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Abstract. We consider the following problem: Given a set S of graphs,
each of n vertices, construct an n-vertex planar graph G containing all
the graphs of S as subgraphs. We distinguish the variant in which any
two graphs of S are required to have disjoint edges in G (known as
'packing’) from the variant in which distinct graphs of S can share edges
in G (called ’squeezing’). About the packing variant we show that an
arbitrary tree and an arbitrary spider tree can always be packed in a
planar graph, improving in this way partial results recently given on this
problem. Concerning the squeezing variant, we consider some important
classes of graphs, like paths, trees, outerplanar graphs, etc. and establish
positive and negative results.

1 Introduction and Motivation

A number of graph algorithms require to find subgraphs satisfying certain prop-
erties in a larger graph. Moreover, some of the most studied and attracting topics
in graph theory are strictly related to the problem of determining relationships
between a graph and its subgraphs. The subgraph isomorphism problem asks for
finding a subgraph H in a graph G [I5I7I3]. The graph thickness problem asks
for the minimum number of planar subgraphs in which the edges of a graph can
be partitioned [I2]. The arboricity problem asks for determining the minimum
number of forests in which a graph can be partitioned [2]. Every planar graph
(maximal planar graph) can be partitioned in at most three forests (in three
edge-disjoint trees [14]) and it has been recently proved [9] that every planar
graph can be partitioned in two edge-disjoint outerplanar graphs.

The study of the relationships between a graph and its subgraphs can be also
tackled from the opposite side: Given the n-vertex graphs Gy, ..., Gy, the re-
quirement is to find a graph G satisfying certain properties and containing all the
G;’s as subgraphs. This topic occurs with different flavors in the computational
geometry and graph drawing literature, motivated by visualization aims, like the
display of evolving networks and the simultaneous visualization of relationships
involving the same entities. In the simultaneous embedding problem [II8A] G
is given and the goal is to draw it so that the drawing of each G; is planar.
The simultaneous embedding without mapping problem [I] is to find a graph G
such that: (i) G contains all the G;’s as subgraphs, and (ii) G can be drawn with
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Fig.1. (a) A caterpillar. (b) A spider tree.

straight-line edges so that the drawing of each G; is planar. The packing problem
is the one of finding a graph G containing G, .. ., G as edge-disjoint subgraphs.
Hedetniemi [I0] showed that any two trees with diameter greater than 2, that is
with more than three nodes in their longest paths, can be packed in a subgraph
of K,, and Maheo et al. [T1] gave a characterization of which triples of trees can
be packed in K,,.

The planar packing problem is the variant of the packing problem in which
G is required to be planar. Garcia et al. in [6] conjectured that there exists a
planar packing of any two non-star trees, that is of any two trees with diameter
greater than 2. Notice that the hypothesis that each tree is different from a star
is necessary, since any mapping between the vertices of a star and the vertices
of an arbitrary tree leads to at least one common edge. Garcia et al. proved the
conjecture for the cases (1) if the trees are isomorphic and (2) if one of the trees
is a path respectively. Recently it has been shown in [I3] that (3) there exists a
planar packing of any two trees if one of them is a caterpillar. In [I3] it was also
shown the conjecture (4) if one of the trees is a spider with diameter at most 4.
A caterpillar is a tree which becomes a path when all its leaves are deleted (see
Fig.[Mla) and a spider is a tree with at most one vertex of degree greater than 2
(see Fig. [b).

In this paper we contribute to the state of the art on the planar packing
problem, by extending some of the results in [6] and [I3]. Namely, in Section B3]
we show that there exists a planar packing of any two trees of diameter greater
than 2 if one of them is a spider tree. Notice that this result implies results (2)
and (4) cited above. The study of the possibility of obtaining a planar packing of
a spider tree and an arbitrary tree is motivated by the observation that a spider
tree is a subdivision of a star, and hence spider trees are natural candidates for
finding counter-examples of the above cited conjecture.

