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Abstract. An important problem in intelligent environments is how the system
can identify and model users’ activities. This paper describes a new technique
for identifying correlations between sensors and activities in an intelligent envi-
ronment. Intelligent systems can then use these correlations to recognize the
activities in a space. The proposed approach is motivated by the need for distin-
guishing the critical set of sensors that identifies a specific activity from others
that do not. We compare several correlation techniques and show that logistic
regression is a suitable solution. Finally, we describe our approach and report
preliminary results.

1   Introduction

In his classic paper “The Computer for the 21st Century” [14] Weiser envisions a
world of intelligent environments that are highly aware of their inhabitants. In this
vision, physical spaces are enhanced with computing capabilities to act more intelli-
gently: they observe, interact with and react to humans in meaningful ways. They
understand human reasoning, analyze behaviors and infer intentions. Furthermore,
intelligent environments actively collaborate with their inhabitants to assist them in
making their surroundings more pleasant. Intelligent environments even take deci-
sions and execute actions on their own. They become integral participants in the daily
human activity.

A critical element that Weiser anticipated, yet has not been achieved, is the invisi-
bility of pervasive systems. The ability of such systems to disappear into the back-
ground of everyday life is dependant on their ability to correctly interpret the state of
the environment and to act accordingly: intelligent systems that incorrectly interpret
the state of the world or the intentions of users are likely to take inappropriate actions
that are not naturally anticipated by users [6]. Such incorrect actions could become
very disruptive and intrusive to users, they distract the inhabitants of intelligent
spaces from their ongoing activity and therefore, they make them more aware of the
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system. This paper begins to address the challenge of designing less intrusive intelli-
gent environments that can engage in richer and more meaningful interactions with
users. We believe that such systems must have a deep understanding of user context
and, specifically, should have an understanding of activities that a user is engaged in.
Our approach is thus inspired by concepts from activity theory [9] and requires sup-
port for three basic system functions:

−� Sensing context: By observing and monitoring users’ context, intelligent sys-
tems can collect information about the intelligent space and its inhabitants.

−� Analyzing context: By analyzing users’ context, intelligent systems can esti-
mate and interpret users’ activities.

−� Gracefully reacting to the inhabitants: By understanding users’ activities, in-
telligent systems can react unobtrusively to their inhabitants and therefore can
potentially become more invisible.

In this paper, we focus on one aspect of our system design, i.e. how to identify
sensors that correlate with activities in an intelligent space. First, we motivate our use
of an activity-centric approach and justify the need for precisely identifying correla-
tions between sensors and activities. Second, we identify a number of desirable prop-
erties for activity-aware intelligent systems. We then analyze different techniques for
identifying the correlations between sensors and activities and show that statistical
logistic regression has the desired properties. Third, we describe in detail our regres-
sion technique. Finally, we report preliminary results and state our conclusions.

2   Why an Activity-Centric Approach?

Intelligent environments are inherently social and collaborative spaces. Understand-
ing the “behavioral-level” interaction in such environments require modeling the
context in which the inhabitants of the space interact [6]. Early research [3],[12] in
intelligent environments focused on establishing simple relationships between tangi-
ble context and appropriate actions, for example, switching on and off devices based
on user proximity. Intangible context such as activities, human moods and human
intentions and complex relationships between sensor data and actions have not re-
ceived significant attention to date. However, to be invisible, intelligent systems must
understand both tangible and intangible aspects of context and the complex relation-
ships between sensors and actions.

