will never be completely solved by
any supporting technology. For example, the most challenging kind of diversity is cultural diversity. It
may be ameliorated using techniques to deal with semantic heterogeneity, but there is more to culture
than differences in the interpretation of terms.

Chapter XXV
Politically Oriented Database APPlICALIONS..........cceiiiieirieiese ettt sre e sre s 214
Francisco A. C. Pinheiro, Universidade de Brasilia, Brasil

The shrinking of political party’s membership and the role of mass media in shaping political commu-
nication and, to alarge extent, the political agenda (Callaghan & Schnell, 2001), placing usin aera of
perpetual election campaigning, may arguably be viewed as a drawback. Nevertheless, the role of tech-
nology is unavoidable and it may also facilitate life, being a motif of change and evolution (Dunleavy
et. al., 2002). A first step is to acknowledge the importance of politically oriented applications and to
design them taking politics as a prime aspect. By its nature, based on negotiation of positions, ideas and
principles, politicsiscarried out through the exchange of information between theinvolved parties (Peled,
2001). In this sense databases are a key element for incorporating political aspects into system design.
Recognizing the role of politics would help in designing databases that more appropriately capture the
political needs of stakeholders. Issues like privacy, sensitive information, rule-making processes, and
ownership could be shifted from a mere technical discussion to a proper political consideration.

Chapter XXVI

Semantically Modeled Databases in Integrated Enterprise Information Systems........ccccceevevveeennee. 221
Cheryl L. Dunn, Grand Valley State University, USA
Gregory J. Gerard, Florida State University, USA
Severin V. Grabski, Michigan State University, USA

This chapter first presents a normative semantic model for enterprise information systems that has its
roots in transaction processing information systems. The authors use this model because the majority
of information processed and tracked by information systems is transactional in nature. The authors
review empirical research on semantically modeled information systems and then provide an example
company’s semantic model asaproof of concept. The authors next discuss how thismodel can be applied
to ERP systems and to inter-organizational systems and present future trends and research directions,
and provide concluding comments.

Chapter XXVI1

The Linkcell Construct and Location-Aware Query Processing for Location-Referent

TransaCtionS iN MODIE BUSINESSciiieiiiiiieiceses et 240
James E. Wyse, Memorial University of Newfoundland, Canada

Enabling thelocation-referent transactions of mobile consumers presents an important data management
challenge to the operations managers of |ocation-based mobile systems. The provision of transactional
support must incorporate, in some form, alocations repository aswell asthe means by which its content
is managed. When repository sizes are small, repositories may be effectively managed using conventional
methods; however, asrepository sizeisincreased conventional methodsyield an increasing degradation
in the service level realized by mobile consumers. An alternative to conventional methods, the loca-
tion-aware linkcell method displays the potential to significantly ameliorate service level degradation.
Although the LAL method is more burdensome than conventional methodsin certain data management
respects, assessments of its query resol ution performanceindicateits potential asauseful Ibusiness data
management tool.

Chapter XVI11

Caching, Hoarding, and Replication in Client/Server Information Systems with

e oL = @ 11 | PSS 252
Hagen Hopfner, International University in Germany, Germany

Redundant data management isamust in client server information systems with mobile clients. Based
on the level of autonomy of mobile devices/users techniques for handling such data can be divided into
caching, hoarding, and replication. These three terms are often used incorrectly in the literature. To our
knowledge the exact definition of the terms has never been published in an international book or journal.
We fill this gap with this article. We furthermore explain the terms cache replacement, cache invalidation,
cache maintenance, automated hoarding, and synchronization of replicated data.

Section I11
Spatial and Temporal Databases

Chapter XXIX

Spatio-Temporal INdeXing TECANIQUESoviiiiieeee e 260
Michael Vassilakopoulos, University of Central Greece, Greece
Antonio Corral, University of Almeria, Spain

This chapter reviews the issues and techniques related to access methods for spatio-temporal data. This
research area(and especially indexing of moving objects) has attracted many researchersduring last years.
Although, thisis arelatively new research area, numerous techniques have been developed. However,
thisis still ahot and demanding research area, where many challenges need to be addressed.

Chapter XXX

Query Processing in Spatial Databases..........eiuireeiuiriiieiierii et 269
Antonio Corral, University of Almeria, Spain
Michael Vassilakopoulos, University of Central Greece, Greece

Spatial query processing refers to the sequence of steps that a SDBMS will initiate to execute a given
spatial query. The main target of query processing in the database field is to process the query accurately
and quickly, by using both efficient representations and efficient search algorithms. Query processing in
a spatial environment focuses on the design of efficient algorithms for spatial operators (e.g. selection
operations, nearest neighbor search, spatial joins, etc.). Spatial query operations can be classified into
five groups: point, range, spatial join, spatial aggregate and feature-based. For spatial query processing,
the filter-refine paradigm is used over spatial access methods to minimize both the CPU and /O cost.
Future research trends include the study of new spatial queries (especially on spatial networks), the
study of issues related to Web-Based Spatial Database Systems and work on cost models for estimating
the selectivity of spatial queries.

Chapter XXXI

Automatic Data Enrichment in GIS Through Condensate Textual Information............cccccceveeveennnnns 279
Khaoula Mahmoudi, High School of Communications-Tunis (SUPCOM), Tunisia
Sami Faiz, National Institute in Applied Sciences and Technology (INSAT), Tunisia

With the increasing demand for the geographical information expressed by the GIS users, the data en-
richment processes play a key role to extend the dataset already stored within the system. In this context,
the authors propose an approach to provide complementary data that enrich the descriptive aspect of
the GDB. This chapter details the authors’ semantic data enrichment approach. Furthermore, a refine-
ment process was presented. It is provided to GIS users as a mean to describe with more accuracy the
geographic entities and by the way to increase the chance to reach the pertinent documents.

Chapter XXXII

Similarity SEarCh in TIME SEMES.......ccui ittt st s ra et e sresbe e e e resae 288
Maria Kontaki, Aristotle University, Greece
Apostolos N. Papadopoulos, Aristotle University, Greece
Yannis Manolopoul os, Aristotle University, Greece

In many application domains, data are represented as a series of valuesin different time instances (time
series). Examples include stocks, seismic signals, audio and many more. Similarity search in time series
databases is an important research direction. Several methods have been proposed to provide efficient
query processing in the case of static time series of fixed length. Research in this field has focused on the
development of effective transformation techniques, the application of dimensionality reduction methods
and the design of efficient indexing schemes. These tools enable the process of similarity queries in
time series databases. In the case where time series are continuously updated with new values (stream-
ing time series), the similarity problem becomes even more difficult to solve, since we must take into
consideration the new values of the series. The dynamic nature of streaming time series precludes the
use of methods proposed for the static case. To attack the problem, significant research has been per-

formed towards the development of effective and efficient methods for streaming time series processing.
This chapter introduces the most important issues concerning similarity search in static and streaming
time series databases, presenting fundamental concepts and techniques that have been proposed by the
research community.

Chapter XXXI11

Internet Map Services and Weather Data..........cooveviiiiiiiniieee s 300
Maurie Caitlin Kelly, Pennsylvania State University, USA
Bernd J. Haupt, Pennsylvania State University, USA
Ryan E. Baxter, Pennsylvania State University, USA

Internet map services (IMS) are redefining the ways in which people interact with geospatial informa-
tion system (GIS) data. Driving forces behind this trend are the pervasiveness of GIS software and the
emerging popularity of mobile devices and navigation systems utilizing GPS (global positioning sys-
tem), aswell asthe ever-increasing availability of geospatial data on the Internet. These forces are also
influencing the increasing need for temporal or real-time data. One trend that has become particularly
promising in addressing this need is the development of IMS. IMS is changing the face of data access
and creating an environment in which users can view, download, and query geospatial and real-time
data into their own desktop software programs via the Internet. In this section, the authors will provide a
brief description of the evolution and system architecture of an IMS, identify some common challenges
related to implementing an IM S, and provide an example of how IM S have been developed using real-
time weather data from the National Digital Forecast Database (NDFD). Finally, the authors will briefly
touch on some emerging trendsin IMS, as well as discussing the future direction of IMS and their role
in providing access to real-time data.

Chapter XXXIV
Spatial NetWork DatabDaSESceiuuieiiieiiieiiieeiesiee st e stee st seesreesreessreeesseeesseeesseeesseeesnsessseesnsenans 307
Michael Vassilakopoulos, University of Central Greece, Greece

Spatial networks databases are emerging from spatial and spatio-temporal databases as a distinct data
management technology. This chapter reviews the motivation for developing techniques for the man-
agement of spatial networks, their fundamental concepts, and reports representative and recent research
effortsand discusses possible future research directions. Although numerous research effortshave recently
been devoted to spatial networks, significant research challenges still remain.

Chapter XXXV

Supporting Location-Based Services in Spatial Network Databasesc.cooeririirienienininicnennenn 316
Xuegang Huang, Aalborg University, Denmark

This chapter summarizes existing efforts from the database community to support LBSsin spatial net-
works. The focus of discussion is on the data models, data structures, and query processing techniques
in SNDBs. An example application framework is presented to illustrate the relationship of these topics.
Challenges and future trends are also addressed.

Chapter XXXVI

Spatial Data Integration OVer the Webccooiiiiiiiiie e 325
Laura Diaz, Universitat Jaume |, Spain
Carlos Granell, Universitat Jaume |, Spain
Michael Gould, Universitat Jaume |, Spain

The demand for interoperability has boosted the development of standards and tools to facilitate data
transformation and integration. Furthermore, this chapter focuses on interface standards as key to spa-
tial data syntactical integration over the Web. Nevertheless, there are still many challenges to be met,
especialy those concerned with data semantics and harmonization of interoperating systems.

Section 1V
Database I ntegrity

Chapter XXXVII

Improving Constraints Checking in Distributed Databases with Complete, Sufficient,

Lo ST o] o L A =S £ PSSR 335
Ali Amer Alwan, Universiti Putra Malaysia, Malaysia
Hamidah Ibrahim, Universiti Putra Malaysia, Malaysia
Nur lzura Udzr, Universiti Putra Malaysia, Malaysia

In adistributed database, the cost of accessing remote datafor verifying the consistency of the database
is the most critical factor that influences the performance of the system (Ibrahim, Gray & Fiddian,
2001). This chapter shows and proves through a simple analysis that selecting the suitable type of test
can benefit the distributed database system, in which the amount of data transferred across the network
is significantly reduced and the number of sites involved is always 1.

Chapter XXXVIII
Inconsistency-Tolerant Integrity CReCKINGcvviviiieiieiieiiesee e 348
Hendrik Decker, Instituto Technol égico de Informatica, Spain & Ciudad Politécnica de la
Innovacién, Spain
Davide Martinenghi, Politecnico di Milano, Italy

The authors of this chapter argue that inconsistency is far less harmful for database integrity than as
suggested by commonly established results. They substantiate our claim by showing that, informally
speaking, the consistent part of a possibly inconsistent database can be preserved across updates. More
precisely, tjeu show that, if the simplified form of an integrity theory is satisfied, then each instance of
each constraint that has been satisfied in the old state continues to be satisfied in the “new”, i.e., updated
state, evenif the old databaseis not fully consistent. Therefore, such an approach canrightfully becalled
“inconsistency-tolerant”. Yet, they also note that the use of inconsistency-tolerant integrity checking
methods prevents an increase of inconsistency, and may even help to decreaseit.

Chapter XXXIX

Merging, Repairing, and Querying Inconsistent Databases..........couvereeiieiieiienie s 358
Luciano Caroprese, University of Calabria, Italy
Ester Zumpano, University of Calabria, Italy

This work proposes a framework for merging, repairing and querying inconsistent databases. To this
aim the problem of the satisfaction of integrity constraintsin the presence of null valuesisinvestigated
and anew semantics for constraints satisfaction, inspired by the approach presented in (Bravo and Ber-
tossi, 2006), is proposed. The present work focuses on the inconsistencies of a database instance w.r.t.
particular types of integrity constraints, implemented and maintained in commercial DBMS, such as
primary keys, general functional dependencies and foreign key constraints.

Chapter XL

The Challenges of Checking Integrity Constraints in Centralized, Distributed, and

Parallel Dataases............couiiiiiiii s 365
Hamidah Ibrahim, Universiti Putra Malaysia, Malaysia

Animportant aim of a database system is to guarantee database consistency, which means that the data
contained in a database is both accurate and valid. There are many ways, which inaccurate data may
occur in a database. Several factors and issues have been highlighted with regards to checking integrity
constraintsin centralized, distributed and parallel databases. These factors and issues are the challenges
in devising an efficient enforcement mechanism.

Chapter XLI
Data QUALItY ASSESSITICII ..e.veeuriririeeeeresseeseesse st sseese st e sre e resr s e e ssesresse e e e reebeese e nesbesseen e nesne e e e nrenrs 378
Juliusz L. Kulikowski, Institute of Biocybernetics and Biomedical Engineering PAS, Warsaw,
Poland

For many years the fact that for a high information processing systems' effectiveness high quality of
datais not less important than high systems' technological performance was not widely understood and
accepted. The way to understanding the complexity of data quality notion was aso long, as it will be
shown below. However, aprogressin modern information processing systems devel opment isnot possible
without improvement of dataquality assess-ment and control methods. Dataquality is closely connected
both with data form and value of information carried by the data. High-quality data can be understood
as data having an appro-priate form and containing val uableinformation. Therefore, at | east two aspects
of data are reflected in this notion: 1st - technical facility of data processing, and 2nd - usefulness of
in-formation supplied by the data in education, science, decision making, etc.

Chapter XLII

Measuring Data QUAality i COMEEXTE ...cveirereerrirririeeiesre et sr e n e nesrenns 385
G. Shankaranarayanan, Boston University School of Management, USA
Adir Even, Ben Gurion University of the Negev, Israel

Maintaining data at ahigh quality iscritical to organizational success. Firms, aware of the conseguences
of poor data quality, have adopted methodologies and policies for measuring, monitoring and improv-

ing it (Redman, 1996; Eckerson, 2002). Today’s quality measurements are typically driven by physical
characteristics of the data (e.g., item counts, time tags, or failure rates) and assume an objective quality
standard, disregarding the context in which the datais used. The alternative isto derive quality metrics
from data content and evaluate them within specific usage contexts. The former approach is termed
as structure-based (or structural), and the latter, content-based (Ballou and Pazer, 2003). This chapter
proposes a novel framework to assess data quality within specific usage contexts and link it to data util-
ity (or utility of data) - a measure of the value contribution associated with data within specific usage
contexts. This utility-driven framework addresses the limitations of structural measurements and offers
alternative measurements for evaluating completeness, validity, accuracy, and currency, as well as a
single measure that aggregates these data quality dimensions.

Chapter XLIII

Geometric Quality in Geographic INformation..........coceeeeiiiiirieenini e 396
José Francisco Zelasco, Universidad de Buenos Aires, Argentina
Gagspar Porta, Washburn University, USA
José Luis Fernandez Ausinaga, Universidad de Buenos Aires, Argentina

A typical way to build surface numerical models or digital elevation models (DEM) for geographical
information systems (GIS) is by processing the stereo images obtained from, for example, aeria pho-
tography or SPOT satellite data. These GIS can perform many computationsinvolving their geographic
databases. The quality control of a geographic database and in particular the topological and geometric
integrity are, therefore, important topics (Guptill & Morrison, 1995; Harvey, 1997; Ubeda & Servigne,
1996; Laurini & Milleret-Raffort). The geometric quality control of the stored DEM is what we are
concerned with here. «Quality» means the geometric accuracy measured in terms of the difference be-
tween a DEM and a reference DEM (R-DEM). We assume the R-DEM is a faithful model of the actual
surface. Its point density may be greater than the DEM point density.

Chapter XLIV
Geometric Quality in Geographic Information IFSAR DEM Controlccocevviiriencienenienennns 403
José Francisco Zelasco, Universidad de Buenos Aires, Argentina
Judith Donayo, Universidad de Buenos Aires, Argentina
Kevin Ennis, Universidad de Buenos Aires, Argentina
José Luis Fernandez Ausinaga, Universidad de Buenos Aires, Argentina

Studies performed on digital elevation models (DEM), obtained by means of photogrammetry, SPOT
satellite images or other methods show that the precision in the z coordinate is different from the hori-
zontal precision. In the case of the Interferometry SAR (IFSAR), the precision in the azimuth axis may
be different from the precision in the range-axis. Moreover, the error in elevation is correlated with the
error in the range axis. The method employed in the authors’ other submission “Geometric Quality in
Geographic Information” alows the evaluation of the DEM accuracy —vertical and horizontal- under
some conditions of topographic unevenness. A reference DEM isrequired. Inrecent (Zelasco et al, 2001,
Zelasco, 2002a) works it has been shown, by simulation, that the vertical error estimation is good and
the horizontal error estimation is reasonably good depending on the surface roughness. In this chapter
we show how to employ the quality control method when a DEM is obtained by IFSAR technology
taking into account the corresponding hypotheses.

Chapter XLV

Querying and Integrating P2P Deductive Databasesccocvveererinieienisiseeseseseee e 410
Luciano Caroprese, University of Calabria, Italy
Sergio Greco, University of Calabria, Italy
Ester Zumpano, University of Calabria, Italy

The motivation of this work stems from the observation that previously proposed approaches result not
to be sound with respect to query answering when some peer isinconsistent. The idea proposed in this
chapter consistsin importing in each peer maximal sets of atoms not violating integrity constraints.

Section V
Ontologies
Chapter XLVI
Using Semantic Web Tools for Ontologies CONStrUCIONcecverrerrerreeseereneeeesesreseeseesresessee s 418

Gian Piero, University of Paris |V / Sorbonne, France

The current state of Web technology — the “first generation’ or ‘syntactic’ Web — gives rise to well known,
serious problems when trying to accomplish in a non-trivial way essential tasks like indexing, searching,
extracting, maintaining and generating information. These tasks would, in fact, require some sort of ‘deep
understanding’ of the information dealt with: in a ‘syntactic’ Web context, on the contrary, computers are
only used as tools for posting and rendering information by brute force. Faced with this situation, Tim
Berners-Lee first proposed a sort of ‘Semantic Web’ where the access to information is based mainly on
the processing of the semantic properties of this information: “... the Semantic Web is an extension of
the current Web in which information is given well-defined meaning (emphasis added), better enabling
computers and people to work in co-operation” (Berners-Lee et al., 2001: 35). From a technical point
of view, the Semantic Web vision is deeply rooted into an ‘ontological’ approach, with some proper
characteristics that differentiate it from the ‘classical” approach to the construction of ontologies based
on a methodology of the ‘frame’ type (Chaudhri et al., 1998) and on the use of tools in the ‘standard’
Protégé style (Noy, Fergerson and Musen, 2000). This chapter focuses on these characteristics.

Chapter XLVII
Matching Relational Schemata to Semantic Web Ontologies.........ccvreererirerieenenineeeeseseeee e 434
Polyxeni Katsiouli, University of Athens, Greece
Petros Papapanagiotou, University of Athens, Greece
Vassileios Tsetsos, University of Athens, Greece
Christos Anagnostopoul os, University of Athens, Greece
Sathes Hadjiefthymiades, University of Athens, Greece

Datamigration relies on aschemamatching process between therel ational schemaand thetarget ontology.
Schema matching is considered as a task based on the fact that both schemata (relational and ontologi-
cal) differ in structure, expressiveness and reasoning capability. This chapter proposes a methodology

for schema matching and present a tool, called RONTO (Relational to ONTOIlogy), which deals with
the semantic mapping between the elements of a relational schema to the elements of an ontol ogical
schema.

Chapter XLVIII

Ontology-Based Semantic Models for Datalases...........covevvieeeeie i 443
Lasz6 Kovéacs, University of Miskolc, Hungary
Péter Barabas, University of Miskolc, Hungary
Tibor Répasi, University of Miskolc, Hungary

The ontology is used to define concepts, relationships and other distinctions that are relevant for mod-
eling a domain where the specification takes the form of the definitions of representational vocabulary
which provides meaning and constraints on the usage. Ontology is getting more and more popular as
the description formalism for knowledge representation. There are many benefits of an ontology-based
semantic data modeling over the traditional models. Ontology languages provide a universal, general
description in standardized formalism. It has alogic foundation that supports reasoning and validation
of the model. The ontology can be used as a general and extended semantic model in database design.
On the other hand, it supports model validation, schema integration and extends the functionality of
information retrieval.

Chapter XLIX
Inconsistency, Logic Databases, and ONtOIOQIES.........ccueieeiieieeiee e ee e s e e snee s 452
José A. Alonso-Jiménez, Departamento de Ciencias de la Computacion e Inteligencia
Artificial Universidad de Sevilla, Spain
Joaquin Borrego-Diaz, Departamento de Ciencias de la Computacion e Inteligencia
Artificial Universidad de Sevilla, Spain
Antonia M. Chavez-Gonzalez, Departamento de Ciencias de la Computacion e Inteligencia
Artificial Universidad de Sevilla, Spain

Inconsistency handling has been a prevailing task in important fields as the semantic web, data integra-
tion, and data cleaning. Several techniques are proposed, but the need of working with very large data-
bases makes some of them unfeasible, especially those that are applied on the full KDB. In any case,
the inconsistency is a persistent matter in the semantic web field. Due to that, several research teams are
studying how to manage and control it.

Chapter L

Data Integration: INtroduCiNg SEMENLICS.........ccoueiieriiiriiee e see e s s see e see e sree e e e s sreesaeesneesreesneeas 460
Ismael Navas-Delgado, University of Malaga, Spain
Jose F. Aldana-Montes, University of Malaga, Spain

Thischapter presentsthe basic characteristics of the dataintegration systems, describing theminasimple
way in order to enable an in depth study in thistopic. The authors review the most important systemsin
thisarea, and divide them into two groups: traditional and ontology-based systems. The authors present

a comparative table in order to clarify the differences between the systems presented. Finaly, they in-
troduce some interesting issues being studied in this area, and which represent the future trendsinit.

Chapter LI

An Overview of Ontology-Driven Data INegration............cccevrererieireseseeieee s 471
Agustina Buccella, Universidad Nacional del Comahue, Argentina
Algjandra Cechich, Universidad Nacional del Comahue, Argentina

In this chapter we will focus on the use of ontologies because of their advantages when using for data
integration. For example, an ontology may provide a rich, predefined vocabulary that serves as a stable
conceptual interface to the databases and is independent of the database schemas; knowledge represented
by the ontology may be sufficiently comprehensive to support translation of all relevant information
sources; an ontology may support consistency management and recognition of inconsistent data; etc.
Then, the next section will analyze severa systems using ontologies as atool to solve data integration
problems.

Chapter LII

Current Approaches and Future Trends of Ontology-Driven Geographic Integration....................... 481
Agustina Buccella, Universidad Nacional del Comahue, Argentina
Algiandra Cechich, Universidad Nacional del Comahue, Argentina

In this chapter, we analyze severa proposals that consider geographic information as sources to be
integrated. First, we briefly describe basic concepts and conventions that will be used throughout this
chapter. Following, an analysis is performed according to the use of ontologies in an integration pro-
cess of geographic sources. Finally, future trends and conclusions are revealed as a conseguence of our
anaysis.

Volumell

Chapter LI
Mediation and Ontology-Based Framework for Interoperabilityccccoovvrerieeniiinieenineseee e 491
Leonid Soimenov, University of Nis, Serbia

Domain experts use the concepts and terminology specific for their respective field of expertise, and
different parameters and different languages to express their model of a concept. Therefore, very often
different data sets can use different terms for the same kind of information. On the other hand, different
data sets can use the same term for a completely different piece of information. Humans use their com-
mon sense, that is, their knowledge about the world, to translate the meaning of a foreign set of concepts
and terms into their own terminology. Software systems usually do not have any knowledge about the
world and have to explicitly be told how to translate one term into another. These problems can lead to
serious conflicts during discovering and interpreting geographic data.

Chapter L1V
Ontologies Application to Knowledge Discovery Processin Databases...........cccovvereieeieninesieneennns 508
Héctor Oscar Nigro, Universidad Nacional del Centro de la Provincia de Buenos Aires,
Argentina
Sandra Elizabeth Gonzalez Cisaro, Universidad Nacional del Centro de la Provincia de
Buenos Aires, Argentina

The main goal of this paper is to present the issue of the ontologies application in KDD. As aresult of
our research, we will propose ageneral ontology-based model, which includes all discovery steps. This
paper is presented as follows: First, Background: main works in the field are introduced. Second, Main
focus section is divided into: KDD Using Ontologies cycle in which we explain the knowledge process
and propose amodel, Domain Ontol ogies, M etadata Ontol ogies and Ontol ogiesfor DataMining Process.
Third: Future Trends, Conclusions, References and Key Terms.

Section VI
Data Mining
Chapter LV
Expression and Processing of INdUCtive QUETIESuveeeerririreeniesresieee s 518

Edgard Benitez-Guerrero, Laboratorio Nacional de Informatica Avanzada, Mexico
Omar Nieva-Garcia, Universidad del Istmo, Mexico

This chapter explains the problems involved in the design of an IQL and its associated evaluation tech-
niques, and presents some sol utionsto those problems. Our proposal (Nieva-Garcia& Benitez-Guerrero,
2006) of an extension to SQL for extracting decision rules of the form if <conditions> then <class>
to classify uncategorized data and associated relational-like operator will be presented as a case study,
and similar existing works will be overviewed. Future trends will then be introduced, and finally, the
chapter will be concluded.

Chapter LVI

Privacy-Preserving Dala MiNiNG........c.coeiiiieenese e 527
Alexandre Evfimievski, IBM Almaden Research Center, USA
Tyrone Grandison, |IBM Almaden Research Center, USA

Privacy-preserving datamining emerged in responseto two equally important (and seemingly disparate)
needs. data analysis in order to deliver better services and ensuring the privacy rights of the data own-
ers. Difficult as the task of addressing these needs may seem, several tangible efforts have been accom-
plished. In this article, an overview of the popular approaches for doing PPDM was presented, namely,
suppression, randomization, cryptography, and summarization. The privacy guarantees, advantages, and
disadvantages of each approach were stated in order to provide a balanced view of the state of the art.
Finally, the scenarios where PPDM may be used and some directions for future work were outlined.

Chapter LVII

Mining Frequent Closed Itemsets for ASSOCIation RUIES.............ooiieiiininiceeee s 537
Anamika Gupta, University of Delhi, India
Shikha Gupta, University of Delhi, India
Naveen Kumar, University of Delhi, India

In this chapter we discuss the importance of mining FCI in place of Fl in the association rule discovery
procedure. We explain different approaches and techniques for mining FCI in datasets.

Chapter LVIII
Similarity Retrieval and Cluster AnalySiISUSING R* TrEES.......cooiiiiiiieieeciee e 547
Jiaxiong Pi, University of Nebraska at Omaha, USA
Yong Shi, University of Nebraska at Omaha, USA & Graduate University of the Chinese
Academy of Sciences, China
Zhengxin Chen, University of Nebraska at Omaha, USA

As our first step to explore this interesting issue, in this article we examine time-series data indexed
through R* trees, and study the issues of (a) retrieval of datasimilar to agiven query (whichisaplain
data retrieval task), and (b) clustering of the data based on similarity (which is a data mining task). Along
the way of examination of our central theme, we also report new algorithms and new results related to
these two issues. We have developed a software package consisting of components to handle these two
tasks. We describe both parts of our work, with an emphasis on dealing with the challenges of moving
from retrieving individual queries similar to a given query to clustering the entire data set based on
similarity. Various experimental results (omitted due to space limitation) have shown the effectiveness
of our approaches.

Chapter LI1X

Outlying Subspace Detection for High-Dimensional Data.............cccevveveevieeneeseesieeceeeiee e esee e 555
Ji Zhang, CS RO Tasmanian ICT Centre, Australia
Qigang Gao, Dalhousie University, Canada
Hai Wang, Saint Mary's University, Canada

This article formulates the outlying subspace detection problem and provides a survey of the existing
methods for solving this problem. In particular, it focuses on the metrics used to measure the outlier
quality of given data pointsin different subspaces and the searching strategies employed by the existing
techniques for exploring high-dimensional space lattices. We have also pointed out the major limitations
of the existing techniques, and some important issues to be considered in devel oping a better outlying
subspace detection method in future research work.

Chapter LX
D = N O U (=] oo USSP O OSSR UR PP 562
Yanchang Zhao, University of Technology, Sydney, Australia
Longbing Cao, University of Technology, Sydney, Australia
Huaifeng Zhang, University of Technology, Sydney, Australia
Chenggi Zhang, University of Technology, Sydney, Australia

We have presented a survey of popular data clustering approaches, including both classic methods and
recent advanced algorithms. The basic ideas of the approaches have been introduced and their charac-
teristics analyzed. The techniques are designed for different applications and for different types of data,
such as numerical data, categorical data, spatial data, text data and microarray data. The definitions of
clusters in the algorithms are not always the same, and most of them favor certain types of clusters,
such as sphere-shaped clusters, convex clusters and axis-parallel clusters. New definitions of clusters
and novel techniques for clustering keep emerging as data mining is applied in new applications and in
new fields.

Chapter LXI

C-MICRA: A Tool for Clustering MiCroarray Data.............cueerereereeereriesierieesesesiesee e 573
Emmanuel Udoh, Indiana University—Purdue University, USA
Salim Bhuiyan, Indiana University—Purdue University, USA

Microarray data are often large and cumbersome to handle manually. Several agorithms have been de-
veloped to harness these data sets. We provided a brief description of hierarchical and nonhierarchical
clustering methods, in addition to an implemented program C-MICRA. The authors are of the view that
microarray data can be handled more efficiently using distance-based methods as opposed to parametric
ones since the assumptions of parametric approaches have currently weak support. Finally, clustering
techniques are data reduction methods and can be effective in detecting relevant genetic markers in
microarray data.

Chapter LXII
Deep Web: Databases 0n the WEb.........ooiuiiiiiiiiiiiiii ettt 581
Denis Shestakov, Turku Centre of Computer Science, Finland

The following section provides background information on the non-indexable Web and web databases.
Though much research has emerged in recent years on querying web databases, thereis still agreat deal
of work to be done. The deep Web will require more effective access techniques since the traditional
crawl-and-index techniques, which have been quite successful for unstructured web pagesin the publicly
indexable Web, may not be appropriate for mostly structured data in the deep Web. Thus, a new field
of research combining methods and research efforts of database and information retrieval communities
may be created.

Chapter LXI11

Learning Classifiers from Distributed Data SOUICES ...cvveiieieeiieeiieiiesieseeseesee e s st sse e see e 589
Doina Caragea, Kansas State University, USA
Vasant Honavar, lowa State University, USA

In this entry, we have precisely formulated the problem of learning classifiers from distributed data and
described ageneral strategy for transforming standard machinelearning algorithmsthat assume central -
ized accessto datain a single location into algorithms for learning from distributed data. The resulting
algorithmsare provably exact in that the hypothesis constructed from distributed dataisidentical to that
obtained by the corresponding algorithm when it is used in the centralized setting. This ensuresthat the

entire body of theoretical (e.g., sample complexity, error bounds) and empirical results obtained in the
centralized setting carry over to the distributed setting.

Chapter LXIV
Differential Learning Expert System in Data Management............ooeoeirerineieieneseseeeeseseseeees 597
Manjunath R., Bangalore University, India

Expert systems have been applied to many areas of research to handle problems effectively. Designing
and implementing an expert system is a difficult job, and it usually takes experimentation and experi-
ence to achieve high performance. The important feature of an expert system is that it should be easy
to modify. They evolve gradually. This evolutionary or incremental development technique has to be
noticed as the dominant methodology in the expert-system area.

Chapter LXV
Machine Learning as a Commonsense REaSONING PrOCESSccccoviiiierieiieiieee e seeeesve s seesne s 605
Xenia Naidenova, Military Medical Academy, Russia

This chapter proposes an approach to ML problems based on the search for the best approximations of
a given classification on a given set of objects’ examples. This approach allows transforming the ML
tasks into the commonsense reasoning processes combining deductive reasoning based on four forms
of syllogisms and inductive reasoning based on the canons of induction of J.S. Mill.

Chapter LXVI

Machine Learning and Data Mining in BiOiNfOrMELICS.......cccceiveieriieniie e e e see e e see e 612
George Tzanis, Aristotle University of Thessaloniki, Greece
Christos Berberidis, Aristotle University of Thessaloniki, Greece
loannis Vlahavas, Aristotle University of Thessaloniki, Greece

Therecent technological advances, have led to an exponential growth of biological data. New questions
on these data have been generated. Scientists often have to use exploratory methods instead of confirm-
ing aready suspected hypotheses. Machine learning and data mining are two relative research areas
that aim to provide the analysts with novel, effective and efficient computational tools to overcome the
obstacles and constraints posed by the traditional statistical methods. Feature selection, normalization
of the data, visualization of the results and evaluation of the produced knowledge are equally important
steps in the knowledge discovery process. The mission of bioinformatics as a new and critical research
domainisto provide the tools and use them to extract accurate and reliable information in order to gain
new biological insights.

Chapter LXVII
Sequential Pattern Mining from Sequential Datal...........cccovvieeieneie e 622
Shigeaki Sakurai, Corporate Research & Development Center, Toshiba Corporation, Japan

Thischapter focuses on sequential interestingness, which isan evaluation criterion of sequential patterns
(Sakurai et al., 2008c¢). Also, this chapter focuses on 7 types of time constraints that are the background
knowledge corresponding to the interests of analysts (Sakurai et al., 2008a). Lastly, this chapter introduces
adiscovery method based on the sequential interestingness and the time constraints.

Chapter LXVIII

From Chinese Philosophy to Knowledge Discovery in Databases

A Case Study: SCIENtOMELTIC ANBIYSIS.......oiuiieieeeisiesiereee ettt nesr e 632
Pei Liu, Université du Sud Toulon Var, France
Eric Boutin, Université du Sud Toulon Var, France

In this paper, we will aim to find out a couple of authors who have never published together and who
bear similar academic interests or study similar subjects. We will also show how the concepts of Yuan
(Interdependent arising), Kong (Emptiness), Shi (Energy) and Guanxi (Relationship) in Chinese philoso-
phy contribute to understand ‘latent associations’. These four Chinese concepts are the theoretical basis
of this paper. By explaining one by one what each concept is about we hope to tackle the two following
questions: What do those four concepts exactly tell us? And how are they linked together? Finally, we
will look at the empirical case study in scientometrics. We hope to show that this application of Chinese
concepts can unravel latent associations between researchers in Database.

Section VI
Physical Issues

Chapter LXIX
An Overview on Signature File TEChNIQUESoviiiiiiee s 644
Yangjun Chen, University of Winnipeg, Canada

In this chapter, four methods for constructing signature files are described. They are the sequential
signature file, the bit-slice signature file, the S-tree and the signature tree. Among these methods, the
signature file has the simplest structure and is easy to maintain, but slow for information retrieval. In
contrast, the bit-sliced file and the S-tree are efficient for searching, but need more time for maintenance.
In addition, an S-tree needs much more space than a sequential signature file or a bit-slice file. The last
method, i.e., the signaturetree structure, improvesthe S-tree by using less spacefor storage and lesstime
for searching. Finally, as an important application, the signatures can be integrated into the top-down
tree inclusion strategy to speed up the evaluation of containment queries. This can also be considered
as a quite different way to organize a signature file.

Chapter LXX
On the Query Evaluation in XML Databasesccccvuerreererineeneniseseeseseseessesresessee s 655
Yangjun Chen, University of Winnipeg, Canada

In this chapter, a new algorithm is proposed for a kind of tree matching, the so-called twig pattern match-
ing. Thisisacoreoperation for XML query processing. Themainideaof theagorithmisto explore both
T and Q bottom-up, by which each node g in Q is associated with a value (denoted 8(q)) to indicate a
nodevin T, which hasachild node v’ such that T[v'] contains Q[q]. In thisway, the tree embedding can
be checked very efficiently. In addition, by using the tree encoding, as well as the subsumption check-
ing mechanism, we are able to minimize the size of the lists of the matching query nodes associated
with the nodesin T to reduce the space overhead. The algorithm runsin O(|T|Q,) time and O(T,_Q,.)
space, where T, and Q,_, represent the numbers of the leaf nodesin T and in Q, respectively. More
importantly, no costly join operation is necessary.

Chapter L XXI
XML DOCUMENE CIUSLENTING ...veveeteeiesie ettt sttt e e s tesreesaetesbeesaeseesteeneeneesaesreeneensenneas 665
Andrea Tagarelli, University of Calabria, Italy

We reviewed the problem of clustering XML documents and related research work from different per-
spectives, namely, the representation models, the kind of information used to extract document features,
and the tasks. We then motivated the role of semantic relatedness in the context of the classification of
XML collections and presented our approach to the problem of clustering semantically related XML
documents. Semantic integration and classification of XML data will be one of the most challenging
problems for database researchers in semistructured data management to tackle in the near future.

Chapter LXXII

INAICES TN XIML Dal@haSES........eiveiieeieeieeieeiese sttt te sttt etestesne e e stesteeneeneesaeeneeneensens 674
Hadj Mahboubi, University of Lyon (ERIC Lyon 2), France
Jérdme Darmont, University of Lyon (ERIC Lyon 2), France

Theaim of thischapter isto present an overview of state-of-the-art XML indices and to discussthe main
issues, trade-offs, and future trends in XML indexing. Furthermore, since XML is gaining importance
for representing business data for analytics (Beyer, Chamberlin, Colby, Ozcan, Pirahesh & Xu, 2005),
we also present an index we developed specifically for XML data warehouses.

Chapter LXXI11

Integrative Information Systems Architecture: Document & Content Management..............ccccveee.... 682
Len Asprey, Practical Information Management Solutions Pty Ltd, Australia
Rolf Green, OneView Pty Ltd, Australia
Michael Middleton, Queensland University of Technology, Australia

This chapter discusses the benefits of managing business documents and Web content within the context
of anintegrativeinformation systemsarchitecture. Thisarchitectureincorporates database management,
document and Web content management, integrated scanning/imaging, workflow and capabilities for
integration with other technologies.

Chapter LXXIV

Index and Materialized View Selection in Data Warehousescccoveeeeviieiicciee e 693
Kamel Aouiche, Université de Québec a Montréal, Canada
Jérdme Darmont, University of Lyon (ERIC Lyon 2), France

Theaim of thisarticleisto present an overview of the major families of state-of-the-art index and materi-
alized view selection methods, and to discusstheissues and future trendsin data warehouse performance
optimization. We particularly focus on data-mining-based heuristics we developed to reduce the selection
problem complexity and target the most pertinent candidate indexes and materialized views.

Chapter LXXV
Synopsis Data Structures for Representing, Querying, and Mining Data Streamscccoveeerineenns 701
Alfredo Cuzzocrea, University of Calabria, Italy

A plethora of synopsis techniques for data streams has been proposed during the last years, each of
them focused on capturing specialized characteristics of the stream under constraints of different nature
(e.g., space bound, low query error, accuracy of answers, etc.). According to these considerations, this
article has provided an overview of state-of-the-art techniques for representing, querying, and mining
data streams, thus posing the basis for further research in this field.

Chapter LXXVI

GR-OLAP: Online Analytical Processing of Grid Monitoring Informationcccceevvevveiescvennee. 716
Julien Gossa, LIRISHNSA Lyon, France
Sandro Bimonte, LIRIS-NSA Lyon, France

This chapter is organized as follows. First, we introduce concepts of DW, OLAP, and Grids, and we
discuss recent advances in Grid monitoring as well as the needs and usage of the Grid users. Then we
present our conceptual and implementation solutions. Finally, we discuss our main contribution and
point out the future works.

Chapter LXXVII

A Pagination Method for Indexesin Metric Databases...........ccoeveeinineiencese s 728
Ana Valeria Villegas, Universidad Nacional de San Luis, Argentina
Carina Mabel Ruano, Universidad Nacional de San Luis, Argentina
Norma Edith Herrera, Universidad Nacional de San Luis, Argentina

We begin presenting a brief explanation of indexes on secondary storage. After that, we introduce our
proposal in detail and give an application example. Finally, the conclusions are presented.

Chapter LXXVIII

SWIFT: A Distributed Real Time Commit ProtOCOL......uiiciiiiiuiiiieii et 737
Udai Shanker, M. M. M. Eng. College, India
Manoj Misra, 11T Roorkee, India
Anil K. Sarje, I1T Roorkee, India

Many applications such as military tracking, medical monitoring, stock arbitrage system, network manage-
ment, aircraft control, factory automation etc. that depend heavily on database technol ogy for the proper
storage and retrieval of datalocated at different remote sites have certain timing constraints associated
with them. Such applications introduce the need for distributed real time database systems (DRTDBS)
[Ramamritham, 1993]. The implementation of DRTDBS is difficult due to the conflicting requirements
of maintaining data consistency and meeting distributed transaction’s deadlines. The difficulty comes
from the unpredictability of the transactions' response times [Huang, 1991]. Due to distributed nature
of the transactions and in presence of other sources of unpredictability such as data access conflicts,
uneven distribution of transactions over the sites, variable local CPU scheduling time, communication
delay, failure of coordinator and cohort’s sites etc., it is not easy to meet the deadline of all transactions
in DRTDBS [Kao & Garcia — Monila, 1995]. The unpredictability in the commitment phase makes it
more serious because the blocking time of the waiting cohorts due to execute-commit conflict may be-
come longer. Hence, due to unique characteristics of the committing transactions and unpredictability
in the commitment process, design of an efficient commit protocol is an important issue that affects the
performance of DRTDBS [Shanker, Misra & Sarje, 2006d].

Chapter LXXIX

MECP: A Memory Efficient Real Time Commit Protocolccceiieiieiiiiiiiieiieseeseeeeeeee e 744
Udai Shanker, M. M. M. Eng. College, India
Manoj Misra, |1 T Roorkee, India
Anil K. Sarje, 11T Roorkee, India

Here, a new distributed real time commit protocol (MECP)has been presented that uses a new locking
scheme. The new locking scheme ensures that a borrower can’t be a lender simultaneously at the same
site and the same data can not be used by another borrower simultaneously as compared to PROMPT and
2SC, where there is a need for checking this. It not only optimizes the storage cost but also considers
blind and update type writes collectively for DRTDBS. The simulation results show that the protocol
performs better than PROM PT and 2SC commit protocols. It iswell suited to dataintensive applications
where transaction arrival rate is high and the sizes of transactions are large.

Chapter LXXX

Self-Tuning Database Management SYSLEMScoiieieiririerereeeee s 753
Camilo Porto Nunes, Federal University of Campina Grande, Brasil
Claudio de Souza Baptista, Federal University of Campina Grande, Brasil
Marcus Costa Sampaio, Federal University of Campina Grande, Brasil

This chapter addresses the issue of self-tuning DBMS. In the remainder of the chapter we present a
background on this topic, followed by a discussion focusing on performance, indexing and memory
issues. Then, we highlight future trends and conclude the chapter.

Chapter LXXXI
A Survey of Approachesto Database REPIICALION ..o 762
F. D. Mufoz-Escoi, Universidad Politécnica de Valencia, Spain
H. Decker, Universidad Politécnica de Valencia, Spain
J. E. Armendariz, Universidad Politécnica de Valencia, Spain
J. R. Gonzalez de Mendivil, Universidad Politécnica de Valencia, Spain

Database replication had commonly used lazy protocols in commercia DBMSs, ensuring thus good
performance, but without guaranteeing full replicaconsistency. Thismay lead to some transaction losses
in case of failure. To overcome these problems, eager replication protocols with group communication
support have been proposed in the last decade. The use of total order broadcast protocols has allowed
the development of new kinds of eager replication: weak-voting and certification-based techniques. Such
solutions are able to ensure one-copy serializability with a performance similar to lazy protocols, with
better (although still limited) scalability and lower abort rates. However, these solutions are not applied
to commercia database management systems, yet.

Chapter LXXXII
A Novel Crash Recovery Scheme for Distributed Real-Time Databases.........cocevvveceeveiesiecee e 769
Yingyuan Xiao, Tianjin University of Technology, China

This chapter presents a real-time dynamic crash recovery scheme (RTDCRS) suitable for a DRTM-
MDBS on the basis of considering carefully the timing constraint characteristics of dataand transaction.
The rest of the chapter is organized as follows: Section 3 first analyzes the recovery requirements of
a DRTMMDBS and then gives the recovery correctness criteria suitable for a DRTMMDBS. In Sec-
tion 4, we propose an RTDCRS and prove its correctness. Section 5 gives performance evaluation of
aRTDCRS. In Section 6, we conclude the proposed RTDCRS. Finally, in Section 7, we discuss future
and emerging trends.

Chapter LXXXIII

QUETICA] Data NETWOIKS ... uvieiuiieiitieiiteecitee e etee e etee ettt eete e et e e et e e ebeeeebeeeeaseesabeesabeeebeesbeeebeeesareesareennrens 788
Cyrus Shahabi, University of Southern California, USA
Farnoush Banaei-Kashani, University of Southern California, USA

This chapter is organized in two parts. In the first part, we provide an overview, where we (1) define and
characterize QDNs as a new family of data networks with common characteristics and applications, and
(2) review possible database-like architectures for QDNs as query processing systems and enumerate the
most important QDN design principles. In the second part of the article, as the first step toward realizing
the vision of QDNs as complex distributed query-processing systems, we focus on a specific problem,
namely the problem of effective data location (or search) for efficient query processing in QDNs. We
briefly explain two parallel approaches, both based on techniques/models borrowed from the complex
system theory, to address this problem.

Chapter LXXXIV
On the Implementation of a Logic Language for NP Search and Optimization Problems................. 798
Sergio Greco, University of Calabria, Italy
Cristian Malinaro, University of Calabria, Italy
Irina Trubitsyna, University of Calabria, Italy
Ester Zumpano, University of Calabria, Italy

NP search and optimization problems can be formulated as DATAL OG queries under nondeterministic
stable-model semantics. In order to enable asimpler and more intuitive formulation of these problems,
the NP Datal og language, allowing search and optimization queries to be expressed using only simple
forms of unstratified negations, has been proposed. This entry has presented the implementation of the
language, which is based on the transl ation of NP Datalog queriesinto OPL programsthat are eval uated
by meansof the ILOG OPL Studio. Thisapproach combines an easy formulation of problems, expressed
by means of a declarative logic language and an efficient execution of the ILOG solver.

Chapter LXXXV
A Query-Strategy-Focused Taxonomy of P2P IR TeChNIiquescccceeeveriririeeienisiseeseseseeee e 805
Alfredo Cuzzocrea, University of Calabria, Italy

In this article we provide ataxonomy of state-of-the-art P2P IR techniques, which emphasize the query
strategy used to retrieve information and knowledge from peers, and put in evidence similarities and
differences among the investigated techniques. This taxonomy helps us to keep track of the large number
of proposals that have come up in the last years, and to support future research in this leading area.

Chapter LXXXVI

Pervasive and Ubiquitous Computing Databases: Critical Issues and Challenges...........cccceeveeeneee. 818
Michael Zoumboulakis, University of London, UK
George Roussos, University of London, UK

Pervasive and ubiquitous computing offers the promise of pervasive information and communications
infrastructures that provide their services whenever required while at the same time taking into account
the particular context of the user. Pervasive and ubiquitous computing al so blursthe boundaries between
the physical and the virtual worlds through sensing and actuation technologies. To realize this vision,
developmentsin several technical areas are required and database management systems have a critical
role to play in supporting pervasive and ubiquitous computing services.

Chapter LXXXVII
Business-t0-Business (B2B) INTEQraliON..........coeeiririieieeeieses e 828
Christoph Bussler, Merced Systems, Inc.

Business-to-business (B2B) Integration is absolutely essential for businesses and organizations to not
only stay competitive but also keep or even gain market share. Furthermore, the trend is going towards
connecting all enterprises electronically for the benefit of the enterprises as well as customers. Once all
business are connected all business interactions can be implemented as business messages making the
interactions as efficient as possible.

Chapter LXXXVIII
Enterprise Application INtegration (EAT) ...t 837
Christoph Bussler, Merced Systems, Inc.

Enterprise application integration (EAI) technology is essentia for enterprises with more than one
back end application system. Current EAI technology is fairly expressive being able to handle most of
the integration tasks. Newer developments like Web Services (Web Services 2004) and Semantic Web
Services (WSMO 2004) (OWL-S 2007) will significantly improve the situation by introducing semantic
descriptions making integration more reliable and dependable.

Chapter LXXXIX
The Role of Rhetoric in Localization and Off ShOINGcoviuiiieiiieiicce e 844
Kirk S.Amant, East Carolina University, USA

Globalization is increasingly integrating the world's economies and societies. Now, products created
in one nation are often marketed to a range of international consumers. Similarly, the rapid diffusion
of online media has facilitated cross-border interactions on social and professional levels. Differing
cultural expectations, however, can cause miscommunicationswithin this discourse paradigm. Localiza-
tion—customizing a communiqué to meet cultural expectations—has thus become an important aspect
of today’s global economy. This essay examines localization in offshoring practices that could affect
database creation and maintenance.

Chapter XC
Adaptive XML-to-Relational Storage Strat@gi€s.........ccoveiueiieeieieiie ettt 852
Irena Mlynkova, Charles University, Czech Republic

The aim of this text is to provide an overview of existing XML-to-relational storage strategies. We will
overview their historical development and provide a more detailed discussion of the currently most
promising ones—the adaptive methods. Finally, we will outline possible future directions.

Chapter XCI
Innovative Access and Query Schemes for Mobile Databases and Data Warehousesccc...... 860
Alfredo Cuzzocrea, University of Calabria, Italy

As highlighted throughout the paper, access and query functionalities represent critical bottlenecks
for data-intensive mobile applications and systems, since these functionalities are in turn exploited by
intelligent information processing techniques in order to provide support for even complex knowledge
extraction activities against mobile databases and data warehouses. From this evidence, it is a matter to
note that the issue of efficiently accessing and querying mobile data will rapidly conquest the research
scene during next years. In this respect, topics presented and discussed in this article can be reasonable
considered as a significant contribution to this line of research, as well as a starting point for further
research in this field.

Chapter XClI|

Full-Text Manipulation iN DatalasesS...........ccouiiiiirieiee e 872
Las26 Kovacs, University of Miskolc, Hungary
Domonkos Tikk, Budapest University of Technology and Economics, Hungary

Theinformation is stored on the web and on computers mostly in full-text format. The current databases
are able to store and manage huge document collection. Full-text data sources require specific search
operations. Database management systems usually contain a separate full-text search engineto perform
full-text search primitives. In general, the current FTS engines support the following functionalities:
stemming, synonym and thesaurus based matching, fuzzy matching and Boolean operators. It has been
shown that the average user requires additional help to exploit the benefits of these extra operators. Cur-
rent research focuses on solving the problem of covering new document formats, adapting the query to
the user’s behavior, and providing an efficient FTS engine implementation.

Chapter XCIlI

Bind but Dynamic Technique: The Ultimate Protection Against SQL Injectionscc.covvrvereeriene. 880
Ahmad Hammoud, Lebanese American University, Lebanon
Ramz A. Haraty, Lebanese American University, Lebanon

Most Web developers underestimate the risk and the level of damage that might be caused when Web
applications are vulnerable to SQL (structured query language) injections. Unfortunately, Web applica-
tions with such vulnerability constitute a large part of today’s Web application landscape. This article
aims at highlighting the risk of SQL injection attacks and provides an efficient solution.

xlviii

Preface

Database technologies have a rich history of relevant developments immersed in a continuous evolu-
tion and consolidation process. Even more, during the last decades, they have evolved in such a way
that almost all main software applications and modern information systems have a database as a core
component. Theinformation stored is usually accessed and manipulated by many application programs
to perform business processes. In this sense, databases in any organization have provoked a profound
impact and significant endeavors in their operability, and business assessments.

Moreover, data are one of the most valuable assets of any organization and the design of database
applications is a factor of vital influence regarding the efficiency and manageability of their information
systems. The extraordinary growth and widespread application of databases hasreached avast diversity
of users with their own fields of development, their particular application requirements, and their own
technological needs. In recent years, these facts have promoted the appearance of new interdisciplinary
investigationareas. Itisworthy of mention distributed real -timesystems, dataintegration based on ontol o-
gies, collaborative software development, databases on the Web, spatio-temporal databases, multimedia
databases, new scopes of database programming languages, and the appearance of new characteristics
related to data quality, indexing and reengineering, among others.

A database management systems (DBMS) contributes to these objectives by providing data persis-
tence, efficient access and data integrity. By isolating the conceptual schema from the implementation
schema, database systems guarantee data independence from storage techniques and offer Standard Query
Language (SQL) which is the query language per excellence. In addition, by means of the management
of users and their privileges, the DBMS can provide safe control access to data. While the control of
concurrent access to data is managed through different protocols of transaction scheduling and varied
locking techniques, backups and database recovery strategies allow database recovering after hardware
or software failures. These capabilities—among others—have opened wide research fields exciting chal-
lenges, and major technological and conceptual changes in many features through their evolution.

The “Handbook of Research on Innovations in Database Technologies and Applications: Current
and Future Trends” provides a new and comprehensive knowledge compendium on databases. This
handbook pulls together many relevant issues that researchers and practitioners have investigated, pro-
posed or observed to solve diverse real-world problems with the help of databases, and provides awide
compilation of references to topics in the field of database systems and applications.

Since knowledge about databases and their entire environment has become an essential part of any
education in computer science and the main subject of many research groupsat universitiesand institutes
all over the world, this handbook is an ideal source of knowledge for students, researchers, programmers,
and database developers who may need speedy and reliable information, and authoritative references
to current database areas, latest technologies and their practical applications. This handbook provides
many articles offering coverage and definitions of the most important issues, basic concepts, trends, and

xlix

technologies in database field along with some papers presenting a theoretical foundation of relevant
topics in such field.

This handbook is intended for a wide range of readers including computing students having basic
knowledge on databases; teachers in charge of introductory and advanced courses on databases; research-
ers interested in specific areas related to their research, and practitioners facing database implementation
choices. Curious and inexperienced readers will also find in this handbook many interesting articles,
opening the gate to an invaluable knowledge about databases principles and novel applications. Expe-
rienced teachers will find a comprehensive compendium of teaching resources. The main endeavor of
this handbook has been to grant access to essential core material for education, research and practice
on database systems.

The handbook is composed by 93 articles from authoritative database researchers, focusing on
object-oriented applications, multimedia data storing and management; also, on new fields of applica-
tions such as geospatial and temporal information systems, data warehousing and data mining, design
methodol ogi es, database languages and distributed databases, among other topics. Emerging areas that
are becoming particularly mature are also faced. They include the integration of DBMSs into the World
Wide Web; the effective support to the decision-making process in an organizational environment; the
information visualization and the high performance database systems.

This “Handbook of Research on Innovations in Database Technologies and Applications. Current
and Future Trends’ is a collaborative effort addressing the endeavors that raise the increasing need of
improving the storage of information, the adaptation or adherence of conceptual modeling and design
to newer paradigms, and the development of advanced applications related to the Internet, e-commerce,
datawarehousing and data mining. Leading specialists in each area; researchers with a vast experience
on the topics covered by this volume; expertsin the development of database systems in organizational
environments,; and teachers with accumul ated experience teaching graduate and undergraduate courses
have contributed with valuable chapters on their fields of expertise.

This handbook has been built as a compilation of papers with a quasi-standardized structure. Many
articles may be included into more than one group, but the arrangement was made taking into account
their main area. Interested readers will be able to compose their own groups by gathering articleswhich
share keywords or term definitions. It differs from the typical databases books in that it offers a quite
balanced treatment of the most relevant characteristics, languages and definitions of the core terms in
each subject. Many articles offer an analytical approach so that the concepts presented can serve asthe
basis for the specification of future systems. Many articles have plenty of examples to show readers
how to apply that material.

On the other hand, each article offers a profuse set of recommended references to current and settled
literature on each topic. The “Handbook of Research on Innovations in Database Technologies and
Applications; Current and Future Trends’ presents a sound grounding in the foundations of database
technology and the state of the art; also, it covers other areas which are under exceptional devel opment
and spreading. Thus, the articles in this volume include a list with the key terms and concepts relevant
to each topic along with their definitions. We have to thank our authors for the careful selection of terms
they have made.

Section I: Conceptual Modeling
This first section groups a set of articles dealing with relevant topics related to conceptual modeling,

current and traditional models, formal specifications, new paradigms and data warehousing. Among
other subjects, this section includes original work on the entity relational model, completeness of the

information, capture of requirements for data warehousing, symbolic objects, temporary data, post-re-
lational data models and data reengineering.

Sikha Bagui is the author of “Mapping Generalizations and Specializations and Categories to
Relational Databases’. This paper discusses the implementation of generalizations and specializations
in relational databases, along with the application of the concept of inheritance, in the context of the
extended entity relationship (EER) model.

In “Bounded Cardinality and Symmetric Relationships’, Norman Pendegraft gives an overview on
bounded cardinality and its links with symmetric relationships, highlighting some of the problems they
present, and discussing their implementation in arelational database.

The article A Paraconsistent Relational Data Model” by Navin Viswanath and Rajshekhar Sunder-
raman deals with the Closed World Assumption and the Open World Assumption. The first assumption
is based on the completeness of the information stored in the database. Consequently, if afactisnot in
the database, then its negation is true; under the second assumption, such negation should be explicitly
stored to becometrue; otherwise nothing can be said about it. Thisarticleintroduces adatamodel which
isageneralization of the relational data model: “ The Paraconsistent Relational Data Model”.

The paper “Managing Temporal Data” by Abdullah Uz Tansel reviews the issues in modeling and
designing temporal databases based on the relational datamodel. Also, it addresses attribute time stamp-
ing and tuple time stamping techniques.

Richard C. Millham contributedwithanarticleentitled” Data Reengineering of Legacy Systems”, which
provides an overview on the transformation of legacy data from a sequential file system to a relational
database, outlining the methods used in data reengineering to transform the program logic that access
the database using wide spectrum language (WSL) as the intermediate representation of programs.

The three following articles have been authored by Elzbieta Malinowski. These contributions are
tightly coupled as they deal with the MultiDim model which is a conceptual multidimensional model
used for representing data requirements for data warehousing (DW) and on line analysis processing
(OLAP) applications. Thearticle* Different Kinds of Hierarchiesin Multidimensional Models” describes
the MultiDim model, showing its abilities to denote fact relationships, measures, dimensions, and hier-
archies, for which novel classification is provided. Malinowski considers that DWs and OLAP can use
relational storage, and presents how hierarchies can be mapped to therelational model. In* Spatial Data
in Multidimensional Conceptual Models’, additional characteristics of the MultiDim conceptual model
are explored. It is extended providing spatial support for different elements such as levels and other
measures. These characteristicsare explored in the context of aplatform-independent conceptual model.
Finally in “ Requirement Specification and Conceptual Modeling for Data Warehouses”, Malinowski
presents a proposal to cope with the lack of a methodological framework to guide developers through the
different stages of the data warehouse design process. This proposal refers to the requirements specifica-
tion and conceptual modeling phases for data warehouses design unifying already existing approaches
by giving an overall perspective of the different alternatives available to designers.

In “Principles on Symbolic Data Analysis’, Héctor Oscar Nigro and Sandra Elizabeth Gonzalez
Cisaro revise the history, sources and fields of influence of Symbolic Data, providing formal definitions
and semantics applied to such novel concept. They discuss how to handle null values, internal variations
and rules using the symbolic data analysis approach which is based on the symbolic object model.

Six contributions written by different authors address the field of database evolution. Luiz Camolesi
Junior and Marina Teresa Pires Vieira coauthored the article “Database Engineering Supporting the
Data Evolution”. Their contribution surveys on database evolution as a vast subject under constant dis-
cussion and innovation, focusing on the evolutionary process, and the different waysin which it can be
approached. Regarding that schema evolution is a key research topic with an extensive literature built

up over the years, the article summarizes why database evolution itself becomes hard to manage, and
describes some proposed approaches to manage the evolution of a schemafor awide range of types of
databases. Another approach for the evolution of databases can be found in “Versioning Approach for
Database Evolution”, written by Hassina Bounif, who analyzes versioning-based courses of action taking
into account that the versioning principles can be applied universally to many different forms of data.
The next four articles are framed into two main approaches. Schema Evolution approach and Schema
Versioning approach. The following two are authored by Vincenzo Deufemia, Giuseppe Polese, and
Mario Vacca. The first article, “Evolutionary Database: State of the Art and Issues’ the authorsfocuson
therecent introduction of evolutionary database methodol ogieswhich broaden the schemaevolution and
versioning problems to a wider vision highlighting new and more challenging research problems. The
second one has been entitled “Interrogative Agents for Data Modeling” and examines the problem of
evolutionary data modeling process. The authors present the characteristics of this subject in the frame
of the agent paradigm, as the evolutionary data modeling can be seen as a process in active databases
ableto change their beliefs and structure. Moreover, following the agent-oriented software engineering
(AOSE) view, the authors show that the use of tools and techniques from artificial intelligence (AI) can
help to face the problem of developing supporting tools to automate evolutionary data modeling. The
other two papers address schemaevol ution model sin the context of datawarehouses. “ Schema Evolution
Models and Languages for Multidimensional Data Warehouses’ coauthored by Edgard Benitez-Guer-
rero and Ericka-Janet Rechy-Ramirez provides a deep analysis of both approaches reviewing recent
research results on the subject, while the article “ A Survey of Data Warehouse Model Evolution” written
by Cécile Favre, Fadila Bentayeb and Omar Boussaid compares both approaches using three different
criteria: functionality, deployment and performance.

“Document Versioningand XML inDigital Libraries’ by M. MercedesMartinez-Gonzél ez, isdevoted
to digital libraries. The author analyzes the issues related to document versioning and main existing ap-
proaches, together with their prosand cons. Also, shediscusseshow digital librariesmirror thetraditional
library and how they provide more services than those available in paper document libraries.

In the framework of the model-driven development (MDD) approach, Harith T. Al-Jumaily, Dolores
Cuadra and Paloma Martinez contributed with the article “MDD Approach for Maintaining Integrity
Constraintsin Databases’. The authors analize the semantic losses produced when logical elementsare
not coincident with conceptual elements—with especial emphasis on multiplicity constraints—and how
to fix them, proposing a trigger system as the maintaining mechanism.

Pierre F. Tiako in his article entitled “Artifacts for Collaborative Software Development” provides
an overview on collaborative software devel opment analyzing modeling processes, and also, environ-
ment artifacts involved.

Other contributions dealing with Conceptual Modeling aspects can be found in the section Logical
Modeling (Section I1): “Horizontal Data Partitioning: Past, Present and Future” by Ladjel Bellatreche
and Database Reverse Engineering by Jean-Luc Hainaut, Jean Henrard, Didier Roland, Jean-Marc Hick
and Vincent Englebert and in the section Ontologies (Section V): “Ontologies Application to Knowledge
Discovery Processin Databases’ by Héctor Oscar Nigro and SandraEli zabeth Gonzélez Cisaro and“ On-
tology-Based Semantic Models for Databases’, by Laszlé Kovacs, Péter Barabas and Tibor Répasi.

Section II: Logical Modeling
For several decades, data modeling has been an aspect of the database world that has received many

contributions from researchers and also important feedback from practitioners. Subjects as data modeling
evolution, versioning, reverse engineering, and the impact of novel applications have driven research-

ers and practitioners to revisit well-established approaches to address the challenges such subjects are
raising. This section contains valuable contributions focusing on such aspects.

In“Object-Relational Modeling”, Jaroslav Zendulka shows how an object-relational database schema
can be modeled in Unified Modeling Language (UML). Firstly, the author clarifies the fact that UML
contains no direct support: neither for capturing important features of relational databases nor for specific
features of object-relational databases. Regarding the fact that such features are necessary for modeling
data stored in arelational database and objects stored in an object-relational database at design levels
subsequent to the conceptual one, the author describes an extension of UML which adds the ability to
model effectively and intelligibly such features in this kind of databases.

“Concept-Oriented Model” by Alexandr Savinov reviews concept-oriented model (CoM), anoriginal
approach to data modeling he has recently introduced. Its major goal consistsin providing simple and
effective meansfor the representation and manipul ation of multidimensional and hierarchical datawhile
retaining the possibility to model the way datais physically represented.

From atutorial perspective, in the article “ Database Reverse Engineering”, Jean-Luc Hainaut, Jean
Henrard, Didier Roland, Jean-Marc Hick and Vincent Englebert describe the problems that arise when
trying to rebuild the documentation of alegacy database as long as the methods, techniques and tools
that may be used to solve these problems.

“Imprecise Functional Dependencies’ isapaper coauthored by Vincenzo Deufemia, Giuseppe Polese
and Mario Vacca that overviews imprecise functional dependencies and provides a critical discussion
of the dependencies applicable to fuzzy and multimedia data.

Thearticle”Horizontal Data Partitioning: Past, Present and Future’ by Ladjel Bellatrecheisdevoted
tothe analysisof theissues of horizontal data partition, the process of splitting access objectsinto sets of
disjoint rows. This analysis ranges from the former utilizations —logically designing databases efficiently
accessed- to the recent applications in the context of distributed environments and data warehouses.

Two contributions authored by Francisco A. C. Pinheiro are devoted to analyze the interaction of
novel applications of database systems and the improvement of technologies and paradigms. The ar-
ticle “ Database Support for Workflow Management Systems” provides an interesting overview on the
relationships between database technologies and workflow issues. In this regard, the author addresses
the discussion on how advances on databases as a supporting technology may be applied to build more
useful workflow applications and how workflow application needs may drive the improvement of da-
tabase technologies. On the other hand, the article “Politically Oriented Database Applications’ deals
with how technology pervades every aspect of modern life, having an impact on the democratic life of
anation and frequently, being an object of dispute and negotiation. These facts affect the way politics
is done, by shaping new forms of planning and performing political actions. Applications used in or
related to politics are information intensive, making databases a prime element in building politically
oriented applications. Inthisarticle, FranciscoA. C. Pinheiro discusses some aspects of database related
technology necessary for this kind of applications.

Facing the need to integrate information efficiently, organizations have implemented enterprise
resource planning (ERP) systems. Much of the value of these ERP systems resides in their integrated
database and its associated data warehouse. Unfortunately, a significant portion of the value is lost if the
database is not a semantic representation of the organization. Taking into account such negative aspect,
Cheryl L. Dunn, Gregory J. Gerard, and Severin V. Grabski have coauthored the article “Semantically
Modeled Databases in Integrated Enterprise Information Systems’ focusing on the resources-events-
agents (REA) ontology.

“The Linkcell Construct and Location-Aware Query Processing for Location-Referent Transactions
in Mobile Business” contributed by James E. Wyse, describes location-qualified business information

for the provision of location-based mobile business. This information —contained in alocations reposi-
tory— and its management —performed by alocations server— are the focal concerns of this article.

Hagen Hopfner is the author of “ Caching, Hoarding, and Replication in Client/Server Information
Systems with Mobile Clients”. This paper presents a complete set of exact definitions of the caching,
hoarding and replication techniques for handling redundant data in information systems with mobile
clientsinrelation to the level of autonomy of mobile devices/users. Furthermore, the author explainsthe
terms cache replacement, cacheinvalidation, cache maintenance, automated hoarding, and synchroniza-
tion of replicated data.

Section lll: Spatial and Temporal Databases

Databases handling temporal, spatial or both types of dataare becoming more and more frequently used
every day. Temporal data contains some references, attributes, or structures where time playsarole; the
same happens with spatial data. The integration of factual with temporal and / or spatial datato be able
to handle geographical information systems (GIS), location based services, all kind of mapping services
or weather services require a profound understanding of the special needs such integration demands.
This section contains several specialized contributions related to these matters.

Two contributionswritten by the sameauthors, deal withthe processing of spatial temporal databases.
The first one, “Spatio-Temporal Indexing Techniques” by Michael Vassilakopoulos and Antonio Cor-
ral, surveys the indexing of moving points and other spatio-temporal information, considering recent
research results and possible research trends within this area of raising importance. The second one,
“Query Processing in Spatial Databases” by Antonio Corral and Michael Vassilakopoulos specifically
focuses on spatial query processing.