In Section Fl we consider the relaxed version of the planar packing problem in
which the subgraphs are not required to be edge-disjoint in the graph containing
them. We call such a problem the planar squeezing problem and we formally
define it as follows: Given the n-vertex graphs Gy, .. ., G, find an n-vertex planar
graph G containing all the G;’s as subgraphs. We consider some classes of graphs
most commonly investigated in the computational geometry and planar graph
drawing literature, and we fully determine which ones of them can be generally
squeezed in a planar graph. Namely, we show that: (i) there exist a planar graph
and a path (a planar graph and a star) that cannot be squeezed in a planar
graph; (ii) every two outerplanar graphs (every two trees) can be squeezed in
a planar graph; (iii) there exist three caterpillars (three trees) that cannot be
squeezed in a planar graph; (iv) there exist two trees that cannot be squeezed
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in an outerplanar graph; and (v) any number of paths, stars and cycles can be
squeezed in an outerplanar graph. Finally, in Section Bl we conclude and suggest
some open problems.

2 Definitions

A drawing of a graph is a mapping of each vertex to a distinct point in the
plane and of each edge to a Jordan curve between the endpoints of the edge. A
drawing is planar if no two edges intersect but possibly at common endpoints.
A planar graph is a graph that admits a planar drawing. Two planar drawings
of a graph G are equivalent if the corresponding circular ordering of the edges
incident to each vertex of G is the same for both drawings. An embedding of a
planar graph G is an equivalence class of planar drawings. An outerplanar graph
is a planar graph that admits a planar drawing with all its vertices on the same
face. An embedding is outerplanar if all the vertices lie on the same face. The
diameter of a tree is the length of the longest path in the tree. A star is a tree
with diameter 2, that is a tree where every vertex, but for one, is a leaf, which
is a vertex of degree one. A caterpillar is a tree such that the graph obtained by
deleting its leaves is a path. A spider is a tree with at most one vertex, called
root, of degree greater than 2. The paths starting at the root are called legs of
the spider. Observe that by definition a star is also a spider and a caterpillar, a
path is also a spider and a caterpillar, a caterpillar is also a tree, and a tree is
also an outerplanar graph.

Given the n-vertex planar graphs G, ..., Gy, a planar packing of G1, ..., Gy
is an n-vertex planar graph containing all the G;’s as edge-disjoint subgraphs
(see also [6]). Given the n-vertex planar graphs Gy,..., Gy, a planar squeezing
of G1,...,G} is an n-vertex planar graph containing all the G;’s as subgraphs.
In the following, unless otherwise specified, packing and squeezing will always
stand for planar packing and planar squeezing, respectively.

3 Packing Trees in Planar Graphs

In this section we give an algorithm to pack any n-vertex non-star spider tree
S and non-star tree T' in a planar graph. Observe that we can suppose w.l.o.g.
that the diameter of T is greater or equal than 4. In fact, since T is not a star its
diameter is greater than 2 and if the diameter of T is 3 then T is a caterpillar,
implying that there is a planar packing of T and S [13].

The algorithm we present consists of a Preprocessing step and of an Embedding
step that we sketch here and detail in the following. In the Preprocessing step
we root the trees and we fix their embeddings. We also assign a level to each
vertex of T. In the Embedding step we embed S on T to obtain a packing of
the two trees. After having mapped the root of S to a vertex of T, the legs of S
are embedded one at a time sorted by increasing length. For each leg its vertices
are embedded one at a time in the order they appear on the leg starting from
the nearest to the root and ending with the leaf of the leg. Let vy, denote the
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vertex of S that has to be embedded. We call the vertex a of S that comes before
Veyr 10 the leg of vy, active vertex. By the order in which the vertices of S are
embedded, a has been already mapped to a vertex of T" when v, is embedded.
At every step vey, is mapped to an ‘unchosen vertez’, that is a vertex of T' to
which no vertex of S has been yet mapped. We analogously call a vertex of T" to
which a vertex of S has been already mapped ’‘chosen vertez’. At every step of
the algorithm 7" and the already embedded edges of S form an embedded graph
E. We call the border of the outer face of £ active border F. The same vertex of T
can have several occurrences in F, since & is generally a single-connected graph.
We denote by F(—,b,c) (by F(«,b,c)) the sequence of vertices occurrences
that are encountered walking clockwise (resp. counter-clockwise) on F from an
occurrence of a vertex b to an occurrence of a vertex ¢. When v, is embedded,
edge (a, Ueyr) is drawn inside the outer face of £.

