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Abstract. Bayesian networks (BNs) have been widely used for learning
model structures of a domain in the area of data mining and knowledge
discovery. This paper incorporates ensemble learning into BN structure
learning algorithms and presents a novel ensemble BN structure learning
approach. Based on the Markov condition and the faithfulness condition
of BN structure learning, our ensemble approach proposes a novel sam-
ple decomposition technique and a components integration technique.
The experimental results reveal that our ensemble BN structure learn-
ing approach can achieve an improved result compared with individual
BN structure learning approach in terms of accuracy.

1 Introduction

Bayesian network is an efficient tool to represent a joint probability distribu-
tion and causal independence relationships among a set of variables. Therefore,
there has been great interest in automatically inducing Bayesian networks from
datasets. [6] During the last two decades, two kinds of BN learning approaches
have emerged. The first is the search & score method [2],[9], which uses heuristic
search methods to find the Bayesian network that maximizes some given score
function. Score function is usually defined as a measure of fitness between the
graph and the data. The second approach, which is called the constraint-based
approach, estimates from the data whether certain conditional independences
hold among the variables. Typically, this estimation is performed using statisti-
cal or information theoretical measures [1],[11].

Although encouraging results have been reported, both of the approaches done
so far suffer some computational difficulties in accuracy and cannot overcome
the local maxima problem. A statistical or information theoretical measure may
become unreliable on small sample datasets. At the same time, the computa-
tion of selected score function may also be unreliable on small sample datasets.
Moreover, the Cl-testing space and structure-searching space are so vast that
heuristic methods have to be used. So, the two approaches are usually limited
to find a local maxima.

To further enhance the accuracy and to try to overcome the local maxima
problem in BN leaning, this paper proposes an ensemble BN structure learning
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approach that aims to achieve a better result in BN induction. In Section 2,
we briefly introduces Bayesian network. In Section 3, we propose the overall
process of our learning method. We present the details of our learning approach
in sections 4, 5 and 6. In section 7, experimental results are compared and
analyzed. Finally, we conclude our work in section 8.

2 Bayesian Network

A Bayesian network is defined as a pair B = {G, O}, where G is a directed acyclic
graph G = {V(G), A(G)}, with a set of nodes V(G) = {V1, ..., V,} representing
a set of random variables and a set of arcs A(G) C V(G) x V(@) representing
causal independence/dependence relationships that exist among the variables.
O represents the set of parameters that quantifies the network. It contains a
parameter 0,,,, = P(v; | m;) for each possible value v; of V;, and m; of II;.
Here II; denotes the set of parents of V; in G and 7; is a particular instantiation
of HZ'.

For example, Fig.1 shows the Bayesian network called World and the param-
eter table O (g, ry of the node H. In the World network, the nodes A,B and
FE are root nodes which have not inarcs in the World.
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Fig. 1. An example of Bayesian network (World)

3 Ensemble BN Learning Overview

The overall process of our ensemble BN structure learning approach is shown in
Fig.2.

Our approach belongs to the category of ensemble methods, ”sub-sampling
the training dataset”.[3] Given the original training dataset D, our algorithm ap-
plies sample decomposition technique to generate several training sub-datasets
D;. From each generated training sub-dataset D;, the component learner learns a
component (Bayesian network) BN;. Then, using components integration tech-
nique, these learned components (BNs) are combined into a result Bayesian
network.
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Fig. 2. Process of ensemble BN structure learning

4 Root Nodes Based Sample Decomposition Method

BN structure learning is to estimate conditional independences and dependences
among the variables in the training dataset. The two most important sufficient
conditions for BN structure learning are the Markov condition and the faithful-
ness condition. The joint probability distribution P over the training dataset and
the true BN G satisfy the Markov condition if and only if under the distribution
P, a node is independent of its non-descendant nodes given its parent nodes in
the true BN G. The faithfulness condition means that all and only the condi-
tional independence relations true in P are entailed by the Markov condition
applied to G. [10]

Bootstrap sampling used by Bagging methods is a powerful tool for model se-
lection. When learning the structure of a graphical model from limited datasets,
such as the gene-expression datasets, Bagging methods [3] which use the boot-
strap [4] sampling have been applied to explore the model structure [14], [13],[15],
[16]. However, Bagging methods have several disadvantages over BN structure
learning. On the one hand, the distributions generated from the sub-datasets ob-
tained using Bagging methods and the true BN G may be unsatisfied with the
Markov condition and the faithfulness condition. On the other hand, although
Bagging methods may asymptotically converge to the true BN by re-sampling a
large number of times, they require some convergence conditions. For example,
the bagging method using non-parametric bootstrap sampling requires uniform
convergence in the distribution of the bootstrap statistic as well as a continuity
condition in the parameters.[I4], [5]

To solve the above problems, we propose a novel sample decomposition
method, which sub-samples the training dataset according to the values of root
nodes in the true BN, for ensemble BN structure learning. The sample decom-
position method is called Root Nodes based Sample Decomposition(RNSD).