KhaoulaMahmoudi and Sami Faiz in* Automatic Data Enrichment in GISThrough Condensate Tex-
tual Information” propose amodular approach to enrich data stored in ageographic database (GDB), by
extracting knowledge from on-line textual documents corpora. This is accomplished by using a distributed
multi-document summarization. A refinement step to improve the results of the summarization process
based on thematic delimitation, theme identification, delegation and text filtering is also proposed.

From a tutorial perspective, Maria Kontaki, Apostolos N. Papadopoulos and Yannis Manolopoulos in
their article” Smilarity Searchin Times Series’ introduce the most important i ssuesconcerning similarity
search in static and streaming time series databases, presenting fundamental concepts and techniques.

“Internet Map Services and Weather Data”, a contribution by Maurie Caitlin Kelly, Bernd J. Haupt
and Ryan E. Baxter, provides abrief overview of the evolution and system architecture of internet map
services (IMS), identifying some challenges related to the implementation of such service. The authors
provide an example of how IMS have been developed using real-time weather data from the National
Digital Forecast Database (NDFD).

The two following contributions address subjects related to spatial network databases. The first
one, “Spatial Network Databases” by Michael Vassilakopoulos reviews the motivation behind the de-
velopment of techniques for the management of spatial networks and their fundamental concepts. Ad-
ditionally, the author reports the most representative and recent research efforts and discusses possible
future research. The second one “ Supporting Location-Based Services in Spatial Network Databases’,
contributed by Xuegang Huang, summarizes existing efforts from the database community to support
location-based services (LBSs) in spatial networks, focusing the discussion on the data models, data
structures, and query processing techniques.The author considers a prototype service that finds the k
nearest neighbors to a mobile user in the network.

Laura Diaz, Carlos Granell, and Michael Gould focus on the interoperability problem from a syn-
tactic point of view. In their article “ Spatial Data Integration Over the Web”, they propose the use of

liv

interface standards as a key to spatial data integration over the Web. For that purpose, they report on the
Geography Markup Language (GML) standard that provides spatial services with common data models
for spatial data access and interchange of representation between spatial and non-spatial data with an
XML-based format.

Other contributionsdealing with Spatial and Temporal Databases aspects can befound inthe section
Conceptual Modeling (Section 1): “Managing Temporal Data” by Abdullah Uz Tansel, in the section
Ontologies (Section V). “Mediation and Ontology-Based Framework for Interoperability” by Leonid
Stoimenov and in the section Physical | ssues (Section VII): “Querical Data Networks’ by Cyrus Sha
habi and Farnoush Banaei-Kashani.

Section IV: Database Integrity

Database integrity is known to be important from the earliest days in the database history. At first glance,
it could be said that database implementations have traded data redundancy or access flexibility to the
data stored by new integrity requirements. When such flexibility reaches distributed databases or context
aware applications, the integrity management needsto beincreased again. It may be also true that future
paradigms will raise new integrity issues. Several contributions related to integrity constraint checking,
fault tolerant integrity control, and severa points of views on data quality are included in this section.

In“Improving Constraints Checking in Distributed Databases with Complete, Sufficient, and Support
Tests”, Ali Amer Alwan, Hamidah Ibrahim and Nur [zura Udzir analyze the performance of the checking
processin adistributed environment when various types of integrity tests are considered. Authors select
the most suitable test for each situation in terms of the amount of data transferred across the network
and the number of sites involved during the process of checking the constraints.

The paper “ Inconsistency-Tolerant Integrity Checking” by Hendrik Decker and Davide Martinenghi
highlights the fact that integrity checking is practically unfeasible for significant amounts of stored data
without a dedicated approach to optimize the process. The authors give afresh perspective by showing
that if the simplified form of an integrity theory is satisfied then, each instance of each constraint that
has been satisfied in the old state continues to be satisfied in the updated state even if the old database
isnot fully consistent. They rightfully call this approach “inconsistency-tolerant”.

“Merging, Repairing, and Querying Inconsistent Databases’, the article contributed by Luciano
Caroprese and Ester Zumpano, introduces a framework for merging, repairing and querying inconsistent
databases, investigating the problem of the satisfaction of integrity constraints implemented and main-
tained in commercial DBMS in the presence of null values. The authors al so establish anew semantics
for constraints satisfaction.

“The Challenges of Checking Integrity Constraints in Centralized, Distributed and Parallel Data-
bases’ by Hamidah Ibrahim surveys on the vital problem of guaranteeing database consistency, high-
lighting several factors and issues as regards preventing semantic errors made by the users due to their
carelessness or lack of knowledge.

The following two contributions examine quality of data issues. The first one “Data Quality Assess-
ment” by Juliusz L. Kulikowski, tackles the basic problems of data quality assessment, assuming that
for high information processing systems’ effectiveness high quality of dataisathe main requirement. In
“Measuring Data Quality in Context”, the authors Gunesan Shankaranarayanan and Adir Even propose
a framework to assess data quality within specific usage contexts linking it to data utility. The utility of
data is conceived by these authors as a measure of the value associated with data within specific usage
contexts.

Two related contributions sharing a couple of authors are devoted to data integrity in Geographical
Information Systems. The first one, “Geometric Quality in Geographic Information” by José Francisco

Zelasco, Gaspar Porta and José L uis Fernandez Ausinaga proposes a method to eval uate the geometric
integrity of digital elevation models (DEM) obtained by different techniques. In the second one, “ Geo-
metric Qualityin Geographic Information |FSARDEM Control”, José Francisco Zel asco, Judith Donayo,
KevinEnnisand José L uisFernandez Ausinagaconsider Interferometry SAR (IFSAR) techniquesandthe
stochastic hypotheses that are specific according to the particular geometry involved in this technique.

“Querying and Integrating P2P Deductive Databases’ contributed by Luciano Caroprese, Sergio
Greco and Ester Zumpano considers the integration of information and the computation of queriesin
an open-ended network of distributed peers. This proposal is based on a change in the perception of
inconsistent peers, accepting data answering queries from those peers if it comes from the consistent
part of the peer.

Other contributions dealing with Database | ntegrity aspects can be found in the section Conceptual
Modeling (Section 1): “Bounded Cardinality and Symmetric Relationships’ by Norman Pendegraft,
“MDD Approach for Maintaining Integrity Constraintsin Databases’ by Harith T. Al-Jumaily, Dolores
Cuadra and Paloma Martinez and “ A Paraconsistent Relational Data Model” by Navin Viswanath and
Rajshekhar Sunderraman and in the section Ontologies (Section V): “Inconsistency, Logic Databases
and Ontologies’ co-authored by JoséA. Alonso-Jiménez, Joaquin Borrego-Diaz and AntoniaM . Chavez-
Gonzélez.

Section V: Ontologies

Interaction between the fields of ontologies and databases may be produced in several ways. Ontologies
may be used or required to understand the context of the future database applications being the founda-
tion of the database schema. A database may be used as a repository for large ontologies. Ontologies
may be also used to ease the integration of heterogeneous and distributed databases. This section holds
articles dealing with different interactions between ontology and databases.

The article “Using Semantic Web Tools for Ontologies Construction” by Gian Piero Zarri describes
the proper characteristics of the ontological approach that support the Semantic Web, differentiating it
from the ‘classical’ approach of the construction of ontologies based on a methodology of the ‘frame’
type and on the use of tools in the ‘standard’ Protégé style.

In “Matching Relational Schemata to Semantic Web Ontologies’, Polyxeni Katsiouli, Petros Pa-
papanagiotou, Vassileios Tsetsos, Christos Anagnostopoulos and Stathes Hadjiefthymiades propose a
methodology for schema matching and present a tool called RonTo (Relational to ONTOIlogy). This
tool deals with the semantic mapping between the elements of arelational schemato the elements of an
ontological schema, in the context of data migration.

“Ontology-Based Semantic Models for Databases’ by Laszl6 Kovacs, Péter Barabas and Tibor
Répasi shows and explains the importance and the role of ontologiesin design processes, regarding the
recognition that ontologies have achieved as the description formalism for knowledge representation.

“Inconsistency, Logic Databases, and Ontologies’ is an article co-authored by José A. Alonso-Ji-
ménez, Joaguin Borrego-Diaz, and Antonia M. Chavez-Gonzalez. The authors base their contribution
on the fact that to work with very large databases makes certain techniques for inconsistency handling
not applicable. They discuss how in the semantic web future trends must study verification techniques
based on a sound and limited testing, aided by a powerful automated theorem prover. These techniques
need a deep analysis of the behavior of automated theorem provers having great autonomy because a
slanted behavior may produce deficient reports about inconsistencies in the knowledge database (KDB).
For these authors, the most promising research line in this field is the design and development of tools
that alow explaining the source of anomalies detected in ontologies.

Ivi

Thefollowing four articlesfocusonthefact that geographical information systems(GIS) areincreas-
ingly moving away from monolithic systems towards the integration of heterogeneous and distributed
information systems. This interoperability problem forces to deal with a diversity of data sets, data
modeling concepts, dataencoding techniquesand storage structures. Furthermore, aproblem of semantic
heterogeneity arises. different data sets usually have discrepancy in the terms they use. Software sys-
tems do not have “common sense” —as humans do- to deal with these discrepancies. Software systems
usually do not have any knowledge about the world, leading to serious conflicts while discovering and
interpretating data. “ Data I ntegration: Introducing Semantics’ isatutorial article contributed by [smael
Navas-Delgado and José F. Aldana-Montes in which the reader will find a simple description of the
basic characteristics of the data integration systems and areview of the most important systemsin this
area (traditional and ontology-based), along with a table highlighting the differences between them.
Two contributions written by the same authors also address the issues related to data integration from
atutorial point of view. Both articles are devoted to the use of ontologies in the integration process,
noting the advantages they bring to such process. The first article “Overview of Ontology-Driven Data
Integration” by Agustina Buccella and Algjandra Cechich deals with a wider perspective considering
genera purpose Database Systems, whilein the second article “ Current Approaches and Future Trends
of Ontology-Driven Geographic Integration” the focus is on geographic data. Two main problems are
addressed in this case. The first one is how to combine the geographical information available in two
or more geographical information systemswith different structures, and the second oneis related to the
differencesin the points of views and vocabularies used in each geographical information system.

Leonid Stoimenov, author of “Mediation and Ontology-Based Framework for Interoperability”
considers the interoperability problem in the context of geographical information systems (GIS). In his
article, Stoimenov introduces a common interoperability kernel called ORHIDEA (ontology-resolved
hybrid integration of data in e-applications) consisting of three key components: semantic mediators,
trandators/wrappers, and a shared server.

In*“OntologiesApplicationto Knowledge Discovery Processin Databases’ , the authors Héctor Oscar
Nigro and Sandra Elizabeth Gonzalez Cisaro discuss the application of ontologiesin KDD, and propose
ageneral ontology-based model, which includes al discovery steps.

Other contribution dealing with Ontologies aspects can be found in Physical 1ssues (Section VII):
“Full-Text Manipulation in Databases”, by Laszl6 Kovacs and Domonkos Tikk.

Section VI: Data Mining

As data analysis techniques must process large amounts of data efficiently, special attention has been paid
to new trends such as. eval uation techniques, safeguard of sensitive information and cluster techniques.
Data mining is an interdisciplinary area of research, having its roots in databases, machine learning,
and statistics. Several entries reporting many research efforts and main results in this field can be read
in this section.

Edgard Benitez-Guerrero and Omar Nieva-Garciadescribe the problemsinvolved inthe design of an
inductive query language and its associated eval uation techniques, and present some solutions to such
problemsintheir article” Expression and Processing of InductiveQueries’. They a so present acase study
based on their proposal of an extension to SQL for extracting decision rules of the form if <conditions>
then <class> to classify uncategorized data, and associated relational-like operators.

“Privacy Preserving Data Mining” (PPDM), an article contributed by Alexandre Evfimievski and
Tyrone Grandison, reviews PPDM as the area of data mining that seeks safeguarding sensitive informa-
tion from unsolicited or unsanctioned disclosure.

Ivii

In “Mining Frequent Closed Itemsets for Association Rules’, Anamika Gupta, Shikha Gupta, and
Naveen Kumar discuss the importance of mining frequent closed itemsets (FCI) instead of frequent
itemsets (FI) in association rule discovery procedure, and explain different approaches and techniques
for mining FCI in datasets.

“Smilarity Retrieval and Cluster AnalysisUsing R*-Trees’ contributed by Jiaxiong Pi, Yong Shi, and
Zhengxin Chen examines time series dataindexed through R*-Trees. The authors also study the issues
of retrieval of datasimilar to a given query, and the clustering of the data based on similarity.

The paper entitled “ Outlying Subspace Detection for High-dimensional Data” by Ji Zhang, Qigang
Gao, and Hai Wang, gives an overview on the detection of objects that are considerably dissimilar, ex-
ceptional and inconsistent with respect to the majority of the recordsin an input database (outliers) and
their outlying subspaces, i.e. subspaces in high-dimensional datasets in which they are embedded.

Two other contributions address data clustering issues. Clustering is one of the most important tech-
niques in data mining. It is atool to discover similar objects into different groups or non-overlapping
clusters so that the data in each group shares commonality, often proximity, according to some defined
distance measure. “ Data Clustering” by Yanchang Zhao, L ongbing Cao, Huaifeng Zhang, and Chengqi
Zhang provides awider view on the clustering problem presenting a survey of popular approaches for
data clustering, including well-known clustering techniques, such as partitioning clustering, hierarchical
clustering, density-based clustering and grid-based clustering; also recent advances, such as subspace
clustering, text clustering and data stream clustering. The second contribution by Emmanuel Udoh and
Salim Bhuiyan * C-MICRA: A Tool for Clustering Microarray Data”, focuses on clustering as an impor-
tant unsupervised method in the exploration of expression patterns in gene data arrays.

“Deep Web: Databases on the Web”, authored by Denis Shestakov makes valuable background
information on the non-indexable Web and web databases available, surveying on the recent concept
of Deep Web.

DoinaCarageaand Vasant Honavar havecontributedthearticle” Learning Classifiers from Distributed
Data Sources” whose purpose is to precisely define the problem of learning classifiers from distributed
dataand summarize recent advances that have led to asolution to this problem. They describe ageneral
strategy to transform standard machine learning algorithms—that assume centralized access to data in
a single location—into algorithms to learn from distributed data.

Thearticle” Differential Learning Expert Systemin Data Management” by Manjunath R. is devoted
to problems related to knowledge acquisition for expert systems, and the analysis of plausible solutions
for some of them. In this sense, the author exposes that a system using a rule-based expert system with
an integrated connectionist network could benefit from the advantages of connectionist systems, regard-
ing that machine-learning helps towards knowledge acquisition. The article presents a system based on
rule-based expert system with neural networks which are able to perform a “learning from example”
approach to extract rules from large data sets.

“Machine Learning as a Commonsense Reasoning Process’ written by Xenia Naidenova concen-
trates on one of the most important tasks in database technology which is to combine the activities of
inferring knowledge from data (data mining) and reasoning on acquired knowledge (query processing).
The article includes a proposal of a unified model of commonsense reasoning, and also a demonstration
showing that alarge class of inductive machine learning (ML) algorithms can be transformed into the
commonsense reasoning processes based on well-known deduction and induction logical rules.

“Machine Learning and Data Mining in Bioinformatics’ is a contribution coauthored by George
Tzanis, Christos Berberidis, and loannis Vlahavas. In this article, the authors review the exponential
growth of biological data and the new questions these data have originated, due to recent technologi-
cal advances. In particular, they focus on the mission of bioinformatics as a new and critical research

Iviii

domain, which must provide the tools and use them to extract accurate and reliable information in order
to gain new biological insights.

The contribution “Sequential Pattern Mining from Sequential Data” overviews sequential pattern
discovery methods from discrete sequential data. Its author, Shigeaki Sakurai, focuses on sequential
interestingness, whichisan eval uation criterion of sequential patterns, highlighting that thereare 7 types
of time constraints that are the background knowledge related to the interests of analysts.

The field of scientometrics has been looking at the identification of co-authorship through network
mapping. In asimilar context, the paper entitled “From Chinese Philosophy to Knowledge Discovery
in Databases. A Case Sudy: Scientometric Analysis’ by Pei Liu explores the latent association of two
authors, i.e. the collaboration between two researchers which has not yet occurred but might take place
in the future. The author also shows how the concepts of Yuan (Interdependent arising), Kong (Empti-
ness), Shi (Energy) and Guanxi (Relationship) in Chinese philosophy contribute to understand ‘latent
associations', bringing in this way an original approach which could be applicable to the database
research community.

Other contributions dealing with Data Mining, data warehousing and knowledge acquisition aspects
can befoundinthesection Conceptual Modeling (Section 1): “ Schema Evol ution Model sand Languages
for Multidimensional Data Warehouses” by Edgard Benitez-Guerrero, Ericka-Janet Rechy-Ramirez, “A
Survey of Data Warehouse Model Evolution” by Cécile Favre, Fadila Bentayeb and Omar Boussaid,
“Principles on Symbolic Data Analysis’ by Héctor Oscar Nigro and Sandra Elizabeth Gonzélez Cisaro
and three articles “Different Kinds of Hierarchiesin Multidimensional Models’, “ Spatial Data in Mul-
tidimensional Conceptual Models’ and “ Requirement Specification and Conceptual Modeling for Data
Warehouses” by Elzbieta Malinowski, in the section Spatial and Temporal Databases (Section I11):
“ Automatic Data Enrichment in GI SThrough Condensate Textual Information” by KhaoulaMahmoudi,
and Sami Faiz, “Smilarity Search in Times Series” by Maria Kontaki, Apostolos N. Papadopoulos and
Yannis Manolopoulos and “Current Approaches and Future Trends of Ontology-Driven Geographic
Integration” by Agustina Buccellaand Alejandra Cechich, in the section Ontologies (Section V): “On-
tologies Application to Knowl edge Discovery Processin Databases’ by Héctor Oscar Nigro and Sandra
Elizabeth Gonzdlez Cisaro and in the section Physical |ssues (Section VII): “Index and Materialized
View Selection in Data Warehouses’ by Kamel Aouiche and Jérbme Darmont, “Full-Text Manipula-
tionin Databases” by Laszl6 Kovacs and Domonkos Tikk “Synopsis Data Structures for Representing,
Querying, and Mining Data Streams” and “ Innovative Access and Query Schemesfor Mobile Databases
and Data Warehouses’ both by Alfredo Cuzzocrea.

Section VII: Physical Issues

Theincreasing number of database paradigms, database applications, types of data stored and database
storing techniques leads to several new physical issues regarding storage requirements, information
retrieval and query processing. New indexing techniques, document clustering, materialized views,
commit protocols, datareplications and crash recovery issues are partial but important answersto these
concerns, among many others. This section contains several research reports and tutorials on the state
of art of physical issues.

In“An Overview on Sgnature File Techniques’, Yangjun Chen presents an overview on recent rel-
evant research results on information retrieval, mainly on the creation of database indexes which can be
searched efficiently for the data under seeking. The focus of this article is on signature techniques.

The following contributions deal with efficiency on XML Databases. The article by Yangjun Chen,
“On the Query Evaluation in XML Databases”, presents a new and efficient algorithm for XML query

lix

processing, reducing the time and space needed to satisfy queries. In the article “XML Document
Clustering”, Andrea Tagarelli provides a broad overview of the state-of-the-art and a guide to recent
advances and emerging challenges in the research field of clustering XML documents. Besides basic
similarities criteria based on structure of the document, the article focus is on the ability of clustering
XML documents without assuming the availability of predefined XML schemas. Finally, “Indicesin
XML Databases’, a contribution by Hadj Mahboubi and Jéréme Darmont presents an overview of state-
of-the-art XML indexes, discusses the main issues, tradeoffs and future trends in XML indexing and,
since XML is gaining importance for representing business data for analytics, it also presents an index
that the authors specifically developed for XML data warehouses.

Inthearticle “XML Document Clustering”, Andrea Tagarelli provides abroad overview of the state-
of-the-art and a guide to recent advances and emerging challenges in the research field of clustering
XML documents. Besides basic similarities criteria based on structure of the document, the article focus
is on the ability of clustering XML documents without assuming the availability of predefined XML
schemas.

“Integrative Information Systems Architecture: Document & Content Management”, an article sub-
mitted by Len Asprey, Rolf Green, and Michael Middleton, overviews benefits of managing business
documents and Web content within the context of an integrative information systems architecture which
incorporates database management, document and Web content management, integrated scanning/imag-
ing, workflow and capabilities of integration with other technologies.

The contribution by Kamel Aouiche and Jér6me Darmont, “ Index and Materialized View Selectionin
Data Warehouses’, presents an overview of the major families of state-of-the-art index and materialized
view selection methods; discussestheissuesand future trendsin datawarehouse performance optimiza-
tion, and focuses on data mining-based heuristics to reduce the selection problem complexity.

“Synopsis Data Structures for Representing, Querying, and Mining Data Streams’, contributed by
Alfredo Cuzzocrea, providesan overview of state-of-the-art of synopsisdata structuresfor data streams,
making evident the benefits and limitations of each of them in efficiently supporting representation,
query, and mining tasks over data streams.

“GR-OLAP: On LineAnalytical Processing of GRid Monitoring Information”, the article contributed
by Julien Gossa and Sandro Bimonte deals with the problem of management of Grid networks. The
authors discuss recent advances in Grid monitoring, proposing the use of data warehousing and on line
analytical processing to mine Grid monitoring information to get knowledge about the Grid networks
characteristics.

“A Pagination Method for Indexes in Metric Databases’, a paper by Ana Villegas, Carina Ruano,
and Norma Herrera, proposes an original strategy for metric databases whose index and/or data do not
fit completely in the main memory. This strategy adapts the metric database regarding the capacity of
the main memory, instead of adapting the index to be efficiently handled in secondary memory.

“SWIFT: A Distributed Real Time Commit Protocol”, an article submitted by Udai Shanker, Manoj
Misra, and Anil K. Sarje, introduces a protocol to reduce the time to reach the commit in some specific
situations, in the context of distributed databases.

“MECP: A Memory Efficient Real Time Commit Protocol” , coauthored by Udai Shanker, Manoj Misra,
and Anil K. Sarje presents the problem of handling huge databases in the context of real time applica-
tions. In both situations, any saving in main memory usage becomes very important. In this article, the
design of adistributed commit protocol which optimizes memory usage is presented.

The article “ Self-Tuning Database Management Systems’ has been contributed by Camilo Porto
Nunes, Claudio de Souza Baptista, and Marcus Costa Sampaio and addresses the issue of self-tuning
DBMS, presenting a background on this topic followed by a discussion centered on performance, index-
ing and memory issues.

Thearticle® Database Replication Approaches” contributed by Francesc Muifioz-Escoi, Hendrik Decker,
Jos¢ Armendariz, and Jos¢ Gonzalez de Mendivil revise different approaches tackling the problem of
database replication management. The authors analyze new replication techniques that were introduced
for databases—as an evolution of the process replication approaches found in distributed systems.

“ANovel CrashRecovery Schemefor Distributed Real-TimeDatabases’, isacontribution by Yingyuan
Xiao that reports research results into the crash recovery strategy area for distributed real-time main
memory database systems (DRTMMDBS), including real-time logging scheme, local fuzzy checkpoint
and dynamic recovery processing strategy.

The article “Querical Data Networks” (QDN) by Cyrus Shahabi and Farnoush Banaei-Kashani
defines and characterizes QDNs as a new family of data networks with common characteristics and
applications. It also reviews possible database-like architectures for QDNs as query processing systems
and enumerates the most important QDN design principles. The authors also address the problem of
effective data location for efficient query processing in QDNss, as the first step toward comprehending
the vision of QDN as complex distributed query-processing systems.

“On the Implementation of a Logic Language for NP Search and Optimization Problems’ an article
by Sergio Greco, Cristian Molinaro, Irina Trubitsyna, and Ester Zumpano, presents the logic language
NP Datalog. It isarestricted version of DATALOG to formulate NP search and optimization problems
which admits only controlled forms of negation such as stratified negation, exclusive disjunction and
constraints and enables a ssimpler and intuitive formulation for search and optimization problems. In
this contribution, a solution based on the rewriting of logic programs into constraint programming is
proposed.

The article by Alfredo Cuzzocrea, “A Query-Strategy-Focused Taxonomy of P2P IR Techniques’,
presents a taxonomy of the state-of-the-art of peer-to-peer (P2P) systems-information retrieval (IR)
techniques, with emphasis on the query strategy used to retrieve information and knowledge from peers;
and shows similarities and differences among the techniques.

In their contribution “Pervasive and Ubiquitous Computing Databases: Critical Issues and Chal-
lenges”, the authors Michael Zoumboulakis and George Roussos offer a survey on the dual role that
databases have to play in Pervasive and Ubiquitous Computing. In the short-term, they need to provide
the mapping between physical and virtual entities and space in a highly distributed and heterogeneous
environment while in the long term database management systems need to provide the infrastructure
for the development of data-centric systems.

The following two contributions, written by the Christoph Bussler, deal with business integration.
The former “Business-to-Business (B2B) Integration” surveys on how B2B integration is absolutely
essential for business and organizations not only to stay competitive but also keep or even gain market
share. The latter “Enterprise Application Integration (EAI)” by the same author surveys on current
developments and critical issues of enterprise application integration (EAI) technologies, as they are
essential for enterprises with more than one back end application system.

In aworld in which globalization is increasingly integrating the economies and societies, products
created in one nation are often marketed to a range of international consumers. Cross-border interactions
on socia and professional levels have been facilitated by the rapid diffusion of online media, however,
different cultural expectati onscan cause miscommunication withinthisdiscourse paradigm. Localization
has thus become an important aspect of today’s global economy. “The Role of Rhetoric in Localization
and Offshoring”, a contribution by Kirk St.Amant, focuses on these issues, examining localization in
offshoring practices that could affect database creation and maintenance.

In* Adaptive XML-to-Relational Storage Strategies”, Irena Mlynkova provides an overview of exist-
ing XML-to-relational storage strategies. Thispaper examinestheir historical development and provides
a more detailed discussion of the currently most promising ones—the adaptive methods.

IXi

“Innovative Access and Query Schemes for Mobile Databases and Data Warehouses®” authored by
Alfredo Cuzzocrea presents a critical discussion on several aspects of mobile databases and data ware-
houses, along with a survey on state-of-the-art data-intensive mobile applications and systems. The
Hand-OLAP system, arelevant instance of mobile OLAP systems is also described.

The paper “ Full-Text Manipulationin Databases”, by Laszl6é Kovacs and Domonkos Tikk overviews
issues and problems related to full-text search (FTS). The authors' aim isto el ucidate about the needs of
users which usually require additional help to exploit the benefits of the functionalities of the FTS engines,
such as: stemming, synonym and thesaurus based matching, fuzzy matching and Boolean operators. They
also point out that current research focuses on solving the problem of covering new document formats,
adapting the query to the user’s behavior, and providing an efficient FTS engine implementation.

“Bind but Dynamic Technique: The Ultimate Protection Against SQL Injections’ a contribution by
Ahmad Hammoud and Ramzi A. Haraty, explores on the risk and the level of damage that might be
caused when web applications are vulnerable to SQL injections, and provides an efficient solution.

Other contributions dealing with Physical 1 ssues can be found in the section Conceptual Modeling
(Section 1): “Document Versioning and XML in digital libraries’ by M. Mercedes Martinez-Gonzalez,
in the section Spatial and Temporal Databases (Section 111): * Spatio-Temporal Indexing Techniques”
by Michael Vassilakopoulos and Antonio Corral and “Query processingin spatial databases’ by Antonio
Corral and Michael Vassilakopoulos, in the section Ontologies (Section V): “Mediation and Ontology-
Based Framework for Interoperability” by Leonid Stoimenov and “Smilarity Retrieval and Cluster
AnalysisUsing R*-Trees” by Jiaxiong Pi, Yong Shi, and Zhengxin Chen and in the section Data Mining
(Section VI): “Managing Temporal Data” by Abdullah Uz Tansel.

Summing up, this handbook offers an interesting set of articles about the state of the art of fundamental
database concepts and a unique compilation of chapters about new technol ogies, current research trends,
and challenging applications addressing the needs of present database and information systems.

Ixii

Acknowledgment

We would like to thank Mehdi Khosrow-Pour for this invaluable opportunity. The edition of this hand-
book has been an exiting experience. We would also like to acknowledge the IGI Global staff, mainly
to Jan Travers, Michelle Potter, JuliaMosemann, Kristin Roth, and Megan Childs, for their professional
guidance and continuous support.

We would like to thank each of the authors for their insights and valuable contributions to this hand-
book.

We also want to thank all of the people who helped us in the reviewing process of this handbook.
First of all, many thanks to the contributors who have done a significant job refereeing the articles from
their colleagues providing constructive and comprehensive comments, and also as editors, we would
like to specially acknowledge the help of all external reviewers involved in such process:

Liliana Favre, Universidad Nacional del Centro, Argentina

Marianadel Fresno, Universidad Nacional del Centro, Argentina

Laura Felice, Universidad Nacional del Centro, Argentina

Carmen Leonardi, Universidad Nacional del Centro, Argentina

Virginia Mauco, Universidad Nacional del Centro, Argentina

Marcela Ridao, Universidad Nacional del Centro, Argentina

Francesco Gullo, Universita della Calabria, Italy

Sergio Flesca, Universita della Calabria, Italy

Alexandros Nanopoulos, Aristotle University of Thessaloniki, Greece
Panos Vassiliadis, University of loannina Greece

Zaher Al Aghbari, University of Sharjah, UAE

Kanalugu Chandra Sekharaiah, JINTU College of Engineering, Kakinada, Andhra Pradesh, India
Y Uicel Saygin, Sabanci University, Turkey

Alban Gabillon, Laboratoire GePaSud, Université de la Polynésie Francaise, France
KarlaA. V. Borges, Prodabel Belo Horizonte, Brazl

Faruk Polat, Middle East Technical University Ankara, Turkey

Mario Cannataro, University “ Magna Graecia” of Catanzaro, Italy
Pierangelo Veltri, University “ Magna Grecia” of Catanzaro, Italy
Woojong Suh, College of Business Administration, Inha University, Korea
RedaAlhajj, University of Calgary, Canada

Esko Marjomaa, University of Joensuu, Finland

Lu Yan, Abo Akademi, Finland

Ixiii

Menzo Windhouwer, Theoretische Taalwetenschap (UvA), The Netherlands
Mathias Meixner, Thales-e-Transactions GmbH, Bad Herfeld, Germany
Antonio Badia, University of Louisville, USA

Richa Singh, West Virginia University, USA

Clodoveu Davis, Universidade Federal de Minas Gerais, Brazil

Nora Reyes, Universidad de San Luis, Argentina

José Hernandez Orallo, Universitat Politécnica de Valéncia, Spain
Mariadel Mar Roldan, Universidad de Malaga, Spain

Mohammad Dadashzadeh, Oakland University, USA

Hong Va Leong, Hong Kong Polytechnic University, Hong Kong

Andrea Rodriguez, Universidad de Concepcion, Chile

Alkis Simitsis, LABSHP, Intelligent Information Management Lab

Prasad M. Deshpande, University of Wisconsin, USA

Kjetil Nervag, Norwegian University of Science and Technology (NTNU), Norway
Boanerges Aleman-Meza, Polytechnic University of Victoria, Mexico
Mariano Cilia, Technische Universitat Darmstadt, Germany

Gladys Kaplan, Universidad Nacional de La Matanza, Argentina

Finally, the editors want to thank their colleagues, friends, and family for the encouragement and
company received during this endeavor.

Mviana E.Ferraggine, Jorge H. Doorn, and Laura C. Rivero
Tandil, Buenos Aires, Argentina
October 2008

Section |

Conceptual Modeling

Chapter |
Mapping Generalizations and
Specializations and Categories
to Relational Databases

Sikha Bagui
University of West Florida, USA

INTRODUCTION

An Entity Relationship (ER) model that includes
all the concepts of the original ER model and the
additional concepts of generalizations/specializa-
tions and categories is often referred to as the
Extended ER (EER) model (Elmasri & Navathe,
2007). With the rising complexity of database
applications, and also in light of today’s web data
applications (Necasky, 2006), the basic concepts
of the ER model, as originally developed by
Chen(1976), are no longer sufficient. Hence the
basic ER model has been extended to include
generalizations and specializations (Bagui &
Earp, 2003; Elmasri & Navathe, 2007), and the
concept of categories (Elmasri, et al., 1985). In
this short article we shed some light on these
relationship concepts, concepts that database
designers often find difficult to directly model

(Engels etal., 1992/93). We also discuss the map-
ping rules for generalizations/specializations and
categories. Importantcontributionsinthisareaare
also reported in (Elmasri et al., 1985; Gogolla &
Hohenstein, 1991; Markowitz & Shoshani, 1992;
Dey, et. al., 1999). Dullea, et. al. (2003) discusses
the structural validity of modeling structures
with ER models.

Due to the short nature of this paper, we will
keepthe discussioninthis paperfocused onimple-
menting generalizations and specializations in
relational databases; their parallel implementation
inobjectswill notbe covered. Also, the discussion
of the concept of inheritance will center around
generalizations/specializations and categories in
EER diagrams, without getting into an almost
equivalentnotion in Object-oriented (OO) theory,
ORM (Object-Role Modeling) and UML (Unified
Modeling Language) class diagrams.

Copyright © 2009, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

Mapping Generalizations and Specializations and Categories to Relational Databases

BACKGROUND

Aqgeneralization/specialization relationship mod-
els a superclass/subclass type of relationship. A
generalization is an abstraction mechanism that
allows for viewing of entity-setsasasingle generic
entity-set. The attributes and associations which
are common to the entity-sets are associated with
the generic (generalized) entity-set. The inverse
of generalization is called specialization.

GENERALIZATION /
SPECIALIZATION RELATIONSHIPS

If we are modeling a hospital database, for ex-
ample, and we want to store information about
the hospital’s nurses, technicians, and physician
assistants, we could create separate entities such
as NURSE, TECHNICIAN and PHYSICIAN
ASSISTANT. But, these three entities would
also have a lot of fields in common, for example,
name, social security number, address, phone,
etc. may be common to all three entities. So, it
would be a good idea to have an entity set called
EMPLOYEE containing these common fields,
and entity subsets, NURSE, TECHNICIAN and
PHYSICIAN ASSISTANT, that could inherit this
information from the EMPLOYEE entity set.
In this case the EMPLOYEE entity set would
be called the superclass. This superclass is a
generalization of the entity subsets, NURSE,
TECHNICIAN and PHYSICIAN ASSISTANT.
The NURSE, TECHNICIAN and PHYSICIAN
ASSISTANT would be called the subclasses. The
subclasses are specializations of the superclass,
EMPLOYEE, and inherit from the superclass.
Several specializations can be defined for the
same entity type (or superclass).

The subclass, denoted by a separate entity
rectangle in the EER diagram, is considered to be
a part of the superclass entity set, EMPLOYEE.
Although it will have attributes that distinguish
it from other subclasses, it is considered only a

subset of the EMPLOYEE entity set. That is,
all nurses are employees, but the reverse is not
true - not all employees are nurses. Likewise, all
technicians or physicianassistants are employees,
butall employees are not technicians or physician
assistants.

Figure 1 shows this generalization/special-
ization example. We use Elmasri and Navathe’s
(2007) diagrammatic notations for the EER dia-
grams. The subset symbol, “ — ”, indicates the di-
rection of the superclass/subclass or parent-child,
inheritance relationship. This superclass/subclass
relationship is also often referred to as a I1S-A or
IS-PART-OF relationship (Sanders, 1995).

Constraints on Generalization/
Specialization Relationships

Generalizations and specializations can have
two types of constraints: (i) the disjoint/overlap
relationship constraint, and, (ii) participation
constraints — total or partial. The combinations
of these constraints can be: (i) disjoint and total
participation; (ii) disjointand partial participation;
(iii) overlap and total participation; (iv) overlap
and partial participation. First we will discuss
disjoint/overlap relationship constraints and then
we will discuss participation constraints, giving
examples of combinations of the constraints
along the way.

Disjoint/Overlap Relationship
Constraints

Generalization/specialization relationships may
be disjoint or they may overlap. A disjoint rela-
tionship is shown by a “d” in the circle attaching
the superclass to the subclass or subclasses (as
shown in Figure 1). A disjoint relationship means
that an entity from the superclass can belong to
only one of the subclasses (can be of only one
specialization). Forexample, according to figure 1,
an EMPLOYEE can be at most a member of only
one of the subclasses—PHYSICIAN ASSISTANT,

Mapping Generalizations and Specializations and Categories to Relational Databases

Figure 1. A generalization/specialization relationship

Em

@

ployee

Partial
Participation

Disjoint
relationship

I

Physician Assistant

Nurse Technician

department

NURSE, or TECHNICIAN. An employee can-
not be a physician assistant as well as a nurse, or,
cannot be a nurse as well as a technician.

An overlap relationship is shown by an “0” in
the circle attaching the superclass to the subclass
or subclasses (as shown in Figure 4). Overlap
means that an entity from the superclass can be-
long to more than one subclass (specialization).
For example, according to Figure 4, a computer
must be either a laptop or a desktop, or both a
laptop and a desktop.

Participation Constraints

The second type of constraint on generaliza-
tion/specialization relationships is participation
constraints, which may be total (or full) or partial.
Asinthe ER model (Bagui & Earp, 2003; EImasri
& Navathe, 2007), we will show a full or total

participation between the superclass and subclass
entities by double lines, and a partial participa-
tion between the superclass and subclass entities
by single lines. Partial participation is shown in
Figure 1. Figure 1 can be read as:

An EMPLOYEE may either be a PHYSICIAN
ASSISTANT, NURSE or TECHNICIAN.

Figure 1showsadisjoint, partial participation
relationship. The “may” means partial participa-
tion between the EMPLOYEE superclass and
the respective subclasses entities. That is, not all
employees of the EMPLOYEE entity set belong
one ofthe subclasses, PHYSICIAN ASSISTANT,
NURSE or TECHNICIAN. One may ask, why?
Or how? To answer this, we will extend figure 1
to include another subclass, as shown in Figure 2.
We now have an Employee from the EMPLOY EE

Mapping Generalizations and Specializations and Categories to Relational Databases

Figure 2. A disjoint

Employee

/

Head Physician Assistant

Nurse Technician

entity set who may also belong to the HEAD
subclass. Once again, the “may” is inferred from
the single line between the superclass (or gener-
alization) entity, EMPLOYEE, and the subclass
(or specialization) entity, HEAD. Figure 2 can
be read as:

An Employee may be a HEAD or PHYSICIAN
ASSISTANT or NURSE or TECHNICIAN. Or, an
Employee may be botha HEAD and aPHSYCIAN
ASSISTANT, or both a HEAD and a NURSE, or
both a HEAD and a TECHNICIAN.

An example of total or full participation is
shown in Figure 3. We can read Figure 3 as:

An EMPLOYEE must either be a PHYSICIAN
ASSISTANT, NURSE or TECHNICIAN.

The “must” means total participation. So, an
EMPLOY EE must belong to one of the subclasses.
That is, all employees of the EMPLOYEE entity
set must belong to one of the subclasses. But
although there is total participation in Figure 3,
the employee cannot belong to more than one
subclass because of the “d” or disjoint relation-
ship. Figure 3 shows a disjoint, full participation

relationship and Figure 4 shows an overlap, full
participation relationship.

Mapping Generalizations and
Specializations to a Relational
Database

Rules to map generalizations/specializations to a
relational database depend on the constraints on
the generalization/specialization relationships.
One of the following four rules are generally used
(Elmsari & Navathe, 2007) to map generalizations
and specializations to a relational database:

Rule 1:

Rule 1 works well for total or partial general-
ization/specialization relationships as well as
disjoint or overlap generalization/specialization
relationships. Using this rule, we would create a
separate relation for the superclass as well as for
each of the subclasses.

For rule 1: (i) Create a relation for the su-
perclass entity. Include all the attributes of this
entity in this relation and underline the primary
key attribute.

Mapping Generalizations and Specializations and Categories to Relational Databases

Figure 3. A disjoint and full participation with predicate defined subclasses

address

Employee job_type

Fulll
Participation

Job Type

“Technician”

I

“Physician_Assistant”

Physician Assistant Nurse Technician

specialization department

Figure 4. An overlap and full participation

@ item _model_no

Computer

L

Laptop Desktop

@ @ fac_ssn ‘ @

Mapping Generalizations and Specializations and Categories to Relational Databases

(ii) Create aseparate relation for each subclass
(specialization) entity. Include the attributes of the
respective subclasses in the respective subclass
relations. Include the primary key from the su-
perclass entity or relation in the subclass relation
as the primary key of the subclass relation (and
underline it).

To illustrate this rule we will map Figure 1
as shown below:

EMPLOYEE

|m |fname | Iname |address | phone |

PHYSICIAN_ ASSISTANT

| ssn | specialization |
NURSE

| ssn | department |
TECHNICIAN

| ssn | work |
Rule 2:

Rule 2 works well if: (a) there is total or full
participation between the superclass and the sub-
classes. Thatis, if every member of the superclass
entity set belongs to at least one of the subclasses;
(b) if there is a disjoint relationship — otherwise
there will be redundancy if a superclass entity
belongs to more than one subclass; and, (c) when
there is more emphasis on the subclass (special-
ization) and it is more important to know about
the subclass and it’s attributes. By this rule we
create a separate relation for each subclass. In
this rule you do not have a separate relation for
the superclass entity.

For rule 2: Create a separate relation cor-
responding to each subclass entity. Include the
attributes of the respective subclasses in the
respective subclass relations. Also include the
primary key and other attributes of the superclass
entity in all the subclass relations. Underline the

primary key brought from the superclass entity
(to the subclass relation).

To illustrate this rule we will map figure 1 as
shown below (but we are assuming that Figure 1
has full participation—double lines—between the
EMPLOYEE superclass and the subclasses):

PHYSICIAN_ ASSISTANT

| ssn | specialization | fname | Iname | address | phone |

NURSE

| ssn | dept. | fname | Iname | address | phone |
TECHNICIAN

| ssn | work | fname | Iname address | phone |
Rule 3:

Rule 3workswell if: (a) there isadisjoint relation-
ship betweenthe superclass and subclasses. It will
create redundancy in the database if used with
overlap scenarios. And, (b) if the subclasses are
predicate defined (condition defined) or attribute
defined. A predicate defined subclass is where a
conditionis placed on the value of some attribute of
the superclass to determine the subclass. Figure 3
shows an example of a predicate defined subclass.
If, as shown in figure 3, the EMPLOYEE entity
has an additional attribute, JobType, and a condi-
tion is specified on the condition of membership
in the PHYSICIAN ASSISTANT subclass by the
condition (jobType="Physician_Assistant”), this
is a defining predicate of the subclass, PHYSI-
CIAN ASSISTANT. A predicate-defined subclass
is shown by writing the predicate condition next
to the arc that connects the subclass to the circle.
Also, the defining attribute name is placed on the
arc from the superclass to the circle. This rule
is not recommended when subclasses have too
many attributes (since this will cause too many
null values).

Forrule 3: Createasinglerelationthatincludes
the superclass and its attributes as well as the

Mapping Generalizations and Specializations and Categories to Relational Databases

EMPLOYEE

|m | fname | Iname | address | phone |jobtype | specialization | department | work |

subclasses and it’s attributes. For this rule, we
will map Figure 3 as shown below:

Rule 4:

Rule 4 works for both overlaps and disjoints, but
it works better for overlaps. With disjoints, this
rule will create null values when the entity isnota
member of a particular subclass. This rule is also
notrecommended when subclasses have too many
attributes (since thiswill also cause too many null
values). Ifsubclasses have few attributes, however,
this rule may be preferred to rule 1 or rule 2 since
it will eliminate the need for a relational join. In
thisrule, aflag is created for each superclass tuple
that belongs to a subclass.

Forrule 4: Createasinglerelationthatincludes
the attributes of the superclass and the attributes
of its subclasses. To illustrate this rule we will
map Figure 4 to the COMPUTER relation, as
shown at the bottom of this page.

CATEGORIES

The concept of categories extends the concepts
of generalization entity types and specialization
entity types even further. Categories are created
by grouping entity types (generalization entity
types or specialization entity types) by the roles
they may play withinrelationships. So, categories
can represent superclasses (generalization cat-
egories) or subclasses (specialization categories).

COMPUTER

Important contributions his this area have been
made by Elmasri, et. al. (1985), Gogolla, et. al.
(1991), Elmasri and Navathe (2007).

In Figure 5, the PAYOR could be inheriting
from the PRIMARY INSURANCE, PATIENT,
or OTHER RESPONSIBLE PARTY. The PRI-
MARY INSURANCE, PATIENT, and OTHER
RESPONSIBLE PARTY represent a superclass
(generalization category) of entity types. Each
of the entity types in this generalization or su-
perclass is a different entity type with different
keys, but they play a common role —the role of a
PAYOR. Here we would refer to the subclass (in
this case, PAYOR) as a category or union type of
two or more superclasses. Hence, a category is a
subclass of a union of two or more superclasses
thatare differententity types (EImasrietal., 1985;
Elmasri & Navathe, 2007) playing a common
role. A category is diagrammatically shown by
a “Ww” in the circle that attaches the category to
the superclasses, as shown in Figure 5. We can
read Figure 5 as:

A PAYOR may be a PRIMARY INSURANCE or
PATIENT or OTHER RESPONSIBLE PARTY.

Participation Constraints in
Categories

Justlike other subclasses, categories canalso have
total (or full) participation or partial participation.
Total participation means that the category holds
theunion of all entitiesinitssuperclasses. Thatis,

| item no | make | item_model no | Iflag | fac_name | weight | fac_ssn | dflag | building | room no |

Mapping Generalizations and Specializations and Categories to Relational Databases

Figure 5. A Category

(o) (o) (o
piname

Primary Insurance Patient Other Responsible Party
\%J/@
Payor

if there were full participation in figure 5 (double
lines running from the category, PAYOR, to the
circle with the “\U ”), then every entity of PRI-
MARY INSURANCE would existin PAYOR, and
every entity of PATIENT would existin PAYOR,
and every entity of OTHER RESPONSIBLE
PARTY would exist in PAYOR.

Partial participation means that a category
holds only a subset of the union of all entities in
its superclasses. That is, as shown in Figure 5,
every entity of PRIMARY INSURANCE does
notexistin PAYOR, and every entity of PATIENT
does not exist in PAYOR, and every entity of
OTHER RESPONSIBLE PARTY does not exist
inPAYOR. Once again, partial participation would
be shown by single lines from the category to the
circle with the “ U ”.

Mapping Categories

There are two rules to map categories: (EImasri
& Navathe, 2007):

Rule 5:

Rule 5 should be used when the superclasses have
different keys. For rule 5:

(i) Create a new relation to correspond to the
category.

(i1) Since the keys of each of the superclasses
are different, we cannot use any one of them
as the key for this new relation. So, we have
to specify a new key attribute (called a sur-
rogate key) to correspond to the category in
the new relation.

(iif) To be able to join the subclass with the
superclass/superclasses, include the sur-
rogate key attribute as the foreign key in
each superclass relation.

To illustrate rule 5, we will map Figure 5 as
shown below:

PRIMARY_ INSURANCE
| piname

| piaddress payorid

Mapping Generalizations and Specializations and Categories to Relational Databases

PATIENT ON_CAMPUS
| ssn | paddress | pname | payorid | | dormnu | bldg | supervisor |
OTHER RESPONSIBLE PARTY OFF CAMPUS
| ssn | relationship | name | address | payorid | | dorn;m | address | manager |
PAYOR Multiple Inheritance
payorid
In this paper we have given examples of how
subclasses inherit from superclasses. In reality
Rule 6: however, subclasses often inherit from more than
one superclass. This conceptisknownas multiple
The second rule used to map categories is used inheritance. Categories are also not necessarily
when the superclass entities have the same key. disjoint, so a given entity may be a member of
For example, we would map figure 6 as: several different categories. Duetothe brief nature
of this paper, we will not elaborate on the concept
DORM of multiple inheritance.
dormnu dname

Figure 6. Category where superclasses have the same key

Dorm

\

manager

On_Campus Off_Campus

Mapping Generalizations and Specializations and Categories to Relational Databases

FUTURE TRENDS

Due to the intuitive nature of the ER and EER
approach, and in the light of the next generation
of Web applications (Shanmugasundaram, et al.,
2000) which will depend on mature relational
database technology with respect to storage, re-
trieval and update (Ceri, et al., 2000; Kappel, et
al., 2001a; Kappel, et al., 2001b; Widom, 1999),
the ER and EER approach will be heavily used
in the future. Also, given the fact that most of
the Web data have a hierarchical structure with
classes and subclasses, the EER model can lend
itself somewhat more naturally to a conceptual
structure of web data. Hence we should see a rise
the use of the EER model in the future.

CONCLUSION

Databases are becoming increasingly complex
today. To deal with these complexities, it is be-
coming essential for database designers havetoan
understanding of the extended ER model, which
incorporates generalizations/specializations and
categories. In this paper we briefly presented
generalizations/specializations and categories
with the use of examples. We also presented
rules to map generalizations/specializations and
categories to a relational database.

REFERENCES

Bagui, S., & Earp, R. (2003). Database Design
Using Entity-Relationship Diagrams. Auerbach
Publications, Boca Raton, Florida: CRC Press.

Ceri, S., Fraternali, P., & Paraboschi, S. (2000).
XML: Current Developments and Future Chal-
lenges for the Database Community. Proceedings
of the 7" International Conference on Extending
Database Technology (EDBT), Springer, LNCS
1777, Konstanz.

10

Chen, P. P. (1976). The entity-relationship model:
Toward aunified view of data. ACM Transactions
of Database Systems, 1(1), 9-36.

Chen, P., Thalheim, B., & Wong, L. Y. (1999).
Future Directions of Conceptual Modeling. LNCS,
1565, 287.

Dey, D., Storey, V., & Barron, T., (1999). Improv-
ing Database Design through the Analysis of
Relationships. ACM Transactions on Database
Systems, 24(4), 453-486.

Dullea, J., Song, Li-Y., & Lamprou, 1. (2003). An
analysis of structural validity in entity-relation-
shipmodeling. Dataand Knowledge Engineering,
47(2), 167-205.

Elmasri, R., & Navathe, S. B. (2007). Funda-
mentals of Database Systems, 5th ed., Addison
Wesley.

Elmasri, R., Weeldreyer J., & Hevner, A. (1985).
The category concept: An extension to the En-
tity-Relationship model. Data and Knowledge
Engineering, 1, 75-116.

Engels, G., Gogolla, M., Hohenstein, U., Huls-
mann, K., Lohr-Richter, P., Saake, G., & Ehrich,
H-D. (1992/93). Conceptual Modeling of database
applications using an extended ER model. Data
and Knowledge Engineering 9, 157-204.

Gogolla, M., & Hohenstein, U. (1991). Towards a
Semantic View of an Extended Entity Relationship
Model. ACM Transactions on Database Systems,
16(3), 369-416.

Gogolla, M., Meyer, B., & Westerman, G. D.
(1991). Drafting Extended EntityRelationship
Schemas with QUEER. In T. J. Teorey, (Ed.),
Proc. 10th Int. Conf. on Entity-Relationship Ap-
proach, (pp. 561-585).

Kappel, G., Kapsammer, E., & Retschitzegger,
W. (2001a). Architectural Issues for Integrating
XML and Relational Database Systems — The
X-Ray Approach. Proceedings of the Workshop

Mapping Generalizations and Specializations and Categories to Relational Databases

on XML Technologies and Software Engineer-
ing, Toronto.

Kappel, G., Kapsammer, E., & Retschitzegger, W.
(2001b). XML and Relational Database Systems
— A Comparison of Concepts’. Proceedings of the
2" International Conference on Internet Comput-
ing (IC). CSREA Press, Las Vegas, USA.

Markowitz, V., & Shoshani, A. (1992). Repre-
senting Extended Entity-Relationship Structures
in Relational Databases: A Modular Approach.
ACM Transactions on Database Systems, 17(3),
423-464.

Necasky, M. (2006). Conceptual Modeling for
XML: A Survey. Proceedings of the DATESO
2006 Annual International Workshop on Data-
bases, Texts, Specifications, and Objects, Desna-
Cerna Ricka, Czech Republic.

Sanders, L. G. (1995). Data Modeling. Interna-
tional Thomson Publishing Company.

Shanmugasundaram, J., Shekita, E., Barr, R.,
Carey, M., Lindsay, B., Pirahesh, H., & Rein-
wald, B. (2001). Efficiently publishing relational
data as XML document. VLDB Journal 19(2-3),
133-154.

Widom, J. (1999). Data Management for XML
— Research Directions. IEEE Data Engineering
Bulletin. Special Issue on XML, 22(3), 44-52.

KEY TERMS

Category: A collection of objects or entities
that is a subset of the union of different entity
types; entities offering a similar role are grouped
into a category.

Entity sets or entity types: Similar entities
or objects with common properties are summa-
rized into entity sets or entity types; graphically
represented in rectangles.

Generalization: When entities have similar
basic attributes, they can be classified into a gen-
eralized entity type. Generalization isthe process
of finding commonalities between entities to be
able to abstract to a higher level entity set.

Inheritance: A subclass inherits all the at-
tributes of a superclass and all the relationships
that it (the superclass) participates in.

Specialization: A process of conceptual re-
finement to form specialized subclasses for entity
sets. An entity type can have several specializa-
tions or categories of specializations defined on
the basis of some distinguishing characteristics
of the entities in the superclass.

Subclass: Same as specialization; a meaning-
ful sub-grouping of entity-sets that needs to be
represented explicitely. These sub-groups are a
subset of the entities that belong to the entity set
from which they are derived.

Superclass: Same a generalization. A super-
class is the main set (entity) from which subsets
(sub-classes) are defined based on meaningful
criteria needed for a particular database.

11

12

Chapter Il
Bounded Cardinality and
Symmetric Relationships

Norman Pendegraft
University of Idaho, USA

INTRODUCTION

Bounded cardinality occurs when the cardinal-
ity of a relationship is within a specified range.
Bounded cardinality is closely linked to sym-
metric relationships. This article describes these
two notions, notes some of the problems they
present, and discusses their implementation in a
relational database.

BOUNDED CARDINALITY AND
SYMMETRIC RELATIONSHIPS

Bounded Cardinality

An entity relationship diagram (ERD) shows the
cardinality of each entity in a relationship. In an
ERD, minimum cardinalities can be either O or 1,
and maximum cardinalities can be 1 or infinity.
Bounded cardinality occurs when a relationship
between entities has cardinality within a specified
range. Problems displaying bounded cardinality
might include team rosters that must have ex-
actly 5, 9, 11, or some other number of players.

Figure 1 illustrates how UML (unified modeling
language) provides for modeling specified-range
relationships in a class diagram (Dennis, Wixom,
& Tegarden, 2005). ERD, as described by Chen
(1976), does not, although there are extensions
to the ERD model that do (Webre, 1981). The
SQL-92 standard provides for such constraints,
butmany relational database managementsystems
(RDBMSs) do not support these features, and
consequently do not allow for easy implementa-
tion of such a constraint (Lewis, Bernstein, &
Kifer, 2002).

Bounded cardinality presents some interesting
problems. For example, Boufares and Kraiem
(2001) point out that cardinality constraints may
result in conflicts. Figure 2 illustrates one of their
examples. In Figure 2, if we let e, be the number
of instances of entity E, and r, be the number of
instances of relationship R,, then we get the fol-
lowing constraints.

r1:el r1>e2
r,<e, r2>2e1

These lead in turn to el > e2 and e2 > 2 el.
Clearly these allow only the solution el = e2 =0,

Copyright © 2009, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

Bounded Cardinality and Symmetric Relationships

Figure 1. Specified range /bounded cardinality

n...

Individual Group

Figure 2. Inconsistent cardinality constraints

R1
N | |
El E2
0,1| | 2N
R2

that is, an empty database. Boufares and Benna-
ceur (2004) offer a mathematical programming
technique to detect inconsistent constraints.

Symmetric Relationships

Symmetric relationships require that if a relation-
ship R(x,y) holds for x and y in S, then R(y,X)
must also hold (Dean, 1966). For example, if
George is married to Martha, then Martha must
also be married to George. While these relations
are common, they may be difficult to model and
to implement in an RDBMS. In particular, there
is no way in an ERD to easily show a symmetric
relationship. The relational database model does
not provide for any way to impose a constraint
requiring that a relationship be symmetric.
Bounded cardinality also arises from symmetric
relationships. As Ross and Stoyanovich (2004, p.
913) note, there isa “natural isomorphism between
symmetric relationships among k entities and k-
element multi-sets.” Multisets may be represented
using bounded cardinality. In other words, a group
may also be viewed as a relationship amongst its
members. For example, a marriage may be viewed
as a group of size 2. SQL-2003 provides for a

Figure 3. A simple design for a marriage

—

Employee

multiset data type (Eisenberg, Melton, Kulkarni, &
Zemke, 2004). Similarly, a team roster represents a
symmetricrelationship. Suppose an athletic league
maintains a roster of players. Each player is on
one team, and each team must have from 5 to 10
players. In Figure 1 we would have n =5 and N
=10. Note that the business problem requires that
the relationship be symmetric: If Able is on ateam
with Baker and Charlie, then Baker must be on a
team with Able and Charlie as well.

Constraints

Businessrulesare generally imposed inadatabase
design via constraints. These constraints may
be implemented declaratively or procedurally.
Declarative constraints are created in the data-
base definition. An example is “NOT NULL” to
require thatan attribute have some value. Another
is “REFERENCES,” which imposes a referential
integrity constraint on a tuple.

Procedural constraints are imposed in the
logic of applications or in triggers. For example,
the procedure that allows us to record a marriage
could be designed so as to ensure that the data
entered would be symmetric. In contrast, a de-
clarative constraint would build that requirement
into the database itself and simply forbid entering
nonsymmetric data. Date (2000) points out that
declarative constraints are superior because they
relieve programmers of additional programming
tasks. Since the code would be more difficult to
write, test, and debug, there is a greater chance of
an error that will further introduce errors into the
data. Turker and Gertz (2001) point out that de-
clarative constraints are less costly to execute.

13

Example

Asasimple example of a symmetric relationship,
consider a personnel database that records mar-
riages, but only those between employees (see
Figure 3; Teorey, Yang, & Fry, 1986). Note that
the ERD cannot indicate that this is a symmetric
relationship.

SQL-92 Solution

SQL-92 provides for this problemusing a semantic
constraint that may be implemented as a subselec-
tionin a check constraint or as an assertion (Lewis
etal., 2002). Consider the table Person (personid
[PK], groupid, other data). The persontable could
include a constraint like the following.

CHECK (NOT EXISTS (

SELECT * FROM person WHERE groupid IS
NOT NULL

GROUP BY groupid

HAVING COUNT <>2))*

This restricts a person to at most one group
and a group to at most two persons. This con-
straint could also be implemented as an assertion.
Unfortunately, these features may not be widely
available. According to Tirker and Gertz (2001),
it was not available in any of the leading products
at the time of their paper.

Approaches in a Noncompliant
Environment

Now consider the problem faced by a designer
using an RDBMS that does not support these
features. In an environment that does not support
these features, other imperfect designs may be
attempted. Note that a marriage is a two-element
multiset. Note also that the obvious solution of
treating male and female employees differently
cannot be generalized to all groups, nor will it
work in all jurisdictions for marriages.

One solution is to record all of the data in each
record. This consumes extra storage space and

14

Bounded Cardinality and Symmetric Relationships

Table T. Ename | SpouseEname Data
John Abigail John’s data
Abigail John Abigail’s data
Martha George Martha’s data
George Martha George’s data
Table 2.
Ename | SpouseEname Data
Abigail John Abigail’s data
George Martha George’s data
Martha <null> Martha’s data
John <null> John’s data
Table 3.
Ename Data
Abigail | Abigail’s data
George | George’s data
Martha | Martha’s data
John John’s data
Table 4.
Marriage 1D Ename
Marriage 1 Abigail
Marriage 1 John
Marriage 2 George
Marriage 2 Martha

requires that updating logic impose the symmetry
requirement. Table 1 illustrates this design. Note
thatitdoes notimpose symmetry because itwould
permit George to be married to Martha, and Mar-
tha to be married to John, and John to be married
to Abigail, and so forth. We could not correctly
update the table by inserting (Abe, Mary) unless
we also inserted (Mary, Abe). Likewise, updates
and deletions must apply to two records.

An alternative illustrated in Table 2 is to store
the data in only one of the records. This reduces
storage space and update processing time. Note
thatisdoes not preventthe sort of “chain” marriage
noted above, so it still requires external logic to
enforce symmetry.

Bounded Cardinality and Symmetric Relationships

Italso complicates searches since two columns
must be searched to answer questions like “Who
is John’s spouse?” The SQL query

SELECT * FROM table2 WHERE ename =
‘John’ ;

will not find (Abigail, John) even though that
marriage satisfies the intent of the query. Instead,
we must search over the SpouseEname column
as well as Ename.

The design could be modeled by creating a
second table (Tables 3 and 4). Table 4 carries the
information regarding marriages. Now we must
ensure that updates on Table 4 are aware of the
symmetry. We also incur the cost of a join when
we want to find all of the data about a married
couple. This design enforces the symmetry by
creating a group of size 2, that is, a bounded
cardinality problem. Note that it has k = 2 1:1
relationships between the group entity and the
individual entity. While this design imposes the
constraint, it also imposes a computational cost
because the data in the original table can only be
recovered with a join. Other designs are possible,
but they suffer from similar problems.

Array Data Types

Some objectrelational database management sys-
tems offer an array data type that permits bounded
arrays to be stored in a singe column. However,
this solution creates normalization problems and
may also be difficult to search. The Oracle varray
(Oracle9i Application Developer’s Guide, n.d.;
PL/SQL User’s Guide and Reference, n.d.) is a
data type that permits an element of a table to be
an array. Varray does impose an upper bound on
the array, but elements of the array may not be
individually updated nor can they be individually
indexed.

FUTURE TRENDS

Calero, Ruiz, Baroni, Brito e Abreu, and Piattini
(2006) discuss the evolution and ontology of the
SQL standard (International Organization for
Standardization [ISO], 2003). Their discussion
leads one to hope to see full implementation of the
complete SQL features in commercial products.
Ross and Stoyanovich (2004) suggested that SQL
be extended to include a symmetric declarative
constraint. They describe data structures and
methods that would allow for the updating, que-
rying, and indexing of such structures. Given the
importance of such problems, it seems reason-
able to hope that such extensions to SQL will be
forthcoming.

CONCLUSION

Itappearsthat there are many theoretical advances
that are not readily available to practitioners.
Bounded cardinality has been widely studied,
yet is unmentioned in many popular database
textbooks. Perhaps this is so because the semantic
constraints are not available in some of the most
popular database products. Inany case, itis hoped
that this work will contribute to greater awareness
of these trends.

ACKNOWLEDGMENT

The author thanks two anonymous referees for
their helpful comments.

REFERENCES

Boufares, F., & Bennaceur, H. (2004). Consistency
problems in ER-schemas for database systems.
Information Sciences, 163, 263-274.

Boufares, F., & Kraiem, N. (2001). A new tool to
analyze ER-schemas. Proceedings of the Second
Asia-Pacific Conference on Quality Software (pp.
302-307).

15

Calero, C., Ruiz, F., Baroni, A., Brito e Abreu, F.,
& Piattini, M. (2006). An ontological approach
to describe the SQL:2003 object-relational fea-
tures. Computer Standards & Interfaces, 28(6),
695-713

Chen, P. P.-S. (1976). The entity-relationship
model: Toward a unified view of data. ACM
Transaction on Database Systems, 1(1), 9-36.

Date, C.J.(2000). Anintroduction to database sys-
tems (7" ed.). Reading, MA: Addison Wesley.

Dean, R. (1966). Elements of abstract algebra.
New York: Wiley.

Dennis, A., Wixom, B. H., & Tegarden, D. (2005).
Systems analysis and design with UML version
2.0 (2" ed.). Wiley.

Eisenberg, A., Melton, J., Kulkarni, K., & Zemke,
F. (2004). SQL:2003 has been published. ACM
SIGMOD Record, 33(1), 119-126.

International Organization for Standardization
(ISO). (2003). Database language SQL, ISO/IEC
9075.

Lewis, P. M., Bernstein, A., & Kifer, M. (2002).
Database transaction processing: An application
oriented approach. Boston: Addison Wesley.

Oracle9i application developer’s guide: Object-
relational features release 2 (9.2). (n.d.). Retrieved
from http://download-east.oracle.com/docs/
cd/B10501_01/appdev.920/a96594/adobjdes.
htm#441636

PL/SQL user’s guide and reference 10g release
1(10.1). (n.d.). Retrieved from http://download-
east.oracle.com/docs/cd/B14117_01/appdev.101/
b10807/05 colls.htm#i20446

Ross, K. A., & Stoyanovich, J. (2004). Symmetric
relations and cardinality-bounded multisets in
database systems. Proceedings of the 20" Inter-
national Conference on Very Large Databases,
Toronto, Ontario, Canada.

Teorey, T.J., Yang, D., & Fry,J. P.(1986). Alogical
design methodology for relational databases using

16

Bounded Cardinality and Symmetric Relationships

the extend entity-relationship model. Computing
Surveys, 18(2).

Tiirker, C., & Gertz, M. (2001). Semantic integrity
support in SQL:1999 and commercial (object-)
relational database management systems. The
VLDB Journal, 10, 241-269.

Webre, N.W. (1981). An extended entity-relation-
ship model. Proceedings of the Second Interna-
tional Conference on the Entity-Relationship Ap-
proach to Information Modeling and Analysis.

KEY TERMS

Bounded Cardinality: A specific finite up-
per and/or lower bound on the cardinality of a
relationship between entities.

Cardinality: The number of instances of an
entity associated with a relationship.

Declarative Constraint Support: The ability
of a database engine to implement constraints as
part of the definition of the schema.

Multiset: Acollection in which elements may
occur more than once.

Procedural Constraint Support: Imple-
mentation of a constraint on a database via a
procedure.

Reflexive Relation: If RisarelationonA, then
ainAimplies R(a,a). Sometimes it is erroneously
used as a synonym for a symmetric relation.

Relation: For sets A and B, a relation R is
a subset of the Cartesian product AXB, that is,
R c{(a, b)/a € A, b € B}. The relation may be
written R(a,b) indicating that (a,b) is in R.

Relationship: An association between enti-
ties.

Semantic Constraint: In contrast to a struc-
tural constraint, a constraint that does not place
a limit on the database structure.

Bounded Cardinality and Symmetric Relationships

Specified Range: UML term used to describe ENDNOTE
bounded cardinality in class diagrams.
! The author is indebted to an anonymous

Symmetric Relation: If R is a relation on) .
y referee for this solution.

AXA, then R is symmetric if and only if R(a,b)
implies R(b,a).

17

18

Chapter Il
A Paraconsistent Relational
Data Model

Navin Viswanath
Georgia State University, USA

Rajshekhar Sunderraman
Georgia State University, USA

INTRODUCTION

Typically, relational databases operate under
the Closed World Assumption (CWA) of Reiter
(Reiter, 1987). The CWA is a meta-rule that says
that given a knowledge base KB and a sentence
P, if P is not a logical consequence of KB, assume
~P (the negation of P).

Thus, we explicitly representonly positive facts
in a knowledge base. A negative fact is implicit
if its positive counterpart is not present. Under
the CWA we presume that our knowledge about
the world is complete i.e. there are no “gaps”
in our knowledge of the real world. The Open
World Assumption (OWA) is the opposite point
of view. Here, we “admit” that our knowledge
of the real world is incomplete. Thus we store
everything we know about the world — positive
and negative. Consider a database which simply
contains the information “Tweety is a bird”. As-

sume that we want to ask this database the query
“Does Tweety fly?”. Under the CWA, since we
assume that there are no gaps in our knowledge,
every query returns a yes/no answer. In this
case we get the answer “no” because there is no
information in the database stating that Tweety
can fly. However, under the OWA, the answer to
the query is “unknown”. i.e. the database does
not know whether Tweety flies or not. We would
obtaina“no” answer to this query under the OWA
only if it was explicitly stated in the database that
Tweety does not fly.

