
223

A FIPA Compliant Goal Delegation Protocol

Federico Bergenti1, Giovanni Rimassa1, Matteo Somacher1,
and Luis Miguel Botelho2

1 AOT Lab, Dipartimento di Ingengeria dell’Informazione, Parco Area delle Scienze 181/A,
43100 Parma, Italy

{bergenti, somacher, rimassa}@ce.unipr.it
2 Department of Computer Science of ISCTE, Av. Das Forças Armadas, Edifício ISCTE,

1600 Lisbon, Portugal
Luis.Botelho@iscte.pt

Abstract. This paper presents an interaction protocol, built on top of FIPA
ACL, allowing an agent to delegate a goal to another agent, in the form of a
proposition that the delegating agent intends its delegate to bring about. The
proposed protocol addresses the concrete needs of a service that is to be de-
ployed within the AgentCities network, but also helps to highlight some issues
that are related to the FIPA ACL itself and its usage to build more complex
agent interaction blocks.

1 Introduction

The AgentCities project aims at building an open, worldwide network [1] of agent
based services, relying on FIPA compliant agent platforms. The participants to the
various incarnations of AgentCities project believe that such a widespread and het-
erogeneous test bed is key to support the transition of Multi Agent Systems technolo-
gies from research labs to actual, deployed applications. The AgentCities effort is
also quite interesting for the FIPA organization, because it will validate the whole set
of the FIPA specifications (not just the FIPA ACL) on the widest scale so far.

Within the arena of distributed software infrastructures, FIPA promotes a land-
scape where applications are composed by agents receiving life support from plat-
forms; FIPA tries to support both agent-level and platform-level interoperability
through a comprehensive set of specification. At the agent level, FIPA mainly deals
with ACL, interaction protocols, message content and message ontology issues.
Though the FIPA ACL is provided with a semantics formally rooted in multi-modal
BDI logics, it is generally accepted that FIPA does not mandate a BDI architecture
for agents, but only that observable agent behaviour can be interpreted within a BDI
framework. Recognizing this suggests that a major feature of the FIPA infrastructure
is the support for heterogeneous agent societies, where different members have dif-
ferent levels of internal complexity. All of them will enjoy autonomy and sociality,
but only a subset of them will be gifted with an internal architecture providing rea-
soning capabilities.

M.-P. Huget (Ed.): Communications in Multiagent Systems, LNAI 2650, pp. 223–238, 2003.
© Springer-Verlag Berlin Heidelberg 2003

224 Federico Bergenti et al.

Such a vision strives for semantic scalability, where software components of
different internal complexity still exhibit behaviour compliant with the FIPA ACL
semantics; this becomes even more important when MAS technology tackles the new
deployment scenarios arising from the convergence and integration between the Inter-
net and the wireless environments [3].

This paper proposes an interaction protocol to perform goal delegation between
two agents, in the form of a proposition that the delegating agent wants the delegate
agent to bring about. Section 2 explains the traits and usefulness of the goal delega-
tion operation in the context of MAS, and clarifies the reasons for implementing goal
delegation as an interaction protocol in the FIPA infrastructure environment.

Section 3 describes the interaction protocol as a Finite State Machine decorated
with semantic annotations, and shows its FIPA compliance and soundness. Lastly,
section 4 puts the protocol in the practical context that caused its design in the first
place: an Event Organizer service that is to be set up in the framework of the Agent-
Cities project.

2 Motivation and Requirements

Goal delegation arises quite naturally in a cooperative, rational agents environment:
every agent pursues its own goals, goal partitioning is a standard divide-and-conquer
strategy, and in a collaborative environment there generally are enough hierarchy and
trust relationships, so that an agent is likely to find some other one to delegate a sub
goal to. When considered from an agent coordination perspective, goal delegation has
two main facets:

1. Delegation of commitment. This means that the delegate agent should embrace the
intentions of the delegating agent, trying to achieve the goal as if it were one of its
own. From the delegating agent point of view, this requires a kind of trust in the
delegate good will: the delegating agent has to believe that the delegate is trust-
worthy and will honestly try to achieve the goal.

2. Delegation of strategy. Delegating a declarative goal instead of an operational plan
means that the delegating agent is interested only in the resulting outcome and not
in the specific way the delegate achieves it. Thus, the delegating agent not only
trusts the delegate good will, but also its skills. The delegating agent has to believe
the delegate agent knows how to achieve the delegated goal.

In [5] the authors analyse several aspects of trust in the perspective of the Information
Society, taking into account both human and software agents, relating the theory of
trust to computer security issues and stressing how computer mediated communica-
tion creates several new trust related issues. Our paper only deals with software
agents, following a rather rigid and precise behaviour that relies on FIPA ACL se-
mantics and the proposed interaction protocol; however, a major aim of the Agent-
Cities project is to insert such agents within the global Information Society, made by
software, hardware and human participants. So, though the general considerations

 A FIPA Compliant Goal Delegation Protocol 225

about trust at large don’t directly affect the subject of this paper, they still remain in
its conceptual landscape.

