
Graph!Scaling:!A!Technique!for!Automating
Program!Construction!and!Deployment!in

ClusterGOP

Fan!Chan,!Jiannong!Cao,!and!Yudong!Sun

Software!Management!&!Development!Lab,!Department!of!Computing
The!Hong!Kong!Polytechnic!University,!Hung!Hom,!Kowloon,!Hong!Kong

Abstract. Program development and resource management are criti-
cal issues in large-scaled parallel applications and they raise difficulties
for the programmers. Automation tools can benefit the programmer by
reducing the time and work required for programming, deploying, and
managing parallel applications. In our previous work, we have developed
a visual tool, VisualGOP, to help visual construction and automatic map-
ping of parallel programs to execute on the ClusterGOP platform, which
provides a graph-oriented model and the environment for running the
parallel applications on clusters. In VisualGOP, the programmer needs
to manually build the task interaction graph. This may lead to scalability
problem for large applications. In this paper, we propose a graph scaling
approach that helps the programmer to develop and deploy a large-scale
parallel application minimizing the effort of graph construction, task
binding and program deployment. The graph scaling algorithms expand
or reduce a task graph to match the specified scale of the program and
the hardware architecture, e.g., the problem size, the number of proces-
sors and interconnection topology, so as to produce an automatic map-
ping. An example is used to illustrate the proposed approach and how
programmer benefits in the automation tools.

1 Introduction

Programming with parallel applications is a difficult task involving program-
ming details, processors information and network configurations. A method to
simplify parallel program development is to abstract and represent the parallel
programming structure by logical graphs.

Task graph is a graphical representation of a parallel program. It describes
the logical structure of the program in which the nodes represent the compu-
tational tasks and the edges denote the communication links and precedence
relationships among the nodes. Varieties of task graph have been proposed. Di-
rected acyclic graph (DAG) [1, 2] and task interaction graph (TIG) [3, 4] are
two ordinary types of task graphs. TIG is a concise representation of parallel
program. The edges can represent any relationships between the nodes, for ex-
ample, communication, synchronization, and execution precedence. The edges

X. Zhou et al. (Eds.): APPT 2003, LNCS 2834, pp. 254–264, 2003.
Springer-Verlag Berlin Heidelberg 2003

can form loop to represent the iterative operations. Thus, TIG is more flexi-
ble to describe different program structures. Designing programs in TIG can
simplify many programming details. However, there is a restriction for program-
ming. TIG may have difficulty in handling complex relationships between tasks
in a large-scaled graph. For the implementation, network configurations such
as nodes-to-processors and LPs(local programs)-to-nodes mapping are time con-
suming tasks and difficult to handle manually. The programmer needs some tools
for designing the TIG efficiently and managing the task mapping automatically.

In our previous work, we have developed tools for supporting the development
of parallel applications, based on the graph-orient programming (GOP) model [5,
6]. We have developed a visual programming tool, VisualGOP [7], for designing
the GOP program graphically. VisualGOP has a highly visual and interactive
user interface, and provides a framework in which the design and coding of GOP
programs, and the associated information can be viewed and modified. It also
facilitates the compilation, mapping, and execution of the programs. Programs
constructed in VisualGOP are deployed to the ClusterGOP, a high-level parallel
computing platform for the cluster [8]. However, in VisualGOP, the programmer
needs to manually build the task interaction graph. This may lead to scalability
problem for large applications. In this paper, we describe the improvement to
VisualGOP with an automation tool for constructing the graph and deploying
the application in an efficiently way. In the tool, the graph scaling algorithms
adapts a basic graph to the parameters of the application and determines the
mapping between the programs and the processors automatically.

Section 2 introduces the ClusterGOP framework. Section 3 discusses the
graph scaling approach. Section 4 presents the implementation of the task scaling
and mapping tool in VisualGOP and the experiment using an example. Section
5 concludes the paper with the discussion of our future work.

2 The ClusterGOP Framework for Programming on
Clusters

2.1 The ClusterGOP Model and Architecture

ClusterGOP is based on the GOP model, in which parallel/distributed program
is defined as a collection of local programs (LPs) that may execute on several
processors. Parallelism is expressed through explicit creation of LPs and com-
munication between LPs is solely via message passing. The distinct feature of
GOP is that it allows programmers to write distributed programs based on user-
specified graphs, which serve the purpose of naming, grouping and configuring
LPs. The graph construct is also used as the underlying structure for implement-
ing uniform message passing and LP co-ordination mechanisms.