We believe that the best method for capturing these complex relationships is using
the notion of ‘activities’. Many earlier projects acknowledge a need for such a capa-
bility. For example, MIT utilizes an activity based approach in their second genera-
tion iRoom [11]. EasyLiving [3] from Microsoft acknowledges the need for tracking
activity in an intelligent environment. Responsive Offices [8] from Xerox PARC
identifies activity as an essential ingredient for determining appropriate reactive be-
haviors. Moreover, numerous studies in psychology [9] advocate that individual and
group behavior should be interpreted in relation to the activities people participate in.
Indeed, recent work on groupware [2] has employed many of these concepts (in par-
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ticular concepts from activity theory) for modeling collaborative tasks. Such systems
interpret behaviors by considering the activity as the fundamental unit of analysis.
Figure 1 shows a high-level view of our activity analysis system. Initially, sensors in
the intelligent space are correlated with activities that interest the inhabitants. The
system uses empirical data (collected from the space) to derive causal correlations
between activities and sensors. The correlations are then used to create a correlation
matrix that captures all the correlations between activities and sensors in an intelligent
space. Subsequently, the intelligent system can use the matrix to interpret the activi-
ties in the intelligent space, for example, a probabilistic reasoner can use the matrix
for building a Bayesian network to analyze the activities. This might involve assess-
ing the uncertainties in the reasoner’s inferences or establishing a dialogue with the
inhabitants of the space to disambiguate activities in situations of high uncertainty as
proposed by [4],[5].
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Fig. 1. Activity-aware intelligent space

It is important to emphasize that in a ubiquitous environment that is saturated with
sensors, it is extremely important to distinguish the critical set of sensors that corre-
late with a specific activity from others that do not. For example, imagine construct-
ing a Bayesian network for the activities in a ubiquitous space without knowing the
dependencies between sensor readings and the activities. Including uncorrelated sen-
sors in the Bayesian network will result in inaccuracies that can potentially misguide
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the reasoner. Similarly, excluding correlated sensors from the Bayesian network
could result in ignoring some important aspects of the activities that can also mis-
guide the reasoner. This paper focuses on how to determine the critical set of sensors
that correlate to activities and proposes a new technique for accomplishing that. We
begin our discussion by examining some of the desirable properties for activity-aware
intelligent systems.

3   Desirable Properties for Activity-Aware Intelligent Systems

Few intelligent environments exist, and those that do are confined within research
labs. Therefore, to identify the desirable properties for activity-aware intelligent sys-
tems, we examined recent work on intelligent environments [3],[12],[13], studies
from psychology on individual and group behavior [9], work on natural and multi-
modal human-computer interaction (HCI) [6,7] and connectionist and statistical mod-
eling techniques [5],[10],[12]. These efforts led us to the following desirable proper-
ties:

3.1   Transparency and Comprehensibility

Intelligent systems must support transparent activity modeling. Transparent modeling
enables intelligent environments to reason in ways that are comprehensible to their
inhabitants. Such a property is critical in order that it is possible to formulate pre-
cisely how systems reached particular decisions. Subsequently, this information could
be relayed to the inhabitants of an intelligent space to support a dialogue with the
system as proposed by [4,5] to fix any incorrect actions.

3.2   Adaptability

Intelligent systems must be adaptable to endure the highly dynamic nature of ubiqui-
tous environments. Such adaptability must apply to both physical reconfiguration of
spaces (e.g. changes in the availability of sensors) and to changes in activity patterns
within these spaces. Different systems will require different forms of adaptability
including offline adaptability in which sensor data is logged for later analysis and on-
line adaptability in which sensor data is examined and adaptation is performed while
the system is in use.

3.3   Accuracy

Clearly, achieving high accuracy in terms of identifying the activity in an intelligent
environment from a given set of sensor data is crucial. However, it should be noted
that the exact requirements in terms of accuracy are actually a property of the entire
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system and are influenced by the significance of the actions that will be triggered:
users will perceive the activity analysis process as accurate and indeed as invisible
when the system’s reactions are correct. However, this does not necessarily mean that
the system has identified the users’ activities correctly. For example, imagine a user
having a nap while watching TV. An intelligent system might detect a reduction in
the overall mobility in the space and therefore infers that no one is in the room; re-
sulting in switching off the TV and the lights. Clearly, the analysis process misdiag-
nosed the activity, but the outcome is still considered correct by the user.