The two aforementioned facets of the goal delegation operation correspond to the
core trust in competence and disposition, discussed in [7] as the basis for a trust rela-
tionship between two agents. In [5], the authors also observe that some additional
mental attitudes are required in the delegating agent, in order for it to develop a dele-
gation disposition toward its (about to become) delegate. These mental attitudes are
the dependence belief and the fulfilment belief. Dependence belief amounts to believ-
ing that the goal achievement critically depends on the delegate agent, or at least that
the goal can be achieved more efficiently by relying on the delegate agent. Fulfilment
belief consists of believing that the goal will be achieved due to the delegate contribu-
tion. The dependence belief is not directly addressed by our protocol, but stays im-
plicit in the acquaintance structure of a specific application. For instance, performing
a yellow pages search or running a service discovery protocol could result in the
delegating agent getting a list of agents it can rely on for the task to delegate. The
fulfilment belief, instead, is taken into account in our protocol, in that the goal delega-
tion proper is decoupled from result notification. More clearly, when the goal is dele-
gated, the delegating agent believes the goal will be achieved, but the delegate agent,
after finding a plan and trying to execute it, tells the delegating agent whether the
goal has been achieved or not, thus providing a chance for fulfilment belief revision.

FIPA agents are autonomous social software components whose external behav-
iour can be described with a BDI model. While designing multi agent systems, the
semantic scalability promoted by FIPA suggests to take different approaches for
different agent roles, depending on the needed sophistication and internal complexity
levels. Recognizing this suggests that a major feature of the FIPA infrastructure is the
support for heterogeneous agent societies, where different members have different
levels of internal complexity. While the plan execution delegation can obviously be
implemented using FIPA ACL request communicative act and the FIPA-Request
interaction protocol, there is no similar ready-made support for goal delegation.

In principle, a goal delegation design component can use any layer of the FIPA
communication model: since we want our goal delegation component to be reusable
across application domains, we avoid introducing ontological entities. Our goal dele-
gation protocol is based on a FIPA ACL communicative act, named achieve after the
KQML performative [11], but which is really a macro-act defined in term of the ex-
isting ones, so that the FIPA ACL semantics is left untouched. Moreover, from previ-
ous considerations stems that goal delegation is a complex, high-level conversation
that involves much more than a single speech act; therefore we define a complete
interaction protocol to carry out goal delegation.

The protocol definition, given in section 3, uses FIPA SL to define the achieve
communicative act; this does not clash with our requirement of application domain
independence, however, because the subset of FIPA SL we use is only the one re-
quired by [9] to specify the FIPA ACL semantics. So, any content language that can
express the content of the primitive FIPA ACL communicative acts can replace FIPA
SL in the definition of our protocol semantics.

During the past few years, several researchers [14], [6], [13] pointed out that the
FIPA ACL semantics, being based on internal mental states of the communicating

226 Federico Bergenti et al.

agents, was not really suited to drive interactions among independently developed
agents, acting in open environments. Within the scope of this paper, the authors are
more concerned with protocol design than with protocol verification. Therefore, they
stay neutral with respect to the mentalistic vs. observable dilemma; the following
section defines the goal delegation protocol using the mentalistic FIPA ACL semantics
just because it is the official one. The authors are aware that FIPA set up a Semantics
TC [10] to design a semantic framework taking into account social notions, and they
believe that the ideas and techniques described in this paper could also be easily
restated in a social semantics.

3 Protocol Description

This section has four objectives: define the achieve performative, which can be used
for goal delegation, design a goal delegation protocol, propose a framework for protocol
analysis, and analyse the goal delegation protocol using the presented framework.

3.1 Goal Delegation

If agent i has a goal G it wants to delegate to another agent r, then i may ask r to exe-
cute some plan of action whose execution r believes to result in a state of the world in
which G is true. Without loss of generality, this section uses FIPA SL in order to keep
the presentation more concrete.

In SL, the Feasible operator can be used to express the idea that it is possible to
execute a given action resulting in the achievement of some state of the world. If an
agent believes there is a plan of action ?p such that (Feasible ?p G), the agent believes
?p will bring about G. In SL, the Done operator can be used to express the idea that a
certain action has been done. If an agent believes Done(A), it believes to be in a state
of the world in which the action A has just been executed.

Given the semantics of the ACL inform performative, agent r can only send mes-
sage <r, inform(i, P)> if r believes P to be true. If r informs i that a certain plan of
action has just been executed, r must believe that the plan has actually been executed.
The above elements are about all it takes to express goal-delegation messages. The
delegating agent must request the delegate to inform it that some plan whose execu-
tion is believed to achieve the desired goal has been executed.