The key elements of GOP are a logical graph construct to be associated
with the LPs of a parallel/distributed program and their relationships, and a
collection of functions defined in terms of the graph and invoked by messages
traversing the graph. As shown in Figure 1, the GOP model consists of the
following:

255Graph Scaling

Local programs

Logical graph

Underlying

Network

WorkstationWorkstation

WorkstationWorkstationWorkstationWorkstation

Fig. 1. The GOP conceptual model

– A logical graph (directed or undirected) whose nodes are associated with
local programs (LPs), and whose edges define the relationships between the
LPs.

– An LPs-to-nodes mapping, which allows the programmer to bind LPs to
specific nodes.

– An optional nodes-to-processors mapping, which allows the programmer to
explicitly specify the mapping of the logical graph to the underlying network
of processors. When the mapping specification is omitted, a default mapping
will be performed.

– A library of language-level graph-oriented programming primitives.

The GOP model provides high-level abstractions for programming distribut-
ed programs, easing the expression of parallelism, configuration, communication
and coordination by directly supporting logical graph operations. It is important
to note that GOP is independent of any particular language and platform. It can
be implemented as library routines incorporated in familiar sequential languages
and integrated with programming platforms such as PVM and MPI [9, 10].

ClusterGOP is an implementation of the GOP framework on MPI. The Clus-
terGOP software environment is illustrated in Figure 2. The top layer is a visual
programming environment, VisualGOP, which supports the design and construc-
tion of parallel/distributed programs. A set of GOP API is provided for the
programmer to use in parallel programming, so that the programmer can build
application based on the GOP model, ignoring the details of low-level opera-
tions and concentrating on the logic of the parallel program. The GOP library
provides a collection of routines implementing the GOP API. The goal in the
GOP library implementation is to introduce a minimum number of services with
a very simple functionality to minimize the package overhead.

The runtime system is responsible of compiling the application, maintaining
structure, and executing the application. In the target machine, there exists
two runtimes. The first one is the GOP runtime, a background process that
provides graph deployment, update, query and synchronization. When deploying
and updating the graph, it will block other machines to further update the graph
and synchronize the graph update on all machines. Another runtime is the MPI

256 F. Chan, J. Cao, and Y. Sun

User Interface (VisualGOP)

Graph Editor
Local Program

Editor

Mapping and

Execution Control

G
ra

p
h

 R
e

p
re

s
e

n
ta

tio
n

OS

Network

MPI

GOP Library

GOP Runtime

Configuration Manager and

Consistency Maintenance

GOP API

Fig. 2.!The!ClusterGOP!Framework

runtime,!which!provides!a!complete!set!of!parallel!programming!library!for!the
GOP!implementation.

3! Graph!Scaling!and!Mapping

In!this!section,!we!will!first!introduce!the!basic!patterns!of!the!task!graph,!and
then!discuss!the!graph!scaling!method!and!the!graph!mapping!strategy.

3.1! Regular!Graphs!for!Parallel!Application

The!programmer!needs!to!create!a!realistic!graphical!representation!for!parallel
applications.!The!task!graph!should!be!defined!as!an!abstraction!of!program
structure.!In!addition,!it!should!be!high!scalability!to!adapt!to!the!parameters
such!as!the!problem!size!and!number!of!processors.!Our!graph!scaling!approach
is!based!on!TIG!by!which!the!graph!scaling!algorithms!and!the!graph!mapping
strategy!will!be!implemented.!In!graph!scaling,!the!nodes!in!the!graph!can!be!de-
composed!or!merged,!and!the!edges!are!reconstructed!based!on!the!original!graph
structure!to!produce!a!new!task!graph!to!match!the!parameters.!TIG!provides
a!concise!topology!to!describe!process-level!computation!and!communication.!It
has!a!flexible!structure!for!graph!scaling.

Task!graphs!may!have!an!arbitrary!structure.!More!often,!however,!a!task
graph!can!take!a!regular!topology!such!a!tree,!mesh,!hypercube,!etc.,!as!parallel
algorithms!are!often!developed!based!on!a!regular!topological!model![11].!The
following!are!typical!topologies!of!task!graph:

Tree.!A!tree!has!one!root!node!and!multiple!leaf!nodes!(leaves).!Each!node!except
the!root!node!has!one!parent.!The!edges!are!acyclic.!If!a!graph!satisfies!these
conditions,!it!can!be!identified!as!a!tree.