4.1 Root Nodes Based Sample Decomposition

The detail of RNSD method is shown in Fig.3. The idea behind this decompo-
sition method is based on the following 3 facts:
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1. Learning BN from the sub-dataset sampled from the original training dataset
by limitting the range of values for some root node to be a part of all the pos-
sible values for the root node, we expect to get all the Markov independences
implied by the true BN.

2. Any arc, which is not connected with some root node in the true BN, can
be learned on at least one sub-dataset sampled from the original training
dataset by specifying values for the root node. So, learning on sampled sub-
datasets that all the possible values of the specified root node are considered,
we expect to learn all the “dependences” (arcs) of the true BN.

3. The joint marginal probability distributions of some nodes vary with the
different sub-datasets sampled from the original training dataset by limitting
the different ranges of the values for some root node.

Therefore, RNSD method can guarantee that all the Markov independences
implied by the true BN can be learned from the sampled sub-datasets. Moreover,
RNSD method can also hold the diversity in marginal probability distributions
during components (BNs) learning.

1) Search root nodes H; (i=1,...,L) on the original dataset D (Note: L is the number of found root nodes);

2) Compute marginal probability tables of every found root node {P(H)|1<i<L};

3) Construct probability tables 7 for all pairs and triples of the found root nodes {P(H,Hy), P(H.H,Hy) | 1 <i,j, k<L},
where P(H,Hy) = P(H) * PH,), P(1,H,H,) = P(H) * P(H) * PHY;

4) For each probability table T;, sort the probability values by ascendant order;

5) For each probability table 7, obtain the group Gr(H,..,Hy) of the sub-datasets Dy, ;. . .p s DY
sub-sampling the dataset D given {H#h;/\.../\H#h}, where (..., )E Ty;

6) For each group Gr(H,...,Hjy) of the sub-datasets, prune the sub-datasets which sampling rate is smaller than o ;

7) Prune the groups of sub-datasets which have few sub-datasets (such as the groups which only have no more
than 2 sub-datasets)

Fig. 3. Root Nodes based Sample Decomposition method

Take the World network in Fig.1 as an example. Let ¢ = 0.8. Assume that
the algorithm found the root nodes A, B and F in step 1. The sorted probability
tables after step 4 are shown in Fig.4. In step 5, the groups of the sampled sub-
datasets were generated. Finally, 4 groups of sub-datasets obtained after pruning
in steps 6 and 7 are shown in Fig.5.

4.2 Correctness Proof

Definition 1. Given a joint probability distribution P, X and Y are condi-
tional independent given Z, denoted as Ind(X,)Y |Z), if and only if the fol-
lowing statement holds: P(x | y,z) = P(x | z), Vx,y,2z such that P(yz) > 0,
where x,y and z denote an instantiation of the subsets of variables X,Y and Z,

respectively. [T1)]

Definition 2. Given a joint probability distribution P, X and Y are condi-
tional dependent given Z, denoted as Dep(X)Y |Z), if and only if the fol-
lowing statement holds: P(x | y,z) # P(z | z), 3z,y,z such that P(yz) > 0,



458 F. Liu, F. Tian, and Q. Zhu

Samplin;
Gr(4, B) rafe &
D az00p41 0.98
D421 0821 0.92
D420 7820} 0.82
Sampling
21 PE) Grd, E) Samplin;
A|PA [|B|PB)||0]02 rate GHA, B, E) rarie g
002 1]o1 1]02 Dzonez; 0.96
) D 4201821 M E20) 0.996
! 08 0109 2106 D gz pp21 0.96
Dy azonsa A 0.996
Al B | P(4,B) Al B | E| P(4,B,E) Dyaz0nE22 0.88 5 0988
0 1 0.02 0|1]0 0.004 Dyt pin 084 { A#0\B# \NE2} .
11 0.08 o1 ]1 0.004 D‘ — o8a Dy 41 7821 N E20) 0.984
(AFIAE#L .
(1) 8 g;g (1) i (2) 8'812 Sampling Dyapnsansay 0.984
B| E| P(BE) A. E] PULE) 1t 0.016 Gr(B. E) rate D 420140 A\ E20} 0.964
] ; 0010 0.036 D ps1 pr20y 0.98 Dy 4s0 /B0 NE#1} 0.964
11 0] 0.02 0] 0] 0.04 ol 0 11 0.036
11 110.02 0| 1] 0.04 112 0.048 D g1 pp21y 0.98 Dy 4417821 A2} 0.952
(1) 3 g.(l)g (1) é g,iz 0lo|2] o.108 Digai npiay 0.94 Dy ssoNBr0NER) 0.892
- - 11010 0.144
0] 1] 0.18 1| 1| 0.16 110 1 0.144 D000y 0.82 Dy 21720 N E#0} 0.856
0] 2] 054 112] 048 1]ol2 0.432 Dypaonp1y 0.82 Dy 21 pB20NE# 0.856