3.4   Knowledge Portability

It is important that knowledge about users and their activity patterns can be moved
between intelligent environments, reflecting user mobility inherent in the real world.
This will require a clear separation between the models that represent the system’s
knowledge about activities and the system-specific assumptions and mechanisms. In
practice, achieving portability is likely to be extremely complex, raising many techni-
cal challenges (e.g. determining the equivalence between sensors in different envi-
ronments) and non-technical challenges in areas such as legal and social ethics (e.g.
can models about activity patterns be exchanged between private places and public
places without violating the privacy of people?).

So far, we have described 4 desirable properties for activity-aware intelligent sys-
tems. It should be clear that the above properties are not exhaustive, but we have
deliberately chosen them because of their importance in the context of intelligent
environments. It should also be noted that many of the properties discussed above are
greatly exacerbated when multiple people are participating in an activity.

4   Techniques for Correlating Activities and Sensors

Several techniques can be conceived for correlating activities and sensors including:
expert correlation, statistical correlation and connectionist correlation. We briefly
describe these approaches and we analyze their merits and demerits.

4.1   Expert Correlation

The easiest way to correlate activities and sensors in an intelligent space is to use the
opinion of an expert who is familiar with the space. For example, in a smart class-
room, a teacher can identify different activities that students participate in such as pop
quiz, discussion, on-board problem solving exercise etc. Subsequently, a rough map-
ping could be made between these activities and the available sensors in the class-
room. Gaia [13] uses this approach for activity analysis where the inhabitants of the
intelligent space identify the correlations and construct a belief network that models
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their activities. This network is then used by a Bayesian reasoner to identify the ac-
tivities.
Expert correlation suffers from several limitations. Firstly, it does not scale well: as
more activities and sensors are introduced, it becomes harder for human experts to
assess the correlations. Secondly, people might have different views about the de-
grees of correlation between sensors and activities. Therefore, relying on the subjec-
tive assessment of a particular individual might lead to inaccuracies. Thirdly, adapt-
ing the correlations to the dynamic nature of a ubiquitous space requires a human
expert: an undesirable proposition especially when intelligent spaces host rapidly
changing activities. Hence, we believe that expert correlation is of limited use in
ubiquitous environments that are heavily saturated with sensors.

4.2   Connectionist and Statistical Correlation

Alternatively, connectionist or statistical techniques can be used to identify correla-
tions between sensors and activities. Connectionist correlation relies on neural net-
work analysis that identifies patterns between different inputs. This approach has
been used in the neural house project [12] where a neural network observes the life-
style of the inhabitants of a house and programs itself accordingly. Similarly, statisti-
cal techniques such as regression can identify potential causal relationships between
different variables. In ubiquitous environments, these two techniques can certainly
handle large amounts of data that human experts find cumbersome. Several research
studies [5],[12] have affirmed that neural techniques are more accurate than regres-
sion techniques owing to their ability to capture non-linear correlations automatically.
However, they suffer from the incomprehensibility of the decision making process,
i.e. it is very hard to reconstruct the rationale of a neural network of why a particular
correlation between a sensor and an activity is strong. In contrast, statistical tech-
niques are based upon “well understood models of behavior” and therefore, it is usu-
ally easier to reconstruct the rationale behind their decision making process [5].
Moreover, adapting neural networks to the continuous changes in an intelligent space
might often require retraining the whole network which can be an expensive process
especially in cases that require on-line adaptation.