Preprocessing Step. Pick a leaf [ of T" such that all the neighbors of the unique
neighbor p of [ are leaves, but for exactly one vertex r1. Note that such [ always
exists since T is different from a star. Let T” denote the tree obtained from T
by deleting p and its adjacent leaves. We choose r1 to be the root of T and the
root of 7" as well. The root 7 of S is chosen as usually (see Section [). Assign
a level [(v) to each vertex v of T' so that the root is assigned level 0, all its
children are assigned level 1, and so on. Embed T” so that for each vertex v the
children of v are in clockwise order vq,vs, ..., v such that v; < v; implies that
the subtree rooted at v; contains a vertex w with {(w) > I(u), for every vertex u
in the subtree rooted at v;. In the following we will suppose that the children of
each node of T" are ordered in clockwise direction. Augment the embedding of
T’ into an embedding of T by inserting p before the first child of r; in 77, and
by ordering the neighbors of p in clockwise direction so that [ is the first vertex
and r1 is the second one. Map 75 to [. Let 7o be the first active vertex a.

Embedding Step. This step is repeated until all the vertices and edges of S
are embedded on the embedding of T constructed in the Preprocessing step. The
legs of S are embedded one at a time sorted by increasing length. For each leg its
vertices are embedded one at a time in the order they appear on the leg starting
from the nearest to ro and ending with the leaf of the leg. Let p(v) denote the
parent of a vertex v in 7" and T'(v) denote the subtree of T rooted at v. While p
has unchosen neighbors, the algorithm will map wv., to the first unchosen vertex
in the counter-clockwise order of the neighbors of p starting at r,. Hence, when
Veur 18 set equal to 71, all the other neighbors of p will be chosen vertices. Every
time ve,, has to be embedded, do the following: (i) map veu,» to an unchosen
vertex u of T'; (ii) draw the edge between a and v.,, into the outer face of &,
and (iii) choose a new vertex of T' to be the new active vertex. The choice of
the new active vertex a is always done in the following way: If the next vey, is
on the same leg of the just embedded vy, then a = u, otherwise a = 5. The
choice of the vertex u to which v, is mapped and the drawing of edge (@, veyr)
vary according to several cases:
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Fig. 2. Illustrations for the different cases of the Embedding step. The dashed edges
with arrows represent the searches for unchosen vertices that are done in F and the
drawings of the edges (a,u), where u is the unchosen vertex for which it is set u = veyr.
(a) Case 1. (b) Case 2 (i). (c¢) Case 2 (ii): The search labelled by 1 corresponds to
the clockwise search for unchosen vertices in F, that does not succeed. The search
labelled by 2 corresponds to the counter-clockwise search for unchosen vertices in F,
not considering the vertices in T'(a). Edge (a,u) will be drawn as the dashed edge
labelled by 2. (d) Case 3.1 (ii): The search labelled by 1 corresponds to the clockwise
search for unchosen vertices in F, that does not succeed. The search labelled by 2
corresponds to the counter-clockwise search for unchosen vertices in F, considering
also the vertices in T'(a). Edge (a,u) will be drawn as the dashed edge labelled by 2.
(e) Case 3.2, where the dashed edge represents the drawing of (a, ¢). (f) Case 3.3, where
the dashed edges represent the drawing of (a,p) and the drawing of (p,u). Notice that
the second edge is drawn only if p is the active vertex after setting veur = p.

Case 1: (refer to Figure 2.a) If a coincides with ro or with any other neighbor of
p not in 7", then walk counter-clockwise on F, starting from the only occurrence
of ro, until an unchosen vertex w is found. Map vey, to u. Draw edge (a, Veyr)
following the counter-clockwise walk done on F.

Case 2: (refer to Figures 2.b and 2.c) If a does not coincide with ro and there
is at least one unchosen vertex in the tree 77\ T'(a) that does not belong to the
path from r; to a in 7", then walk on F(—,a,r3) not considering the vertices
in T'(a).

(i) If an unchosen vertex u # p(a) has been encountered then map vey, to u
and draw the edge (a, veyr) following the clockwise walk done on F.

(ii) If the last occurence of p(a) in F(—,a,r2) has been encountered and p(a)
is not yet chosen or if no unchosen vertex has been found in F(—,a,rs),
then reverse the search direction and map vey, to the first unchosen vertex
u in F(«,a,p), not considering the vertices in T'(a). Draw the edge (a,u)
following the counter-clockwise walk done on F.
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Case 3: If a does not coincide with 79, and if there are no unchosen vertices in
T\ T(a), but eventually for those in the path from 7 to a in T”, we distinguish
three subcases:

Case 3.1: (refer to Figure 2.d) If no unchosen child of a exists and if T'(a)
contains unchosen vertices of level I(a) + 2 or higher, then search in F(—,a,r2)
not considering the vertices in T'(a).

