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Preface

I know what you are asking yourself — “there are a lot of books available in speech
processing, what is novel in this book?” Well, I can summarize the answer for this
question in the following points:

1.

You always see different algorithms for speech enhancement, deconvolution,
signal separation, watermarking, and encryption, separately, without specific
applications for these algorithms.

You also see literature books and research papers on speaker identification
concentrating on how to extract features, and the comparison between feature
extraction methods.

How to make use of speech enhancement, deconvolution, and signal separation
to enhance the performance of speaker identification systems is a missing issue.
This book presets this issue and gives comparison studies between different
algorithms that can be used for this purpose.

. Speech watermarking and encryption are studied for the first time in this book in

a framework that enhances the security of speaker identification systems.
Performance enhancement and security enhancement of speaker identification
systems are contradicting objectives. How they affect each other is also studied
in this book.

Finally, I hope that this book will be a starting step towards an extensive study
to build speaker identification systems with multilevels of security.

Fathi E. Abd El-Samie
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Information Security for Automatic
Speaker Identification

Abstract Speaker identification is a widely used technique in several security
systems. In remote access systems, speaker utterances are recoded and
communicated through a communication channel to a receiver that performs the
identification process. Speaker identification is based on characterizing each
speaker with a set of features extracted from his or her utterance. Extracting the
features from a clean speech signal guarantees the high success rate in the identifi-
cation process. In real cases, a clean speech is not available for feature extraction
due to channel degradations, background noise, or interfering audio signals. As a
result, there is a need for speech enhancement, deconvolution, and separation
algorithms to solve the problem of speaker identification in the presence of
impairments. Another important issue, which deserves consideration, is how to
enhance the security of a speaker identification system. This can be accomplished
by watermark embedding in the clean speech signals at the transmitter. If this
watermark is extracted correctly at the receiver, it can be used to ensure the correct
speaker identification. Another means of security enhancement is the encryption
of speech at the transmitter. Speech encryption prevents eavesdroppers from
getting the speech signals that will be used for feature extraction to avoid any
unauthorized access to the system by synthesis trials. Multilevels of security can be
achieved by implementing both watermarking and encryption at the transmitter.
The watermarking and encryption algorithms need to be robust to speech enhance-
ment, and deconvolution algorithms to achieve the required degree of security and
the highest possible speaker identification rates. This book provides for the first
time a comprehensive literature review on how to improve the performance of
speaker identification systems in noisy environments, by combining different
feature extraction techniques with speech enhancement, deconvolution, separation,
watermarking, and/or encryption.

Keywords Speech enhancement ¢ Speech deconvolution ¢ Signal separation
» Speech watermarking ¢ Speech encryption « Wavelet denoising « Wiener filter
« Singular value decomposition ¢ Chaotic baker map

F.E.A. El-Samie, Information Security for Automatic Speaker Identification, 1
SpringerBriefs in Speech Technology, DOI 10.1007/978-1-4419-9698-5_1,
© Springer Science+Business Media, LLC 2011
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1 Introduction

Automatic speaker identification involves recognizing a person from his spoken
words [1-3]. The goal of speaker identification is to find a unique voice signature to
discriminate one person from another. The techniques involved with this task can be
classified into identification and verification techniques. Speaker identification is the
process of determining which registered speaker provides a given utterance. Speaker
verification is the process of accepting or rejecting the identity claim of a speaker.

The speaker identification process may be text dependent or text independent.
In text dependent speaker identification systems, the speaker is asked to utter a
specific string of words both in the training and recognition phases, whereas in text
independent systems, the speaker identification system recognizes the speaker irres-
pective of any specific phrase utterance. Speaker identification systems can be open
set or closed set. In closed set systems, the speaker is known a priori to be a member
of a set of finite speakers. In open set systems, there is also an additional possibility of
a speaker being an outsider i.e., not from the set of already defined speakers.

Speaker identification systems have several applications such as voice dialing,
banking by telephone, telephone shopping, database access services, information
services, voice mail, security control for confidential information areas, remote
access to computers, controlling access to computer networks and websites, law
enforcement, prison call monitoring, and forensic analysis [2, 4]. These systems
contain two main processes; feature extraction and classification. Feature extrac-
tion extracts a small amount of data from the speech signal that can be used later
to represent each speaker. There are various techniques for extracting speech
features such as the Mel-frequency cepstral coefficients (MFCCs) technique. This
technique is widely used in several applications such as speaker identification
[1-3], fingerprint identification [S5], landmine detection [6, 7], defect detection in
industrial applications [8], and device modeling [9-12] due to its ability to charac-
terize a large amount of data with a few features. Classification is a process having
two phases; speaker modeling and speaker matching. Classification in this book is
based on artificial neural networks (ANNSs).

The MFCC:s are not robust enough in noisy environments. This problem is solved
by extracting MFCCs from transform domains rather than the time domain [13].
Transforms such as the discrete cosine transform (DCT) and the discrete sine trans-
form (DST) enjoy a sophisticated energy compaction property, which can be effi-
ciently utilized for feature extraction. Another popular transform; the discrete wavelet
transform (DWT), decomposes the signal into subbands leading to distinguishing
features for each subband.

Speaker identification in the presence of noise, interference, or channel degrad-
ations is a challenging task. Speech enhancement, separation, and deconvolution
techniques can be utilized to enhance the performance of speaker identification
systems in the presence of degradations. Techniques like the spectral subtraction,
Wiener filtering, adaptive Wiener filtering, and wavelet denoising can be used
to enhance speech signals before the feature extraction process. For channel degrad-
ations, deconvolution techniques such as the linear minimum mean square (LMMSE)
and regularized deconvolution are useful.
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As mentioned above, the objective of speaker identification systems is to get a
voice signature for each speaker to achieve a high degree of security in certain
applications. The main objective of this book is to provide a novel speaker identifi-
cation system with multilevels of security based speech watermarking, speech
encryption, and speech signal processing. Multilevels of security can be achieved
in speaker identification systems by incorporating speech watermarking and
speech encryption with these systems. In some applications of speaker identification,
speech signals are communicated through a channel prior to the identification
process. It is possible for a watermarking process, an encryption process, or both
of them to be performed at the transmitter. At the receiver, a watermark extraction, a
decryption, or both of them can be performed. For the case of watermarking, an
image for example can be embedded in the speech signal at the transmitter. If this
watermark is extracted successfully and the extracted features form the speech signal
match a candidate’s features in the database, this can be used as a double check for an
authorized speaker. Encryption can also be used at the sender to hide the identity of
the speaker from an eavesdropper in the channel, who can alter the speaker voice
features, or synthesize another speech signal once again for the speaker.

2 Speaker Identification

In speaker identification, a speech utterance from an unknown speaker is analyzed
and compared with models of all known speakers. The unknown speaker is identi-
fied as the speaker, whose model best matches the input utterance. Speaker identifi-
cation involves three stages; feature extraction to represent the speaker information
present in the speech signal, modeling of the speaker’s features, and decision making
to complete the identification task. The main task in a speaker identification system
is to extract features capable of representing the speaker information present in
the speech signal. Once a proper set of feature vectors is obtained, the next task is
to develop a model for each speaker. Feature vectors representing the voice
characteristics of the speaker are extracted and used for building the reference
models. The final stage is the decision to either accept or reject the claim of the
speaker. This decision is made based on the result of the matching technique used.
The block diagram of a speaker identification system is shown in Fig. 1.

The speaker identification process consists of two modes; a training mode and
recognition or testing mode as shown in Fig. 2 [14]. In the training mode, a new
speaker with known identity is enrolled into the system database. In the recognition
mode, an unknown speaker gives a speech input and the system makes a decision
about the speaker’s identity.

Both the training and the recognition modes include a feature extraction step,
which converts the digital speech signal into a sequence of numerical features,
called feature vectors. The feature vectors provide a more stable, robust, and
compact representation than the raw input speech signal. Feature extraction can
be considered as a data reduction process that attempts to preserve the essential
characteristics of the speaker, while removing any redundancy. Features are
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Fig. 2 Training and testing modes of an automatic speaker identification system

extracted from the training data essentially filtering out all unnecessary information
in the training speech samples leaving only the speaker’s characteristic information,
with which the speaker’s model can be constructed. In the recognition mode,
features are extracted from the unknown speaker’s voice.

Pattern matching refers to the algorithm that computes a matching score
between the unknown speaker’s feature vector and the models stored in the database.
The output of the pattern matching module is a similarity score. The last phase in the
recognition system is the decision making. The decision-making module takes
the matching score as its input, and makes the final decision of the speaker’s identity.
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2.1 Feature Extraction

The methodology of the human brain to distinguish between speakers is based on
high-level features such as dialect, speaking style, and emotional state. Although
these features can characterize the speaker efficiently, it is difficult to build a
speaker identification system based on them due to the large complexity problem.
So, the alternative is to build the speaker identification system based on low-level
features. An example of such low-level features is the MFCCs.

To extract the MFCCs from a speech signal, it is necessary to investigate how
this signal is generated (Fig. 3). A speech signal s(n) can be expressed in terms of an
excitation e(n) and a vocal tract model /(n) as a convolution in the time domain [15]:

s(n) = h(n) % e(n), (1)

where e(n) is the excitation and A(n) is the vocal tract impulse response.

The idea of cepstral analysis is to separate the spectral components of the
excitation and the vocal tract, so that speech or speaker dependent information
represented by the vocal tract can be obtained. Mathematically, the cestrum is
computed by taking the fast Fourier transform (FFT) of the signal, the log of the
magnitude spectrum, and then the inverse fast Fourier transform (IFFT) as follows:

Cepstrum(frame) = FFT ! (log(|FFT(frame)|)). )

In the time domain, a convolution relationship exists as shown in (Eq. 1). Taking
the FFT moves the analysis to the frequency domain giving:

S(k) = H(k)E(k). 3)
Taking the logarithm of (Eq. 3), the multiplied spectra become additive as follows:
Log|S(k)| = Log|H (k)| + Log|E(k)|. ©)

The IFFT can then be taken. It operates on the two parts of (Eq. 4), separately,
resulting in the cepstral representation of the signal. It is possible to separate the
excitation spectrum E(k) from the vocal tract system spectrum H(k) taking into
account the fact that E(k) is responsible for the fast spectral variations, and H(k) is
responsible for the slow spectral variations. The domain created after taking the
logarithm and the IFFT is called the cepstral domain, and the word quefrency is
used for describing the frequencies in the cepstral domain.

e(n) s(n)
—_— h(n) —

Fig. 3 Simple model of
speech production
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Fig. 4 Extraction of MFCCs from a speech signal

In the cepstral domain, the excitation signal and the vocal tract impulse response
can be separated using a lifter. The vocal tract response decides the spectral envelope,
and exists in the low quefrency region, while the excitation (pitch information)
represents the spectral details, and exists in the high quefrency region. For speaker
identification, the spectral envelope is more useful than the spectral details.

For the calculation of the MFCCs of a speech signal, the signal is first framed
and windowed, the DFT is then taken, and the magnitude of the resulting spectrum
is warped by the Mel scale. The log of this spectrum is then taken and the DCT
is applied. This is illustrated in Fig. 4. The steps of extraction of the MFCCs are
summarized in the following subsections.

2.1.1 Preemphasis

The digitalized speech is preemphasized with a first-order finite impulse response
(FIR) filter, for its linear phase and simple implementation. Since in speech signals,
the lower formants often contain more energy, and therefore are preferentially
modeled with respect to the higher formants, a preemphasis filter is therefore used
to boost the high frequencies [16-18]. The digitalized speech is preemphasized to
remove glottal and lip radiation effects. The preemphasis filter transfer function is
given by:

H(z)=1—az ', (5)

where 0.9 < a < 0.99.

2.1.2 Framing and Windowing

The speech signal is a slowly time-varying signal. In a speaker identification
system, the speech signal is partitioned into short-time segments called frames.
To make the frame parameters vary smoothly, there is normally a 50% overlap
between each two adjacent frames. Windowing is performed on each frame with
one of the popular signal processing windows like the Hamming window [19].
Windowing is often applied to increase the continuity between adjacent frames
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and smooth out the end points such that abrupt changes between ends of successive
frames are minimized.

As a frame is multiplied by a window, most of the data at the edge of the
frame becomes insignificant causing loss of information. An approach to tackle this
problem is to allow overlapping in the sections between frames, which allows
adjacent frames to include portions of data in the current frame. This means that
the edges of the current frame are included as the center data of adjacent frames.
Typically, around 50% of overlapping is sufficient to embrace the lost information.