4.3   Analysis

In light of the above discussion, we can see that expert correlation is not a viable
solution due to its vulnerability to inaccuracies and its inability to deal with the abun-
dance of sensor information in ubiquitous environments. In contrast, regression and
neural networks can deal with the richness of sensor information in such environ-
ments. However, regression provides a more comprehensible framework than neural
based techniques thereby making it more suitable for supporting transparent modeling
where users can establish a dialogue with the system. Moreover, reapplying regres-
sion to adapt to the dynamic nature of a ubiquitous space is likely to incur less over-
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head than retraining a neural network. Finally, it should be noted that although re-
gression is less accurate than neural techniques, its outcome is still comparable [5].
However, it would be unfair to give the impression that neural analysis is unusable,
while regression is completely without problems. The major conceptual limitation in
regression is that it can never identify the underlying causal mechanism. For example,
one would find a strong positive correlation between the number of users attached to
a particular access point in a conference hall and the presentation activities taking
place. Do we conclude that a presentation activity causes an increase in the number of
users attached to an access point? Even though that might be the case in this simple
example, in many other cases, the causal explanations might not be obvious. Moreo-
ver, as the number of variables increase, more empirical observations are required to
avoid having significant correlations while in fact one or more variables are capital-
izing on chance. Finally, even though the rationale behind correlations is potentially
easier to reconstruct using regression, it is unclear how easy it is to relay that infor-
mation to regular inhabitants of an intelligent space that have no prior knowledge of
statistics. Undoubtedly, friendly means should be developed to enable such system-
user dialogues. We acknowledge these problems and recognize the need for exploring
them further.

5   Multinomial Logistic Regression

Multinomial Logistic Regression (MLR) [10] is a statistical technique that investi-
gates and models relationships between a dependent variable and one or more inde-
pendent variables. It is typically used when a dependent variable has the following
properties:

−� Categorical: The dependent has a limited set of values (e.g. for an activity
{presentation=0, break=1, lunch=2}) that could be ordinal (e.g. {strongly
agree, agree, disagree}) or non-ordinal.

−� Mutually Exclusive: Any instance of a dependent cannot be classified as be-
longing to more than one category. For example, considering an activity as a
dependant, an instance of an activity cannot be a presentation and a break at
the same time.

−� Polychotomous: The dependent can have 2 or more categories. A special case
of MLR is the binomial logistic regression that deals with the dependent when
it is a dichotomy.

MLR can deal with independents of any type (e.g. continuous, discrete, dichoto-
mous, polychotomous etc.). Generally speaking, MLR has less stringent requirements
than conventional regression techniques including:

1.� It does not assume linearity of relationship between the independent variables
and the dependent.

2.� It does not require normally distributed variables.
3.� It does not assume homoscedasticity (i.e. the variance around the regression fit

is the same).
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Details of logistic regression techniques can be found in [10], below we explain
only those aspects critical to our discussion. In particular, we explain how to assess
the adequacy of a logistic regression.

5.1   Logistic 
��

The logistic ��  measures the strength of the association between the dependent vari-
able and the independents. It should be noted that the logistic ��  is different from the

��  in conventional regression. The latter measures the goodness of fit relying on the
variance around the regression fit. However, the variance of categorical dependent
variables depends on the frequency distribution of that variable and therefore logistic

��  just reflects the strength of the association.

5.2   Classification Percentage

The classification percentage reflects how good a logistic regression formula is in
estimating the correct categories of a dependant. In a perfect model, the estimated
values are the exact actual values making the overall classification percentage 100%.
It should be noted that the classification process relies on a probability cutoff where
higher cutoffs mean more sensitivity in the classification process.

5.3   Model Chi-Square Test

It is very important to determine the effect of each independent in the logistic for-
mula. For example, the formula might show better correlation without some inde-
pendents or with some additional independents. Model Chi-Square is a technique that
measures the improvement in a fit that an independent variable makes compared to
the null model (i.e. model without independents). This technique uses the null hy-
pothesis to test for individual significance. The null hypothesis says that an independ-
ent variable coefficient has no effect on the dependent variable. Therefore, rejecting
the hypothesis means that the independent should not be deleted from the formula
because it has a significant contribution. While accepting the null hypothesis means
that the independent variable is insignificant and therefore should be deleted.  Gener-
ally speaking, when the probability of the Model Chi-Square is less than 0.05, the
null hypothesis is rejected.

