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Abstract. Existing algorithms for learning Bayesian network (BN) re-
quire a lot of computation on high dimensional itemsets, which affects
accuracy especially on limited datasets and takes up a large amount of
time. To alleviate the above problem, we propose a novel BN learning
algorithm MRMRG, Max Relevance and Min Redundancy Greedy al-
gorithm. MRMRG algorithm is a variant of K2 algorithm for learning
BNs from limited datasets. MRMRG algorithm applies Max Relevance
and Min Redundancy feature selection technique and proposes Local
Bayesian Increment (LBI) function according to the Bayesian Informa-
tion Criterion (BIC) formula and the likelihood property of overfitting.
Experimental results show that MRMRG algorithm has much better effi-
ciency and accuracy than most of existing BN learning algorithms when
learning BNs from limited datasets.

1 Introduction

There are many problems in fields as diverse as medical diagnosis, weather fore-
cast, fault diagnosis, where there is a need for models that allow us to reason
under uncertainty and take decisions, even when our knowledge is limited. To
model this type of problems, AI community has proposed Bayesian network
which allows us to reason under uncertainty. [I] During the last two decades,
many BN learning algorithms have been proposed. But, the recent explosion of
high dimensional and limited datasets in the biomedical realm and other domains
has induced a serious challenge to these BN learning algorithms. The existing
algorithms must face higher dimensional and smaller datasets.

In general, BN learning algorithms take one of the two approaches: the
constraint-based method and the search & score method. The constraint-based
approach [2],[3],[I5] estimates from the data whether certain condition inde-
pendences hold between variables. Typically, this estimation is performed us-
ing statistical or information theoretical measure. The search & score approach
[4],15],[6],[9],[12],[13] attempts to find a graph that maximizes the selected score.
Score function is usually defined as a measure of fitness between the graph and
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the data. These algorithms use a score function in combination with a search
method in order to measure the goodness of each explored structure from the
space of feasible solutions. During the exploration process, the score function is
applied in order to evaluate the fitness of each candidate structure to the data.

Although encouraging results have been reported, the two approaches both
suffer some difficulties in accuracy on limited datasets. A high order statistical
or information theoretical measure may become unreliable on limited datasets.
At the same time, the result of selected score function may also be unreliable on
limited datasets.

To further enhance learning efficiency and accuracy, this paper proposes Max-
Relevance and Min-Redundancy Greedy BN learning algorithm. MRMRG algo-
rithm applies Max-Relevance and Min-Redundancy feature selection technology
to obtain better efficiency and accuracy on limited datasets, and proposes Local
Bayesian Increment function according to BIC approximation formula and the
likelihood property of overfitting for limited datasets.

This paper is organized as follows. Section 2 provides a brief review of some
basic concepts and theorems. Section 3 describes K2 algorithm. In Section 4, we
propose Local Bayesian Increment function. Section 5 represents the details of
MRMRG algorithm. At the same time, we also analyze the time complexity of
MRMRG. Section 6 shows an experimental comparison among K2 and MRMRG.
Finally, we conclude and present future work.

2 Concepts and Theorems

2.1 Bayesian Network

A Bayesian network is defined as a pair B = {G, O}, where G is a directed acyclic
graph G = {V(G), A(G)}, with a set of nodes V(G) = {V4,...,V,,} representing
a set of random variables and a set of arcs A(G) C V(G) x V(G) representing
causal independence/dependence relationships that exist among the variables.
O represents the set of parameters that quantifies the network. It contains a
parameter 0,,,, = P(v; | m;) for each possible value v; of V;, and m; of II;.
Here II; denotes the set of parents of V; in G and 7; is a particular instantiation
of HZ'.