2.1.3 The DFT

Fourier analysis provides a way of analyzing the spectral properties of a given
signal in the frequency domain. The Fourier transform converts a discrete signal
s(n) from time domain into frequency domain with the equation [19]:

N—1
S(k) = Zs(n)e*ﬂ”"’f/N, 0<k<N-1, (6)
n=0
where n =0, 1,..., N — 1, and N is the number of samples in the signal s(n).

k represents the discrete frequency index and j is equal to v/—1. The result of the
DFT is a complex-valued sequence of length N.
The IDFT is defined as:

1 N—-1 )
s(n) = D S(k)ePN, o< n <N - 1. (7)
k=0

2.1.4 The Mel Filter Bank

Psychophysical studies have shown that human perception of the frequency contents
of sounds for speech signals does not follow a linear scale. In the MFCCs method, the
main advantage is that it uses Mel-frequency scaling, which approximates quite well
the human auditory system. The Mel scale is defined as [19]:

f
Mel(f) = 2,595 1 14+ 8
el(f) =2, og( w2, ®)
where Mel is the Mel-frequency scale and fis the frequency on the linear frequency
scale.

The MFCCs are extracted using a Mel filter bank, where the filters are spaced
on the Mel scale approximately linearly below 1 kHz, and logarithmically above
1 kHz. The conventional Mel filter bank in speaker identification is composed of a
number of triangular bandpass filters distributed inside the signal bandwidth.
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2.1.5 The DCT

The final stage involves performing a DCT on the log of the Mel spectrum. If the
output of the mth Mel filter is S(m), then the MFCCs are given as [20]:

Cp = \/;%NZ log(S(m)) cos (}% (m — 0.5)), )

where g =0, 1, ..., G — 1, G is the number MFCCs, Ny is the number of Mel
filters and ¢, is the gth MFCC. The number of the resulting MFCCs is chosen
between 12 and 20, since most of the signal information is represented by the first
few coefficients. The Oth coefficient represents the mean value of the input signal.

2.1.6 Polynomial Coefficients

MFCCs are sensitive to channel mismatches between training and testing data, and
they are also speaker dependent. Polynomial coefficients are added to the MFCCs
to solve this problem. They help in increasing the similarity between the training
and testing utterances, if they are related to the same person [21]. The importance of
these coefficients arises from the fact that they can preserve valuable information
(mean, slope, and curvature) about the shapes of the time function of each cepstral
coefficient of the training and testing utterances.

When the person says the same word at two different times (training and testing),
the amplitudes of a particular cepstral coefficient through frames of the training
utterance may differ from those of the testing utterance, which would lead to an
increase in the distance between the utterances and a decrease in the efficiency of the
matching process. On the other hand, the shape of time functions of both cepstral
coefficients is the same or very similar. Consequently, both of them have the same
values of polynomial coefficients, which is very helpful in the matching process [21].

To calculate the polynomial coefficients, the time waveforms of the cepstral
coefficients are expanded by orthogonal polynomials. The following two orthogonal
polynomials can be used [21]:

Pi(i) =i-5, (10)
Py (i) = i* — 10i 4 55/3. (11)

To model the shape of the MFCCs time functions, a nine elements window at
each MFCC is used. Based on this windowing assumption, the polynomial
coefficients can be calculated as follows [21]:

ag(r) == : (12)
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by(r) == : (13)

where a,(f) and b,(¢) are the slope, and the curvature of the MFCCs time functions
at each c¢,. The vectors containing all c,, a,, and b, are concatenated to form a single
feature vector for each speech signal.

2.2 Feature Matching

The classification step in automatic speaker identification systems is in fact a
feature matching process between the features of a new speaker and the features
saved in the database. Neural Networks are widely used for feature matching.
Multilayer perceptrons (MLPs) consisting of an input layer, one or more hidden
layers, and an output layer can be used for this purpose [22, 23]. Figure 5 shows an
MLP having an input layer, a single hidden layer, and an output layer. A single
neuron only of the output layer is shown for simplicity. This structure can be used
for feature matching in the speaker identification process.

Each neuron in the neural network is characterized by an activation function and
its bias, and each connection between two neurons by a weight factor. In this paper,
the neurons from the input and output layers have linear activation functions and

Single Neuron
of The Output
Layer

Input Hidden
Layer Layer

Fig. 5 An MLP neutral network
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hidden neurons have sigmoid activation functions F(u) = 1/(1 + ¢ *). Therefore,
for an input vector X, the neural network output vector Y can be obtained according
to the following matrix equation [22, 23]:

Y = W, « F(W, X + B;) + B, (14)

where W, and W, are the weight matrices between the input and the hidden layers,
and between the hidden and the output layers, respectively. B; and B, are bias
matrices for the hidden and the output layers, respectively.

Training a neural network is accomplished by adjusting its weights using a
training algorithm. The training algorithm adapts the weights by attempting to
minimize the sum of the squared error between a desired output and the actual
output of the output neurons given by [22, 23]:

|

1 [
E= Z (D, —Y,)%, (15)
o=1

where D, and Y, are the desired and actual outputs of the oth output neuron. O is the
number of output neurons. Each weight in the neural network is adjusted by adding
an increment to reduce E as rapidly as possible. The adjustment is carried out over
several training iterations until a satisfactorily small value of E is obtained or a
given number of epochs is reached. The error back-propagation algorithm can be
used for this task [22, 23].

3 Feature Extraction from Discrete Transforms

Discrete transforms can be used for extraction of robust MFCCs in speaker identi-
fication systems. The DWT, the DCT, and the DST have been investigated in the
literature for this purpose [13]. Figure 6 illustrates the utilization of discrete
transforms in speaker identification systems.

a Speech

. . Feature extraction To database
signal | Discrete transform (MFCCs + Trainine of
go —
—+ (OWT,DCTor — Polynomial ™ a neural network
DST) .
coefficients)
b -
Noisy speech — | Discrete transform Featll\l/i;ec)gracnon Feature matching Decision
signal (DWT, DCT or > ; | S"+l L with trained neural
DST) olynomia network
coefficients)

Fig. 6 Speaker identification based on discrete transforms. (a) Training phase. (b) Testing phase
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3.1 The Discrete Wavelet Transform

It is known that the DFT considers the analysis of a speech signal separately in the
time and frequency domains and does not provide temporal information about
frequencies. Although the DFT may be a good tool for analyzing a stationary
signal, speech signals are nonstationary or partially stationary. When analyzing a
nonstationary signal, in addition to the frequency content of the signal, we need to
know how the frequency content of the signal changes with time.

To overcome this deficiency, a modified transform called the short-time
Fourier transform (STFT) has been adopted, because it allows the representation
of the signal in both time and frequency domains through time widowing functions.
The window length determines a constant time and frequency resolution. The main
idea behind the STFT is to have localization in time domain. A drawback of the
STFT is its small and fixed window, so that the STFT cannot capture the rapid
changes in the signal. Moreover, it does not give information about the slowly
changing parts of the signal [24].

Wavelet analysis provides an exciting alternative method to Fourier analysis for
speech processing. Wavelet transform allows a variable time-frequency resolution,
which leads to locality in both the time and frequency domains. The locality of the
transform of a signal is important in two ways for pattern recognition. First,
different parts of the signal may convey different amounts of information. Second,
when the signal is corrupted by local noise in time and/or frequency domain, the
noise affects only a few coefficients if the coefficients represent local information in
the time and frequency domains.

In fact, the wavelet transform is a mathematical operation used to divide a
given speech signal into different subbands of different scales to study each scale,
separately. The idea of the DWT is to represent a signal as a series of approximation
(lowpass version) and details (highpass version) at different resolutions. The speech
signal is lowpass filtered to give an approximation signal and highpass filtered
to give a detail signal. Both of them can be used to model the speech signal.
The wavelet decomposition and reconstruction process is illustrated in Fig. 7.

Xo(2) (1/2){Xo(2) + Xo(-2)}

X(z Y(2)

H,(2) Gi(2)
T 1

X1(2) 1/2){Xu(2) + Xa(-2)}

Fig. 7 The two band decomposition-reconstruction wavelet filter bank
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The multilevel DWT can be regarded as equivalent to filtering the speech signal
with a bank of bandpass filters, whose impulse responses are all approximately
given by scaled versions of a mother wavelet. The scaling factor between adjacent
filters is usually 2:1 leading to octave bandwidths and center frequencies that are
one octave apart [24-38]. The outputs of the filters are usually maximally
decimated so that the number of DWT output samples equals the number of input
samples, and thus no redundancy occurs in this transform.

The art of finding a good wavelet lies in the design of the set of filters, Hy, H;, Gy,
and G; to achieve various tradeoffs between spatial and frequency domain
characteristics, while satisfying the perfect reconstruction (PR) condition [35]. In
Fig. 7, the process of decimation and interpolation by 2 at the outputs of Hy and H,
effectively sets all odd samples of these signals to zero. For the lowpass branch, this
is equivalent to multiplying xo(n) by 1/2(1 + (—1)"). Hence, Xo(z) is converted
to 1/2{Xo(z) + Xo(—z)}. Similarly, X, (z) is converted to 1/2{X;(z) + X;(—z)}.

As a result, the expression for Y(z) is given by [35]:

() =5 0Xo2) 4 Xo(~2)}Go(2) 5 (X1 (2) + X (~2)}Ga )

= X HO)Go(2) + i (2)G1 (2)} +5X (~2){Ho(~2)Golz) + i ()G (2)}.
(16)

The first PR condition requires aliasing cancelation and forces the above term
in X(—z) to be zero. Hence, {Ho(—2)Go(z) + Hi(—z)G1(z)} = 0, which can be
achieved if [35]:

Hi(z) =2 °Go(—z) and Gi(z) =z"Hy(-z2), a7

where p must be odd (usually p = £1).
The second PR condition is that the transfer function from X(z) to Y(z) should
be unity:

{Ho(2)Go(2) + H1(2)G1(2)} = 2. (18)

If we define a product P(z) = Ho(z)Go(z) and substitute from (Eq. 17) into
(Eq. 18), then the PR condition becomes [35]:

Ho(z)Go(z) + H(2)Gy(z) = P(z) + P(—z) = 2. (19)

This needs to be true for all z and, since the odd powers of z in P(z) cancel with
those in P(—z), it requires that po = 1 and p, = 0O for all v even and nonzero. The
polynomial P(z) should be a zero-phase polynomial to minimize distortion. In
general, P(z) is of the following form [35]:

5

P(z) = +ps2+p2 +piz+14piz 4 psz > 4psz >+ (20)
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The design method for the PR filters can be summarized in the following
steps [35]:

« Choose pi,p3,ps,... to give a zero-phase polynomial P(z) with good
characteristics.

» Factorize P(z) into Hy(z) and Go(z) with similar lowpass frequency response.

 Calculate H;(z) and G|(z) from Hy(z) and Go(z).

To simplify this procedure, we can use the following relation:
P(z) = PAZ) = 1+ paZ +piaZ’ + pisZ’ + -+, @D

where

Z=—(z4+z"). (22)

N[ —

The Haar wavelet is the simplest type of wavelets. In the discrete form, Haar
wavelets are related to a mathematical operation called the Haar transform. The
Haar transform serves as a prototype for all other wavelet transforms [35]. Like all
wavelet transforms, the Haar transform decomposes a discrete signal into two sub-
signals of half its length. One of them is a running average or trend; the other is a
running difference or fluctuation. This uses the simplest possible P,(Z) with a single

zero at Z = —1. It is represented as follows [35]:
1
P(Z)=1+Z and Z:E(Hz*l). (23)
Thus,
1 -1
P()=5(+2+27")
1
=GN =Go@H().  (24)
We can find Hy(z) and Go(z) as follows:
1 -1
Ho(z) =5 (1427, ©5)
Go(z) = (z+1). (26)

Using (Eq. 17) with p = 1:

Gi(z) = zHo(—z) = %z(l —z = %(z -1,
Hi(z) =2 'Go(—2) =z (—z+ 1) = (7' = 1).

27)
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The two outputs of Hy(z) and H;(z) are concatenated to form a single vector of
the same length as the original speech signal. The features are extracted from this
vector and used for speaker identification.

3.2 The DCT

The DCT is a 1D transform with an excellent energy compaction property. For a
speech signal x(n), the DCT is represented by [35]:

N—1
n(2n+ 1)k
X(k) = mE ) k=012, N1 2
0=y vtn) cos("E) kmona v ey
where

2(0) = \@ o(k) = \/]%

The inverse discrete cosine transform (IDCT) is given by:

x(n) = 2 a(k)X (k) cos (%

), n=0,1,2,....N—1. (29
=

The features are extracted from X(k) and used for speaker identification.