In dynamic and uncertain environments, the execution of a plan believed to bring
about G does not ensure that G is actually achieved. Therefore, after the execution of
the selected plan, the delegate agent must also check that the goal has actually been
achieved. The complete message is

<i, request(r, <r, inform(i, ∃p(Done(p,Feasible(p, G)) ∧ G))>)>

That is, i requests r to inform it that some plan believed to achieve G has been per-
formed and G has been achieved. According to the semantics of the inform performa-
tive, r will only send the inform message if it believes those conditions to hold. We
propose to extend FIPA ACL with the new performative achieve defined as above

 A FIPA Compliant Goal Delegation Protocol 227

<i, achieve(r, G)> ≡ <i, request(r, <r, inform(i, ∃p(Done(p,Feasible(p, G)) ∧ G))>)>

In the remaining of this section, we analyse the feasibility preconditions and the ra-
tional effect of the achieve performative; and propose a protocol to be used for goal
delegation. The analysis will rely on the proposed definition. Since the achieve per-
formative is defined in terms of the request performative, its semantics will result of
replacing the content of the request with

<r, inform(i, ∃p(Done(p,Feasible(p, G)) ∧ G))>.

In the FIPA Specifications [9], the semantics of the request message is defined by the
following feasibility preconditions and rational effect:

FP of <i, request(r, A)>
− FP(A)[i\r]. The subset of the feasibility preconditions of action A that are mental

attitudes of i;
− Bi(Agent(r, A)). The sender believes the receiver to be the agent of the requested

action;
− ¬Bi(Ir Done(A)). The sender does not believe that the receiver already intends to

perform the requested action otherwise there would be no point in requesting.

RE of <i, request(r, A)>
− Done(A). The sender i can reasonably expect that the requested action will be

done.

Replacing A by <r, inform(i, ϕ)> in which

ϕ≡∃p(Done(p, Feasible(p, G)) ∧ G)

we obtain:

FP of <i, achieve(r, G)> ≡ FP of
<i, request(r, <r, inform(i, ∃p(Done(p,Feasible(p, G)) ∧ G))>)>
− FP(<r, inform(i, ∃p(Done(p,Feasible(p, G)) ∧ G))>)[i\r]. The subset of the feasi-

bility preconditions of <r, inform(i, ∃p(Done(p,Feasible(p, G)) ∧ G))> that are
mental attitudes of i. The feasibility preconditions of the inform message are
mental attitudes of the sender alone, which is the responder agent r. Therefore,
this is the empty set;

− Bi(Agent(r, <r, inform(i, ∃p(Done(p,Feasible(p, G)) ∧ G))>)). The sender be-
lieves the receiver to be the agent of the specified inform message;

− ¬Bi(Ir Done(<r, inform(i, ∃p(Done(p,Feasible(p, G)) ∧ G))>)). The sender does
not believe that the receiver already intends to send the specified inform mes-
sage.

RE of <i, achieve(r, G)> ≡ RE of
<i, request(r, <r, inform(i, ∃p(Done(p,Feasible(p, G)) ∧ G))>)>
− Done(<r, inform(i, ∃p(Done(p,Feasible(p, G)) ∧ G))>). The sender i can rea-

sonably expect that the inform communicative act will be done.

228 Federico Bergenti et al.

The above semantics of the achieve performative nearly fulfil all the requirements of
protocol delegation as defined in section 2:

1. The initiator believes that the responder is skilled enough to achieve the goal;
2. The initiator believes the responder does not already intend to achieve the goal;
3. The initiator does not care about the plan to be used to achieve the goal.

The first requirement can be shown to be implied by the achieve feasibility precondi-
tions, because the initiator can only send the achieve message if it believes the re-
sponder to be the sender of the message informing that the plan has been executed
and the goal has been achieved. Following the semantics of the inform performative,
the responder can only send such a message if it believes to have actually achieved
the desired goal. If we assume the responder is aware of the feasibility preconditions
of the inform performative, the initiator can only believe the responder will be the
sender of the message if it also believes the responder to be capable of achieving the
goal.

The second requirement is not a consequence of the feasibility preconditions of the
achieve performative. Actually, the initiator can’t believe that the responder already
has the intention of informing it that the goal has been achieved. But it is allowed to
believe that the responder already intended to achieve the desired goal. This aspect
will be the subject of section 3.4.

The third requirement is captured by the proposition the initiator is requesting the
responder to send

∃p(Done(p,Feasible(p, G)) ∧ G)

The existential quantifier in this proposition means that the plan to be executed will
be any plan believed by the responder to achieve the desired goal. Therefore, the
initiator does not care about the specific plan that is used. Examples of possible types
of plans are:

1. Ask around, just in case. Being lazy, r could ask its acquaintances if the goal is
already achieved. Notice that this does indeed delegate the strategy but not the
commitment. If anyone among the acquaintances of agent r answers positively,
then the goal has been achieved, even if r doesn’t know how.

2. Do it yourself. r could find out a feasible plan for the goal, which hasn’t been exe-
cuted yet, and then execute it. This will of course achieve the goal.