Current implementations of relational data-
bases adopt the CWA,; and for good reason. The
negative facts generally turn outto be much larger
than the positive facts and it may be unfeasible to
store all of it in the database. A typical example is
anairline database that records the flights between
cities. Ifthere isno entry in the database of a flight
between city X and city Y, then it is reasonable to

Copyright © 2009, IGI Global, distributing in print or electronic forms without written permission of 1GI Global is prohibited.

A Paraconsistent Relational Data Model

conclude that there is no flight between the cities.
Thus for many application domains the Closed
World Assumption is appropriate. However, there
are a number of domains where the CWA is not
appropriate. A prime example is databases that
require domain knowledge. Forexample, consider
a biological database that stores pairs of neurons
that are connected to each other. I1f we were to ask
this database the query “Is neuron N1 connected
to neuron N2?” and this information was not
available in the database, is “no” an appropriate
answer? What if we do not know yet whether N1
is connected to N2? Then surely the answer “no”
is misleading. A more appropriate answer would
be “unknown” which we would obtain under the
OWA.

Inconsistent information may be presentin a
database invarious forms. The mostcommon form
of inconsistency in relational databases is due to
the violation of integrity constraints imposed on
the database. Under the OWA, inconsistency may
also be introduced directly by having both a fact
and its negation stored explicitly in the database.
Such a situation may arise when data is integrated
from multiples sources.

The aim of this article is to introduce a data
model that allows the user to store both positive
and negative information. When the user poses
a query to the database under this model, he
obtains both positive and negative answers. The
positive answers are those for which the answer
tothe query is “yes” and the negative answers are
those for which the answer to the query is “no”.
We define the data model and a relational algebra
for query processing.

Since the model allows the user to store both
positive and negative information explicitly, it is
possible for the database to become inconsistent.
The data model we introduce allows the user to
deal with inconsistentinformation by keeping the
inconsistencies local so that whenever a query is
posed, we obtainan inconsistentanswer only when
the database is itself inconsistent. However, the
consistent portion of the database remains unaf-
fected (Grant J. and Subrahmanian V.S., 2000).

BACKGROUND

Two important features of the relational data
model (Codd, 1970) for databases is its value-
oriented nature and rich set of simple, but pow-
erful algebraic operators. Moreover, a strong
theoretical foundation for the model is provided
by the classical first order logic. A limitation of
the relational model is that it cannot be applied in
non-classical situations. Null values in relational
databases have been studied extensively (Maier,
1983). Incomplete information has been studied
in (Imielinski T. & Lipski Jr. W., 1984, Sarma
et al 2006, Antova et al 2007, Benjelloun et al
2008). Disjunctive information has been studied
in (Liu K.-C & Sunderraman R., 1990; Liu K.-C
& SunderramanR ., 1991, Edward Chan P.F, 1993,
Vadaparty K.V and Naqvi S.A 1995). The model
that we present here, the paraconsistent relational
data model, is a generalization of the relational
datamodel (BagaiR.and SunderramanR., 1995).
Thismodel is capable of manipulating inconsistent
as well as incomplete information. Paraconsistent
relations are the fundamental data structures
underlying the model. A paraconsistent relation
essentially consists of two kinds of tuples: ones
that definitely belong to the relation and others
that definitely do not belong to the relation. These
structures are strictly more general than ordinary
relations, in that for any ordinary relation there is
a corresponding paraconsistent relation with the
same information content, but not vice versa.

PARACONSISTENT RELATIONS

Inthissection, we constructaset-theoretic formu-
lation of paraconsistentrelations. Unlike ordinary
relations that can model worlds in which every
tuple is known to hold an underlying predicate or
not to hold it, paraconsistent relations provide a
framework for incomplete or inconsistent infor-
mation about tuples. The data model is skeptical
in that the tuples that are included as answers to

19

queriesarethose thatare the beliefs of any rational
reasoner. The reason that we adopt the skeptical
approach is that it is tractable as compared to the
credulous approach where the number of possible
answers could be exponential in the size of the
database.

Let a relation scheme X be a finite set of attri-
bute names, where for any attributename A € X,
dom(A) is a non-empty domain of values for A.
AtupleonXisanymapt:X — U, dom(A),
such that t(A) € dom(A), foreach Ae X . Let
T (Z) denote the set of all tuplesonX .

Definition 1: An ordinary relation on scheme 2
is any subset of T (%).

Definition 2: Aparaconsistent relation on scheme
YisapairR=(R", R’> ,where R"and R~ are
any subsets of T (2).

Intuitively, R™ is the set of tuples known to
be inR and R is the set of tuples known not to
be in R . Notice that the sets R" and R~ may not
be disjoint in which case they represent incon-
sistentinformation and when R* and R~ together
do not cover all the tuples in 7 (2) they represent
incomplete information.

Definition 3: A paraconsistent relation R on
scheme X is called a consistent relation when
R*~R™ = ¢. Ris called a complete relation
when R* UR™ =1(Z). If Ris both consistent
and complete, i.e, R™ = 7:(2) -R", thenitis a
total relation.

ALGEBRAIC OPERATORS ON
PARACONSISTENT RELATIONS

In this section, we define the relational algebra
on paraconsistent relations. The operators are
generalizations of the usual operators on ordinary
relations. To reflect generalization, we place a dot
over the symbols of the operators. For example,o

20

A Paraconsistent Relational Data Model

denotes selection on ordinary relations and c de-
notes selection on paraconsistent relations.

Set-Theoretic Operators

Definition 4: Let Rand S be paraconsistent
relations on scheme X . Then, the union of R
and S, denoted by R U S, is a paraconsistent
relation on scheme 5. given by

RUS) =R"US*",(RUS) =R NS~

Theunionoperator may be understood interms
of Boolean laws. The positive component of the
union is the set of tuples appearing in either R or
S ,whichissimply R™ U S ™. The negative compo-
nentof the unionisthe Iogical complementofthis

et ®R'Us')= R)6) =R NS

Definition 5: Let R be a paraconsistent rela-
tions on scheme ¥ . Then, the complement of R,
denoted by ~ R, is a paraconsistent relation on
scheme X given by

(-R) =R",(=R) =R"

The complement of a paraconsisent relation
is obtained by simply flipping the positive and
negative components.

Definition 6: Let Rand S be paraconsistent
relations on scheme X . Then, the intersection of
RandS, denoted by R W S, is a paraconsistent
relation on scheme Z given by

RAS) =R"NS*",(RAS) =R US"

The positive component of the intersection is
simply the intersection of the positive components
andthe negative component of the intersection can
also be explained in terms of Boolean laws:

(R* mS*)’ =(R*ju(8*)’ =R US".

A Paraconsistent Relational Data Model

Definition 7: Let R and S be paraconsistent rela-
tions on scheme 2 . Then, the difference of R and
S, denoted by R = S, is a paraconsistent relation
on scheme X given by,

R=S) =R*"nS,(R=S) =R US"~

Thetuplesinthe positive componentof R =~ S
arethosethatareinRand notin S, whichis exactly
the setR™ N S™. The negative component can
again be optained py applyjng boolean laws:

(R*ns7)=(R")u(s7)=R us™
Relation-Theoretic Operators

IfX and Aare schemes such thatX — A, then
for any tuple tet (), we let t* denote the set
{t' et (A)|t'(A)=t(A),VAe z}ofall extensions
oft. We now define the relation-theoretic operators
on paraconsistent relations.

Definition 8: Let R and S be paraconsistent rela-
tions on schemes 2 and A respectively. Then the
natural join of R and S, denoted by RoS | is a para-
consistent relation on scheme X\ A, given by

(RxS) =R wS*, (ReS)y =R ™ U)™

The positive component of the join is simply
the join of the positive components. For the nega-
tive component, any tuple that is false in R or S
cannot participate in the join. Hence all exten-
sions of tuples inR~and S~ are in the negative
component of the join.

Definition 9: Let R be a paraconsistentrelationon
scheme X and let A — 2. Then, the projection of
Ronto A, denoted by 7, (R), is a paraconsistent
relation on scheme A given by

i, (R) =n,(R")
t,(R) ={ter M)t < R’}

The positive component of the projection is
simply the projection of the positive component.
The negative component of the projection is the
set of tuples on scheme A all of whose extensions
arein R™. Theprojectionoperatorissimilartothe
existential quantifier in first order logic. Consider
forinstance, the teaches(instructor,class) relation,
which stores the names of instructors and the
classes they teach. The projection of teaches onto
instructor would be the names of all instructors
who teach a class. This is the first order formula
(3 c)(teaches(i,c)). The negative component of
the projection is the negation of this formula:
~(3 ¢)(teaches(i,c)) = (V c)~teaches(i,c). i.e. the
set of instructors for whom for every class in the
database, it is false that they teach the class. This
issimply the set of instructors i such that for every
class ¢ in the database the tuple <i,c> is in the
negative component of the teaches paraconsistent
relation. In general, for any scheme A X, the
negative componentis simply the tuples on scheme
Aall of whose extensions are inR ™.

Definition 10: LetR beaparaconsistent relationon
scheme X ,and let F beany formulainvolvingthe
attribute namesin X , constantsymbols (denoting
value sin the attribute domains), equality symbol
=, the negation symbol ~, and the connectives v
and A . Then, the selection of R by F, denoted by
. (R), is a paraconsistent relation on scheme
2, given by,

Gk (R)+ = o, (R+), 6. (R) =R uo; (T (Z))

The positive component of the selection is the
set of tuples such that they are in R and satisfy
the condition F. The negative component of the
selection is the set of tuples that are either not in
R or do not satisfy the condition F. This is exactly
the set denoted by R™ Lo _. (7(2)).

The correctness of these operators can be
established. Please refer to (Bagai R. and Sunder-
raman R., 1995) for proofs of correctness.

21

QUERY EXAMPLE

In this section, we demonstrate the relational
operators on an example supplier-parts database.
The database consists of two entities: suppliers(s
no,sname,city) and parts(pno,pname,color) and
the relationship supplies(sno,pno) between the
two entities.

Thetuplesshaded ingray indicate the negative
components. Also, we use the set-valued notation
asshorthand for sets of tuples. For instance, the set-
valued tuple <1{Tom,Jack},Atlanta>is shorthand
for the set {<1,Tom,Atlanta><1,Jack,Atlanta>}.

Suppliers
Sname City
John Atlanta
Tom Atlanta
Jack Atlanta
{Tom,Jack} Atlanta
{John,Jack} Atlanta
{John, Tom} Atlanta
Parts
Pname Color
Nut Blue
Bolt Red
Axle Green
Nut {Red,Green}
Bolt Green
Axle {Red,Blue}
Supplies
Sname Pname
John Bolt
Tom Nut
Jack Axle
Jack Nut
Jack Bolt

22

A Paraconsistent Relational Data Model

Consider the following query to this data-
base:

Find the names of the supplierswho supply neither
red nor blue parts.

The query may be expressed in relational
algebra as follows:

- (Tl', <sname> ((Suppl ieSObd color="red 'vcolor="blue’ (parts))))

Shown below is the answer to the query. The
answer is split into four parts — selection, join,
projection and complement for clarity.

c color="red 'vcolor="blue’ (parts)

Pname Color

Nut Blue

Bolt Red

Nut {Red,Green}

Bolt Green

Axle {Red,Blue,Green}

Sur'-)p"esobdcolor:'red "veolor='blue’ (parts)

Sname Pname Color
John Bolt Red
Tom Nut Blue
Jack Nut Blue
Jack Bolt {Red,Blue}
{Jack,John, Tom} | Nut {Red,Green}
{Jack,John, Tom} | Bolt Green
{Jack,John,Tom} | Axle {Red,Blue,Green}

Té <shame> (Supp I |ESObd color="red 'vcolor="'blue’ (parts))

Sname

Jack
John

Tom

A Paraconsistent Relational Data Model

= (TC <shame> ((Suppl iesobd color="red v color="blue’ (parts))))

Sname
John

Tom

Jack

APPLICATION

Deductive databases are a generalization of rela-
tional databases where inadditionto manipulating
explicitly represented facts, deductive databases
provide ways to infer new facts through rules.
The semantics of deductive databases without
negation is defined by Apt and van Emden in
(Apt K.R. and van Emden M.H, 1982). When
negation is introduced in a deductive database,
it creates some problems. A subset of the deduc-
tive databases with negation, called stratified
deductive databases have a clear semantics. A
deductive database is stratified if there is no
recursion through negation. However, there is
some disagreement among researchers about the
semantics of non-stratified deductive databases.
A number of semantics have been proposed for
deductive databases with negationand one of them
is the one proposed by Fitting (Fitting M., 1985).
Here, Fitting defines the semantics of a deductive
database with negation as the least fixpoint of an
operator on partial interpretations. Anapplication
of the paraconsistent relational data model is that
itcan be used in the bottom-up computation of the
Fitting model of deductive databases. We provide
here just a brief overview of the technique. For
details, pleasereferto (Bagai R. and Sunderraman
R., 1996). First, we briefly introduce deductive
databases. For a more detailed exposition, please
refer to (Lloyd J.W, 1987).

Let L be a given underlying language with
a finite set of constants, variables and predicate
symbols, butno functionsymbols. Atermiseither

a constant or a variable. An atom is of the form
p(t1 At) where p is a predicate symbol and the
t’s are terms. A literal is either a positive literal
Aor anegative literal —A where A isan atom. For
any literal | we let 1" denote its complementary
literal, i.e., if l is positive then |" = —I , otherwise

|:—||,.

Definition 11: A deductive database is a finite
set of clauses of the form

a<«Db..b,
where m > 0 and each b, is an atom.

Aterm, atom, literal or clause is called ground
ifitcontainsnovariables. The Herbrand Universe
of the underlying language is the set of all ground
terms; the Herbrand Base of the language is the
set of all ground atoms; A Herbrand interpreta-
tion of the language is any subset of the Herbrand
base. A ground instance of a term, atom, literal
or a clause is the term, atom, literal or clause
respectively, obtained by replacing each variable
by a constant. For any deductive database P we
let P" denote the set of all ground instances of
clauses in P.

The semantics of a deductive database is the
least fixpoint of an immediate consequence op-
erator T, with respect to the partial order of set
inclusion. The reader is referred to (Lloyd J.W,
1987) for a detailed exposition.

Definition 12: A general deductive database
is a finite set of clauses of the form

a<«1 .1
where a is an atom, m > 0 and each I is a lit-
eral.

We describe very briefly one of the semantics
for general deductive databases. For a detailed
explanation, the reader is referred to (Fitting M.,
1985).

23

Definition 13: A partial interpretation is a pair
| = <I o ‘> ,where | “and | ~ are any subsets of
the Herbrand base.

A partial interpretation | is consistent if
N1~ =®.For any partial interpretations |
and J, we let | ™ J be the partial interpretation
"I, 1" nJ), and | U J be the partial
interpretation<| TUJdT, T Ud). Wealsosay
that | < J wheneverl * < J*andl < J".
For any general deductive database, recall that
P" is the set of all ground instances of clauses in
P. The weak well-founded model of P is the least
fixpoint of the immediate consequence function
TF,F on consistent partial interpretations defined
as follows:

I +

Definition 14: Let | be a partial interpretation.
Then, To (I)is a partial interpretation given by,

TS (1) ={a|forsome clause a <1, ...I_in
P" foreach i1<i<m,
ifl,is positive then I, e 1, and
ifl.is negative thenl, 17}

T4 (1) ={a|forevery clausea < I,...1_inP",

there is somei,1 <i<m,
such that if . is positive then |, € 1 ~, and

ifl.is negative thenl, 17}

It can be shown thatTF,F preserves consistency
and possesses a least fixpoint. This least fixpoint
is called the weak well-founded model for P.

A mechanism that computes the ordinal pow-
ers of T until it reaches the least fixpoint can
be employed to construct the weak well-founded
model of P. The mechanism uses paraconsistent
relations as the semantic objects associated with
the predicate symbolsoccurringin P. Weillustrate
the method through an example. For a detailed
explanation ofthe procedure, please referto (Bagai
R. and Sunderraman R., 1996).

Consider the following deductive database:

24

A Paraconsistent Relational Data Model

ra, c).

r(b, b).

s(a, a).
P(X)«r(X,Y)=p(Y).
p(Y)<«s(Y,a)

We associate with each predicate in the da-
tabase a paraconsistent relation with the same
name. Here, predicates r and s constitute the
extensional database and predicate p is the in-
tensional database.

Next, we translate the set of rules for each
predicate into an expression in relational algebra
following (Ullman, J.D., 1988). In this particular
instance, the expression for p is given by

p= ﬁ{x}(r(X,Y)o'o =p(Y)) U
622 (5(Y,2)))

We now mimicthe evaluationofthe T, opera-
tor by evaluating the above expression in steps.
i.e. evaluating the expression once corresponds
to one application ofTPF . This process continues
until there is no change in the values of all the
predicate symbols: this corresponds to the fixpoint
of Ty . We trace here the values in each predicate
symbol step by step:

Step 1:

S r
a|a a |c
a|b b |b
a|c a |a
b |a a | b
b [b b |a
b |c b |c
c |a c |a
c|b c | b
c|c c |c

The paraconsistent relation corresponding
to the intensional predicate p is empty to begin
with.

A Paraconsistent Relational Data Model

Step 2:

The paraconsistent relations corresponding tor
and s stay the same and hence we do not repro-
duce them here. Evaluating the expression for p
however, now produces new information in the
paraconsistent relation corresponding to p .

By applying the operator definitions introduced
earlier, 7y, (r (XY)= p(Y)Jranbe seen to be
the paraconsistent relation

and .n‘{y}(cs'z:a (s(Y.2)))is the paraconsistent
relation

Their union is thus the paraconsistent rela-
tion

Further iterations do not change the value of
P . Step 2 can be seen to mimic the application
of the T function.

CONSTRAINTS AND STORAGE

One of the issues with the paraconsistent relational
data model is the huge amount of space required
in order to store it since the negative information
inadatabase generally tendsto be very large. One
of the ways in which this issue may be addressed
is to adopt a non-first normal form by introducing
set-valued tuples. This has been investigated in
(Viswanath N. and Sunderraman R., 2007). Here
relations are extended to allow only sets as tuple
components. The notation is extended in order to
allow the complement operation from set theory.

For instance, {a?} asatuple componentdenotesall
elements in the domain of that attribute except
a . ® and @ denote the empty set and the entire
domain respectively. A by-product of this is that
it now becomes easy to incorporate the negative
information introduced by integrity constraints
on the database.

Considerforexamplearelationsupervisor(SSN,
SuperSSN) along with the functional depen-
dency constraint SSN — SuperSSN. Consider a
tuple<111,333> in the relation. In the set-valued
paraconsistent model, this dependency may be
enforced by introducing the tuple<111, 333>in
the negative component of the corresponding
set-valued paraconsistent relation. In the paper,
a relational algebra and an operator to remove
redundancies that may be introduced using the
set notation are defined. The reader is referred to
the paper for a more detailed exposition.

FUTURE TRENDS

The chapter introduced a data model that in-
cludes both positive and negative information
thus extending the relational model. The OWA is
increasingly becoming necessary in a number of
application areas, databases involving a process
of discovery being a prime example. We are cur-
rently interested in including two kinds of negation
in relational databases: an explicit negation (of
the kind introduced here) and a default negation,
which is, in a sense, a weaker form of negation.
The 2-negation concept hasalready received wide
attention in the logic programming community.

Another interesting area of future work is
the handling of inconsistencies introduced by
the violation of integrity constraints imposed
on the database (Arenas M., Bertossi L. and
Chomicki J., 1999). Here, a concept of a repair
is introduced where a minimal set of updates
(insertion and deletions) is made to the database
so that the consistency is restored. A consistent

25

query answer is defined as the set of tuples that
is obtained as the answer in every minimal repair
of the database. The paraconsistent data model
may be used as a framework for such databases
since inconsistency is handled in a very natural
manner and kept local to a few tuples without
affecting the whole database.

CONCLUSION

We have presented a data model that is a general-
ization of the relational data model and can repre-
sent both indefinite and incomplete information.
The paraconsistent data model is strictly more
general than the relational model in the sense
that for every relation there is a paraconsistent
relation with the same information content but
not vice versa. It is an appropriate data structure
to represent both inconsistent and incomplete
information. As an application, it is shown that
paraconsistent relations can be used in order to
construct the weak well-founded model of deduc-
tive databases.

REFERENCES

Antova, L., Koch, C., & Olteanu, D. (2007).
1071076 Worlds and Beyond: Efficient Represen-
tation and Processing of Incomplete Information.
Proceedings of the 23rd International Confer-
ence on Data Engineering ICDE’07, Istanbul,
Turkey.

Apt, K. R., & van Emden, M. H. (1982). Contri-
butions to the Theory of Logic Programming.
Journal of the ACM, 29(3), 841-862.

Arenas, M., Bertossi, L., Chomicki, J.(1999).
Consistent query answers in inconsistent data-
bases. PODS “99: Proceedings of the eighteenth
ACM SIGMOD-SIGACT-SIGART symposium
on Principles of database systems, Philadelphia,
Pennsylvania, United States.

26

A Paraconsistent Relational Data Model

Bagai, R., & Sunderraman, R. (1995). A para-
consistent relational data model. International
Journal of Computer Mathematics, 55(3).

Bagai, R., & Sunderraman, R. (1996). Bottom-up
computation of the fitting model for general deduc-
tive databases. Journal of Intelligent Information
Systems, 6(1), 59-75.

Benjelloun, O., Sarma, A. D., Halevy, A., Theo-
bald, M., & Widom, J. (2008). Databases with
Uncertainty and Lineage. VLDB Journal, 17(2),
243-264.

Chan, E. P.F. (1993). A Possible World Semantics
for Disjunctive Databases, IEEE Trans. Knowl.
Data Eng., 5(2), 282-292.

Codd, E. F. (1970). A relational model for
large shared data banks. Comm. of the ACM,
13(6):377-387.

Fitting M (1985). A Kripke-Kleene semantics for
logic programs. Journal of Logic Programming,
4:295-312.

Grant J. and Subrahmanian V.S.(2000). Applica-
tions of Paraconsistency in Data and Knowledge
Bases, Synthese 125:121-132.

Imielinski T. and Lipski W.(1984). Incomplete
information in relational databases. J. ACM,
31(4):761-791.

Liu K.-C. and Sunderraman R.(1990). Indefinite
and maybe information in relational databases.
ACM Trans. Database Syst., 15(1):1-39.

Liu K.-C. and Sunderraman R.(1991). A general-
ized relational model for indefinite and maybe
information. IEEE Trans. Knowl. Data Eng.,
3(1):65-77.

Lloyd J.W (1987). Foundations of Logic Program-
ming. Springer Verlag, second edition.

Maier D. (1983) The Theory of Relational Data-
bases, Computer Science Press.

A Paraconsistent Relational Data Model

Reiter R.(1987). On closed world data bases.
Readings in nonmonotonic reasoning, pages
300-310. Morgan Kaufmann Publishers Inc., San
Francisco, CA, USA.

Sarma A.D and Benjelloun O. and Halevy A. and
Widom J. (2006). Working Models for Uncertain
Data, Proceedings of the 22nd International
Conference on Data Engineering ICDE’06, Wash-
ington, DC, USA.

Ullman J.D (1988). Principles of Database and
Knowledge-base Systems , Volume 1. Computer
Science Press.

Vadaparty K.V. and Naqvi S.A.(1995). Using
Constraints for Efficient Query Processing in
Nondeterministic Databases, IEEE Trans. Knowl.
Data Eng., 7(9):860-864.

Viswanath N. and Sunderraman R.(2007). Query
Processing in Paraconsistent Databases in the
Presence of Integrity Constraints, In the Proceed-
ings of the Nineteenth International Conference
on Software Engineering and Knowledge Engi-
neering SEKE 2007, Boston, USA.

KEY TERMS

Closed World Assumption (CWA): The
closed world assumption is the presumption that
what is not currently known to be true is false.

Credulous Reasoning: Accepting a set of
beliefs from a theory that are the beliefs of some
rational reasoner.

Deductive Database: A generalization of
relational databases that includes both facts and
rules from which new facts can be inferred.

Extensional Database: The facts stored in a
deductive database.

Incompleteness: A database is incomplete if
there is a sentence whose truth value cannot be
ascertained.

Inconsistency: A state in which both a
sentence and its negation are derivable from the
theory.

Intensional Database: The rules in a de-
ductive database from which new facts may be
inferred.

Open World Assumption (OWA): The open
world assumption is the view that what is stated
in the database is what is known; everything else
is unknown.

Paraconsistency: An inconsistency-tolerant
logical notion in which the concept of “a contra-
diction entails everything” is dropped.

Query: A question posed in order to retrieve
answers from the database, usually represented
as a formula in first order logic.

Relational Algebra: An abstract query lan-
guage for relational databases.

Relational Data Model: A database model
based on first order logic and set theory.

Skeptical Reasoning: Accepting the set of
beliefs from a theory that are a part of the beliefs
of every rational reasoner.

27

28

Chapter IV
Managing Temporal Data

Abdullah Uz Tansel
Baruch College, CUNY, USA

INTRODUCTION

In general, databases store current data. How-
ever, the capability to maintain temporal data is
acrucial requirement for many organizations and
provides the base for organizational intelligence.
A temporal database maintains time-varying
data, that is, past, present, and future data. In this
chapter, we focus on the relational data model
and address the subtle issues in modeling and
designing temporal databases.

A common approach to handle temporal data
within the traditional relational databases is the
addition of time columns to a relation. Though
this appears to be a simple and intuitive solution,
it does not address many subtle issues peculiar to
temporal data, that is, comparing database states
attwo differenttime points, capturing the periods
forconcurrenteventsandaccessing times beyond

these periods, handling multi-valued attributes,
coalescing and restructuring temporal data, and
so forth, [Gadia 1988, Tansel and Tin 1997].

There is a growing interest in temporal
databases. A first book dedicated to temporal
databases [Tansel at al 1993] followed by others
addressing issues in handling time-varying data
[Betini, Jajodia and Wang 1988, Date, Darwen
and Lorentzos 2002, Snodgrass 1999].

TIME IN DATABASES

Theset T denotestime valuesand itis a total order
under ‘<’ relationship. Because of its simplicity,
we will use natural numbers to represent time {0,
1 ... now}. The symbol O is the relative origin of
time and now is a special symbol that represents
the current time. Now advances according to the

Copyright © 2009, IGI Global, distributing in print or electronic forms without written permission of 1GI Global is prohibited.

Managing Temporal Data

time granularity used. There are different time
granularities, such as seconds, minutes, hours,
days, month, year, etc. (for a formal definition
see [Betini, Jajodia and Wang 1988]).

A subset of T is called a temporal set. A tem-
poral setthat contains consecutive time points {t,,
t,... t } is represented either as a closed interval
[t, t] or as a half open interval [t, t). Atem-
poral element [Gadia 1988] is a temporal set that
is represented by the disjoint maximal intervals
corresponding to its subsets having consecutive
time points. Temporal sets, intervals, and temporal
elements can be used as time stamps for model-
ing temporal data and are essential constructs
in temporal query languages. Temporal sets and
temporal elements are closed under set theoretic
operations whereas intervals are not. However,
intervals are easier to implement. Time intervals,
hence temporal elements and temporal sets, can
be compared. The possible predicates are before,
after, meet, during, etc. [Allen 1983]. An interval
or a temporal set (element) that includes now
expends in its duration. Other symbols such as
forever or until changed are also proposed as al-
ternatives to the symbol now for easier handling
of future data.

There are various aspects of time in databases
[Snodgrass 1987]. Valid time indicates when a
data value becomes effective. It is also known as
logical or intrinsic time. On the other hand, the
transaction time (or physical time) indicates when
a value is recorded in the database. User defined
time is application specific and is an attribute
whose domain is time. Temporal databases are in
general append-only that is, new data values are
added to the database instead of replacing the old
values. A database that supports valid time keeps
historical values and is called a valid time (his-
torical) database. A rollback database supports
transaction time and can roll the database back
to any time. Valid time and transaction time are
orthogonal. Furthermore, a bitemporal database
that supports both valid time and transaction time
is capable of handling retroactive and post-active

changes on temporal data. In the literature, the
termtemporal database isgenerically used tomean
a database with some kind of time support.

In this chapter we focus our discussion on the
valid time aspect of temporal data in relational
databases. However, our discussion can easily be
extended to databases that support transaction
time or both as well.

REPRESENTING TEMPORAL DATA

A temporal atom is a time stamped value, <t, v>
and represents a temporal value. It asserts that
the value v is valid over the period of time stamp
t that can be a time point, an interval, temporal
set, or a temporal element. Time points are only
suitable for values that are valid at a time point
not over a period. Time can be added to tuples
or attributes and hence, temporal atoms can be
incorporated differently into the relational data
model. To represent temporal atoms in tuple time
stamping, a relation is augmented with two attri-
butes that represents the end points of an interval
or a time column whose domain is intervals,
temporal sets, or temporal elements (temporally
ungrouped). Figure 1 depicts salary (SAL) history
of an employee, E1 where intervals or temporal
elements are used as time stamps with a time
granularity of month/year. Salary is 20K from
1/01 to 5/02 and 8/02 to 6/03. The discontinuity
IS because the employee quitted at 6/02 and came
back at 8/02. The salary is 30K since 6/03. Figure
2 gives the same salary history in attribute time
stamping (temporally grouped). Anattribute value
is a set of temporal atoms. Each relation has only
one tuple that carries the entire history. It is also
possible to create a separate tuple for each time
stamped value (temporal atom) in the history, i.e.
three tuples for Figure 2.b (two tuples for Figure
2.c). Temporally grouped data models are more
expressive than temporally ungrouped data mod-
elsbuttheirdatastructuresare alsomore complex
[Clifford, Croker, and Tuzhilin 1993].

29

Figure 1. Salary in tuple time stamping

Managing Temporal Data

E3 30K 6/03 now
a. intervals

E# SAL EROM TO |E# SAL IIME
El 20K 1/01 5/02 |E1 20K {[1/01, 5/02) U[8/02, 6/03)}
El 20K 8/02 6/03 |E1 30K

b. Temporal Elements

{[6/03, now]}

Figure 2. Salary in attribute time stamping

E# SALARY

<[8/02, 6/03), 20K>

<[6/03, now], 30K>}
a. Intervals

E# SALARY
{<{[1/01, 5/02) U
[8/02, 6/03)}, 20K>

<{[6/03, now]}, 30K>}

E1 {<[1/01, 5/02), 20K> El

b. Temporal elements

One noteworthy aspect of data presented in
Figure 2 is that the timestamps are glued to at-
tribute values. In other words attribute values are
temporal atoms. In forming new relations as a
result of query expressions these timestamps stay
with the attribute values. On the other hand, in
tuple time stamping a timestamp may be implicit
(glued) or explicit (unglued) to tuples. This is a
design choice and the relations in figure 1 can
be interpreted as having implicit or explicit time
stamps. An implicit time stamp is not available
to the user as a column of a relation though the
user can refer to it. On the other hand an explicit
time stamp is like any other attribute of a relation
and it is defined on a time domain. Implicit time
stamps restricts the time of a new tuple created
from two constituent tuples, since each tuple may
not keep its own timestamp and a new timestamp
needs to be assigned to the resulting tuple. Ex-
plicit timestamps allow multiple timestamps in a
tuple. In this case, two tuples may be combined
to form a new tuple, each carrying its own time
reference. However, the user needs to keep track
of these separate time references.

30

TEMPORAL RELATIONS

In Figure 3, we show some sample employee
data for the EMP relation over the scheme E#
(Employee number), ENAME (Employee name),
DNAME (Department name) and SALARY. E#
and ENAME are (possibly) constant attributes,
whereas DNAME and SALARY change over
time. In EMP relation, temporal elements are
used intemporal atoms for representing temporal
data. As is seen, there are no department values
for Tom in the periods [2/02, 4/02) and [8/02,
now]. Perhaps, he was not assigned to a depart-
ment during these time periods. Time stamp of
E# represents the lifespan of an employee that is
stored in the database. Note that EMP is a nested
[NINF] relation. It is one of the many possible
relational representations of the employee data
[Gadia 1988, Clifford and Tansel, 1985, Tansel
2004]. Figure 4 gives, in tuple time stamping,
three INFrelations, EMP N,EMP D,andEMP S
for the EMP relation of Figure 3 [Lorentzos and
Johnson 1987, Navathe and Ahmed 1987, Sarda
1987, Snodgrass 1988]. In Figure 3 temporal sets

Managing Temporal Data

Figure 3. The EMP relation in attribute time stamping

Figure 4. The EMP relation in tuple time stamping

E# ENAME DNAME SALARY
<[1/01,now], 121> Tom |<[1/01, 2/02), Sales>|<[1/01, 5/02), 20K>
<[4/02, 8/02), Mktg> [<[5/02, 7/02), 25K>

<[7/02, now], 30K>

<[3/03,8/03), 133> | Ann |<[3/03, 8/03), Sales>|<[3/03, 8/03), 35K>
<[8/02, now], 147> | John |<[8/02, now],Toys>|<[8/02, now], 42K>

E# NAME E# | DNAME |START| END | |[E#£ |SALARY|START |[END

121 Tom 121 Sales 1/01 2/02 121 20K 1/01 5/02

133 Ann 121 |Marketing| 4/02 8/02 121 25K 5/02 7/02

147 John 133 Sales 3/03 8/03 121 30K 7/02 Now

147 Toys 8/03 Now 133] 35K 3/03 8/03
(a) EMP N Relation (b) EMP D Relation 147] 42K 1/01 Now

(elements) can also be used as the time reference.
Similarly, in the relations of Figure 4 intervals or
temporal sets (elements) can also be used as the
time reference in a time attribute that replaces
the Start and End columns.

Note that in tuple time stamping a relation
may only contain attributes whose values change
at the same time. However, attributes changing at
different times require separate relations. Each
particular time stamping method imposes restric-
tions on the type of base relations allowed as well
as the new relations that can be generated from
the base relations. The EMP relation in Figure 3
iS a unique representation of the employee data
where each tuple contains the entire history of an
employee [Clifford and Tansel 1985, Tansel 1987,
Gadia 1988]. E# is a temporal grouping identi-
fier regardless of the timestamp used [Clifford,
Croker and Tuzhilin 1993]. In the case of tuple
time stamping an employee’s data is dispersed
into several tuples, i.e., there are three salary
tuples for the employee 121 in Figure 4.c. These

(c) EMP S Relation

tuples belong to the same employee since their
E# values are equal.

For the relations in Figures 3 and 4 there are
many other possible representations that can be
obtained by taking subsets of temporal elements
(intervals) and creating several tuples for the
same employee. These relations are called weak
relations [Gadia 1988]. Though they contain
the same data as the original relation in unique
representation, query specification becomes very
complex. Weak relations naturally occur in que-
rying a temporal database. Weak relations can
be converted to an equivalent unique relation by
coalescing tuples that belong to the same object
(employee) into one single tuple [Sarda 1987,
Bohlen, Snodgrass and Soo 1996]. In coalescing,
a temporal grouping identifier such as E# is used
to determine the related tuples.

31

DESIGNING TEMPORAL
RELATIONS

Design of relational databases is based on func-
tional and multivalued dependencies. These
dependencies are used to decompose relations to
3NF, BCNF or 4NF that have desirable features.
In temporal context, functional dependencies
turn into multivalued dependencies whereas
multivalued dependencies stay as multivalued
dependencies. For instance, in the current em-
ployee data depicted in Figure 3, E# > SALARY
holds. When temporal data for the employees are
considered, this functional dependency turnsinto
a multivalued dependency, i.e. E# 2> (Time,
SALARY).

Designing nested relations based on functional
and multivalued dependencies are explored in
[Ozsoyoglu and Yuan 1987]. They organize the
attributes into a scheme tree where any root to
leaf branch is a functional or multivalued depen-
dency. Such a scheme tree represents a NINF
relationwithoutundesirable dataredundancy. This
methodology is applied to the design of temporal
relations in [Tansel and Garnett 88]. Let E# be a
temporal grouping identifier. Figure 5 gives the
scheme tree for the EMP relation of Figure 3. The
dependencies in EMP are E# > ENAME, E#> >
(Time, DNAME), and E# 2 - (Time, SALARY).
Naturally, the flatequivalent of EMP isnotin 4NF
sinceitincludes multivalued dependencies. When
we apply 4NF decomposition on EMP we obtain
flat relation schemes (E#, ENAME), (E#, (Time,
DEPT)), and (E#, (Time, SALARY)) which are
all in 4NF. In fact, these are the EMP_N, EMP D,
and EMP_S relations in Figure 4 where Time

Figure 5. Scheme Tree for EMP

/E]#\
ENAME DEPT SALARY

32

Managing Temporal Data

is separated as two additional columns. This is
the reason for including only one time varying
attribute in a temporal relation in case of tuple
timestamping.

Thus, any attribute involved in a multivalued
dependency on the temporal grouping identifieris
placed into a separate relation in the case of tuple
time stamping as is seen in Figure 4. If attribute
time stamping and nested relationsare usedall the
time dependent attributes that belong to similar
entities, such as employees can be placed in one
relation as seen in Figure 3.

REQUIREMENTS FOR TEMPORAL
DATA MODELS

A temporal database should meet the following
requirements [Tansel and Tin 1997]. Depending
on application needs some of these requirements
can be relaxed. Let DB, denote the database state
at time t:

1. Thedatamodel should be capable of model-
ingand querying the database atany instance
of time, i.e., D,. Note that when t is now, D
corresponds to a traditional database.

2. Thedatamodel should be capable of model-
ing and querying the database at two differ-
ent time points, intervals and temporal set
(elements) i.e., D, and D, where t # t".

3. Thedatamodel should allow different peri-
ods of existence in attributes within a tuple,
i.e., non-homogenous (heterogeneous) tuples
should be allowed. Homogeneity requires
that all the attribute values in a tuple should
be defined on the same period of time [Gadia
1988].

4. The data model should allow multi-valued
attributes at any time point, i.e., in D,

5. Atemporal query language should have the
capability to return the same type of objects
it operates on. This may require coalescing
several tuples to obtain the desired result.

t

Managing Temporal Data

6. A temporal query language should have
the capability to regroup the temporal data
according to a different grouping identi-
fier that could be one of the attributes in a
temporal relation.

7. The model should be capable of express-
ing set-theoretic operations, as well as set
comparison tests, on the timestamps, be it
time points, intervals, or temporal sets (ele-
ments).

TEMPORAL QUERY LANGUAGES

Modeling of temporal data presented in the
previous sections also has implications for the
temporal query languagesthat can be used. Atem-
poral query languages is closely related how the
temporal atoms (temporal data) are represented,
i.e. the type of timestamps used, where they are
attached (relations, tuples, or attributes), and
whether temporal atoms are keptatomic or broken
into their components. This in turn determines
possible evaluation (semantics) of temporal query
language expressions. There are two commonly
adopted approaches: 1) Snapshot evaluation that
manipulates the snapshot relation at each time
point, like Temporal Logic [Gadia 1986, Snod-
grass 1987, Clifford, Croker and Tuzhilin 1993];
2) Traditional evaluation that manipulates the
entire temporal relation much like the traditional
query languages [Tansel 1986, Tansel 1997, and
Snodgrass 1987]. The syntax of a temporal query
language is designed to accommodate a desired
type of evaluation.

Temporal Relational Algebra includes tem-
poral versions of relational algebra operations in
addition to special operations for reaching time
points within intervals or temporal elements
[Lorentzos, and Mitsopoulos, 1997, Sarda 1997,
Tansel 1997], slicing times of attributes or tuples
[Tansel 1986], rollback to a previous state in case
of transactions time databases, and temporal ag-
gregates. There are also projection and selection

operations on the time dimension. These opera-
tions are all incorporated into temporal relational
calculus languages too.

There are many language proposals for tem-
poral databases [Lorentzos, and Mitsopoulos
1997, Snodgrass 1995, Snodgrass 1987, Tansel,
Arkun and Ozsoyoglu 1989]. SQL2 has a time
data type for implementing tuple time stamping
with intervals that is used in TSQL2 [Snodgrass
1995]. SQL3 has the capabilities to implement
tuple timestamping, temporal elements as well as
attribute time stamping and nested relations.

IMPLEMENTATION OF TEMPORAL
RELATIONS

Temporal relations that use tuple timestamping
have been implemented on top of conventional
DBMS [Snodgrass 1995]. This was doable be-
cause, augmenting a relation with two additional
columnsrepresenting the end points of time inter-
valsisavailable inany DBMS. However, recently,
commercial DBMS include object relational
features that allow definition of temporal atoms,
sets of temporal atoms and temporal relations that
are based on attribute timestamping. Following
code illustrates the definition of EMP relation
in ORACLE 9i. Lines 1 and 2 define temporal
atoms with data types of Varchar and Number.
Lines 3 and 4 define the sets of temporal atoms for
representing the department and salary histories.
Finally line 5 creates the EMP table. Note that,
transaction time bitemporal relations may simi-
larly be defined [Tansel & Atay 2006].

1. CREATE TYPE Temporal _ Atom _ Varchar
AS OBJECT (
Lowe _Bound TIMESTAMP,

Upper _ Bound TIMESTAMP,

TA _ Value VARCHAR(20));
2. CREATE TYPE Temporal _ Atom _ Number
AS OBJECT (
Lowe _Bound TIMESTAMP,

Upper _ Bound TIMESTAMP,

TA _ Value NUMBER);

33

3. CREATE TYPE Dept _ History AS TABLE OF
Temporal _ Atom _ Varchar;
4. CREATE TYPE Salary _ History AS TABLE
OF emporal _ Atom _ Number;
5. CREATE TABLE Emp (
E# NUMBER,

Name VARCHAR(20),

Dept Dept _ History,

Salary Salary _ History);

CONCLUSION

In this chapter, we have examined the manage-
ment of temporal data by using relational data-
base theory. We have covered the two types of
approached to modeling temporal data: tuple
timestamping and attribute timestamping. We
also discussed design of temporal databases and
temporal query languages. The feasibility of
implementing tuple timestamping has already
been demonstrated. We also show the feasibility
of implementing temporal atoms and attribute
timestamping by using object relational databases
that are currently available in the market.

ACKNOWLEDGMENT

Research is supported by the grant# 68180
00-37 from the PSC-CUNY Research Award
Program.

REFERENCES

Allen, J. F. (1983). Maintaining knowledge about
temporal intervals. Communications of the ACM,
26(11), 832-843.

Betini, C., Jajodia, S., & Wang, S. (1988). Time
granularities in databases, data mining and tem-
poral reasoning. Springer Verlag.

Bohlen, M. H., Snodgrass, R. T., & Soo, M. D.
(1996). Coalescing in temporal databases. In

34

Managing Temporal Data

Proceedings of International Conference on Very
Large Databases.

Clifford J., & Tansel, A. U. (1985). On an algebra
for historical relational databases: Two views.
In Proceedings of ACM SIGMOD International
Conference on Management of Data, 247-265.

Clifford, J., Croker, A., & Tuzhilin, A. (1993).
On completeness of historical data models.
ACM Transactions on Database Systems, 19(1),
64-116.

Date, C. D., Darwen, H., & Lorentzos, N. (2003).
Temporal data and the relational data model.
Morgan Kaufmann, 2002.

Etzion, O., Jajodia, S., & Sripada, S. (1998).
Temporal databases: Research and practice.
Springer Verlag.

Gadia, S. K (1988). A homogeneous relational
model and query languages for temporal data-
bases. ACM Transactions on Database Systems,
13(4), 418-448.

Lorentzos, N. A., & Johnson, R. G. (1988). Ex-
tending relational algebrato manipulate temporal
data. Information Systems, 13(3), 289-296.

Lorentzos, N. A., & Mitsopoulos, Y. G. (1997).
SQL extension for interval data. IEEE Transac-
tions on Knowledge and Data Engineering, 9(3),
480-499.

McKenzie, E., & Snodgrass, R. T. (1991). An
evaluation of relational algebras incorporating
thetime dimension in databases. ACM Computing
Surveys, 23(4), 501-543.

Navathe, S. B., & Ahmed, R. (1987). TSQL-A
language interface for history databases. Proceed-
ings of the Conference on Temporal Aspects in
Information Systems, 113-128.

Ozsoyoglu, M. Z., & Yuan, L-Y (1987). A new nor-
mal form for nested relations. ACM Transactions
on Database Systems, 12(1), January 1987.

Managing Temporal Data

Sarda, N. L. (1987). Extensions to SQL for his-
torical databases. IEEE Transactions on Systems,
12(2), 247-298.

Snodgrass, R. T. (1987). The temporal query
language Tquel,. ACM Transactions on Database
Systems, 12(2), 247-298.

Snodgrass, R. T. (1999). Developing time oriented
applications in SQL. Morgan Kaufmann.

Snodgrass, R. T. (1995). The TSQL2 temporal
query language. Kluwer 1995.

Tansel, A.U (1986). Adding time dimension to
relational model and extending relational algebra.
Information Systems 11(4), 343-355.

Tansel, A. U (1997). Temporal relational data
model. IEEE Transactions on Knowledge and
Database Engineering, 9(3), 464-479.

Tansel, A. U (2004). On handling time-vary-
ing data in the relational databases. Journal of
Information and Software Technology, 46(2),
119-126.

Tansel, A. U., Arkun, M. E., & Ozsoyoglu, G.
(1989). Time-by-Example query language for his-
torical databases. IEEE Transactions on Software
Engineering, 15(4), 464-478.

Tansel, A. U., & Garnett, L. (1989). Nested
temporal relations. In Proceedings of ACM feshi
SIGMOD International Conference on Manage-
ment of Data, 284-293.

Tansel, A. U., & Tin, E. Expressive power of
temporal relational query languages. IEEE Trans-
actions on Knowledge and Data Engineering,
9(1), 120-134.

Tansel, A. U et al. (1993). (Ed.). Temporal da-
tabases: Theory, design and implementation.
Benjamin/Cummings.

Tansel, A. U, & Eren-Atay, C., (2000).
Nested bitemporal relational Algebra. ISCIS
2006, 622-633.

KEY TERMS

For a detailed coverage of the terminology, see
[appendix A in Tansel et al 1993] and [pp. 367
— 413 in Etzion, Jajodia and Sripada 1998].

Coalescing: Combining tuples whose times
are contiguous or overlapping into one tuple
whose time reference includes the time of con-
stituent tuples.

Homogenous Temporal Relation: Attribute
values in any tuple of a relation are all defined
on the same period of time. In a heterogeneous
relation, attribute values in a tuple may have dif-
ferent time periods.

Rollback Operation: Returns a relation that
is recorded as of a given time point, interval, or
temporal element in a database that supports
transaction time.

Temporal Data Model: A data model with
constructs and operations to capture and manipu-
late temporal data.

Temporal Database: A database that has
transaction time and/or valid time support. In the
literature it is loosely used to mean a database
that has some kind of time support.

Temporal Element: Union of disjoint time
intervals where no two time intervals overlap
or meet.

Time Granularity: Unit of time such as
seconds, minutes, hours, days, month, year, etc.
Time advances by each clock tick according to
the granularity used.

Time Interval (period): The consecutive set
of time points between a lower bound () and an
upper bound (u) where | < u. The closed interval
[1, u] includes 1 and u whereas the open interval
(1, u) does not include l and u. Half open intervals,
[L, u) or (1, u] are analogously defined.

35

Managing Temporal Data

Transaction Time: Designatesthe timewhen
data values are recorded in the database.

Valid Time: Designates when data values
become valid.

36

37

Chapter V
Data Reengineering of Legacy
Systems

Richard C. Millham
Catholic University of Ghana, Ghana

INTRODUCTION

Legacy systems, from a data-centric view, could
be defined as old, business-critical, and stand-
alone systems that have been built around legacy
databases, such as IMS or CODASYL, or legacy
database management systems, such as ISAM
(Brodie & Stonebraker, 1995). Because of the
huge scope of legacy systemsinthe business world
(it is estimated that there are 100 billion lines of
COBOL code alone for legacy business systems;
Bianchi, 2000), data reengineering, along with its
related step of program reengineering, of legacy
systems and their data constitute a significant part
of the software reengineering market.

Data reengineering of legacy systems focuses
on two parts. The first step involves recognizing
the data structures and semantics followed by the
second step where the data are converted to the
new or converted system. Usually, the second step
involves substantial changes not only to the data
structures but to the data values of the legacy data
themselves (Aebi & Largo, 1994).

Borstlap (2006), among others, has identified
potential problems in retargeting legacy ISAM

data files to a relational database. Aebi (1997), in
addition to data transformation logic (converting
sequential file data entities into their relational
database equivalents), looks into, as well, data
quality problems (such as duplicate dataand incor-
rect data) that is often found with legacy data.

Duetothefactthatthe database and the program
manipulating the data in the database are so closely
coupled, any data reengineering must address the
modifications to the program’s data access logic
that the database reengineering involves (Hainaut,
Chandelon, Tonneau, & Joris, 1993).

In this article, we will discuss some of the re-
centresearch into datareengineering, in particular
the transformation of data, usually legacy data
from a sequential file system, to a different type
of database system, a relational database. This
article outlines the various methods used in data
reengineeringtotransformalegacy database (both
its structure and data values), usually stored as
sequential files, into arelational database structure.
In addition, methods are outlined to transform the
program logic thataccesses this database to access
it in a relational way using WSL (wide spectrum
language, aformal language notation for software)
as the program’s intermediate representation.

Copyright © 2009, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

RELATED WORK

In this section, we briefly describe the various ap-
proaches that various researchers have proposed
and undertaken in the reengineering of legacy
data. Tilley and Smith (1995) discuss the reverse
engineering of legacy systems from various ap-
proaches: software, system, managerial, evolution,
and maintenance.

Because any datareengineering should address
the subsequent modifications to the program that
the program’s data access’ logic entails, Hainaut
etal. (1993) have proposed a method to transform
this data access logic, in the form of COBOL
read statements, into their corresponding SQL
relational database equivalents.

Hainaut et al. (1993) identify two forms of
database conversion strategies. One strategy
(physical conversion) is the physical conversion
of the database where each construct of the source
database is translated into the closest correspond-
ing construct of the target database without any
consideration of the semantic meaning of the
data being translated. One of the problems with
this strategy is that the resulting target database
produced is of very low quality. The second
strategy (conceptual conversion) is the recovery
of precise semantic information, the conceptual
schema, of the source database through various
reverse engineering techniques, and then the
development of the target database, using this
conceptual schema, using standard database de-
velopment techniques. This strategy produces a
higher quality database with full documentation
as to the semantic meaning of the legacy data, but
this approach is more expensive in terms of time
and effort that it entails (Hainaut et al., 1993a).
Hainaut et al.’s approach first uses the physical
conversion strategy to convert data and then uses
atrace of the program, which accesses the legacy
data, in order to determine how the data are used
and managed. Inthisway, additional structuresand
constraints are identified through the procedural
code. Through an analysis of the application’s
variable dependency graph and of the record and
file definitions, data fields are refined, foreign keys

38

Data Reengineering of Legacy Systems

are determined, and constraints on multivalued
fields are discovered. During the database con-
ceptualization phase, the application’s physical
constructs of indexes and files are removed and the
program’s objects of arrays, data types, fields, and
foreign keys are transformed into their database
equivalents (Hainaut et al., 1993a).

Initially, database reengineering focused on
recognizing the legacy database structure and
transforming these structures into a new model
(Aiken & Muntz, 1993; Joris, 1992; Pomerlani &
Blaha, 1993; Sabanis & Stevenson, 1992). The
values of legacy data were used solely to identify
the legacy system’s dependencies in terms of keys
between records (Pomerlani & Blaha).

Aebiand Largo (1994), in the transformation of
database structures, recognize thatthe transforma-
tion of structural schemas involves many issues.
The first issue is that the different attributes and
entities of the old system must be mapped to the
new schema of the transformed database. Con-
straints, during the migration from the old to the
new system, may be added, dropped, or changed.
Entity sets in the new system may be identified by
new attributes or by old attributes with changed
domains or data types.

Wu et al. (1997), with their “butterfly” ap-
proach, assume that the legacy data are the most
important part of the legacy system and it is the
schema rather than the values of this legacy data
that are the most crucial. This legacy data are
modified in successive iterations with the legacy
data being frozen and used for reading purposes
only. The “Chicken Little” strategy allows the
legacy system to interact with the target system
during migration, using a gateway to serve as a
mediator. This gateway is used to translate and
redirect calls from the legacy system to the target
database system, and then the gateway translates
the results of the target database for use by the
legacy system and by the legacy database. Al-
though the legacy system is allowed to interact
withthetarget database during migration, each data
access involves two database accesses: one to the
target database and another to the legacy database
(Bisbal, Lawless, Wu, & Grimson, 1999).

Data Reengineering of Legacy Systems

Bianchi, Caivano, and Visaggio (2000) pro-
posed a different method of data reengineering
where the data structures are reengineered rather
than simply migrated. This reengineering involves
the use of several steps. The first step is analyzing
the legacy data through monitoring of calls to the
legacy database from the legacy system (dynamic
trace). Thisdynamictrace is used to identify which
data could be classified as conceptual (data spe-
cific to the application domain and that describe
specific application concepts), control (data that
are used for program decisions or to record an
event), structural (data that are used to organize
and support the data structures of the system), or
calculated (datathatare calculated by the applica-
tion). The second step involves redesigning the
legacy database after identifying the dependen-
cies among the data. This dependency diagram is
then converted to a target database schema. After
the legacy data are migrated to the new target
schema, the legacy system is then altered such
that data accesses to the target database reflect
the new database schema (Bianchi et al.). Using
dynamic traces along with data flow and depen-
dency analyses are some successful techniques
used in data reverse engineering that have been
obtained from the program understanding phase
of program reverse engineering (Cleve, Henrard,
& Hainaut, 2006; Millham, 2005).

Aebiand Largo (1994)also recognize problems
with the transformation of database values. Some
problems include duplicate data being used in the
same context, changes inthe primary keys of tables

oftenentailing changesinforeignkeys of the same
table, values of the attribute possibly exceeding its
given range, different encoding schemes for data
values may be used, recording errorsincorporated
into the existing data, and no existing distinction
between unknown and null values.

Hainaut et al. (1993b) outline some practical
schema-relational transformations, such as proj-
ect-join, extension transformation, and identifier
substitution, thatare dependent on the file manager
such as CODASYL, relational, TOTAL/IMAGE,
and IMS DBMS in order to function. For other
databases, such as COBOL file structure databases,
such transformations are impractical. In the case
of COBOL file structure databases, multivalued
attributes can be represented by list attributes
only. Referential constraints upon files can be
detected through careful analysis of the COBOL
procedural code, file contents, and secondary keys.
Identifying one-to-many relationships in files is
accomplished through depicting multivalued,
compound attributes B of A as a many-to-one
relationship of B to A. Multirecord types within
a sequential file may be portrayed as a many-to-
one relationship. Multivalued attributes, such as
those used in foreign keys, are represented in the
relational target model as rows in a separate table
with a link to the main referencing table. If the
source database is of a network type, a recursive
relational type may be represented by an entity
type and two one-to-many or one-to-one relational
types (Hainaut et al., 1993b).

Figure 1. Flow of reengineering processes and data store

Program

Program

Reengineering
(Analysis of
Program Flows
and Semantics)

Data
Reengineering
(Schema and

Data)

Results of
Program
Analysis

Restructuring and
Reengineering
(including
changes
necessitated by
database
reengineering)

39

MAIN FOCUS: DATA
REENGINEERING WITHIN
PROGRAM TRANSFORMATION

Because the semantic understanding of the data to
be reengineered depends to a large degree upon
the program accessing this data and because the
program accessing the target database needs to
be modified in order to account for reengineered
data, one of the areas of focus must be the analysis
of the underlying program and its usage of the
data (Bianchi et al., 2000; Hainaut et al., 1993b).
One of the problems with analyzing a program
for data access usage of legacy data is determin-
ing exactly when and where this legacy data are
accessed. Design pattern analysis of code has
been proposed as a method of determining what
sections of code might be used for accessing this
legacy data (Jarazabek & Hitz, 1998).

Another method is to convert the program-
ming-language-specific code into a programming-
language-independent intermediate representation.
This intermediate representation can be in a formal
notation. Formal notations have been usedto specify
the transformation of both programs and their as-
sociated data mathematically. One advantage of
these transformations are that these transformations
are generic (programming-language independent)
such that a transformation for a construct accessing
a legacy database to a construct accessing the target
database will be the same regardless of the types of
legacy and target databases. For example, the formal
notation WSL (Ward, 1992), with a proven set of
program transformations, has been used to trans-
form a procedurally structured and driven COBOL
legacy system using a WSL intermediate program
representation into an object-oriented, event-driven
system (Millham, 2005).

Data Reengineering of Legacy Systems

Although WSL has been extended to represent
data structures, such as records (Kwiatkowski &
Puchalski, 1998), little attention has been paid to
transforming the data structures as represented
in WSL as their original sequential file form into
another database format. However, in Millham
(2005), the sequential records and their accesses
by the application have been specified in terms
of sets and set operations. Codd, in his relational
database model, has specified this model in terms
of sets and relational calculus; WSL, in turn, may
be specified in terms of sequences, sets, and set
operations (Ward, 1992). Consequently, amethod
tointegrate the relational database model of Codd,
in its formal notation involving database speci-
fication and operation, and WSL, in its formal
notation involving program transformations and
sequential file structures, could be accomplished.
Other formal notations, similar to WSL, with the
same representational capacity, could be utilized
in the same manner. In this article, a method to
transform a WSL-represented hierarchical data-
base, with its underlying program logic, into its
relational database equivalent is provided. This
method, a combination of the data reverse engi-
neering techniques of Hainaut et al. (1993) and
Bianchi et al. (2000), occurs in conjunction with
the program understanding phase of the WSL
program reverse engineering process. During
this program understanding phase, a static and
dynamic analysis of the program code is under-
taken. Thisanalysis producesadependency graph
of variables and identifies which variables serve
as control, structural, conceptual, and calculated
field variables. While WSL, in its representation,
does not distinguish between programs and file
record types, the source code to WSL translation
process keeps track of which records are of type

Figure 2. A sample COBOL record and its WSL equivalent

COBOL Record

WSL Equivalent

01 2000-USOC-DETAIL.
05 2000-USOC
05 FILLER

PIC X(06).
PIC X(14) VALUE SPACES.

Var struct

Begin
Var 2000-USOC
Var Filler

End

40

Data Reengineering of Legacy Systems

file record. Similarly, WSL is type-less but, dur-
ing the source code to WSL representation, the
original data types of the source code are recorded
for later use during the data reengineering process
(these processes are outlined in Figure 1).

In Figure 2, the data types of each record field,
along with their default values, are recorded in
a database for future use during the data reengi-
neering process. Hence, it is possible to derive the
program’s file and record types, along with the
foreign and primary keys, from the information
obtained during these translation and analysis
processes. [fone, A, has an array field that forms a
dependency in another record B, this dependency
is depicted inaone-to-many relationship between
records A and B. Anti-aliasing of records and
their fields reduces the number of records that
refer to the same file but use different names.
Calculated data may appear as calculated fields
in the database schema. Structural data are used
to represent the target database schema. Record
fields that are used as control data may indicate a
relationship, involving the control data, between
the record that defines this control data and any
record(s) enclosed within the control block that
is governed by that control data (Millham, 2005).
Constraints on data may be determined through
an analysis of their declaration within a program
or through the use of Hainault et al.’s (1993b)
methods. Because this data reengineering process
occurs in conjunction with program reengineer-
ing, any changes to the underlying database
structure can easily be propagated to the program
reengineering phase where the program data ac-
cess logic will be altered to reflect these database
changes. Through this data reengineering, amore
logical database structure is derived along with
the necessary subsequent program data access
transformations. These transformations are based
on a formal, platform-independent representa-
tion (WSL) such that the source system, whether
COBOL or assembly language, is not important
and the advantages of a formal notation, such as
preciseness, are achieved.

Wong and Sun (2006) have been working on
detecting data dependencies in programs using a

hybrid UML (unified modeling language) collabo-
ration and activity diagram that is expressed in a
platform-independent XML (extensible markup
language) markup graph.

FUTURE TRENDS

Because up to 50% of a legacy system’s main-
tenance costs, in terms of program and database
changes, can be attributed to changing business
rules, thereisastrong need to adopt newtechniques
in reengineering legacy data and their associated
applications. Jarazabek and Hitz (1998) propose
the use of domain analysis and the use of generic
architectural design techniques in reengineer-
ing as a method of substantially reducing these
maintenance costs. Atkinson, Bailes, Chapman,
Chilvers, and Peake’s (1998) preferred approach
is to develop interfaces to general persistent data
repositoriesinthe direction of generic reengineer-
ing environment design. From these interfaces,
binding between the data stores, represented in
the target databases, and the underlying applica-
tion, which will access this target database, can be
made. Another method is to use formal-language
intermediate representations that can represent
both the database and program along with a set
of corresponding transformations to transform
the legacy to the target database and transform
the program accessing the legacy database to
a program capable of accessing the new target
database without errors. Through the use of for-
mal-language intermediate representations, a set
of generic reengineering tools for both the legacy
database and its underlying application(s) could
be designed.

CONCLUSION

Data reengineering has gone beyond a simple
physical conversion of a legacy database to its
target database. Both Hainaut et al. (1993a) and
Wu etal. (1997) utilize an analysis of the underly-
ing application(s) accessing the legacy database

41

in order to determine the database’s underlying
data types and foreign keys. Bianchi et al. (2000)
go further in using an analysis of the underlying
application(s) accessing the legacy database in
order to identify the categories of the data be-
ing used in the application such as whether the
data is used as conceptual, structural, control, or
calculated data and in order to identify the de-
pendencies among them. In this manner, a better
determination of the data usage can be made and
a better target database schema can be derived
from analysis of this usage.

Because the underlying application(s) that
access the legacy database and the legacy data-
base are so intrinsically linked during the data
reengineering phase, there is a need to be able
to analyze the applications, in a programming-
language-independent way, for data usage and
then transform these applications’ data accesses
and the legacy database, using a set of generic
transformations and tools, to the target database.
Formal notations (with their programming-lan-
guage independence, sets of transformations, and
basis in relational database theory and software
reengineering) have been proposed as a means to
generically analyze the application(s), once in the
formal notation’s intermediate representation, for
datausage and thentransformthisanalysisintoan
accurate and meaningful target database schema
for database reengineering.

REFERENCES

Aebi, D. (1997). Data engineering: A case study.
InC. J.Risjbergen (Ed.), Proceedingsinadvances
in databases and information systems. Berlin,
Germany: Springer Verlag.

Aebi, D., & Largo, R. (1994). Methods and tools
for data value re-engineering. In Lecture notes in
computer science: Vol. 819. International Con-
ference on Applications of Databases (pp. 1-9).
Berlin, Germany: Springer-Verlag.

Aiken, P., & Muntz, A. (1993). A framework for
reverse engineering DoD legacy information
systems. WCRE.

42

Data Reengineering of Legacy Systems

Atkinson, S., Bailes, P.A., Chapman, M., Chilvers,
M., & Peake, 1. (1998). A re-engineering evalu-
ation of software refinery: Architecture, process
and technology.

Behm, A., Geppert, A., & Diettrich, K. R. (1997).
On the migration of relational schemas and data
to object-oriented database systems. Proceed-
ings of Re-Technologies in Information Systems,
Klagenfurt, Austria.

Bianchi, A., Caivano, D., & Visaggio, G. (2000).
Method and process for iterative reengineering
of data in a legacy system. WCRE. Washington,
DC.

Bisbal, J., Lawless, D., Wu, B., & Grimson, J.
(1999). Legacy information systems: Issues and
directions. IEEE Software, 16(5), 103-111.

Bohm, C., & Jacopini, G. (1966). Flow diagrams,
Turing machines, and languages with only two
formation rules. CACM, 9(5), 266.

Borstlap, G. (2006). Understanding the technical
barriersof retargeting ISAM to RDBMS. Retrieved
from http://www.anubex.com/anugenio!technica
Ibarriersl.asp

Brodie, M. L., & Stonebraker, M. (1995). Migrat-
ing legacy systems: Gateways, interfaces, and the
incremental approach. Morgan Kaufmann.

Cleve, A., Henrard, J., & Hainaut, J.-L. (20006).
Data reverse engineering using system depen-
dency graphs. WCRE.

Hainaut, J.-L., Chandelon, M., Tonneau, C., &
Joris, M. (1993a). Contribution to a theory of
database reverse engineering. WCRE. Baltimore,
MD.

Hainaut, J.-L., Chandelon, M., Tonneau, C., &
Joris, M. (1993b). Transformation-based data-
base reverse engineering. Proceedings of the 12
International Conference on Entity-Relationship
Approach (pp. 1-12).

Janke, J.-H., & Wadsack, J. P. (1999). Varlet:
Human-centered tool for database reengineer-
ing. WCRE.

Data Reengineering of Legacy Systems

Jarazabek, S., & Hitz, M. (1998). Business-ori-
ented component-based software development
and evolution. DEXXA Workshop.

Jeusfeld, M. A., & Johnen, U. A. (1994). An
executable meta model for reengineering of da-
tabase schemas. Proceedings of Conference on
the Entity-Relationship Approach, Manchester,
England.

Joris, M. (1992). Phenix: Methods and tools for
database reverse engineering. Proceedings 5"
International Conference on Software Engineer-
ing and Applications.

Kwiatkowski, J., & Puchalski, I. (1998). Pre-pro-
cessing COBOL programs forreverse engineering
in a software maintenance tool. COTSR.

Mehoudj, K., & Ou-Halima, M. (1995). Migrating
data-oriented applications to arelational database
management system. Proceedings of the Third
International Workshop on Advances in Databases
and Object-Oriented Databases (pp. 102-108).

Millham, R. (2005). Evolution of batch-oriented
COBOL systems into object-oriented systems
through the unified modelling language. Un-
published doctoral dissertation, De Montfort
University, Leicester, England.

Pomerlani, W. J., & Blaha, M. R. (1993). An
approach for reverse engineering of relational
databases. WCRE.

Rob, P., & Coronel, C. (2002). Database systems:
Design, implementation, and management. Bos-
ton: Thomas Learning.

Sabanis, N., & Stevenson, N. (1992). Tools and
techniques for data remodeling COBOL applica-
tions. Proceedings 5" International Conference
on Software Engineering and Applications.

Tilley, S. R., & Smith, D. B. (1995). Perspectives
on legacy system reengineering (Tech. Rep.).
Carnegie Mellon University, Software Engineer-
ing Institute.

Ward, M. (1992). The syntax and semantics of the
wide spectrum language (Tech. Rep.). England:
Durham University.

Weiderhold, G. (1995). Modelling and system main-
tenance. Proceedings of the International Confer-
ence on Object-Orientationand Entity-Relationship
Modelling.

Wong, K., & Sun, D. (2006). On evaluating the
layout of UML diagrams for program comprehen-
sion. Software Quality Journal, 14(3), 233-259.

Wu, B., Lawless, D., Bisbal, J., Richardson, R.,
Grimson, J., Wade, V., et al. (1997). The butterfly
methodology: A gateway-free approach for mi-
grating legacy information system. In ICECOS
(pp. 200-205). Los Alamos, CA: IEEE Computer
Society Press.

Zhou, Y., & Kontogiannis, K. (2003). Incremental
transformation of procedural systems to object-
oriented platform. Proceedings of COMPSAC,
Dallas, TX.

KEY TERMS

Butterfly Approach: Aniterative datareengi-
neering approach where the legacy dataare frozen
for read-only access until the data transformation
process to the target database is complete. This
approach assumes that the legacy data are the
most important part of the reengineering process
and focuses on the legacy data structure, rather
than its values, during its migration.