3.3 The DST

The DST is another triangular transform with common properties with the DCT.
The mathematical representation of the DST is given by [35]:

N—1
X(k) = Zx(n) sin(NZ -(n = 1)(k+ 1)), k=0,...,N—1.  (30)

The features are extracted from X(k) and used for speaker identification.

3.4 Speaker Identification with Discrete Transforms

In the training phase of the speaker identification system, a database is first
composed for 15 speakers. To generate this database, each speaker repeats a certain
sentence 10 times. Thus, 150 speech signals are used to generate MFCCs and
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polynomial coefficients to form the feature vectors of the database. These features
are used to train a neural network. In the testing phase, each one of these speakers is
asked to say the sentence again and his speech signal is then degraded. Similar
features to that used in the training are extracted from those degraded speech signals
and used for matching.

The features used in all experiments are 13 MFCCs and 26 polynomial
coefficients forming a feature vector of 39 coefficients for each frame of the speech
signal. Seven methods for extracting features are adopted in the experiment. In
the first method, the MFCCs and the polynomial coefficients are extracted from the
speech signals, only. In the second one, the features are extracted from the DWT
of the speech signals. In the third method, the features are extracted from both the
original speech signals and the DWT of these signals and concatenated together. In
the fourth method, the features are extracted from the DCT of the speech signals.
In the fifth method, the features are extracted from both the original speech signals
and the DCT of these signals and concatenated together. In the sixth method, the
features are extracted from the DST of the speech signals. In the seventh method,
the features are extracted from both the original speech signals and the DST of these
signals and concatenated together. The recognition rate is used as the performance
evaluation metric in all experiments. It is defined as the ratio of the number of
success identifications to the total number of identification trials.

For the speech signals contaminated by additive White Gaussian noise (AWGN),
it is clear from Fig. 8 that the DCT and the DWT are good competitors for robust
feature extraction in the presence of AWGN. Features extracted from the original

100 T T T T T T

—O6— Features from signal

90 |- | Features from the DWT of the signal

—+— Features from the signal plus the DWT of the signal
Features from DCT of signal

80 - Features from signal plus DCT of signal

—%9— Features from DST of Signal

— ¥~ Features from signal plus DST of signal

70

60

50

40

Recognition Rate

30
20

10t .

O | | | | | | | | |
25 20 -15 -10 -5 0 5 10 15 20 25
SNR (dB)

Fig. 8 Recognition rate vs. SNR for the different feature extraction methods for speech signals
contaminated by AWGN
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signals in the time domain fail to give good identification results, especially at low
signal-to-noise ratios (SNRs). The DCT energy compaction property allows a few
number features to characterize the speech signals, hence facilitating the matching
process. Also, the subband decomposition resulting from the DWT allows feature
extraction from the different bands to enhance the performance of speaker identifica-
tion systems.

4 Speech Enhancement

Speech enhancement can be used as a preprocessing step in the testing phase of the
speaker identification system to improve its performance as shown in Fig. 9.

4.1 Speech Quality Metrics

Speech quality metrics are used to assess the perceptual quality of the speech
signals resulting from any speech enhancement algorithm. Several approaches,
based on subjective and objective metrics, have been adopted in the literature for
this purpose [39-42]. Objective metrics are generally divided into intrusive and
nonintrusive. Intrusive metrics can be classified into three main groups. The first
group includes time domain metrics such as the traditional SNR and the segmental
signal-to-noise ratio (SNRseg). The second group includes linear predictive
coefficients (LPCs) metrics, which are based on the LPCs of the speech signal
and its derivative parameters, such as the linear reflection coefficients (LRCs), the
log likelihood ratio (LLR), and the cepstral distance (CD). The third group includes
the spectral domain metrics, which are based on the comparison between the power
spectrum of the original signal and the processed signal. An example of such
metrics is the spectral distortion (SD) [39-42].

: Feature extraction
Nmsy speech Discrete transform MFECCs +
signal Speech ( S

g ' —» (DWT, DCT or Pol ial
enhancement olynomia
DST) coefficients)

Decision Fpature_ matching

with trained neural

network

Fig. 9 Testing phase of a speaker identification system with speech enhancement
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4.1.1 The SNR

The SNR is defined as follows [39-42]:
N

s*(n)
SNR = 10 log;y) ——"————, @31

Z_)l (s(n) = y(n))?
where s(n) is the original speech signal, and y(n) is the processed speech signal.

4.1.2 The SNRseg

SNRseg is defined as the average of the SNR values over short segments of the
output signal. It is can be calculated as follows [39-42]:

10 M1 LsniL:sfl s(n) 2
SNRseg = — log;q (7> , (32)
M ; i \s(n) = y(n))

where M is the number of segments in the speech signal, and L, is the length of each
segment.

4.1.3 The LLR

The LLR metric for a speech segment is based on the assumption that the segment
can be represented by an all-pole linear predictive coding model of the form [39—42]:

s(n) = zp:ams(n —m) + Ggu(n), (33)

m=1

where a,, (for m = 1,2,...,m,) are the coefficients of the all-pole filter, G, is the
gain of the filter, and u(n) is an appropriate excitation source for the filter. The
speech signal is windowed to form frames of 15-30 ms length. The LLR metric is

then defined as [42]:
— ﬁ ST
log [ Y%
ayRyay

where a; is the LPCs coefficient vector [1,a,(1), a5(2), ..., as(m,)] for the original
speech signal, ay is the LPCs coefficient vector [1,ay(1),ay(2),...,ay(m,)] for

LLR = ; (34)
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the processed signal, and Ry is the autocorrelation matrix of the processed speech
signal. The closer the LLR to zero, the higher is the quality of the output speech
signal.

4.1.4 The SD

The SD is a form of metrics that is implemented in frequency domain on the
frequency spectra of the original and processed speech signals. It is calculated in
dB to show how far is the spectrum of the processed signal from that of the original
signal. The SD can be calculated as follows [39—42]:

1 M—1Lgm+Ls—1
SD==%" > Vilk) = Vy(k)], (35)

M m=0 k=Lgm

where V (k) is the spectrum of the original speech signal in dB for a certain segment
and V,(k) is the spectrum of the processed speech signal in dB for the same
segment. The smaller the SD, the better is the quality of the audio output signal.

4.2 Spectral Subtraction

The goal of the spectral subtraction method is the suppression of additive noise
from the corrupted speech signal prior to speaker identification [43—45]. It is per-
formed by subtracting the noise spectrum from the noisy signal spectrum to obtain
an estimate of the clean signal spectrum, and then reconstructing the signal from
the estimated spectrum. Speech degraded by additive noise can be represented by:

x(n) = s(n) +v(n), (36)

where s(n) is the clean speech signal, and v(n) is the noise. Taking the Fourier
transform gives:

X(k) = S(k) + V(k). (37)

The spectral subtraction filter H(k)is calculated by replacing the noise spectrum
V(k) with a spectrum, which can be readily measured. The magnitude |V (k)| of
V(k)is replaced by its average value u(k) taken during nonspeech activity, and the
phase 0y (k) of V(k) is replaced by the phase Ox(k) of X(k). These substitutions
result in the spectral subtraction estimated signal:

S(k) = [IX(k)| — pu(k))e™®) (38)
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or
S(k) = H(k)X (k)
with
_ k)
HO =1~ )
and

p(k) = E{[V(K)[}-

19

(39)

(40)

(41)

The drawback of the spectral subtraction method is that it gives musical noise,
which is an offensive noise. It is difficult to reduce the musical noise, because its
spectrum is not stationary in short-time frames. Figure 10 shows a clean speech

signal and its spectrogram. A contaminated version of this signal with an

AWGN

atan SNR = 5 dB is shown in Fig. 11. An enhanced version of the noisy signal using
the spectral subtraction method is shown in Fig. 12. It is clear from that figure that

effect of the spectral subtraction method is very slight. The effect of the

spectral
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0.5 _
o)
o
2
= 0
IS
<C
0.5 .
_1 | | | | | | | | |
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
Time (s)
Original Signal
5000 ==+ e e Xt 3
< 4000 -
<
> 3000 [
2} -
e -
S 2000
) £,
L 1000
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Fig. 10 Time domain waveform and spectrogram of a clean speech signal
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Fig. 12 Time domain waveform and spectrogram of the enhanced signal using the spectral
subtraction method. SNR = 5.0439 dB, SNRseg = 5.0164 dB, LLR = 0.2336, SD = 8.4721 dB
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Fig. 13 Recognition rate vs. SNR for the different feature extraction methods in the presence of
AWGN using the spectral subtraction method

subtraction method as a preprocessing method on the speaker identification process is
shown in Fig. 13. It is clear from that figure that the effect of the spectral subtraction
method on the process of speaker identification is also small.

4.3 Wiener Filter

The Wiener filter is an optimal filter that minimizes the mean square error
(MSE) between the original and enhanced speech signals. This filter is defined
by [46]:

S(k) = H(k)X(k), (42)

where S(k), X(k), and H(k) are the DFT of the clean speech, the DFT of the noisy
speech, and the transfer function of the Wiener filter, respectively. The Wiener filter
is represented by:

Py (k)

PR) + PuE)” )

H(k) =
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where P (k) and P, (k) are the power spectra of the speech signal s(7) and the noise
v(n), respectively. This formula has been derived considering the signal s(n) and
noise v(n) as uncorrelated and stationary signals. The SNR is defined by:

Py(k)
SNR = ——=. 44
P o
This definition can be incorporated to Wiener filter equation as follows:
11!
Hk)= |1+ - 45
(k) [ + SNR] (45)

The drawback of the Wiener filter is the fixed frequency response at all
frequencies and the requirement to estimate the power spectral density of the
clean signal and noise prior to filtering. An enhanced version of the noisy speech
signal using the Wiener filter is shown in Fig. 14. It is clear that the Wiener
filtering method has a better performance than the spectral subtraction method.
The effect of the Wiener filter enhancement on the speaker identification process is

Amplitude
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Fig. 14 Time domain waveform and spectrogram of the enhanced signal using the Wiener
filtering method. SNR = 4.9880 dB, SNRseg = 4.9604 dB, LLR = 0.2383, SD = 8.5090 dB
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Fig. 15 Recognition rate vs. SNR for the different feature extraction methods in the presence of
AWGN using the Wiener filter method

shown in Fig. 15. It is clear from that figure that the Wiener filtering method has a
better effect on the speaker identification process than the spectral subtraction
method.

4.4 The Adaptive Wiener Filter

The adaptive Wiener filter uses local statistics of the speech signal, and is derived
from the Wiener filter under certain assumptions [46]. It is assumed that the additive
noise v(n) is a stationary white noise with zero mean and variance 03. Thus, the
power spectrum of the noise P, (k) can be approximated by [46]:

P, (k) = o> (46)

Vv

Consider a small segment of the speech signal, in which the signal x(n) is
assumed to be stationary. The signal x(n) can be modeled by [46]:

x(n) = my + aw(n), (47)
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where m, and o, are the local mean and standard deviation of x(n). w(n) is a unit
variance noise. Within this small segment of speech, the Wiener filter transfer
function can be approximated by:

2
Py(k 0 48)

B )
O = o+ P 2t 2

Since H(k) is constant over this small segment of speech, the impulse response of
the Wiener filter can be obtained by:

0.2

h(n) = *—d(n). (49)

2 2
o; +o;

The enhanced speech signal §(n) in this local segment can be expressed as [46]:

2 2
§(n) = my + (x(n) — my) ﬁam) = m, + o?jj 0 =m).60)
If m, and o, are updated at each sample, we get:
o2
5(n) = my(n) + p _; p (x(n) — my(n)). (51)

In (Eq. 51), the local mean m,(n) and (x(n) — m,(n)) are modified from segment
to segment. If ¢ is much larger than o2, the output signal §(n) will be primarily due
to x(n), and the input signal x(n) is not attenuated. If Uf is smaller than of, the
filtering effect appears.

Note that m, is identical to m, when m,, is zero. So, we can estimate m,(n) in
(Eq. 51) from x(n) by:

A A 1 n+T
ritg(n) = ring(n) = T ,:;Tx(l)’ (52)

where (2T + 1) is the number of samples in the short segment used in the
estimation.

