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Preface

I know what you are asking yourself – “there are a lot of books available in speech

processing, what is novel in this book?” Well, I can summarize the answer for this

question in the following points:

1. You always see different algorithms for speech enhancement, deconvolution,

signal separation, watermarking, and encryption, separately, without specific

applications for these algorithms.

2. You also see literature books and research papers on speaker identification

concentrating on how to extract features, and the comparison between feature

extraction methods.

3. How to make use of speech enhancement, deconvolution, and signal separation

to enhance the performance of speaker identification systems is a missing issue.

This book presets this issue and gives comparison studies between different

algorithms that can be used for this purpose.

4. Speech watermarking and encryption are studied for the first time in this book in

a framework that enhances the security of speaker identification systems.

5. Performance enhancement and security enhancement of speaker identification

systems are contradicting objectives. How they affect each other is also studied

in this book.

Finally, I hope that this book will be a starting step towards an extensive study

to build speaker identification systems with multilevels of security.

Fathi E. Abd El-Samie
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Information Security for Automatic
Speaker Identification

Abstract Speaker identification is a widely used technique in several security

systems. In remote access systems, speaker utterances are recoded and

communicated through a communication channel to a receiver that performs the

identification process. Speaker identification is based on characterizing each

speaker with a set of features extracted from his or her utterance. Extracting the

features from a clean speech signal guarantees the high success rate in the identifi-

cation process. In real cases, a clean speech is not available for feature extraction

due to channel degradations, background noise, or interfering audio signals. As a

result, there is a need for speech enhancement, deconvolution, and separation

algorithms to solve the problem of speaker identification in the presence of

impairments. Another important issue, which deserves consideration, is how to

enhance the security of a speaker identification system. This can be accomplished

by watermark embedding in the clean speech signals at the transmitter. If this

watermark is extracted correctly at the receiver, it can be used to ensure the correct

speaker identification. Another means of security enhancement is the encryption

of speech at the transmitter. Speech encryption prevents eavesdroppers from

getting the speech signals that will be used for feature extraction to avoid any

unauthorized access to the system by synthesis trials. Multilevels of security can be

achieved by implementing both watermarking and encryption at the transmitter.

The watermarking and encryption algorithms need to be robust to speech enhance-

ment, and deconvolution algorithms to achieve the required degree of security and

the highest possible speaker identification rates. This book provides for the first

time a comprehensive literature review on how to improve the performance of

speaker identification systems in noisy environments, by combining different

feature extraction techniques with speech enhancement, deconvolution, separation,

watermarking, and/or encryption.

Keywords Speech enhancement • Speech deconvolution • Signal separation

• Speech watermarking • Speech encryption • Wavelet denoising • Wiener filter

• Singular value decomposition • Chaotic baker map

F.E.A. El-Samie, Information Security for Automatic Speaker Identification,
SpringerBriefs in Speech Technology, DOI 10.1007/978-1-4419-9698-5_1,
# Springer Science+Business Media, LLC 2011
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1 Introduction

Automatic speaker identification involves recognizing a person from his spoken

words [1–3]. The goal of speaker identification is to find a unique voice signature to

discriminate one person from another. The techniques involved with this task can be

classified into identification and verification techniques. Speaker identification is the

process of determining which registered speaker provides a given utterance. Speaker

verification is the process of accepting or rejecting the identity claim of a speaker.

The speaker identification process may be text dependent or text independent.

In text dependent speaker identification systems, the speaker is asked to utter a

specific string of words both in the training and recognition phases, whereas in text

independent systems, the speaker identification system recognizes the speaker irres-

pective of any specific phrase utterance. Speaker identification systems can be open

set or closed set. In closed set systems, the speaker is known a priori to be a member

of a set of finite speakers. In open set systems, there is also an additional possibility of

a speaker being an outsider i.e., not from the set of already defined speakers.

Speaker identification systems have several applications such as voice dialing,

banking by telephone, telephone shopping, database access services, information

services, voice mail, security control for confidential information areas, remote

access to computers, controlling access to computer networks and websites, law

enforcement, prison call monitoring, and forensic analysis [2, 4]. These systems

contain two main processes; feature extraction and classification. Feature extrac-

tion extracts a small amount of data from the speech signal that can be used later

to represent each speaker. There are various techniques for extracting speech

features such as the Mel-frequency cepstral coefficients (MFCCs) technique. This

technique is widely used in several applications such as speaker identification

[1–3], fingerprint identification [5], landmine detection [6, 7], defect detection in

industrial applications [8], and device modeling [9–12] due to its ability to charac-

terize a large amount of data with a few features. Classification is a process having

two phases; speaker modeling and speaker matching. Classification in this book is

based on artificial neural networks (ANNs).

The MFCCs are not robust enough in noisy environments. This problem is solved

by extracting MFCCs from transform domains rather than the time domain [13].

Transforms such as the discrete cosine transform (DCT) and the discrete sine trans-

form (DST) enjoy a sophisticated energy compaction property, which can be effi-

ciently utilized for feature extraction. Another popular transform; the discrete wavelet

transform (DWT), decomposes the signal into subbands leading to distinguishing

features for each subband.

Speaker identification in the presence of noise, interference, or channel degrad-

ations is a challenging task. Speech enhancement, separation, and deconvolution

techniques can be utilized to enhance the performance of speaker identification

systems in the presence of degradations. Techniques like the spectral subtraction,

Wiener filtering, adaptive Wiener filtering, and wavelet denoising can be used

to enhance speech signals before the feature extraction process. For channel degrad-

ations, deconvolution techniques such as the linear minimum mean square (LMMSE)

and regularized deconvolution are useful.

2 Information Security for Automatic Speaker Identification



As mentioned above, the objective of speaker identification systems is to get a

voice signature for each speaker to achieve a high degree of security in certain

applications. The main objective of this book is to provide a novel speaker identifi-

cation system with multilevels of security based speech watermarking, speech

encryption, and speech signal processing. Multilevels of security can be achieved

in speaker identification systems by incorporating speech watermarking and

speech encryption with these systems. In some applications of speaker identification,

speech signals are communicated through a channel prior to the identification

process. It is possible for a watermarking process, an encryption process, or both

of them to be performed at the transmitter. At the receiver, a watermark extraction, a

decryption, or both of them can be performed. For the case of watermarking, an

image for example can be embedded in the speech signal at the transmitter. If this

watermark is extracted successfully and the extracted features form the speech signal

match a candidate’s features in the database, this can be used as a double check for an

authorized speaker. Encryption can also be used at the sender to hide the identity of

the speaker from an eavesdropper in the channel, who can alter the speaker voice

features, or synthesize another speech signal once again for the speaker.

2 Speaker Identification

In speaker identification, a speech utterance from an unknown speaker is analyzed

and compared with models of all known speakers. The unknown speaker is identi-

fied as the speaker, whose model best matches the input utterance. Speaker identifi-

cation involves three stages; feature extraction to represent the speaker information

present in the speech signal, modeling of the speaker’s features, and decision making

to complete the identification task. The main task in a speaker identification system

is to extract features capable of representing the speaker information present in

the speech signal. Once a proper set of feature vectors is obtained, the next task is

to develop a model for each speaker. Feature vectors representing the voice

characteristics of the speaker are extracted and used for building the reference

models. The final stage is the decision to either accept or reject the claim of the

speaker. This decision is made based on the result of the matching technique used.

The block diagram of a speaker identification system is shown in Fig. 1.

The speaker identification process consists of two modes; a training mode and

recognition or testing mode as shown in Fig. 2 [14]. In the training mode, a new

speaker with known identity is enrolled into the system database. In the recognition

mode, an unknown speaker gives a speech input and the system makes a decision

about the speaker’s identity.

Both the training and the recognition modes include a feature extraction step,

which converts the digital speech signal into a sequence of numerical features,

called feature vectors. The feature vectors provide a more stable, robust, and

compact representation than the raw input speech signal. Feature extraction can

be considered as a data reduction process that attempts to preserve the essential

characteristics of the speaker, while removing any redundancy. Features are
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extracted from the training data essentially filtering out all unnecessary information

in the training speech samples leaving only the speaker’s characteristic information,

with which the speaker’s model can be constructed. In the recognition mode,

features are extracted from the unknown speaker’s voice.

Pattern matching refers to the algorithm that computes a matching score

between the unknown speaker’s feature vector and the models stored in the database.

The output of the pattern matching module is a similarity score. The last phase in the

recognition system is the decision making. The decision-making module takes

the matching score as its input, and makes the final decision of the speaker’s identity.

Feature
Extraction

Speaker modeling

Pattern matching

Decision logic

Speaker
Model

database

Decision

Speech input

Training
mode

Recognition
mode

Fig. 2 Training and testing modes of an automatic speaker identification system

Reference Pattern
(Speaker #M)

Pattern matching
(Similarity)

Reference Pattern
(Speaker #1)

Pattern matching
(Similarity)

Reference Pattern
(Speaker #2)

Pattern matching
(Similarity)

Feature
Extraction

Maximum
Selector

Input Speech 
Identified Speaker

Fig. 1 Block diagram of the speaker identification system
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2.1 Feature Extraction

The methodology of the human brain to distinguish between speakers is based on

high-level features such as dialect, speaking style, and emotional state. Although

these features can characterize the speaker efficiently, it is difficult to build a

speaker identification system based on them due to the large complexity problem.

So, the alternative is to build the speaker identification system based on low-level

features. An example of such low-level features is the MFCCs.

To extract the MFCCs from a speech signal, it is necessary to investigate how

this signal is generated (Fig. 3). A speech signal s(n) can be expressed in terms of an

excitation e(n) and a vocal tract model h(n) as a convolution in the time domain [15]:

sðnÞ ¼ hðnÞ � eðnÞ; (1)

where e(n) is the excitation and h(n) is the vocal tract impulse response.

The idea of cepstral analysis is to separate the spectral components of the

excitation and the vocal tract, so that speech or speaker dependent information

represented by the vocal tract can be obtained. Mathematically, the cestrum is

computed by taking the fast Fourier transform (FFT) of the signal, the log of the

magnitude spectrum, and then the inverse fast Fourier transform (IFFT) as follows:

CepstrumðframeÞ ¼ FFT�1ðlogðjFFTðframeÞjÞÞ: (2)

In the time domain, a convolution relationship exists as shown in (Eq. 1). Taking

the FFT moves the analysis to the frequency domain giving:

SðkÞ ¼ HðkÞEðkÞ: (3)

Taking the logarithm of (Eq. 3), the multiplied spectra become additive as follows:

LogjSðkÞj ¼ LogjHðkÞj þ LogjEðkÞj: (4)

The IFFT can then be taken. It operates on the two parts of (Eq. 4), separately,

resulting in the cepstral representation of the signal. It is possible to separate the

excitation spectrum E(k) from the vocal tract system spectrum H(k) taking into

account the fact that E(k) is responsible for the fast spectral variations, and H(k) is
responsible for the slow spectral variations. The domain created after taking the

logarithm and the IFFT is called the cepstral domain, and the word quefrency is

used for describing the frequencies in the cepstral domain.

h(n)
e(n) s(n)

Fig. 3 Simple model of

speech production
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In the cepstral domain, the excitation signal and the vocal tract impulse response

can be separated using a lifter. The vocal tract response decides the spectral envelope,

and exists in the low quefrency region, while the excitation (pitch information)

represents the spectral details, and exists in the high quefrency region. For speaker

identification, the spectral envelope is more useful than the spectral details.

For the calculation of the MFCCs of a speech signal, the signal is first framed

and windowed, the DFT is then taken, and the magnitude of the resulting spectrum

is warped by the Mel scale. The log of this spectrum is then taken and the DCT

is applied. This is illustrated in Fig. 4. The steps of extraction of the MFCCs are

summarized in the following subsections.

2.1.1 Preemphasis

The digitalized speech is preemphasized with a first-order finite impulse response

(FIR) filter, for its linear phase and simple implementation. Since in speech signals,

the lower formants often contain more energy, and therefore are preferentially

modeled with respect to the higher formants, a preemphasis filter is therefore used

to boost the high frequencies [16–18]. The digitalized speech is preemphasized to

remove glottal and lip radiation effects. The preemphasis filter transfer function is

given by:

HðzÞ ¼ 1� az�1; (5)

where 0.9 � a � 0.99.

2.1.2 Framing and Windowing

The speech signal is a slowly time-varying signal. In a speaker identification

system, the speech signal is partitioned into short-time segments called frames.

To make the frame parameters vary smoothly, there is normally a 50% overlap

between each two adjacent frames. Windowing is performed on each frame with

one of the popular signal processing windows like the Hamming window [19].

Windowing is often applied to increase the continuity between adjacent frames

Pre-emphasis Windowing DFT

IDFT Log
Mel-frequency

Warping

Continuous

Speech

Mel Cepstrum

Fig. 4 Extraction of MFCCs from a speech signal
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and smooth out the end points such that abrupt changes between ends of successive

frames are minimized.

As a frame is multiplied by a window, most of the data at the edge of the

frame becomes insignificant causing loss of information. An approach to tackle this

problem is to allow overlapping in the sections between frames, which allows

adjacent frames to include portions of data in the current frame. This means that

the edges of the current frame are included as the center data of adjacent frames.

Typically, around 50% of overlapping is sufficient to embrace the lost information.

2.1.3 The DFT

Fourier analysis provides a way of analyzing the spectral properties of a given

signal in the frequency domain. The Fourier transform converts a discrete signal

s(n) from time domain into frequency domain with the equation [19]:

SðkÞ ¼
XN�1

n¼0

sðnÞe�j2pnk=N ; 0 � k � N � 1; (6)

where n ¼ 0, 1,. . ., N � 1, and N is the number of samples in the signal s(n).
k represents the discrete frequency index and j is equal to

ffiffiffiffiffiffiffi�1
p

. The result of the

DFT is a complex-valued sequence of length N.
The IDFT is defined as:

sðnÞ ¼ 1

N

XN�1

k¼0

SðkÞe j2pnk=N; 0 � n � N � 1: (7)

2.1.4 The Mel Filter Bank

Psychophysical studies have shown that human perception of the frequency contents

of sounds for speech signals does not follow a linear scale. In the MFCCs method, the

main advantage is that it uses Mel-frequency scaling, which approximates quite well

the human auditory system. The Mel scale is defined as [19]:

Melðf Þ ¼ 2; 595 log 1þ f

700

� �
; (8)

where Mel is the Mel-frequency scale and f is the frequency on the linear frequency
scale.