Fig. 4. Sorted probability tables Fig.5. Groups of sampled sub-datasets
(0 =0.8)

where x,y and z denote an instantiation of the subsets of variables X,Y and Z,
respectively. [T1)]

Assume that the original training dataset D is data faithful to the true BN G.[11]
We take the World network in Fig.1 as an example to prove the correctness.

Proposition 1. Learning a BN from the sub-dataset sampled from the original
training dataset by limitting the range of the wvalues for some root node to be
a part of all the possible values for the root node, we expect to obtain all the
Markov independences implied by the true BN from the learned BN.

Proof. Assume that we obtain the sub-dataset Do from the original training
dataset D by limitting the range of the values for the root node E to be F #
0 {(F=1)U(E=2)}.

Assume that P denotes the distribution faithful to the true BN and P’ denotes
the distribution over the sub-dataset Dgq.

We take 2 cases to consider whether there exists the Markov independences
implied by the true BN in the distribution P’ over the sub-dataset Dpo.

1. For the nodes of which the parents set contains the root node FE, for example
the node D, there exists the Markov independence Ind(D,C | A, B, E) in
the true BN.

According to the definition of conditional independence, there exists:

P(d|e¢,a,b,E=1)=P(d|a,b,E=1)
P(d| ¢ a,b,E=2) = P(d|a,b,E =2)
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We can infer P'(d | ¢,a,b,E =2) = P'(d | a,b, E = 2).

According to the definition of conditional independence, we can infer that
there exists Ind(D,C | A, B, E) in the distribution P’ over the sub-dataset
DE750.

2. For the nodes of which the parents set does not contain the root node FE,
for example the node G, there exists the Markov independences Ind(G,C |
F,H) and Ind(G,E | F, H) in the true BN.

According to the definition of conditional independence, there exists:

P(glec f,h,E=1)= Ngycsn1/Negn1 = P(g | £, h)
P(g|c, f,h,E=2)= Ngcsna/Neno = P(g | f,h)
P(g| f.h,E=1) = Ngsn1/Ngn1 = P(g | f,h)
P(g | f.h,E =2)= Ngsna/Ngn2 = P(g | f,h)

We can infer that P'(g | ¢, f,h) = P'(g | f,h).

According to the definition of conditional independence, we can infer that
there exists Ind(G,C | F,H) in the distribution P’ over the sub-dataset
Dpso.

According to case 1, 2, we infer that Proposition 1 is correct.

Lemma 1. Learning a BN from the sub-dataset sampled using RNSD method,
we can obtain all the Markov independences implied by the true BN from the
learned BN.

Proof. Using the same way as Proposition 1, we can infer it.

Proposition 2. Learning BNs from the sub-datasets which are sampled by by
limitting the range of values for some root node to be a part of all the possible
values for the root node, if all the possible values of the root node can be included
in the sub-datasets, then we can obtain all the edges of the true BN from the
learned BNs.

Proof. There is an edge between the node C' and the node F'in Fig.1. We can get
Dep(C,F | A) and Dep(C,F | A, E). According to the definition of conditional
dependence, we can infer the following formula:

Dep(C,F | A,E) < Je € E,Dep(C,F | A,E =e) (1)

According to Dep(C,F | A)p,_, < Dep(C,F | A,E # 0)p and the formula
(1), we can infer the proposition.

According the above inferences, we can conclude that the BNs learned from
the sub-datasets, which are sampled using our RNSD method, include all the
Markov independences and edges implied by the true BN.
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4.3 Root Nodes Search Method
The search method sees Fig.6.