3. Who’s going to keep my promises? r can further delegate the goal (both strategy
and commitment), using the goal delegation protocol recursively. By induction on
the nesting level, if there is a finite number of nested delegations that complete
successfully, the goal will be achieved.

Since achieve has been defined in terms of the request message, we will analyse the
FIPA-Request protocol as the basis for the goal delegation protocol. The FIPA-
Request protocol is started by the initiator sending the request message to the re-
sponder. When the responder receives the request message, it has three alternatives. It
may send a not-understood message; it may send a refuse message; or it may send an
agree message. If the responder sends the agree message, it becomes committed to

 A FIPA Compliant Goal Delegation Protocol 229

try to execute the requested action. When executing the requested action, the re-
sponder may send a failure message in case it fails to successfully execute the action;
it may send an inform-ref message; and it may send an inform-done message. Given
the above, in case of successful termination of the FIPA-Request protocol, the re-
sponder sends an agree message and then it sends an inform-ref or an inform-done.

request (inform (ϕ)) ≡ achieve (G)

Initiator

inform-done

inform (ϕ)

agree

refuse

not-understood

[agreed]

Responder

 failure

[inform (ϕ) sent]

Adapting the FIPA-Request for the goal delegation case, it would result in the pro-
tocol described in figure 1.

Fig. 1. FIPA Request Protocol for the goal

Clearly, this protocol is not totally adequate for goal delegation. The first obvious
inconvenience is that the inform-done in the last step of the successful protocol
execution is not necessary because the responder would have already informed the
initiator that the plan has been performed and the goal has been achieved. There is no
point in informing the initiator that the requested inform message has already been
sent. Less obvious is the content of the failure message in case something fails. There
are three possible types of failure: (i) the responder may fail sending the inform
message; (ii) the responder may fail to execute the plan; and (iii) the responder
executed the plan but, due to unforeseen events or due to insufficient knowledge
about the results of available actions, the plan failed to attain the desired result.

Considering the above three aspects we propose the following goal delegation pro-
tocol. Let G be the goal to be achieved, and let’s define the proposition

ϕ≡∃?plan (Done(?plan,Feasible(?plan, G)) ∧ G

230 Federico Bergenti et al.

Notice that, although this looks like a higher order formula, it is not because, in each
concrete case, G will be instantiated with a specific goal to be achieved. Therefore the
formula is a proposition schema, not a higher order formula.

The protocol works as follows (see also figure 2):

1. <i, request(r, <r, inform(i, ϕ)>)>
2. Action Alternatives

(a) <r, not_understood(i, (<i, request(r, <r, inform(i, ϕ)>>, reason for not under-
standing))>

(b) <r, refuse(i, (<r, inform(i, ϕ)>, Reason for refusing))>
(c) <r, agree(i, (<r, inform(i, ϕ)>, Condition of action execution))>

3. [agreed] Action Alternatives
(a) <r, failure(i, (<r, inform(i, ϕ)>, Reason for the failure of the inform))>
(b) <r, failure(i, (<r, inform(i, ϕ)>, Plan was not completely executed))>
(c) <r, failure(i, (<r, inform(i, ϕ)>, Goal has not been achieved))>
(d) <r, inform(i, ϕ)>

Some details of the above specification are worth noting. The protocol specification is
richer than AUML diagrams [2] currently used in the FIPA specifications, because it
specifies parts of the contents of some of the involved messages. Symbols Plan and
Goal appearing in messages 3(b) and 3(c) will be instantiated with concrete plan and
goal expression, at the time the messages are actually sent. This specification should
be part of the protocol description. The conversation identifiers in all of the possible
messages must be the same. It is the responsibility of the protocol initiator to create
that identifier. This specification should also be part of the formal protocol descrip-
tion. Finally, each set of alternative courses of action is available only at certain junc-
tures, that is, in certain protocol states. For example, alternative actions 3(a) to 3(d)
are available to the agent only if the agent has agreed to perform the requested action.
It is necessary to explicitly and formally specify protocol state changes [8].

<r, not-understood(i, <r, achieve(G)>reason))>

<r, refuse(i, (<r, inform(i, ϕ)>, reason))>

<, inform(i, ϕ)><i, request(r, <r, inform(i, ϕ)>)> = achieve <r, agree(i, (<r, inform(i, ϕ)>, condition))>

S
0

− i believes r would be the sender of the inform;

− i doesn’t believe r already intends the plan to

be executed and the goal to be achieved;

− i wants to be informed about the plan

execution and the goal achievement.

S
1

− r intends to inform i about the plan execution and the goal achievement;

− r doesn’t believe i already knows anything about its intention;

− i believes r intends to inform it about the plan execution and the goal

achievement;

− i believes r intends to achieve the goal.

S
2

S
1

S
1

<r, failure(i, (<r, inform(i, ϕ)>, Goal not achieved))>

<r, failure(i, (<r, inform(i, ϕ)>, Plan not executed))>

<r, failure(i, (<r, inform(i, ϕ)>, reason))>

− i beliefs the plan has been executed;

− i beliefs the goal has been achieved;

− r beliefs i beliefs the plan has been

executed and the goal achieved.