Chicken Little Approach: An approach that
allows the coexistence of the legacy and target
databases during the data reengineering phase
through the use of a gateway that translates data
access requests from the legacy system for use
by the target database system and then translates
the result(s) from the target database for use by
the legacy system.

Conceptual Conversion Strategy: Astrategy
that focuses first on the recovery of the precise
semantic meaning of data in the source database
and then the development of the target database
using the conceptual schema derived from the
recovered semantic meaning of data through
standard database development techniques.

43

Domain Analysis: A technique that identifies
commonaltiesand differencesacross programsand
data. Domain analysis is used to identify design
patterns in software and data.

Legacy Data: Historical datathatareused by a
legacy system that could be defined as a long-term
mission-critical system that performs important
business functions and contains comprehensive
business knowledge

Multivalued Attribute: When an attribute, or
field, of a table or file may have multiple values.
For example, in a COBOL sequential file, its

44

Data Reengineering of Legacy Systems

corresponding record may have a field, A, with
several allowable values (Y, N, D). Translating
this multivalued attribute to its relational data-
base equivalent model is difficult; hence, lists or
linked tables containing the possible values of
this attribute are used in order to represent it in
the relational model.

Physical Conversion Strategy: A strategy
that does not consider the semantic meaning of
the data but simply converts the existing legacy
constructs of the source database to the closest
corresponding construct of the target database.

45

Chapter VI
Different Kinds of Hierarchies
in Multidimensional Models

Elzbieta Malinowski
Universidad de Costa Rica, Costa Rica

INTRODUCTION

In the database design, the advantages of using
conceptual models for representing users’ re-
quirements are well known. Nevertheless, even
though data warehouses (DWs) are databases that
store historical data for analytical purposes, they
are usually represented at the logical level using
the star and snowflake schemas. These schemas
facilitate delivery of data for online analytical
processing (OLAP) systems. In particular, hi-
erarchies are important since traversing them,
OLAP tools perform automatic aggregations of
data using the roll-up and drill-down operations.
The former operationtransforms detailed datainto

aggregated ones (e.g., daily into monthly sales)
while the latter does the opposite.

In spite of the advantages of star and snow-
flake schemas, there are some inconveniences in
using them. For example, since these schemas
are based on the relational logical model, some
implementation details (e.g., foreign keys) must
be considered during the design process. Further,
the star and snowflake schemas are not adequate
for representing different kinds of hierarchies
existing in real-world applications. Therefore,
users are not able to express their analysis needs,
and consequently, developers cannot implement
them.

We advocate that it is necessary to represent
DW data requirements at the conceptual level.

Copyright © 2009, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

Different Kinds of Hierarchies in Multidimensional Models

The conceptual model should clearly distinguish
different kinds of hierarchies since they exist in
real-world situations and are important for DW
and OLAP applications. Further, developers
should be able to implement these hierarchies.
Therefore, considering that DWs and OLAP can
use relational storage, we present how hierarchies
can be mapped to a relational model.

BACKGROUND

The star and snowflake schemas include relational
tables known as fact and dimension tables. The
fact table represents the focus of analysis (e.g.,
analysis of sales). Itusually contains numeric data
called measures (e.g., quantity). Dimension tables
containattributes thatallow usersto see measures
from different perspectives (e.g., analyze sales in
different stores). Since users usually start from
a general view of data and then, if required, the
detail explorations follow, dimensions may con-
tain attributes that form hierarchies. OLAP tools
allow users to traverse hierarchies, aggregating
measures automatically. For example, “moving”
(i.e., using the roll-up operation) from store to
city, the quantity of sold products in each store
will be added according to the cities where the
stores are located.

Depending on whether hierarchies are repre-
sented using flat (Figure 1(a)) or normalized tables
(Figure 1b)), the relational structure is called star
orsnowflake schemas, respectively. Nevertheless,
both schemas are not adequate for representing
differentkindsof hierarchiesexistingin real-world
situations. The star schema does not represent
hierarchies clearly, and the hierarchy structure
should be deduced based on the knowledge of
the application domain. On the other hand, the
snowflake schema only allows us to represent
simple hierarchies such as Store, City, and State in
Figure 1(b), even though there are different kinds
of hierarchies in real-world applications.

46

There are several proposals of conceptual
multidimensional models' that include hierarchies.
Nevertheless, as we will see later, these models
do not include all hierarchies as presented in this
chapter. This lack of a general classification of
hierarchies, including their characteristics at the
schemaand atthe instance levels, leadstorepeated
research effortsin “rediscovering” hierarchiesand
providing solutions for managing them.

MAIN FOCUS

We first describe the MultiDim model, a concep-
tual multidimensional model used for representing
requirements for DW and OLAP applications,
including different kinds of hierarchies. Then,
we present the hierarchy classification and refer
in more detail to each hierarchy type. Last, we
present mapping of these hierarchies to the rela-
tional model.

The MultiDim Model

To describe the MultiDim model (Malinowski
& Zimanyi, 2008), we use an example of a Sales
DW shown in Figure 2 that contains different
kinds of hierarchies; we refer to them in the next
section.

A MultiDim schema is a finite set of dimen-
sions and fact relationships. A dimension is an
abstract concept for grouping data that share a
common semantic meaning within the domain
being modeled. Adimension iscomposed ofa level
or one or more hierarchies. The Store dimension
in Figure 2 includes two hierarchies representing
the administrative division and organizational
structure.

Levels, such as a Product level in Figure 2,
correspond to entity types in the ER model. Ev-
ery instance of a level is called member. Levels
contain one or several key attributes (underlined
in Figure 2) identifying uniquely the members of

Different Kinds of Hierarchies in Multidimensional Models

Figure 1. A Store dimension represented as (a) star and (b) snowflake schemas

City State
City key State key
City name State name
City population State population
City area State area
State fkey —

Store
Store key
Store number Store
Store name
Store address Store key
City name Store number
City population Store name
City area Store address
State name Districtname
State population Representative
State area Contactinfo
Districtname City fkey
Representative
Contactinfo

alevel and used for aggregation purposes. Levels
may also have other descriptive attributes.

Hierarchies are required for establishing
meaningful paths for roll-up and drill-down
operations. A hierarchy contains several related
levels: Product, Category, and Department levels in
Figure 2. Hierarchies express different structures
according to an analysis criterion (e.g., Product
groups).

Given two consecutive levels of a hierarchy,
the lower level is called child and the higher-level
parent (e.g., the Product and Category levels in the
Productgroups hierarchy are, respectively, childand
parent levels). A level of a hierarchy that does not
have a child level is called leaf (e.g., the Product
level), while a level that does not have a parent
level is called root (e.g., the Department level).

The child-parent relationships are character-
ized by cardinalities. They indicate the minimum
and maximum numbers of members in one level
that can be related to a member in another level.
In Figure 2, the cardinality between the Product
and Category levels is many-to-many, indicating
that a product can belong to many categories and
a category can include many products. Various
notations are used for representing cardinalities:
—= indicates (1,n), —C= implies (O,n),
means (1,1), and —C represents (0,1).

A fact relationship represents an n-ary rela-
tionship between leaf levels, and it may contain
attributescommonly called measures. The schema
in Figure 2 contains a Sales fact relationship with
the measures Quantity and Amount.

Different Kinds of Hierarchies:
Their Classification and Conceptual
Representations

Considering the difference at the schema and
instance levels, we classify hierarchies as shown
in Figure 3 (Malinowski & Zimanyi, 2008). The
distinction at the schema level allows us to estab-
lish aggregation paths for roll-up and drill-down
operations. The distinction at the instance level
is important for the development of aggregation
procedures since they depend on whether the
instances form a tree (balanced or unbalanced),
use some exclusive paths, or are represented as
an acyclic graph.

Simple hierarchies. Therelationship between
their members is represented as a tree. Simple
hierarchies canbe further specializedin balanced,
unbalanced, and noncovering:

47

Different Kinds of Hierarchies in Multidimensional Models

Figure 2. A conceptual multidimensional schema of a Sales DW

Department
Departmentname
Description
/k Sales district State

Category Districtname State name
Category name Representative State population
Description Contactinfo State area

—
Productgroups Sales organiz.

Product Store < City
Productnumber Store number =)
T - Cityname
Productname Store name 3 ~lpname

- City population
Description Store address) .

.) = City area
Size Manger's name | 2 o
Distributor
Time Client
Sales —
Date Client id
Event Clientname
Weekday flag Quantity Client address
Weekend flag Amount
Season Customer type
Calendar
Sector Profession
Month Bimester Sectorname Profession name
Month name Bimester number Description Description

Balanced

48

Schema: only one path.

Members: they form a balanced tree since
all parent members must have at least one
child member, and a child member belongs
to only one parent member.

Example: the Store location hierarchy in
Figure 2 comprising Store, City, and State
levels.

1o

Area

Areaname
Description

Unbalanced

Schema: only one path.

Members: they form unbalanced trees since
some parent members may not have associ-
ated child members.

Example: notincluded in Figure 2; however,
they are present in many DW applications.
For example, a bank may include a hierar-

Different Kinds of Hierarchies in Multidimensional Models

Figure 3. Hierarchy classification

Independent

Parallel <}——— Specialization
Dependent 0. <_>—— Aggregation
h . Association
‘ Criterion }1—1{ Individual

1

. 0..* .
‘ Alternative b—{ Simple
1.*
‘ Balanced H Unbalanced H Generalized ‘

chy composed by ATM, Agency, and Branch
levels. However, some agencies do not have
ATMs, and small branches do not have
organizational divisions.

Special case: recursive hierarchies, where
the same level is linked by two or more roles
forming a cyclic child-parent relationship
such as an employee-supervisor relation-
ship.

Generalized

Schema: multiple exclusive paths sharing
some levels. All these paths represent one
hierarchy and account for the same analysis
criterion.

Members: each member of the hierarchy
belongsto only one path. We use the symbol
(0 for indicating that for every member, the
paths are exclusive.

Example: the Customer type hierarchy in
Figure 2 where a customer can be a person
or a company having common attributes

f

f

Recursive

H Non-Covering ‘

belonging to Customer and Area levels. How-
ever, the buying behavior of a customer can
be analyzed according to the specific level
Profession for a person type and Sector for a
company type.

Special case: noncovering hierarchies that
are generalized hierarchies with the addi-
tional restrictions that at the schema level,
the leaf level is the same for all paths and the
alternative paths are obtained by skipping
one or several intermediate levels.

Nonstrict Hierarchies

Schema: one path with at least one many-
to-many child-parent relationship.
Members: they form an acyclic graph since
a child member may have more than one
parent member. A distributing factor sym-
bol (&) may be included to indicate how
the measures should be assigned to several
parents.

49

Different Kinds of Hierarchies in Multidimensional Models

. Example: the Product groups hierarchy in
Figure 2 allows designers to model the situ-
ation when mobile phones can be classified
in different products categories (e.g., phone,
PDA, MP3 player).

Alternative Hierarchies

. Schema: aggregations of individual hier-
archies accounting for the same analysis
criterion. Insuch hierarchies, itis not seman-
tically correct to simultaneously traverse
the different composing hierarchies (i.e.,
the user must choose one of the alternative
hierarchies for analysis).

. Members: they form a graph since a child
member can be associated with more than
one parent member belonging to different
levels.

. Example: the Calendar hierarchy in the Time
dimensionin Figure 2 with two nonexclusive
balanced hierarchies sharing Time and Year
levels. During analysis, the user will choose
a hierarchy composed by either Time, Month
and Year, or Time, Bimester, and Year levels.

Parallel hierarchies. Several hierarchies ac-
counting for different analysis criteria associated
with the same dimension. These hierarchies may
be:

. Independent: the different hierarchies do
not share levels.

. Dependent: the different hierarchies do
share some levels, such as a State level be-
tween the Store location and Sales organization
hierarchies in the Store dimension.

Table 1 compares multidimensional models
that, to our knowledge, cope with hierarchies.
We did not include some models that represent
only balanced and parallel hierarchies (Torlone,
2003; Golfarelli & Rizzi, 1998; Sapia, Blaschka,
Hofling & Dinter, 1998). We use three symbols:
— when no reference to the hierarchy exists; +
when only a description and/or definition of the

50

hierarchy are presented; and v" when a descrip-
tion and a graphical representation are given. Ifa
different name for a hierarchy exists, we include
it in the table.

As we can see from Table 1, some models give
only a description and/or definition of some of
the hierarchies, without a graphic representation.
Further, for the same type of hierarchy, different
names are used in the different models. None of
the models takes into account different analysis
criteria applied for hierarchies; consequently,
the alternative and parallel hierarchies cannot
be distinguished. In several cases, the hierarchy
definition is general, and it may represent differ-
ent kinds of hierarchies. This can be considered
as an advantage, given the flexibility that allows
the inclusion of other kinds of hierarchies in the
proposed models. Nevertheless, this can also be
anundesirable situation since users cannotexpress
their requirements clearly; therefore, application
developers cannot implement them.

Mapping Rules to Relational Model

Since the MultiDim model is based on the en-
tity-relationship (ER) model, its mapping to the
relational model uses well-known rules. We will
refer only to mapping rules required for represent-
ing hierarchies:

e Alevel corresponds to an entity type in the
ER model. It maps to a table containing all
attributes of the level and includes an ad-
ditional attribute for a primary key.

. A child-parent relationship corresponds to
a binary relationship type in the ER model.
Inorder to have meaningful hierarchies, the
maximum cardinality of the parentrole must
be n. Thus, two mappings exist, depending
on the cardinality of the child role:

o If the cardinality of the child role
is (0,1) or (1,2) (i.e., the child-parent
relationship is many-to-one), the table
corresponding to the child level is ex-

Different Kinds of Hierarchies in Multidimensional Models

Table 1. Comparison of conceptual models for inclusion of different kinds of hierarchies

F

F

F

F

o o paseq-anfeA - paseq-anfeA poseq-on[ep | paseq-19As (z007) DO
. o _ _ (9007) 3uog pue
4 4 4 ‘oL “e1op-ueln
% A A _ -
soushisAu0) | ore ajdnny pabbey 4 ¥ A’ (£007) 1221y
_ . (1007) sHPS pue
4 * » * 4 ‘sipluueAeuey] ‘s10s]|
- - . . T (9007) 1031eS
e 0JU0-UON / pue ‘souwres ‘0j|eqy/|
. _ . - . . _ (0007) 1oy
pue JswwnH Ysneg
¥ _ | ES ¥
ordnny 1A ICHN renied [e10L P aq d
¥ . ¥ T . F T (L007) zoamND
sSnoduao1oH sSnoauago10H snoauagoIaoy snouoSowoy | snouoSowoy pue opelnH
2 2 _ o _ (6661) ya1og pue
srdnny 10L1ISUON 4 4 ‘6a0gsng “euojhil
2 _ _ » _ (0007) udssop
BAIRUIBY Y leuondo — 5 QM: pue 43b10qualyda]
ardnny ordnmn 16ws ‘uuewasnH
¥ T T . . T T (1007) uosaxiq
srduny 1OLIISUON BurienoouoN 0JU0-UON oo pue ‘uasuar ‘ussdapad
IS11eted 10113suo Burisnoouo 9Zl|elaus 9AISANJD [ouejequ adue|e >cogmgw_I
10 BANRUIAY ! N ! N pazi| 9 ! <] p lequn p led J19POIN

51

Different Kinds of Hierarchies in Multidimensional Models

tended with the foreign key referencing
the corresponding parent level.

o If the cardinality of the child role is
(0,n) or (1,n) (i.e., the child-parent rela-
tionship is many-to-many), a new table
containingasattributesthe foreign keys
referencing the child and parent levels
is created.

Logical Representation of Different
Kinds of Hierarchies

The result of applying the previous specified
rules to balanced hierarchies gives the snowflake
schema. For example, the relational schema in
Figure 1(b) represents the Store location hierarchy
from Figure 2. Notice thatdenormalizing the tables
produces a star schema as shown in Figure 1(a).

Theusual practice for nonbalanced hierarchies
istotransformthem into balanced ones by includ-
ing placeholdersinmissing child members. Then,
the mapping for balanced hierarchies is applied.
A different approach is taken for recursive hier-
archies for which applying mapping rule gives as
a result the so-called parent-child table.

The mapping of the Customer type generalized
hierarchy in Figure 2 is shown in Figure 4(a)
(ignoring for now the dotted line). Even though
this mapping clearly represents the hierarchical
structure, it does not allow users to only traverse
the common hierarchy levels. Therefore, for that
purpose, we include additional links between
common levels. Forexample, we include a foreign
key inthe Customer table referencing the Areatable
(dotted line in the figure). This structure allows
choosing differentalternatives for analysis, either
to use paths with specific levels (i.e., Sector and
Profession), or to traverse the common levels for all
members (i.e., Client and Area). Since a noncover-
ing hierarchy is a special case of a generalized
hierarchy, the same mapping rules can be applied.
However, a usual solution is to transform the
noncovering hierarchies into balanced ones by
including placeholders or null values in missing

52

levels. Then, the mapping to the snowflake or star
schemas is used.

The traditional mapping of nonstrict hierar-
chies to relational model creates tables for repre-
senting levelsand anadditional table for represent-
ing a many-to-many relationship between them.
The latter table is called a bridge table. When a
distributing factor is included in the conceptual
schema, an additional attribute is added to the
bridge table to store this information.

For alternative and parallel hierarchies, the
traditional mapping to relational tables can be
applied; it is shown in Figure 4(b) and Figure 4(c)
for the Calendar hierarchy and for both hierarchies
of the Store dimension from Figure 2.

Notice that even though generalized and al-
ternative hierarchies can be easily distinguished
at the conceptual level (the Customer type and
Calendar hierarchies in Figure 2, respectively),
this distinction cannot be easily done at the logi-
cal level (Figure 4(a) and Figure 4(b)). A similar
situation occurs in distinguishing alternative and
parallel hierarchies (Figure 4(b) and Figure 4(c)),
even though both kinds of hierarchies represent
differentsituations. Inthe alternative hierarchies,
the user cannot combine the levels from different
composing hierarchies, butthey can combine them
for parallel hierarchies; for example, to analyze
sales made in different cities belonging to the
specific sales district.

Several commercial DBMS products (e.g.,
from Microsoft, Oracle, IBM) make it possible
to implement some hierarchies, including un-
balanced, noncovering, recursive, and parallel.
Additionally, Microsoft Analysis Services 2005
allows the definition of a bridge table for dealing
with nonstrict hierarchies.

FUTURE TRENDS

Eventhough several conceptual multidimensional
models were proposed, the usual practice is to
use logical models. Therefore, the research com-

Different Kinds of Hierarchies in Multidimensional Models

Customer

Customerkey
Customer Id
Customername
Address

Sector fkey
Profession fkey

Figure 4. Relational schemas for the (a) client, (b) time, and (c) store dimensions from Figure 2

Sector
Sectorkey
Sectorname
Description Branch
Branch fkey »
Brach key

Profession

Branch fkey —

Time

Time key
Date

Weekday flag
Weekend flag
Season
Month fkey

Profession key

Profession name
Description
Branch fkey

Branch name
Description

Month

Month key
Month name
Year fkey

Year

Bimester

R Bimester key

Bimester fkey

Store

Store key
Store number

Store name
Store address

Sales districtfkey
City fkey

Bimester number

Yearkey
Year number

munity should demonstrate the benefits of using
conceptual models for DW and OLAP applications
and provide a commonly accepted formalism
to support interoperability and standardization
(Torlone, 2003).

Furthermore, the purpose of having hierarchies
is to perform aggregation of measures while tra-
versing them. Since not all hierarchies are consid-
ered in commercial tools and research proposals,
there is still the necessity to develop aggregation
procedures for all kinds of hierarchies.

Yearfkey — —
b)
Sales district
District key
Districtname g State
Represelntative State ke
Contactinfo AState name
State fkey State population
> State area
City
City key
City name
City population
City area
State fkey
c)
CONCLUSION

In this chapter, we discussed the need to have
conceptual multidimensional models able to
express requirements for DW and OLAP appli-
cations, including different kinds of hierarchies
existing in real-world situations. We presented a
classification of hierarchies and showed how they
can be represented at both the conceptual and

53

Different Kinds of Hierarchies in Multidimensional Models

logical levels using, respectively, the MultiDim
and relational models.

The conceptual representations of hierarchies
permits a clear distinction of each type of hierar-
chy at the schema and instance levels, preserving
at the same time the general characteristics of
the snowflake schema (i.e., aggregation paths).
Nevertheless, this distinction cannot be done at
the logical level (e.g., relational) for generalized,
alternative, and parallel hierarchies. Therefore,
by using a conceptual model independent from
implementation details, users will be able to better
understand the datato be analyzed, and developers
can have a common vision of different kinds of
hierarchies and focus on aspects related to their
implementation.

REFERENCES

Abelld, A., Samos, J., & Saltor, F. (2006). YAM?:
A multidimensional conceptual model extending
UML. Information Systems, 32(6), 541-567.

Bauer, A., Himmer, W., & Lehner, W. (2000). An
alternative relational OLAP modeling approach.
Proceedings of the 2nd International Conference
on Data Warehousing and Knowledge Discovery,
189-198.

Golfarelli, M., & Rizzi, S. (1998). Amethodologi-
cal framework for data warehouse design. Pro-
ceedings of the 1st ACM International Workshop
on Data Warehousing and OLAP, 3-9.

Hurtado, C., & Gutierrez, C. (2007). Handling
structural heterogeneity in OLAP. InR. Wrembel,
& C.Koncilia(Eds.), Datawarehousesand OLAP:
Concepts, architecturesandsolutions (pp. 27-57).
Hershey, PA: Idea Group Publishing.

Hiisemann, B., Lechtenborger, J., & Vossen,
G. (2000). Conceptual data warehouse design.
Proceedings of the 2nd International Workshop
on Design and Management of Data Warehouses,
6.

54

Lujan-Mora, S., Trujillo, J., & Song, L. (2006). A
UML profile for multidimensional modeling in
data warehouses. Data & Knowledge Engineer-
ing, 59(3), 725-769.

Malinowski, E., & Zimanyi. E. (2008). Advanced
data warehouse design: From conventional to
spatial and temporal applications. Springer

Object Management Group. (2002). Common
warehouse metamodel. Retrieved from http:/
www.omg.org/docs/formal/03-03-02.pdf

Pedersen, T., Jensen, C.S., & Dyreson, C. (2001).
Afoundation for capturing and querying complex
multidimensional data. Information Systems,
26(5), 383-423.

Pourabbas, E., & Rafanelli, M. (2003). Hierar-
chies. In M. Rafanelli. (Ed.), Multidimensional
databases: Problems and solutions (pp. 91-115).
Hershey, PA: Idea Group Publishing.

Rizzi, S. (2007). Conceptual modeling solutions
for the data warehouse. In R. Wrembel, & C.
Koncilia (Eds.), Data warehouses and OLAP:
Concepts, architectures and solutions (pp. 1-26).
Hershey, PA: Idea Group Publishing.

Sapia, C., Blaschka, M., Hofling, G., & Dinter,
B. (1998). Extending the E/R model for multidi-
mensional paradigms. Proceedings of the 17th
International Conference on Conceptual Model-
ing, 105-116.

Torlone, R. (2003). Conceptual multidimensional
models. In M. Rafanelli (Ed.), Multidimensional
databases: Problems and solutions (pp. 91-115).
Hershey, PA: Idea Group Publishing.

Tryfona, N., Busborg, F., & Borch, J. (1999).
StarER: A conceptual model for data warehouse
design. Proceedings of the 2nd ACM International
Workshop on Data Warehousing and OLAP,
3-8.

Tsois, A., Karayannidis, N., & Sellis, T. (2001).
MAC: Conceptual data modeling for OLAP.

Different Kinds of Hierarchies in Multidimensional Models

Proceedings of the 3rd International Workshop
on Design and Management of Data Warehouses,
5.

KEY TERMS

Conceptual Multidimensional Model: A set
of objects and rules that facilitates an abstract
representation of requirements for DW and OLAP
applications. It usually includes dimensions with
hierarchies and facts with associated measures.

Dimension: An abstract concept for grouping
data that shares a common semantic meaning
within the domain being modeled.

Hierarchy: A sequence of levels providing
data at different granularities for establishing
meaningful aggregation paths.

Level: Asetofelementsrepresenting the same
data granularity.

Logical Representation (or Schema): A
specification of data structures according to the
features of the given logical model, such as rela-
tional or object-relational.

Snowflake Schema: A variation of the star
schema except that dimensions are normalized
representing each hierarchy level in a separate
table.

Star Schema: A relational schema consisting
of afacttable, which links to other de-normalized
tables called dimension tables.

ENDNOTE
! A more detailed description of proposals for

multidimensional modeling can be found in
Torlone (2003).

55

56

Chapter VI
Spatial Data in
Multidimensional Conceptual
Models

Elzbieta Malinowski
Universidad de Costa Rica, Costa Rica

INTRODUCTION

Data warehouses (DWs) are used for storing
and analyzing high volumes of historical data.
The structure of DWs is usually represented as
a star schema consisting of fact and dimension
tables. A fact table contains numeric data called
measures (e.g., quantity). Dimensions are used
for exploring measures from different analysis
perspectives (e.g., according to products). They
usually contain hierarchies required for online
analysis processing (OLAP) systems in order to
dynamically manipulate DW data. While travers-

ing hierarchy, two operations can be executed:
the roll-up operation, which transforms detailed
measures into aggregated data (e.g., daily into
monthly sales); and the drill-down operation,
which does the opposite.

Current DWs typically include a location
dimension (e.g., store or client address). This di-
mensionisusually represented inanalphanumeric
format. However, the advantages of using spatial
datainthe analysis process are well known, since
visualizing data in space allows users to reveal
patterns that are otherwise difficult to discover.
Therefore, spatial databases (SDBs) can give in-

Copyright © 2009, IGI Global, distributing in print or electronic forms without written permission of 1GI Global is prohibited.

Spatial Data in Multidimensional Conceptual Models

sights about how to represent and manage spatial
data in DWs.

SDBs provide mechanisms for storing and
manipulating spatial objects. These databases
typically are used for daily business operations
(e.g., to indicate how to get to a specific place
from the current position given by a GPS). SDBs
are not well suited for supporting the decision-
making process (Bédard, Rivest & Proulx, 2007)
(e.g., to find the best location for a new store).
This is how the field of spatial data warehouses
(SDWs) emerged.

SDWs combine SDB and DW technologies for
managing significant amounts of historical data
that include spatial location. To better represent
users’ requirements for SDW applications, a con-
ceptual model should be used. The advantages of
using conceptual models are well known in data-
base design. Nevertheless, the lack of aconceptual
approach for DW and OLAP system modeling in
addition to the absence of a commonly accepted
conceptual model for spatial applications make
the modeling task difficult. Existing conceptual
models for SDBs are not adequate for DWs since
they do not include the concepts of dimensions,
hierarchies, and measures. Therefore, there is a
need for extending multidimensional models by
including spatial data to help users have a better
understanding of the data to be analyzed.

BACKGROUND

To the best of our knowledge, very few proposals
address theissue of conceptual modeling for SDWs
(Ahmed & Miquel, 2005; Bimonte, Tchounikine
& Miquel, 2005; Jensen, Klygis, Pedersen &
Timko, 2004; Pestana, Mira da Silva & Bédard,
2005). Some of these models include the concepts
presented in Malinowski and Zimanyi (2004), as
explained inthe nextsection; other models extend
nonspatial multidimensional models with differ-
entaspects such as imprecision in location-based
data (Jensen et al., 2004) or continuous phenom-

ena (e.g., temperature or elevation) (Ahmed &
Miquel, 2005).

Other models for SDWs use the logical rela-
tional representation based on the star/snowflake
schemas. These proposals introduce concepts of
spatial dimensionsand spatial measures (Fidalgo,
Times, Silva & Souza, 2004; Rivest, Bédard &
Marchand, 2001; Stefanovic, Han & Koperski,
2000); however, they impose some restrictions on
the model, as discussed in the next section.

We consider that a conceptual multidimen-
sional model with spatial support should not only
include dimensions, hierarchies, and measures,
butshouldalso refer to various aspects that are not
presentin conventional multidimensional models
related to particularities of spatial objects.

Spatial objects correspond to real-world enti-
ties for which the application needs to keep their
spatial characteristics. Spatial objects consist
of a thematic (or descriptive) component and a
spatial component. The thematic component de-
scribes general characteristics of spatial objects
(e.g., name) and is represented using traditional
DBMS data types (e.g., integer, string, date). The
spatial component includes its geometry that can
be of type point, line, surface, or a collection of
them.

Spatial objects can relate to each other form-
ing topological relationships. Various topological
relationships have been defined (Egenhofer, 1993).
They allow determining, for example, whether a
store is located within city limits or whether bus
and tramway lines intersect in some location.

Pictograms are typically used for representing
spatial objectsand topological relationshipsincon-
ceptual models, such as the ones shown in Figure
1 (Parent, Spaccapietra & Zimanyi, 2006).

Even though the experience gained in SDBs
can be useful for SDWs, the inclusion of spatial
objects in a multidimensional model requires
additional analysis with respect to topological
relationships existing between various elements
of the multidimensional model or aggregations of
spatial measures, among others. While some of

57

Spatial Data in Multidimensional Conceptual Models

Figure 1. Pictograms for (a) spatial data types and (b) topological relationships

e Point | %% Pointset & Intersects | @ Equals

N Line > Lineset © Contains | ®° Touches

4 Area & Areaset ®° Disjoint & Crosses
@ (b)

these aspects are mentioned briefly in the existing
literature (e.g., spatial aggregations) (Pedersen
& Tryfona, 2001), others are neglected (e.g.,
the influence on aggregation procedures of the
topological relationships between spatial objects
forming hierarchies).

MAIN FOCUS

The Spatially-Extended MultiDim
Model

The MultiDim model is a conceptual multidi-
mensional model (Malinowski, 2009) able to
represent fact relationships, measures, dimen-
sions, and hierarchies. This model was extended
by providing spatial support to various elements
(Malinowski & Zimanyi, 2008).

To describe our model, we use an example
on the analysis of road maintenance costs'.
Roads are located in zones that can be affected
by various types of hazard events such as ava-
lanche, landslide, flood, and so forth. For every
event type that takes place in the same area, the
corresponding area is defined as a hazard zone.
Then, the hazard zones of the same or different
type are grouped according to risk level. The risk
level is established based on the importance and
frequency of the hazard, and may be classified
as high, medium, low, or irrelevant. Therefore,
a new geographical distribution is elaborated

58

considering the risk level. When a natural hazard
event occurs and affects the road structure, the
road must be repaired. Roads are divided into
segments that may belong to either city roads or
highways. Districts are responsible for city road
maintenance, while maintenance to highways
is provided by private entities. In addition, the
repair cost should be delivered for each state in
order to supportthe formulation of cost allocation
policies. The analysis should also help to reveal
how the various types of road coatings affect
maintenance costs. The multidimensional schema
that represents these requirements is shown in
Figure 2. It contains dimensions, hierarchies, a
fact relationship, and measures.

A dimension is an abstract concept for group-
ing data that share a common semantic meaning
within the domain being modeled. It represents
either a level or one or more hierarchies.

A level corresponds to an entity type in the
ER model and represents a set of instances called
members. For example, Road coating in Figure 2
is a one-level dimension. Spatial levels are lev-
els for which the application needs to keep their
spatial characteristics. This is captured by its
geometry, whichinour model isrepresented using
the pictograms from Figure 1(a). In Figure 2, we
have several spatial levels, such as Road segment,
District, Company, and so forth. Notice that a level
may have spatial attributes whether it is spatial
or not; for example, in Figure 2, the spatial level
State contains a spatial attribute Capital.

Spatial Data in Multidimensional Conceptual Models

Figure 2. An example of a multidimensional schema with spatial elements

State &
Statename
State popu lation
Capital o
o r(X
City &
City name ©
City population
LI
District 4 Company 4
District nam e Company name
Responsible Address
© ©
Roadd istribution
Road
segment
Number
Speedlimit
Condition

Hierarchies are required for establishing
meaningful paths for the roll-up and drill-down
operations. Since hierarchies can express various
structures according to an analysis criterion, we
use the criterion name to differentiate them (e.g.,
Geo location in Figure 2).

Hierarchies contain several related levels.
Depending on whether the levels include more
detailed or more general data, they are called,
respectively, child and parent. In Figure 2, Hazard
zone is a child level, while Risk zone is a parent
level. A level of a hierarchy that does not have
a child level is called leaf (e.g., Road segment),
while a level that does not have a parent level
is called root (e.g., State). Levels contain one or
several key attributes (underlined in Figure 2)
and may also have other descriptive attributes.
Key attributes indicate how child members are
grouped into parent members during the roll-up
operation (e.g., cities will be grouped according
to the state name to which they belong.

Risk zone &

Risk zoneid
Risk level
Description

©
Geo location

Roadc oating

Hazard zone 4

Coating du rability

Coatingname Hazardzoneno
Coatingty pe Hazard zonetype

Description

Time

Length(S)
Commonarea N
Repaircost

Date
Event
Season

The relationships between child and parent
levels are characterized by cardinalities. They
indicate the minimum and maximum numbers
of members in one level that can be related to a
member in another level. Different notations are
used to represent cardinalities: —= (1,n), —0<
(O,n), (1,1), and —2 (0,1). In Figure 2,
the cardinality between the Hazard zone and the
Risk zone levels is many-to-one, indicating that
a hazard zone may only belong to one risk zone
and that a risk zone may include many hazard
zones. Different cardinalities may exist between
levels leading to different types of hierarchies
(Malinowski, 2009). It is important to include
them in the conceptual model since they exist
in real-world situations and may be required by
decision-making users. For example, the Road
distribution hierarchy is the so-called generalized
hierarchy; at the schema level, it is comprised
of different paths but, at the instance level, each
member belongs to only one path. The symbol

59

® indicates that for every member, the paths are
exclusive.

Ifahierarchy includes at least one spatial level,
itiscalledaspatial hierarchy. Inaspatial hierarchy,
two consecutive spatial levels are topologically
related. This is represented using the pictograms
of Figure 1(b). By default, we suppose the within
topological relationship, which indicates that
the geometry of a child member is included in
the geometry of a parent member; for example,
in Figure 2, the geometry of each hazard zone is
included inthe geometry of its corresponding risk
zone. However, in real-world situations, different
topological relationships may existamong spatial
levels. They determine the complexity of the
procedures for aggregation of measures during
the roll-up operations (Malinowski & Zimanyi,
2008). For example, in a spatial hierarchy formed
by the Store and City levels, some points referring
to store locations may be on the border between
two cities represented assurfaces. Inthissituation,
when traversing from the Store to the City levels,
it is necessary to determine whether the measure
(e.g., requiredtaxes) should be distributed between
two cities or considered only for one of them.

A fact relationship (e.g., Road maintenance in
Figure 2) representsan n-ary relationship between
leaf levels. This fact relationship can be spatial if
at least two leaf levels are spatial (e.g., Road seg-
ment and Hazard zone). A spatial fact relationship
may require the inclusion of a spatial predicate
for the spatial join operation. In the figure, an
intersection topological relationship indicates
that users require focusing their analysis on those
road segments that intersect hazard zones. If this
topological relationship is not included, users are
interested in any topological relationships that
may exist.

A (spatial) fact relationship may include the-
matic or spatial measures. The former are usually
numeric values used for quantitative analysis
(e.g., to analyze the changes in repair costs dur-
ing various periods of time). Spatial measures
can be represented by a geometry or calculated

60

Spatial Data in Multidimensional Conceptual Models

using spatial operators (e.g., distance, area). To
indicate thatthe measure is calculated using spatial
operators, we use the symbol (S). The schema in
Figure 2 contains two spatial measures: Length
and Common area. Length is a number represent-
ing the length of a road segment that belongs to
a hazard zone, and Common area represents the
geometry of this common part.

Measures require the specification of the func-
tion used for aggregations along the hierarchies.
By default, we suppose sum for the measures
represented as numbers and spatial union for the
measures represented as geometries.

TheschemainFigure 2 providesamultidimen-
sional view of data with clearly distinguished ele-
ments: the fact relationship indicating the focus of
analysis, measures used for aggregation purposes,
and dimensionswith hierarchiesallowing usersto
analyze measures from various perspectives and
with different levels of detail. Further, our model
can include spatial as well as nonspatial elements
in an orthogonal way; therefore, it gives users
various alternatives for choosing the kind of data
that better fit their analysis requirements.

Modeling Aspects

A common practice in modeling spatial data
warehouses is to convert the location dimension
into a spatial dimension by including spatial
representation of hierarchy levels. Figure 3 shows
an example for analysis of sales where, instead
of relying on alphanumeric representation for
the Store and City locations, we refer to their
geographic locations. Therefore, users are able to
analyze sales figures considering the territorial
distribution of stores and cities using the roll-
up or drill-down operations. For example, they
can compare sales in various neighboring cities
or sales in various cities according to different
age groups. This may help to identify stores that
are not frequently visited by certain groups of
customers.

Spatial Data in Multidimensional Conceptual Models

Figure 3. Spatially-enhanced model of a sales DW

City 4
Cityname
City population
©
Geo location
Age group
Store
Category Group name
Catedory name Store number Min. value
Lalegoryname
— Store name Max. value
.[?.escnptlon Store address
Product groups Age category
Product Customer
Productnumber Customer id
Productname Quantity First name
Amount Lastname
Profession
Time
<
Date 2 Month B> Year
Event =
Season o Month name Year

An alternative schema for analysis of sales is
showninFigure 4 withastore location represented
now as a spatial measure. Since the dimensions
include hierarchies, aspatial aggregation function
(spatial union [SU]) is defined. When a user rolls
up, for example, to the Age group level, the store
locations corresponding to certain age groups
will be aggregated and represented as a set of
points. Other spatial operators can also be used:;
for instance, center of n points. This may help to
discover patternssuchas preferred store locations
of clients belonging to a specific age group.

Even though both schemas are similar, dif-
ferent analyses can be undertaken when a loca-
tion is handled as a spatial hierarchy or a spatial
measure. For example, comparison of amount of
sales in various geographic zones can be done for
the schema in Figure 3 but not for the schema in
Figure 4, since only the exact locations of stores

are given without their geographic distribution.
On the other hand, aggregation of store locations
according to some predicate involving time, prod-
uct, and/or customer can be easily done for the
schemainFigure 4, whereas it cannot be achieved
for the schema in Figure 3 since all dimensions
are independent and traversing a hierarchy and
one of them does not aggregate data in another
hierarchy. Therefore, the designer of the applica-
tion must determine which of these schemas better
represents user needs.

Other Approaches

The MultiDim model extends those of Stefanovic,
etal. (2000) and Rivest, Bédard, Proulx, Nadeau,
Hubert, and Pastor (2005), particularly by allowing
anonspatial level (e.g., address represented as an
alphanumeric datatype) toroll uptoaspatial level

61

Spatial Data in Multidimensional Conceptual Models

Figure 4. Another variant of conceptual schema from Figure 3

Age group
Category Group name
c v nam mm.valre
Description ax.vajue
Productgroups Age category
Product Sales location Customer
Productnumber Customer id
Productname Quantity First name
Amount Lastname
Store location «/SU Profession
Time
=
Date c Month B Year
Event =
Season &} Month name Year

(e.g., city represented by a surface). Further, we
extend the classification for spatial dimensions,
including a spatial dimension, even if it only has
one spatial level (e.g., a State dimension that is
spatial without any other geographical division).
The extension also includes a classification of
various kinds of spatial hierarchies existing
in real-world situations and a classification of
topological relationships according to complex-
ity of aggregation procedures; these aspects are
currently ignored in SDW research.

With respect to spatial measures, we based
our proposal on Stefanovic, et al. (2000) and
Rivest, et al. (2001). However, both authors refer
to implementation details stating that spatial
measures should be represented using pointers to
spatial objects. In our model, we clearly separate
the conceptual and implementation aspects. In
addition, Rivest, et al. (2001) require the pres-
ence of spatial dimensions for including spatial
measures represented by a geometry. On the
contrary, in our model, a spatial measure can be
related to nonspatial dimensions, as can be seen
in Figure 4.

62

Fidalgo, et al. (2004) do not allow spatial
measuresand converttheminspatial dimensions.
However, the resulting model corresponds to
different analysis criteria and answers to differ-
ent queries, as already discussed in the previous
section.

FUTURE TRENDS

An interesting research problem is the inclusion
of spatial data represented as a continuous (or
field) view (e.g., temperature, altitude, soil cover).
Although some proposalsalready exist (Ahmed &
Miquel, 2005), additional analysis is still required
for spatial hierarchies formed by levels represented
by field data, spatial measures representing con-
tinuous phenomena and their aggregations, fact
relationships thatinclude spatial dimensions with
field data, among others.

Another issue is to cope with multiple repre-
sentations of spatial data (i.e., allowing the same
real-world object to have different geometries).
Multiple representations are a common practice

Spatial Data in Multidimensional Conceptual Models

in SDBs. They are also an important aspect in the
context of DWssince spatial data may be integrated
from various source systems that use different
geometries for the same spatial object.

The MultiDim model allows the inclusion
of two-dimensional (2D) objects. Nevertheless,
many application domains (e.g., urban planning,
disaster management) require three-dimensional
(3D) objects. The extension to manage 3D objects
should address different issues (e.g., different to-
pological relationships between hierarchy levels,
aggregation of 3D measures, etc.).

CONCLUSION

Inthis chapter, wereferred to SDWs and presented
various elements of a spatial multidimensional
model, such as spatial levels, spatial hierarchies,
spatial fact relationships, and spatial measures.
The inclusion of spatial objects in the concep-
tual multidimensional model aims at improving
the data analysis and design for SDW and spatial
OLAP applications. Since our model is platform-
independent, itreduces the difficulties of modeling
spatial applications. This is an important feature
because decision-making users do not usually
possess the expertise required by the software
currently used for managing spatial data. Fur-
thermore, spatial OLAP tools developers can
have acommon vision of the various features that
compriseaspatial multidimensional model and of
the different roles that each element of this model
plays. This can help to develop accurate and ef-
ficient solutions for spatial data manipulations.

REFERENCES

Ahmed, T., & Miquel, M. (2005). Multidimen-
sional structures dedicated to continuous spa-
tio-temporal phenomena. Proceedings of the
22nd British National Conference on Databases,
29-40.

Bédard, Y.,Rivest, S., & Proulx, M. (2007). Spatial
on-line analytical processing (SOLAP): Concepts,
architecturesand solutions fromageomatics engi-
neering perspective. InR. Wrembel, & C. Koncilia
(Eds.), Data warehouses and OLAP: Concepts,
architectures and solutions (pp, 298-319). Her-
shey, PA: Idea Group Publishing.

Bimonte, S., Tchounikine, A., & Miquel, M.
(2005). Towards a spatial multidimensional
model. Proceedings of the 8th ACM International
Workshop on Data Warehousing and OLAP,
39-46.

Egenhofer, M. (1993). A model for detailed binary
topological relationships. Geomatica, 47(3-4),
261-273.

Fidalgo, R., Times, V., Silva, J., & Souza, F.
(2004). GeoDWFrame: A framework for guiding
the design of geographical dimensional schemes.
Proceedings of the 6th International Conference
on Data Warehousing and Knowledge Discovery,
26-37.

Jensen, C.S., Klygis, A., Pedersen, T., & Timko,
I. (2004). Multidimensional data modeling for
location-based services. VLDB Journal, 13(1),
1-21.

Malinowski, E. (2009). Different kinds of hier-
archies in multidimensional models.

Malinowski, E., & Zimanyi, E. (2004). Represent-
ing spatiality in a conceptual multidimensional
model. Proceedings of the 12th ACM Symposium
on Advances in Geographic Information Systems,
12-21.

Malinowski, E., & Zimanyi. E. (2008). Advanced
data warehouse design: from conventional to
spatial and temporal applications. Springer.

Parent, C., Spaccapietra, S., & Zimanyi, E. (2006).
Conceptual modeling for traditional and spatio-
temporal applications: The MADS approach.
Springer.

63

Pedersen, T.B., & Tryfona, N. (2001). Pre-aggre-
gationinspatial datawarehouses. Proceedings of
the 7th International Symposium on Advances in
Spatial and Temporal Databases, 460—478.

Pestana, G., Mira da Silva, M., & Bédard, Y.
(2005). Spatial OLAP modeling: Anoverview base
on spatial objects changing over time. Proceed-
ings of the IEEE 3rd International Conference on
Computational Cybernetics, 149-154.

Rivest, S., Bédard, Y., & Marchand, P. (2001).
Toward better support for spatial decision mak-
ing: Defining the characteristics of spatial on-line
analytical processing (SOLAP). Geomatica, 55(4),
539-555.

Rivest, S., Bédard, Y., Proulx, M.J., Nadeau, M.,
Hubert, F., & Pastor, J. (2005). SOLAP technology:
Merging business intelligence with geospatial
technology for interactive spatio-temporal ex-
ploration and analysis of data. ISPRS Journal of
Photogrammetry & Remote Sensing, 60, 17-33.

Stefanovic, N., Han, J., & Koperski, K. (2000).
Object-based selective materialization for efficient
implementation of spatial data cubes. Transac-
tionson Knowledge and Data Engineering, 12(6),
938-958.

64

Spatial Data in Multidimensional Conceptual Models

KEY TERMS

Multidimensional Model: A model for rep-
resenting the information requirements for data
warehouse and OLAP applications. It includes
facts, measures, dimensions, and hierarchies.

Spatial Data Warehouse: A data warehouse
thatincludes spatial dimensions, spatial measures,
or both, thus allowing spatial analysis.

Spatial Dimension: An abstract concept
for grouping data that share common semantics
within the domain being modeled. It contains a
spatial level or one or more spatial hierarchies.

Spatial Fact Relationship: Ann-ary relation-
ship between two or more spatial levels belonging
to different spatial dimensions.

Spatial Hierarchy: One or several related
levels where at least one of them is spatial.

Spatial Level: A type defining a set of at-
tributes, keeping track of the spatial extent of its
instances (members).

Spatial Measure: An attribute of a (spatial)
fact relationship that can be represented by a ge-
ometry or calculated using spatial operators.

ENDNOTE

! This example is inspired from Parent, Spac-

capietra, and Zimanyi (2006).

65

Chapter VIII
Requirement Specification and
Conceptual Modeling for
Data Warehouses

Elzbieta Malinowski
Universidad de Costa Rica, Costa Rica

INTRODUCTION

Data warehouses (DWs) integrate data from dif-
ferentsource systemsinorderto provide historical
information that supports the decision-making
process. The design of a DW is a complex and
costly task since the inclusion of different data
items in a DW depends on both users’ needs and
data availability in source systems.

Currently, thereisstill alack of amethodologi-
cal framework that guides developers through
the different stages of the DW design process.
On the one hand, there are several proposals that
informally describe the phases used for developing
DWs based on the authors’ experience in building

such systems (Inmon, 2002; Kimball, Reeves,
Ross, & Thornthwaite, 1998). On the other hand,
the scientific community proposes a variety of ap-
proaches for developing DWs, discussed in the next
section. Nevertheless, they either include features
that are meant for the specific conceptual model
used by the authors, or they are very complex.
Thissituation hasoccurred since the need to build
DW systems that fulfill user expectations was
ahead of methodological and formal approaches
for DW development, just like the one we had for
operational databases.

Specifically, the approaches for requirements
specifications and conceptual modeling differ
significantly because some of them rely mainly
on user requirements, while others take into con-

Copyright © 2009, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

Requirement Specification and Conceptual Modeling for Data Warehouses

sideration the underlying operational databases
instead of userneeds. Such diversity of approaches
may overwhelm designers who could find it dif-
ficult to identify the one approach that better fits
to particularities of a DW project.

Inthis chapter we refer to requirements speci-
fication and conceptual modeling phases for DW
design. Our proposal unifies the already existing
approaches by giving an overall perspective of
differentalternatives available to designers when
developing a DW.

BACKGROUND

The requirements specification phase is one of
the earliest steps in system development and it
has a major impact on the success of DW proj-
ects (Winter & Strauch, 2003). This phase will
help to identify the essential elements of a mul-
tidimensional schema, i.e., facts with associated
measures, dimensions, and hierarchies, required
to facilitate future data manipulations and cal-
culations. These elements should be clearly and
concisely represented in a conceptual schema in
a later stage. This schema will serve as basis for
analysis tasks performed by the users and will be
used by the designers during future evolutions
of the DW.

There are different approaches for require-
ments specification and conceptual modeling
of DWs. The so-called user-driven approach!
takes into account the fact that users play a fun-
damental role during requirement analysis and
must get actively involved in the elucidation of
relevant facts and dimensions (Freitas, Laender,
& Campos, 2002; Lujan-Mora & Trujillo, 2003).
The business-drivenapproach?bases derivation
of DW structures onthe analysis of either business
requirements or business processes (Giorgini,
Rizzi, & Garzetti, 2005; List, Schiefer, & Min
Tjoa, 2000). Onthe other hand, the source-driven
approach?® analyzes the underlying source sys-
tems in order to obtain the DW schema (Boehnlein

66

& Ulbrich-vom Ende, 1999; Cabibbo & Torlone,
1998; Golfarelli & Rizzi, 1998; Moody & Kortink,
2000). Finally, the combined approach* puts
together the business- or user- driven and data-
drivenapproachesrepresenting what the business
or user demands are and what the source systems
can provide (Bonifati, Cattaneo, Ceri, Fuggetta,
& Paraboschi, 2001; Winter & Strauch, 2003).

Nevertheless, the proposed approaches are
difficultto use. On the one hand, different authors
use techniques or models that require specific
technical knowledge. On the other hand, the va-
riety of existing approaches may overwhelmeven
experienced designers who tend to concentrate
more on technical issues, e.g., physical modeling
or query performance, and therefore, many DW
projects skip the requirements specification and
conceptual modeling phases.

Presenting the variety of approaches in a co-
herent whole may facilitate their understanding
without loosing their semantic differences. Itcould
also facilitate the developer’s team to choose one
approach that better fits the particular needs of a
DW project. Furthermore, professionals who are
highly skilled in the development of operational
databases but inexperienced in the development
of DWs could better understand the different
aspects that must be considered during the DW
design process.

MAIN FOCUS

In this section we present three different ap-
proaches for requirements specifications and
conceptual modeling. Depending on whether
users (business) or source systems are the driving
force forrequirements specifications, we propose,
respectively, analysis-driven and source-driven
approaches. We also present what we call the
analysis/source-driven approach, which combines
both previously-mentioned approaches. Although
we separate the requirements specifications and
the conceptual modeling phases for readability
purposes, in reality these phases often overlap.

Requirement Specification and Conceptual Modeling for Data Warehouses

Figure 1. Analysis-driven approach: a) requirements specification and b) conceptual design phases

Identify users

!

Determine analysis needs

Detailuser
demands

Define, refine,

and prioritize

processes for
goal

goals Model business processes
Determine

—» Specify services

accomplishment

or activities

a)

vv
Document
requirements
specifications

Elaborate initial
schema

Check data
—>» availability & —»
specify mapping

Elaborate final
schema & refine

mapping

b)

Analysis-Driven Approach

Inthe analysis-drivenapproach, the driving force
for developing aconceptual schema is business or
user requirements. These requirements express
the organizational goals and needs that a DW is
expected to address in order to support the deci-
sion-making process. Below we refer in more
detail to the analysis-driven approach presenting
the required steps for its realization.

Requirements Specification (Figure 1a)

. Identify users: Due to the fact that a DW
provides an enterprise-wide decision-sup-
port infrastructure, users at different hi-
erarchical levels of the organization must
be included (List et al., 2000). Executive
users at the top organizational level may
express their business needs that help to
identify high-level objectives and goals
and the overall business vision (Kimball et

al., 1998). Management users may refer to
a more specific area of the organization by
providing more insights into the business
processes or the tactics used for achieving
business goals. Finally, professional users
may be responsible for a specific section or
services and may demand specific informa-
tion related to their area of interest.
Determine analysis needs: Determining
analysis needs helps to understand what
data should be available to respond to users’
expectations for having a DW. Inasmuch
as we focus on multidimensional model-
ing, this phase should identify facts with
measures, dimensions with hierarchies,
and the preliminary list of possible queries
or analytical scenarios. The process of de-
termining analysis needs is complex and
includes several steps:
o Define, refine, and prioritize goals:
The starting point is the consideration
of business goals in order to guide

67

68

Requirement Specification and Conceptual Modeling for Data Warehouses

user needs and convert them into data
elements or to find critical business
processes required for goal accom-
plishment. Since participating users
belong to different management levels,
analysis needs may be expressed by
considering both general and specific
goals. The latter should be aligned with
the general ones to ensure a common
direction of the overall development.
The goal-gathering process may include
interviews, facilitating sessions, or
brainstorming (Giorgini et al., 2005;
Bonifati et al., 2001; Kimball et al.,
1998). The list of goals should be ana-
lyzed taking into consideration their
similarities or inconsistencies; thiswill
help to synthesize them in a manage-
able number (Bonifati et al., 2001). For
every goal subsequent steps as shown
in Figure 1a) are realized. We propose
two different approaches based either
on a more specific definition of user
demands (upper part in the figure) or
on the modeling of business processes
(lower part in the figure).

Detail user demands: Additional in-
terviews with specific users focusing
on more precise goal definition will
be conduced. They allow designers
to elicit the information needed for
multidimensional schemas. Techniques
otherthan interviews may also be used,
e.g., workshops, questionnaires, or
prototyping.

Model business processes: Goal ac-
complishment is closely related to
business processes. Therefore, the
relevant business processes should be
determined for every specific goal.
Since a business process is a group of
services or activities that together cre-
ate a result of value for a customer or a
market, the nextstep is the identification

of these servicesor activities. Activities
or services include data required for
theirrealization, whichmay beincluded
in future multidimensional schema.
Business processes can be considered
implicitly and informally (Kimball et
al., 1998) or a more formal business
process model can be created (Béehn-
lein & Ulbrich-vom Ende, 2000).
Document requirements specifications:
The information obtained in the previous
step should be documented. The delivered
documentation is the starting point for the
technical metadata (i.e., description of all
DW structure and application components)
andwill form part of business metadata (i.e.,
description of all DW components using
businessterminology). Thisdocumentisnot
a final specification of requirements since
additional interactions may be necessary
during the conceptual modeling phase in
order to refine or clarify some aspects.

Conceptual Modeling (Figure 1b)

Elaborate the initial schema: Well-speci-
fied business or user requirements lead to
clearly-distinguishable multidimensional
elements. Therefore, the firstapproximation
of a conceptual schema can be developed.
It is recommended to use a conceptual
multidimensional model (e.g., as proposed
by Malinowski, (2008)) to improve the
communication with non-expert users.
This schema should be validated against its
potential usage in analytical processing by
firstrevising the list of queries and analytical
scenarios as well as by consulting the users
directly. During this step, the refinement of
the conceptual schema may require several
iterations with the users.

Determine data availability and specify
mappings: The data contained in source

systems determines whether the proposed
conceptual schema can be transformed into
logical and physical schemas and fed with
the data required for analysis. All elements
included in the conceptual schema are
verified against the data items in source
systems. This process may be time consum-
ing if the underlying source systems are
not documented, are denormalized, or are
legacy systems. The result of this step is the
specification of mappings for all elements of
amultidimensional schema that match with
data in source systems. This specification
also includes the description of required
transformations between source and DW
data, if necessary.

Elaborate final schema and refine map-
pings: If data is available in source systems
for all elements of the conceptual schema,
the initial schema may be considered as a
final schema. However, ifnot all multidimen-
sional elements can be fed with data from
source systems, a new iteration with users
to modify their requirements according to
data availability is required. As a result, a
new schema that may require the modifica-
tion of existing mappings is designed.

Requirement Specification and Conceptual Modeling for Data Warehouses

Source-Driven Approach

The source-driven approach relies on the data
available in source systems. It aims at identify-
ing all candidate multidimensional schemas that
can be realistically implemented on the top of the
available operational databases. We next describe
the steps of the source-driven approach.

Requirements Specification (Figure 2a)

. Identify source systems: The objective
of this step is to determine the existing
operational systems that can serve as data
providers for the DW. External sources are
not considered in this stage; they can be
included later on if additional information
isrequired. Thisstep relies on system docu-
mentation represented using preferably the
ER model orrelational tables. However, since
in many situations this may be difficult to
obtain, reverse engineering processes may
be applied to rebuild the logical and/or con-
ceptual schemas of the source systems.

* Apply derivation process: Different
techniques can be used for deriving mul-
tidimensional elements from operational
databases (Bonifati et al., 2001; Béehnlein

During all steps of the conceptual modeling
phase the specification of business and technical
metadata is in continuous development.

& Ulbrich-vom Ende, 1999; Cabibbo &
Torlone, 2000; Golfarelli & Rizzi, 1998;

Figure 2. Source-driven approach: a) requirements specification and b) conceptual modeling phases

Identify source
systems

Apply derivation
process

Document
—» requirements
specifications

a)

Elaborate initial
schema &

mapping

Determine user
interest

Elaborate final
—» schema & refine
mapping

b)

69

70

Requirement Specification and Conceptual Modeling for Data Warehouses

Moody & Kortink, 2000). All these tech-
niques require that operational databases be
represented using the ER model or relational
tables. In general, and as afirststep, the facts
with associated measuresare determined by
analyzing the existing documentation or the
database structures. Factsand measuresare
elements that correspond to events occur-
ring dynamically in the organization, i.e.,
frequently updated. If the operational data-
bases are relational, they may correspond,
respectively, to tables and attributes. If the
operational databases are represented using
the ER model, facts may be entity or relation-
ship types while measures are attributes of
these elements. An alternative option may
be the involvement of users that understand
the operational systems and can help to
determine which data can be considered as
measures. ldentifying facts and measuresis
the most important aspect in this approach
since they form the basis for constructing
multidimensional schemas.

Different procedures can be applied for
deriving dimensions and hierarchies. They
may be automatic (Bonifati et al., 2001;
Golfarelli & Rizzi, 1998), semi-automatic
(Boehnlein & Ulbrich-vom Ende, 1999), or
manual (Cabibbo & Torlone, 2000; Moody
& Kortink, 2000). The semi-automatic and
manual procedures require knowledge of
the specific conceptual models that are used
for the initial schema and its subsequent
transformations. Unlike automatic or semi-
automatic procedures, manual procedures
allow designers to find hierarchies embed-
ded within the same entity or table, e.g., to
find the city and the province attributes in
a store entity type.

Document requirements specifications:
As in the analysis-driven approach, the
requirements specification phase should

be documented. The documentation should
describe those source systems elements
that can be considered as facts, measures,
dimensions, and hierarchies.

Conceptual Modeling (Figure 2 b)

Elaborate initial schema: Based on the
elements identified in the previous phase,
the conceptual DW schema is developed.
Similarly to the analysis-driven approach,
we recommend to use aconceptual model in
ordertofacilitate future communication with
business users and schema evolutions.
Determine user interest: Until now user
participation was minimal, responding only
to specific inquiries from the designer. In
this step, users are involved in a more active
role. The schema is examined in detail in
order to determine the type of analysis that
can be done. However, the initial schema
may require some modifications for several
reasons: (1) it may contain more elements
than those required by users for analytical
purposes, (2) some elements may require
transformations (e.g., attributes into hier-
archies), (3) some elements may be missing
(e.g., due to confusing names).

Elaborate final schema and mappings:
User recommendations about changes are
incorporated into the initial schema lead-
ing to the final conceptual schema. In this
stage, an abstract specification of mappings
and transformations (if required) between
data in source systems and DW schema is
defined.

In every one of the above-mentioned steps of

the conceptual modeling phase, the specification
of business and technical metadata and the corre-
sponding transformations should be developed.

Requirement Specification and Conceptual Modeling for Data Warehouses

Figure 3. Analysis/source-driven approach: a) requirements specification and b) conceptual modeling
phases

I h Determine Document
Analysis chain : C
y Identifyusers —»| analysis needs > requirements
specifications
S hai Identify source Apply derivation Document
ource chain C
systems > process —> requirements
specifications
a)
Analysis chain Elaborate initial
schema
Apply matching Deliver final
process —> schem.a&
mapping
Source chain Elaborate initial
schema

Analysis/Source-Driven Approach
Requirements Specification (Figure 3a)

Theanalysis/source-driven approach for require-
ments specifications combines both previously-
described approachesand may be used in parallel
to achieve an optimal design. Therefore, two
chains of activities can be distinguished: one that
correspondsto business demands and another one
that explores the source systems. Each type of
activity results in identifying elements for initial
multidimensional schemas.

Conceptual Modeling (Figure 3b)

Based on requirements specifications obtained
from both chains, two initial DW schemas are
developed. The schema obtained from the analy-
sis-driven approach identifies the structure of the
DW asitemerges frombusiness requirements. The
source-driven approach results in a DW schema
that can be extracted from existing operational

databases. In the next step of matching process,
both schemas are compared (or integrated). This
process is not an easy task. Different aspects
should be considered, e.g., terminology used,
degree of similarity between dimensions, levels,
attributes, or hierarchies. Some solutions are pro-
vided by Bonifati et al. (2001) and Giorgini et al.
(2005). An ideal situation arises when schemas
coverthe same analysisaspects, i.e., user demands
are covered by data in operational systems and
no other data exist for expanding the analysis
spectrum. In this case, the schema is accepted
and mappings between elements of the source
systems and the DW are specified. Additionally,
the documentation containing technical and busi-
ness metadata about the DW, source systems, and
required transformations is developed.

Nevertheless, in real-world scenario, both
schemas rarely cover the same analysis aspects.
Two situations may occur:

1. Users demand less information than what
operational databases can provide. In this

71

Requirement Specification and Conceptual Modeling for Data Warehouses

case it is necessary to determine whether
users may take into account new analysis
aspects or eliminate from the schema those
elements thatare not of user interest. There-
fore, another iteration in the analysis and the
source chains is required. In this iteration
either new users who may be interested
in the new analysis possibilities will get
involved or a new initial schema will be
developed eliminating some elements from
the schema.

2. Users demand more information than what
operational databases can provide. In this
case users may reconsider their demands
and limit them to those proposed by the
source-driven solution. Alternatively, users
may require the inclusion of external sources
or legacy systems that were not considered
in the previous iteration but contain the
necessary data. Therefore, new iterations
in the analysis and the source chains may
be needed.

FUTURE TRENDS

Defining a DW design methodology is still an
ongoing research issue. Since the requirement
specification phase is the most important phase
in the overall DW design process, the different
approaches should be evaluated. Therefore, it is
necessary to determine aset of evaluation criteria
to be able to compare the different approaches.
Then, these criteria may be applied considering
DWs with similar analysis purposes and data
availability.

CONCLUSION
In this article we described three different ap-
proaches for requirements specifications and

conceptual modeling of DWsthat use, asadriving
force, either the analysis of requirements, the data

72

available in source systems, or a combination of
both. Since these approaches are model and soft-
ware independent, they can be used in different
application domains.

Providing a systematic specification of differ-
ent approaches to the DW developer team helps
designers to understand their particularities and
to choose an approach that better fits to user time
constraints, their identification with business
goals, and their motivation to be involved in the
DW project.

REFERENCES

Bonifati, A., Cattaneo, F., Ceri, S., Fuggetta, A., &
Paraboschi, S. (2001). Designing data marts for
datawarehouses. ACM Transactions on Software
Engineering and Methodology, 10(4), 452-483.

Boehnlein, M., & Ulbrich-vom Ende, A. (1999).
Deriving initial data warehouses structures from
the conceptual data models of the underlying
operational information systems. Proceedings
of the 2nd ACM International Workshop on Data
Warehousing and OLAP, 15-21.

Boehnlein, M., & Ulbrich-vom Ende, A. (2000).
Business process oriented development of data
warehouse structures. Proceedings of Data
Warehousing, 3-21.

Cabibbo, L., & Torlone, R. (2000). The design
and development of a logical system for OLAP.
Proceedings of the 2nd International Conference
on Data Warehousing and Knowledge Discovery,
1-10.

Freitas, G. M., Laender, A. H. F., & Campos,
M. L. (2002). MD2: Getting users involved in
the development of data warehouse application.
Proceedings of the 4th International Workshop
on Designand Management of Data Warehouses,
3-12.

Giorgini, P., Rizzi, S., & Garzetti, M. (2005).
Goal-oriented requirements analysis for data

Requirement Specification and Conceptual Modeling for Data Warehouses

warehouse design. Proceedings of the 8h ACM
International Workshop on Data Warehousing
and OLAP, 47-56.

Golfarelli, M., & Rizzi, S. (1998). A methodologi-
cal framework for data warehouse design. Pro-
ceedings of the 1st ACM International Workshop
on Data Warehousing and OLAP, 3-9.

Inmon, W. (2002). Building the data warehouse.
John Wiley & Sons Publishers

Kimball,R.,Reeves, L., Ross, M., & Thornthwaite,
W. (1998). The data warehouse lifecycle toolkit:
Expert methods for designing, developing, and
deploying data warehouses. John Wiley & Sons
Publishers.

List, B., Schiefer, J., & Min Tjoa, A. (2000). Pro-
cess-oriented requirementanalysis supporting the
datawarehouse design process - A use case-driven
approach. Proceedings of the 11th International
Conference on Database and Expert Systems
Applications, 593-603.

Lujan-Mora, S., & Trujillo, J. (2003). A com-
prehensive method for data warehouse design.
Proceedings of the 5th International Workshop on
Design and Management of Data Warehouses.

Malinowski, E. (2008). Different kinds of hierar-
chies in multidimensional models. In this book.

Moody, D., & Kortink, M. (2000). From enterprise
models to dimensional models: A methodology for
datawarehouse and datamartdesign. Proceedings
ofthe 2nd International Workshop on Designand
Management of Data Warehouses, 6.

Schiefer, J., List, B., & Bruckner, R. (2002). A
holistic approach for managing requirements of
data warehouse systems. Proceedings of the 8th
Americas’ Conference on Information Systems,
77-87.

Winter, R., & Strauch, B. (2003). Demand-driven
information requirements analysis in data ware-
housing. Proc. of the 36th Hawaii International
Conference on System Sciences, 1359-1365.

KEY TERMS

Analysis-Driven Design: Approach for
designing a DW based on the analysis of user
requirements or business processes.

Analysis/Source-Driven Design: Approach
for designing a DW that combinesanalysis-driven
and source-driven approaches.

Business Metadata: The information about
the meaning of data as well as business rules and
constrains that should be applied to data.

Conceptual Multidimensional Model: A set
of objectsandrules for representing in an abstract
way multidimensional view of data consisting
of facts with measures and dimensions with
hierarchies.

Source-Driven Design: Approachfor design-
ing a DW based on the analysis of data available
in source systems.

Source Systems: Systems that contain data to
feedaDW. Thismay include operational databases
and other internal or external systems.

Technical Metadata: The information about
datastructuresand storage as well as applications
and processes that manipulate the data.

ENDNOTES

! This approach is also called demand driv-
en.

2 Other names used are process driven, goal
driven, or requirements driven.

8 Thisapproachreceivesalso the name of data
or supply driven.

4 Thisapproach is also called top-down/bot-
tom-up analysis.

73

74

Chapter IX
Principles on Symbolic Data
Analysis

Héctor Oscar Nigro
Universidad Nacional del Centro de la Provincia de Buenos Aires, Argentina

Sandra Elizabeth Gonzélez Cisaro
Universidad Nacional del Centro de la Provincia de Buenos Aires, Argentina

INTRODUCTION

Today’s technology allows storing vast quantities
of information from different sources in nature.
This information has missing values, nulls, inter-
nal variation, taxonomies, and rules. We need a
new type of data analysis that allows us represent
the complexity of reality, maintaining the internal
variation and structure (Diday, 2003).