257Graph Scaling

(a) Original tree (b) Breadth-oriented expansion (c) Depth-oriented expansion

Fig. 3.!Graph!expansion!for!tree!structure

Mesh.! In!an!m!× n !mesh,!there!are!four!corner!nodes!with!two!neighbors!each,
2(m-2)+2(n-2)!boundary!nodes!with!three!neighbors!each,!and!(m-2)(n-2)
inner!nodes!with!four!neighbors!each.

Hypercube.!In!a!hypercube!with!2n! nodes,!each!node!has!n!neighbors.
Arbitrary!topologies.!A!task!graph!can!present!any!other!arbitrary!topology.

The!topology!of!a!task!graph!is!identified!by!the!programmer.!If!the!size!of
the!graph,!measured!in!the!number!of!tasks!that!can!be!executed!in!parallel,
does!not!conform!to!the!parameters!specified!at!runtime!such!as!the!problem!size
and!the!number!of!processors,!graph!scaling!is!required!to!derive!a!new!graph
from!the!original!one!to!match!the!parameters.

3.2! Graph!Expansion!and!Compression

Graph!scaling!can!be!made!in!two!modes.!If!the!number!of!parallel!tasks!is!less
than!the!required!problem!size!or!the!number!of!processors,!graph!expansion
will!be!performed!to!generate!more!tasks.!On!the!other!hand,!if!the!number!of
parallel!tasks!is!greater!than!the!problem!size,!the!graph!should!be!compressed!to
include!fewer!nodes,!although!this!is!a!rare!situation!in!task!graph.!In!addition,
if!the!number!of!parallel!tasks!is!greater!than!the!available!processors,!the!graph
may!be!compressed.

In!graph!expansion,!some!nodes!are!decomposed!and!the!edges!are!re-linked
between! the! nodes! based! on! the! graph! topology.! The! tasks! should! be! redis-
tributed!among!the!expanded!nodes.!Figure!3 !shows!the!expansion!of!a !tree
structure.!The!tree! in!Figure!3(a)!can!be!expanded!in!two!directions.!One!is
breadth-oriented!expansion!as!shown!in!Figure!3(b),!in!which!all!expanded!nodes
are!attached!to!the!root.!The!other!is!depth-oriented!expansion!in!which! the
nodes!spawn!children!beneath!as!shown!in!Figure!3(c).

Figure!4!shows!the!graph!expansion!for!a!mesh.!The!original!2×2!mesh!is
expanded!to!2×4!and!then!4×4!meshes!by!redeploying!the!decomposed!nodes.!If
there!are!n!nodes!in!a!mesh,!they!are!deployed!as!an!

√
n× n√

n
array. The nodes

are linked by edges according to the mesh topology.
A hypercube is expanded in a similar way. The decomposed nodes are linked

based on the hypercube topology. That is, each node is linked to k neighbors if
there are totally 2k nodes. Figure 5 shows the expansion of a 4-node hypercube
to 8-node and 16-node hypercube.

Graph compression can use the same approach as the clustering in task
scheduling [1, 2, 12]. It merges the nodes of a graph to clusters when the number

258 F. Chan, J. Cao, and Y. Sun

(a) Original 2x2 mesh (b) Expanded 2x4 mesh (c) Expanded 4x4 mesh

(d) 1x4 mesh

Fig. 4. Graph expansion for mesh structure

(a) Original 4-node
hypercube

(b) Expanded 8-node
hypercube

(c) Expanded 16-node
hypercube

Fig. 5. Graph expansion for hypercube structure

of nodes is greater than the available processors. Graph compression is partic-
ularly useful to the cyclic graphs such as mesh and hypercube. The criterion
of graph compression is the reduction of communication between the nodes. It
analyzes the edges between the nodes and determines the neighboring nodes to
be merged; meanwhile the topology of a compressed graph can be maintained.
To compress the 16-node mesh in Figure 4(c), for example, the analysis can
determine that the merge of two adjacent rows or columns has the same effect
in reducing the inter-node communication. Thus, the compression can be made
on either direction. If we choose row-oriented compression, the graph can be
compressed into an 8-node in Figure 4(b). To compress the 8-node mesh to a
4-node one, the row-oriented compression will produce a one-dimensional mesh
as shown in Figure 4(d). The column-oriented compression will result in a 2×2
mesh as shown in Figure 4(a). Using the criterion of communication reduction,
it can be decided that the row-oriented compression can result in a graph with
minimal the communication (denoted by three edges), in contrast to the result
of column-oriented compression (i.e., the 2×2 mesh with four edges).