1) Conduct order-0 CI tests for each pair nodes, then build the undirected graph UG;

2) Conduct order-1 CI tests for any three nodes X, Y and Z that in the undirected graph UG,, X
and Y, and Y and Z, are directly connected; and X and Z are not directly connected, if Dep(X,
Z |Y), then direct the edges X—Y and Z—Y;

3) Find the maximal cliques {G,;,...,G,} consisting of the nodes which have no inarcs, that every
clique is undirected complete graph and has at least one outarc;

4) Order the maximal cliques by the number of nodes in ascendant order and prune the cliques
Gu[ that IIGmH > 5

5) For every maximal clique, use the exhaustive search & Bayesian score function method to
learn the root node in the maximal clique;

6) Detect and delete pseudo root nodes.

Fig. 6. Root nodes search method

The idea behind the search root nodes method is based on the following
assumption, which is correct in most situations both for synthetic datasets and
for real-life datasets:

Assumption 1. If there exists a directed path X —— Y between node X and
node Y in a Bayesian network, then Dep(X,Y | NULL).

Under the above assumption, we can obviously infer that every clique obtained
after the 4th step of the method has one and only one root node.

In most cases, Assumption 1 is satisfied. However, some exceptions may occur
when there are many nodes (normally, the number of nodes including the two
nodes on the path > 5) on the directed path between two nodes, that is, the two
nodes may be independent conditional on NULL. Moreover, even if Assumption
1 is satisfied in any situation, some results after step 5 in Fig.6 may be pseudo
root nodes on limited datasets.

We take one step to solve the pseudo root nodes problem. The step is to detect
pseudo root nodes and delete them (see step 6 in Fig.6). The detection for pseudo
root nodes is based on 2 kinds of independences. One kind of independences is
the Markov independences given the obtained root node of other nodes in the
maximal clique. The other kind of independences is the independences among
root nodes. Firstly, if the first kind of independences given some found root node
is not satisfied, then the found root node is pseudo root node and prune the
pseudo root node. Secondly, if the second kind of independences is not satisfied
by the two found root nodes, then at least one found root node is pseudo root
node, and we prune the two root nodes.

For example, during the World network learning, the running result for every
step of our root nodes searching method sees Fig.7.

Our root nodes search method does not have to find all the root nodes in the
true BN, it is enough to find several root nodes in the true BN for our ensemble
BN learning in terms of accuracy. We can also use other methods to search root
nodes, such as the RAT algorithm [12].
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Fig. 7. Search root nodes in the World network

5 Bayesian Network Learner

Bayesian network learner is an individual BN learning algorithm and a build-
ing block of ensemble BN structure learning algorithm. Normally, it needs to
be computationally efficient. Therefore, we selected OR algorithm [9], TPDA
algorithm [I], and other algorithms using fast heuristic search (such as Greedy
search) methods [§] as our BN learners. In our implementations for these algo-
rithms, we applied partial nodes order information which was acquired by our
root nodes search method.

6 Bayesian Networks Integration Method

Our integration method includes 2 parts: the integration of the Bayesian net-
works in the same group; the integration of the intergroup undirected networks.

6.1 Intragroup Bayesian Networks Integration

The method for intragroup Bayesian network integration is shown in Fig.8.
For any edge €, (¢ is undirected edge of the arc e) in the BNs, consider the

quantity:
L

1 ~
P@) =, ; 1{¢ € BN}
If P(é) > P(€'), then it is more probable that € exists in the true BN than ¢’
does. Furthermore, if P(€) > 1/2, we classify edge € as “true”. Therefore, we
can obtain the most probable BNs represented in the form of undirected network
UG, which every edge € has a probability table g(e) of {—, «—, < }.
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In the group Gr;, assume we have learned L Bayesian networks BN,,..., BN, :

1) For the Bayesian Networks BN,,..., BN, , according to the principle of simple
voting, compute the probability of every edge e without considering
orientation in the Bayesian Networks

2) Prune the edges whose probabilities are less than 1/2, and create a undirected
network UG, which every edge é has a probability table g(e)
about {—,«, <}

Fig. 8. Intra-group Bayesian Networks Integration

6.2 Intergroup Undirected Networks Integration

Assume there are m groups of sub-datasets sampled using RNSD method. After
intragroup Bayesian networks integration for every group Gri(i = 1,...,m),
we obtained m undirected networks UG;. For any possible arc e, consider the
quantity:

/ NS ~ .
P'(e) = . ;p(e)l{e eUG;,i=1,...,m}
Note: Weight p(e) is the probability value of {—, <}, where p(—) = g(—)+g(+)
and p(—) = g(—) + g().
Finally, we take search method and score function to generate the result
Bayesian network of our ensemble BN structure learning method. The process
sees Fig.9.