The MFCCs are extracted using a Mel filter bank, where the filters are spaced

on the Mel scale approximately linearly below 1 kHz, and logarithmically above

1 kHz. The conventional Mel filter bank in speaker identification is composed of a

number of triangular bandpass filters distributed inside the signal bandwidth.
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2.1.5 The DCT

The final stage involves performing a DCT on the log of the Mel spectrum. If the

output of the mth Mel filter is ~SðmÞ, then the MFCCs are given as [20]:

cg ¼
ffiffiffiffi
2

N

r XNf

m¼1

logð~SðmÞÞ cos
gp
Nf

ðm� 0:5Þ
� �

; (9)

where g ¼ 0, 1, . . . , G � 1, G is the number MFCCs, Nf is the number of Mel

filters and cg is the gth MFCC. The number of the resulting MFCCs is chosen

between 12 and 20, since most of the signal information is represented by the first

few coefficients. The 0th coefficient represents the mean value of the input signal.

2.1.6 Polynomial Coefficients

MFCCs are sensitive to channel mismatches between training and testing data, and

they are also speaker dependent. Polynomial coefficients are added to the MFCCs

to solve this problem. They help in increasing the similarity between the training

and testing utterances, if they are related to the same person [21]. The importance of

these coefficients arises from the fact that they can preserve valuable information

(mean, slope, and curvature) about the shapes of the time function of each cepstral

coefficient of the training and testing utterances.

When the person says the same word at two different times (training and testing),

the amplitudes of a particular cepstral coefficient through frames of the training

utterance may differ from those of the testing utterance, which would lead to an

increase in the distance between the utterances and a decrease in the efficiency of the

matching process. On the other hand, the shape of time functions of both cepstral

coefficients is the same or very similar. Consequently, both of them have the same

values of polynomial coefficients, which is very helpful in the matching process [21].

To calculate the polynomial coefficients, the time waveforms of the cepstral

coefficients are expanded by orthogonal polynomials. The following two orthogonal

polynomials can be used [21]:

P1ðiÞ ¼ i� 5; (10)

P2ðiÞ ¼ i2 � 10iþ 55=3: (11)

To model the shape of the MFCCs time functions, a nine elements window at

each MFCC is used. Based on this windowing assumption, the polynomial

coefficients can be calculated as follows [21]:

agðtÞ ¼
P9
i¼1

P1ðiÞcgðtþ iþ 1Þ
P9
i¼1

P2
1ðiÞ

; (12)
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bgðtÞ ¼
P9
i¼1

P2ðiÞcgðtþ iþ 1Þ
P9
i¼1

P2
2ðiÞ

; (13)

where ag(t) and bg(t) are the slope, and the curvature of the MFCCs time functions

at each cg. The vectors containing all cg, ag, and bg are concatenated to form a single

feature vector for each speech signal.

2.2 Feature Matching

The classification step in automatic speaker identification systems is in fact a

feature matching process between the features of a new speaker and the features

saved in the database. Neural Networks are widely used for feature matching.

Multilayer perceptrons (MLPs) consisting of an input layer, one or more hidden

layers, and an output layer can be used for this purpose [22, 23]. Figure 5 shows an

MLP having an input layer, a single hidden layer, and an output layer. A single

neuron only of the output layer is shown for simplicity. This structure can be used

for feature matching in the speaker identification process.

Each neuron in the neural network is characterized by an activation function and

its bias, and each connection between two neurons by a weight factor. In this paper,

the neurons from the input and output layers have linear activation functions and

Fig. 5 An MLP neutral network
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hidden neurons have sigmoid activation functions F(u) ¼ 1/(1 + e�u). Therefore,

for an input vector X, the neural network output vector Y can be obtained according

to the following matrix equation [22, 23]:

Y ¼ W2 � FðW1 � Xþ B1Þ þ B2; (14)

whereW1 andW2 are the weight matrices between the input and the hidden layers,

and between the hidden and the output layers, respectively. B1 and B2 are bias

matrices for the hidden and the output layers, respectively.

Training a neural network is accomplished by adjusting its weights using a

training algorithm. The training algorithm adapts the weights by attempting to

minimize the sum of the squared error between a desired output and the actual

output of the output neurons given by [22, 23]:

E ¼ 1

2

XO
o¼1

ðDo � YoÞ2; (15)

where Do and Yo are the desired and actual outputs of the oth output neuron.O is the

number of output neurons. Each weight in the neural network is adjusted by adding

an increment to reduce E as rapidly as possible. The adjustment is carried out over

several training iterations until a satisfactorily small value of E is obtained or a

given number of epochs is reached. The error back-propagation algorithm can be

used for this task [22, 23].

3 Feature Extraction from Discrete Transforms

Discrete transforms can be used for extraction of robust MFCCs in speaker identi-

fication systems. The DWT, the DCT, and the DST have been investigated in the

literature for this purpose [13]. Figure 6 illustrates the utilization of discrete

transforms in speaker identification systems.

Discrete transform
(DWT, DCT or

DST)

Feature extraction
(MFCCs +
Polynomial
coefficients)

Feature matching
with trained neural

network

Noisy speech
signal        

Decision

Discrete transform
(DWT, DCT or

 DST)

Feature extraction
(MFCCs +
Polynomial
coefficients)

Training of
a neural network

Speech
signal To database

a

b

Fig. 6 Speaker identification based on discrete transforms. (a) Training phase. (b) Testing phase
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3.1 The Discrete Wavelet Transform

It is known that the DFT considers the analysis of a speech signal separately in the

time and frequency domains and does not provide temporal information about

frequencies. Although the DFT may be a good tool for analyzing a stationary

signal, speech signals are nonstationary or partially stationary. When analyzing a

nonstationary signal, in addition to the frequency content of the signal, we need to

know how the frequency content of the signal changes with time.

To overcome this deficiency, a modified transform called the short-time

Fourier transform (STFT) has been adopted, because it allows the representation

of the signal in both time and frequency domains through time widowing functions.

The window length determines a constant time and frequency resolution. The main

idea behind the STFT is to have localization in time domain. A drawback of the

STFT is its small and fixed window, so that the STFT cannot capture the rapid

changes in the signal. Moreover, it does not give information about the slowly

changing parts of the signal [24].

Wavelet analysis provides an exciting alternative method to Fourier analysis for

speech processing. Wavelet transform allows a variable time-frequency resolution,

which leads to locality in both the time and frequency domains. The locality of the

transform of a signal is important in two ways for pattern recognition. First,

different parts of the signal may convey different amounts of information. Second,

when the signal is corrupted by local noise in time and/or frequency domain, the

noise affects only a few coefficients if the coefficients represent local information in

the time and frequency domains.

In fact, the wavelet transform is a mathematical operation used to divide a

given speech signal into different subbands of different scales to study each scale,

separately. The idea of the DWT is to represent a signal as a series of approximation

(lowpass version) and details (highpass version) at different resolutions. The speech

signal is lowpass filtered to give an approximation signal and highpass filtered

to give a detail signal. Both of them can be used to model the speech signal.

The wavelet decomposition and reconstruction process is illustrated in Fig. 7.

Fig. 7 The two band decomposition-reconstruction wavelet filter bank
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The multilevel DWT can be regarded as equivalent to filtering the speech signal

with a bank of bandpass filters, whose impulse responses are all approximately

given by scaled versions of a mother wavelet. The scaling factor between adjacent

filters is usually 2:1 leading to octave bandwidths and center frequencies that are

one octave apart [24–38]. The outputs of the filters are usually maximally

decimated so that the number of DWT output samples equals the number of input

samples, and thus no redundancy occurs in this transform.

The art of finding a good wavelet lies in the design of the set of filters, H0, H1, G0,

and G1 to achieve various tradeoffs between spatial and frequency domain

characteristics, while satisfying the perfect reconstruction (PR) condition [35]. In

Fig. 7, the process of decimation and interpolation by 2 at the outputs of H0 and H1

effectively sets all odd samples of these signals to zero. For the lowpass branch, this

is equivalent to multiplying x0ðnÞ by 1=2ð1þ ð�1ÞnÞ. Hence, X0ðzÞ is converted

to 1=2fX0ðzÞ þ X0ð�zÞg. Similarly, X1ðzÞ is converted to 1=2fX1ðzÞ þ X1ð�zÞg.
As a result, the expression for YðzÞ is given by [35]:

YðzÞ¼ 1

2
fX0ðzÞþX0ð�zÞgG0ðzÞþ1

2
fX1ðzÞþX1ð�zÞgG1ðzÞ

¼ 1

2
XðzÞfH0ðzÞG0ðzÞþH1ðzÞG1ðzÞgþ1

2
Xð�zÞfH0ð�zÞG0ðzÞþH1ð�zÞG1ðzÞg:

(16)

The first PR condition requires aliasing cancelation and forces the above term

in Xð�zÞ to be zero. Hence, fH0ð�zÞG0ðzÞ þ H1ð�zÞG1ðzÞg ¼ 0, which can be

achieved if [35]:

H1ðzÞ ¼ z�rG0ð�zÞ and G1ðzÞ ¼ z rH0ð�zÞ; (17)

where r must be odd (usually r ¼ �1).

The second PR condition is that the transfer function from XðzÞ to YðzÞ should
be unity:

fH0ðzÞG0ðzÞ þ H1ðzÞG1ðzÞg ¼ 2: (18)

If we define a product PðzÞ ¼ H0ðzÞG0ðzÞ and substitute from (Eq. 17) into

(Eq. 18), then the PR condition becomes [35]:

H0ðzÞG0ðzÞ þ H1ðzÞG1ðzÞ ¼ PðzÞ þ Pð�zÞ ¼ 2: (19)

This needs to be true for all z and, since the odd powers of z in PðzÞ cancel with
those in Pð�zÞ, it requires that p0 ¼ 1 and pn ¼ 0 for all n even and nonzero. The

polynomial PðzÞ should be a zero-phase polynomial to minimize distortion. In

general, PðzÞ is of the following form [35]:

PðzÞ ¼ � � � þ p5z
5 þ p3z

3 þ p1zþ 1þ p1z
�1 þ p3z

�3 þ p5z
�5 þ � � � : (20)
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The design method for the PR filters can be summarized in the following

steps [35]:

• Choose p1; p3; p5; . . . to give a zero-phase polynomial PðzÞ with good

characteristics.

• Factorize PðzÞ into H0ðzÞ and G0ðzÞ with similar lowpass frequency response.

• Calculate H1ðzÞ and G1ðzÞ from H0ðzÞ and G0ðzÞ.
To simplify this procedure, we can use the following relation:

PðzÞ ¼ PtðZÞ ¼ 1þ pt;1Z þ pt;3Z
3 þ pt;5Z

5 þ � � � ; (21)

where

Z ¼ 1

2
ðzþ z�1Þ: (22)

The Haar wavelet is the simplest type of wavelets. In the discrete form, Haar

wavelets are related to a mathematical operation called the Haar transform. The

Haar transform serves as a prototype for all other wavelet transforms [35]. Like all

wavelet transforms, the Haar transform decomposes a discrete signal into two sub-

signals of half its length. One of them is a running average or trend; the other is a

running difference or fluctuation. This uses the simplest possible PtðZÞwith a single
zero at Z ¼ �1. It is represented as follows [35]:

PtðZÞ ¼ 1þ Z and Z ¼ 1

2
ðzþ z�1Þ: (23)

Thus,

PðzÞ ¼ 1

2
ðzþ 2þ z�1Þ

¼ 1

2
ðzþ 1Þð1þ z�1Þ ¼ G0ðzÞH0ðzÞ: ð24Þ

We can find H0ðzÞ and G0ðzÞ as follows:

H0ðzÞ ¼ 1

2
ð1þ z�1Þ; (25)

G0ðzÞ ¼ ðzþ 1Þ: (26)

Using (Eq. 17) with r ¼ 1:

G1ðzÞ ¼ zH0ð�zÞ ¼ 1

2
zð1� z�1Þ ¼ 1

2
ðz� 1Þ;

H1ðzÞ ¼ z�1G0ð�zÞ ¼ z�1ð�zþ 1Þ ¼ ðz�1 � 1Þ:
(27)
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The two outputs of H0ðzÞ and H1ðzÞ are concatenated to form a single vector of

the same length as the original speech signal. The features are extracted from this

vector and used for speaker identification.

3.2 The DCT

The DCT is a 1D transform with an excellent energy compaction property. For a

speech signal x(n), the DCT is represented by [35]:

XðkÞ ¼ aðkÞ
XN�1

n¼0

xðnÞ cos
pð2nþ 1Þk

2N

� �
; k ¼ 0; 1; 2; . . . ;N � 1; (28)

where

að0Þ ¼
ffiffiffiffi
1

N

r
; aðkÞ ¼

ffiffiffiffi
2

N

r
:

The inverse discrete cosine transform (IDCT) is given by:

xðnÞ ¼
XN�1

k¼0

aðkÞXðkÞ cos
pð2nþ 1Þ

2N

� �
; n ¼ 0; 1; 2; . . . ;N � 1: (29)

The features are extracted from X(k) and used for speaker identification.

3.3 The DST

The DST is another triangular transform with common properties with the DCT.

The mathematical representation of the DST is given by [35]:

XðkÞ ¼
XN�1

n¼0

xðnÞ sin
p

N þ 1
ðn� 1Þðk þ 1Þ

� �
; k ¼ 0; . . . ;N � 1: (30)

The features are extracted from X(k) and used for speaker identification.

3.4 Speaker Identification with Discrete Transforms

In the training phase of the speaker identification system, a database is first

composed for 15 speakers. To generate this database, each speaker repeats a certain

sentence 10 times. Thus, 150 speech signals are used to generate MFCCs and
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polynomial coefficients to form the feature vectors of the database. These features

are used to train a neural network. In the testing phase, each one of these speakers is

asked to say the sentence again and his speech signal is then degraded. Similar

features to that used in the training are extracted from those degraded speech signals

and used for matching.