So far, we have described some important concepts for our following discussion.
Next, we describe how to use logistic regression for identifying the correlations in an
intelligent environment.
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6   Correlation in Intelligent Environments

In the context of intelligent environments, we are using MLR for identifying the criti-
cal set of sensors that highly correlate with activities in an intelligent space. Sensor
data is collected for some period of time while users are required to record their ac-
tivities. The system records this information along with statistical data from all sen-
sors. The collected data is then analyzed by a logistic regression engine to identify the
sensors that are showing high correlation with the activities. The output of the regres-
sion engine takes the form of a correlation vector.

Definition 1. In an activity-aware environment with the following properties:

−� A is a set of n+1 activities defined by ������� �� ϕ���� � ∪�  where ϕ�  de-

notes the unrecognized activity, and

−� S is a set of k sensors in the intelligent space defined by ����� �� ���� � ,

a Correlation Vector (CV) identifies the critical set of sensors that highly correlate
with 1 or more activities (and is thus influential in identifying the activities). A CV
has the following form:

������
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������

�������	 ��
(1)

where ��  reflects the correlation between the activities belonging to 	′ and sensor

��  such that: �=��  indicates no or insignificant correlation and �=��  indicates

significant correlation. For example, in a space with three sensors
{ �����
������
���
� =� , �����
�
������
� =� , �����
������������ =
 }, a

correlation vector for a presentation activity might look as follows:

>=<=′ ��������	 ���
��������	�� (2)

This indicates that a presentation activity is highly correlated with the projector sen-
sor and the people count sensor but not with the temperature sensor.

6.1   Sensor Selection and the Correlation Matrix

Our current regression engine relies on the Chi-Square test and the classification
percentage to determine the CV. We can configure the engine to select the highly
correlated sensors in one of two ways:

1.� Forward Selection: In this procedure, the best sensor is found. Next, the sen-
sor that adds the most to the logistic fit is included. This process continues un-
til specific cutoff thresholds (in the Chi-Square and in the classification per-
centage) are reached or none of the sensors add a significant value to the
strength of the association.
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2.� Backward Selection: In this procedure, all the sensors are initially included in
the logistic model. Subsequently, sensors are deleted from the model based on
their level of significance. Again, this process continues until all the sensors
left are at a specific significance level.

It should be noted that higher cutoff values reduce the number of sensors that cor-
relate with particular activities. This potentially simplifies the reasoner’s logic, for
example, a rule-based reasoner that relies on a small set of sensors is likely to gener-
ate simpler rules than reasoners that account for a big set of sensors.

Furthermore, sensor selection is directly influenced by the number of categories of
the dependent. When the logistic engine is given some empirical data, it tries to ac-
count for all the categories of the dependent using one single logistic formula. For
example, imagine a space with the configuration shown in Figure 2 where the links
between sensors and activities indicate the presence of a correlation.

�� 
�

�� �� 
�

�� �� ��

Fig. 2. Example intelligent environment

Analyzing empirical readings from the above space, the logistic regression engine
produces the following CV:

>=<=′ ��������������	 
�� ���	�� (3)

Obviously, the CV fails to reflect the exact dependencies shown in Figure 2. This can
potentially result in inaccuracies when disambiguating activities. For example, sup-

pose an intelligent system wants to disambiguate two particular activities ��� �� �� ,

relying on the above CV includes ��  which is uncorrelated to the two activities.