3.3 Graph Mapping

After the graph analysis and the graph scaling, LPs will be mapped to the task
graph which has expanded or compressed. In SPMD (Single Program Multiple
Data) model, all the nodes share the same copy of the program, so the mapping
is simple. In the MPMD (Multiple Program Multiple Data) model, each node
may work on different tasks. The programmer can choose a set of rules to do
the LPs-to-nodes mapping automatically. There are rules for classifying the LP
into different groups, e.g., a range of node ID, similar node names, and node

259Graph Scaling

types.!Finally,! a !task!graph!will!be!mapped! to!processors.!Each! processor! is
responsible!for!executing!a!node!of!in!the!task!graph;!i.e.,!there!is!a!one-to-one
correspondence!between!a!processor!and!a!node.

4! Implementation

We! have!developed!algorithms! for!graph!scaling!as!described! in!the!previous
section!and! implemented! in!VisualGOP.! In!this!section,!we!first!describe!the
scaling!algorithms!for!graph!expansion!and!then!use!our!example!to!show!how
the!proposed!algorithms!help!the!program!design.

4.1! Scaling!Algorithms

In!the!following!parts,!we!will!introduce!three!basic!scaling!algorithms!for!graph
expansion.!We!assume!that!Gn!is!a!2-D!graph!and!not!weighted.!We!also!assume
that!|Nn| (the!number!of!nodes)!=!|Np| (the!number!of!processors),!and!there
is!a!one-to-one!mapping!between!Nn!and!Np.

Tree.!This!structure!can!have!two!expansion!types,!the!breadth-oriented!and!the
depth-oriented!expansion.!We!choose!the!binary!tree!as!the!example,!which
belongs!to!the!depth-oriented!expansion.!The!graph!of!binary!tree!has!2n-
1!nodes,!where!n!starts!from!2.!During!the!graph!expansion,!the!function
ExpDepBTree()! updates! the! graph! according! to! the! input! node! number.
In!each! loop!of!the!graph!expansion,!Search Leaf Nodes()!will!be!invoked
for!adding!the!leaf!nodes!into!a!list.!Each!tree!leaf!node!in!the!list!will!be
expanded!to!produce!a!new!level!of!leaf!nodes.!The!psedueo-code!segment
for!this!algorithm!is!shown!below:

public!void!ExpDepBTree(!graph!Gi,!int!nodenum!)!{
Until!Gi’s!nodenum!>=!input!nodenum
initialize!the!graph!and!nodelist!for!saving!the!result
Search_Leaf_Nodes(Gi,!root,!nodelist_t)
For!each!node!k!in!nodelist_t

add!new_left_node,!new_right_node!to!Gi
add!new_left_node,!new_right_node!to!Gi.alist[k]

End!Loop
update!Gi

}

Mesh.!We!use!a!2x2!mesh!as!the!original!graph.!This!graph!has!2n!nodes,!where
n!starts!from!2.!In!order!to!get!a!better!communication!performance,!the
expanded!mesh!should!be!maintained!in!a!regular!shape,!so!that!the!com-
munication!paths!among!the!nodes!are!short!in!average.!By!identifying!the
node!number,!the!graph!expands!vertically!if!n!is!an!odd!number;!other-
wise,!the!graph!expands!horizontally.! Graph!expansion!is!done!by! joining
two!identical!graphs!to!form!a!new!one.!After!that,!all!nodes!are!re-ranked

260 F. Chan, J. Cao, and Y. Sun

for!getting!new!node!IDs.!The!psedueo-code!segment!for!this!algorithm!is
shown!below:

public!void!ExpMesh(!graph!Gi,!int!nodenum!)!{
initialize!the!graph!for!saving!the!result
Until!Gi’s!nodenum!>=!input!nodenum
Gj!:=!Graph_Copy(Gi)
Find_Coloumn_Row_Num(Gi’s!nodenum,!col_num,!row_num);
calculate!n_multiple!for!graph!expands!direction
If!n_multiple!is!odd!Then

For!n=0!to!col_num-1
u:=!node!nodeID(col_num*(row_num-1)+n)!Gi’s!last!row
v:=!node!nodeID(n)!Gj’s!first!row
add!v!to!Gi.alist[u]
add!u!to!Gj.alist[v]