The features used in all experiments are 13 MFCCs and 26 polynomial

coefficients forming a feature vector of 39 coefficients for each frame of the speech

signal. Seven methods for extracting features are adopted in the experiment. In

the first method, the MFCCs and the polynomial coefficients are extracted from the

speech signals, only. In the second one, the features are extracted from the DWT

of the speech signals. In the third method, the features are extracted from both the

original speech signals and the DWT of these signals and concatenated together. In

the fourth method, the features are extracted from the DCT of the speech signals.

In the fifth method, the features are extracted from both the original speech signals

and the DCT of these signals and concatenated together. In the sixth method, the

features are extracted from the DST of the speech signals. In the seventh method,

the features are extracted from both the original speech signals and the DST of these

signals and concatenated together. The recognition rate is used as the performance

evaluation metric in all experiments. It is defined as the ratio of the number of

success identifications to the total number of identification trials.

For the speech signals contaminated by additive White Gaussian noise (AWGN),

it is clear from Fig. 8 that the DCT and the DWT are good competitors for robust

feature extraction in the presence of AWGN. Features extracted from the original
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Fig. 8 Recognition rate vs. SNR for the different feature extraction methods for speech signals
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signals in the time domain fail to give good identification results, especially at low

signal-to-noise ratios (SNRs). The DCT energy compaction property allows a few

number features to characterize the speech signals, hence facilitating the matching

process. Also, the subband decomposition resulting from the DWT allows feature

extraction from the different bands to enhance the performance of speaker identifica-

tion systems.

4 Speech Enhancement

Speech enhancement can be used as a preprocessing step in the testing phase of the

speaker identification system to improve its performance as shown in Fig. 9.

4.1 Speech Quality Metrics

Speech quality metrics are used to assess the perceptual quality of the speech

signals resulting from any speech enhancement algorithm. Several approaches,

based on subjective and objective metrics, have been adopted in the literature for

this purpose [39–42]. Objective metrics are generally divided into intrusive and

nonintrusive. Intrusive metrics can be classified into three main groups. The first

group includes time domain metrics such as the traditional SNR and the segmental

signal-to-noise ratio (SNRseg). The second group includes linear predictive

coefficients (LPCs) metrics, which are based on the LPCs of the speech signal

and its derivative parameters, such as the linear reflection coefficients (LRCs), the

log likelihood ratio (LLR), and the cepstral distance (CD). The third group includes

the spectral domain metrics, which are based on the comparison between the power

spectrum of the original signal and the processed signal. An example of such

metrics is the spectral distortion (SD) [39–42].

Speech
enhancement

Discrete transform
(DWT, DCT or

DST)

Feature extraction
(MFCCs +
Polynomial
coefficients)

Noisy speech
signal

Feature matching
with trained neural

 network 

Decision

Fig. 9 Testing phase of a speaker identification system with speech enhancement
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4.1.1 The SNR

The SNR is defined as follows [39–42]:

SNR ¼ 10 log10

PN
n¼1

s2ðnÞ
PN
n¼1

ðsðnÞ � yðnÞÞ2
; (31)

where sðnÞ is the original speech signal, and yðnÞ is the processed speech signal.

4.1.2 The SNRseg

SNRseg is defined as the average of the SNR values over short segments of the

output signal. It is can be calculated as follows [39–42]:

SNRseg ¼ 10

M

XM�1

m¼0

log10

XLsmþLs�1

n¼Lsm

sðnÞ
ðsðnÞ � yðnÞÞ
� �2

; (32)

whereM is the number of segments in the speech signal, and Ls is the length of each
segment.

4.1.3 The LLR

The LLR metric for a speech segment is based on the assumption that the segment

can be represented by an all-pole linear predictive coding model of the form [39–42]:

sðnÞ ¼
Xmp

m¼1

amsðn� mÞ þ GsuðnÞ; (33)

where am (for m ¼ 1,2,. . .,mp) are the coefficients of the all-pole filter, Gs is the

gain of the filter, and uðnÞ is an appropriate excitation source for the filter. The

speech signal is windowed to form frames of 15–30 ms length. The LLR metric is

then defined as [42]:

LLR ¼ log
~asRy~a

T
s

~ayRy~a
T
y

 !�����
�����; (34)

where~as is the LPCs coefficient vector ½1; asð1Þ; asð2Þ; . . . ; asðmpÞ� for the original
speech signal, ~ay is the LPCs coefficient vector ½1; ayð1Þ; ayð2Þ; . . . ; ayðmpÞ� for

4 Speech Enhancement 17



the processed signal, and Ry is the autocorrelation matrix of the processed speech

signal. The closer the LLR to zero, the higher is the quality of the output speech

signal.

4.1.4 The SD

The SD is a form of metrics that is implemented in frequency domain on the

frequency spectra of the original and processed speech signals. It is calculated in

dB to show how far is the spectrum of the processed signal from that of the original

signal. The SD can be calculated as follows [39–42]:

SD ¼ 1

M

XM�1

m¼0

XLsmþLs�1

k¼Lsm

jVsðkÞ � VyðkÞj; (35)

where VsðkÞ is the spectrum of the original speech signal in dB for a certain segment

and VyðkÞ is the spectrum of the processed speech signal in dB for the same

segment. The smaller the SD, the better is the quality of the audio output signal.

4.2 Spectral Subtraction

The goal of the spectral subtraction method is the suppression of additive noise

from the corrupted speech signal prior to speaker identification [43–45]. It is per-

formed by subtracting the noise spectrum from the noisy signal spectrum to obtain

an estimate of the clean signal spectrum, and then reconstructing the signal from

the estimated spectrum. Speech degraded by additive noise can be represented by:

xðnÞ ¼ sðnÞ þ vðnÞ; (36)

where s(n) is the clean speech signal, and v(n) is the noise. Taking the Fourier

transform gives:

XðkÞ ¼ SðkÞ þ VðkÞ: (37)

The spectral subtraction filter HðkÞis calculated by replacing the noise spectrum

VðkÞ with a spectrum, which can be readily measured. The magnitude jVðkÞj of
VðkÞis replaced by its average value mðkÞ taken during nonspeech activity, and the

phase yVðkÞ of VðkÞ is replaced by the phase yXðkÞ of XðkÞ. These substitutions

result in the spectral subtraction estimated signal:

ŜðkÞ ¼ ½jXðkÞj � mðkÞ�e jyXðkÞ (38)
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or

ŜðkÞ ¼ HðkÞXðkÞ (39)

with

HðkÞ ¼ 1� mðkÞ
jXðkÞj (40)

and

mðkÞ ¼ EfjVðkÞjg: (41)

The drawback of the spectral subtraction method is that it gives musical noise,

which is an offensive noise. It is difficult to reduce the musical noise, because its

spectrum is not stationary in short-time frames. Figure 10 shows a clean speech

signal and its spectrogram. A contaminated version of this signal with an AWGN

at an SNR ¼ 5 dB is shown in Fig. 11. An enhanced version of the noisy signal using

the spectral subtraction method is shown in Fig. 12. It is clear from that figure that

effect of the spectral subtraction method is very slight. The effect of the spectral

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
−1

−0.5

0

0.5

1

A
m

pl
itu

de

Time (s)

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
0

1000

2000

3000

4000

5000
Original Signal

Time (s)

F
re

qu
en

cy
 (

H
z)

Fig. 10 Time domain waveform and spectrogram of a clean speech signal
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Fig. 11 Time domain waveform and spectrogram of the noisy signal with AWGN at SNR ¼ 5 dB

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
-1

-0.5

0

0.5

1

A
m

pl
itu

de

Time (s)

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
0

1000

2000

3000

4000

5000

Time (s)

Spectral Subtraction

F
re

qu
en

cy
 (

H
z)

Fig. 12 Time domain waveform and spectrogram of the enhanced signal using the spectral
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subtraction method as a preprocessing method on the speaker identification process is

shown in Fig. 13. It is clear from that figure that the effect of the spectral subtraction

method on the process of speaker identification is also small.

4.3 Wiener Filter

The Wiener filter is an optimal filter that minimizes the mean square error

(MSE) between the original and enhanced speech signals. This filter is defined

by [46]:

SðkÞ ¼ HðkÞXðkÞ; (42)

where S(k), X(k), and H(k) are the DFT of the clean speech, the DFT of the noisy

speech, and the transfer function of the Wiener filter, respectively. TheWiener filter

is represented by:

HðkÞ ¼ PsðkÞ
PsðkÞ þ PvðkÞ ; (43)
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where Ps(k) and Pv(k) are the power spectra of the speech signal s(n) and the noise

v(n), respectively. This formula has been derived considering the signal s(n) and
noise v(n) as uncorrelated and stationary signals. The SNR is defined by:

SNR ¼ PsðkÞ
PvðkÞ : (44)

This definition can be incorporated to Wiener filter equation as follows:

HðkÞ ¼ 1þ 1

SNR

� ��1

: (45)

The drawback of the Wiener filter is the fixed frequency response at all

frequencies and the requirement to estimate the power spectral density of the

clean signal and noise prior to filtering. An enhanced version of the noisy speech

signal using the Wiener filter is shown in Fig. 14. It is clear that the Wiener

filtering method has a better performance than the spectral subtraction method.

The effect of the Wiener filter enhancement on the speaker identification process is
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Fig. 14 Time domain waveform and spectrogram of the enhanced signal using the Wiener

filtering method. SNR ¼ 4.9880 dB, SNRseg ¼ 4.9604 dB, LLR ¼ 0.2383, SD ¼ 8.5090 dB

22 Information Security for Automatic Speaker Identification



shown in Fig. 15. It is clear from that figure that the Wiener filtering method has a

better effect on the speaker identification process than the spectral subtraction

method.

4.4 The Adaptive Wiener Filter

The adaptive Wiener filter uses local statistics of the speech signal, and is derived

from theWiener filter under certain assumptions [46]. It is assumed that the additive

noise v(n) is a stationary white noise with zero mean and variance s2v . Thus, the
power spectrum of the noise Pv(k) can be approximated by [46]:

PvðkÞ ¼ s2v : (46)

Consider a small segment of the speech signal, in which the signal x(n) is

assumed to be stationary. The signal x(n) can be modeled by [46]:

xðnÞ ¼ mx þ sxwðnÞ; (47)
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Fig. 15 Recognition rate vs. SNR for the different feature extraction methods in the presence of

AWGN using the Wiener filter method
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where mx and sx are the local mean and standard deviation of x(n). w(n) is a unit

variance noise. Within this small segment of speech, the Wiener filter transfer

function can be approximated by:

HðkÞ ¼ PsðkÞ
PsðkÞ þ PvðkÞ ¼

s2s
s2s þ s2v

: (48)

SinceH(k) is constant over this small segment of speech, the impulse response of

the Wiener filter can be obtained by:

hðnÞ ¼ s2s
s2s þ s2v

dðnÞ: (49)

The enhanced speech signal ŝðnÞ in this local segment can be expressed as [46]:

ŝðnÞ ¼ mx þ ðxðnÞ � mxÞ � s2s
s2s þ s2v

dðnÞ ¼ mx þ s2s
s2s þ s2v

ðxðnÞ � mxÞ: (50)

If mx and ss are updated at each sample, we get:

ŝðnÞ ¼ mxðnÞ þ s2s
s2s þ s2v

ðxðnÞ � mxðnÞÞ: (51)

In (Eq. 51), the local mean mx(n) and (x(n) � mx(n)) are modified from segment

to segment. If s2s is much larger than s2v , the output signal ŝðnÞ will be primarily due

to x(n), and the input signal x(n) is not attenuated. If s2s is smaller than s2v , the
filtering effect appears.

Note that mx is identical to ms when mv is zero. So, we can estimate mx(n) in
(Eq. 51) from x(n) by:

m̂sðnÞ ¼ m̂xðnÞ ¼ 1

ð2T þ 1Þ
XnþT

l¼n�T

xðlÞ; (52)

where (2T + 1) is the number of samples in the short segment used in the

estimation.

To measure the local statistics of the speech signal, we need to estimate the

signal variance s2s . Since s2x ¼ s2s þ s2v , then s2s ðnÞmay be estimated from x(n) as
follows:

ŝ2xðnÞ ¼ ŝ2xðnÞ � ŝ2v if ŝ2xðnÞ> ŝ2v ;
0 otherwise,

�
(53)
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where

ŝ2xðnÞ ¼
1

ð2T þ 1Þ
XnþT

l¼n�T

ðxðlÞ � m̂xðnÞÞ2: (54)

An enhanced version of the noisy speech signal using the adaptive Wiener filter

is shown in Fig. 16. It is clear that the adaptive Wiener filtering method has a better

performance than both the spectral subtraction method and the Wiener filtering

method. The effect of the adaptive Wiener filtering on the speaker identification

process is shown in Fig. 17. It is clear from that figure that the adaptive Wiener filter

has a better effect on the speaker identification process than the spectral subtraction

and the Wiener filtering methods.

4.5 Wavelet Denoising

Wavelet denoising is a simple operation, which aims at reducing noise in a noisy

speech signal. It is performed by choosing a threshold that is sufficiently a large

multiple of the standard deviation of the noise in the speech signal. Most of the
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Fig. 16 Time domain waveform and spectrogram of the enhanced signal using the adaptive Wiener

filtering method. SNR ¼ 6.8726 dB, SNRseg ¼ 6.8423 dB, LLR ¼ 0.1609, SD ¼ 7.3006 dB
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noise power is removed by thresholding the detail coefficients of the wavelet

transformed speech signal. There are two types of thresholding; hard and soft

thresholding. The equation of the hard thresholding is given by [37, 47–49]:

fhardðxwÞ ¼ xw; jxwj � TH,

0; jxwj<TH:

�
(55)

On the other hand, that of soft thresholding is given by:

fsoftðxwÞ ¼
xw; jxwj � TH,

2xw � TH, TH=2 � xw <TH,

THþ 2xw; �TH< xw � �TH=2;
0; jxwj<TH=2;

8>><
>>: (56)

where TH denotes the threshold value and xw represents the coefficients of the high

frequency components of the DWT.