Clearly, this can potentially misguide the reasoner. To resolve this issue, we use bi-
nomial logistic regression to identify the CV of sensors for each activity with respect

to φ�  (i.e. the no activity state). We give the resulting CV a special name: the Refer-

ence Correlation Vector (RCV). In the example shown in Figure 2, the RCVs are:

>=<=′=

>=<==

>=<=′=

�������������	�	
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Notice that the RCVs precisely reflect the dependencies shown in Figure 2. More
importantly, the disjunction of RCVs is the CV for the union of their activities. For
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example, the disjunction of the above 3 equations is the correlation vector for all the
activities shown in Figure 2:
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Furthermore, combining RCVs of all activities is simply a matrix that represents all
the critical correlations in an intelligent environment. We call this a correlation ma-
trix. The following equation shows the general form of this matrix:
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The above matrix can also be represented as a simple correlation graph. Figure 3
shows an example of a graph that correlates 4 sensors with 3 activities.

Finally, we note that a correlation matrix does not reflect the exact degree of cor-
relation between a particular activity and its sensors. However, the degree of correla-
tion can be roughly estimated using the reduction in the logistic ��  of the model as a
result of omitting the term of a particular sensor from the regression formula. We
further elaborate on this particular issue in the results section.
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Fig. 3. Correlation matrix and correlation graph

6.2   Using the Correlation Matrix

Referring back to our discussion about an activity centric approach, we highlighted
the need to identify the activities in an intelligent space. We explained that the abun-
dance of sensors in ubicomp environments complicates activity analysis: including
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uncorrelated sensors or excluding correlated sensors from the decision making proc-
ess can potentially mislead any reasoner. The correlation matrix (described above)
serves as a filter that reflects the strong dependencies between activities and sensors
in an intelligent space. Reasoners that use the correlation matrix will deal with a re-
duced set of sensors that are highly correlated with the activities they are trying to
recognize. Clearly, this simplifies the task of a reasoner.

In situations of high uncertainty, intelligent systems fail to identify the activities
with reasonable confidence. The logistic engine can be used with higher cutoff values
to determine the sensors that show the highest correlation and therefore could be
considered more reliable. These sensors can then be used to identify the activities.
Moreover, when sensors are removed from the space, their values are replaced with
zeros in the matrix. Depending on the accuracy of the classification process and the
weight of the removed sensors, the system might decide to include one or more cor-
related sensors to compensate for the removed sensors. Similarly, when sensors are
added to the space, the system gathers empirical data from the new sensors. Subse-
quently, activities that are frequently misclassified can be reexamined with the new
sensors included for potentially improving the classification process.

7   Preliminary Results

In this section, we describe preliminary results of our approach. We use publicly
available traces recorded over three days at the ACM SIGCOMM’01 conference
(held at U.C. San Diego in August 2001) to demonstrate that logistic regression is
effective in correlating sensors with activities. A detailed description of these traces
can be found in [1]. The traces record data samples from wireless access points serv-
ing the conference. Note that due to the lack of availability of information on the no

activity state ( φ� ), we are unable to calculate the RCV and therefore we present

measurements based on analysis of the CV.
Two important pieces of information can be identified: the number of mobile

nodes attached to a particular access point and the load on each access point. These
two quantities will serve as sensors for our experiment. In addition, two different
activities can be identified including: sessions and breaks. Intuitively, we would ex-
pect a corre lation between these sensors and the activities. For example, during
breaks the load over an access point is likely to drop and therefore the load sensor
will show a negative correlation with breaks.  Our experiments used 100 sample
readings from one day to identify the logistic regression formulae. We also performed
3 experiments to classify 100 activities using the regression formula with the
throughput sensor only, the number of nodes sensor only and both sensors.
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7.1� Throughput and Activities

First, we characterize the strength of the correlation between the throughput at the
access point and the activities in the conference hall. Figure 4 shows the proportion of
the correctly classified activities using the regression formula for different cutoffs.
From the figure, we see that the throughput sensor can indeed classify all the activi-
ties correctly when the cutoff is very low (i.e. we accept classifications with a broad
error margin). However, its accuracy decreases rapidly as the cutoff is increased (i.e.
demanding less deviation from the categories). With a 0.5 cutoff the regression for-
mula classifies 83% of our test cases correctly.