(i) If an unchosen vertex u # p(a) has been reached then map ve,, to u and
draw edge (@, veyr) following the clockwise walk done on F.

(ii) If the last occurence of p(a) in F(—,a,re) has been reached and p(a) is
not yet chosen or if no unchosen vertex has been found in F(—,a,r3), then
reverse the search direction and map v, to the first unchosen vertex u in
F (<, a,p) starting from the first occurrence of a in F(+,ry, p). In this case
the vertices of T'(a) are considered first. Draw edge (a, veyr) following the
counter-clockwise walk done on F.

Case 3.2: (refer to Figure 2.e) If there are unchosen children of a and if T'(a)
contains unchosen vertices of level [(a) + 2 or higher, then consider the last child
b of a in clockwise order. Select the clockwise first child ¢ of b. We will prove
later that ¢ is an unchosen vertex. Map ve,, to ¢ and draw edge (a, Vey,) passing
just before edge (a,b) in the clockwise order of the children of a.

Case 3.3: (refer to Figure 2.f) If T'(a) does not contain unchosen vertices of level
l(a)+2 or higher, then we are in the final phase of our algorithm. Notice that the
only unchosen vertices in T”, but for p, are either at distance one from a or lie on
the path from a to r;. We will prove later that all the unchosen vertices on such
a path are pairwise non-adjacent. Map vey, to p draw edge (a, veyr) by walking
counter-clockwise on F starting from the first occurrence of a in F(—,p,r2).
After that, if a = p then search in F(—,a,rz) until an unchosen vertex u is
found. Map vy to u and draw edge (a, vey,) following the clockwise walk done
on F. At this point, or if it was a = 7o, only Cases 1, 2, and 3.1 will be applied,
until all the remaining vertices of S are mapped to unchosen vertices of T'. Notice
that Case 3.3 is applied exactly once in one application of the algorithm.

In the following we give some lemmas that will be helpful to prove that the
described algorithm constructs a planar packing of S and T'. The proofs of such
lemmas are in the full version of the paper [5].

Lemma 1. Let v and p(v) be unchosen vertices in T'. Then all vertices in T (v)
are unchosen.

Corollary 1. Let v € T’ be a chosen vertex and let P = (r1 = v1,v2,...,0—1,
vy = v) be the path connecting 1 and v in T', with | > 2. There exist no two
consecutive unchosen vertices v; and viy1 in P.

Lemma 2. If v is the j-th child of p(v) in T, if p(v) is unchosen, and if Ve,
has been mapped to v in the current step of the algorithm, then during the last
J steps of the application of the algorithm Case 3.2 was applied once to draw an
edge from p(p(v)) to the first child [ of p(v) and Case 2 (i) was applied in the
following j — 1 steps to draw j — 1 edges connecting the first j children of p(v).
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Corollary 2. Let a be an active vertex in T' and let p(a) be unchosen. There
exists no occurrence of p(a) in F(+—,a,p).

Lemma 3. Let v € T’ be an occurrence of a vertex in F. In F(—,v,r2) there
exists at least one occurrence of every unchosen wvertex belonging to the path
connecting r1 and v in T'. Moreover, all the unchosen vertices of T appear at
least once in F.

Theorem 1. There exists an algorithm that in polynomial time constructs a
planar packing of any n-vertex non-star spider tree S and any n-vertex non-star
tree T'.

Proof. Apply the algorithm described in this section to 7" and S. First, notice
that the algorithm can be easily implemented to run in polynomial time. We
claim that the constructed embedding £ is a planar packing of T" and S. More
precisely, we will prove that: (1) £ is planar, (2) every two vertices of S are
mapped to distinct vertices of T, (3) there are no common edges between S and
T, and finally (4) all the vertices of S are mapped to vertices of T'.

(1): The planarity of £ follows from the fact that at every step all the unchosen
vertices are incident to the outer face (by Lemma [3]) and that by construction
every inserted edge is placed inside the outer face of £.

(2): When one of the Cases 1, 2, 3.1, and 3.3 of the Embedding step is applied,
by the description of the algorithm v, is mapped to an unchosen vertex of T
Hence, we have only to show that when Case 3.2 has to be applied in a step s*
of the algorithm the first child ¢ of the last child b of a is unchosen. If before s*
vertex b is chosen, then by Lemma [ all the children of a were chosen when it
was set vy = b, hence Case 3.2 would not be applied in s*. Otherwise, prior to
the choice of a before step s*, both b and a were unchosen and so, by Lemma [T]
all the vertices in 7'(b), including ¢, are unchosen at the beginning of s*.