Assume we have learned m undirected networks UG; (i=1,...,m):

1) For the undirected networks UG; (i=1,...,m), according to the principle of
weighted voting, compute the probability value of every possible arc which
exists in the undirected networks

2) Order arcs by the probability values in ascendant order, and apply exhaustive
or heuristic search method and Bayesian score function to learn the maximal
score Bayesian network by ‘adding arc’, ‘deleting arc’ and ‘reversing arc’
operators

Fig. 9. Inter-group Bayesian Networks Integration

7 Experimental Results

We implemented OR algorithm, OR-BWYV algorithm, OR-HNSD algorithm,
TPDA algorithm, TPDA-BWYV algorithm, and TPDA-HNSD algorithm. OR-
BWYV and TPDA-BWYV algorithms use Bagging sampling method and weighted
voting integration method. Tests were run on a PC with Pentium4 1.5GHz and
1GB RAM. The operating system was Windows 2000. 4 Bayesian networks were
used. From these networks, we performed experiments with 500, 1000, 5000
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Table 1. Bayesian Networks

BN

Alarm 37 46 12
Barley 48 84 10
Insur 27 52

Table 2. Average BDe(Alarm-OR)

SIZE OR OR-BSW OR-RNSD
500 -15.1000 -14.9235 -13.8901
1000 -14.8191 -14.1917 -13.7610
5000 -13.9041 -13.8941 -13.1002

Table 4. Average BDe(Barley-OR)
SIZE  OR OR-BSW OR-RNSD
500 -82.3448 -81.4104 -80.1943
1000 -78.9655 -78.2544 -76.2538
5000 -76.7081 -75.2273 -73.3371
Table 6. Average BDe(Insur-OR)

SIZE OR OR-BSW OR-RNSD

Nodes Num Arcs Num Roots Num Max In/Out-Degree  Domain Range

4/5 2-4
4/5 2-67
3/7 25

Table 3. Average BDe(Alarm-TPDA)

SIZE TPDA TPDA-BSW TPDA-RNSD

500 -18.0973 -17.8045 -17.3650
1000 -15.4286 -15.0012 -14.2455
5000 -14.4960 -14.4731 -13.2682

Table 5. Average BDe(Barley-TPDA)

SIZE TPDA TPDA-BSW TPDA-RNSD

500 -103.7931 -117.5443 -110.5973
1000 -111.0690 -112.2151 -103.5482
5000 -116.8919 -106.7328 -99.8341

Table 7. Average BDe(Insur-TPDA)

SIZE TPDA TPDA-BSW TPDA-RNSD

500 -24.0167 -23.3812 -24.0010 500 -28.7857 -28.3471 -28.5172
1000 -22.6077 -21.5445 -22.5077 1000 -25.1111  -24.8157 -25.0111
5000 -19.4286 -18.9523 -19.2286 5000 -20.8571  -20.7916 -20.5571

training cases each. For each network and sample size, we sampled 10 original
datasets and record the average results by each algorithm. Moreover, we applied
Bagging sampling with 200 times in OR-BWV and TPDA-BWYV algorithms. Let
o = 0.8 in Fig.3 and § = 5 in Fig.6.

We compared the accuracy of Bayesian networks learned by these algorithms
according to the average BDeu score. The BDeu score corresponds to the poste-
riori probability of the structure learned.[f] The BDeu scores in our experiments
were calculated on a seperate testing dataset sampled from the true BN contain-
ing 50000 samples. Tables 2-7 report the results.

There are several noticeable trends in these results. Firstly, as expected, as the
number of instances grow, the quality of learned Bayesian network improves, ex-
cept to TPDA for Barley network (500, 1000, 5000). It is due to that constraint-
based method is unstable for limited datasets (500, 1000, 5000) relative to Barley
network. At the same time, we can see that TPDA-BWYV algorithm and TPDA-
RNSD algorithm improve the stability of TPDA, that is, the quality of learned
Bayesian networks by TPDA-BWV and TPDA-RNSD improves with the in-
crease of sample size. Secondly, our RNSD based ensemble algorithms OR-RNSD
and TPDA-RNSD are almost better than or at least equal to the individual
Bayesian network learning algorithms in terms of accuracy on limited datasets.
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Thirdly, in most cases, our ensemble algorithms have better performance than
BWYV ensemble algorithms. Finally, for Bayesian networks with few root node
(such as Insur network), our ensemble algorithms have little improvement on
learning accuracy. So, they are ineffective for these Bayesian networks.

8 Conclusion

We proposed a novel sampling technique and a components integration technique
to incorporate ensemble learning into BN structure learning. Our results are
encouraging in that they indicate that the our method achieved a more accurate
result BN than individual BN learning algorithms.
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