An enhanced version of the noisy speech signal using the wavelet hard

thresholding method with one level decomposition is shown in Fig. 18. The effect

of the wavelet hard thresholding method, with one level decomposition, on the

speaker identification process is shown in Fig. 19. An enhanced version of the

noisy speech signal using the wavelet soft thresholding method with one level

decomposition is shown in Fig. 20. The effect of the wavelet soft thresholding
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Fig. 18 Time domain waveform and spectrogram of the enhanced signal using the wavelet hard

thresholdingmethodwith 1 levelHaarwavelet transform. SNR ¼ 6.5002 dB, SNRseg ¼ 6.4605 dB,

LLR ¼ 0.1945, SD ¼ 7.6423 dB

−25 −20 −15 −10 −5 0 5 10 15 20 25
0

10

20

30

40

50

60

70

80

90

100

SNR (dB)

R
ec

og
ni

tio
n 

R
at

e

Features from signal
Features from the DWT of the signal
Features from the signal plus the DWT of the signal
Features from DCT of signal
Features from signal plus DCT of signal
Features from DST of Signal
Features from signal plus DST of signal

Fig. 19 Recognition rate vs. SNR for the different feature extraction methods in the presence of

AWGN using the wavelet hard thresholding method with 1 level Haar wavelet transform
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method, with one level decomposition, on the speaker identification process is

shown in Fig. 21. The effect of the wavelet hard and soft thresholding methods,

with two levels decomposition, on the speaker identification process is shown in

Figs. 22 and 23, respectively. From these figures, it is clear that the wavelet

denoising has the best effect on the speaker identification process. Soft thresholding

with two levels wavelet thresholding gives the highest recognition rates. Thus, the

wavelet denoising can be used with speaker identification systems implementing

features extracted from the DCT of signals to get the highest recognition rates in

noisy environments.

5 Blind Signal Separation

Blind signal separation can be used to reduce interference with undesired signals

prior to the speaker identification process. In some cases, the speakers to be

identified give utterances that are contaminated by noise or some kind of interfer-

ence. Blind signal separation can be used for the separation of required speech
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Fig. 20 Time domain waveform and spectrogram of the enhanced signal using the wavelet soft

thresholdingmethodwith 1 level Haarwavelet transform. SNR ¼ 6.4884 dB, SNRseg ¼ 6.4506 dB,

LLR ¼ 0.1942, SD ¼ 7.6463 dB
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AWGN using the wavelet soft thresholding method with 1 level Haar wavelet transform
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AWGN using the wavelet hard thresholding method with 2 levels Haar wavelet transform
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signals from the background signals, and then the features can be extracted from the

separated speech signals.

Blind signal separation deals with mixtures of signals in the presence of noise.

If there are two original signals s1(n) and s2(n), which are mixed to give two

observations x1(n) and x2(n), these observations can be represented as follows

[50, 51]:

x1ðnÞ ¼
Xp
i¼0

h11ðiÞs1ðn� iÞ þ
Xp
i¼0

h12ðiÞs2ðn� iÞ þ v1ðnÞ;

x2ðnÞ ¼
Xp
i¼0

h21ðiÞs1ðn� iÞþ
Xp
i¼0

h22ðiÞs2ðn� iÞ þ v2ðnÞ
(57)

or in matrix form as follows:

x1ðnÞ
x2ðnÞ

� �
¼ hT11 hT12

hT21 hT22

� �
s1ðnÞ
s2ðnÞ

� �
þ v1ðnÞ

v2ðnÞ
� �

; (58)

where

hTij ¼ ½hijð0Þ; . . . ; hijðpÞ�;
sTi ðnÞ ¼ ½siðnÞ; . . . ; siðn� pÞ�; (59)
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v1(n) and v2(n) are due to noise, hij is the impulse response from source j to sensor i,
and p is the order of the filter. For simplicity, the source signals are assumed to be

statistically independent with zero means. The problem is simplified by assuming

that the signals arrive at the sensors unfiltered, which is equivalent to setting

h11 ¼ h22 ¼ 1.

Taking Z-transform of (Eq. 58), and neglecting the effect of noise lead to:

X1ðzÞ
X2ðzÞ

� �
¼ H11ðzÞ H12ðzÞ

H21ðzÞ H22ðzÞ
� �

S1ðzÞ
S2ðzÞ

� �
: (60)

This model can be represented by the block diagram in Fig. 24. Simplifying

(Eq. 60) leads to:

X1ðzÞ
X2ðzÞ

� �
¼ 1 H0

21ðzÞ
H0

21ðzÞ 1

� �
S01ðzÞ
S02ðzÞ

� �
; (61)

where

S01ðzÞ ¼ H11ðzÞS1ðzÞ;
S02ðzÞ ¼ H22ðzÞS2ðzÞ;

H0
12ðzÞ ¼

H12ðzÞ
H22ðzÞ ;

H0
21ðzÞ ¼

H21ðzÞ
H11ðzÞ :

(62)

For Hii(z) ¼ 1, which is the case of interest, (Eq. 61) simplifies to:

X1ðzÞ
X2ðzÞ

� �
¼ 1 H12ðzÞ

H21ðzÞ 1

� �
S1ðzÞ
S2ðzÞ

� �
: (63)

H11(z)

H21(z)

H22(z)

H12(z)

s1(n)

s2(n)

x1(n)

x2(n)

+

+

Fig. 24 A fully coupled

2 	 2 mixing system
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The objective of blind signal separation is to get the signals y1(n) and y2(n),
which are as close as possible to s1(n) and s2(n). We can assume that:

Y1ðzÞ
Y2ðzÞ

� �
¼ 1 W1ðzÞ

W2ðzÞ 1

� �
X1ðzÞ
X2ðzÞ

� �
; (64)

where in vector form

wT
i ¼ ½wið0Þ; . . . ;wiðqÞ�;

xTi ðnÞ ¼ ½xiðnÞ; . . . ; xiðn� qÞ�: (65)

Substituting (Eq. 63) into (Eq. 64) leads to [50, 51]:

Y1ðzÞ
Y2ðzÞ

� �
¼ 1þW1ðzÞH21ðzÞ W1ðzÞ þ H12ðzÞ

W2ðzÞ þ H21ðzÞ 1þW2ðzÞH12ðzÞ
� �

S1ðzÞ
S2ðzÞ

� �
: (66)

The time domain iterative separation algorithm for the 2 	 2 convolutive

system minimizes the output cross-correlations for an arbitrary number of lags

with d + 1 tap FIR filters. From (Eq. 66), it is clear that the solution of the problem

is to find suitable W1(z) and W2(z), such that each of Y1(z) and Y2(z) contains only
S1(z) or S2(z). This is achieved only if either the diagonal or the anti-diagonal

elements of the cross-correlation matrices are zeros. Figure 25 shows a block

diagram of the separation algorithm.

Assuming s1(n) and s2(n) are stationary, zero mean and independent random

signals, the cross-correlation between the two signals is equal to zero, that is [50, 51]:

rs1s2ðlÞ ¼ E½s1ðnÞs2ðnþ lÞ� ¼ 0 8 l: (67)

If each of y1(n) and y2(n) contains components of s1(n) or s2(n) only, then the

cross-correlation between y1(n) and y2(n) should also be zero as follows:

ry1y2ðlÞ ¼ E½y1ðnÞy2ðnþ lÞ� ¼ 0 8 l: (68)

+

H21(z)

H12(z)

s1(n)

s2(n)

x1(n)

x2(n)

+

+

W2(z)

W1(z)

y1(n)

y2(n)+
Fig. 25 Schematic diagram

of the 2 	 2 separation

algorithm
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Substituting (Eq. 59) into (Eq. 68) gives:

ry1y2ðlÞ ¼ E½ðx1ðnÞ þ wT
1x2ðnÞÞðx2ðnþ lÞ þ wT

2x1ðnþ lÞÞ�: (69)

If rxixjðlÞ ¼ E½xiðnÞxjðnþ lÞ�, (Eq. 69) becomes:

ry1y2ðlÞ ¼ rx1x2ðlÞ þ wT
1

rx2x2ðlÞ
..
.

rx2x2ðlþ qÞ

0
B@

1
CAþ wT

2

rx1x1ðlÞ
..
.

rx1x1ðlþ qÞ

0
B@

1
CAþ wT

1Rx2x1ðlÞw2;

(70)

where Rx2x1ðlÞ ¼ E½x2ðnÞðx1ðnþ lÞÞT� is a (d + 1) 	 (d + 1) matrix, which is a

function of the cross-correlation between x1 and x2.
The cost function C is defined as the sum of the squares of the cross-correlations

between the two inputs as follows [50, 51]:

C ¼
Xl2
l¼l1

½ry1y2ðlÞ�2; (71)

where l1 and l2 constitute a range of cross-correlation lags. C can also be

expressed as:

C ¼ rT
y1y2

ry1y2 ; (72)

where

ry1y2 ¼ ½ry1y2ðl1Þ; . . . ; ry1y2ðl2Þ�T: (73)

Thus:

ry1y2 ¼ rx1x2 þ ½Qþ
x2x2

�Tw1 þ ½Q�
x1x1

�Tw2 þ RT
x2x1

Aðw2Þw1 (74)

or

ry1y2 ¼ rx1x2 þ ½Qþ
x2x2

�Tw1 þ ½Q�
x1x1

�Tw2 þ RT
x1x2

Aðw1Þw2; (75)

where Qþ
x2x2

and Q�
x1x1

are ðdþ 1Þ 	 ðl2 � l1 þ 1Þ matrices, Rx2x1 is a ð2dþ 1Þ 	
ðl2 � l1 þ 1Þ matrix. These are all correlation matrices of x1 and x2 and are estimated

using sample correlation estimates. A(w1) and A(w2) are ð2dþ 1Þ 	 ðdþ 1Þ
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matrices, which containw1 andw2, respectively. In order to find some suitablew1 and

w2, C is minimized such that:

@C

@wt
¼ ½0; . . . ; 0�T; t ¼ 1; 2: (76)

Let

c1 ¼ ð½Qþ
x2x2

�T þ RT
x2x1

Aðw2ÞÞ;
c2 ¼ ð½Q�

x1x1
�T þ RT

x1x2
Aðw1ÞÞ:

(77)

Substituting (Eq. 77) into (Eq. 74) and (Eq. 75) gives:

ry1y2 ¼ rx1x2 þ c1w1 þ ½Q�
x1x1

�Tw2 (78)

or

ry1y2 ¼ rx1x2 þ c2w2 þ ½Qþ
x2x2

�Tw1: (79)

From (Eq. 76), we obtain [50, 51]:

w1 ¼ �ðcT
1c1Þ�1cT

1 ðrx1x2 þ ½Q�
x1x1

�Tw2Þ;
w2 ¼ �ðcT

2c2Þ�1cT
2 ðrx1x2 þ ½Qþ

x2x2
�Tw1Þ:

(80)

w1 and w2 are obtained by iterating between the two equations until convergence

is achieved, when the rate of change of parameter values is less than a preset

threshold. By estimating w1 and w2, we then obtain a set of outputs y1(n) and y2(n).
Each output contains s1(n) or s2(n), only.

The above-mentioned blind signal separation algorithm can be applied on the

signal mixtures in time domain or in a transform domain such as the DCT or the

DST. Wavelet denoising can also be used for noise reduction in the resulting

separated signals. In the DCT or DST transform domains, the separation is

performed on a few coefficients in the transform domain due to the energy compac-

tion property. Figures 26–37 confirm the superiority of transform domain separa-

tion to time domain separation and the importance of the wavelet denoising step for

two mixtures composed of speech and music signals in the presence of noise.

The effect of blind signal separation on the performance of speaker identification

systems is shown in Fig. 38. This figure reveals that signal separation for the desired

speech signals is very important for robust speaker identification because

interfering signals at low SNRs destroy the distinguishing features of speech

signals.
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Fig. 26 Original signals and noisy mixtures. (a) Original speech signal. (b) Original music signal.

(c) Noisy mixture 1, SNR ¼ �10 dB. (d) Noisy mixture 2, SNR ¼ �10 dB
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Fig. 27 Signal separation in the time domain with and without wavelet denoising. (a) Separated
speech signal in the absence of wavelet denoising. SNR ¼ �8.31 dB, SNRseg ¼�8.33 dB,

LLR ¼ 0.45, SD ¼ 22.88 dB. (b) Separated music signal in the absence of wavelet denoising.

SNR ¼ �3.24 dB, SNRseg ¼ �3.28 dB, LLR ¼ 0.52, SD ¼ 15.64 dB. (c) Separated speech signal
in the presence of wavelet denoising. SNR ¼ �5.43 dB, SNRseg ¼ �5.64 dB, LLR ¼ 0.47,

SD¼ 18.20 dB. (d) Separated music signal in the presence of wavelet denoising. SNR ¼ �0.49 dB,

SNRseg ¼ �0.67 dB, LLR ¼ 0.54, SD ¼ 12.80 dB



6 Deconvolution of Speech Signals

Deconvolution methods can be used in a preprocessing step in the testing phase of

the speaker identification system to eliminate the channel degradation effect as

shown in Fig. 39.

6.1 LMMSE Deconvolution

The linear shift invariant speech degradation model for a speech signal that passed

through a finite bandwidth channel can be described as a convolution between the

signal and the channel impulse response in the presence of noise. This convolution

can be put in matrix vector notation as follows [52–55]:

x ¼ Hsþ v; (81)
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Fig. 28 Signal separation using the DCT with and without wavelet denoising. (a) Separated

speech signal in the absence of wavelet denoising. SNR ¼ �7.72 dB, SNRseg ¼ �7.74 dB,

LLR ¼ 0.44, SD ¼ 21.85 dB. (b) Separated music signal in the absence of wavelet denoising.

SNR ¼ 2.08 dB, SNRseg ¼ 2.05 dB, LLR ¼ 0.51, SD ¼ 11.01 dB. (c) Separated speech signal

in the presence of wavelet denoising. SNR ¼ �4.87 dB, SNRseg ¼ �5.08 dB, LLR ¼ 0.48,

SD ¼ 17.42 dB. (d) Separated music signal in the presence of wavelet denoising. SNR ¼ 4.01 dB,

SNRseg ¼ 3.94 dB, LLR ¼ 0.42, SD ¼ 10.06 dB
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Fig. 29 Signal separation using the DST with and without wavelet denoising. (a) Separated

speech signal in the absence of wavelet denoising. SNR ¼ �7.72 dB, SNRseg ¼ �7.74 dB,

LLR ¼ 0.44, SD ¼ 21.85 dB. (b) Separated music signal in the absence of wavelet denoising.