In Data Analysis Process or Data Mining, it is
necessary to know the nature of null values - the
cases are by absence value, null value or default
value-, being also possible and valid to have some
imprecision, due to differential semantic in a
concept, diverse sources, linguistic imprecision,
element resumed in Database, human errors, etc
(Chavent, 1997). So, we need a conceptual support
to manipulate these types of situations. As we
are going to see below, Symbolic Data Analysis
(SDA) isanew issue based on a strong conceptual
model called Symbolic Object (SO).

A “SO” is defined by its “intent” which con-
tains a way to find its “extent”. For instance, the
description of habitants in a region and the way
of allocating an individual to this region is called
“intent”, the set of individuals, which satisfies this
intent, is called “extent” (Diday 2003). For this
type of analysis, different experts are needed,
each one giving their concepts.

Basically, Diday (Diday, 2002) distinguishes
between two types of concept:

1. The concepts of the real world: That kind
of concept is defined by an “intent” and an
“extent” which exist, have existed or will
exist in the real world.

2. The concepts of our mind (among the so
called “mental objects” by J.P. Changeux
(1983)) which frame in our mind concepts
of our imagination or of the real world by
their properties and a “way of finding their
extent” (by using the senses), and not the

Copyright © 2009, IGI Global, distributing in print or electronic forms without written permission of 1GI Global is prohibited.

Principles on Symbolic Data Analysis

extent itself as (undoubtedly!), there is no
room in our mind for all the possible extents
(Diday, 2003).

A “SO” models a concept, in the same way
our mind does, by using a description “d” (repre-
senting its properties) and a mapping “a” able to
compute its extent, for instance, the description
of what we call a “car” and a way of recognizing
that a given entity of in the real world is a car.
Hence, whereas a concept is defined by intent
and extent, it is modeled by intent and a way of
finding its extent is by “SOs” like those in our
mind. It should be noticed that it is quite impos-
sible to obtain all the characteristic properties of
a concept and its complete extent. Therefore, a
SO is just an approximation of a concept and the
problems of quality, robustness and reliability of
this approximation arise (Diday, 2003).

The topic is presented as follows: First, in
the background section, the History and Fields
of Influence and Sources of Symbolic Data.
Second, in the focus section Formal definitions
of SO and SDA, Semantics applied to the SO
Concept and Principles of SDA. Third: Future
Trends. Then Conclusions, References, Terms
and Definitions.

BACKGROUND

Diday presented the first article on 1988, in the
Proceedings of the First Conference of the Interna-
tional Federation of Classification Societies (IFCS)
(Bock & Diday 2000). Then, much work has been
done up to the publication of Bock, Diday (2000)
and the Proceedings of IFCS’2000 (Bock & Diday
2000). Diday has directed an important quantity
of PhD Thesis, with relevant theoretical aspects
for SO. Some of the most representatives works
are: Brito P. (1991), De Carvalho F. (1992), Auriol
E. (1995), Périnel E. (1996), Stéphan V. (1996),
Ziani D. (1996), Chavent M. (1997), Polaillon G.
(1998), Hillali Y. (1998), Mfoummoune E. (1998),

Vautrain F. (2000), Rodriguez Rojas O. (2000),
De Reynies M. (2001), Vrac M. (2002), Mehdi M.
(2003) and Pak K. (2003).

Now, we are going to explainthe fundamentals
that the SDA holds from their fields of influence
and the most representative authors:

. Statistics: From Statistics the SO counts. It
knows the distributions.

. Exploratory analysis: The capacity of show-
ing new relations between the descriptors
{Tukey, Benzecri}(Bock & Diday 2000).

. Cognitive sciences and psychology: The
membership function ofthe SO isto provide
prototypical instances characterized by the
most representative attributes and individu-
als {Rosch} (Diday, 2003).

e Artificial intelligence: The representation
of complex knowledge, and the form of
manipulation. This is more inspired from
languages based on first order logic {Aris-
totle, Michalski, Auriol} (Diday, 2003).

» Biology: They use taxonomies and so-
lutions widely investigated in this area
{Adamson}(Bock & Diday 2000).

. Formal concept analysis: The Complete
Object Symbolic is a Galois Lattice {Wille
R.} (Polaillon, 1998).

In some of these sciences, the problem is how
to obtain classes and their descriptions (Bock &
Diday, 2000)

The “Symbolic data tables” constitute the
main input of a SDA, helped by the Background
Knowledge (Diday, 2003). In the chapter 1 of Bock
H and Diday E’s book are mentioned as follow:
eachcell of this symbolic datatable contains data
of different types:

(@ Single quantitative value: if « height » is a
variable and w is an individual: height (w)
=35.

(b) Single categorical value: Town (w) =
Tandil.

75

(© Multivalued: in the quantitative case height
(w) = {3.5, 2.1, 5} means that the height of
w can be either 3.5 or 2.1 or 5.

(d) Interval: height (w) = [3, 5], which means
that the height of w varies in the interval [3,
5].

(&) Multivalued with weights: for instance a
histogram or a membership function (Pos-
sibility, Beliefs or Capacity Theory can be
also applied). Variables can be:

(@ Taxonomic:thecolourisconsideredto
be “light” if it is “white” or “pink”.

(b) Hierarchically dependent: we can
describe the kind of computers of a
company only if it has a computer,
hence the variable “does the company
have computers?” and the variable
“kind of computers” are hierarchically
linked.

(¢ With logical dependencies: if age (w)
is less than 2 months then height (w)
is less than 10.

Example: We need to model the concept of

work activity by continent. We have stored the
Tables 1 and 2.

Table 1. Customer

Principles on Symbolic Data Analysis

Now we have second order units representing
the concept activity of our clients by continent.
Each row of symbolic table represent one SO.
The variables show the values for the class, for
example SO-Manufactures: the variable Study
Level shows equal probability. The clients are
distributed 33 % in Asia and 66 % in Europe.
The age is between 28 and 50 years.

Symbolic data are generated when we summa-
rize huge sets of data. The need for suchasummary
can appear in different ways, for instance, from
any query toadatabase, which induces categories
and descriptive variables. Symbolic Data canalso
appear after a clustering in order to describe inan
explanatory way (by using the initial variables),
the obtained clusters (Diday, 2004).

Symbolic data may also be “native” in the
sense that they result from expertise knowledge
(type of emigration, species of insects), the prob-
able distribution, the percentages or the range of
any random variable associated to each cell of a
stochastic datatable, time series, confidential data,
etc. Also, they result from Relational Databases
in order to study a set of units whose description
needs the merging of several relations (Billard
& Diday, 2007).

76

#CuU er Age Country ?_t:\i)ll X\g.rvlft;
041 50 Spain Medium Manufactures
033 45 China High Manufactures
168 30 Australia Low Agriculture
457 39 Sudan High Services
542 35 Argentina | Medium Agriculture
698 48 India High Services
721 60 France High Services
844 53 Canada Medium Services
987 42 Italy Low Agriculture

1002 28 Germany Low Manufactures
1299 34 EEUU Medium Agriculture

Principles on Symbolic Data Analysis

Table 2. Taxonomy

Country Continent
Spain Europe
China Asia

Australia Oceania
Sudan Africa

Argentina America
India Asia
France Europe

Canada America
Italy Europe

Germany Europe

EEUU America
MAIN FOCUS

SO and SDA: Formal definitions

ASOisatriples = (a, R, d) where R is a relation
between descriptions, d is a description and ““a”
is a mapping defined from Q in L depending on
R and d (Diday, 2003).

SDA is the extension of standard Data Analysis to
symbolic data tables as input in order to find SO
as output. This is based on four spaces: the space

of individuals, the space of concepts, the space
of descriptions modeling individuals or classes of
individuals, the space of symbolic objects model-
ing concepts (Asso page).

Most ofthe SDA algorithms give in their output
the symbolic description “d” of a class of indi-
viduals by using a “generalization” process. By
starting with this description, SOs give a way, to
find atleast, the individuals of this class. Example:
The age of two individuals w,, w, are age(w,) =
30, age(w,) = 35, the description of the class C
= {w,, w,} obtained by a generalization process
can be [30, 35]. In this simple case the SO “s” is
defined by a triple: s = (a, R, d) where d = [30,
35],R=" e "and "a" is the mapping: Q — {true,
false} such that a(w) = the true value of age(w) R
d denoted [age(w) R d]. An individual w is in the
extent of s iff a(w) = true (Diday, 2002).

There are two kinds of SO:

Boolean SOs: The instance of one binaryrela-
tion between the descriptor of the object and the
definition domain, that is defined to have values
true or false. If [y (w) R d] = {true, false} is a
Boolean SO (Diday, 2002). Example: s=(color
{red, white}), here we are describing an individual
[class those color is red or white.

Modal SOs: In some situations, we can’t say
true or false, we have a degree of belonging, or

Table 3. Symbolic table modeling the concept Work’s activity

Work’s .
activity Study level Continent Age
Agriculture “low”(0.50), “medium”(0.50) Amerlcle‘io(cttir)],iaigrgg; (0.25), [30:42]
“low”(0.33), “medium”(0.33), P « ” .
Manufactures “high”(0.33) Asia”(0.33), “Europe”(0.66)} [28:50]
Services “medium”(0.25), “high”(0.75) Af/;;ﬁz(g)zzss)) é:?ﬁ;ga(éozé? [39:60]

1 f

Multivalued attribute with

Interval

weight

77

some linguistic imprecision as always true, often
true, fifty-fifty, often false, always false; now we
say that the relation is fuzzy. If [y (w) Rd] € L
= [0,1] is a Modal SO (Diday & Billard, 2002).
Example: s=(color €[(0,25) red, (0,75) white]), at
this point we are describing an individual/class
that has color: 0,25 red; 0,75 white. This weighs
can have different meaning, which are going
explain to below.

Prof. Diday call “assertion *“a special case of
a SO defined by s = (a, R, d) where R is defined
by [d”Rd]=Ai=1p [d"R,d] where “A" has
the standard logical meaning and "a" is defined
by: a(w) =[y(w) R d] in the Boolean case. Notice
that considering the expression a(w) = A i =1, p
[y, (W) R,d.] we are able to define the SO s = (a,
R, d) (Diday & Billard, 2002).

The extension of a SO is a function that per-
mit us recognize when an individual belongs the
class description.

In the Boolean case, the extent of a SO is
denoted Ext(s) and defined by the extent of a,
which is: Extent (8) = {w € Q /a (w) = true}.
In the Modal instance, given a threshold a, it is
defined by Exto (s)= Extenta ()= {w € Q/a (w)
> a}(Diday, 2002).

It is possible to work with SOs in two ways,

. Induction: We know values of their at-
tributes then we know what class they
belong.

. Generalization: We want to form a class
from the generalization/specialization pro-
cess of the values of the attributes of a set
of individuals.

Semantics Applied to the SO
Concept

The semantics are applied in the Modal SOs, and

are the weights observed in the previous example
of this type of SO (Bock & Diday, 2000):

78

Principles on Symbolic Data Analysis

Probabilities: This is the classical situation;
Kolmogorov ‘s axiom:

Pr(El U E2)= Pr(El) + Pr(E2) - Pr(El N E2)

Capacities: At this point, there are groups
with probabilistic multinomial variables. The
capacity is interpreted in Choquet’s sense: “The
probability of at least one individual belongs this
value”, the capacity of a modality is the union
capacity. Consequently, the capacity of SO, and
SO, for M, is p,, + p,, -P,, * p,,, and the capacity
of SO,, SO,, ..., SO, for M, is computed using the
associative property.

Possibilities: When the frequency theory
fails. Example: We have a Math’s book, but the
word “mathematics” appears few times. The
mathematician knows what this book is about.
In this situation we need different experts to give
us their experience. So Zadeh’s axiom is used for
fuzzy sets:

Pos(E1 U E2)= Max.(Pos(E1), Pos(E2))

Beliefs: Here, the expert says: “I think that
the probability of the occurrence of A is pl, p2
is B, but | do not know everything of A and B “.
If pl + p2 <1, then 1- (pl+ p2) expresses his
ignorance. Schaffer’s axiom (Bender, 1996):

Bel(El U E2) > Bel(El) + Bel(E2) - Bel(El N
E2)

Dumpster’s rule allows combining the beliefs
of various experts.

We can see that inthese theories emphasis falls
mainly on the knowledge of the expert. The two
first theories work with empirical information,
the last ones have a higher level of information
based on concepts.

Principles on Symbolic Data Analysis

Principles of SDA

Diday defines the main principles of SDA by the
following steps (2008, pp. 22):

1. A SDA needs two levels of units. The first
level is that of individuals, the second that
of concepts.

2. Aconceptisdescribed by using the symbolic
description of a class of individuals defined
by the extent of a category.

3. The description of a concept must take ac-
count of the variation of the individuals of
its extent.

4. A concept can be modeled by a SO which
canbeimprovedinalearning process, taking
into account the arrival of new individu-
als.

5. SDA extends standard exploratory data
analysis and data mining to the case where
the unitsare concepts described by symbolic
data.

6. The output of some methods of SDA (clus-
tering, symbolic Galois lattice, decision
trees, Kohonen maps, etc.) provides new
SOs associated with new categories (i.e.,
categories of concepts).

7. The new categories can be used in order to
define new concepts such as in step 2, and
SO on.

There is an important number of methods
(Diday etal, 2008) developed to create, toanalyze
and to visualize SO, which were implemented in
Sodas 1.2 and Sodas 2.5 software through SODAS
and ASSO projects respectively; whose aim is
to analyze official data from Official Statistical
Institutions (ASSO or SODAS Pages).

FUTURE TRENDS

The most important features to be incorporated
from theoretical point of view are based on many

mathematical results on reducing the information
lost by the generalization process used from the
first-level to the second level units (by copula
models, rules, taxonomies), the learning of the
structure of SOs (by lattices, non-linear pyra-
mids or hierarchies) and their robustness, quality,
validity, reliability have to be obtained. Much
remains also to be done by extending statistics,
multidimensional data analysis and data mining
to symbolic data, for example, in time series,
multidimensional scaling, textual data, sequential
and stochastic classification, grid distributed data
mining, spatial classification, rule extraction and
neural networks extended to symbolic data.

We have developed a conceptual architecture
for Data Warehouse and Data Mining based on
SO concept (Gonzélez-Cisaro & Nigro, 2008).
The next step is the implementation and testing
with classical architectures.

CONCLUSION

The need to extend standard data analysis meth-
ods (exploratory, clustering, factorial analysis,
discrimination ...) to symbolic datatablesin order
to extract new knowledge is increasing due to
the expansion of information technology, now
being able to store an increasingly larger amount
of huge data sets. This requirement, has led to a
new methodology called “SDA” whose aim is to
extend standard data analysis methods to a new
kind of data table called “symbolic data table”
andto give more explanatory results expressed by
real world concepts mathematically represented
by easily readable “SOs”.

Some advantages are: It preserves the confi-
dentiality of the information; It supportstheinitial
language in which they were created; It allows
the spread of concepts between Databases. Being
independent from the initial table, they are ca-
pable of identifying some individual coincidence
described in another table.

79

The concept of SO is very important for
the construction of the Data Warehouse and it
is an important development for Data Mining,
especially for the manipulation and analysis of
aggregated information.

REFERENCES

ASSO, Projecthome page. http://www.info.fundp.
ac.be/asso/. Last access on June 2008.

Billard, L., & Diday, E. (2007). Symbolic Data
Analysis: Conceptual Statistics and Data Min-
ing .Wiley Series in Computational Statistics.
Chichester, West Sussex, England: John Wiley
& Sons Ltd.

Bock, H., & Diday, E. (2000). Analysis of Symbolic
Data. Studies in Classification, Data Analysis and
Knowledge Organization. Heidelberg, Germany:
Springer Verlag-Berlin.

Chavent, M. (1997). Analyse des Données sym-
boliques. Une méthode divisive de classification.
These de doctorat in Sciences. I’Université Paris
I X-Dauphine.

Diday, E. (2002). An introduction to Symbolic
Data Analysis and the Sodas software. The
Electronic Journal of Symbolic Data Analysis.
Retrieved from http://www.jsda.unina2.it/vol-
umes/Vol0/Edwin.PDF on December 2007.

Diday, E., & Billard, L. (2002). Symbolic Data
Analysis: Definitions and examples. Retrieved
from http://www.stat.uga.edu/faculty/LY NNE/
tr_symbolic.pdf. on November 2007.

Diday, E. (2003). Concepts and Galois Lattices
in Symbolic Data Analysis. Journées de I’In-
formatique Messine. Knowledge Discovery and
Discrete Mathematics Metz, France.

Diday, E. (2004). From Data Mining to Knowledge
Mining: Symbolic Data Analysis and the Sodas
Software. Workshop on Applications of Symbolic
Data Analysis. January 2004. Lisboa Portugal.

80

Principles on Symbolic Data Analysis

Diday, E., & Noirhomme-Fraiture, M. (Eds.)
(2008). Symbolic Data Analysis and the SODAS
Software. Chichester, West Sussex, England:
Wiley-Interscience.

Gonzalez Cisaro, S., & Nigro, H. O. (2008). Ar-
chitecture for Symbolic Object Warehouse. In J.
Wang (Ed.), Encyclopedia of Data Warehousing
and Mining - 2nd Edition. Hershey PA: Idea
Group Publishing.

Noirhomme-Fraiture, M. (2004). Visualisation of
Symbolic Data. Workshop on Applications of Sym-
bolic Data Analysis. Lisboa Portugal. Retrieved
from http://www.info.fundp.ac.be/asso/dissem/
W-ASSO-Lisbon-Visu.pdf. on May 2008.

Polaillon, G. (1998). Organisation et interpréta-
tion par les treilles de Gallois de données de type
multivalué, intervalle ou histogramme. These
Docteur in Informatique. I’Université Paris [X-
Dauphine.

Touati, M., & Diday, E. Sodas Home Page. http://
www.ceremade.dauphine.fr/~touati/sodas-page-
garde.htm. Last access on June 2008.

KEY TERMS

Artificial Intelligence: The field of science
that studies how to make computers “intelligent”.
It consists mainly of the fields of Machine Learn-
ing (neuronal networks and decision trees) and
expert systems.

Decision Trees: A method of finding rules
or (rule induction) which divide the data into
subgroups which are as similar as possible with
regard to a target variable (variable that we want
to explain).

Exploratory Analysis: It is part of the Data
Analysis French School, developed among 1960
and 1980. The principal authors are Tuckey and
Benzecri. The process of analysis takes as atarget

Principles on Symbolic Data Analysis

to discover new relations between the sets of the
analyzed information.

Extension: ““I call the extension of an ideathe
subjects to which it applies, which are also called
the inferiors of a universal term, that being called
superior to them.” Arnault and Nicole (1662).

Formal Analysis Concept: isatheory of data
analysis, which identifies conceptual structures
among data sets; Rudolf Wille introduced it in
1982. It structures data into units that are formal
abstractions of concepts of human thought, allow-
ing meaningful and comprehensible interpreta-
tion. FCA models the world as being composed
of objects and attributes. A strong feature of FCA
is its capability of producing graphical visualiza-
tions of the inherent structures among data. In
the field of information science there is a further
application: the mathematical lattices that are
used in FCA can be interpreted as classification

systems. Formalized classification systems can
be analyzed according to the consistency of their
relations. (FAC Home Page http://www.upriss.org.
uk/fca/fca.html).

Fuzzy Sets: Let U be a set of objects so
called universe of discourse. A fuzzy set F in
U is characterized by a function of inclusion p.
taking values in the interval [0,1], i.e. u.: U —
[0,1]; where p_(u) represents the degree in which
u € U belongs to fuzzy set F.

Galois Lattice: Galois Lattice provides some
meaningstoanalyzeand representdata. Thisrefers
to two-ordered set. An ordered set (1,#) is the set
| together with a partial ordering # on 1.

Intension: This is the comprehension of an
idea. “I call the comprehension of an idea the
attributes which it contains and which cannot be
taken away from itwithout destroyingit.” Arnault
and Nicole (1662).

81

82

Chapter X
Database Engineering
Supporting the Data Evolution

Luiz Camolesi Junior
State University of Campinas, UNICAMP, Brazil

Marina Teresa Pires Vieira
Methodist University of Piracicaba — UNIMEP, Brazil

INTRODUCTION

Researchers in several areas (sociology, phi-
losophy and psychology), among them Herbert
Spencer and Abraham Maslow, attribute human
actions resulting in continual environmental
changes to the search for the satisfaction of in-
dividual and collective needs. In other fields of
science, this behavior represents a challenge in
ethical researches on concepts, methodologies and
technologies aimed at optimizing and qualifying
the actions involved in these continual changes
to obtain better results.

Specifically in computer science, software en-
gineeringisacritical sub-areafor these researches
andtheirapplication (Lehman & Stenning, 1997),
since it involves the construction of models and
orientation for their use in the development of
resources, such as software, to support the user’s
needs. Databases should be included in this context
as a component for data storage (Table 1).

Considering the premise of continuous changes
(table 2) and the human needs involved (Khan
& Khang, 2004), the consequences for software
and for the required database are obvious. In the
field of computational science, these changes in

Copyright © 2009, IGI Global, distributing in print or electronic forms without written permission of 1GI Global is prohibited.

Database Engineering Supporting the Data Evolution

Table 1. Laws of evolution (Lehman & Stenning,
1997)

Continuing Change

Increasing Complexity

Self Regulation

Conservation of Organization Stability
Conservation of Familiarity
Continuing Growth

Declining Quality

Feedback System

the modern world are reflected in evolutionary
features for software and databases, based on
Database concepts, structures and processes that
allow for rapid, albeit not traumatic, shifts to
new industrial, commercial or scientific systems
(Mcfadden etal., 1999) in new contexts (temporal
scenarios) (Camolesi, 2004).

BACKGROUND

Database models must comprise representation
elements that are adaptable to the user’s varying
and dynamic needs, and contain the taxonomy
needed for their manipulation. Thus, traditional
(generic) database models such as the Entity-Re-
lationship (ERM) and Relational (RM) models
(Siau, 2004) have been expanded with appropriate
“profile” for specific applications and require-
ments. Considering their purpose of supporting

Table 2. Type of changes

changes, “Profile Models” can be easily referenced
in scientific researches as:

e \ersionmodel: Considering versionsas da-
tabase objects derived (originating from, but
containing alterations) from others, models
ofthis “profile” must be applied to adatabase
characterized by the explicit and voluntary
storage of the historical information about
object changes (Conradi & Westfechtel,
1998). The features frequently specified in
versions models are:

. Derivation structure: Establishes the
data structure for organizing versions, e.g.,
stack, tree or not cyclic digraph, linked by
special relationships representing linear or
nonlinear derivation actions;

* Versionable element: Establishes which
variant elements (database objects) can
have versions created and represented in
the database;

. Property of versioning: Thisisafeature that
serves to define a versionable element. This
property must be dynamically established
for each element during either its creation
or its definition;

. Version status: Status set (state or situation)
for the versions;

. Manipulation of versions: The creation,
update and deletion of versions can be ac-
complished implicitly either by the database
system or by the user through specific com-
mand language;

Evolution: actions for an (variant) element’s technological
progress, improvement, modernization or correction.

Revolution: alteration actions of an element can influence
the element’s purpose in the context.

Involution: simplification actions of an element, regression
in its conception or content.

83

84

Operation restrictions: The manipulation
of versions by users can be granted uncondi-
tionally or restrictions may be imposed for
each operation (create, update and delete).
Time model: In models of this “profile”,
the elements that represent the dimension
time are established essentially to control
the Evolution of the Database. The reli-
ability of such time-based models depends
on the unambiguous definition of temporal
limits to be imposed in any business or
scientific database system. In an evaluation
of systems using the time representation,
database designers find many variations
and ambiguous representations that can
degenerate the processing of the time value
simply because they are ignorant of how
time is represented, how it can be analyzed
or how it should be converted. Using a Time
Model for the homogeneous representation
of the data type time and interval enables
the designer to improve the evolution control
performance. Based on many researches
about time representation and utilization
(Bettini et al., 1998), the following features
are identified for a homogeneous data type
definition:

Moment: A time instant value;
Granularity: Precision domain of time
instant, this feature can be based on the ISO
8601 standard, e.g., PnYnMnDTnHnMnS,
or any other standard established by the
application;

Orientation: Reference system for tempo-
ral representation, e.g., Gregorian calendar
(UTC or Coordinated Universal Time),
Chinese calendar, Jewish calendar or oth-
ers;

Direction: All orientation hasan moment of
origin (0) and atime may be the moment pre-
ceding or following this origin moment;
Application: Specification of the use of the
temporal representation, allowing for the
semantic recognition of the type, indepen-

Database Engineering Supporting the Data Evolution

dently of the context in which it is inserted.
The attribute application should indicate
Occurrence, Duration or Frequency.
Configuration model: This “profile model”
is based on and related to the version
model, with version aggregations defined
as configurations or releases (Conradi &
Westfechtel, 1998). The configurations or
releases are logical aggregation compo-
nents or artifacts, selected and arranged to
satisfy the needs of applications based on
composition abstractions (Sabin & Weigel,
1998). Applications that require the compo-
sition of database objects are related with
engineering, i.e., Computer Aided Software
Engineering (CASE) and Computer Aided
Design (CAD);

Integrity model: Required in all data
models (RM, OOM and ORM), elements
are established in models of this “profile”
to support data consistency and integrity.
In certain typical databases, the number of
constraintsandactions for database integrity
may involve hundreds of elements, which
require periodical reviews since they are
strictly related to continually changing real
situations. The elements in these models
vary informand purpose, the mostcommon
being: rules, business rules (Date, 2000)
and database constraints (Doorn & Rivero,
2002);

User model: Necessary in all data mod-
els (RM, OOM and ORM), the elements
that represent the users are established in
models of this “profile”. The modeling of
user features is critical in the evolution of
a database because it involves a diversity
of needs and changes in the operational be-
havior (insert, delete, alter and select) in the
database. The modeling of human behavior
todesignaccess privilegesisawell-consoli-
dated analytical process (Middleton et al.,
2004). However, this process must take into
account the static and dynamic aspects of

Database Engineering Supporting the Data Evolution

people and their activities. Analyses based
on a static approach define User Roles that
are appropriate for traditional applications,
whose activities change with relative infre-
quence. In dynamic applications, however,
static definitions are insufficient, since the
requirements call for temporary and specific
activities that are necessary to support the
dynamic definition of User Roles.

Database engineering involves database mod-
els and “profile models” applied in development
methodologies (Elmasri & Navathe, 2006), i.e.,
a collection of correlated techniques arranged
in a logical order, with orientation rules for the
materialization of an objective. The objective of
a database engineering methodology should be
the creation of an optimized database (based on
ORM or OOM) flexible to changes implemented
through well-executed engineering phases (elici-
tation of requirements, viability analysis, design,
testing and implementation), particularly in the
design stages (conceptual, logical and physical)
in which database models and “profile models”
are used.

The logical order of amethodology established
by a database designing or engineering group
should reflect the group’s level of maturity and its
knowledge of the work context, i.e., the group’s
dedication to the design, which can be based on
two distinct methodologies:

. Sequential engineering: Traditional meth-
odology for database engineering in which
the phases are executed linearly, and can be
based on the bottom-up approach, i.e., from
details of the data requirements (attributes)
to the recognition of elements (entity or ob-
jects). In top-down sequential engineering,
the elements are first identified and then
refined in detail;

. Concurrent engineering: Methodologies
initially created for conventional areas of

engineering (mechanical and electrical),
they establish the simultaneous development
of a “product” through the cooperation of
designing groups working separately but
in constant communication and exchange
of information (Carter & Baker, 1992).
Concurrent (or Simultaneous) Engineering
has been adapted to the broad and complex
process of software engineering but, in this
case, systems may be required to support
the cooperative work among project groups,
such as Groupware software, researched in
the CSCW (Computer Support Cooperative
Work) area.

The methodology may also depend on the
stage of the database’s life cycle (creation, imple-
mentation, maintenance). Database Maintenance
supervised by Administration (DBA) is motivated
solely by the system’s degenerating performance
resulting from the constant modernization (re-
structuring) of the Database (Ponniah, 2003).
If degeneration is not prevented, it can lead to
increasing information access costs, rendering
the use of a database unfeasible.

In some cases, the database maintenance
operations are insufficient or not adapted to
maintain the database qualities. This is usually
the case when maintenance and documentation
updates in a database have been neglected over a
long period. Thus, evolution and change-oriented
database engineering should be:

. Reverse engineering: Methodologies to
recognize and represent the structural,
functional and behavioral aspects of an
already operating database. This mode of
engineering focuses on the process steps
needed to understand and represent a cur-
rent database, and must include an analysis
of the context in which the database was
engineered. Depending on the case, the da-
tabase should be treated as a “black box” to

85

recognize its data, or physically analyzed to
identify special data structures and storage
solutions;

. Reengineering: Methodologies for convert-
ing databases in obsolete environments to
more modern technologies. Reengineering
introduces techniques for the restudy and
conversion of obsolete data to new realities
and the resulting redesign of databases.
Reengineering can comprise three phases:
Reverse Engineering, Delta (A) and For-
ward Engineering. Reverse Engineering
involves the abstract and clear definition of
data representations. In the Delta phase, the
designer executes modifications in database
systems to incorporate new functionalities
(positive A) or to reduce them (negative A)
in order to accomplish complete or partial
implementations. The third and last phase,
Forward Engineering, refers to the normal
development of database systems following
the natural stages.

MAIN THRUST OF THE CHAPTER

The “profile models” were created or inserted in
Object-Oriented Models (OOM); however, the

Table 3. Features to evolution

Database Engineering Supporting the Data Evolution

creation and adaptation of the Object-Oriented
paradigmtotraditional datamodelsenabled “pro-
file models” to be widely applied, for example,
in Unified Model Language — UML (Naiburg
& Maksimchuk, 2002) and in Object-Relational
Models (ORM). Although not described in the
current literature as “profile models”, these models
have well-defined purposes with a variable degree
of flexibility in relation to the generic database
models.

Thoughstillincipient, the composition of these
“profile models” for use in database engineering
allows a database to be defined with features which
are essential for its changeability, characteristic
associated to quality features listed in table 3,
allowing rapid changes with the smallest possible
impacton the database. Proving the importance of
changeability, are the emergent frameworks and
patterns searching to unify and to integrate the
“profile models” in database engineering.

FUTURE TRENDS

Database development methodologies, models
and processes are constantly being updated to
support the changing requirements that occur
during the recovery processes of requirements or

- Traceability: The monitoring is an essential task for efficiency tracing of the designer and team jobs, aiming at better evaluation
of production (modeling and engineering). To this, the influence among elements should be inserted in the project to allow
database engineers to recognize automatically which are the consequences of the alterations accomplished in relation to all
the elements of a system. These consequences can be characterized as inconsistencies of data, what demand the revision of
all the reached elements, direct or indirectly, for the accomplished alterations. The correct definition of the influences allows
optimizing the actions of inconsistencies verification and consequently the reduction of the maintenance costs.

- Flexibility: Facility degree to changes with the smallest possible impact on the project and the database user. Models used and
project accomplished must be capable to support new requirements (Domingues et al., 2003).

- Portability: The necessities to transfer the database to new environments (Operating Systems or DBMS), new technologies
(programming language) or interfaces can be a demand for the evolution of a database. To this, the database modeling
accomplished must be capable to support these changes with low impact.

- Compatibility: Facility degree to insert new elements in database model. To this, the database modeling must obey the rigid
standards of concepts and techniques to accept specifications or components of the same standard.

86

Database Engineering Supporting the Data Evolution

maintenance (Paton & Diaz, 1999). With theses
scenarios, the status of traditional database design
shifted from a complex software engineering
phase tothat of engineering (Roddick etal., 2000).
Thus, database engineering today serves as the
foundation for the development of data modeling
adapted to frequent changes in dynamic require-
ments established by the user.

The recognizing of needs for Database Evolu-
tion is a more complex task (table 4) that involves
questions such as: What should be altered? When
should it be executed? How should it be executed?
What are the benefits? What is the cost of this
process? Who will be affected?

These issues have motivated researches on
emergent topic as:

. Database Administration Policy or Database
Maintenance Policy with the definition of
data-drivenrulesto management of expired
solutions and innovation of models;

e Aspect-Oriented Database Engineering with
new perspectives on evolution based on
separation of concerns related to evolution.
The aspects modeling (Table 3) supportsthe
non-functional properties of database and
the identification of influences, using specific
languages to represent “profile models”;

. Database Modeling Languages and Data-
base Engineering Tools with resources to
assure the Features to Evolution (Table 3)
in database engineering, not forgetting that
the choice of degree evolution depends on

Table 4. Database maintenance operations

the maturity designer team and stability (or
instability) of user's requirements.

Accompanying the evolution of database
development methodologies and processes, the
requirementsto improve dataaccess performance
and to support decision making have resulted in
the development of Data Warehouse (DW) tech-
nologies. A Data Warehouse maintains frequently
data from multiple sources usually organized ina
multidimensional model to support On-line Ana-
lytical Processing (OLAP). Materialized views are
usedto minimize the cost of answering frequently
asked queries. They are a valuable component
in the design of a Data Warehouse, requiring an
approach for the selection and management of
materialized data .The set of materialized views
changes dynamically according to the needs of
the users, thus requiring tools to manage dynamic
collections of materialized aggregate views in
a data warehouse under a resource constraint,
typically disk space.

CONCLUSION

As can be seen from the above descriptions, Da-
tabase Evolution is a vast subject under constant
discussion and innovation, which explains why
so many subjects require analysis, particularly
those involving “profile models”. Despite specific
researches on this theme, pragmatic interest in
the process of Database Evolution is not usually

Correction of the Database Schema in response
to problems found during the database operation
phase.

Integration of Database Schemas for the creation
of a single database.

Adaptation of the Database Schema to the new
elements resulting from new requirements.

Updating of the schema elements to conform
the changing user requirements and business
evolution.

Refinement of the elements of the Database
Schema that were insufficiently detailed during
the design phase

Incorporation of several databases into a “Feder-
ated Database”, maintaining the independence of
each individual database.

87

reflected in these researches due to the lack of
details or progress achieved.

The difficulties encountered in many research-
es may be attributed to the theme’s complexity.
The evolutionary process can be defined by many
variations in form: voluntary or involuntary;
explicit or implicit; temporal or not temporal;
recorded or not in databases in historical form;
executed through a simple update of information
or involving the physical or logical restructuring
of the database; following predefined semantic
rules; originating from the user (through an
interface) or from the DBMS (Database Manage-
ment System).

Database Administrators (DBA) should clearly
indicate that the process of changes in a database,
regardless of the characteristics and techniques
utilized, should maintain or expand the database’s
adaptability, flexibility and efficiency (Domigues
etal., 2003) to conformto new technologiesand to
the company’s growth-related requirements, with-
out neglecting the crucial problem of application
adaptations (Hick & Hainaut, 2003). Withrespect
to Data Warehouses, tools for dynamically create
views intends to relieve the Data Warehouses
Administrator (DWA) from having to monitor
and calibrate the system constantly.

REFERENCES

Bettini, C., Dyreson, C. E., Evans, W. S., Snod-
grass, R. T., & Wang, X. S. (1998). A Glossary
of Time Granularity Concepts. Lecture Notes in
Computer Science, 1399, 406-413. Springer-Verlag
Publishing.

Camolesi, L. (2004). Survivability and Applicabil-
ity in Database Constraints: Temporal Boundary
to Data Integrity Scenarios. Proceedings of V
IEEE International Conference on Information
Technology: Coding and Computing — ITCC, 1,
518-522. IEEE Computer Society Press.

88

Database Engineering Supporting the Data Evolution

Carter, D. E., & Baker, B. S. (1992). CE: Concur-
rent Engineering. Boston, MA: Addison-Wesley
Publishing.

Conradi, R., & Westfechtel, B. (1998). Version
Models for Software Configuration Management.
ACM Computing Surveys, 30(2), 232-282.

Date, C. J. (2000). What not How: The Business
Rules Approach to Applications Development.
Boston, MA: Addison-Wesley Publishing.

Domingues, E., Lloret, J., & Zapata, M. A. (2003).
Architecture for Managing Database Evolution.
Lecture Notes in Computer Science, 2784, 63-74.
Springer-Verlag Publishing.

Doorn, J. H., & Rivero, L. C. (2002). Database
Integrity: Challengesand Solutions. Hershey, PA:
Idea Group Publishing.

Elmasri, R., & Navathe S. B. (2006). Fundamen-
tals of Database Systems (5th ed.). Boston, MA:
Addison-Wesley Publishing.

Hick J. M., & Hainaut J. L. (2003). Strategy for
Database Application Evolution: The DB-MAIN
approach. Lecture Notes in Computer Science,
2813, 291-306. Springer-Verlag Publishing.

Inmon, W.H. (2005). Building the Data Warehouse
(5th ed.). Indianapolis, IN: Wiley.

Khan, K., & Khang Y. (2004). Managing Corpo-
rate Information Systems Evolution and Mainte-
nance. Hershey, PA: Idea Group Publishing.

Lehman, M. M., & Stenning V. (1997). Laws
of Software Evolution Revisited. Lecture Notes
in Computer Science, 1149, 108-124. Springer-
Verlag Publ.

McFadden, F. R., Hoffer, J. A., & Prescott, M. B.
(1999). Modern Database Management. Boston,
MA: Addison-Wesley Publishing.

Middleton, S. E., Shadbolt, N. R., & Roure D. C.
de (2004). Ontological User Profiling in Recom-
mender Systems. ACM Transaction on Informa-
tion Systems, 22(1), 54-88.

Database Engineering Supporting the Data Evolution

Naiburg, E. J., & Maksimchuk, R. A. (2002).
UML for Database Design. Boston, MA: Ad-
dison-Wesley Publishing.

Paton, N. W., & Diaz, O. (1999). Active Data-
base Systems. ACM Computing Surveys, 31(1),
63-103.

Ponniah, P. (2003). Database Design and Devel-
opment: An Essential Guide for IT Professional.
Indianapolis, IN: Wiley-IEEE Press.

Roddick, J. F. et. al. (2000). Evolution and Change
in Data Management- Issues and Directions. ACM
SIGMOD Record, 29(1), 21-25.

Sabin, D., & Weigel, R. (1998). Product Configu-
ration Framework — A survey. IEEE Intelligente
Systems, 13(4), 42-49.

Siau, K. (2004). Advanced Topics in Database Re-
search, 3. Hershey, PA: Idea Group Publishing.

KEY TERMS

Business Rule: Expression or statement that
represents a restriction of data or operations in a
businessdomain. A collection of Business Rulesis
abehavioral guide to support the Business Policy
(organizational strategy). Business Rules can be
implemented as Database Constraints, depend-
ing on the form and complexity of the restriction
(Date, 2000).

Configuration: Collection of versions of dif-
ferent elements that make up a complex element.
Versions in a configuration must be stable, i.c.,
they cannot be altered but can be changed by a
new version of the same element. Configurations
are abstractions representing semantic relation-
ships among elements. Configurations serve to
establish the scope of an application (temporal,
spatial or user) (Sabin & Weigel, 1998). Revised
Configurations consolidated by users can be
defined as Releases. Versions of a release cannot

be altered or changed by another version. Con-
figurations defined as releases cannot be deleted
because they are or were used. User identifiers,
valid intervals for use and constraints are some
important items of information associated with
releases in databases.

Data Warehouse (DW): A subject-oriented,
integrated, nonvolatile, time-variant collection
of data in support of management’s decisions
(Inmon, 2005).

Database Constraints: Boolean functions
associated with elements of adatabase being used
to evaluate the integrity of actions or data that
are inserted, removed or updated. A Database
Constraint can be defined as a set of predicates P,
AP, A... AP, Where each predicate possesses the
form C,6C,, and where C, is an attribute, 0 is a
comparison operator and C, is either an attribute
or a constant (Camolesi, 2004). The specification
of a database constraint can be formalized using
the Object Constraint Language — OCL (Object
Management Group)

Database Maintenance Policy: Policy canbe
defined as a plan or guide to constrain the actions
executed by an individual or a group. The Data-
base Maintenance Policy establishes rules for the
action of database designers that are executed in
response to intrinsic and constant maintenance-
related alteration needs, based on the designers’
empirical knowledge and work capacity. The
definition of goals, implementation phases, results
and desired outcomes is information associated
with every policy or subset of rules.

Influence: Type of dependency association
to conceptually and logically represent interrela-
tions among elements and to define their levels
of involvement prior to a process of alteration
of the data (Object Management Group). Influ-
ence modeling is based on impact specifications
of modifications in database objects during the
engineering process.

89

Temporal Scenario: Is a concept that ad-
equately represents and includes the character-
istics typical of evolution, and is used in adap-
tive, dynamic or flexible systems. The role of
temporal scenarios is to represent situations in
which the database requirements have been or
will be modified (Camolesi, 2004). Every scenario
reaches a moment in time when its existence
begins (opening). Starting from this moment,
the actors begin to perform (acting). Scenarios
may reach a moment in time when they cease to
exist (closing). Scenarios can open/close several
times (recurrent scenarios). The definition of
the opening and closing moments is obligatory
for the specification of the temporal existence of
temporary scenarios. The exceptions to this rule
are the permanent scenarios, which do not close,
and the ones that do not open.

Time and Interval (datatype): Fundamental
datatypes to establish the temporal reference in
a database. Time is symbolized by real numbers,

90

Database Engineering Supporting the Data Evolution

based on a sequence of representative values to
meet the application. Interval is an aggregation of
two time moments intended to delimit and char-
acterize the interval. The interval may represent
continuous or discrete time.

Variant: Applied to many structural elements
of adatabase (class, table, constraintetc), it is used
to define mutable elements or elements whose
modification is highly probable. An invariant
is the opposite of a variant, i.e., an element not
involved in the evolution of the database. Vari-
ants of database objects or object properties can
be modified and can generate versions.

Version: Analternative of adatabase element,
with variations in structure, function or behavior,
used inthe context ofanapplicationasaboundary
of the work executed. A version can represent a
state of an evolving element with variant and in-
variantproperties (Conradi & Westfechtel, 1998).
A collection of actions executed on a database
element can generate an element version if it
results in significant alterations of the element’s
characteristics.

91

Chapter Xi
Versioning Approach for
Database Evolution

Hassina Bounif
Ecole Polytechnique Fédérale de Lausanne (EPFL), Switzerland

INTRODUCTION

Schema evolution is an important research topic
withan extensive literature builtup over the years.
However, databases are still reluctant to change
and thus their evolution is difficult to achieve be-
cause the evolution of the schemainvolves several
issues at different levels of the database schema
such as the change management at the logical
level. Several approaches have been proposed to
achieve the evolution of aschemaofawide range of
types of databases. Versioning, modification and
views are examples of these chosen approaches.

In this paper, we present and discuss one of these
approaches, which is the versioning approach
for database evolution. The future trends of the
versioning are presented as well.

BACKGROUND

Databases are the core of information systems
and their roles are essential within companies
or organizations. These databases are subject
to changes for several reasons that include the
changes undergone to the real-world or the emer-

Copyright © 2009, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

gence of new database user requirements. For
example, (Banerjee and Kim, 1986) and (Peters
and Ozsu,1997), consider that the schema of the
database changes for several reasons such as: a)
changesto the real-world, (b) changes necessitated
by errors in the schema due to poor design, and
(c) changes triggered by changes to applications
that access the schema (and data). In addition to
that, we consider that the evolution of databases
candepend on other additional factors such as the
technology. When the technology changes over
time, this requires most of the time, the evolution
of the schema; for example, when upgrading the
DBMS (DataBase Management System), a data-
base administrator is confronted to change some
schema components types or structures to put
forward better database system performances.

Schema evolution means modifying a schema
withinapopulated database without loss of stored
data taking into consideration two problems:
firstly, the semantics of change (i.e., the effects
of the changes on the schema) and, secondly,
the change propagation (the propagation of the
schema changes to the underlying existing in-
stances. ontology

Considerable advances have been made in
data structures, rules, constraints, schemata
models and meta-models in order to resolve the
problem of schema evolution. Rahm and Ber-
nstein (2006) proposed an online catalogue of
bibliographic references to schema evolution and
related fields, such as generic data management,
evolution of ontologies, software evolution and
workflow evolution. Because of lack of space, we
just cite some important works taken from this
online catalogue:

a. Four families of solutions: the solutions
of schema evolution belong to one of the
four existing families, which are modifica-
tion (Banerjee and Kim, 1986), version-
ing (Loomis and Chaudhri, 1997), views
(Bellahséne, 1996) and combining the ap-
proaches. Werealise thatall of these families

92

Versioning Approach for Database Evolution

of approaches complement each other. For
instance, in the schema modification, chang-
ing the schema may lead to a loss of infor-
mation. However, in the schema versioning
approach, replication of the schema avoids
data loss, but creates complex navigation
throughthe differentgenerated versionsand
slows the DBMS (Database Management
System). While with views, changes can be
simulated on the schema without changing
the underlying database and no conversion
is needed, however, there are several issues
associated with the view update such as the
problem of performances of a system that
needsto compute views based on other views
andthe problemto update the object returned
from aview. Combining approaches allows
to avoid the problems mentioned above, but
is characterized by complexity and onerous
mechanisms to be executed.

b. Solutions applied to the conceptual level:
several studies have focused on the evolv-
ability of database schema at the conceptual
level because conceptual models:

1. arethe firstartifacts to which a change
is or should be applied (Borgida and
Williamson, 1985)

2. increase the level of abstraction that
influences the evolution of schemas
(Verelst, 2004).

Research studies that propose this avenue in
order to resolve the problem of schema evolution
are numerous. Examples include the EVER dia-
grams (Liu et al., 1994), metrics for conceptual
models (Wedemeijer, 2000) and schemas mapping
(Yu and Popa, 2005).

c. Solutions applied to the logical level: as at
the conceptual level, the researchers have
been very active at this level and have
proposed many different solutions that
suit the logical level, such as a content ap-
plication platform CAP (Wienberg et al.,

Versioning Approach for Database Evolution

2002), adaptive database via constrained
relationships (Christodoulakis et al., 1989),
equivalentschemasusing path independence
language (Luetal., 1999), polymorphicreuse
mechanisms (Osborn, 1989), semantic ap-
proach (Banerjee and kim, 1986), separation
of concerns (Rashid and Sawyer, 2000),
time-stamped versions and lazy strategy
(Fontana et Dennebouy, 1995), temporal
and versioning approach (Galante, 2002),
relational algebra (McKenzie and Snodgrass,
1990) hybrid relations (Takahashi, 1990)
and lossless conditional schema evolution
(Jensen et al., 2004).

d. Solutions applied to any level: there are
solutionsthatare independentand can be ap-
plied at any level, whether at the conceptual
or the logical levels. In Perez-Schofield et
al. (2002), the solution to schema evolution
uses a container-based persistent model and
a research prototype called Barbados pro-
grammed with C++. Lerner and Habermann
(1990) propose anapproach that involves the
automation of the database schemaevolution
using OTGen (Object Transformer Genera-
tor) that supports complex schema changes
and database reorganization.e.

€. Solutions for specific types of databases
and schemas: other types of databases hav-
ing particular schemas are also concerned
about the evolution of their schemas. This is
the case with the evolution of a data-ware-
house schemathat uses a set of materialized
views to carry out the changes that occur
(Bellahseng, 2002).

f. Solutions for change management: Kara-
hasanovic (2001) presents a tool called
SEMT (Schema Evolution Management
Tool), which finds impacts of schema
changes on applications in object-oriented
systems. (Chen,1995) proposesaknowledge-
based approach and mechanism. Kupfer et
al. (2006) propose the co-evolution method
in which a database schema and an ontol-

ogy are connected, but are able to evolve
independently without any constraints.

After this short presentation of the schema
evolution and the main approaches adopted to
resolve it, we return now to the presentation and
the discussion of the versioning.

Inthe databases field, the concept of versioning
means to preserve the existing components of the
database that need to be changed over time in one
or several versions and to incorporate the desired
changes on these components in one or several
other versions in such a way that these existing
components continue to be used by existing ap-
plications along with the changed components
within the new versions.

These components are on the one hand the
database schema components (meta-data), and
on the other hand their related data. They can or
cannot be duplicated into the generated versions
depending onthe versioning strategiesadopted on
the database management systemand the database
administrator versioning strategy choice. The
versioning methodsand approachesare explained
later in this paper.

SCALABILITY OF THE VERSIONING

The versioning can be executed at different levels.
Itdepends onthe datamodel. Forexample, numer-
ous research proposals show it at the schema level
in the relational model, others at the class level, at
the object (instance) level and at the type level in
the object model. A view can also be considered
as a version. The unit to be versioned must have
1) a unique and immutable identity and 2) an
internal structure. These two criteria have some
implications for the possibilities of versioning
within different data models. Object-oriented or
ER-based data models clearly fulfill these two
requirements (Munch, 1995). The adoption of an
object-oriented data model is the most common
choice in the literature on schema evolution by

93

schema versioning because this model does not
require any special features. We discuss in the
following three of the versioned units within an
object-oriented data model which are: schema
version, class version and object version.

. Schema version: a version of a schema
can be represented in different ways. For
example, it consists of:

o atuple <S, N>suchas<S,N>isan
identification of the schema S and ver-
sion value N.

o atriplet<S,N,V>suchas<S,N>is
an identification of the schema S and
version value N. V is a set of classes
connected by in-heritage relationship
and references relationships, such as
composition.

Orion (Banerjee and Kim, 1986) supports
schema versioning

» Class version: the versions of a class are
collected into a version set. When a class is
changed, a new version of the class is cre-
ated in its version set. Encore (Skarra and
Zdonik, 1986) supports a class versioning
mechanism. Generally classesare dependent
of each other by several types of relation-
shipssuchasgeneralizationand aggregation.
Therefore, when a class is versioned, the
problem of the consistency of the configu-
ration of the versioned class with the other
existing classes is put forward.

. Obiject version: an object version is a triplet
<O, N, v>inwhich Ois an object identifier,
N is a set of attributes and their values and
v is the value of the version of an object.
The versions of an object are called facets.
Three operations associated with the con-
cept of object version are: the creation of
the first object version, the deletion of the
object version and the derivation of a new
objectversion. Adirectacyclicgraphisused

94

Versioning Approach for Database Evolution

to express all the relationships between all
versions of a specified object (Lautemann,

1996).

Confusion can arise over the meaning of
schema versions and the concepts schema
modification and schema integration. However,
according to Roddick (1995) and others, whose
research focuseson database evolution, thereisa
consistent distinction between them, even if they
are all linked to the database evolution domain
at different levels:

. SchemaModificationmeans making changes
in the schema of a populated database. The
old schema and its corresponding data are
replaced by the new schemaand its new data.
This may lead to a loss of information.

. Schema Integration means combining or
adding schemas of existing or proposed
databases to a global unified schema that
merges their structural and functional
properties. Schema integration occurs in
two contexts: 1) view integration for one
database schema; 2) database integration
in distributed database management where
a global schema represents a virtual view
of several schemas of databases taken from
distributed database environments. This
environment could be homogeneous, i.e.,
dealing with schemas of databases having
the same data model and identical DBMSs
(DataBase Management Systems), or het-
erogeneous, dealing with a variety of data
models and DBMSs. This second environ-
ment deals with what is called, in Database
domains, federated database schemas. In
some research, schema integration is con-
sidered to be a particular case of schema
evolution in which two or more schemata
are integrated in one new schema (Roddick,
1995).

Versioning Approach for Database Evolution

Figure 1. The versioning-by-copy (schema B is a version by copy of schema A)

dMeetllng Meeting Location
1d_meeting 1 eetin .
Meeting_name I\?IEIeItling I?ame l¢«—| Id_location
Theme Theme — Address
Location
Host +
[Participant
Participant Id_meeting
Id_meeting Id_participant
Id_participant Last name
Last name it
Affiliation Affiliation
Schema A Schema B

VERSIONING METHODS AND
APPROACHES

Various versioning methods existin the literature.
We cite the most important ones in this paper.

. Versioning-by-copy: a new version of a
database component is created by making a
copy of the component, assigning a version
number to the copy and updating references
toitspredecessors. Thistechnique consumes
more disk space, but provides a form of
backup.

We illustrate how the versioning-by-copy
works in the example of the meeting in Figure 1.
The database component in this case study to be
versioned is the whole schema of the database (a
schema version).

In the example, there are two schemas, A and
B. Schema A is the original schema whereas the
second schema B is a version-by-copy of schema
A. Schema B is different from A because some
of its components have undergone changes: the
table Meeting is the same in both schemas. The
table Participant has been changed in schema B
and the table Location is created in schema B.

Figure 2. The versioning-by-difference (schema B is a version by difference of schema A)

Meeting
Id_meeting

Meeting Location

Meeting_name
Theme
Location
Host

*

Participant

Id_meeting
1d_participant
Last name
Affiliation

Schema A

Id_meeting
Meeting_name
Theme

l«—| Id_location
Address

Schema B

95

Schemas A and B are both accessible to the
users and to the existing and new applications
running on top of them. Although the meeting
table has been changed, there is no loss of data.
It is still possible to access the schema and data
before and after the evolution operation.

. Versioning-by-difference, also known as
delta-versioning, requires that the differ-
ences between the new version and its
predecessors be maintained. Although this
technique saves disk space, it increases the
overhead, as the DBMS needs to rebuild the
particular version each time it is accessed.

We consider again the example of the Meeting
in figure 2. In this example, there are two sche-
mas, A and B. Schema A is the original schema
whereas the second schema, B is a version- by-
difference of schema A. Schema B contains only
the components that have undergone changes. The
table Meeting is not present in schema B because
it has not changed. The table Participant has
been changed, therefore it is present in schema
B and the table Location is created in schema B
because it is a new table.

Munch (1995) presented a set of versioning
methods:

. Revisions (Sequential): the repetitive cre-
ation of a new version by modifying the
most recent, previously new version. In the
end, the versions form sequentially asingle,
linked list called a revision chain (Munch,
1995). Each version in the chain represents
anevolution ofthe previous one. This method
is used to version schemas. Because many
copies of the database are created as schema
versions, thistechnique isnot very effective.
It is adopted in the Orion System in which
complete database schemas are created and
versioned (Banerjee and Kim, 1986).

* Variants (Parallel): mean changing the rela-
tionships from one-to-one to many-to-one,

96

Versioning Approach for Database Evolution

so that many versions may have the same
relationship with a common “ancestor"
(Munch, 1995). A variant does not replace
another, as does a revision, but is, instead,
an alternative to the current version. This
versioning method is adapted differently
from one database to another, depending
on the unit (a schema, a type or a view) to
be versioned. For instance, Encore System
(Skarraand Zdonik, 1986) uses type version-
ing.

Revisionsand variantsare usually combined in
a common structure, called the version graph.

. Merging: consists of combining two or
several variants into one (Munch, 1995).

. Change Sets: instead of having each object
versioned individually, in this method the
user collects a set of changes to any number
of objects, and registers them as one unit of
change to the database. This collection is
termed a change set, or cset.

e Attribution is used to distinguish versions
by the values of certain attributes, such as
a date or status.

According to (Kim and Lochovsky, 1989),
a version can be a transient version, a working
version or a released version as follows:

* Transient versions: S transient version is
considered unstable and can be updated and
deleted. Therefore itis stored in its creator’s
private workspace.

* Working versions: A working version is
considered stable and cannot be updated,
but can be deleted by its creator. It is also
stored in its creator’s private workspace.

. Released versions: A released version is
considered stable and cannot be updated or
deleted.

Versioning Approach for Database Evolution

Other approaches provide additional fea-
tures:

1. Semanticsto versions such as Franconietal.
(2000) provide more semantics on versions
and define reasoning tasks with Description
Logic.

2. Refinement of the versioning model by
proposing a new combined versioning ap-
proach with other approaches for schema
evolution. Anexample is Benatallah (1996),
who proposes an approach that combines
modification with the versioning to benefit
from their positive aspects for better man-
agement of the database schema evolution.
In his approach, the researcher uses either
the modification or the versioning approach,
depending onthe type of changesrequiredin
the schema. If the schema loses properties,
such as the case of a suppression operation,
a new version of the schema is generated.
Otherwise, the schema is only modified.

3. Multi-representation, another way to imple-
mentthe versioning approach for the schema
evolution (Bounif et al., 2006). The multi-
representation strategy uses stamps to have
a schema that contains, at the same time,
different representations for the modelling
of the same universe of discourse (i.e., the
modelling of the same real-world). For in-
stance, in the following simple example, we
have defined a stamp S =<S1, S2> in which

the conceptual schema contains the entities
El, EL, E2 and the relationships Al’, A2,
according to the element S1 of the stamp
S. However, according to the element S2 of
the stamp S, the conceptual schema contains
the entities E1 and E2 and one relationship
AL This is illustrated in Figure 3.

VERSIONED DATABASE
FUNCTIONALITY

As mentioned in the previous section, the ver-
sioning is built using different methods and ap-
proaches. Consequently, several DBMSs support
the versioning and the functionality of versioned
database in different ways as well. Some com-
mercial DBMSs are Ontos, Versant, ObjectStore,
Objectivity/DB. The essential operations that a
DBMS (Data Base Management System) provides
to allow the versioning process are (Munch,
1995):

. creating new versions;

. accessing specific versions by a version
selection mechanism;

. adding user-defined names or identifiers to
versions;

e deleting versions (some restrictions to
which versions may be deleted, if any, are
created);

Figure 3. A simple example using multi-representation based on stamping on ER schema

SI:El

S1: E2

S2:El S1: E1'

S2: E2

97

. maintaining special relationships between
versions, e.g., revision _ of, or vari-

ant _ of;
. changing existing versions, if possible;
» “freezing"certain versionsso thatthey can-

not be changed, if change is possible;

. merging variants, automatically and/or
manually;

e attaching status values or other attributes
to versions.

The user does not manage the versions. To
gain non-versioned access to data stored in a
versioned database, there are several alternative
solutions (Munch, 1995):

1. Datais checked-out to a workspace, where
applications can access it freely, and then
checked-in to the database when it is no
longer being used. This technique is most
commonly used when dealing with files.

2. A layer is built on top of the versioned da-
tabase, which provides a standard interface
and conceals the details of the database, as
well as the versioning. This technique is
also useful for non-versioned databases.

3. Version selection is not part of the normal
access functions of the database. Versioning
is set up at the start and, possibly, the end
of a change, or for a long transaction.

FUTURE TRENDS

The versioning approach allows the evolution of
the schemaover time butatthe sametime, presents
drawbacks due to 1) the problems undergone
with the choice of the unit to be versioned, 2)
the problem of checking the consistency with the
number of generated versions, 3) the problem of
performance because the versioning is expensive
and requires a great deal of memory space as the
database evolves which is difficult to support in

98

Versioning Approach for Database Evolution

the long-term. Therefore, current research on
versioning investigates the way to:

. Combine the units to be versioned for ex-
ample in the object model, with a mix of
object version, a class version and schema
version.

* Combinetheversioning approach with other
approaches for schemaevolution such asthe
Versioning-view approach

. Decrease the number of versions

. Speed up the access to data through the
different versions.

. Concentrate on evolution based on an ontol-
ogy versioning instead of database schema
versioning because ontology contains more
semantics and includes the contents of the
schema.

CONCLUSION

Database evolution has been extensively addressed
inthe past. As presented in this paper, a variety of
techniques have been proposed to execute change
on the schema in the smoothest way to preserve
data and maintain application functionalities.

The versioning approach isone of the solutions
approved. The versioning principles can be ap-
plied universally to many different forms of data,
such as text files, relational or object databases.
Despite certain negative points that lead us to
consider improvements within this approach
such as combining the units to be versioned and
combining the versioning approach with other
approaches for schema evolution. Versioning is
gaining ground each day and the work in schema
versioning is expanding.

REFERENCES

Banerjee, J., Kim, H.-J,, et al. (1986). Schema
Evolution in Object-Oriented Persistent Data-

Versioning Approach for Database Evolution

bases. XP/7.52 Workshop on Database Theory,
University of Texas at Austin, TX, USA.

Bellahsene, Z. (1996). View Mechanism for
Schema Evolution. Advances in Databases,
14th British National Conferenc on Databases,
BNCOD 14, Edinburgh, UK, July 3-5, 1996.
Edinburgh, UK: Springer.

Bellahsene, Z. (2002). Schema Evolution in
Data Warehouses. Knowledge and Information
Systems, 4(3).

Benatallah, B. (1996). Un Compromis: Modifi-
cation et Versionnement du Schéma. 12 émes
Journées Bases de Données Avancées, 27-30
Aolt 1996, France INRIA.

Bounif, H., & Spaccapietra, S. et al. (2006). Re-
quirements Ontology and Multi-representation
Strategy for Database Schema Evolution., Seoul,
Korea, 2006 VLDB Workshop on Ontologies-
based techniquesfor DataBases and Information
Systems.

Borgida, A., & Williamson, K. E. (1985). Ac-
commodating Exceptions in Databases, and Re-
fining the Schema by Learning from them. 11th
International Conference on Very Large Data
Bases VLDB’85, Stockholm, Sweden, Morgan
Kaufmann

Chen, J. L., Mcleod, D. et al. (1995). Domain-
Knowledge-Guided Schema Evolution for Ac-
counting Database Systems. Expert Systems with
Applications, 9(4), 491-501.

Christodoulakis, D., Soupos, P. et al. (1989).
Adaptive DB schema evolution via constrained
relationships. EEE International Workshop on-
Tools for Artificial Intelligence, 1989. Architec-
tures, Languages and Algorithms, Fairfax, VA ,
USA, IEEE.

Fontana, E., & Dennebouy, Y. (1995). Schema
Evolution by using Timestamped Versions and
Lazy Strategy. Onziemes Journées Bases de

Données Avancées, 29 Aot - ler Septembre 1995,
Nancy, France INRIA.

Franconi E., Grandi F., & Mandreoli F. (2000).
Schema Evolution and Versioning: A logical
and Computational Characterisation at the
9™ International Workshop on Foundations of
Models and Languages for Data and Objects,
FoMLaDO/DEMM?2000, Dagstuhl Castle, Ger-
many, September 2000.

Galante, R. D. M., Edelweiss, N., et al. (2002).
Change Management for aTemporal Versioned

Object-Oriented Database. Conceptual Model-
ing - ER 2002, 21st International Conference on
Conceptual Modeling, Tampere, Finland, Octo-
ber 7-11, 2002, Proceedings, Tampere, Finland,
Springer.

Jensen, O. G., & Bohlen, M. H. (2004). Loss-
less Conditional Schema Evolution. Conceptual
Modeling - ER 2004. 23rd International Confer-
ence on Conceptual Modeling, Shanghai, China,
Springer.

Karahasanovic, A. (2001). SEMT-A Tool for find-
ing Impacts of Schema Changes. NWPER’2000.
Ninth Nordic Workshop on Programming Envi-
ronment Research, Lillechammer, Norway.

Kim, W., & Lochovsky, F. H. (Eds.) (1989). Object-
Oriented Concepts, Databases, and Applications.
ACM Press and Addison-Wesley.

Kupfer, A., Eckstein, S. et al. (2006). Handling
Changes of of Database Schemasand Correspon-
din Ontologies Advances in Conceptual Model-
ing - Theory and Practice, ER 2006 Workshops
BP-UML, CoMoGIS, COSS, ECDM, OIS, QolS,
SemWAT, November 6-9, Tucson, AZ, USA,
Springer.

Lautemann, S.-E. (1996). An Introduction to
Schema Versioning in OODBMS. Object-Ori-
ented Databases 2 workshop, Zurich, Switzerland,
IEEE-CS Press.

99

Lerner, B. S., & Habermann, A. N. (1990). Beyond
schema evolution to database reorganisation.
Conference on Object-Oriented Programming
Systems, Languages, and Applications/European
Conference on Object-Oriented Programming,
Ottawa, Canada.

Liu, C.-T., Chang, S.-K. et al. (1994). Database
Schema Evolution using EVER Diagrams. AVI
‘94, Proceedings of the Workshop on Advanced
Visual Interfaces, June 1-4, 1994., Bari, Italy,
ACM.

Loomis,M.E.S., & Chaudhri, A.B.(1997). Object
Databases in Practice. Prentice-Hall.

Lu, J., Dong, C. et al. (1999). Equivalent Object-
Oriented Schema Evolution Approach Using the
Path-Independence Language. 31st International
Conference on Technology of Object-Oriented
Languages and Systems, Nanjing, China, IEEE
Computer Society.

McKenzie, E., & Snodgrass, R. (1990). Schema
Evolution and the Relational Algebra. Inf. Syst.,
15(2), 207-232.

Munch, B. P. (1995). Versioning in a software
Engineering Database—the Change Oriented Way
Division of Computer Systems and Telematics.
The Norwegian Institute of Technology.

Osborn, S. (1989). The role of Polymorphism in
schema evolution in an object-oriented database.
IEEE Transactions on Knowledge Data Engineer-
ing, 1(3).

Perez-Schofield, J. B. G., Rosello, E. G. et al.
(2002). Managing Schema evolution in a con-
tainer-based persistent system. Softw., Pract.
Exper., 32(14), 1395-1410.

Peters, R.J., & Ozsu, M. T. (1997). An Axiomatic
Model of Dynamic Schema Evolution in Object-
based Systems. ACM TODS, 22(1), 75-114

100

Versioning Approach for Database Evolution

Rahm, E., & Bernstein, P. A. (2006). An Online
Bibliography on Schema Evolution. Sigmod Re-
cord, 35, 30-31.

Rashid, A., & Sawyer, P. (2000). Object Data-
base Evolution Using Separation of Concerns.
SIGMOD Record, 29(4): 26-33.

Roddick, J. F. (1995). A survey of schema version-
ing issues for database systems. Information and
software Technology, 37(7), 383-393.

Skarra, A. H., & Zdonik, S. B. (1986). The Man-
agementof Changing Typesinan Object-Oriented
Database. Conference on Object-Oriented Pro-
gramming Systems, Languages, and Applications
(OOPSLA’86), Portland, Oregon, USA.

Takahashi, J. (1990). Hybrid relations for database
schema evolution. 14th Annual International
Computer Software and Applications Conference,
Chicago, Ilinois, USA.

Verelst, J. (2004). The Influence of the level of
Abstraction on the Evolvability of conceptual
models of information systems. International
Symposium on Empirical Software Engineering
(ISESE 2004), Redondo Beach, CA, USA, IEEE
Computer Society

Wedemeijer, L. (2000). Defining Metrics for
Conceptual Schema Evolution. 9th International
Workshop on Foundations of Models and Lan-
guages for Dataand Objects, FoOMLaDO/DEMM
2000, Dagstuhl Castle, Germany, Springer.

Wienberg, A., Ernst, M. et al. (2002). Content
Schema Evolution in the CoreMedia Content
Application Platform CAP. Advances in Data-
base Technology - EDBT 2002. 8th International
Conference on Extending Database Technology,
Prague, Czech Republic, March 25-27, Proceed-
ings, Prague, Czech Republic, Springer.

Yu, C., & Popa, L. (2005). Semantic Adaptation
of Schema Mappings when Schemas Evolve.

Versioning Approach for Database Evolution

Proceedings ofthe 31st International Conference
on Very Large Data Bases, Trondheim, Norway,
ACM.

KEY TERMS

Multi-Representation: A multi-representa-
tion strategy that enables one to create two or
more points of views of the same real-world and
to combine them. The unit to be versioned can be
one or several schema components or the whole
schema.

Schema Evolution: Is the ability of the da-
tabase schema to change over time without loss
of stored data.

Stamp: A stamp S is defined as a vector
S=<s,s,, .., 5,> Where each component si of
the S represents the i th representation of the

real-world.

Version Derivation: Is a direct acyclic graph
(DAG) with which all the relationships between
all versions of an object are specified

Version of an Object: Is a snapshot of this
object taken at a certain period of time

Version: Is a unity that has a unique and im-
mutable identity as well as an internal structure

Versioning-by-Difference: Is a delta com-
pression that contains only the components of the
schema that have been changed from one schema
version to the next.

Versioning-View: Is a combined approach
that implies the alternative use of the versioning
and the view mechanisms to realize the evolution
of the schema. The views are used to make the
minor changes and the versioning to complete
the complex ones.