(3): Consider the different cases of the Embedding step. In Case 1 a common
edge is inserted only if it is set Ve, = p. If @ # ro then setting vey, = p would
imply that T is a star, contradicting the hypoteses. Notice that vertices of S are
mapped to all the neighbors of p by applications of Case 1 before any other case
of the Embedding step is applied. If a = 7o then, since p is the last vertex in
F(«,r2,p), setting veu = p implies that no other vertex of F is unchosen and,
by Lemma [3 that no other vertex of T is unchosen. Hence, the current leg of S
is the last one. Since this leg should have length 1 and since the legs of S are
ordered by increasing length, S would be a star, contradicting the hypoteses. In
Case 2, the only neighbor of a in 7" that belongs to 7"\ T'(a) is p(a). However,
in Case 2 (i) it is clear that vey, = u is chosen for a vertex u # p(a). In Case 2
(ii) the algorithm chooses for ve,, the first unchosen vertex w in F(«+,a,p). By
Corollary [ there exists no occurrence of p(a) in such a visit and so u # p(a).
In Case 3.1 (i) the same considerations done for Case 2 (i) hold. In Case 3.1 (ii)
for vey, is a vertex u chosen, that belongs to T'(a). Since all the children of a
are already chosen, then no common edge is inserted. In Case 3.2 a and ¢ are
not neighbors in 7. Finally, consider Case 3.3. Since a belongs to T”, then a and
p are neighbors only if a = r;. However, if a = r; and there are no unchosen
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vertices in T”, but for the children of a, then the diameter of T' would be at most
2, contradicting the hypoteses. Concerning edge (p, u) all the neighbors of p are
already chosen before applying Case 3.3, so u cannot be a neighbor of p.

(4): We have to prove that while there are unchosen vertices in T' the algorithm
applies one of the cases in the Embedding step to map v, to a vertex of T'. All the
neighbors of p are chosen at the beginning of the Embedding step by applications
of Case 1. After that phase only p and the vertices in 7"\ r; are still unchosen. Now
let @ be the current active vertex. Suppose Case 1 has to be applied. By Lemmal[3]
at every step of the algorithm all the unchosen vertices are on F, so Case 1 finds
an unchosen vertex u to set vey, = u. Suppose Case 2 has to be applied. If there
are occurrences of unchosen vertices in F(«, a,r2) not belonging to T'(a) or to
the path connecting 71 and a in 7", then even if Case 2 (i) fails, then Case 2 (ii)
would find such occurrences. Otherwise, suppose that the only unchosen vertices
not belonging to T'(a) or to the path connecting a and ry in T appear before a
in F(«,re,p). If p(a) is already chosen, then Case 2 (i) would always succeed.
If p(a) is unchosen and if a is the j-th child of p(a), then T'(p(p(a))) contains
the only unchosen vertices remaining, but for p and for the vertices in the path
from 71 to p(p(a)) in T”, since Case 3.2 was applied j steps before the current one
when p(p(a)) was the active vertex (by Lemma[l). Since p(a) is the last child of
p(p(a)), then the only vertices that can have occurrences before a in F(«,ra, p)
are the vertices in T'(p(a)). Such occurrences are clearly encountered before the
last occurrence of p(a) in F(—,a,p), hence Case 2 (i) finds them and succeeds.
Suppose Case 3.1 has to be applied. Then either Case 3.1 (i) succeeds, or Case 3.1
(ii) finds an unchosen vertex in T'(a). Such vertex exists by the hypoteses of Case
3.1. Suppose Case 3.2 has to be applied. We have already shown in part (2) of
the proof, that if vertex c exists, then it is unchosen. Now we only have to prove
the existence of such a vertex. By the construction of the embedding of T’ the
children of a are clockwise ordered by increasing depth of the subtrees rooted at
them; observing that in T'(a) there are vertices of level I(a) + 2 or higher, then
vertex c exists. Finally if Case 3.3 has to be applied, then no problem arises, since
p is unchosen and it is on F before the only application of Case 3.3. Notice that
by Corollary[[land Lemma [3after Case 3.3 is applied all the remaining unchosen
vertices of T are disconnected and are on F. Therefore, Cases 1, 2, and 3.1 can
be applied until all the vertices of S are mapped to vertices of T. (Il

4 Squeezing Planar Graphs in Planar Graphs

When dealing with the planar packing problem, it can be easily observed that
two sufficiently dense planar graphs cannot be packed in the same planar graph.
For instance, two maximal outerplanar graphs have 2n — 3 edges each, and a
packing of them contains 4n — 6 edges, that are more than the ones that a
planar graph can have.