SNR ¼ 2.08 dB, SNRseg ¼ 2.05 dB, LLR ¼ 0.51, SD ¼ 11.01 dB. (c) Separated speech signal

in the presence of wavelet denoising. SNR ¼ �4.87 dB, SNRseg ¼ �5.08 dB, LLR ¼ 0.48,

SD ¼ 17.42 dB. (d) Separated music signal in the presence of wavelet denoising. SNR ¼ 4.01 dB,

SNRseg ¼ 3.95 dB, LLR ¼ 0.42, SD ¼ 10.06 dB
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Fig. 30 Output SNR of the music signal vs. input SNR for all separation methods
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Fig. 31 Output SNR of the speech signal vs. input SNR for all separation methods
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where s, x, and v are vectors of length N, of the original speech signal, the degraded
speech signal, and the noise, respectively. The matrix H is the N 	 N channel

matrix. For a linear shift invariant system, the matrix H is a block Toeplitz matrix.

The problem is to estimate s given the recorded speech x. It is required that the

MSE of estimation be minimum over the entire ensemble of all possible estimates

of the speech signal [55, 56].

−15 −10 −5 0 5 10 15
−15

−10

−5

0

5

10

Input SNR (dB)

S
N

R
se

g 
(d

B
)

Time domain
Time domain+Wavelet denoising
DCT
DCT+Wavelet denoising
DST
DST+Wavelet denoising

Fig. 33 Output SNRseg of the speech signal vs. input SNR for all separation methods
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Fig. 35 Output LLR of the speech signal vs. input SNR for all separation methods
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min
x̂

E½ete� ¼ E½TrðeetÞ�; (82)

where e ¼ s� ŝ is the estimation error and ŝ is an estimate of original speech

signal.

Since the transformation matrix H is linear, the estimate of s will be linear. That
is an estimate of s that can be derived by a linear operation on the degraded speech

signal as follows:

ŝ ¼ Lx; (83)

where L is the derived subject to solving (Eq. 82), which leads to the following

equation:

min
x̂

E½TrðeetÞ� ¼ E½Trfðs� LxÞðs� LxÞtg �
¼ E½Trfsst � LðHsst þ vstÞ � ðsstHt þ svtÞLt

þLðHsstHt þ vstHt þHsvt þ vvtÞLtg�: ð84Þ

We have TrðAÞ ¼ TrðAtÞ. Since the trace is linear, it can be interchanged with

the expectation operator. Equation 84 can be simplified using some assumptions.

The noise is assumed to be independent of the speech signal. This assumption

leads to:

E½svt� ¼ E½vts� ¼ ½0�: (85)

The autocorrelation matrices can be defined as:

E½sst� ¼ Rs; (86)

E½vvt� ¼ Rv: (87)

Deconvolution
Discrete

transform (DWT,
DCT or DST)

Feature extraction
(MFCCs +
Polynomial
coefficients)

Feature matching
with trained

neural network 

Fig. 39 Speaker identification with deconvolution
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Substituting from (Eq. 85), (Eq. 86) and (Eq. 87) into (Eq. 84) yields:

min
ŝ

E½TrðeetÞ� ¼ TrfRs � 2LHRs þ LHRsH
tLt þ LRvL

tg: (88)

Differentiating (Eq. 88) with respect to L and setting the result equal to zero, the

LMMSE solution is given by:

L ¼ RsH
tðHRsH

t þ RvÞ�1: (89)

The solution to obtain the estimate ŝ requires the tedious task of inverting an

N 	 N matrix. This task can be avoided using the Toeplitz-to-circulant approxima-

tion of matrices [57, 58].

Mathematical operations on matrices are greatly simplified, when these matrices

have circulant structures. The simplifications emerge from the fact that operations

on circulant matrices yield circulant matrices. Circulant matrices can be classified

to either circulant or block circulant matrices. Both types of matrices can be

diagonalized via either the 1D or the 2D DFT. This attractive property allows the

inversion of circulant matrices of large dimensions, since the inversion process will

be applied to diagonal sparse matrices [57, 58].

Let Q be an S 	 S Toeplitz matrix of the following form [57, 58]:

Q ¼

qð0Þ . . . qð�PÞ 0

..

. . .
. . .

.

qðGÞ . .
.

qð�PÞ
. .
. . .

. ..
.

0 qðGÞ . . . qð0Þ

2
6666664

3
7777775
: (90)

It can be approximated by an S 	 S circulant matrix Qc defined as [57, 58]:

Qc ¼

qð0Þ . . . . . . qð�PÞ 0 . . . qðGÞ . . . qð1Þ
..
. . .

. . .
. . .

.
. . . . .

.

..

. . .
. . .

. . .
.

. . . qðGÞ
qðGÞ . .

. . .
. . .

.
. . .

0 . .
. . .

. . .
.

0

..

. . .
. . .

. . .
.

qð�PÞ
qð�PÞ ..

. . .
. . .

. . .
. ..

.

..

. . .
. ..

. . .
. . .

. . .
. ..

.

qð�1Þ . . . qð�PÞ ..
.

0 qðGÞ . . . . . . qð0Þ

2
66666666666666666664

3
77777777777777777775

; (91)
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where each row is a circular shift of the row above, and the first row is a circular

shift of the last row. The primary difference between the matrices Q and Qc is the

elements added at the upper right and lower left corners to produce the cyclic struc-

ture in the rows. If the matrix size is large and the number of nonzero elements on

the main diagonals compared to the number of zero elements is small (i.e., the matrix

is sparse), the elements added at the upper right and lower left corners do not affect

the matrix, because the number of these elements is small compared to the number

of the main diagonal elements. It can be shown from the Eigenvalues distribution of

the matrices Q and Qc that both matrices are asymptotically equivalent.

It is known that an S 	 S circulant matrixQc is diagonalized as follows [57, 58]:

L ¼ w�1Qcw; (92)

where L is an S 	 S diagonal matrix, whose elements lðs; sÞ are the Eigenvalues

of Qc, and w is an S 	 S unitary matrix of the Eigenvectors of Qc. Thus, we have:

ww�t ¼ w�tw ¼ I: (93)

The elements ’ðs1; s2Þ of w are given by:

’ðs1; s2Þ ¼ e j2ps1s2 S= (94)

for s1; s2 ¼ 0; 1; . . . ; S� 1.

The Eigenvalues lðs; sÞ can be referred to as lðsÞ. For these Eigenvalues, the

following relation holds:

lðsÞ ¼ qð0Þ þ
XG
m¼1

qðmÞe�j2pms S= þ
X�1

m¼�P

qðmÞe�j2pms S= ;

s ¼ 0; 1; . . . ; S� 1:

(95)

Because of the cyclic nature of Qc, we can define:

qðS� mÞ ¼ qð�mÞ: (96)

Thus, (Eq. 95) can be written in the form:

lðsÞ ¼
XS�1

m¼0

qðmÞe�j2pms S= ; (97)

where s ¼ 0; 1; . . . ; S� 1.

Thus, the circulant matrix can be simply diagonalized by computing the DFT of

the cyclic sequence qð0Þ; qð1Þ; . . . ; qðS� 1Þ.
The implementation of the LMMSE deconvolution method is greatly dependent

on the Toeplitz-to-circulant approximation. As mentioned above, the solution of
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(Eq. 89) requires the inversion of an N 	 N matrix. To avoid this process, we can

benefit from the Toeplitz-to-circulant approximation.

First consider the 1D Fourier transform of the speech signal sðnÞ given in (Eq. 6).
This equation can also be written in vector-matrix notation as:

S ¼ w�1s; (98)

where S and s arematrix vectors of SðkÞ and sðnÞ, respectively. TheN 	 Nmatrixw�1

contains the complex exponentials of the 1DFourier transform. Similarly, the 1D IDFT

can be obtained by multiplying both sides of (Eq. 98) by the matrix w, which yields:

s ¼ wS: (99)

From the Toeplitz structures of H, Rs, and Rv, which can be approximated by

circulant matrices, we get [57, 58]:

w�1ŝ ¼ w�1Rsww
�1Htww�1½HRxH

t þ Rn��1ww�1x: (100)

The above equation leads to:

w�1ŝ ¼ w�1Rsww
�1Htw½w�1Hww�1Rxww

�1Htwþ w�1Rnw��1w�1x: (101)

Using the diagonalization property, the following form is obtained:

Ŝ ¼ LsL
�
h½LhLsL

�
h þ Lv��1X; (102)

where Ls ¼ w�1Rsw, and Lh ¼ w�1Hw are diagonal matrices whose elements are

the Eigenvalues of the matrices Rs and H, respectively. L�
h is a diagonal matrix,

whose elements are the complex conjugates of the elements of Lh. Ŝ ¼ w�1ŝ
and X ¼ w�1x represent the 1D DFT of the estimated and degraded speech

signals, respectively. This diagonalization process allows the operation on sparse

matrices, which can be inverted easily.

The Eigenvalues of the matrix Rs are obtained from the 1D DFT of the correla-

tion sequence RsðnÞ, which represents the circular sequence of the matrix Rs. Also

the Eigenvalues of the matrix H are obtained from the 1D DFT of the channel

impulse response sequence.

Another problem encountered in the LMMSE deconvolution method is how to

estimate the correlation sequence RsðnÞ of the original speech signal. This correla-

tion sequence can be estimated from a prototype speech signal s0ðnÞ using the

following equation [55]:

RsðnÞ ffi 1

w

Xw
l¼1

s0ðlÞs0ðnþ lÞ; (103)
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where RsðnÞ is the correlation at index n and w is an arbitrary window length.

The prototype speech signal s0ðnÞ may be taken as the degraded speech signal xðnÞ.
Thus, the correlation sequence may be approximated from the degraded speech

signal as [55]:

RsðnÞ ffi 1

w

Xw
l¼1

xðlÞxðnþ lÞ: (104)

6.2 Inverse Filter Deconvolution

The speech deconvolution problem can be solved directly by inverting the channel

impulse response operator. This direct deconvolutionmethod is feasible in the absence

of noise, but severe distortions are observed in the restored speech signals at low SNRs.

The mathematical model for the inverse filter deconvolution method is based

on assuming a known and invertible channel impulse response operator. A direct

solution to the deconvolution problem can be obtained by estimating ŝ that

minimizes the norm of the difference between the reconvolved estimated speech

signal Hŝ and the degraded speech x. Mathematically, this can be represented by

estimating ŝ that minimizes the following cost function [57, 58]:

CðŝÞ ¼ jjx�Hŝjj2: (105)

Taking the partial derivative of the both sides of (Eq. 105) with respect to ŝ and
setting it equal to zero yields:

@Cð̂sÞ
@ŝ

¼ 0 ¼ �2Ht½x�Hŝ�: (106)

This leads to:

ŝ ¼ ½HtH��1Htx: (107)

The above equation can be simplified to the form:

ŝ ¼ H�1x ¼ sþH�1v: (108)

The Toeplitz-to-circulant approximation is used to solve matrix inversion

problem in (Eq. 108). Applying the operator w�1 on both sides of the equation,

yields:

w�1ŝ ¼ w�1H�1x ¼ w�1H�1ww�1x ¼ w�1HwwÞ�1X: (109)
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Thus:

Ŝ ¼ L�1
h X: (110)

In the above equation, the inversion process is performed on the diagonal matrix

Lh. So, it can be implemented easily due to the maximally sparse structure of this

matrix.

Equation 110 can be written in an equivalent form as follows [57, 58]:

ŜðkÞ ¼ XðkÞ
HðkÞ ¼ SðkÞ þ VðkÞ

HðkÞ : (111)

Thus, the deconvolution error can be expressed as:

jjŜðkÞ � SðkÞjj ¼ VðkÞ
HðkÞ
				

				 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
k

VðkÞ
HðkÞ
����

����
2

vuut : (112)

The use of the inverse filter is limited to restoring noise free speech signals. This

is due to the lowpass nature of the channel impulse response operator H, which

leads when inverted to the amplification of the high frequency noise components in

the restored signal. This limitation is clear, especially when H is near singular.

Thus, its inverse will have very large valued elements and consequently, the term

H�1v can dominate the term containing the solution s in (Eq. 108). To overcome the

limitation of the inverse filter deconvolution, some regularization is needed to avoid

the amplification of the high frequency noise.

6.3 Regularized Deconvolution

An inverse problem is characterized as ill-posed, when there is no guarantee for the

existence, uniqueness, and stability of the solution based on direct inversion. The

solution of an inverse problem is not guaranteed to be stable if a small perturbation

in the data can produce a large effect on the solution. Speech signal deconvolution

belongs to a general class of ill-posed problems. Regularization theory, which was

basically introduced by Tikhonov and Miller, provides a formal basis for the

development of regularized solutions for ill-posed problems [59–61].

The stabilizing functional approach is one of the basic methodologies for the

development of regularized solutions. According to this method, an ill-posed problem

can be formulated as the constrained minimization of a certain functional, called

stabilizing functional [81]. The specific constraints imposed by the stabilizing func-

tional approach on the solution depend on the form and properties of the stabilizing
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functional used. From the nature of the problem, these constraints are necessarily

related to the a priori information regarding the expected regularized solution.

According to the regularization method, the solution of (Eq. 81) is obtained by

the minimization of the cost function [59–61]:

CðŝÞ ¼ jjx�Hŝjj2 þ �jjCŝjj2; (113)

where C is the regularization operator and � is the regularization parameter.

This minimization is accomplished by taking the derivative of the cost function

yielding:

@CðŝÞ
@ŝ

¼ 0 ¼ 2Htðx�HŝÞ � 2�CtCŝ: (114)

Solving for ŝ that provides the minimum of the cost function yields:

ŝ ¼ ½HtHþ �CtC��1Htx ¼ Að�Þx; (115)

where

Að�Þ ¼ ½HtHþ �CtC��1Ht: (116)

The rule of the regularization operator C is to move the small Eigenvalues of H
away from zero, while leaving the large Eigenvalues unchanged. The generality

of the linear operator C allows the development of a variety of constraints that can

be incorporated into the deconvolution operation. The simplest case, that will be

considered in this book, is C ¼ I. In this case the regularized solution reduces to the
regularized inverse filter solution, which is named the pseudo inverse filter solution,

and it is represented as:

ŝ ¼ ½HtHþ �I��1Htx: (117)

To perform the inversion process in (Eq. 117), the Toeplitz-to-circulant approx-

imation is implemented. Applying the operator w�1 on the both sides of (Eq. 117),

we get:

w�1ŝ ¼ w�1ðHtHþ �CtCÞ�1Htx ¼ w�1ðHtHþ �CtCÞ�1ww�1Htww�1x: (118)

The above equation can be easily simplified to the following form:

Ŝ ¼ ðL�
hLh þ �L�

cLcÞ�1L�
hX: (119)
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This equation can also be expressed in a frequency domain equivalent form as:

ŜðkÞ ¼ H�ðkÞ
jHðkÞj2 þ �jCðkÞj2 YðkÞ: (120)

6.4 Comparison Study

The LMMSE, the inverse filter, and the regularized speech deconvolution methods

have been tested and compared for the case of a lowpass channel with AWGN

contamination. Figure 40 shows the original speech signal with its spectrogram.