101

102

Chapter XII

Evolutionary Database:
State of the Art and Issues

Vincenzo Deufemia
Universita di Salerno, Italy

Giuseppe Polese
Universita di Salerno, Italy

Mario Vacca
Universita di Salerno, Italy

INTRODUCTION

Waterfall methodologies can poorly cope with
changes, making maintenance considerably an ex-
pensive process. For this reason, incremental and
iterative methodologies were introduced (Larman
& Basili, 2003). They view system development
as a step-by-step process, with the introduction
of new functionalities to meet user needs. The
main problem arising in both paradigms is the
complexity in facing changes. Therefore, an
increased automated support in this task would
resultinareduction of effortsand costs, especially

in incremental methodologies, because it would
make them more systematic.

Changes are often necessary to reflect the con-
tinuous evolution of the real world, which causes
frequentchangesinfunctional requirements. This
entails frequent modifications to the software,
yielding a gradual decay of its overall quality.
For this reason, many researchers in this field
have developed software refactoring techniques
(Mens & Tourwé, 2004). Software refactoring is
intended asthe restructuring of an existing body of
code, aimingtoalter its internal structure without
changing its external behavior. It consists of a

Copyright © 2009, IGI Global, distributing in print or electronic forms without written permission of 1GI Global is prohibited.

Evolutionary Database

series of small behavior preserving transforma-
tions, which altogether can produce a significant
software structural change. Moreover, system
modifications resulting in changes to database
structure are also relatively frequent (Roddick,
1995). These changes are particularly critical,
since they affect not only the data, but also the
application programs relying on them (Ambler &
Sadalage, 2006; Karahasanovic, 2001).

Several disciplines have faced the problem of
managing the effects of database schemachanges.
The interest in this topic has consistently grown,
as shown by several surveys and bibliographies
recently published (Roddick, 1992; Roddick,
1995; Li, 1999; Rahm & Bernstein, 2006). In
particular, schema modification has faced the
problem of changing the schema of a populated
database. In addition to this, schema evolution
pursues the same goal, but it tries to avoid loss of
data. Alternatively, schema versioning performs
modifications of the schema, but it keeps old ver-
sions to preserve existing queries and application
programsrunning onit. Although schemaversion-
ing faces the problem of query and application
programs preservation, it considerably increases
the complexity and the overhead of the underly-
ing DBMS. Finally, database refactoring aims to
modify the database schema, and to change the
corresponding application programsaccordingly.
In other words, the database refactoring is the
process of slowly growing a database, modifying
the schema by small steps, and propagating the
changestothe queries. Thisis considered the ma-
jor technique in the development of evolutionary
database (Ambler & Sadalage, 2006).

With the introduction of evolutionary data-
bases methodologies, the researcharea of schema
evolutionand versioning has been naturally broad-
ening to embody new and more challenging
research problems. In this chapter, borrowing
the term from Ambler et al. (2006), we call this
new research area Evolutionary Database.

This chapter discusses the main issues
concerning evolutionary database and then we

survey several models and tools proposed for
their solution.

BACKGROUND

Schema evolution and schema versioning have
been pioneer research areas facing problems
due to the introduction of changes in database
schemas.

Generally accepted definitions of schema
evolution and schema versioning are provided
in a paper by Roddick (Roddick, 1995), which
can be considered as a sort of manifesto for this
research topic. According to these definitions, the
aim of schema evolutionisto facilitate changesin
the database schema without losing existing data.
If these changes are seen as producing different
versions, then the need to store the data of all the
versions naturally arises. Therefore, the goal of
schema versioning is to allow users to access the
data of old versions (retrospective access) as well
as those of new ones (prospective access).

Nowadays, researchers of the database area
agree that schema evolution and versioning yield
two mainissues: semantics of changesand change
propagation (see, for example, Peters, et al. 1997
or Franconi, et al., 2000). The first problem re-
quires determining the effects of changes on the
schema, whereas the second deals with the effects
on the data.

Example 1

Let us consider the database of the employees
of a University described by the schema S repre-
sented by the relation

R(Employee_1D, LastName, Firstname, Depart-
ment_ID, Salary, Address)

where Employee_ID is the primary key. Let us
suppose that it is required that the database be in
third normal form (Elmasri & Navathe, 2006).
The addition of the functional dependency

103

f: Department_ID — Address

violatesthe third normal form. Inorderto preserve
the normalization properties, it is necessary to
transform the schema S in a schema S’, splitting
R into two relations R, and R,

R,(Employee 1D, Surname, Name, Salary, De-
partment_1D)

R,(Department_ID, Address)

This example shows how the addition of a
functional dependency (a kind of schema change
operation') makes the schema S evolve in a new
schema S’ (S and S” are examples of versions).
The splitting of R also requires transferring
the existing data from R to R, and R, (change
propagation).

The problems of semantics of changes and
change propagationyield other mainissuesinthe
research areas of schema evolution and version-
ing, such as the definition of the aspects of the
schema that can be changed, the way a schemais
changed, the way these changes are propagated,
the problem of maintaining schema consistency
after a schema change, and the extent to which a
database is still usable by application programs
(Li, 2002).

According to Li (2002), the main schema-
evolution research areas facing these problems
are schema evolvability, semantic integrity, and
application compatibility.

Schema evolvability deals with both changes
to the structure of the schema (structural evolu-
tion), and to the application programs (behavioral
evolution). The tasks of schemaevolvability are: to
study algebras or theoretical models for changes,
to predispose models for checking schemaconsis-
tency after changes, and to model architectures
enabling the access to the different versions of
a schema. The area of semantic integrity deals
with the quality of the schema, verifying, for
example, that referential integrity and constraint

104

Evolutionary Database

consistency are satisfied. Finally, the application
compatibility studies the problems related to the
compatibility between schema and applications
after the changes.

MODELS AND SYSTEMS OF
SCHEMA EVOLUTION AND
VERSIONING

Many models, along with the systems embody-
ing them, have been proposed to overcome the
problems outlined in the previous section.

A pioneering attempt to model schema evolu-
tion was due to Lakshmanan et al. (1993). In their
approach, schema evolution is interpreted as a
special case of schema integration, being each
stage of the evolution seen as a different database
schema, which is linked to another one through
a higher order logic language.

The theoretical models and related systems
can be classified in two categories: invariantand
rule based models (Banerjee, etal., 1987; Nguyen
& Rieu, 1988), and formal or axiomatic models
(Peters and Ozsu, 1997; Franconi, et al., 2000).
These models differ in the management of the ef-
fects of changes on the schema. Systems belonging
to the former category are, for example, ORION
(Banerjee, et al., 1987), and Sherpa (Nguyen, et
al., 1988), while asystem based onaformal model
is Tigukat (Ozsu, et al., 1995).

The ORION model is structured into three
components: a set of properties of the schema
(invariants), a set of schema changes, and a set
of rules. The invariants state the properties of
the schema (for example, classes are arranged in
a lattice structure), whereas rules help detecting
the most meaningful way of preserving the invari-
ants when the schema changes. Schema changes
are organized into categories, like changes to the
contents of a class. This model of schema evolu-
tion yields two important issues: completeness
and soundness of the schemaevolution taxonomy.
Both of them have been proved only for a subset

Evolutionary Database

of the schema change operations (Banerjee et
al., 1987).

The axiomatic model was introduced by Peters
et al. (1997). The aim of this model is to support
the dynamic schema evolution, i.e., the evolution
applied toaworking system. Thismodel hasthree
basic components: terms, axioms, and changes.
The basic concept underlying this model is the
type (analogous to the class of ORION), which
is in turn characterized by the terms. In fact,
examples of terms are the lattice T of all types
in the system, and the supertypes of atype t. The
role of axioms is to state the properties of terms
and their relations. For instance, they state that
the lattice has no cycles. Changes on the schema
are accomplished by means of three basic change
operations: add, drop, and modify. The process
of schema evolution is realized by elementary
changes, whereas the problem of the effects of
changes is solved by re-computing the entire
lattice by using axioms. The model satisfies the
properties of soundness and completeness. The
system Tigukat embodies the axiomatic method
illustrated above.

Another formal approachisprovidedin (Fran-
coni, etal., 2000). It models schema versioning of
object oriented databases froma logical and com-
putational point of view, using a formal semantic
framework based on Description Logic (Baader,
2003). The basic elements of the model are: classes
and their attributes, schema, and elementary
schemachange operators. This framework allows
broadening the number of consistencies that are
considered as reasoning problems, according
to the style of Description Logic, and checked
formally. Finally, all the consistency problems
taken into consideration have been proved to be
decidable.

A serious and still partially unsolved problem
is the management of compound changes (Lerner,
2000). Compound changes, like for example the
movement of an attribute from a class to another
one, are problematic as they cannotalways be real-
ized by a sequence of local changes. For example,

a move change is not equivalent to a sequence of
deletion and insertion, as the deletion causes a
loss of data. In order to consider the possibility
to operate compound changes avoiding the explo-
sion of change operations allowed by the system,
Lerner proposed a solution based both on giving
the administrator the possibility to edit a desired
schema, and on algorithms detecting changes in
the schemaand attempting to infer how types have
changed. This approach has been implemented
in the Tess system (Lerner, 2000).

The approaches based on the two models
mentioned above present two main limitations.
The former regards the explosion of rules when
facing more general schemachanges, whereasthe
second regards the fact that they are all suited to
the object-oriented data model.

DATABASE REFACTORING

Analogously to software development, also da-
tabase development approaches can be classified
in traditional and evolutionary. Both try to cope
with suddenly arising changes, but in very dif-
ferent ways. In fact, the formers try to minimize
changes by foreseeing them during the design
phase, whereas the second ones use changes
as the underlying paradigm for developing the
system.

Evolutionary database approaches are based
onthe assumption thatasystem s builtincremen-
tally and iteratively, according to the incoming
requirements (Ambler & Sadalage, 2006). There
are both advantages and disadvantages in apply-
ing these methodologies. An advantage is the
possibility to facilitate the maintenance phase,
since the system is always working. A drawback
is the lack of tools providing automated support
(Ambler, et al., 2006).

Evolutionary methodologies are based on
several techniques, among which the most im-
portant one is database refactoring. A database
refactoring is a change to a database system that

105

improves its design without modifying both its
informational and behavioral semantics (Ambler,
et al., 2006).

Example 2

Let us consider the relation R of example 1.
Merging LastName and FirstName attributesina
unique attribute, named Identity, is an example of
database refactoring. Relation R would become

R,(Employee 1D, Identity, Department_ID, Sal-
ary, Address)

Application programs using R have to be up-
dated for accessing R,. To this aim, a transition
period (deprecation period), in which both the
new and the old schema exist, will be used in the
software system. At the end of this period only
R, will remain. This is an important strategy of
database refactoring.

There are two kinds of changes: those that do
notsignificantly affect the semantic of the schema
(e.g., the changes of data format) and those that
significantly affect the database schema (named
transformations). As this distinction seems little
meaningful to us, in the following with will use
the term database refactoring to refer to any
kind of change.

Example 3

Letus consider the database schema of example
1, and a query Q asking for all the employees
working in the Computer Science Department
(identified by label “CS”):

(query Q)
select *

from R
where Department_ID = “CS”

If the transformation consisting in the addi-
tion of a functional dependency f is applied to
S, leading to the schema S’, also Q needs to be
updated as follows:

106

Evolutionary Database

(query Q’)

select Employee ID, Last Name, First Name,
Salary, Department_ID, Address

fromR R,

where (R,.Department_ID=R,.Department_ID)
and (Department_ID= “CS”)

The problem of database refactoring is very
difficult since it requires modifying both schema
and queries. As pointed outby Ambleretal. (2006),
the level of difficulty depends on the degree of
coupling between dataand queries. Coupling indi-
cates the measure of the dependence between two
items, and in our case can be used to denote the
dependence between applications and data. The
higher is the coupling between applications and
data, the more difficult is to change the schema.
For example, a database with only one applica-
tion program has a coupling lower than one with
many of them.

So far database refactoring has been a task
accomplished by database administrators, almost
manually. In order to make this process easier,
several categories of database refactoring have
been studied, such as structural, data quality, ref-
erential integrity, architectural (@imingtoimprove
the interaction between application programsand
the database) (Ambler, et al., 2006).

It is worth to note that even if the problem of
refactoring is strongly connected with schema
evolution and versioning, it significantly dif-
fers from them. The main difference lies in the
treatment of application programs and queries.
In fact, schema evolution deals with the extent
to which a schema change preserves applica-
tion programs (consistency between schema and
queries). The aim of schema versioning is more
general with respect to that of schema evolution,
as it allows to access both old and new versions
of the schema, but the correctness of applications
on the new schema is not guaranteed. Recently,
Karahasanovic (2001) took inaccountthe problem
of the impact of schema changes on applications,
proposing a tool for analyzing it a posteriori.

Evolutionary Database

Therefore, if compared with schemaevolution
and versioning, database refactoring appears to
be a more complete and complex task, since it
combines different areas like schema evolution
and query reformulation (Deutsch, 2006).

FUTURE TRENDS

So far the research on database refactoring has
led to the definition of several methodologies
(Ambler, et al., 2006). However, no significative
contribution has been provided towards the auto-
mation of this process. This is mainly due to the
lack of formal approaches, like those developed
for schema versioning and schema evolution
(Banerjee, et al., 1987; Franconi, et al., 2000;
Lakshmanan, et al., 1993; Peters & Ozsu, 1997).
Nevertheless, these approaches use models that
donotconsider queries, hence they do notanalyze
the impact of schema changes on queries and ap-
plication programs.

In the future formal approaches should be de-
fined for analyzing both changes to the database
schema and their impact on queries and applica-
tion programs. They should enable us facing two
important problems, which cannot be managed
through the formal models described above: the
variability of schema properties, and the propaga-
tion of changes into queries.

Formal approaches will provide the basis for
tools capable to perform changes to database
systems triggered upon the detection of database
schema anomalies, and consequently, they will
reduce the designer effort, providing the basis
for automating the database refactoring process.
Thesetoolsshould also be communicative, inorder
to base their decisions also on user suggestions.
Forexample, adding a functional dependency isa
serious decision, and it would be desirable having
the tools ask for user support.

CONCLUSION

In this article, we have presented a brief survey
on the state of art of database evolutionary mod-
els and tools. We have examined representative
works and related approaches to the problems of
schemaevolution and versioning, and of database
refactoring. Finally, we have showed that if the
problem of database refactoring is seen in con-
nection with schema evolution and versioning, it
originatesanew researcharea, enriching previous
ones with both theoretical (models) and applica-
tion (methodologies) open problems.

REFERENCES

Ambler, S. W., & Sadalage, P. J. (2006), Refac-
toring databases: Evolutionary database design.
Addison Wesley Professional.

Baader, F., Calvanese, D., McGuinness, D. L.,
Nardi, D., & Patel-Schneider, P. F. (2003). The
description logic handbook: Theory, implemen-
tation, and applications. Cambridge University
Press.

Banerjee, J., Kim, W., Kim, H.-J., & Korth, H.F.
(1987). Semantics and implementation of schema
evolution in object-oriented databases. Proceed-
ings of the 1987 ACM SIGMOD International
Conference on Management of data, 311-322.
San Francisco, CA.

Deutsch, A.,Popa, L., & Tannen, V. (2006). Query
reformulation with constraints. SIGMOD Record,
35(1), 65-73.

Elmasri, R., & Navathe, S. B. (2006). Funda-
mentals of database systems, 5" edition. Ad-
dison-Wesley.

Franconi, E., Grandji, F., & Mandreoli, F. (2000).
A general framework for evolving schemata sup-
port. Proceedings of SEBD 2000,.371-384.

107

Karahasanovic, A. (2001). Identifying impacts
of database schema changes on application. Pro-
ceedings of the 8th Doctoral Consortium at the
CAISE, 01, 93-104.

Kuhn, T. S. (1970). The structure of scientific
revolutions, 2" Edition. University of Chicago
Press.

Lakshmanan, L. V. S, Sadri, F., & Subramanian,
I.N. (1993). On the logical foundations of schema
integration and evolution in heterogeneous data-
base systems. Proceedings of Third International
Conference of Deductive and Object-Oriented
Databases (DOOD’03), 81-100.

Larman, C., & Basili, V. R. (2003). Iterative and
incremental development: A brief history. IEEE
Computer, 36(6), 47-56.

Lerner, B. S. (2000). A model for compound
type changes encountered in schema evolution.
ACM Transactions on Database Systems, 25(1),
83-127.

Li, X. (1999). A survey of schema evolution
in object-oriented databases. Proceedings of
TOOLS’31, 362-371.

Mens, T., & Tourwé¢, T. (2004). A survey of soft-
ware refactoring. IEEE Transactions on Software
Engineering, 30(2), 126-139.

Nguyen, G., & Rieu, D. (1988). Schema evolution
in object-oriented database systems. Rapports de
Recherche, 947.

Ozsu, M. T, Peters, R. J., Szafron, D., Irani,
B., Lipka, A, & Muioz, A. (1995). TIGUKAT:
A uniform behavioral objectbase management
system. VLDB Journal, 4(3), 445-492.

Peters, R. J., & Ozsu, M. T. (1997). An axiomatic
model of dynamic schemaevolution in objectbase
systems. ACM Trans. Database Syst., 22(1), 75-
114.

108

Evolutionary Database

Rahm, E., & Bernstein, P. A. (2006). An online
bibliography on schema evolution. Sigmod Re-
cord, 35(4), 30-31.

Roddick, J. F. (1992). Schema evolution in data-
base systems: An annotated bibliography. ACM
SIGMOD Record, 21(4), 35-40.

Roddick, J. F., Craske, N.G., & Richards, T. J.
(1993). A taxonomy for schema versioning based
on the relational and entity relationship models.
Proceedings ofthe 12th International Conference
on the Entity-Relationship Approach, 137-148.

Roddick, J. F. (1995). A survey of schema version-
ing issues for database systems. Information and
Software Technology, 37(7), 383-393.

KEY TERMS

Database Refactoring: It indicates little
changes in the database schema which preserve
both the meaning of the data and the behaviors
of the applications. These changes improve the
quality of the design.

Evolutionary Data Modeling: Methodologies
to iteratively and incrementally model database
systems so that schema and applications evolve
in a parallel way.

Query Reformulation: Given two schemas
S, and S, and a set of constraints. Let Q, a query
on S and Q,aqueryonS,. Q, is a reformulation
equivalentto Q, if Q, produces the same answers
of Q, on the instances of the joint schema satisfy-
ing the constraints.

Schema Changes: They are operations which
allow database scheme to evolve according to the
changes of the external world.

Schema Evolution: It indicates the property
of a database system which allows changes in
the database schema without losing the existing
data.

Evolutionary Database

Schema Modification: It indicates the prop- ENDNOTE
erty of a database system which allows changes

in the database schema of populated databases. i .) .
! A list of change operations in relational

Schema Versioning: Given different schema databases can be found in (Roddick, et al.,
versions, schema versioning indicates the ca- 1993), whereas a list of change operations
pability of a database system to access to the in object oriented databases can be found
data of all the versions both retrospectively and in (Banerjee, et al., 1987).
prospectively.

109

110

Chapter Xlll
Interrogative Agents for Data
Modeling

Vincenzo Deufemia
Universita di Salerno, Italy

Giuseppe Polese
Universita di Salerno, Italy

Mario Vacca
Universita di Salerno, Italy

INTRODUCTION

The problem of changes in software development
is a complex one, and it is almost impossible to
avoid it. Indeed, the continuous evolution of the
real world causes frequent changes in functional
requirements, which entail frequent modifications
to the software, yielding a gradual decay of its
overall quality. To tackle this problem, two meth-
odologies have been proposed: waterfall method-
ologies, and incremental/iterative methodologies.
The formers try to prevent changes, whereas the

second ones consider system development as a
step by step process.

The concept of software refactoring is at the
base of iterative and incremental methodologies.
According to Fowler software refactoringis ... a
disciplined technique for restructuring an exist-
ing body of code, altering its internal structure
without changing its external behavior.” (M.
Fowler, http://www.refactoring.com/).

Analogously, changes to the database struc-
ture are also relatively frequent (Roddick, 1995).
Theyare particularly critical, since they affect not

Copyright © 2009, IGI Global, distributing in print or electronic forms without written permission of 1GI Global is prohibited.

Interrogative Agents for Data Modeling

only the data, but also the application programs
accessing them (Ambler & Sadalage, 2006; Kara-
hasanovic, 2001). Therefore, similarly to software
refactoring, database refactoring aims to modify
the database schema, and to change the corre-
sponding application programs accordingly.

Ambler & Sadalage (2006) gave the definition
of database refactoring: It “is a simple change to
adatabase schemathatimproves its design while
retaining both its behavioural and informational
semantics.”. The database refactoring is the basis
of evolutionary data modeling methodologies,
which are the database analogous of the itera-
tive and incremental ones. Ambler & Sadalage
(2006) also observed that a disadvantage in the
application of refactoring is the lack of mature
supporting tools.

In this paper we deal with the problem of de-
veloping tools supporting the evolutionary data
modeling process. First of all, we observe that the
characteristics of the problem can be naturally
framed in the agent paradigm, because the evolu-
tionary data modeling can be seen as a process in
active databases able to change their beliefs and
structure. Moreover, the evolutionary data mod-
eling can be compared to the design of an agent
acting in an open environment: the environment
can be represented by the user needs and require-
ments (which change in an unforeseeable way),
while the database development process is repre-
sented by the evolution of a reactive agent. Then,
by following the AOSE (Agent-Oriented Software
Engineering) view, we show that the use of tools
and techniques from Al (Artificial Intelligence)
can help facing the problem of developing support-
ing toolsto automate evolutionary datamodeling.
To this end, after a brief introduction to the basic
concepts in agent theory, and the highlighting of
relationshipsamong agents, software engineering,
and databases, we point out the correspondence
between agents and data modeling by showing a
suitable architecture based on the logic of inter-
rogation (Hintikka et al., 2002).

BACKGROUND

Before dealing with the problem of database
refactoring, along with the more general data
modeling, and the role of agents in solving it, we
need to briefly introduce the concept of agent,
highlighting advantages of agent technology.

The term agent has not reached a universally
accepted definition, as pointed out by Franklin
& Graesser (1996), but the essence of being an
agent can be summarized as follows:

“An autonomous agent is a system situated
within and a part of an environment that senses
that environment and acts on it, over time, in
pursuit of its own agenda and so as to effect what
it senses in the future.”” (Franklin & Graesser,
1996).

Luck et al. (2004) proposed to divide applica-
tions of agents in three main categories:

e Assistant agents, which replace humans in
the execution of some task (e.g., agents for
hotel reservation);

. Multi-agent decision systems, where the
agents in the system make some joint deci-
sions;

. Multi-agent simulation systems, used to
simulate real-world domains like biological
populations.

In this paper we are mainly concerned with
particular applications of the first type, in which
agents operate on databases (see, for example, de
Carvalho Costa et al., 2003; Magnanelli & Nor-
rie, 2000). In particular, we are concerned with
reactivity (the ability of the agent to respond in
an appropriate way to the environment changes),
and with the design of reactive systems needing
to interact in open system environments.

Different architectures have been designed to
realize the features of agents, the most famous of

111

which is the so called Belief-Desires-Intentions
(BDI, for short), based on the Georgeff & Lansky
(1987) theory (see Figure 1). The BDI architecture
is composed of four data structures: beliefs, de-
sires, intentions, and plans, which are managed
by an interpreter. The agent has two kinds of
knowledge: beliefs, representing its knowledge
aboutthe worlditinteracts with, and plans, courses
of actions representing its know-how. Desires are
the tasks assigned to the agent, whereas intentions
represent desires that the agent has committed
to achieve. The agent cycle is realized by the
interpreter operating on the data structures. The
interpreter updates beliefs (after observations or
interactions with the external world), generates
new desires (due to the beliefs update), selects
the current intentions from the desires and the
plans to reach them.

Many logics for agent architectures have been
developed (see, for example, Meyer 2004). In this
paper we will refer to the interrogative model pro-
posed in (Deufemia et al., 2007), which is based
on of the Hintikka et al. (2002) logic.

The theory of agents is not only a cognitive
theory and a part of the Al, but agents can be

Interrogative Agents for Data Modeling

consideredareal technology, fruitfully applicable
to other areas. In this paper we are interested in
two areastowhich agents canbe applied: software
and database engineering.

The agent technology and the field of soft-
ware engineering are closely related; in fact, as
Wooldridge & Ciancarini claimed “Software
engineers continually strive to develop tools
and techniques to manage the complexity that
is inherent in software systems. In this article,
we argue that intelligent agents and multi-agent
systems are just such tools.” (Wooldridge &
Ciancarini, 2001). The marriage between agents
and software engineering produced a new branch
of software engineering, Agent-Oriented Soft-
ware Engineering (AOSE, for short)?, whose
aim is to exploit agents in the design of complex
systems (for a survey of this discipline see, for
example, Tveit 2001; Wooldridge & Ciancarini,
2001; Zambonelli & Omicini, 2004). AOSE has
the merit to renew the relationship between Al
and software engineering. In fact, Zambonelli
& Omicini (2004) observed that the increasing
complexity of problems calls for more intelligent
abilities in systems.

Figure 1. The BDI architecture (Georgeff & Lansky, 1987)

DATA
== INPUT MONITOR
A
y A 4
DATA BASE KAS
(BELIEES) (PLANS) SENSORS
INTERFACES (REASONER)
4 EFFECTORS
GOALS STACK A
(DESIRES) (INTENTIONS
DATA .| coMmMAND
—| outpPuT [T »| GENERATOR

112

Interrogative Agents for Data Modeling

The relationship betweenagents and databases
has been studied from different points of view:

. active databases;

. DBMS functions;

. data management;

. distributed databases.

J. Bailey et al. (1995) showed that active
databases and agents are very similar to each
other; still, from the this point of view, van den
Akker & Siebes, (1997), showed that extending
the reasoning capability of the database can give
the possibility of using different strategies to
maintain a single constraint). de Carvalho Costa
et al. (2003) studied the possibility of applying
agents to accomplish DBMS functions.

Magnanelli & Norrie (2000) dealt with the
benefits deriving from a sort of symbiosis between
web agents and databases: the web agent uses the
data stored in the database to search for informa-
tion on the web, whereas the database, in turn, is
updated by the data found by the agent.

Recently, Lockemann & Witte (2005) studied
the relationship from the point of view of the
semantic consistency problem in a peer-to-peer
distributed database. They observed that it is ap-
propriate to interpret information in the database
in terms of beliefs, and to apply the techniques
of belief representation and revision.

All these examples show some benefits or
advantages deriving from some kinds of relation-
ships betweenagentsand databases. Inthe follow-
ing we deal with another example of an effective
relationship between agents and databases: the
relation between agents and evolutionary data
modeling.

THE AGENT BASED DATA
MODELING

The refactoring of databases (and the more
general evolutionary data modeling) requires

that the system changes coherently both its own
knowledge and its behavior after a request of
change occurred. The process always starts with
a schema change request that the administrator
poses and the system tries to react to.

Data modeling can be seen as a knowledge
revision process. In fact, schema change requests
can involve objects in the database schema other
than those directly involved in the request. This
is due to the fact that schema change requests
can generate inconsistencies which, in turn, can
generate problems. For example, the addition of
an attribute in a table can provoke the lacking of
some functional dependency. Therefore, it be-
comes natural to see a support system as an agent
based process aiming to operate on the schema
in order to perform the required changes, and
trying to preserve original properties in terms of
knowledge and queries (Chang et al., 2007).

A system can support the data modeling pro-
cesstodifferentextents, like checking the schema
consistency, supporting database administrators
during the process, or applying suitable consis-
tency maintenance changes automatically. These
examples of supportsystems can be accomplished
by three kinds of agents each one characterized
by some specific goals and abilities. For instance,
the first agent needs only deductive capabilities,
the second one requires communicative abilities,
whereas the last needs to know how to use some
problem solving heuristics.

In particular, a data modeling interrogative
agent is constituted by an interpreter dialoguing
with three knowledge sources, Schema, Environ-
ment and Problem, each dialogue being ruled
by a specific goal (belonging to a set of goals).
The whole process is based on the logic of inter-
rogation® and the corresponding architecture is
showed in Figure 2.

To make clear how the process works, let us
consider a database storing data about employees
of a university, and having a query for retrieving
all employees of the Computer Science Depart-
ment.

113

Interrogative Agents for Data Modeling

Figure 2. The architecture of the interrogative agent model

KNOWLEDGE

Schema
Knowledge

The Schema knowledge is constituted by in-
formation about the structure and the properties
both of a general schema and of the Employee
Database one. For instance, the functions and
predicates in the following table may be useful
in describing general schema properties:

Using these functions and predicates it is pos-
sible to express, in a general way, properties of
database schema, such as “every table must have
a primary key”:

vr.(table(r) => 3k < attr(r) such that pri-
mary_key(r, k)).

ORACLES

Schema Knowledge Environment
ORACLE ORACLE

Goal Goal Problem

oals ORACLE Interp reter ORACLE

Environment

Problems

The structure and the properties of the Em-
ployee Database are the following:

The Environment realizes the interface be-
tween the administrator and the support system;
then, itmanages information about the operations
the administrator might perform on the database
structure (change operations)®. For instance, the
splitting of atable tinto two tablest’ andt”, due to
the introduction of a new functional dependency
f, can be described in Equation 1.

The agent way of working is as follows.

The Administrator gives a command, for ex-
ample split_table(R, R’, R”, f5: Department ID
— Address), to the Environment, which, in turn,

Table 1. Examples general of information in the Schema source

PROPERTIES prop(p, S) tests if p is a property of the schema S
ATTRIBUTES attribute(A) tests if A is an attribute
TABLES table(R) tests if R is a relation

attr(R) returns the set of attributes of table R
QUERIES query(Q) tests if Q is a query

body(Q) returns the body of a query Q
var(Q) returns the set of variables of a query Q

FUNCTIONAL DEPENDENCIES

FD(f) is true when f is a functional dependency

LHS(f) returns the set of attributes on the left of the functional dependency f .
RHS(f) returns the set of attributes on the right hand side of the functional
dependency f.

114

Interrogative Agents for Data Modeling

Equation 1.

split_table(t, ', t"’,f) «— (A=A A

F=Fu{f} A

T =(T-{{Huft, t’}a

Q= {q’| var(q’) = var(q), body(q’)=p(body(q), t,t’ N t")}* A
attr(t’) = attr(t) - RHS(f) A
attr(t’””) = RHS(f))

Table 2. Examples of specific information in the SChema source

PROPERTIES P

primary_key(R, Employee ID)
(Every relation must have a primary key)

ATTRIBUTES A Employee ID, Name, Department ID, Salary, Address
TABLES T R(Employee ID, Name, Department_ID, Salary, Address)
QUERIES Q q(x, y, w, z) = R(x, y, “CS”, w, z)

FUNCTIONAL f1 : Employee ID — Name;

DEPENDENCIES F f2 : Employee ID — Department ID

f3 : Employee ID — Salary
f4 : Employee ID — Address

passes it to the Interpreter, which has to decide
whattodo. The interpreter interacts with the Goal
source to set the appropriate goal (see table 3 for
a list of goals and their associated problems). In
particular, the interpreter asks the Goal source
for the problem ?Consistent(split_table(R, R’,
R”, f5)) which is the starting point of the process.
The answer to the ?Consistent(change-request)
is yes when each property in the set of properties
obtained by the application of the change-request
is true.

At this point the game starts. The interpreter
interacts with the Schema in order to answer
the question ?Consistent(split_table(R, R’, R”,
f5)).

A system with only the task to check for
consistency will communicate the answer to the
environment terminating the process, while a
more sophisticated system will communicate the
answer to the Goal source in order to know what
is the new problem to solve.

Inourcase, ifthe answer to ?Consistent(split_
table(R, R’, R, f5)) is negative, it will be neces-
sary to solve the problem trying to apply some
heuristic, and the Goal will select the new goals
to be achieved, as showed in Table 4.

It is worth to note that, as the final answer is
obtained by using heuristics, the Interpreter must
ask the administrator to detect the possibility to

apply it.

FUTURE TRENDS

In the future we think that it is necessary to
implement support tools for evolutionary data
modeling. To this end, we think that it is worth
to investigate the possibility of developing a
software tool based on the model presented here
and using visual language based tools capable of
supporting the data modeling process directly on

115

Interrogative Agents for Data Modeling

Table 3. Goals and associated problems in the Goal source

Goal Associated problem

Checking the schema for the consistency Is the schema resulting from the required change still consistent?
Example:
?Consistent(split_table(R, R’, R”, f5)

Searching for the inconsistencies Which are the false propositions?
Example:
3p. prop(p, Employees) A not p

Searching for the causes of the inconsistency Why is (are) the proposition(s) false?

What makes the proposition(s) false?

Example:

?3p’. not prop(p’, Employees) => not p

(Is the lacking of some property in the Employees schema to
provoke the inconsistency?)

Trying to fix the inconsistency Is there a change operation that applied

to the schema makes the inconsistency disappear?
Example:

23 ¢’ Vp. (prop(p, €’ (Employees)) =>p)

(is there an operation €’ making true each property of the
Employees schema?)

Table 4. Example of steps in the process of database refactoring

Goal Problem Answer
Checking the ?Consistent(split_table(R,R’,R”, f5)) NO
schema for the
consistency
Searching for the ?3p. prop(p, Employees) A not p p=not vr € T 3k S Attr(r) such that
inconsistency primary_key(r, k)
Searching for ?3p’. not prop(p’, Employees) => not p p’'=primary_key(R”,Department_ID)

the causes of the
inconsistency

Trying to fix the 23 &’Vp. (prop(p, €’ (Employees)) =>p) It can’t be solved

inconsistency

Asking the Problem | 23 ¢’ add(primary_key(R”,Department _ID),
source for an prop(primary_key(R”,Department_ID), Employees) Employees)

heuristic:

Specialization

Checking the ?Consistent(add(primary_key(R”,Department 1D), YES

schema for the Employees)

consistency

Consulting the ? add(primary_key(R”,Department ID), Employees) The DB administrator will decide
Environment for the

application

116

Interrogative Agents for Data Modeling

the database schema by means of special gesture
operators.

CONCLUSION

In this article, we explored a new relationship
betweenagents, databases and software engineer-
ing, which enforces both the thesis of Bailey et
al. (1995) and of van den Akker & Siebes (1997),
by stating that enriched active databases are able
to face more complex problems and extending to
single databases the claim of Lockemann & Witte
(2005) about the use of beliefs. The framework
presented uses an agent to discover and resolve
inconsistencies during the process of data mod-
eling. The proposed process is a trial and error
one based on the Hintikka et al. (2002) view of
logic, in which the agent tries to find a solution to
a given problem by deducing or consulting other
information sources.

REFERENCES

Ambler, S. W., & Sadalage, P.J. (2006). Refactor-
ing Databases: Evolutionary Database Design.
Addison Wesley Professional.

Bailey, J., Georgeft, M. P., Kemp, D. B., Kinny,
D., & Ramamohanarao, K. (1995). Active Data-
bases and Agent Systems - A Comparison. Rules
in Database Systems, (pp. 342-356).

Chang, S. K., Deufemia, V., Polese, G., & Vacca,
M. (2007). A Logic Framework to Support Data-
base Refactoring. In Proc. of 18th International
Conference on Database and Expert Systems
Applications, LNCS, 4653, 509-51.

de Carvalho Costa, R. L., Lifschitz, S., & Vaz
Salles, M. A. (2003). Index Self-tuning with
Agent-based Databases. CLEI Electronic Jour-
nal, 6(2).

Deufemia, V., Polese, G., Tortora, G., & Vacca,
M. (2007). Conceptual Foundations of Interroga-
tive Agents. In Proc. of Workshop from Objects
to Agents (WOA’07), (pp. 26-33).

Franklin, S., & Graesser, A. (1996). Isitan Agent,
or just a Program? A Taxonomy for Autonomous
Agents. Proceedings of ATAL 96, (pp. 21-35).

Georgeff, M. P, & Lansky, A. L. (1987). Reactive
Reasoning and Planning. In Proc. of the Sixth
National Conference on Artificial Intelligence

(AAAI-87), (pp. 677-682).

Hewitt, C., & de Jong, P. (1982). Open Systems.
On Conceptual Modelling (Intervale), (pp. 147-
164).

Hintikka, J., Halonen, 1., and Mutanen, A. (2002).
Interrogative Logic as a General Theory of Rea-
soning’, in Handbook of the logic of argument
and inference. The turn towards the practical,
1, 295-337.

Karahasanovic, A. (2001). Identifying Impacts
of Database Schema Changes on Application,
in Proc. of the 8th Doctoral Consortium at the
CAISE*01, (pp. 93-104).

Lockemann, P. C., & Witte, R. (2005). Agents
and Databases: Friends or Foes? Proceedings of
IDEAS’05, (pp. 137-147).

Li, X.(1999). A Survey of Schema Evolution in Ob-
ject-Oriented Databases. TOOLS, 31, 362-371.

Luck, M., McBurney, P., & Preist, C. (2004). A
Manifesto for Agent Technology: Towards Next
Generation Computing. Autonomous Agents and
Multi-Agent Systems, 9(3), 203-252.

Magnanelli, M., & Norrie, M. C. (2000). Databases
for Agents and Agents for Databases. Proc. 2nd
Intl. Bi-Conference Workshop on Agent-Oriented
Information Systems (AOIS-2000).

Meyer, J-J. Ch. (2004). Intelligent Agents: Issues
and Logics. Logics for Emerging Applications of
Databases, (pp. 131-165).

117

Roddick, J. F. (1995). A Survey of Schema Ver-
sioning Issues for Database Systems, Information
and Software Technology, 37(7), 383-393.

Tveit, A. (2001). A Survey of Agent-Oriented
Software Engineering. Proceedings of the First
NTNU Computer Science Graduate Student
Conference.

van den Akker, J., & Siebes, A. (1997). Enrich-
ing Active Databases with Agent Technology.
Proceedings of CIA 1997, (pp. 116-125).

Wooldridge, M., & Ciancarini, P. (2001). Agent-
Oriented Software Engineering: The State of the
Art. LNCS, 1957, 1-28.

Zambonelli, F., & Omicini, A. (2004). Chal-
lengesand Research Directionsin Agent-Oriented
Software Engineering. Autonomous Agents and
Multi-Agent Systems, 9(3), 253-283.

KEY TERMS

Agent: Agentisahardware or software system
abletoactwithouthuman intervention (autonomy)
both by itself (pro-activeness) and reacting to the
environmentchanges (reactivity), also interacting
with other agents (social ability).

Database Refactoring: It indicates little
changes in the database schema which preserve
both the meaning of the data and the behaviors
of the applications. These changes improve the
quality of the design.

Evolutionary Data Modeling: Methodologies
to iteratively and incrementally model database
systems so that schema and applications evolve
in a parallel way.

Functional Dependency: Given two sets of
attributes X and Y, a functional dependency be-
tween them is denoted by X — Y. The constraint

118

Interrogative Agents for Data Modeling

says that, for any two tuples t and t, having t [X]
= t,[X], then t,[Y] = t,[Y]. More precisely, given
atable R, X - Y < v, t, e Rt [X] =t[X] =
tIYI=t,[Y]).

Schema Changes: They are operations which
allow database schema to evolve according to the
changes of the external world.

Schema Level Consistency: A schema is
consistentif itis “well-formed (i.e. a schemawith
some desired properties).” (Li (1999), p.365).

Schema Property: A schema property is a
proposition about the constituents of the schema.
An example of schema property is the first nor-
mal form.

Schema: the database schema is constituted
by attributes (fields), tables (of fields), and the
relationships between attributes (functional de-
pendencies) and between tables.

ENDNOTES

a Open systems were born in the 80s (Hewitt
& de Jong, 1982), and are characterized by
the fact that their structure is capable of
changing dynamically.

b Note that the acronym AOSE is also widely
used for Aspect-Oriented Software Engi-
neering.

¢ For a detailed description of interrogative
agents see Deufemia et al. (2007).

d In this paper we denote a change request
(operation) with the Greek letter €. The
schemaresulting by itsapplicationtoagiven
schema S is &(S).

e The queries are transformed using substitu-
tions: in this case an intersection of tables
t” Nt is substituted to the initial table t.

119

Chapter XIV
Schema Evolution Models and
Languages for Multidimensional
Data Warehouses

Edgard Benitez-Guerrero
Laboratorio Nacional de Informatica Avanzada, Mexico

Ericka-Janet Rechy-Ramirez
Laboratorio Nacional de Informatica Avanzada, Mexico

INTRODUCTION

A DataWarehouse (DW) isa collection of histori-
cal data, built by gathering and integrating data
from several sources, which supports decision-
making processes (Inmon, 1992). On-Line Ana-
lytical Processing (OLAP) applications provide
users with a multidimensional view of the DW
and the tools to manipulate it (Codd, 1993). In
this view, a DW is seen as a set of dimensions and
cubes (Torlone, 2003). A dimension represents a
business perspective under which data analysis is
performed and organized in a hierarchy of levels
that correspond to different ways to group its

elements (e.g., the Time dimension is organized
as a hierarchy involving days at the lower level
and months and years at higher levels). A cube
represents factual data on which the analysis is
focused and associates measures (e.g., in a store
chain, a measure is the quantity of products sold)
with coordinates defined over a set of dimension
levels (e.g., product, store, and day of sale). Inter-
rogation is then aimed at aggregating measures
at various levels. DWs are often implemented
using multidimensional or relational DBMSs.
Multidimensional systems directly support the
multidimensional data model, while a relational
implementation typically employs star schemas

Copyright © 2009, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

Schema Evolution Models and Languages for Multidimensional Data Warehouses

(orvariations thereof), where a fact table contain-
ing the measures references a set of dimension
tables.

One important problem that remains open
in the Data Warehouse context is schema evolu-
tion, the dynamic modification of the schema of
a database (Banerjee, Kim, Kim & Korth, 1987,
Roddick, 1995). Early works assumed that there
was no reason to evolve the schema of a DW.
However, practitioners recognized several reasons
later (Zurek & Sinnwell, 1999): (i) it is important
to support incremental approaches to schema
design; (ii) it is necessary to improve the design
or to fix errors; and (iii) new user requirements
arise. If these changes are not integrated, the DW
becomesincomplete and users’ information needs
are not satisfied anymore.

Schema evolution is a problem that has been
mainly studied for relational and object-oriented
(O0) databases. However, existing solutions (e.g.,
Banerjee et al., 1987; McKenzie, & Snodgrass,
1990; Roddick, 1995) are only partially suited for
the DW context because they do not consider the
multidimensional nature of data. In response to
these deficiencies, several works have proposed
conceptual evolution models for DWsthat consider
those features.

The objective of this entry is to introduce the
problem of DW schema evolution, explaining
current solutions and identifying open problems.
It is organized as follows. First, background
information covering traditional solutions to the
schema evolution problem will be introduced.
Then, research on conceptual evolution models
and languages will be presented, comparing
reference works to others. Open issues will be
introduced. Finally, this entry will conclude with
asummary.

BACKGROUND

Schema evolution is a subject that has been
studied for years. This section briefly introduces

120

traditional works and introduces the problem in
the DW context.

Schema Evolution on Relational and
Object-Oriented Databases

The problem of schemaevolution hasbeenmainly
studied for relational and OO databases. In the
relational case, few concepts (relations and at-
tributes) are used to describe a database schema.
Thus, possible changes are limited to (McKenzie
& Snodgrass, 1990) addition/suppression of an
attribute or modification of its type, addition/sup-
pression of a relation, and so forth. In the OO
context, the model (classes, attributes, methods,
is-a relationships) is richer, and then schemas are
more complex. Possible changes are (Banerjee et
al., 1987) addition, suppression or modification
of attributes and methods in a class definition, or
changes in superclass/subclass relationships.

Schema Evolution Management

Evolving a schema raises problems at schema,
instance, and application levels. At schema level,
a modification in a part of a schema can cause
inconsistencies with other parts. At instance
level, data can become inconsistent with respect
totheirschema. Atapplication level, applications
can become incompatible with the schema after a
change. Existing approaches to manage schema
evolution try to minimize those problems. These
approaches are schema modification, usage of
views, and versioning.

Schema Modification

In the schema modification approach, the data-
base schema has only one definition, shared by
all applications. So each time the schema needs
to be changed, it is updated, and its associated
instances are modified accordingly (Penney &
Stein, 1987). Therefore, information can be lost
if changes imply the removal or modification of

Schema Evolution Models and Languages for Multidimensional Data Warehouses

schema elements, generating the incompatibility
of old applications.

Views

Some authors (e.g., Bellahséne, 1996) suggest
using views to simulate changes. This approach
enables schema changes without having to
restructure its instances and preserves applica-
tions from incompatibilities due to information
loss. However, it is not possible to add schema
elements (e.g., attributes) unless they are derived
from other existing elements.

Versioning

In the schema versioning approach, a schema
evolutionis represented by the derivation of anew
schema version or of a part of it (Roddick, 1995).
The main motivation of this approach is to enable
applications to access data from several schema
versions. Old applications can continue to work
after a schema evolution because the old version
of the schemaalways exists, which is crucial when
the number of affected applications is large or it
is impossible to modify them. Information loss is
thenavoided, butthe number of versions can grow
rapidly, complicating their management.

Schema Evolution in the Data
Warehouse Context

Schema evolution in the DW context was first
tackled by practitioners. Particularly, the addition
of new attributes to a table as a way of handling
changes to dimensions was proposed in Kimball
(1996). Thiswork isimportant because it proposes
apractical solutionto areal problem. However, this
solutioniscompletely implementation-dependent.
The research community saw immediately the
need of proposing conceptual evolution models
independent of any particularimplementation. Ex-
isting conceptual DW evolution models are based

on the modification and versioning approaches,
as explained in the following sections.

SCHEMA MODIFICATION MODELS
AND LANGUAGES

This section introduces conceptual evolution
models for DWs based on schema modification.
First, a reference evolution model (and its as-
sociated language) will be introduced, and then
existing proposals will be compared with respect
to this model.

The WHEM Model

This subsection briefly describes the WareHouse
Evolution Model (WHEM) composed by a mul-
tidimensional data model and a set of schema
evolution operators. For details, see (Benitez-
Guerrero, Collet & Adiba, 2003).

Multidimensional Data Model. The main
concepts of the multidimensional data model of
WHEM are dimension and cube, and for each of
them, the terms schema and instance are defined.
A dimension schema has a name and a set of
levels. They represent data domains at different
granularities and are organized into a hierarchy
by a roll-up relationship. Associated to a level,
there is a (possibly empty) set of properties. A
dimension instance (or simply, a dimension) is a
set of roll-up functions relating values (members)
of different levels. A roll-up function associates a
member e of a level | with a member ¢’ of a level
I” such that | rolls-up to I’ in the schema of the
dimension. Figure 1(a) shows the schema of the
Product dimension, which has as levels code,
category, department, and a special top level (T).
Associated with the code level, one can find as
property the name of the product.

A cube schema has a name, a set of axes
(where an axis is a dimension level), and a set of
measures. Figure 1(b) shows the schema of the

121

Schema Evolution Models and Languages for Multidimensional Data Warehouses

Sales cube. Its axes are code (level of the Product
dimension) and day (level of the Time dimension),
and its measure is quantity. A cube instance (or
simply, a cube) is a set of cells (represented as
tuples) associating a collection of members, each
one belonging to an axis of the cube schema, with
one or more measure values.

The collection of cubes and dimensions
forms a multidimensional database. Its schema
is composed by the collection of schemas of its
dimensions and cubes.

Evolution Operators

Asetof multidimensional schemaevolution opera-
tors have been defined. This setincludes operators
to create dimensions and cubes, to add/delete
levels to/from a dimension, to add/delete proper-
ties to/from a level, and to add/delete axes and
measures to/from a cube. Each of them takes as
input and produces as output a multidimensional
database. Figure 2(a) shows the addition of the
brand level to the Product dimension (note that
now the code level rolls up to this level). Figure
2(b) shows the addition of the city level (of a Store
dimension) as an axis of the Sales cube.

Associated to this model, a schema evolution
language called WareHouse Evolution Language
(WHEL) has been defined. WHEL is explained
next.

The WHEL Language

WHEL provides expressions to define and modify
multidimensional schemas according to the set of
evolution operators that have been defined.

Figure 3(a) and (b) show the expressions to
create the Product dimension and the Sales cube,
respectively. Figure 3(c) shows the expression to
add the brand level to the schema of the Product
dimension. Note that the code level rolls up to
this new level and that the default member of
the brand level is Brandl. Figure 3(d) shows the
expression to add the city axis to the Sales cube.
The default member of this axis is Cityl.

Existing Evolution Models and
Languages Based on Schema
Modification

(Hurtado, Mendelzon, and Vaisman (1999) pro-
pose operators to modify and update dimensions

Figure 1. Schemas of (a) the Product dimension and (b) the Sales cube

T

department

T

category

T

code{name}

Product
()

122

<quantity>

day

code

Sales

(b)

Schema Evolution Models and Languages for Multidimensional Data Warehouses

Figure 2 (a). Addition of a level to the Product dimension; (b) Addition of an axis to the Sales cube

T T
department department day
{T Add
brand
Category Category brand
code{name} code{name}
Product Product
(@)

atschemaand instance levels. Atthe schemalevel,
they propose operators to add and delete levels
(similar to those presented here), and operators
to modify roll-up relationships. At the instance
level, they propose operators to add, eliminate,
split, merge, and update members. This model
does not consider cubes evolution. Blaschka,
Sapia, and Hofling (1999) also propose a set of
schema evolution operators. The difference with
the operators presented here is the “granularity”
of definition; theirs can be considered as “’low-
level” operators in the sense that each of them
adds orremoves specific elements (level, property,
measure, etc.) of a schema. The problem is that
schema consistency may be lost between two
successive evolutionssoan additional mechanism
(transactions) is needed to avoid that problem.
The operators described here are “high-level”
operators ensuring schema consistency between
successive evolutions.

Regarding languages for evolving multi-
dimensional schemas, Hurtado, et al. (1999)
propose an algebraic language. Blaschka, et al.
(1999) propose a visual language called ME/R,
adapting the entity-relationship model to include
multidimensional concepts such as dimensions,
measures, and so forth. While ME/R can be used

<quantity> <quantity>
Add \day
city
code code city
Sales Sales
(b)

in CASE environments, WHEL (as a SQL-like
language) can be embedded into data warehous-
ing applications.

VERSION-BASED MODELS AND
LANGUAGES

This section introduces conceptual evolution
models based on versioning. First, a reference
evolution model and its associated language will
be introduced. Then existing proposals will be
compared with respect to this model.

THE WHEM-V MODEL

This subsection briefly introduces the WareHouse
Evolution Model based on versions (WHEM-V)
thatextendthe WHEM model. WHEM-V isbased
on the notion of the multidimensional database
version, and it proposesaset of evolution operators
adaptedtowork with thisstructure. For details, see
Rechy-Ramirez and Benitez-Guerrero (2000).

Multidimensional Database Version

In WHEM-V, the granularity of versioning is the
multidimensional database version. It is a DW

123

Schema Evolution Models and Languages for Multidimensional Data Warehouses

Figure 3. Examples of WHEL expressions

create dimension Product
level code: char(10)
(property name: char(30))
level category: char(40)
level department: char(40)
rollup code, category

rollup catergory, department

(@) (b)

create cube Sales
axis code
axis day

state (@ multidimensional schema and its data)
that has associated a temporal pertinence, indi-
cating its intervals of valid and transaction times
([start, end] . and [start, end],, respectively)".
In order to distinguish unequivocally a version,
its temporal pertinence needs to be referenced.
Consider, for instance the TV, version in Figure
4. It contains the schema and an instance of the
Product dimension, and its temporal pertinence
is [1, o] , and [0,2],..

Evolution Operators

The schema evolution operators of WHEM were
adapted towork on versions. Astheir nontemporal
counterparts, they modify the schema of a mul-
tidimensional database and adapt the associated
instance. The maindifference is thateach operator
is applied to the current version (the one that has
as transaction time the interval [st, now] , where
stis the start of the transaction time interval and
now is the current time) and creates a new version
(with its own temporal pertinence) incorporating
the change. Consider, for instance, Figure 4. If
the Sales cube with valid time [0.0] , is added
at transaction time now=3, a new version TV, is
generated from TV, Thisnew version containsthe
schemas of the Product dimension and the Sales
cube, and their corresponding instances (particu-
larly a new, empty instance for the Sales cube). Its
temporal pertinence is [0, oc] , and [3, oo],..

124

alter dimension Product
add level brand: char(20)
default ‘Brand1’

alter cube Sales
add axis city
default ‘Cityl’

measure quantiy: interger rollup code, brand

(©) (d)

Associated to the WHEM-V model, the
WHEL-V evolution language is defined. It is
presented next.

The WHEL-V Language

WHEL-V is an adaptation of WHEL to work with
versions of multidimensional schemas. The basic
expressions of WHEL-V are syntactically the same
asin WHEL, but they are applied to the current ver-
sion TV, being unnecessarytospecify thetransaction
time explicitly. In WHEL-V, expressions for creating
and modifying versions are introduced.

Figure 5(a) showsa WHEL-V expressiontocreate
anewschemaversion. Itiscomposed by the schemas
of the Product dimension and the Sales cube, and
its valid time is [02/05/06, oo ,, while its transaction
time is [now, oo], . Figure 5(b) shows an expression
to modify a version. The result is a new version that
contains the schema of the Product dimension with
the new brand level. Its valid time is [22/05/06, o]
while its transaction time is [now, o],

t

Existing Evolution Models and
Languages Based on Schema
Versioning

The COMET model (Eder & Koncilia, 2001) tackles
the problem of the evolution of dimension instances.
Itisbased onthe concept of versionstructure, which
is a dimension instance (members and their roll-up

Schema Evolution Models and Languages for Multidimensional Data Warehouses

Figure 4. Multidimensional database versions

Transaction Valid Time
Time 0 1 2 now 0
0 TV,
SVl:
1 DSlf{ProductD51}
cs,{}
2
DVS,:{Product, .}
cvs;{}
now =3 TV2

SZ:{ProdUct
CS,:{Sales

2:
DSZ}
Cs2 }

DVS,:{Product, .}
CVs,{Sales

Cvs2 }

relationships) that is valid during a given time in-
terval. Associated to this concept, three operators
to insert, update, and delete members (with their
corresponding valid time) have been proposed. In
COMET, cubeevolutionisnotexplicitly considered,
as cubes are modeled as degenerated dimensions.
COMET is unable to handle two version structures
with the same valid time since transaction time is
not considered. More recently, in Koncilia (2003),
a bitemporal extension of COMET is proposed,
but evolution operators are not defined, and the
management of the transaction time is only out-
lined. Associated to this model, there is a visual
language that enables the user to create and alter
version structures.

The evolution model proposed in Malinowski
and Zimanyi (2006) distinguishes valid and trans-
actiontimes of datacoming from sourcesand load
time at the DWm which we call transaction time.

This model considers temporal and nontemporal
levels, members, and roll-up relationships. It is
focused on dimension evolution, handling three
kinds of changes: changes in the members of a
level without affecting the roll-up relationships,
changes in the members of a level by affecting
the roll-up relationships, and temporal changes
in roll-up relationships. Associated to this model
is a language that uses a graphical notation to
represent levels of a dimension, hierarchies,
members, and attributes.

In contrast to other models, WHEM-V uses
both transaction and valid times to avoid infor-
mation loss, allowing the user to have two ver-
sions with the same valid time but with different
transaction times. In addition, it also considers
the evolution of cube schemas.

125

Schema Evolution Models and Languages for Multidimensional Data Warehouses

Figure 5. WHEL-V expressions to (a) create a new schema version and (b) modify a version

CREATE TEMPORAL SCHEMA

create dimension Product
level article: char(20)
level brand: char(20)
level company: char(20)
rollup article, brand
rollup brand, company;

create cube Sales
axis article
axis day
measure quantity: interger;

VALID PERIOD [02/05/06, forever]

FUTURE TRENDS

Some questions related to the implementation of
evolution models and the impact of schemaevolu-
tion in DW interrogation remain to be answered.
The implementation of a conceptual evolution
model dealswith the particularities of the database
model and system chosen to implement the DW.
The multidimensional schema is mapped to the
implementation one (a relational starlike schema
or a DBMS-specific multidimensional schema),
andthen changes to the multidimensional schema
are propagated to its implementation counter-
part, adapting the associated data as needed. In
the modification approach, the implementation
schemais updated, and the stored data are adapted
tothe newschema. Inthe version-based approach,
the implementation schema (and its data) can be
also versioned (Serna-Encinas & Adiba, 2005).
Research is still needed to propose efficient
implementation methods.

Regarding DW interrogation, the problem
that arises in a schema modification setting is
that schema elements can be deleted, and then
queriesover those elementswill fail. This problem
is not present in the schema versioning approach,

126

ALTER TEMPORAL SCHEMA

alter dimension Product
add level brand: char(20)
default ‘Brandl’
rollup code, brand

VALID PERIOD [22/05/06, forever]

but the problem is how to answer cross-version
queries (i.e., queries spanning multiple schema
versions). In Golfarelli, Lechtenborger, Rizzi,and
Vossen (2006), a method to process this kind of
queries, based on computing a schema (from the
intersection of different schema versions) under
which all data involved can be queried uniformly,
is proposed. Still, efficient mechanisms for query
processing are needed.

CONCLUSION

This chapter presented the two main approaches
that have beenadopted for conceptual DW schema
evolution. In the schema modification approach,
thereis only one multidimensional schemadefined,
and whenever a change is needed, this schema is
modified and the associated data are adapted. In
the version-based approach, the multidimensional
schema can have several versions, each one with
a corresponding temporal pertinence. Two cor-
responding evolution models, each one with its
own set of evolution operators and its associated
evolution language, were explained.

Schema Evolution Models and Languages for Multidimensional Data Warehouses

REFERENCES

Banerjee, J., Kim, W., Kim, H.J., & Korth,
H.F. (1987). Semantics and implementation of
schema evolution in object-oriented databases.
Proceedings of the SIGMOD’87, San Francisco,
California, 311-322.

Bellahséne, Z. (1996). View mechanismfor schema
evolution. Proceedings of the BNCOD-14. LNCS,
Edinburgh, UK, 1094, 18-35.

Benitez-Guerrero, E., Collet, C., & Adiba, M.
(2003). The WHES approach to data warehouse
evolution. Digital Journal e-Gnosis, 1665-5745.
Retrieved from http://www.e-gnosis.udg.mx

Blaschka, M., Sapia, C., & Hofling, G. (1999).
On schema evolution in multidimensional data-
bases. Proceedings of the DaWak’99, Florence,
Italy, 153-164.

Codd, E. (1993). Providing OLAP (on-line analyti-
cal processing) to users-analysts: An IT mandate
[white paper]. E.F. Codd and Associates.

Eder, J., & Koncilia, C. (2001). Changes of
dimension data in temporal data warehouses.
Proceedings of the DaWak’01, Munich, Germany,
284-293.

Golfarelli, M., Lechtenborger, J., Rizzi, S., &
Vossen, G. (2006). Schema versioning in data-
warehouses: Enabling cross-version querying
via schema augmentation. Data and Knowledge
Engineering, 59(2), 435-459.

Hurtado, C.A., Mendelzon, A.O., & Vaisman,
A.A. (1999). Updating OLAP dimensions. Pro-
ceedings of the DOLAP’99, Kansas City, Mis-
souri, 60—66.

Inmon, W. (1992). Building the data warehouse.
Wellesley, Massachusetts: QED Technical Pub-
lishing Group.

Kimball,R. (1996). Slowly changing dimensions.
DBMS and Internet Systems.

Koncilia, C. (2003). A bi-temporal datawarehouse
model [CAiISE’03 short paper]. Proceedings of the
CEUR Workshop, 74, 77-80.

Malinowski, E., & Zimanyi, E. (2006). A con-
ceptual solution for representing time in data
warehouse dimensions. Proceedings of the 3rd
Asia-Pacific Conference on Conceptual Model-
ing, Hobart, Australia, 45-54.

McKenzie, L.E., & Snodgrass, R.T. (1990). Schema
evolution and the relational algebra. Information
Systems Journal, 15(2), 207-232.

Penney, D.J., & Stein, J. (1987). Class modification
in the gemstone object-oriented DBMS. Proceed-
ings of the OOPSLA’87, 111-117.

Rechy-Ramirez, E.-J., & Benitez-Guerrero, E.
(2006). A model and language for bitemporal
schema versioning in data warehouses. Proceed-
ings of the 15th International Conference on
Computing (CIC’06), Mexico City, Mexico.

Roddick, J.F. (1995). A survey of schema version-
ing issues for database systems. Information and
Software Technology, 37(7), 383-393.

Serna-Encinas, M-T, & Adiba, M. (2005). Exploit-
ing bitemporal schema versions for managing an
historical medical data warehouse: A case study.
Proceedings of the ENC’05, 88-95.

Torlone, R. (2003). Conceptual multidimensional
models. In Multidimensional databases: Prob-
lems and solutions (pp. 69-90). Hershey, PA:
Idea Group.

Zurek, T., & Sinnwell, M. (1999). Data ware-
housing has more colours than just black and
white. Proceedings of the VLDB’99, Edinburgh,
Scotland, 726-728.

127

Schema Evolution Models and Languages for Multidimensional Data Warehouses

KEY TERMS

Cube: Set of cells associating a collection
of members, each one belonging to a dimension
level, with one or more measure values.

Database Schema: Description of the struc-
ture of the database, defined as a collection of
data types.

Data Warehouse: Collection of historical
data, built by gathering and integrating data from
several sources, which supports decision-making
processes.

Dimension: A set of values (members) orga-
nized in a hierarchy of levels.

Multidimensional Database: A collection of
cubes and dimensions.

Multidimensional Database Version: State of
a DW with an associated temporal pertinence.

128

SchemaEvolution: The dynamic modification
of the schema of a database.

Temporal Pertinence: Element of the Carte-
sian product of the domains of valid and transac-
tion times.

Transaction Time: Indicates the moment
when a fact was stored in the database.

Valid Time: Represents the moment when a
fact exists in reality.

ENDNOTE

1 In Temporal Databases, valid time is the
time when a fact is true in reality, while
transaction time is the time when a fact is
stored in the database.

129

Chapter XV
A Survey of Data Warehouse
Model Evolution

Cécile Favre
University of Lyon (ERIC Lyon 2), France

Fadila Bentayeb
University of Lyon (ERIC Lyon 2), France

Omar Boussaid
University of Lyon (ERIC Lyon 2), France

INTRODUCTION

A data warehouse allows the integration of het-
erogeneous data sources for analysis purposes.
One of the key points for the success of the data
warehousing process is the design of the model
according to the available data sources and the
analysis needs (Nabli, Soussi, Feki, Ben-Abdallah
& Gargouri, 2005).

However, as the business environment evolves,
several changes in the content and structure of
the underlying data sources may occur. In addi-
tion to these changes, analysis needs may also
evolve, requiring an adaptation to the existing
data warehouse’s model.

In this chapter, we provide an overall view
of the state of the art in data warehouse model
evolution. We present a set of comparison crite-
ria and compare the various works. Moreover,
we discuss the future trends in data warehouse
model evolution.

BACKGROUND
Schema and Data Evolution in Data
Warehouses:

The Coherence Problem

The main objective of a data warehouse is to
provide an analysis support for decision-making.

Copyright © 2009, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

The analysis possibilities of a data warehouse
mainly depend onitsschema. Theanalysisresults
depend on the data. Following the evolution of
sources and analysis needs, the data warehouse
can undergo evolution on the level of its schema
and its data at the same time.

From the schema evolution point of view, the
following evolutions can be envisaged:

. dimension (adding/deletion)

* measure (adding/deletion)

. hierarchy structural updating (level add-
ing/deletion)

These evolutions enrich or deteriorate the
analysis possibilities of data warehouses. How-
ever, they do not induce erroneous analysis as
evolution of the data does.

Inregard to data evolution, we have identified
three operations: insertion, deletion, and updating
of data in the data warehouse. These operations
can be performed on either the fact table or the
dimension tables, and depending on the case, do
not have the same impact on analysis coherence.
The insertion (in the fact table or in the dimen-
sion tables) corresponds to the usual data-loading
process of the data warehouse.

However, since data warehouses contain his-
torical and nonvolatile data, records should not
be updated or deleted. However, as Rizzi and
Golfarelli (2006) point out, updates in the fact
table could be required in order to correct errors
or to reflect the evolution of the events.

Furthermore, the usual assumption in data
warehouse modeling is the independency of
the dimensions. Thus, defining a dimension to
characterize time induces that other dimensions
are independent of the time dimension. In other
words, these dimensions are supposed to be time-
invariant. However, this case is extremely rare.
Thus, in order to ensure correct analysis, these
dimensions have to evolve in a consistent way
(Letz, Henn & Vossen, 2002).

Kimball (1996) introduced three types of

130

A Survey of Data Warehouse Model Evolution

“slowly changing dimensions” that consistinthree
possible ways of handling changesindimensions.
The basic hypothesis is that an identifier cannot
change, but the descriptors can. The first way
consists of updating the value of the attribute.
In this case, the historization of changes is not
available. Thus, this solution has consequenceson
analysis coherence only if this updated attribute
is used to carry out the analysis. The second type
allows keeping all the versions of the attribute’s
value by creating another record valid for a time
period. The drawback of this approach is the loss
of comparisons throughout versions. This is due
to the fact that the links between evolutions are
not kept even if evolutions are preserved. The
last type consists of creating another descriptor
to keep track of the old value in the same record.
Thus, we keep the link between the two versions.
However, if there are several evolutions, there is
a problem to consider the different versions with
changes on several attributes that do not occur at
the same time.

As Body, Miquel, Bédard, and Tchounikine
(2002) summed it up; the study of Kimball takes
into account most users’ needs and points out the
necessity of keeping track of both history and links
betweentransitions. Indeed, the main objective of
adatawarehouse is to support correct analysis in
the course of time and ensure good decisions.

This objective mainly depends on the capacity
of the data warehouse to be a mirror of reality.
From our point of view, the model evolution
problem must not be separated from the problem
of analysis coherence. Thus, we think we have
to identify when the evolution induces incoher-
ence of analysis. Data historization and, more
precisely, dimension historization are required
for descriptors that are involved in the analysis
process. Note that for analysis purposes, it is
necessary to be able to translate facts by getting
data in a consistent time.

In order to take into account these evolutions,
we can distinguish in the literature two types of
approaches: model updating and temporal mod-

A Survey of Data Warehouse Model Evolution

eling. In the next section, we will present works
falling in these two categories.

Model Updating

Concerning model updating, only one model is
supported, and the trace of the evolutions is not
preserved. The evolutions are thus applied to
define a new model. We distinguish three types
of approaches.

Thefirststream (labeled “evolution operators™)
consists of providing formal evolution operators
that allow an evolution of the model. Hurtado,
Mendelzon, and Vaisman (1999) propose a formal
model and operators that allow the updating of
dimensionsandtheir hierarchies, suchasaddinga
granularity level atthe end of ahierarchy. Theyalso
study the effect of these updates on the material-
ized views and propose a way to maintain them.
Blaschka, Sapia, and Hofling (1999) propose the
evolution not only of dimension, but also of facts.
They propose an algebra with different operators
that can be combined to allow complex evolutions
on a conceptual level. Benitez-Guerrero, Collet,
and Adiba (2004) exploit these works to propose
adatawarehouse framework to allow the creation
and evolution of the schema, independently of the
storage method (i.e., relational, etc.).