To measure the local statistics of the speech signal, we need to estimate the
signal variance ¢2. Since 62 = 62 + ¢2, then 02 (n)may be estimated from x(n) as
follows:

v

&%(n) —62 if &%(n) > 6'3,
{ 0 otherwise, (53)
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Fig. 16 Time domain waveform and spectrogram of the enhanced signal using the adaptive Wiener
filtering method. SNR = 6.8726 dB, SNRseg = 6.8423 dB, LLR = 0.1609, SD = 7.3006 dB

where
2(n) = — S x(1) = (n))?
A = gy 2 G0~ Al (54

An enhanced version of the noisy speech signal using the adaptive Wiener filter
is shown in Fig. 16. It is clear that the adaptive Wiener filtering method has a better
performance than both the spectral subtraction method and the Wiener filtering
method. The effect of the adaptive Wiener filtering on the speaker identification
process is shown in Fig. 17. It is clear from that figure that the adaptive Wiener filter
has a better effect on the speaker identification process than the spectral subtraction
and the Wiener filtering methods.

4.5 Wavelet Denoising

Wavelet denoising is a simple operation, which aims at reducing noise in a noisy
speech signal. It is performed by choosing a threshold that is sufficiently a large
multiple of the standard deviation of the noise in the speech signal. Most of the
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Fig. 17 Recognition rate vs. SNR for the different feature extraction methods in the presence of
AWGN using the adaptive Wiener filtering method

noise power is removed by thresholding the detail coefficients of the wavelet
transformed speech signal. There are two types of thresholding; hard and soft
thresholding. The equation of the hard thresholding is given by [37, 47-49]:

_ Jxw, |xw| > TH,
fhard(xw) = {0, |Xw| < TH. (55)

On the other hand, that of soft thresholding is given by:

X, x| > TH,
. 2%, — TH, TH/2 < x, <TH,
Fonlw) = 9 g 4 2x,, —TH<ux, < -TH/2,
0, | < TH/2,

(56)

where TH denotes the threshold value and x,, represents the coefficients of the high
frequency components of the DWT.

An enhanced version of the noisy speech signal using the wavelet hard
thresholding method with one level decomposition is shown in Fig. 18. The effect
of the wavelet hard thresholding method, with one level decomposition, on the
speaker identification process is shown in Fig. 19. An enhanced version of the
noisy speech signal using the wavelet soft thresholding method with one level
decomposition is shown in Fig. 20. The effect of the wavelet soft thresholding
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Fig. 18 Time domain waveform and spectrogram of the enhanced signal using the wavelet hard
thresholding method with 1 level Haar wavelet transform. SNR = 6.5002 dB, SNRseg = 6.4605 dB,
LLR = 0.1945, SD = 7.6423 dB
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Fig. 19 Recognition rate vs. SNR for the different feature extraction methods in the presence of

AWGN using the wavelet hard thresholding method with 1 level Haar wavelet transform
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Fig. 20 Time domain waveform and spectrogram of the enhanced signal using the wavelet soft
thresholding method with 1 level Haar wavelet transform. SNR = 6.4884 dB, SNRseg = 6.4506 dB,
LLR = 0.1942, SD = 7.6463 dB

method, with one level decomposition, on the speaker identification process is
shown in Fig. 21. The effect of the wavelet hard and soft thresholding methods,
with two levels decomposition, on the speaker identification process is shown in
Figs. 22 and 23, respectively. From these figures, it is clear that the wavelet
denoising has the best effect on the speaker identification process. Soft thresholding
with two levels wavelet thresholding gives the highest recognition rates. Thus, the
wavelet denoising can be used with speaker identification systems implementing
features extracted from the DCT of signals to get the highest recognition rates in
noisy environments.

5 Blind Signal Separation

Blind signal separation can be used to reduce interference with undesired signals
prior to the speaker identification process. In some cases, the speakers to be
identified give utterances that are contaminated by noise or some kind of interfer-
ence. Blind signal separation can be used for the separation of required speech
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Fig. 21 Recognition rate vs. SNR for the different feature extraction methods in the presence of
AWGN using the wavelet soft thresholding method with 1 level Haar wavelet transform
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Fig. 23 Recognition rate vs. SNR for the different feature extraction methods in the presence of
AWGN using the wavelet soft thresholding method with 2 levels Haar wavelet transform

signals from the background signals, and then the features can be extracted from the
separated speech signals.

Blind signal separation deals with mixtures of signals in the presence of noise.

If there are two original signals s;(n) and s»(n), which are mixed to give two
observations x;(n) and x,(n), these observations can be represented as follows
[50, 51]:

where

=2

or in matrix form as follows:

) -

P
Zhn

0
P

S:

Nsi(n—i —|—Zh12 (i)s2(n — i) + vi(n),
i=0

T
h2l

(M 5
h22

T = [h(0), ...,
(n) = [si(n), ..

l’l21 S] n—i +Z/’l22 S2(ﬂ—l)+V2( )
i=0

)(om) + (ale) )

h;(p)],
,si(n—p)],

(57)

(58)

(39)
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Fig. 24 A fully coupled

2 X 2 mixing system si1(n) Hy(2) x;(n)

— Hy(2)

—>» Hix(2) \\

$5(n) H>y(2) X5(n)

A 4

v1(n) and v,(n) are due to noise, h;; is the impulse response from source j to sensor i,
and p is the order of the filter. For simplicity, the source signals are assumed to be
statistically independent with zero means. The problem is simplified by assuming
that the signals arrive at the sensors unfiltered, which is equivalent to setting
h;y =hyp =1

Taking Z-transform of (Eq. 58), and neglecting the effect of noise lead to:

(X1(2)> _ <H11(Z) H12(Z)><S1(Z)) (60)
X>(z) Hy (z) Hp(z) )\ S2(2) )°
This model can be represented by the block diagram in Fig. 24. Simplifying
(Eq. 60) leads to:
X>(2) Hy(z) 1 85(2) )’

where

S1(z) = Hi1(2)81(2),
S5(z) = Hn(2)$1(2),
(2)

, H

Hiale) = 3 (62)
) H

Hy,(z) = Hig

For H;i(z) = 1, which is the case of interest, (Eq. 61) simplifies to:

() = (e ™) (320)
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The objective of blind signal separation is to get the signals y;(n) and y,(n),
which are as close as possible to s{(n) and s,(n). We can assume that:

(28) B <W21(z) W11(2)> (28) (64)

where in vector form

W;F = [wl(0)7 .- »aWi(CI)L
X(n) = [ (n). ... (1 — )]

Substituting (Eq. 63) into (Eq. 64) leads to [50, 51]:

Yi(2)\ (1 +Wi(2Hu(z) Wi(2) +Hnlz) \ [ Si(2)
(1) = (w0 tme)(5@)

(65)

The time domain iterative separation algorithm for the 2 x 2 convolutive
system minimizes the output cross-correlations for an arbitrary number of lags
with ¢ + 1 tap FIR filters. From (Eq. 66), it is clear that the solution of the problem
is to find suitable W{(z) and W,(z), such that each of Y;(z) and Y,(z) contains only
S1(z) or Sy(z). This is achieved only if either the diagonal or the anti-diagonal
elements of the cross-correlation matrices are zeros. Figure 25 shows a block
diagram of the separation algorithm.

Assuming sy(n) and s(n) are stationary, zero mean and independent random
signals, the cross-correlation between the two signals is equal to zero, that is [50, 51]:

Fos,(I) = E[si(n)sa(n+0)] =0 V L (67)

If each of y,(n) and y,(n) contains components of s(n) or s,(n) only, then the
cross-correlation between y;(n) and y,(n) should also be zero as follows:

r}‘l)’z (l) = E[yl (l’l)yz(l’l + l)} =0 V l (68)
() w1 (D> vi(n)
H(2) Wa(2)
Hi»(2) Wi(2)
Fig. 25 Schematic diagram
of the 2 x 2 separation S,(n) ,@ om >+ yo(n)

algorithm
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Substituting (Eq. 59) into (Eq. 68) gives:
Py (1) = E[(x1 (n) + wixa(n)) (2 (n + 1) + wyxi (n + D). (69)
If 7, (1) = E[x;(n)x;(n +1)], (Eq. 69) becomes:

Txox, (l) Txxy (l)
Py (1) = Ty (1) 4+ W] : +wy : + WIR,,,, ()W,
Froxs (L + q) Fox (L+q)
(70)

where Ry, (1) = E[xo(n)(x;(n+1))"] is a (5 + 1) x (4 + 1) matrix, which is a
function of the cross-correlation between x; and x,.

The cost function C is defined as the sum of the squares of the cross-correlations
between the two inputs as follows [50, 51]:

b
C=> [P (71)
=1,

where /; and [, constitute a range of cross-correlation lags. C can also be
expressed as:

C=r Ty, (72)

where
Fyye = () (R (73)

Thus:
Fype = P + Q] Wi+ Qg "W + RE, A(wz)wy (74)
or

Py = Prn + [Qi ] Wi+ [Q ]Tw2 + RE A (wi)wo, (75)
where Qand Q. are (0 + 1) x (I, — [, + 1) matrices, R, is a (20 + 1) x

(L — I} + 1) matrix. These are all correlation matrices of x; and x, and are estimated
using sample correlation estimates. A(w;) and A(w,) are (20 + 1) x (0 +1)
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matrices, which contain w; and w,, respectively. In order to find some suitable w; and
w,, C is minimized such that:

oc
ow,

0,...,0", ©=1,2. (76)
Let

lpl = ([Q;xz]T + RIZ,\‘]A(Wz))7

- an

lPZ = ([Qx]XI]T + RII,VZA(WI))'

Substituting (Eq. 77) into (Eq. 74) and (Eq. 75) gives:
Fyy, = Fowy + l/llwl + [Q;lxl]TWZ (78)

or
+ 1T
Fyy, =y, + lﬂ2W2 + [szxz] Wi. (79)
From (Eq. 76), we obtain [50, 51]:

Wi = _(wrlrlpl)_lwrf(r«\‘m + [Q:]n ]TW2)7 (80)

Wy = 7(lpr2rlp2)_l¢§(rxlxz + [Q;xz]Twl)'

w; and w, are obtained by iterating between the two equations until convergence
is achieved, when the rate of change of parameter values is less than a preset
threshold. By estimating w; and w,, we then obtain a set of outputs y;(n) and y,(n).
Each output contains s;(n) or s,(n), only.

The above-mentioned blind signal separation algorithm can be applied on the
signal mixtures in time domain or in a transform domain such as the DCT or the
DST. Wavelet denoising can also be used for noise reduction in the resulting
separated signals. In the DCT or DST transform domains, the separation is
performed on a few coefficients in the transform domain due to the energy compac-
tion property. Figures 26-37 confirm the superiority of transform domain separa-
tion to time domain separation and the importance of the wavelet denoising step for
two mixtures composed of speech and music signals in the presence of noise.

The effect of blind signal separation on the performance of speaker identification
systems is shown in Fig. 38. This figure reveals that signal separation for the desired
speech signals is very important for robust speaker identification because
interfering signals at low SNRs destroy the distinguishing features of speech
signals.
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Fig. 26 Original signals and noisy mixtures. (a) Original speech signal. (b) Original music signal.
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Fig. 27 Signal separation in the time domain with and without wavelet denoising. (a) Separated
speech signal in the absence of wavelet denoising. SNR = —8.31 dB, SNRseg =—8.33 dB,
LLR = 045, SD = 22.88 dB. (b) Separated music signal in the absence of wavelet denoising.
SNR = —3.24dB, SNRseg = —3.28dB,LLR = 0.52, SD = 15.64 dB. (¢) Separated speech signal
in the presence of wavelet denoising. SNR = —5.43 dB, SNRseg = —5.64 dB, LLR = 0.47,
SD = 18.20 dB. (d) Separated music signal in the presence of wavelet denoising. SNR = —0.49 dB,
SNRseg = —0.67 dB, LLR = 0.54, SD = 12.80 dB
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Fig. 28 Signal separation using the DCT with and without wavelet denoising. (a) Separated
speech signal in the absence of wavelet denoising. SNR = —7.72 dB, SNRseg = —7.74 dB,
LLR = 0.44, SD = 21.85 dB. (b) Separated music signal in the absence of wavelet denoising.
SNR = 2.08 dB, SNRseg = 2.05 dB, LLR = 0.51, SD = 11.01 dB. (c¢) Separated speech signal
in the presence of wavelet denoising. SNR = —4.87 dB, SNRseg = —5.08 dB, LLR = 0.48,
SD = 17.42 dB. (d) Separated music signal in the presence of wavelet denoising. SNR = 4.01 dB,
SNRseg = 3.94 dB, LLR = 0.42, SD = 10.06 dB

6 Deconvolution of Speech Signals

Deconvolution methods can be used in a preprocessing step in the testing phase of
the speaker identification system to eliminate the channel degradation effect as
shown in Fig. 39.