The degraded signal is shown in Fig. 41. The LMMSE, the inverse filter, and the

regularized deconvolution results are shown in Figs. 42–44, respectively. These

figures show that the best deconvolution results are obtained from the regularized

deconvolution method.

The enhancement and deconvolution methods have been applied to the degraded

signal at different SNR values, and the results of this comparison are given in
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Fig. 40 Time domain waveform and spectrogram of a clean speech signal
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Fig. 41 Time domain waveform and spectrogram of the degraded signal with a lowpass channel

effect and AWGN at an SNRoriginal ¼ 20 dB

0 0.5 1 1.5 2
−1

−0.5

0

0.5

1

A
m

pl
itu

de

Time (s)

0.5 1 1.5 2
0

1000

2000

3000

4000

5000

Time (s)

LMMSE Deconvolution

F
re

qu
en

cy
 (

H
z)

Fig. 42 Time domain waveform and spectrogram of the enhanced signal using the LMMSE

deconvolutionmethod, SNR ¼ 4.7827 dB, SNRseg ¼ 4.7430 dB, LLR ¼ 0.3797, SD ¼ 8.5461 dB
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Fig. 43 Time domain waveform and spectrogram of the enhanced signal using the inverse filter
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Fig. 44 Time domain waveform and spectrogram of the enhanced signal using the regularized
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Figs. 45–48. These results are in favor of the regularized deconvolution method as it

performs deconvolution under a constraint that preserves the noise at a certain level.

The effect of deconvolution on the performance of speaker identification

systems is shown in Fig. 49–51. These figures reveal that regularized deconvolution

achieves the best identification scores as compared to the inverse filter and the

LMMSE deconvolution methods.

7 Speech Watermarking

Watermarking is a growing field of research, because of its importance for several

applications, such as information hiding, copyright protection, fingerprinting, and

authentication [59–63]. Watermarking can be applied on speech as well as image,

and video signals [59–70]. Speech watermarking can be used in remote access

speaker identification systems to increase the degree of security by verifying the

existence of the watermark in addition to the identification of the speaker. Several

speech watermarking algorithms have been proposed in recent years [64–70].

Watermark embedding through a quantization process is one of the popular speech

watermarking algorithms due to its simplicity [64]. Another algorithm is based on

the spread spectrum technique, and is implemented by adding pseudo-random

sequences to the small segments of the audio signal [65].
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The singular value decomposition (SVD) mathematical technique has also been

utilized for speech watermarking in time and transform domains [70, 71]. Concen-

tration in this book will be on the SVD speech watermarking algorithm, because

of its ability to embed images in audio signals. With this algorithm, encrypted

watermarks can be embedded in speech signals to increase the level of security. The

first level of security is the encryption, and the second one is the watermarking.

Chaotic encryption is the most appropriate candidate for watermark encryption;

because it is a permutation-based encryption algorithm that tolerates channel

degradations more efficiently than diffusion-based algorithms [72].

Liu and Tan [73] proposed a watermarking algorithm based on the SVD tech-

nique. The main advantage of this algorithm is the robustness against attacks

[73–75], because the SVD technique provides an elegant way for extracting alge-

braic features from a 2D matrix. The singular values (SVs) of a matrix have a good

stability. When a small perturbation affects the matrix, no large variations in its SVs

occur [73]. Using this property of the SVs of a 2D matrix, the watermark can be

embedded in that matrix without a large variation.

7.1 Singular Value Decomposition

The SVD decomposes a matrix A into three matrices U, S, and V as follows [76]:

A ¼ USVT; (121)

where U and V are orthogonal matrices such that UT U ¼ I, and VT V ¼ I.
S ¼ diag(s1; . . . ; sPÞ, where s1 � s2 �; . . . ; sP � 0 are the SVs ofA. The columns

of U are called the left singular vectors of A, and the columns of V are called the

right singular vectors of A.
The properties of the SVD transformation are summarized as follows [76]:

1. The SVs are the square roots of the Eigenvalues.

2. When there is a little disturbance in A, the variations in its SVs are not greater

than its largest SV.

3. If the SVs of A are s1; s2; . . . ;sP, the SVs of aA are s�1; s
�
2; . . . ; s

�
P, such that:

ðs�
1; s

�
2; . . . ; s

�
PÞ ¼ jajðs1; s2; . . . ; sPÞ: (122)

4. If P is a unitary and rotating matrix, the SVs of PA (rotated matrix) are the same

as those of A.
5. The original matrix A and its shifted versions have the same SVs.

6. Both A and AT have the same SVs.
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The above-mentioned properties of the SVD transformation are very much

desirable in watermarking. When the watermarked signal with the SVD technique

undergoes attacks, the watermark can be retrieved effectively from the attacked

watermarked signal.

7.2 The SVD Speech Watermarking Algorithm

This algorithm allows embedding images in audio signals. These images can be

extracted at the receiver side. The steps of the embedding algorithm are

summarized as follows [71]:

1. The audio signal is either used in time domain or transformed to an appropriate

transform domain.

2. The obtained 1D signal is transformed into a 2D matrix (A matrix).

3. The SVD is performed on the A matrix as in (Eq. 121).

4. The chaotic encrypted watermark (W matrix) is added to the SVs of the original

matrix.

D ¼ Sþ KW; (123)

where K is the watermark weight.

5. The SVD is performed on the new modified matrix (D matrix).

D ¼ UwSwV
T
w: (124)

6. The watermarked signal in 2D format (Aw matrix) is obtained by using the

modified matrix of SVs (Sw matrix).

Aw ¼ USwV
T: (125)

7. The 2D Aw matrix is transformed again into a 1D signal.

8. If watermarking is performed in a transform domain, an inverse of this transform

is performed.

To extract the possibly corrupted watermark from the possibly distorted water-

marked audio signal, given Uw, S, Vw matrices, and the possibly distorted audio

signal, the above steps are reversed as follows:

1. If watermarking is performed in a transform domain, this transform is performed.

The 1D obtained signal is transformed to a 2D matrix A�
w. The

* refers to the

corruption due to attacks.

2. The SVD is performed on the possibly distorted watermarked image (A�
w matrix).
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A�
w ¼ U�S�wV

�T: (126)

3. The matrix that includes the watermark is computed.

D� ¼ UwS
�
wV

T
w: (127)

4. The possibly corrupted encrypted watermark is obtained.

W� ¼ ðD� � SÞ=K: (128)

5. The obtained matrix W� is decrypted.
6. The correlation coefficient between the decrypted matrix and the original water-

mark is estimated. If this coefficient is higher than a certain threshold, the

watermark is present.

7.3 Chaotic Encryption

Chaotic encryption of the watermark image can be performed using the chaotic

Baker map. In its discretized form, the Baker map is an efficient tool to randomize a

square matrix of data. The discretized map can be represented for an R 	 R matrix

as follows [77–83]:

Bðr1; r2Þ ¼ R

ni
ðr1 � RiÞ þ r2 mod

R

ni

� �
;
ni
R

r2 � r2 mod
R

ni

� �� �
þ Ri

� �
; (129)

where Bðr1; r2Þ are the new indices of the data item at ðr1; r2Þ, Ri � r1 � Ri þ ni,
0< r2 <R, and Ri ¼ n1 þ n2 þ � � � þ ni.

In steps, the chaotic encryption is performed as follows:

1. An R 	 R square matrix is divided into R rectangles of width ni and number of

elements R.
2. The elements in each rectangle are rearranged to a row in the permuted

rectangle. Rectangles are taken from left to right beginning with upper

rectangles then lower ones.

3. Inside each rectangle, the scan begins from the bottom left corner towards upper

elements.

Figure 52 shows an example for the chaotic encryption of an 8 	 8 square

matrix (i.e., R ¼ 8). The secret key is Skey ¼ [n1, n2, n3] ¼ [2, 4, 2].
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7.4 The Segment-by-Segment SVD Speech Watermarking
Algorithm

If multiple watermarks are added to small speech segments, it is expected that the

detectability of the watermark will be enhanced and its robustness against attacks

will be increased. Dividing the speech signal into small segments, then embedding

the watermark in the SVs of each segment, separately, gives the chance that one or

more of the watermarks will survive the attacks, and a higher correlation coefficient

in the detection will be obtained.

The original speech signal is divided into nonoverlapping segments. The image

watermark is embedded in the SVs (S matrix) of each segment after transformation

to a small 2D matrix. An SVD is performed on each of these new matrices to get

the S matrices of the segments. Then, these SV matrices are used to build the

watermarked segments.

The steps of the embedding process are summarized as follows [71]:

1. The speech signal is either used in time domain or transformed to a certain

transform domain.

2. The obtained signal is divided into nonoverlapping segments and each segment

is transformed into a 2D matrix.

3. The SVD is performed on the 2D matrix of each segments (Bi matrix) to obtain

the SVs (Si matrix) of each segment, where i ¼ 1, 2, 3, . . ., Ns, and Ns is the

number of segments.

Bi ¼ UiSiV
T
i : (130)

Fig. 52 Chaotic encryption of a square matrix. (a) Original square matrix. (b) Chaotic encrypted

matrix
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4. The encrypted watermark (W matrix) is added to the S matrix of each segment.

Di ¼ Si þ KW: (131)

5. The SVD is performed on each Di matrix to obtain the SVs of each one

(Swi matrix).

Di ¼ UwiSwiV
T
wi: (132)

6. The Swimatrices are used to build the watermarked segments in the time domain.

Bwi ¼ UiSwiV
T
i : (133)

7. The watermarked segments are transformed into the 1D format.

8. The watermarked segments are rearranged back into a 1D signal.

9. If watermarking is performed in a transform domain, an inverse of this transform

is performed.

Having Uwi, Vwi, Si, matrices and the possibly distorted audio signal, we can

follow the steps mentioned below to get the possibly corrupted watermark [71].

1. If watermarking is performed in a transform domain, this transform is

performed.

2. The possibly corrupted watermarked signal is divided into small segments

having the same size used in the embedding process and these segments are

transformed into a 2D format.

3. The SVD is performed on each possibly distorted watermarked segment

(B�
wi matrix) to obtain the SVs of each one (S�wi matrix).

B�
wi ¼ U�

i S
�
wiV

�T
i : (134)

4. The matrices that may contain the watermark are obtained using the Uwi, Vwi,

S�wi, matrices.

D�
i ¼ UwiS

�
wiV

T
wi: (135)

5. The possibly corrupted watermark (Wi
* matrix) is extracted from the Di

matrices.

ðD�
i � SiÞ=K ¼ W�

i : (136)

6. The obtained matrix W�
i matrices are decrypted.

7. The correlation coefficient between each decrypted matrix W�
i and the original

watermark is estimated. If at least one of the coefficients is higher than a certain

threshold, the watermark is present.
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7.5 Evaluation of SVD Speech Watermarking

Several experiments have been carried out to test the performance of the SVD

speech watermarking algorithm. Time and transform domains have been used for

watermark embedding. Both the SVD watermarking algorithm and the segment-by-

segment algorithm have been simulated. The CS image is used as a watermark to be

embedded in the Handel signal available in Matlab. The original Handel signals

with the watermarks used in all experiments are shown in Fig. 53. The correlation

coefficient cr is used to measure the closeness of the obtained watermark to the

original watermark.

The effect of the watermark strength K used to add the watermark to the matrix

of SVs of the audio signal has been studied. The results of this experiment in the

absence of attacks are shown in Figs. 54–58. It is clear from this experiment that in

the absence of attacks, watermark embedding in the DFT magnitude or the DST

domain achieves the lowest distortion level in the audio signal, but the DST domain
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Fig. 53 Original signal

and original watermarks.

(a) Original audio signal.

(b) Original watermark in the

SVD method. (c) Original
watermark in the segment-

by-segment SVD method
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Fig. 54 Variation of the SNR of the watermarked signal with the watermark strength in the

absence of any attacks. (a) SVD method. (b) Segment-by-segment SVD method
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Fig. 55 Variation of the SNRseg of the watermarked signal with the watermark strength in the

absence of any attacks. (a) SVD method. (b) Segment-by-segment SVD method
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Fig. 56 Variation of the LLR of the watermarked signal with the watermark strength in the

absence of any attacks. (a) SVD method. (b) Segment-by-segment SVD method
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Fig. 57 Variation of the SD of the watermarked signal with the watermark strength in the absence

of any attacks. (a) SVD method. (b) Segment-by-segment SVD method
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Fig. 58 Variation of the correlation coefficient cr with the watermark strength in the absence of

any attacks. (a) SVD method. (b) Segment-by-segment SVD method
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is preferred to the DFT magnitude in the detection process. It is also clear that

segment-by-segment speech watermarking causes more distortion in the audio

signal, but achieves more success in the detection in the presence of attacks.

The robustness of both the SVD speech watermarking method and the segment-

by-segment SVD method has been studied in the presence of an AWGN attack.

Figure 59 shows that watermark embedding in the DWT domain, the DCT domain,

or the time domain achieves the highest detection correlation coefficient at low

SNR values. From Fig. 57, it is clear that watermark embedding in the time domain

achieves the smallest distortion as compared to the DCT domain and the DWT

domain, especially for the segment-by-segment SVD method. It is also clear that

the segment-by-segment SVD method increases the correlation coefficient of

approximately all cases of watermarking.