S
3

Fig. 2. FIPA compliant goal delegation protocol

 A FIPA Compliant Goal Delegation Protocol 231

In the following subsections we present a framework for protocol analysis and we
analyse the proposed goal delegation protocol.

3.2 Protocol Analysis

This section provides a framework that may be used to analyse interaction protocols
with respect to the set of propositions that should be true in each protocol state. This
proposal lays down the basis for a protocol verification system, which could be built
in a Court Agent that could be developed in agent societies.

The main ideas behind our protocol analysis methodology are compliance and in-
tentional action. We assume that when an agent sends a message (i) it does so inten-
tionally, and (ii) it is desirable that it complies with the message semantics. It results
from the above assumptions that, when a message is observed, the message feasibility
preconditions should hold (because the sender should comply with the message se-
mantics) and the sender intended the message rational effects (because it sent the
message intentionally). For instance, when agent i receives message <r, inform(i, P)>,
it may assume that

BrP ∧ ¬ Br(BifiP ∨ UifiP) (inform feasibility preconditions)
and
IrBiP (the agent intends the rational effects of the message).

Given the above reasons, and acknowledging the fact that protocol state changes
reflect message sending/receiving, we may attach to each protocol state, a set of
propositions that should be true from a normative point of view. The state that results
of a state transition from state S due to message <i, M> is the union of state S with
the feasibility preconditions of M and I(i, RE(M)), in which RE(M) is the set of ra-
tional effects of M, and I(i, ∆)={Ii(p): p∈ ∆} represents the fact that the sender in-
tends all the propositions in ∆.

Sl=Sk ∪ FP(i, j, Ml.k) ∪ I(i, RE(i, j, Ml.k)), in which Sl and Sk are protocol states, Ml.k
is the message that resulted in the protocol state transition from state Sl to state Sk,
RE(i, j, Ml.k) is the set of Rational Effects of message Ml.k, indexed to the sender i and
the receiver j, and FP(i, j, Ml.k) is the set of Feasibility Preconditions of message Ml.k
indexed to sender i and receiver j. All protocols have an initial empty state, the state
before the initiating message is sent.

In the following sections, we analyse the case of successful execution of the goal
delegation protocol, as defined in section 3.1, using the concept of protocol-state just
presented.

3.3 Goal-Delegation Analysis

Step 1: Protocol initiation. Before the protocol is initiated, the protocol is in the
initial state (S0), which is the empty set. The protocol initiator (agent i) sends message
<i, request(r, <r, inform(i,ϕ)>)>, resulting in a protocol state transition to state S1.

232 Federico Bergenti et al.

According to the definitions presented in subsections 3.1 and 3.2, S1 is composed by
the achieve feasibility preconditions and the intention of its rational effects.

S
1
={B

i
(Agent(r, <r, inform(i, ϕ)>), ¬B

i
(I

r
 Done(<r, inform(i, ϕ)>)), I

i
Done(<r, inform(i, ϕ)>)}

That is, the observer is entitled to conclude that (i) the initiator believes that the re-
sponder will be the agent of the inform message; (ii) the initiator does not believe that
the responder already has the intention of having informed the initiator that the plan
has been executed and the goal has been achieved; and (iii) the initiator wants the
responder to inform it that the plan has been executed and the goal achieved.
Step 2: The responder agrees. In the second step, the responder agrees to inform the
initiator that the plan has been executed and the goal has been achieved. This message
results in a new state transition to state S2. S2 is the union of S1 with the feasibility
preconditions of the agree message and the intention of its rational effects. The feasi-
bility preconditions and the rational effects of the agree message are those specified
in [9].

S2=S1 ∪ {B
r
I

r
 Done(<r, inform(i, ϕ)>, φ),¬Br(Bifi Ir Done(<r, inform(i, ϕ)>,φ) ∨ Uifi Ir

Done(<r, inform(i, ϕ)>, φ)),IrBi
 I

r
 Done(<r, inform(i, ϕ)>, φ)}

in which φ is the condition under which the inform message will be sent.
The observer of the agree message is now entitled to have additional beliefs. The

responder believes it has the intention to inform the initiator that the plan has been
executed and the goal has been achieved. The responder does not believe the initiator
already knows anything about its intention. The responder intends the initiator to
believe it has the intention of informing it of the success of the goal delegation proc-
ess.