The second stream (labeled “hierarchies
enrichment”) is inspired by the previous works
but focuses on the creation of a new granularity
level inadimension hierarchy. The objectiveisto
focus on how to create this level and not on how
to represent this operation. The two approaches
we present consist of updating the model without
questioning the coherence of the existing data.
Mazén and Trujillo (2006) propose to automati-
cally enrich dimension hierarchies. The hypoth-
esis is that a dimension hierarchy corresponds to
a set of semantic relations between values. Then
they propose to use hyperonym (“is-a-kind-of”)
and meronym (“is-a-part-of) relations of Word-
Net (Fellbaum, 1998) to build new granularity
levels at the end of hierarchies. The approach we

proposed allows enriching dimension hierarchies
accordingtousers’ knowledge, providing analysis
personalization (Favre, Bentayeb & Boussaid,
2007). Thisknowledge is represented on one hand
by an aggregation metarule that represents the
structure of the aggregation link, and on the other
hand by if-then rules that represent links between
instances. The created granularity levels can be
added at the end of hierarchies or inserted.

The last stream (labeled “view maintenance™)
isbased onthe hypothesisthatadatawarehouse is
asetofmaterialized views defined on data sources
(Bellahsene, 2002). Hurtado, et al. (1999) were
interested in materialized views maintenance to
propagate data warehouse model evolution on
data cubes that are under the form of views. On
the contrary, Bellahsene (2002) is interested in
propagating data sources evolution on the data
warehouse model that is represented by views,
in a relational context. To take into account
analysis needs evolution, it is possible to add
new attributes.

Temporal Modeling

Contrary to model updating, temporal modeling
makes it possible to keep track of the evolutions
by using temporal validity labels.
Thefirststream (labeled “temporal instances™)
consists of using temporal validity labels for di-
mension members (Bliujute, Saltenis, Slivinskas
& Jensen, 1998); that is, atemporal star schemais
proposed there to represent the temporal validity
of facts and dimension members. The data are
represented inaconsistent time. Inthisapproach,
timeisnotaseparate, independentdimensiontable
butratheradimension of all tables represented via
one or more time-valued attributes in all tables.
The second stream (labeled “temporal ag-
gregation links”) proposes to manage the tem-
porality of aggregation links within dimension
hierarchies. Thus, Mendelzon and Vaisman (2000)
propose a multidimensional model in which an
aggregation path within dimension hierarchies

131

can evolve. They also propose a language that
supports this model, allowing temporal queries;
namely, TOLAP.

The last stream (labeled “temporal versions”)
is the versioning. It consists of managing several
versions of the same data warehouse. There are
many works in this field. For space limitations,
we present only a part of them.

From the model point of view, we can cite the
model proposed by Eder and Koncilia (2000) that
allows the use of mapping functions between
different versions. These functions are based
on the knowledge about the evolutions applied.
Then Eder, Koncilia, and Morzy (2002) propose
ametamodel named COMET to manage temporal
datawarehouses. More recently, Ravat, Teste, and
Zurfluh (2006) propose amultidimensional model
in consistent time, characterized by the fact that
it allows evolutions on a constellation model.

From the analysis point of view, Body, et al.
(2002, 2003) propose an approach thatallows users
to get analysis according to their needs. Indeed,
users can choose in which version to carry out
the analysis (in consistenttime, in the old version,
in the current version). Versions are also used
to provide an answer to “what-if analysis” by
creating alternative versions to simulate changes
(Bebel, Eder, Koncilia, Morzy & Wrembel, 2004).
Furthermore, various works stress analyzing data
throughout versions in order to achieve the main
objective of data warehousing: analyzing data
in the course of time, as in Morzy and Wrembel
(2004) and Golfarelli, Lechtenborger, Rizzi, and
Vossen (2006).

Inall the works following temporal modeling,
an extension to a traditional SQL language is
required to take into account the particularities
of the approaches for analysis or data loading.
These approaches have to be deployed during
the design step.

132

A Survey of Data Warehouse Model Evolution

DISCUSSION

This section deals with the comparison between
existing works on data warehouse model evolu-
tion.

Comparison Criteria

We have defined three groups of criteria: func-
tionalities offered, deployment criteria, and
performance criteria.

The criteria corresponding to the functional-
ities offered by the approaches are:

. Dimension historization
. Analysis coherence
e User-driven approach

These criteria tell us whether an approach
allows for time invariant dimensions, whether
the analysis made after the schema evolution is
coherent, and whether the approach is user-centric
in regard to the decision process. More precisely,
this last point is linked to personalization. Data
warehouse personalization is a relatively new
approach in the data warehouse community.
These works concern data visualization based
on user preferences and profile. For example,
Bellatreche, Giacometti, Marcel, Mouloudi, and
Laurent (2005) refine user queries based on user
preferences to show only relevant data.

The criteria about the deployment of ap-
proaches are:

* The need for deploying the solution during
the design phase
e The simplicity of deployment

The need for deploying the solution during
the design phase considers whether the approach
has to be applied during the design phase of the
data warehouse. The simplicity of the deploy-
ment measures whether the existing tools have
to be adapted.

A Survey of Data Warehouse Model Evolution

Finally, the performance criteria are:

e The volume of stored data
e The time for answering analysis queries

Datawarehousesare meantfor online analysis;
therefore, performance isacrucial aspectinregard
to response time and storage capacity.

Comparative Study

Table 1 summarizes a comparison of the various
approachesdescribed previously according to the
selected criteria. The + (- respectively) represents
whether the approach satisfies (or does not satisfy,
respectively) the criterion.

Forthe dimension historization criteria, we find
that the approaches based on temporal modeling
ensurethe datahistorization, whereas those based
on model updating do not satisfy the criteria.
Nevertheless, granularity level addition does not
have any impact on analysis coherence. Therefore,

approachesaimingat hierarchical enrichmentand
those based ontemporal modelization do not have
any impact on analysis coherence.

The studied approaches deals with user impli-
cationindifferentways. For instance, Favre, etal.
(2007) consider that model evolution is triggered
by the user, while others consider that the evolution
is triggered by the data warehouse administrator.
Thetemporal modeling is notuser-centred, except
for some works following a version approach that
allow users to choose the data warehouse version
used for the analysis.

The deployment of temporal modeling ap-
proaches may be complex due to the need to plan
their deployment during the design phase and
their need of specific tools for data loading and
data analysis. Therefore, the deployment of such
an approach may be very difficult.

Regarding performance, temporal approaches
are storage-space intensive. Indeed, they need
extra storage space for the storing of temporal
labels, versions, and metadata. Moreover, response

Table 1.Comparative study of approaches for data warehouse model evolution

Model Updating Temporal Modeling
[w 1]
= ~ 4]
- 2 o o
= 2 .§ S 'g . —_ 8 Z
o 9 = © (IR <
E® s E p= S é S 5
25 s o z 2 g o 2 =%
S5 S E 2 5o 5 5
m © T o > = £ E < =
D!meq3|op + + +
Historization
Characteristics | Analysis Coherence + + + +
User-Driven + /-
Approach
During Conception + + +
Deployment ——
Simplicity + + +
Storage + + +
Performances -
Response Time + + +

133

time is longer, and query rewriting is needed to
take into account different versions of the data
warehouse. These performance criteriaare rarely
discussed, except by Bliujute, et al. (1998).

FUTURE TRENDS

Different future trends are envisaged. However,
we detail here the one that seems to be the most
important. The stake isto getageneral framework
tomanage the datawarehouse evolution. Our idea
is to extend the workflow paradigm of Bouzeg-
houb, Fabret, and Matulovic-Broqué (1999), who
only deal with the data warehouse refreshment.
Our idea is to consider the whole evolution of
the data warehouse as a workflow, in which the
start point would be the data sources evolution
or the analysis needs evolution. Moreover, by
data warehouse evolution, we mean not only the
propagation of evolutions on the model but also
the propagation on the different components of
the datawarehouse (e.g., datamarts, materialized
views, indexes, etc.).

CONCLUSION

To conclude, we would like to point out the fact
that the use of temporal approaches in practice is
not generalized, but the research field is very ac-
tive through the works on versioning. Some com-
mercial systems already allow tracking changes
in data and effectively querying data according
to different temporal scenarios. For instance,
SAP-BW allows the user to choose the version
of the hierarchies for an analysis (SAP, 2000).
However, schema versioning has only partially
beenexplored, and no dedicated commercial tools
are available to the designer. Moreover, as we
mentioned earlier, the deployment of temporal ap-
proaches needsto be considered at the design stage,
and they are not applicable to already deployed
data warehouses. Finally, it seems important to

134

A Survey of Data Warehouse Model Evolution

apply these research approaches to the business
field since data warehouses emerged and became
widely accepted in most companies.

REFERENCES

Bebel, B., Eder, J., Koncilia, C., Morzy, T., &
Wrembel, R. (2004). Creation and management
of versions in multiversion data warehouse.
Proceedings of the 19th ACM Symposium on
Applied Computing (SAC 04), Nicosia, Cyprus,
717-723.

Bellahsene, Z. (2002). Schema evolution in data
warehouses. Knowledge and Information Systems,
4(3), 283-304.

Bellatreche, L., Giacometti, A., Marcel, P., Mou-
loudi, H., & Laurent, D. (2005). A personalization
framework for OLAP queries. Proceedings of
the 8th ACM International Workshop on Data
Warehousing and OLAP (DOLAP 05), Bremen,
Germany, 9-18.

Benitez-Guerrero, E.I., Collet, C., & Adiba, M.
(2004). The WHES approach to data warehouse
evolution. Electronic Journal e-Gnosis, 2.

Blaschka, M., Sapia, C., & Hofling, G. (1999). On
schemaevolutionin multidimensional Databases.
Proceedings of the 1st International Conference
on Data Warehousing and Knowledge Discovery
(DawakK 99), Florence, Italy, 1676, 153-164.

Bliujute, R., Saltenis, S., Slivinskas, G., & Jensen,
C. (1998). Systematic change management in di-
mensional data warehousing. Proceedings of the
3rd International Baltic Workshop on Databases
and Information Systems, Riga, Latvia, 27-41.

Body, M., Miquel, M., Bédard, Y., & Tchounikine,
A. (2002). A multidimensional and multiversion
structure for OLAP applications. Proceedings
of the 5th ACM International Workshop on Data
Warehousing and OLAP (DOLAP 02), McLean,
Virginia, 1-6.

A Survey of Data Warehouse Model Evolution

Body, M., Miquel, M., Bédard, Y., & Tchounik-
ine, A. (2003). Handling evolutions in multidi-
mensional structures. Proceedings of the 19th
International Conference on Data Engineering
(ICDE 03), Bangalore, India, 581-591.

Bouzeghoub, M., Fabret, F., & Matulovic-Bro-
qué, M. (1999). Modeling the data warehouse
refreshment process as a workflow application.
Proceedings of the International Workshop on
Design and Management of Data Warehouses
(DMDW 99), Heidelberg, Germany, 19, 6.

Eder, J., & Koncilia, C. (2000). Evolution of
dimension data in temporal data warehouses
[technical report]. Austria: University of Kla-
genfurt, Austria.

Eder, J., Koncilia, C., & Morzy, T. (2002). The
COMET metamodel for temporal data ware-
houses. Proceedings of the 14th International
Conference on Advanced Information Systems
Engineering (CAiSE 02), Toronto, Canada, 2348,
83-99.

Favre, C., Bentayeb, F., & Boussaid, O. (2007).
Dimension hierarchies updates in data ware-
houses: A user-driven approach. Proceedings of
the 9th International Conference on Enterprise
Information Systems (ICEIS 07), Funchal, Ma-
deira, Portugal.

Fellbaum, C. (1998). WordNet: An electronic
lexical database (language, speech, and com-
munication). The MIT Press.

Golfarelli, M., Lechtenborger, J., Rizzi, S., &
Vossen, G. (2006). Schema versioning in data-
warehouses: Enabling cross-version querying
via schema augmentation. Data and Knowledge
Engineering, 59(2), 435—459.

Hurtado, C.A.,Mendelzon, A.O., & Vaisman, A.A.
(1999). Maintaining data cubes under dimension
updates. Proceedings of the 15th International
Conference on Data Engineering (ICDE 99),
Sydney, Australia, 346-355.

Kimball, R. (1996). The data warehouse toolkit.
John Wiley & Sons.

Letz,C.,Henn, E.T., & Vossen, G. (2002). Consist-
ency indatawarehouse dimensions. Proceedings
of the International Symposium on Database En-
gineering & Applications (IDEAS 02), Edmonton,
Canada, 224-232.

Mazén, IN., & Trujillo, J. (2006). Enriching
datawarehouse dimension hierarchies by using
semantic relations. Proceedings of the 23rd British
National Conference on Databases (BNCOD 06),
Belfast, Northern Ireland, 4042, 278-281.

Mendelzon, A.O., & Vaisman, A.A. (2000). Tem-
poral queries in OLAP. Proceedings of the 26th

International Conference on Very Large Data
Bases (VLDB 00), Cairo, Egypt, 242-253.

Morzy, T., & Wrembel, R. (2004). On querying
versions of multiversion data warehouse. Pro-
ceedings of the 7th ACM International Workshop
on Data Warehousing and OLAP (DOLAP 04),
Washington, DC, 92-101.

Nabli, A., Soussi, A., Feki, J., Ben-Abdallah, H.,
& Gargouri, F. (2005). Towards an automatic data
mart design. Proceedings of the 7th International
Conference on Enterprise Information Systems
(ICEIS 05), Miami, Florida, 226-231.

Ravat, F., Teste, O., & Zurfluh, G. (2006). A
multiversion-based multidimensional model.
Proceedings of the 8th International Conference
on Data Warehousing and Knowledge Discovery
(DaWaK06), Krakow, Poland, 4081, 65-74.

Rizzi, S., & Golfarelli, M. (2006). What time is
it in the data warehouse? Proceedings of the 8th
International Conference on Data Warehousing
and Knowledge Discovery (DawakK 06), Krakow,
Poland, 4081, 134-144.

SAP. (2000). Multi-dimensional modelling with
BW: ASAP for BW accelerator [technical report].
SAP America Inc. and SAP AG.

135

KEY TERMS

Analysis in a Consistent Time: Results are
provided by taking into account the momentwhen
a fact exists in the reality.

Data Warehouse: Collection of historical
data, built by gathering and integrating data from
several data sources, structured in a multidimen-
sional way to support decisional queries.

Data Warehouse Model: The datawarehouse
model includes its schema and its data.

Data Warehouse Schema: Designs the
structuration of the data in the data warehouse;
measures representing facts are analyzed accord-
ing to dimensions.

136

A Survey of Data Warehouse Model Evolution

Model Updating: Making the same model
evolve without keeping track of its evolution
history; thus, the model corresponds to its cur-
rent version.

Model Versioning: Building several versions
of amodel where each new version corresponds to
a schema evolution or an evolution of data valid
for a given period.

Temporal Modeling: Providing temporal
extensions to keep track of the model history.

Temporal Validity Label: Atemporal validity
label corresponds to a timestamp used to denote
the valid time.

137

Chapter XVI
Document Versioning and XML
in Digital Libraries

M. Mercedes Martinez-Gonzalez
Universidad de Valladolid, Spain

INTRODUCTION

Digital librariesare systemsthatcontain organized
collections of objects, serving in their most basic
functions as a mirror of the traditional library
that contains paper documents. Most of the in-
formation contained in the collections of a digital
library consists of documents, which can evolve
with time. That is, a document can be modified
to obtain a new document, and digital library
users may want access to any of those versions.
Thisintroduces in digital libraries the problem of
versioning, a problem that is also of interest for
the hypertext community and the Semantic Web
community. Some domains in which document
evolution is a very important issue are the leg-
islative domain (Arnold-Moore, 1997; Martinez
Gonzalez, de la Fuente, Derniame & Pedrero,
2003a; Vitali, 1999), the management of errata
made to scientific articles (Poworotznek, 2003),

software construction (Conradi & Westfechtel,
1998), and collaborative e-learning (Brooks,
Cooke & Vassileva, 2003).

Inthe legislative domain, rules suffer amend-
ments that result in new versions of the amended
rules. Access to all versions of a document is an
important facility for their users; for example, to
understand a tribunal sentence it is necessary to
get access to the text of involved rules, as they
were valid at the moment the sentence was made.
Errata to scientific articles are somewhat similar.
The errata are posterior to the original article and
they are published together with the reference
to the part of the article to be changed by the
modification. In software construction, differ-
ent versions of program files are available at the
same time, and the composition of software has
to assemble adequate versions in order to obtain
the correct version of the software. In e-learning
frameworks, the problem comes from the updates

Copyright © 2009, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

made to content objects, or the reordering of these
contents.

In recent years, the spread of XML as the
metalanguage for document modelling has
been accompanied by a strong interest in XML
document versioning. The interesting issue is
that XML documents are no longer considered
as atomic items that can be substituted or not,
but composed of document nodes (elements) that
can themselves be versioned. Besides, there have
been several initiatives that propose using XML
as the ideal format to represent metadata related
with changes.

Next, we revise the issues related with docu-
ment versioning, the main approaches proposed
and the issues that each approach favours. Issues
related with XML will receive special attention
in this updated chapter!. Versioning a document
impacts not only the document itself but also
other items, such as references from and to the
versioned document, or the indexes created for
information retrieval operations.

BACKGROUND

As for the issues of interest related to document
versions, we distinguish seven categories:

1. What can be versioned?

This question can be considered from two per-
spectives. The first perspective considers objects
stored in the system as atomic units of informa-
tion, which cannot suffer partial changes. This
is the typical situation in the Web and hypertext
environments. Hypertext nodes (documents,
files, others) can change (be substituted, deleted,
inserted), and the hypertext structure can also
change (objects may vary their location, some
of them may disappear, others may change their
references to other objects), but each document is
consideredanatomic itemwhichisnotsubdivided
inother objects: changes always concernthe whole

138

Document Versioning and XML in Digital Libraries

document. The evolution considered inthe second
perspective is the one of the documents used by
digital library users --these documents may or
may not match unidirectionally any of the objects
stored in the digital library (Arms, 1997)—and
with XML documents. Changes in this case can
be related with any component of a document:
its content, part of it (e.g., some nodes in XML
documents), the internal structure of documents,
or references (citations within documents, thatare
part of a document).

2. Detecting changes

Sometimes it is necessary to recognise two docu-
ments as versions of the same work, or to find the
changes that have to be applied to a document
version to obtain another one. There are two pos-
sible ways to do this: extracting references from
document content (Thistlewaite, 1997; Martinez,
de la Fuente, Derniame & Pedrero, 2003a), or
comparing versions (Chawathe, Rajaraman,
Garcia-Molina & Widow, 1996; Lim & Ng, 2001;
Cobena, Abiteboul & Marian, 2002).

3. Representing changes

The information about versions and the changes
between them has to be stored somehow in the
system. This is dealt with in the version control
model used, or in the data model, as happens
with XML documents. Besides, metadata that
describe the items can also be used to represent
the versioning information. Insummary, the main
possibilities are:

e To store the versions caused by a change,
and/or the corresponding differences (del-
tas). Thisisthe classical approachinversion
management, and corresponds to solution
1 of versioning management approaches
presented in the next section.

. To represent changes as annotations (attri-
butes) to the versioned items. In this case

Document Versioning and XML in Digital Libraries

the history of an item is described in its
annotations. This is solution 3 for version
management.

. To stamp the items changed with some mark
thatindicates its time of validity (timestamp)
or version validity (versionstamp). This
temporal validity attribute is used during
the reconstruction of versionsto retrieve the
valid nodes of XML documents (Arévalo,
Polo & Fernandez, 2006; Chien, Tsotras,
Zaniolo & Zhang, 2006; Grandi, Mandreoli
& Tiberio, 2005).

. Tomodel modification relationships as links
between the modifiers and the target of the
modification (Martinez, 2003a). This solu-
tion considers the semantic relationship that
is behind a change.

4. Querying changes

This consists of answering questionsaboutadocu-
mentevolution, such as ““What are the documents
that modify this one?”” or “Whatare the modifica-
tions of this document over the last month?”’. The
way to operate here is dependent on the choice
made for representing changes. Besides, there are
some proposalsthat consider how query languages
can support querying temporal information. In
some cases, the proposals try to extend existing
standardsto supportquerying multiversion docu-
ments (Chien, 2006; Norvag, 2005).

5. Access to any version

The access to any version can be provided either
by storing all of them or by composing them on
demand. It depends on the approach chosen for
version management. It can also be seen as a
query inwhich only the valid items of a document
make part of the result set that will be used in the
composition of the requested version.

6. Dealing with the propagation (effects) of ver-
sioning some items on related items.

Changes to a document can affect other informa-
tion items, such as references or links that reach
the document. This is the well-known problem of
dangling links, so common in the Web, or, in a
more general definition, the ‘referential integrity’
issue (Ashman, 2000). Other possible impacts
are on indexes used for information retrieval
operations.

7. Inferring the composition rules of new ver-
sions

In certain situations (for example, the legislative
domain) the new versions are virtual (no copy
or direct way to obtain it is provided), and the
structure of the new version has to be inferred
from the information provided about modifica-
tions. Humans commonly assume this task, butan
automatic inference canalso be tackled (Martinez,
de la Fuente & Derniame, 2003b).

8. Validating updates

This issue appears in XML document versioning,
as XML documents usually conform to some
schema that describes the structure rules that the
logical structure of an XML document must fol-
low. Insuch cases, it is possible that some change
(addition of new nodes, reordering, ...) makes the
new version invalid. Hence, the goal is to avoid
such ‘novalid’ changes (Kane & Rundernsteiner,
2002).

APPROACHES TO VERSION
MANAGEMENT

Different approaches can be distinguished. Here,
they are listed ordered temporally: the ones with
alonger tradition appear first and the more recent
ones are at the end of the list.

1. Maintaining simultaneously all versions in

digital library collectionsand linking related
versions, or storing one version (the first one,

139

140

or the more recent one) and the deltas that
permit other versions of the same document
to be obtained. This approach facilitates ac-
cess to any version, but does not consider
queries about the evolution of versioned
items. The propagation of versioning ef-
fects is considered, but there are no general
solutions and this is still a difficult issue to
deal with. This approach and variations of
it have received a good amount of attention
in the version control area (Hicks, Legget,
Niirberg & Schnase, 1998; Chien, 2006). It
is also used with XML documents (Marian,
Abiteboul, Cobéna & Mignet, 2001).

To consider different stamps of the database
and to compare them in order to detect
changes that reflect the fact that an object
hasbeen versioned (Cellary & Jomier, 1992).
This solution is used with object databases,
and therefore can be considered when mod-
elling documents as objects (Abiteboul,
Cluet, Christophides, Milo, Moerkotte &
Simeon, 1997). In this approach changes
are represented indirectly as the difference
between two database states.

Modelling modifications as attributes and
storing this information with documents.
This approach comes from the area of semi-
structured data, which includes structured
documents and XML documents. Changes
arerepresented asannotations (attributes) to
the affected nodes, facilitating queries about
nodes’ ‘history’. The detection of versionsis
done by tree comparisons (Chawathe, 1996;
Cobena, 2002). The document structure is
considered, thereby associating changes to
document fragments instead of to whole
documents. It is possible to know the docu-
ment has been changed and where to find
the changes; however, it is up to the user to
obtain the versions if this is his/her wish.
For the same reason, it does not facilitate
the automatic composition of versions.

Document Versioning and XML in Digital Libraries

4. Automatically composing versions of docu-
ments. This can be done by following the
rules that allow the generation of versions
of documents. This is the option named
intentional versioning (Conradi & West-
fechtel, 1998) and has been used for docu-
ment management (Arnold-Moore, 1997).
It is also possible to compose versions by
querying meta-data (attributes, links) stored
in the system databases (Hemrich, 2002;
Martinez, 2003a). Another possibility is to
stamp (XML) document nodes with validity
attributes that permit one to know what the
valid nodes for each version are (Arevalo,
2006; Chien, 2006; Grandi, 2005; Kane,
2002; lksal & Garlatti, 2002). These solu-
tions deal well with access to versions and
they are in a good position to treat queries
about version evolution. Their main weak-
ness is in dealing with the propagation of
versioning effects on information retrieval
operations.

XML DOCUMENT VERSIONING

The spread of XML has renewed the interest in
document versioning. The novelty is that docu-
ments are no longer considered atomic items, but
items composed of nodes that are organised
through ordered inclusions which produce adocu-
ment structure called “logical structure’.
Versioning XML documents produces whatis
sometimes called ‘multiversion’ XML documents,
that is, XML documents in which a new dimen-
sion appears: each node can have several branches
that correspond to its different versions, so that
each branch should be used only to compose the
document version in which it is valid. Normally,
each node version is stamped with some validity
attribute thatisused during versionreconstruction
(Arévalo, 2006; Chien, 2006; Grandi, 2005).

Document Versioning and XML in Digital Libraries

However, there are also solutions that adapt
the classical version control models to represent
changes in XML document warehouses (Mar-
ian, 2001).

MANNERS OF IMPLEMENTING
VERSIONING SOLUTIONS

Themannerstoimplementsolutionsto manipulate
versions have evolved with time. Version control
servers, which provide general mechanisms for
version control issues, are the first generalized
solution (Hicks, 1998). As for the manner to rep-
resentand store the versioning information, some
solutions using HTML elements (Vitali, 1999) for
modelling changes as attributes were proposed.
They were later superseded by solutions based on
XML. Ifthe documents versioned are themselves
XML, the data models are extended to include
XML attributes that model XML nodes’ validity
(Arévalo, 2006; Chien, 2006; Grandi, 2005; Kane,
2002; Iksal, 2002).

In fact XML supposed a change in the man-
ners of implementing versioning. Solutions based
on automatically composing versions appeared
with this standard, as it facilitates automatic
document composition: document markup and
standards such as XSLT and XQuery facilitate it
(Arnold-Moore, 1997; Chien, 2006; Grandi, 2005;
Hemrich, 2002; Iksal, 2002; Martinez-Gonzalez,
2001; Norvag, 2002).

XML isalsobeenused to store metadata about
documentevolution (Brooks, 2003; Wang, 2006).
In (Kitchaorensakkul, 2001) they use RDF im-
plemented on top of XML. XML has also opened
up the possibility of validating updates against
schemas (Griin, Karlinger & Schrefl, 2006; Kane,
2002). XSLT and XQuery are the two standards
thatsupportthe dynamic partofthese XML based
implementations.

FUTURE TRENDS

It is clear that XML is the standard that will sup-
port most versioning solutions in digital libraries
in the future. Querying changes, treating change
information at a finer granularity level than docu-
ment level (nodes), and automatically composing
versionsare already possible. Nevertheless, work
will continue to improve these solutions. XML
query optimization and efficiency is an open re-
search area that can provide benefits to document
versioning in digital libraries.

Now that solutions for control version are well
advanced, digital libraries would be great benefi-
ciaries of solutions that permit the semantics of
versioning to be modelled and queried. Of course,
thisissueis highly related with the Semantic Web.
Solutions for this type of issue would be a step
forward in permitting digital libraries to offer
semantic information (in addition to documents
and objects) to their users.

CONCLUSION

Document evolution demands solutions to ma-
nipulate versions and to satisfy user requests
from digital libraries. Several issues emerge
related with versioning: accessing any version of
a document, querying its history, managing the
impact of versioning an item on related items, etc.
The background on dealing with these problems
is varied. The version control community has
studied issues such as access to any version for
a long time. However, this study area does not
consider other issues such as querying the history
of a document, or the impact of versioning on in-
formation retrieval operations such as indexing.

The approaches that compose versions auto-
matically and infer the composition rules (struc-
ture) of versions from semantic information are
implemented on top of XML. These solutions
introduce dynamism and finer granularity in
version management. Future improvements in

141

digital libraries should introduce semantic query-
ing of changes.

REFERENCES

Abiteboul, S., Cluet, S., Christophides, V., Milo,
T., Moerkotte, G., & Simeon, J. (1997). Query-
ing documents in object databases. International
Journal on Digital Libraries, 1(1), 5-19.

Arévalo,J. L., Polo, A., & Fernandez, J. M. (2006).
Representing Versions in XML documents using
versionstamp. In ER (Workshops) 2006, Lecture
Notes in Computer Science, 4231, 257-267.

Arms, W. Y., Blanchi, C., & Overly, E. A. (1997).
An Architecture for Information in Digital Librar-
ies. D-Lib Magazine, Feb 1997.

Arnold-Moore, T. (1997). Automatic Generation
of Amendment Legislation. In Sixth International
Conference on Artificial Intelligence and Law,
ICAIL97 (Melbourne, Victoria, Australia, 1997),
(pp. 56-62).

Ashman, H. (2000). Electronic document ad-
dressing: dealing with change. ACM Computing
Surveys, 32(3), 201-212.

Brooks, C., Cooke, J., & Vassileva, J. (2003).
In Proceedings of the 3. IEEE International
Conference on Advanced Learning Technologies
(ICALT’03) (pp. 296-297). Athens, Greece: IEEE
Computer Society.

Cellary, W., & Jomier, G. (1992). Building an
object-oriented database system. The story of
O,., chapter Consistency of Versions in Object-
Oriented Databases. Number 19 in The Morjgan
Kaufmann Series in Data Management Systems.
Morgan Kaufmann (pp. 447-462).

Chawathe, S., Rajaraman, A., Garcia-Molina, H.,
& Widom, J. (1996). Change detection in hierar-
chically structured information. SIGMOD Record
(ACM Special Interest Group on Management of
Data), 25(2), 493-504.

142

Document Versioning and XML in Digital Libraries

Chien, S.Y., Tsotras, V. J., Zaniolo, C., & Zhang,
D. (2006). Supporting complex queries on multi-
version XML documents. ACM Transactions on
Internet Technology, 6(1), 53-84.

Cobena, G., Abiteboul, S., & M. A. (2002). De-
tecting Changes in XML Documents. In Data
Engineering 2002 (ICDE2002), (pp. 41-52).

Conradi, R., & Westfechtel, B. (1998). Version
models for software configuration management.
ACM Computing Surveys, 30(2), 232-282.

Grandi, F., Mandreoli, F., & Tiberio, P. (2005).
Data and Knowledge Engineering, 54(3), 327-
354,

Griin, K., Karlinger, M., & Schrefl, M. (2006).
Schema-aware labelling of XML documents for
efficient query and update processing in Sem-
Crypt. International Journal of Computer Sys-
tems, Science, and Engineering, 21(1), 65-82.

Hemrich, M. (2002). A New Face for Each Show:
Make Up Your Content by Effective Variants
Engineering. In XML Europe 2002. Available at
http://www.idealliance.org/papers/xmle02/ (veri-
fied on September 7, 2004).

Iksal, S., & Garlatti, S. (2002). Revisiting and
Versioning in Virtual Special Reports. Lecture
Notes in Computer Science, 2266, 264-279.

Hicks, D. L., Leggett, J. J., Niirnberg, P. J., &
Schnase, J. L. (1998). A Hypermedia Version
Control Framework. ACM Transactions on In-
formation Systems, 16(2), 127-160.

Kane, B., Su, H., & Rundernsteiner, A. E. (2002).
Consistently updating XML documents using
incremental constraint check queries. In Fourth
ACM CIKM International Workshop on Web
Information and Data Management (WIDM’02)
(pp. 1-8). Virginia, USA: ACM.

Lim, S. J., & Ng, Y. K. (2001). An Automated
Change-Detection Algorithm for HTML Docu-
ments Based on Semantic Hierarchies. In The
17" International Conference on Data Engi-

Document Versioning and XML in Digital Libraries

neering (ICDE 2001), (pp. 303-312), Heidelberg,
Germany.

Marian, A., Abiteboul, S., Cobéna, G., & Mignet,
L.(2001). Change-centric management of versions
inan XML warehouse. In 27" International Con-
ference onVery Large Databases (VLDB’01) (pp.
581-590). Roma, Italy: Morgan Kauffman.

Martinez Gonzalez, M., de la Fuente, P.,, Derniame,
J., & Pedrero, A. (2003a). Relationship-based dy-
namic versioning of evolving legal documents. In
Web-knowledge Management and Decision Sup-
port, volume 2543 of Lecture Notes on Artificial
Intelligence (pp. 298—314). Springer-Verlag.

Martinez Gonzalez, M., de la Fuente, P., & Der-
niame, J.-C. (2003b). XML as a means to support
information extraction from legal documents.
International Journal of Computer Systems Sci-
ence and Engineering, 18(5), 263-277.

Norvag, K. (2005). Query operators in XML
databases. In L. C. Rivero, J. H. Doorn, & V.
E. Ferraggine (Ed.), Encyclopedia of Database
Technologies and Applications 2005 (pp. 500-
505). Idea Group.

Poworotznek, E. (2003). Linking of errata: current
practices in online physical sciences journals.
Journal of the American Society for Information
Science and Technology, 54(12), 1153-1159.

Thistlewaite, P. (1997). Automatic Construc-
tion and Management of Large Open Webs.
Information Processing and Management, 33(2),
161-173.

Vitali, F. (1999). Versioning hypermedia. ACM
Computing Surveys, 31(4es), 24.

Wang, F., Zhou, X., & Zaniolo, C. (2006). Bridg-
ing relational database history and the web: the
XML approach. In Eight ACM International
Workshop onWeb Information and Data Manage-
ment (WIDM’06) (pp. 3-10). Arlington, Virginia,
USA: ACM.

KEY TERMS

Digital Library: A set of electronic docu-
ments organized in collections, plus the system
that provides access to them. They are the digital
version of traditional libraries.

Hypertext: The organization of information
units as a network of associations, which a user
can choose to resolve. Hypertext links are the
instances of such associations.

Multiversion XML Document: An XML
document in which each node can have several
branches that correspond to its different ver-
sions.

Referential Integrity: Inhypertext,ameasure
of the reliability of a reference to its endpoints. A
reference has the property of referential integrity
if it is always possible to resolve it. When refer-
ences are represented as links it is called ‘link
integrity’.

\ersions: Variations of an object with a high
degree of similarity. Document versions are never
completely equal, but they are similar enough
so as to be able to recognise them as the same
document.

Version Control: Set of mechanisms that sup-
port object evolution in computer applications.

XML: Extensible Markup Language. Markup
language for structured documents. Structure is
represented with textual markup that intermixes
with document content. XML is a recommen-
dation from the World Wide Web Consortium
(W3C).

XSLT: XSL Transformations. A transforma-
tion language for XML documents. [t permitsrules
for transforming a source tree into a result tree to
be expressed. It is a W3C Recommendation.

XQuery: XML Query Language. Itisa W3C
Recommendation.

143

ENDNOTE

144

This chapter corresponds to the updating of
the chapter ‘Documentversioningin Digital
Libraries’, published inRivero, L.C., Doorn,
J.H.and Ferragine, V.E. (Ed.), Encyclopedia
of Database Technologies and Applications
2005, Idea Group.

Document Versioning and XML in Digital Libraries

145

Chapter XVII
MDD Approach for
Maintaining Integrity
Constraints in Databases

Harith T. Al-Jumaily
Carlos 11 University of Madrid, Spain

Dolores Cuadra
Carlos 11 University of Madrid, Spain

Paloma Martinez
Carlos 11 University of Madrid, Spain

INTRODUCTION

In the context of database, we believe that MDD
(Model-Driven Development) (OMG, 2006) is a
very ambitious task because we find that when
applying database development methodologies
such as (Elmasri, etal., 2007), there are processes
devoted to transforming conceptual into logical
schemata. In such processes, semantic losses are
produced since logical elementsare not coincident
with conceptual elements. A correct constraints
transformationisnecessary to preserve the seman-
tics that reflects the Universe of Discourse. The
multiplicity constraint, also called cardinality
constraint, is one of these constraints that can be
established inaconceptual schema. Ithas dynamic

aspectsthatare transformed into the logical model
as certain conditions to verify the insertion, dele-
tion, and update operations. The verification of
these constraintsisaseriousand complex problem
because currently database systems are not able
to preserve the multiplicity constraints of their
objects. To solve the modeling problem, CASE
tools have been introduced to automate the life
cycle of database development. These platforms
try to help the database developers in different
design phases. Nevertheless, these tools are fre-
quently simple graphical interfaces and do not
completely carryout the design methodology that
they are should to support.

Therefore, inthiswork the MDD approach has
been considered to enhance the transformation

Copyright © 2009, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

MDD Approach for Maintaining Integrity Constraints in Databases

rules of the conceptual schemainto the relational
schema. The relational model was considered in
this work because most database methodologies
are agreeing with it to transform the conceptual
schemaintoalogical one. A tool was plugged into
Rational Rose to ensure this task. This tool can
automatically generate maintaining mechanisms
for these constraints to a target DBMS; triggers
system as maintaining mechanisms is used.
These mechanisms can provide a fundamental
base to obtain a very high level of knowledge
independence (Paton, 1999). The triggers system
is specified according to the recent SQL:2003
standard thatrevises all parts of SQL99 and adds
new features (ISO Standard 2003).

Becausetriggers developmentis more compli-
cated than traditional method, we have detected
that generating triggers and plugging those into
a given schema is an insufficient task because
the behaviour of triggers is not clear; they could
produce cycles in the execution and needs to be
verified. Therefore, besides the transformation of
integrity constraints into triggers, our plugged-in
tool builds UML sequence diagrams to verify the
interaction of these triggers with themselves first,
then with the other elements in the schema. These
contributions make our approach quite useful,
practical, and intuitive to manage triggers.

The rest of this chapter is organized as the fol-
lowing. Related works are presented in the next
section. Therefore, the adaptation of MDD to
build our tool is discussed. In the Add-in Module
Design section, we discuss how the integration
of the active technology into UML schema is
performed. And finally, some conclusions and
future works are presented.

RELATED WORKS

When the active technology was introduced
into database systems, the automatic transfor-
mation from constraints specification to active
rules has been well considered in the literature.

146

Different approaches were used to transform
integrity constraints into active rules. Some of
these approaches reject updates when the viola-
tion occurs, and the initial state before updates
is restored (Decker, 2006). Other approach in
which inconsistency states are detected first,
but consistency is restored by issuing corrective
actions that depend on the particular constraint
violation (Ceri et al., 1997).

In some works, such as (Ceri et al., 1990)
is described a general framework to transform
constraints into production active rules for
constraint maintaining. They define a general
language for expressing integrity constraints, and
transformation rulesare usedto convertintegrity
constraints into active rules. The contribution in
(Trkeretal., 2000) is very important to our work
because they issued some simple rules that are
independent of a particular commercial system.
These rules are used for implementing triggers
based on constraints specifications by using Tuple
Relational Calculus (Elmasri, et al., 2007). In
this work, we will specify the transformation
rulesbased on constraints specifications by using
OCL (Object Constraints Language). Our ap-
proach agrees with the proposal in (Olivé, 2003)
that introduced OCL as a method to provide the
definition of integrity constraints in conceptual
schemasas constraint operations. Inthis proposal,
constraints have been introduced inthe conceptual
schema as operations without defining any rules
to specify the transformation of such operations
to a logical schema.

On the other hand, working with active rules/
triggers needsto ensure the executiontermination.
The verification of active rules/triggers execu-
tion is the major problem that makes applications
development a difficult task. Because of active
rules can act in such ways that lead to conflict
and undesirable executions, database developers
need additional effort to control rules behavior.
The objective of this verification is to guarantee
the termination of triggers execution.

Termination means that the execution of any
set of active rules must terminate. This needs to

MDD Approach for Maintaining Integrity Constraints in Databases

avoid cycling in the execution. A set of activated
rules is confluent if the final state of database
is independent on the order in which activated
rules are executed (Baralis, et al., 2000). The
non-termination state is the major problem that
produces an error causing the execution of the
transaction to abort.

Many works have been done in the area of
static termination analysis. Most of these works
such as (Paton, et al., 1999) used the concept of
Triggering Graph (TG) as approach to detect
the non-termination state. The triggering graph
was introduced in (Baralis, et al., 2000) to detect
non-termination state of a set of activated rules.
The termination analysis themselves focus on
identification and elimination rules whose cause
the infinite execution in triggering graph
(Hickey, 2000). Redefining this rule and recon-
structing again the triggering graph is a good
solution to verifying the termination state of the
set of activated rules. Our approach to solve the
termination problem is explained in (Al-Jumaily,
et al., 2006).

Our main contribution inthiswork isto create
atool to follow completely the phases proposed in
the MDD development. According to ourapproach
these phases are the following: specifyinga UML
classdiagram (PIM: platform independent model),
transforming the PIM into (PSM: platform specific
model) transforming the PSM related to relational
database to SQL standard triggers, and finally
converting these triggers to triggers of a target
DBMS. This work is considered as a proposal to
provide a plugged-in tool that will try to fill some
of the emptiness that the commercial CASE tools
leave during the database development.

APPLYING MDA TO GENERATE
INTEGRITY MAINTAINING

The introduction of the MDA (Model-Driven
Architecture)approach in Software Engineering
has provided a good support and consolidations

to automatic codes generation for applications
development. MDA focuses on using models as
approaches to cover the life cycle of software de-
velopment. The heterogeneity and interoperability
among systems with different implementation
platforms to apply are good resolved with this
approach.

The MDA concept is implemented by a set
of tools and standards that can be used within a
MDD. The MDA specifies two principles models:
a platform independent model PIM focuses on
the high-level business logic without considering
features of the implementation technology of the
system. A platform specific model PSM represents
the detail of the use of a specific platform by a
system.

In this section, we consider the multiplicity
constraints because most CASE tools can define
these constraints in the conceptual model (PIM),
and in the (PSM). We start from a PIM (UML
classdiagram)which representsall the multiplic-
ity constraints among their classes. The PSM
show the transformation of the PIM to multiple
models that describe the technology that will be
used to build the application.

Applying MDA in our approach is shown in
figure 1. It contains three phases; the first one is
the PIM which represents the specification of all
multiplicity constraints into the class diagram.
The second is the PSM to describe the technology
that will be used to build the application. In this
case we use the SQL:2003 standard to describe
the active technology in relational database. Fi-
nally, in the third phase, the SQL:2003 triggers
are transformed to a target DBMS triggers codes
generation.

The main advantage of our tool is to provide
active mechanisms to verify the dynamics as-
pects such as the multiplicity constraints of the
database. These active mechanisms are derived
from the integrity specification in the conceptual
model. The verification of these constraints is very
difficult. Therefore, we believe that incorporat-
ing add-in modules is a good solution to solve

147

MDD Approach for Maintaining Integrity Constraints in Databases

Figure 1. MDA adaptation for our approach

PIM | Class Diagram |
SQL: 2003
PSM Triggers

ORACLE etc.

Triggers | | ..ot

MS-SQL DB2
Code
Triggers Triggers
Figure 2. UML class diagram
PROFESSOR

[EZPK_PSN : INTEGER

0.*

Belongs

1.3

STUDENT
IEZPK_PSN : INTEGER

DEPARTMENT

E8PK_DPT : INTEGER

some of the modeling problems, and to enhance
the tasks performed by database designers. The
three phases for the development are shown in
the following:

PIM: UML Class Diagram

In this model, the multiplicity constraints are
defined among the class diagram. Since its intro-
duction by (Chen, 1976), the cardinality constraint
is defined as the number of entity instances as-
sociated in a relationship. UML multiplicity
constraints follow the Chen’s style because to
verify the cardinality constraints of one class,
it is necessary to fix an object of the other class
and to obtain how many objects are related to

148

it (Cuadra, et al., 2002). The figure 2 shows an
example of PIM (UML class schema).

In the following, the relationships that belong
to the example are shown:

. One-to-many association between the two
persistent classes, Student and Depart-
ment.

. Many-to-many association that relates to
the two persistent classes, Professor, and
Department.

The OCL invariants, which explain the mul-
tiplicity constraints of the previous relationships
are shown as follows:

MDD Approach for Maintaining Integrity Constraints in Databases

IC1: Every objectin Professor musthave associa-
tions between 1..3 objects of Department.
Context PROFESSOR: inv
Self DEPARTMENT->size >= 1 and Self.
DEPARTMENT->size <=3

IC2: Every object in STUDENT must have as-
sociation with only one object of

DEPARTMENT.

Context STUDENT: inv
Self. DEPARTMENT->size =1
PSM: SQL:2003 Standard Triggers

Transformation rulesare appliedinthisphase
to obtain different logical schemata, although,
our proposal only present the transformation to
a relational schema.

The figure 3 shows the transformation of our
example into relational database schema using
the Rational Rose class diagram. The mapping of
each class and each association into UML Rational
Rose Data Model (RRDM) was done according
to (Salo, et al., 2000) and (Vadaparty, 1999).

The one-to-many association is transformed
into two tables, Tab_Student, Tab_Department,
and a non-identifying relationship.

The many-to-many association relates the two
persistent classes, Professor and Department. The
mapping of this association into Rational Rose
uses two tables Tab_professor, Tab_department,
and an identifying relationship that is mapped to
a third table Tab_Belong.

In the following, the transformation of the
PSM (Relational Database schema) to codes
generation is explained. Although, triggers are
available in most DBMS, unfortunately the ex-
ecution models of these triggers change from one
DBMS to another. There are common components
that are valid for all systems. These components
usually are not changed. Therefore, to generate
triggers for commercials DBMSs, first the SQL.:
2003 standard triggersascommontemplate, and
secondly, generating triggers related to DBMSs
from the specification of the SQL: 2003 triggers
is used.

Ingeneral, transforming OCL invariants into
a SQL trigger is a straightforward process. There
are three basic components in any integrity con-
straints as same as the three basic components of
a trigger. The first is an operation that modifies
the database state suchas DELETE, INSERT, and

Figure 3. Mapping UML class diagram to relational database schema

il

TAB_PROFESSOR
BKPK_PSN: INTEGER

%<<PK>>PK_T_PROFESSOR14)
%<<FK>>FK_T_PROFESSOR14)

¢

1.*

i

TAB_PELONG

EKPK_PSN: INTEGER
EKPK_DPT: INTEGER

*<<PK>>PK_T_TEACHS18)
*<<FK>>FK_T_TEACHS18)
$<<FK>>FK_T_TEACHS19)

i

TAB_STUDENT

EKPK_PSN: INTEGER
FKPK_DPT: INTEGER

*<<PK>>PK_T_STUDENT1§)
*<<FK>>FK_T_STUDENT1§)
*$<<FK>>FK_T_STUDENTLY)

1

i

TAB_DEPARTMENT
PEPK_DPT: INTEGER

1.3

%<<PK>>PK_T_DEPARTMENTL{)

149

MDD Approach for Maintaining Integrity Constraints in Databases

UPDATE. The second is a logical predicate that
expresses a condition on one or several elements
of a schema and needs to be fulfilled. The third
is the reactions, which are carried out when the
constraint is violated. In addition, we need to
derive others two dynamic components of trig-
gers. These components are: triggers activation
times and triggers granularity. The activation
times (BEFORE and AFTER) is used to define
if the trigger execution must be produced before
or after of the event. Triggers granularity are two
levels, a statement-level trigger executes once for
each triggering event, while a tuple-level trigger
executes for each row that belongs to the modi-
fied rows set.

Codes Generation

Although, the almost triggers systems of the
relational DBMS have same components as the
triggers of SQL standard, the transformation of
the standard SQL to the relational DBMS triggers
should tack the characteristics of these DBMS
into account. In most cases, the transformation
is directly, that is to say, a trigger of the standard
SQL is transformed into one trigger of a DBMS
(1 to 1), while in other cases is needed to use two
triggers of the DBMS to represent a SQL standard
trigger (1 to 2). The major task associated to this
transformation is to solve the problems of the trig-

Figure 4. Add-in interface design

gers execution. One of these problems is related
to limitations in some relational DBMS, such as
Oracle that needsto solve the problem of mutating
tables. Another problem is to avoid the non-ter-
mination state produced when the disjoint-total
constraints of generalization is conserved. This
problem is solved by using parameters to avoid or
deactivate the trigger that may be executed twice
in the same set of activated triggers.

ADD-IN MODULE DESIGN

We applied our approach on the Rational Rose
CASE tool because it is able to easily add-in
software tools to support the development needs.
Add-Ins can install menus, help files, contents
tab file, properties, executables, script files, and
OLE servers. Our add-in module was developed
using Basic Script Language Basic, (1996), and
can be accessed from the Tools menu. As shown
in the figure 4, the add-in module has an interface
that shows some options that we need to consider
before generating triggers.

The add-in module detects and presents all
relationships that belong to the current scheme.
The list box “Current-Model Relationships”
presents all relationships that exist in the current
scheme. According to the required semantics, the
user can choose those relationships that he needs

e =]
Cumeant Model Rlelatonthes Sebectad Felabiondhipd Relstionships typed
TAB_STU = TAB_DEP. Ore_to_ L In_ore Fisistonshes
= TADZPRD <5 TADLDRF: Mo i | | 1 oot e o Ao
L] T e——
oes. | ¥ Geneaskeston (it Tolsl]
Trggen Tyees
I INSERT Trggats
Adaa | ¥ DELETE Tapoees
~ TE Tri
= UPDATE Tiggen |
Genersting Triggert I
2 S o

For 4 In L .. DATOLN_TAN_S_TAD_D.Cnc_TAD_STUDENT Losp
[FELECT COUNT (™) INTO Var_FK_DFT FROR TAB_DEPAKTHENT
wH

BELARE

\pLag_FI_DFT NURDER: =0;
we_DE_GPT WOMBES: a0
ncIn

EXE P DFT = DATOLN TAB £ TAB D.Old FE DPTOLH

150

MDD Approach for Maintaining Integrity Constraints in Databases

Figure 5. Plugged operations into the schema

iii

TAB_PROFESSOR

IKPK_PSN : INTEGER

4<<PK>> PK_T_PROFESSOR14()
*<<FK>> FK_T_PROFESSOR14()
4TDHY_BR_TAB_PROFESSOR() : Trigger
‘TDHY_AS_TAB_PROFESSOR() : Trigger

$ 13

iii

TAB_BLONG

EKPK_PSN : INTEGER
EKPK_DPT : INTEGER

iii

TAB_STUDENT
EKPK_PSN : INTEGER
FKPK_DPT : INTEGER

$<<PK>> PK_T_STUDENT15()
$<<FK>> FK_T_STUDENT15()
$<<FK>> FK_T_STUDENT17()
*TD1N_BR_TAB_STUDENT() : Trigger
*TD1N_AS_TAB_STUDENT() : Trigger

iii

TAB_DEPARTMENT

*<<PK>> PK_T_TEACHS18()
*<<FK>> FK_T_TEACHS18()
$<<FK>> FK_T_TEACHS19()
$TDNM_BR_TAB_BELONG() : Trigger
$TDNM_AS_TAB_BELONG() : Trigger

to preserve. The listbox “Selected Relationships™
shows the selected relationships to be controlled.
The user can choose one or more relationships to
be controlled; as is shown in the figure we close
all the relationships that belong to our example.
According to our example, the add-in interface
represents three type of relationships, one-to-
many relationship (TAB_STU-->TAB_DEP)
that associates tab student with tab_depart-
ment, many-to-many relationship (TAB_PRO<-
->TAB_DEP) that associates tab_professor with
tab_department, and generalization relationships
(TAB_PER<>-TAB PRO,TAB_STU)thatasso-
ciates the superclasstab _personwithtab student
andtab professor. The check boxes “Relationship
Types” show the relationship types that the add-
in module considers. The check boxes “Triggers
Types” represent the types of triggers to be gener-
ated. The generated code that we obtain is saved
in a SQL file that contains triggers and packages
to define the global variables.

Because of ORACLE triggers system has not
Old/New-Table referencing values, and due to

PEPK_DPT : INTEGER

$<<PK>> PK_T_DEPARTMENT17()

mutating table problem, we used two triggers for
controlling each event. Therefore, each trigger is
transformed into two OR ACLE triggers. The first
(BEFORE/ROW)isused to save the identification
keys, and the second (AFTER/STATEMENT) is
used to verify the semantics.

The add-in module plugs these triggers into
an UML schema as operations using:

Set theOperation = theClass.AddOperation (Op-
erationName, OperationType)

Figure 5 shows the plugged operations that
have been generated to control the deleted
events. The triggers (TDIN_BR TAB STU-
DENT and TDIN_AS TAB_STUDENT) are
used for controlling the deletion of foreign keys
that come from one-to-many relationship, while
the triggers (TDNM_BR_TAB_ BELONG, and
TDNM_AS TAB BELONG) are used for con-
trolling the many-to-many relationship.

151

MDD Approach for Maintaining Integrity Constraints in Databases

CONCLUSION

Although the CASE database development tools
have been developed to resolve the database-
modelling problem and to provide automatic
processes to develop all phases supported in a
database methodology, the current situation of
these tools shows that they provide conceptual
modelswith more abstractionandare concernedto
express more accurately the semantics of the real
world. However, moving from conceptual level
to logical level there is not any support and the
generated code needs to be modified to complete
the integrity constraints of the real world. One of
these constraints is the multiplicity constraints
that should be defined in the conceptual model
nevertheless these constraints have not any sup-
port when the conceptual model is transformed
to logical model.

Therefore, to fill some of the emptiness that
the current CASE tools leave during the relational
active database developmentinthis work we pres-
ent a tool, which follows completely the phases
proposed in the MDA software development to
transformthe multiplicity constraintstotriggers.
These phases are the following: specifying mul-
tiplicity constraints in the UML class diagram,
transforming the these constraints to SQL:2003
standardtriggers, and transforming the standard
triggers to a target DBMS triggers. Thus, this
work joins the UML aspects that have widely
accept and support by many CASE tools with
the relational database aspects that have widely
propagation in the commercial DBMS.

FUTURE WORKS

Asafuture work, we will propagate our approach
to include other type of constraints and design
some experiments to validate our tool. These
experiments are focused on showing the utility
of using it to facilitate maintenance and design
tasks. Therefore, we propose two kinds of ex-

152

perimentations, one of them concern the utility
to check the semantics with triggers. The other
one is about the user interface to show triggers
and sequence diagrams. We want to know if the
designer understands the proposed diagrams and
detects what does each one.

REFERENCES

Al-Jumaily, H. T., Pablo C., CuadraD., & Martinez
P. (2006). Using UML’s sequence diagrams as
termination analyzer for triggers-based execut-
ing. In the 23rd British National Conference on
Databases, 18-20. Northern Ireland, Queen’s
University Belfast.

Baralis, E., & Widom, J. (2000, September). An
algebraic approach to static analysis of active
database rules. ACM Transactions on Database
Systems, 25(3), 269-332.

Ceri, S., & Fraternali, P. (1997). Designing da-
tabase applications with objects and rules: The
IDEA Methodology. Addsion-Wesley. ISBN:
0201403692

Chen, P. (1976). The entity-relationship model
— Toward a unified view of data. ACM Transac-
tions on Database Systems, 1(1).

Cuadra, D., & Martinez, P. (2002). Preserving
relationship cardinality constraints in relational
schemata. Database Integrity: Challenges and
Solutions, (Ed.). Idea Group Publishing.

Decker, H., Martinenghi, D., & Christiansen, H.
(2006). Integrity checking and maintenance in
relational and deductive databases and beyond.
In Intelligent Databases: Technologies and Ap-
plications, 238-285. Idea Group.

Elmasri, R., & Navathe, S. (2007). Fundamentals
of database systems, 5" Edition. Addison-Wesley.
ISBN: 9780321415066

Hickey, T. (2000). Constraint-based termination
analysis for cyclic active database rules. Proc.

MDD Approach for Maintaining Integrity Constraints in Databases

DOOD’2000: 6th. International Conference on
Rules and Objects in Databases, LNAI, 1861,
1121-1136.

ISO Standard (2003). Information technology
— Database languages — SQL: 2003 International
organization for standardization.

Olive, A. (2003). Integrity constraints definitionin
object-oriented conceptual modeling languages.
Conceptual Modeling - ER 2003, 22nd Int. Conf.
on Conceptual Modeling. Chicago, IL, USA.

OMG. (2006). Object management group inc.
http://www.omg.org/mda.

Paton, N., & Diaz, O. (1999). Active database
systems. ACM Computing Surveys, 31(1).

Salo T., & Hill, J. (2000). Mapping objects to
relational databases. Journal of Object Oriented
Programming, 13(2).

Tiirker, C., & Gertz, M. (2000). Semantic integ-
rity support in SQL-99 and commercial (object)
relational database management systems. UC
Davis Computer Science Technical Report CSE-
2000-11, University of California.

Vadaparty, K. (1999). ODBMS - Bridging the
gap between objects and tables: Object and data
models, 12(2).

Basic, (1996). BasicScript 2.25 Language Ref-
erence, Summit Software. http:/www.cardiff.
com/CSdownload/misc/t1057.pdf.

KEY TERMS

Integrity Constraint: Anintegrity constraint
isused to specify some restriction for maintaining
the consistency of data. It can be defined in such
a way that in a table (or more than one table) all
qualified tuples must satisfy a logical predicate.

MDD (Model-Driven Software Develop-
ment): Focuses on using models as approaches to
cover the life cycle of software development. The
main contribution of MDD isto give a solution to
heterogeneity and interoperability among systems
with different implementation platforms.

Multiplicity Constraints: Also called cardi-
nality constraint, is one of these constraints that
can be established in a conceptual schema. It has
dynamic aspects that are transformed into the
logical model as certain conditions to verify the
insertion, deletion, and update operations.

Platform Independent Model (PIM): Fo-
cuses on the high-level business logic without
considering features of the implementation tech-
nology of the system.

Platform Specific Model (PSM): Describes
the technology that will be used to build the ap-
plication.

Termination: The execution of any set of
active rules must terminate. This needs to avoid
cycling in the execution. A cycling means a non-
termination problem is produced in the triggers
execution.

Triggers: A trigger is a named event-condi-
tion-action rule that is activated by a database
state transition. Once a trigger is activated and
its condition is evaluated to true, the predefined
actions are automatically executed.

153

154

Chapter XVIII
Artifacts for Collaborative
Software Development

Pierre F. Tiako
Langston University, USA

INTRODUCTION

The development of software applications gener-
ally requires the following: hardware resources
(computers, networks, peripherals, etc.), software
resources (data, tools, etc.), human resources
(individuals with various qualifications), and
working methods. These resourcesare distributed
in different autonomous software development
environments. A single environment does not
always have all the necessary resources to realize
some large and/or complex projects. Therefore,
collaboration between the environment in charge
of the project (coordinator) and others (contrac-
tors) will be required to do the job.

While several research projects have contrib-
uted to various aspects of collaboration among

software development environments during the
past decade, little has been done on explicitly
definingand modeling processes and environment
artifacts involved in such partnerships. That is
what this chapter is about. In the context of this
study, environments work together by assigning
tasks and sharing working methods. Tasks and
working methods can be defined explicitly us-
ing process models. Process models, already the
main focus in monolithic software development,
will still be an important factor in our approach
of collaborative software development. Because
they are process-based, all software development
environments considered here will be qualified
in the continuation of Process-sensitive Software
Engineering Environments (PSEEs).

Copyright © 2009, IGI Global, distributing in print or electronic forms without written permission of 1GI Global is prohibited.

Artifacts for Collaborative Software Development

Table 1. Brief process modeling history and limits

B imports 25

Definition space of A

certain maturity.

0 automate software development processes, i.e. to build a software system
based on process models to assist and guide software production. Several works
contributed to this subject (Derniame & Gruhn, 1994), enabling it to reach a

bé
/"’ B
defines

BACKGROUND

The objective of developing large software projects
can be reached more easily when the work to be
done is divided into tasks (Smith, Hale & Parish,
2001) and assigned to various PSEEs. Tasks and
working methods can be explicitly defined using
process models. Table 1 proposes a brief history
of process modeling and its limits.

Software processes are modeled before being
assigned to PSEEs for performance. Collabora-
tions to deal with these issues have also been
discussed in information systems (Hahn, Jarke
& Rose, 1991; Mookerjee & Chiang, 2002).

Asimple solutiontowardthisgoal isto provide
PSEEs with protocols that allow them to com-
municate in order to import or export process
components as well as other PSEE artifacts. First
investigations presented hereafter have been made
in the subject by Oz (Ben-Shaul & Kaiser, 1995,
1998) and Federated PSEE (Basile, Calanna, Nitto,
Fuggetta & Gemo, 1996) approaches.

Oz proposes to compose different instances of
PSEEs where each of them is devoted to support-
ing the development process executed by a single
organization. All these PSEEs run autonomously
according to their own processes, but they can
interact to accomplish common activities such as
the integration test of software components that
have been independently developed by various
organizations. In Oz, the strategy through which
a common activity is executed is called a sum-
mit. In a summit, one site acts as a coordinator.
It receives from the other sites all data needed to
execute the common activity, executes the activity,
and sends the results back to the other sites. This
behavior is obtained by directly implementing
the summit protocol and procedures as a basic
mechanism of the PSEEs.

Federated PSEEs takes Oz as a starting point
and allows several interorganization policies to
be implemented and combined. The solution of
this issue is to provide a set of basic operations to
specify any interorganization policy. Examples of
operationsare asearch for the physical location of

155

asiteand arequest for the execution of one service
atsome physical location. Basic operations should
be powerful enough to make the specification of
any reasonable interorganization policy assimple
aspossible. The enactmentofan interorganization
process requires that sites can be located over the
network, communication is enabled among sites,
data can be safely exchanged, and some access
control policies are executed.

These two approaches, original and comple-
mentary, are important contributions to address
the federation problem. Both have in common to
define a priori some interorganization policies.
They limit the various types of interorganization
policies that could be defined, established, and
performed among PSEEs working together.

MAIN FOCUS OF THE CHAPTER

This chapter explores software processes and
PSEE-related artifacts for collaborative software
development. Italso discusses how collaborations
should be defined in order to support various
types of interorganization policies that could be
defined, established, and performed among PSEEs
working together.

Process component is an encapsulation of pro-
cess model properties and a behavior that allows
handling these properties. A process component
is defined to be performed across PSEEs (Table 2).
It can have an unspecified size and be composed
of a hierarchy of activities.

The concept of activity corresponds to a
module for design and performance; it provides a
supportto progressively refine a process model. A
process component under definition receives the
name of its root activity. The concept of activity
we use here is extensively presented in Tiako and
Derniame (1999). A process component is defined
around its root activity. All its root subactivities
are introduced recursively into the component,
as well as all entities linked to all the activities
of a component. The hierarchies of root subac-

156

Artifacts for Collaborative Software Development

tivities define its subcomponents. Activities can
be instantiated or not before being attached to a
process component under definition. In the first
case, activities are ready to be performed without
option of modification. Inthe second case, they can
be instantiated later on prior to their performance.
When defined, a process component is assigned a
definition space. For instance, Table 2 shows the
definition space of component F.

A process component can be exported or
imported from the definition space of one PSEE
to the definition space of another. That makes it
possible to perform a process component across
PSEEs.

These artifacts of the model of PSEE present-
ment in Table 3 serve as basis elements to support
collaborative software development. A PSEE
distinguishes active and passive entities. Active
entities are those that manage others (Gorla & Lam
2004; Jiang, Klein & Pick, 2003). In the system
presented, they are represented by “Participant”
entity. Passive entities are those thatare managed.
They are composed by process components and
their artifacts, as well as by other PSEE entities
such as “Background” and “ModelType.” The
semantic of PSEE entities and relations among
them are given in the following.

Participant. Participant is an active entity
that allows to define and enact processes and
to control processes during their performance.
For instance, Table 2 shows how participant P
is defining component F. P is doing so by first
importing an existing component B by defining a
new component C and by grafting F to C to form
one of its subcomponents.

Background. Background defines experiences
already acquired by a PSEE. It provides informa-
tion on projects developed. For each project, it
records its objective, duration, results obtained,
and turnover carried out. It also saves informa-
tion on PSEE partners as well as their skills and
services provided in the collaboration.

Artifacts for Collaborative Software Development

Table 2. Process component modeling across PSEES

&DD
- F

Definition Space of A

ModelType. ModelType defines the types of
process model a PSEE supports. Supporting a
particular model type also means understanding
the constraints to be satisfied and advisory guid-
ance on carrying out software processes. Some
types of process models might include statecharts,
petrinets, and rule-based constraints.

Capability. Capability defines the services a
PSEE can provide to others. The model of PSEE
proposed distinguishes three classes of services:
Factory, Perform, and Control. Factory expresses
the capability of a PSEE to model various types
of processes. Perform defines the capability of
a PSEE to enact and perform various types of
processes. Control expresses the capability to
control various types of processes during their
performance.

The capabilities of a PSEE are defined in
terms of (1) roles that participants can play in
the system, (2) tools likely to be used to perform
processes, and (3) type of process models sup-
ported by a PSEE.

Ability. Ability defines the competence of a
PSEE with regard to its capabilities and back-
ground. This allows evaluating the experiences
already acquired by a PSEE.

P imports B
>
B
P defines C
C
P grafts C F

FUTURE TRENDS

The main challenges will be to define various
typesof contracts to be established and performed
among PSEEs willing to work together. We believe
that the federation processes have to be modeled
with the same level of abstraction and formalism
always used to model software processes.

Emerging trends for supporting collaborative
software development can be divided into three
categories:

. Approaches based on interorganization
policies or delegation

e Approaches based on contracts or negotia-
tion

* Approachesbased onagent collaboration or
teamwork

Emerging trends should support mobile
processes, mobile work, and model of kinds of
collaboration for performing process components
across PSEEs. Itshould be interesting in the future
trendsto study and implementthe mobility policies
of process components performed across PSSEs.
Initial work on delegation (Tiako & Derniame,
1999) and other related works on process migra-
tion facility (Artsy & Finkel, 1989), and mobile
work (Serensen, 2005) should be a good starting

157

Table 3. Model of PSEE and its artifacts

Artifacts for Collaborative Software Development

NeedsRole 1in

0:n NeedsTool

: L 0:n
Ln Capability
f
0:n For
0:n
ModelTvpe
CapableOf Backaround
on 0:n
AbleTo WithBackground
: . m
Entity or Class = <4—— Inheritance
[I entt - ok
From X to Y Relation Y B Read (B]
m

point for the study. The implementation should
discuss the advantages and inconveniences to be
based on Object Management Group (Hailpern
& Tarr 2006; O’Ryan, Schmidt & Noseworthy,
2002) or Extensible Markup Language (Abite-
boul, Bonifati, Cobéna, Manolescu & Milo, 2003;
McLaughlin & Edelson, 2006) infrastructures for
distribution purposes.

CONCLUSION

The objective of developing large software projects
can be reached more easily when the work to be
doneisdivided intotasksand assignedto teamsto
implement them on independent, heterogeneous,
and distributed PSEEs. The tasks are modeled as
process components before being assigned and
performed across PSEEs.

Thischapter explores software process compo-
nent and PSEE-related artifacts for collaborative
software development. It also discusses how col-
laborations should be defined in order to support
various types of interorganization policies that

158

could be defined, established, and performed
among PSEEs working together.

REFERENCES

Abiteboul, S., Bonifati, A., Cobéna, G., Manoles-
cu, I, & Milo, T. (2003). Dynamic XML documents
with distribution and replication. Proceedings of
SIGMOD 2003, San Diego, California.

Armitage, J., & Kellner, M. A. (1994). Conceptual
schema for process definitions and models. Pro-
ceedings ofthe Third International Conferenceon
Software Process, Reston, Virginia, 153—-165.

Artsy, Y., & Finkel, R. (1989). Designing a process
migration facility. Computer, 22(9), 47-56.

Basile, C., Calanna, S., Nitto, E., Fuggetta, A.,
& Gemo, M. (1996). Mechanisms and policies
for federated PSEEs: Basic concepts and open
issues. Proceedings of the 5th European Work-
shop on Software Process Technology, LNCS,
1149, 86-91.

Artifacts for Collaborative Software Development

Ben-Shaul, 1.Z., & Kaiser, G.E. (1995). A para-
digm for decentralized process modeling. Kluwer
Academic Publisher.

Ben-Shaul,1.Z., & Kaiser, G.E. (1998). Federation
of process-centered environments: The Oz experi-
ence. Automated Software Engineering, 5(1).

Derniame, J.-C., & Gruhn, V. (1994). Development
of process-centered IPSEs in the ALF project.
Journal of Systems Integration, 4(2), 127-150.

Gates, B. (2005). Building software that is in-
teroperable by design [technical report]. Microsoft
Corporation Web site. Retrieved December 2006,
from http://www.microsoft.com/mscorp/exec-
mail/2005/02-03interoperability.mspx.