The robustness of both the SVD speech watermarking method and the segment-

by-segment SVD method has been studied in the presence of a lowpass filtering

attack. A third order Butterworth filter has been used in this attack. Figure 60 shows

that watermark embedding in the time domain achieves the highest detection

correlation coefficient for the segment-by-segment SVD method and a sufficiently

high correlation coefficient values for the SVD method. It is also clear that the

segment-by-segment SVD method increases the correlation coefficient of approxi-

mately all cases of time and transforms domain watermarking with the filtering

attack, which is a severe case.

The robustness of both the SVD speech watermarking method and the segment-

by-segment SVDmethod has been studied in the presence of a wavelet compression

attack. The results of this experiment are given in Fig. 61. Although, watermark

embedding in the time domain is not the best case in correlation coefficient values

for this attack, the time domain can be chosen as the most appropriate domain for

watermark embedding due to the lowest SD, the sufficiently high values of the

detection correlation coefficient, and the ability to survive attacks.

The chaotic Baker map has been used to encrypt the watermark image as shown

in Fig. 62. The SVD speech watermarking embedding and extraction processes

have been performed with an encrypted watermark in the absence of attacks, and

the results are shown in Figs. 63 and 64. These figures reveal that the SVD speech

watermarking does not degrade the quality of the watermarked audio signal. From

the correlation coefficient value between the extracted watermark and the original

one, we notice that the watermark is perfectly reconstructed in the absence of

attacks.

Four attacks on the watermarked audio signal have been studied; an AWGN

attack, a lowpass filtering attack, a cropping attack and a wavelet compression

attack. The extracted watermarks in the presence of these attacks are shown in

Fig. 65, and the numerical evaluation metrics for these attacks are tabulated in

Table 1. This table shows that the correlation coefficient values for the extracted

watermarks get lower, but the watermarks are still visible after decryption.

The performance of the segment-by-segment SVD speech watermarking method

has been tested and compared to embedding the watermark in the signal as whole.

A small encrypted watermark of dimensions 16 	 16 is embedded in all segments
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Fig. 59 Variation of the correlation coefficient cr with the SNR in the presence of AWGN attack.

(a) SVD method. (b) Segment-by-segment SVD method
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Fig. 60 Variation of the correlation coefficient cr with the filtering BW in the presence of the

filtering attack. (a) SVD method. (b) Segment-by-segment SVD method

7 Speech Watermarking 69



a

b

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Threshold

cr

time
DWT
DCT
DST
DFT Mag.
DFT Phase

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Threshold 

cr
time
DWT
DCT
DST
DFT Mag.
DFT Phase
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Fig. 62 Chaotic encrypted watermark (CS image) cr ¼ 0.0181
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Fig. 63 (a) Original audio signal. (b) Watermarked audio signal. (c) Spectrogram of the original

signal. (d) Spectrogram of the watermarked signal

7 Speech Watermarking 71



Fig. 64 Extracted watermark without attacks. (a) Encrypted watermark cr ¼ 0.0181. (b) Decrypted
watermark cr ¼ 1

Fig. 65 Extracted watermark in the presence of attacks. (a) Noise attack. (b) Filtering attack.

(c) Cropping attack. (d) Wavelet compression attack



of the audio signal. The length of each segment is 256 samples, which is the number

of pixels in the small watermark. No overlapping is implemented between

segments. The watermark image and its chaotic encrypted version are shown in

Fig. 66. The results of the segment-by-segment SVD method in the presence of

attacks are shown in Figs. 67 and 68. These figures show that the segment-by-

segment method is similar in performance to the SVD method in the absence of

attacks. The audio signals are still not deteriorated due to segment-by-segment

watermarking. The extracted watermarks for the segment-by-segment method in

the presence of attacks are shown in Fig. 69. The numerical evaluation metrics for

these results are tabulated in Table 2. From this table, we notice that the correlation

coefficient between, at least, one of the extracted watermarks and the original

watermark exceeds the corresponding value obtained from the SVD watermarking

of the audio signal as a whole. The segment-by-segment watermarking enables PR

of the embedded watermark in the presence of the cropping attack.

Figures 70–72 show a comparison between the SVD watermarking method of

the audio signal as a whole and the segment-by-segment SVD method in the

presence of the AWGN attack, the filtering attack, and the wavelet compression

attack, respectively. From the results in these figures, we can conclude that for a low

SNR environment, the segment-by-segment method is preferred, because it

increases the detection probability of the watermark. For the filtering attack,

although the extracted watermark has a low correlation coefficient with the original

one, because the filter removes most of the signal details, the segment-by-segment

method has a better performance than the SVD watermarking method on the

signal as a whole. For the wavelet compression attack, it is clear that as the

threshold below which wavelet coefficients are neglected increases, the segment-

Table 1 Numerical evaluation metrics for the SVD watermarking method of the audio signal as

whole

No attacks Noise attack Filtering attack Cropping attack Compression attack

SNR (dB) 27.13 �10.26 1.56 3.03 9.1

SNRseg (dB) 26.31 �10.29 1.56 3 9.04

LLR 0.02 0.34 0.39 0.27 0.12

SD 0.84 dB �0.01 34.7 dB 11.96 dB 6.07 dB

cre 0.02 26.02 dB 0.0006 �0.006 0.02

crd 1 0.26 0.02 0.16 0.54

cre is the correlation coefficient between the extracted encrypted watermark and the original

watermark. crd is the correlation coefficient between the extracted decrypted watermark and the

original watermark

Fig. 66 The block watermark used for segment-by-segment watermarking. (a) Original

watermark. (b) Chaotic encrypted watermark
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Fig. 67 (a)Original audio signal. (b) Segment-by-segment SVDwatermarked signal. (c) Spectrogram
of the original signal. (d) Spectrogram of the watermarked signal

Fig. 68 Extracted watermarks without attacks. (a) Watermarks after decryption. (b) Decrypted
watermark which has crmax ¼ 1
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by-segment SVD method achieves a better performance than the SVD method on

the audio signal as a whole. This is attributed to the high probability that, at least,

one of the several watermarks will not be affected by the compression process.

Speaker identification is usually used as a tool of security. To increase the degree

of security, it is recommended to add encrypted watermarks to the speech signals

that will be used for speaker identification. If the speaker is verified from the

features of his speech and the watermark were found, this can be used as a

complicated authentication tool. The effect of watermark embedding on speech

features, and hence the performance of the speaker identification system should be

considered.

Fig. 69 Extracted watermarks with attacks. (a) Noise attack. (b) Filtering attack. (c) Cropping
attack. (d) Wavelet compression attack (Left: all extracted watermarks and Right: watermark

which achieves maximum correlation coefficient with the original watermark)
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Fig. 69 (continued)

Table 2 Numerical evaluation metrics for the segment-by-segment SVD watermarking method

No attacks Noise attack Filtering attack Cropping attack Compression attack

SNR (dB) 21.37 �10.54 1.6 3.01 8.97

SNRseg (dB) 21.29 �10.57 1.6 2.98 8.91

LLR 0.04 0.36 0.39 0.26 0.16

SD 1.6 dB 26.53 34.1 dB 11.74 dB 6.05 dB

crmax 1 0.34 0.07 1 0.72

crmax is the correlation coefficient between the extracted watermark, which achieves maximum

correlation with original watermark and the original watermark
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Fig. 71 Correlation coefficient between the extracted watermark and the original watermark vs.

the filter BW for both the SVD and the segment-by-segment SVD watermarking methods in the

presence of a filtering attack
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Fig. 70 Correlation coefficient between the extracted watermark and the original watermark vs.

the SNR for both the SVD and the segment-by-segment SVD watermarking methods in the

presence of AWGN attack
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The performance of the speaker identification system has been tested with the

SVD watermarking to increase the level of security by using encrypted watermarks.

The results of some experiments carried out to test the performance of the speaker

identification system with the SVD watermarking method are shown in Figs. 73–83.

Some other experiments have also been carried out with the segment-by-segment

SVD method, and the results are given in Figs. 84–94. From these results, it is clear

that speech watermarking does not degrade the speaker identification system

performance. So, it can be used in speaker identification systems to increase

security. In [71], it was shown the segment-by-segment watermarking in the time

domain achieves the highest detectability of the watermark. So, it is recommended to

use the segment-by-segment SVD method with speaker identification systems

implementing features extracted from the DCT or the DWT.

8 Speech Encryption

Speech encryption can be used as a tool to prevent eavesdroppers from getting

the speech signals that will be used for feature extraction. The main objective of

speech encryption is to avoid any unauthorized access to the system of concern by

synthesis trials. Speech encryption seeks to perform a completely reversible operation

on speech to be totally unintelligible to any unauthorized listener [84]. In speech
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Fig. 72 Correlation coefficient between the extracted watermark and the original watermark vs.

the wavelet compression threshold for both the SVD and the segment-by-segment SVD

watermarking methods in the presence of a wavelet compression attack
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Fig. 74 Recognition rate vs. SNR for the different feature extraction methods with SVD speech

watermarking in the time domain and Wiener filtering
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Fig. 73 Recognition rate vs. SNR for the different feature extraction methods with SVD speech

watermarking in the time domain and AWGN
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Fig. 75 Recognition rate vs. SNR for the different feature extraction methods with SVD speech

watermarking in the time domain and spectral subtraction
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Fig. 76 Recognition rate vs. SNR for the different feature extraction methods with SVD speech

watermarking in the time domain and adaptive Wiener filtering
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Fig. 77 Recognition rate vs. SNR for the different feature extraction methods with SVD speech

watermarking in the time domain and wavelet soft thresholding with 1 level Haar wavelet
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Fig. 78 Recognition rate vs. SNR for the different feature extraction methods with SVD speech

watermarking in the time domain and wavelet hard thresholding with 1 level Haar wavelet
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Fig. 79 Recognition rate vs. SNR for the different feature extraction methods with SVD speech

watermarking in the time domain and wavelet soft thresholding with 2 levels Haar wavelet
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Fig. 80 Recognition rate vs. SNR for the different feature extraction methods with SVD speech

watermarking in the time domain and wavelet hard thresholding with 2 levels Haar wavelet

82 Information Security for Automatic Speaker Identification



-25 -20 -15 -10 -5 0 5 10 15 20 25
0

10

20

30

40

50

60

70

80

90

100

SNR (dB)

R
ec

og
ni

tio
n 

R
at

e
Features from signal
Features from the DWT of the signal

Features from the signal plus the DWT of the signal

Features from DCT of  signal

Features from signal plus DCT of signal

Features from DST of Signal
Features from signal plus DST of signal

Fig. 81 Recognition rate vs. SNR for the different feature extraction methods with SVD speech

watermarking in the time domain and inverse filter deconvolution
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Fig. 82 Recognition rate vs. SNR for the different feature extraction methods with SVD speech

watermarking in the time domain and LMMSE deconvolution
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Fig. 83 Recognition rate vs. SNR for the different feature extraction methods with SVD speech

watermarking in the time domain and regularized deconvolution
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Fig. 84 Recognition rate vs. SNR for the different feature extraction methods with segment-

by-segment SVD speech watermarking in the time domain and AWGN
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Fig. 85 Recognition rate vs. SNR for the different feature extraction methods with segment-

by-segment SVD speech watermarking in the time domain and Wiener filtering
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Fig. 86 Recognition rate vs. SNR for the different feature extraction methods with segment-

by-segment SVD speech watermarking in the time domain and spectral subtraction
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Fig. 87 Recognition rate vs. SNR for the different feature extraction methods with segment-

by-segment SVD speech watermarking in the time domain and adaptive Wiener filtering
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Fig. 88 Recognition rate vs. SNR for the different feature extraction methods with segment-

by-segment SVD speech watermarking in the time domain and wavelet soft thresholding with 1

level Haar wavelet
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Fig. 89 Recognition rate vs. SNR for the different feature extraction methods with segment-

by-segment SVD speech watermarking in the time domain and wavelet hard thresholding with 1

level Haar wavelet
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Fig. 90 Recognition rate vs. SNR for the different feature extraction methods with segment-

by-segment SVD speech watermarking in the time domain and wavelet soft thresholding with

2 levels Haar wavelet
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Fig. 91 Recognition rate vs. SNR for the different feature extraction methods with segment-

by-segment SVD speech watermarking in the time domain and wavelet hard thresholding with

2 levels Haar wavelet
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Fig. 92 Recognition rate vs. SNR for the different feature extraction methods with segment-

by-segment SVD speech watermarking in the time domain and inverse filter deconvolution
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Fig. 93 Recognition rate vs. SNR for the different feature extraction methods with segment-

by-segment SVD speech watermarking in the time domain and LMMSE deconvolution
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Fig. 94 Recognition rate vs. SNR for the different feature extraction methods with segment-

by-segment SVD speech watermarking in the time domain and regularized deconvolution
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encryption, the problem is that, if a small portion of the original signal remains intact,

it may allow a trained listener to directly interpret the scrambled speech [85].

The objective here is to present an encrypted signal without residual intelligibil-

ity in time and frequency domains. To achieve this objective, speech encryption can

be performed with multiple secret keys that are used for the permutation and

masking of speech segments in both time and transform domains. The encryption

steps can be summarized as follows [86]:

1. Framing and reshaping into 2D blocks.

2. Block randomization.

3. First round:

• Generation of key 1.

• Permutation with key 1.

• Generation of mask 1.

• Addition of mask 1.

4. Second round:

• DCT or DST.

• Generation of key 2.

• Permutation with key 2.

• Generation of mask 2.

• Addition of mask 2.

5. Third round:

• IDCT, or inverse DST (IDST).

• Generation of key 3.

• Permutation with key 3.

6. Reshaping into 1D format.

The decryption steps can be summarized as follows [86]:

• Generation of key 1.

• Generation of key 2.

• Generation of key 3.

• Framing and reshaping into 2D blocks.

• Inverse permutation with key 3.

• DCT or DST.

• Generation of mask 2.

• Subtraction of mask 2.

• Inverse permutation with key 2.

• IDCT or IDST.

• Generation of mask 1.

• Subtraction of mask 1.

• Inverse permutation with key 1.

• Inverse of the block randomization process.
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8.1 Framing and Reshaping into 2D Blocks

Continuous speech signals are sampled and recorded in sound files in the form of

streams of discrete speech samples with amplitudes between �1 and 1. The series

of samples are framed and reshaped into square blocks with width equal to the

secret key length.