In order to check the soundness of the designed protocol, it could be determined if
each protocol state is consistent. S2 is obviously consistent since the beliefs and inten-
tions ascribed to each participant are not contradictory.
Step 3: Success. In the third step, the responder agent informs the initiator that it has
successfully executed the plan believed to achieve the delegated goal and the goal has
been achieved. This message produces another protocol-state transition resulting in
state S3. Given the semantics of the inform message, as defined in [9], the new state
will be defined as follows

S3=S2 ∪ {Brϕ , ¬ Br(Bifiϕ ∨ Uifiϕ), IrBiϕ}

in which

ϕ≡∃plan(Done(plan, Feasible(plan, G)) ∧ G)
S3 = {Bi(Agent(r, <r, inform(i, ϕ)), ¬Bi(Ir Done(<r, inform(i, ϕ)>)), IiDone

(<r, inform(i, ϕ))>), BrIr Done(<r, inform(i, ϕ)>, φ), ¬Br (Bifi Ir Done(<r, inform(i,

ϕ)>, φ) ∨ Uifi Ir Done(<r, inform(i, ϕ)>, φ)), IrBi Ir Done(<r, inform(i, ϕ)>, φ), Brϕ , ¬

Br(Bifiϕ ∨ Urfiϕ), IrBiϕ}

Among other things, the observer of this state will know that the responder believes
there is a plan that results in the delegated goal becoming achieved; it also believes

 A FIPA Compliant Goal Delegation Protocol 233

that plan has been executed; and it also believes the goal to have been achieved. By
virtue of being the receiver of the message that caused this last state transition, the
protocol initiator is an observer of the last protocol state (S3). Therefore, the initiator
concludes the responder believes to have achieved the desired goal. That is, in case of
successful termination, the goal delegation protocol fulfils the purpose of its design.

Using a similar analysis, it could easily be shown that the protocol also works ap-
propriately in the other termination conditions. From the point of view of protocol
soundness, it can also be seen that S3 does not contain contradictions. This is a good
criterion to assume the protocol to be well formed.

As can be seen, the last state of the protocol clearly shows that it is legitimate to
assume that the initiator knows the plan has already been executed and the goal has
been achieved. Therefore, as previously argued (see section 3.1), the inform-done
message that would be generally necessary in the request protocol is not needed in the
goal delegation protocol.

3.4 Alternative Design

As argued in section 3.1, the proposed definition of the achieve performative does not
fulfil all requirements for goal delegation. Specifically, it does not follow from the
semantics of the performative that the protocol initiator does not believe the re-
sponder to already have the intention to achieve the desired goal. The proposed defi-
nition can only ensure that the responder agent (the delegate) does not already intend
to inform the initiator that the goal has been achieved. Although this is not a very
important drawback, it would be desirable if it could e fixed.

The referred problem arises because SL, the language used to express the seman-
tics of the performative, is not rich enough to overcome that difficulty. This subsec-
tion proposes to extend SL with a new action operator that enables overcoming the
mentioned problem. The new operator, execute, has also been proposed in [4].

Execute is a general-purpose action operator used to express the action of execut-
ing a given action description passed as an argument. Using execute, the protocol
initiator can ask the responder to execute any plan that achieves the desired goal,
instead of asking the responder to inform it that the plan has been executed. Using
this design, all goal delegation requirements will be met, and the goal delegation
protocol will more closely mirror the request protocol.

We start analysing the way of expressing the action of executing a plan that
achieves the goal. Feasible(p, G) means that p can be executed and achieves G.
Any(p, Feasible(p, G)) refers a plan (anyone) that can achieve G. Exe-
cute(Any(p, Feasible(p, G))) is the action of executing the plan referred by
Any(p, Feasible(p, G)), that is a plan that achieves the desired goal.

Given the above elements, the achieve performative could have the alternative
definition

<i, achieve(r, G> ≡ <i, request(r, <r, execute(any(p, Feasible(p, G)))>>

that is characterized by:

234 Federico Bergenti et al.

FP of <i, achieve(r, G)>
− FP execute(any(p, Feasible(p, G))) [i\r]. The subset of the feasibility precondi-

tions of <r, execute(any(p, Feasible(p, G)))> that are mental attitudes of i;
− Bi(Agent(r, <r, execute(any(p, Feasible(p, G)))>)). The sender believes the re-

ceiver to be the agent of the action of executing the plan;
− ¬Bi(Ir Done(<r, execute(any(p, Feasible(p, G)))>)). The sender does not believe

that the receiver already intends execute a plan that achieves the goal.

RE of <i, achieve(r, G)>
− Done(<r, execute(any(p, Feasible(p, G)))>). The sender i can reasonably expect

that a plan that achieves the goal will be done.

This alternative definition fulfils all the goal delegation requirements presented in
section 2:

1. The initiator believes that the responder is skilled enough to achieve the goal;
2. The initiator believes the responder does not already intend to achieve the goal;
3. The initiator does not care about the plan to be used to achieve the goal.

The first requirement can be shown to be implied by the achieve feasibility precondi-
tions, because the initiator can only send the achieve message if it believes the re-
sponder to be the agent of the action of executing the plan believed to achieve the
goal. Therefore it must believe the responder can do it.

The second requirement is exactly the second feasibility precondition of the
achieve performative.

The third requirement is captured by the action the initiator is requesting the re-
sponder to perform: any plan that is believed to achieve the goal.