6.1 LMMSE Deconvolution

The linear shift invariant speech degradation model for a speech signal that passed
through a finite bandwidth channel can be described as a convolution between the
signal and the channel impulse response in the presence of noise. This convolution
can be put in matrix vector notation as follows [52-55]:

x=Hs+v, 1)
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Fig. 29 Signal separation using the DST with and without wavelet denoising. (a) Separated
speech signal in the absence of wavelet denoising. SNR = —7.72 dB, SNRseg = —7.74 dB,
LLR = 0.44, SD = 21.85 dB. (b) Separated music signal in the absence of wavelet denoising.
SNR = 2.08 dB, SNRseg = 2.05 dB, LLR = 0.51, SD = 11.01 dB. (c) Separated speech signal
in the presence of wavelet denoising. SNR = —4.87 dB, SNRseg = —5.08 dB, LLR = 0.48,
SD = 17.42 dB. (d) Separated music signal in the presence of wavelet denoising. SNR = 4.01 dB,
SNRseg = 3.95 dB, LLR = 0.42, SD = 10.06 dB
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39

where s, X, and v are vectors of length N, of the original speech signal, the degraded

speech signal, and the noise, respectively. The matrix H is the N x N channel
matrix. For a linear shift invariant system, the matrix H is a block Toeplitz matrix.
The problem is to estimate s given the recorded speech x. It is required that the

MSE of estimation be minimum over the entire ensemble of all possible estimates

of the speech signal [55, 56].
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min E[e'e] = E[Tr(ee')], (82)

where € = s —§ is the estimation error and § is an estimate of original speech
signal.

Since the transformation matrix H is linear, the estimate of s will be linear. That
is an estimate of s that can be derived by a linear operation on the degraded speech
signal as follows:

§ =Lx, (83)

where L is the derived subject to solving (Eq. 82), which leads to the following
equation:

min E[Tr(ee')] = E[Tr{(s — Lx)(s — Lx)'} ]
= E[Tr{ss' — L(Hss"' + vs') — (ss'"H" + sv')L!
+L(Hss'H' + vs'"H' + Hsv' + vv')L!}]. (84)

We have Tr(A) = Tr(A"). Since the trace is linear, it can be interchanged with
the expectation operator. Equation 84 can be simplified using some assumptions.
The noise is assumed to be independent of the speech signal. This assumption
leads to:

E[sv'] = E[v's] = [0]. (85)
The autocorrelation matrices can be defined as:
E[ss'] = Ry, (86)

E[w'] = R,. 87)
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Substituting from (Eq. 85), (Eq. 86) and (Eq. 87) into (Eq. 84) yields:

min E[Tr(ee')] = Tr{R, — 2LHR, + LHR;H'L! + LR,L'}. (88)
S

Differentiating (Eq. 88) with respect to L and setting the result equal to zero, the
LMMSE solution is given by:

L = RH!(HRH' +R,) " (89)

The solution to obtain the estimate § requires the tedious task of inverting an
N x N matrix. This task can be avoided using the Toeplitz-to-circulant approxima-
tion of matrices [57, 58].

Mathematical operations on matrices are greatly simplified, when these matrices
have circulant structures. The simplifications emerge from the fact that operations
on circulant matrices yield circulant matrices. Circulant matrices can be classified
to either circulant or block circulant matrices. Both types of matrices can be
diagonalized via either the 1D or the 2D DFT. This attractive property allows the
inversion of circulant matrices of large dimensions, since the inversion process will
be applied to diagonal sparse matrices [57, 58].

Let Q be an § x S Toeplitz matrix of the following form [57, 58]:

g0) .. ¢~ 0
Q=|qr) . gem)]. ©0)
0 qm) ... q0)

It can be approximated by an S x S circulant matrix Q¢ defined as [57, 58]:

[ q(0) g(=11) 0 q(I') q(1) 7
q(I')
q(I')
Q= 0o . - 0 , 9D
. . . . JT0)
q(—1I)
Lg(—1) q(—11) 0 ¢(T) q(0) 1




44 Information Security for Automatic Speaker Identification

where each row is a circular shift of the row above, and the first row is a circular
shift of the last row. The primary difference between the matrices Q and Q€ is the
elements added at the upper right and lower left corners to produce the cyclic struc-
ture in the rows. If the matrix size is large and the number of nonzero elements on
the main diagonals compared to the number of zero elements is small (i.e., the matrix
is sparse), the elements added at the upper right and lower left corners do not affect
the matrix, because the number of these elements is small compared to the number
of the main diagonal elements. It can be shown from the Eigenvalues distribution of
the matrices Q and Q¢ that both matrices are asymptotically equivalent.

It is known that an S X S circulant matrix Q¢ is diagonalized as follows [57, 58]:

A=¢"'Q%, (92)

where A is an § X S diagonal matrix, whose elements A(s, s) are the Eigenvalues
of Q% and ¢ is an S X S unitary matrix of the Eigenvectors of Q€. Thus, we have:

et =l =1 (93)

The elements ¢(s1, 52) of ¢ are given by:
Pls1,52) = efmrS ©4)

for s;,50 =0,1,...,5— 1.
The Eigenvalues A(s, s) can be referred to as A(s). For these Eigenvalues, the
following relation holds:

r

-1
/I(S) = q(O) + Zq(m)e—jznms/S + Z q(m)e—_/‘ans/S’
m=1 m=—I1 (95)

s=0,1,...,5—1.
Because of the cyclic nature of Q°, we can define:
q(§ —m) = q(—m). (96)

Thus, (Eq. 95) can be written in the form:
As) = q(m)e=2mm/S, 97)

where s =0,1,...,5 — 1.

Thus, the circulant matrix can be simply diagonalized by computing the DFT of
the cyclic sequence ¢(0),¢(1),...,q(S —1).

The implementation of the LMMSE deconvolution method is greatly dependent
on the Toeplitz-to-circulant approximation. As mentioned above, the solution of
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(Eq. 89) requires the inversion of an N x N matrix. To avoid this process, we can
benefit from the Toeplitz-to-circulant approximation.

First consider the 1D Fourier transform of the speech signal s(n) given in (Eq. 6).
This equation can also be written in vector-matrix notation as:

S=¢'s, (98)

where S and s are matrix vectors of S(k) and s(n), respectively. The N x N matrix ¢!
contains the complex exponentials of the 1D Fourier transform. Similarly, the 1D IDFT
can be obtained by multiplying both sides of (Eq. 98) by the matrix ¢, which yields:

s = ¢S. (99)

From the Toeplitz structures of H, Ry, and Ry, which can be approximated by
circulant matrices, we get [57, 58]:

¢ 's = ¢ 'Ripp 'H'ep '[HRH' + Ro] g 'x. (100)

The above equation leads to:

¢ 's= ¢ 'Ripp 'H'ele 'Hee 'Rypp 'H'o + ¢ 'Rag] ¢ 'x. (101)

Using the diagonalization property, the following form is obtained:
S = AsAL[AnAGAL + AL T'X, (102)

where As = ¢ 'Rse, and Ay, = ¢ 'He are diagonal matrices whose elements are
the Eigenvalues of the matrices Ry and H, respectively. A}, is a diagonal matrlx
whose elements are the complex conjugates of the elements of Ap. S= o's
and X = ¢ 'x represent the 1D DFT of the estimated and degraded speech
signals, respectively. This diagonalization process allows the operation on sparse
matrices, which can be inverted easily.

The Eigenvalues of the matrix Ry are obtained from the 1D DFT of the correla-
tion sequence R (n), which represents the circular sequence of the matrix Ry. Also
the Eigenvalues of the matrix H are obtained from the 1D DFT of the channel
impulse response sequence.

Another problem encountered in the LMMSE deconvolution method is how to
estimate the correlation sequence R;(n) of the original speech signal. This correla-
tion sequence can be estimated from a prototype speech signal s'(n) using the
following equation [55]:

[aS]

él*—‘

Z s'(n+1), (103)
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where Ry(n) is the correlation at index n and w is an arbitrary window length.
The prototype speech signal s'(n) may be taken as the degraded speech signal x(n).
Thus, the correlation sequence may be approximated from the degraded speech
signal as [55]:

Ry(n) = — Zx(l)x(n +1). (104)

6.2 Inverse Filter Deconvolution

The speech deconvolution problem can be solved directly by inverting the channel
impulse response operator. This direct deconvolution method is feasible in the absence
of noise, but severe distortions are observed in the restored speech signals at low SNRs.

The mathematical model for the inverse filter deconvolution method is based
on assuming a known and invertible channel impulse response operator. A direct
solution to the deconvolution problem can be obtained by estimating § that
minimizes the norm of the difference between the reconvolved estimated speech
signal HS and the degraded speech x. Mathematically, this can be represented by
estimating § that minimizes the following cost function [57, 58]:

¥($) = ||x — Hs||*. (105)

Taking the partial derivative of the both sides of (Eq. 105) with respect to § and
setting it equal to zero yields:

O (3)

=0= —2H"'[x — Hs]. (106)
This leads to:
§ = [H'H] 'H'x. (107)
The above equation can be simplified to the form:
§=H'x=s+Hv. (108)

The Toeplitz-to-circulant approximation is used to solve matrix inversion
problem in (Eq. 108). Applying the operator ¢! on both sides of the equation,
yields:

¢ 's=¢ ' H'x= ¢ 'H '¢p 'x = ¢ 'Hpp) 'X. (109)
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Thus:
S=A;'X. (110)

In the above equation, the inversion process is performed on the diagonal matrix
Ap. So, it can be implemented easily due to the maximally sparse structure of this
matrix.

Equation 110 can be written in an equivalent form as follows [57, 58]:

S(k) =22 = S(k) +——=2. (111)

(112)

k
S AN

The use of the inverse filter is limited to restoring noise free speech signals. This
is due to the lowpass nature of the channel impulse response operator H, which
leads when inverted to the amplification of the high frequency noise components in
the restored signal. This limitation is clear, especially when H is near singular.
Thus, its inverse will have very large valued elements and consequently, the term
H'v can dominate the term containing the solution s in (Eq. 108). To overcome the
limitation of the inverse filter deconvolution, some regularization is needed to avoid
the amplification of the high frequency noise.

6.3 Regularized Deconvolution

An inverse problem is characterized as ill-posed, when there is no guarantee for the
existence, uniqueness, and stability of the solution based on direct inversion. The
solution of an inverse problem is not guaranteed to be stable if a small perturbation
in the data can produce a large effect on the solution. Speech signal deconvolution
belongs to a general class of ill-posed problems. Regularization theory, which was
basically introduced by Tikhonov and Miller, provides a formal basis for the
development of regularized solutions for ill-posed problems [59-61].

The stabilizing functional approach is one of the basic methodologies for the
development of regularized solutions. According to this method, an ill-posed problem
can be formulated as the constrained minimization of a certain functional, called
stabilizing functional [81]. The specific constraints imposed by the stabilizing func-
tional approach on the solution depend on the form and properties of the stabilizing
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functional used. From the nature of the problem, these constraints are necessarily
related to the a priori information regarding the expected regularized solution.

According to the regularization method, the solution of (Eq. 81) is obtained by
the minimization of the cost function [59-61]:

P(8) = |]x — H8||> + n||Cs||, (113)

where C is the regularization operator and 7 is the regularization parameter.
This minimization is accomplished by taking the derivative of the cost function
yielding:

8?25) — 0 = 2H'(x — H§) — 2//C'C. (114)

Solving for § that provides the minimum of the cost function yields:
§ = [H'H + nC'C] 'H'x = A(n)x, (115)

where
A(n) = [H'H + nC'C] 'H. (116)

The rule of the regularization operator C is to move the small Eigenvalues of H
away from zero, while leaving the large Eigenvalues unchanged. The generality
of the linear operator C allows the development of a variety of constraints that can
be incorporated into the deconvolution operation. The simplest case, that will be
considered in this book, is C = I. In this case the regularized solution reduces to the
regularized inverse filter solution, which is named the pseudo inverse filter solution,
and it is represented as:

§ = [H'H + 9] 'H'x. (117)

To perform the inversion process in (Eq. 117), the Toeplitz-to-circulant approx-

imation is implemented. Applying the operator ¢! on the both sides of (Eq. 117),
we get:

¢ '§=¢ '(HH+7C'C) 'H'x = ¢ '(HH + C'C) oo 'H e 'x. (118)

The above equation can be easily simplified to the following form:

S = (AjAn +1AIA) ' ALX. (119)
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This equation can also be expressed in a frequency domain equivalent form as:

) H* (k)
S(k) =
) H(k)[” + n|C(k)[*

Y(k). (120)

6.4 Comparison Study

The LMMSE, the inverse filter, and the regularized speech deconvolution methods
have been tested and compared for the case of a lowpass channel with AWGN
contamination. Figure 40 shows the original speech signal with its spectrogram.
The degraded signal is shown in Fig. 41. The LMMSE, the inverse filter, and the
regularized deconvolution results are shown in Figs. 42-44, respectively. These
figures show that the best deconvolution results are obtained from the regularized
deconvolution method.