2.2 Max-Dependence and MRMR

Definition 1. In feature selection, Max-Dependence scheme [7] is to find a
feature set S with m features, which jointly have the largest dependency on the
target class C'; S = arg  max }I({X“i =1,...,m}C).

it=1,....om

Definition 2. In feature selection, Max-Relevance criterion [7] is to select

a feature set S with m features satisfying S = arg max Ié‘l > I(X;0) ],
X;es

which approzimates I({X;,i = 1,...,m}; C) with the mean value of all mutual

information values between individual features X;,i =1,...,m and class C.
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Definition 3. In feature selection, Min-Redundancy criterion [7] is to select
a feature set S with m features such that they are mutually minimally similar

(mutually mazimally dissimilar): S = arg msin <|51|2 > I(X X5)
Xi,XjES

Definition 4. In feature selection, Max-Relevance and Min-Redundancy
criterion [7] is to find a feature set S with m features obtained by optimizing
the Mazx-Relevance criterion and the Min-Redundancy criterion simultaneously.
Assume that the two conditions equally important, and consider the following

criteria: S = argmax | Y. I(X;;C) — |;l > I(X; X)) |-
5 \Xxes X;,X;€8

We select the feature set S, = {X1,X2,..., X}, the classification variable
C. Using the standard multivariate mutual information MI1(Xy,...,X,,) =

[ [p(x1,...,2m)log p(;(:if p?;:n)) dxy ...dz,, we can get the following formula:

. _ c P(Sm. c) - — _
[(Sm: C) = / / (S )log 1) dS,de = MI(S,..C) = MI(S,). (1)

Equation (1) is similar to the MRMR feature selection criterion: The second
term requires that the features S, are maximally independent of each other(that
is, minimum redundant), while the first term requires every feature to be max-
imally dependent on C'. In practice, the authors have shown that if one feature
is selected at one time, then MRMR criterion is almost optimal implementation
scheme of Max-Dependence scheme on limited datasets. [§]

3 K2 Algorithm

Given a complete dataset D, K2 searches for the Bayesian network G* with
maximal P(G, D).

Let D be a dataset of m cases, where each case contains a value for each
variable in V. D is sufficiently large. Let V be a set of n discrete variables,
where z; in V has r; possible values (vi1, via, ..., Vir;). Let G denote a Bayesian
network structure containing just the Variables in V. Each variable z; in G has
the parents set m;. Let ¢;[j] denote the j* unique instantiation of m; relative
to D. Suppose there are ¢; such unique instantiation of ;. Define Njjito be
the number of cases in D in which variable x; is instantiated as v;; and m; is

instantiated as ¢;[j]. Let N;; = Z Nijk.
Given a Bayesian network model cases occur independently. Bayesmn network

qi
prior distribution is uniform. It follows that g(i,m;) = [] (N(:jk_rl " H Niji! .
jf k2 k2
It starts by assuming that a node has no parents, and then in every step it adds
incrementally the node which can most increase the probability of the resulting

BN, to the parents set. K2 stops adding nodes to parents set when the addition
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Input: A set V' of n variables, an ordering on the variables, a dataset D
containing m cases, an upper bound /,,,,

Output: for each variable X; (i=1, . . ., n), a printout of the parents set 7, .
Procedure K2()
Fori=1tondo
7, = NULL;
Po/d:g(ia 7T; )a
OK=TRUE;
while OK and ( || 7, ||< t4qr ) do
Y= argmax[g(i,;r, qu)] ;
X ePre,-7;
P =g, 7, U Xp);
If Py, > Pyiq then
Pold = Pnew;
7,=m, U{Y};
Else
OK=FALSE;
Endif
Endwhile
Output(X;, 7, );
EndFor
Endproc

Fig. 1. K2 algorithm

cannot increase the probability of the BN given the data. The pseudo-code of
MRMRG algorithm sees Fig.1.

Pre; denotes the set of variables that precede X;. m; denotes the current
parents set of the variable X;. ;4. denotes an upper bound on the number of
parents a node may have.

4 Local Bayesian Increment Function

Let X and Y be two discrete variables, Z be a set of discrete variables, and z
be an instantiation for Z. XY ¢ Z.

Definition 5. According to Moore’s recommendation [10] about the chi-squared
test, the dataset D satisfying the following condition is sufficiently large for
{XUY} : Al cells of {XUY} in the contingency table have expected value greater
than 1, and at least 80% of the cells in the contingency table about {X UY} have
expected value greater than 5.