This alternative definition has a consequence that must be handled. The initiator
does not ask the responder to inform it that the plan has been executed and the goal
has been achieved. This will be handled at the protocol level, not at the performative
level. The new protocol definition is defined below, in which
ψ ≡ any(p, Feasible(p, G)):

1. <i, request(r, <r, execute(ψ)>)>
2. Action Alternatives

(a) <r, not-understood(i, (<i, request(r, <r, execute(ψ)>>, Reason for not under-
standing))>

(b) <r, refuse(i, (<r, execute(ψ)>, Reason for refusing))>
(c) <r, agree(i, (<r, execute(ψ)>, Condition of action execution))>

3. [agreed] Action Alternatives
(a) <r, failure(i, (<r, execute(ψ)>, Plan was not completely executed))>
(b) <r, failure(i, (<r, execute(ψ)>, Goal has not been achieved))>
(c) <r, inform(i, Done(ψ))>

The new protocol design is simpler because it has less alternatives in step 30. Be-
sides, it is more closely related to the request protocol. This protocol specifies two
cases of failure messages.

 A FIPA Compliant Goal Delegation Protocol 235

Although this alternative definition of the goal delegation protocol is better than
the one proposed in section 3.1, it relies upon an extension of the SL language. There-
fore, in the case study described in the next section we assume the initial definition.

4 Case Study: Agentcities Event Organizer Service

The Agentcities event organizer fulfils service compositions using the services, pro-
vided by the Agentcities network, needed to set up a social event. It shows that agents
offer dynamic and flexible solutions for supply chains, especially to deal with unex-
pected events and chain reorganization. In the reference scenario, a conference chair
attempts to develop a schedule for her conference and to book the venues and ser-
vices that she requires, e.g., hotel, restaurant and amusement events. She delegates to
the event organizer the work, monitoring the progress of arrangements. The event
organizer service is available in the Parma Agentcities node [1]. The main actors
involved in the event organizer are:

1. the user, i.e., the conference chair;
2. the event organizer agent, i.e., the agent that tries to achieve the global goal that

the user submitted;
3. the solvers, i.e., the skilled agents that search the needed services and negotiate the

contracts for buying them with the service provider agents;
4. the service provider agents.

The process starts when the chair decides to organize the conference and requests the
event organizer agent to set up a set of needed services, fixing some constraints and a
priority for each service. It finishes when all mandatory services are bought or re-
served. These interactions are governed thanks to the FIPA-Request protocol for the
goal delegation case proposed in section 3.1, where the event organizer plays the role
of the initiator and the solver plays the one of the responder. Due to some limitations
in the FIPA-ACL semantics, some interaction rules are implicitly defined in the agent
code, e.g., the deadlines that the solver has to respect for the plan execution. The
following step can be iterated until the conference is fully organized.
Conversation 1: Goal Delegation. This conversation is carried out between the
event organizer and the solver.

Protocol initiation. The chair fixes through a Web page the finite set of services
that she wants to buy for the conference and a finite set of associated constraints.
These parameters are translated in a global goal assigned to the event organizer, e.g.,
“make it so that all the 20 attendees have a dinner together and rooms booked for five
nights in nearby hotels”.

For the sake of simplicity we assume that the idea of “constraints” or “service pri-
ority” will not be exchanged among the agents. Only the event organizer agent knows
about the full set of required constraints and the priorities of the services. This eases
the problem solving process because the event organizer agent centralizes the valida-
tion of constraints without delegating it to solvers.

236 Federico Bergenti et al.

Then, the event organizer decomposes its given global goal into sub-goals, each of
which is proposed, with the following performative, to one particular problem solving
agent (so-called solver), based on its functional capabilities to achieve the goal as-
signed.

The solvers are either newly created by the event organizer as instances of func-
tional agent classes or have been spawned in the past and therefore already exist. In
our scenario a sub-goal corresponds to the search of suitable contracts for the services
asked by the chair, without considering the cross-services constraints, e.g., the solver
searching for restaurants does not consider that the restaurant cannot be too far away
from the hotel, only the event organizer agent deals with such a constraint.

The solver agrees. The solver agrees to achieve the assigned sub-goals and builds
a plan.

The solver executes the plan. Each solver uses the search infrastructure services of-
fered by the Agentcities network architecture to find suitable service providers. The
solver chooses the providers that fit its tasks best. This can be done through a direct
interaction or through a market place. Once a suitable service provider is found, the
solver negotiates with it to reach a preliminary agreement for a contract that regulates
the requested service.

The solver informs the event organizer about the contract. The solver informs the
event organizer the sub-goal is achieved and it knows about some contracts.
Converstion 2: Contract Retrieval. This conversation is carried out between the
event organizer and the solver. The event organizer believes that the solver has nego-
tiated at least one contract to purchase the assigned service. It starts a FIPA-Query
protocol, where it plays the role of initiator and the solver plays the role of responder,
to get such a contract. The solver gives its best proposal back to the event organizer
for a subsequent use.
Conversation 3: Services Acceptance. This conversation is carried out between the
event organizer and the chair. Once each instance of the protocol with the solvers
ended, the event organizer agent has enough information to build the global plan
satisfying the chair’s requirements. To do so, it first composes the proposals received
from the solvers and validates the cross-service constraints. If a consistent solution is
found, it is proposed to the chair for a final acceptance.