The enhancement and deconvolution methods have been applied to the degraded
signal at different SNR values, and the results of this comparison are given in

Amplitude

-1 1 1 1 1
0 0.5 1 1.5 2

Time (s)

Original Signal

Frequency (Hz)

Fig. 40 Time domain waveform and spectrogram of a clean speech signal
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Fig. 41 Time domain waveform and spectrogram of the degraded signal with a lowpass channel
effect and AWGN at an SNRiging = 20 dB
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Fig. 42 Time domain waveform and spectrogram of the enhanced signal using the LMMSE
deconvolution method, SNR = 4.7827 dB, SNRseg = 4.7430dB,LLR = 0.3797,SD = 8.5461dB
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Fig. 43 Time domain waveform and spectrogram of the enhanced signal using the inverse filter
deconvolution method, SNR = 0.0091 dB, SNRseg = 0.0091dB,LLR = 0.9698,SD = 27.5117dB
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Fig. 44 Time domain waveform and spectrogram of the enhanced signal using the regularized
deconvolution method, SNR = 7.1612dB, SNRseg = 7.0881dB,LLR = 0.2797,SD = 7.5155dB
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Fig. 45 Output SNR vs. input SNR for enhancement and deconvolution methods

Figs. 45-48. These results are in favor of the regularized deconvolution method as it
performs deconvolution under a constraint that preserves the noise at a certain level.

The effect of deconvolution on the performance of speaker identification
systems is shown in Fig. 49-51. These figures reveal that regularized deconvolution
achieves the best identification scores as compared to the inverse filter and the
LMMSE deconvolution methods.

7 Speech Watermarking

Watermarking is a growing field of research, because of its importance for several
applications, such as information hiding, copyright protection, fingerprinting, and
authentication [59-63]. Watermarking can be applied on speech as well as image,
and video signals [59-70]. Speech watermarking can be used in remote access
speaker identification systems to increase the degree of security by verifying the
existence of the watermark in addition to the identification of the speaker. Several
speech watermarking algorithms have been proposed in recent years [64—70].
Watermark embedding through a quantization process is one of the popular speech
watermarking algorithms due to its simplicity [64]. Another algorithm is based on
the spread spectrum technique, and is implemented by adding pseudo-random
sequences to the small segments of the audio signal [65].
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The singular value decomposition (SVD) mathematical technique has also been
utilized for speech watermarking in time and transform domains [70, 71]. Concen-
tration in this book will be on the SVD speech watermarking algorithm, because
of its ability to embed images in audio signals. With this algorithm, encrypted
watermarks can be embedded in speech signals to increase the level of security. The
first level of security is the encryption, and the second one is the watermarking.
Chaotic encryption is the most appropriate candidate for watermark encryption;
because it is a permutation-based encryption algorithm that tolerates channel
degradations more efficiently than diffusion-based algorithms [72].

Liu and Tan [73] proposed a watermarking algorithm based on the SVD tech-
nique. The main advantage of this algorithm is the robustness against attacks
[73-75], because the SVD technique provides an elegant way for extracting alge-
braic features from a 2D matrix. The singular values (SVs) of a matrix have a good
stability. When a small perturbation affects the matrix, no large variations in its SVs
occur [73]. Using this property of the SVs of a 2D matrix, the watermark can be
embedded in that matrix without a large variation.

7.1 Singular Value Decomposition
The SVD decomposes a matrix A into three matrices U, S, and V as follows [76]:
A =USVT, (121)

where U and V are orthogonal matrices such that UT U =1, and V' V =1
S = diag(ay,...,0p), where g; > 0, >,...,ap > 0 are the SVs of A. The columns
of U are called the left singular vectors of A, and the columns of V are called the
right singular vectors of A.

The properties of the SVD transformation are summarized as follows [76]:

. The SVs are the square roots of the Eigenvalues.

. When there is a little disturbance in A, the variations in its SVs are not greater
than its largest SV.

3. If the SVs of A are 61,0, ...,0p, the SVs of ¢A are 67,05, .., 05, such that:

N =

(61,05, ...,0p) = |o|(1,02,...,0p). (122)

4. If P is a unitary and rotating matrix, the SVs of PA (rotated matrix) are the same
as those of A.

. The original matrix A and its shifted versions have the same SVs.

6. Both A and AT have the same SVs.

9,1
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The above-mentioned properties of the SVD transformation are very much
desirable in watermarking. When the watermarked signal with the SVD technique
undergoes attacks, the watermark can be retrieved effectively from the attacked
watermarked signal.

7.2 The SVD Speech Watermarking Algorithm

This algorithm allows embedding images in audio signals. These images can be
extracted at the receiver side. The steps of the embedding algorithm are
summarized as follows [71]:

1. The audio signal is either used in time domain or transformed to an appropriate
transform domain.

2. The obtained 1D signal is transformed into a 2D matrix (A matrix).

3. The SVD is performed on the A matrix as in (Eq. 121).

4. The chaotic encrypted watermark (W matrix) is added to the SVs of the original
matrix.

D =S+ KW, (123)

where K is the watermark weight.
5. The SVD is performed on the new modified matrix (D matrix).

D=U,S,V . (124)

6. The watermarked signal in 2D format (A,, matrix) is obtained by using the
modified matrix of SVs (S,, matrix).

A, =US, VT (125)

7. The 2D A,, matrix is transformed again into a 1D signal.
8. If watermarking is performed in a transform domain, an inverse of this transform
is performed.

To extract the possibly corrupted watermark from the possibly distorted water-
marked audio signal, given U,,, S, V,, matrices, and the possibly distorted audio
signal, the above steps are reversed as follows:

1. If watermarking is performed in a transform domain, this transform is performed.
The 1D obtained signal is transformed to a 2D matrix A’. The ~ refers to the
corruption due to attacks.

2. The SVD is performed on the possibly distorted watermarked image (A;, matrix).
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Al =US VT (126)
3. The matrix that includes the watermark is computed.
D*=U,S. V.. (127)
4. The possibly corrupted encrypted watermark is obtained.
w* = (D" -S)/K. (128)

5. The obtained matrix W* is decrypted.

6. The correlation coefficient between the decrypted matrix and the original water-
mark is estimated. If this coefficient is higher than a certain threshold, the
watermark is present.

7.3 Chaotic Encryption

Chaotic encryption of the watermark image can be performed using the chaotic
Baker map. In its discretized form, the Baker map is an efficient tool to randomize a
square matrix of data. The discretized map can be represented for an R X R matrix
as follows [77-83]:

B(r],}’z) = B(I’l _Rl) —|—}’2 mod <£),% <r2 ) mod (5>) +Ri:|, (129)

n; n; i
where B(ry,r,) are the new indices of the data item at (ry,7,), R; <r; <R; + n;,
O<rm<R,andR;,=ny+n,+---+n;.

In steps, the chaotic encryption is performed as follows:

1. An R X R square matrix is divided into R rectangles of width »n; and number of
elements R.

2. The elements in each rectangle are rearranged to a row in the permuted
rectangle. Rectangles are taken from left to right beginning with upper
rectangles then lower ones.

3. Inside each rectangle, the scan begins from the bottom left corner towards upper
elements.

Figure 52 shows an example for the chaotic encryption of an 8 X 8 square
matrix (i.e., R = 8). The secret key is Sxey = [11, 12, n3] = [2, 4, 2].
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Fig. 52 Chaotic encryption of a square matrix. (a) Original square matrix. (b) Chaotic encrypted
matrix

7.4 The Segment-by-Segment SVD Speech Watermarking
Algorithm

If multiple watermarks are added to small speech segments, it is expected that the
detectability of the watermark will be enhanced and its robustness against attacks
will be increased. Dividing the speech signal into small segments, then embedding
the watermark in the SVs of each segment, separately, gives the chance that one or
more of the watermarks will survive the attacks, and a higher correlation coefficient
in the detection will be obtained.

The original speech signal is divided into nonoverlapping segments. The image
watermark is embedded in the SVs (S matrix) of each segment after transformation
to a small 2D matrix. An SVD is performed on each of these new matrices to get
the S matrices of the segments. Then, these SV matrices are used to build the
watermarked segments.

The steps of the embedding process are summarized as follows [71]:

1. The speech signal is either used in time domain or transformed to a certain
transform domain.

2. The obtained signal is divided into nonoverlapping segments and each segment
is transformed into a 2D matrix.

3. The SVD is performed on the 2D matrix of each segments (B, matrix) to obtain
the SVs (S; matrix) of each segment, where i = 1, 2, 3, ..., N, and N is the
number of segments.

B; =US,V/. (130)
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4. The encrypted watermark (W matrix) is added to the S matrix of each segment.
D; =S; + KW. (131)

5. The SVD is performed on each D; matrix to obtain the SVs of each one
(S,,; matrix).

D; = U,:S..V... (132)
6. The S,,; matrices are used to build the watermarked segments in the time domain.
B, =US,;V]. (133)

7. The watermarked segments are transformed into the 1D format.

. The watermarked segments are rearranged back into a 1D signal.

9. If watermarking is performed in a transform domain, an inverse of this transform
is performed.

e}

Having U,;, V,,;, S;, matrices and the possibly distorted audio signal, we can
follow the steps mentioned below to get the possibly corrupted watermark [71].

1. If watermarking is performed in a transform domain, this transform is
performed.

2. The possibly corrupted watermarked signal is divided into small segments
having the same size used in the embedding process and these segments are
transformed into a 2D format.

3. The SVD is performed on each possibly distorted watermarked segment
(B;,; matrix) to obtain the SVs of each one (S;,; matrix).

B, =S, ViT. (134)

4. The matrices that may contain the watermark are obtained using the U,,;, V.,
S;,;, matrices.

D =U,S;, V... (135)

5. The possibly corrupted watermark (W,  matrix) is extracted from the D;
matrices.

(Dj —8S;)/K = W;. (136)

6. The obtained matrix W matrices are decrypted.

7. The correlation coefficient between each decrypted matrix W and the original
watermark is estimated. If at least one of the coefficients is higher than a certain
threshold, the watermark is present.
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7.5 Evaluation of SVD Speech Watermarking

Several experiments have been carried out to test the performance of the SVD
speech watermarking algorithm. Time and transform domains have been used for
watermark embedding. Both the SVD watermarking algorithm and the segment-by-
segment algorithm have been simulated. The CS image is used as a watermark to be
embedded in the Handel signal available in Matlab. The original Handel signals
with the watermarks used in all experiments are shown in Fig. 53. The correlation
coefficient ¢, is used to measure the closeness of the obtained watermark to the
original watermark.

The effect of the watermark strength K used to add the watermark to the matrix
of SVs of the audio signal has been studied. The results of this experiment in the
absence of attacks are shown in Figs. 54-58. It is clear from this experiment that in
the absence of attacks, watermark embedding in the DFT magnitude or the DST
domain achieves the lowest distortion level in the audio signal, but the DST domain

Amplitude

Fig. 53 Original signal

and original watermarks.

(a) Original audio signal.

(b) Original watermark in the

SVD method. (¢) Original

watermark in the segment- c

by-segment SVD method s
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Fig. 54 Variation of the SNR of the watermarked signal with the watermark strength in the
absence of any attacks. (a) SVD method. (b) Segment-by-segment SVD method
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Fig. 55 Variation of the SNRseg of the watermarked signal with the watermark strength in the
absence of any attacks. (a) SVD method. (b) Segment-by-segment SVD method
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Fig. 56 Variation of the LLR of the watermarked signal with the watermark strength in the
absence of any attacks. (a) SVD method. (b) Segment-by-segment SVD method
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is preferred to the DFT magnitude in the detection process. It is also clear that
segment-by-segment speech watermarking causes more distortion in the audio
signal, but achieves more success in the detection in the presence of attacks.

The robustness of both the SVD speech watermarking method and the segment-
by-segment SVD method has been studied in the presence of an AWGN attack.
Figure 59 shows that watermark embedding in the DWT domain, the DCT domain,
or the time domain achieves the highest detection correlation coefficient at low
SNR values. From Fig. 57, it is clear that watermark embedding in the time domain
achieves the smallest distortion as compared to the DCT domain and the DWT
domain, especially for the segment-by-segment SVD method. It is also clear that
the segment-by-segment SVD method increases the correlation coefficient of
approximately all cases of watermarking.