Definition 6. According to Moore’s recommendation [10] about the chi-squared
test, the sub-dataset D z__ satisfying the following condition is locally suffi-
ciently large for {X UY} given Z =z : All cells of {X UY'} in the contingency
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table conditioned on Z = z have expected value greater than 1, and at least 80%
of the cells in the contingency table about {X UY} on Z = z have expected value
greater than 5.

Learning on limited datasets, we loose the “locally sufficiently large” condition:
If the number of cases in Dy__ is much larger than the number of values for
{X UY}, for example ||Dy__|| > 4 x (|| X]| x [[Y]); then we assume that the
sub-dataset Dy__is “locally sufficiently large” for {X UY} given Z = z.

Let D be a dataset of m cases. Let V be a set of n discrete variables, where X;
in V has r; possible values (v;1,v;2,...,v;,). Bp and Bs denote BN structures
containing just the variables in V. Bg exactly has one edge Y — X; more than
Bp. X; has the parents set m; in Bp and the parents set m; UY in Bg. Nyji
is the number of cases in D, which variable X is inbtantiated as vy and m; is

instantiated as ¢;[j]. Let Njji = ZN {juyt ks Nig = Z Nijk. 6;,6 denote the

maximum likelihoods of @;, ©. 775 denoteb the mbtantlatlon of m; in the [th case.

Cases occur independently. The prior distribution of possible Bayesian net-
works is uniform. Given a Bayesian network model, there exist two properties:
Parameter Independence and Parameter Modularity. [5]

We apply the BIC formula also used by Steck in [I1] : BIC(Bg) = log L (é) —
3 log(m)dim (é) ~ log(P(D | Bg)) to control the complexity of BN model. BIC

adds the penalty of structure complexity to LBI function to avoid overfitting,.
Definition 7 (Local Bayesian Increment Function)

Lbi(Y,i,m;) = log (P(Bs, D)/ P(Bp, D)) ~ BIC(Bs) — BIC(Bp)

= log (L (éBS) /L (65 )) ; log(m) {dim (éBS) — dim (éBP)}

o (1 (67 1.(67)) = (916%) b (» (067

— Y og (P (a1 675,71 Uy) /P (| 657 1))

According to the likelihood property of overfitting(the marginal likelihood of
overfitting for the training dataset is usually no less than non-overfitting), we
assume that the log-likelihood does not change on the sub-dataset Dy ,_4, (4]
which are not “locally sufficiently large” for {X UY} (that is, to assume that
there is overfitting between X and the parents set m; UY on the Dy, _g 1.),

Z log P (ml ‘ éBs’Wl @] y) = Z log P (xl | éBPﬂTl) ) (2)
dzEDM:%[*] dlEDm:rm[*]

According to (2), we infer the following results:

o (2 (67)) (1)
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= Z Nij x I;(X,Y),for j, Dy, —4.(; is “locally sufficiently large”
J

dim (éBS> — dim (QBP> =(ry — 1)(ri — 1)g;

1
Lbi(Y,i,mi) = 3 Nij x L(X,Y) = (ry = 1)(ri = g log(m),
J
for j, Dr,—g,15 is “locally sufficiently large”.

Note: I;(X,Y) is the mutual information between X and Y on Dy, 4, (-

5 MRMRG Algorithm

MRMRG algorithm initializes the current parents set m; of the variable X; to
NULL, and then adds the variables one by one, which acquire the maximal
value for Local Bayesian Increment (LBI) function, into the parents set 7; from
Pre; — m;, until the result of LBI function is no more than 0. Repeating the
above steps for every variable, we can obtain an approximately optimal Bayesian
network. The pseudo-code of MRMRG algorithm sees Fig.2.

Pre; denotes the set of variables that precede X;. m; denotes the current
parents set of the variable X;. (k < 5).

Given an ordering on the variables, MRMRG algorithm improves greedy BN
learning algorithms (such as K2 algorithm [4]) in the following two ways in order
to learn more accurately and efficiently on limited datasets.