Now, the event organizer agent informs the chair about the contracts she has to
sign for achieving the global goal. If no consistent solution is found, the event organ-
izer agent iterates the previous steps until an acceptable solution is found or until the
chair decides to change some constraint.

The iteration consists of assigning new sub-goals to the solvers exploiting the
knowledge about which cross-service constraints has not been satisfied. For example,
if the process failed because the restaurant and the hotel were too far from each other,
the new sub-goal will be “operate so that the attendees have dinner in a restaurant
within 1 Kilometre from the hotel and give me back a new suitable contract for that”.
Conversation 4: Services Purchase. This conversation is carried out between the
event organizer and the service provider agents. Once the chair accepted the proposed
solution, the event organizer agent starts a FIPA-Request protocol with the service
provider agents in order to buy the service directly from them.

 A FIPA Compliant Goal Delegation Protocol 237

Conclusion

In this paper we proposed a FIPA compliant protocol to perform goal delegation
between two agents. The motivation of this work starts from a real need, i.e. to build
an application for the Agentcities.RTD project where agents delegated to other skilled
agents their goals We approached the problem with the idea to only use what FIPA
provides.

We proposed a framework for protocol analysis and we used it to validate our goal
delegation protocol that uses the FIPA ACL semantics as it is. We argued that the
protocol still have a minor drawback and we proposed a new SL operator execute that
allows to fulfil all the requirements for goal delegation pointed out in the first part of
the paper.

Finally we described the concrete application that was realized thanks to the effort
of this work.

Acknowledgements

The research described in this paper is partly supported by the EC project Agent-
cities.RTD, reference IST-2000-28385. The opinions expressed in this paper are
those of the authors and are not necessarily those of the Agentcities.RTD partners.

References

1. Agentcities.RTD, reference IST-2000-28385, http://www.agentcities.net
2. Bauer B., Müller J.P., Odell J.R.E, Agent UML: A Formalism for Specifying Multiagent

Interaction, In Paolo Ciancarini and Michael Wooldridge (eds) Agent-Oriented Software
Engineering (Berlin 2001), Springer, 91-103.

3. Bergenti F., Burg B., Caire G., Poggi A. Deploying FIPA-compliant systems on handheld
devices. IEEE Internet Computing, Volume 5 Issue 4 (July-Aug. 2001), 20-25.

4. L.M. Botelho L. M., Antunes N., Ebrahim M., Ramos P. Greeks and Trojans Together,
Submitted paper, 2002.

5. C. Castelfranchi C., Falcone R. Socio-Cognitive Theory of Trust.
http://alfebiite.ee.ic.ac.uk/docs/papers/D1/ab-d1-cas+fal-soccog.pdf.

6. Colombetti M. A Commitment-Based Approach to Agent Speech Acts and Conversations.
In Proc. Workshop on Agent Languages and Communication Policies, 4th International
Conference on Autonomous Agents (Barcelona 2000), 21-29.

7. C. Castelfranchi C., Pedone R. A Review on Trust in Information Technology.
http://alfebiite.ee.ic.ac.uk/docs/papers/D1/ab-d1-cas+ped-trust.pdf.

8. J. Freire J., Botelho L. M. Executing explicitly represented protocols. Submitted paper,
2002.

9. FIPA spec. XC00037H. FIPA Communicative Act Library Specification.
http://www.fipa.org/specs/fipa00037/.

10.FIPA TC Semantics Call for Information,
http://www.fipa.org/docs/output/f-out-00099/f-out-00099.pdf.

238 Federico Bergenti et al.

11.T. Finin T., Labrou Y. KQML as an agent communication language. In J.M. Bradshaw (ed.),
Software Agents, MIT Press, (Cambridge, MA, 1997), 291-316.

12.F. Giunchiglia F., Mylopoulos J., Perini A.. The Tropos Development Methodology: Proc-
esses, Models and Diagrams. Submitted at AAMAS 2002.

13.J. Pitt J., Kamara L., Artikis A.. Interaction Patterns and Observable Commitments in a
Multi-Agent Trading Scenario.
http://alfebiite.ee.ic.ac.uk/docs/papers/D1/ab-d1-pitkamart-ipoc.pdf.

14.Singh M. P. Agent Communication languages: Rethinking the principles. IEEE Computer,
31 (12) (1998), 40-47.

	Introduction
	Motivation and Requirements
	Protocol Description
	Goal Delegation
	Protocol Analysis
	Goal-Delegation Analysis
	Alternative Design

	Case Study: Agentcities Event Organizer Service
	Conclusion
	Acknowledgements
	References

