
X. Zhou et al. (Eds.): APPT 2003, LNCS 2834, pp. 382–386, 2003.
© Springer-Verlag Berlin Heidelberg 2003

A Transaction Model for Grid Computing

Feilong Tang, Minglu Li, and Jian Cao

Department of Computer Science & Engineering,
Shanghai Jiao Tong University
Shanghai 200030, P.R. China

{tang-fl,li-ml,cao-jian}@cs.sjtu.edu.cn

Abstract. In Grid environment, transaction must have the abilities to coordinate
both short-lived operations and long-lived business activities, which can not
directly be supported by traditional distributed transaction mechanisms. This
paper introduces a transaction model based on agent technologies to satisfy
these requirements. The model can coordinate both Atomic transaction and
Compensation transaction. The agents shield users from complex transaction
process. For two types of transactions, we respectively analyze the coordination
mechanisms and provide corresponding algorithms. We also discuss the
implementation of this model and propose a security solution.

1 Introduction

The main goal of Grid computing is sharing large-scale resources, accomplishing
collaborative tasks [1], where transaction will become more and more important. To
date, however, few efforts have been performed for transaction in Grid environment.

In this paper, we present a transaction model for Grid computing. The
contributions mainly include: (a) the architecture and algorithms for transaction in
Grid environment; (b) abilities for users to execute transaction, without knowing of
process.

2 Related Work

There have been some efforts about distributed transaction. [2,3] and [4], proposed by
IBM, Microsoft, BEA and OASIS respectively, describe the transaction framework
for Web services. However, they can not directly support for Grid transaction.

3 Architecture of Transaction Based on Agent

The transaction model, as shown in figure 1, is based on the services provided by
Globus Toolkit [5,6,7]. What a user need do is only to start up a transaction and make
desirable selection because the agent can create a TransactionManager (TM), start up
or cancel transaction, manage transaction and inform the user of execution results.

A Transaction Model for Grid Computing 383

R e s o u r c e

G R A M

R e s o u r c e

G R A M

R e s o u r c e

G R A M

C o - r e s e r v a t i o n C o - a l l o c a t i o n M D S

R e s o u r c e
 u p d a t e

d i s c o v e r y
C r e a t e R e s e r v a t i o n C r e a t e O b j e c t

J o b M a n a g e r

G a t e k e e p e r

C r e a t e

G S I

A u t h e n t i c a t i o n

A g e n t

T r a n s a c t i o n
M a n a g e r

A g e n t

U s e r

R e s u l t
R e q u e s t

C r e a t e R e s h a n d l e s

C o o r d i n a t i o n C o n t e x t

O b j h a n d l e s

R e s o u r c e s p e c

R e s h a n d l e s

R e m o t e R e s o u r c e S i d e U s e r S i d e

Fig. 1. An extensible transaction architecture for Grid computing

Comparing with transaction for Web services, where each service is statically
created, our model adapts to the highly dynamic Grid environment. It can meet grid
features and requirements because:
• It does not lock resources so as to improve the concurrency.
• It is robust in face of various failures and dynamic join and leaving of resource.
• It can coordinate both short-lived operations and long-lived business activities.

4 Coordination Mechanism

The model may handle two types of transactions, which can be selected by a user:
• Atomic transaction (AT). It is used to coordinate short-lived operations, where

participants must commit synchronously and intermediate results are invisible.
• Compensation transaction (CT). It is used to coordinate long-lived business

activities and allows some candidates to abort while others to commit.

4.1 Atomic Transaction Coordination

The agent responds the transaction request from a user by:
• Creating a TM, which serves as the coordinator.
• Sending CoordinationContext messages to all agents of participants.

384 F. Tang, M. Li, and J. Cao

We adopt reservation of resources to prepare for AT transaction. After receiving
the Responses from participants, TM coordinates transaction in following way:

Phase1: TM sends Prepare messages to all participants Pi (i=1, 2, …N). If Pi
successfully reserves, the resource handles are returned to JobManager (JM), which
reports Prepared message to TM. Otherwise, the NotPrepared message is sent to TM.

Phase2: Only if TM knows that all Pi have successfully reserved, it sends Commit
to all Pi, which enables all JMs to request for allocating reserved resources, record the
Commit information in log, monitor the execution of tasks and report result to TM.
Otherwise, TM sends Abort to all Pi, making them cancel previous reservation.
Within T2, if TM receives N Committed messages, it judges that transaction is
completed and then returns final result to user. Otherwise, the TM reports failure to
the user and sends Rollback to all Pi. The algorithm is as follows:

ActionOfParent
begin agent creates TM;

agent sends CoordinationContext to
all agents of participants Pi;
wait for Response from JM of Pi;
if timeout exit;
send Prepare to all Pi;
while (t�T1) and (n1<N)

wait & record incoming messages;
if (n1=N) and (all messages are Prepared)
begin record commit in log;

send Commit to all Pi;
while (t�T2) and (n2<N)

wait & record incoming message;
if (n2<N) or (not N Committed)
begin send Rollback to all Pi;

exit after receiving Rollbackeds; end
end else begin send Abort to all Pi;

exit after receiving all Aborted; end
end

ActionOfChild
begin agent creates JM;

send Response to TM;
wait for Prepare from TM;
if timeout exit;
success:=JM reserves resources;
if (success)
begin send Prepared to TM;

while (t�T3) and (not Commit)
wait for incoming message;

if (message is Commit)
begin allocate reserved resources;

record transaction in log;
commit transaction;
send Committed to TM; end

else begin
cancel reservation;
exit; end

end
end

In execution of a transaction, if any Pi itself contains sub-transactions, it will apply
above mechanism recursively.