Firstly, on limited datasets, the results of traditional scoring functions (such
as K2 score [4],MDL score [6],BDe score [5], etc) score(C,m; U X;) have less and
less reliability and robustness with the dimension increase of m; UX};, so that the
formula Y = arg  max  score(C,m; UX;) cannot obtain the variable Y with

i€Pre;—m;
the maximal scorej even cannot acquire a variable with approximately maximal
score sometimes. Since MRMR technology only uses 2-dimensional computation,
it has much higher reliability and robustness than traditional scoring functions
on limited datasets. Furthermore, according to the discussion in section 2.2,
we know that if one feature is selected at one time (that is Greedy search),
MRMR technology is nearly optimal implementation scheme of Max-Dependence
scheme, which is equivalent to the maximal score method, on limited datasets.
We consider that for some variable X; € Pre; — m;, if the value of {I(X;;C) —
|7rj 41 X%:m I(X;; X)} is the largest, then it is the most probable that the value

of the formula score(C, m; UX;) is the largest. Thus, MRMRG algorithm applies

Max-Relevance and Min-Redundancy (MRMR) feature selection technology and

replaces score(C, m; UX;) with the formula {I(X;;C) — |ﬂ_}+1 > I(X;;X)} to
’ Xem;

obtain the variable Y which gets the maximal score. Firstly, MRMRG algorithm
selects the top k variables from the sorted variables set Pre; — m; according to
the value of the formula {I(X;;C) — |7'rj+1 Xze:m I(X;; X)} by descendant order.
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Input: A set V of n variables, an ordering on the variables, a dataset D containing m cases.
Output: for each variable X; (i=1, . . ., n), a printout of the parents set 7, .
Procedure MRMRG()
Fori=1tondo
Initialize 7, to NULL and OK to TRUE;
while OK
1

For every variable XE Pre; - 7, , compute the formula {I (X;C)- 1
+

> 1<X;X,>} (1

Xjer,

7;

Sort the variables in Pre; - 7, by descendant order according to the value of (1);

Obtain the top & variables {Y;, Y5, ..., Y} from the sorted variables set Pre; - 7, ;
Y . = argmax [Lbi(Y/.,i,/r‘ )];
(TR AN A

If Lbi(Y,,.,i,7,)>0 then
7o =7 O
Else
OK=FALSE;
Endif
Endwhile
Output (X, 7, );

Endfor
Endproc

Fig. 2. MRMRG Bayesian network learning algorithm

Then, it take the variable Y with the largest value of LBI function among the k
variables as the variable with the maximal score.

Secondly, MRMRG algorithm proposes LBI function to replace traditional
score increment functions (such as K2 [4],MDL [6],BDe [5]) to control the com-
plexity of Bayesian network and to avoid overfitting. When the dataset D is
“sufficiently large” for {X UY Um;}, LBI function is equivalent to K2 increment
function. When the dataset D is not ”sufficiently large” for {X UY U m;}, but
there exist sub-datasets D, _, [« are "locally sufficiently large” for { XUY'} given
m; = ¢;[¥], MRMRG algorithm can also apply LBI function to improve accuracy
and avoid overfitting (see section 4). The technique also makes it unnecessary to
set the maximal parents number u,,q; of a node.

5.1 The Time Complexity of MRMRG

r = max(r;),i = 1,...,n, where r; is the number of values for the variable
X;. The complexity of the formula I(X; ) > I(X;X;) is O(n). The
FET;

complexity of computing Lbi(Y, i, ;) is O(mnr). The while statement loops at
most O(n) times, each time it is entered. The for statement loops n times. So,
in the worst case, the complexity of MRMRG() is O(kmn?3r). On the other
hand, the worst-case time complexity of K2 algorithm is O(mn?*r). Therefore, if

_ 1
|7q|+1 x
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n >> k, then MRMRG has much better efficiency (more than one magnitude)
than K2 algorithm.

6 Experimental Results

We implemented MRMRG algorithm, K2 algorithm, TPDA algorithm [3] and
presented the comparison of the experimental results for 3 implementations.

Tests were run on a PC with Pentium4 1.5GHz and 1GB RAM. The operat-
ing system was Windows 2000. These programs were developed under Matlab
7.0. 5 Bayesian networks were used. Table 1 shows the characteristics of these
networks. The characteristics include the number of nodes, the number of arcs,
the maximal number of node parents/children(Max In/Out-Degree), and the
minimal/maximal number of node values(Domain Range).