End!Loop
Else

For!n=0!to!row_num-1
u:=!node!nodeID(col_num*(n+1)-1)!Gi’s!last!column
v:=!node!nodeID(col_num*n)!Gj’s!first!column
add!v!to!Gi.alist[u]
add!u!to!Gj.alist[v]

End!Loop
End!If
rerank!Gi!and!Gj
join!Gi!and!Gj

}

Hypercube. We!choose!a!2x2!hypercube!as!the!original!graph.!This!graph!has
2n! nodes,!where!n!starts!from!2.!Hypercube!expands!by!connecting!corre-
sponding!nodes!from!two!identical!graphs.!All!nodes!are!re-ranked!after!the
creation!of!the!new!graph.!The!psedueo-code!segment!for!this!algorithm!is
shown!below:

public!void!ExpHypercube(!graph!Gi,!int!nodenum!)!{
initialize!the!graph!for!saving!the!result
Until!Gi’s!nodenum!>=!input!nodenum
Gj!:=!Graph_Copy(Gi)
For!n=0!to!Gi’s!nodenum-1

add!v!to!Gi.alist[u]
add!u!to!Gj.alist[v]

End!Loop
rerank!Gi!and!Gj
join!Gi!and!Gj

}

261Graph Scaling

in1

in2

out

Fig. 6. The Merge Sorting Algorithm

Fig. 7.!The!Graph!Template!for!the!Basic!Graph!Diagram

4.2! An!Example:!The!Parallel!Merge!Sorting

In!our!example,!we!use!VisualGOP!for!the!programming!demonstration,!which
involves! the!program!design,! the!graph! scaling!and! the!graph!mapping.!The
programmer!first!uses!VisualGOP!to!design!the!logical!graph!and!LPs,!then!a
processor!list!is!created!and!the!graph!will!be!expanded!or!decompressed.!Finally,
VisualGOP!applies!the!LPs-to-nodes!and!the!nodes-to-processors!mappings!au-
tomatically.

We!use!a!typical!parallel!algorithm,!the!parallel!merge!sorting,!to!show!how
programmer!benefits!by!using!the!VisualGOP!as!an!automation!tool!for!design-
ing!parallel!applications.!The!idea!behind!a!merge!sorting!is!to!merge!two!sorted
lists!into!a!longer!sorted!list!repeatedly!in!parallel!(see!in!Figure!6).!The!graph
is!constructed!out!of!instances!of!merge!program.!Each!merge!process!receives
values!from!two!ordered!input!streams,!in1! and!in2.!It!merges!these!values!to
produce!one!ordered!output!stream,!out.

Step!1:!Define!the!Basic!Graph
The!first! step! for! the! programmer! is! to! define! the! graph! for! the! parallel

application!(see!in!Figure!7).!VisualGOP!will!ask!for!the!graph!pattern,!which
is!required!for!the!basic!graph!of!the!application.!In!this!example,!we!choose!the
binary!tree!template!for!the!merge!sorting!application.

Step!2:!Program!LPs!and!Define!the!LPs-to-nodes!Mapping

262 F. Chan, J. Cao, and Y. Sun

In the next step, the programmer needs to define programs for LPs-to-nodes
mapping. The example uses MPMD programming model, which contains three
source codes (root.c, transfer.c and leaf.c) for different tasks in the merge sorting
application. The first LP (root.c) is mapped to the root node, for collecting the
final result. The second LP (transfer.c) is mapped to the transfer nodes (non-
root and non-leaf nodes). Their major tasks are accepting the input from child
nodes, merge and sort the data, and then transfer the results to their parent
nodes. The last LP (leaf.c) is mapped to the leaf nodes, they are the nodes for
retrieving the input list and pass the data to their parent nodes (transfer nodes
or root nodes). After defining the LPs, VisualGOP provides mapping rules for
the LPs-to-nodes mapping automatically.

Step 3: Prepare the Processors
The next step is the creation of the processor list for nodes-to-processors

mapping. Programmer edits the processor list through adding, removing, or
modifying the existing processor information. VisualGOP restricts the processor
number input according to the graph pattern to prevent the programmer input
unaccepted processor number to the algorithm.

Step 4: Graph Expansion
After receiving the processor number, VisualGOP will choose graph expan-

sion if the available processor number is larger than the graph node number,
otherwise the graph compression is used. The programmer can also make a
preview on the expanded or compressed graph, for accepting or rejecting the
changes.