8.2 Block Randomization

Block randomization is performed with circular shifts as shown in Fig. 95. The first

row remains intact. The second row is circularly shifted single step to the right. The

third row is circularly shifted two steps to the right. Similar shifts are performed for

the other rows.
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Fig. 95 Block randomization. (a) Original block. (b) Randomized block

8 Speech Encryption 91



8.3 Steps of the Rounds

8.3.1 Generation of Keys

The first step is the generation of the original secret key. It can be generated by a PN

sequence generator. This secret key is shared between the transmitter and receiver.

The second key is the inverse of the original key. The third key is generated from

the original key by dividing it into two halves and reversing the two halves. An

example of three keys is key 1 ¼ 11001000, key 2 ¼ 00110111, and key

3 ¼ 10001100.

8.3.2 Permutation with a Key

The generated keys control the permutation process. The first key is applied to the

rows of the resulting randomized block. If a key bit equals 1, the whole

corresponding row is circularly shifted to the right by a number of shifts equal to

the row number minus one (e.g., row number 14 is shifted 13 times). If a key bit

equals 0, the corresponding row remains intact as shown in Fig. 96. After that, the

same key is applied to the columns of the resulting block in a similar manner

as shown in Fig. 97. The two other keys are used in a similar manner in the

subsequent rounds.

8.4 Masking

Permutation of speech segments in time domain results in a distortion of the speech

time envelope, which reduces the intelligibility of the speech. However, some
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Fig. 96 Row permutation step
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portions of the signal remain intact, which may allow a trained listener to directly

interpret the scrambled speech. Therefore, a masking step is very necessary in order

to change the remaining nonpermutated portions of speech signals and to increase

the security of the cryptosystem.

The utilized mask is generated from the key using a number of circular shifts

of the key equal to the number of sample rows minus one as shown in Fig. 98.

The resultant mask is added to each block of samples as shown in Fig. 98. After the

mask addition, a value of 2 is subtracted from all values exceeding 1 resulting

in negative values. In the decryption process, the mask is subtracted from each

block, and a value of two is added to all values below �1 to guarantee the correct

reconstruction of the sample values.

8.5 Discrete Transforms

The objective of using either the DCT or DST is to remove the residual intelligibility

of speech signals after the masking step. Each of these transforms has a strong

diffusion mechanism. All samples in time domain contribute to each sample in the

transform domain, which guarantees a totally different shape of the transformed

signals. Another permutation step is performed on the transform domain samples to

increase the security prior to the inversion of the transform and the application of

another permutation step in the time domain.
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Fig. 97 Column permutation step
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8.6 Performance Evaluation of Speech Encryption

Several experiments have been carried out to test the encryption efficiency of the

speech cryptosystem. The qualities of both the encrypted and decrypted speech signals

have been assessed. The speech signal used in all experiments is shown in Fig. 99a.

It is a synthetic signal for the sentence “Wewere away year ago.” The first 2.5 s are for

a female saying this sentence. The next 1.5 s are a perfect silence period without

noise. The next 1.5 s are for a silence period with room noise. The last 2.5 s are for a

male saying the same sentence. This signal is encrypted with the proposed crypto-

system in the time domain using a single round only, and the result is shown in

Fig. 99b. TD refers to time domain. The spectrograms of the original and encrypted

signals are shown in Fig. 100. It is evident that the encrypted speech with the DCT

and DST encryption is obviously similar to the white noise without any talk spurts.

The original intonations have been removed, which indicates that no residual intelli-

gibility can be useful for eavesdroppers at the communication channel.

The different kinds of ciphers can be analyzed, statistically [87–89]. Statistical

analysis has been performed on the above-mentioned cryptosystem demonstrating
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The mask generated from the key.
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The block after mask addition. Masking result.

Fig. 98 Masking step
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its superior confusion and diffusion properties, which strongly resist the statistical

attacks. This is illustrated by showing the correlation coefficient between encrypted

signal and the original signal and the SD of the encrypted signal compared to the

original one. The correlation coefficients between the encrypted speech signals and

the original speech signal for all methods using three different main keys are

Fig. 99 Encryption of the speech signal. (a) Original signal. (b) TD encryption. (c) DCT

encryption. (d) DST encryption
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tabulated in Table 3. From these results, we can see that all secret keys produce

encrypted speech signals with low correlation between similar segments in the

original speech and the encrypted speech, which means that all keys give good

encryption results. The SD results for the encrypted signals for all methods are

tabulated in Table 4.

Fig. 99 (continued)
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A secure encryption algorithm should be sensitive to the cipher keys. For the

speech cryptosystem, the key space analysis and sensitivity test have been

performed. For a secure cryptosystem, the key space should be large enough to

make the brute-force attack infeasible [89]. An exhaustive key search needs 2sk

operations to succeed, where sk is the key size in bits. An attacker simply tries all

Fig. 100 Spectrograms of speech signals (a) Original signal. (b) TD encryption. (c) DCT

encryption. (d) DST encryption
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Fig. 100 (continued)

Table 3 Correlation

coefficients between the

original and encrypted

speech signals

Secret key TD DCT DST

Key A 0.0035 0.0043 0.0050

Key B 0.0048 0.0012 �0.0015

Key C 0.0039 0.0014 0.0036
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keys and this is very exhaustive. Assuming that, the secret key length is 128 bits,

therefore; an opponent needs about 2128 operations to successfully determine the

key. If the opponent employs 1,000 million instructions per second (MIPS) to guess

the key, the computations require:

2128

365	 24	 60	 60	 1; 000	 106
> 10:7902831	 1021 years:

For a 64-bits key, the computations require:

264

365	 24	 60	 60	 1; 000	 106
> 584 years:

These results suppose a known secret key length by the attacker, but really the

key length is unknown making the search infeasible.

Key sensitivity means that the encrypted signal cannot be decrypted correctly,

if there is any change between encryption and decryption keys [81]. Large key

sensitivity is required by all secure cryptosystems. Assume that a key consisting

of 64 bits is used for encryption. For testing the key sensitivity of the proposed

cryptosystem, the encrypted signal is decrypted with three different keys generated

by changing only a single bit in the original secret key. The correlation coefficient is

estimated between each decrypted signal and the signal decrypted with the original

key, and the results are tabulated in Table 5. The low correlation values show the

large key sensitivity of the speech cryptosystem implementing the DCT or the DST.

The known-plaintext attack is an attack model for cryptanalysis, where the

attacker has samples of both the plaintext and its ciphertext and has liberty to

make use of them to reveal the secret key. In the speech cryptosystem, if a

cryptanalyst knows the original signal and its encrypted version, he must know

the block size to build the permutation and masking processes. If he tries with a

different block size, this will give completely wrong results. In modern

cryptosystems that use standard block sizes, permutation and substitution processes

Table 4 SD in dB of the encrypted signals with all methods

Secret key TD DCT DST

Key A 26.1445 23.1539 22.9874

Key B 27.1769 22.1501 22.1960

Key C 26.7445 23.1238 21.9133

Table 5 Correlation coefficients between the decrypted signals with the

different keys and the decrypted signal with the original key

Decryption key TD DCT DST

Key 1 0.1757 0.0875 0.0208

Key 2 0.0644 0.0220 0.0923

Key 3 0.0130 0.0081 0.0202
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may be analyzed to discover the key, while in the above-mentioned speech

cryptosystem; there is no standard block size. Therefore, the knowledge of the

plaintext without knowledge of the block size is useless, as it is very difficult to

guess the key.

Three metrics have been used for quality assessment of decrypted speech

signals; the SD, the LLR, and the correlation coefficient with the original speech

signal. As the values of the SD and the LLR decrease, and the value of the

correlation coefficient increases, the performance of the speech cryptosystem

becomes better. Figure 101 shows the decrypted signals with all methods in the

absence of noise. The numerical quality metrics values for these results are

tabulated in Table 6. These results ensure the efficiency of the speech cryptosystem

in the absence of noise.

An important issue, which deserves consideration, is the effect of noise on the

efficiency of the speech cryptosystem. Simulation experiments have been carried

out for the decryption in the presence of noise at different SNR values. The results

of these experiments are shown in Figs. 102–104 for all encryption methods. From

these results, it is clear that the encryption quality metrics values are better at high

SNR values. Thus, the speech cryptosystem can tolerate noise with high SNR

values.

Encryption of speech signals prior to transmission in remote access speaker

identification system is recommended to increase the degree of security. The effect

of encryption on the performance of the speaker identification system has been

studied and the results are given in Figs. 105–113. These results reveal that speech

encryption can increase the system security without any degradation in the speaker

identification system performance.

Fig. 101 Decrypted speech signals (a) TD. (b) DCT. (c) DST
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Fig. 101 (continued)

Table 6 Quality metrics

values for the decrypted

speech signals

Quality metrics TD DCT DST

SD 0.044 0.044 0.044

LLR 8.89E�8 8.89E�8 8.89E�8

rxz 0.9998 0.9997 0.9993
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Fig. 102 Variation of the quality metrics values of the decrypted signal with the SNR in the

presence of noise for TD encryption. (a) SNR. (b) SNRseg. (c) LLR. (d) SD
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Fig. 102 (continued)
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Fig. 103 Variation of the quality metrics values of the decrypted signal with the SNR in the

presence of noise for DCT encryption. (a) SNR. (b) SNRseg. (c) LLR. (d) SD
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Fig. 103 (continued)
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Fig. 104 Variation of the quality metrics values of the decrypted signal with the SNR in the

presence of noise for DST encryption. (a) SNR. (b) SNRseg. (c) LLR. (d) SD
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Fig. 104 (continued)

8 Speech Encryption 107



−25 −20 −15 −10 −5 0 5 10 15 20 25
0

10

20

30

40

50

60

70

80

90

100

SNR (dB)

R
ec

og
ni

tio
n 

R
at

e

Features from signal
Features from the DWT of the signal
Features from the signal plus the DWT of the signal
Features from DCT of  signal
Features from signal plus DCT of signal
Features from DST of Signal
Features from signal plus DST of signal

Fig. 105 Recognition rate vs. SNR for the different feature extraction methods with speech

encryption and AWGN
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Fig. 106 Recognition rate vs. SNR for the different feature extraction methods with speech

encryption and Wiener filtering
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Fig. 107 Recognition rate vs. SNR for the different feature extraction methods with speech

encryption and spectral subtraction
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Fig. 108 Recognition rate vs. SNR for the different feature extraction methods with speech

encryption and adaptive Wiener filtering
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Fig. 109 Recognition rate vs. SNR for the different feature extraction methods with speech

encryption and wavelet denoising with 1 level Haar wavelet
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Fig. 110 Recognition rate vs. SNR for the different feature extraction methods with speech

encryption and wavelet denoising with 2 levels Haar wavelet

110 Information Security for Automatic Speaker Identification



−25 −20 −15 −10 −5 0 5 10 15 20 25
0

10

20

30

40

50

60

70

80

90

100

SNR (dB)

R
ec

og
ni

tio
n 

R
at

e
Features from signal
Features from the DWT of the signal
Features from the signal plus the DWT of the signal
Features from DCT of  signal
Features from signal plus DCT of signal
Features from DST of Signal
Features from signal plus DST of signal

Fig. 111 Recognition rate vs. SNR for the different feature extraction methods with speech

encryption and inverse filter deconvolution
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Fig. 112 Recognition rate vs. SNR for the different feature extraction methods with speech

encryption and LMMSE deconvolution
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9 Simultaneous Watermarking and Encryption

Both speech watermarking and encryption of speech signals can be incorporated

with the speaker identification system prior to transmission in remote access

speaker identification systems to achieve three levels of security. The effect of

watermarking and encryption on the performance of the speaker identification

system has been studied and the results are given in Figs. 114–122. These results

reveal that speech watermarking and encryption can be used in high-level authenti-

cation systems, without any noticeable degradation in the speaker identification

process.

10 Conclusion

This book presented a literature survey on speaker identification systems that are

based on MFCCs and neural matching. It presented a study for the performance of

these systems in noisy environments. The different transform domains were

investigated in the book for robust feature extraction in the presence of noise.

Simulation results revealed that feature extraction from the DCT or the DWT of

speech signals is very feasible for performance enhancement of speaker identifica-

tion systems. The book developed a new implementation of speech enhancement,
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Fig. 113 Recognition rate vs. SNR for the different feature extraction methods with speech

encryption and regularized deconvolution
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Fig. 114 Recognition rate vs. SNR for the different feature extraction methods with segment-

by-segment SVD speech watermarking, speech encryption, and AWGN
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Fig. 115 Recognition rate vs. SNR for the different feature extraction methods with segment-

by-segment SVD speech watermarking, speech encryption, and Wiener filtering
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Fig. 116 Recognition rate vs. SNR for the different feature extraction methods with segment-

by-segment SVD speech watermarking, speech encryption, and spectral subtraction
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Fig. 117 Recognition rate vs. SNR for the different feature extraction methods with segment-

by-segment SVD speech watermarking, speech encryption, and adaptive Wiener filtering
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Fig. 118 Recognition rate vs. SNR for the different feature extraction methods with segment-

by-segment SVD speech watermarking, speech encryption, and wavelet denoising with 1 level

Haar wavelet
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Fig. 119 Recognition rate vs. SNR for the different feature extraction methods with segment-

by-segment SVD speech watermarking, speech encryption, and wavelet denoising with 2 levels

Haar wavelet
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Fig. 120 Recognition rate vs. SNR for the different feature extraction methods with segment-

by-segment SVD speech watermarking, speech encryption, and inverse filter deconvolution
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Fig. 121 Recognition rate vs. SNR for the different feature extraction methods with segment-

by-segment SVD speech watermarking, speech encryption, and LMMSE deconvolution
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speech deconvolution, and blind signal separation algorithms for performance

enhancement of speaker identification systems. A new framework for speaker

identification with multilevels of security was also presented in this book. This

framework can be developed for real speech signature systems.

11 Directions for Future Research

Future research can be developed in the following directions:

1. Study of speech processing and security techniques for speaker identification

systems implementing hidden Markov models, support vector machines, or

Gaussian mixture models.

2. Development of sophisticated enhancement, deconvolution, or signal separation

algorithms to achieve better enhancement in speaker identification systems

performance.

3. Comparison study between speech watermarking and encryption schemes that

can be recommended for speaker identification systems with multilevels of

security.
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Fig. 122 Recognition rate vs. SNR for the different feature extraction methods with segment-
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