The robustness of both the SVD speech watermarking method and the segment-
by-segment SVD method has been studied in the presence of a lowpass filtering
attack. A third order Butterworth filter has been used in this attack. Figure 60 shows
that watermark embedding in the time domain achieves the highest detection
correlation coefficient for the segment-by-segment SVD method and a sufficiently
high correlation coefficient values for the SVD method. It is also clear that the
segment-by-segment SVD method increases the correlation coefficient of approxi-
mately all cases of time and transforms domain watermarking with the filtering
attack, which is a severe case.

The robustness of both the SVD speech watermarking method and the segment-
by-segment SVD method has been studied in the presence of a wavelet compression
attack. The results of this experiment are given in Fig. 61. Although, watermark
embedding in the time domain is not the best case in correlation coefficient values
for this attack, the time domain can be chosen as the most appropriate domain for
watermark embedding due to the lowest SD, the sufficiently high values of the
detection correlation coefficient, and the ability to survive attacks.

The chaotic Baker map has been used to encrypt the watermark image as shown
in Fig. 62. The SVD speech watermarking embedding and extraction processes
have been performed with an encrypted watermark in the absence of attacks, and
the results are shown in Figs. 63 and 64. These figures reveal that the SVD speech
watermarking does not degrade the quality of the watermarked audio signal. From
the correlation coefficient value between the extracted watermark and the original
one, we notice that the watermark is perfectly reconstructed in the absence of
attacks.

Four attacks on the watermarked audio signal have been studied; an AWGN
attack, a lowpass filtering attack, a cropping attack and a wavelet compression
attack. The extracted watermarks in the presence of these attacks are shown in
Fig. 65, and the numerical evaluation metrics for these attacks are tabulated in
Table 1. This table shows that the correlation coefficient values for the extracted
watermarks get lower, but the watermarks are still visible after decryption.

The performance of the segment-by-segment SVD speech watermarking method
has been tested and compared to embedding the watermark in the signal as whole.
A small encrypted watermark of dimensions 16 x 16 is embedded in all segments
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Fig. 64 Extracted watermark without attacks. (a) Encrypted watermark ¢, = 0.0181. (b) Decrypted
watermark ¢, = 1

Fig. 65 Extracted watermark in the presence of attacks. (a) Noise attack. (b) Filtering attack.
(¢) Cropping attack. (d) Wavelet compression attack
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Table 1 Numerical evaluation metrics for the SVD watermarking method of the audio signal as
whole

No attacks Noise attack Filtering attack Cropping attack Compression attack

SNR (dB) 27.13 —10.26 1.56 3.03 9.1
SNRseg (dB) 26.31 —-10.29 1.56 3 9.04
LLR 0.02 0.34 0.39 0.27 0.12
SD 0.84 dB —0.01 34.7 dB 11.96 dB 6.07 dB
Cre 0.02 26.02 dB 0.0006 —0.006 0.02

Crd 1 0.26 0.02 0.16 0.54

¢ is the correlation coefficient between the extracted encrypted watermark and the original
watermark. ¢4 is the correlation coefficient between the extracted decrypted watermark and the
original watermark

a b

s i

Fig. 66 The block watermark used for segment-by-segment watermarking. (a) Original
watermark. (b) Chaotic encrypted watermark

of the audio signal. The length of each segment is 256 samples, which is the number
of pixels in the small watermark. No overlapping is implemented between
segments. The watermark image and its chaotic encrypted version are shown in
Fig. 66. The results of the segment-by-segment SVD method in the presence of
attacks are shown in Figs. 67 and 68. These figures show that the segment-by-
segment method is similar in performance to the SVD method in the absence of
attacks. The audio signals are still not deteriorated due to segment-by-segment
watermarking. The extracted watermarks for the segment-by-segment method in
the presence of attacks are shown in Fig. 69. The numerical evaluation metrics for
these results are tabulated in Table 2. From this table, we notice that the correlation
coefficient between, at least, one of the extracted watermarks and the original
watermark exceeds the corresponding value obtained from the SVD watermarking
of the audio signal as a whole. The segment-by-segment watermarking enables PR
of the embedded watermark in the presence of the cropping attack.

Figures 70—72 show a comparison between the SVD watermarking method of
the audio signal as a whole and the segment-by-segment SVD method in the
presence of the AWGN attack, the filtering attack, and the wavelet compression
attack, respectively. From the results in these figures, we can conclude that for a low
SNR environment, the segment-by-segment method is preferred, because it
increases the detection probability of the watermark. For the filtering attack,
although the extracted watermark has a low correlation coefficient with the original
one, because the filter removes most of the signal details, the segment-by-segment
method has a better performance than the SVD watermarking method on the
signal as a whole. For the wavelet compression attack, it is clear that as the
threshold below which wavelet coefficients are neglected increases, the segment-
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Fig. 67 (a) Original audio signal. (b) Segment-by-segment SVD watermarked signal. (¢) Spectrogram
of the original signal. (d) Spectrogram of the watermarked signal
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by-segment SVD method achieves a better performance than the SVD method on
the audio signal as a whole. This is attributed to the high probability that, at least,
one of the several watermarks will not be affected by the compression process.

Speaker identification is usually used as a tool of security. To increase the degree
of security, it is recommended to add encrypted watermarks to the speech signals
that will be used for speaker identification. If the speaker is verified from the
features of his speech and the watermark were found, this can be used as a
complicated authentication tool. The effect of watermark embedding on speech
features, and hence the performance of the speaker identification system should be
considered.

Fig. 69 Extracted watermarks with attacks. (a) Noise attack. (b) Filtering attack. (c¢) Cropping
attack. (d) Wavelet compression attack (Left: all extracted watermarks and Right: watermark
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£5:LS: ';'cs s 55 & Sics €5 L5 cs cs s €5 cs-g

i CS.:ES £5 05865, 's €565 150505 cs_c" 05
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which achieves maximum correlation coefficient with the original watermark)
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Table 2 Numerical evaluation metrics for the segment-by-segment SVD watermarking method

No attacks Noise attack Filtering attack Cropping attack Compression attack

SNR (dB)  21.37
SNRseg (dB) 21.29

LLR 0.04
SD 1.6 dB
Crmax 1

—10.54
—10.57
0.36
26.53
0.34

1.6 3.01 8.97
1.6 2.98 8.91
0.39 0.26 0.16
34.1 dB 11.74 dB 6.05 dB
0.07 1 0.72

Cmax 18 the correlation coefficient between the extracted watermark, which achieves maximum
correlation with original watermark and the original watermark



Fig. 70 Correlation coefficient between the extracted watermark and the original watermark vs.
the SNR for both the SVD and the segment-by-segment SVD watermarking methods in the
presence of AWGN attack
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Fig. 72 Correlation coefficient between the extracted watermark and the original watermark vs.
the wavelet compression threshold for both the SVD and the segment-by-segment SVD
watermarking methods in the presence of a wavelet compression attack

The performance of the speaker identification system has been tested with the
SVD watermarking to increase the level of security by using encrypted watermarks.
The results of some experiments carried out to test the performance of the speaker
identification system with the SVD watermarking method are shown in Figs. 73-83.
Some other experiments have also been carried out with the segment-by-segment
SVD method, and the results are given in Figs. 84—94. From these results, it is clear
that speech watermarking does not degrade the speaker identification system
performance. So, it can be used in speaker identification systems to increase
security. In [71], it was shown the segment-by-segment watermarking in the time
domain achieves the highest detectability of the watermark. So, it is recommended to
use the segment-by-segment SVD method with speaker identification systems
implementing features extracted from the DCT or the DWT.

8 Speech Encryption

Speech encryption can be used as a tool to prevent eavesdroppers from getting
the speech signals that will be used for feature extraction. The main objective of
speech encryption is to avoid any unauthorized access to the system of concern by
synthesis trials. Speech encryption seeks to perform a completely reversible operation
on speech to be totally unintelligible to any unauthorized listener [84]. In speech
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Fig. 73 Recognition rate vs. SNR for the different feature extraction methods with SVD speech
watermarking in the time domain and AWGN
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Fig. 74 Recognition rate vs. SNR for the different feature extraction methods with SVD speech
watermarking in the time domain and Wiener filtering
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Fig. 77 Recognition rate vs. SNR for the different feature extraction methods with SVD speech
watermarking in the time domain and wavelet soft thresholding with 1 level Haar wavelet
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Fig. 78 Recognition rate vs. SNR for the different feature extraction methods with SVD speech
watermarking in the time domain and wavelet hard thresholding with 1 level Haar wavelet
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Fig. 79 Recognition rate vs. SNR for the different feature extraction methods with SVD speech
watermarking in the time domain and wavelet soft thresholding with 2 levels Haar wavelet
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Fig. 80 Recognition rate vs. SNR for the different feature extraction methods with SVD speech
watermarking in the time domain and wavelet hard thresholding with 2 levels Haar wavelet
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Fig. 81 Recognition rate vs. SNR for the different feature extraction methods with SVD speech
watermarking in the time domain and inverse filter deconvolution

100 ‘

I

—6— Features from signal
—»— Features from the DWT of the signal
90 [1 —+— Features from the signal plus the DWT of the signal -
~+— Features from DCT of signal

Features from signal plus DCT of signal
80 —&— Features from DST of Signal 1
- ¥/~ Features from signal plus DST of signal

70 L i

Recognition Rate

-25 -20 -15 -10 -5 0 5 10 15 20 25
SNR (dB)
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Fig. 83 Recognition rate vs. SNR for the different feature extraction methods with SVD speech
watermarking in the time domain and regularized deconvolution
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Fig. 87 Recognition rate vs. SNR for the different feature extraction methods with segment-
by-segment SVD speech watermarking in the time domain and adaptive Wiener filtering
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Fig. 89 Recognition rate vs. SNR for the different feature extraction methods with segment-
by-segment SVD speech watermarking in the time domain and wavelet hard thresholding with 1

level Haar wavelet
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Fig. 91 Recognition rate vs. SNR for the different feature extraction methods with segment-
by-segment SVD speech watermarking in the time domain and wavelet hard thresholding with
2 levels Haar wavelet
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Fig. 92 Recognition rate vs. SNR for the different feature extraction methods with segment-
by-segment SVD speech watermarking in the time domain and inverse filter deconvolution
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Fig. 93 Recognition rate vs. SNR for the different feature extraction methods with segment-

by-segment SVD speech watermarking in the time domain and LMMSE deconvolution
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encryption, the problem is that, if a small portion of the original signal remains intact,
it may allow a trained listener to directly interpret the scrambled speech [85].

The objective here is to present an encrypted signal without residual intelligibil-
ity in time and frequency domains. To achieve this objective, speech encryption can
be performed with multiple secret keys that are used for the permutation and
masking of speech segments in both time and transform domains. The encryption
steps can be summarized as follows [86]:

1. Framing and reshaping into 2D blocks.
2. Block randomization.
3. First round:

* Generation of key 1.

» Permutation with key 1.
* Generation of mask 1.

¢ Addition of mask 1.

4. Second round:

e DCT or DST.

e Generation of key 2.

e Permutation with key 2.
* Generation of mask 2.

» Addition of mask 2.

5. Third round:

« IDCT, or inverse DST (IDST).
* Generation of key 3.
¢ Permutation with key 3.

6. Reshaping into 1D format.
The decryption steps can be summarized as follows [86]:

* Generation of key 1.

* Generation of key 2.

» Generation of key 3.

» Framing and reshaping into 2D blocks.
+ Inverse permutation with key 3.

* DCT or DST.

* Generation of mask 2.

* Subtraction of mask 2.

+ Inverse permutation with key 2.

» IDCT or IDST.

* Generation of mask 1.

* Subtraction of mask 1.

* Inverse permutation with key 1.
 Inverse of the block randomization process.
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8.1 Framing and Reshaping into 2D Blocks

Continuous speech signals are sampled and recorded in sound files in the form of
streams of discrete speech samples with amplitudes between —1 and 1. The series
of samples are framed and reshaped into square blocks with width equal to the
secret key length.

8.2 Block Randomization

Block randomization is performed with circular shifts as shown in Fig. 95. The first
row remains intact. The second row is circularly shifted single step to the right. The
third row is circularly shifted two steps to the right. Similar shifts are performed for
the other rows.