4.2 Compensation Transaction Coordination

After receiving the Response, the TM coordinates transaction in following steps:
TM sends Enroll messages, which contain timestamp T, to all candidates. The

candidates reserved and allocated resources successfully record operations in log, then
directly commit the transaction and return Committed, which contain execution
results, to the TM. The candidates failed to reserve resources return Aborted message.

According to returned results, the user may do the following by means of the TM:
• For candidates committed successfully, he selects some and cancels the others by

sending Confirm and Cancel messages to them respectively within interval T.

A Transaction Model for Grid Computing 385

• For candidates failed, he needn’t reply them and may renew to send Enroll requests
to locate new candidates until success or attempting N times.

• Within T, the candidate that has committed successfully performs either:
• In case of receiving Confirm message, it responds a Confirmed message.
• In the event of receiving Cancel message or nothing, it automatically rollbacks the

taken operations according its log record, which may be implemented by
performing a compensation transaction, and then returns a Cancelled message.

ActionOfSuperior
begin agent creates TM;

while (transaction doesn’t complete)
begin agent sends CoordinationCont-

ext to agent of candidate;
wait for Response from JM;
send Enroll to all candidates;
while (t�T) begin

wait & record incoming messages;
if (message is Committed)

if (user selects some candidates)
begin

send Confirm messages to them;
wait Confirmed messages; end

else begin
send Cancel messages to them;
wait Cancelled messages; end

end
end

end

ActionOfInferior
begin agent creates JM;

send Response to TM;
wait for Enroll from TM;
if timeout exit;
reserve and allocate resources;
record transaction in log;
commit transaction;
if (commit successfully) begin

send Committed to TM;
while (t�T) begin

wait for incoming message;
if (message is Cancel) begin

send Cancelled; rollback;
release resources;

end else
if (message is Confirm)
begin send Confirmed;

release resources; end
end end end

5 Security Solution

We use GSI [8] to address security issues. The security solution works like this:
• Authentication. It first creates a proxy credential signed by user’s private key by

using a user proxy and then mutually authenticates the identity.
• Authorization. The Gatekeeper maps the proxy credential into local user name by

using text-based map file, then checks operation power of the user. If the user is
authorized, Gatekeeper allocates a credential Cp used to create a process.

• Delegation. It promulgates Cp for the user to access other remote resources. By
tracing back along the certificate chain to check the original user certificate,
processes started on separate sites by the same user can authenticate one another,
enabling the user to sign once, run anywhere.

• Encryption. Secure communication is implemented by SSL.

386 F. Tang, M. Li, and J. Cao

6 Implementation Discussions

The agent must be installed in every machine to join the transaction. Its behavior
depends on the type of request. If an agent is invoked to initiate a transaction to run
on remote sites, it sends CoordinationContext to the remote agents and locally creates
the TM. If an agent receives a Coordination message, it creates the JM.

For participants/candidates to join a transaction, the agent sends
CoordinationContext to them. The message contains the necessary information such
as transaction type, transaction identifier, address of TM and timeout parameters. JM
responds TM by the CoordinationContext, and passes Prepare message to the Co-
reservation module. After querying the MDS, the Co-reservation gains the handles of
reserved resources.

In addition, the model uses Globus Toolkit to complete low-level operations, such
as discovery, reservation and allocation of resources, communication and security.

7 Conclusion and Future Work

We have described a secure transaction model for Grid computing. It can handle both
short-lived operations and long-lived business activities, for which we propose
coordination mechanisms and provide the algorithms respectively. In addition, we
discuss some implementation strategies and propose a security solution.

The model is extensible because it may conveniently incorporate new protocols. In
near future, we will develop it into a transaction middleware for Grid applications.

References

1. I.Foster, C.kesselman, and S.Tuecke. The anatomy of the grid: enabling scalable virtual
organizations. Int’l J. High-Performance computing Applications. March 2001.

2. F. Cabrera, G. Copeland, T. Freund, J. Klein, D. Langworthy, D. Orchard, J. Shewchuk
and T. Storey. Web Services Coordination(WS-Coordination). August, 2002.

3. F. Cabrera, G. Copeland, B. Cox, T. Freund, J. Klein, T. Storey and S. Thatte. Web
Services Transaction (WS-Transaction). August, 2002.

4. A. Ceponkus, S. Dalal, T. Fletcher, P. Furniss, A. Green and B. Pope. Business
Transaction Protocol V1.0. June, 2002.

5. I.Foster and C.kesselman. The Globus project: a status report. Heterogeneous Computing
Workshop (HCW98) Proceedings. March, 1998.

6. I.Foster and C.kesselman. Globus: A Metacomputing Infrastructure Toolkit. The
International Journal of Supercomputer Applications. 1997.

7. I.Foster, C.Kesselman, C.Lee, B.Lindell. K.Nahrstedt and A.Roy. A distributed resource
management architecture that supports advance reservation and co-allocation. Intl
Workshop on Quality of Service, 1999.

8. R. Butler, V.Welch, D. Engert, I. Foster, S.Tuecke, J. Volmer and C. Kesselman. A
national-scale authentication infrastructure. Computer, December, 2000.

	Introduction
	Related Work
	Architecture of Transaction Based on Agent
	Coordination Mechanism
	Atomic Transaction Coordination
	Compensation Transaction Coordination

	Security Solution
	Implementation Discussions
	Conclusion and Future Work