If you want to obtain planar squeezings of planar graphs, edges of different
graphs can overlap, and so edge-counting arguments do not work. However, the
following two results are just slightly more than trivial:
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Lemma 4. There exist a planar graph G and a path P that cannot be squeezed
in a planar graph.

Proof. Let G be an n-vertex triangulated planar graph that does not contain
any Hamiltonian path, and let P be an n-vertex path. Observe that since G is
maximal no edge can be added to it without violating its planarity. However,
when squeezing G and P, at least one edge of P is not common to an edge of
G, otherwise G would contain an Hamiltonian path. O

Lemma 5. There exist a planar graph G and a star S that cannot be squeezed
in a planar graph.

Proof. Let G be an n-vertex triangulated planar graph that does not contain a
vertex of degree greater than n — 2, and let S be an n-vertex star. Since G is
maximal no edge can be added to it without violating its planarity. However,
when squeezing G and S, at least one edge of S is not common to an edge of G,
otherwise G would contain a vertex of degree n — 1. O

Turning the attention from planar to outerplanar graphs, we have:
Lemma 6. Any two outerplanar graphs can be squeezed in a planar graph.

Proof. Let O and O5 be two outerplanar graphs. Assume w.l.o.g. that both Oy
and Os are biconnected. Hence O and Os contain Hamiltonian cycles, say C4
and Cy, respectively. Now map the vertices of O; and O3 so that C; and Cy
are coincident. Furthermore, embed the edges of O; that do not belong to C4
inside C1, and embed the edges of O, that do not belong to Cs and that are not
common to edges of O; outside C;. By the outerplanarity of O (of O2) there
are no intersections between edges inside C; (resp. outside C7). Further, there
are no intersections between edges inside C'; and edges outside Cy, since they
are separated by Cf. O

Corollary 3. Any two trees can be squeezed in a planar graph.

Corollary [B] shows that the problem of determining whether for any two trees
there exists a planar graph containing them as subgraphs, that has been tackled
in [6], in [I3] and in Section [l is easily solvable if common edges are allowed.

However, if one augments the number of trees that must be squeezed, then a
planar squeezing is not generally possible. Namely, in the following we provide
three caterpillars that cannot be squeezed in the same planar graph.

Theorem 2. There exist three caterpillars that cannot be squeezed in the same
planar graph.

Proof. Let Cy be a star with center u and n — 1 leaves (see Fig. Bla), let Cy be a
caterpillar with two adjacent vertices v; and v of degree n/2 and n — 2 leaves
(see Fig.Blb), and let C5 be a caterpillar with five vertices wy, ..., ws of degree
at most n/5+ 1 forming a path and with n — 5 leaves. Each vertex w; has n/5—1
adjacent leaves (see Fig. Blc).
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Fig. 3. (a) Star C1. (b) Caterpillar Cs. (¢) Caterpillar Cs. (d) Embedding £4.

We will try to construct a planar embedding that contains embeddings of C1,
C5, and C3 and we will show that this goal is not achievable. Observe that C4
has a unique embedding £ up to a relabelling of its leaves. First, construct a
planar embedding & by embedding Cs on & in any way. Let G2 denote the
planar graph obtained by such a squeezing. Notice that there exists one out of
v1 and vg, say v*, that has not been mapped to v and that shares with u exactly
n/2 — 1 common neighbors. In fact, if vertex vy (vertex vs) has been mapped to
u, then vy (resp. v1) has been mapped to a leaf of C; and all the n/2 — 1 leaves
adjacent to ve (resp. to v1) have been mapped to leaves of C1, that are neighbors
of u. Otherwise, if both vertices v; and vy have been mapped to leaves of C1,
then vy (or ve) has exactly n/2 — 2 adjacent leaves that have been mapped to
leaves of C7, that are neighbors of u, and vy (resp. v1) is a neighbor of both u
and vy (resp. of both w and vy). Consider the set A of vertices that are neighbors
of both u and v*. Vertex u, vertex v*, and the vertices in A induce an embedded
subgraph €4 of & that is done by at least one and at most two nested triangles
sequences, all sharing edge (u, v*) (see Fig. Bld).