Step 5: Graph Mapping
Finally, the expanded graph is created and the graph mapping starts au-

tomatically. Different LPs will be mapped to the specified nodes. The nodes-
to-processors mapping helps programmer mapping the nodes to the processors
automatically. Programmer can make the final changes to the mapping if needed.
For example, the programmer can change the nodes-to-processors mapping to
use more powerful processor to increase the performance of a specified node.
After the graph mapping, the graph scheduling for the merge sort application
has finished. Programmer can compile and execute the application directly.

5 Conclusions and Future Work

We have introduced the ClusterGOP system, which provides high-level abstrac-
tions for programming parallel applications, easing the expression of parallelism,
configuration, communication and coordination by directly supporting logical
graph operations. We also provide a visual programming environment, Visual-
GOP, to provide a visual and interactive way for the programmer to develop
and deploy parallel applications. We propose the scaling algorithms for the task
graph, which supports graph expansion and compression to match the specified
parameters. The graph scaling realizes the draw-once run-variedly feature of task
graph that contributes to the practicability of task graph based scheduling in
parallel computing.

263Graph Scaling

In our future work, we will take into account the computation load on the
nodes and the communication costs on the edges when map the nodes to pro-
cessors. One target of the mapping is to reduce inter-processor communication,
and another one is to balance the workload among processors so as to minimize
the execution time of entire program.

References

1. Kwok, Y.K., Ahmad, I.: Static scheduling algorithms for allocating directed task
graphs to multiprocessors. ACM Computing Surveys 31 (1999) 406–471

2. El-Rewini, H., Lewis, T.G., Ali, H.H.: Task Scheduling in Parallel and Distributed
Systems. Prentice-Hall (1994)

3. Hui, C., Chanson, S.: Allocating task interaction graphs to processors in heteroge-
neous networks. IEEE Transactions on Parallel and Distributed Systems 8 (1997)
908–925

4. Senar, M.A., Ripoll, A., Cortes, A., Luque, E.: Clustering and reassignment-based
mapping strategy for message-passing. In: 12th International Parallel Processing
Symposium and 9th Symposium on Parallel and Distributed Processing, Florida,
United States (1998) 415–421

5. Cao, J., Fernando, L., Zhang, K.: Programming distributed systems based on
graphs. Intensional Programming I, World Scientific (1994)

6. Cao, J., Fernando, L., Zhang, K.: Dig: A graph-based construct for programming
distributed systems. In: Proceedings of 2nd Int’l Conference on High Performance
Computing, New Delhi, India (1995)

7. Chan, F., Cao, J., Chan, A.T., Zhang, K.: Visual programming support for graph-
oriented parallel/distributed processing. Submitted for publication (2002)

8. Chan, F., Cao, J., Sun, Y.: High-level abstractions for message-passing parallel
programming. To appear in Parallel Computing (Elsevier Science) (2003)

9. Geist, A., Beguelin, A., Dongarra, J., Jiang, W., Manchek, R., Sunderam, V.S.:
PVM: Parallel Virtual Machine: A Users’ Guide and Tutorial for Networked Par-
allel Computing. MIT Press, Cambridge, MA, USA (1994)

10. Snir, M., et al: MPI: the complete reference. MIT Press, Cambridge, MA, USA
(1996)

11. Kumar, V., Grama, A., Gupta, A., Karypis, G.: Introduction to Parallel Comput-
ing: Design and Analysis of Algorithms, 2nd Ed. Addison Wesley (2002)

12. Darbha, S., Agrawal, D.P.: A fast and scalable scheduling algorithm for distributed
memory systems. In: Proceedings of the 7th IEEE Symposium on Parallel and
Distributed Processing, San Antonio, TX (1995) 60–63

Acknowledgement.!This!work!is!partially!supported!by!the!Hong!Kong!Poly-
technic!University!under!the!research!grant!H-ZJ80.

264 F. Chan, J. Cao, and Y. Sun

	Introduction
	The ClusterGOP Framework for Programming on Clusters
	The ClusterGOP Model and Architecture

	Graph Scaling and Mapping
	Regular Graphs for Parallel Application
	Graph Expansion and Compression
	Graph Mapping

	Implementation
	Scaling Algorithms
	An Example: The Parallel Merge Sorting
	Conclusions and Future Work