Gorla, N., & Lam, Y.W. (2004). Who should
work with whom? Building effective software
project teams. Communications of the ACM,
47(6), 79-82.

Hahn, U., Jarke, M., & Rose, T. (1991). Team-
work support in a knowledge-based information
systems environment. Transactions on Software
Engineering, 17(5), 467-482.

Hailpern, B., & Tarr, P. (2006). Model-driven
development: The good, the bad, and the ugly.
IBM System Journal, 45(3).

Jiang, J.J., Klein, G., & Pick, R.A. (2003). The
impact of [S Department organizational environ-
ments upon project team performances. Informa-
tion and Management, 40(3), 213-220.

McLaughlin, B., & Edelson, J. (2006). Java and
XML. Third Edition. O’Reilly.

Mookerjee, V.S., & Chiang, L.R. (2002). A dy-
namic coordination policy for software system
construction. IEEE Transactions on Software
Engineering, 28(7), 684-694.

O’Ryan, C., Schmidt, D.C., & Noseworthy, J.R.
(2002). Patterns and performance of a CORBA
eventservice for large-scale distributed interactive

simulations. International Journal of Computer
Systems Science and Engineering, 17.

Smith, R.K., Hale, J.E., & Parish, A.S. (2001). An
empirical study using task assignment patterns to
improve the accuracy of software effort estima-
tion. IEEE Transactions on Software Engineering,
27(3), 264-271.

Serensen, C.F. (2005). Adaptive mobile work
processes in context-rich, heterogeneous environ-
ments [doctoral thesis]. Norwegian University for
Science and Technology.

Tiako, P.F. (2005). Collaborative approach for
modelingand performing mobile software process
components. Proceedings of the 2005 Interna-
tional Symposium on Collaborative Technologies
and Systems (CTS 2005), Austin, Texas.

Tiako, P., & Derniame, J.-C. (1999). Toward pro-
cess components mobility in federated PSEES.
Proceedings of the 5th International Conference
on Information Systems, Analysis and Synthesis:
ISAS’99, Orlando, Florida.

WIEMC. (2006). Interoperability abstract specifica-
tion. WfMC Document Number TC-1012, Version
2.0b. Retrieved December 2006, from http:/www.
wfmc.org/standards/docs/TC-1012_Nov_99.pdf

KEY TERMS

Activity: Any piece of work that must be done;
an instance composed of an activity name and its
relationships with product, direction, tool, role,
and its subactivities. The activity must have been
assigned to precisely one role. There must exist at
least one agent that can perform this role.

Agent: A model entity that is able to perform
roles and hence to carry out activities. An agent
may be human, automated, or some combination
of both.

159

Direction: A model entity that defines the
objectives of the associated activities, defines
any constraints to be respected, and may provide
advisory guidance on carrying out the activities.
Direction must provide instructions sufficient to
complete the activity as required.

Federation Processes: Processes that allow
modeling collaboration among distributed soft-
ware development environments. Such processes
allow dynamically building various contract types
that can be established among environments.

Mobile Process Component: Process com-
ponent likely to be routed on the network. It
can thus be exported or imported for reuse or
performance.

Process Component Delegation: Act that
allows exporting a process component remotely
for its performance and/or control.

160

Artifacts for Collaborative Software Development

Product: Can form an input to an activity, an
output from an activity, or an intermediate result
of an activity. In the latter case, it is accessible
from the tools of the activity, from its subs, but
not from outside.

Role: A model entity that identifies a skill
requirement that an agent must satisfy in order
to perform the role. During process definition, a
number of activities can be assigned to arole, and
a number of agents can be identified to be able
to perform arole.

Tool: Amodel entity thatis apiece of software.
It can be employed in carrying out an activity.
Any activity may employ an arbitrary number
of tools.

Section I

Logical Modeling

162

Chapter XIX
Object-Relational
Modeling

Jaroslav Zendulka
Brno University of Technology, Czech Republic

INTRODUCTION

Modeling techniques play an important role
in the development of database applications.
Well-known entity-relationship modeling and
its extensions have become a widely-accepted
approach for relational database conceptual de-
sign. An object-oriented approach has brought
a new view of conceptual modeling. A class as
a fundamental concept of the object-oriented
approach encapsulates both data and behavior,
whereas traditional relational databases are able
to store only data. In the early 1990s, the differ-
ence between the relational and object-oriented
(OO0) technologies, which were, and are still used
together to build complex software systems, was
labeled the object-relational impedance mismatch
(Ambler, 2003).

The object-oriented approach and the need of
new application areas to store complex data have
greatly influenced database technology since
that time. Besides appearance of object-oriented
database systems, which fully implement object-
oriented paradigm in a database environment
(Catell etal., 2003), traditional relational database
management systems become object-relational
(Stonebraker & Brown, 1999). The most recent
versions of the SQL standard, SQL: 1999 (Melton
& Simon (2001) and SQL: 2003 (Eisenberg et
al., 2004), introduced object-relational features
to the standard and leading database producers
have already released packages which incorpo-
rate them.

Development of complex data intensive soft-
ware systems involves a close working relation-
ship between software and database developers.
Currently, software developers deal with object-

Copyright © 2009, IGI Global, distributing in print or electronic forms without written permission of 1GI Global is prohibited.

Object-Relational Modeling

oriented software development and use object-
oriented modeling techniques to represent the
main view of the application, whereas database
developers model, design, build, and optimize
the database. However, modeling techniques for
relational databases do not support important
features of object-relational databases. Inaddition,
shared vision and clear communication of project
details are necessary conditions for a software
project to be successful. A common modeling
language and supporting development tools can
provide good conditions for it.

The Unified Modeling Language (UML) was
adopted as an OMG (Object Management Group)
standard for object modeling in 1997. Since that
time, it has become popular and widely used. It
provides several modeling techniques (diagrams)
that visualize a system from different perspec-
tives. From database design point of view, a class
diagramisthe mostimportantdiagram—it shows
asetofstructural elementsandtheir static relation-
ships. It can be used for conceptual modeling of
persistent classes. But the UML does not contain
direct support neither for capturing important
features of relational databases, nor for specific
features of object-relational databases that are
necessary for modeling data stored in a relational
database and objects stored in an object-relational
database at design levels below the conceptual
one. Therefore, it is necessary to add the ability
to model features of this kind of databases in an
effective and intelligible way. Fortunately, the
UML provides an extensibility mechanism that
allows doing it.

This article shows how an object-relational
database schema can be modeled in UML. This
technique will be referred to as object-relational
modeling here.

BACKGROUND

Inthis section, we summarize important features
of the SQL:1999 object-relational model (Melton

& Simon 2001, Database Language SQL, 1999,
Badia 2006) with some extensions available
in SQL:2003 (Eisenberg et al., 2004, Database
Language SQL, 2004). We also explain how the
model isimplemented by Oracle in their database
servers. Then we describe extensibility mecha-
nisms of the UML, which we exploit in the next
sections.

The Object-Relational Data Model in
Standard SQL and in Oracle SQL

We can say that since SQL:1999 the underlying
model of the standard is object-relational and
therefore the standard has also become a standard
database language for object-relational databases.
We only focus on the most important features of
the model that represent object extensions here.

The model keeps the concept of tables but it
removes the First Normal Form (INF), which
is the basic requirement of the relational model
of data. The standard introduces user-defined
types (UDTs), which mean types specified by
users. There are two types of UDTs — distinct
types and structured ones. The structured types
are more interested from our point of view. A
structured type can have an internal structure
referred to as attributes and it can include meth-
ods that represent behavior of instances of the
type. Similarly to classes, a structured type can
inherit properties of another type. A structured
type can represent a domain of a table column
or it can specify the type of tupples in a table.
Thereisanimportantdifference concerning value
identity between these two cases. Values in the
former case do not have any identity. They are
values of a composite attribute. The tupples in
the latter case have identity known from the OO
approach as an object identifier (OID). They rep-
resent objects with corresponding attributes and
methods, and the table that stores them is said to
be a typed table. The SQL refers the identifying
values to as REF values and the relevant type as
REF type. It is possible to specify the domain of

163

a table column or attribute as a REF type and to
use REF values as links between objects instead
of foreign — primary key pairs known from the
relational model.

The structured UDTs are not the only exten-
sion that violates INF. Another one are collection
types that can also be employed in table column
or UDT attribute specifications. There are two
types of collections available:

e arrays
. multisets (not available in SQL:1999, intro-
duced in SQL:2003)

Bothcollectiontypesare collections of datael-
ements of the sametype. Anarraytypeisordered,
whereas a multiset type is unordered. In addition,
cardinality must be specified for arrays.

The SQL:1999 also introduced typed views,
which are similar to typed tables, but they are
virtual tables.

The object-relational model has been imple-
mented in Oracle since Oracle8 version. Itiscom-
pliantwith the standard in many core features, but
itusesadifferentterminology. User-defined types
are termed object types, typed tables are called
object tables, and typed views object views. The
array typeinOracle (termed VARRAY) isbounded
by maximum cardinality and multiset has the form
of a nested table, which is unbounded. Moreover,
inheritance was not supported in Oracle8, it was
included later.

Extensibility Mechanisms in UML

The UML provides three extensibility mecha-
nismsthat make possible to extend the languagein
controlled ways (Booch, Rumbaugh & Jacobson,
1999, OMG, 2007):

. Stereotypes
e Tagged values
. Constraints.

164

Object-Relational Modeling

A stereotype extends a vocabulary of the
UML. It allows introducing a new model element
derived from one existing in the UML metamodel.
A tagged value extends the properties of UML
model elements. Itisakeyword-value pairelement
that may be attached to any kind of a model ele-
ment. The keyword is called a tag. A constraint
extends the semantics of a model block by means
of specifying conditions and propositions that
must be maintained as true otherwise the system
being described by the model isinvalid. There are
some standard stereotypes, tagged values, and
constraints predefined in the UML. One of them
is a stereotype <<Table>>, which is a stereotype
of the UML class element.

The main purpose of the extensibility mecha-
nisms is to tailor the UML to the specific needs
of a given application domain or target environ-
ment. It makes it possible to develop a predefined
set of stereotypes, tagged values and constraints
and notation iconsthat collectively specialize and
tailor the UML for specific domain or process.
Suchasetiscalleda UML profile. Several profiles
have already been accepted by OMG as standard
profiles (OMG, 2007), but none of them is for data
or object-relational modeling.

Several UML profiles for data modeling have
been proposed (Using Rose Data Modeler, 2001,
Marcos, Vela & Cavero, 2001, Ambler, 2003) and
several proposals for object-relational modeling
have been published too. The latter are discussed
in the next section.

MAIN THRUST: UML PROFILES
FOR OBJECT-RELATIONAL
MODELING

Several works that propose a UML profile for
object-relational modeling have been published
(Rational 981 Using Rose Oracle8, 1998, Marcos,
Vela & Cavero 2001, 2003). They have been pro-
posed for SQL:1999 and/or the SQL dialect for
Oracle8 because this DBMS had provided object

Object-Relational Modeling

extensions before SQL:1999 was published. One of
themisaproposal foratool integrated by Rational
Software Corporation in their Rational Rose®*
(hereafter simply referred to as the Rose).

Inthis section we first describe the Rose UML
profile for Oracle8 and then briefly discuss some
other profiles.

The Rose Profile for Oracle8

The Roseis one of the best-known UML-oriented
modeling tools. It provides support for several
target programming and database environments,
including Oracle. The Rose Oracle8 tool makes it
possible both forward and backward engineering
of Oracle8 object-relational schemas.

The profile (hereafter also referred to as the
Rose profile) introduces several stereotypes,
some constraints in the form of conventions, and
tagged values. The tagged values have a form of
schema generation properties attached to a proj-
ect, class, operation, and attribute. They contain
such values as the length of a VARRAY type, a
WHERE clause of a view definition etc. Stereo-
types of the profile are summarized in Table 1. It
isevidentthat most of stereotypes are stereotypes
of a UML class element. The stereotypes for a

Table 1. Stereotypes in the Rose profile for the
Oracle8

Stereotype UML model element
<<Database Domain>> Package
<<Schema>> Component
<<ObjectType>> Class
<<ObjectView>> Class
<<ObjectTable>> Class
<<NestedTable>> Class
<<RelationalTable>> Class
<<Relational View>> Class
<<VARRAY>> Class
<<ObjectView>> Dependency

database and schema can be used on package or
component diagrams. We do not employ them in
our illustrative example.

Relationships between schema elements
are modeled as associations, aggregations, and
dependencies. Dependencies are used primarily
to express relationships between data types and
structuresthatstore values of these types. Nesting
of types is modeled by associations.

We use a simple Purchase Order example to
show how the basic object extensions of Oracle8
are modeled in the profile. A conceptual class
diagramofthe exampleisdisplayed in Figure 1on
the nextpage. Only one operation (sumLineltems()
of the Order class) is shown in the diagram. The
Order and Customer classes contain a complex
attribute of an Address type consisting of street,
city, and zip attributes.

Object Types

Obiject types are modeled by a stereotype <<Ob-
jectType>>, which is a stereotype of class. At-
tributes of a given object type are modeled as
attributes, methods as operations.

An object type can contain an attribute of
another object type. This is modeled as a unidi-
rectional association from the outer objecttype to
the nested object type. A role name of the nested

Figure 1. A conceptual class diagram of a Pur-
chase Order example

Order

Customer
orderNo : Integer i
orderDate : Date places (EEECANIECL
shipDate: Date name : String

address : A ddress
phone[3]: Integer

=3

*

=

shipAddress : Address

sumLineltems()

1”*
Lineltem

itemNo : Integer
quantity : Integer| g *

Stockltem
stockNo : Integer
price : D ouble
taxRate: D ouble

165

type is the name of the corresponding attribute.
Association in the profile implies a relationship
“by value”. Methods of object types are modeled
as operations of classes with some conventions.

VARRAYSs

A VARRAY collection type is modeled by a
stereotype <<VARRAY>>, which is a stereotype
of class. All elements of the array must be of the
same type, either scalar or object one. If the ar-
ray is based on an object type, the relationship
is modeled as dependency of the VARRAY type
on a given object type. A VARRAY can be used
as an attribute of an object type. Such nesting is
modeled by association.

Let us assume that the Customer class from
our example will be implemented by means of
an object type CUSTOMER_T with a nested
type ADDRESS_T and a VARRAY type attribute
for a fixed-size array of phone numbers. The
corresponding model is in Figure 2. The scalar
type of the array element and its parameters are
not displayed. This information is contained in
tagged values.

Object-Relational Modeling

Nested Tables

A nested table is modeled as a class with a ste-
reotype <<NestedTable>>. If the nested table is
based on an object type, the relationship is again
modeled as dependency of the nested table on a
given object type. A nested table can be used as
anattribute of an objecttype, whichisrepresented
by association in the model.

Let us assume that the Order class from our
example will be implemented by means of an
object type ORDER_T with a nested type AD-
DRESS_T and a nested table containing all items
of a given order (of a LINEITEM_T type). The
corresponding model is in Figure 3.

REFs

A REF type is modeled by aggregation. In the
profile, aggregation implies “by reference” con-
tainment. Figure 4 shows that the ORDER_ T
type contains an attribute CUSTOMER of the
REF type, which references an object of the
CUSTOMER_T type.

Figure 2. Modeling of a nested object type and an array

<<ObjectType>>
ADDRESS_T

STREET:VARCHAR2
CITY:VARCHAR2
ZIP:VARCHAR2

ADDRESS

<<ObjectType>>
CUSTOMER_T

CUSTNO:NUMBER

Figure 3. Modeling of a nested table

166

<<ObjectType>>
ADDRESS_T

STREET:VARCHAR?2
CITY:)VARCHAR?2
ZIP:VARCHAR?2

SHIPADDRES

PHONE <<VARRAY>

PHONE_V

NAME:VARCHAR?2

<<ObjectType>>
ORDER_T

ITEMS

<<NestedTable
LINEITEMS_N

%

ORDERNO:NUMBER |—— |

ORDERDATE:DATE
SHIPDATE:D ATE

SUMLINEITEMS

v

<<ObjectType>>
LINEITEM_T

ITEMNO:NUMBER
QUANTITY:NUMBER

Object-Relational Modeling

Figure 4. Modeling of a REF type

<<ObjectType>>
CUSTOMER_T

NAME VARCHAR 2

Object Tables

An object table is modeled as a class with a ste-
reotype <<ObjectTable>>. Since object tables are
built from underlying object types, this relation-
ship is modeled as a dependency. An example
can be found in Zendulka (2006).

Relational Tables

A relational table is modeled as a class with a
stereotype <<RelationalTable>>. Attributes of
the table that are of an object type, VARRAY,
nested table, and REF are modeled in the same
way as for object types.

Object Views

An object view is modeled as a class with a ste-
reotype <<ObjectView=>>, Links between source
tables (object or relational) and the object view
are modeled as dependencies. The relationship
with the underlying object type of the view is
modeled as a dependency with a stereotype
<<ObjectView=>>. An example can be found in
Zendulka (2006).

Unfortunately, the Rose Oracle8 tool has not
been adapted for later releases of Oracle servers.
Therefore, it does not reflect their new features,
even inheritance of object types.

CUSTOMER
CUSTNO:NUMBER =< - ORDERDATE:DATE

<<ObjectType>>
ORDER_T

ORDERNO:NUMBER

SHIPDATE:D ATE

SUMLINEITEMS

Other Profiles

Marcos, Vela & Cavero (2001, 2003) proposed
UML profiles both for SQL:1999 and Oracle 8i.
Similarly to the Rose profile for Oracle8, the au-
thorsintroduce stereotypes of class for structured
types and typed tables. But there are important
differences inmodeling some other elements. First
of all, they introduce a stereotype of association
<<Knows>>, which models the relationship be-
tween a structured type and a typed table. In the
Rose profile it is modeled as dependency, which
may be a better choice.

Anotherdifference isinmodeling attributes of
structured, collectionand REF types. The authors
apply the following criterion: If the type may be
defined explicitly in the SQL schema, then it is
modeled as a stereotyped class, otherwise as a
stereotyped attribute. In the Rose profile, all these
cases are modeled by means of associations and
role names.

The profiles does not deal with typed and
object views. On the other hand, they introduce
stereotypes for a ROW type and redefined and
deferred methods, which are features of SQL:
1999 not explained in this article.

FUTURE TRENDS

Currently, object-relational modeling is not used
in practice very often. First of all, it is the conse-

167

quence of the fact that object features of object-
relational databases and SQL: 1999 and 2003 has
not been well accepted in the market place and
adopted by database vendors yet, and that there
is small experience with these features (Ambler,
2003). It is true for typical OLTP applications.
Another reason is that despite of less impedance
mismatch with object, there are not suitable
standard interfaces for comfortable accessing
complex database objects. In addition, only a
few methods that generate an object-relational
model from a conceptual model (Mok & Paper,
2001) and methodologies that guide designers in
the object-relational database development have
been published. Vara et al. (2007) propose such a
methodology based onmodel-drivenarchitecture
(MDA) concepts. Grant, Cennamaneni & Reza
(2006) use the formal transformations of the
methodology in a comparative study.

On the other hand, we can say that applica-
tion-oriented built-in support, such as Spatial
or Intermedia in Oracle, is very often based on
predefined structured UDTs, which creates condi-
tions for object-relational features to be accepted
by developers better.

CONCLUSION

The objective of this article was to introduce
UML profiles for object-relational modeling. All
such profiles exploit the extensibility mechanism
of the UML. We have chosen the profile used by
Rational Rose Oracle8 tool as a representative
one and have described it. We have compared
it with other approaches too. Such profiles can
be useful not only for manual object-relational
database schemamodeling butalso for automated
object to object-relational transformations in the
MDA approach.

168

Object-Relational Modeling

REFERENCES

Ambler, S. W. (2003). Agile database techniques.
Wiley.

Badia, A. (2006). Relational, object-oriented and
object-relational data models. In: Rivero, L. C,,
Doorn, J. H., & Ferragine, V. E. (Eds.). Encyclo-
pedia of database technologies and applications
(pp. 530-535). Idea Group Reference.

Booch, G., Rumbaugh, J., & Jacobson, I. (1998).
The unified modeling language user guide. Ad-
dison-Wesley Longman.

Catell,R. G.,Barry, D. K., Berler, M., & Eastman,
J. (2000). The object data standard: ODMG 3.0.
Morgan Kaufmann Publishers.

Database Language SQL — Part 2: Foundation.
(1999). ISO/IEC, 9075(2), 1999 standard.

Database Language SQL — Part 2: Foundation.
(2003). ISO/IEC, 9075(2), 2003 standard.

Eisenberg, A., Melton, J., Kulkarni, K., Michels, J.
E., & Zemke, F. (2004). SQL: 2003 has been pub-
lished. ACM SIGMOD Record 33(1), 119-126.

Grant, E. S.,Cennamaneni, R., & Reza, H. (2006).
Towards analyzing UML class diagram models to
object-relational database systemstransformation.
In Proceedings of the 24th IASTED International
Multi-Conference Databases and Applications
(pp. 129-134). Innsbruck: ACTA Press.

Mapping Objects to Data Models with the UML.
(2001). Rational Software Corporation, Santa
Clara, CA, USA.

Marcos, E., Vela, B. & CaveroJ. M (2001). Extend-
ing UML for object-relational database design. In
M. Gogolla & C. Kobryn (eds.). UML 2001 (pp.
225-239). SpringerVerlag.

Marcos, E., Vela, B., & Cavero, J. M. (2003). A
methodological approach for object-relational da-
tabase design using UML. Software and Systems
Modeling, 2(1), 59-72.

Object-Relational Modeling

Melton, J., & Simon, A. (2001). SQL: 1999. Un-
derstanding relational language components.
Morgan Kaufmann Publishers.

OMG Unified Modeling Language Specification.
Version 2.1.1. (2007). Retrieved October 6, 2007,
from http://iwww.omg.org/technology/documents/
formal/uml.htm.

Oracle Database Application Developer’s Guide
- Object-Relational Features. (2005). Retrieved
October 6, 2007, from http://download.oracle.com/
docs/cd/B19306_01/appdev.102/b14260.pdf.

Rational 98i Using Rose Oracle8. (1998). Santa
Clara, CA: Rational Software Corporation.

Rational 2000e Using Rose Oracle8. (2000). Santa
Clara, CA: Rational Software Corporation.

Using Rose Data Modeler (2001). Retrieved Octo-
ber 6, 2007, from ftp://ftp.software.ibm.com/soft-
ware/rational/docs/v2002/Rose dm.pdf.

Vara, J. M., Vela, B., Cavero, J. M., & Esperanza,
M. (2007). Model transformation for object-rela-
tional database development. In Proceedings of
the 2007 ACM symposium on Applied computing
(pp. 1012-1119). Seoul: ACM Press.

Zendulka, J. (2001). Object-relational modeling
in UML. In Proceedings of the 4th International
Conference on Information Systems Modelling
(pp. 17-24). Ostrava: MARQ.

Zendulka, J. (2006). Object-Relational Model-
ing in UML. In L. C. Rivero, J. H. Doorn, & V.
E. Ferragine (Eds.). Encyclopedia of database
technologiesand applications (pp. 421-426). Idea
Group Reference.

KEY TERMS

Collection Type: Acomposite value compris-
ing elements of the same data type. SQL:1999
supports arrays, which are ordered and bounded
collections of elements. SQL:2003 added multi-

sets, which are unordered and unbounded col-
lections.

Nested Table: A collection type available in
Oracle SQL which is a multiset from the SQL
standard point of view.

Object-Relational Data Model: Extends the
relational data model by providing a richer type
system including complex data types and object
orientation.

Object-Relational Modeling: Modeling of
an object-relational database schema. It requires
using model elements that are available neither in
classic data models nor in object models.

REF: A data type value of which refer-
ences a row in a referenceable table (or object
in Oracle).

Referenceable Table: A table row of which
can be referenced by REF type values. The table
is based on a structured user-defined type and
comprises one extra column containing row (or
object) identifiers generated automatically when
a new row is inserted into the table. In Oracle,
such a table is called an object table.

SQL:1999: The most recent major release
of the SQL standard published in 1999, which
is based on an object-relational model. Several
minor extensions were added to the model in
SQL:2003.

UML Profile: A predefined set of stereotypes,
tagged values and constraints and notation icons
that collectively specialize and tailor the UML for
specific domain or process.

UML Stereotype: One of UML extensibility
mechanisms. It is an extension of the vocabulary
of the UML that allows creating new kinds of
building blocks that are derived from existing
ones.

User-Defined Type: A named data type de-
fined by a user. It can contain a list of attributes,

169

in which case it is said to be a structured type
(or object type in Oracle). It is an abstraction of
a real-world entity. It can also provide explicitly
defined methods that implement operations with
the entity.

170

Object-Relational Modeling

ENDNOTE

1

Now IBM Rational Software and IBM Ra-
tional Rose®, respectively.

171

Chapter XX
Concept-Oriented Model

Alexandr Savinov
University of Bonn, Germany

INTRODUCTION
Background

The concept-oriented model (CoM) is a new
approach to data modeling (Savinov, 2004) that
is being developed along with concept-oriented
programming (CoP) (Savinov, 2005a). Its major
goal consists of providing simple and effective
means for representing and manipulating multi-
dimensional and hierarchical data while retaining
the possibility to model how the data are repre-
sented physically. Thus, this model has two sides
or flavors: logical and physical. From the point of
view of logical structure, CoM belongs to a class
of multidimensional models (Agrawal, Gupta, &
Sarawagi, 1997; Gyssens & Lakshmanan, 1997; Li
& Wang, 1996) and OLAP technologies (Berson
& Smith, 1997). The main difference from the
existing approaches is that CoM is based on the
theory of ordered sets. Particularly, one source
of inspiration when developing CoM was formal
conceptanalysis (FCA) and lattice theory (Ganter
& Wille, 1999).

Elements in the concept-oriented model are
living among other elements within a multidi-
mensional hierarchical structure (Savinov, 2005b).
This means that any element has a number of

parentsand children. The directand indirectneigh-
bors determine its semantic properties while the
element itself'is thought of as an identifier. So the
meaning of an element is distributed all over the
model within the ordered structure and depends
on its relative position among other elements.
One important property of CoM that is absent in
most other models is that it possesses canonical
semantics. It makes many problem formulations
andsolutions much simpler because operationscan
be applied directly to the semantics of the whole
model represented using primitive dimensions
rather than to different local elements. In particu-
lar, it is very important for such a mechanism as
grouping and aggregation (Savinov, 2006a), and
constraint propagation and inference (Savinov,
2006Db). In this sense, CoM is analogous to the
universal relation model (URM) where all relations
are assumed to be projections of a single relation
(Fagin, Mendelzon, & Ullman, 1982; Kent, 1981;
Maier, Ullman, & Vardi, 1984).

The multidimensional and hierarchical struc-
ture underlying the concept-oriented model can
be used for navigational purposes (Savinov,
2005¢). This means that data can be accessed by
specifying a logical path rather than using joins.
In this sense, CoM is similar to the functional
data model (FDM; Gray, Kerschberg, King, &

Copyright © 2009, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

Figure 1. Physical and logical structure of the
model

logical structure/inclusion

£y

e e<#23,#16>
OrderParts™.. %

& J\ J _
root concepts items

physical structure/inclusion

Poulovassilis, 2004; Gray, King, & Kerschberg,
1999; Shipman, 1981). The difference is that the
mechanism of logical navigation in CoM relies
on the ordered structure of elements rather than
using an arbitrary graph.

Duality

Animportantnotion in the whole concept-oriented
paradigm is that of duality. In CoM it exhibits
itself via the existence of two structures called
the physical (or hard) and the logical (or soft). In
Figure 1, the physical structure spreads horizon-
tally while the logical structure spreads vertically.
Physical structure has a hierarchical form where
each element has one permanent parent called
also its physical context. For example, the model
in Figure 1 has one root element (a database) that
physically consists of three internal elements

Concept-Oriented Model

(tables), Orders, Products, and OrderParts, which
in turn consist of their own internal elements (re-
cords). Logical structure has a multidimensional
hierarchical form where each element has many
parents that can change during their lifetime. In
Figure 1 logical parents are denoted by arrows
and a parent is positioned above its children.
For example, element OrderParts belongs to two
parents Orders and Products (while all the three
elements physically belong to Root). Operations
within physical structure mean creating or deleting
elements while operations with elements within
logical structure result in only a change of their
properties. For data modeling it is important to
understand that both of these structures can be used
torepresentinformation fromthe problemdomain.
Interestingly, physical structure is similar to the
hierarchical data model while logical structure
is similar to the network data model (with one
important exception discussed in the next section
being that its elements are ordered). In this sense,
CoM can be viewed as uniting in one approach
the two classical data models.

Order of Elements

The order of elements is of crucial importance in
CoM; that is, it is precisely order that determines
all its syntactic and semantic aspects. To define
a concrete model using the concept-oriented ap-
proach, itisnecessary to take anumber of elements
and then position them one under another without
cycles. All other properties of the model can then
be derived from this ordered structure.

Figure 2. Model as an arbitrary graph and as an ordered structure

super-element
Z> Orders Products | -
Orders OrderParts Products H <#23> <#16>
<#23> [<#23,#16> <#16> - -
i i o orde& Aroduct
order product OrderParts
<#23,#16>
SUb-elemeI’]t ...
a) b)

172

Concept-Oriented Model

In order to illustrate this property, let us con-
sider a simple example consisting of two tables:
Orders and Products. It is assumed that there is a
many-to-many relationship between them where
each order consists of many products and one
product can be used in many orders. This rela-
tionship is stored in a separate table OrderParts,
which has at least two columns pointing to related
items from Orders and Products. Such amodel can
be represented as an entity-relationship diagram
where tables are nodes (Figure 2a). However,
elements of this diagram are not ordered and it is
actually anarbitrary graph. In contrast, if we want
to represent this model in the concept-oriented
way, then these three tables have to be ordered
as shown in Figure 2b. Here, table OrderParts
references tables Orders and Products and hence
it is positioned below both of them.

Aposition of each element in CoM determines
its role and meaning. If this position changes,
then the meaning of this element and of the whole
model also changes. The relative position of ele-
ments has many interpretations. One of the most
important of them allows us to bring the notion
of object-attribute-value into the model (also re-
ferred to as subject-predicate-object). Namely, if
one element s positioned above another element,
then it is interpreted as a value while the second
element is interpreted as an object (characterized
by this value). The upward arrow between them
is an attribute. Thus values reside always above
the objects they characterize. Notice that to be a
value or to be an object is a relative role. In other
words, an element plays a role of value for lower
level elements (subelements) and of an object for
its higher level elements (superelements). Thisrole
is a consequence of the property of the structure
to be ordered rather than a source assumption.
In the first place, we assume that elements are
ordered and only after that this order can be
interpreted as object-attribute-value relationship
among them (if needed and appropriate for the
problem domain).

Another important interpretation of the order
allows us to bring the notion of set into the model
(more precisely, a logical collection). Namely, an

element is interpreted as a collection or group of
elements positioned below of it (subelements).
In other words, each element in the model is in-
terpreted as a collection of its subelements, and
each element is a member of several collections
represented by its superelements. The last state-
ment combined with the previous interpretation
as object-attribute-value has an interesting conse-
guence: Anattribute value isacollection consisting
of all objects it characterizes. For example, one
concrete product category isacollection consisting
of all concrete products having this category.

MODEL DEFINITION

Syntax and Semantics

In the concept-oriented paradigm, it is assumed
that all things and phenomena have two sides or
flavors. For example, in CoP, the main program-
ming construct, called a concept, consists of two
classes: a reference class and an object class. In
data modeling, this duality is used to distinguish
identity modeling (how elements are represented
andaccessed) fromentity modeling (how elements
are characterized by other elements). In CoM, itis
physical structure that is responsible for identity
modeling while entity modeling is performed via
logical structure. Another consequence of such a
separation is that formally two types of element
composition are distinguished: collection and
combination. An element is then represented as
consisting of a collection of other elements and a

Figure 3. Anelementisapair consisting of one col-
lection and one combination of other elements

[T entity (object)
/7\ logical collection

i iphysical collection
- physical membership
a) b)

= |ogical membership

173

combination of other elements from this model:
E={a,b,..Kc, d,..). Here {} denotes a collec-
tion and () denotes a combination. A collection
can be viewed as a normal set with elements
connected via logical or statements and identified
by means of references (for example, tables with
rows). A combination is analogous to fields of an
object or columns of a table, which are identified
by positions (offsets) and connected via logical
and statements.

Usingtheseterms, physical structure (Figure 3a)
can be represented as a nested collection where
any element has one parent: R = {C, U, V, ...},
C={a b, . }),U={c,d, .}, V={ef ..}
Physical structure can be easily produced by
removing all properties (fields, columns, etc.)
from elements. Physical inclusion can be thought
of as inclusion by value; that is, we assume that
any element has some physical position within its
parent container. Physical inclusion can be used
forgrouping. Forexample, ifE = {a, b, ...}{), then
elements a and b physically belong to one group
E. One property of physical structure is that it is
immutable because elements cannot change their
parent group and the only possibility to move an
element between groups is to clone it. However,
the main use of physical hierarchy consists of
representing and accessing elements of the model
while ignoring their semantic properties.

Logical structure (Figure 3b) arises when ele-
ments get some properties. The combinational part
isnotempty andelementsare referencing otherele-
ments of themodel. Such areferencing is amethod
of mutual characterization. For example, element
g={...Ka, b, c,...) is referencing elements a, b,
and c and we say that g is characterized by values

Figure 4. An example of the model syntactic
structure and its primitive semantics

Countries| | Months Categories Country Month | Category
country month category Germany July Drinks
Germany August | Cars
@ﬁ Argentina |July Food
customer Argentina |April__|Drinks

Japan August | Food
Japan June Cars

product

OrderParts

a) b)

174

Concept-Oriented Model

a, b, and c. Logical structure provides the second
(dual) method for grouping using the following
principle: An element belongs to all elements it
combines (references). In other words, properties
of an object indicate groups in which it is a mem-
ber. On the other hand, an object is a group for all
other objects that reference it as the value of some
attribute. For example, ifg = {...}{a, b, ¢), then g
belongs to three groups: a, b, and c. In contrast
to physical grouping, logical grouping has two
advantages: An element may belong to many
groups simultaneously and this structure is not
constant so that an element can change its parent
groups by changing its attribute values.

From the point of view of physical structure,
three types of the concept-oriented models are
distinguished: (a) The one-level model has one
root and a number of data items in it, (b) the
two-level model has one root and a number of
concepts in it, each of them having a number of
data items, and (c) the multilevel model has an
arbitrary number of levels in its physical hierar-
chy. In this article, only the two-level model is
described, which is defined as consisting of the
following elements:

. [Root] One root element R is a physical col-
lection of N concepts: R={C,C,, ..., C}.

. [Syntax] Each concept is (a) a physical col-
lection of data items (or concept instances)
and (b) a combination of other concepts
called superconcepts (while this concept is
called a subconcept): C={i, i,, ...XC,, C,
-+ CpeR.

. [Semantics] Each dataitem is (a) the empty
physical collection, and (b) a combination

Figure 5. An auction example

Top
| Prices | | Users | | Dates | |Categories|
user category
user date Products
price date roduct
Auctions P
uction

AuctionBids

Concept-Oriented Model

of other data items from the model called
superitems (while this item is called a subi-
tem): i ={¥i, i, ..., i) e C.

. [Syntactic Constraints] Each dataitem from
a concept may combine only items from its
superconcepts: If i = {} i, i, ..,i)eC=
(C,C,...C theni e C,j=12 ...n

. [Top and Bottom] If a concept does not
have a superconcept, then this role is played
by one common top concept with its direct
subconcepts called primitive concepts; and
ifaconceptdoes not have asubconcept, then
this role is played by one common bottom
concept.

. [Cycles] Cyclesinsubconcept-superconcept
relations and subitem-superitem relations
are not allowed.

Figure 4a is an example of logical structure
where each concept is a combination of its su-
perconcepts. For example, the concept Orders is
a combination of superconcepts Customers and
Dates. It has one subconcept OrderParts, which
is also the bottom concept of the model. In this
case, an order item (instance of Orders) is logi-
cally amember of one customer item and one date
item. At the same time, one order item logically
includes a number of order parts that are its subi-
tems. One order partis logically included into one
order and one product. Figure 4b is an example
of this model primitive semantics described in
the next section.

Model Dimensionality

Anamed link from subconcept to a superconcept
is referred to as a dimension. A dimension can be
also viewed as a unique position of a supercon-
cept in the definition of subconcept: C =(x, : C,,
X,:C,, ..., X : C). Super-concepts C, C,, ..., C,
are called domains (or ranges) for dimensions
Xps Xoy woer X CJ. = Dom(x.). The model syntactic
structure can be represented by a directed acyclic
graph where nodes are concepts and edges are
dimensions. A dimension x = x* .x? .--- .x* of rank

k is a sequence of k dimensions where each next

dimension belongs to the domain of the previous
one. Dimensions will be frequently prefixed by
the first domain: C.x* .x? .- .x¥. Each dimension
is represented by one path in the concept graph.
The number of edges in the path is the dimension
rank. A dimension with the primitive domain is
referred to as a primitive dimension.

Forexample, Auctions.product.category (Fig-
ure 5) is a primitive dimension of rank 2 from the
source concept Auctions to its superconcept Cat-
egories. There may be several differentdimensions
(paths) betweenaconceptand one domain (super-
concept), which are called bounding dimensions.
The number of different primitive dimensions of
a concept is referred to as the concept primitive
dimensionality. The length of the longest dimen-
sion of a concept is referred to as concept rank.
The dimensionality and rank of the whole model
are equal to that of the bottom concept. Thus,
any concept-oriented model is characterized by
two parameters: (a) the model rank describing its
hierarchy (depth), and (b) the model dimension-
ality describing its multidimensionality (width).
The models in Figure 4 and Figure 5 are three
dimensional and six dimensional, respectively.
However, both have rank 3.

Inverse dimension is a dimension with the op-
posite direction; that is, where a dimension starts,
the inverse dimension has its domain, and where
a dimension ends, the inverse dimension has its
start. In a concept graph, inverse dimension is a
pathfrom asuperconceptto one of its subconcepts.
Inverse dimensions do not have their own identi-
fiers. Instead, we apply an operator of inversion
by enclosing the corresponding dimension into
curly brackets. If C.x* .x? .-+ .x¢is a dimension of
concept C with rank k, then {C.x* .x? .-+ X<} isthe
inverse dimension of concept Dom(x¥) with the
domain in C and the same rank k. An important
thing is that any concept is characterized by a set
of dimensions leading to superconcepts and a set
of inverse dimensions leading to subconcepts. For
example, an order (Figure 4) is characterized by
two dimensions (date and customer) as well as
one inverse dimension {OrderParts.order}. Such
a duality is one of the distinguishing features of

175

CoM because it allows us to characterize items as
a combination of (more general) superitems and
a collection of (more specific) subitems.

Dimensions are very convenient in describing
model semantics. We assume that subconcepts
contain more specific information and inherit in-
formationfromtheir superconcepts. Consequently,
the bottom conceptisassumed to containthe whole
model semantics. If a set of items is represented
using only the primitive dimensions of this con-
cept, then such a representation is referred to as
primitive semantics. For example, in Figure 4b,
items from the bottom concept OrderParts are
written using three primitive dimensions order.
customer.country, order.date.month, and product.
category. The first row in the table represents item
<#23, #16> from OrderParts referencing order
#23. This order #23 in turn references a customer
from Germany and has some date in July. It also
references product#16, which belongsto Drinksas
a category. So we write <Germany, July, Drinks>
in the table with the primitive semantics. Canoni-
cal semantics of the model contains the primitive
semantics of its bottom concept as well as that
of its superconcepts (recursively). Primitive and
canonical semantics can be viewed as expanded
or flat representations of model data.

Projection and Deprojection

Given an item or a set of items, it is possible to
get related items by specifying some path in the
concept graph. Informally, if we move up along
a dimension to superitems, then it is thought of
as an operation of projection. If we move down
along an inverse dimension to subitems, then it is
deprojection. Tospecify the path, dimension names
and the operation of inversion are used.

If d is a dimension of C with the domain in
superconcept U = Dom(d), then operation | — d,
I < Cisreferredto as a projection of items from |
along dimension d. It returns a set of superitems
referenced by items from I: | -d={u e U|1i.
d=u,i e | c C}. Each item from U can be in-
cluded into the result collection (projection) only
onetime. Ifwe needto include superitemsas many

176

Concept-Oriented Model

times as they are referenced, then a double arrow
hastobeused; thatis, | = dincludesall referenced
superitems from U even if they occur more than
once. The operation of projection (arrow) can
be applied consecutively. For example, if Ais a
collection of today’s auctions, then A->product-
>category will return a set of today’s categories
while A=>product=>category will return catego-
ries for all auctions in A (as many categories as
we have auctions). If P is a subset of order parts,
then projection P->order->customer->country is
a set of countries (Figure 4).

If {d} is an inverse dimension of C with
the domain in subconcept S = Dom({d}), then
deprojection of | to S along {d} consists of all
subitems that reference items from I via dimen-
siond:l - {d}={s e S|sd=1i,i el cC}.For
example, if Cisasetofauction product categories,
then C->{Auctions->product->category} is a set
of all auctions with the products having these
categories. Given month m, we can get all related
orders by deprojecting it onto concept Orders:
m->{Orders->date->month} (Figure 4).

MODEL USE

Logical Navigation

One of the main achievements of the relational
model of data based on using setsand set operations
is that it provided independence from physical
data structure and thus successfully solved the
problem of physical navigation. However, it failed
to solve the problem of logical navigation. This
means that even though a data item is not physi-
cally bound to some access path, we still need to
encode a logical access path in each query that
describes how this item can be reached. In order
to get a set of records using SQL, it is necessary
to include long and complex join conditions as
part of each query. In contrast, if the mechanism
of logical navigation was incorporated into a
data model, then we would need only to specify
table names and column names leading to the
target records. All the rest would then be done

Concept-Oriented Model

by the database itself. Currently, the mechanism
of logical navigation is provided by the network
model, object-oriented model, functional model,
and some others. An important distinguishing
feature of the concept-oriented model is that its
logical navigation mechanism is based on order-
ing the elements.

The access path is a sequence of dimensions
and inverse dimensions separated by single or
doublearrowswhere each nextoperationisapplied
to the result collection returned by the previous
operation. An access path has a zigzag form in
the concept graph where dimensions move up to
a superconcept while inverse dimensions move
down to a subconcept. Moving up means getting
more general elements while moving down means
getting more specific elements. For example, we
can choose a product item p and then find its auc-
tions, for which we can also find their users and
finally find the bids of these users (Figure 5).

p->{Auctions.product} ->user ->{AuctionBids.
user}

Itis possible to restrict items that are returned
by a deprojection operation by providing a condi-
tion that all items from the domain subconcept
have to satisfy the following:

| > {s:S—d|f(s)}={seS|(5d=i)a(f(s) =
true),i e | c C}.

Here, disabounding dimension from subcon-

cept S to the source collection I; s is an instance
variable that takes all values from set S, and the

Figure 6. Constraint propagation

Orders Products

OrderParts

Figure 7. Multiple constraint propagation paths

predicate f (separated by a bar) must be true for all
items s included into the result collection (depro-
jection). The following access path is a modified
version of the previous example.

p->{ainAuctions.product|a.date==today}->user
->{AuctionBids.user}

Itwillreturnalltoday’sauctions for the selected
product item p.

Dimensions provide a simple method to logi-
cally navigate over the model using itsstructure. In
many cases, it is necessary to have more complex
properties such as aggregated characteristics of
items computed from related items. This can be
done by defining a derived property of a concept,
which is a named definition of a query returning
one or more items for each item from this concept.
For example, we could define a derived property
allBids of concept Auctions as follows.

Auctions.allBids = this->{ AuctionBids->auc-
tion }

Order# | date Product# | name

#22 22.09.06 #15 tee

#23 23.09.06 #16 beer

#24 24.09.06 #17 chips

#25 25.09.06 #18 coffee

-

Order# | Product#

#22 #15
#23 #16
#24 #16
#23 #17
#25 #15

177

(this is an instance variable referencing the
current item of the concept)

Grouping and Aggregation

In CoM, any item is interpreted as a group consist-
ing of its subitems, which are items that reference
this item. In other words, a value is a group for all
objectsit characterizes. Subitems can be retrieved
using inverse dimensions or derived properties,
and this mechanism can be used to aggregate data
by applying some aggregate function to the col-
lection of data items. For example, the following
query returns the maximum price.

Auctions.maxBid = max(this.allBids.price)

Here, we get a set of all bids by applying exist-
ing property allBids to the current item, then get
their prices via a dot operation, and then find the
maximum price. In the same way we can define
a derived property for computing the mean price
for 10 days for one product category.

Category.meanPriceForTenDays = avg({ab in
AuctionBids->auction->product->category |
ab.auction.date > today-10}.price)

The mechanism of grouping and aggregation
can be generalized into a multidimensional form,
which is very useful for the purpose of online
analytical processing (Savinov, 2006a).

Automatic Constraint Propagation

Normally, dataare retrieved by specifying precise
criteria such as table names, column names, join
conditions, and so forth. However, inmany cases, it
isenoughto impose some constraintsand indicate
the type of result we want to get—all the rest will
be done automatically. In particular, the source
constraints will be automatically propagated over
the model and only related data items will be
returned. The mechanism of constraint propaga-
tion in CoM is based on the idea that if an item is
removed, then all its subitems are also removed.

178

Concept-Oriented Model

For example, if some concrete product item is
deleted, then all order parts from its subconcept
have to be deleted. The whole procedure consists
then of the following two steps.

1. Initial constraints imposed on concepts
X, ..., X, are propagated down to and im-
posed on the most specific concept Z using
deprojection.

2. The constrained semantics of concept Z is
propagated up to the target concept Y using
projection.

An example of this procedure is shown in
Figure 6. Constraints are imposed on the concept
Products by selecting a number of product items
such as beer and chips. In order to get related
orders from the concept Orders, these products
have to be propagated down to OrderParts using
deprojection. All three selected order parts ref-
erence only the two specified products. On the
second step, these three order parts are projected
on the concept Orders. They reference only two
orders, #23 and #24, which are the result of this
query. This procedure is analogous to inference
in multidimensional space (Figure 6, center).
Constraints are imposed by selecting a subset of
values along axis X. The available dependencies
are represented as a set of points Z — X x Y. Their
intersection X m Zis then projected on target axis
Y and produces the result.

Notice that related orders can always be
obtained by manually specifying an appropriate
access path. However, an amazing property of the
described procedure is that it does not require any
access path and propagates constraints automati-
cally. We need only to impose constraintsand then
indicate some target concept. The query for getting
related orders might be written as follows using
SQL-like syntax.

SELECT o0.* FROM Orders o, Productsp WHERE
p.name = ‘beer’ OR p.name = “chips’

Notice that this query does not have any infor-
mation on how the concepts are connected.

Concept-Oriented Model

There exist models with many alternative
constraint propagation paths between the source
and target concepts. For example, if we select a
country and wantto getall related product catego-
ries (Figure 7), then there are two interpretations
for this query: (a) Get all categories for products
ordered fromthe selected countries, and (b) getall
categories for products made in the selected coun-
tries. In this case, it is necessary to provide some
hints that remove thisambiguity. Forexample, the
query could provide an intermediate concept for
constraint propagation in the keyword via.

SELECT cat.* FROM Categories cat, Countries ¢
WHERE c.name = ‘Germany’ VIA OrderParts

Another difficulty consists in the absence of
an access path between the source and the target
concepts. This problem can be solved using a
zigzag access path or by imposing implicit con-
straints (Savinov, 2006b).

CONCLUSION

Inthisarticle, we described main properties of the
concept-oriented data model and demonstrated
how itcan be used. Thismodel hasanumber of ad-
vantages over the existing approaches, especially
in the area of conceptual modeling and analytical
data processing. It is an integrated full-featured
model that can be applied to a wide range of
tasks. At the same time it is a rather simple ap-
proach that uses only a few basic notions to derive
many important data modeling mechanisms and
manipulation techniques.

In the future, CoM will be more tightly inte-
grated with CoP (Savinov, 2005a). In particular, the
definitions of concept in CoM and CoP should be
more compatible so that one construct can be used
for both data modeling and programming. Another
important task consists in defining a concept-ori-
ented query language (CoQL) that also should be
compatible with the principles of CoP.

REFERENCES

Agrawal, R., Gupta, A., & Sarawagi, S. (1997).
Modeling multidimensional databases. 13"
International Conference on Data Engineering
(ICDE’97) (pp. 232-243).

Berson, A., & Smith, S. J. (1997). Data ware-
housing, data mining, and OLAP. New York:
McGraw-Hill.

Fagin, R., Mendelzon, A. O., & Ullman, J. D.
(1982). Asimplified universal relation assumption
and its properties. ACM Transactions on Database
Systems, 7(3), 343-360.

Ganter, B., & Wille, R. (1999). Formal concept
analysis: Mathematical foundations. Springer.

Gray, P. M. D., Kerschberg, L., King, P., & Pou-
lovassilis, A. (Eds.). (2004). The functional ap-
proachto datamanagement: Modeling, analyzing,
and integrating heterogeneous data. Heidelberg,
Germany: Springer.

Gray, P. M. D., King, P. J. H., & Kerschberg, L.
(Eds.). (1999). Functional approach to intelligent
information systems. Journal of Intelligent Infor-
mation Systems, 12, 107-111.

Gyssens, M., & Lakshmanan, L. V. S. (1997).
A foundation for multi-dimensional databases.
VLDB’97 (pp. 106-115).

Kent, W. (1981). Consequences of assuming a
universal relation. ACM Transactions on Database
Systems, 6(4), 539-556.

Li, C., & Wang, X. S. (1996). A data model for
supporting on-line analytical processing. Pro-
ceedings of the Conference on Information and
Knowledge Management (pp. 81-88).

Maier, D., Ullman, J. D., & Vardi, M. Y. (1984).
Onthe foundation of the universal relation model.
ACM Transactions on Database Systems (TODS),
9(2), 283-308.

Savinov, A. (2004). Principles of the concept-
oriented data model. Moldavian Academy of
Sciences, Institute of Mathematics and Informat-
ics.

179

Savinov, A. (2005a). Concept as a generalization
of class and principles of the concept-oriented
programming. Computer Science Journal of
Moldova, 13(3), 292-335.

Savinov, A. (2005b). Hierarchical multidimen-
sional modelling in the concept-oriented data
model. 3" International Conference on Concept
Lattices and their Applications (CLA’05) (pp.
123-134).

Savinov, A. (2005c). Logical navigation in the
concept-oriented data model. Journal of Concep-
tual Modeling, 36. Retrieved from http://www.
inconcept.com/jcm

Savinov, A. (2006a). Grouping and aggregation
in the concept-oriented data model. 21% Annual
ACM Symposiumon Applied Computing (SAC’06)
(pp. 482-486).

Savinov,A. (2006b). Query by constraint propaga-
tion inthe concept-oriented datamodel. Computer
Science Journal of Moldova, 14(2), 219-238.

Shipman, D. W. (1981). The functional data model
and the data language DAPLEX. ACM Transac-
tions on Database Systems, 6(1), 140-173.

KEY TERMS

Access Path: A sequence of projection and
deprojection operations applied to the source
subset of items. Access paths are used for the
logical navigation and retrieval of related items
and can include additional constraints.

Bottom Concept: Adirect or indirect subcon-
cept for any other concept in the model. It is the
most specific concept in the model that can be
introduced formally if it does not exist.

180

Concept-Oriented Model

Concept: A data modeling construct that
physically includes a number of data items and
logically has a number of parent concepts and
child concepts. Parent concepts are referred to as
superconcepts while child concepts are referred
to as subconcepts.

Deprojection: An operation applied to a set
of items that returns a subset of their subitems
referencing the source items along the specified
dimension. Multidimensional deprojection uses
several bounding dimensions leading from the
selected subconcept to the superconcept.

Dimension: Anamed link betweenthis concept
and some of its direct superconcepts. It is analo-
gous to a column. The superconcept in this case
is referred to as a domain of this dimension.

Dimension of Rank k: A sequence of dimen-
sions leading from this concept to some of its
superconcepts where each nextdimension belongs
to the domain of the previous dimension. Dimen-
sion of rank k can be viewed as an upward path
in the concept graph. Dimensions are interpreted
as single-valued attributes.

Inverse Dimension: A dimension with the
opposite direction. Inverse dimension can be
viewed as a downward path in the concept graph.
Inverse dimensions are interpreted as multivalued
attributes.

Primitive Concept: A direct subconcept of
a top concept.

Projection: An operation applied to a set of
items that returns a subset of their superitems
referenced by the source items along the speci-
fied dimension. Multidimensional projection uses
many bounding dimensions leading from the
source concept to the selected superconcept.

Top Concept: Adirectorindirect superconcept
for any other concept in the model. It is the most
general concept that is introduced formally.

181

Chapter XXI
Database Reverse Engineering

Jean-Luc Hainaut
University of Namur, Belgium

Jean Henrard
REVER s.a., Belgium

Didier Roland
REVER s.a., Belgium

Jean-Marc Hick
REVER s.a., Belgium

Vincent Englebert
University of Namur, Belgium

INTRODUCTION

Database reverse engineering consists of recover-
ing the abstract descriptions of files and databases
of legacy information systems. Alegacy informa-
tion system can be defined as a “data-intensive
application, such as [a] business system based on
hundreds or thousands of data files (or tables), that
significantly resists modifications and changes”
(Brodie & Stonebraker, 1995). The objective of
database reverse engineering is to recover the
logical and conceptual descriptions, or schemas,
of the permanent data of a legacy information
system, that is, its database, be it implemented
as a set of files or through an actual database
Mmanagement system.

The logical schema is the technology-depen-
dent (e.g., relational) description of the database
structures while the conceptual schema is the
abstract, technology-independent description of
their semantics.

Database reverse engineering often is the first
steps of broader engineering projects. Indeed,
rebuilding the precise documentation of a legacy
database isan absolute prerequisite before migrat-
ing, reengineering, maintaining or extending it,
or merging it with other databases.

The current commercial offering in CASE
tools poorly supports database reverse engineer-
ing. Generally, it reduces to the straightforward
derivation of a conceptual schema such as that of
Figure 1 from the following DDL code.

Copyright © 2009, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

Figure 1. A naive view of data reverse engineering

create table CUSTOMER (
CNUM decimal (10) not null,
CNAME varchar(60) not null,
CADDRESS varchar(100) not null,
primary key (CNUM))

CUSTOMER

CNUM
CNAME
CADDRESS

id: CNUM

Unfortunately, actual database reverse engi-
neering often is closer to deriving the conceptual
schema of Figure 2 from the following sections of
COBOL code, using meaningless names that do
not declare compound fields or foreign keys.

Getting such a result obviously requires ad-
ditional sources of information, which may prove
more difficult to analyze than mere DDL state-
ments. Untranslated (implicit) data structures
and constraints, empirical implementation ap-
proaches and techniques, optimization constructs,
ill-designed schemas, and, above all, the lack of
up-to-date documentation are some of the diffi-
culties that the analysts will face when trying to
understand existing databases.

= __|onum
0 Nl 1™ opate

Database Reverse Engineering

create table ORDER (
ONUM decimal (12) not null,
SENDER decimal (10) not null,
ODATE date not null,
primary key (ONUM),
foreign key (CNUM) references CUSTOMER))

ORDER

id: ONUM

The goal of this article is to describe the
problems that arise when one tries to rebuild
the documentation of a legacy database and the
methods, techniques, and tools through which
these problems can be solved. A more in-depth
analysis can be found in Hainaut (2002).

BACKGROUND: STATE OF THE
ART AND KEY PROBLEMS

Database reverse engineering has been recognized
to be a specific problem in the *80s, notably in
Casanova and Amaral De Sa (1984), Davis and
Arora(1985),and Navathe (1988). These pioneer-

Figure 2. A more realistic view of data reverse engineering

select CFO08 assign to DSK02:P12
organization is indexed
record key is K1 of REC-CF008-1.

select PFOS assign to DSK02:P27
organization is indexed
record key is K1 of REC-PFOS-1.

fd CF008.
record is REC-CF008-1.
01 REC-CF008-1.

02 K1 pic 9(6)-

02 filler pic X(125).

COMPANY
CyNum

produces

fd PFOS.
records are REC-PF0S-1,REC-PF0S-2.
01 REC-PFOS-1.
02 K1.
03 K11 pic X(9)-
03 filler pic 9(6)
02 filler pic X(180).
01 REC-PF0OS-2.
02 filler pic X(35).-

PRODUCT
ProdNum

CyName —0-N
CyAddress

id: CyNum

182

Quantity

0-N —— ProdDescription
ProdCategory

id: ProdNum

Database Reverse Engineering

Box 1.

01 CUSTOMER.
02 C-KEY pic X(14).
02 filler pic X(57)-

ing approaches were based on simple rules such
asthose illustrated in Figure 1, which work nicely
with databases designedinacleananddisciplined
way. Asecond generation of methodologies coped
with physical schemas resulting from empirical
design. More complex design rules were identi-
fied and interpreted (Blaha & Premerlani, 1995),
structured and comprehensive approaches were
developed (Edwards & Munro, 1995; Hainaut,
Chandelon, Tonneau, & Joris, 1993), and the
first industrial tools appeared (e.g., Bachman’s
Reengineering Tool). Many contributions were
published inthe *90s, addressing practically all the
legacy technologies and exploiting such sources of
information as application source code, database
contents, or application user interfaces. Among
synthesis publications, let us mention Davis and
Aiken (2000), the first tentative history of this
discipline.

These second-generation approaches were
faced with two families of problems that we will
briefly discuss here, namely, the elicitation of
implicitconstructs and the semantic interpretation
of logical schemas.

The Implicit Construct Problem

One of the hardest problems reverse engineers
have to face is eliciting implicit constructs. The
latter are data structures or data properties, such
as integrity constraints, that are an integral part of
the database, though they have not been explicitly
declared inthe DDL specifications, either because
they have been discarded during the implementa-
tionphase, or because they have beenimplemented
by other means, such as through validation code
in the application programs. Let us describe two
common patterns.

01 CUSTOMER.
02 C-KEY.
03 ZIP-CODE pic X(8).
03 SER-NUM pic 9(6).-
02 NAME pic X(15).
02 ADDRESS pic X(30).
02 ACCOUNT pic 9(12).

Implicit Field or Record Structure. Ideally, the
record fields of the database should be identified
and given meaningful names. However, compound
fields or even whole record structures often are
expressed as anonymous or unstructured fields
so that their intended structure is left implicit.
The following DDL code sample shows (left) the
code that declares the database record type CUS-
TOMER, the actual intended structure of which is
at the right. The application programs generally
recover the actual structure by storing records in
local variables that have been given the correct
detailed decomposition.

Implicit Foreign Keys. Interrecord associa-
tions most often are translated into foreign keys
in relational databases or into navigable parent-
child associations in hierarchical and network
databases. Databases made up of standard files
also include foreign keys, that is, fields used to
identify a record in another file, but these keys
cannot be declared in the file system DDL and are
left implicit. Surprisingly, hierarchical, network,
and even relational databases often include im-
plicit foreign keys. There are several reasons to
that, such as awkward or lazy design, backward
compatibility (e.g., compliance with Oracle 5,
which ignores primary and foreign keys), and
nonstandard ways to control referential integrity
(e.g., simulation of an unavailable delete mode).
Generally, the application programs include code
fragments that ensure that data that violate refer-
ential integrity are identified and coped with. For
instance, each statement that stores an ORDER
record is preceded by a code section that verifies
that the CUSTOMER file includes a record for the
customer that issued the order.

183

Database Reverse Engineering

Figure 3. Recovering ISA hierarchies from record types sharing common fields

MANAGER ENGINEER SECRETARY|

Emp# Emp# Emp#

Name Name Name

Depart Salary Salary

Level Level Language
Discipline

PERSONNEL
Emp#
Name

/\

EXECUTIVE EMPLOYEE

Depart Salary
MANAGER ENGINEER SECRETARY
Level Discipline Language

Figure 4. Expressing a complex multivalued compound attribute as a many-to-many relationship type

ENGINEER PROJECT
PID ProjlD
Name ProjName
Participation[0-N] Budget

ProjiD id: ProjlD
Percentage
id: PID

ref: Participation[*].ProjID
id(Participation):
ProjiD

Semantic Interpretation of Logical
Constructs

The process of recovering the intended seman-
tics of the logical schema (conceptual), called
interpretation or conceptualization, is fairly
straightforward for small and simple database
schemas, but it can prove complex for large and
aging databases.

This process appears to be the inverse of the
logical design of a database, the process through
which a conceptual schema is translated into a
technology-dependent model, suchasarelational
schema. Logical design has been described (Ba-
tini, Ceri, & Navathe, 1992) as a sequence of
transformation rules, so that the conceptualiza-
tion process could be defined by reversing these
transformations (Hainaut, 2006). This is valid
to a large extent, provided we know which rules
have been applied when the database was devel-
oped. What makes this idea more complex than
expected is that many legacy databases have been
developed through empirical approaches, based

184

ENGINEER PROJECT
PID ProjlD
Name ProjName
id: PID Budget
id: ProjiD
rticipat
oN participate oN
Percentage

on unusual and sometimes esoteric rules (Blaha
& Premerlani, 1995). We illustrate this process
through two common but nontrivial examples of
reverse transformations.

Recovering ISA Relations

Since most legacy data management systems do
notinclude explicitrepresentations of supertype or
subtype hierarchies, the latter must be converted
into simpler constructs. One of the most popular
techniques consists of implementing the bottom-
most entity types through downward inheritance.
Rebuilding the hierarchies from this implemen-
tation can be performed by such techniques as
formal concept analysis (Figure 3).

Recovering Relationship Types

There are many differenttechniquesto implement
relationship types in logical models. Figure 4
shows a typical implementation of a many-to-
many relationship type as a multivalued, com-

Database Reverse Engineering

Figure 5. A typical data reverse engineering
project

y 4
_ Project
A— planning A
. Identification
Pilote a— |
Evaluation
L Source — |
management Selection
—
Conditioning
. Physical
Full project =1 extraction A
+ S
—
Data analysis
- Logical
extraction Sch. analysis
Others

=== Conceptualization

Figure 6. The main processes and products of
database reverse engineering

DDLCOde 1

Documentation === Physical — Ph%sical
extraction schema

e R
Logical Logical
Data —t—l 9 — schema

extraction

User interface ===

' Conceptual
Reports — Conceptualization schema

pound field incorporated in one of its members.
The source relationship type is recovered through
a complex transformation.

THE PROCESSES OF DATABASE
REVERSE ENGINEERING

Basically, reverse engineering a database con-
sists of reversing its design process (Baxter &
Mehlich, 2000). The latter can be decomposed
into three main phases, namely, logical design,
which transforms the conceptual schema into a
DBMS- (database management system) dependent
logical schema; physical design, through which
technical constructs, such as indexes, are added
and parameterized; and coding, which translates

the physical schema into DDL code. Starting from
the DDL code, as well as from other informa-
tion sources, rebuilding the conceptual schema
can also be performed in three phases: physical
schema extraction (the inverse of coding), logical
schemaextraction (the inverse of physical design),
and conceptualization (the inverse of logical
design).

In empirical approaches, the standard design
phases often are interleaved. This makes reverse
engineering both more complex and less deter-
ministic.

In this section, we first discuss the architecture
ofareverse engineering project. Then, we describe
the three main processes identified above. Finally,
we discuss the role of reverse engineering tools.

Database Reverse Engineering
Projects

Carrying out a pilot project first is common
practice in risky processes. Indeed, it provides
precise measures on the quality of the informa-
tion sources, on the quality of the database, on
the skills required, and finally on the resources
needed in terms of money, time, and manpower
(Aiken, 1996).

The project itself includes two preliminary
phases, namely, project planning and management
of the information sources (Figure 5). The three
next phases are those mentioned here.

Physical Structure Extraction

Physical extraction is aimed at building the physi-
cal schema that is explicitly declared by the DDL
code (or the data dictionary contents) of the da-
tabase (Figure 6). This extraction generally uses
a parser that stores the physical data structures
in some repository. For instance, the contents of
an SQL- (structured query language) DDL code
is expressed in a graphical view that shows the
tables; columns; primary, secondary, and foreign
keys; indexes; table spaces; check predicates;
triggers; and stored procedures.

185

This process can be more complex when useful
information has also been coded in views instead
of in the global schema. This will be the case
for standard files (for which there is no global
schema but a large collection of record descrip-
tions included in the program source code), for
CODASYL databases (subschemas) and for re-
lational databases (views). These partial schemas
are extracted then integrated.

Logical Structure Extraction

The goal of this process is to recover the com-
plete logical schema of the database. The starting
point is the physical schema extracted from the
DDL code. It is then enriched with the implicit
constructs that are recovered through various
analysis techniques. Actual case studies show
that the DDL code, and therefore the physical
schema, conveys less than half the semantics of
the logical schema, hence the importance of this
phase, too often overlooked in the literature and
in commercial CASE proposals.

The first constructs to be made explicit are the
exact field and record structures, the unique keys
of record types and of multivalued fields, and the
foreign keys. Figure 4 provides an illustration
of the latter two concepts. The subfield ProjlD
of compound field Participation in record type
ENGINEER plays two roles. First, its values are
unique among all the Participation instances of
a given ENGINEER record. Second, each of its
values references a PROJECT record. Therefore,
this field is an identifier for the values of multi-
valued attribute Participation and a multivalued
foreign key targeting PROJECT. No DDL can
express these properties so that they basically are
implicit. Additional constructs can be looked for
as well, such as functional dependencies, value
domains, optional fields, or more meaningful
record and field names.

Amongthe informationsourcesandtechniques
that can be used to recover implicit constructs, let
us mention the following.

186

Database Reverse Engineering

The physical schema. Missing data struc-
tures and constraints can be inferred from
existing structural patterns. For instance,
names can suggest roles (unique keys,
foreign key), data types, or relationships
between data.

Technical/physical constructs. There canbe
some correlation between logical constructs
and their technical implementation. For
instance, a foreign key is often supported
by an index.

Application programs. The way data
are used, transformed, and managed in
the application programs brings essential
information on the structural properties of
these data. Analyzing the source code of
these programs requires techniques such
as dataflow analysis, dependency analysis,
programming cliché analysis, and program
slicing, borrowed from the program under-
standing discipline (Henrard, 2003). The
fine-grained analysis of DML statements can
provide hints on data structures’ properties
(Andersson, 1994; Petit, Kouloumdjian,
Bouliaut, & Toumani, 1994).
Screen/form/report layout. A screen form
or a structured report is a derived view of
the data. Its layout as well as labels and
comments can bring essential information
on the data (Heeseok & Cheonsoo, 2000).
Datadictionariesand CASE repositories.
Third-party or in-house data dictionaries, as
well as CASE tools, record and maintain es-
sential descriptions of the information of an
organization, including the file and database
structures.

Data. The data themselves can exhibit
regular patterns, unigueness, or inclusion
properties that can be used to infer implicit
structures and constraints.

Nondatabase sources. Small volumes of
data can be implemented with general-
purpose software such as spreadsheet and
word processors. Inaddition, semistructured
documents are increasingly considered a
source of complex data that also need to

Database Reverse Engineering

be reverse engineered. Indeed, large text
databases can be implemented according
to arepresentation standard such as SGML,
XML (extensible markup language), or
HTML (hypertext markup language) that
can be considered special-purpose DDL.

. And of course, the current documentation,
if any.

Data Structure Conceptualization

This process extracts from the complete logical
schema a tentative conceptual schema that repre-
sents the likeliest semantics of the former (Figure
6). Itmainly relies on transformational techniques
that undo the effect of the (often implicit) logical
design process.

This complex process is decomposed in three
subprocesses, namely, untranslation, de-optimiza-
tion, and conceptual normalization.

The untranslation process consists of reversing
the transformations that have been