We also found that the logistic ��  for the regression formula is equal to 0.55. This
reflects a moderate association between the throughput and the activities.
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Fig. 4. Proportion of correct classification Vs. cutoff (using throughput)

7.2   Number of Nodes and Activities

Our second experiment characterizes the strength of the correlation between the num-
ber of nodes attached to the access point and the activities in the conference hall.
Figure 5 shows the proportion of the correctly classified activities using the regres-
sion formula for different cutoffs. From the figure, we see that the number of nodes
sensor can also classify all the activities correctly for low cutoffs. However, the sen-
sor is more robust to higher cutoffs than the throughput sensor. In other words, its
accuracy decreases more slowly than that in the throughput case as the cutoff in-
creases. With a 0.5 cutoff the regression formula classifies 92% of our test cases
correctly. We also found that the logistic ��  for the regression formula is equal to
0.966. This reflects a strong association between the number of nodes and the activi-
ties.



Correlating Sensors and Activities in an Intelligent Environment         331

���

���

���

���

���

���

��	

��


���

���

���

��� ��� ��� ��� ��� ��� ��	 ��
 ��� ��� ���


���������������������������

������



��
��
��
��
��
�
��
��
��
��
��
��

��������

�����
 ������

Fig. 5. Proportion of correct classification Vs. cutoff (using number of users)

7.3�  Number of Nodes, Throughput, and Activities

Finally, our third experiment characterizes the strength of the correlation between
both the number of nodes and their throughput, and the activities in the conference
hall. Figure 6 shows the proportion of the correctly classified activities using the
regression formula for different cutoffs. From the figure, we see that the regression
formula can still classify all the activities correctly with low cutoffs. However, the
classification percentage does not seem to improve from the one that uses the number
of nodes only. With a 0.5 cutoff the regression formula classifies 92% of our test
cases correctly.
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Fig. 6. Proportion of correct classification Vs. cutoff (using throughput and number of users)
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We also found that the logistic ��   for the regression formula is equal to 0.80. This
means that the strength of the association between the number of nodes and the
throughput, and the activities is significant.

7.4   Sensor Selection and the Correlation Matrix

When the logistic regression engine performed forward and backward selection on
the (throughput and number of nodes) regression, it omitted the throughput in both
cases. First, the engine measured the reduction in  ��  when omitting the throughput
term. This reduced the strength of the association by 0.00172. Second, the engine
measured the reduction in ��  when omitting the number of nodes term. This resulted
in a reduction of 0.24. Clearly, including the throughput sensor does not improve the
strength of the association between the activities and the independents significantly.
Moreover, including the throughput has not improved the classification percentage
beyond 92%. Therefore, the regression engine omitted the throughput from the cor-
relation matrix:
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Finally, we note that the reduction in ��  can be used as a rough estimate for the
weights of sensors.

8   Discussion and Future Work

In this paper, we have highlighted the importance of correlating sensors with activi-
ties in an intelligent space. Our approach uses logistic regression. We described some
desirable properties for activity-aware environments including: transparency and
comprehensibility, adaptability, accuracy and knowledge portability. In light of these
properties, we analyzed several techniques for correlating activities with sensors
including: expert correlation, regression correlation and connectionist correlation. We
concluded that regression provides a more comprehensible framework for correlating
activities than the other approaches. We then described in detail our logistic regres-
sion approach. Finally, we reported preliminary results.

Our plan for future work is to assess our approach in the intelligent environment in
our research lab. We are currently developing software components for hardware and
software sensors to use them for collecting empirical data. We are also working on
building a probabilistic reasoning system that will use our correlation matrix to iden-
tify activities in the intelligent space. In addition, we are developing techniques for
exporting and importing contextual knowledge across intelligent environments to
allow spaces to identify unfamiliar activities using imported knowledge from other
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spaces. Finally, we intend to deploy all these components in our research lab and to
make our system accessible to a user community that can report on the impact of our
system on user perceptions of activity analysis.
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