Now consider any embedding &3 of C'5 on &;. Let us discuss how many vertices
of C's can be mapped to vertices in A, while preserving the planarity of 5. Since
the degree of each vertex w; is at most n/5 + 1, at most 2n/5 + 2 vertices of A
could be neighbors of v and v* in C5. Vertices wy, ..., ws of C5 that are not
mapped to u and v* can have at most two vertices of A as adjacent leaves. In
fact, if vertex w; is mapped to a vertex of A, then it is incident to two adjacent
faces of £4 that have at most two vertices distinct from w, from v*, and from
w; itself. If vertex w; is mapped to a vertex not in A and inside any face of
Ea, then it can be a neighbor of the at most two vertices of that face that
are in A. Hence, for every vertex w; three vertices internal to £4 can have a
mapping, two with leaves adjacent to w; and one with w; itself. Hence less than
2n/5+2+43-5=2n/5+ 17 vertices of A can have a mapping with a vertex of
C5 while preserving the planarity of £. Choosing |A| = n/2 —1 > 2n/5 + 17
(i.e. choosing n > 180) implies that the vertices of C3 cannot be mapped to all
the vertices in A while preserving the planarity of £3 and hence that there is no
planar squeezing of C7, Cs, and Cj (Il

Corollary 4. There exist three trees that cannot be squeezed in the same planar
graph.

If one wants to squeeze trees in trees, trees in outerplanar graphs, or outerplanar
graphs in outerplanar graphs, then very few is allowed. Namely, we show two
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caterpillars that cannot be squeezed in any outerplanar graph. Let C; be a
star with center v and seven leaves and let C; be a caterpillar consisting of
two vertices of degree four and six leaves. We claim that C; and C5 cannot
be squeezed in the same outerplanar graph. This is proved by showing that
any planar embedding of an 8-vertex planar graph that contains embeddings of
C7 and C5 cannot be an outerplanar embedding. First, observe that Cy has a
unique embedding up to a relabelling of its leaves. So consider it as embedded.
Now embed C5. Since there is just one non-leaf vertex in Cy, at least one of
the vertices of Cy with degree 4 must be mapped to a leaf of C;. Let v be
such a vertex. Again, since there is one non-leaf vertex in Cy, at least three
of the neighbors of v must be mapped in leaves of Cy. This implies that in
any embedding containing embeddings of C; and C5 there is a cycle formed
by v, u and a neighbor of v enclosing a neighbor of v. Hence there exists no
outerplanar embedding containing embeddings of C; and C5 and so there exists
no outerplanar graph containing Cy and Cbs.

Theorem 3. There exist two caterpillars that cannot be squeezed in the same
outerplanar graph.

Corollary 5. There exist two trees that cannot be squeezed in the same outer-
planar graph.

We conclude this section observing that any number of paths, cycles and stars
can be squeezed in an outerplanar graph having one vertex of degree n — 1.

5 Conclusions and Open Problems

We have considered the problem of packing and squeezing subgraphs in planar
graphs. Concerning the planar packing problem, the previous works on this topic
[6/T3] contain algorithms that construct embeddings of the trees by observing
the ’separation principle’, i.e. by separating the edges of the two trees in two
different portions of the embedding plane, established in advance. This allows to
mind only to the presence of common edges for obtaining a planar packing. As
far as we know, our algorithm is the first one that does not bind the embeddings
of the trees to be separated as described. Also the tree embeddings produced by
our algorithm could not be separated in different parts of the plane, since there
are vertices with a sequence [T, T5, Ty, Ts] of consecutive edges, where Ty (1)
indicates an edge belonging to the first (resp. the second) tree.

Problem 1. Does a planar packing of any two non-star trees with the further
constraint of having an embedding where the two trees can be separated by a
simple line that intersects the embedding only at vertices of the graph exist?

For the squeezing problem, we considered combinations of important classes of
planar graphs like paths, caterpillars, trees, outerplanar graphs and established
which combinations can generally be squeezed and which cannot. However, the
following open problem is worth of interest:
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Problem 2. Which is the time complexity of determining if two planar graphs
can be squeezed in a planar graph?

The last question seems to be strictly related to some of the most important
problems in graph theory, like graph isomorphism and subgraph isomorphism.
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