From these networks, we performed these experiments with 200, 500, 1000,
5000 training cases each. For each network and sample size, we sampled 20
original datasets and recorded the average results by each algorithm. Let w4, =
7 in Fig.1 and k = 3 in Fig.2.

Table 1. Bayesian networks

BN Nodes Num Arcs Num Max In/Out-Degree Domain Range
Insur 27 52 3/7 2-5
Alarm 37 46 4/5 2-4
Barley 48 84 4/5 2-67
Hailf 56 66 4/16 2-11
Munin 189 282 3/15 1-21

6.1 Comparison of Runtime Among Algorithms

A summary of the time results of the execution of all the 3 algorithms is in Table
2. We normalized the times reported by dividing by the corresponding running
time of MRMRG on the same datasets and reported the averages over sample
sizes. [14] Thus, a normalized running time of greater than 1 implies a slower
algorithm than MRMRG on the same learning task. A normalized running time
of lower than 1 implies a faster algorithm than MRMRG.

From the results, we can see that MRMRG has better efficiency than other
3 algorithms K2 and TPDA. In particular, for smaller sample sizes (200, 500,
1000), MRMRG runs several times faster than K2 and TPDA. For larger sample
sizes (5000), MRMRG performs nearly one magnitude faster than K2.

6.2 Comparison of Accuracy Among Algorithms

We compared the accuracy of Bayesian networks learned by these 3 algorithms
according to the BDeu score. The BDeu score corresponds to the posteriori
probability of the learned structure.[5] The BDeu scores in our experiments
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Table 2. Normalized Runtime Table 3. Average BDeu(Insur)
Size MRMRG K2 TPDA Size MRMRG K2 TPDA
200 1.0 2.39 8.82 200 -21.915 -22.993 -31.507
500 1.0 5.57 7.61 500 -19.032 -19.583 -28.786
1000 1.0 9.18 4.57 1000 -19.386 -19.533 -25.111
5000 1.0 12.03 1.22 5000 -18.177 -18.152 -20.857
Table 4. Average BDeu(Alarm) Table 5. Average BDeu(Barley)

Size MRMRG K2 TPDA Size MRMRG K2 TPDA

200 -15.305 -16.069 -24.456 200 -81.794 -83.972-106.782

500 -13.858 -13.950 -18.097 500 -76.327 -79.194 -103.783

1000 -13.319 -13.583 -15.429 1000 -76.846 -77.375-111.069

5000 -13.021 -12.979 -14.496 5000 -75.710 -76.281 -116.892
Table 6. Average BDeu(Hailf) Table 7. Average BDeu(Munin)
Size MRMRG K2  TPDA Size MRMRG K2 TPDA
200 -72.138 -73.361 -106.135 200 -65.971 -68.393 -135.103
500 -71.217 -72.662 -101.382 500 -62.483 -63.250 -125.625
1000 -70.955 -71.734 -97.374 1000 -61.967 -62.837 -140.476
5000 -70.277 -71.105 -84.300 5000 -59.392 -60.943 -145.635

were calculated on a seperate test set sampled from the true Bayesian network
containing 50000 samples. Table 3-7 reports the results.

From the results, we can see that MRMRG can learn more accurately than
TPDA on limited datasets. In particular, MRMRG has better accuracy than
K2 on limited datasets. The accuracy of MRMRG is almost the same as K2
on larger datasets relative to the true Bayesian network, such as Insur(5000),
Alarm(5000).

7 Conclusion

Efficiency and accuracy are two main indices in evaluating algorithms for learn-
ing Bayesian network. MRMRG algorithm greatly reduces the number of high
dimensional computations and improves scalability of learning. The experimental
results indicate that MRMRG has better performance on efficiency and accuracy
than most of existing algorithms on limited datasets.

We are interesting in incorporate ordering-based search method [9] into our
MRMRG algorithm to implement MRMRG without the information of the order
between nodes. In addition, much more experimentation is needed on different
network structures.
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