Original Block.

b

No action A1 | A¢ | Ann| Ase | An
One steps cyclic shift An| Ay | Ay | A | Ay
Two steps cyclic shift Ag| Axpz| Az | Ag | A3
Three steps cyclic shift Ag| Aro| Ay | Ag | Ag

Four steps cyclic shift Ajo| Ais| Az | Azs | As

Randomized Block.

Fig. 95 Block randomization. (a) Original block. (b) Randomized block
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8.3 Steps of the Rounds

8.3.1 Generation of Keys

The first step is the generation of the original secret key. It can be generated by a PN
sequence generator. This secret key is shared between the transmitter and receiver.
The second key is the inverse of the original key. The third key is generated from
the original key by dividing it into two halves and reversing the two halves. An
example of three keys is key 1 = 11001000, key 2 = 00110111, and key
3 = 10001100.

8.3.2 Permutation with a Key

The generated keys control the permutation process. The first key is applied to the
rows of the resulting randomized block. If a key bit equals 1, the whole
corresponding row is circularly shifted to the right by a number of shifts equal to
the row number minus one (e.g., row number 14 is shifted 13 times). If a key bit
equals 0, the corresponding row remains intact as shown in Fig. 96. After that, the
same key is applied to the columns of the resulting block in a similar manner
as shown in Fig. 97. The two other keys are used in a similar manner in the
subsequent rounds.

8.4 Masking

Permutation of speech segments in time domain results in a distortion of the speech
time envelope, which reduces the intelligibility of the speech. However, some

Ke
bitsy Block before permutation Block after permutation

1 | No action B, | Bs | Bii| Bis| Bn By | Bs | By | Byg | By

1| one step cyclic shift B, | By | By | Byy| By ™| By| By | B, | By | By

o | No action B; | Bg | Biz| Byg| By B; | Bg | Bi3 | Big | Bys

| | Three steps cyclic shift B, | By | Biy| Byo| By Bl,| Byy| By | By | By

1 | Four steps cyclic shift Bs | Big| Bis| By | Bis Bio| Bis| Bz | Bys | Bs

Fig. 96 Row permutation step
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Key bits
1 1 0 1 1
Three
No action Onf: ste‘p No action steps FO“T StePS
cyclic shift . .. | cyclic shift
cyclic shift
G Cs Cn Cis Cn Ci| Co|Cu | Cig| Cpz

CZ C6 CIZ C19 C23

(o Cg Cis Cis Cys C3 | G |Ciz3| Cy | Coy
Cy Gy Ciy Cpo Cy Cy| Cg | Cry| Cig | Cos
Cs Cio Cis Cy Cys Cs | Gy | Cys| Cpy | Cy

Block after column

Block before column permutation. .
permutation.

Fig. 97 Column permutation step

portions of the signal remain intact, which may allow a trained listener to directly
interpret the scrambled speech. Therefore, a masking step is very necessary in order
to change the remaining nonpermutated portions of speech signals and to increase
the security of the cryptosystem.

The utilized mask is generated from the key using a number of circular shifts
of the key equal to the number of sample rows minus one as shown in Fig. 98.
The resultant mask is added to each block of samples as shown in Fig. 98. After the
mask addition, a value of 2 is subtracted from all values exceeding 1 resulting
in negative values. In the decryption process, the mask is subtracted from each
block, and a value of two is added to all values below —1 to guarantee the correct
reconstruction of the sample values.

8.5 Discrete Transforms

The objective of using either the DCT or DST is to remove the residual intelligibility
of speech signals after the masking step. Each of these transforms has a strong
diffusion mechanism. All samples in time domain contribute to each sample in the
transform domain, which guarantees a totally different shape of the transformed
signals. Another permutation step is performed on the transform domain samples to
increase the security prior to the inversion of the transform and the application of
another permutation step in the time domain.
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Sample block after permutation The mask generated from the key.
stage.
1| 0 0 1| | 4+ |1 1 0 1 1
-08 | 0.2 0 1 -1 1 1 1 0 1
—-0.6 | 04 0 1 -1 _—) 1 1 1 1 0
—-04 | 0.6 0 1 -1 0 1 1 1 1
02| 08 0 1 -1 1 0 1 1 1
0 1 0* 2 0 0 1 0 0 0
0.2 1.2 1 0 0 02 | -0.8 1 0 0
0.4 1.4 1 2 -1 04 | -0.6 1 0 -1
—0.4 1.6 1 2 0 04 | —0.4 1 0 0
0.8 0.8 1 2 0 0.8 0.8 1 0 0
The block after mask addition. Masking result.

Fig. 98 Masking step

8.6 Performance Evaluation of Speech Encryption

Several experiments have been carried out to test the encryption efficiency of the
speech cryptosystem. The qualities of both the encrypted and decrypted speech signals
have been assessed. The speech signal used in all experiments is shown in Fig. 99a.
Itis a synthetic signal for the sentence “We were away year ago.” The first 2.5 s are for
a female saying this sentence. The next 1.5 s are a perfect silence period without
noise. The next 1.5 s are for a silence period with room noise. The last 2.5 s are for a
male saying the same sentence. This signal is encrypted with the proposed crypto-
system in the time domain using a single round only, and the result is shown in
Fig. 99b. TD refers to time domain. The spectrograms of the original and encrypted
signals are shown in Fig. 100. It is evident that the encrypted speech with the DCT
and DST encryption is obviously similar to the white noise without any talk spurts.
The original intonations have been removed, which indicates that no residual intelli-
gibility can be useful for eavesdroppers at the communication channel.

The different kinds of ciphers can be analyzed, statistically [8§7—89]. Statistical
analysis has been performed on the above-mentioned cryptosystem demonstrating
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Fig. 99 Encryption of the speech signal. (a) Original signal. (b) TD encryption. (¢) DCT

encryption. (d) DST encryption

its superior confusion and diffusion properties, which strongly resist the statistical
attacks. This is illustrated by showing the correlation coefficient between encrypted
signal and the original signal and the SD of the encrypted signal compared to the
original one. The correlation coefficients between the encrypted speech signals and
the original speech signal for all methods using three different main keys are
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Fig. 99 (continued)

tabulated in Table 3. From these results, we can see that all secret keys produce
encrypted speech signals with low correlation between similar segments in the
original speech and the encrypted speech, which means that all keys give good
encryption results. The SD results for the encrypted signals for all methods are
tabulated in Table 4.
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A secure encryption algorithm should be sensitive to the cipher keys. For the
speech cryptosystem, the key space analysis and sensitivity test have been
performed. For a secure cryptosystem, the key space should be large enough to
make the brute-force attack infeasible [89]. An exhaustive key search needs 2%
operations to succeed, where s; is the key size in bits. An attacker simply tries all

Frequency

Frequency
r
(=3
(=1
o

{ | b, .
i Eﬂ'u g Vil .ﬂ"‘-\‘m“-\wb'rf-r?):‘.'

!hl‘ Y Tulad |
gl ’h{{l\}gi (R 'wl'l"ﬂ-'f' art{ ke
. R

Fig. 100 Spectrograms of speech signals (a) Original signal. (b) TD encryption. (¢) DCT
encryption. (d) DST encryption
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Frequency

Frequency

Fig. 100 (continued)

Table 3 Correlation
coefficients between the
original and encrypted
speech signals

Information Security for Automatic Speaker Identification

Secret key TD DCT DST

Key A 0.0035 0.0043 0.0050
Key B 0.0048 0.0012 —0.0015
Key C 0.0039 0.0014 0.0036
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Table 4 SD in dB of the encrypted signals with all methods

Secret key TD DCT DST

Key A 26.1445 23.1539 22.9874
Key B 27.1769 22.1501 22.1960
Key C 26.7445 23.1238 21.9133

Table 5 Correlation coefficients between the decrypted signals with the
different keys and the decrypted signal with the original key

Decryption key TD DCT DST

Key 1 0.1757 0.0875 0.0208
Key 2 0.0644 0.0220 0.0923
Key 3 0.0130 0.0081 0.0202

keys and this is very exhaustive. Assuming that, the secret key length is 128 bits,
therefore; an opponent needs about 2'?® operations to successfully determine the
key. If the opponent employs 1,000 million instructions per second (MIPS) to guess
the key, the computations require:

2128

>10.7902831 x 10?! years.
365 x 24 x 60 x 60 x 1,000 x 10°

For a 64-bits key, the computations require:

264

365 x 24 x 60 x 60 x 1,000 x 10°

> 584 years.

These results suppose a known secret key length by the attacker, but really the
key length is unknown making the search infeasible.

Key sensitivity means that the encrypted signal cannot be decrypted correctly,
if there is any change between encryption and decryption keys [81]. Large key
sensitivity is required by all secure cryptosystems. Assume that a key consisting
of 64 bits is used for encryption. For testing the key sensitivity of the proposed
cryptosystem, the encrypted signal is decrypted with three different keys generated
by changing only a single bit in the original secret key. The correlation coefficient is
estimated between each decrypted signal and the signal decrypted with the original
key, and the results are tabulated in Table 5. The low correlation values show the
large key sensitivity of the speech cryptosystem implementing the DCT or the DST.

The known-plaintext attack is an attack model for cryptanalysis, where the
attacker has samples of both the plaintext and its ciphertext and has liberty to
make use of them to reveal the secret key. In the speech cryptosystem, if a
cryptanalyst knows the original signal and its encrypted version, he must know
the block size to build the permutation and masking processes. If he tries with a
different block size, this will give completely wrong results. In modern
cryptosystems that use standard block sizes, permutation and substitution processes
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may be analyzed to discover the key, while in the above-mentioned speech
cryptosystem; there is no standard block size. Therefore, the knowledge of the
plaintext without knowledge of the block size is useless, as it is very difficult to
guess the key.

Three metrics have been used for quality assessment of decrypted speech
signals; the SD, the LLR, and the correlation coefficient with the original speech
signal. As the values of the SD and the LLR decrease, and the value of the
correlation coefficient increases, the performance of the speech cryptosystem
becomes better. Figure 101 shows the decrypted signals with all methods in the
absence of noise. The numerical quality metrics values for these results are
tabulated in Table 6. These results ensure the efficiency of the speech cryptosystem
in the absence of noise.

An important issue, which deserves consideration, is the effect of noise on the
efficiency of the speech cryptosystem. Simulation experiments have been carried
out for the decryption in the presence of noise at different SNR values. The results
of these experiments are shown in Figs. 102—104 for all encryption methods. From
these results, it is clear that the encryption quality metrics values are better at high
SNR values. Thus, the speech cryptosystem can tolerate noise with high SNR
values.

Encryption of speech signals prior to transmission in remote access speaker
identification system is recommended to increase the degree of security. The effect
of encryption on the performance of the speaker identification system has been
studied and the results are given in Figs. 105-113. These results reveal that speech
encryption can increase the system security without any degradation in the speaker
identification system performance.

Amplitude

) 1 1 1 1 1 1 I
0 1 2 3 4 5 6 7

Time

Fig. 101 Decrypted speech signals (a) TD. (b) DCT. (¢) DST
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Table 6 Quality metrics Quality metrics D DCT DST
values for the decrypted
speech signals SD 0.044 0.044 0.044
LLR 8.80E—8 8.89E—8 8.89E—8

Txz 0.9998 0.9997 0.9993
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9 Simultaneous Watermarking and Encryption

Both speech watermarking and encryption of speech signals can be incorporated
with the speaker identification system prior to transmission in remote access
speaker identification systems to achieve three levels of security. The effect of
watermarking and encryption on the performance of the speaker identification
system has been studied and the results are given in Figs. 114—122. These results
reveal that speech watermarking and encryption can be used in high-level authenti-
cation systems, without any noticeable degradation in the speaker identification
process.

10 Conclusion

This book presented a literature survey on speaker identification systems that are
based on MFCCs and neural matching. It presented a study for the performance of
these systems in noisy environments. The different transform domains were
investigated in the book for robust feature extraction in the presence of noise.
Simulation results revealed that feature extraction from the DCT or the DWT of
speech signals is very feasible for performance enhancement of speaker identifica-
tion systems. The book developed a new implementation of speech enhancement,
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speech deconvolution, and blind signal separation algorithms for performance
enhancement of speaker identification systems. A new framework for speaker
identification with multilevels of security was also presented in this book. This
framework can be developed for real speech signature systems.

11 Directions for Future Research

Future research can be developed in the following directions:

1. Study of speech processing and security techniques for speaker identification
systems implementing hidden Markov models, support vector machines, or
Gaussian mixture models.

2. Development of sophisticated enhancement, deconvolution, or signal separation
algorithms to achieve better enhancement in speaker identification systems
performance.

3. Comparison study between speech watermarking and encryption schemes that
can be recommended for speaker identification systems with multilevels of
security.
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